On some aspects of inverse problems in image processing

This work is concerned with two image-processing problems, image deconvolution with incomplete observations and data fusion of spectral images, and with some of the algorithms that are used to solve these and related problems. In image-deconvolution problems, the diagonalization of the blurring operator by means of the discrete Fourier transform usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods, or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. We propose a new deconvolution framework for images with incomplete observations that allows one to work with diagonalizable convolution operators, and therefore is very fast. The framework is also an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge ...

Simões, Miguel — Universidade de Lisboa, Instituto Superior Técnico & Université Grenoble Alpes


Maximum a posteriori Deconvolution of Ultrasonic Data with Applications in Nondestructive Testing: Multiple transducer and robustness issues

In the thesis, various aspects of deconvolution of ultrasonic pulse-echo signals in nondestructive testing are treated. The deconvolution problem is formulated as estimation of a reflection sequence which is the impulse characteristic of the inspected object and the estimation is performed using either maximum a posteriori (MAP) or linear minimum mean square error (MMSE) estimators. A multivariable model is proposed for a certain multiple transducer setup allowing for frequency diversity, thereby improving the estimation accuracy. Using the MAP estimator three different material types were treated, with varying amount of sparsity in the reflection sequences. The Gaussian distribution is used for modelling materials containing a large number of small scatters. The Bernoulli--Gaussian distribution is used for sparse data obtained from layered structures and a genetic algorithm approach is proposed for optimizing the corresponding MAP criterion. Sequences with intermediate sparsity suitable of ...

Olofsson, Tomas — Uppsala University


Regularized estimation of fractal attributes by convex minimization for texture segmentation: joint variational formulations, fast proximal algorithms and unsupervised selection of regularization para

In this doctoral thesis several scale-free texture segmentation procedures based on two fractal attributes, the Hölder exponent, measuring the local regularity of a texture, and local variance, are proposed.A piecewise homogeneous fractal texture model is built, along with a synthesis procedure, providing images composed of the aggregation of fractal texture patches with known attributes and segmentation. This synthesis procedure is used to evaluate the proposed methods performance.A first method, based on the Total Variation regularization of a noisy estimate of local regularity, is illustrated and refined thanks to a post-processing step consisting in an iterative thresholding and resulting in a segmentation.After evidencing the limitations of this first approach, deux segmentation methods, with either "free" or "co-located" contours, are built, taking in account jointly the local regularity and the local variance.These two procedures are formulated as convex nonsmooth functional minimization problems.We ...

Pascal, Barbara — École Normale Supérieure de Lyon


Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...

Lei Wang — University of York


Transmission over Time- and Frequency-Selective Mobile Wireless Channels

The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...

Barhumi, Imad — Katholieke Universiteit Leuven


Large-Scale Light Field Capture and Reconstruction

This thesis discusses approaches and techniques to convert Sparsely-Sampled Light Fields (SSLFs) into Densely-Sampled Light Fields (DSLFs), which can be used for visualization on 3DTV and Virtual Reality (VR) devices. Exemplarily, a movable 1D large-scale light field acquisition system for capturing SSLFs in real-world environments is evaluated. This system consists of 24 sparsely placed RGB cameras and two Kinect V2 sensors. The real-world SSLF data captured with this setup can be leveraged to reconstruct real-world DSLFs. To this end, three challenging problems require to be solved for this system: (i) how to estimate the rigid transformation from the coordinate system of a Kinect V2 to the coordinate system of an RGB camera; (ii) how to register the two Kinect V2 sensors with a large displacement; (iii) how to reconstruct a DSLF from a SSLF with moderate and large disparity ranges. ...

Gao, Yuan — Department of Computer Science, Kiel University


General Approaches for Solving Inverse Problems with Arbitrary Signal Models

Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...

Tirer, Tom — Tel Aviv University


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


Signal and Image Processing Algorithms Using Interval Convex Programming and Sparsity

In this thesis, signal and image processing algorithms based on sparsity and interval convex programming are developed for inverse problems. Inverse signal processing problems are solved by minimizing the ℓ1 norm or the Total Variation (TV) based cost functions in the literature. A modified entropy functional approximating the absolute value function is defined. This functional is also used to approximate the ℓ1 norm, which is the most widely used cost function in sparse signal processing problems. The modified entropy functional is continuously differentiable, and convex. As a result, it is possible to develop iterative, globally convergent algorithms for compressive sensing, denoising and restoration problems using the modified entropy functional. Iterative interval convex programming algorithms are constructed using Bregman’s D-Projection operator. In sparse signal processing, it is assumed that the signal can be represented using a sparse set of coefficients in ...

