Selected Topics in Inertial and Visual Sensor Fusion: Calibration, Observability Analysis and Applications

Recent improvements in the development of inertial and visual sensors allow building small, lightweight, and cheap motion capture systems, which are becoming a standard feature of smartphones and personal digital assistants. This dissertation describes developments of new motion sensing strategies using the inertial and inertial-visual sensors. The thesis contributions are presented in two parts. The first part focuses mainly on the use of inertial measurement units. First, the problem of sensor calibration is addressed and a low-cost and accurate method to calibrate the accelerometer cluster of this unit is proposed. The method is based on the maximum likelihood estimation framework, which results in a minimum variance unbiased estimator.Then using the inertial measurement unit, a probabilistic user-independent method is proposed for pedestrian activity classification and gait analysis.The work targets two groups of applications including human activity classificationand joint human activity and ...

Panahandeh Ghazaleh — KTH Royal Institute of Technology


Probabilistic modeling for sensor fusion with inertial measurements

In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor’s position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also ...

Kok, Manon — Linköping University


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


Sensor Fusion and Calibration using Inertial Sensors, Vision, Ultra-Wideband and GPS

The usage of inertial sensors has traditionally been confined primarily to the aviation and marine industry due to their associated cost and bulkiness. During the last decade, however, inertial sensors have undergone a rather dramatic reduction in both size and cost with the introduction of MEMS technology. As a result of this trend, inertial sensors have become commonplace for many applications and can even be found in many consumer products, for instance smart phones, cameras and game consoles. Due to the drift inherent in inertial technology, inertial sensors are typically used in combination with aiding sensors to stabilize andimprove the estimates. The need for aiding sensors becomes even more apparent due to the reduced accuracy of MEMS inertial sensors. This thesis discusses two problems related to using inertial sensors in combination with aiding sensors. The first is the problem of ...

Hol, Jeroen — Linköping University


Advances in unobtrusive monitoring of sleep apnea using machine learning

Obstructive sleep apnea (OSA) is among the most prevalent sleep disorders, which is estimated to affect 6 %−19 % of women and 13 %−33 % of men. Besides daytime sleepiness, impaired cognitive functioning and an increased risk for accidents, OSA may lead to obesity, diabetes and cardiovascular diseases (CVD) on the long term. Its prevalence is only expected to rise, as it is linked to aging and excessive body fat. Nevertheless, many patients remain undiagnosed and untreated due to the cumbersome clinical diagnostic procedures. For this, the patient is required to sleep with an extensive set of body attached sensors. In addition, the recordings only provide a single night perspective on the patient in an uncomfortable, and often unknown, environment. Thus, large scale monitoring at home is desired with comfortable sensors, which can stay in place for several nights. To ...

Huysmans, Dorien — KU Leuven


Gait Analysis in Unconstrained Environments

Gait can be defined as the individuals’ manner of walking. Its analysis can provide significant information about their identity and health, opening a wide range of possibilities in the field of biometric recognition and medical diagnosis. In the field of biometric, the use of gait to perform recognition can provide advantages, such as acquisition from a distance and without the cooperation of the individual being observed. In the field of medicine, gait analysis can be used to detect or assess the development of different gait related pathologies. It can also be used to assess neurological or systemic disorders as their effects are reflected in the individuals’ gait. This Thesis focuses on performing gait analysis in unconstrained environments, using a single 2D camera. This can be a challenging task due to the lack of depth information and self-occlusions in a 2D ...

Tanmay Tulsidas Verlekar — UNIVERSIDADE DE LISBOA, INSTITUTO SUPERIOR TÉCNICO


3D motion capture by computer vision and virtual rendering

Networked 3D virtual environments allow multiple users to interact with each other over the Internet. Users can share some sense of telepresence by remotely animating an avatar that represents them. However, avatar control may be tedious and still render user gestures poorly. This work aims at animating a user‟s avatar from real time 3D motion capture by monoscopic computer vision, thus allowing virtual telepresence to anyone using a personal computer with a webcam. The approach followed consists of registering a 3D articulated upper-body model to a video sequence. This involves searching iteratively for the best match between features extracted from the 3D model and from the image. A two-step registration process matches regions and then edges. The first contribution of this thesis is a method of allocating computing iterations under real-time constrain that achieves optimal robustness and accuracy. The major ...

