Gaussian Process Surrogates for Robust Optimization of Multi-Stage Manufacturing Processes (2023)
On Bayesian Methods for Black-Box Optimization: Efficiency, Adaptation and Reliability
Recent advances in many fields ranging from engineering to natural science, require increasingly complicated optimization tasks in the experiment design, for which the target objectives are generally in the form of black-box functions that are expensive to evaluate. In a common formulation of this problem, a designer is expected to solve the black-box optimization tasks via sequentially attempting candidate solutions and receiving feedback from the system. This thesis considers Bayesian optimization (BO) as the black-box optimization framework, and investigates the enhancements on BO from the aspects of efficiency, adaptation and reliability. Generally, BO consists of a surrogate model for providing probabilistic inference and an acquisition function which leverages the probabilistic inference for selecting the next candidate solution. Gaussian process (GP) is a prominent non-parametric surrogate model, and the quality of its inference is a critical factor on the optimality performance ...
Zhang, Yunchuan — King's College London
Model-Based Deep Speech Enhancement for Improved Interpretability and Robustness
Technology advancements profoundly impact numerous aspects of life, including how we communicate and interact. For instance, hearing aids enable hearing-impaired or elderly people to participate comfortably in daily conversations; telecommunications equipment lifts distance constraints, enabling people to communicate remotely; smart machines are developed to interact with humans by understanding and responding to their instructions. These applications involve speech-based interaction not only between humans but also between humans and machines. However, the microphones mounted on these technical devices can capture both target speech and interfering sounds, posing challenges to the reliability of speech communication in noisy environments. For example, distorted speech signals may reduce communication fluency among participants during teleconferencing. Additionally, noise interference can negatively affect the speech recognition and understanding modules of a voice-controlled machine. This calls for speech enhancement algorithms to extract clean speech and suppress undesired interfering signals, ...
Fang, Huajian — University of Hamburg
This dissertation is concerned with the development of Markov chain Monte Carlo (MCMC) methods for the Bayesian restoration of degraded audio signals. First, the Bayesian approach to time series modelling is reviewed, then established MCMC methods are introduced. The first problem to be addressed is that of model order uncertainty. A reversible-jump sampler is proposed which can move between models of different order. It is shown that faster convergence can be achieved by exploiting the analytic structure of the time series model. This approach to model order uncertainty is applied to the problem of noise reduction using the simulation smoother. The effects of incorrect autoregressive (AR) model orders are demonstrated, and a mixed model order MCMC noise reduction scheme is developed. Nonlinear time series models are surveyed, and the advantages of linear-in- the-parameters models explained. A nonlinear AR (NAR) model, ...
Troughton, Paul Thomas — University of Cambridge
Fairness Analysis of Wireless Beamforming Schedulers
This dissertation is devoted to the analysis of fairness at the physical layer in multi-antenna multi-user communications, which implies a new view on traditional techniques. However, the degree of equality/inequality of any resource distribution has been extensively studied in other fields such as Economics or Social Sciences. Indeed, engineers usually aim at optimizing the total performance, but when multiple users come into play, the overall optimization might not necessarily be the best thing to do. For instance in wireless systems, the user with a bad channel condition might suffer the consequences from the selective choice based on the instantaneous channel quality made by a centralized entity. In this sense, the problem has four different perspectives: antenna processing, power allocation, bit allocation, and combination of space diversity (SDMA) with multiple subcarriers (OFDM). The technical contribution of the author starts with the ...
Bartolomé Calvo, Diego — CTTC-Centre Tecnològic de Telecomunicacions de Catalunya
Data-Driven Radio Planning and Cellular Network Optimization
Abstract Integrating AI into wireless network design and management is essential for creating self-sustaining 6G networks. A key challenge is the development of automated network procedures with minimal human intervention, leveraging real-time monitoring data for immediate feedback. These advancements promote data-driven decision-making but pose risks related to data availability, safety, and the black-box nature of learning algorithms. This cumulative thesis proposes and evaluates novel procedures and algorithms for data- driven radio planning and cellular network optimization, addressing practical challenges in applying learning-based methods on real-world deployments. It emphasizes the utility of monitoring data and the integration of model-based and model-free methods, ensuring the scalability and safety of adaptive network procedures across diverse environments. The first part of the thesis explores the application of deep learning to radio propagation modeling in live cellular networks. The first paper presents a novel network ...
Lukas Eller — TU Wien
Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning
This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...
Closas, Pau — Universitat Politecnica de Catalunya
Robust Methods for Sensing and Reconstructing Sparse Signals
Compressed sensing (CS) is a recently introduced signal acquisition framework that goes against the traditional Nyquist sampling paradigm. CS demonstrates that a sparse, or compressible, signal can be acquired using a low rate acquisition process. Since noise is always present in practical data acquisition systems, sensing and reconstruction methods are developed assuming a Gaussian (light-tailed) model for the corrupting noise. However, when the underlying signal and/or the measurements are corrupted by impulsive noise, commonly employed linear sampling operators, coupled with Gaussian-derived reconstruction algorithms, fail to recover a close approximation of the signal. This dissertation develops robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. To achieve this objective, we make use of robust statistics theory to develop appropriate methods addressing the problem of impulsive noise in CS systems. We develop a generalized Cauchy distribution (GCD) ...
