Parametric and non-parametric approaches for multisensor data fusion

Multisensor data fusion technology combines data and information from multiple sensors to achieve improved accuracies and better inference about the environment than could be achieved by the use of a single sensor alone. In this dissertation, we propose parametric and nonparametric multisensor data fusion algorithms with a broad range of applications. Image registration is a vital first step in fusing sensor data. Among the wide range of registration techniques that have been developed for various applications, mutual information based registration algorithms have been accepted as one of the most accurate and robust methods. Inspired by the mutual information based approaches, we propose to use the joint R´enyi entropy as the dissimilarity metric between images. Since the R´enyi entropy of an image can be estimated with the length of the minimum spanning tree over the corresponding graph, the proposed information-theoretic registration ...

Ma, Bing — University of Michigan


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Contributions to the Information Fusion : application to Obstacle Recognition in Visible and Infrared Images

The interest for the intelligent vehicle field has been increased during the last years, must probably due to an important number of road accidents. Many accidents could be avoided if a device attached to the vehicle would assist the driver with some warnings when dangerous situations are about to appear. In recent years, leading car developers have recorded significant efforts and support research works regarding the intelligent vehicle field where they propose solutions for the existing problems, especially in the vision domain. Road detection and following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are examples of applications which have been developed and improved recently. Still, a lot of challenges and unsolved problems remain in the intelligent vehicle domain. Our purpose in this thesis is to design an Obstacle Recognition system for improving the road security by ...

Apatean, Anca Ioana — Institut National des Sciences Appliquées de Rouen


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Robust Wireless Localization in Harsh Mixed Line-of-Sight/Non-Line-of-Sight Environments

This PhD thesis considers the problem of locating some target nodes in different wireless infrastructures such as wireless cellular radio networks and wireless sensor networks. To be as realistic as possible, mixed line-of-sight and non-line-of-sight (LOS/NLOS) localization environment is introduced. Both the conventional non-cooperative localization and the new emerging cooperative localization have been studied thoroughly. Owing to the random nature of the measurements, probabilistic methods are more advanced as compared to the old-fashioned geometric methods. The gist behind the probabilistic methods is to infer the unknown positions of the target nodes in an estimation process, given a set of noisy position related measurements, a probabilistic measurement model, and a few known reference positions. In contrast to the majority of the existing methods, harsh but practical constraints are taken into account: neither offline calibration nor non-line-of-sight state identification is equipped in ...

Yin, Feng — Technische Universität Darmstadt


Non-intrusive Quality Evaluation of Speech Processed in Noisy and Reverberant Environments

In many speech applications such as hands-free telephony or voice-controlled home assistants, the distance between the user and the recording microphones can be relatively large. In such a far-field scenario, the recorded microphone signals are typically corrupted by noise and reverberation, which may severely degrade the performance of speech recognition systems and reduce intelligibility and quality of speech in communication applications. In order to limit these effects, speech enhancement algorithms are typically applied. The main objective of this thesis is to develop novel speech enhancement algorithms for noisy and reverberant environments and signal-based measures to evaluate these algorithms, focusing on solutions that are applicable in realistic scenarios. First, we propose a single-channel speech enhancement algorithm for joint noise and reverberation reduction. The proposed algorithm uses a spectral gain to enhance the input signal, where the gain is computed using a ...

Cauchi, Benjamin — University of Oldenburg


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Estima e Igualacion Ciega de Canales MIMO con y sin Redudancia Espacial (title in Spanish)

The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multipleoutput (MIMO) systems, it has been proven that the second-order statistics of the observations provide the sufficient information for solving the blind problem. The aim ...

Rodriguez, Javier Via — Universidad de Cantabria


Cooperative and Cognitive Communication Techniques for Wireless Networks

During the past years wireless communications have been exhibiting an increased growth rendering them the most common way for communication. The continuously increasing demand for wireless services resulted in limited availability of the wireless spectrum. To this end, Cognitive Radio (CR) techniques have been proposed in literature during the past years. The concept of CR approach is to utilize advanced radio and signal-processing technology along with novel spectrum allocation policies to enable new unlicensed wireless users to operate in the existing occupied spectrum areas without degrading the performance of the existing licensed ones. Moreover, the broadcast and fading nature of the wireless channel results in severe degradation on the performance of wireless transmissions. A solution to the problem is the use of multiple-antenna systems so as to achieve spatial diversity. However, in many cases, the communication devices' nature permit the ...

Tsinos, Christos — University of Patras


Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We consider the periodic signals basically as the sum of harmonics. Therefore, we can pass the noisy signals through bandpass filters centered at the frequencies of the harmonics to enhance the signal. In addition, although the frequencies of the harmonics are the ...

Karimian-Azari, Sam — Aalborg Univeristy


Perceptually-Based Signal Features for Environmental Sound Classification

This thesis faces the problem of automatically classifying environmental sounds, i.e., any non-speech or non-music sounds that can be found in the environment. Broadly speaking, two main processes are needed to perform such classification: the signal feature extraction so as to compose representative sound patterns and the machine learning technique that performs the classification of such patterns. The main focus of this research is put on the former, studying relevant signal features that optimally represent the sound characteristics since, according to several references, it is a key issue to attain a robust recognition. This type of audio signals holds many differences with speech or music signals, thus specific features should be determined and adapted to their own characteristics. In this sense, new signal features, inspired by the human auditory system and the human perception of sound, are proposed to improve ...

Valero, Xavier — La Salle-Universitat Ramon Llull


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Deep Learning of GNSS Signal Detection

Global Navigation Satellite Systems (GNSS) is the de facto technology for Position, Navigation, and Timing (PNT) applications when it is available. GNSS relies on one or more satellite constellations that transmit ranging signals, which a receiver can use to self-localize. Signal acquisition is a crucial step in GNSS receivers, which is typically solved by maximizing the so-called Cross Ambiguity Function (CAF) resulting from a hypothesis testing problem. The CAF is a two-dimensional function that is related to the correlation between the received signal and a local code replica for every possible delay/Doppler pair, which is then maximized for signal detection and coarse synchronization. The outcome of this statistical process decides whether the signal from a particular satellite is present or absent in the received signal, as well as provides a rough estimate of its associated code delay and Doppler frequency, ...

Borhani Darian,Parisa — Northeastern University


Non-Intrusive Speech Intelligibility Prediction

The ability to communicate through speech is important for social interaction. We rely on the ability to communicate with each other even in noisy conditions. Ideally, the speech is easy to understand but this is not always the case, if the speech is degraded, e.g., due to background noise, distortion or hearing impairment. One of the most important factors to consider in relation to such degradations is speech intelligibility, which is a measure of how easy or difficult it is to understand the speech. In this thesis, the focus is on the topic of speech intelligibility prediction. The thesis consists of an introduction to the field of speech intelligibility prediction and a collection of scientific papers. The introduction provides a background to the challenges with speech communication in noisy conditions, followed by an introduction to how speech is produced and ...

Sørensen, Charlotte — Aalborg University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.