Probabilistic Model-Based Multiple Pitch Tracking of Speech

Multiple pitch tracking of speech is an important task for the segregation of multiple speakers in a single-channel recording. In this thesis, a probabilistic model-based approach for estimation and tracking of multiple pitch trajectories is proposed. A probabilistic model that captures pitch-dependent characteristics of the single-speaker short-time spectrum is obtained a priori from clean speech data. The resulting speaker model, which is based on Gaussian mixture models, can be trained either in a speaker independent (SI) or a speaker dependent (SD) fashion. Speaker models are then combined using an interaction model to obtain a probabilistic description of the observed speech mixture. A factorial hidden Markov model is applied for tracking the pitch trajectories of multiple speakers over time. The probabilistic model-based approach is capable to explicitly incorporate timbral information and all associated uncertainties of spectral structure into the model. While ...

Wohlmayr, Michael — Graz University of Technology


Contributions to Single-Channel Speech Enhancement with a Focus on the Spectral Phase

Single-channel speech enhancement refers to the reduction of noise signal components in a single-channel signal composed of both speech and noise. Spectral speech enhancement methods are among the most popular approaches to solving this problem. Since the short-time spectral amplitude has been identified as a highly perceptually relevant quantity, most conventional approaches rely on processing the amplitude spectrum only, ignoring any information that may be contained in the spectral phase. As a consequence, the noisy short-time spectral phase is neither enhanced for the purpose of signal reconstruction nor is it used for refining short-time spectral amplitude estimates. This thesis investigates the use of the spectral phase and its structure in algorithms for single-channel speech enhancement. This includes the analysis of the spectral phase in the context of theoretically optimal speech estimators. The resulting knowledge is exploited in formulating single-channel speech ...

Johannes Stahl — Graz University of Technology


Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology


Automatic Speaker Characterization; Identification of Gender, Age, Language and Accent from Speech Signals

Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...

Bahari, Mohamad Hasan — KU Leuven


Enhancement of Periodic Signals: with Application to Speech Signals

The topic of this thesis is the enhancement of noisy, periodic signals with application to speech signals. Generally speaking, enhancement methods can be divided into signal- and noise-driven methods. In this thesis, we focus on the signal-driven approach by employing relevant signal parameters for the enhancement of periodic signals. The enhancement problem consists of two major subproblems: the estimation of relevant parameters or statistics, and the actual noise reduction of the observed signal. We consider both of these subproblems. First, we consider the problem of estimating signal parameters relevant to the enhancement of periodic signals. The fundamental frequency is one example of such a parameter. Furthermore, in multichannel scenarios, the direction-of-arrival of the periodic sources onto an array of sensors is another parameter of relevance. We propose methods for the estimation of the fundamental frequency that have benefits compared to ...

Jensen, Jesper Rindom — Aalborg University


Pitch-informed solo and accompaniment separation

This thesis addresses the development of a system for pitch-informed solo and accompaniment separation capable of separating main instruments from music accompaniment regardless of the musical genre of the track, or type of music accompaniment. For the solo instrument, only pitched monophonic instruments were considered in a single-channel scenario where no panning or spatial location information is available. In the proposed method, pitch information is used as an initial stage of a sinusoidal modeling approach that attempts to estimate the spectral information of the solo instrument from a given audio mixture. Instead of estimating the solo instrument on a frame by frame basis, the proposed method gathers information of tone objects to perform separation. Tone-based processing allowed the inclusion of novel processing stages for attack re nement, transient interference reduction, common amplitude modulation (CAM) of tone objects, and for better ...

Cano Cerón, Estefanía — Ilmenau University of Technology


A Computational Framework for Sound Segregation in Music Signals

Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...

Martins, Luis Gustavo — Universidade do Porto


Speech Enhancement Algorithms for Audiological Applications

The improvement of speech intelligibility is a traditional problem which still remains open and unsolved. The recent boom of applications such as hands-free communi- cations or automatic speech recognition systems and the ever-increasing demands of the hearing-impaired community have given a definitive impulse to the research in this area. This PhD thesis is focused on speech enhancement for audiological applications. Most of the research conducted in this thesis has been focused on the improvement of speech intelligibility in hearing aids, considering the variety of restrictions and limitations imposed by this type of devices. The combination of source separation techniques and spatial filtering with machine learning and evolutionary computation has originated novel and interesting algorithms which are included in this thesis. The thesis is divided in two main parts. The first one contains a preliminary study of the problem and a ...

