A comparative analysis of different approaches to target differentiation and localization using infrared sensors

This study compares the performances of various techniques for the differentiation and localization of commonly encountered features in indoor environments, such as planes, corners, edges, and cylinders, possibly with different surface properties, using simple infrared sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the localization and differentiation process. The techniques considered include rule-based, template-based, and neural network-based target differentiation, parametric surface differentiation, and statistical pattern recognition techniques such as parametric density estimation, various linear and quadratic classifiers, mixture of normals, kernel estimator, k-nearest neighbor, artificial neural network, and support vector machine classifiers. The geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor ...

Aytac, Tayfun — Bilkent University


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


Extended target tracking using PHD filters

The world in which we live is becoming more and more automated, exemplified by the numerous robots, or autonomous vehicles, that operate in air, on land, or in water. These robots perform a wide array of different tasks, ranging from the dangerous, such as underground mining, to the boring, such as vacuum cleaning. In common for all different robots is that they must possess a certain degree of awareness, both of themselves and of the world in which they operate. This thesis considers aspects of two research problems associated with this, more specifically the Simultaneous Localization and Mapping (SLAM) problem and the Multiple Target Tracking (MTT) problem. The SLAM problem consists of having the robot create a map of an environment and simultaneously localize itself in the same map. One way to reduce the effect of small errors that inevitably ...

Granström, Karl — Linköping University


Statistical Signal Processing for Data Fusion

In this dissertation we focus on statistical signal processing for Data Fusion, with a particular focus on wireless sensor networks. Six topics are studied: (i) Data Fusion for classification under model uncertainty; (ii) Decision Fusion over coherent MIMO channels; (iii) Performance analysis of Maximum Ratio Combining in MIMO decision fusion; (iv) Decision Fusion over non-coherent MIMO channels; (v) Decision Fusion for distributed classification of multiple targets; (vi) Data Fusion for inverse localization problems, with application to wideband passive sonar platform estimation. The first topic of this thesis addresses the problem of lack of knowledge of the prior distribution in classification problems that operate on small data sets that may make the application of Bayes' rule questionable. Uniform or arbitrary priors may provide classification answers that, even in simple examples, may end up contradicting our common sense about the problem. Entropic ...

Ciuonzo, Domenico — Second University of Naples


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


Deep Learning Techniques for Visual Counting

The explosion of Deep Learning (DL) added a boost to the already rapidly developing field of Computer Vision to such a point that vision-based tasks are now parts of our everyday lives. Applications such as image classification, photo stylization, or face recognition are nowadays pervasive, as evidenced by the advent of modern systems trivially integrated into mobile applications. In this thesis, we investigated and enhanced the visual counting task, which automatically estimates the number of objects in still images or video frames. Recently, due to the growing interest in it, several Convolutional Neural Network (CNN)-based solutions have been suggested by the scientific community. These artificial neural networks, inspired by the organization of the animal visual cortex, provide a way to automatically learn effective representations from raw visual data and can be successfully employed to address typical challenges characterizing this task, ...

Ciampi Luca — University of Pisa


Multispectral Image Processing and Pattern Recognition Techniques for Quality Inspection of Apple Fruits

Machine vision applies computer vision to industry and manufacturing in order to control or analyze a process or activity. Typical application of machine vision is the inspection of produced goods like electronic devices, automobiles, food and pharmaceuticals. Machine vision systems form their judgement based on specially designed image processing softwares. Therefore, image processing is very crucial for their accuracy. Food industry is among the industries that largely use image processing for inspection of produce. Fruits and vegetables have extremely varying physical appearance. Numerous defect types present for apples as well as high natural variability of their skin color brings apple fruits into the center of our interest. Traditional inspection of apple fruits is performed by human experts. But, automation of this process is necessary to reduce error, variation, fatigue and cost due to human experts as well as to increase ...

Unay, Devrim — Universite de Mons


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Selected Topics in Inertial and Visual Sensor Fusion: Calibration, Observability Analysis and Applications

Recent improvements in the development of inertial and visual sensors allow building small, lightweight, and cheap motion capture systems, which are becoming a standard feature of smartphones and personal digital assistants. This dissertation describes developments of new motion sensing strategies using the inertial and inertial-visual sensors. The thesis contributions are presented in two parts. The first part focuses mainly on the use of inertial measurement units. First, the problem of sensor calibration is addressed and a low-cost and accurate method to calibrate the accelerometer cluster of this unit is proposed. The method is based on the maximum likelihood estimation framework, which results in a minimum variance unbiased estimator.Then using the inertial measurement unit, a probabilistic user-independent method is proposed for pedestrian activity classification and gait analysis.The work targets two groups of applications including human activity classificationand joint human activity and ...

Panahandeh Ghazaleh — KTH Royal Institute of Technology


Wireless Localization via Learned Channel Features in Massive MIMO Systems

Future wireless networks will evolve to integrate communication, localization, and sensing capabilities. This evolution is driven by emerging application platforms such as digital twins, on the one hand, and advancements in wireless technologies, on the other, characterized by increased bandwidths, more antennas, and enhanced computational power. Crucial to this development is the application of artificial intelligence (AI), which is set to harness the vast amounts of available data in the sixth-generation (6G) of mobile networks and beyond. Integrating AI and machine learning (ML) algorithms, in particular, with wireless localization offers substantial opportunities to refine communication systems, improve the ability of wireless networks to locate the users precisely, enable context-aware transmission, and utilize processing and energy resources more efficiently. In this dissertation, advanced ML algorithms for enhanced wireless localization are proposed. Motivated by the capabilities of deep neural networks (DNNs) and ...

Artan Salihu — TU Wien


Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


On Hardware Implementation of Discrete-Time Cellular Neural Networks

Cellular Neural Networks are characterized by simplicity of operation. The network consists of a large number of nonlinear processing units; called cells; that are equally spread in the space. Each cell has a simple function (sequence of multiply-add followed by a single discrimination) that takes an element of a topographic map and then interacts with all cells within a specified sphere of interest through direct connections. Due to their intrinsic parallel computing power, CNNs have attracted the attention of a wide variety of scientists in, e.g., the fields of image and video processing, robotics and higher brain functions. Simplicity of operation together with the local connectivity gives CNNs first-hand advantages for tiled VLSI implementations with very high speed and complexity. The first VLSI implementation has been based on analogue technology but was small and suffered from parasitic capacitances and resistances ...

Malki, Suleyman — Lund University


Bayesian Algorithms for Mobile Terminal Positioning in Outdoor Wireless Environments

The ability to reliably and cheaply localize mobile terminals will allow users to understand and utilize the what, where and when of the surrounding physical world. Therefore, mobile terminal location information will open novel application opportunities in many areas. The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework in order to work under a common theoretical context. Filter derivation and implementation algorithms are provided with emphasis on ...

Khalaf-Allah, Mohamed — Leibniz University of Hannover


Information Fusion for Improved Motion Estimation

Motion Estimation is an important research field with many commercial applications including surveillance, navigation, robotics, and image compression. As a result, the field has received a great deal of attention and there exist a wide variety of Motion Estimation techniques which are often specialised for particular problems. The relative performance of these techniques, in terms of both accuracy and of computational requirements, is often found to be data dependent, and no single technique is known to outperform all others for all applications under all conditions. Information Fusion strategies seek to combine the results of different classifiers or sensors to give results of a better quality for a given problem than can be achieved by any single technique alone. Information Fusion has been shown to be of benefit to a number of applications including remote sensing, personal identity recognition, target detection, ...

Peacock, Andrew Mark — University Of Edinburgh

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.