Abstract / truncated to 115 words (read the full abstract)

Modeling dynamical systems is a fundamental task in various scientific and engineering domains, requiring accurate predictions, robustness to varying conditions, and interpretability of the underlying mechanisms. Traditional data-driven approaches often struggle with long-term prediction accuracy, generalization to out-of-distribution (OOD) scenarios, and providing insights into the system's behavior. This thesis explores the integration of supervised disentanglement into deep learning models as a means to address these challenges. We begin by advancing the state-of-the-art in modeling wave propagation governed by the Saint-Venant equations. Utilizing U-Net architectures and purposefully designed training strategies, we develop deep learning models that significantly improve prediction accuracy. Through OOD analysis, we highlight the limitations of standard deep learning models in capturing complex spatiotemporal ... toggle 3 keywords

dynamical systems machine learning physics-based

Information

Author
Stathi Fotiadis
Institution
Imperial College London
Supervisor
Publication Year
2025
Upload Date
March 27, 2025

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.