Ayllón, David — Universidad de Alcalá


Source-Filter Model Based Single Channel Speech Separation

In a natural acoustic environment, multiple sources are usually active at the same time. The task of source separation is the estimation of individual source signals from this complex mixture. The challenge of single channel source separation (SCSS) is to recover more than one source from a single observation. Basically, SCSS can be divided in methods that try to mimic the human auditory system and model-based methods, which find a probabilistic representation of the individual sources and employ this prior knowledge for inference. This thesis presents several strategies for the separation of two speech utterances mixed into a single channel and is structured in four parts: The first part reviews factorial models in model-based SCSS and introduces the soft-binary mask for signal reconstruction. This mask shows improved performance compared to the soft and the binary masks in automatic speech recognition ...

Stark, Michael — Graz University of Technology


Adaptation of statistical models for single channel source separation. Application to voice / music separation in songs

Single channel source separation is a quite recent problem of constantly growing interest in the scientific world. However, this problem is still very far to be solved, and even more, it cannot be solved in all its generality. Indeed, since this problem is highly underdetermined, the main difficulty is that a very strong knowledge about the sources is required to be able to separate them. For a grand class of existing separation methods, this knowledge is expressed by statistical source models, notably Gaussian Mixture Models (GMM), which are learned from some training examples. The subject of this work is to study the separation methods based on statistical models in general, and then to apply them to the particular problem of separating singing voice from background music in mono recordings of songs. It can be very useful to propose some satisfactory ...

OZEROV, Alexey — University of Rennes 1


Sound Source Separation in Monaural Music Signals

Sound source separation refers to the task of estimating the signals produced by individual sound sources from a complex acoustic mixture. It has several applications, since monophonic signals can be processed more efficiently and flexibly than polyphonic mixtures. This thesis deals with the separation of monaural, or, one-channel music recordings. We concentrate on separation methods, where the sources to be separated are not known beforehand. Instead, the separation is enabled by utilizing the common properties of real-world sound sources, which are their continuity, sparseness, and repetition in time and frequency, and their harmonic spectral structures. One of the separation approaches taken here use unsupervised learning and the other uses model-based inference based on sinusoidal modeling. Most of the existing unsupervised separation algorithms are based on a linear instantaneous signal model, where each frame of the input mixture signal is modeled ...

Virtanen, Tuomas — Tampere University of Technology


Speech recognition in noisy conditions using missing feature approach

The research in this thesis addresses the problem of automatic speech recognition in noisy environments. Automatic speech recognition systems obtain acceptable performances in noise free conditions but these performances degrade dramatically in presence of additive noise. This is mainly due to the mismatch between the training and the noisy operating conditions. In the time-frequency representation of the noisy speech signal, some of the clean speech features are masked by noise. In this case the clean speech features cannot be correctly estimated from the noisy speech and therefore they are considered as missing or unreliable. In order to improve the performance of speech recognition systems in additive noise conditions, special attention should be paid to the problems of detection and compensation of these unreliable features. This thesis is concerned with the problem of missing features applied to automatic speaker-independent speech recognition. ...

Renevey, Philippe — Swiss Federal Institute of Technology


Spatial features of reverberant speech: estimation and application to recognition and diarization

Distant talking scenarios, such as hands-free calling or teleconference meetings, are essential for natural and comfortable human-machine interaction and they are being increasingly used in multiple contexts. The acquired speech signal in such scenarios is reverberant and affected by additive noise. This signal distortion degrades the performance of speech recognition and diarization systems creating troublesome human-machine interactions.This thesis proposes a method to non-intrusively estimate room acoustic parameters, paying special attention to a room acoustic parameter highly correlated with speech recognition degradation: clarity index. In addition, a method to provide information regarding the estimation accuracy is proposed. An analysis of the phoneme recognition performance for multiple reverberant environments is presented, from which a confusability metric for each phoneme is derived. This confusability metric is then employed to improve reverberant speech recognition performance. Additionally, room acoustic parameters can as well be used ...

Peso Parada, Pablo — Imperial College London


Application of Sound Source Separation Methods to Advanced Spatial Audio Systems

This thesis is related to the field of Sound Source Separation (SSS). It addresses the development and evaluation of these techniques for their application in the resynthesis of high-realism sound scenes by means of Wave Field Synthesis (WFS). Because the vast majority of audio recordings are preserved in two-channel stereo format, special up-converters are required to use advanced spatial audio reproduction formats, such as WFS. This is due to the fact that WFS needs the original source signals to be available, in order to accurately synthesize the acoustic field inside an extended listening area. Thus, an object-based mixing is required. Source separation problems in digital signal processing are those in which several signals have been mixed together and the objective is to find out what the original signals were. Therefore, SSS algorithms can be applied to existing two-channel mixtures to ...

Cobos, Maximo — Universidad Politecnica de Valencia


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.