Error Resilient Transmission of Video Streaming over Wireless Mobile Networks,

The third generation of mobile systems brought higher data rates that allow for provisioning of multimedia services containing also video. The real-time services like video call, conferencing, and streaming are particularly challenging for mobile communication systems due to the wireless channel quality variations. The mechanism for video compression utilizes a hybrid of temporal and spatial prediction, transform coding and variable length coding. The combination of these methods provides high compression gain, but at the same time makes the encoded stream more prone to errors. In this thesis, techniques for error resilient transmission of video streaming over wireless mobile networks are investigated. Focus is given to the recent H.264/AVC standard, although the ma jority of the proposed method apply to other video coding standards, too. The first part is dedicated to exploiting the residual redundancy of the received video stream at ...

Nemethova, O. — Vienna University of Technology


System-Level Modeling and Optimization of MIMO HSDPA Networks

Interaction between the Medium Access Control (MAC)-layer and the physical-layer routines is one of the basic concepts of modern wireless networks. Physical-layer dependent resource allocation and scheduling guarantee efficient network utilization. Accordingly, classical link-level analyses, focusing only on the physical-layer are not sufficient anymore for optimum transceiver structure and algorithm development. This thesis presents the development and application of a system-level description suitable for the downlink of Multiple-Input Multiple-Output (MIMO) enhanced High-Speed Downlink Packet Access (HSDPA), with particular focus on the Double Transmit Antenna Array (D-TxAA) transmission mode. The system-level model allows for investigating and evaluating transmission systems and algorithms in the context of cellular networks. Two separate models are proposed to obtain a complete system-level description: (i) a link-quality model, analytically describing the MIMO HSDPA link quality in a so-called equivalent fading parameter structure, and (ii) a link-performance model, ...

Wrulich, Martin — Vienna University of Technology


Adaptive media streaming over multipath networks

With the latest developments in video coding technology and fast deployment of end-user broadband internet connections, real-time media applications become increasingly interesting for both private users and businesses. However, the internet remains a best-effort service network unable to guarantee the stringent requirements of the media application, in terms of high, constant bandwidth, low packet loss rate and transmission delay. Therefore, efficient adaptation mechanisms must be derived in order to bridge the application requirements with the transport medium characteristics. Lately, different network architectures, e.g., peer-to-peer networks, content distribution networks, parallel wireless services, emerge as potential solutions for reducing the cost of communication or infrastructure, and possibly improve the application performance. In this thesis, we start from the path diversity characteristic of these architectures, in order to build a new framework, specific for media streaming in multipath networks. Within this framework we ...

Jurca, Dan — EPFL/ITS, Lausanne, Switzerland


Multiple Objective Optimization for Video Streaming

In this thesis, we propose Multiple Objective Optimization (MOO) frameworks for efficient video streaming. Firstly, we introduce pre-roll delay-distortion optimization (DDO) for uninterrupted content-adaptive video streaming over low capacity, constant bitrate (CBR) channels using MOO. Content analysis is used to divide the input video into shots with assigned relevance levels. The video is adaptively encoded and streamed aiming minimum pre-roll delay and distortion with the optimal spatial and temporal resolutions and quantization parameters for each shot. With buffer and distortion constraints, the bitrate of unimportant shots is reduced to achieve an acceptable quality in important shots. Secondly, we introduce a cross-layer optimized video rate adaptation and scheduling scheme to achieve maximum "application layer" Quality-of-Service (QoS), maximum video throughput (video seconds per transmission slot), and QoS fairness for wireless video streaming. Using the MOO framework, these objectives are jointly optimized such ...

Ozcelebi, Tanir — Koc University


Video Quality Estimation for Mobile Video Streaming

For the provisioning of video streaming services it is essential to provide a required level of customer satisfaction, given by the perceived video stream quality. It is therefore important to choose the compression parameters as well as the network settings so that they maximize the end-user quality. Due to video compression improvements of the newest video coding standard H.264/AVC, video streaming for low bit and frame rates is possible while preserving its perceptual quality. This is especially suitable for video applications in 3G wireless networks. Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones, Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal Mobile Telecommunications System (UMTS) streaming ...

