Understanding the Behavior of Belief Propagation (2019)
Abstract / truncated to 115 words
Probabilistic graphical models are a powerful concept for modeling high-dimensional distributions. Besides modeling distributions, probabilistic graphical models also provide an elegant framework for performing statistical inference; because of the high-dimensional nature, however, one must often use approximate methods for this purpose. Belief propagation performs approximate inference, is efficient, and looks back on a long success-story. Yet, in most cases, belief propagation lacks any performance and convergence guarantees. Many realistic problems are presented by graphical models with loops, however, in which case belief propagation is neither guaranteed to provide accurate estimates nor that it converges at all. This thesis investigates how the model parameters influence the performance of belief propagation. We are particularly interested in their ...
belief propagation – probabilistic graphical models – machine learning – approximate inference
Information
- Author
- Christian Knoll
- Institution
- Graz University of Technology
- Supervisor
- Publication Year
- 2019
- Upload Date
- Sept. 4, 2025
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.