
Modelling Context in
Automatic Speech

Recognition

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus, prof. dr. ir. J. T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
woensdag 4 juni 2008 om 10.00 uur

door

Pascal WIGGERS
Informatica Ingenieur

geboren te Den Helder.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. H. Koppelaar

Toegevoegd promotor:

Dr. drs. L. J. M. Rothkrantz

Samenstelling promotiecommissie:
Rector Magnificus, voorzitter
Prof. dr. H. Koppelaar, Technische Universiteit Delft, promotor
Dr. drs. L. J. M. Rothkrantz, Technische Universiteit Delft, toegevoegd promotor
Prof. dr. C. M. Jonker, Technische Universiteit Delft
Prof. dr. ir. J. L. G. Dietz, Technische Universiteit Delft
Prof. dr. ir. F. C. A. Groen, Universiteit van Amsterdam
Prof. Ing. Václav Matoušek, CSc., University of West Bohemia, Plzeň
PD Dr.-Ing. habil. E. Nöth, Friedrich-Alexander-Universität Erlangen-Nürnberg

Preface

This thesis is the result of five years of research (and two more years of ‘finishing the
thesis’) but the ground work was already laid in the year 2000 when I took a master
level course in speech recognition taught by Leon Rothkrantz. The combination of
Leon’s infectious enthusiasm and the surprising fact that probability theory is the
driving force behind speech recognition fuelled my fascination for the subject.

I would like to take this opportunity to thank Leon, not only for introducing me
to the world of speech recognition, but even more so for giving me the opportunity
and the freedom to do my PhD-research on the vague subject of ‘context in speech
recognition’ and for all the support he has given me ever since!

I would also like to thank my promotor Henk Koppelaar for investing time in me
and for all the suggestions that helped improve earlier versions of this thesis.

Many other people contributed to this thesis as well. I am grateful to Elmar Nöth,
who, despite a busy schedule, took the time to read my manuscript with German
Gründlichkeit. His comments were enormously helpful. I expressively thank Rogier
van Dalen for his invaluable comments on the ideas and concepts expressed in this
text as well as on the text itself. I enjoyed the discussions we had about speech,
language, the universe and everything else, in which along the way he taught me a
thing or two about c++ and LaTeX.

Many thanks go to the present and former members of the Man-Machine Inter-
action section for the great atmosphere they created. In particular, I would like
to mention Jacek Wojdel, who pushed me to write my first paper; Zhenke Yang,
who found some errors in this text that I and all other reviewers had missed and
who provided some good suggestions to improve readability; and Martijn de Jongh,
who had the ungrateful task of deciphering my sometimes enigmatic code. I want to
thank Catholijn Jonker for giving me a chance to continue working in this group and
giving me the time to finish my thesis. Bart, Ruud and Toos, without you behind
the scenes nothing would work.

Last but not least, I would like to thank Ilse Vegt, sharing our troubles of being
a PhD-student always made them lighter, and Eline Hoorweg for her support during
the vacation days and late nights that I spend on my research and wrestling with
this text.

iii

Contents

Preface iii

1 Introduction 1
1.1 State-of-the-art in speech recognition 2

1.1.1 Speech recognition paradigms 4
1.2 The quest for the holy grail . 5

1.2.1 What makes speech recognition difficult? 7
1.2.2 Human speech processing . 8
1.2.3 Context . 11

1.3 Research questions . 12
1.4 Scope of the thesis . 13
1.5 Structure of the thesis . 14

2 Speech Recognition 15
2.1 Signal processing . 16
2.2 Acoustic modelling . 17

2.2.1 Hidden Markov models . 17
2.2.2 hmm topology for speech recognition 19
2.2.3 Observation distributions . 21
2.2.4 The probability of an observation sequence 22
2.2.5 The most likely state sequence 23
2.2.6 Learning model parameters 26
2.2.7 Adaptation . 28

2.3 Variations . 28

3 Language Modelling 31
3.1 Quality measures . 32

3.1.1 Cross-entropy . 33
3.1.2 Perplexity . 33
3.1.3 Word error rate . 34

3.2 n-grams . 34
3.3 Smoothing . 35

v

Contents

3.3.1 Discounting . 36
3.3.2 Interpolation . 37
3.3.3 Back-off models . 38

3.4 Distant n-grams . 40
3.5 Class-based language models . 40
3.6 Cache-based language models . 41
3.7 Triggers . 42
3.8 Latent semantic analysis . 42
3.9 Mixture models . 44
3.10 Topic-based language models . 45
3.11 Whole sentence models . 46
3.12 Tree-based language models . 46
3.13 Grammar-based models . 46

3.13.1 Probabilistic context free grammars 47
3.13.2 The structured language model 49
3.13.3 Probabilistic top-down language model 50
3.13.4 Immediate-head parsing language models 52

4 Sources of Knowledge 55
4.1 Context . 56

4.1.1 User knowledge . 57
4.1.2 Conversational knowledge . 60
4.1.3 World knowledge . 61

4.2 Language structure . 63

5 Data Analysis 67
5.1 The Spoken Dutch Corpus . 68
5.2 Methodology . 69
5.3 Related work . 69
5.4 Type of Speech . 70

5.4.1 Sentence Length . 70
5.4.2 Part-of-Speech . 74
5.4.3 Words . 75

5.5 Dialect . 76
5.5.1 Part-of-Speech . 76
5.5.2 Words . 78

5.6 Gender . 80
5.6.1 Part-of-speech . 80
5.6.2 Words . 81

5.7 Education level . 83
5.8 Age . 86
5.9 Combining age and gender . 88
5.10 Discussion . 89

vi

Contents

6 Case studies 91
6.1 Case study: lip-reading . 91

6.1.1 Feature fusion . 92
6.1.2 Model fusion . 93
6.1.3 Noise robustness . 94

6.2 Case study: domain knowledge . 96
6.2.1 Data analysis . 97
6.2.2 Confidence measures . 98
6.2.3 Language model structure . 99
6.2.4 Dynamically updating the language model 100
6.2.5 Using frequencies for lattice rescoring 101
6.2.6 Experiments . 102

7 Computational Paradigms 105
7.1 Linear interpolation and back-off . 106
7.2 Decision trees . 107
7.3 Maximum entropy models . 108
7.4 Probabilistic grammars . 108
7.5 Weighted finite-state transducers . 109
7.6 Bayesian networks . 109

7.6.1 Inference . 111
7.6.2 Learning . 117

7.7 Dynamic Bayesian Networks . 118
7.7.1 Inference . 119
7.7.2 Approximate inference . 121

7.8 Speech recognition with dbns . 122
7.9 Conclusion . 125

8 dbns for Speech and Language Processing 127
8.1 N-grams . 127

8.1.1 Separating observations and control statements 128
8.1.2 All good things must come to an end 128
8.1.3 Smoothing . 129

8.2 Class-based language models . 130
8.3 Cache-based language models . 132
8.4 Modelling context . 132

8.4.1 Modelling long-distance relationships 133
8.4.2 Sentence length . 133
8.4.3 Type of speech . 134
8.4.4 User knowledge . 134
8.4.5 Context in acoustic models 135

8.5 Shallow parsing dbn language models 137
8.5.1 Chunking models . 138
8.5.2 Parsing with a fixed number of levels 138

vii

Contents

8.5.3 Where do the probabilities come from? 140
8.6 Combining the language model and the acoustic model 140

9 A Computational Framework 143
9.1 Related work . 146
9.2 Design of the framework . 147

9.2.1 Dealing with small probabilities 147
9.2.2 Likelihood tables . 148
9.2.3 Lazy evaluation . 150
9.2.4 Tree-shaped likelihood tables 150
9.2.5 Potentials and distributions 153
9.2.6 Network structure . 153
9.2.7 Inference engine . 154
9.2.8 Learning . 155
9.2.9 Data preparation and processing 156

9.3 A few words on the implementation 156

10 A Topic-based Language Model 157
10.1 The basic model . 158
10.2 The relation with mixture models . 160
10.3 A more advanced topic model . 161
10.4 Relating topics and spreading activation 162
10.5 Training the topic model . 162
10.6 Experiments . 165
10.7 Doing it differently: conditional models 165

11 Conclusion 167

Bibliography 171

Curriculum Vitae 191

Samenvatting 193

viii

Whatever else people do when they come together –
whether they play, fight, make love, or make automobiles
– they talk. We live in a world of language. We talk to
our friends, our associates, our wives and husbands, our
lovers, our teachers, our parents and in-laws. We talk to
bus drivers and total strangers. We talk face to face and
over the telephone, and everyone responds with more talk.
Television and radio further swell this torrent of words.
Hardly a moment of our waking lives is free from words,
and even in our dreams we talk and are talked to. We also
talk when there is no one to answer. Some of us talk
aloud in our sleep. We talk to our pets and sometimes to
ourselves.

An introduction to Language, Victoria Fromkin and
Robert Rodman

Chapter 1

Introduction

In which the need for automatic speech and language processing is moti-
vated. The state of the art in speech recognition is discussed. It is argued
that the required levels of performance are not yet reached, but that the
use of context may help to overcome the current limitations. Based on
this hypothesis research questions are formulated.

Imagine that at this very moment someone nearby would start talking in a loud
voice. Not only would it be hard to ignore the sound and concentrate on this text,
but it would be hard indeed not to understand what this person is saying.

Speech recognition and understanding comes so naturally to us that we do not
have to think about it at all. The cognitive processes are very rapid and almost
completely subconscious. It seems hard if not impossible to control them. That is
why all of us at some point in our childhood resorted to putting our fingers in our
ears and started shouting or singing in order not to hear our parents telling us dos
and don’ts.

As illustrated so well in the excerpt of Fromkin and Rodman (1993) at the start
of this chapter language and in particular speech fills our lives; it is at the heart of
human communication. Despite novel communication channels, such as e-mail and
instant messaging, speech is still the primary means of communication, as is made
clear by the popularity of mobile phones once again.

1

Chapter 1. Introduction

It is only logical that machine interface designers in their quest for a natural man-
machine interface have turned to automatic speech recognition and production. A
speech interface has many advantages and applications. In addition to being natural,
speech is efficient. Most of us can speak faster than we can type. Speech is rich
in expressions and can be very economical. A single sentence such as ‘Play the
video called “2001: a space Odyssey” with Dutch subtitles’ can accomplish what
would otherwise have required navigating through a menu or at least pushing several
buttons.

Speech recognition is particularly well-suited to so-called hands-busy, eyes-busy
tasks in which one needs to control several things at the same time. For example,
surgeons were among the first to adopt speech recognition, as it allows them to
dictate their actions to a computer while operating, which removes the burden of
having to write a complete report after the operation. Along the same lines, think
of the possibility of voice-dialling or controlling a navigation system while driving a
car or of interfaces to telephone services and to mobile devices that are too small to
manipulate with a keyboard; a market that still continues to expand rapidly (Phillips
2006).

When it comes to access to data collections and computerised services the gap
between the haves and have-nots is rapidly increasing in our society. Speech recogni-
tion can have a major impact for groups of people that cannot operate a computer.
The first group that comes to mind are disabled people. Being able to dictate a text
to a computer or to operate machines by voice would make them less dependent on
others. But there is an even larger group that can benefit from speech recognition:
those that cannot read or write (Reddy 2006), a group that, according to the United
Nations, contains 20% of the worlds population. For other users it may provide an
additional channel to enter data. The ability to choose an input modality one is
comfortable with can improve user experience (Carlson et al. 2006).

Many other applications exist, including automatic captioning of television pro-
grams, which is obligatory in Japan for example, and information extraction from
audio, such as transcribing and summarising meetings.

Speech recognition is clearly useful, but researchers from different areas such
as psychology, linguistics, electrical engineering and computer science have worked
on the subject for the last 30 years for other reasons as well. First of all there
is the engineering challenge of letting computers recognise speech, a glove thrown
by Hollywood and numerous science fiction authors over and over again. From a
scientific point of view, developing computation models of speech recognition may
help provide us with insights in human speech recognition.

1.1 State-of-the-art in speech recognition

Speech recognition is still seen as a futuristic novelty. Popular belief has it that
‘speech recognition does not work’. Those that have tried it report spending more
time correcting errors than dictating. Indeed, speech recognition is something for

2

1.1. State-of-the-art in speech recognition

Table 1.1 – Typical word error rates for various types of speech (speaker independent) as
reported in 2007 (Interspeech 2007).

type of speech lexicon size word error rate human error rate

Digit recognition 10 0.5% 0.009%
Read newspaper speech 20000 3%
Read newspaper speech 64000 5% 1%
Broadcast news 64000 10% – 20%
Conversational speech 64000 20% – 40% 4%

the persistent. Present-day systems have to go through an extensive training phase
to adapt to the speaking habits of a user to become useful. However, when compared
to the earliest attempts at automatic speech recognition in the 1950s steady progress
has been made.

These early systems could only recognise individual speech sounds or digits spo-
ken in isolation by a particular person. In the 1980’s the vocabulary size went up to
several thousands of words and it became possible to recognise connected sequences
of words such as bank account numbers. In the 1990s considerable progress was
made. Recognising texts read out loud became feasible. Vocabulary sizes went up in
the ten thousands and systems could recognise speech of arbitrary speakers. By the
start of the 21st century speech recognition has matured to the point that some of
the applications sketched above are feasible. In fact, a major software company now
includes a speech recogniser for dictation and program control in their popular office
suite. The focus of speech recognition research has shifted to recognising real-life
spontaneous speech such as telephone conversations.

Table 1.1 illustrates the state-of-the-art in speech recognition. It lists the perfor-
mance ranges, in terms of words recognised incorrectly, of speech recognition systems
for various types of speech. These numbers are indications rather than precise scores
as results can vary greatly between individual systems and data sets. It is clear that
speech recognition is far from perfect. Note that the recognition rate of 95% reported
for read speech, although an impressive number by itself, means that on average one
in twenty words is recognised incorrectly. For a dictation task that would not be an
acceptable figure. Moreover, given that such error rates are typically obtained on
clear audio recorded with high quality equipment in a silent laboratory this number
should be interpreted as an upper bound on performance rather than as an average.
In real-life situations audio quality is often poor, and worse yet, not constant. Addi-
tionally, in spontaneous conversations people do not pronounce as well as when they
are reading a text and conversational speech contains many hesitations, restarts,
background noises and words that are unknown to the system. Under such circum-
stances the recognition rates of speech recognisers quickly drop, as illustrated by the
results for broadcast news and conversational speech reported in table 1.1.

If the error rates on read speech should be interpreted as an upper bound on per-
formance of present-day speech recognisers, the error rates on conversational speech

3

Chapter 1. Introduction

should be seen as a lower bound, as perfect recognition of conversational speech is
not always necessary. For example, in an information extraction or summarisation
task missing a few words will not be much of a problem.

100% recognition is a very ambitious goal indeed. The last column of table
1.1 shows that humans do not recognise every word that is spoken either and that
also for humans, conversational speech is much harder to recognise than carefully
pronounced speech.

1.1.1 Speech recognition paradigms

Part of the progress in speech recognition should be attributed to Moore’s law, but
the great leaps forward were caused by paradigm shifts. From a knowledge-based
approach that worked with a complex interplay of heuristics based on linguistic
theories in the early systems over a knowledge poor, deterministic template-matching
approach in the 1980’s to a robust statistical data-driven approach in the early 1990’s
that quickly became and still is the dominating paradigm (Jelinek 1976; Young 1995;
Juang and Rabiner 2005; Furui 2005).

In the statistical approach recognising speech is formulated as finding among all
possible word sequences the most likely word sequence given a speech signal. The
amount of linguistic knowledge in the model is limited. A typical recogniser consists
of two parts: an acoustic model and a language model. The acoustic model maps
acoustic features obtained through signal processing techniques to words using a
lexicon that specifies how words are pronounced in terms of phonemes, the basic
units of speech. The language model defines how words can be put together to
sentences. Rather than making a hard decision on the correctness of a sentence it
usually assigns a probability to the hypotheses generated by the acoustic model.
The probability that a word is part of the sentence is usually estimated based on
the immediately preceding words.

The power of this approach is its robustness and the ability to generalise. It can
easily deal with small distortions in the speech signal, with voices it has never heard
before and new, possibly ungrammatical, word sequences. The approach does not
rely on linguistic theories but can learn model parameters automatically from sample
data using algorithms that are build on a firm mathematical ground. It emphasises
similarities in speech and language, using broad statistical patterns that, despite the
immense flexibility of language and all the variation in speech, can be found and
hiding the complexity of language in probabilities.

The strength of the statistical approach is also its weakness. By relying on
statistical averages it can find patterns that hold most of the time, but it misses the
exceptions to the rules. This is clearly illustrated by the fact that after more than
15 years of research on the same corpora of read newspaper speech the error rates
are still an order of magnitude larger than human recognition on the same type of
speech.

Statistical models not only have difficulty with the subtle effects in language,
but despite their ability to generalise, they cannot deal with patterns that greatly

4

1.2. The quest for the holy grail

differ from the — by definition limited set of — patterns they are trained on. A
recogniser developed on a corpus of read financial news will obtain very poor results
on conversational speech. Its performance will even drop considerably when tested
on read speech of a different nature such as children’s stories. Much of the progress in
recent years has come from carefully constructing specialised systems for particular
speech corpora. For example in broadcast news recognition it is not uncommon to
separate recognisers for the anchorman, business news, interviews and so on (Nguyen
et al. 2002).

Given these limitations, recognising spontaneous speech may be a bridge too far
for the statistical approach. There are so little restrictions in conversational speech,
the speech is pronounced less careful and the vocabulary is much larger, which means
that there are many more similar words to choose from, that the exceptions seem to
be the rule.

1.2 The quest for the holy grail
Some have argued that problems of the statistical approach to speech recognition
sketched above can simply be solved, following one of the motto’s of the speech
recognition community: ‘there is no data like more data’ (Moore 2003). Training
models on a data set that would contain sufficient examples of all the peculiarities
of conversational speech would do the trick. However, given the complexity of con-
versational speech this would have to be an enormous amount of data indeed and as
argued above the same argument does not even seem to hold for the much simpler
task of recognising read speech. Given that the distribution of language approxi-
mates a Zipfian distribution (Manning and Schütze 1999), i.e. there are a few high
frequency words and an never-ending number of low frequency words, we abandon
all hope of ever finding enough data.

A better approach to overcome the difficulties posed by spontaneous speech and
lift speech recognition to a level of human-like performance or beyond might be to
further investigate and correct the weaknesses of the models used. A good start
in this direction is to look at erroneous output of a speech recogniser. Below the
transcriptions of two speech recordings generated by the speech recogniser for Dutch
described in (Wiggers 2001; Wiggers et al. 2002a) are shown (a) together with the
correct transcriptions (b).

(1) a. en de botssimulator neemt en op de plaats van de autobestuurder en.
and the crash simulator takes and on the place of the car driver and.

b. in de botssimulator neemt een pop de plaats van de autobestuurder in.
in the crash simulator takes a dummy the place of the car driver.
‘in the crash simulator a dummy takes the place of the car driver.’

(2) a. het aantal personen dat aan de kleur kan deelnemen is gebonden aan de
maximum.

5

Chapter 1. Introduction

the number persons that in the colour can take part is bound to the max-
imum.

b. het aantal personen dat aan de cursus kan deelnemen is gebonden aan
een maximum.
the number of persons that in the course can take part is bound to a
maximum.
‘the number of persons that can take part in the course is bound to a
maximum.’

From the first sentence it is clear that the recogniser confuses the small function
words en and in. Inspection of other transcriptions showed that this is a reappear-
ing error. In fact, high-frequency short function words pose a problem for most
recognisers. The standard inelegant solution is to provide special acoustic models
for these words. The language model of the recogniser, that uses the two preceding
words to estimate the probability that a word is part of the sentence, is not capable
of solving these errors as the phrases en de botssimulator and de autobestuurder en
are by themselves correct and plausible phrases. Actually, as will be discussed in
chapter 3 it is unlikely that the model contains statistics for phrases including rare
words such as botssimulator and autobestuur. In practice even simpler statistics,
such as the word frequencies, will be used. However, from the syntax of the whole
sentence it is easy to see that the recognition result is incorrect. Grammatical knowl-
edge would also help the recogniser to identify the word sequence en op as an error,
but by itself it would not help much in correcting the error. Using the semantic
knowledge that dummies are often used in crash tests it is clear what the correct
words should have been.

The transcription produced by the recogniser in example (2) is grammatically
correct but semantically implausible. Based on semantic knowledge and the fact
that the correct word should sound like /klør/ we can take a pretty good guess at
the correct word though. In this case a well-trained language model might have been
able to do the job by recognising the phase cursus kan deelnemen. But this is more
of a patch than a real solution, as this particular trigram would be of no use if the
sentence would have contained the phrase:

(3) . . . aan de cursus, die maandag wordt gegeven, kan deelnemen . . .
. . . in the course, given on monday, take part . . .

In conclusion, what both of these examples suggest is that we can solve quite a few
of the errors made by a speech recogniser by introducing syntactic and semantic
knowledge into the model.

Note that even with this knowledge the transcriptions found by the recogniser
cannot be rejected as completely impossible. In a proper context both phrases may
be valid. In general, we may need that broader context in our decision making
process. Especially in spontaneous speech short sentences containing pronouns that
refer to persons and object mentioned before are often used. In example (4) the

6

1.2. The quest for the holy grail

semantic information that can help to recognise the word lion is the word Africa
two sentences earlier.

(4) I’ve been to Africa last month.
The weather was beautiful.
I saw a lion there.

1.2.1 What makes speech recognition difficult?

The difficulty of speech recognition is one of ambiguity. There are many sources
of variation and confusion. For example, when recognising conversational speech,
the recogniser is confronted with different speakers, each of them with a unique
physiology that determines voice quality, and each with his own dialect and speaking
habits that determine pronunciation and choice of words. The pitch, loudness and
speaking rate, among other things, may change with the moods and emotions of
these speakers and if the speakers are aware of the speech recogniser they may start
to overarticulate.

In continuous speech, individual phonemes are not pronounced separately, but
overlap. A sound is altered by its neighbouring sounds and even by sounds farther
away. Sounds may even completely disappear. Complete words may run together.
These co-articulation effects are stronger if the speech is less formal.

A microphone will pick up other sounds than the voice of the speaker, such as
background noises or background speech and reverberations. Some of these sounds
can easily be identified as non-speech sounds and be filtered out, but others overlap
with the speech signal. Different rooms have different reverberation characteristics
and typically noise is not constant but changes over time, making the situation even
more difficult. The distance to the microphone matters as does the quality of the
microphone itself, as it may introduce distortion in the speech signal due to electrical
noise, directional characteristics, echoes and dropouts.

On the language side the conversations to be recognised can be about anything,
resulting in a very large set of possible words, containing many acoustically confus-
able words. In addition, spoken language is not always grammatically correct. It
contains fragmented and unfinished sentences, hesitations, restarts and corrections
as well as many filler words, such as er and erm.

As mentioned before, despite all these difficulties, successful applications of
speech recognition already exist. The strategy employed by all of these applications
is to restrict the variation that can occur. For example, as recognising a particular
speaker is much easier than recognising speech from any speaker that can walk up to
the system, such systems are typically tuned to the voice of one particular speaker.
In addition, these systems often have a small task-specific vocabulary that is de-
signed to make the acoustic confusability of the words as small as possible. Most of
these systems will require a silent environment and recognise words in isolation or
deal with read, or dictated speech that is much more articulated than spontaneous
speech. For some applications not all words in the signal have to be transcribed.

7

Chapter 1. Introduction

Rather, particular content words have to be spotted; this makes the system much
more robust.

But how to restrict variation in the case of conversational speech? First of all,
we might note that while conversational speech can be about anything it is far from
random. A conversation will be about a particular topic or at least show some
coherence. Not all words in the vocabulary are equally likely at every point in time.
Nevertheless, in a typical speech recogniser the vocabulary is a static entity, at all
times all the words in it can be recognised, and the probabilities that a word or word
combination occurs is always the same.

Furthermore, conversations take place in a particular context that influences the
style of the conversation. For example, most of us speak in a different style when
speaking on the phone to a relative than when engaging in a debate or when at a
job interview.

Everyone is unique, but there are some characteristics that are very similar for
members of particular groups. Such characteristics include dialect, gender and age.
For example, the voice of a teenage girl will differ quite a lot from the voice of an
elderly man. Because of the age difference it is likely that the vocabulary used by
the two will also differ. And if we know that the girl grew up in a big city in the west
of the Netherlands while the old man spend all of his life in a rural village in the
south of the country, their pronunciation will also be different. These characteristics
are so strong that a human listener would only need a few words from either speaker
to accurately recognise them.

1.2.2 Human speech processing

The previous section reviewed strategies employed by successful speech recognisers to
get some idea on how to deal with the general case of recognising spontaneous speech.
We can turn to the best speech recogniser we know, human speech recognition, for
more inspiration. Unfortunately, human speech recognition is far from being fully
understood.

It is known that humans also have more difficulty processing speech when the
size of the active vocabulary increases. Miller et al. (1951) found that as the number
of words to choose from increases, the loudness of the speech signal has to increase
relative to the noise for correct identification. In addition, it is easier to recognise
words against background noise if they fit in the context (Bruce 1958) and it takes
about twice as long to recognise a word out of context than in would within the
context of a sentence (Lieberman 1963). So, it seems that context plays an important
role in human speech recognition. Several findings in psycholinguistics support this
hypothesis.

Probably the best-known result of psycholinguistics is the phoneme-restoration
effect (Warren 1970), which shows that we do not have to hear all sounds in a word
to identify the word. In an experiment participants listed to sentences in which a
phoneme in one of the words is replaced by a cough or a beep. It turned out that
participants do not notice the missing sound. Even when they were told a sound was

8

1.2. The quest for the holy grail

missing they could not correctly locate the cough in the speech, but rather would
place it incorrectly at a word or phrase boundary (Harley 2001). For example,
participants were presented with the set of sentences in (5) to (8) in which the last
word was added to the same recording of the other words to make sure that there
was nothing in the initial sentence that gave away the missing phoneme.

(5) It was found that the *eel was on the orange.

(6) It was found that the *eel was on the axle.

(7) It was found that the *eel was on the shoe.

(8) It was found that the *eel was on the table.

People would restore a phoneme that fitted the context given by the last word to
obtain peel, wheel, heel and meal respectively (Warren and Warren 1970). Initially,
these results were taken as evidence that the perception of speech is constrained by
higher level information. Later research has weakened this claim and suggested that
contextual information does not directly influence sound perception, but is used in
a later stage.

In the shadowing task (Marslen-Wilson and Welsh 1978) participants are asked
to repeat continuous speech they listen to as quickly as possible. The speech con-
tains mispronunciations that the participant are not told about. About half of the
time participants repeat the words that should have been in the speech rather than
the mispronunciations. It was found that restorations are more likely to occur when
the distortion is slight and the word is predictable from context. In a very con-
straining context participants would even restore mistakes if the distortions were
very prominent.

On the other hand, people are very good at recognising clearly articulated speech
that is improbable in the context. Apparently contextual information can be overrid-
den by perceptual information. Shadowing experiments also showed that syntactic
and semantic analysis in the human mind is incremental and starts before a clause
has been heard completely (Harley 2001). In the gating task, participants are pre-
sented with more and more sounds of a word. After every increment, participants
have to guess the word (Harley 2001; Grosjean 1980). This experiment allows to find
the point in a word where it is identified by a listener. This isolation point is usually
before the end of the word and often even before the point at which enough sound
of the word have been heard to identify it uniquely (the uniqueness point). The
gating task once again shows the importance of context in human speech processing.
The participant in the experiment of Grosjean (1980) needed 333ms on average to
identify a word in isolation, but only 199ms on average to identify a word in context.
However, the experiment also showed that initially candidate words are generated
that are not compatible with the context but do match the speech signal.

Studies of electrical activity in the brain have shown that for all words there is a
peak of electrical activity about 400ms after the onset of the stimulus. Van Petten
et al. (1999) showed that this peak, called the N400, has a larger amplitude when a

9

Chapter 1. Introduction

word does not fit the context even when the the isolation point of the word has not
been reached.

Based on studies as those cited above, several competing models of human speech
recognition have been developed. The most important of which are based on the
concept of activation, and all use both perceptual bottom-up information and top-
down context information. The points of debate between proponents of different
models is on how much context information is used and at which stage bottom-up
and top-down information are combined. As these models can serve as an inspiration
for models of automatic speech recognition we will now briefly discuss the concept
of spreading activation and the two most important competing models of human
speech recognition.

The assumption behind both models is that the human mind contains a lexicon of
all words that we know. All knowledge we have about a word, e.g. the pronunciation
of the word, it’s meaning, related words and syntactic features are stored in the
lexicon. With each word an activation level is associated. Initially, all activation
levels are low or neutral.

When the initial sounds of a word are recognised the activation level of all words
in the lexicon that start with these sounds will increase. If subsequent sounds in
the speech signal also match a word, the activation level of the word will increase
further. Eventually, the word with the highest activation level is picked as the correct
word. Different versions of the activation process are used in different models. In
some models information that does not match the word will lower the activation
level in a word, in others the activation level of incorrect words is lowered when
one of the words wins the competition. It is usually assumed that activation levels
also decay with time and that words activate related words. The latter explains a
process called priming. If we, for example, hear the word ‘PhD thesis’ it will take less
time to recognise the word ‘defence’ than it would otherwise. The attractiveness of
activation-based models is that they explain how we as humans can deal with speech
signals despite the limitation of our auditory memory, that can only save acoustic
details for a time span of about 200ms (Rietveld and van Heuven 1997).

The trace model (McClelland and Elman 1986) is an interactive model based on
neural networks. It consists of several levels. Starting with feature detector neurons
at the lowest level that are connected to phoneme neurons on the next level that are
in turn connected to words. The neurons at a level are interconnected, activation of
a neuron can inhibit the activation of other neurons at that level. The information
flow is bidirectional, it can flow from lower levels to higher levels and from higher
levels to lower levels at all times.

The cohort model (Marslen-Wilson 1984; 1987) assumes that in the initial (prelex-
ical) phase of word recognition all words are activated of which the initial sounds
match the speech signal to some extend. After about 200 ms, the second phase,
lexical selection starts, all activated words (the cohort) check whether the incoming
signal still matches, if not they are removed from the cohort. Eventually, one word
will be left, which will then be recognised. Typically, this will be the case when the
uniqueness point of the word has been reached. All knowledge associated with the

10

1.2. The quest for the holy grail

word is now available. In the final stage, the postlexical verification and integration
stage, it is checked whether the remaining speech sounds still match the predicted
word and whether the word fits within the context of the sentence. If not, another
candidate word has to be reactivated again. In the cohort model, only bottom-up in-
formation is used to activate the words that will form the initial cohort. Top-down
information is only used in the second phase of the process to eliminate unlikely
words. This prevents that listeners will hear what they expect to hear.

1.2.3 Context

The previous sections suggest that including more linguistic knowledge and more
contextual knowledge into models of speech recognition might improve recognition.
Excluding such information in models of speech recognition has been a deliberate
choice; imposing only a limited set of soft restrictions on speech is what gives these
models robustness. But by ignoring many of the regularities of language the task is
made harder than it really is.

Of course the idea to use context is not new. Many speech processing systems
that include a speech recogniser as a front-end do use linguistic information to correct
errors in the transcriptions output by the speech recogniser (e.g. Seneff 1992; Gallwitz
et al. 1998; Wahlster et al. 2001; Filisko and Seneff 2003). Such a serial structure
is efficient but when it misses the correct solution in an early stage, it may not be
capable of reconstructing it in a later stage.

In fact, context has always been included in speech recognisers, be it implicitly,
as systems have always been developed for particular well-defined domains, in which
the type of speech was known and the number of topics and the corresponding
vocabulary limited.

Most commercial recognisers use separate models for male and female speakers.
Some also include models for different age groups and speakers of dialects. Such
information is obtained by having the user select the most suitable system by hand.
But most of the time speakers of a dialect, children and elderly are dealt with by
simply ignoring them. Corpora that are used to develop speech recognisers with
usually focus on the speakers of the standard language between the age of 20 and
55.

The practice of developing speech recognisers for specific domains may be effec-
tive, but it is very labour-intensive and more importantly wastes resources, as for
each of these domains new data sets have to be collected and annotated. Rather
than building separate systems for say read speech and spontaneous speech using
different data sets, it would be much better to use both sets in the construction of
a single more general model that can benefit from the similarities in those set and
which considers read speech as a more restricted version of conversational speech
to deal with the differences. In the same way, using separate models for male and
female voices loses information. These two groups share many features, for example
coarticulation effects do not differ all that much between genders.

Including context in speech recognition might be the only way to achieve human-

11

Chapter 1. Introduction

like speech recognition. For example, a model that knows only about frequent word
sequences will not be able to deal with phenomena such as irony and humour that
often escape the standard patterns of language.

However, some care should be taken not to include too many constraints on
language. The power of the current approach to speech recognition is that it does
not need explicit models for all kinds of effects. As mentioned above, this gives
the approach robustness in the face of grammatically incorrect sentence and noisy
recordings. Including too many constraints can do more harm than good. Also note
that many of the subtle effects in language are implicitly encoded in the statistics
used in speech recognisers. That is why many attempts to improve speech recog-
nition by including additional information about language have had little success.
Rather than abandoning the statistical approach altogether, it is important to find
out what context information to use and when to rely on statistics instead.

This is not a simple question and therefore we should not expect to find the
answer right away. In fact, much of the research in speech recognition has focused on
using additional knowledge of some sort in speech recognition. Work in this domain
typically proceeds along the following lines: a feature that might be useful in speech
recognition is identified, a probabilistic model that includes this feature is formulated
and then most of the effort goes into deriving and implementing the algorithms
needed to train the model and do inference with it. Although all of these models
can be classified as probabilistic speech recognisers their complex algorithms are
highly specialised and therefore difficult to integrate. To move speech recognition to
the next level a new computation paradigm must be found that allows the integration
of all sorts of contextual information and the interactions between those information
sources to be modelled more naturally than the current framework. It should allow
researchers to focus on model development and experimentation rather than on
algorithm design. The need for such a framework is even larger as there is still a
great gap between research communities that have sufficient knowledge of language
to adequately identify the information that will be of use in speech recognition and
those that have the knowledge of mathematics and computer science needed to design
and implement new algorithms that can incorporate this knowledge.

1.3 Research questions
To be able to improve speech recognition one has to understand the current tech-
nology, in particular the boundaries of this technology.

1. What is the state of the art in speech recognition?

What exactly do we mean by context? In previous sections a sketchy overview
of contextual knowledge that can be of use in speech recognition was given. To be
able to choose a computational paradigm that can incorporate context, we need a
more and more detailed description of possible knowledge sources.

2. Which types of information might be of use in speech recognition?

12

1.4. Scope of the thesis

Once the types of knowledge that can be of use from a theoretical point of view
have been identified, one should not rush into the development of model, but first
investigate whether contextual information can be of value in practice.

3. Does contextual knowledge have the potential to improve speech recognition?

Using the knowledge of existing models and the types of information that an
ideal model should be able to incorporate a new computation paradigm for speech
and language processing can be chosen.

4. Which computational paradigm is powerful enough to include the contextual
knowledge?

Existing models for speech recognition have many desirable features. Can these
models be incorporated in the proposed paradigm?

5. How do existing models fit in the new paradigm?

As argued above a generic framework based on the computational paradigm
should be available that allows for rapid model construction and experimentation.
Such a framework should deal with the peculiarities of speech and language process-
ing.

6. How to construct a general purpose computational framework that allows one
to experiment with knowledge-rich models for speech and language processing?

To quote Herbert Simon: ‘In the computer field, the moment of truth is a run-
ning program; all else is prophecy’. The same holds when proposing models. The
feasibility of an approach is best shown by a successful experiment. The final aim of
this research is to design and test new, context-rich models for speech recognition.

7. Is the performance of language models that included contextual knowledge better
than that of conventional models?

1.4 Scope of the thesis

This thesis is about speech recognition, with a focus on language modelling, as this is
the part of the speech recogniser in which contextual knowledge can be of particular
use. However, many of the concepts discussed and ideas expressed in this thesis
apply to other techniques in the broader domain of natural language processing as
well. The framework and the language models developed in this work can directly
be applied to handwriting recognition, machine translation and spelling correction.
Other subfields of natural language processing such as parsing can benefit from
context as much as speech recognition.

13

Chapter 1. Introduction

1.5 Structure of the thesis
The remainder of this thesis answers the questions formulated above. Chapters 2
and 3 review the state of the art in speech recognition. Chapter 2 gives an overview
of the statistical approach to speech recognition. In chapter 3 the strengths and
weaknesses of approaches to language modelling are discussed in detail. In partic-
ular, an overview of previous attempts to include additional context and linguistic
knowledge in language models is given.

Which types of knowledge can be of use in speech recognition from a theoretical
point of view is investigated in chapter 4. In this chapter we present our definition of
context. Chapter 5 presents the results of a data analysis on a large corpus of spoken
language that explores the influence of some of the contextual factors identified in
chapter 4 and the relations between those factors.

In chapter 6 two speech recognition systems that we developed as part of this
thesis work are presented. Both systems include contextual knowledge: the first
at the acoustic level in the form of lip-reading information, the second includes
domain knowledge in the language model. For both systems we experimented with
several configurations that integrate contextual knowledge at different stages in the
recognition process. The experiments prove that contextual knowledge can improve
speech recognition.

In chapter 7 we argue that a new computational paradigm for speech recogni-
tion with contextual information is needed. Based on the results of chapters 4 and
5 the requirements for a computation framework for speech recognition are formu-
lated in chapter 7. Several computational techniques are considered. It is claimed
that dynamic Bayesian networks form a good starting point for a computational
framework.

In chapter 8 we reformulate the language models of chapter 3 in terms of dynamic
Bayesian networks and propose some novel, more advanced models that can incor-
porate the context information presented in chapters 4 and 5. Speech recognition is
a computationally expensive task. The standard data structures and algorithms for
inference in dynamic Bayesian networks are not very-well suited for the large state
spaces that appear in speech recognition. To make speech recognition with Bayesian
networks tractable we developed a number of data structures and algorithms that ex-
ploit the properties of models of speech and language. These are detailed in chapter
9. In chapter 10 we propose a novel Bayesian network language model that includes
topic information. An unsupervised learning procedure for the model is introduced
and experiments with the model are presented. Chapter 11 concludes this thesis.

