Abstract / truncated to 115 words (read the full abstract)

Abstract Integrating AI into wireless network design and management is essential for creating self-sustaining 6G networks. A key challenge is the development of automated network procedures with minimal human intervention, leveraging real-time monitoring data for immediate feedback. These advancements promote data-driven decision-making but pose risks related to data availability, safety, and the black-box nature of learning algorithms. This cumulative thesis proposes and evaluates novel procedures and algorithms for data- driven radio planning and cellular network optimization, addressing practical challenges in applying learning-based methods on real-world deployments. It emphasizes the utility of monitoring data and the integration of model-based and model-free methods, ensuring the scalability and safety of adaptive network procedures across diverse environments. The first ... toggle 4 keywords

data planing localisation machine learning 5G

Information

Author
Lukas Eller
Institution
TU Wien
Supervisors
Publication Year
2024
Upload Date
May 29, 2025

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.