Abstract / truncated to 115 words (read the full abstract)

In this study, the respiratory system are modelled by three linear and one non-linear lumped parameter respiratory model, the equations of the models are driven and the parameters are estimated by using statistical signal processing methods. Linear RIC, Viscoelastic and Mead models and proposed basic non-linear RC model are used to resemble the respiratory system of the patient with Chronic Obstructive Pulmonary Disease (COPD) under non-invasive ventilation. Statistical signal processing methods such as Minimum Variance Unbiased Estimation (MVUE), Maximum Likelihood Estimation (MLE), Kalman Filter (KF), Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) are very powerful methods to estimate the parameters of the systems embedded in the unknown noise. In the first part of ... toggle 5 keywords

respiratory mechanics respirayory parameters parameter estimation kalman filter posterior cramer rao lower bound

Information

Author
Saatci, Esra
Institution
Istanbul University
Supervisor
Publication Year
2009
Upload Date
April 5, 2011

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.