Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation ...

Gaspar, Ivan — Technische Universität Dresden


Adaptation and Optimization in Multi-Carrier Modulation Systems

In recent years, we have assisted to the dawn of many wireless and wireline communication technologies that have adopted multi-carrier modulation (MCM) at the physical layer. The basic idea ofMCMs is to transmit a high rate data stream by dividing it into low rate streams that are used to generate low rate signals each modulated at a given carrier frequency. The use ofMCMs allows for dividing the frequency selective channel into a set of narrow-band sub-channels. Consequently, the transmitted signal experiences, in each sub-channel, a quasi flat frequency response, so that, the equalization task simplifies to a sub-channel filtering. In addition to the simplification of the equalization task, there are several benefits deriving from the use of MCMs that, in general, depend upon the considered transmission medium. The most important ones are the low complexity digital implementation, and the possibility ...

D'Alessandro, Salvatore — University of Udine


Digital Pre-distortion of Microwave Power Amplifiers

With the advent of spectrally efficient wireless communication systems employing modulation schemes with varying amplitude of the communication signal, linearisation techniques for nonlinear microwave power amplifiers have gained significant interest. The availability of fast and cheap digital processing technology makes digital pre-distortion an attractive candidate as a means for power amplifier linearisation since it promises high power efficiency and fleexibility. Digital pre-distortion is further in line with the current efforts towards software defined radio systems, where a principal aim is to substitute costly and inflexible analogue circuitry with cheap and reprogrammable digital circuitry. Microwave power amplifiers are most efficient in terms of delivered microwave output power vs. supplied power if driven near the saturation point. In this operational mode, the amplifier behaves as a nonlinear device, which introduces undesired distortions in the information bear- ing microwave signal. These nonlinear distortions ...

Aschbacher, E. — Vienna University of Technology


MIMO Designs for filter bank multicarrier and multiantenna systems based on OQAM

From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any ...

López, Màrius Caus — Universitat Politècnica de Catalunya (UPC)


Transmission over Time- and Frequency-Selective Mobile Wireless Channels

The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...

Barhumi, Imad — Katholieke Universiteit Leuven


Channel Modeling and Estimation For Wireless Communication Systems Using a Time-Frequency Approach

Broadband wireless communication is a very fast growing communication area. Multicarrier modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM), Biorthogonal Frequency Division Multiplexing (BFDM), Pulse Shaping (PS) and Multi-Carrier Spread Spectrum (MCSS) have recently been introduced as robust techniques against intersymbol interference (ISI) and noise, compared to single carrier communication systems over fast fading multipath communication channels. Therefore, multicarrier modulation techniques have been considered as a candidate for new generation, high data rate broadband wireless communication systems and have been adopted as the related standards. Several examples are the European digital audio broadcasting (DAB) and digital video broadcasting (DVB), the IEEE standands for wireless local area networks (WLAN), 802.11a, and wireless metropolitan area networks (WMAN), 802.16a. However, Doppler frequency shifts, phase offset, local oscillator frequency shifts, and multi-path fading severely degrade the performance of multicarrier communication systems. For fast-varying channels, ...

Yalcin, Mahmut — Istanbul University


Design and Analysis of Duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links

Relaying, i.e., multihop communication via so-called relay nodes, has emerged as an advanced technology for economically realizing long transmission ranges and high data rates in wireless systems. The focus of this thesis is on multihop multiuser systems where signals are modulated with orthogonal frequency-division multiplexing or multiple access, i.e., OFDM(A), and relays are infrastructure-based network nodes. In general, the thesis contributes by investigating how to operate relay links optimally under spectrum, transmit power and processing capability limitations, as well as how to improve signal processing in relays by exploiting other advanced concepts such as multiantenna techniques, spectrum reuse, transmit power adaptation, and new options for multicarrier protocol design. The first theme is the design and analysis of duplexing modes which define how a relay link reuses allocated frequency bands in each hop. Especially, the full-duplex relaying mode is promoted as ...

Riihonen, Taneli — Aalto University


OFDM Multi-User Communication Over Time-Variant Channels

Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...

