Toward sparse and geometry adapted video approximations

Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model and on related theoretical work on rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the appropriate coding strategies that adaptive video codecs need to implement in order to be efficient. Efficient video representations for coding purposes require the use of adaptive signal decompositions able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity needs to be such that it allows for proper modeling of signals in order to represent these with the lowest possible coding cost. Video is a very structured signal with high geometric content. This includes temporal geometry (normally represented by motion ...

Divorra Escoda, Oscar — EPFL / Signal Processing Institute


Linear Dynamical Systems with Sparsity Constraints: Theory and Algorithms

This thesis develops new mathematical theory and presents novel recovery algorithms for discrete linear dynamical systems (LDS) with sparsity constraints on either control inputs or initial state. The recovery problems in this framework manifest as the problem of reconstructing one or more sparse signals from a set of noisy underdetermined linear measurements. The goal of our work is to design algorithms for sparse signal recovery which can exploit the underlying structure in the measurement matrix and the unknown sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery. We answer three fundamental and interconnected questions on sparse signal recovery problems that arise in the context of LDS. First, what are necessary and sufficient conditions for the existence of a sparse solution? Second, given that a sparse solution exists, what are good low-complexity algorithms that ...

Joseph, Geethu — Indian Institute of Science, Bangalore


Novel texture synthesis methods and their application to image prediction and image inpainting

This thesis presents novel exemplar-based texture synthesis methods for image prediction (i.e., predictive coding) and image inpainting problems. The main contributions of this study can also be seen as extensions to simple template matching, however the texture synthesis problem here is well-formulated in an optimization framework with different constraints. The image prediction problem has first been put into sparse representations framework by approximating the template with a sparsity constraint. The proposed sparse prediction method with locally and adaptive dictionaries has been shown to give better performance when compared to static waveform (such as DCT) dictionaries, and also to the template matching method. The image prediction problem has later been placed into an online dictionary learning framework by adapting conventional dictionary learning approaches for image prediction. The experimental observations show a better performance when compared to H.264/AVC intra and sparse prediction. ...

Turkan, Mehmet — INRIA-Rennes, France


Bayesian Compressed Sensing using Alpha-Stable Distributions

During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...

Tzagkarakis, George — University of Crete


Parameter Estimation and Filtering Using Sparse Modeling

Sparsity-based estimation techniques deal with the problem of retrieving a data vector from an undercomplete set of linear observations, when the data vector is known to have few nonzero elements with unknown positions. It is also known as the atomic decomposition problem, and has been carefully studied in the field of compressed sensing. Recent findings have led to a method called basis pursuit, also known as Least Absolute Shrinkage and Selection Operator (LASSO), as a numerically reliable sparsity-based approach. Although the atomic decomposition problem is generally NP-hard, it has been shown that basis pursuit may provide exact solutions under certain assumptions. This has led to an extensive study of signals with sparse representation in different domains, providing a new general insight into signal processing. This thesis further investigates the role of sparsity-based techniques, especially basis pursuit, for solving parameter estimation ...

Panahi, Ashkan — Chalmers University of Technology


Distributed Signal Processing for Binaural Hearing Aids

Over the last centuries, hearing aids have evolved from crude and bulky horn-shaped instruments to lightweight and almost invisible digital signal processing devices. While most of the research has focused on the design of monaural apparatus, the use of a wireless link has been recently advocated to enable data transfer between hearing aids such as to obtain a binaural system. The availability of a wireless link offers brand new perspectives but also poses great technical challenges. It requires the design of novel signal processing schemes that address the restricted communication bitrates, processing delays and power consumption limitations imposed by wireless hearing aids. The goal of this dissertation is to address these issues at both a theoretical and a practical level. We start by taking a distributed source coding view on the problem of binaural noise reduction. The proposed analysis allows ...

Roy, Olivier — EPFL


Sparsity Models for Signals: Theory and Applications

Many signal and image processing applications have benefited remarkably from the theory of sparse representations. In its classical form this theory models signal as having a sparse representation under a given dictionary -- this is referred to as the "Synthesis Model". In this work we focus on greedy methods for the problem of recovering a signal from a set of deteriorated linear measurements. We consider four different sparsity frameworks that extend the aforementioned synthesis model: (i) The cosparse analysis model; (ii) the signal space paradigm; (iii) the transform domain strategy; and (iv) the sparse Poisson noise model. Our algorithms of interest in the first part of the work are the greedy-like schemes: CoSaMP, subspace pursuit (SP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP). It has been shown for the synthesis model that these can achieve a stable recovery ...

Giryes, Raja — Technion


Bayesian data fusion for distributed learning

This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...