14

Life’s most important questions are, for the most part,
nothing but probability problems.

Pierre-Simon Laplace (1749–1827)

Chapter 2

Speech Recognition

In which an overview of hidden Markov model based speech recognition
is given. The advantages and limitations of this paradigm are discussed.

Speech recognition finds the most likely word sequence given an input signal. Let
O, which we will call the observation sequence, represent the speech signal, and let
W be a sequence of words. Then, the most likely word sequence Ŵ follows from:

Ŵ = arg max
W
P(W|O). (2.1)

Unfortunately, the conditional probability distribution in (2.1) is hard to compute
directly1 as, due to variation in speaker characteristics and environmental noise,
almost every observation sequence will be unique. To make life easier the equation
can be rewritten using Bayes’ rule (Bayes 1763):

Ŵ = arg max
W

P(O|W)P(W)

P(O)
. (2.2)

On first sight, little progress is made, since we now have to estimate three probability
distributions, each over an infinite number of states. In particular, the probability of

1Although neural networks for speech recognition do.

15

Chapter 2. Speech Recognition

an observation sequence is still required. But note that as the observation sequence
is a given, it will be the same for all word sequences, i.e. P(O) acts as a normalising
constant in (2.2). Because we are only looking for the most likely sequence hypothesis
and do not need the exact probabilities, it can be ignored. To find a solution to (2.1)
we thus need to solve

Ŵ = arg max
W
P(O|W)P(W), (2.3)

where P(W), the probability of a sequence of words, is called the language model
and P(O|W), the probability of the observation sequence given a particular sequence
of words is the acoustic model. Language modelling is the topic of the next chapter.
The remainder of this chapter will discuss acoustic modelling.

2.1 Signal processing

The input to a speech recogniser is an audio waveform picked up by a microphone.
This signal contains much non-speech information, such as noise introduced by the
environment and the recording hardware. Therefore, a preprocessing step is used
to extract relevant features from the signal. In addition to removing noise, it also
reduces some of the person and environment specific variations.

Many feature extraction methods have been developed, some based on acoustic
concepts, others on knowledge of human speech production and perception. The
most important techniques are Linear Predictive Coding and Mel Frequency Cepstral
Analysis. As this thesis is not about signal processing, only a brief impression of
these two techniques is given below. For more details see Ladefoged (1996) or Furui
(2001).

Both methods convert the speech waveform into a sequence of real-valued feature
vectors. A single vector is obtained by applying the signal processing technique of
choice to a small segment of the signal, e.g. a 25 ms segment. This is done every
10ms. The segments of sound of successive vectors overlap to make up for the
discontinuity introduced by the discrete sampling of the signal.

Linear predictive coding Linear predictive coding (lpc) takes a mechanical view
of human speech production, assuming that the speech signal is produced by a buzzer
at the end of a tube. The glottis, the space between the vocal chords, produces the
buzz, which is characterised by its intensity, which roughly corresponds to loudness,
and frequency, which determines the pitch of the sound. The sound produced by
the glottis will resonate in the tube formed by the vocal tract, i.e. the combination
of throat, mouth and nose. As the wavelengths of the resonances are proportional
to the length of the tube, they will change when the shape of the vocal tract is
changed for example by movement of the tongue. These resonances, called formant
frequencies in the case of speech, are important indications of the identity of a sound.
Vowels can be characterised by the relative distance between the first and second
formant frequency.

16

2.2. Acoustic modelling

lpc estimates a filter that models the vocal tract, removes its effect from the
speech signal and estimates the intensity and frequency of the remaining buzz, called
the residue. The filter is a difference equation, called a linear predictor, which
expresses each sample of the signal as a linear combination of previous samples. The
coefficients of the linear predictor are estimated by minimising the mean-square error
between the predicted signal and the actual signal. These coefficients characterise
the filter and therefore the shape of the vocal tract. In speech recognition the first
12 coefficients are taken as a feature vector.

Mel-frequency cepstral coefficients One of the more common techniques of
studying a speech signal is via the power spectrum. The power spectrum of a speech
signal describes the frequency content of the signal over time. Typically, the peaks
in a spectrum relate to the formant frequencies of a sound. The first step towards
computing the power spectrum of the speech signal is to perform a Discrete Fourier
Transform (dft).

Psychophysical studies have shown that human perception of the sound frequen-
cies does not follow a linear scale. This has led to the definition of the Mel scale that
gives the subjective pitch of pure tones. As a reference point, the pitch of a 1 kHz
tone, 40 dB above the perceptual hearing threshold, is defined as 1000 Mels. Other
subjective pitch values are obtained by adjusting the frequency of a tone such that it
is half or twice the perceived pitch of a reference tone with a known Mel frequency.

Feature extraction based on Mel frequency cepstral coefficients (mfcc) applies
triangular windows at increasing distances according to the Mel scale to the power
spectrum. The cepstral coefficients are computed by transforming the logarithm of
the energy in each window to the cepstral domain using an inverse Discrete Fourier
Transform. Cepstral coefficients can be seen as a parametric representation of the
envelope of the spectrum, as such they correlate with the formant frequencies. Usu-
ally, first and second derivatives of the cepstral coefficients are taken and added to
the speech vector to account for the continuous nature of the signal.

2.2 Acoustic modelling

The acoustic model gives the probability that an observation sequence of feature
vectors corresponds to a sequence of words. As the number of different observa-
tion sequences is infinite, as is the number of different word sequences in realistic
situations, a simple look up is not possible. Rather, a model that computes these
probabilities on the fly is needed. The hidden Markov model does this.

2.2.1 Hidden Markov models

The hidden Markov model (hmm) is a powerful mathematical tool for modelling
time series. It automatically performs dynamic time warping for signals that are
locally squashed or stretched and can deal with small distortions in a signal. It

17

Chapter 2. Speech Recognition

provides efficient algorithms for parameter estimation from data and has the ability
to generalise to cases not in the training examples.

Hidden Markov models are a generalisation of the well-known Markov chains of
probability theory that model a sequence of events in time. A Markov model consists
of a set of states that correspond to events or observations. The model starts in one
of the states and at every point in time makes a transition to another state according
to a probability distribution. In first-order Markov models, the probability of moving
from one state to another only depends on the current state:

P(Xt+1 = qi|X1,X2, . . . ,Xt) = P(Xt+1 = qi|Xt), (2.4)

where Xt denotes a state at time t. In general, in k-th-order Markov models the
probability of moving from one state to the next depends on the previous k states.
In addition, transitions are independent of time:

P(Xt+1 = qi|Xt) = P(X2 = qi|X1). (2.5)

Figure 2.1 shows a first-order Markov chain that models different pronunciations
for the word tomato. Transitions with non-zero probability are shown by arrows
connecting two states. Different paths through the model correspond to the British
and American pronunciations of the word. The self-loops allow the model to deal
with the variation in duration of speech sounds. The transition from /t/ to /m/
allows the /@/ sound to be skipped completely.

A: @

t @ m t U

eI o

Figure 2.1 – A pronunciation Markov model for the word tomato.

In figure 2.1 a word is modelled as a sequence of phonemes, but the input signal
in speech recognition is a sequence of real-valued vectors, several of which may
correspond with a particular phoneme. The Markov model, in which each state
corresponds to an observable event does not cover continuous observations.

The hidden Markov model extends the model by decoupling the observation se-
quence and the state sequence. For every state a probability distribution is defined
that specifies how likely every observation symbol is to be generated in that partic-
ular state. Each state can in principle generate every observation symbol. Which
state sequence generated an observation sequence becomes indistinguishable. The
states are hidden. Formally, a hidden Markov model can be defined by the following
parameters:

• The number of distinct observation symbols M.

18

2.2. Acoustic modelling

b1(0) = 0.4

b1(1) = 0.6
1 2

b2(0) = 0.2

b2(1) = 0.8

3

b3(0) = 0.7

b3(1) = 0.3

0.3

0.3

0.4

0.1

0.5

0.4

0.15

0.25

0.6

Figure 2.2 – A 3 state hidden Markov model that generates sequences of 0’s and 1’s.

• An output alphabet L = {l1, l2 . . . lM}.

• The number of states N.

• A state space Q = {1, 2 . . .N}. States will usually be indicated by i, j. A state
that the model is in at a particular point in time t will be indicated by qt.
Thus, qt = i means that the model is in state i at time t.

• A probability distribution of transitions between states, represented by the
transition matrix A = {aij}, where aij = P(qt+1 = j|qt = i).

• An observation symbol probability distribution B = {bj(k)} in which bj(k) =
P(ot = lk|qt = j), where ot is the observation at time t.

• The initial state distribution π = {πi} where πi = P(q0 = i).

To indicate the complete parameter set of a model the notation λ = (A,B,π) is used.
Figure 2.2 shows a three state hmm with discrete probability distributions attached
to each state.

2.2.2 hmm topology for speech recognition
Hidden Markov models can be used to model speech at various linguistic levels.
Words are probably the most natural units to model. After all, we are interested in
recognising words and as will be discussed in chapter 3 the language model also uses
words as the basic unit. An additional advantage of word-level models is that they
capture within-word coarticulation effects rather well. Actually, it is shown that be-
cause of these effects, the larger the unit, the better the recognition will be (Rabiner
and Juang 1993). However, the parameters, i.e. the transition probabilities and out-
put probabilities of hmms are automatically set using a training corpus. To obtain
reliable parameters a large number of examples for every unit is needed, e.g. words
pronounced by men and women with different voice qualities at different speaking

19

Chapter 2. Speech Recognition

on-glide

pure phoneme

off-glide

Figure 2.3 – Three phases in the pronunciation of a phoneme.

rates, within different sentences. Therefore, for large vocabulary speech recognition
word units are not an option, but for small well-defined vocabularies, for example
a set of commands, they are well suited. Usually, left-to-right model topologies are
used in which the number of states depends on the number of phonemes in the word.
One state per phoneme is a good rule of thumb.

If sub-word units, such as phoneme level models or syllable level models are used,
data can be shared among words. As long as the sub-word units occur sufficiently
often in different contexts in the training data, not all words in the dictionary have
to be in the data. The vocabulary of a speech recogniser can easily be extended by
specifying how a new word is expressed in terms of the sub-word units.

Phoneme models are used most often. As there are only 40 to 50 phonemes in
languages like Dutch and English, hmm phoneme models can be adequately trained.
Most topologies used in speech recognition are based on the assumption that there
are three phases in the pronunciation of a phoneme. In the first phase the articulators
are moving in position to pronounce the phoneme, this is called the on-glide of the
phone. In this phase there may be some overlap with the preceding phone. In the
second phase the sound of the phone is assumed to be pure and in the third, off-glide,
phase the sound is released and the articulators start to move to the positions for
the next phoneme. The process is schematically shown in figure 2.3. This suggests
that at least three states should be used in a phoneme hmm. Adding more states
means introducing more parameters and thus more degrees of freedom. Variations
in a phoneme can be modelled more accurately but this also introduces a need
for more training data to avoid undertraining. In addition, the paths through the
model should not be too long. A five state model does not work for phonemes with
a duration of only three time frames. There should always be a short-cut that can
handle the shortest example in the training data. Figure 2.4 shows three model
topologies that have successfully been used in various speech recognisers. The first
model (2.4a) is a simple three state left-right model with state dependent output
probabilities. The first and last smaller circles in the figure represent entry and exit
null-states. They do not generate observations and are only used to concatenate
models. The second model (2.4b) has five states, but provides transitions that skip
the succeeding state. Therefore it is possible to pass through the model in only three
steps. This model also has state dependent output probabilities.

The last model (2.4c), used by ibm (Jelinek 1999), has seven states and twelve
transitions with transition dependent output probabilities. Only three different out-
put distributions, corresponding with the three phases in a phoneme, are used. In

20

2.2. Acoustic modelling

a) 1 2 3

b) 1 2 3 4 5

c) 1 2 3

4 5

B M M E

B
E

M

E
E

M M M

Figure 2.4 – Model topologies for phoneme units.

the figure the begin phase (on-glide) is marked with B the middle phase with M and
the end phase (off-glide) with E.

Word models are obtained by concatenating the models corresponding to the
phonemes that make up the word according to a pronunciation dictionary. As il-
lustrated by figure 2.3 phonemes overlap in continuous speech. Depending on the
position in the word and on the surrounding phonemes the sound of a phoneme
may change completely. For example in American English a /t/ at the start of
a word is aspirated but can be reduced to a tap between vowels (Jurafsky and
Martin 2000). By treating phonemes as separate units that are inserted in a word
based on phonetic transcriptions such coarticulation information is lost. Linguistics
deals with such phenomena by differentiating between the abstract phonetic level
and the phonemic level that specifies the exact pronunciation in context. In speech
recognition a more pragmatic approach is taken. The simple phoneme models are
replaced by context-dependent models, i.e. separate models are created for instances
of a phoneme that occur in different contexts. The de facto standard in speech
recognition is the triphone model, that includes the identities of the left and right
neighbours of a phoneme. A disadvantage of triphone models is that they bring back
the data-sparsity problem again. Western languages typically have more than ten
thousand triphones. For some of these models there may be no examples or only
a very few in the training data. Clustering of similar triphones offers a solution.
This can either be done in a knowledge-based fashion using linguistic features of
phonemes or in a data-driven manner. The models in a cluster share parameters.
Often, individual triphone states rather than complete models are clustered.

2.2.3 Observation distributions

Because of differences between voices, prosodic variation occurring in speech and
coarticulation effects, the acoustic realisation of a phoneme can vary. Therefore the

21

Chapter 2. Speech Recognition

state-dependent output distributions are complex and different per phoneme. This
is usually modelled using a mixture of normal distributions, named Gaussians in
speech recognition lingo, defined by

bj(ot) =

M∑
m=1

cjmN(ot,µjm,Σjm), (2.6)

where µjm and Σjm are the mean vector and covariance matrix of component m
respectively and cjm are positive valued mixture weights, the sum of which is 1.
Gaussian mixtures can approximate any continuous probability density function in
the sense of minimising the error between two density functions. The advantage
of Gaussian mixtures is that the parameters can be learned from data using the
standard hmm training algorithm.

2.2.4 The probability of an observation sequence

To perform recognition with a hidden Markov model, the probability of the obser-
vation sequence has to be calculated for every model as specified by (2.3). Every
state in an hmm can generate every observation symbol, so there will be many paths
through a model that correspond to an observation sequence. To find the total prob-
ability of the observation given the model the sum of the probabilities of individual
paths has to be taken:

P(O|λ) =
∑

∀q1,q2,...,qT

P(O,q1,q2, . . .qT |λ)

=
∑

∀q1,q2,...,qT

πq1bq1(o1)aq1q2bq2(o2) . . .aqT−1qT
bqT

(oT).
(2.7)

For an observation sequence of length T for each state sequence q about 2T calcu-
lations have to be performed. At each time step there are N different states that
can generate a given observation. Therefore, there are NT different state sequences
that can generate the observation sequence. It follows that the time complexity of
equation (2.7) is O(2TNT). For realistic values of N and T this quickly becomes
infeasible. Therefore a more efficient procedure is needed. Fortunately, such a pro-
cedure exists; it is called the forward algorithm. The algorithm belongs to the class
of dynamic programming algorithms. Instead of considering each state sequence in
turn it calculates the values for all sub-sequences up to some time step in parallel,
using the results from the previous time step. This is highly efficient as many paths
share the same sub-paths. Essentially, the algorithm uses the Markov assumption
underlying the model to ‘shift sums under multiplications’. For example, for 3 time

22

2.2. Acoustic modelling

steps:∑
q1,q2,q3

πq1bq1(o1)aq1q2bq2(o2)aq2q3bq3(o3) =

∑
q3

(∑
q2

(∑
q1

πq1bq1(o1)aq1q2

)
bq2(o2)aq2q3

)
bq3(o3). (2.8)

This is expressed by a recursive relation. Let αt(i) be the probability of being in
state i at time t and having observed the partial observation sequence o1o2 . . .ot so
far, given the model λ:

αt(i) = P(o1o2 . . .ot,qt = i|λ). (2.9)

αt(i) can be computed inductively, as follows:

Initialisation
α1(i) = πibi(o1), (2.10)

Induction

αt+1(j) =

[
N∑

i=1

αt(i)aij

]
bj(ot+1), (2.11)

Termination

P(O|λ) =

N∑
i=1

αT (i). (2.12)

Figure 2.5 schematically shows the idea behind the forward algorithm. This
figure is called a trellis. At each time step all model states are considered. All paths
that end up in a particular state at a particular time are combined. As there are
only N nodes at each time step all possible state sequences will remerge into these
N nodes no matter how long the observation sequence. At time t each calculation
only involves the N previous values of αt−1(i), because each of the N grid points can
be reached from only the N grid points at the previous time slot. So this procedure
only requires on the order of TN2 calculations, rather than 2TNT as required by the
direct calculation.

2.2.5 The most likely state sequence
The forward algorithm gives the probability that a sequence of observations is gen-
erated by a model λ. However, the individual states of a Markov model may have
some meaning, for example the phonemes in a word, and we might be interested in
the sequence of states that is most likely to have generated the observation sequence
O = o1o2...oT . This boils down to maximising P(q|O, λ). As as the probability of

23

Chapter 2. Speech Recognition

1 1 1 1

2 2 2 2

3 3 3 3

Figure 2.5 – The forward algorithm visualised by a trellis for a 3 state left-to-right hmm
with self loops.

the observation sequence can be seen as a constant this is equivalent to maximising
P(q,O|λ):

q̂ = arg max
q
P(q|O, λ) = max

q

P(q,O|λ)

P(O)
= max

q
P(q,O|λ), (2.13)

where q̂ is the most likely state sequence. Let δt(i) be the probability of the most
likely path from the start into some state i at time t:

δt(i) = max
q1q2...qt−1

P(q1q2 . . .qt−1,qt = i,o1o2 . . .ot|λ), (2.14)

then
δT (i) = max

q=q1q2...qT

P(q,O|λ) (2.15)

is the probability of the most likely state sequence for the observation sequence. δt(i)
can be calculated using the same recursive procedure as in the forward algorithm,
using maximisation over previous states instead of summation. This algorithm is
known as the Viterbi algorithm. Formally, it is defined as:

Initialisation
δ1(i) = πibi(o1), (2.16)

ψ1(i) = 0, (2.17)

Recursion
δt(j) = max

16i6N
[δt−1(i)aij]bj(ot), (2.18)

ψt(j) = arg max
16i6N

[δt−1(i)aij] , (2.19)

24

2.2. Acoustic modelling

Termination
P̂ = max

16i6N
[δT (i)] , (2.20)

q̂T = arg max
16i6N

[δT (i)] , (2.21)

Path backtracking
q̂t = ψt+1(q̂t+1), (2.22)

where ψt(i) keeps track of the state at time t − 1 that the most likely path to
state i at time t passes through. By backtracing those values we can find the most
likely state sequence. The algorithm relies heavily on the Markov property of the
underlying model. At each time step t it assumes that the most likely path into the
current state will be part of the most likely path over the entire model through this
state.

The Viterbi algorithm plays an important role in speech recognition. As men-
tioned before, word models are constructed by concatenating phoneme models.
These word models are in turn connected as specified by a language model. The
result is one large composite hmm with which sequences of words can be recognised.
This is done by the Viterbi algorithm. The path found by the algorithm will lead
through a sequence of words that specify the recognised word string. Actually, this
method is not guaranteed to find the most likely word sequence, as the probability
of a word sequence given an observation sequence should include all paths through
that word sequence rather than just one. However, this is computationally expen-
sive. The use of the cheaper Viterbi algorithm is justified by the fact that in practice
it is very rare that the word string corresponding to the most likely path is not the
word string corresponding to the most probable set of paths.

n-best Search The Viterbi algorithm finds the most likely single path through an
hmm. As mentioned before this is not guaranteed to be the optimal solution, and
even if it were it still does not have to be the right solution. Therefore, it is often
desirable to find the N most likely word sequences given the observed acoustic data
O, which can then be used as inputs to more refined models. The required n-best
search differs from the Viterbi search in one aspect only: Instead of retaining only
one path leading into each trellis state, each trellis state is split into n sub-states,
one for each of the n most likely paths leading into the unsplit state from the split
state of the trellis’ previous stage. The n most likely paths may share structure. It
is not uncommon for these paths to differ in a single word or only in timing aspects.
A lattice is a more efficient representation that stores hypotheses in the form of a
directed graph of words. Usually, acoustic and language model scores as well as the
number of frames spend in a word or phoneme are added to the lattice.

Beam search For realistic vocabulary sizes the composite model and hence the
search space will still be huge. Therefore, unlikely paths are typically pruned during

25

Chapter 2. Speech Recognition

the search process. This is done by a beam search. Hypotheses that are below a
certain probability level are pruned. At each trellis stage i the maximum probability
of the states at stage i − 1 defined by PM

i−1 = max δi−1(q) serves as a basis for a
dynamic threshold:

τi−1 =
Pm

i−1

K
, (2.23)

where K is a suitable chosen constant. All states q ′ that satisfy δi−1(q
′) < τi−1 are

removed from the search, i.e. δi−1(q
′) is set to zero.

2.2.6 Learning model parameters
In the discussion so far the parameters of the models, that is the transition proba-
bilities and the observation probabilities, have been taken as a given. In practice,
these values are unknown and we therefore would like to have a method that can au-
tomatically determine these parameters λ = (A,B,π) in such a way that the model
best matches the data it represents. Mathematically this means we want a method
that has the following maximum likelihood property:

λ̂ = arg max
λ
P(O|λ). (2.24)

There is no known analytical solution for this equation, but an iterative procedure
known as the Baum-Welch algorithm or Forward-Backward algorithm exists that
chooses λ = (A,B,π) such that its likelihood P(O|λ) is locally maximised using
a sample of the type of data the model is supposed to generate. Basically, the
algorithm counts the average number of times a state is visited and the number of
times a transition from a state i to another state j is made as well as the average
number of times that a specific observation symbol is generated in a state. From
these counts the transition and observation probabilities are derived. To calculate
these counts we define a backward probability βt(i) to complement the forward
probability αt(i) from section 2.2.4:

βt(i) = P(ot+1ot+2 . . .oT |qt = i, λ). (2.25)

Like the forward probability βt(i) can be computed recursively using a backwards
pass over the trellis. The probability of being in state i at time t given the entire
observation sequence and the model can be defined as:

γt(i) =
αt(i)βt(i)

P(O|λ)
. (2.26)

Intuitively, this formula states that the probability of being in a state can be obtained
by taking the probability of all paths that pass through this state. We find all paths
through a state by combining all ingoing paths with every outgoing path, hence
the multiplication of the forward and backward probabilities. The nominator in
this formula, the probability of the observation sequence, can be interpreted as the

26

2.2. Acoustic modelling

probability of all possible paths through the model for this observation sequence and
follows from the forward algorithm. It ensures that the γt sum to one. Similarly,
we can also define the probability of being in state i at time t and state j at time
t+ 1, given the model and the observation sequence by:

ξ(i, j) =
P(qt = i,qt+1 = j,O|λ)

P(O|λ)
=
αt(i)aijbj(ot+1)βt+1(j)

P(O|λ)
. (2.27)

If γt(i) is summed over the time index t, the expected number of times that
state i is visited is obtained or equivalently the number of transitions made from
state i. Similarly, summation of ξt(i, j) over t can be interpreted as the expected
number of transitions from state i to state j. Now, using the concept of counting
event occurrences, we can estimate aij as the expected number of transitions from
state i to state j normalised by the expected number of transitions from state i:

ãij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

. (2.28)

Similarly, bj(k) can be estimated by dividing the expected number of times in state
j at which symbol lk was observed by the expected number of times the system is
in state j:

b̃j(k) =

∑T
t=1,ot=lk γt(j)∑T

t=1 γt(j)
. (2.29)

The initial state distribution for state j is equal to the expected frequency with which
state j is visited:

π̃ = γ1(j). (2.30)

As the left hand side of these equations also appears on the right hand side an
iterative procedure has to be used to improve the model parameters. λ̂ is used in
place of λ in each iteration until the values stop changing within certain limits or
until the performance on an evaluation data set stabilises. Training with multiple
observation sequences is straightforward. The counts ξ and γ are calculated for each
observation sequence. The model parameters can now be estimated by averaging
over these counts, i.e.:

ãij =

∑W
w=1

∑Tw−1
t=1 ξw

t (i, j)∑W
w=1

∑Tw−1
t=1 γw

t (i)
, (2.31)

where W is the number of observation sequences. The formulas for b and π change
accordingly. Up to this point the algorithms were explained in terms of a fi-
nite alphabet of observation symbols and thus discrete probability functions could
be used to generate these observations. In case of continuous Gaussian mixtures
bj(ot) = N(ot,µj,Uj) with mean vector µj and covariance matrix Uj for state j the
re-estimation formula becomes:

µj =

∑T
t=1 γt(j)ot∑T

t=1 γt(j)
, (2.32)

27

Chapter 2. Speech Recognition

Σj =

∑T
t=1 γt(j)(ot − µj)(ot − µj)

′∑T
t=1 γt(j)

. (2.33)

In speech recognition, acoustic model training is usually done using a corpus
of speech annotated at the sentence level. For every sentence all phonemes of the
words in the sentence are strung together in a composite hmm on which Baum-Welch
re-estimation is performed using the corresponding audio sequence. This embedded
training procedure effectively performs audio segmentation and parameter learning.

2.2.7 Adaptation

Although the training and recognition techniques described in this chapter can pro-
duce high performance recognition systems when trained on a large corpus of speech
data, these systems can be improved by customising the hmms to the characteristics
of a particular speaker. By collecting data from a speaker and training a model
set on this speaker’s data alone, the speaker’s characteristics can be modelled more
accurately. Such systems are known as speaker dependent systems, and on a typical
word recognition task, may have half the errors of a speaker independent system.
The drawback of speaker dependent systems is that a large amount of data (typically
hours) must be collected in order to obtain sufficient model accuracy.

Rather than training speaker dependent models, adaptation techniques can be
applied. In this case, by using only a small amount of data from a new speaker, a
good speaker independent model set can be adapted to better fit the characteristics
of this new speaker. This can be done using maximum likelihood linear regression
(mllr) (Gales 1998), a technique that computes a set of linear transformations by
solving a maximisation problem using the em technique (that is discussed in 7.6.2).
These transformations will reduce the mismatch between an initial model set and the
adaptation data by shifting the means and alter the variances in the initial system
so that each state is more likely to generate the adaptation data.

Model adaptation can also be done using a Bayesian approach, in which the
speaker independent model parameters and the feature vectors in the adaptation
data are combined to estimate a new model set. To know how much the model
parameters should be changed by the data an occupation likelihood for the model
state is needed. This can be obtained by running the Viterbi algorithm. By inte-
grating the Bayesian adaptation approach in the Viterbi algorithm, the model set
can be adapted during recognition. Each time an utterance is recognised the system
is adapted a little more, so the system incrementally gets tailored to the speaker’s
voice.

2.3 Variations
Many variations on hmms have been proposed in literature. For example, a quick
scan of the proceedings of Interspeech 2006 (Interspeech 2006) resulted in a wealth of
new hmm-based models: Phone Vector dhmms (Kim et al. 2006), multi-path hmms

28

2.3. Variations

(Hämäläinen et al. 2006) to create syllable-level models. Hybrid hmm/Bayesian-
network models (Markov and Nakamura 2006) that allow the coding of speaker
characteristics in the output distributions (Sakti et al. 2006). Factorial hmms (Virta-
nen 2006), Trajectory hmms (Zen et al. 2006), Local Transformation Models (Miguel
et al. 2006), a multiple regression hidden semi-Markov model (Tachibana et al. 2006)
and a ‘state-dependent phonetic tied-mixture model with head-body-tail structured
hmm’ (Park and Ko 2006).

Such models typically try to change the mathematical properties of hmms. For
example Semi-hmms (Russell and Moore 1985), Inhomogeneous hmms (Ramesh and
Wilpon 1992) as well as the models of Sitaram and Sreenivas (1997) and Wang
(1997) all try to add state duration modelling to hmms (for an overview see Van
Dalen (2005)). Other variations make it possible to include additional information
in the model. For example, multi-stream hmms (Bourlard et al. 1996) have been
used to combine speech recognition and lipreading (Wiggers et al. 2002b).

More than anything else, the incredible number of variations on hmms signals
that the formalism has been stretched to its boundaries.

29

You know a word by the company it keeps.

J. R. Firth

Chapter 3

Language Modelling

In which an overview of the state of the art in language modelling is
given. The focus is on models that incorporate some context. Strengths
and weaknesses of different methods are discussed.

A recurring subtask in natural language processing is to judge whether a sequence
of words constitutes a well-formed sentence in a given language or similarly which
of a number of sentence hypotheses is syntactically and semantically most plausible.

As shown in the previous chapter a speech recogniser needs this information to
choose among hypotheses based on acoustic evidence. Optical character recognition
and handwriting recognition hypothesise sentences based on visual information (Hu
et al. 1996; Plamondon and Srihari 2000). In spelling correction one wants to identify
misspelled words (Mays et al. 1991) and in statistical machine translation the fluency
of sentences in the target language is rated (Brown et al. 1990).

Statistical language models fulfil this task by assigning a probability to every
word sequence in a language. The idea is that some word sequences are much more
likely than others because of syntactic, semantic and pragmatic constraints.

There are multiple ways to define the probability of a sentence, but commonly
the chain-rule of probability theory is applied to rephrase the task as assigning a
conditional probability to every word in a sentence given the words preceding it:

P(w1,t) = P(w1)P(w2|w1)P(w3|w1w2) . . .P(wn|w1,t−1), (3.1)

31

Chapter 3. Language Modelling

where wi is the i-th word in the sentence and w1,T = w1w2 . . .wT
1. Therefore,

language modelling is often described as predicting the next word in a sentence
given the history of words. As this formulation was first used by Shannon (1951) to
estimate the entropy of English, the task is sometimes referred to as Shannon game.
All the applications mentioned above face the difficult problem of reconstructing a
sentence from noisy input. Speech contains coarticulation effects and is distorted
by acoustic noise, while handwriting recognition has to deal with many different
handwritings. In spelling correction and machine translation noise comes in the
form of spelling errors and improper translations respectively. In each case, the word
history may provide valuable information as to how a hypothesis may continue.

To make this approach work one needs to find accurate probabilities. Based on
the assumption that past behaviour can be used to predict the future, i.e. the model
is stationary, the parameters of the model are usually estimated from a large set of
example sentences. As pointed out in section 1.2, no matter how large a data set is,
one cannot derive reliable probabilities for all possible word histories. As a solution,
independence assumptions are made that have the effect of grouping histories into
equivalence classes. As most word sequences never occur, it is reasonable to assume
that simplifications will not considerably weaken the model.

The art of language modelling thus lies in finding good equivalence classes. On
one hand the number of classes should be large enough to get sufficiently precise
classification on the other hand it should be small enough to ensure reliable param-
eter estimation, and to keep the amount of storage room used and time taken to
retrieve information within reason.

As will be shown in subsequent sections, independence assumptions in language
modelling are often quite strong. As the task of a language model is not exact
analysis of a sentence to judge its grammaticality, as in parsing, but rather to rank
sentences in order of likeliness, one can rely on rather simple models of language.
These models have the advantage that they can be trained from large amounts of
data and can implicitly capture linguistic knowledge.

The next section discusses methods that judge the performance of a language
model. The remainder of this chapter will give an overview of the most important
language models that have been proposed in literature, starting with the de facto
standard n-gram models and moving on to models that contain semantic or syntactic
information, which constitute the state-of-the art in language modelling.

3.1 Quality measures

To evaluate the quality of language models and to be able to compare competing
models several measures have been defined. Cross-entropy, perplexity and word error
rate are most commonly used.

1Equation (3.1) may suggest that the probabilities of sentences of a particular length sum to
one, but rather the sum of the probabilities of all sentences in the language should be one. We can
accomplish this by introducing an end-of-sentence symbol.

32

3.1. Quality measures

3.1.1 Cross-entropy
Given that we can think of a language model as a device that predicts the words
in a text we want it to assign a high probability to a test text. Therefore, we can
compare models by looking at the probability they assign to a common test text.
However, these probabilities, being the result of repeated multiplication, may get
very small, so that often the average log probability is used instead:

LP(w1,t) = −
1
t

log P(w1,t). (3.2)

This quantity is actually the cross-entropy from information theory (see e.g. Cover
and Thomas 1991), which measures how close a probability model q comes to the
real distribution p of some random variable X. It is defined as:

H(p,q) = −
∑
x∈X

p(x) logq(x). (3.3)

Unfortunately, for most phenomena p is unknown, but for a stationary and ergodic
language source2 and a large enough sample w1,t, the sample mean of the negative
log probability of a model will converge to its cross-entropy with the true model,
that is

H(p,q) = − lim
t→∞ 1

t
logq(w1,t). (3.4)

We can approximate this by applying (3.2) to a large data set. Cross-entropy can
be thought of as as the amount of surprise in seeing the text given our model. The
smaller the amount of surprise the better the model. Entropy is measured in bits3.
One of the nice properties of entropy reductions is that they are additive, which
allows for figures that are easy to interpret.

3.1.2 Perplexity
Rather than cross entropy language modelling literature often reports the related
perplexity measure:

PP(w1,t) = 2LP(w1,t). (3.5)

This is the geometric average of the inverse probability of the words measured on
the test data:

PP = t

√√√√ t∏
i=1

1
P(wi|w1,i−1)

, (3.6)

and can intuitively be thought of as the average number of choices a model has to
make. A uniform distribution over a vocabulary of |V | words would have perplexity
|V |.

2An ergodic process does not get stuck in some substate. As a consequence one can draw
conclusions about its statistical properties from a sufficiently large sample.

3To do so, we should use the logarithm with base 2 in the entropy formulas.

33

Chapter 3. Language Modelling

Perplexity and cross-entropy are both measures of the model and a data set. It
is thus essential that the test data is representative for the application in which the
model is to be used.

3.1.3 Word error rate

For speech recognition the quality of a language model can also be measured in terms
of word error rate (wer) either by including the model directly into a recogniser or
by rescoring n-best lists or lattices produced by a recogniser. Word error rate is
defined as the number of insertions, deletions and substitutions per 100 words when
the output transcription is aligned, according to a minimum edit distance (Wagner
and Fischer 1974), with the correct transcription. In literature the word accuracy is
often quoted. The word accuracy percentage is defined as 100% - wer.

As speech recognition experiments are computationally much more costly than
calculating perplexities one would hope that there is a strong correlation between
perplexity and word error rate, but as many find (Iyer et al. 1997; Chen et al. 1998;
Clarkson and Robinson 1999), this is not the case. One of the problems is that
perplexity does not take into account other factors such as acoustic confusability. A
high perplexity language model that is good at discriminating between acoustically
similar words might be better for speech recognition than a language model with
lower perplexity. The other problem with perplexity is that it does not penalise
unlikely hypotheses. It only measures how well a model does at predicting positive
examples. Despite these drawbacks perplexity remains the most commonly used
quality measure for language modelling.

3.2 n-grams

n-grams are the most common type of language model. They put all histories with
the same last (n − 1) words in one equivalence class. Put differently the model
equals an (n − 1)th order Markov model. The choice of n depends on the amount
of training data available, but things quickly get out of hand as the number of
potential n-grams scales exponentially with n. Therefore, the most common choice
of n is three. It turns out that, despite its simplicity, the resulting trigram model is
surprisingly powerful and hard to beat indeed. It is easy and efficient to train and
easy to include in a speech recogniser because of the sequential decomposition. This
allows for a minimal delay in response from the recogniser to the user. In addition,
because of the strong independence assumptions, trigrams are relatively robust in
the face of recognition errors.

However, the simplicity of trigrams, and of n-grams in general, is also their
greatest disadvantage: they are unable to model long-range dependencies between
words. As a consequence probability mass is incorrectly distributed over the space
of possible sentences. One can easily make up nonsense sentences that are plausible
in terms of n-grams, such as (1).

34

3.3. Smoothing

(1) The dog is sitting behind a keyboard and mouse is chased by the morning sun
is bright.

On the other hand correct sentences may get a lower probability than they should.
For example, in (2) the trigram probability of ‘lifted’ following ‘and white’ is likely
to be low.

(2) The plane, painted blue and white, lifted off.

The problem is of course that n-grams only use local information. As words may
not depend on the previous n − 1 words at all n-grams can unnecessarily fragment
training data. More advanced models try to address these shortcomings.

Before we move on to those models we will first discuss how to obtain the param-
eters of an n-gram. A simple solution is to count relative frequencies in a training
data set:

Pmle(wi|wi−n+1,i−1) =
C(wi−n+1,i−1wi)

C(wi−n+1,i−1)
. (3.7)

This is the maximum likelihood estimate (mle) of the n-gram probability. It max-
imises the likelihood of the training corpus and does not waste any probability mass
on things that are not in the data. In general maximum likelihood estimates as such
are not very suited for language modelling. The problem is that there is a small
number of n-grams that occur very frequently and a large number of n-grams that
may eventually occur but that will not show up in the training set. Experiments
conducted at ibm (Bahl et al. 1983) showed that 23% of the trigrams in a test set
never occurred in the 1.5 million word training set. The combined probability mass
of those rare n-grams is substantial and cannot be ignored. This is especially true
as according to equation (3.1) a single zero probability will make the probability of
an entire sentence zero.

Even for very large data sets the problem of unseen events is unavoidable, be-
cause the number of parameters typically exceeds the potential number of unique
trigrams in the data set by several orders of magnitude. For example, large data
sets currently contain about a hundred million words, whereas a small vocabulary
of 1000 words would already require the estimation of a billion parameters. Thus
rather than relying on relative frequencies directly one should use estimators that
allow for unseen events. Those will be discussed in the next section.

3.3 Smoothing
To overcome the problem of unseen events and unreliable counts from sparse data
a number of techniques have been developed that correct the bias of maximum
likelihood estimates by intelligently shifting around some probability mass. Such
techniques are often called smoothing techniques as they make distributions more
uniform. Discounting techniques do so by removing probability mass of observed
events and redistributing it over unseen events, while interpolation and backing-
off approaches combine several models of different granularity. When probabilities

35

Chapter 3. Language Modelling

are estimated from sparse data, smoothing techniques can significantly improve the
accuracy of the model. Chen and Goodman (1996) find that the relative performance
of techniques depends greatly on training data size and n-gram order.

