Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...

Kiayani, Adnan — Tampere University of Technology


Filter Bank Techniques for the Physical Layer in Wireless Communications

Filter bank based multicarrier is an evolution with many advantages over the widespread OFDM multicarrier scheme. The author of the thesis stands behind this statement and proposes various solutions for practical physical layer problems based on filter bank processing of wireless communications signals. Filter banks are an evolved form of subband processing, harnessing the key advantages of original efficient subband processing based on the fast Fourier transforms and addressing some of its shortcomings, at the price of a somewhat increased implementation complexity. The main asset of the filter banks is the possibility to design very frequency selective subband filters to compartmentalize the overall spectrum into well isolated subbands, while still making very efficient use of the assigned bandwidth. This thesis first exploits this main feature of the filter banks in the subband system configuration, in which the analysis filter bank ...

Hidalgo Stitz, Tobias — Tampere University of Technology


OFDM Multi-User Communication Over Time-Variant Channels

Wireless broadband communications for users moving at vehicular speed is a cor- nerstone of future fourth generation (4G) mobile communication systems. We inves- tigate a multi-carrier (MC) code division multiple access (CDMA) system which is based on orthogonal frequency division multiplexing (OFDM). A spreading sequence is used in the frequency domain in order to distinguish individual users and to take advantage of the multipath diversity of the wireless channel. The transmission is block oriented. A block consists of OFDM pilot and OFDM data symbols. At pedestrian velocities the channel can be modelled as block fading. We ap- ply iterative multi-user detection and channel estimation. In iterative receivers soft symbols are derived from the output of an soft-input soft-output decoder. These soft symbols are used in order to reduce the interference from other users and to enhance the channel estimates. We ...

Zemen, T. — Vienna University of Technology


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Study on Subband Adaptive Array for Space-Time Codes in Wideband Channel

Recently, many works have been accomplished on transmit diversity for a high-speed data transmission through the wireless channel. A Multiple Input Multiple Output (MIMO) system which employs multiple antennas at transmitter and receiver has been shown to be able to improve transmission data rate and capacity of the system. When the channel state information (CSI) is unknown at the transmitter, an multiple input single output (MISO) system combined with the transmit diversity of space time coding modulation known as space-time block coding (STBC) has taken a great attention. However, the performance of STBC is deteriorated under frequency selective fading due to inter symbol interference (ISI). An STBC employing tapped delay line adaptive array (STBC-TDLAA) is known as a solution for this problem since it utilizes the delayed signals to enhance the desired signal instead of excluding them as interferences. However, ...

Ramli, Nordin Bin — University of Electro-Communications, Japan


Channel Modeling and Estimation For Wireless Communication Systems Using a Time-Frequency Approach

Broadband wireless communication is a very fast growing communication area. Multicarrier modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM), Biorthogonal Frequency Division Multiplexing (BFDM), Pulse Shaping (PS) and Multi-Carrier Spread Spectrum (MCSS) have recently been introduced as robust techniques against intersymbol interference (ISI) and noise, compared to single carrier communication systems over fast fading multipath communication channels. Therefore, multicarrier modulation techniques have been considered as a candidate for new generation, high data rate broadband wireless communication systems and have been adopted as the related standards. Several examples are the European digital audio broadcasting (DAB) and digital video broadcasting (DVB), the IEEE standands for wireless local area networks (WLAN), 802.11a, and wireless metropolitan area networks (WMAN), 802.16a. However, Doppler frequency shifts, phase offset, local oscillator frequency shifts, and multi-path fading severely degrade the performance of multicarrier communication systems. For fast-varying channels, ...

Yalcin, Mahmut — Istanbul University


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Performance Evaluation of Practical OFDM Systems with Imperfect Synchronization

This work aims to expose the potential performance loss due to synchronization errors in the downlink of the two major cellular standards of OFDM systems, i.e., the WiMAX OFDM physical layer and the LTE. Different to most results in literature, the physical layer coded throughput is utilized as the major performance measure. The influence of an imperfect carrier frequency synchronization or symbol timing is evaluated via analytical modeling and standard compliant link level simulations. In the frequency aspect, a modified differential estimator for the residual frequency offset in WiMAX is proposed. It is shown that the theoretical performance of such an estimator approaches the Cramer-Rao lower bound and provides a significant gain in terms of the mean squared error. However, such an improvement becomes negligible in terms of the coded throughput. Therefore, a throughput loss prediction model is proposed for ...

