Compressed sensing approaches to large-scale tensor decompositions

Today’s society is characterized by an abundance of data that is generated at an unprecedented velocity. However, much of this data is immediately thrown away by compression or information extraction. In a compressed sensing (CS) setting the inherent sparsity in many datasets is exploited by avoiding the acquisition of superfluous data in the first place. We combine this technique with tensors, or multiway arrays of numerical values, which are higher-order generalizations of vectors and matrices. As the number of entries scales exponentially in the order, tensor problems are often large-scale. We show that the combination of simple, low-rank tensor decompositions with CS effectively alleviates or even breaks the so-called curse of dimensionality. After discussing the larger data fusion optimization framework for coupled and constrained tensor decompositions, we investigate three categories of CS type algorithms to deal with large-scale problems. First, ...

Vervliet, Nico — KU Leuven


Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...

Roemer, Florian — Ilmenau University of Technology


Subspace-based exponential data fitting using linear and multilinear algebra

The exponentially damped sinusoidal (EDS) model arises in numerous signal processing applications. It is therefore of great interest to have methods able to estimate the parameters of such a model in the single-channel as well as in the multi-channel case. Because such a model naturally lends itself to subspace representation, powerful matrix approaches like HTLS in the single-channel case, HTLSstack in the multi-channel case and HTLSDstack in the decimative case have been developed to estimate the parameters of the underlying EDS model. They basically consist in stacking the signal in Hankel (single-channel) or block Hankel (multi- channel) data matrices. Then, the signal subspace is estimated by means of the singular value decomposition (SVD). The parameters of the model, namely the amplitudes, the phases, the damping factors, and the frequencies, are estimated from this subspace. Note that the sample covariance matrix ...

Papy, Jean-Michel — Katholieke Universiteit Leuven


Convex and Nonconvex Optimization Geometries

As many machine learning and signal processing problems are fundamentally nonconvex and too expensive/difficult to be convexified, my research is focused on understanding the optimization landscapes of their fundamentally nonconvex formulations. After understanding their optimization landscapes, we can develop optimization algorithms to efficiently navigate these optimization landscapes and achieve the global optimality convergence. So, the main theme of this thesis would be optimization, with an emphasis on nonconvex optimization and algorithmic developments for these popular optimization problems. This thesis can be conceptually divided into four parts: Part 1: Convex Optimization. In the first part, we apply convex relaxations to several popular nonconvex problems in signal processing and machine learning (e.g. line spectral estimation problem and tensor decomposition problem) and prove that the solving the new convex relaxation problems is guaranteed to achieve the globally optimal solutions of their original nonconvex ...

Li, Qiuwei — Colorado School of Mines


MIMO Instantaneous Blind Identification and Separation based on Arbitrary Order Temporal Structure in the Data

This thesis is concerned with three closely related problems. The first one is called Multiple-Input Multiple-Output (MIMO) Instantaneous Blind Identification, which we denote by MIBI. In this problem a number of mutually statistically independent source signals are mixed by a MIMO instantaneous mixing system and only the mixed signals are observed, i.e. both the mixing system and the original sources are unknown or ‘blind’. The goal of MIBI is to identify the MIMO system from the observed mixtures of the source signals only. The second problem is called Instantaneous Blind Signal Separation (IBSS) and deals with recovering mutually statistically independent source signals from their observed instantaneous mixtures only. The observation model and assumptions on the signals and mixing system are the same as those of MIBI. However, the main purpose of IBSS is the estimation of the source signals, whereas ...

van de Laar, Jakob — TU Eindhoven


MIMO instantaneous blind idenfitication and separation based on arbitrary order

This thesis is concerned with three closely related problems. The first one is called Multiple-Input Multiple-Output (MIMO) Instantaneous Blind Identification, which we denote by MIBI. In this problem a number of mutually statistically independent source signals are mixed by a MIMO instantaneous mixing system and only the mixed signals are observed, i.e. both the mixing system and the original sources are unknown or ¡blind¢. The goal of MIBI is to identify the MIMO system from the observed mixtures of the source signals only. The second problem is called Instantaneous Blind Signal Separation (IBSS) and deals with recovering mutually statistically independent source signals from their observed instantaneous mixtures only. The observation model and assumptions on the signals and mixing system are the same as those of MIBI. However, the main purpose of IBSS is the estimation of the source signals, whereas ...