3.3.1 Discounting

Discounting techniques remove some of the probability mass from the original counts
and redistribute the remaining probability mass over unseen events.

Additive smoothing

The simplest discounting method is to assume that every n-gram occurs δ times
more than it does, where 0 < δ 6 1.

Padd(wi|wi−n+1,i−1) =
C(wi−n+1,i−1wi) + δ

C(wi−n+1,i−1) + δ|V |
, (3.8)

where |V | is the size of the vocabulary. Often δ = 1 is used (Lidstone 1920; Jef-
freys 1948). This comes down to constructing a Bayesian estimator that assumes
a uniform prior on events (Manning and Schütze 1999). This specific instance is
sometimes called Laplace smoothing. Because there are so many unseen events, ad-
ditive smoothing typically assigns too much probability mass to unseen events and
the resulting estimates are linear in the mle frequencies that are typically incorrect
for low counts.

Held-out estimation

Rather than setting the probability mass of all unseen events to some constant, held-
out estimation (Jelinek and Mercer 1985) uses an empirical approach to find how
much of the probability mass should be assigned to unseen events. It counts how
often n-grams that appear r times in the training data appear in a held-out data
set. Let Nr be the number of n-grams that occur r times:

Nr = |{wi−n+1,i : C(wi−n+1,i) = r}| . (3.9)

Then the held-out estimate of r is:

rh =
1
Nr

∑
{wi−n+1,i|C(wi−n+1,i)=r}

Ch(wi−n+1,i). (3.10)

where the Ch(wi−n+1,i) are n-gram counts on the held-out data set.
Cross-validation is a related approach in which the training data is partitioned

in k subsets each of which is subsequently used as held-out set. The estimated
frequency is then found by taking the average of the held-out estimates.

36

3.3. Smoothing

Good-Turing discounting

Good-Turing discounting (Good 1953), the original idea of which is attributed to
Turing, does not need a held-out data set but instead states that to find the proba-
bility of events with zero or low counts we must look at the number of events with
higher counts. Let Nr as in (3.9) be the number of n-grams that appear r times.
The Good-Turing estimate of r (for r > 1) is:

rgt = (r+ 1)
E [Nr+1]

E [Nr]
. (3.11)

This quantity is obtained by calculating the expected value of the true unknown
probabilities of the n-grams given the counts from the training data. See Church and
Gale (1991) for a derivation. The model is based on the assumption that the events
have a binomial distribution. This is generally not true for n-grams, nevertheless
the method works well for large data sets with a large vocabulary.

For sufficiently large counts E [Nr] can be replaced by Nr, but for large r this
is typically not the case (and large counts are assumed to be reliable anyway), so
in practice Good-Turing is mainly used for n-grams with small counts. One of the
consequences of the model is that the estimate the count of n-grams we have never
seen is based on counts of n-grams we have seen once. The left-over probability
mass reserved for unseen events is N1

N (Gale and Sampson 1995).
Good-Turing estimates cannot deal with Nr = 0. Therefore, the Nr values

typically have to be smoothed to make sure that they are all above zero. However,
Good-Turing estimates are hardly ever used by themselves for n-gram smoothing
(except in textbooks) but do appear as a component in several more sophisticated
smoothing techniques.

Absolute discounting

Absolute discounting uses the simple strategy of subtracting a small constant from
all non-zero counts and redistributing the accumulated mass over unseen events:

rabs =

{
r−D if r > 0,
D
N0

∑
rNr if r = 0. (3.12)

The constant D can be estimated from held out data. Ney et al. (1994) suggest D =
N1

N1+2N2
. The intuition behind this method is that the estimates of high frequency

words are rather good. Removing a small amount of mass from those counts will not
change much. It can be shown that in practice absolute discounts are close to Good-
Turing discounts. Absolute discounting forms the basis of a number of successful
smoothing strategies.

3.3.2 Interpolation
Discounting methods typically assign the same probability to all unseen events, but
imagine that neither of the bigrams who are and who art occur in the training data.

37

Chapter 3. Language Modelling

Unless we are modelling the works of Shakespeare one would expect the probability
the first bigram to be higher than that of the second. We can get the desired
effect by taking the fact that are is a common word into account, i.e. by looking
at its unigram frequency. This is what deleted interpolation (Jelinek and Mercer
1980) does. It is based upon the idea that lower order n-grams can give valuable
information when estimating probabilities from sparse data. This information is
included through linear interpolation. For example instead of a trigram a weighted
sum of trigram, bigram and unigram probabilities is used:

P̂(wi|wi−1wi−2) = λ1P(wi|wi−1wi−2) + λ2P(wi|wi−1) + λ3P(wi). (3.13)

If not all words in the vocabulary occur in the training set one can also include a
uniform distribution over the vocabulary in the summation. Often a more general
scheme is used in which the weights themselves are a function of the history:

Pdi(wi|wi−n+1,i−1) =

λi−n+1,i−1P(wi|wi−n+1,i−1) + (1 − λi−n+1,i−1)Pdi(wi|wi−n+2,i−1). (3.14)

Different sets of weights are used for different contexts. A common approach is to
use the frequencies of frequencies to partition the data in a number of buckets. A
trigram with many samples should have a higher weight than a trigram with only
a few samples. Linear interpolation is not only used to combine n-grams, but is
often used to combine different language models. Such models are also referred to
as mixture models.

The weights of the model are found automatically using a held out data set. One
can do so using a version of the em algorithm, but for simple cases such as (3.13)
an analytical solution exists (Jelinek 1999).

3.3.3 Back-off models
Given enough evidence relative frequencies give very good probability estimates.
Back-off models implement this idea by using a set of component models. If there
is enough evidence the most detailed model will be used, otherwise a less specific
model is used instead.

Katz backing-off

Back-off models are typically defined by a recursive function. Katz backing-off, which
is commonly used in speech recognition systems, is the canonical form of backing-off:

PK(wi|wi−n+1,i−1) =

{
dwi−n+1,i−1(C(wi−n+1,i))

C(wi−n+1,i−1) if C(wi−n+1,i) > 0,
α(wi−n+1,i−1)PK(wi|wi−n+2,i−1) otherwise,

(3.15)
where d is a discounting ratio. Katz (1987) uses d = 1 for counts that are larger
than some constant k (e.g. k=5) assuming that the mle estimate for those counts

38

3.3. Smoothing

will be accurate. For counts in 0 < r 6 k, d is based on the Good-Turing esti-
mate. α is a normalising factor such that only the discounted probability mass is
distributed over n-grams estimated by backing-off and the total probability mass
equals 1. Backing-off models can be seen as a special case of the general formulation
of linear interpolation, that choose exactly one of the (discounted and normalized)
component distributions, i.e. one of the weights is 1 while the others are zero.

Witten-Bell smoothing

Witten-Bell smoothing uses the idea that one can think of an unseen n-gram as
one that simply has not yet occurred. To estimate the probability that a previously
unseen word occurs after a history wi−n+1,i−1 one can count the number of times a
new word occurred after this history in the training data:

T = |{wj : C(wj−n+1,j) > 0}| , (3.16)

which is simply the number of unique n-gram types starting with that history. The
Witten-Bell discount, which can be seen as an approximation of the probability that
a previously unseen word occurs after the history wi−n+1,i−1, is derived from this
count:

(1 − λwi−n+1,i−1) =
T

T +
∑

wi
C(wi−n+1,i)

, (3.17)

which is then used as an interpolation weight:

Pwb(wi|wi−n+1,i−1) =

λwi−n+1,i−1Pmle(wi|wi−n+1,i−1) + (1 − λwi−n+1,i−1)Pwb(wi|wi−n+2,i−1). (3.18)

One can interpret this as saying that if the probability that a unseen word will
occur after the current history is high, one should use the lower count, otherwise the
mle count will be reasonably accurate. Chen and Goodman (1996) find that this
estimator does not do as well as other smoothing techniques.

Kneser-Ney smoothing

Kneser-Ney smoothing (Kneser and Ney 1995) is an extension of absolute discounting
that estimates the parameters of the lower order distributions in such a way that the
marginals of the smoothed distribution match the marginals of the training data.
The intuition behind the technique is that the influence of lower-order distributions
is only important if few or no counts are present in the higher-order distributions.
Therefore, the lower order counts should be optimised for those situations.

Kneser-Ney smoothing looks at the number of contexts a word appears in rather
than at the number of times a word appears to create a backed-off distribution. This
can be motivated by looking at common words that only occur after a single word.
Chen et al. (1998) use San Francisco as an example. Most smoothing techniques
will assign a relatively high probability to bigrams ending with Francisco based on

39

Chapter 3. Language Modelling

its high unigram count. But in fact the original bigram counts were much more
accurate.

The original model was formulated as a back-off model, but Chen et al. (1998)
show that the interpolated version of the model, defined by

Pkn(wi|wi−n+1,i−1) =
max (C(wi−n+1,i) −D, 0)

C(wi−n+1,i−1)
+ λwi−n+1,i−1Pkn(wi|wi−n+2,i−1),

(3.19)
where

λwi−n+1,i−1 =
D

C(wi−n+1,i−1)
|{wi : C(wi−n+1,i) > 0}| , (3.20)

generally yields better performance. Arguing that ‘the ideal average discount for
n-grams with one or two counts is substantially different from the ideal average dis-
count for n-grams with higher counts’ they also introduce a variation called Modified
Kneser-Ney smoothing that uses three different discount parameters. They find that
Interpolated and Modified Kneser-Ney are superior to other smoothing techniques
across training data size, corpus types, n-gram order and across clustering techniques
(Goodman 2000).

3.4 Distant n-grams
If one uses longer histories to predict a word, the probability of seeing the exact
same context gets smaller, but on the other hand the probability of having seen a
similar context becomes larger. Distant n-grams predict the probability of the next
word based on n− 1 words that are some distance back in the history. For example
in the sentence the dog jumped and barked the word dog is much more predictive for
the word barked than and. By themselves distant n-grams are less powerful than
n-grams but the combination of those models can realise better perplexity and word
accuracy than either of the approaches alone (Rosenfeld 1994; Siu and Ostendorf
2000).

By combining low-order distant n-grams one can get a performance similar to
a higher order n-gram. This can be a useful strategy for small amounts of data.
Goodman (2000) systematically explores many different combinations of distant n-
grams and finds that with a combination of distant bigrams up to n = 5 one can
approximate a trigram. Like n-grams, distant n-grams are position-bound. In
addition, they put training instances that contain exactly the same words but have
different distances in different equivalence classes. They thus unnecessarily fragment
training data.

3.5 Class-based language models
Class-based models map the words in the vocabulary on a smaller number of classes
and then calculate n-grams over those classes rather than over the words themselves.

40

3.6. Cache-based language models

There are several ways in which the probabilities can be defined, but the most
commonly used scheme predicts the current class based on the preceding classes and
the current word based on the current class:

P (wi|wi−1wi−2) = P (wi|K(wi))P (K(wi)|K(wi−1)K(wi−2)) , (3.21)

where K(wi) is the class of word wi. Different types of classes have been used,
including part-of-speech tags and manually constructed classes of words that are
semantically or syntactically similar, such as days of the week or numbers, or ap-
plication specific classes. The best performance is typically obtained with classes
that are automatically generated using some form of clustering (Brown et al. 1992;
Kneser and Ney 1993; Ueberla 1995; Niesler et al. 1998; Gao and Goodman 2002).
Some models allow words to belong to more than one class. The class then becomes
a hidden variable.

As the number of possible histories is greatly reduced, class-based models have
fewer parameters than their word-based counterparts4. As a result the parameter
estimates are much more reliable and the models are smaller and faster. The biggest
advantage of class-based models is that they can generalise over histories: they
can predict the probability of unseen events by assuming that they are similar to
observed events.

The drawback is that the models are less specific than word models. Compared
with n-grams they lose information. This problem can be overcome by combining
the class-based model with a word-based model to get the best of both worlds. It has
been shown that those mixed models can decrease both perplexity and word error
rate especially in situations where limited amounts of training data are available
(Jelinek 1990; Niesler and Woodland 1996; Kneser and Steinbiss 1993; Heeman 1999;
Samuelsson and Reichl 1999; Goodman 2000). Like n-grams class-based models
cannot model long-distance dependencies.

3.6 Cache-based language models

The language models described so far all have fixed parameters based on training
data. However, data analysis shows that if a word is used it is more likely to occur
again than a standard n-gram would predict (Rosenfeld 1994). This notion that
words occur in bursts is captured by cache-based models.

Caches are typically implemented by keeping a list of the previous k words.
Probabilities are computed as the relative frequency of the words within the cache.
The resulting distribution is then interpolated with a standard n-gram. Cache-based
models were first described by Kuhn and de Mori (1990). They added caches to a
class-based model. For every part-of-speech they maintained a separate 200 word
cache. They realised a 14% decrease in perplexity over their baseline class-based
model.

4Unless, of course, n = 1 or the number of clusters equals the vocabulary size.

41

Chapter 3. Language Modelling

Others have added caches to word based models (Iyer and Ostendorf 1996) and
used probabilities of recently occurring bigrams and trigrams (Jelinek et al. 1991).
However, the performance gain compared with unigram caches has been little, which
is likely because the estimates for the resulting probabilities are not reliable.

It has also been noted that the probability of word reappearance again decreases
with increasing distance. This has been implemented with decaying caches (Clarkson
and Robinson 1997).

Although cache-based models have been shown to achieve large perplexity reduc-
tions this does not translate in word error rate reductions. The problem is that the
cache contains previously recognised words. If those are incorrect then the proba-
bility that the word will be recognised incorrectly again the next time it is heard
increases.

3.7 Triggers
Cache-based models do not capture dependencies within a sentence. For example,
one would expect the occurrence of a word not only to increase the probability
of itself reoccurring, but also of semantically related words. Trigger-based models
(Rosenfeld 1994) extend the idea of cache-based models to deal with such dependen-
cies. The model defines the concept of a trigger pair: if the first word of the trigger
pair occurs in the word history then the probability of the second word is increased.
As the potential number of trigger pairs is huge (the square of the vocabulary size),
a mutual information criterion is used to select trigger pairs. It turns out that the
largest performance gain is obtained from self-triggers and same-root triggers, so
there is little improvement over a cache-based approach. Rosenfeld reports that for
two thirds of the words in the training set the highest mutual information trigger
was the word itself and for 90% of the words the self-trigger was among the top 6
triggers. One might expect that word-stem triggers work better than word triggers,
but Rosenfeld found that this gives little improvement.

A maximum entropy approach is typically used to combine triggers with n-grams
and distant n-grams to capture both local and long distance information. Some of
the largest perplexity reductions reported in literature have been realised with such
models (Rosenfeld 2000).

3.8 Latent semantic analysis
Multi-span language models (Bellegarda 1998) make use of techniques developed in
information retrieval to capture long-distance semantic relationships, in particular
a paradigm called latent semantic analysis (lsa) (Baeza-Yates and Ribeiro-Neto
1999). lsa represents documents as well as the words in these documents as vectors
in a low-dimensional space.

An important property of this space is that words whose vector representations
are close tend to appear in the same kind of documents and documents that appear

42

3.8. Latent semantic analysis

close tend to contain semantically similar content. As a consequence words and
documents that are semantically linked also are close in this space. In language
modelling training data is used to assign a vector to every word. When calculating
the probability of a sentence, the word history is interpreted as a document for which
a vector is constructed as well that is used to calculate the distance to all words in
the vocabulary. A probability distribution is then found by normalising distances
in such a way that the total probability mass is one. Alternatively, the cosine
distances are raised to a power (optimised on held-out data) before normalising,
as normalised cosines typically have a much smaller dynamic range than n-grams
(Coccaro and Jurafsky 1998). Obviously, this approach requires that the training
data is partitioned in semantically homogeneous documents (where documents can
for example be sentences or articles).

Coccaro and Jurafsky (1998) use a slightly different model. They only consider
word vectors and combine the vectors associated with every word in the history to
obtain a centroid in vector space.

The multi-span model is similar to the trigger-based model in that it models
long-distance semantic dependencies between words, but unlike the trigger-based
model it does not require explicit trigger-pair selection. Furthermore, the model
can also find indirect relations between words that never actually occur in the same
documents in the training data, but that do occur in similar contexts.

The model does not use any syntactic or position information at all. Therefore
it is a poor language model as such. But the information contained in it is largely
complementary to the information in a standard n-gram model. Bellegarda (1998)
proposes a Bayesian combination of lsa models (as a global prior) and n-grams that
performs better than either of the models alone. The best models, that also employ
clustering in vector space as a means of smoothing, realise a relative decrease of 30%
in perplexity. Coccaro and Jurafsky (1998) combine the model with an n-gram using
a geometric mean rather than a linear combination, which gives a high probability
if both models agree and a low probability if either one of the components assigns a
low probability to a word. The contributions of the component models are weighted
by the entropy of the frequency of a word in the training corpus. It makes sure that
for common words, which will have a high entropy, the n-gram will provide most of
the probability mass.

The lsa model is a bag of words model, all words in the history have an equal
amount of influence. As argued above the influence of words decreases with distance.
Zhang and Rudnicky (2002) introduce distance weighting in the model. They use
three lsa models that take different amounts of history into account, respectively
at the document, paragraph and sentence level. The models are combined together
with a standard trigram using a softmax neural network. The model does better in
terms of perplexity than a trigram model and than a standard lsa model. However,
the perplexity did not increase much if document and sentence level models were
left out of the combination. So, one might wonder whether it is not just a case of
finding an optimal length for the part of the history being used.

43

Chapter 3. Language Modelling

3.9 Mixture models

Language use may vary greatly in terms of style and topic. This information is lost
in standard language models that calculate global statistics over a heterogeneous
data set. Mixture models try to recover this information by identifying subsets in
the data for which specific models are build. Modelling thus starts with partitioning
the data for example using a manually tagged data set or some form of automatic
clustering (Clarkson and Robinson 1997; Gotoh and Renals 1999). Soft-clustering
may be used, where a document may belong to more than one cluster.

Then for each subset a n-gram model is trained. Those models are then combined
using linear interpolation, where weights are trained on held-out data (Kneser and
Steinbiss 1993):

P(wi|wi−n+1,i−1) =

m∑
k=1

λkPk(wi|wi−n+1,i−1). (3.22)

The number of components is once again a balance between specificity and re-
liability. If too many components are used, individual models will be trained on a
sparse data set and memory and computational requirements will be increased. The
model may run in to trouble if the topics in the test data differ from those in the
training data. Inclusion of the global model as a component in the mixture may
partially overcome this problem.

Sentence level mixtures (Iyer and Ostendorf 1996) combinem component models
at the sentence level rather than at the n-gram level. Each component contains the
n-gram statistics of a specific topic or a broad class of sentences. Probability of a
word sequence is given by:

P(w1,T) =

m∑
k=1

λk

[
T∏

i=1

Pk(wi|wi−n+1,i−1)

]
. (3.23)

They use agglomerative clustering, with a similarity measure based on the com-
bination of inverse document frequencies, at the article level. The initial n-gram
parameter estimates are based on this partitioning and are subsequently iteratively
re-estimated using the expectation-maximisation algorithm (see section 7.6.2) using
all data for all topics to obtain a soft clustering. To avoid zero entries Witten-Bell
smoothing is incorporated in the re-estimation. To further deal with fragmentation
of the training data (components may suffer from data sparsity) they interpolate
the topic specific models with a general model at the n-gram level and to account
for non-topic sentences a global model is included in the mixture in addition to the
m components:

P(w1,T) =

m,G∑
k=1

λk

 ∏
i=1,T

θkPk(wi|wi−1,i−2) + (1 − θk)PG(wi|wi−1,i−2)

 . (3.24)

44

3.10. Topic-based language models

The weights λk and θk are re-estimated using held-out data. Furthermore a sepa-
rate content word cache for all component models is used. The unadapted mixture
model is reported to reduce perplexity by 22% over the unadapted trigram language
model. The dynamic cache resulted in an additional 14,5% perplexity reduction.
The mixture models gave a 3% – 4% reduction in wer. Adding caches gave little to
no additional improvement.

In those initial experiments only a small number of sentence mixtures was used
but Goodman (2000) found that a large number of mixtures (up to 64 for a data set
of 284,000,000 words) can work even better. The approach works especially well for
larger training sets.

3.10 Topic-based language models
Mixtures provide a way to encode topicality in a language model, but other models
have been proposed. Mahajan et al. (1999) avoid predefined clustering of the data.
Instead, they construct a topic specific language model on the fly by comparing the
history with documents in a database using a tf-idf-measure (see chapter 10) and
selecting the k highest ranked documents to train a language model on which is then
combined with other components such as a trigram and a cache-based model.

Gildea and Hofmann (1999) consider the topic to be a latent variable according
to:

P(wi|wi−n+1,i−1) =
∑

t

P(wi|t)P(t|wi−n+1,i−1), (3.25)

where t is a topic. The number of values t can take is predetermined and the model
is trained using the expectation maximisation algorithm. For testing the P(t|d)
that is the probability of a topic given the document are omitted and instead the
weights P(t|h) are estimated on the history so far using a single iteration of an
online variation of the em algorithm. The probabilities are combined with n-gram
probabilities under the assumption that both models deliver marginal probabilities
that should be preserved under the combined model:

P(wi|hi,wi−n+1,i−1) ≈ P(wi|hi)P(wi|wi−n+1,i−1)P(wi). (3.26)

Although this assumption clearly does not hold (hi and wi−n+1,i−1 are not in-
dependent) the authors show that it yields better results than linear or log-linear
interpolation of both models. The model has lower perplexity than lsa language
models, but it does not achieve a significant word error rate reduction. However, a
results analysis in terms of word frequencies suggests that ‘the model may be able
to help on content words’.

Khudanpur and Wu (1999) investigate the idea that many words and word n-
grams do not really depend on a topic and one should not unnecessarily fragment
training data. They include topic specific unigrams in a maximum entropy model
along with topic independent n-gram constraints. Topics are found by automatic
clustering. Words whose unigram frequency in a cluster significantly differs from its

45

Chapter 3. Language Modelling

frequency in the whole corpus are seen as topic related words. During testing the
topic of a conversation is determined from the 10-best hypotheses found in a first
recognition pass. The maximum entropy model is then used for rescoring.

3.11 Whole sentence models

Unlike all the other models discussed in this chapter these models do not use the
chain rule to decompose the probability of a word sequence, but treat the sentence as
a whole. This way sentence level features, such as the coherence or grammaticality
of a sentence can be used as can external influences from preceding utterance or
from pragmatic or dialogue levels. These features are incorporated in a maximum
entropy framework (Rosenfeld 1994). Unfortunately, exact training of these models
is intractable and methods such as Monte Carlo sampling have to be used.

3.12 Tree-based language models

Tree-based language models use binary decision trees to partition the history in
equivalence classes. At every node in the tree a yes/no question about the word
history is asked, the answer determines the path taken down the tree. At each leaf
of the tree a probability distribution is defined over all the words in the vocabulary.
The strength of the tree-based approach is that any question about the history can
be asked, so an optimal equivalence classification can be encoded (Jelinek 1999).
However, the space of possible questions is too large to be searched exhaustively.
Therefore, in practice simplifications of the model are used (Bahl et al. 1989). Tree-
building algorithms are usually greedy and not guaranteed to find the optimal tree.
Furthermore, irrelevant questions or the wrong order of questions may unnecessarily
fragment training data. The leaf distributions are typically sparse and have to be
smoothed.

3.13 Grammar-based models

Grammar based models incorporate linguistic constraints in the language model in
order to assign most of the probability mass to syntactically plausible sentences.

They use the syntactic structure of the sentence seen up to a certain point to
extract meaningful information from the word history to predict the likelihood of the
next word in the sentence. Unlike n-grams these models are not position bound, but
can capture long distance relations between words, using grammar rules to identify
the words in the history that are relevant in the prediction of a word.

Many grammar based language models and statistical parsers that can be used
as such have been developed (Black et al. 1992; Charniak 1993; Magerman 1995;
Stolcke 1995; Collins 1996; 1997; Charniak 1997; Chelba and Jelinek 1998; Roark
and Johnson 1999; Collins 1999; Charniak 1999; 2001; Chelba 2000; Roark 2001;

46

3.13. Grammar-based models

Uytsel et al. 2001). Different parser types and grammar formalisms have been used,
but most are based on or related to probabilistic context-free grammars that will be
introduced next. Subsequently, the most representative and successful examples of
grammar-based language models will be discussed.

3.13.1 Probabilistic context free grammars

In linguistics it is generally assumed that words group together in phrases, called
constituents, that themselves can group in to bigger phrases, subsentences and sen-
tences. Constituents display complex recursive interaction. To capture this gram-
mars are used. Context free grammars for example consist of rules that specify how
a constituent can be expanded into a sequence of smaller units.

For language modelling (and for statistical parsing) we need to assign probabili-
ties to sentences. Probabilistic context free grammars (pcfgs) simply extend context
free grammars by assigning probabilities to rewrite rules. Formally, a probabilistic
context-free grammar consists of (Manning and Schütze 1999):

• A set of terminals (words) wk ∈ V, where V is the vocabulary.

• A set of non-terminals {Ni}.

• A start symbol N1.

• A set of rules R = {Ni → λj} , where λj is a sequence of terminals and non-
terminals .

• A set of probabilities corresponding to these rules. Each rule has a probability
attached to it and the probabilities of all rules with the same non-terminal at
the left-hand side sum to one, i.e. ∀i

∑
j P(N

i → λj) = 1.

The probability of a rule can be interpreted as the probability that the production
Ni → λj is chosen given that Ni will be expanded. The rule probabilities are thus
conditional probabilities.

The set of all possible strings that can be generated by the grammar is called
the language L. The grammar specifies how the start symbol can be expanded into
a string from this language.

The probability of a parse can be found by calculating the joint probability of
all the rewrite rules that have been used to build the tree. To find this probability
a number of independence assumptions are made:

1. Place invariance: The probability of a constituent does not depend on where
in the string the words it dominates are.

∀k, l P(Nj
k,l → λj) = P(Nj → λj). (3.27)

47

Chapter 3. Language Modelling

2. Context-free: The probability of a constituent does not depend on words not
dominated by the non-terminal.

P(Ni
k,l → λj|anything outside k through l) = P(Ni

k,l → λj). (3.28)

3. Ancestor-free: The probability of a subtree does not depend on nodes in the
derivation outside the subtree.

P(Ni
k,l → λj|any ancestor nodes outside Ni

k,l) = P(Ni
k,l → λj). (3.29)

Typically, there are several ways in which a sentence can be parsed. The probability
of a sentence (according to the grammar G) is given by the sum of all possible parses
for the sentence:

P(w1,n) =
∑
T

P(w1,n, T). (3.30)

An efficient algorithm, called the inside algorithm, similar to the forward algorithm
for hmms, exists that finds the probabilities of all parses of a sentence.

As pcfgs provide a probability for each string in a given language and these
probabilities sum to one, they can be used as language models for applications such
as speech recognition and indeed have been (Jurafsky et al. 1995). However, as
such they are very poor language models and are not capable to improve upon the
simpler n-gram models. The problem here stems from the very nature of pcfgs,
the context-freeness assumption. In a pcfg the probability of a word only depends
on its pre-terminal, i.e. its pos-tag. Thus the probability of the word ‘apple’ only
depends on the fact that it is a noun and as the probabilities of all words that can
be a noun should sum to one it may have a relatively low probability. A bigram
model on the other hand may assign a higher probability to the word ‘apple’ given
that the previous word is ‘green’. It thus includes some notion of context, however
crude it may be.

Including lexical knowledge in the model may (partially) solve this problem.
This can be done by associating a headword (and possibly a pos-tag) with each
non-terminal in the parse tree. Intuitively, the headword of a constituent is the
most important word in a constituent. A non-terminal inherits its lexical head from
one of its children, while the other children are modifiers to the head child. The
grammar rules become of the form:

Ni(nh) → Nj(nj) . . .Nh(nh) . . .Nk(nk), (3.31)

where nh is the headword of the constituent. This leads to an explosion in the
number of rules making direct estimation of rule probabilities infeasible due to data
sparseness. Therefore some form of decomposition of the rule probability is usually
needed.

In theory a pcfg can be learned from a sample of language using an incarnation
of the em algorithm called the inside-outside algorithm. The basic idea is to gen-
erate all possible production rules with some initial probabilities and then run the

48

3.13. Grammar-based models

training algorithm, which will hopefully assign zero probability to impossible rules,
and relatively high probabilities to the rules of the ‘correct grammar’.

However, this scheme does not work very well due to a number of reasons. For
starters, there is no bound to the possible number of rules in the grammar, as one
can indefinitely add non-terminals to the right hand side of a rule. Another problem
is that the iterative inside-outside algorithm might get stuck in a local maximum
during training. As a matter of fact it is highly unlikely that the optimal solution
will be found. Charniak (1993) reports an experiment where each of 300 trials
of grammar induction produced a different grammar, none of which resembled a
grammar as a human would design it. Even if the initial grammar is restricted to
certain rules training may completely change the meaning of non-terminals as the
only hard constraint in the definition of pcfgs is that the top of a parse tree should
be the start symbol N1.

So, for practical applications usually examples are given of what parse trees
should look like. This can for example be done by bracketing, that is indicating
which part of a sentence should form a constituent, for example (the man (patted
(the dog))). One can take this one step further by also including non-terminal
annotation in the training data, showing complete parse trees. Collections of such
trees are called treebanks. The Penn Treebank is most widely used for English.

When using a treebank training becomes very simple: one just has to count the
frequencies of local subtrees and normalise those to get probabilities. The disadvan-
tage of this approach is that the grammar can only handle rules seen in the training
data; it cannot generalise.

3.13.2 The structured language model

The structured language model (slm) of Chelba and Jelinek (1999) is based on a
shift-reduce parser (Allen 1995) but has been specifically designed as a language
model for speech recognition.

The syntactic structure is developed incrementally in the shape of bottom-up
partial parses with headword annotation while traversing the sentence in a left-
to-right manner. The model can thus be used for the decoding of word lattices.
The model operates by means of three modules that ensure that all possible binary
branching parses with all possible headwords and non-terminal label assignments for
the word sequence w1 . . .wk can be generated:

1. The word-predictor predicts the next word wk+1 given the partial parses
and then passes control to the tagger.

2. The tagger predicts the pos-tag tn+1 of the next word given the left context
and the newly predicted word and then passes control to the parser.

3. The parser grows the already existing binary subtrees by repeatedly shifting
new nonterminals onto the stack or combines the top-most elements of the
stack (reduce) into a new subtree that gets its headword either from the left or

49

Chapter 3. Language Modelling

from the right. The parser stops if no more operations are possible and then
passes control back to the predictor.

Each of the components have a conditional probability attached to it. The left-
context is the collection of those binary subtrees whose span is completely included
in the word history. For the word-predictor the independence assumption is
made that the word to be predicted only depends on the identities of the headwords
of the two previous binary subtrees not yet included in a bigger constituent. Word
prediction in an slm is thus similar to a trigram. If the binary branching structure
would always be right-branching and all pos-tags and non-terminal labels would be
mapped to a single type, the model would be equivalent to a trigram. The parts of
the left-context used by the tagger are the pos-tags of the headwords of the previous
two subtrees.

As the number of possible parses for a given word prefix wk grows exponentially
with k, a multistack algorithm resembling a beam-search is used. Each stack con-
tains the partial parses constructed by the same number of predictor and parser
operations.

The language model probability of the next word wk in the sentence is found by
summing over all parses on all stacks with k predictions.

Parameter re-estimation cannot be done using dynamic programming. Instead a
variation of the em algorithm is used that uses the count of model actions based on
the derivations of the n-best hypotheses to redistribute probability mass.

The model has been shown to outperform the trigram model in terms of per-
plexity on the UPenn treebank corpus. The data used in these tests was made more
‘speech-like’ by removing punctuation and capitalisation and replacing all but the
10000 most common words with <unk> and using a single symbol for all numbers.
A further improvement was achieved by interpolating the model with a trigram.

3.13.3 Probabilistic top-down language model

Roark (2001) notes that bottom-up parsers such as described in the previous section
typically produce partial derivations that consist of unconnected tree fragments.
Therefore, it might assign probability mass to tree fragments that cannot be part of
a sentence generated by the grammar.

He proposes to use a top-down probabilistic parser that creates rooted trees
built from left to right, thus allowing the calculation of probabilities for prefix-
strings w1w2 . . .wi of all sentences in the grammar. Unlike the slm this is a true
probabilistic parser although it has been developed with language modelling in mind.

Roark points out that top-down guidance may improve the efficiency of the search
as more and more conditioning events are extracted from the derivation for use in the
probabilistic model. The rooted and fully connected partial derivations produced
by the top-down parser ensure that all of the conditioning information that may
be extracted from the top-down left-context is already specified. This gives an
interesting analogy with human language understanding, as psychological evidence

50

3.13. Grammar-based models

suggests that humans incrementally build a syntactic and semantic interpretation
while listening or reading.

The model starts with a left-factored pcfg, so that all productions are binary,
this way predictions about what non-terminals are expected later in the string are
delayed until more of the string has been seen. Normally in top-down parsing a
parent node and the rule expanding it are announced before any of its children, the
result of left-factoring is that the parent is identified before its children, but the rule
expanding the parent is known only after all of its children are known.

To choose which events in the left context should be used to condition on, func-
tions are used that take the partial tree structure as an argument and return a value,
upon which the rule probability can be conditioned.

The functions chosen by Roark ‘follow from the intuition (and experience) that
what helps parsing is different depending on the constituent that is being expanded’
(Roark 2001, p. 295) All functions return either parent or sibling node labels of some
specific distance from the left-hand side or head information from c-commanding
constituents5.

When a production is conditioned upon the headword of the constituent, given
the left-to-right orientation, this head has often not yet been encountered. In such
a case, the head of the last child within the constituent is used as a proxy for
the constituent head. All conditional probabilities are estimated using empirically
observed relative frequencies and are smoothed using deleted interpolations.

The parsing algorithm is based on a beam search. As a consequence the prefix-
probabilities found are not exact probabilities as they are based only on the parses
that are found and the corresponding language model is thus not proper as the sum
over the vocabulary is less than one. The running time of the parser is polynomial.

Tests showed that the accuracy of the parses is improved when conditioned on
more information. It was found that the addition of c-commanding heads has only
a moderate effect on the parser accuracy, but a very large effect on the perplexity.
Perplexity tests showed that the model does slightly better when used as a language
model than the model of Chelba and Jelinek (1998). More improvement is obtained
when the model is interpolated with a trigram model, which suggests that the trigram
model contains information orthogonal to that of the grammar model. When used
as a language model interpolation with some other model is necessary anyway (in
this case a unigram was used) since the parser may garden-path which results in a
part of the string that receives no probability estimate. Rescoring test on speech
recogniser output n-best list showed a 1.7% absolute reduction in word error rate.
It is suggested that this modest result stems from the fact that the model relies
heavily on grammatical context, which makes it difficult for the model to recover
from recognition errors. This once again shows the need for robust language models
that can handle partially ungrammatical input.

5A node A c-commands a node B if and only if A does not dominate B and the lowest branching
node that dominates A also dominates B.

51

Chapter 3. Language Modelling

3.13.4 Immediate-head parsing language models

In (Charniak 2001) it is noted that all of the most accurate statistical parsers are
lexicalised and are all of what Charniak calls the immediate-head type, i.e. the
properties of the immediate descendants of a constituent are assigned probabilities
that are conditioned on the lexical head of this constituent. Furthermore most of
these parsers are generative, making them suitable in theory to be used as a language
model for speech recognition.

However, parsing models that have been utilised as language models for speech
recognition such as those described in the previous sections, are not of the immediate-
head type, but parse left-to-right, which has the advantage that it can give guidance
to the acoustic search process and it allows for interpolation with trigram models.
Charniak argues that the latter reason is only valid as long as the interpolated
model is better than a stand-alone grammar model and that left-to-right parsing
with immediate-head information might be possible by revising probabilities once
more knowledge is available. The use of the superior immediate-head parsers may
then improve language model perplexity and speech recognition accuracy. Although
the paper does not solve the second problem it shows how to extend a statistical
parser to include trigram-like information.

A generative probabilistic model is used to calculate the probability of a sentence
(Charniak 1999). The constituents in a parse tree are considered top-down head-
first. First the pos-tag t (corresponding to the headword) of the constituent c is
generated, followed by the lexical head h and the expansion e of the constituent:

P(S, T) =
∏
c∈T

P(t|l,H)P(h|t, l,H)P(e|h, t, l,H). (3.32)

Where l is the non-terminal label of the constituent and H captures the relevant
history of c (may differ for each of the three components).

Unlike the previous model, that obtained the probabilities of the production rules
directly from the treebank, this model adopts the scheme defined by Collins (1997)
for expansion of a constituent. In general this scheme can be seen as a Markov
grammar that assigns probabilities to any possible expansion. The expansion e of a
constituent with label l looks like:

l→ Ln+1Ln . . .L1MR1 . . .RmRm+1, (3.33)

where Ln+1 and Rm+1 are stop symbols and M is the head-child. The probability of
this production can now be decomposed in many ways, among which the use of kth

order Markov assumptions that would condition the generation of a modifier upon
the k previously generated labels.

To test this hypothesis the parser described in the previous section was trained
on similar data as the slm of Chelba and Jelinek (1998; 1999), i.e. a ‘speechified’
version of the UPenn-treebank and its results were compared with a trigram and the
left-to-right models of Chelba and Roark.

52

3.13. Grammar-based models

The model outperforms earlier models; after interpolation with a trigram it out-
performs the grammar alone model and previous interpolated models. However
interpolation is at the sentence level as interpolation at the word level is not possi-
ble.

Analysis of the results revealed that the trigram model does better on noun-
phrases like ‘Monday night football’. This can be incorporated in the grammar model
by conditioning also on the grandparent node, which has the result of conditioning
on two previous words, like the trigram does.

This immediate tri-head model gave a further improvement (14% over the pre-
vious best model). The performance is better than that of interpolated models,
however interpolation results in further improvement. This is due to the fact that
the cases where the trigram model does better are often those cases where the parser
fails. Thus improvement of the underlying parser should improve the model’s per-
plexity further.

The superior parsing performance of immediate-head parsers also carries over
to speech recognition language models and much of the knowledge incorporated in
trigram models can be thus captured within a grammar model. This makes such
a model particularly suited for rescoring of word lattices in a multi-pass speech
recogniser. However, for tight integration with the acoustic models a way should
be found to enable forward parsing, i.e. to generate the words in the sentence from
left-to-right.