Carrillo, Rafael — University of Delaware
A Rate-Splitting Approach to Multiple-Antenna Broadcasting
Signal processing techniques for multiple-antenna transmission can exploit the spatial dimension of the wireless channel to serve multiple users simultaneously, achieving high spectral efficiencies. Realizing such gains; however, is strongly dependent on the availability of highly accurate and up-to-date Channel State Information at the Transmitter (CSIT). This stems from the necessity to deal with multiuser interference through preprocessing; as receivers cannot coordinate in general. In wireless systems, CSIT is subject to uncertainty due to estimation and quantization errors, delays and mismatches. This thesis proposes optimized preprocessing techniques for broadcasting scenarios where a multi-antenna transmitter communicates with single-antenna receivers under CSIT uncertainties. First, we consider a scenario where the transmitter communicates an independent message to each receiver. The most popular preprocessing techniques in this setup are based on linear precoding (or beamforming). Despite their near-optimum rate performances when highly accurate CSIT ...
Joudeh, Hamdi — Imperial College London
Statistical Physics Approach to Design and Analysis of Multiuser Systems Under Channel Uncertainty
Code-division multiple-access (CDMA) systems with random spreading and channel uncertainty at the receiver are studied. Frequency selective single antenna, as well as, narrowband multiple antenna channels are considered. Rayleigh fading is assumed in all cases. General Bayesian approach is used to derive both iterative and non-iterative estimators whose performance is obtained in the large system limit via the replica method from statistical physics. The effect of spatial correlation on the performance of a multiple antenna CDMA system operating in a flat-fading channel is studied. Per-antenna spreading (PAS) with random signature sequences and spatial multiplexing is used at the transmitter. Non-iterative multiuser detectors (MUDs) using imperfect channel state information (CSI) are derived. Training symbol based channel estimators having mismatched a priori knowledge about the antenna correlation are considered. Both the channel estimator and the MUD are shown to admit a simple ...
Vehkapera, Mikko — Norwegian University of Science and Technology
Single-Microphone Multi-Frame Speech Enhancement Exploiting Speech Interframe Correlation
Speech communication devices such as hearing aids or mobile phones are often used in acoustically challenging situations, where the desired speech signal is affected by undesired background noise. Since in these situations speech quality and speech intelligibility may be degraded, speech enhancement algorithms are required to suppress the undesired background noise, while preserving the desired speech signal. In this thesis, we focus on single-microphone speech enhancement algorithms in the short-time Fourier transform domain, more in particular on multi-frame algorithms that aim at exploiting speech correlation across time-frames. In principle, exploiting the speech interframe correlation enables to suppress the undesired background noise, while keeping speech distortion low. Existing single-microphone multi-frame speech enhancement algorithms, such as the multi-frame minimum variance distortionless response (MFMVDR) filter and the multi-frame minimum power distortionless response (MFMPDR) filter, depend on the normalized speech correlation vector, which is ...
Dörte Fischer — University of Oldenburg, Germany
Gaussian Process Modelling for Audio Signals
Audio signals are characterised and perceived based on how their spectral make-up changes with time. Uncovering the behaviour of latent spectral components is at the heart of many real-world applications involving sound, but is a highly ill-posed task given the infinite number of ways any signal can be decomposed. This motivates the use of prior knowledge and a probabilistic modelling paradigm that can characterise uncertainty. This thesis studies the application of Gaussian processes to audio, which offer a principled non-parametric way to specify probability distributions over functions whilst also encoding prior knowledge. Along the way we consider what prior knowledge we have about sound, the way it behaves, and the way it is perceived, and write down these assumptions in the form of probabilistic models. We show how Bayesian time-frequency analysis can be reformulated as a spectral mixture Gaussian process, ...
William Wilkinson — Queen Mary University of London
Robust Signal Processing with Applications to Positioning and Imaging
This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...
Li, Haoqing — Northeastern University
Machine vision applies computer vision to industry and manufacturing in order to control or analyze a process or activity. Typical application of machine vision is the inspection of produced goods like electronic devices, automobiles, food and pharmaceuticals. Machine vision systems form their judgement based on specially designed image processing softwares. Therefore, image processing is very crucial for their accuracy. Food industry is among the industries that largely use image processing for inspection of produce. Fruits and vegetables have extremely varying physical appearance. Numerous defect types present for apples as well as high natural variability of their skin color brings apple fruits into the center of our interest. Traditional inspection of apple fruits is performed by human experts. But, automation of this process is necessary to reduce error, variation, fatigue and cost due to human experts as well as to increase ...
Unay, Devrim — Universite de Mons
Effects of Model Misspecification and Uncertainty on the Performance of Estimators
System designers across all disciplines of technology face the need to develop machines capable of independently processing and analyzing data and predicting future data. This is the fundamental problem of interest in “estimation theory,” wherein probabilistic analyses are used to isolate relationships between variables, and in “statistical inference,” wherein those variables are used to make inferences about real-world quantities. In practice, all estimators are designed based on limited statistical generalizations about the behavior of the observed and latent variables of interest; however, these models are rarely fully representative of reality. In such cases, there exists a “model misspecification,” and the resulting estimators will produce results that differ from those of the properly specified estimators. Evaluating the performance of a given estimator may sometimes be done by direct comparison of estimator outputs to known ground truth. However, in many cases, there ...
LaMountain, Gerald — Northeastern University
TRACKER-AWARE DETECTION: A THEORETICAL AND AN EXPERIMENTAL STUDY
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance prediction (NSPP) methodologies for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE) and the hybrid conditional averaging (HYCA) algorithm. The possible improvements are presented in two domains: Non-maneuvering and maneuvering target tracking. In the first domain, a number of algorithmic and experimental evaluation gaps are identified and newly proposed methods are compared with the existing ones in a unified ...
Aslan, Murat Samil — Middle East Technical University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.