Causal Inference from Time Series: Methods for Discovering, Explaining, and Estimating Causal Relationships

Across various fields of engineering and science, there is great interest in studying causal relationships between time series. Distinguishing cause from effect is difficult in practice for many reasons, including limited access to data, unknown functional relationships, and unobserved confounding factors. Due to these challenges, modern causal inference requires methods that can perform robust detection and estimation, quantify uncertainty, and explain how model’s inputs contribute to its predictions. These challenges are further compounded in time series settings, where autocorrelation and temporal patterns can skew inference. This thesis introduces several contributions to the field of causal inference that aim to address these concerns. The first part of the thesis examines approaches to causal discovery and the detection and estimation of causal relationships, with a focus on time-series data. The second part of the thesis considers the explanation of causal models and ...

Butler, Kurt — Stony Brook University


Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

The first part of this dissertation considers distributed learning problems over networked agents. The general objective of distributed adaptation and learning is the solution of global, stochastic optimization problems through localized interactions and without information about the statistical properties of the data. Regularization is a useful technique to encourage or enforce structural properties on the resulting solution, such as sparsity or constraints. A substantial number of regularizers are inherently non-smooth, while many cost functions are differentiable. We propose distributed and adaptive strategies that are able to minimize aggregate sums of objectives. In doing so, we exploit the structure of the individual objectives as sums of differentiable costs and non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to continuously track drifts in the problem; their recursions, however, are subject to persistent perturbations arising from the stochastic nature of ...

Vlaski, Stefan — University of California, Los Angeles


Contrastive Reasoning in Neural Networks

The objective of the dissertation is to rethink the inductive nature of reasoning in neural networks by providing contextual explanations to a network’s decision and addressing the network's robustness capabilities. Neural networks represent data as projections on trained weights in a high dimensional manifold. The trained weights act as a knowledge base consisting of causal class dependencies. Inference built on features that identify dependencies within this manifold is termed as inductive feed-forward inference. This is a classical cause-to-effect inference model that is widely used because of its simple mathematical functionality and ease of operation. Nevertheless, feed-forward models do not generalize well to untrained situations. To alleviate this generalization challenge, we use an effect-to-cause inference model that falls under the abductive reasoning framework. Here, the features represent the change from existing weight dependencies given a certain effect. In this dissertation, we ...

Prabhushankar, Mohit — Georgia Institute of Technology


Interaction in Social eXtended Reality: A Quality of Experience Approach

The rise of immersive technologies has led to an increase in the number of use cases that adapt this type of technology within the telecommunications area. Some examples are: industrial training, multimedia content consumption and tele-training. Among all the immersive technologies, eXtended Reality through the use of Head-Mounted Displays (HMD) is the one that focuses the majority of current developments. Specifically, the Social XR paradigm frames the use of immersive technologies in a multi-user or social context. Among the decisive factors for using immersive technology in communications use cases, two stand out: the possibility of making the user believe that they has been transported to another place (sensation of presence) and the possibility of increasing interactions by allowing displacements through space (6 degrees of freedom) as well as the possibility of interacting in a more natural way. Such improvements are ...

Cortés, Carlos — Universidad Politécnica de Madrid


Bayesian data fusion for distributed learning

This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...

Peng Wu — Northeastern University


Self-organized Femtocells: a Time Difference Learning Approach

The use model of mobile networks has drastically changed in recent years. Next generation devices and new applications have made the availability of high quality wireless data everywhere a necessity for mobile users. Thus, cellular networks must be highly improved in terms of coverage and capacity. Networks that include smart entities and functionalities, and that allow to fulfil all the mobile networks’ new requirements are called heterogeneous networks. One key component in heterogeneous networks is femtocells. Femtocells are low range, low power mobile base stations deployed by the end consumers, which underlay the macrocell system and provide a solution to the problem of indoor coverage for mobile communications. Femtocells can reuse the radio spectrum and, thereby, they allow increasing the spectral efficiency. Moreover, under appropriate algorithms for interference control, they give a viable alternative to the problem of spectrum static ...

