Cognitive Indoor Positioning and Tracking using Multipath Channel Information (2015)
Probabilistic modeling for sensor fusion with inertial measurements
In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor’s position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also ...
Kok, Manon — Linköping University
Acoustic sensor network geometry calibration and applications
In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...
Plinge, Axel — TU Dortmund University
Performance Analysis of Bistatic Radar and Optimization methodology in Multistatic Radar System
This work deals with the problem of calculating the Cramer-Rao lower bounds (CRLBs) for bistatic radar channels. To this purpose we exploited the relation between the Ambiguity Function (AF) and the CRLB. The bistatic CRLBs are analyzed and compared to the monostatic counterparts as a function of the bistatic geometric parameters. In the bistatic case both geometry factors and transmitted waveforms play an important role in the shape of the AF, and therefore in the estimation accuracy of the target range and velocity. In particular, the CRLBs depend on the target direction of arrival, the bistatic baseline length, and the distance between the target and the receiver. The CRLBs are then used to select the optimum bistatic channel (or set of channels) for the tracking of a radar target moving along a trajectory in a multistatic scenario and for design ...
Stinco, Pietro — Universita di Pisa
Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning
This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...
Closas, Pau — Universitat Politecnica de Catalunya
IMPROVED INDOOR LOCALIZATION WITH MACHINE LEARNING TECHNIQUES FOR IOT APPLICATIONS
With the rapid development of the internet of things (IoT) and the popularization of mobile internet applications, the location-based service (LBS) has attracted much attention due to its commercial, military, and social applications. The global positioning system (GPS) is the prominent and most widely used technology that provides localization and navigation services for outdoor location information. However, the GPS cannot be used well in indoor environments due to weak signal reception, radio multi-path effect, signal scattering, and attenuation. Therefore, localization-based systems for indoor environments have been designed using various wireless communication technologies such as Wi-Fi, ZigBee, Bluetooth, UWB, etc., depending on the context and application scenarios. Received signal strength indicator (RSSI) technology has been extensively used in indoor localization technology due to it provides accuracy, high feasibility, simplicity, and deployment practicability features. Various machine learning algorithms have been employed to ...
Madduma Wellalage Pasan Maduranga — IIC University of Technology
Mixed structural models for 3D audio in virtual environments
In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...
Geronazzo, Michele — University of Padova
Bayesian Algorithms for Mobile Terminal Positioning in Outdoor Wireless Environments
The ability to reliably and cheaply localize mobile terminals will allow users to understand and utilize the what, where and when of the surrounding physical world. Therefore, mobile terminal location information will open novel application opportunities in many areas. The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework in order to work under a common theoretical context. Filter derivation and implementation algorithms are provided with emphasis on ...
Khalaf-Allah, Mohamed — Leibniz University of Hannover
Modeling of Magnetic Fields and Extended Objects for Localization Applications
The level of automation in our society is ever increasing. Technologies like self-driving cars, virtual reality, and fully autonomous robots, which all were unimaginable a few decades ago, are realizable today, and will become standard consumer products in the future. These technologies depend upon autonomous localization and situation awareness where careful processing of sensory data is required. To increase efficiency, robustness and reliability, appropriate models for these data are needed. In this thesis, such models are analyzed within three different application areas, namely (1) magnetic localization, (2) extended target tracking, and (3) autonomous learning from raw pixel information. Magnetic localization is based on one or more magnetometers measuring the induced magnetic field from magnetic objects. In this thesis we present a model for determining the position and the orientation of small magnets with an accuracy of a few millimeters. This ...
Wahlström, Niklas — Linköping University
Robust Signal Processing with Applications to Positioning and Imaging
This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...
