Analysis and improvement of quantification algorithms for magnetic resonance spectroscopy (2005)
Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...
Laudadio, Teresa — Katholieke Universiteit Leuven
Advanced signal processing for magnetic resonance spectroscopy
Assertive diagnosis of cancer, Alzheimer’s disease, epilepsy and other metabolic diseases is essential to provide patients with the adequate treatment. Recently, different invasive and non-invasive techniques have been developed for this purpose, nevertheless, due to their harmless properties the non-invasive techniques have gained more value. Magnetic Resonance is a well-known non-invasive technique that provides spectra (metabolite peaks) and images (anatomical structures) of the examined tissue. In Magnetic Resonance Spectroscopy (MRS), molecules containing certain excitable nuclei, such as 1H, provide the metabolite information. As a consequence, the peaks in the MR spectra correspond to observable metabolites which are the biomarkers of diseases. Finally, metabolite concentrations are computed and compared against normal values in order to establish the diagnosis. The method to obtain such amplitudes is also called quantification and its accuracy is essential for diagnosis assessment. Quantification of MRS signals is ...
Osorio Garcia, Maria Isabel — KU Leuven
Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...
Lukas, Lukas — Katholieke Universiteit Leuven
Classification of brain tumors based on magnetic resonance spectroscopy
Nowadays, diagnosis and treatment of brain tumors is based on clinical symptoms, radiological appearance, and often histopathology. Magnetic resonance imaging (MRI) is a major noninvasive tool for the anatomical assessment of tumors in the brain. However, several diagnostic questions, such as the type and grade of the tumor, are difficult to address using MRI. The histopathology of a tissue specimen remains the gold standard, despite the associated risks of surgery to obtain a biopsy. In recent years, the use of magnetic resonance spectroscopy (MRS), which provides a metabolic profile, has gained a lot of interest for a more detailed and specific noninvasive evaluation of brain tumors. In particular, magnetic resonance spectroscopic imaging (MRSI) is attractive as this may also enable to visualize the heterogeneous spatial extent of tumors, both inside and outside the MRI detectable lesion. As manual, individual, viewing ...
Luts, Jan — Katholieke Universiteit Leuven
Over the last decades, Magnetic Resonance Imaging (MRI) has taken a leading role in the study of human body and it is widely used in clinical diagnosis. In vivo and ex vivo Magnetic Resonance Spectroscopic (MRS) techniques can additionally provide valuable metabolic information as compared to MRI and are gaining more clinical interest. The analysis of MRS data is a complex procedure and requires several preprocessing steps aiming to improve the quality of the data and to extract the most relevant features before any classification algorithm can be successfully applied. In this thesis a new approach to quantify magnetic resonance spectroscopic imaging (MRSI) data and therefore to obtain improved metabolite estimates is proposed. Then an important part is focusing on improving the diagnosis of glial brain tumors which are characterized by an extensive heterogeneity since various intramural histopathological properties such ...
Croitor Sava, Anca Ramona — KU Leuven
Advanced time-domain methods for nuclear magnetic resonance spectroscopy data analysis
Over the past years magnetic resonance spectroscopy (MRS) has been of significant importance both as a fundamental research technique in different fields, as well as a diagnostic tool in medical environments. With MRS, for example, spectroscopic information, such as the concentrations of chemical substances, can be determined non-invasively. To that end, the signals are first modeled by an appropriate model function and mathematical techniques are subsequently applied to determine the model parameters. In this thesis, signal processing algorithms are developed to quantify in-vivo and ex-vivo MRS signals. These are usually characterized by a poor signal-to-noise ratio, overlapping peaks, deviations from the model function and in some cases the presence of disturbing components (e.g. the residual water in proton spectra). The work presented in this thesis addresses a part of the total effort to provide accurate, efficient and automatic data analysis ...
Vanhamme, Leentje — Katholieke Universiteit Leuven
Quantification and classification of magnetic resonance spectroscopic data for brain tumor diagnosis
Magnetic Resonance Spectroscopy has been successfully used in brain tumor diagnosis and represents a complementary aid to the well-known technique, Magnetic Resonance Imaging, by providing metabolic information that is not available with the latter. Both Imaging and Spectroscopy can be used for the grading and typing of brain tumors. Classifying brain tumors from spectroscopic data is not trivial and requires several steps. The common main steps are preprocessing, feature extraction and, finally, classification of the data. The preprocessing step aims to clean up the data and to normalize them in order to facilitate the extraction of the relevant features. These features, once selected and extracted, are used in a classifier, whose output is a brain tumor class. The challenge is to improve brain tumor diagnosis based on spectroscopic data. In this thesis, we analyzed methods used in each of the ...