Ries, Michal — Vienna University of Technology


Link Error Analysis and Modeling for Cross-Layer Design in UMTS Mobile Communication

Particularly in wireless mobile communications, link errors severely affect the quality of the services due to the high error probability and the specific error characteristics (burst errors) in the radio access part of the network. In this thesis it is shown that a thorough analysis and the appropriate modeling of the radiolink error behaviour is essential not only to evaluate and optimize the higher layer protocols and services. It is also the basis for finding network-aware cross-layer processing algorithms which are capable of exploiting the specific properties of the link error statistics (e.g. the predictability). This thesis presents the analysis of the radio link errors based on measurements in live UMTS (Universal Mobile Telecommunication System) radio access networks. It is shown that due to the link error characteristics basically two scenarios have to be distinguished: static and dynamic (regardless of ...

Karner, W. — Vienna University of Technology


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Content Scalability in Multiple Description Image and Video Coding

High compression ratio, scalability and reliability are the main issues for transmitting multimedia content over best effort networks. Scalable image and video coding meets the user requirements by truncating the scalable bitstream at different quality, resolution and frame rate. However, the performance of scalable coding deteriorates rapidly over packet networks if the base layer packets are lost during transmission. Multiple description coding (MDC) has emerged as an effective source coding technique for robust image and video transmission over lossy networks. In this research problem of incorporating scalability in MDC for robust image and video transmission over best effort network is addressed. The first contribution of this thesis is to propose a strategy for generating more than two descriptions using multiple description scalar quantizer (MDSQ) with an objective to jointly decoded any number of descriptions in balanced and unbalanced manner. The ...

Majid, Muhammad — University of Sheffield


Quality of Experience Evaluation Methodology via Crowdsourcing

Provisioning of digital video services is a difficult task as it is hard to estimate optimal settings of video parameters, given transmission constraints, while maximizing the overall end-user quality. With Internet streaming services becoming part of our everyday life, end-to-end optimization of such systems is important. On one hand, huge effort is given into subjective or objective evaluation of the end-user perception. High quality audiovisual perception with respect to the minimized costs of the provided service is one of the main interests for the network providers. On the other hand, subjective evaluations to determine best video and audio configurations are often evaluated in controlled test laboratory environments, which have little to do with the real environments in which consumers enjoy such content. Unfortunately, no serious attempts have been made to take into account interactions between quality of the content and ...

Gardlo, Bruno — University of Zilina


Error Resilience and Concealment Techniques for High Efficiency Video Coding

This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the ...

João Filipe Monteiro Carreira — Loughborough University London


Nonlinear rate control techniques for constant bit rate MPEG video coders

Digital visual communication has been increasingly adopted as an efficient new medium in a variety of different fields; multi-media computers, digital televisions, telecommunications, etc. Exchange of visual information between remote sites requires that digital video is encoded by compressing the amount of data and transmitting it through specified network connections. The compression and transmission of digital video is an amalgamation of statistical data coding processes, which aims at efficient exchange of visual information without technical barriers due to different standards, services, media, etc. It is associated with a series of different disciplines of digital signal processing, each of which can be applied independently. It includes a few different technical principles; distortion, rate theory, prediction techniques and control theory. The MPEG (Moving Picture Experts Group) video compression standard is based on this paradigm, thus, it contains a variety of different coding ...

Saw, Yoo-Sok — University Of Edinburgh


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Towards Zero-Power Wireless Machine-to-Machine Networks

This thesis aims at contributing to overcome two of the main challenges for the deployment of highly dense wireless M2M networks in data collection scenarios for the Internet of Things: the management of massive numbers of end-devices that attempt to get access to the wireless channel; and the need to extend the network lifetime to reduce maintenance costs. In order to solve these challenges, two complementary strategies are considered. Firstly, the thesis focuses on the design, analysis and performance evaluation of random and hybrid access protocols that can handle abrupt transitions in the traffic load and minimize the energy consumption devoted to communications. And secondly, the use of energy harvesting (EH) is considered in order to provide the network with unlimited lifetime. To this end, the second part of the thesis focuses on the design and analysis of EH-aware MAC ...

Vazquez-Gallego, Francisco — Universitat Politècnica de Catalunya


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Scalable Single and Multiple Description Scalar Quantization

Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...

Satti, Shahid Mahmood — Vrije Universiteit Brussel

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.