Abstract / truncated to 115 words (read the full abstract)

This thesis treats efficient estimation algorithms for the epipolar geometry, the model underlying two views of the same scene or object. The epipolar geometry is computed from image correspondences that are found by local feature matching. These correspondences are used to calculate the fundamental matrix, which is the mathematical representation of the epipolar geometry. Since there are outliers among the correspondences, the fundamental matrix is usually calculated by the robust RANSAC (RANdom SAmple Consensus) algorithm which is very well suited for this purpose. A disadvantage of the algorithm, however, is that it shows a considerable complexity for higher outlier ratios. This hampers its application in vision algorithms dealing with many views. In this thesis we ... toggle 4 keywords

epipolar geometry fundamental matrix robust estimation random sampling

Information

Author
Den Hollander, Richard Jacobus Maria
Institution
Delft University of Technology
Supervisors
Publication Year
2007
Upload Date
Sept. 24, 2008

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.