Abstract / truncated to 115 words (read the full abstract)

It is often assumed that interference or noise signals are Gaussian stochastic processes. Gaussian noise models are appealing as they usually result in noise suppression algorithms that are simple: i.e. linear and closed form. However, such linear techniques may be sub-optimal when the noise process is either a non-Gaussian stochastic process or a chaotic deterministic process. In the event of encountering such noise processes, improvements in noise suppression, relative to the performance of linear methods, may be achievable using nonlinear signal processing techniques. The application of interest for this thesis is maritime surveillance radar, where the main source of interference, termed sea clutter, is widely accepted to be a non-Gaussian stochastic process at high resolutions ...

Information

Author
Cowper, Mark
Institution
University Of Edinburgh
Supervisors
Publication Year
2000
Upload Date
July 3, 2008

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.