Interpretable Fault Prediction for CERN Energy Frontier Colliders (2024)
Interpretable Machine Learning for Machine Listening
Recent years have witnessed a significant interest in interpretable machine learning (IML) research that develops techniques to analyse machine learning (ML) models. Understanding ML models is essential to gain trust in their predictions and to improve datasets, model architectures and training techniques. The majority of effort in IML research has been in analysing models that classify images or structured data and comparatively less work exists that analyses models for other domains. This research focuses on developing novel IML methods and on extending existing methods to understand machine listening models that analyse audio. In particular, this thesis reports the results of three studies that apply three different IML methods to analyse five singing voice detection (SVD) models that predict singing voice activity in musical audio excerpts. The first study introduces SoundLIME (SLIME), a method to generate temporal, spectral or time-frequency explanations ...
Mishra, Saumitra — Queen Mary University of London
Disentanglement for improved data-driven modeling of dynamical systems
Modeling dynamical systems is a fundamental task in various scientific and engineering domains, requiring accurate predictions, robustness to varying conditions, and interpretability of the underlying mechanisms. Traditional data-driven approaches often struggle with long-term prediction accuracy, generalization to out-of-distribution (OOD) scenarios, and providing insights into the system's behavior. This thesis explores the integration of supervised disentanglement into deep learning models as a means to address these challenges. We begin by advancing the state-of-the-art in modeling wave propagation governed by the Saint-Venant equations. Utilizing U-Net architectures and purposefully designed training strategies, we develop deep learning models that significantly improve prediction accuracy. Through OOD analysis, we highlight the limitations of standard deep learning models in capturing complex spatiotemporal dynamics, demonstrating how integrating domain knowledge through architectural design and training practices can enhance model performance. We further extend our supervised disentanglement approach to high-dimensional ...
Stathi Fotiadis — Imperial College London
Magnetic Resonance Spectroscopy (MRS) is a technique which has evolved rapidly over the past 15 years. It has been used specifically in the context of brain tumours and has shown very encouraging correlations between brain tumour type and spectral pattern. In vivo MRS enables the quantification of metabolite concentrations non-invasively, thereby avoiding serious risks to brain damage. While Magnetic Resonance Imaging (MRI) is commonly used for identifying the location and size of brain tumours, MRS complements it with the potential to provide detailed chemical information about metabolites present in the brain tissue and enable an early detection of abnormality. However, the introduction of MRS in clinical medicine has been difficult due to problems associated with the acquisition of in vivo MRS signals from living tissues at low magnetic fields acceptable for patients. The low signal-to-noise ratio makes accurate analysis of ...
Lukas, Lukas — Katholieke Universiteit Leuven
Nowadays, Nuclear Magnetic Resonance (NMR) is widely used in oncology as a non-invasive diagnostic tool in order to detect the presence of tumor regions in the human body. An application of NMR is Magnetic Resonance Imaging, which is applied in routine clinical practice to localize tumors and determine their size. Magnetic Resonance Imaging is able to provide an initial diagnosis, but its ability to delineate anatomical and pathological information is significantly improved by its combination with another NMR application, namely Magnetic Resonance Spectroscopy. The latter reveals information on the biochemical profile tissues, thereby allowing clinicians and radiologists to identify in a non{invasive way the different tissue types characterizing the sample under investigation, and to study the biochemical changes underlying a pathological situation. In particular, an NMR application exists which provides spatial as well as biochemical information. This application is called ...
Laudadio, Teresa — Katholieke Universiteit Leuven
Spatio-temporal Prediction of Wind Fields
Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatio-temporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex umbers. In a further development, the VAR coefficients are ...
Dowell, Jethro — University of Strathclyde
Bipolar and high-density surface EMG to investigate electrical signs of muscular fatigue
Surface electromyography (sEMG) has become an indispensable tool, extensively used across various fields such as medical diagnosis, rehabilitation, sports science, and prosthetic control. Among these applications, the study of neuromuscular adaptations related to muscle fatigue stands out due to its complexity and the intricate physiological processes underlying muscle activity. This PhD thesis aims to address this challenge by exploring the use of bipolar and high-density surface EMG (HD-EMG) to study the electrical signs of muscle fatigue across different scenarios. The primary objective is to advance our understanding of the neuromuscular system's strategies during fatigue and to use non-invasive sEMG as a reliable method for accurately detecting and characterizing the progression of muscle fatigue. This research is structured around several key questions addressing different aspects of muscle fatigue assessment. The first part focuses on evaluating various spectral estimation techniques, as changes ...
Corvini Giovanni — Roma Tre University
Blind Source Separation of functional dynamic MRI signals via Dictionary Learning
Magnetic Resonance Imaging (MRI) constitutes a non-invasive medical imaging technique that allows the exploration of the inner anatomy, tissues, and physiological processes of the body. Among the different MRI applications, functional Magnetic Resonance Imaging (fMRI) has slowly become an essential tool for investigating the brain behavior and, nowadays, it plays a fundamental role in clinical and neurophysiological research. Due to its particular nature, specialized signal processing techniques are required in order to analyze the fMRI data properly. Among the various related techniques that have been developed over the years, the General Linear Model (GLM) is one of the most widely used approaches, and it usually appears as a default in many specialized software toolboxes for fMRI. On the other end, Blind Source Separation (BSS) methods constitute the most common alternative to GLM, especially when no prior information regarding the brain ...
