Distributed Processing Techniques for Parameter Estimation and Efficient Data Gathering in Wireless Communication and Sensor Networks

This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...

Bogdanovic, Nikola — University of Patras


Computationally Efficient Equalisation of Broadband Multiple-Input Multiple-Output Systems

Multiple-input multiple-output (MIMO) systems are encountered for example in communications if several transmit and receive antennas are empoyed, such that a separate transmit channel exists between every possible pairing of transmitter and receiver antennas. As a results if this spatial diversity, the channel capacity is dramatically increased over the single-inout single-output (SISO) case. While this increase is desired, the use of high data rates requires sophistiocated equalisation and/or detection schemes in the receiver to compensate for spatial and temporal dispersion in broadband MIMO channels, since a time-dispersive, in addition ot spatially-dispersice channel, must be assumed. The estimation of the broadband MIMO channel or its inverse is in general difficult and calls for training sequences that reduce the slot time for the transmission of actual data, which may counteract the promised gain in channel capacity. Another problem can be the computational ...

Bale, Viktor — University of Southampton


Broadband angle of arrival estimation using polynomial matrix decompositions

This thesis is concerned with the problem of broadband angle of arrival (AoA) estimation for sensor arrays. There is a rich theory of narrowband solutions to the AoA problem, which typically involves the covariance matrix of the received data and matrix factorisations such as the eigenvalue decomposition (EVD) to reach optimality in various senses. For broadband arrays, such as found in sonar, acoustics or other applications where signals do not fulfil the narrowband assumption, working with phase shifts between different signals — as sufficient in the narrowband case — does not suffice and explicit lags need to be taken into account. The required space-time covariance matrix of the data now has a lag dimension, and classical solutions such as those based on the EVD are no longer directly applicable. There are a number of existing broadband AoA techniques, which are ...

Alrmah, Mohamed Abubaker — University of Strathclyde


Adaptive Algorithms and Variable Structures for Distributed Estimation

The analysis and design of new non-centralized learning algorithms for potential application in distributed adaptive estimation is the focus of this thesis. Such algorithms should be designed to have low processing requirement and to need minimal communication between the nodes which would form a distributed network. They ought, moreover, to have acceptable performance when the nodal input measurements are coloured and the environment is dynamic. Least mean square (LMS) and recursive least squares (RLS) type incremental distributed adaptive learning algorithms are first introduced on the basis of a Hamiltonian cycle through all of the nodes of a distributed network. These schemes require each node to communicate only with one of its neighbours during the learning process. An original steady-steady performance analysis of the incremental LMS algorithm is performed by exploiting a weighted spatial-temporal energy conservation formulation. This analysis confirms that ...

Li, Leilei — Loughborough University


Antenna arrays in wireless communications

We investigate two aspects of multiple-antenna wireless communication systems in this thesis: 1) deployment of an adaptive beamformer array at the receiver; and 2) space-time coding for arrays at the transmitter and the receiver. In the first part of the thesis, we establish sufficient conditions for the convergence of a popular least mean squares (LMS) algorithm known as the sequential Partial Update LMS Algorithm for adaptive beamforming. Partial update LMS (PU-LMS) algorithms are reduced complexity versions of the full update LMS that update a subset of filter coefficients at each iteration. We introduce a new improved algorithm, called Stochastic PU-LMS, which selects the subsets at random at each iteration. We show that the new algorithm converges for a wider class of signals than the existing PU-LMS algorithms. The second part of this thesis deals with the multiple-input multiple-output (MIMO) Shannon ...

Godavarti, Mahesh — University of Michigan


Adaptive Digital Predistortion of Nonlinear Systems

Compensating or reducing the nonlinear distortion - usually resulting from a nonlinear system - is becoming an essential requirement in many areas. In this thesis adaptive digital predistortion techniques for a wide class of nonlinear systems are presented. For estimating the coefficients of the predistorter, different learning architectures are considered: the Direct Learning Architecture (DLA) and Indirect Learning Architecture (ILA). In the DLA approach, we propose a new adaptation algorithm - the Nonlinear Filtered-x Prediction Error Method (NFxPEM) algorithm, which has much faster convergence and much better performance compared to the conventional Nonlinear Filtered-x Least Mean Squares (NFxLMS) algorithm. All of these time domain adaptive algorithms require accurate system identification of the nonlinear system. In order to relax or avoid this strict requirement, the NFxLMS with Initial Subsystem Estimates (NFxLMS-ISE) and NFxPEM-ISE algorithms are proposed. Furthermore, we propose a frequency ...

Gan, Li — Graz University of Technology


Wideband Data-Independent Beamforming for Subarrays

The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element. As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At ...

