Image Segmentation using Markov Random Field Models (1998)
Abstract / truncated to 115 words
The development of a fully unsupervised algorithm to achieve image segmentation is the central theme of this dissertation. Existing literature falls short of such a goal providing many algorithms capable of solving a subset of this highly challenging problem. Unsupervised segmentation is the process of identifying and locating the constituent regions of an observed image, while having no prior knowledge of the number of regions. The problem can be formulated in a Bayesian framework and through the use of an assumed model unsupervised segmentation can be posed as a problem of optimisation. This is the approach pursued throughout this dissertation. Throughout the literature, the commonly adopted model is an hierarchical image model whose underlying components ...
Information
- Author
- Barker, Simon A.
- Institution
- University of Cambridge
- Supervisor
- Publication Year
- 1998
- Upload Date
- July 3, 2008
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.