Abstract / truncated to 115 words (read the full abstract)

This Ph.D. thesis focuses on developing a system for high-quality speech synthesis and voice conversion. Vocoder-based speech analysis, manipulation, and synthesis plays a crucial role in various kinds of statistical parametric speech research. Although there are vocoding methods which yield close to natural synthesized speech, they are typically computationally expensive, and are thus not suitable for real-time implementation, especially in embedded environments. Therefore, there is a need for simple and computationally feasible digital signal processing algorithms for generating high-quality and natural-sounding synthesized speech. In this dissertation, I propose a solution to extract optimal acoustic features and a new waveform generator to achieve higher sound quality and conversion accuracy by applying advances in deep learning. The ... toggle 7 keywords

deep learning signal processing speech synthesis ai conversation neural vocoder voice conversion noise masking

Information

Author
Al-Radhi Mohammed Salah
Institution
Budapest University of Technology and Economics
Supervisors
Publication Year
2020
Upload Date
March 16, 2025

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.