Multichannel SAR Interferometry based on Statistical Signal Processing (2008)
Joint Sparsity-Driven Inversion and Model Error Correction for SAR Imaging
Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this thesis is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. In this technique, phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of ...
Önhon, N. Özben — Faculty of Engineering and Natural Sciences, Sabancı University
FMCW Radar Applications for Automotive and Biomedical Applications
Frequency Modulated Continuous Wave (FMCW) radar has emerged as a powerful sensing modality in both automotive and biomedical applications due to its ability to provide precise range, velocity, and Doppler measurements. This dissertation investigates novel methodologies to enhance FMCW radar's effectiveness in two critical domains: (1) forward-looking Synthetic Aperture Radar (SAR) imaging for automotive applications, and (2) biomedical monitoring for non-contact vital sign estimation and dehydration assessment. The proposed approaches leverage advanced signal processing, deep learning, and MIMO radar techniques to improve spatial resolution, classification accuracy, and robustness in real-world scenarios. In the automotive domain, the research focuses on improving the azimuthal resolution of forward-looking SAR imaging by incorporating MIMO radar and deep learning-based reconstruction methods. Two key methodologies are proposed to address the resolution limitations of conventional SAR imaging techniques. The first approach employs an unsupervised Deep Basis Pursuit ...
Vijith Varma Kotte — King Abdullah University of Science and Technology
FMCW Radar Systems for Automotive and Biomedical Applications
Frequency Modulated Continuous Wave (FMCW) radar has emerged as a powerful sensing modality in both automotive and biomedical applications due to its ability to provide precise range, velocity, and Doppler measurements. This dissertation investigates novel methodologies to enhance FMCW radar's effectiveness in two critical domains: (1) forward-looking Synthetic Aperture Radar (SAR) imaging for automotive applications, and (2) biomedical monitoring for non-contact vital sign estimation and dehydration assessment. The proposed approaches leverage advanced signal processing, deep learning, and MIMO radar techniques to improve spatial resolution, classification accuracy, and robustness in real-world scenarios. In the automotive domain, the research focuses on improving the azimuthal resolution of forward-looking SAR imaging by incorporating MIMO radar and deep learning-based reconstruction methods. Two key methodologies are proposed to address the resolution limitations of conventional SAR imaging techniques. The first approach employs an unsupervised Deep Basis Pursuit ...
Vijith Varma Kotte — King Abdullah University of Science and Technology
Signal processing of FMCW Synthetic Aperture Radar data
In the field of airborne earth observation there is special attention to compact, cost effective, high resolution imaging sensors. Such sensors are foreseen to play an important role in small-scale remote sensing applications, such as the monitoring of dikes, watercourses, or highways. Furthermore, such sensors are of military interest; reconnaissance tasks could be performed with small unmanned aerial vehicles (UAVs), reducing in this way the risk for one's own troops. In order to be operated from small, even unmanned, aircrafts, such systems must consume little power and be small enough to fulfill the usually strict payload requirements. Moreover, to be of interest for the civil market, cost effectiveness is mandatory. Frequency Modulated Continuous Wave (FMCW) radar systems are generally compact and relatively cheap to purchase and to exploit. They consume little power and, due to the fact that they are ...
Meta, Adriano — Delft University of Technology
Robust Estimation and Model Order Selection for Signal Processing
In this thesis, advanced robust estimation methodologies for signal processing are developed and analyzed. The developed methodologies solve problems concerning multi-sensor data, robust model selection as well as robustness for dependent data. The work has been applied to solve practical signal processing problems in different areas of biomedical and array signal processing. In particular, for univariate independent data, a robust criterion is presented to select the model order with an application to corneal-height data modeling. The proposed criterion overcomes some limitations of existing robust criteria. For real-world data, it selects the radial model order of the Zernike polynomial of the corneal topography map in accordance with clinical expectations, even if the measurement conditions for the videokeratoscopy, which is the state-of-the-art method to collect corneal-height data, are poor. For multi-sensor data, robust model order selection selection criteria are proposed and applied ...
Muma, Michael — Technische Universität Darmstadt
Phase readout for satellite interferometry
This thesis describes the development of digital phase readout systems, so-called phasemeters, required for performing precise length measurements in and between satellites with laser interferometry at frequencies below 1 Hz. These technologies have been studied in the scope of the planned space-borne gravitational wave detector LISA (Laser Interferometer Space Antenna), and of future satellite geodesy missions such as GRACE (Gravity Recovery and Climate Experiment) Follow-On. The studies presented here were conducted between 2010 and 2013 at the Albert Einstein Institute in Hannover, Germany. The first part of this thesis provides a comprehensive overview of the basic concepts of inter-satellite interferometry. The analogue and digital parts of the phase measurement chain are described, with a focus on the design elements that are critical for achieving urad/sqrt(Hz) performance levels under the extreme conditions of the inter-satellite link. Digital signal simulations, as well ...