53

“So this is our ranking system,” said Chomsky. “As you
can see, the highest rank is yellow.”
“And the new ideas?”
“The green ones? Oh, the green ones don’t get a colour
until they’ve had some seasoning. These ones, anyway, are
still too angry. Even when they’re asleep, they’re furious.
We’ve had to kick them out of the dormitories — they’re
just unmanageable.”
“So where are they?”
“Look,” said Chomsky, and pointed out of the window.
There below, on the lawn, the colourless green ideas slept,
furiously.

Flash fiction, Hugh Cook

Chapter 4

Sources of Knowledge

In which types of knowledge that can be of use for speech and language
processing are investigated from a theoretical point of view. A definition
of what we mean by context is given.

The first time one is confronted with the solution to speech recognition outlined
in the previous chapters, the reaction may be one of amazement. Surprise that all
there is to it is collecting a bunch of statistics over acoustics and word combinations.
The knowledge of language incorporated in speech recognisers remains limited to
the lexicon that encodes how words are pronounced. In fact, this thesis grew out of
that amazement.

A closer look at these statistical models reveals that they implicitly capture many
of the phenomena of language, e.g. triphones capture coarticulation, the lexicon
may contain information on pronunciation variation and n-grams capture many
important syntactic and semantic collocations and idioms. If anything, the statistical
approach to speech recognition is a tribute to the beauty and power of mathematics.
Nevertheless, the feeling that there is much unused but potentially useful knowledge
available remains. Not only theoretical knowledge of language, but also in the form
of information in the environment of a running speech recogniser. Is there no way in
which we can benefit from that information to get closer to the goal of human-like
speech recognition?

55

Chapter 4. Sources of Knowledge

Figure 4.1 – Context in speech and language processing.

In this chapter we hypothesise that this is the case. That information provided
by the context can be of use in speech and language processing. The chapter starts
by defining what we mean by context. Subsequently, we borrow from the fields of
linguistics, psychology and sociolinguistics to investigate which information can be
of use in speech recognition.

4.1 Context

In chapter 2 speech recognition was introduced as the task of mapping an audio
signal to a sequence of words. However, when a speech recogniser or for that matter
any language processing system is used it never runs in isolation. Figure 4.1 shows a
language processing system in context. Typically, the language processor functions
as a front-end to some application. This can be a very specific application such as a
dialogue system that provides access to a database or it can be as general as a word
processor. The application will have several other components, some of which may
interact with the speech recogniser. In particular, there may be other components
that act as an interface to the user, such as keyboard and mouse, but also recognition
of facial expressions or gestures.

Obviously, the context includes the user or a group of users. Users may interact
directly with the speech recogniser, e.g. with a dictation application or the users may
interact with each other and the speech recogniser records the interaction, as is the
case when transcribing television broadcasts or business meetings. In either case we
can talk about a conversation, be it a conversation among users or a conversation
between a user and the system. The latter includes the situation where the user
engages in a monologue and the computer only listens. Finally, the environment

56

4.1. Context

surrounding the system and its users can be relevant for the speech recogniser as
users may be referring to items in their immediate surroundings or for example talk
about the news of that day. Based on this discussion we will subdivide context in
three sources of knowledge:

1. User knowledge.

2. Conversational knowledge.

3. World knowledge.

We will now take a closer look at each of these knowledge sources and discuss if
and how they can be of use for speech recognition. The focus will be on recognising
spontaneous speech, as this is the most general instance of the problem and also the
task that is most likely to benefit from contextual knowledge because it has little
restrictions on its vocabulary and users are often not aware of the presence of a
speech recogniser.

4.1.1 User knowledge
Speech characteristics differ per person. The sound of our voices is determined by
the physiology of our vocal tracts and we all have our habits when picking the words
to formulate a thought. This is why person-dependent speech recognition is so much
easier than person-independent speech recognition and why so much effort in speech
recognition research has gone in techniques for user-adaptation.

However, sociolinguistic research has shown that speech and language charac-
teristics also have a social function (Boves and Gerritsen 1995). Language is (sub-
consciously) used to indicate group membership. Sometimes this is obvious: female
voices are typically higher pitched than male voices and we are all aware of differences
between dialects, but other group specific language use is less apparent.

Below we will discuss the most important sociolinguistic dimensions. Knowledge
of these dimensions can be of great benefit to speech and language processing as it
might help to adapt a system more quickly to a user than purely acoustic adaptation
techniques would. In particular, it allows to better predict the speech characteristics
of the user without the need for an extensive set of examples as traditional techniques
do. In addition, knowledge of dimensions that separate groups of speakers can help
to develop more accurate models of speech. As mentioned in chapter 1, many state-
of-the-art speech recognisers already use separate sets of acoustic models for male
and female speaker rather than lumping all data together (Woodland et al. 1994;
Kawahara et al. 2000; Pellom 2003).

Dialects and languages Differences in language use by different groups is prob-
ably most obvious for dialects. A dialect is a variation of a language spoken in a
particular region. Dialect reveals itself most clearly in pronunciation. For example
in the region of Amsterdam in the Netherlands /z/ is often devoiced. In the south-
eastern part of the Netherlands the velar fricatives /G/ and /x/ are pronounced as

57

Chapter 4. Sources of Knowledge

palatal fricatives /J/ and /ç/ respectively. But dialects also differ at other linguistic
levels. Words may have a different meaning in different dialects — the word bill
means banknote in American English but not in British English — or are used more
often in a dialect than in the standard language, e.g. the personal pronoun ‘gij’
(you) is used mainly in the southern part of the Netherlands. Dialects often include
words that are non-existent in the standard language. The related languages Dutch
and Flemish differ on the morphological level, in Dutch the diminutive suffix ‘-je’
is used, while in Flemish (and is some southern regions in the Netherlands) ‘-ke’
is used. Although less obvious, dialects may also differ at the syntactic level. For
example the order of the verbs in a relative clause is swapped in the Northern part
of the Netherlands.

As the world is getting smaller because of increased mobility and modern commu-
nication tools such as telephone, internet and television, dialects are moving towards
the standard language (Boves and Gerritsen 1995).

Gender Much has been written about differences between male and female speech.
The clearest difference is in the pitch of male and female voices. The main cause
is physiological, the male vocal chords are about 17–24 mm, while female vocal
chords are in the range of 13–17 mm. The difference in length (and mass) leads to
a different fundamental frequency. Pulses of the fundamental frequency also differ
(Rietveld and van Heuven 1997).

However, pitch of the voice also has a cultural aspect. Van Bezooijen (1995)
found that Japanese and American women between 20–30 years old on average had
higher pitched voices than Dutch and Swedish women of the same age. The women
were selected on length as well to rule out large physiological differences. In a similar
experiment it was shown that women, who are successful in the business world often
speak with a lower pitched voice than they would naturally.

As mentioned above the difference in the pitch of the voice presents itself right
away, but there are other differences. Many have noted a difference in the choice
of words (Lakoff 1975; Maltz and Borker 1982). Male speakers allegedly curse more
and talk more businesslike about things while women talk more about people and
use more adjectives and amplifying adverbs. Boves and Gerritsen (1995) remark
that much of this early research is anecdotal and far from conclusive. On the other
hand, more recent corpus-based research does reveal different pattern in language
use by male and female speakers (Rayson et al. 1997; Kilgarriff 2001; Harnqvist et al.
2003).

Some of these differences can be traced back to two differences between male and
female speakers that do consistently appear in sociolinguistic research: differences
in interaction patterns and use of the standard language. In a conversation male
speakers more often use minimal answers such as ‘mmm’ while female speakers often
use phrases showing that they are listening, e.g. oh really? good for you and they
ask more questions (Brouwer 1991). Male speakers have a tendency to interrupt
their (female) conversation partner more often.

Female speakers more often use forms of the standard language than male speak-

58

4.1. Context

ers (Boves and Gerritsen 1995), who more often use dialect. Several explanations
for this phenomena have been given. One hypothesis is that women want their
children to learn the standard language. Brouwer (1989) found that women with
children use less dialect than women without children and in fact men with chil-
dren use less dialect than men without children (but still more than women). In
addition, women often have jobs that require use of the standard language, such as
secretary. While male jobs at the same social level, such as construction worker, do
not. If these hypotheses are correct, the fact that social differences between men
and women are more and more disappearing implies that differences in language use
are disappearing.

Social group When hearing someone speak we can typically make a pretty accu-
rate guess not only at the region someone is from but also at his or her social class
or group. In general, lower social classes use more dialect than the higher social
classes in which it is prestigious to speak the standard language. Social differences
show most clearly in pronunciation. Some social groups develop their own language
variation to show group membership. For example in the Netherlands one can easily
recognise members of student societies. Immigrants often have traces of their native
language in their language. Second or third generation immigrants still do, not be-
cause they can’t help it, but rather as a display of group membership (Rietveld and
van Heuven 1997).

Van Bezooijen (1985) found that social class does not only show at the phonetic
level, but that even the sound quality of voices has a social aspect. Lower class
voices have, on average, a more nasal quality while in higher class voices sound more
creaky.

One might expect that higher social classes use longer and grammatically more
complex sentences. Van den Broeck (1980) and Jansen (1981) have shown that this
is not the case. There is little social variation in spoken language syntax. It is
likely that the ability to construct a sentence has more to do with limitations of the
short-term memory that affect all of us in an equal way than with social class or
gender.

Age Speech of different age groups is very different. Because their speaking organs
are not yet full-grown, small children speak with very high pitched voices. In puberty
the length of the male vocal chords increases rapidly, lowering the voice by a whole
octave. After the age of 60 the fundamental frequency of the voice starts to increase
again (Rietveld and van Heuven 1997). The number of syllables per second also
increases during childhood and decreases again for elderly people.

Language is constantly changing, new words appear and others disappear or get a
different meaning. Language change is strongly related to age (Boves and Gerritsen
1995). Especially young people are notoriously known for the use of their own jargon.
When they get older people stop adapting their language to new forms. Language
change is a gradual effect, the change takes place on a word by word basis. This is
called lexical diffusion.

59

Chapter 4. Sources of Knowledge

The most salient changes are at the lexical level, but in fact language changes at
all levels: phonological, morphological and syntactic. For example, in the Nether-
lands the tendency to pronounce long vowels such as /e:/ as diphthongs is gaining
momentum (Jacobi et al. 2005; van Heuven et al. 2005), e.g. /be:t/ ‘bit’ becomes
[bEit]. The diphthong /Ei/ in turn is lowered to [ai]: /tEid/ ‘time’ becomes [taid].
Stroop (1990), who dubbed the phenomena Polder Dutch, found that this chance
was initiated by higher educated middle class women.

There is an interplay between dialect and age (Boves and Gerritsen 1995). Younger
and older people have a tendency to use more dialect than people between the ages
of 25 and 55. An explanation for this effect, called age-grading, might be that people
with small children and a job take more effort to speak the standard language. The
effect has often been mistaken for language change, in particular as an indication
that dialect is disappearing.

4.1.2 Conversational knowledge

Language variation not only depends on speakers, but also on the situation. The
same person may use very different styles of speaking depending on the background
and purpose of a conversation.

Speaking style Situations can be ordered on a continuous scale from informal
to formal (Boves and Gerritsen 1995). In an informal conversation with family
or friends for example speech is typically more sloppy, with more hesitations and
restarts and fragments rather than full sentences and with more use of dialect. Labov
(1972) hypothesises that the formality of a conversation can be determined by the
amount of attention we give to the correctness of our language. Word use also
depends on the speaking style. Boves and Gerritsen (1995) give the example of
accusing someone of lying. In an informal situation (1) will do just fine, while in a
formal setting one could phrase this as (2).

(1) you’re lying!

(2) that seems a rather subjective description of the situation to me.

According to Bell (1984) not (only) the amount of effort we spend on the correctness
of our speech determines the style of speech, but the audience we are talking to is
of importance. For example, imagine someone asking for the time, if he would be
asking a stranger, even in an informal setting, he would likely use a polite phrase
such as (3). If the same person in the same situation would be asking a friend he
might phrase the request as (4).

(3) I’m sorry, could you please tell me what time it is?

(4) Heh, what’s the time?

60

4.1. Context

Differences in language between social groups become smaller in formal settings than
in informal settings. In fact, people who normally do not use the standard language
(or prestige dialect) may display hypercorrect language use in formal setting. They
use more formal terms than speakers of the standard language would in the same
situation (Boves and Gerritsen 1995).

Speaking style can change within a single conversation. Imagine for example
a student taking an oral exam. Before the exam the teacher might use informal
language to make the student feel at ease. During the exam the language can
become much more formal. After the exam the student and the teacher may engage
in informal chit-chat again.

Interaction Related to speaking style is the type of interaction people are engaged
in. People tend to change their language use to improve communication (Boves and
Gerritsen 1995). For example a lower class servant in a restaurant may accommodate
his language to that of his upper class clients. In a conversation people will search
for common ground (Jurafsky and Martin 2000). Initially, they might use different
terms to describe the same objects, but after a while they will converge to the same
terms.

For speech recognition it greatly matters whether people know they are talking
to a machine, as in dictation task, or not. People talking to a speech recogniser
will often use more formal speech. They may start to hyper-articulate (Oviatt et al.
1996).

Topic All conversations revolve around certain topics. The vocabulary used clearly
depends on the topic. This especially holds for content words and phrases such as
‘war on terrorism’. The topic of an actual conversation will rarely be a pure topic
in the sense that it can be named with a single label, rather conversations involve a
mix of several topics that gradually changes during the discourse.

4.1.3 World knowledge
Aside from user and conversational knowledge, information from other sources can
be available to a speech recogniser. Typically this will be background knowledge of
a particular domain or information from other modalities that can help to focus the
speech recognition. As an example, think of a hand-held computer that combines
pointing and speech in a route planning application (Fitrianie et al. 2007).

Other modalities Psycholinguistic experiments have shown that in human speech
recognition information from other modalities, in particular the visual modality, is
used. For example Tanenhaus et al. (1995) describe a number of experiments that
show how the visual context constrains acoustic processing. They built up scenes
containing a number of items with different shapes and colours, such as an apple
on a white towel. The eye movements of test subjects were tracked, while they
listened to assignments such as ‘put the apple on the towel in the box’. Tanenhaus

61

Chapter 4. Sources of Knowledge

found that people visually focus on an item even before it is uniquely identified. For
example, if there is just one apple that is on a towel the eye will focus on this apple
while the word towel is uttered. Taking into account the time it takes to program
and perform an eye movement it means that the item is identified before the word
‘towel’ is completely finished.

Another example of cross-influence between modalities is the combination of
speech recognition and lip-reading. Once again psychological results show that in-
formation from both modalities is combined in human recognition. This is best
demonstrated by the McGurk-effect: most people that are exposed to the acoustic
sequence /ba/ while seeing a video where someone utters /ga/ will typically perceive
the sound /da/.

Emotion recognition (Batliner et al. 2000) and speech recognition can influence
each other to mutual benefit. Words have emotional content (Wojdeł 2005) that
should match that of the non-verbal ‘signals’ (Rothkrantz et al. 2004). Emotion
recognition is needed to deal with irony or jokes in general as such situations often
cannot be deduced from the verbal content.

The examples given above illustrate that multi-modal integration can take place
at different levels in the recognition process. As most modalities provide streams of
information, timing information plays an important role in multi-modal integration.
This is also the main source of much of the difficulties of multi-modal integration,
as modalities normally do not evolve in lockstep; they have different sampling rates
and may be asynchronous. For example if someone names an item with pointing at
it with a mouse, the mouse cursor may have been on the item before, during or after
the phrase that refers to it is uttered.

Background knowledge Whenever we engage in a conversation we carry with
us all kinds of background information with regard to the way the world around us
works. In addition, we have beliefs and expectations with regard to the background
knowledge of our conversational partners and the course the conversation will take.

For human-machine interaction, the background of a conversation equals the
knowledge provided by the application used. This includes much static knowledge,
like the vocabulary used, but the state of an application may also provide dynamic
constraints on what a user is likely to say. For example, many computer applications
involve managing collections of objects, for example files and directories in an op-
erating system or cubes, balls and holes in a 3d-graphical design program. Typical
commands include: create, delete and move. Move and delete will take as their ar-
guments items that are already available, while create can take any argument. In a
design program spatial relations will also be relevant, for example if a phrase starts
with ‘the red cube on top of’ then what follows must be an item that is below a red
cube.

62

4.2. Language structure

4.2 Language structure

Context influences language at various linguistic levels. In this section a brief
overview of several important concepts from linguistics is given, on the one hand
because a model for speech recognition may need some additional structure to allow
integration of context information at the proper level, on the other hand because
including linguistic structure can be useful by itself as is clear from the models dis-
cussed in chapter 3. Even though linguistic theories do not yet cover all language
phenomena and even though we cannot include all linguistic information available,
including part of these theories may help us to build better speech recognisers. In
linguistics a distinction between several levels of knowledge in language is made
(Fromkin and Rodman 1993; Jurafsky and Martin 2000):

Phonology Phonology deals with the pronunciation of words. It studies how pro-
nunciation changes in phonetic context. Such knowledge is phrased in phonological
rules. In speech recognition, the phonological level is typically not explicitly mod-
elled, rather it is combined with phonetic information on the sounds of language.
However, to model language variations such as Polder Dutch, introducing a phono-
logical level may be desirable.

Morphology Morphology is the theory of the substructure of words in terms of
meaning bearing components (morphs). Speech recognisers usually treat all inflec-
tions of a word as separate entities, as from a speech recognition point of view it is
the pronunciation that matters. However, from a semantic viewpoint as taken for
example when including the topic of a conversation in a model, it does not really
matter whether a verb is in third person singular in the past tense or in first person
plural present tense.

Syntax Syntax describes the way words group together in phrase. Syntactic struc-
ture is useful by itself, as it constrains utterances to grammatically correct utter-
ances, but in speech recognition it has often been discarded as a useful information
source for this very reason, arguing that spoken language is not grammatically cor-
rect. The power of grammar lies in its ability to name the roles that words play in
a sentence and the way they relate to each other.

When it comes to including contextual knowledge in the speech recognition pro-
cess syntax has another use. It identifies those phrases and words that relate to
higher-level information. For example, the way function words are used does not
depend upon the topic of a conversation but the nouns and verbs that are (semantic)
headwords of the constituents of a sentence may. In the same way the type of conver-
sation may influence the sentence structure. For example, read speech can contain
long grammatically complex sentences, while spontaneous speech will involve short,
more free formed sentences.

63

Chapter 4. Sources of Knowledge

Semantics Semantics is the theory of meaning. In linguistics and natural language
processing it is usually taken to be the subfield that deals with the meaning of
individual words and how those combine to yield an interpretation for phrases and
sentences.

Lexical semantics describes the meaning of individual words and defines the
relations between those meanings, such as: synonyms, analogies, antonyms and sub-
superclass relations. Knowledge of such classes is useful, as words in the same class
tend to occur in similar contexts. It thus generalises the properties of words among
classes.

Spoken language contains many idiomatic phrases or word combinations that
occur more often than other word pairs, for example ‘strong tea’, ‘stiff wind’ (Man-
ning and Schütze 1999). Often, the meaning of such idioms cannot be found by
combining the meanings of the words involved. For example, there is no indication
in the phrase ‘to kick the bucket’ that points to its meaning of dying. If these words
would be treated as separate entities models based for example upon the topic of
conversation will make wrong predictions.

Pragmatics Pragmatics captures the semantic relationships within a text beyond
the sentence level. Much contextual knowledge, like topic and conversation style
can be put at this level. Following Austin (1962) a discourse is often described as a
sequence of actions. Whenever someone is uttering a sentence three different actions
are performed:

1. The locutionary act, which is the physical act of uttering a sentence.

2. The illocutionary act, which is the linguistic act that a speaker performs.

3. The perlocutionary act, which is the act that results from the utterance.

Speech acts, or in the context of dialogue systems dialogue acts, refer to the illocu-
tionary acts, examples are statements, questions, answers and requests. Speech acts
help structuring a discourse, as not every speech act can follow after every other
speech act, for example after a question an answer is expected. Several authors have
therefore proposed to treat discourse structure as a sequence of dialogue acts and
some have attempted to use such a sequence to improve speech recognition (Stolcke
et al. 1998). The line of reasoning behind this approach is that the structure of a
sentence clearly depends upon the speech act, for example in questions the subject
and the direct object swap positions and backchannels are often short non-speech
utterances like ’uh-huh’. However, while automatic dialogue act classification works
relatively well (although still much worse than human labelling) this does not carry
over to clear improvements in speech recognition (Stolcke et al. 2000). The likely
reason is that a small number of speech acts captures the majority of all clauses, in
particular 36% of all clauses in the corpus of Stolcke et al. (2000) are statements,
thus a language model based upon a mixture of dialogue act language models comes
very close to a language model that is simply trained on all data. Nevertheless, it

64

4.2. Language structure

has also been shown that if the dialogue act is known it does help for the case of
less frequent dialogue acts, therefore it might be useful in combinations with other
context factors.

Syntax describes the way word sequences are structured at the sentence level.
Language is also structured beyond the sentence level. Dialogue acts capture a
particular aspect (the illocutionary force) of this. When looking at written text
discourse structure is obvious, sentences group together in paragraphs that group
together in sections that may be part of several larger sections that are in turn part
of a chapter. Spoken language has a similar structure. Sentence group together
in segments that are all concerned with the same items. Such segments may be
subsegements of larger segments. Showing that a discourse should be organized as
a stack. This especially is the case as a discourse may contain digressions to some
of-the-topic items, after which the conversation continues where it left of.

Knowing the structure of a discourse is helpful as it shows which parts of the dis-
course history are relevant for the prediction of the current sentence. Unfortunately,
much discourse structure is causal and can only be uncovered by semantic reasoning,
which can be done for small well-understood domains, but is practically impossible
in the general case of spontaneous speech. Some of this may be recovered by iden-
tifying topic boundaries using textual coherence properties. Moreover, some of the
rhetorical structure can be found by locating cue words, e.g. ’by the way’ signals a
digression away from the main topic, while ’anyway’ signals a return to the main
topic. Which cue words are important may depend upon the type of conversation.
The temporal structure of a discourse can also be used to reveal discourse structure,
as tenses cannot arbitrarily be mixed (Allen 1995).

65

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not ‘Eureka!’ (I’ve found it!),
but ‘That’s funny . . . ’.

Isaac Asimov

Chapter 5

Data Analysis

In which the Corpus Spoken Dutch (cgn) is introduced. To establish
whether the influence of context on language can be observed in a data
set, we performed an analysis of word use and sentence length in different
subset of the corpus. The influence of a speakers’ gender, education level
and age on word use in spontaneous spoken Dutch as well as in broad-
cast recordings of Dutch was also investigated. This chapter presents the
results of the analysis.

In the previous chapter the influence of context on language use was investigated
from a theoretical perspective. The question that remains is how strong these effects
are in everyday language and more specifically how strong these effects are in a
limited data set that is used to construct automated language processing systems
with. In addition, we would like to know the interrelationships between the context
factors.

In this chapter we analyse a large corpus of spoken language to investigate if
and how the type of speech influences word use (Wiggers and Rothkrantz 2007a;b).
We identify features of the text that allow us to determine the type of speech. For
different types of speech we look at the influence of speaker characteristics such as
gender, education level and age on language variation. In all cases we compare results
on Dutch as it is spoken in the Netherlands and Dutch as it is spoken in Flanders

67

Chapter 5. Data Analysis

to find out whether effects are dialect-dependent or not. We will refer to these two
variations of the language as Northern Dutch and Southern Dutch respectively.

In this chapter we take a data mining approach, i.e. rather than formulating
and testing hypotheses we explore the data using statistical methods in order to
get more insight in the data. This will help us to identify important variables and
dependencies and to detect outliers and anomalies. The results found can then be
used to formulate hypotheses about the usefulness of certain variables for speech
recognition on which new models can be based. In addition, insight in the types
of variables these models will contain and their interplay will help to formulate
requirements for a computational framework to build models in.

Note that the goal of this analysis is to see whether context effects can be found
in a corpus of speech, not to form a theory of context effects in language. The
analysis is performed on a limited data set, care should be taken to generalise the
findings as it will be hard to separate artifacts of the data set from real context
effects. Nevertheless, these results can guide the direction of future research.

5.1 The Spoken Dutch Corpus

The corpus used is the Spoken Dutch Corpus (Corpus Gesproken Netherlands or
cgn) Oostdijk et al. (2002); Schuurman et al. (2003). A corpus of almost nine million
words of standard Dutch as spoken in the Netherlands and Flanders. The corpus
is subdivided in 15 components that contain different types of speech, ranging from
spontaneous conversations to more formal speech such as sermons and read speech.
Table 5.1 gives an overview of the components. It lists the total number of words

Table 5.1 – The components of the Spoken Dutch Corpus. For each component the number
of words collected in the Netherlands and in Flanders is given.

component Netherlands Flanders

a. spontaneous conversations (’face-to-face’) 1,747,789 878,383
b. interviews with teachers of Dutch 249,879 315,554
c. spontaneous telephone dialogues (switchboard) 743,537 465,096
d. spontaneous telephone dialogues (mini disc) 510,204 343,167
e. simulated business negotiations 136,461 0
f. interviews/discussions/debates (broadcast) 539,561 250,708
g. (political) discussions/debates/meetings 221,509 138,819
h. lessons recorded in the classroom 299,973 105,436
i. live (e.g. sports) commentaries (broadcast) 130,377 78,022
j. news reports (broadcast) 90,866 95,206
k. news (broadcast) 285,298 82,855
l. commentaries/columns/reviews (broadcast) 80,167 65,386
m. ceremonial speeches/sermons 5,565 12,510
n. lectures/seminars 61,834 79,067
o. read speech 551,624 351,419

68

5.2. Methodology

in each category as well as the number of words collected in the Netherlands and in
Flanders respectively.

5.2 Methodology
In this chapter we are mainly interested in words and part-of-speech (pos) tags that
are most characteristic for a particular subset of the data. To operationalise this
notion we use log-likelihood ratios (Dunning 1993) defined by:

G2 = 2
∑

i

Oi ln(
Oi

Ei
) (5.1)

Where Oi is the frequency observed in a cell of a contingency table and Ei is the
corresponding expected value:

Ei =
Nj

∑
iOi∑

jNj
(5.2)

Nj is the total frequency in a column of the table and i ranges over all elements
in a row of the table. The log-likelihood ratio (llr) can be thought of as a measure
of surprise and is related to the χ2-test, but more reliable than the latter in the face
of sparse data. The values of G2 are approximately χ2 distributed. It can be used in
the hypothesis testing framework as a measure of statistical significance. However,
as pointed out by Kilgarriff (2001) among others, the null hypothesis that subsets
are drawn at random from the same underlying population is almost always defeated
when looking at linguistic phenomena because language use clearly is not random.
Outside the hypothesis testing framework likelihood ratios are nevertheless useful as
a way to rank words in order of distinctiveness as shown in Kilgarriff (2001); Rayson
and Garside (2000); Daille (1995).

Unless otherwise noted, before collecting statistics on word use hapax legomena
are removed from the vocabulary as these are typically topic related and can be
thought of as artifacts of the limited size of the data set rather than as words that
are specific for a conversation type or a group of speakers.

5.3 Related work
There is a large body of work in corpus analysis, e.g. Rayson et al. (1997) investigates
social differentiation defined by factors as gender, age and social group, in the use
of English vocabulary using the British national corpus. They also look at the
difference between spoken and written text. Kilgarriff (2001) is concerned with
comparing corpora and looks at the difference between male and female word use,
as does Harnqvist et al. (2003) for Swedish. The cgn is also used in Binnenpoorte
et al. (2005) and van Gijsel et al. (2006). In Binnenpoorte et al. (2005) gender
differences in speech rate and the use of fillers and nouns is investigated. They

69

Chapter 5. Data Analysis

find that male speakers use more fillers and female speakers use more pronouns.
The work of van Gijsel et al. (2006) uses multivariate analysis to investigate lexical
richness. They find that more formal speech (components k and m of the corpus)
has high lexical richness, while spontaneous speech does not. In addition, they note
that female speech has lower lexical richness than male speech. Hypothesising that
women elaborate longer on a particular topic than men would.

5.4 Type of Speech
To investigate differences between types of speech we analyse the differences in sen-
tence length, part-of-speech and word distributions between components of the cor-
pus. For word distributions we remove all words that occur less than five times in
the whole corpus to diminish topic dependency.

5.4.1 Sentence Length
We expect sentence length to be a good indicator of the type of speech, therefore
we analyse sentence lengths in the subcorpora. Table 5.2 summarises the results for
Northern Dutch. As one would expect sentences in spontaneous speech (components

Table 5.2 – Sentence length statistics per category of the cgn for Northern Dutch.

component average sample dev. mode median iqr

a (spontaneous face-to-face) 6.42 6.70 1 5 8
b (interviews) 11.34 11.09 1 8 13
c (spontaneous telephone) 6.37 6.76 1 4 8
d (spontaneous telephone) 6.80 7.03 1 5 8
e (business negotiations) 8.59 9.85 1 5 11
f (interview broadcast) 11.29 11.45 1 8 13
g (debates) 20.05 17.20 1 16 19
h (lessons) 7.98 7.72 1 6 9
i (live commentaries) 9.90 9.72 4 7 8
j (news reports) 12.20 9.98 1 10 12
k (news) 13.46 5.39 12 13 7
l (commentaries broadcast) 13.04 10.65 7 10 11
m (ceremonial) 11.76 7.22 10 10 9
n (lectures) 28.15 21.16 19 23 24
o (read) 11.51 8.61 5 9 10

a, c and d) are shorter on average than sentences in formal speech. Lectures (n)
and political debates (g) contain the longest sentences on average. When taking
a closer look we find that for all components the sentence length distributions are
highly skewed, sentences can occasionally get very long.

70

5.4. Type of Speech

(a) spontaneous (b) interviews (c) spontaneous telephone

(d) spontaneous telephone (e) business (f) interviews (broadcast)

(g) debates (h) lessons (i) live commentaries

(j) news reports (k) news (l) commentaries

(m) ceremonial (n) lectures (o) read

Figure 5.1 – Sentence length distributions for components of the cgn (Northern Dutch).

71

Chapter 5. Data Analysis

Therefore, the median and interquartile range (iqr) are better indicators of sentence
distribution than mean and sample deviation. Figure 5.1 shows the distributions
(up to sentence length 30) for all components of the Northern Dutch subcorpus.
The components that contain spontaneous speech (a, c and d) have very similar
distributions. About a quarter of all sentences are single word sentences containing
interjections, yes/no answers and backchannels. For the remaining lengths there is a
peak around length 6. Lessons (component h) and interviews (components b and f)
also display the pattern of spontaneous speech. However, interviews contain longer
sentences. The components containing broadcast news (i, j and l) have very similar
sentence length distributions that are clearly different from those of spontaneous
speech. It is interesting to note that reviews (component l) contain longer sentences
than news reports (component j), which in turn contain longer sentences than live
commentaries (component i). Debates g show a more uniform distribution over
sentence length, while news k has a nicely balanced bell-shaped distribution, showing
that anchormen and news reporters think about sentence length when writing their
texts. Components m and n have very random distributions. This might be a
consequence of the small size of these data sets more than anything else.

All in all, sentence length distributions differ for different types of speech. In
particular the sentence length distribution of spontaneous speech is clearly different
from the other sentence length distributions. Compared with spontaneous speech,
the distributions of broadcast speech is closer to that of read speech. In fact, the
transition is gradual, with interviews closer to spontaneous speech and reviews clos-
est to read speech.

Table 5.3 – Sentence length statistics per category of the cgn for Southern Dutch.

component average sample dev. mode median iqr

a (spontaneous face-to-face) 6.65 6.85 1 2 7
b (interviews) 8.50 9.54 1 5 11
c (spontaneous telephone) 6.89 7.06 1 5 7
d (spontaneous telephone) 6.91 7.33 1 5 7
e (business negotiations) - - - - -
f (interviews broadcast) 10.27 10.03 1 8 11
g (debates) 15.06 13.39 1 12 16
h (lessons) 8.05 8.12 1 6 9
i (live commentaries) 8.96 7.08 5 7 8
j (news reports) 13.09 10.38 8 11 11
k (news) 12.05 7.07 8 11 8
l (interviews broadcast) 11.13 7.58 8 10 9
m (ceremonies) 19.92 13.54 10 17 15
n (lectures) 13.46 11.04 1 11 12
o (read) 12.79 9.34 5 11 11

72

5.4. Type of Speech

(a) spontaneous (b) interviews (c) spontaneous telephone

(d) spontaneous telephone (e) business (f) interviews (broadcast)

(g) debates (h) lessons (i) live commentaries

(j) news reports (k) news (l) commentaries

(m) ceremonial (n) lectures (o) read

Figure 5.2 – Sentence length distributions for components of the cgn (Southern Dutch).

73

Chapter 5. Data Analysis

Table 5.3 shows summary statistics for sentence length in Southern Dutch and
figure 5.2 shows the sentence length distributions of all components for Southern
Dutch. The patterns are very similar to those of Northern Dutch, but there are a
number of small differences. News (k) has the same bell-shaped distribution, but
with a shorter average sentence length. The same holds for interviews (l). The distri-
bution of debates (g) is less uniform than in Northern Dutch. The sentence length
distributions of component n is smoother for Southern Dutch than for Northern
Dutch, although not as smooth as other distributions, it roughly shows the pat-
tern of more formal speech. Component m on the other hand contains more short
sentences. The distribution of component m differs a lot from its Northern Dutch
counterpart, since these two sets contain different types of speech.

5.4.2 Part-of-Speech
We ranked part-of-speech (pos) categories using likelihood ratios and found that
interjections, nouns, determiners, adverbs and pronouns best differentiate between
subcorpora. Figure 5.3 compares the relative frequencies of the components for sev-
eral pos-tags. It can be observed that interjections and adverbs as well as incomplete

(a) interjections (b) nouns (c) determiners

(d) compounds (e) adverbs (f) pronouns

(g) prepositions (h) incomplete (i) verbs

Figure 5.3 – Relative frequencies of pos-tags in the components of the cgn (Northern
Dutch).

words are much more common in spontaneous speech while nouns and determiners
are characteristic of more formal and read speech. Pronouns occur less in broad-
cast categories; in particular news contains little pronouns. Note that the relative
number of verbs is more or less equal for all components.

74

5.4. Type of Speech

Figure 5.4 shows how parts-of-speech are distributed in the component for South-
ern Dutch. The differences are similar to those for Northern Dutch.

(a) interjections (b) nouns (c) determiners

(d) compounds (e) adverbs (f) pronouns

(g) prepositions (h) incomplete (i) verbs

Figure 5.4 – Relative frequencies of pos-tags in the components of the cgn (Southern
Dutch).

5.4.3 Words

For Northern Dutch, the following words differentiate most based on likelihood ra-
tios: ja (yes), de (the), het (the), uh (filler), voor (for), xxx (incomprehensible), ik
(me), van (of), nee (no), je (you), nou (well), in (in), haar (her), hij (he), u (you,
polite).

Articles, interjections and (personal) pronouns make up most of this list. We fur-
ther investigated the words in these classes. Figure 5.5 compares relative frequencies
of some words in the components of the corpus.

As can be seen, the personal pronouns are very good indicators of the type of
speech. The first person singular ik and its abbreviated form ‘k are most used in
spontaneous speech. The colloquial second person singular je is used slightly more
often in spontaneous speech than in formal and read speech. It is used most often
in lessons. An explanation for this is that in contemporary Northern Dutch je is
also used as an indefinite pronoun. The second person singular jij is used most in
discussions and debates, whereas the polite form u is used most often in interviews
and formal speech. Third person singular is used most in read speech (stories). The
word ze which can mean either ‘she’ or ‘they’ occurs relatively often in spontaneous
speech. It is interesting to note that ie, the colloquial version of ‘he’, occurs relatively

75

Chapter 5. Data Analysis

Figure 5.5 – Distributions of common words in components of the cgn.

often in sports commentaries. Finally, wij (we) is used most prominently in debates
and formal speech.

5.5 Dialect

5.5.1 Part-of-Speech

The previous section showed that, although there are some differences for Northern
Dutch and Southern Dutch, sentence length distributions depend on the type of
speech rather than on the language. Similarities are also found in the relative use
of parts-of-speech for different types of speech. Table 5.4 compares part-of-speech
distributions of Northern Dutch and Southern Dutch for spontaneous speech (com-
ponents a, c and d). The general patterns are similar, but note that in Northern
Dutch 2% more adverbs and 1% more adjectives are used. Southern Dutch speakers
use more conjunctions, determiners and nouns as well as more interjections. Table
5.5 compares part-of-speech distributions per language for broadcast speech. Once
again, Southern Dutch uses more nouns and determiners. In this case the Northern
Dutch use more interjections, and more pronouns. We might say that in both cases
Northern Dutch speakers use more colloquial speech than Southern Dutch speakers.

76

5.5. Dialect

Table 5.4 – Part-of-speech distributions of spontaneous speech per dialect.

part-of-speech Northern Dutch Southern Dutch llr

adverbs 0.1457 0.1222 4331
incomprehensible 0.0068 0.0130 3791
incomplete 0.0137 0.0079 2781
adjectives 0.0621 0.0527 1476
conjunctions 0.0665 0.0741 809
determiners 0.0390 0.0447 720
interjections 0.1232 0.1310 500
nouns 0.0941 0.0985 209
verbs 0.1683 0.1729 133
prepositions 0.0680 0.0710 131
foreign 0.0025 0.0020 88
compound 0.0048 0.0043 46
numerals 0.0126 0.0127 1
pronouns 0.1925 0.1929 1

Table 5.5 – Part-of-speech distributions of broadcast speech per dialect.

part-of-speech Northern Dutch Southern Dutch llr

interjections 0.0687 0.0505 1333
incomplete 0.0125 0.0055 1254
compounds 0.0116 0.0199 1027
nouns 0.1369 0.1589 868
determiners 0.0688 0.0828 635
pronouns 0.1736 0.1561 506
adverbs 0.1056 0.0922 450
prepositions 0.0980 0.1087 281
foreign 0.0020 0.0037 250
conjunctions 0.0671 0.0629 65
numerals 0.0119 0.0135 46
adjectives 0.0699 0.0716 10
incomprehensible 0.0028 0.0026 4
verbs 0.1704 0.1712 1

77

Chapter 5. Data Analysis

5.5.2 Words

The biggest difference between Northern Dutch and Southern Dutch is the vocabu-
lary. Even though the two languages share the same dictionary and speakers of the
two languages have no difficulty understanding each other (as long as they speak
the standard languages) there are a number of language specific words that do show
especially in spontaneous speech. Tables 5.6 and 5.7 show the words with the highest
likelihood ratios that are used most often in Northern Dutch respectively Southern
Dutch when the components containing spontaneous speech are compared for the
two languages.

