Distributed Signal Processing Algorithms for Wireless Networks

Distributed signal processing algorithms have become a key approach for statistical inference in wireless networks and applications such as wireless sensor networks and smart grids. It is well known that distributed processing techniques deal with the extraction of information from data collected at nodes that are distributed over a geographic area. In this context, for each specific node, a set of neighbor nodes collect their local information and transmit the estimates to a specific node. Then, each specific node combines the collected information together with its local estimate to generate an improved estimate. In this thesis, novel distributed cooperative algorithms for inference in ad hoc, wireless sensor networks and smart grids are investigated. Low-complexity and effective algorithms to perform statistical inference in a distributed way are devised. A number of innovative approaches for dealing with node failures, compression of data ...

Xu, Songcen — University of York


Signal processing algorithms for wireless acoustic sensor networks

Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...

Bertrand, Alexander — Katholieke Universiteit Leuven


Adaptive Algorithms and Variable Structures for Distributed Estimation

The analysis and design of new non-centralized learning algorithms for potential application in distributed adaptive estimation is the focus of this thesis. Such algorithms should be designed to have low processing requirement and to need minimal communication between the nodes which would form a distributed network. They ought, moreover, to have acceptable performance when the nodal input measurements are coloured and the environment is dynamic. Least mean square (LMS) and recursive least squares (RLS) type incremental distributed adaptive learning algorithms are first introduced on the basis of a Hamiltonian cycle through all of the nodes of a distributed network. These schemes require each node to communicate only with one of its neighbours during the learning process. An original steady-steady performance analysis of the incremental LMS algorithm is performed by exploiting a weighted spatial-temporal energy conservation formulation. This analysis confirms that ...

Li, Leilei — Loughborough University


Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks

Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...

Hassani, Amin — KU Leuven


Robust Adaptive Machine Learning Algorithms for Distributed Signal Processing

Distributed networks comprising a large number of nodes, e.g., Wireless Sensor Networks, Personal Computers (PC’s), laptops, smart phones, etc., which cooperate with each other in order to reach a common goal, constitute a promising technology for several applications. Typical examples include: distributed environmental monitoring, acoustic source localization, power spectrum estimation, etc. Sophisticated cooperation mechanisms can significantly benefit the learning process, through which the nodes achieve their common objective. In this dissertation, the problem of adaptive learning in distributed networks is studied, focusing on the task of distributed estimation. A set of nodes sense information related to certain parameters and the estimation of these parameters constitutes the goal. Towards this direction, nodes exploit locally sensed measurements as well as information springing from interactions with other nodes of the network. Throughout this dissertation, the cooperation among the nodes follows the diffusion optimization ...

Chouvardas, Symeon — National and Kapodistrian University of Athens


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph — KU Leuven


Distributed Signal Processing Algorithms for Acoustic Sensor Networks

In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...

Szurley, Joseph C. — KU Leuven


Distributed Spatial Filtering in Wireless Sensor Networks

Wireless sensor networks (WSNs) paved the way for accessing data previously unavailable by deploying sensors in various locations in space, each collecting local measurements of a target source signal. By exploiting the information resulting from the multitude of signals measured at the different sensors of the network, various tasks can be achieved, such as denoising or dimensionality reduction which can in turn be used, e.g., for source localization or detecting seizures from electroencephalography measurements. Spatial filtering consists of linearly combining the signals measured at each sensor of the network such that the resulting filtered signal is optimal in some sense. This technique is widely used in biomedical signal processing, wireless communication, and acoustics, among other fields. In spatial filtering tasks, the aim is to exploit the correlation between the signals of all sensors in the network, therefore requiring access to ...

Musluoglu, Cem Ates — KU Leuven


Self-Organization and Data Compression in Wireless Sensor Networks of Extreme Scales: Application to Environmental Monitoring, Climatology and Bioengineering

Wireless Sensor Networks (WSNs) aim for accurate data gathering and representation of one or multiple physical variables from the environment, by means of sensor reading and wireless data packets transmission to a Data Fusion Center (DFC). There is no comprehensive common set of requirements for all WSN, as they are application dependent. Moreover, due to specific node capabilities or energy consumption constraints several tradeoffs have to be considered during the design, and particularly, the price of the sensor nodes is a determining factor. The distinction between small and large scale WSNs does not only refers to the quantity of sensor nodes, but also establishes the main design challenges in each case. For example, the node organization is a key issue in large scale WSNs, where many inexpensive nodes have to properly work in a coordinated manner. Regarding the amount of ...

Chidean, Mihaela I. — Rey Juan Carlos University


On the Energy Efficiency of Cooperative Wireless Networks

The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...

Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid


Robust Wireless Localization in Harsh Mixed Line-of-Sight/Non-Line-of-Sight Environments

This PhD thesis considers the problem of locating some target nodes in different wireless infrastructures such as wireless cellular radio networks and wireless sensor networks. To be as realistic as possible, mixed line-of-sight and non-line-of-sight (LOS/NLOS) localization environment is introduced. Both the conventional non-cooperative localization and the new emerging cooperative localization have been studied thoroughly. Owing to the random nature of the measurements, probabilistic methods are more advanced as compared to the old-fashioned geometric methods. The gist behind the probabilistic methods is to infer the unknown positions of the target nodes in an estimation process, given a set of noisy position related measurements, a probabilistic measurement model, and a few known reference positions. In contrast to the majority of the existing methods, harsh but practical constraints are taken into account: neither offline calibration nor non-line-of-sight state identification is equipped in ...

Yin, Feng — Technische Universität Darmstadt


Algorithms for Energy-Efficient Adaptive Wireless Sensor Networks

In this thesis we focus on the development of energy-efficient adaptive algorithms for Wireless Sensor Networks. Its contributions can be arranged in two main lines. Firstly, we focus on the efficient management of energy resources in WSNs equipped with finite-size batteries and energy-harvesting devices. To that end, we propose a censoring scheme by which the nodes are able to decide if a message transmission is worthy or not given their energetic condition. In order to do so, we model the system using a Markov Decision Process and use this model to derive optimal policies. Later, these policies are analyzed in simplified scenarios in order to get insights of their features. Finally, using Stochastic Approximation, we develop low-complexity censoring algorithms that approximate the optimal policy, with less computational complexity and faster convergence speed than other approaches such as Q-learning. Secondly, we ...

Fernandez-Bes, Jesus — Universidad Carlos III de Madrid


Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

The first part of this dissertation considers distributed learning problems over networked agents. The general objective of distributed adaptation and learning is the solution of global, stochastic optimization problems through localized interactions and without information about the statistical properties of the data. Regularization is a useful technique to encourage or enforce structural properties on the resulting solution, such as sparsity or constraints. A substantial number of regularizers are inherently non-smooth, while many cost functions are differentiable. We propose distributed and adaptive strategies that are able to minimize aggregate sums of objectives. In doing so, we exploit the structure of the individual objectives as sums of differentiable costs and non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to continuously track drifts in the problem; their recursions, however, are subject to persistent perturbations arising from the stochastic nature of ...

Vlaski, Stefan — University of California, Los Angeles


Transmission strategies for wireless energy harvesting nodes

Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and Communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which is expected to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas emissions as reported by the European Council. Additionally, the autonomy of battery operated devices is getting reduced year after year since battery technology has not evolved fast enough to cope with the increase of energy consumption associated to the growth of the node’s processing capability. Energy harvesting, which is known as the process of collecting energy ...

Gregori, Maria — Centre Tecnològic de Telecomunicacions de Catalunya


Distributed Localization and Tracking of Acoustic Sources

Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...

Dorfan, Yuval — Bar Ilan University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.