Gomez Jauregui, David Antonio — Telecom SudParis


Video Based Detection of Driver Fatigue

This thesis addresses the problem of drowsy driver detection using computer vision techniques applied to the human face. Specifically we explore the possibility of discriminating drowsy from alert video segments using facial expressions automatically extracted from video. Several approaches were previously proposed for the detection and prediction of drowsiness. There has recently been increasing interest in computer vision approaches as it is a potentially promising approach due to its non-invasive nature for detecting drowsiness. Previous studies with vision based approaches detect driver drowsiness primarily by making pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to explore, understand and exploit actual human behavior during drowsiness episodes. We have collected two datasets including facial and head movement measures. Head motion is collected through an accelerometer for the first dataset (UYAN-1) and an ...

Vural, Esra — Sabanci University


Time-frequency analysis of optical and electrical cardiac signals with applications in ultra-high-field MRI

Electrocardiography (ECG) is the standard method for assessing the state of the cardiovascular system non-invasively. In the context of magnetic resonance imaging (MRI) the ECG signal is used for cardiac monitoring and triggering, i.e., the acquisition of images synchronized to the cardiac cycle. However, ECG acquisition is impeded by the static and dynamic magnetic fields which alter the measured voltages and may reduce signal-to-noise ratio (SNR), leading to false alarms during cardiac monitoring or to image artifacts during cardiac triggering. A major source of noise is the magnetohydrodynamic (MHD) effect as it is proportional to field strength and represents a key challenge in application of ultra-high-field (UHF) MRI >=7 T. In this work, two approaches for overcoming these limitations are proposed: i) Development of a hardware and software system based on the principal of photoplethysmography imaging (PPGi) as an optical ...

Spicher, Nicolai — University of Duisburg-Essen


Motion detection and human recognition in video sequences

This thesis is concerned with the design of a complete framework that allows the real-time recognition of humans in a video stream acquired by a static camera. For each stage of the processing chain, which takes as input the raw images of the stream and eventually outputs the identity of the persons, we propose an original algorithm. The first algorithm is a background subtraction technique named ViBe. The purpose of ViBe is to detect the parts of the images that contain moving objects. The second algorithm determines which moving objects correspond to individuals. The third algorithm allows the recognition of the detected individuals from their gait. Our background subtraction algorithm, ViBe, uses a collection of samples to model the history of each pixel. The current value of a pixel is classified by comparison with the closest samples that belong to ...

Olivier, Barnich — University of Liege


Vision-based human activities recognition in supervised or assisted environment

Human Activity Recognition HAR has been a hot research topic in the last decade due to its wide range of applications. Indeed, it has been the basis for implementa- tion of many computer vision applications, home security, video surveillance, and human-computer interaction. We intend by HAR, tools, and systems allowing to detect and recognize actions performed by individuals. With the considerable progress made in sensing technologies, HAR systems shifted from wearable and ambient-based to vision-based. This motivated the researchers to propose a large mass of vision-based solutions. From another perspective, HAR plays an impor- tant role in the health care sector and gets involved in the construction of fall detection systems and many smart home-related systems. Fall detection FD con- sists in identifying the occurrence of falls among other daily life activities. This is essential because falling is one of ...

Beddiar Djamila Romaissa — Université De Larbi Ben M’hidi Oum EL Bouaghi, Algeria


Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity


Distributed Video Coding for Wireless Lightweight Multimedia Applications

In the modern wireless age, lightweight multimedia technology stimulates attractive commercial applications on a grand scale as well as highly specialized niche markets. In this regard, the design of efficient video compression systems meeting such key requirements as very low encoding complexity, transmission error robustness and scalability, is no straightforward task. The answer can be found in fundamental information theoretic results, according to which efficient compression can be achieved by leveraging knowledge of the source statistics at the decoder only, giving rise to distributed, or alias Wyner-Ziv, video coding. This dissertation engineers efficient lightweight Wyner-Ziv video coding schemes emphasizing on several design aspects and applications. The first contribution of this dissertation focuses on the design of effective side information generation techniques so as to boost the compression capabilities of Wyner-Ziv video coding systems. To this end, overlapped block motion estimation ...

Deligiannis, Nikos — Vrije Universiteit Brussel


Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques

Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...

Trimeche, Mejdi — Tampere University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.