Table 5.6 – The frequencies for Northern Dutch and Southern Dutch of the 20 words with
the highest likelihood ratio for Northern Dutch words in spontaneous speech.

Northern Dutch Southern Dutch

word freq. rel.freq. freq. rel.freq. llr

nou(now, ‘well . . . ’) 29052 0.0117 64 0.0000 25210
je (you,one) 47109 0.0190 6436 0.0046 15970
oh (interjection) 22342 0.0090 1760 0.0013 10950
uh (interjection) 76570 0.0309 23599 0.0170 7288
ie (he) 9193 0.0037 798 0.0006 4263
even (‘quickly’) 5277 0.0021 213 0.0002 3336
toen (then) 9565 0.0039 1518 0.0011 2777
leuk (nice) 5476 0.0022 408 0.0003 2749
gewoon (normal, interjection) 11550 0.0047 2458 0.0018 2310
jij (you) 5376 0.0021 535 0.0004 2294
helemaal (totally) 4855 0.0020 518 0.0004 1977
weer (again) 8032 0.0032 1695 0.0012 1626
wel (indeed) 30554 0.0124 11300 0.0081 1530
ik (I) 69157 0.0280 29808 0.0215 1527
net (just) 2832 0.0011 221 0.0002 1388
zo’n (like) 4894 0.0020 802 0.0006 1371
effe (‘quickly’) 2133 0.0009 124 0.0001 1193
lekker (nice, good) 2334 0.0009 172 0.0001 1177
hoor (indeed, interjection) 5497 0.0022 1152 0.0008 1123
hele (whole,large) 3173 0.0013 416 0.0002 1103

These tables contain language specific words (e.g. the Southern Dutch word
‘allee’), but they also make clear that words that both languages have in common
are used with different frequencies.

78

5.6. Gender

Table 5.7 – The frequencies for Northern Dutch and Southern Dutch of the 20 words with
the highest likelihood ratio for Southern Dutch in spontaneous speech.

Northern Dutch Southern Dutch

word freq. rel.freq. freq. rel.freq. llr

ge (you) 412 0.0002 10100 0.0073 17610
ah (interjection) 1948 0.0008 11149 0.0080 13590
allee 5 0.0001 6090 0.0044 12410
ne (a) 12 0.0000 3768 0.0027 7570
hè (interjection) 11504 0.0046 16633 0.0120 6279
het (the 6415 0.0026 11130 0.0080 5486
uhu (interjection) 117 0.0000 2894 0.0021 5044
hé (interjection) 1894 0.0008 5633 0.0041 4737
gij (you) 211 0.0001 2823 0.0020 4439
den (the) 373 0.0002 2771 0.0020 3718
nu (now) 4482 0.0018 7457 0.0054 3467
’k (I) 15895 0.0064 16543 0.0119 3093
uw (your) 115 0.0000 1730 0.0015 2785
nen (a) 29 0.0000 1341 0.0010 2491
zijt (are) 4 0.0000 1153 0.0008 2312
dat (that) 74316 0.0300 54343 0.0392 2255
hm (interjection) 5 0.0000 1053 0.0008 2097
da (that) 6963 0.0028 7740 0.0056 1711
’s 8244 0.0033 8678 0.0063 1667
u (you) 969 0.0004 2092 0.0015 1325

Table 5.8 – Summary statistics of sentence length for male and female speakers.

gender average sample dev. mode median iqr

male 8.8 9.1 1 6 10
female 7.5 7.8 1 5 8

79

Chapter 5. Data Analysis

5.6 Gender

To analyse the influence of user characteristics on word use we select two subsets
from the corpus: spontaneous speech (components a,c and d) and interviews and
discussion broadcasted on radio and television (components f, j and l). We select
at random an equal number of words from an equal number of male and female
speakers in order to reduce the influence of text length. It turns out that there
is little difference in sentence length between male and female speakers. Men use
slightly longer sentences than women on average as shown in table 5.8, but there is
also more variation in sentence length for male speakers.

5.6.1 Part-of-speech

In table 5.9 the frequencies of pos-categories of spontaneous speech for male and
female speakers are shown, ranked by likelihood ratio. As was also found by Bin-

Table 5.9 – Relative frequencies of pos-tags in spontaneous speech for male and female
speakers ordered by likelihood ratios.

part-of-speech male female llr

adverbs 0.1389 0.1509 713
interjections 0.1291 0.1192 555
determiners 0.0423 0.0366 532
compounds 0.0056 0.0042 253
foreign 0.0031 0.0021 251
incomplete 0.0150 0.0127 234
nouns 0.0971 0.0916 216
pronouns 0.1886 0.1956 195
conjunctions 0.0643 0.0682 149
verbs 0.1650 0.1705 132
prepositions 0.0701 0.0665 128
adjectives 0.0604 0.0634 95
numerals 0.0132 0.0119 74
incomprehensible 0.0071 0.0064 43

nenpoorte et al. (2005) on a slightly different subset of the corpus, male speakers use
more interjections. In addition, male speakers use more determiners and compound
names and do not complete words more often. The latter fits with results described
in the previous chapter that female speakers speak more careful.

Female speakers use more adverbs and pronouns. Detailed investigation shows
that women especially use more personal pronouns (relative frequencies of 0.092 for
male speakers versus 0.1 for female speakers) this is in line with results found by
Argamon et al. (2003); Harnqvist et al. (2003).

80

5.6. Gender

Table 5.10 shows pos-tag distributions for male and female speakers of broadcast
speech. Figures 5.6(a) and 5.6(b) show the the graphs corresponding to these tables.

Table 5.10 – Relative frequencies of pos-tags in broadcast speech for male and female
speakers ordered by likelihood ratios.

male female llr

Numerals 0.0125 0.0097 70
Nouns 0.1388 0.1300 67
Interjections 0.0672 0.0736 65
Adverbs 0.1039 0.1116 63
Determiners 0.0701 0.0643 55
Prepositions 0.0994 0.0932 44
Incomprehensible 0.0028 0.0020 28
Adjectives 0.0692 0.0726 21
Pronouns 0.1726 0.1779 20
Conjunctions 0.0666 0.0693 12
Foreign 0.0019 0.0022 6
Compounds 0.0117 0.0112 3
Verbs 0.1708 0.1692 2
Incomplete 0.0124 0.0128 1

The differences between the two types of speech are clearly visible, in the more formal
broadcast speech more nouns and determiners are used. The differences between
male and female speakers however remain largely the same, with one interesting
exception: female speakers use more interjections in broadcast speech than male
speakers.

Gender specific pos-tag distributions for spontaneous speech and broadcast speech
for Southern Dutch are shown in figures 5.6(c) and 5.6(d). These distributions show
the same patterns as for Northern Dutch.

5.6.2 Words
We look at the type-token ratios for male and female speakers. The type-token ratio
is defined as the number of different words (types) divided by the total number of
words (tokens) and can be seen as a measure of lexical richness van Gijsel et al.
(2006). A lower type-token ratio means a relatively smaller number of different
words. Unfortunately, the type-token ratio is text length dependent. The longer a
text, the lower the type-token ratio will be (Van Gijsel et al. 2006). This is why
we used randomly selected equal size subsets for male and female speakers. Table
5.11 shows type-token ratios for spontaneous and broadcast speech and for Northern
Dutch and Southern Dutch. In all case the type-token ratio of male speakers is higher
than for female speakers. This confirms the results of van Gijsel et al. (2006) where
a different procedure for data selection and different subsets of the cgn corpus were

81

Chapter 5. Data Analysis

(a) spontaneous (Northern Dutch)

(b) broadcast speech (Northern Dutch)

(c) spontaneous (Southern Dutch)

(d) broadcast speech (Southern Dutch)

Figure 5.6 – pos-tag distributions per gender for spontaneous speech and broadcast speech.

82

5.7. Education level

used. Note that these results can not easily be compared across sets, as these sets
are of different sizes. The top half of table 5.12 shows the ten words with the

Table 5.11 – Type-token ratios for male and female speakers.

subcorpus male female

spontaneous speech Northern Dutch 0.03011 0.02688
broadcast speech Northern Dutch 0.09227 0.08354
spontaneous speech Southern Dutch 0.03568 0.03178
broadcast speech Southern Dutch 0.12314 0.11222

highest log-likelihood values used most often by women. The bottom half of table
5.12 shows the ten words with the highest log-likelihood that are more often used
by men. The tendency of women to use more personal pronouns and for men to use
more fillers also shows in those lists.

5.7 Education level

Next, we look at the influence of education level of a speaker on word use. We define
two education levels, high (college or university) and low. In accordance with van den
Broeck (1980) we find that there is no significant difference in sentence length for
these two groups. As discussed in the previous chapter sentence length seems to be
related to the capabilities of the short-term memory more than to anything else.

The differences in pos-tag distributions are also smaller than for gender. Table
5.13 lists the pos-tags with the highest likelihood-ratios. The difference in type-
token ratio is bigger than for gender. The ratio is 0.031 for the high education group
and 0.028 for the lower education group. For Southern Dutch spontaneous speech
the difference is larger: 0.049 for the high education level and 0.041 for the lower
education level. Unfortunately, the broadcast categories contain too little lower
educated speaker to obtain reliable statistics.

Table 5.14 lists the ten words with highest likelihood ratios that are most used
by the higher education level group and table 5.15 lists the words with highest
likelihood ratios that are used the most by the lower education group. It can be seen
that abbreviations and slang are used often in the low education group and that the
determiner het (the) is used more in the high education group. It is interesting to
note that some interjections are used more often in the high education group. This
is something worth investigating further in the future. Overall, the differences in
word use between the two education level groups is small.

83

Chapter 5. Data Analysis

Table 5.12 – Relative frequencies of high likelihood ratio words used most often by women
(top) and words most often used by men (bottom).

word male female llr

oh (filler) 0.0073 0.0010 435
ze (them, she) 0.0075 0.0098 324
zei (said) 0.0011 0.0020 276
leuk (nice) 0.0016 0.0026 240
want (because) 0.0044 0.0060 230
toen (then) 0.0032 0.0043 199
heel (very) 0.0033 0.0044 181
zo (therefore) 0.0077 0.0093 154
ik (I) 0.0259 0.0287 146
echt (really) 0.0035 0.0045 137

oh (filler) 0.0367 0.0260 1990
ze (them, she) 0.0182 0.0152 285
zei (said) 0.0222 0.0193 220
leuk (nice) 0.0187 0.0164 162
want (because) 0.0064 0.0056 64
toen (then) 0.0102 0.0091 60
heel (very) 0.0004 0.0002 60
zo (therefore) 0.0010 0.0007 58
ik (I) 0.0001 0.0000 54
echt (really) 0.0165 0.0153 51

Table 5.13 – Relative frequency of pos-tags that differ most for higher educated and lower
educated speakers as measured by likelihood ratios.

part-of-speech high low llr

adjectives 0.0641 0.0588 224
foreign words 0.0029 0.0021 140
numerals 0.0123 0.0138 85
conjunctions 0.0670 0.0650 64
verbs 0.1670 0.1710 53
incomprehensible 0.0069 0.0077 47

84

5.7. Education level

(a) spontaneous Northern Dutch

(b) broadcast speech Northern Dutch

(c) spontaneous Southern Dutch

(d) broadcast speech Southern Dutch

Figure 5.7 – pos distributions of groups with high and low education level.

85

Chapter 5. Data Analysis

Table 5.14 – Relative frequencies of high likelihood ratio words used most often by higher
educated speakers.

word high low llr

het (the,it) 0.0035 0.0019 414
uhm (filler) 0.0030 0.0020 195
echt (really) 0.0046 0.0034 161
of (or) 0.0079 0.0067 91
is (is) 0.0166 0.0148 91
okay 0.0012 0.0008 86
ook (too) 0.0215 0.0195 82
volgens (according to) 0.0011 0.0007 70
precies (exactly) 0.0010 0.0007 64
gewoon (normal) 0.0050 0.0042 62
hum (filler) 0.0004 0.0002 60
dit (this) 0.0017 0.0012 58
mm-hu (filler) 0.0020 0.0015 55

5.8 Age

To investigate the influence of age on word use we defined four age groups: 16–29,
30–44, 45–55, 55+. These groups are chosen to get reasonable sized subsets that
allow us to gather reliable statistics. In particular, the cgn contains only few speaker
younger than 20, therefore they were grouped together with people in their twenties.

As for gender and education level, there are no significant differences in sentence
length for different age groups in any of the components of the corpus.

Figure 5.8(a) shows the pos-tag distributions for age groups in spontaneous
speech. The figure nicely illustrates how language use of different age groups corre-
sponds to trends in language change. Over time, the use of interjections, determin-
ers and nouns has decreased, while the use of adjectives and adverbs has increased.
Figure 5.8(b) shows part-of-speech use by different age groups for broadcast speech.
Here, younger speakers also use less nouns and determiners than older people, but
the differences are much larger.

In addition to more adverbs, younger people also use more pronouns and more
interjections. More research is needed to interpret these results. On one hand,
we might be dealing with a trend to use less formal language. This then holds
in particular for broadcast speech. On the other hand, in broadcast speech, the
difference in language use may be amplified by the correlation between the type of
program someone appears in and his or her age. For example, presenters on a music
channel are typically younger than the host of a political talk show. Either way, a
language processing system will have to deal with language differences for different
age groups. In Southern Dutch similar trends can be observed as is shown in figures
5.8(d) and 5.8(d). Trends can also be observed in word use. Figure 5.9 shows the

86

5.8. Age

(a) spontaneous Northern Dutch

(b) broadcast speech Northern Dutch

(c) spontaneous Southern Dutch

(d) broadcast speech Southern Dutch

Figure 5.8 – Part-of-Speech distributions for age classes in Northern Dutch.

87

Chapter 5. Data Analysis

Table 5.15 – Relative frequencies of high likelihood ratio words used most often by lower
educated speakers.

word high low llr

’k (I) 0.0056 0.0078 322
ze (she/they) 0.0084 0.0010 131
zei (said) 0.0013 0.0020 128
zeg (say) 0.0021 0.0029 109
zegt(says) 0.0008 0.0012 108
hè 0.0042 0.0052 103
hoor 0.0019 0.0026 100
vader (father) 0.0002 0.0004 97
toen (then) 0.0035 0.0045 93
och (filler) 0.0001 0.0003 90
effe (slang) 0.0007 0.0011 79
hé 0.0006 0.0009 73
auto (car) 0.0002 0.0005 64

words with highest likelihood ratios for spontaneous Northern Dutch. It can be seen
that the words gewoon (normal), echt (really) and wel (indeed) are used much more
by younger people than by older people. The word ik (I) is also used more often by
younger people, as is it’s abbreviated version colloquial ‘k, the word ge (you) on the
other hand, that mainly appears in Dialect spoken in the South of the Netherlands,
is not used at all by people younger than 45.

Figure 5.9 – Distributions of words with the highest likelihood ratios in spontaneous North-
ern Dutch when comparing age groups.

5.9 Combining age and gender
We also compared male and female speech for different age groups. Figure 5.9 shows
pos-tag distributions for male and female speakers per age category. In all age

88

5.10. Discussion

(a) 16–29 (b) 30–44

(c) 45–55 (d) 55+

Figure 5.10 – Comparing pos distributions of spontaneous Northern Dutch of male and
female speakers in different age groups.

groups similar differences between male and female speakers can be observed. In
the youngest age group the differences are smallest. This fits with the hypothesis
that differences in speech between men and women are disappearing because social
differences between men and women have become smaller in the last decades. The
differences in the middle age groups are larger than the difference for people older
than 55. Based on sociolinguistic theory this is unexpected (see section 4.1.1). The
explanation might have something to do with emancipation, but it might as well
be an artifact of the data. Figure 5.11 shows the same distributions as figure 5.9
per gender. It shows that female speech differs more between generations. Younger
male speakers use more adverbs, adjectives and pronouns and fewer determiners,
conjunctions and nouns. This fits in the overall trend of more informal speech, but
we might also say that male speech has become more similar to female speech.

5.10 Discussion

The type of speech influences word use. In particular, it influences sentence length.
It seems plausible that we can even deduce the type of speech using sentence length
distributions and the distribution of personal pronouns. The characteristics of type
of speech are similar for Northern Dutch and Southern Dutch. User specific factors
do not influence sentence length. They do influence part-of-speech distribution and

89

Chapter 5. Data Analysis

(a) female (b) male

Figure 5.11 – pos-tag distribution of spontaneous Northern Dutch per age group for male
and female speakers.

word use. Based on the cgn it is hard to draw any conclusions on the influence of
education level, but it seems to be of less importance than gender and age. The anal-
ysis described in this chapter has only scratched the surface. We limited ourselves
to a small number of context factors and looked only at word use. There are many
other context factors and combination of context factors that might be of influence
and one could look at word n-grams and grammar and at effects at lower linguistic
levels as well. In addition, if one would want to draw conclusions on the why and
how of the effects found in the data deeper analysis is needed. The analysis shows
that in a limited data set one can find that context influences language use. Many
of the word use patterns described in chapter 4 showed up in the data. This gives us
confidence that a speech processing system could learn and use these relations. In
chapter 8 the findings of this chapter will be used to develop advanced context-based
language models.

90

The world is its own best model.

Rodney Brooks

Chapter 6

Case studies

In which two speech recognition systems that include contextual knowledge
that were developed as part of this thesis work are presented. The first
system includes lip-reading information to improve acoustic recognition.
It is shown that this system performs better than a standard speech recog-
niser in noisy environments. In the second part adaptive language models
that include domain specific knowledge are described. Several models that
combine perceptual information and background information at different
stages in the recognition process have been developed. These models are
tested and compared on real data from a train table dialogue system. A
confidence measure for speech recognition that has been developed in the
course of this work is presented.

6.1 Case study: lip-reading

To test whether lip-reading can be of use in automatic speech recognition we exper-
imented with several configurations of a bimodal recogniser for continuous speech
(Wiggers et al. 2002b; Wiggers and Rothkrantz 2002).

The speech recogniser used in our experiments is a simplified version of our large
vocabulary speaker independent recogniser described in (Wiggers et al. 2002a). It

91

Chapter 6. Case studies

uses continuous density Hidden Markov Models to represent phonemes. Each model
has three states connected left-to-right, with single Gaussian distribution functions
attached to the states. There is a total number of 45 phonemes, which include the
phonemes from the sampa set and models for silence, optional pauses and mouth
noises like, loud breath, sniffing or smacking. The original recogniser was trained
on a subset of the Dutch Polyphone database (Damhuis et al. 1994). This is a
rather large corpus containing telephone speech from 5050 different speakers from
all dialect regions in the Netherlands. For these experiments the recogniser was
retrained, using two iterations of Baum-Welch re-estimation, on the audio part of a
small multi-modal data set that we recorded (Wojdeł et al. 2002).

The lip-reading part of our recogniser is based on the visual feature extraction
technique described in (Wojdeł and Rothkrantz 2001; Wojdeł 2003). It uses a lip-
selective colour filtering that captures both geometric and intensity related features
of the mouth.

We experimented with two schemes, feature fusion and model fusion.
In feature fusion the feature vectors from both modalities are simply concatenated

to generate a single vector on which a standard hmm based recogniser can then be
trained. We used linear interpolation between video frames, that are extracted with
25 frames per second to match the frame rate of 100 frames per second of the audio
data.

6.1.1 Feature fusion

The multi-modal recogniser was created by extending the 39 dimensional distri-
bution functions of the (unadapted) baseline speech recogniser to 50 dimensional
distributions. The additional 11 means and variances of all states of all models were
initialised with the global means and variances calculated over the entire video part
of the multi-modal data set. The audio part of the system was already reasonably
well-trained and needed only some adaptation to the new data set, but the visual
part could only be trained on the multi-modal data set. As all models initially have
the same parameters for their visual features the distribution of the feature vectors
during Baum-Welch re-estimation are guided by the speech features. This way a
continuous multi-modal recogniser can be obtained in a few training cycles with a
limited amount of training data. The speech part of the models ensure robustness
while the video part may give valuable cues to differentiate between acoustically sim-
ilar phonemes. The combined models were re-estimated twice, using the bimodal
training data. The models in this system thus received just as much training as the
models in the adapted speech only system. The recognition results of this system
on a held-out test set are shown in table 6.1.

The feature fusion approach, although attractive because of its simplicity, was
not able to improve upon the speech only system. One of the problems is that this
approach does not take into account the reliability of the separate streams. Because
of the clean audio and the well-trained speech models, the audio stream is likely to
be more reliable than the video stream.

92

6.1. Case study: lip-reading

Table 6.1 – Results audio-visual speech recognition.

System % of words recognised correctly

baseline speech recogniser 84.24
feature fusion 83.69

phonemes; equal weights 83.69
phonemes; audio weight 1.2 84.43
phonemes; audio weight 1.4 84.22

visemes; audio weight: 0.9 84.76
visemes; audio weight: 1.0 85.56
visemes; audio weight: 1.1 85.92
visemes; audio weight: 1.2 85.03

6.1.2 Model fusion

In model fusion two different data streams are used and these are combined within
the hidden Markov model. The multi-stream hmm explicitly models the reliability
of its streams. In its simplest form, the state synchronous multi-stream model, it
uses separate distributions for its streams in each state. The observation likelihood
of the state is the weighted product of the likelihoods of its stream components, as
shown in equation (6.1), where γs are the weights:

bj(ot) =

2∏
s=1

N(ot,µsj,Σsj)
γs . (6.1)

A multi-stream recogniser was build using a similar approach as with the feature
fusion model. The models from the baseline speech recogniser were used for the
audio stream and the distributions in the video stream were initialised with the
global mean and variance of the entire video data set. This system was also re-
estimated twice. A number of recognition experiments was run on the test set using
different weighting schemes, the results are shown in table 6.1. The video weights
and audio weights add up to two in all cases.

By setting the weights so, as to put more emphasis on the audio stream this
system is capable of doing a little better than the stand-alone speech recogniser. A
shortcoming of this system is that it uses phones as basic units but from a lip-reading
point of view it is hard to distinguish between certain phonemes, because of similar
lip movements.

To solve the problem indicated above, it was decided to use visemes for the video
stream. A viseme is basically a phoneme class; we defined the following visemes:

{sil, sp}, {f, v, V}, {s, z}, {S, Z}, {p, b, m}, {t, d}, {g, k, x, n, N, r, j},
{E, E:}, {A}, {a}, {@}, {O, Y, y, u, ø:, o:, œy, œ:, O:}, {I, e:}, {Ei}.

93

Chapter 6. Case studies

The use of different units for the stream was realised by tying the distribution func-
tions of corresponding states in the second stream for phonemes that are in the
same phoneme class. The limited training data problem is also partially solved this
way, because there is now more data per model in the second stream available. As
with the previous systems this system was also re-estimated twice before recognition
experiments were conducted. Table 6.1 shows the recognition results of a number of
viseme systems with different weights, once again the audio and video weights add
up to 2. This system is capable of improving upon the speech recogniser even when
both streams have equal weights. By giving the audio stream higher weight than
the video stream the results show more improvement.

6.1.3 Noise robustness

In the experiments described in the previous section the improvements the bimodal
system realised over the audio only system remained modest. This can be explained
by the fact that both modalities encode similar information. If the video stream
gives reason to belief that a plosive sound is uttered, and the speech recogniser has
a hard time choosing between /p/ and /g/ then the bimodal system may correctly
pick /p/. But if the speech recogniser already found that a /p/ was uttered then
the additional information from the video data does not help much.

Because relatively clean audio was used in the experiments described so far, the
speech recogniser did not need the additional information from the lip-data, most
of the time. But for noisy audio the cues given by the video stream may be more
valuable. To verify this hypothesis the multi-stream viseme system was tested using
noisy data. This was done by adding different levels of white noise to the audio
samples in the test set. The performance of the systems was measured for signal to
noise ratios between 20 dB and -5 dB.

The performance of the speech-only system degrades rapidly under these condi-
tions as can be seen in figure 6.1. The results of the bimodal system are also shown in
the figure. At low noise levels the multi-modal system performs slightly better than
the speech recogniser, but as the noise level increases the bimodal systems clearly
outperforms the uni-modal system. Once again the multi-stream model with viseme
models in the second stream shows the best results. At a signal to noise ratio of
5 dB the difference is 12%. As the noise level approaches -5 dB the audio recognition
gets so poor that the visual cues can no longer provide adequate help.

Our lip reading technique seems to do especially well in discriminating between
consonants (for example /f/ and /s/). Figure 6.1 also shows a system for which only
the consonant weights of the visemes were gradually increased as the noise level
increased (up to a noise level of 0.8 dB, for higher levels the weights were decreased
again). This system impressively outperformed all other systems and shows the
feasibility of bimodal speech recognition. Note that these results are obtained with
a relatively small data set. If more data would be available, it might be possible
to develop a more reliable lip-reader. Future research will also have to show if and
how these results carry over to speech recognition in noisy environments. It is well-

94

6.1. Case study: lip-reading

Figure 6.1 – Percentage of words recognised correctly at different signal to noise ratios.

known that people (unconsciously) raise their vocal intensity in the presence of noise.
This phenomenon, called the Lombard effect, affects the performance of a speech
recogniser and possibly that of a lip-reader.

95

Chapter 6. Case studies

Figure 6.2 – Using connection frequencies to select the best combination of station names
from the 3 best hypotheses generated by the speech recogniser.

6.2 Case study: domain knowledge

In many cases the context of use or other program components may provide valuable
cues about the words to come. This is especially the case in systems that operate on
limited domains like dialogue management systems. It is this kind of knowledge and
the ways to incorporate it into the search process that we focus on in this chapter.
As our domain we take a dialogue management system for train table information
of the Dutch railways (Rothkrantz et al. 2000). Within this system we concentrate
on the identities of the stations involved, as analysis of the train tables shows that
there is a strong correlation between departure and arrival stations. The general
idea is illustrated in figure 6.2. n-best lists for the departure and arrival stations are
shown. The original system takes the first best option from both lists. However, the
connection frequencies, depicted by the thickness of the lines in figure 6.2, suggest
that the second best option for the departure station is very likely given the first
best arrival station.

Given such knowledge, or for that matter domain knowledge in general, the
central questions that have to be answered are:

1. In which situations should the knowledge be used?

2. At what point in the recognition process should the knowledge be employed?

3. How can it be combined with existing knowledge sources (in this case the
language model and the acoustic models)?

To find an answer to the second question we experiment with two different meth-
ods, in the first case we use a class based language model in which the probabilities
are updated to influence the search process directly. In the second case the con-
nection frequencies are used in a post-processing step on lattices produced by the
recogniser. The different approaches also provide different ways to combine the
knowledge sources.

The importance of the first question stems from the fact that our baseline recog-
niser identifies over 85% of all station names correctly. So, in many cases the use
of additional knowledge is not necessary and might even do more harm than good.
Essentially, this is the same discussion as for models of human speech recognition:
(when) is background knowledge allowed to override perceptual information? To

96

6.2. Case study: domain knowledge

decide when to utilise the additional knowledge a confidence measure based on pos-
terior probabilities was developed and implemented.

6.2.1 Data analysis

The data set used, called the ovr log files, covers the transcribed conversations of
an entire year (October 1995 - October 1996) between users and operators of the
original telephone inquiry system. The total number of references to stations in
questions regarding station-to-station queries is almost 13 million. Figure 6.3 plots
the frequencies of station pairs mentioned in those queries. On both axes the stations
are ordered based on frequency. The connection frequencies are indicated by shades.
A darker shade corresponds to a higher connection frequency. Analysis of the data

Figure 6.3 – Plot of connection frequencies between stations. The axes display station
names in order of decreasing frequency. Higher connections frequencies have a darker
shade.

revealed the following facts (van Vark et al. 1997):

• The connections from and to the first 50 stations (out of 377 stations) make
up 50% of all connections asked for.

• Connections are highly dependent on the stations involved.

• There is a strong inverse correlation between the distance to travel and the
frequency of these journeys.

Given the dependencies found in the log files it may be clear that this information
can be useful in recognising the correct station name. Knowledge of either the

97

Chapter 6. Case studies

Figure 6.4 – A confusion network that shows competing word hypotheses generated by a
speech recogniser.

departure or arrival station can help to restrict the search for the other station
name considerably. But as there are a number of stations that always have high
frequencies, while on the other hand the majority of the connections have relatively
low frequencies, relying too much on the connection frequencies does not seem a
smart thing to do. This may lead to overall improvement at expense of small stations.
Therefore, it should be decided in what cases the frequency information may be
beneficial and the choice of a station pair should be based on a balanced combination
of all evidence available. To provide guidance for these decisions confidence measures
are used.

6.2.2 Confidence measures

The confidence measures are based on a lattice output by the recogniser. The
main feature used is the word posterior probability, i.e. the probability of a word
in a certain position given the observation sequence. As speech recognisers try to
maximise the posterior probability over an entire utterance the word level posteriors
are usually not known, but they can efficiently be approximated using a variation of
the forward-backward algorithm on the output lattice that provides the probability
of each link in the lattice (Evermann and Woodland 2000). Usually several links may
correspond to the same word, so deciding which links correspond to which word is
not trivial. We chose to proceed along the lines of (Mangu et al. 1999) by clustering
the words in the lattice based on overlap in time. Links in the same cluster that
correspond to the same word are combined. An example of the resulting network is
shown in Fig. 6.4. This type of network is often referred to as confusion network and
explicitly shows which words in the lattice can be considered competing alternatives
to each other.

Our procedure differs from the ones described in Mangu et al. (1999) and Tur
et al. (2002) as we allow successive words to be in the same cluster. This may
happen when two smaller words correspond to one longer word (e.g. ‘ex’ and ‘ample’
to ‘example’). For further processing these sequences in a cluster are seen as a single
entity. As word lattices cover only part of the entire search space the posterior
probabilities are just an approximation of the real posteriors; in general they tend
to overestimate the probabilities of the best alternatives, therefore a number of other
confidence features is determined for each cluster and the features are combined in

98

6.2. Case study: domain knowledge

Table 6.2 – Detailed results of the confidence measure.

Correctly classified instances 94.22%

Class tp rate fp rate Precision Recall

Correct 98.12% 46.50% 98.12% 95.53%
Incorrect 53.50% 1.88% 53.50% 73.79%

a classifier that provides a single confidence value for each word. The following
features were selected as the most discriminative subset of a large set of potentially
useful features:

Posterior drop The quotient of the posterior probabilities of the first and second
best option. If this value is close to one the second best alternative is almost
as good as the first best, which may indicate low confidence.

n-best position The first hypothesis the word occurs in. This may differ from the
word having the highest posterior probability.

Relative n-best position The number of consecutive hypotheses the word occurs
in. This is a measure of the stability of a word.

Number of words in a cluster Many alternatives may imply lower confidence.

Number of words on a cluster arc As the alternatives in a cluster can actually
be word sequences, this number may be larger than one. This usually means
that a longer word has been recognised as a sequence of smaller words.

Language model score Words having a higher language model score may be bet-
ter trained and thus better recognised.

Confidence value of the previous cluster Recognition errors tend to occur in
bursts.

For combination of the features we experimented with several classifier types in-
cluding neural networks and linear regression trees Like Stemmer et al. (2002) we
found that there are no significant performance differences. For the final system a
linear regression tree was chosen. Table 6.2 shows the classification results of the
confidence measure on the phonetically rich sentences of the evaluation part of the
Dutch Polyphone database, the word error rate of the recogniser on this set is 9%.

6.2.3 Language model structure
The marginal departure and arrival frequencies, that is, the probability that a user
wants to travel to or from a certain station can directly be used in the language
model. To do so, we trained a dbn bigram language model but replaced all station

99

Chapter 6. Case studies

names with the respective labels from_station and to_station, assuming that
the words preceding a name do not depend on that particular name. Two classes
were used instead of a general station class because data analysis revealed that
frequencies are not completely symmetrical. For example, it was found that there
are much more requests for journeys to the train station of Amsterdam Airport than
for travelling from the airport to another station. A likely explanation may be that
people will carefully plan their trip to the airport, but they often do not know when
exactly they will be back at the station of the airport, they will simply take the first
train home.

The probabilities within these classes correspond to the marginal frequencies.
This approach can be generalised to obtain a class based n-gram model by assuming
that all words belong to a class and the occurrence of a class only depends on the
previous class. In this particular case most classes gi contain only a single word wi.
The bigram probability of a word given the previous word now becomes:

P(wi |wi−1) = P(g(wi) |g(wi−1))P(wi |g(wi)). (6.2)

Taking advantage of the connection frequencies is less straightforward as these do
not fit very well in an n-gram approach, since the station names may be separated by
a large, unknown number of words, be in different utterances or they may be obtained
from other sources, for example a pointing device in a multi-modal system. As we
are ultimately interested in the more general concept of using external knowledge in
speech recognition these possibilities should be taken into account. The next sections
describe two approaches that we considered: An approach that takes advantage of
the class based structure of the language model to utilise the contextual knowledge
in an early stage and a post-processing approach that uses the connection frequencies
for rescoring the results produced by the recogniser.

6.2.4 Dynamically updating the language model

This approach uses the class based language model described above to recognise the
first name. If the confidence value of this name is above a predefined threshold τ
the name is assumed to be correct and the distributions in the station name classes
are updated according to the conditional probabilities obtained from the frequency
table. We found the best results if the conditional frequencies are interpolated with
the marginal frequencies.

This approach essentially comes down to the on-the-fly creation of a context
dependent language model that is interpolated with the original language model to
obtain a mixture language model according to:

P(wi |wi−1) = λPlm(wi |wi−1) + (1 − λ)Pconn(wi|wi−1), (6.3)

where λ ∈ [0, 1]. In case of low confidence for the first name no assumptions can be
made about likely connections, so the standard language model is used for recog-
nition of the second name. This approach suffers from two drawbacks, first it only

100

6.2. Case study: domain knowledge

works when the arrival and departure names are mentioned in different utterances.
Second, uncertainty about the first name is not resolved, even though the second
name may be helpful here. As a solution a second recognition pass was introduced
for the first name using a language model updated based on knowledge of the second
name. This is a computationally rather expensive method, a more efficient, albeit
probably less accurate method, would be to rescore the original recognition results
with the updated language model. As we are only interested in station names and
not in whatever other words are recognised things can be made even more efficient
by using the connection frequencies in a post-processing step, which has the addi-
tional advantage that the influence of the different knowledge sources can be better
controlled.

6.2.5 Using frequencies for lattice rescoring

In this approach the recogniser is set to produce n-best lattices which are trans-
formed to confusion networks while calculating confidence values. The clusters con-
taining station names are located and the connection frequencies are used to pick
the best pair of names. This method is particularly error prone because frequent
connections will dominate, thus as before the confidence measures are used to limit
the use of frequency information to those cases where there remains uncertainty
about one of the names. In those cases where frequency information is utilised it
is combined with acoustic evidence using a Bayesian updating approach. The fre-
quency table is interpreted as the joint probability of a connection from departure
station S1 to arrival station S2. The word level posterior probabilities, which are
already available from the confidence measure calculation, are used to represent the
probability that a station name was uttered given the corresponding observation
(sub)sequence. Assuming statistical independence of the second station name and
the first observation sequence given the first name this can be written as:

P(S1 |S2O1) =
P(S1S2)P(S1 |O1)

P(S1)
∑
S1

P(S2 |S1)P(S1 |O2)
. (6.4)

As we are only interested in relative scores the summation in the denominator
can be omitted. The formula has an intuitive interpretation: the overall score will
be higher when a name is more likely to be uttered and is likely to occur together
with the other station name, while stations with a small marginal probability, that
is the rarer stations are preferred over stations that have a high frequency in general.

Although attractive from a theoretical point of view this approach has its weak-
nesses. As mentioned before the lattice based posterior probabilities are a somewhat
crude approximation to the real probabilities. They have a tendency to overestimate.
To smooth the distributions we may resort to the same solution as with the confi-
dence measures. Determine other features that indicate the likelihood of a word and
combine them using some sort of classifier. But, as each classifier works indepen-
dently, the values obtained for competing alternatives can in this case no longer be

101

Chapter 6. Case studies

Figure 6.5 – Distributions of names in the test sets.

seen as probabilities, so the Bayesian framework is no longer applicable. Therefore
we decided to combine the acoustic evidence now represented by local confidence
measures and the connection frequencies using a weighted geometric mean, accord-
ing to:

Score(S1S2) = C(S1 |O1)w1f(S1S2)
w2C(S2 |O2)w3 . (6.5)

While somewhat less formal than the previous method, this formula captures the
same intuitive line of reasoning. A geometric mean was chosen because it has the
desired effect that the overall score is high when its individual items are high, while it
is rather insensitive to high values of a single attribute. This method also addresses
another weakness of the Bayesian approach as it can give different weights to the
knowledge sources. The score does not take into account the marginal probabili-
ties. However, these are indirectly used as the best results were obtained by setting
the weight of the connection frequencies somewhat higher than the weights of the
acoustic scores, but lower for very rare stations or stations having a high marginal
probability.

6.2.6 Experiments

The approaches described above were tested on a set of 325000 station pairs (Wiggers
and Rothkrantz 2003a;b). These pairs were sampled from all pairs in a set of 10163
recordings of station names. The subset was selected so as to get a representative
data set that exhibits roughly the same distribution as the ovr data. To test the
stability of the methods another test set was selected, which has a much flatter
distribution that the original data set. Unlike the first set and the ovr data where
50% of all connections have a frequency above 1000, here only 26% of all connections
have a high frequency. For the rescoring approaches the recogniser produced 10-best

102

6.2. Case study: domain knowledge

Table 6.3 – Comparing word error rates for the different approaches.