Kose, Kivanc — Bilkent University


Inverse Scattering Procedures for the Reconstruction of One-Dimensional Permittivity Range Profiles

Inverse scattering is relevant to a very large class of problems, where the unknown structure of a scattering object is estimated by measuring the scattered field produced by known probing waves. Therefore, for more than three decades, the promises of non-invasive imaging inspection by electromagnetic probing radiations have been justifying a research interest on these techniques. Several application areas are involved, such as civil and industrial engineering, non-destructive testing and medical imaging as well as subsurface inspection for oil exploration or unexploded devices. In spite of this relevance, most scattering tomography techniques are not reliable enough to solve practical problems. Indeed, the nonlinear relationship between the scattered field and the object function and the robustness of the inversion algorithms are still open issues. In particular, microwave tomography presents a number of specific difficulties that make it much more involved to ...

Genovesi, Simone — University of Pisa


Ziv-Zakai Bound for Target Nonlinear Parameter Estimation

Nonlinear parameter estimation for targets is one of the fundamental problem in statistical signal processing, and has attracted a lot of research interest in the past few decades, where higher estimation accuracy is one of the key objectives. Since there is no general closed-form expression on minimum mean-squared error (MSE), the lower bounds on MSE becomes the benchmark on performance evaluation for estimation algorithms. In the past half century, researches are devoted to find a lower bound with global tightness, strong physical interpretability, and ease of use in specific estimation scenarios. Therein, Ziv-Zakai bound (ZZB) has been proven as one of the globally tightest lower bounds. It establishes the intuitive relationship between the estimation error and the probability of error of a hypothesis testing problem, which provides better physical interpretability compared with other lower bounds. However, it still remains challenging ...

Zhang, Zongyu — Zhejiang University


Parallel Magnetic Resonance Imaging reconstruction problems using wavelet representations

To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from ac- quired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the ob- served data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve ac- curate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on ...

Lotfi CHAARI — University Paris-Est


Convex and Nonconvex Optimization Geometries

As many machine learning and signal processing problems are fundamentally nonconvex and too expensive/difficult to be convexified, my research is focused on understanding the optimization landscapes of their fundamentally nonconvex formulations. After understanding their optimization landscapes, we can develop optimization algorithms to efficiently navigate these optimization landscapes and achieve the global optimality convergence. So, the main theme of this thesis would be optimization, with an emphasis on nonconvex optimization and algorithmic developments for these popular optimization problems. This thesis can be conceptually divided into four parts: Part 1: Convex Optimization. In the first part, we apply convex relaxations to several popular nonconvex problems in signal processing and machine learning (e.g. line spectral estimation problem and tensor decomposition problem) and prove that the solving the new convex relaxation problems is guaranteed to achieve the globally optimal solutions of their original nonconvex ...

Li, Qiuwei — Colorado School of Mines


Robust Methods for Sensing and Reconstructing Sparse Signals

Compressed sensing (CS) is a recently introduced signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are developed assuming a Gaussian (light-tailed) model for the corrupting noise. However, when the underlying signal and/or the measurements are corrupted by impulsive noise, commonly employed linear sampling operators, coupled with Gaussian-derived reconstruction algorithms, fail to recover a close approximation of the signal. This dissertation develops robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. To achieve this objective, we make use of robust statistics theory to develop appropriate methods addressing the problem of impulsive noise in CS systems. We develop a generalized Cauchy distribution (GCD) ...

Carrillo, Rafael — University of Delaware


Embedded Optimization Algorithms for Perceptual Enhancement of Audio Signals

This thesis investigates the design and evaluation of an embedded optimization framework for the perceptual enhancement of audio signals which are degraded by linear and/or nonlinear distortion. In general, audio signal enhancement has the goal to improve the perceived audio quality, speech intelligibility, or another desired perceptual attribute of the distorted audio signal by applying a real-time digital signal processing algorithm. In the designed embedded optimization framework, the audio signal enhancement problem under consideration is formulated and solved as a per-frame numerical optimization problem, allowing to compute the enhanced audio signal frame that is optimal according to a desired perceptual attribute. The first stage of the embedded optimization framework consists in the formulation of the per-frame optimization problem aimed at maximally enhancing the desired perceptual attribute, by explicitly incorporating a suitable model of human sound perception. The second stage of ...

Defraene, Bruno — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.