van de Laar, Jakob — T.U. Eindhoven


Cyclostationary Blind Equalisation in Mobile Communications

Blind channel identication and equalisation are the processes by which a channel impulse response can be identified and proper equaliser filter coeffcients can be obtained, without knowledge of the transmitted signal. Techniques that exploit cyclostationarity can reveal information about systems which are nonminimum phase, nonminimum phase channels cannot be identied using only second-order statistics (SOS), because these do not contain the necessary phase information. Cyclostationary blind equalisation methods exploit the fact that, sampling the received signal at a rate higher than the transmitted signal symbol rate, the received signal becomes cyclostationary. In general, cyclostationary blind equalisers can identify a channel with less data than higher-order statistics (HOS) methods, and unlike these, noconstraint is imposed on the probability distribution function of the input signal. Nevertheless, cyclostationary methods suffer from some drawbacks, such as the fact that some channels are unidentiable when ...

Altuna, Jon — University Of Edinburgh


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Estima e Igualacion Ciega de Canales MIMO con y sin Redudancia Espacial (title in Spanish)

The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multipleoutput (MIMO) systems, it has been proven that the second-order statistics of the observations provide the sufficient information for solving the blind problem. The aim ...

Rodriguez, Javier Via — Universidad de Cantabria


Learning from structured EEG and fMRI data supporting the diagnosis of epilepsy

Epilepsy is a neurological condition that manifests in epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. Epilepsy cannot be cured and in many cases is not controlled by medication either. Surgical resection of the region responsible for generating the epileptic seizures might offer remedy for these patients. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measure the changes of brain activity in time over different locations of the brain. As such, they provide valuable information on the nature, the timing and the spatial origin of the epileptic activity. Unfortunately, both techniques record activity of different brain and artefact sources as well. Hence, EEG and fMRI signals are characterised by low signal to noise ratio. Data quality and the vast amount ...

Hunyadi, Borbála — KU Leuven


Broadband angle of arrival estimation using polynomial matrix decompositions

This thesis is concerned with the problem of broadband angle of arrival (AoA) estimation for sensor arrays. There is a rich theory of narrowband solutions to the AoA problem, which typically involves the covariance matrix of the received data and matrix factorisations such as the eigenvalue decomposition (EVD) to reach optimality in various senses. For broadband arrays, such as found in sonar, acoustics or other applications where signals do not fulfil the narrowband assumption, working with phase shifts between different signals — as sufficient in the narrowband case — does not suffice and explicit lags need to be taken into account. The required space-time covariance matrix of the data now has a lag dimension, and classical solutions such as those based on the EVD are no longer directly applicable. There are a number of existing broadband AoA techniques, which are ...

Alrmah, Mohamed Abubaker — University of Strathclyde


Domain-informed signal processing with application to analysis of human brain functional MRI data

Standard signal processing techniques are implicitly based on the assumption that the signal lies on a regular, homogeneous domain. In practice, however, many signals lie on an irregular or inhomogeneous domain. An application area where data are naturally defined on an irregular or inhomogeneous domain is human brain neuroimaging. The goal in neuroimaging is to map the structure and function of the brain using imaging techniques. In particular, functional magnetic resonance imaging (fMRI) is a technique that is conventionally used in non-invasive probing of human brain function. This doctoral dissertation deals with the development of signal processing schemes that adapt to the domain of the signal. It consists of four papers that in different ways deal with exploiting knowledge of the signal domain to enhance the processing of signals. In each paper, special focus is given to the analysis of ...

Behjat, Hamid — Lund University


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Polynomial Matrix Decompositions and Paraunitary Filter Banks

There are an increasing number of problems that can be solved using paraunitary filter banks. The design of optimal orthonormal filter banks for the efficient coding of signals has received considerable interest over the years. In contrast, very little attention has been given to the problem of constructing paraunitary matrices for the purpose of broadband signal subspace estimation. This thesis begins by relating these two areas of research. A frequency-domain method of diagonalising parahermitian polynomial matrices is proposed and shown to have fundamental limitations. Then the thesis focuses on the development of a novel time-domain technique that extends the eigenvalue decomposition to polynomial matrices, referred to as the second order sequential best rotation (SBR2) algorithm. This technique imposes strong decorrelation on its input signals by applying a sequence of elementary paraunitary matrices which constitutes a generalisation of the classical Jacobi ...

Redif, Soydan — University of Southampton


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.