Li, Haoqing — Northeastern University
Robust Wireless Localization in Harsh Mixed Line-of-Sight/Non-Line-of-Sight Environments
This PhD thesis considers the problem of locating some target nodes in different wireless infrastructures such as wireless cellular radio networks and wireless sensor networks. To be as realistic as possible, mixed line-of-sight and non-line-of-sight (LOS/NLOS) localization environment is introduced. Both the conventional non-cooperative localization and the new emerging cooperative localization have been studied thoroughly. Owing to the random nature of the measurements, probabilistic methods are more advanced as compared to the old-fashioned geometric methods. The gist behind the probabilistic methods is to infer the unknown positions of the target nodes in an estimation process, given a set of noisy position related measurements, a probabilistic measurement model, and a few known reference positions. In contrast to the majority of the existing methods, harsh but practical constraints are taken into account: neither offline calibration nor non-line-of-sight state identification is equipped in ...
Yin, Feng — Technische Universität Darmstadt
Visible Light Communication and Positioning for Autonomous Vehicles
Automotive research is currently heavily oriented towards autonomy and especially developing reliable vehicular connectivity and localization technologies for autonomous driving. Since existing technologies have failed to satisfy all requirements so far, new complementary technologies are sought. Specifically, radio frequency communications like cellular and “DSRC” suffer from reliability and security issues at mid-range (<100 m) congested driving scenarios due to heavy interference, and sensor-based localization systems (e.g., GPS, vision) fail to provide the required accuracy and rate due to sensor rate limitations and prohibitively high computational complexity. Recently, visible light communication (VLC) and positioning (VLP) technologies, based on modulated LED head/tail lights and low-cost photodiodes, were conjectured to be promising complementaries that can help solve these problems and enable challenging applications like collision avoidance and platooning. This thesis aims to prove that vehicular VLP can realize this promise. First, we describe ...
Soner, Burak — Koc University, Istanbul, Turkey
Distributed Localization and Tracking of Acoustic Sources
Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...
Dorfan, Yuval — Bar Ilan University
Estimation of Nonlinear Dynamic Systems: Theory and Applications
This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian dynamic systems. Sequential Monte Carlo methods are mainly used to this end. These methods rely on models of the underlying system, motivating some developments of the model concept. One of the main reasons for the interest in nonlinear estimation is that problems of this kind arise naturally in many important applications. Several applications of nonlinear estimation are studied. The models most commonly used for estimation are based on stochastic difference equations, referred to as state-space models. This thesis is mainly concerned with models of this kind. However, there will be a brief digression from this, in the treatment of the mathematically more intricate differential-algebraic equations. Here, the purpose is to write these equations in a form suitable for statistical signal processing. The nonlinear state estimation problem is ...
Schon, Thomas — Linkopings Universitet
This study compares the performances of various techniques for the differentiation and localization of commonly encountered features in indoor environments, such as planes, corners, edges, and cylinders, possibly with different surface properties, using simple infrared sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and differentiation process. The techniques considered include rule-based, template-based, and neural network-based target differentiation, parametric surface differentiation, and statistical pattern recognition techniques such as parametric density estimation, various linear and quadratic classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial neural network, and support vector machine classifiers. The geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor ...
Aytac, Tayfun — Bilkent University
GNSS Localization and Attitude Determination via Optimization Techniques on Riemannian Manifolds
Global Navigation Satellite Systems (GNSS)-based localization and attitude determination are essential for many navigation and control systems widely used in aircrafts, spacecrafts, vessels, automobiles, and other dynamic platforms. A GNSS receiver can generate pseudo-range and carrier-phase observations based on the signals transmitted from the navigation satellites. Since the accuracy of the carrier phase is two orders of magnitude higher than that of the pseudo-range, it is crucial to employ the precise GNSS data, the carrier phase, to perform a high-accuracy position or/and attitude estimate. The main challenge to fully utilizing carrier-phase observations is to successfully resolve the unknown integer parts (number of whole cycles), a process usually referred to as integer ambiguity resolution. Many methods have been developed to resolve integer ambiguities with different performance offerings. Under challenging environments with insufficient tracked satellites, significant multipath interference, and severe atmospheric effects, ...
Xing Liu — King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.