Morante, Manuel — National and Kapodistrian University of Athens
Dynamic organization of human brain function and its relevance for psychosis vulnerability
The brain is the substrate of a complex dynamic system providing a remarkably varied range of functionalities, going from simple perception to higher-level cognition. Disturbances in its complex dynamics can cause an equally vast variety of mental disorders. One such brain disorder is schizophrenia, a neurodevelopmental disease characterized by abnormal perception of reality that manifests in symptoms like hallucinations or delusions. Even though the brain is known to be affected in schizophrenia, the exact pathophysiology underlying its developmental course is still mostly unknown. In this thesis, we develop and apply methods to look into ongoing brain function measured through magnetic resonance imaging (MRI) and evaluate the potential of these approaches for improving our understanding of psychosis vulnerability and schizophrenia. We focus on patients with chromosome 22q11.2 deletion syndrome (22q11DS), a genetic disorder that comes with a 30fold increased risk for ...
Zöller, Daniela — EPFL (École Polytechnique Fédérale de Lausanne)
Across various fields of engineering and science, there is great interest in studying causal relationships between time series. Distinguishing cause from effect is difficult in practice for many reasons, including limited access to data, unknown functional relationships, and unobserved confounding factors. Due to these challenges, modern causal inference requires methods that can perform robust detection and estimation, quantify uncertainty, and explain how model’s inputs contribute to its predictions. These challenges are further compounded in time series settings, where autocorrelation and temporal patterns can skew inference. This thesis introduces several contributions to the field of causal inference that aim to address these concerns. The first part of the thesis examines approaches to causal discovery and the detection and estimation of causal relationships, with a focus on time-series data. The second part of the thesis considers the explanation of causal models and ...
Butler, Kurt — Stony Brook University
Stochastic Schemes for Dynamic Network Resource Allocation
Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...
Lopez Ramos, Luis Miguel — King Juan Carlos University
Model-Based Deep Speech Enhancement for Improved Interpretability and Robustness
Technology advancements profoundly impact numerous aspects of life, including how we communicate and interact. For instance, hearing aids enable hearing-impaired or elderly people to participate comfortably in daily conversations; telecommunications equipment lifts distance constraints, enabling people to communicate remotely; smart machines are developed to interact with humans by understanding and responding to their instructions. These applications involve speech-based interaction not only between humans but also between humans and machines. However, the microphones mounted on these technical devices can capture both target speech and interfering sounds, posing challenges to the reliability of speech communication in noisy environments. For example, distorted speech signals may reduce communication fluency among participants during teleconferencing. Additionally, noise interference can negatively affect the speech recognition and understanding modules of a voice-controlled machine. This calls for speech enhancement algorithms to extract clean speech and suppress undesired interfering signals, ...
Fang, Huajian — University of Hamburg
On Bayesian Methods for Black-Box Optimization: Efficiency, Adaptation and Reliability
Recent advances in many fields ranging from engineering to natural science, require increasingly complicated optimization tasks in the experiment design, for which the target objectives are generally in the form of black-box functions that are expensive to evaluate. In a common formulation of this problem, a designer is expected to solve the black-box optimization tasks via sequentially attempting candidate solutions and receiving feedback from the system. This thesis considers Bayesian optimization (BO) as the black-box optimization framework, and investigates the enhancements on BO from the aspects of efficiency, adaptation and reliability. Generally, BO consists of a surrogate model for providing probabilistic inference and an acquisition function which leverages the probabilistic inference for selecting the next candidate solution. Gaussian process (GP) is a prominent non-parametric surrogate model, and the quality of its inference is a critical factor on the optimality performance ...
Zhang, Yunchuan — King's College London
Advanced time-domain methods for nuclear magnetic resonance spectroscopy data analysis
Over the past years magnetic resonance spectroscopy (MRS) has been of significant importance both as a fundamental research technique in different fields, as well as a diagnostic tool in medical environments. With MRS, for example, spectroscopic information, such as the concentrations of chemical substances, can be determined non-invasively. To that end, the signals are first modeled by an appropriate model function and mathematical techniques are subsequently applied to determine the model parameters. In this thesis, signal processing algorithms are developed to quantify in-vivo and ex-vivo MRS signals. These are usually characterized by a poor signal-to-noise ratio, overlapping peaks, deviations from the model function and in some cases the presence of disturbing components (e.g. the residual water in proton spectra). The work presented in this thesis addresses a part of the total effort to provide accurate, efficient and automatic data analysis ...
Vanhamme, Leentje — Katholieke Universiteit Leuven
Digital Processing Based Solutions for Life Science Engineering Recognition Problems
The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...
Hussein, Walid — Technische Universität München
Three-Dimensional Digital Waveguide Mesh Modelling for Room Acoustic Simulation
Accurate auralisation remains the Holy Grail of room acoustics. Until now the models used for room impulse response (RIR) simulation have been either impractical to use due to excessive computational loading or based upon simplified approaches, unable to provide the levels of perceptual accuracy required by many applications. An example is the archaeological acoustic investigation of the intriguing properties of Neolithic passage graves such as Newgrange. After reviewing the currently available options, this thesis concentrates on digital waveguide mesh (DWM) physical modelling, on the premise that the three-dimensional (3D) version of this technique can be developed to provide the desired accuracy with reasonable computation times. Various 3D-mesh topologies, namely rectilinear, tetrahedral, octahedral and cubic close-packed (CCP), are analysed. Room simulation packages have been implemented for the rectilinear and tetrahedral topologies. Both are capable of generating highly scalable parallel models through ...
Campos, Guilherme — University of York / Department of Electronics
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.