Peng Wu — Northeastern University


Bayesian methods for sparse and low-rank matrix problems

Many scientific and engineering problems require us to process measurements and data in order to extract information. Since we base decisions on information, it is important to design accurate and efficient processing algorithms. This is often done by modeling the signal of interest and the noise in the problem. One type of modeling is Compressed Sensing, where the signal has a sparse or low-rank representation. In this thesis we study different approaches to designing algorithms for sparse and low-rank problems. Greedy methods are fast methods for sparse problems which iteratively detects and estimates the non-zero components. By modeling the detection problem as an array processing problem and a Bayesian filtering problem, we improve the detection accuracy. Bayesian methods approximate the sparsity by probability distributions which are iteratively modified. We show one approach to making the Bayesian method the Relevance Vector ...

Sundin, Martin — Department of Signal Processing, Royal Institute of Technology KTH


Sparsity in Linear Predictive Coding of Speech

This thesis deals with developing improved modeling methods for speech and audio processing based on the recent developments in sparse signal representation. In particular, this work is motivated by the need to address some of the limitations of the well-known linear prediction (LP) based all-pole models currently applied in many modern speech and audio processing systems. In the first part of this thesis, we introduce \emph{Sparse Linear Prediction}, a set of speech processing tools created by introducing sparsity constraints into the LP framework. This approach defines predictors that look for a sparse residual rather than a minimum variance one, with direct applications to coding but also consistent with the speech production model of voiced speech, where the excitation of the all-pole filter is model as an impulse train. Introducing sparsity in the LP framework, will also bring to develop the ...

Giacobello, Daniele — Aalborg University


Efficient representation, generation and compression of digital holograms

Digital holography is a discipline of science that measures or reconstructs the wavefield of light by means of interference. The wavefield encodes three-dimensional information, which has many applications, such as interferometry, microscopy, non-destructive testing and data storage. Moreover, digital holography is emerging as a display technology. Holograms can recreate the wavefield of a 3D object, thereby reproducing all depth cues for all viewpoints, unlike current stereoscopic 3D displays. At high quality, the appearance of an object on a holographic display system becomes indistinguishable from a real one. High-quality holograms need large volumes of data to be represented, approaching resolutions of billions of pixels. For holographic videos, the data rates needed for transmitting and encoding of the raw holograms quickly become unfeasible with currently available hardware. Efficient generation and coding of holograms will be of utmost importance for future holographic displays. ...

Blinder, David — Vrije Universiteit Brussel


Adaptive Sparse Coding and Dictionary Selection

The sparse coding is approximation/representation of signals with the minimum number of coefficients using an overcomplete set of elementary functions. This kind of approximations/ representations has found numerous applications in source separation, denoising, coding and compressed sensing. The adaptation of the sparse approximation framework to the coding problem of signals is investigated in this thesis. Open problems are the selection of appropriate models and their orders, coefficient quantization and sparse approximation method. Some of these questions are addressed in this thesis and novel methods developed. Because almost all recent communication and storage systems are digital, an easy method to compute quantized sparse approximations is introduced in the first part. The model selection problem is investigated next. The linear model can be adapted to better fit a given signal class. It can also be designed based on some a priori information ...

Yaghoobi, Mehrdad — University of Edinburgh


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Traditional and Scalable Coding Techniques for Video Compression

In recent years, the usage of digital video has steadily been increasing. Since the amount of data for uncompressed digital video representation is very high, lossy source coding techniques are usually employed in digital video systems to compress that information and make it more suitable for storage and transmission. The source coding algorithms for video compression can be grouped into two big classes: the traditional and the scalable techniques. The goal of the traditional video coders is to maximize the compression efficiency corresponding to a given amount of compressed data. The goal of scalable video coding is instead to give a scalable representation of the source, such that subsets of it are able to describe in an optimal way the same video source but with reduced resolution in the temporal, spatial and/or quality domain. This thesis is focused on the ...

Cappellari, Lorenzo — University of Padova


Lossless compression of images with specific characteristics

The compression of some types of images is a challenge for some standard compression techniques. This thesis investigates the lossless compression of images with specific characteristics, namely simple images, color-indexed images and microarray images. We are interested in the development of complete compression methods and in the study of preprocessing algorithms that could be used together with standard compression methods. The histogram sparseness, a property of simple images, is addressed in this thesis. We developed a preprocessing technique, denoted histogram packing, that explores this property and can be used with standard compression methods for improving significantly their efficiency. Histogram packing and palette reordering algorithms can be used as a preprocessing step for improving the lossless compression of color-indexed images. This thesis presents several algorithms and a comprehensive study of the already existing methods. Specific compression methods, such as binary tree ...

Neves, António J. R. — University of Aveiro, Dep. of Electronics, Telecomunications and Informatics

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.