Alshammary, Abdullah — University of Strathclyde


Domain-informed signal processing with application to analysis of human brain functional MRI data

Standard signal processing techniques are implicitly based on the assumption that the signal lies on a regular, homogeneous domain. In practice, however, many signals lie on an irregular or inhomogeneous domain. An application area where data are naturally defined on an irregular or inhomogeneous domain is human brain neuroimaging. The goal in neuroimaging is to map the structure and function of the brain using imaging techniques. In particular, functional magnetic resonance imaging (fMRI) is a technique that is conventionally used in non-invasive probing of human brain function. This doctoral dissertation deals with the development of signal processing schemes that adapt to the domain of the signal. It consists of four papers that in different ways deal with exploiting knowledge of the signal domain to enhance the processing of signals. In each paper, special focus is given to the analysis of ...

Behjat, Hamid — Lund University


Polynomial Matrix Decompositions and Paraunitary Filter Banks

There are an increasing number of problems that can be solved using paraunitary filter banks. The design of optimal orthonormal filter banks for the efficient coding of signals has received considerable interest over the years. In contrast, very little attention has been given to the problem of constructing paraunitary matrices for the purpose of broadband signal subspace estimation. This thesis begins by relating these two areas of research. A frequency-domain method of diagonalising parahermitian polynomial matrices is proposed and shown to have fundamental limitations. Then the thesis focuses on the development of a novel time-domain technique that extends the eigenvalue decomposition to polynomial matrices, referred to as the second order sequential best rotation (SBR2) algorithm. This technique imposes strong decorrelation on its input signals by applying a sequence of elementary paraunitary matrices which constitutes a generalisation of the classical Jacobi ...

Redif, Soydan — University of Southampton


Adaptive Calibration of Frequency Response Mismatches in Time-Interleaved Analog-to-Digital Converters

The performance of today's communication systems is highly dependent on the employed analog-to-digital converters (ADCs), and in order to provide more flexibility and precision for the emerging communication technologies, high-performance ADCs are required. In this regard, the time-interleaved operation of an array of ADCs (TI-ADC) can be a reasonable solution. A TI-ADC can increase its throughput by using M channel ADCs or subconverters in parallel and sampling the input signal in a time-interleaved manner. However, the performance of a TI-ADC badly suffers from the mismatches among the channel ADCs. The mismatches among channel ADCs distort the TI-ADC output spectrum by introducing spurious tones besides the actual signal components. This thesis deals with the adaptive background calibration of frequency-response mismatches in a TI-ADC. By modeling each channel ADC as a linear time-invariant system, we develop the continuous-time, discrete-time, and time-varying system ...

Saleem, Shahzad — Graz University of Technology


Adaptive interference suppression algorithms for DS-UWB systems

In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...

Sheng Li — University of York


Non-Linear Precoding and Equalisation for Broadband MIMO Channels

Multiple-input multiple-output (MIMO) technology promises significant capacity improvements in order to more efficiently utilise the radio frequency spectrum. To achieve its anticipated multiplexing gain as well as meet the requirements for high data rate services, proposed broadband systems are based on OFDM or similar block based techniques, which are afflicted by poor design freedom at low redundancy, and are known to suffer badly from co-channel interference (CCI) in the presence of synchronisation errors. Non-block based approaches are scarce and use mostly decision feedback equalisation (DFE) or V-BLAST approaches adopted for the broadband case, as well as Tomlinson-Harashima precoding (THP). These methods do not require a guard interval and can therefore potentially achieve a higher spectral efficiency. The drawback of these schemes is the large effort in determining the optimum detection order in both space and time, often motivating the adoption ...

Waleed Eid Al-Hanafy — University of Strathclyde


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Antenna Array Processing: Autocalibration and Fast High-Resolution Methods for Automotive Radar

In this thesis, advanced techniques for antenna array processing are addressed. The problem of autocalibration is considered and a novel method for a two-dimensional array is developed. Moreover, practicable methods for high-resolution direction-of-arrival (DOA) estimation and detection in automotive radar are proposed. A precise model of the array response is required to maintain the performance of DOA estimation. When the sensor environment is time-varying, this can only be achieved with autocalibration. The fundamental problem of autocalibration of an unknown phase response for uniform rectangular arrays is considered. For the case with a single source, a simple and robust least squares algorithm for joint two-dimensional DOA estimation and phase calibration is developed. An identification problem is determined and a suitable constraint is proposed. Simulation results show that the performance of the proposed estimator is close to the approximate CRB for both ...

Heidenreich, Philipp — Technische Universität Darmstadt


Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...

Lei Wang — University of York

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.