Wang, Qi — Vienna University of Technology


Diversity Gain Enhancement for Extended Orthogonal Space-Time Block Coding in Wireless Communications

Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...

Hussin, Mohamed Nuri Ahmed — University of Strathclyde


Design and Analysis of Duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links

Relaying, i.e., multihop communication via so-called relay nodes, has emerged as an advanced technology for economically realizing long transmission ranges and high data rates in wireless systems. The focus of this thesis is on multihop multiuser systems where signals are modulated with orthogonal frequency-division multiplexing or multiple access, i.e., OFDM(A), and relays are infrastructure-based network nodes. In general, the thesis contributes by investigating how to operate relay links optimally under spectrum, transmit power and processing capability limitations, as well as how to improve signal processing in relays by exploiting other advanced concepts such as multiantenna techniques, spectrum reuse, transmit power adaptation, and new options for multicarrier protocol design. The first theme is the design and analysis of duplexing modes which define how a relay link reuses allocated frequency bands in each hop. Especially, the full-duplex relaying mode is promoted as ...

Riihonen, Taneli — Aalto University


Blind Equalisation for Space-Time Coding over ISI Channels

Multi-input multi-output (MIMO) channels are known to increase the capacity of a transmission link. This can be exploited to increase either the multiplexing gain or the diversity gain, which leads to a higher data throughput or a better resilience of the link to fading, respectively. This thesis is concerned with the diversity gain, which, in a flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC) scheme and a number of derivative techniques. For frequency selective fading, i.e. dispersive, MIMO channels, a few solutions have been reported in the literature including MIMO-OFDM, where the channel is decomposed into a number of narrowband problems, and a technique known as time-reversal STBC. For the latter, a number of blind adaptive algorithms have been derived, implemented and tested in order to avoid the requirement of explicit knowledge of the channel. The ...

Bendoukha, Samir — University of Strathclyde


Synchronization and Multipath Delay Estimation Algorithms for Digital Receivers

This thesis considers the development of synchronization and signal processing techniques for digital communication receivers, which is greatly influenced by the digital revolution of electronic systems. Eventhough synchronization concepts are well studied and established in the literature, there is always a need for new algorithms depending on new system requirements and new trends in receiver architecture design. The new trend of using digital receivers where the sampling of the baseband signal is performed by a free running oscillator reduces the analog components by performing most of the functions digitally, which increases the flexibility, configurability, and integrability of the receiver. Also, this new design approach contributes greatly to the software radio (SWR) concept which is the natural progression of digital radio receivers towards multimode, multistandard terminals where the radio functionalities are defined by software. The first part of this research work ...

Hamila, Ridha — Tampere University of Technology


Design and Evaluation of OFDM Radio Interfaces for High Mobility Communications

In the last two decades, multicarrier modulations have emerged as a low complexity solution to combat the effects of the multipath in wireless communications. Among them, Orthogonal Frequency Division Multiplexing (OFDM) is possibly the most studied modulation scheme, and has also been widely adopted as the foundation of industry standards such as WiMAX or LTE. However, OFDM is sensitive to time-selective channels, which are featured in mobility scenarios, due to the appearance of Inter-Carrier Interference (ICI). Implementation of hardware equipment for the end user is usually implemented in dedicated chips, but in research environments, more flexible solutions are preferred. One popular approach is the so-called Software Defined Radio (SDR), where the signal processing algorithms are implemented in reconfigurable hardware such as Digital Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). The aim of this work is two-fold. On the ...

Suárez Casal, Pedro — University of A Coruña


Phase Noise and Wideband Transmission in Massive MIMO

In the last decades the world has experienced a massive growth in the demand for wireless services. The recent popularity of hand-held devices with data exchange capabilities over wireless networks, such as smartphones and tablets, increased the wireless data traffic even further. This trend is not expected to cease in the foreseeable future. In fact, it is expected to accelerate as everyday apparatus unrelated with data communications, such as vehicles or household devices, are foreseen to be equipped with wireless communication capabilities. Further, the next generation wireless networks should be designed such that they have increased spectral and energy efficiency, provide uniformly good service to all of the accommodated users and handle many more devices simultaneously. Massive multiple-input multiple-output (Massive MIMO) systems, also termed as large-scale MIMO, very large MIMO or full-dimension MIMO, have recently been proposed as a candidate ...

Pitarokoilis, Antonios — Linköping University


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.