Gerberding, Oliver — Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover
Parallel Magnetic Resonance Imaging reconstruction problems using wavelet representations
To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from ac- quired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the ob- served data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve ac- curate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on ...
Lotfi CHAARI — University Paris-Est
Efficient representation, generation and compression of digital holograms
Digital holography is a discipline of science that measures or reconstructs the wavefield of light by means of interference. The wavefield encodes three-dimensional information, which has many applications, such as interferometry, microscopy, non-destructive testing and data storage. Moreover, digital holography is emerging as a display technology. Holograms can recreate the wavefield of a 3D object, thereby reproducing all depth cues for all viewpoints, unlike current stereoscopic 3D displays. At high quality, the appearance of an object on a holographic display system becomes indistinguishable from a real one. High-quality holograms need large volumes of data to be represented, approaching resolutions of billions of pixels. For holographic videos, the data rates needed for transmitting and encoding of the raw holograms quickly become unfeasible with currently available hardware. Efficient generation and coding of holograms will be of utmost importance for future holographic displays. ...
Blinder, David — Vrije Universiteit Brussel
Exploiting Sparsity for Efficient Compression and Analysis of ECG and Fetal-ECG Signals
Over the last decade there has been an increasing interest in solutions for the continuous monitoring of health status with wireless, and in particular, wearable devices that provide remote analysis of physiological data. The use of wireless technologies have introduced new problems such as the transmission of a huge amount of data within the constraint of limited battery life devices. The design of an accurate and energy efficient telemonitoring system can be achieved by reducing the amount of data that should be transmitted, which is still a challenging task on devices with both computational and energy constraints. Furthermore, it is not sufficient merely to collect and transmit data, and algorithms that provide real-time analysis are needed. In this thesis, we address the problems of compression and analysis of physiological data using the emerging frameworks of Compressive Sensing (CS) and sparse ...
Da Poian, Giulia — University of Udine
Mixed structural models for 3D audio in virtual environments
In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...
Geronazzo, Michele — University of Padova
Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...
Yang, Guang — University College London
Deep Learning-based Speaker Verification In Real Conditions
Smart applications like speaker verification have become essential in verifying the user's identity for availing of personal assistants or online banking services based on the user's voice characteristics. However, far-field or distant speaker verification is constantly affected by surrounding noises which can severely distort the speech signal. Moreover, speech signals propagating in long-range get reflected by various objects in the surrounding area, which creates reverberation and further degrades the signal quality. This PhD thesis explores deep learning-based multichannel speech enhancement techniques to improve the performance of speaker verification systems in real conditions. Multichannel speech enhancement aims to enhance distorted speech using multiple microphones. It has become crucial to many smart devices, which are flexible and convenient for speech applications. Three novel approaches are proposed to improve the robustness of speaker verification systems in noisy and reverberated conditions. Firstly, we integrate ...
Dowerah Sandipana — Universite de Lorraine, CNRS, Inria, Loria
Advanced time-domain methods for nuclear magnetic resonance spectroscopy data analysis
Over the past years magnetic resonance spectroscopy (MRS) has been of significant importance both as a fundamental research technique in different fields, as well as a diagnostic tool in medical environments. With MRS, for example, spectroscopic information, such as the concentrations of chemical substances, can be determined non-invasively. To that end, the signals are first modeled by an appropriate model function and mathematical techniques are subsequently applied to determine the model parameters. In this thesis, signal processing algorithms are developed to quantify in-vivo and ex-vivo MRS signals. These are usually characterized by a poor signal-to-noise ratio, overlapping peaks, deviations from the model function and in some cases the presence of disturbing components (e.g. the residual water in proton spectra). The work presented in this thesis addresses a part of the total effort to provide accurate, efficient and automatic data analysis ...
Vanhamme, Leentje — Katholieke Universiteit Leuven
Advanced Signal Processing Techniques for Global Navigation Satellite Systems
This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...
Fernandez-Prades, Carles — Universitat Politecnica de Catalunya
Bayesian Compressed Sensing using Alpha-Stable Distributions
During the last decades, information is being gathered and processed at an explosive rate. This fact gives rise to a very important issue, that is, how to effectively and precisely describe the information content of a given source signal or an ensemble of source signals, such that it can be stored, processed or transmitted by taking into consideration the limitations and capabilities of the several digital devices. One of the fundamental principles of signal processing for decades is the Nyquist-Shannon sampling theorem, which states that the minimum number of samples needed to reconstruct a signal without error is dictated by its bandwidth. However, there are many cases in our everyday life in which sampling at the Nyquist rate results in too many data and thus, demanding an increased processing power, as well as storage requirements. A mathematical theory that emerged ...
Tzagkarakis, George — University of Crete
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.