System wer test set 1 wer test set 2

Speech recogniser 11.4% 11.4%
Highest confidence 10.9% 10.9%
Adaptive lm 10.34% 10.8%
Bidirectional lm 8.5% 9.9%
Bayesian approach 9.5% 10.6%
Geometric mean 9.0% 10.4%

lattices. Table 6.3 shows the results of these experiments. The first row shows
the word error rate of the baseline speech recogniser. The second row shows the
word error rate if for each name the alternative with the highest confidence value is
chosen. This already gives a small improvement as the word error rate is explicitly
minimised this way. Including connection information using the Bayesian approach
gives some improvements; the geometric mean does even better and results in an
absolute gain of 2.5%. As can be expected both methods perform less well for the
second data set, but they still improve upon the baseline system. The difference
in performance between the two approaches stems from the ability to weight the
contributions of knowledge sources for the geometric mean. The mixture language
model does less well than the post processing approaches, however when used for
both station names it outperforms the other approaches. This is mainly due to the
fact that in the post-processing approach the correct name may already be pruned
away; in about 5% of all cases it is not in the n-best lists.

It is an interesting question whether it would be possible to reconstruct missing
words in the n-best approach. For example, we might consider choosing a station
name if it is known to be acoustically similar to a name that is in the n-best list
and it is also strongly correlated with the name of the other station. We did some
preliminary experiments in order to test this idea. For clusters with low confidence,
stations names are added to the list that are acoustically similar to the names al-
ready in the list, as measured by a minimal edit distance between the phonetic
transcriptions. The acoustic confidence for those new names is set equal to the low-
est confidence value in the list. Furthermore, for each alternative now in the n-best
list the mean acoustic distance to all other names in the list is calculated. This value
is also taken into account in the final score, but only with a small weight. Using this
setup we were able to get the word error rate down to 8.7% for the first test set.
As this was only an ad hoc preliminary experiment it might very well be possible
to outperform the early integration approach using a post-processing approach that
relies on background knowledge.

103

There is nothing so practical as a good theory.

Kurt Lewin (1890–1947)

Chapter 7

Computational Paradigms

In which we reason that a new computational paradigm is needed for the
development of context-rich models of speech recognition. Requirements
for such a paradigm are formulated. Several techniques are evaluated
against these requirements. It is argued that dynamic Bayesian networks
are best suited as a computational technique for speech recognition.

Many sources of information discussed in previous chapters have not explicitly been
used in models of speech and language processing. Models that do include linguistic
or contextual knowledge typically use a single feature in isolation. The case studies
presented in the previous chapter are representative for work in this domain. They
prove that using contextual knowledge can improve speech recognition, but are lim-
ited to a single feature for which the standard models are adapted. The resulting
models are often complex and hardly ever combined. We might argue that the area
of knowledge-rich models of speech and language is largely unexplored because of
the lack of a unifying framework that allows one to do so.

The focus of this and the following chapters is the development of such a general
framework. In this chapter we will start by reviewing a number of computation
techniques that have the potential to offer a uniform framework for speech and
language processing with context information. The goal is not so much to find
the ultimate representation for all speech and language processing applications —

105

Chapter 7. Computational Paradigms

specialised representations for different types of systems are likely to be more efficient
— or to completely abandon existing theory and practices, but rather to find a
framework that allows for rapid model development and experimentation. That
allows us to move from an imperative approach in which new algorithms have to be
implemented for every new model to a declarative approach in which we can focus on
purely on model design. Based on this goal and the types of contextual knowledge
described in the previous chapters a number of requirements for a computational
technique can be specified:

1. The model should be able to deal with the highly ambiguous nature of language
and speech.

2. It should be possible to include all context factors mentioned in the previous
chapters in a model. In particular, the model should be able to deal with
classes of elements, with knowledge at multiple levels where a variable number
of items on a lower level can belong to an element at a higher level.

3. The model should be able to capture the dependencies and interactions be-
tween those factors.

4. It should be simple to incorporate new knowledge sources into a model.

5. It should be simple to experiment with different configurations of a model.

6. It should be possible to combine the models with existing speech recogniser
components such as acoustic hmm models.

7. The model should be capable of dealing with the time dimension of speech.

8. The model should be capable of on-line processing.

In this work we will first of all stick to probabilistic modelling techniques, for two
good reasons. First, the standard models of speech recognition are probabilistic
and we wish to extend those models, not to replace them (requirement 6). Second,
the complexity of the domains of speech and language we deal with necessitates a
probabilistic approach (requirement 1). This is a less restrictive choice than it may
seem as one can always turn a knowledge based model into a probabilistic model by
calculating probabilities over its decision points.

7.1 Linear interpolation and back-off
In chapter 3 linear interpolation and back-off were discussed as smoothing techniques
for language modelling. These methods have also been used to combine different
models (Goodman 2000). Linear interpolation is simple and easy to implement
and use. It is very general. Any model that can be formulated as a probability
distribution can be included as a component. An advantage of interpolation is that
it can never be worse than any of its components. To construct a model that includes

106

7.2. Decision trees

a number of context variables, one can simply train distributions for all subsets of
variables and estimate the weights of these components on using a held-out data set.

It also provides a tool for analysis: the weights of the model reflect the relative
usefulness of the components. That is, as long as the data-set is representative. It
has been found that data sets for weight estimation can be of moderate size to obtain
reasonable results (Rosenfeld 2000).

However, straightforward linear interpolation, that optimises weights globally,
uses its components suboptimally. It does not take into account strengths and weak-
nesses of the components in particular contexts. Often one would like the weights
themselves to depend on context. This requires handcrafting of complicated train-
ing algorithms. In addition, linear interpolation requires that all components specify
distributions at the same level. For example it is hard to combine a model that works
at the sentence level, such as a syntax model with a model that works at the n-gram
level. To include classes into the model or to specify the interplay between context
variables other techniques have to be used in addition to interpolation.

Back-off offers another simple and compact way to combine multiple models.
Compared with linear interpolation it has the disadvantage that discontinuities are
introduced around the point where the back-off decision is made.

7.2 Decision trees

A decision tree is a k-ary branching tree in which questions are associated with each
internal node and an answer is associated with each leaf. In a statistical decision
tree probability distributions are attached to the leafs of the tree. All contexts that
lead to the same leaf node have the same probability distribution for the decision.
Effectively, leaf nodes define equivalence classes for their values depending on the
history. The leaf distributions are conditional distributions over the entire history
of questions and answers from the root of the tree to the leaf. As Magerman (1994)
points out there is a relation between decision trees and n-grams. If an n-gram is
generalised to:

P(f|h1 . . .hn−1), (7.1)

where f is some future event, e.g. the next word, that depends on n − 1 history
variables (without requiring that these range over the same vocabulary as a Markov
model would). The model can be represented by a decision tree with n−1 questions
of which the leafs define the distribution over the event f. On the other hand a
decision tree can be represented by an interpolated n-gram. Each of the leafs in
the tree depends on the answers to m 6 n − 1 questions. If these answers are the
values of the variables hi . . .hm then the leaf defines the term P(f|hi . . .hm) from
the deleted interpolation estimate of P(f|h1 . . .hn−1). Given this relationship it may
be clear that decision trees have no additional expressiveness over n-gram models.
The advantage of decision trees is that their structure can be automatically acquired,
such that the leafs will be conditioned only on the information that is available in the
training data. Therefore, decision trees can handle very large modelling problems.

107

Chapter 7. Computational Paradigms

Although an interesting and powerful modelling technique, decision trees have
their disadvantages. First of all, the tree building algorithms are usually greedy
algorithms and thus do not guarantee to find the optimal tree. As the leaf distribu-
tions are empirical estimates decision trees require smoothing just as n-grams do.
Furthermore, irrelevant questions or the wrong order of questions may unnecessarily
fragment the data (a possible partial solution lies in node merging during the train-
ing algorithm). Finally, decision trees do not always make for intuitive models. For
example, it is not straightforward — but possible, see Magerman (1994) — to define
models of syntax using decision trees.

7.3 Maximum entropy models

Maximum entropy models (Lau 1994; Berger et al. 1996; Pietra et al. 1997; Rat-
naparkhi 1997) define probability distributions in terms of features, which are con-
straints over the variables in the domain of the distribution and are usually for-
mulated in terms of expectations of marginal distributions of these variables. The
desired probability distribution should fulfil all of these constraints. Often there will
be more than one distribution that fits these requirements. The principle of maxi-
mum entropy states that in this case the most uniform distribution should be chosen,
as this distribution minimises for additional assumptions that are non-embeddable.
The most uniform distribution is the distribution with the highest entropy. It can be
proven that when the distribution is formulated as an exponential model a unique
maximum entropy distribution that fulfils all features will exist, which will also be
the maximum likelihood distribution of this kind over the training data. An algo-
rithm called generalised iterative scaling exists that finds this distribution given a
training set and a number of features. The algorithm allows for incremental adap-
tation: constraints can be added or relaxed to optimise the model.

The advantage of maximum entropy models is that they can deal with a large
number of features, that may encode any kind of knowledge and that do not have to
be independent. However, the generalised iterative scaling algorithm, used to learn
the distribution, has a high computational complexity, it has no theoretical bound
on its convergence rate, which puts a practical limit on the number of features.
Furthermore, the method delivers maximum likelihood distributions, i.e. they fit
the training data as best as possible but do not generalise. In fact, if information
is included that is not in the training data, as some smoothing algorithms do, the
existence of a unique Maximum Entropy distribution is no longer guaranteed.

7.4 Probabilistic grammars

Grammar formalisms such as probabilistic context-free grammars, that were dis-
cussed in section 3.13, offer the most natural representation for syntactic knowledge.
Contextual knowledge can be incorporated in those models in the same way that

108

7.5. Weighted finite-state transducers

syntactic features, such as lexical heads, are incorporated. The expansion of syn-
tactic constituents can for example be conditioned on dialect or on type of speech.
However, including context information that is largely independent of syntax can be-
come awkward. For example, it is reasonable to assume that the topic of a sentence
and its structure are largely unrelated. Given that the topic should be consistent
throughout the sentence we effectively need to repeat the same set of parses for
every topic. Syntax models are less suited for acoustic modelling. They do not fit
the time-dependent nature of speech recognition very well.

7.5 Weighted finite-state transducers

Weighted finite-state transducers (Pereira et al. 1994; Jurafsky and Martin 2000) can
be seen as a generalisation of the hidden Markov models commonly used in speech
recognition. They have been used to model phonological and morphological rules as
well as simple models of grammar. As weighted finite-state transducers in turn are
a subclass of dynamic Bayesian networks that are the subject section 7.7 we will not
discuss them separately.

7.6 Bayesian networks

Bayesian networks (also called belief networks or causal networks) originate in arti-
ficial intelligence as a method for reasoning with uncertainty based on formal rules
of probability theory (Pearl 1988; Neapolitan 1990; Russell and Norvig 1995; Cowell
et al. 1999).

A Bayesian network represents a joint probability distribution over a set of ran-
dom variables X1,X2, . . .XN. It consists of two components: a graph that represents
(causal) relationships between the variables, and a set of probability distributions
that quantify the strengths of these relationships. There is a one-to-one correspon-
dence between the nodes of the graph and the random variables in the problem
domain, i.e. every node of the graph vi corresponds to exactly one random variable
Xi and every random variable is represented by exactly one node in the graph. The
directed arcs of the graph represent direct dependencies between random variables.
To be precise, the absence of an arc between two variables means that the variables
are not directly dependent on each other. To avoid circular reasoning directed cy-
cles1 in the network are not allowed. Thus, in graph theoretical terms a Bayesian
network is a directed acyclic graph. How a variable X depends on the variables
Pa(Xi) that correspond to the parents of the node associated with Xi in G is speci-
fied by a conditional probability distribution P(Xi|Pa(Xi)) associated with it. Nodes

1A cycle is path through the graph of which the begin and end node are the same. A path
between two nodes vi and vj in a graph is a sequence of nodes starting with vi and ending with
vj such that every adjacent pair of nodes is connected by an arc and no node, except for the first
and last, appears more than once.

109

Chapter 7. Computational Paradigms

without parents have prior distributions. Probability distributions can be continu-
ous or discrete. The probabilities are obtained from domain experts, learned from
data or a combination of both. Applying the chain rule of probability theory and the
independence assumptions made by the network we can write the joint probability
distribution represented by the network in factored form as a product of the local
conditional probability distributions:

P(X1,X2, . . . ,XN) =

N∏
i=1

P(Xi|Pa(Xi)). (7.2)

The computational complexity of the right hand side of (7.2) may be much more
efficient than that of the full joint representation. For example, a joint multinomial
distribution of n variables with v values each requires vn entries, so that time and
space requirements increase exponentially with the number of variables. If every
variable has at most k parents then the complexity reduces to O(nvk). The size
of the conditional probability tables (cpts) is still exponential in the number of
parents. Thus, the number of dependencies should be kept as low as possible.

The links in the network show direct dependencies between variables, but de-
pendencies may also be indirect. For example, if variables A and B have a common
parent C, and the value of A changes, this will affect the belief about the value of C
which in turn affects the belief about the value of B. Dependencies between variables
can be determined based on the notion of d-separation. Two nodes are structurally
independent, i.e. changes in the belief of one of these nodes will not affect the belief
of the other node if they are d-separated. Two distinct variables A and B in a belief
network are d-separated if for all paths between A and B, there is an intermediate
variable V (distinct from A and B) such that the connection is either:

1. Serial (one arc leading in to V and one arc leading out of V) and V is instan-
tiated to a particular value.

2. Diverging (both arcs on the path connected to V are leading out of V) and V
is instantiated.

3. Converging (both arcs on the path connected to V are leading into V) and
neither V nor any of V’s descendants have received any evidence.

Figure 7.1 illustrates the three possibilities. Bayesian networks allow for several
patterns of reasoning: predictive, from cause to effect, diagnostic, from evidence
to cause and explaining away : if a particular cause of an effect occurs, alternative
causes are less likely. Mixed patterns are also possible. Furthermore, a Bayesian
network can be used to find the most likely explanation for some evidence, or to
determine which additional evidence variables should be observed in order to gain
useful information (Russell and Norvig 1995). Finally, one can perform sensitivity
analysis to find out which aspects of the model have the greatest impact on the
probabilities of the query variables.

110

7.6. Bayesian networks

V A B

A . . . V . . . B

A B V

V
′

(a) (b) (c)

Figure 7.1 – Variables A and B are d-separated if on every path between A and B there is
a variable V such that V is instantiated (indicated by a shaded node) and the connection is
(a) serial or (b) diverging or if the connection is converging (c) and neither V nor any of
its descendants V ′ are instantiated.

7.6.1 Inference

Inference in Bayesian networks is the process of calculating the probability of one or
more random variables given some evidence, i.e. computing P(XQ|XE = xE) where
XQ is a set of query variables and XE is a set of evidence variables. Let XH be the set
of variables that are not part of the query and that have not received any evidence:

XH = {X1,X2, . . . ,XN} \ (XQ ∪ XE), (7.3)

then

P(XQ|XE) =
P(XQ,XE)

P(XE)
=

∑
XH
P(XH,XQ,XE)∑

XH,XQ
P(XH,XQ,XE)

. (7.4)

For given evidence the denominator is a constant, therefore we can write:

P(XQ|XE) = α
∑
XH

P(XH,XQ,XE). (7.5)

Inference thus comes down to marginalisation over XH followed by normalisation.
Directly applying equation (7.5) is intractable for most networks, but a number of
efficient algorithms exist that exploit the independence of variables in a network.

Message passing

Pearl (1988) introduced an efficient algorithm for tree shaped networks that was
later extended to singly connected networks, i.e. graphs in which there is at most
one directed path between any two nodes. It exploits the fact that computations
are local if a node is independent from the rest of the network given its Markov

111

Chapter 7. Computational Paradigms

blanket, which include its parents, its children and its children’s parents. The latter
have to be included because of the explaining away effect. In this approach the
graph is used as a computational architecture, where the arcs act as communication
channels. New information is propagated through the network by local message-
passing. Nodes receive messages from neighbouring nodes, update their beliefs and
send updated messages back to their neighbours. This process is guaranteed to
reach an equilibrium after a number of cycles. This results in updated probability
distributions, which are probabilistically consistent with the evidence.

For a typical node X with parentsU = {U1, . . . ,Un} and children Y = {Y1, . . . , Ym}

message passing proceeds as follows: Using the notation of Pearl (1988) let e be the
total evidence. As the network is singly connected information put on an evidence
node always reaches X through one particular parent or a particular child. Therefore,
we can split the evidence in two sets. Let

e−
x =

{
e−

XY1
, . . . , e−

XYm

}
(7.6)

be the evidence that reaches X through its children, where e−
XYj

is the evidence
connected to X through Yj. And let

e−
x =

{
e−

XY1
, . . . , e−

XYm

}
(7.7)

be the evidence that reaches X through its parents, where e+
UiX is the evidence

connected to X through Ui. The belief of X after receiving the evidence e is:

Bel(X) = P(X|e) = P(X|e−, e+) (7.8)

=
P(e−

X |e+
X ,X)P(X|e+

X)

P(e−
X |e+

X)
(7.9)

= αP(e−
X |X)P(X|e+

X) (7.10)

The last step follows as X d-separates e+ and e−. Let λ(X) = P(e−
X |X be the in-

formation X receives from its children and π(X) = P(X|e+
X) be the information X

receives from its parents. The belief of a node can than be expressed as:

Bel(X) = αλ(X)π(X). (7.11)

Intuitively, the messages either give diagnostic or predictive support for the belief
of a node.

112

7.6. Bayesian networks

Updating

Belief updating is now a matter of collecting messages from the parents and children
of X:

λ(X) = P(e−
X |x) (7.12)

= P(e−
XY1

, . . . , e−
XYm

|X) (7.13)

= P(e−
XY1

|X) . . .P(e−
XYm

|X) (7.14)

=

m∏
i=1

λYj
(X) (7.15)

where λYj
(X) = P(e−

XYj
|X) is the message X receives from Yj.

π(X) = P(X|e+
X) (7.16)

=
∑

U1,...,Un

P(X|U1, . . . ,Un)P(U1, . . . ,Un|e+
X) (7.17)

=
∑

U1,...,Un

P(X|U1, . . . ,Un)P(U1|e
+
U1X) . . .P(Un|e+

UnX) (7.18)

=
∑

U1...Un

P(X|U1, . . . ,Un)

n∏
i=1

πX(Ui) (7.19)

=
∑
U

P(X|U)
∏
i=1

πX(Ui) (7.20)

where πX(Ui) = P(Ui|e
+
UiX) is the message X receives from Ui.

Propagation

After X has updated its belief it can propagate information back to its parents and
children. The message X sends to a parent Uk is calculated by:

λX(Ui) = β
∑
X

λ(X)
∑

Uk:k6=i

P(X|U)
∏
k6=i

πX(Uk). (7.21)

The message X sends to a child Yj:

πYj
(X) = α

∏
k6=j

λYk
(X)π(X) =

π(X)λ(X)

λYk
(X)

. (7.22)

Initially, all λs are set to vectors of ones. The π vectors follow from propagation of
the prior probabilities of the root nodes though the network.

In multiply-connected networks multiple directed paths between two nodes are
allowed, but then the message passing algorithm cannot be used as the assumptions

113

Chapter 7. Computational Paradigms

underlying the messages passing equations shown above may no longer be valid. As
a consequence, messages might circulate indefinitely and the same information might
be counted double as information with regard to its origin is lost in the propagation
process.

Variable Elimination

Variable elimination (Zhang and Poole 1996; Dechter 1999; Aji 2000) is an alter-
native inference method that directly uses the factored representation of the joint
distribution. It is based on the notion that marginalisation can be made more effi-
cient by ‘pushing sums inside of products’. By moving terms as far left as possible
the amount of computational work is minimised. The restriction is that all variables
appearing in a term must be in the scope of the appropriate sum operator.

The Junction Tree Algorithm

If one wants to calculate the marginals P(Xi|Xe) for all variables Xi /∈ Xe, one can
do so by calling the variable elimination algorithm once for every variable. As we
will be recalculating many of the intermediate results several times this is rather
inefficient. The related junction tree algorithm chooses its intermediate results in
such a way that it can efficiently calculate the marginals for all Xi at once. It does
so by a change of variables (Jensen 2001). A new tree-shaped graph is created that
defines exactly the same joint probability distribution as the original graph on which
a message passing scheme can then be used.

The variables in the new tree are cliques of variables in the original graph. The
structure used most often is called a junction tree. In fact, variable elimination
implicitly creates a junction tree. The difference is that we now save the intermediate
terms in the tree and reuse them. Basically, the variables elimination process is
performed in all directions at once.

The first step in junction tree construction is to explicitly represent relations
between parents that share a common child by connecting them and then dropping
the directionality on all arcs. This process is called moralization.

The next step is to ensure that evidence is not propagated along multiple paths
to the same node, where it would be combined as separate independent pieces of
evidence. This is accomplished by adding links, called fill-in edges, that break cycles
of length four or greater. The result is called a triangulated graph. The triangulated
graph can be found by eliminating the variables one by one and adding edges between
all pairs of uneliminated neighbours. The set formed by a variable and all of its
uneliminated neighbours is called an elimination set and is a clique of the original
graph.

The elimination process thus finds a collection of cliques. The time complexity of
inference in junction trees is exponential in the size of those cliques. To keep cliques
as small as possible one should add as little fill-in arcs as possible. Unfortunately,
finding an elimination order that results in the most optimal triangulation is np-
hard. However, several algorithms, such as the min-fill heuristic, the min-weight

114

7.6. Bayesian networks

heuristic and simulated annealing, exist that typically result in good elimination
orders.

For the remaining steps only cliques that are not contained in any of the other
cliques, called maximum cliques, are kept. From the set of maximal cliques a junction
graph is created by connecting cliques Ci and Cj if Ci ∩ Cj 6= ∅. The weight of this
edge is set to |Ci ∩Cj|, the number of variables they have in common. Any maximal
weight spanning tree of this graph is a junction tree.

The junction tree is completed by adding the probability distributions of the
Bayesian network to the cliques. A distribution can be added to any clique that
contains the corresponding variable. As a consequence, a clique may contain more
than one distribution. The distributions belonging to a clique are multiplied together
elementwise. The result is no longer guaranteed to be a probability distribution, but
is called a (clique) potential.

Message passing in a junction tree

Inference in junction trees is done with a two-pass message passing scheme. When
new evidence is added a collect phase is performed in which one of the junction tree
nodes is seen as the root of the tree. All nodes collect messages from their children
and pass a message to their unique parent. A distribution phase follows in which a
node receives a message from its parent, calculates its new potential and passes it to
all its children. The collect-distribute cycle is sometimes referred to as calibrating the
tree. Different message passing algorithms exist. The most important of which are
the Hugin or jlo algorithm (Jensen et al. 1990; Jensen 2001) and the Shafer-Shenoy
algorithm (Shafer and Shenoy 1990; Shenoy and Shafer 1990). These algorithms are
both variations on a simple message passing scheme that is often referred to as belief
propagation (Murphy 2001). For a junction tree node j with one or more children
and a unique parent k belief propagation works as follows. Let ψj be the initial
clique potential of j and let Sj be the domain of this clique, i.e. the set of variables
that form the clique. The node collects messages µi→j from all its children i in the
collect phase, i.e. from all its neighbours (as given by the function nbr(j)) except its
parent to obtain a new potential φj:

φj =

 ∏
i∈nbr(j),i 6=k

µi→j

ψj, (7.23)

µj→k =
∑

Sj\Sjk

φj, (7.24)

where Sjk = Sj ∩ Sk. In the distribution phase node j updates its potential ψj to its
new value using the message received from its parent k and sends a message to all
its children i that is of the product of the messages received from all other children,
the parent node and the initial clique potential:

φ∗j = φj × µk→j, (7.25)

115

Chapter 7. Computational Paradigms

µj→i =
∑

Sj\Sij

 ∏
i′∈child(j),i′ 6=i

µi′→j

µk→jψj

. (7.26)

One of the differences with message passing that operates directly on the Bayesian
network is that it is no longer straightforward to interpret these messages in terms
of predictive or diagnostic support as these messages can represent the combination
of diagnostic and predictive effects that the cliques of variables have on each other.

Approximate Inference

The complexity of inference using the junction tree algorithm is O(d|Cmax|), where d
is the maximum number of states of each variable can take and |Cmax| is the size of
the largest clique. For many networks this means that exact inference is intractable
and one has to fall back on more efficient algorithms that only approximate the
correct results. Several methods have been developed.

Loopy belief propagation (Pearl 1988) applies message passing to the graph even
if it has loops. As noted before, there is a danger of counting information twice, and
the algorithm may not converge or converge to the wrong answer, but in practice
the method works surprisingly well (Murphy 2002).

Alternatively, stochastic sampling methods are used. These methods randomly
generate a sufficiently large number of configurations from the joint distribution and
then the frequency of relevant events is counted:

P(H = h|E = e) ≈ number of configurations where H = h and E = e

number of configurations where E = e
. (7.27)

The simplest form of sampling is logic sampling that generates the configurations
one at a time. It starts by generating values at the root nodes using the prior
probabilities and then follows the directions of the arcs, generating values according
to the conditional distributions and the generated values of the parent nodes. The
disadvantage of this method is that it may generate many configurations that are
incompatible with the observations, this is especially troublesome in case of rare
observations. In general, the fraction of useful runs deceases exponentially with the
number of evidence variables (Russell and Norvig 1995).

To deal with this issue, importance sampling (Srinivasan 2002) weights every
sample by the likelihood of the evidence using the conditional probabilities. Impor-
tance sampling converges much faster than logic sampling.

Stochastic sampling methods have several advantages over deterministic approx-
imation algorithms: they are easy to implement and can deal with mixed cpds, with
variable state spaces or changing model structure while they are, in the limit of an
infinite number of samples, guaranteed to converge to the exact answers. The major
disadvantage is speed. Sampling methods are significantly slower that determinis-
tic methods. In particular, it takes a long time to reach accurate probabilities for
unlikely events, making them unsuitable for large models and large data sets.

116

7.6. Bayesian networks

Cutset conditioning selects nodes in the multiply connected network whose dele-
tion would remove a loop. For each value of such a node a new network is constructed
in which the node is treated as an observed node set to that particular value. Mes-
sage passing is then performed in each of the tree-shaped networks and the results
are combined using marginalization. The problem with this approach is that the
number of networks grows exponentially with the number of cycles: In a network
with k cycles O(k) variables must be set, for binary variables this would result in
O(2k) trees.

7.6.2 Learning

For Bayesian networks both the structure as well as the probability distributions can
be learned from data (Jordan 1998; Heckerman et al. 1995). Algorithms for learn-
ing include constrained-based-learning and score-based learning. Parameters may
be learned using a maximum a posteriori approach (map), a maximum likelihood
approach (ml) or a discriminative approach. The networks may be fully observed
or partially observed during learning. Networks are partially observed if some data
is missing or because some nodes are hidden. Learning algorithms may follow a
frequentist or Bayesian approach. Furthermore, learning can be off-line, estimating
the parameters or structure from a fixed batch of data or on-line, where the pa-
rameters are sequentially updated for every new piece of data. Both supervised and
unsupervised learning algorithms exist. Here we discuss parameter learning in case
of partial observability using a frequentist approach.

Expectation-Maximisation Algorithm

As mentioned above, if all nodes in the network are fully observed, i.e. the exam-
ples in the data set contain values for all variables, the parameters of the network
can be estimated using a simple maximum likelihood approach, similar to that dis-
cussed in section 3.2. However, if some nodes are observed or the data is incomplete
or has missing values, we can no longer maximise the likelihood function directly.
The expectation-maximisation algorithm (em) circumvents this problem by taking
an educated guess at values of the hidden variables and maximising the expected
likelihood rather than the likelihood itself (Dempster, A. P. et al. 1977).

Let E be the set of observed variables an H be the set of hidden variables and
P(E,H|θ) the joint distribution with parameters θ. Then as with maximum likelihood
estimation we can define a log-likelihood function that is to be optimised using a
data set D = {d1,d2, . . . ,dM}:

L(θ|E,H) =

M∑
m=1

log P(E,H|θ,dm). (7.28)

Since both E and θ are constant we can think of the likelihood as a function of the
random variables H. The em-algorithm operates in two steps. In the E-step the

117

Chapter 7. Computational Paradigms

value of the log-likelihood with respect to the unknown data H given the observed
data E and the current parameter estimates θ ′ are found:

Q(θ, θ ′) = E [log P(E,H|θ)|E, θ ′] . (7.29)

In the discrete case this can be written as:

Q(θ, θ ′) =
∑
m

∑
h

log P(E,h|θ)P(h|E, θ ′). (7.30)

In the second step of the algorithm, the M-step, the expectation calculated in the
E-step is maximised:

θ = arg max
θ
Q(θ, θ ′). (7.31)

These steps are iteratively repeated. Each iteration is guaranteed to increase the log-
likelihood (Dempster, A. P. et al. 1977) and the algorithm is guaranteed to converge
to a local maximum of the likelihood function. For multinomial cpds the E-step
becomes:

Q(θ ′|θ) =
∑
ijk

∑
m

P(Xi = k,Pa(Xi) = j|dm, θ ′) log θ ′ijk, (7.32)

where θijk = P(Xi = k|Pa(Xi) = j, θ).
The M-step becomes:

θijk =

∑
m P(Xi = k,Pa(Xi) = j|dm, θ ′)∑

k′
∑

m P(Xi = k ′,Pa(Xi) = j|dm, θ ′)
. (7.33)

Thus learning comes down to computing
∑

m P(Xi,Pa(Xi)|dm, θ ′) using an inference
algorithm of choice and then use those values in theM-step to set the new parameters
of the network. This is a generalisation of the Baum-Welch algorithm for hmms. See
Bilmes (1998) for a comprehensive introduction of the em-algorithm.

7.7 Dynamic Bayesian Networks
Dynamic Bayesian networks (dbns) model processes that evolve over time. A dbn
can be defined by two Bayesian networks: a prior P(X1) and a transition model that
defines how the variables at a particular time depend on the nodes at the previous
time steps:

P(Xt|Xt−1) =

N∏
n=1

P(Xi
t|Pa(Xi

t)), (7.34)

were Xi
t is the ith variable in slice t. The parents of a node can either be in the

current or in a previous time slice. Typically, first order Markov assuptions are
made, i.e. the nodes in a time slice only depend on the nodes in the previous time
slice2. If there is an arc from Xi

t−1 to Xi
t the node is called persistent. Note that

2k-th order Markov relations can always be rewritten as first-order relations.

118

7.7. Dynamic Bayesian Networks

despite their name dbns are not dynamic, the network topology and the cpds do
not change with time3.

7.7.1 Inference

For dbns several types of inference can be defined:

Filtering calculates P(Xt|o1,t), i.e. the distribution of the current state of the model
given all evidence up to the current time slice.

Smoothing computes P(Xt|o1,T), the state distribution at time t given all evidence.

Fixed lag smoothing is similar but uses only some information from the future:
P(Xt|o1,t+h) with h > 0.

Prediction computes P(Xt+h|o1,t) for some h > 0, the distribution of a future
state given all evidence up to the current time slice.

Viterbi finds the probability of the sequence of states which are most likely to have
generated the evidence: argmaxx1,tP(x1,t|o1,t).

As dbns are Bayesian networks all inference algorithms for Bayesian networks can
also be used for dbns. However, this is often not feasible as for example for the
junction tree algorithm one would have to unroll the entire network, which for most
networks will not fit into memory, that is if one happens to know the length of the
network beforehand at all. On-line algorithms have been developed that process the
network slice-by-slice. At any point in time they only keep a window of a limited
number of slices in memory. The next two sections discuss algorithms that have
specifically been designed for on-line inference in dynamic Bayesian networks.

The Frontier algorithm

The forward-backward algorithm for hmms exploits the fact that Xt separates the
past from the future. The frontier algorithm uses as similar idea. For a dbn, the
set of all hidden nodes in a time slice, X(1,D)

t , d-separates the past from the future.
The basic idea is to sweep a Markov blanket across the dbn, first forwards and then
backwards.

Using notation from Zweig (1998) and Murphy (2002), let F be the set of nodes
in the frontier. The nodes to the left of the frontier are denoted by L and the nodes
to the right of the frontier by R. Furthermore, hF is the set of hidden nodes in F,
eF are the evidence nodes in F, eL refers to the evidence in L and eR refers to the
evidence in R. In the forward pass we define: P(F) = P(hF, eF, eL). A node X can
be added to the frontier, i.e. be moved from R to F, when all its parents are already

3Although, one can encode dynamic behaviour in the network.

119

Chapter 7. Computational Paradigms

in the frontier as this will guarantee that X is independent from eL. A node can be
added by multiplying its cpd onto the frontier:

P(eL, eF,hF,X) = P(eL, eF,hF)P(X|eF,hF). (7.35)

Similarly a node can be removed from the frontier (moved from F to L) when all
its children are in the frontier. If X is hidden eL∪{X} = eL and eF{X} = eF. Thus
removing a node simply means marginalising it out:

P (eL ∪ {X}, eF − {X},hF − {X}) = P (eL, eF,hF − {X})

=
∑
X

P (eL, eF,X,hF − {X}) =
∑
X

P (eL, eF,hF). (7.36)

When X is observed we can skip the marginalisation, making it essentially a no-op.
The procedure is equivalent to variable elimination with a specific ordering. As a
matter of fact, the Frontier algorithm implicitly creates a chain-like junction tree.

In the backward pass, we define P(F) = P(eR|hF, eF). We can advance the frontier
from slice t + 1 to slice t by adding and removing nodes in the opposite order that
we used in the forward pass. Adding a node means moving it from L to F. Removing
a node means moving it from F to R.

When adding X to F, we know that all X’s children are in F, because X was
removed at this step in the forward pass. So X is shielded from eR. Adding X simply
means expanding the domain of the frontier to contain it, by duplicating all the
existing entries, once for each possible value of X.

To remove node X, we multiply in X’s cpd, this is possible since all of X’s parents
will be in F, since X was added at this step in the forward pass, and then marginalize
out X. If X is observed, the procedure is basically the same, except we don’t need
to marginalize out X, since it only has one possible value.

The Interface algorithm

The frontier algorithm uses all the hidden nodes in a slice to d-separate the past
from the future. This set is larger than needs to be, and hence the algorithm is
sub-optimal. Murphy (2002) shows that the set of nodes with outgoing arcs to the
next time-slice is sufficient to d-separate the past from the future. The interface
algorithm is based on this notion. It creates a junction tree for an unrolled 1 1

2 -slice
dbn which consists of a time slice and all interface nodes from the preceding slice. It
then imposes the restriction that all the nodes in the forward interface must belong
to one clique. This can be ensured by adding edges between all the nodes in the
interface to the moral graph during junction tree construction. The junction trees
can be glued together via their interfaces. Inference can be performed in each tree
separately and then messages are passed through the interfaces, first forwards and
then backwards.

120

7.7. Dynamic Bayesian Networks

The Island algorithm

Even when using on-line algorithms, the state space requirements of smoothing are
O(TS) where S is the size of the forward message, as all forward messages have to
be saved. At the other extreme one can repeat the forward calculations up to the
current slice in every backward step, resulting in constant space complexity. The
island algorithm chooses a point between the extremes. During the forward pass
messages are saved at C island points (including the first and last slice), resulting
in C− 1 subproblems on which the algorithm is then called recursively. If messages
are saved every

√
T steps the space complexity will be reduced to O(S logC T), the

cost of this is an increase in time complexity from O(T) to O(T logC T).

7.7.2 Approximate inference

Approximate on-line inference algorithms exist as well. The Boyen-Koller algorithm
(Boyen and Koller 1998) approximates the joint distribution over the interface as
the product of smaller terms (marginals). Compared to the interface algorithm, the
Boyen-Koller algorithm drops the requirement that all nodes in the interface are in
the same clique. The accuracy of the algorithm depends on the number of clusters
that is used to represent the interface. Using a single cluster corresponds to exact
inference. The other extreme is the fully factorized representation with one cluster
per variable. Boyen-Koller does exact inference in a two-slice dbn, sometimes this
approximation is still intractable.

The Boyen-Koller algorithm can be thought of as a factored version of the inter-
face algorithm, in the same way, as its name implies, the Factored Frontier algorithm
(Murphy 2002) is a factored version of the Frontier algorithm. The frontier distri-
bution is approximated as a product of marginals. Both algorithms can be seen as
special cases of a single run of loopy belief propagation. Therefore, running multiple
iterations improves the approximation.

As an alternative a Viterbi approximation can be used, when marginalizing the
sum operator is replaced by the max operator. The rationale being that the most
likely path may contain most of the probability mass.

Particle filtering is a simple and efficient sampling algorithm for dbns that com-
putes N samples in parallel. Essentially, particle filtering is sequential importance
sampling with resampling. It starts by creating a population of N samples by sam-
pling from the prior distribution of time slice 0. Next, the samples are propagated
through the system using the transition model and each sample is weighted by the
likelihood of being in the sampled state given the evidence using P(et+1|xt+1). The
whole population is then resampled according to the weights to generate a new set of
the N most likely samples that are propagated to the next slice again. The algorithm
thus focuses on the set of samples in the high-probability regions of the state space.
One of the advantages of particle filtering is that it can be used with arbitrary cpds.
On the down side, particle filtering can be significantly slower than deterministic
methods. To get the best of both worlds combinations of discrete approximation

121

Chapter 7. Computational Paradigms

methods and stochastic sampling also exist. Murphy (2002) describes a technique
called Rao-Blackwellized particle filtering (Doucet et al. 2000).

7.8 Speech recognition with dbns

dbns have been used in speech recognition. Interesting enough Pearl (1988) already
mentions speech recognition as an application area that might benefit from the
‘theoretical and computational tool’ of Bayesian networks. Zweig (1998) was the
first to propose dbn-based acoustic modelling. His model is essentially a simplified
version of the hierarchical model that will be presented in this section. Bilmes
(1999) presented a similar model but focussed on modelling relationships at the
feature level. Both showed that including variables between the phone state and the
output distribution that represent the positions of articulators as tongue and lips
can improve speech recognition performance.

Another area in which dbns have proven their usefulness, mainly in the shape of
Coupled Hidden Markov models (Brand et al. 1997) and Factorial Hidden Markov
model (Ghahramani and Jordan 1997) is audio-visual speech recognition. Unlike the
multi-stream Markov model that is often used for this task (Bourlard et al. 1996)
such models can easily deal with different frame rates and asynchrony between input
streams.

To see how speech recognition can be performed with dbns it is illustrative to
look at the relationship between dbns and hmms. In figure 7.2 a 3-state hidden
Markov Model is shown, together with an equivalent dynamic Bayesian network
that is unrolled for T time slices.