A. Galindo-Serrano — Centre Tecnològic de Telecomuniacions de Catalunya (CTTC)


Online Machine Learning for Graph Topology Identi fication from Multiple Time Series

High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identifi ed structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series influence each other. The goal of this dissertation pertains to study the problem of sparse topology identi fication under various settings. Topology identi fication from time series is a challenging task. The first major challenge in topology identi fication is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving ...

Zaman, Bakht — University of Agder, Norway


Convergence Analysis of Distributed Consensus Algorithms

Inspired by new emerging technologies and networks of devices with high collective computational power, I focus my work on the problematics of distributed algorithms. While each device runs a relatively simple algorithm with low complexity, the group of interconnected units (agents) determines a behavior of high complexity. Typically, such units have their own memory and processing unit, and are interconnected and capable to exchange information with each other. More specifically, this work is focused on the distributed consensus algorithms. Such algorithms allow the agents to coordinate their behaviour and to distributively find a common agreement (consensus). To understand and analyze their behaviour, it is necessary to analyze the convergence of the consensus algorithm, i.e., under which conditions the algorithm reaches a consensus and under which it does not. Naturally, the communication channel can change and the agents may function asynchronously ...

Sluciak, Ondrej — Vienna University of Technology


Advances in graph signal processing: Graph filtering and network identification

To the surprise of most of us, complexity in nature spawns from simplicity. No matter how simple a basic unit is, when many of them work together, the interactions among these units lead to complexity. This complexity is present in the spreading of diseases, where slightly different policies, or conditions,might lead to very different results; or in biological systems where the interactions between elements maintain the delicate balance that keep life running. Fortunately, despite their complexity, current advances in technology have allowed us to have more than just a sneak-peak at these systems. With new views on how to observe such systems and gather data, we aimto understand the complexity within. One of these new views comes from the field of graph signal processing which provides models and tools to understand and process data coming from such complex systems. With ...

Coutino, Mario — Delft University of Technology


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University


Distributed Processing Techniques for Parameter Estimation and Efficient Data Gathering in Wireless Communication and Sensor Networks

This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...

Bogdanovic, Nikola — University of Patras


Exploring and Enhancing the Spectral and Energy-Efficiency of Non-Orthogonal Multiple Access in Next Generation IoT Networks

The proliferation of technologies like Internet of Things (IoT) and Industrial IoT (IIoT) has led to rapid growth in the number of connected devices and the volume of data associated with IoT applications. It is expected that more than 125 billion IoT devices will be connected to the Internet by 2030. With the plethora of wireless IoT devices, we are moving towards the connected world which is the guiding principle for the IoT. The next generation of IoT network should be capable of interconnecting heterogeneous IoT sensor or devices for effective Device-to-Device (D2D), Machine-to-Machine (M2M) communications as well as facilitating various IoT services and applications. Therefore, the next generation of IoT networks is expected to meet the capacity demand of such a network of billions of IoT devices. The current underlying wireless network is based on Orthogonal Multiple Access (OMA) ...

Rauniyar, Ashish — University of Oslo, Norway


Accelerating Monte Carlo methods for Bayesian inference in dynamical models

Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo ...

Dahlin, Johan — Linköping University


Distributed Caching Methods in Small Cell Networks

This thesis explores one of the key enablers of 5G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user demands, via caching at base stations and users' devices. In order to show the effectiveness of proactive caching techniques, we tackle the problem from two different perspectives, namely theoretical and practical ones. In the first part of this thesis, we use tools from stochastic geometry to model and analyse the theoretical gains of caching at base stations. In particular, we focus on 1) single-tier networks where small base stations with limited storage are deployed, 2) multi-tier networks with limited backhaul, and) multi-tier clustered networks with two different topologies, namely coverage-aided and capacity-aided deployments. Therein, ...

Bastug, Ejder — CentraleSupélec, Université Paris-Saclay

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.