Poullet, Jean-Baptiste — Katholieke Universiteit Leuven
Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...
Sauwen, Nicolas — KU Leuven
The medical diagnosis of brain tumours is one of the main applications of Magnetic Resonance. Magnetic Resonance consists of two main branches: Imaging and Spectroscopy. Magnetic Resonance Imaging is very well-known as the radiologic technique applied to produce high-quality images of tissues, such as the brain tissue, for diagnostic purposes. Magnetic Resonance Spectroscopy provides chemical information about all the molecules present in the brain, such as their concentrations. Both Imaging and Spectroscopy can be exploited for the grading and typing of brain tumours, also called the classification of brain tumours. As first topic, this thesis mainly studied the contribution of Spectroscopy for automated classification and the influence of several factors on the classification performance. It was found that a few preprocessing steps did not have a large impact on the classification results. This implies that several preprocessing steps can be ...
Devos, Andy — Katholieke Universiteit Leuven
Optimal estimation of diffusion MRI parameters
Diffusion magnetic resonance imaging (dMRI) is currently the method of choice for the in vivo and non-invasive quantification of water diffusion in biological tissue. Several diffusion models have been proposed to obtain quantitative diffusion parameters, which have shown to provide novel information on the structural and organizational features of biological tissue, the brain white matter in particular. The goal of this dissertation is to improve the accuracy of the diffusion parameter estimation, given the non-Gaussian nature of the diffusion-weighted MR data. In part I of this manuscript, the necessary basics of dMRI are provided. Next, Part II deals with diffusion parameter estimation and includes the main contributions of the research. Finally, Part III covers the construction of a population-based dMRI atlas of the rat brain.
Veraart, Jelle — University of Antwerp
Parameter Estimation with Additional Information
This PhD thesis deals with the problem of estimating unknown parameters from noisy data using additional information. By additional information we denote any domain knowledge that is available to us except the data itself. Such prior domain knowledge very often arises naturally from the estimation problem at hand if the context is taken into account. The motivation to incorporate the prior domain knowledge is twofold: First, it allows us to ensure that the estimate will fulfill physical constraints which are given and second, we can also expect a better estimation performance.
Uhlich, Stefan — University of Stuttgart
Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...
Yang, Guang — University College London
Multiple sclerosis is a progressive autoimmune disease that a˙ects young adults. Magnetic resonance (MR) imaging has become an integral part in monitoring multiple sclerosis disease. Conventional MR imaging sequences such as fluid attenuated inversion recovery imaging have high spatial resolution, and can visualise the presence of focal white matter brain lesions in multiple sclerosis disease. Manual delineation of these lesions on conventional MR images is time consuming and su˙ers from intra and inter-rater variability. Among the advanced MR imaging techniques, MR spectroscopic imaging can o˙er complementary information on lesion characterisation compared to conventional MR images. However, MR spectroscopic images have low spatial resolution. Therefore, the aim of this thesis is to automatically segment multiple sclerosis lesions on conventional MR images and use the information from high-resolution conventional MR images to enhance the resolution of MR spectroscopic images. Automatic single time ...
Jain, Saurabh — KU Leuven
Parallel Magnetic Resonance Imaging reconstruction problems using wavelet representations
To reduce scanning time or improve spatio-temporal resolution in some MRI applications, parallel MRI acquisition techniques with multiple coils have emerged since the early 90’s as powerful methods. In these techniques, MRI images have to be reconstructed from ac- quired undersampled “k-space” data. To this end, several reconstruction techniques have been proposed such as the widely-used SENSitivity Encoding (SENSE) method. However, the reconstructed images generally present artifacts due to the noise corrupting the ob- served data and coil sensitivity profile estimation errors. In this work, we present novel SENSE-based reconstruction methods which proceed with regularization in the complex wavelet domain so as to promote the sparsity of the solution. These methods achieve ac- curate image reconstruction under degraded experimental conditions, in which neither the SENSE method nor standard regularized methods (e.g. Tikhonov) give convincing results. The proposed approaches relies on ...
Lotfi CHAARI — University Paris-Est
Modeling of Magnetic Fields and Extended Objects for Localization Applications
The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...
Wahlström, Niklas — Linköping University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.