Figure 7.2 also shows a trellis diagram that displays all temporal paths through
the hmm. The diagram is obtained by ‘unfolding’ the hmm in time, explicitly showing
the transitions that can be made in every time step. By folding back the trellis in
vertical direction rather than in horizontal direction the dbn is obtained. Each of
the variables qt in the dbn may assume one of three states {1, 2, 3} corresponding to
the states of the hmm at time t. The probability that qt will be in a particular state
at time t, depends upon the probabilities that its predecessor qt−1 is in a certain
state and upon the transitions probabilities P(qt = i|qt−1 = j) encoded by the link
between the two nodes. These link probabilities equal the transition probabilities
aij in the hmm. Graphically, the arrows between time slices in the trellis, each of
which represents a single probability, are collapsed into one link in the dbn that has
a probability distribution attached to it4.

Thus, in theory, speech recognition can thus be performed with a model as shown
in figure 7.2. However, this is rather cumbersome as all knowledge on state transi-
tions, phoneme transitions and word transitions has to be be encoded into a single
probability distribution function P(qt|qt−1). To see how to do better one first should
realise that the models used in speech recognition are in fact hierarchical: sentences
are sequences of words, words are sequences of phones and phones are sequences

4Strictly speaking the distribution is attached to the state rather than to the arc.

122

7.8. Speech recognition with dbns

3 3 3 3 . . . 3

2 2 2 2 . . . 2

1 1 1 1 . . . 1

q1 q2 q3 . . . qT

o1 o2 o3 oT

Figure 7.2 – An hmm and a corresponding dbn. The random variable qt takes the states
of the hmm at time t as its values. The shaded ot nodes represent the observations.

of hmm states. For practical purposes this hierarchy is normally converted in to a
flat hmm structure before recognition but it could explicitly be represented using
a Hierarchical hmm (Fine et al. 1998), an example of which is shown in figure 7.3.
A path through this model is found as follows: if a state has vertical transitions
one of these is taken according to some probability distribution before a horizontal
transition is taken. When the end state of a submodel is reached control is returned
to the state at the previous level that called the model and one of its horizontal (or
self loop) transitions is taken as usual in an hmm. The model is thus traversed in a
depth-first fashion. Only the leaf nodes generate observation symbols.

State tying is realised in such a model by letting several nodes point to the same
submodel. Murphy (2002) shows how a Hierarchical hmm can be represented as a
dynamic Bayesian network, which results in a faster inference routine. Figure 7.4
shows two time slices of the hmm corresponding to the model of figure 7.3.

In this model the W nodes represent words, the P nodes represent phones, S
nodes correspond with hmm states and the square O nodes represent observation
vectors. The F nodes are switch nodes that can take the values ‘off’ and ‘on’ and
signify that the level indicated by their subscript has just finished. They correspond
to the small end nodes of figure 7.3. A trace trough the network shows how it works.
In the first time slice the W node will be in state ‘he’ and the P node will be in
state /h/ and the S node will be in state 1 of the hmm corresponding to /h/. All F
nodes will be in the off state. Now at every level a transition to another state is only
allowed if the F node below it is turned on, otherwise the transition has to be to the
same state. Thus in the examples of Figures 7.3 and 7.4 initially only the S variable
is allowed to change state, until it decides that it has finished (reached the small

123

Chapter 7. Computational Paradigms

Word level he ate

Phone level /h/ /i/ /E/ /t/

State level 1 2 3 1 2 3 1 2 3 1 2 3

Figure 7.3 – A hierarchical hmm for speech recognition. Links to lower levels are pro-
cessed before links at the same level. Only the lowest level has state-dependent observation
distributions.

FW1 FW2

W1 W2

FP1 FP2

P1 P2

FS1 FS2

S1 S2

O1 O2

Figure 7.4 – Two timeslices of a dbn representation of a hierarchical hmm. Ot is the
observation vector at time t, Wt is the word at time t, Pt the phone at time t and St

corresponds to the hmm state at time t. The F nodes are binary nodes that signal when a
level is allowed to change state.

124

7.9. Conclusion

end node in figure 7.3), then it switches its F node on, meaning that in the following
time slice the P node should change state and thus transition to the next phoneme
and the S node in the next slice should be the first node of the hmm corresponding
to this phoneme. In the same way the last phone model of a word will indicate that
the word level should make a transition to the next word.

Figure 7.4 shows the most general way to represent a hierarchical hmm as a
dbn. As the models of speech recognition contain many independence assumptions,
e.g. that a state usually belongs to a single unique phone, these models often can
be simplified. Murphy (2002) and Zweig (1998) discuss several simplifications and
variations on this model that are tailored to the task of speech recognition. Bilmes
(1999) developed several Bayesian network models for acoustic processing of speech.

The models discussed here are equivalent to hmms, but the real power of the
dbn shows when more information is included in the model. Zweig (1998) mentions
including user information like gender and age and describes a successful experiment
with a system that conditions its choice of acoustic mixtures upon a single node that
is supposed to capture such information. This node has no specific a priori meaning;
it simply learns its behaviour during training.

7.9 Conclusion
To easily experiment with different configurations, a uniform representation for all
models is preferable, therefore our main weapon of choice will be dynamic Bayesian
networks. The advantage of these models is that they are very flexible and subsume
the Hidden Markov models and n-gram models normally used in speech recognition,
but allow for factored state spaces and thus more interesting and efficient models.

On the down side dbns are less powerful than probabilistic grammars when it
comes to representing hierarchical structure and dependencies always have to be cast
in terms of causal relationships between variables.

125

Dasein ist nie »zunächst« ein gleichsam in-seins-freies
Seiendes, das zuweilen die Laune hat, eine »Beziehung«
zur Welt aufzunehmen. Solches Aufnehmen von
Beziehungen zur Welt ist nur möglich, weil Dasein als
In-der-Welt-sein ist, wie es ist. Diese Seinsverfassung
entsteht nicht erst dadurch, daß außer dem Seienden vom
Charakter des Daseins noch anderes Seiendes vorhanden
ist und mit diesem zusammentrifft. »Zusammentreffen«
kann dieses andere Seiende »mit« dem Dasein nur, sofern
es überhaupt innerhalb einer Welt sich von ihm selbst her
zu zeigen vermag.

Sein und Zeit, Martin Heidegger

Chapter 8

dbns for Speech and Language
Processing

In which several well-known language models are reformulated in terms
of dynamic Bayesian networks. Subsequently, a number of new language
models that include context knowledge is defined and it is shown how
context can be included in acoustic models. Finally, dbn models of syntax
are defined.

Although dbns have been used in speech recognition their use in language mod-
elling and in natural language processing in general remains rather limited, probably
because other techniques such as grammars and weighted finite state transducers are
customary in those areas. This chapter will show how several well-known language
models can be formulated as dbns and how context information can be included in
language models as well as in acoustic models.

8.1 N-grams
Figure 8.1 shows a dbn representation of a trigram language model. Every time slice
contains a single word variable that is connected to its two predecessors. Although

127

Chapter 8. dbns for Speech and Language Processing

W1 W2 W3 W4
. . .

Figure 8.1 – A conceptual trigram dynamic Bayesian network. Every time slice contains
a random variable W that takes the words in the vocabulary as its states.

conceptually this is all there is to it, there are a number of issues we have to deal
with to obtain a proper language model.

8.1.1 Separating observations and control statements

The first n words pose a problem for n-grams, as the history used by these models
is not completely available yet. The standard solution to this problem is the use of
dummy states in front of a sentence. The first word of the sentence then depends
on n dummy states (Manning and Schütze 1999). The same can be done in dbns,
but there is a more elegant, conceptually clearer, solution that separates control
information from the observation distributions. A variable N is introduced that
counts the words in a sequence. Based on the value of this counter a word distribution
is chosen. For the first slice the a priori distribution is used, for the second slice a
distribution that conditions the word only on the previous word and from the n-th
slice on the standard n-gram distribution is used. Note that for an n-gram model
with a vocabulary V the parameter space is reduced from |V+1|n to |V |n + |V |n−1 +
. . .+ |V |+n, given that the counter variable needs to have only n different states. For
a trigram over a modest sized vocabulary of 1000 words, this reduces the number of
parameters from 1,003,003,001 to 1,001,001,002. Replacing dummy states by control
variables has other advantages. As dummy states only occur at the beginning of a
sentence most n-gram involving dummy states cannot occur and thus will have zero
probability. So, unless we take special measures, such impossible states will get a
non-zero probability and thus steal away probability mass from other events when
applying a smoothing algorithm.

8.1.2 All good things must come to an end

Most language models also use a dummy state that signals the end of a sentence.
In fact, they must do so in order to be proper language models. As described in
chapter 3 the task of a language model is to assign a probability to every sentence in
a language. However, the chain rule of (3.1) that is repeated below, only deals with
sentences of a particular length, rather than with sentences of all possible lengths:

P(w1,t) = P(w1)P(w2|w1)P(w3|w1w2) . . .P(wn|w1,t−1). (8.1)

To correct this problem, the end state should be a sink state, i.e. it only has an
outgoing transition to itself.

128

8.1. N-grams

Eos1 Eos2 Eos3
. . .

E1 E2 E3
. . . ET

W1 W2 W3
. . . WT

N1 N2 N3
. . . NT

Figure 8.2 – A trigram dbn. The N variables give the positions of the words in a sentence.
The E nodes are binary variables that indicate the end of a sentence. Eos is a binary variable
that indicates the end of the utterance.

To deal with this in dbn models we introduce a control variable EOS that signals
the end of a sentence. Requiring that this variable is true at the end of the sentence
(and false in all other cases) ensures that the probabilities the model assigns to all
sentences in the language will sum to one.

In speech recognition an utterance may span several sentences. In this case it
is useful to differentiate between an end-of-sentence node E and an end-of-sequence
node EOS. The word counter N can be conditioned on the end-of-sentence variable
to let it restart for every sentence. For the first words of a sentence the a priori
distribution can be used again, so it will not depend on the last words of the previous
sentence. We may also choose to use a specific sentence transition distribution.
Figure 8.2 shows a model with end-of-sequence nodes and optional end-of-sentence
nodes. Note that the end-of-sentence and end-of-sequence nodes do not have to be
conditioned on the previous n nodes as would be the case with dummy states in an
n-gram, but can be conditioned on anything that is deemed useful.

While language models that are used for machine translation or augmentative
communication can use punctuation to find the end of a sentence, in speech recog-
nition the end of a sentence is typically not known. Nevertheless, including end-of-
sentence nodes can be useful, as it will provide a better model of language. In this
case the end-of-sentence variable is treated as a hidden variable.

Unless otherwise stated, the remaining models discussed in this chapter all in-
clude positions counters, end-of-sentence nodes and end-of-sequence nodes. To keep
the figures clear, these nodes will not always be shown.

8.1.3 Smoothing

As discussed in chapter 3 data sparseness presents an ever-present problem to lan-
guage modelling. The standard solution is smoothing. To realise smoothing in dbns
one can simply incorporate smoothed distributions in the model. As an alterna-
tive, many smoothing algorithms can be modelled directly in the dbn. This hold in
particular for interpolation schemes, which include many popular schemes such as

129

Chapter 8. dbns for Speech and Language Processing

E1 E2 E3
. . . ET

λ1 λ2 λ3
. . . λT

W1 W2 W3
. . . WT

N1 N2 N3
. . . NT

Figure 8.3 – An interpolated trigram. The hidden variable λ is used to decide on which
other parents the word depends.

Kneser-Ney.
Figure 8.3 shows an interpolated trigram. The λ variables implement smoothing.

Depending on its value the current word does either not depend on it predecessors
at all, only on the previous word, or on the previous two words. As λ is a hidden
node, the result is a mixture of distributions implementing deleted interpolation:

Pλ(Wt|Wt−1,Wt−2) = λ1P(Wt) + λ2P(Wt|Wt−1) + λ3P(Wt|Wt−1,Wt−2). (8.2)

The values of λ can be found by training on a held-out data set. The interpolation
variables can be conditioned themselves on other variables to implement generalised
interpolation. The construction of variations on n-grams such as distant n-grams in
dbns is simply a matter of linking the variables involved.

8.2 Class-based language models
Class-based language models group words into classes in order to generalise to unseen
words and to obtain more reliable statistics. n-gram probabilities over classes are
used to predict the class of a word which is then used to predict the word. Figure 8.4
shows the dbn counterpart of a part-of-speech model as introduced in section 3.5.
The pos-tags are added to the model as hidden variables (P) that are connected
in time. Compared to n-grams, class-based models achieve better generalisation
and a smaller parameter set at the cost of less fine-grained modelling. To get the
best of both worlds class-based models and n-grams are often combined through
interpolation. This is particularly easy to accomplish in a dbn as is shown in figure
8.5 which combines a pos-model with an interpolated trigram. There is no need to
derive or implement special algorithms for this model, the general purpose Bayesian
network algorithms are all that is needed.

We can further improve the class-based model by adding first and second order
relations on the class level as is depicted in figure 8.5. Additionally, we can let the
class nodes depend on previous words or the words on previous tags.

130

8.2. Class-based language models

P1 P2 P3
. . . PT

W1 W2 W3
. . . WT

Figure 8.4 – A class-based pos-model. The P-variables take part-of-speech tags as their
states and are interconnected through time, the word variables only depend on the pos-
classes.

λp1 λp2 λp3
. . . λpT

P1 P2 P3
. . . PT

λw1 λw1 λw3
. . . λwT

W1 W2 W3
. . . WT

Figure 8.5 – A combined pos-trigram model, words depend on pos-classes and on previous
words. As before λs are interpolation weights that implement smoothing.

131

Chapter 8. dbns for Speech and Language Processing

8.3 Cache-based language models

Using dbns to construct cache-based language models is not straightforward, as
cache-based models directly manipulate probabilities. One option would be to con-
struct the cache distribution as usual and incorporate it as an a priori variable in the
dbn slices. Another solution phrased completely in terms of Bayesian networks is
to use a cache with a limited number of words or n-grams. The cache is then imple-
mented by a queue. This queue consists of a number of word variables as shown in
figure 8.6. At every time step the variables in the cache take on the previous value

S
3

1
S

3

2

S
2

1
S

2

2

S
1

1
S

1

2

W1 W2

Figure 8.6 – A cache implemented as a queue. The S variables represent the positions in
the queue. At every time step a new word is shifted in the queue. All words in the queue
shift up one position.

of the variable on the next lower level. The first variable takes the value of the word
that is observed in the previous timeslice. The word is conditioned on all words in
the queue. The idea of a decaying cache can be implemented in this scheme through
the position of the words in the queue.

8.4 Modelling context

The models discussed above are all based on existing models. Compared to the
original models they have the advantages that they clearly separate control variables
and observation variables, that they are all formulated within the same framework
and are therefore easy to combine and that there is no need to derive special purpose
inference algorithms. However, the real power of the approach is that we can add
new variables to the models to obtain more accurate, context-dependent language
models.

132

8.4. Modelling context

L1 L2 L3
. . . LT

P1 P2 P3
. . . PT

F1 F1 F3
. . . FT

W1 W2 W3
. . . WT

Figure 8.7 – Modelling dependencies between content words. The P nodes are random
variables over part of speech tags, the F nodes are binary variables that indicate whether
the word is a content word or a function word. The L nodes are lemmas corresponding to
content words.

8.4.1 Modelling long-distance relationships

Often, there will be semantic relations between the content words in a sentence. This
cannot be modelled with n-grams as the number of function words that separate
the content words varies. Figure 8.7 shows a belief network that can model such
relations. This model was first presented in (Wiggers and Rothkrantz 2006). The
model is based on the trigram model with part-of-speech classes of figure 8.5. A
lemma variable (L) is added that takes as its states the lemmas of all content words.
We decided on using lemmas rather than the content words themselves to alleviate
data sparseness somewhat. When the model moves to the next slice it will first
predict the pos-tag, from which follows whether the word is a function word or a
content word. This is indicated by the binary variable F. In case of a function word
the word is predicted based on its pos-tag and the previous words without using
the lemma as usual. The lemma in this slice will simply be a copy of the previous
lemma; this way the last content lemma seen is memorised. If the pos-tag indicates
a content word, the lemma will be predicted based on the previous lemma and is
subsequently used in the prediction of the word.

8.4.2 Sentence length

In an n-gram language model, the probability of a sentence gets lower as the sentence
gets longer. This is an artifact of the model rather than a feature. The sentence
length distributions in chapter 5 clearly show that this behaviour is not entirely
correct. In a dbn the sentence length can be modelled explicitly. Earlier the counter

133

Chapter 8. dbns for Speech and Language Processing

E1 E2 E3
. . . ET

W1 W2 W3
. . . WT

N1 N2 N3
. . . NT

Figure 8.8 – A trigram dbn with explicit sentence length encoding. N variables indicate
the position in a sentence, E nodes signal the end of a sentence.

variable N was already introduced. If this variable does not only keep track of n-
gram counts, but simply all counts, the end-of-sentence variable can be conditioned
on this counter to obtain a proper sentence length distribution. Figure 8.8 shows
the idea.

8.4.3 Type of speech

In chapter 5 it was shown that the sentence length distributions of different types
of speech are very different. To incorporate this in the model a type-of-speech node
can be added. The end-of-sentence variable is conditioned on the sentence length as
well as on the type-of-speech variable.

The results in chapter 5 suggest that part-of-speech distributions should be con-
ditioned on the type of speech as well, as can the word (n-gram) distributions.
Rather than conditioning all words on the type-of-speech, a subset of the words can
be conditioned on the type of speech, e.g. all function words or all pronouns and
determiners. This can be done by using the value of the part-of-speech variable on
which the word is already conditioned.

If the type-of-speech is known, the value can be set in all slices, but if the type-
of-speech is not known beforehand, it is treated as a hidden variable. In this case
the type-of-speech nodes have to be connected in time. As the type-of-speech will
not change much, these connections can be deterministic. If the type-of-speech can
change the links can be probabilistic at particular points in time, such as the sentence
boundaries.

8.4.4 User knowledge

User knowledge can be incorporated in the model in the same way as the type-of-
speech. For example, part-of-speech and word distributions can be conditioned on
age and gender. Word distributions can also be conditioned on dialects. An other

134

8.4. Modelling context

T1 T2 T3
. . . TT

E1 E2 E3
. . . ET

P1 P2 P3
. . . PT

W1 W2 W3
. . . WT

N1 N2 N3
. . . NT

Figure 8.9 – A trigram dbn with type-of-speech information (T) and explicit sentence
length encoding.

possibility is to add a concept level and condition the realisation of the concept as
a word on dialect (among other things).

8.4.5 Context in acoustic models

User knowledge can also be incorporated in acoustic models. Figure 8.10 shows an
example of such a model. It shows only the lowest two layers of one time slice of
a model such as shown in figure 7.4. Next to the direct link from the state to the
observation an indirect connection is added via a node M. This variable selects
a Gaussian distribution that generates the observation from a pool of Gaussians
associated with S. As M is always hidden the net effect is that the observation is
generated by a mixture of Gaussians, where the probabilities P(M = m) represent
mixture weights. This is equivalent to the way Gaussian mixtures are typically
modelled in speech recognition as hmm substates.

Now by making M dependent on the user knowledge U, a different set of mix-
tures or a different weighting scheme will be selected for different types of users. If
user characteristics are known beforehand, the U nodes can be instantiated, thereby
making the system more specific. If user knowledge is not available or uncertain,
the U nodes can be treated as hidden variables. In this case they should be con-
nected across time. During the recognition process part of the uncertainty may
be resolved. As user characteristics usually do not change for an entire session a
scheme somewhere between these extremes would be ideal. In this case the U vari-
ables would adapt themselves to the user at the start of the conversation and when

135

Chapter 8. dbns for Speech and Language Processing

U S

M

O

Figure 8.10 – A mixture of Gaussians conditioned on user information, where S corre-
sponds to the state of a phone level hmm, the observed variable O represents the observation
distribution and M is a mixture weight. U represents the user information.

they are reasonably constant they are treated as a given, probably until there are
indications that something has significantly changed. This could be accomplished by
using special network structure at the start of the conversation or by including meta-
reasoning using for example information theoretic measures such as Kullback-Leibler
divergence.

The scheme of figure 8.10 is well suited for incorporating knowledge such as
gender and age of a speaker. Other context variables may exert more influence
on other levels. For example, words are often pronounced differently in different
dialects. As long as this is a matter of different pronunciation of single phonemes
this variable may be set to influence the choice of mixtures or the choice of state
variable. If complete words are pronounced differently in the sense that another
phone sequence is used, the dialect variable should be linked to the phone level.
A completely different context variable that may be relevant here is the type of
conversation. Normally, people will speak slower and articulate more accurate when
reading aloud. Spontaneous speech on the other hand will often be more animated
and contain many phone deletions. Figure 8.11 shows some of these ideas. The
model will become rather complex as more and more knowledge is added, resulting
in a large state space and large conditional probability tables. This in turn may
make the model inefficient and its hunger for training data unsatisfiable. Therefore,
the influence of potential context variables should be assessed and only those that
really make a difference should be included. In addition, the conditional probability
distribution should be robust and be encoded efficiently. For example in Figure 8.11
the choice of mixtures is conditioned upon three variables. It is not likely that every
combination of their states will make sense, rather there will be clusters of states,
this can be implemented by introducing an intermediate variable or by encoding the
cpd using a probabilistic decision tree. On the other hand backing off schemes can
be introduced to ensure robust statistics.

Many have argued that state duration should be modelled explicitly in speech
recognition (e.g. van Dalen et al. 2005; 2006). In dbns this can be done by intro-
ducing a duration variables between the phone level and the state level that are

136

8.5. Shallow parsing dbn language models

P

D T

G S

M

O

Figure 8.11 – An acoustic model with contextual knowledge. P takes phones as its states,
S is the substate within a phone and O is the observation distribution. M is a mixture
weight. G gives the gender of the speaker, D the dialect and T the type of speech.

connected in time just like the word counter in language modelling.

As a last remark in this section, it should be noted that the schemes shown in
figure 8.10 and figure 8.11 would be very hard to realise in terms of hmms, thus jus-
tifying the dbn view of acoustic modelling. The only way Markov models can deal
with additional conditioning information is by expanding the state space, which basi-
cally means copying the model set for every combination of context variables, leading
to a very large and inefficient model. Contextual knowledge would be smeared out
across the entire model. Obtaining an hmm equivalent to the model of figure 8.11
would involve careful data selection and handcrafting many state-tyings.

8.5 Shallow parsing dbn language models

Including syntactic knowledge into a speech recogniser is useful by itself, but as
argued in chapter 4, may also be beneficial in order to link high-level contextual
knowledge to the word level. Unlike (statistical) grammars, dynamic Bayesian net-
works cannot deal with unlimited recursion. This essentially means that dbns cannot
model the syntax of natural languages. That is, unless one is prepared to drop the
objective of finding a full and preferably correct parse of a sentence. In this section
it will be shown that dbns can be used for shallow parsing.

As spoken language is not grammatically correct putting more structure into a
model can be seen as a trade off between robustness and correctness. Therefore, one
might argue that for language modelling shallow parsing will do just fine.

137

Chapter 8. dbns for Speech and Language Processing

H1 H2 H3
. . . HT

C1 C2
. . . CT

W1 W2 W3
. . . WT

Figure 8.12 – A chunking language model. Ws are word variables, the H nodes are the
head words of chunks in the sentence and the C nodes indicate chunk boundaries.

8.5.1 Chunking models

The shallowest way of parsing, apart from pos-tagging which would lead to a class
based language model, is chunk-based parsing. Chunks (Abney 1991) include noun
groups, verb groups, proper noun phrases and in some cases prepositional phrases.
(1) shows an example.

(1) | He | ate | his white rice | with chopsticks |.

Chunking can efficiently be accomplished by tagging the spaces between words with
tags like start, continue, end, between and null. The latter two tags signify
respectively a boundary between two chunks and between words that are not part
of any chunk at all. This can be accomplished by the dbn of figure 8.12. In this
model the W nodes represent words, the H nodes represent chunk headwords and
the C nodes the chunking tags. A word is conditioned on its two predecessors as in
a trigram, but also upon the headword of the chunk and the tag. The tag may be
used to determine how strong the influence of the preceding words should be. By
introducing additional links and a counter variable that keeps track of the length of
the current chunk a word can also be conditioned upon other words in the chunk,
while for example between chunk relations can be represented by simple bigrams.
As an aside, in practice it would be preferable to obtain this effect by introducing
additional deterministic memory nodes in every time slice. This would lead to more
efficient inference, but clutters up the diagram.

8.5.2 Parsing with a fixed number of levels

To go beyond chunk parsing more and more levels may be introduced into the model,
leading to yet another incarnation of the Hierarchical hmm discussed in the previous
chapter. An example is shown in figure 8.13. Inclusion of contextual knowledge is
straightforward, functioning basically in the same way as in the the other models
discussed. But there are a few details that require some attention here. First of all,

138

8.5. Shallow parsing dbn language models

S

NP VP

V NP PP

P NP

N’

Det Adj N

Figure 8.13 – A hierarchical hmm for parsing, states correspond to nonterminals.

an end-of-sequence node should be used to ensure that the probabilities of all strings
should sum to one. The second problem is related to the explicit representation of
levels. In a grammar-based model some constituent, say a noun phrase (NP), always
behaves the same regardless of the level in the parse tree it is on, in fact it has no
knowledge of such levels. In a dbn on the other hand noun phrases at different levels
are completely different things. There may be reasons to accept this as is, arguing
that phrases may behave differently at different levels, but if this behaviour is not
acceptable, parameter tying should be introduced. This can be done as long as the
parameter spaces for the variables are equal. In fact the shared parameters can be
introduced as nodes in the network.

The basic hierarchical hmm model conditions a node upon its parent or prede-
cessor. Actually, if no parameter tying is used a node is indirectly conditioned upon
all nodes on the vertical path from the root done to its parent. However, there is no
fundamental reason why conditioning should be limited this way, in theory a node
can be conditioned on the whole partial analysis up to the current timeslice. In the
real world one has to deal with intractability and data sparseness. Naturally, this
severely limits the amount of information a node should be conditioned on. Fortu-
nately, the situation is not different for probabilistic grammars and the literature on
statistical parsing (Black et al. 1992; Charniak 1993; Magerman 1995; Stolcke 1995;
Collins 1996; 1997; Charniak 1997; 1999; 2001; Chelba and Jelinek 1998; Roark and
Johnson 1999; Collins 1999; Chelba 2000; Roark 2001; Uytsel et al. 2001) provides

139

Chapter 8. dbns for Speech and Language Processing

many thoughts on which structural relations to include. As discussed in chapter
3, many have shown that parent, grandparent and sibling constituents provide a
large part of the information required. Furthermore c-commanding structures can
be helpful (Roark 2001), as can categorisation frames and explicit coordination flags
(Collins 1999). Charniak (2001) has shown that it is beneficial to predict the pos
tag of a headword before predicting the headword itself. A possible generalisation of
this would be to predict a head concept first and use this to predict the headword.

Morphological knowledge can be included in the syntactic model by introducing
several levels below the word level, which has the advantage of reducing the number
of lexemes. At higher levels morphemes may be used instead of headwords, as it can
be argued that the semantic relations between headwords do not really depend on
the inflections. For example there is no semantic difference between ‘eat a banana’
and ‘eat some banana’. As the inflections do matter for other words, e.g. ‘a’ versus
‘some’ in the previous example a word can be represented as a feature vector or
frame.

8.5.3 Where do the probabilities come from?

Training of grammar models and dbn shallow grammars proceeds along the same
lines. In both cases the general training algorithms are incarnations of the expectation-
maximisation algorithm. In theory this algorithm can be used to learn structure, in
this case grammar rules. As discussed in chapter 3 in practice grammar rules are
usually learned from an annotated dataset, the same can be done for dbns.

The rules for headword propagation are normally taken to be deterministic and
can be found in Magerman (1995). Morphological information can automatically be
extracted from a lexicon and be added to data transcriptions.

Once the parameters of a model are estimated from an annotated corpus the em
algorithm may be used to re-estimate the parameters on actual speech recogniser
output to make it more robust to recogniser errors and non-speech sounds. An
interesting thought here would be to switch to probabilistic headword propagation,
this way the language model could learn to correct errors introduced by the acoustic
model.

8.6 Combining the language model and the acoustic
model

In hmm-based speech recognition the language model is typically run for every hy-
pothesis produced by the acoustic model separately. The models discussed here
define proper language models and can thus readily be used in this fashion.

However, if the acoustic model is also defined in terms of dbns the models may
directly be connected at the word level. The main difference here is that the proba-
bility of a word depends on all paths that contain the word, rather than on a single
path. There is a catch, however, that shows up when doing recognition. Imagine for

140

8.6. Combining the language model and the acoustic model

example a shallow parsing language model that is connected to a standard acoustic
model. As usual, recognition is performed by running the Viterbi algorithm in order
to find the most likely word sequence given the observation sequence (i.e. we are
interested in the values that the variable representing words takes). However, this
would mean that only a single ‘path’ through the language model, that corresponds
with this word sequence is used, in case of the shallow parsing dbn this single path
corresponds to the most likely parse of this word sequence. In itself this may be a
perfectly acceptable solution, as long as we realise that we are not getting the most
likely word sequence (and the underlying segmentation) but most likely word se-
quence - parse pair, where the word sequences in those two cases are not necessarily
the same.

But most of the time, for speech recognition this is not what we want as from a
speech recognition point of view the syntactic structure is a hidden variable that is
used in determining the overall probability of a word sequence. Its benefit is that it
will favour grammatically plausible sentences of implausible sentences and not that
it can find a particular parse of a sentence. So, what we are really after is the sum of
all parses that yield a particular word sequence. The situation is even more pressing
for the topic-based language model that will be discussed in chapter 10 for which
the idea of summing over a hidden variable (in this case the topic of conversation)
is at the very core of its functioning.

All in all, it can be concluded that to do proper inference (recognition) with a
combined dbn model is should be possible to do max-marginalisation in one part of
the model, while doing sum-marginalisation in other parts.

Another option to combine the models that avoids this complication is the use
of n-best lists or lattices. In this case the acoustic model would be combined with a
simple n-gram model and would produce a large number of alternative hypotheses.
The more advanced dbn or grammar model would then be used to rescore these
hypotheses. Within the rescoring approach the interface of the models does not
have to be at the word level, instead it can also be situated at some intermediate
level such as the phoneme level. An interesting variation on this rescoring scheme is
to clip states in the Bayesian network that correspond to parts of the utterance or
background information that is relatively certain and subsequently use a forward-
backward pass over the model to fill in missing words.

141

Chapter 9

A Computational Framework

In which the implementation of a framework for language processing with
Bayesian networks is described. The requirements that speech and lan-
guage processing applications impose on Bayesian networks are given.
Algorithms and data structures that fulfil these requirements are dis-
cussed. In particular a fast algorithm for inference with probability tables,
lazy evaluation of probability tables, algorithms for calculations with tree-
shaped distributions and a generalisation of dynamic Bayesian networks
that we developed are introduced.

The previous chapter shows how models for speech and language processing can be
formulated in terms of dynamic Bayesian networks. To make these models work an
inference engine is needed. Many different algorithms for inference in dbns exist as
well as several toolkits that implement these algorithms. From the models in the
previous chapters we can deduce the properties that an inference engine for speech
and language modelling should have. Below these requirements will be discussed.

Allow k-th order Markov assumptions Almost all models defined in the pre-
vious chapter use k-th order Markov assumptions. Many algorithms for dynamic
Bayesian networks are formulated in terms of first-order Markov models and imple-
mented as such in most toolkits. From a theoretical point of view, this poses no
problem, as any k-th order model can always be reformulated as a first order model,
but on the practical side, we do not want to put that burden on a model designer.

Deal with large state spaces While the number of states in a Bayesian network
is typically small e.g. Boolean, the vocabulary of a language model contains tens
of thousands of words. As a consequence probability tables may get very large,
causing memory overflow. In fact, the models may become intractable because the
time complexity of inference in Bayesian networks depends on the number of states
in the network as well. Fortunately, as many combinations of values do not occur

143

Chapter 9. A Computational Framework

in practice most of these tables are extremely sparse. By taking this into account
average space and time complexity can be lowered to make inference in models of
speech and language feasible.

Deal with small probabilities The number of time slices in an utterance may
get large when processing speech, while on the other hand the probabilities of feature
vectors and words are small. For a practical system this makes the danger of numeric
underflow very real.

Provide discrete and continuous distributions Speech recognition requires
continuous observation distributions. In particular Gaussian mixtures. Other lan-
guage processing tasks such as language modelling require discrete distributions such
as multinomial distributions.

Allow clipping of values In some situations the value of a hidden node in the
network might be or become known. For example an application might explicitly
ask a user to enter his gender and age or a system can deduce such information in
the first seconds of a conversation. For the remainder of the conversation the value
of gender and age nodes can than be clipped to a specific value.

Provide mechanisms for parameter tying Substructures of a model may reap-
pear at multiple points in a model. For example, in speech recognition several acous-
tic models may share the same mixtures, states or transition matrix. In language
modelling, history dependent weights can be tied to form bins and as discussed in
the previous chapter and in parsing the parameters of constituents are tied across
levels in the parse tree.

Deal with switching variables Many models described in the preceding chapters
use switching parents, i.e. variables of which the values are used to decide on which
of its (other) parents a variable will be conditioned. Interpolation weights are an
example of switching parents. Technically, there is nothing special about switching
parents. The dependency of a variable on its parents can be implemented using a
simple joint probability distribution. However, switching parents are often used to
combine distributions for subspaces of the state space of a distribution. For example,
in language modelling it is common to combine unigram and bigram models. To
represent this in a joint distribution the unigram has to be repeated for every value
of the preceding word. Saving the two components separately can result in significant
space savings and more efficient inference. In fact, to properly deal with parameter
tying component distributions have to be stored as separate entities.

Provide a rich network structure Dynamic Bayesian networks are usually de-
fined as an a priori Bayesian network that is used in the fist time slice and a temporal

144

Bayesian network that includes links to previous time slices that is repeated as often
as necessary, i.e. except for the first slice, all slices have the same structure.

This is a rather simplified view of temporal processes. There are many cases
it which the network structure should change over time. For example, a speech
recogniser that includes user information may need only a few seconds to identify
user features, after which these features can be kept constant.

Provide pruning mechanisms Speech recognisers typically prune large parts of
the search space to achieve real-time performance. The same is done for parsing.
For Bayesian networks on the other hand, pruning is usually not used. Speed ups
are achieved using approximate algorithms such as the Boyen-Koller algorithm that
factors the state space. The advantage of pruning over such methods is that prun-
ing focuses on the high probability paths through a network given the observations,
whereas Boyen-Koller is applied without any knowledge of the inputs. Stochastic
approximate inference techniques such as particle filtering do focus on high probabil-
ity paths. However, to achieve real-time performance the number of paths through
the model that will be sampled will be sparse. Given the stochastic nature of the
algorithm the chance that the correct path is missed is higher than for pruning.

Provide filtering, smoothing and Viterbi inference To build language mod-
els that can be integrated with existing speech recognisers conditional probabilities
such as P(wi|wi−1 . . .) need to be calculated, i.e. the inference engine also has to be
able to perform prediction. In general the tools should be flexible enough to enable
us to inspect any set of variables in any time slice when doing inference.

As made clear in the discussion of combining acoustic models and language mod-
els in the previous chapter, it should be possible to marginalise out some of the vari-
ables, while maximising others when doing inference. For example, when recognising
speech we are interested in the values of the word variables on the most probable
path, but not in the values of other variables. It should thus be possible to specify
the variables of which the values should be stored during inference.

Provide parameter learning algorithms An implementation of em training
should be available. To allow for efficient incremental model improvement, e.g.
update parameter weights, it should be possible to specify which variables should
be updated in a training run and which should not.

Extensible It is very likely that future uses of dbns for speech and language pro-
cessing will add new requirements to the list. It should be possible to incorporate
these in the framework. In other words the source code of a framework should be
available.

145

Chapter 9. A Computational Framework

9.1 Related work

Several toolkits that implement dynamic Bayesian networks or generalisations thereof
already exist. See (Korb and Nicholson 2004; Hulst 2006) for overviews of these and
other toolkits.

dHugin (Kjaerulff 1995) adds temporal reasoning to the popular commercial
Hugin (Andersen et al. 1989) shell. It assumes that dbns obey the Markov property,
i.e. a variable only depends on variables in the current or in the previous time slice.
The stucture of time slices can vary. An exact junction-tree based inference routine
that unrolls the network for k slices at time as well as forward sampling are provided.

The Bayes net toolbox (bnt) (Murphy 2001) is a free, open-source library in-
tended for research purposes. It is implemented in Matlab because of the ease with
which it can handle Gaussian random variables. On the down side, this choice for a
high level language makes the toolbox slow and limits the size of the networks that
can be processed. A dbn is represented with a prior and a transitional network, so
that only first-order Markov processes can be modelled. Several inference algorithms
for static Bayesian networks are provided, each of which makes different trade offs
between accuracy, generality, simplicity and speed. The conditional probabilities of
the defined variables can be continuous or discrete. Parameter learning is supported
as well. Currently, the toolbox lacks online inference and learning, and does not
include prediction.

The probabilistic network library (pnl) (Intel Corporation 2004) is a c++ version
of bnt implemented by Intel’s research lab in Saint Petersburg. It does not yet
support the whole functionality of the Bayes net toolbox.

The graphical models toolkit (gmtk) (Bilmes and Zweig 2002; Bilmes 2002b) is
a freely-available toolkit written in c++ that is specifically designed for dbn-based
speech recognition. Models have to be defined in gmtkl a flexible but complex
specification language. In this language a dbn definition consists of several frames
each of which can define different variables and relations between variables. The
first N frames form the prologue and are used at the beginning of the network.
The last M frames, called the epilogue, are used for the final M frames in the
network. The frames between N and M form the repeating substructure. The
toolkit has many desirable features, such as sparse representations of cpds, tree-
shaped cpds, continuous observation distributions, switching parents, beam search,
parameter tying and generalised em training. It supports smoothing and Viterbi
inference using the online Frontier algorithm. But because of the epilogue in the
network definition the length of an input sequence has to be known in advance,
making real-time, on-line processing impossible. Sampling of networks is possible,
but the toolkit does not directly implement algorithms for approximate inference.