Zemen, T. — Vienna University of Technology


Coexistence of Communication Systems Based on Enhanced Multi-Carrier Waveforms with Legacy OFDM Networks

Future wireless networks are envisioned to accommodate the heterogeneous needs of entirely different systems. New services obeying various constraints will coexist with legacy cellular users in the same frequency band. This coexistence is hardly achievable with OFDM, the physical layer used by current systems, because of its poor spectral containment. Thus, a myriad of multi-carrier waveforms with enhanced spectral localization have been proposed for future wireless devices. In this thesis, we investigate the coexistence of new systems based on these waveforms with legacy OFDM users. We provide the first theoretical and experimental analysis of the inter-system interference that arises in those scenarii. Then, we apply this analysis to evaluate the merits of different enhanced waveforms and we finally investigate the performance achievable by a network composed of legacy OFDM cellular users and D2D pairs using one of the studied enhanced ...

Quentin Bodinier — Université of Rennes 1 (UR1) and CentraleSupélec (CS)


Adaptive Signal Processing for Power Line Communications

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...

Tripodi, Carlo — Università degli Studi di Parma


Behavioral Modeling and Digital Predistortion of Radio Frequency Power Amplifiers

The radio frequency power amplifier (RF-PA) within a digital wireless transmitter is a critical component regarding both the energy consumption and the signal quality. Especially due to today's broadband multicarrier modulation methods that generate signals with high peak-to-average power ratio, it is very hard to construct RF-PAs that achieve good energy efficiency and fulfill the strict linearity requirements imposed by the standard. Because of this, the digital predistortion (DPD) of RF-PAs has become a key technique for implementing energy efficient, high data rate wireless transmitters. This thesis investigates theoretical foundations and practical methods for the behavioral modeling and DPD of RF-PAs. The main contributions are a semi-physical model of the joint linearity-efficiency characteristics of RF-PAs, a detailed analysis of polynomial baseband models of RF-PAs focusing on the often neglected even-order terms in baseband, and a collection of practical methods for ...

Enzinger, Harald — Graz University of Technology


Complex Baseband Modeling and Digital Predistortion for Wideband RF Power Amplifiers

Modern modulation methods as used in 3rd generation mobile communications (UMTS) generate strongly fluctuating transmission signal envelopes with high peak-to-average power ratios. These properties result in significant distortion due to the nonlinear behavior of the radio-frequency power amplifier (RF PA). We propose different nonlinear model structures for such amplifiers, based on memory polynomials and frequency-domain Volterra kernel expansion, where we can reduce the number of free parameters by 80% compared to traditional Volterra series approaches. Because these nonlinear models incorporate memory, we are able to model the nonlinear distortion of RF PAs with sufficient accuracy (e.g., −30 dB relative modeling error ), including the wideband case (bandwidth B = 20 MHz as needed for four-carrier WCDMA). Furthermore, we propose a method to construct RF PA models from frequency-dependent AM/AM and AM/PM conversions. For the compensation of the nonlinearities, we analyze ...

Singerl, Peter — Graz University of Technology


Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...

Kiayani, Adnan — Tampere University of Technology


Efficient Multi-carrier Communication on the Digital Subscriber Loop

This thesis explores three distinct philosophies for improving the efficiency of multi-carrier communication on the digital subscriber loop. The first topic discussed is impulse response shortening for discrete multitone transceivers. The minimum mean-squared error impulse response shortener is reformulated to allow near-optimal rate performance. It is demonstrated that the best existing eigen-filter designed channel shortener is a particular case of the proposed reformulation. An adaptive time-domain LMS algorithm is provided as an alternative to eigen-decomposition. The next part of the thesis examines bit- and power- loading algorithms for multitone systems. The problem of rate-optimal loading has already been solved. It is shown, however, that the rate-optimal solution does not give best value for complexity, and that near optimal schemes can perform very well at a fraction of the computational cost. The final section of the thesis is a brief exposition ...

Daly, Donnacha — University College Dublin

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.