The Structural Modeling, Inference and Learning Engine (SMILE) (Druzdzel
1999; 2005) is a platform independent library of c++ classes that implements
Bayesian networks and influence diagrams. Recently, support for temporal reasoning
has been added (Hulst 2006).

None of the existing frameworks covers all of the requirements formulated above.

146

9.2. Design of the framework

Therefore, a framework specifically designed for use in speech and language process-
ing was implemented as part of this thesis work.

9.2 Design of the framework

The framework we developed consists of a set of general purpose tools for inference
with arbitrary dbns. It implements a generalisation of dbns that allows the structure
of the model to change over time. A model designer does not have to worry about
algorithms but can specify models in xml format.

The tools meet all of the requirements discussed above. They can deal with very
small probabilities and a large number of states. Data representation and inference
algorithms have been optimised for sparse distributions. Tree-shaped distributions
can exploit reoccurring substructure and implement interpolation and smoothing
schemes. Other features include: parameter sharing, lazy evaluation, pruning and
multiple inference engines. em learning in log-space allows for large input sequences.
An optional damping factor improves learning convergence.

Tools for corpus processing that format data (e.g. remove punctuation, filter out-
of-vocabulary words, including all words that occur only a limited number of times
in the training data, apply stop lists) and can construct (smoothed) distributions
directly from the data are also included.

The functionality behind the tools is implemented in a common library that
makes it easy to change or reuse parts of the software and to experiment with
different algorithms and data structures. The library has a layered structure. At
the lowest level it provides general purpose classes, among which are input and
output routines that translate words to an internal numerical representation and a
class that can represent very small probabilities. The core of the systems is formed
by classes that implement efficient mathematical operations on multidimensional
probability tables. The top layer is responsible for construction of and inference in
dynamic Bayesian networks. The library and tools have been designed with language
processing in mind, but can be used for many other applications such as multi-modal
fusion.

The remainder of this section discusses these layers in more detail, focusing on
the algorithms and data structures that were developed as part of this thesis work.

9.2.1 Dealing with small probabilities

At the lowest layer two data structures implement the mathematical concepts of
probabilities and likelihoods and their operations. In this context a likelihood is
defined as a positive real value that can result from an operation on probabilities.
Compared to a simple floating point representation these representations have the
advantage that they are more robust in the face of underflow, which is a huge problem
for models, such as hmms and dbns, that multiply long sequences of probabilities
together. They lift the burden of normalising or worrying about underflow from

147

Chapter 9. A Computational Framework

higher layers.
The first method accomplishes this in the classical way of representing a probabil-

ity as its logarithm (see e.g. Van Alphen 1992). This has the additional advantage
that multiplication and division become faster since they reduce to addition and
subtraction. However, addition and subtraction themselves become more complex
and rather slow.

The second approach simply extends its range compared to double precision
floating points. It represents its value as a mantissa in the interval [0.5, 1) and an
integer exponent. The value follows from: mantissa∗2exponent. The second approach
takes more space than the first and is slower for multiplication and division, but when
it comes to addition and subtraction it is considerably faster.

Both methods suffer from the typical floating point problems, i.e. a limited range
and a limited precision. In these respects the logarithm does worse than double
precision floating points, while the extended range does better.

9.2.2 Likelihood tables

The second layer of the library introduces multidimensional tables of likelihoods.
These tables are the core of the library. They are used to implement multinomial
probability tables, to store intermediate calculations and as accumulators in learning.
To make low level parameter sharing possible, tables consist of two parts: the table
itself with an associated list of cardinalities and a domain of variables. As long as
the cardinalities match and values are not altered the same table can be used with
multiple domains. The dimension of a table is determined by the variables in its
domain.

Tables are implemented in several ways. The straightforward implementation is
an ordered list with one entry for every tuple of values of variables in its domain. For
small tables this works well and can be reasonably efficient as one does not explicitly
have to save the indices of the table and any value can be found in constant time.

However, for many tables this representation will take too much space. As men-
tioned before, probability tables in speech recognition often are very sparse. Saving
only non-zero entries together with their indices can realise enormous space savings
at the cost of some time for searching. To minimise the latter indices are stored in
order. This allows our inference algorithm that processes tables as a whole to ac-
cesses the indices (semi)sequentially. It is possible to specify default values different
from zero for sparse tables. Only probabilities that are different from the default
value will be saved.

Deterministic variables have only one possible value for every configuration of
their parent variables (that thus must have probability 1). As a consequence, there
is no need to save the probabilities, only the non-zero values have to be saved.
There are several ways to do so. The current implementation is similar to that of
sparse tables, with the difference that it only saves values. The resulting structure
is strictly speaking more general than described above, as it is possible to have more
than one value for the same ‘parent configuration’. This allows to represent so-called

148

9.2. Design of the framework

0–1 potentials. 0–1 potentials have no distribution counterpart, but can be used to
represent evidence that only certain states are possible.

Calculations with likelihood tables proceed as described by (Jensen 2001). Mul-
tiplication of two tables is defined as pairwise multiplication of elements that have
equal values for all common variables. Equation (9.1) gives an example:

0.2
A 0

0.8
×

A

0.3 0.5 0.7
B 0.3 0.5 0.1

0.4 0 0.2

=

A

0.06 0 0.56
B 0.06 0 0.08

0.08 0 0.16

. (9.1)

Marginalisation projects a table to a lower dimension, by summing over all values
of variables that are marginalised out for every tuple of values of the remaining
variables. Equation (9.2) shows how a three-dimensional table is projected to a
one-dimensional table:

∑
BC

A

C 0.012 0 0.056
0.048 0 0.504

B C 0.036 0 0
0.024 0 0.08

C 0.04 0 0.16
0.04 0 0

=

0.62
A 0.14

0.24
. (9.2)

An inference algorithm has been developed to multiply any number of tables and
project the result to a subdomain of the joint domain in one operation. The algo-
rithm takes into account the domains of the tables to deal with overlapping variables.
It also takes into account observed values tot avoid unnecessary calculations and to
keep the size of the resulting table as small as possible. Since probability table
manipulation makes up the bulk of the work in probabilistic inference a lot of atten-
tion has been dedicated to optimising this part of the library. For example special
memory pools are used for fast allocation and deallocation of probability tables.

The algorithm systematically iterates through all values of the joint domain of
the input tables. Variables are ordered in all tables. All values of a lower ranking
variable are processed before the value of a higher ranking variable is increased. For
example, in (9.3) the order might be A, B, C, D. On multiplication of these tables
the upper left corners will be multiplied first, then D will increase its value. As D
has only two values, it will be reset to its start position in the third step, while the
value of C is increased by one.

A

C 0.2 0.4
0.3 0.1

,
B

D 0.1 0.3
0.2 0.4

(9.3)

As a consequence, all input tables are processed in sequential blocks (non-overlapping
input tables are processed sequentially). This approach is fast in the face of buffers,

149

Chapter 9. A Computational Framework

caches and paging. It guarantees that intermediate results never take more space
than the end result. In particular if no projection to the output domain is needed,
the output table will be built sequentially.

To limit the amount of searching in the tables, a reference to its direct parent
within the domain of a table is kept for every variable, as this is the starting point
for this variable within the set of values of lower ranking variables. For example, if
in (9.3) the value of C is increased, D should be reset. It should start at the first
position with the current value of B. Observed variables are skipped completely.

The algorithm only processes values that are non-zero in the joint table. Rather
than increasing the value of a variable by one in every step every input table is
consulted to find the next common non-zero probability within the current set of
parent values. For summation the algorithm moves to the next value for which one
of the tables has a non-zero probability.

9.2.3 Lazy evaluation

Inference in Bayesian networks comes down to a sequence of multiplications and
marginalisations of likelihood tables. Most inference techniques determine the order
of operations based on the structure of the network, without taking the shape of
the probability distributions into account. In addition, this is typically done offline,
before any evidence, that may introduce additional independence relations, has been
observed. As a consequence, the order is not always efficient. In Madsen and Jensen
(1999) the Lazy Hugin algorithm was introduced. This variation on the Hugin
algorithm for inference in junction trees uses lazy evaluation to make better use of
evidence and probability table structure.

We decided to use a similar lazy evaluation approach, but at the level of likelihood
tables. This has the advantage that it can be used with any inference algorithm. In
this approach multiplication of tables is deferred until it really is necessary, i.e. if a
variable in the domain of the table is marginalised out. Rather than a table a set
of tables is used. Multiplication is a very fast operation as it simply adds the table
to the set. Upon marginalisation or summation all tables in the set whose domains
contain variables that are marginalised out are selected. Multiplication of these
tables and marginalisation are done in a single operation to avoid the construction
of (large) intermediate tables. The result is added to the set. Note that if the
variables of a particular subtable are never looked at, that table will never really be
processed. In Bayesian networks this may occur if certain subparts of the network
are not needed in an inference process (barren nodes).

9.2.4 Tree-shaped likelihood tables

If a table contains some reoccurring substructure or if several tables share the same
substructure an even more efficient representation of tables is possible. The n-ary
decision trees discussed in 7.2 can be used for this purpose (Boutilier et al. 1996;
Bilmes and Zweig 2002; Bilmes 2002a). The questions in the decision tree are random

150

9.2. Design of the framework

λ1

λ2

0

Pu(Wn)

0

Pb(Wn|Wn−1)

1

Pt(Wn|Wn−1Wn−2)

1

Figure 9.1 – A decision tree representation of an interpolated trigram. Wi corresponds to
the i-th word of a sentence. λ1 and λ2 are interpolation weights.

variables and the answers in the tree are values. As this is the means by which
switching variables in the Bayesian networks are realised the questions are called
switches in this context. Every switch has a list of values that are connected to either
another switch or to a set of tables as described above. A table or subtree of tables
can be shared by several trees, allowing for very flexible parameter sharing. Figure
9.1 shows a tree representation of an interpolated trigram P(Wi|Wi−1Wi−2λ1λ2). If
λ1 = 0 the word variable Wi is independent of Wi−2, if λ2 = 0 as well Wi is also
independent of the previous word Wi−1.

Unlike (Boutilier et al. 1996; Pfeffer 2001) who use the tree-structures to alter
the network structure we use the tree-shaped cpds directly. Although altering the
network structure may lead to smaller cliques and hence to faster processing, our ap-
proach, in combination with lazy evaluation, has the advantage that whole sequences
of operations may be skipped as on observation of a value of a switching variable all
subtrees associated with other values can be removed at once. We developed algo-
rithms that use decision tree manipulations for multiplication and marginalisation
of these switching tables. Representing tables as trees does not only save space, but
also leads to very efficient processing as often entire subtrees can be pruned without
evaluation. For example on observing a particular value of a switching variable all
subtrees associated with other values can be removed at once.

Tree multiplication Multiplication and division of trees comes down to merging
trees. Multiplication creates a new tree by attaching the right-hand-side tree below
every leaf of the left-hand-side tree and subsequently removing unreachable paths.
Subtrees are non-reachable when their root question already appears higher up in
the tree with a different answer value.

The new tree has the tables of the right-hand-side tree as its leafs. To obtain
the product the corresponding leafs of the left-hand-side tree are multiplied onto
the leafs of the new tree (The construction of the new tree guarantees that there is

151

Chapter 9. A Computational Framework

B

C

0

P00(A)

0

C

1

P10(A)

0

P11(A)

1

×

D

C

0

P00(E)

0

P01(E)

1

C

1

P11(E)

1

=

B

C

0

D

0

P00(A)×P00(E)

0

C

1

D

0

P10(A)×P00(E)

0

D

1

P11(A)×P01(E)

0

P11(A)×P11(E)

1

Figure 9.2 – Multiplication of trees representing probability distributions P(ABC) and
P(CDE).

∑
CE

B

C

0

P00(AE)

0

C

1

P10(AE)

0

P11(AE)

1

=

B

∑
E P00(AE)

0

∑
E P10(AE) +

∑
E P11(AE)

1

Figure 9.3 – Marginalising variables C and E out of a tree representing probability distribu-
tion P(ABCE). Marginalisation of leafs proceeds as usual, marginalisation of intermediate
nodes requires summation of subtrees.

exactly one path in the old tree for every path in the new tree). Figure 9.2 illustrates
tree multiplication. A missing link, such as the link corresponding to B = 0,C = 1 in
the left-most tree in the figure, means that all corresponding probabilities are zero.

Tree marginalisation Marginalisation processes the tree in (depth first) post-
order. First, leaf tables are marginalised as usual. If a intermediate node in the tree
has to be marginalized out, it is removed by attaching the sum of its subtrees directly
to its parent. Since leafs are marginalised before their parents these node variables,
that act as observed variables in the leafs, will be removed from the leaf tables. All
leaf tables will thus have the same domain the moment the node is marginalised.
An example of tree marginalisation is given in figure 9.3.

For projection the same algorithms as for marginalisation are used, with the only
difference that nodes are marginalised when they are not in the specified domain.

Tree summation The order of the switches of the subtrees may be different. In
fact subtrees do not necessarily contain the same switches. Summing over trees
therefore not only involves summing the leaf distributions, but also properly com-
bining the trees. This is done by traversing the leafs of one of the trees and keeping
track of the path that leads to a leaf. Next this path is used to find corresponding
paths in the other tree using a recursive procedure. If the root of the tree occurs
in the path and the value of this variable equals one of the branches of this switch

152

9.2. Design of the framework

we can mark this variable in the path. If the branch leads to another switch we
can recursively call the algorithm with this switch. If the branch leads to a leaf
distribution we have to insert the unmarked part of the path between the branch
and the leaf and sum the leafs. If the root variable is not in the path at all we call
the procedure recursively for every branch of the switch.

9.2.5 Potentials and distributions

Tree-shaped tables are used to represent both potentials and multinomial distribu-
tions. Potentials are tables of likelihoods that represent intermediate results in an
inference procedure. Multinomial distributions on the other hand can only contain
probabilities. In addition, distributions can have accumulators that are used when
learning the parameters of a network. Accumulators can be shared across distri-
butions. This is for example used when learning the parameters of a dbn. The
accumulators are shared across time slices. But parameters can also be tied for
learning across other variables.

Only observed variables can have a continuous distribution, such as Gaussian
mixtures for speech recognition. Upon observation a conditional Gaussian provides
one probability for every set of parent values. Hence the result is a potential over
the parent variables that can be uses as any other potential.

9.2.6 Network structure

The upper layer of the library implements a generalisation of dynamic Bayesian
networks. To increase the flexibility of the system this layer consists of three compo-
nents: an abstract definition of dbns that is not bound to any inference algorithm,
an interface to the outside world that implements high level inference technique in-
dependent functionality such as learning and an inference engine. Different inference
engines can be plugged into the system without changing any of the other structures.

Whereas standard dbns have a repeating substructure, these networks can have
any number of subnetworks, called chapters, that each have a repeating substructure.
The last chapter is allowed to repeat indefinitely, all other chapters must have a
predefined length. The substructure that repeats within a chapter may span several
time slices. In addition, a chapter can define static variables, that do not have
temporal dynamics. It is also possible to define static variables at the network level.
Those correspond to the contemporal nodes of Hulst (2006). Following Hulst, we
also provide a separate chapter with static variables that is attached at the end of
the network.

To every variable in the network a distribution is attached. Variables with the
same name in different time slices and chapters share the same distribution. The
parents of a variable can be in any preceding slice or chapter, i.e. k-th order Markov
relations are allowed.

The user of the system provides the chapters of the network and a template of
the repeating slices in the network as well as the (tree-shaped) distributions in xml

153

Chapter 9. A Computational Framework

format. The dbn interface is responsible for expanding (unrolling) this definition
into a network and checking it for consistency. Figure 9.2.6 shows an example
of a generalised dbn definition for a language model in which the words W are
conditioned on their part of speech P, such as verb, noun or determiner, that are
in turn conditioned on the type of speech T , i.e. whether it is conversational speech
or more formal speech. The rectangles in the figure denote chapters. The top-
most chapter contains global static nodes. It is assumed that the type of speech
is constant for the whole word sequence. Therefore the type of speech random
variable is placed in this chapter. The other chapters are combined left-to-right in
the expanded network. The first chapter defines slices of the first two time steps,
represented by rectangles with dotted lines. The number in the upper right corner
gives the length of this chapter. Because it has a length of two, the slices in it will not
be repeated. After the first two time steps, the expanded network will continue with
the second chapter. This chapter contains a single slice that will be repeated as long
as there are input values. The dotted circles are place holders for parents of a node
that are defined in other slices in the expanded network. For example all dotted T
nodes refer to the global T variable and the P−1 node in the second chapter refers to
the part of speech node in the previous slice. Note that for the third time step this is
a variable in the first chapter and after that it is a node in a previous instantiation of
the second chapter. When the whole word sequence is processed the final chapter is
attached to the network, this contains an end of sequence node, as discussed in the
previous chapter. Figure 9.2.6 illustrates the advantage of subdividing a network in
chapters. There is no need to repeat the type of speech and end of sequence nodes
in every time step as is the case in standard dbns. This is not just a convenience
for the designer of the network, but also allows for faster inference.

9.2.7 Inference engine

Filtering, smoothing, prediction and Viterbi inference is possible. For the latter it
can be specified which variables should be marginalised (summed) out and which
should be maximised. In addition it is possible to run any of these algorithms in
interactive mode to inspect any variables in any time slice during inference.

We currently implemented the Frontier algorithm and the interface algorithm for
exact online inference and the Boyen-Koller (Boyen and Koller 1998) and Factored
Frontier (Murphy and Weiss 2001) algorithms for approximate inference. The gen-
eralised structure using chapters and k-order Markov relations complicates things a
bit as for different time steps a variable (in a particular chapter) may have a different
set of children. In addition, as the same variable may appear in different chapters,
the last child of a variable may change. This is solved by splitting up the network
in additional chapters in such a way that the variables in a particular chapter have
the same children in all future slices that can be reached from slices in the chapter.

In a preprocessing step the Frontier engine transforms the dbn definition in a set
of operations for every slice of every chunk. It basically establishes the elimination
order based on a number of rules:

154

9.2. Design of the framework

global static

T

2

T

P

W

T

P1 P

W1 W

∞

T

P
−2 P

−1 P

W
−2 P

−2 W

end static

P EOS

W

Figure 9.4 – A generalised dbn definition of a word trigram in which the words W are
conditioned on their part of speech POS and on the type of speech TOS. The outer rectan-
gles represent chapters, dashed rectangles represent slices in non-static chapter that have
repeating substructure. Dotted nodes are references to parent nodes in the expanded network.

• A node can be added to the frontier when all of its parents are in the frontier.

• A node can be removed when all its children are in the frontier.

• Sum marginalisations are added before max marginalisations.

Heuristics or a search algorithm can be used to order unconstrained nodes.
When an input sequence is processed these operations are added to a processing

queue. Different operations such as filtering, prediction and smoothing may alter
the order of the operations in the queue. Furthermore, if one wants to consult the
value of particular variables the order of the operations in the queue can be altered
on the fly.

We extended the algorithm with beam pruning. At every slice boundary the like-
lihoods in the frontier that are smaller than the largest likelihood by some predefined
percentage are set to zero.

9.2.8 Learning
For parameter learning the expectation maximisation algorithm is used. It has been
implemented using a forward and a backward pass, enabling the use of any inference
engine that implements smoothing. At every time slice intermediate results have to
be saved in the forward pass, so the space requirements of the algorithm may quickly
get out of hand. Therefore, the island algorithm (Zweig and Padmanabhan 2000),
that is discussed in section 7.7.1 has been implemented.

155

Chapter 9. A Computational Framework

The learning tool can work in distributed mode. Each processor learns a part of
the data. A central thread of the program combines the accumulators of the other
programs.

9.2.9 Data preparation and processing
An additional library module provides a basic framework for corpus processing. For
a given corpus one has to provide a simple ebnf-style grammar that can parse the
data format of the corpus, the framework then provides all the functionality needed
to translate the data to the format used by the toolkit, to remove or replace tokens
such as stop words or punctuation, to construct a vocabulary file and a mapping
of words to unique numerical identifiers automatically as well as to calculate basic
corpus statistics and extract (smoothed) distributions over the data. In addition,
one can provide special purpose classes to calculate additional statistics or to write
to other output formats. A tool for automatic subset selection from a corpus is also
provided.

9.3 A few words on the implementation
The toolkit is platform independent. It has been implemented in c++ following the
generic programming paradigm in which algorithms and data structures are designed
to be as general as possible, thereby allowing for flexibility and code reuse.

Generic programming uses compile time decisions to generate fast code. For ex-
ample decision trees are used to implement probability distributions. The underlying
decision tree class however contains no knowledge of random variables or probability
distributions. It only uses abstract concepts: question (in the nodes), answer (on
the branches) and leafs. Within the generic programming paradigm these abstract
place holders will be bound to particular types, i.e. random variables, states and
probability tables in this particular case, during compile time. This places no addi-
tional burden on the run time of the program, as a typical object oriented solution
using polymorphic classes would, while providing a software developer with much
flexibility. For standard data types such as vectors, lists, sets, date and time manip-
ulations, interacting with the file system, graphs, mathematical functions, random
number generators, handling of regular expressions and xml parsing the library re-
lies on the c++ standard template library (stl) and on the peer-reviewed boost
libraries (www.boost.org).

156

Things that try to look like things often do look more like
things than things. Well known fact. But I don’t hold
with encouraging in it!

Granny Weatherwax in Wyrd Sisters, Terry Pratchett

Chapter 10

A Topic-based Language Model

In which we define a novel, adaptive language model that combines topic
information and structure information together with a procedure for un-
supervised learning of the model. We relate the model to sentence level
mixture models, thereby giving a Bayesian explanation of these models.
We also relate the model to the concept of spreading activation as used
in models of human speech processing. Experimental results are reported.

A discourse is not a random collection of phrases. Following the argument of
Jurafsky and Martin (2000): if we would pick at random a number of sentences from
this thesis and put them together we would certainly not get anything that looks like
a proper paragraph. The difference is, that any discourse will display some coherence.
It will contain semantically related words, and particular phrases, typically content
words will reappear in the text. It is this property that information retrieval systems
use to find documents relating to a query. In other words, a discourse has a topic.

As discussed in chapter 1 there is evidence that human speech recognition greatly
benefits from contextual coherence (Gill-Günzburger 1979). Eye-tracking experi-
ments show that words that fit the context are read faster (Ledoux et al. 2006).
At the same time a peak of electrical activity can be observed in the brain about
400ms after the onset of a word that is semantically incoherent (Osterhout et al.
2002; Halgren et al. 2002).

157

Chapter 10. A Topic-based Language Model

On the other hand, the common practice in language modelling to collect statis-
tics on average word use in a very large corpus completely ignores contextual co-
herence and topics. In fact, to make a language model robust data from as many
different contexts as possible is combined. Although this ensures that reliable pa-
rameter estimates can be found, the assumption that the relative frequency of a
word combination is the same for all conversations is clearly incorrect. A word may
be far more likely in a particular conversation than on average (in a corpus) and
even more likely than in conversations about other topics.

In chapters 4 and 5 we have identified other determinants of language use, in
particular user characteristics and the type of speech. Many existing systems using
topic information (Iyer and Ostendorf 1996; Seymore and Rosenfeld 1997; Seymore
et al. 1998; Chen et al. 1998; Florian and Yarowsky 1999; Mahajan et al. 1999; Khu-
danpur and Wu 1999; Gildea and Hofmann 1999) do not differentiate between topic
and type of speech. Rather a subset of a corpus is selected that is assigned a topic.
Such a subset may contain utterances that are all about a particular subject, say
speech recognition, but it might also contain documents that are all in a particular
genre or type of speech, for example lectures. We claim that type of speech and
topic are complementary. People can talk about the same topic using different types
of speech. For example, there is a clear difference between a news anchorman pre-
senting the latest political scandal and people talking about that same scandal in a
pub. The difference is in the use of formal and informal language, but the words or
at least the concepts that belong to the topic will remain the same.

Although the notion of a topic is very intuitive, giving a definition of topic is
not easy. Unless one is willing to specify many details, it is hard to name the exact
topic of a conversation. We might end up with a unique topic for every conversation.
Rather, a conversation is a mix of several topics, where some are more prominent
than others. This mix can change over time; topics can become less important or
disappear completely and new topics can be introduced.

Obviously, words can belong to multiple topics. But when is a word excluded
from a topic? For example, when talking about cars the word ‘chopstick’ is not
very likely. Nevertheless, we might hear a sentence like: ‘Japanese cars are just like
chopsticks.’ Now the word chopstick has something to do with Japan, as do cars,
but in many conversations about Japan neither will occur. We might argue that the
word ‘car’ is central to the topic ‘cars’, but less important in the topic ‘Japan’.

10.1 The basic model

The last remarks already hinted at a view of topics that can deal with the issues
mentioned above. We define a topic as a probability distribution over the vocabulary.
For a given topic some words are likely while others are not. The idea that a given
discourse contains a mixture of topics can then be implemented as a mixture of
topic distributions. In the language of Bayesian networks this can be put as shown
in figure 10.1. As before W represents a word. It is conditioned on the topic T .

158

10.1. The basic model

T

W1 W2
. . . WT

Figure 10.1 – Conceptual view of a topic model. The word variables are influenced by the
topic T .

When the topic of a discourse is known, assigning a probability to this discourse
is straightforward. However, more often than not, the topic of a conversation is
not known beforehand. Imagine observing the words in a conversation one by one.
Initially, all topics are possible, so it is reasonable to assume that they are equally
likely or distributed according to some a priori distribution (people tend to talk
about the weather more often than they talk about speech recognition). Now when
a word is observed, it can be used to update the belief of the topic node. Topics in
which the word has a high probability will become more likely. For the next word
this updated belief of the topic node is used. Therefore words that belong to the
same topics as the first word have become more probable. The second word will in
turn influence the topic distribution as well. In the course of the conversation, the
belief of topics will go up and down, but given that a text is reasonably coherent,
the topics that are present in the text will eventually be identified and can be used
to guide the prediction of future words.

What is going on here is belief revision or uncertainty reduction. Every new word
that is observed is propagated back through the network as evidence, supporting
those topics that predicted it with a high probability and moderating the influence
of other topics. In other words, the distribution over the topics shifts towards the
observed words. If a text is reasonably coherent this will lead to a better prediction
of future words. If the observed words themselves are uncertain, evidence from
future words can be used to disambiguate them by also running a backwards pass
over the model.

To summarise, the model of figure 10.1 can naturally deal with mixtures of topics,
it can identify the topics of a conversation in the course of that conversation and
can adapt when the topic of a conversation changes. One can think of the topic
nodes as a means to capture long-distance dependencies: the exact words are not
remembered, but the topic mixture provides a summary of the history.

Figure 10.1 uses a single global topic node that is seen as the common cause of all
the word variables. The changes in the topic belief over time can also be modelled
explicitly as shown in figure 10.2. To be completely compatible with the previous
model the links between the topics nodes should be deterministic. There are no
transitions from a topic to any other topic. Using this representation we can get a
better insight in the workings of the model. Notice that the model is equivalent to an
hmm where the topics are the states and the words the observations. As discussed in

159

Chapter 10. A Topic-based Language Model

T1 T2 T3
. . . TT

W1 W2 W3
. . . WT

Figure 10.2 – The basic topic model. Wt is the word at time t, Tt the topic at time t.

T1 T2 T3
. . . TT

W1 W2 W3
. . . WT

Figure 10.3 – Topic model with n-gram constraints.

chapter 2 the forward algorithm that gives the probability of an observation sequence
in an hmm can be visualised by a trellis. As topics have only self-transitions, the
trellis consists of a set of unconnected chains. The total probability of the observation
sequence is the sum of the probabilities of the individual sequences. This model will
thus assign a higher probability to a coherent text than to a text that contains
words that have high probabilities in different topics. Note that in general, every
word must have a non-zero probability for every topic. Otherwise, a word that has
zero probability for a particular topic would set the belief of that particular topic to
zero even if all other words have a high probability in this topic.

10.2 The relation with mixture models

Since the topic model defines a distribution over word sequences, it can directly
be used as a language model. But taking the trigram as a benchmark it comes of
rather poorly, as it actually defines unigram probabilities. It is a bag-of-words model.
Obviously, it can be combined with standard n-gram models to get the best of both
worlds. The question that remains is how these models should be combined. The
simplest option is to condition a word on the joint of its parents or put differently
to condition n-grams on the topic. Phrased like that, the model is equivalent to the
topic mixture model of (Iyer et al. 1994) discussed in section 3.9. So, we can now
understand the sentence mixture model from a Bayesian perspective and use this
insight to extend the model.

160

10.3. A more advanced topic model

T1 T2 T3
. . . TT

P1 P2 P3
. . . PT

F1 F1 F3
. . . FT

W1 W2 W3
. . . WT

Figure 10.4 – A topic model that uses part of speech information (P). The Ft variable
signals whether the word Wt is a content word in which case it is conditioned on the topic
Tt as well. Function words are only conditioned on previous words and part of speech tags.

10.3 A more advanced topic model

Making n-grams dependent on the topic may unnecessarily fragment training data.
What such models are capturing is not so much the topic of a conversation but rather
the distribution of a particular subset of the data, combining information on genre
and topics. It seems reasonable to assume that content words are much more topic
dependent than function words, whereas function words are more dependent on the
type-of-speech as shown in chapter 5. To be precise, complete word sequences, such
as ‘global heating’ can be topic dependent. To deal with this the topic model can
be combined with the chunking model presented in section 8.5.1. In the remainder
of this chapter we will stick to a simpler model that only conditions content words
on the topic. This implies that the type-of-speech of a word has to be predicted
before the word itself is predicted. Therefore, we built our topic model on top of the
pos-model described in 8.2. The resulting model is shown in 10.4.

In every time slice of this model first the part-of-speech P is predicted. The F
node is a binary variable that indicates whether the word is a function word or a
content word. In case of a content word the word is not only conditioned on its
pos-tag and previous words, but also on the topic. In case of a function word the
topic distribution is simply a copy of the topic distribution of the previous slice.

Note that we could have simplified the model by making the function words
dependent on the topic as well. Given that function words are more or less equally
distributed in all topics the model would still work. However, the topic distribution
would be much more uniform and hence less predictive and, as will become clear in
section 10.5, harder to train.

Up to now, we have assumed that the transitions between topics are deterministic.
And with good reason, as this guarantees that the model prefers coherent texts.

161

Chapter 10. A Topic-based Language Model

Nevertheless, we could allow probabilistic transition between topics. As long as the
probability of a self-transition is much larger than that of transitions to other topics
there is still a preference for coherent text. The gain would be additional flexibility.
The model might learn common topic transitions or relations between topics from
the training data. A higher belief of a topic then increases the belief of related
topics. In theory, probabilistic topic transitions also remove the need for every word
to have a non-zero probability in every topic. In practice however, it turns out that
it is better to use this constraint. We experimented with several configurations and
found that a model that has only self-transitions between topics within a sentence but
allows probabilistic transitions to other topics at sentence boundaries performs best.
The probability distribution at topic boundaries typically shows clusters of related
topics. Many variations on this model are possible. For example user knowledge can
be added to model topic preference. Other modalities, such as computer vision, or
background information can influence the topic distribution as well.

10.4 Relating topics and spreading activation

In chapter 1 the concept of spreading activation as a model of human language
processing was explained. In this model words activate semantically related words
that will then be recognised faster when they do occur. The topic-based model
was developed as an attempt to place this idea in a probabilistic framework. The
topic distributions mimic the spreading activation algorithm. The further a word
is from the core of the topic, i.e. the words that have a high probability in a clus-
ter, the lower the probability will be. Of course the spreading activation model is
more fine-grained, as it matters which particular word has been activated, while
in a topic-based network it only matters whether a topic has a high probability of
generating a word. But by making the topics more specific, spreading activation can
be approximated. In the ultimate case there would be one topic per word, but in
fact it is not necessary to go any further than the cliques in a network of semanti-
cally related words, as those will consists of words that will mutually activate each
other in one activation step. Moreover, as a semantic network of word occurrences
typically contains subnetworks of strongly connected words and these subnetworks
are only weakly connected to each other (Bordag and Bordag 2003; Veronis 2004) —
an effect that is called the local world property — a topic network with a relatively
small number of topics will do almost as well.

10.5 Training the topic model

If a data set is annotated with topic information, any of the methods discussed in
chapter 3 can be used to calculate smoothed estimates of the topic dependent word
distributions. If training sequences contain multiple topics, topic transitions can
also be estimated this way.

162

10.5. Training the topic model

Unfortunately, most data sets do not contain topic information as it it very
labour intensive to create such a set. As argued above it is very hard to decide on
a good set of topics. Even if a set is annotated, the question remains whether that
annotation is useful for language modelling.

In theory, this should not be a problem, as the topic based language model can
learn its parameters from unannotated data using the expectation maximisation
algorithm. In case of topic learning the algorithm proceeds as follows: The model
starts with random distributions. In every iteration, the training algorithm will try
to maximise the probability of the data. Imagine that one of the topics provides a
relatively high probability for several content words that occur in the training text.
The expectation step of the algorithm will now conclude that this topic has a high
probability of producing the text. The maximisation step will use this information
to assign to all words in the text a higher probability of being produced in this text.
Some of those words may also occur in other texts together with other words and
therefore get a higher probability in other topics. Conversely, the words that are
really related to the content words the topic started with will mainly co-occur with
those words and therefore get their highest probability from this topic. In the next
iteration, those words in turn may make the probabilities of other texts and other
words higher for this topic. Essentially, this approach implements a soft-clustering
of words in topics.

The major drawback of the em algorithm is that it only guarantees to find a local
maximum. We experimented with this approach and found that the algorithm is
very sensitive to its initial distributions and does not find good topic distributions.

There are several solution to this problem. One interesting variation is to in-
troduce the document as a variable in the model to function as a constraint on the
topic variable. P(T |D) is initialised in such a way that for every document only a
limited number of topics has a high probability. This method is strongly related to
probabilistic semantic analysis (Hofmann 1999) but adds the time dimension to this
model.

Another approach, the one that we took, is to find better initial distributions for
the model. We initialised topics with clusters of semantically related recordings. To
obtain these clusters, we created a vector in lemma space for every recording. With
every document a weight vector is associated. The length of the vector corresponds
to the number of different semantically salient lemma types in the vocabulary, that
were found by removing all function words and common content words from the
vocabulary. We used lemmas rather than words, as inflections are not important for
topicality. The entries of the vectors are weights that indicate the relation between
the document and the lemmas. We used term frequency-inverse document frequency
(tf-idf) weights as widely used in information retrieval (see e.g. Baeza-Yates and
Ribeiro-Neto 1999):

weight(i, j) =

{
(1 + log(tfij)) log(N

dfi
) tfij > 0,

0 tfij = 0,
(10.1)

where N is the number of documents and the term frequency tfij counts the number

163

Chapter 10. A Topic-based Language Model

of times lemma i occurs in document j. High frequency lemmas are thought to be
characteristic for the document. Higher counts reflect more saliency of a word for
a document but the scale is not linear. Observing a word twice as much does not
mean that it is twice as important. Therefore, term frequencies are logarithmically
scaled.

This quantity is weighted by the inverse document frequency dfi which gives the
number of different documents lemma i occurs in. The idea is that lemmas that
occur in many documents are semantically less discriminating. This component is
also logarithmically weighted. Note that a word that occurs in all documents will
get weight zero.

Together the word vectors span a high-dimensional space in which each dimension
corresponds to a lemma. To measure semantic similarity between documents we
apply a metric.

To find clusters of related documents we used agglomerative clustering with the
cosine as a similarity measure. Agglomerative clustering is a greedy iterative algo-
rithm in which every vector initially has its own single-element cluster. In every
iteration, the two most similar clusters are merged. The similarity of two clus-
ters with multiple elements is defined as the distance between the two least similar
elements (complete-link clustering).

Every document is annotated with the cluster number of its corresponding vector.
This annotated data was used to estimate the initial parameters of the topic model
using simple maximum likelihood estimation. The parameters are then interpolated
with the global distribution over content words to make sure that all words have a
non-zero probability for all topics. One could leave it at this, but then we would not
be using the full potential of the topic model. Agglomerative clustering assigns very
document to a single cluster but documents may contain several topics. The topic
model can represent soft clustering. Therefore, we only selected the most similar half
of the documents of every cluster for initialisation of the topic model. The idea is that
this will result in relatively coherent topic distributions, documents that can belong
to multiple clusters are not used for initialisation. Next the topic model was retrained
on all training data using the em algorithm. All documents are assigned to all topics
weighted by the likelihood of the topics resulting in soft clustering rather than in
hard clustering. Recall that our model allows for probabilistic topic transitions at
sentence boundaries. This transition distribution, simultaneously trained, enables
dealing with documents that contain a sequence of topics.

Monitoring the perplexity of a development test set we found that the soft clus-
tering step does result in a better model than using the clusters directly to estimate
topic distributions, but the model quickly overtrains. Therefore, we introduced a
damping factor (Murphy 2002):

Pt(W|T) = (1 − δ)P̃t(W|T) + δPt−1(W|T) 0 6 δ 6 1, (10.2)

where P̃i+1(W|T) is the result of em iteration i+ 1 and Pi(W|T) is the topic distri-
bution obtained in the previous iteration. Depending on the weight δ distributions

164

10.6. Experiments

Table 10.1 – Perplexity results

language model perplexity

interpolated bigram 296.49
interpolated trigram 280.76
topic-based model with 64 topics 242.92

are only partially updated in every iteration. If δ = 0 this amounts to normal up-
dating. δ = 1 would result in no updating at all. Because the initial distributions
were smoothed by interpolation with the global distributions, the damping factor
has additional advantage that it avoids zero probabilities for words that do not occur
in the training data in subsequent training iterations.

10.6 Experiments

We tested the topic model on component f of the cgn corpus described in chapter
5. This set contains interviews and discussions broadcasted on radio and television.
The set contains a total of 790.269 words, 80% of which we use for training, 10% for
development testing and tuning and the remaining 10% for evaluation. All words
that occur only once in the training set are treated as out-of-vocabulary, resulting in
a vocabulary size of 17833 words and 257 pos-tags. The pos-tags include attributes
such as number, degree and tense. Table 10.1 gives the perplexity of the model on
the evaluation set. As a baseline the perplexities of standard interpolated bigram
and trigram on the same set with the same vocabulary are also shown. In all cases
the interpolation weights have been optimised on the same development test set.
The topic model clearly outperforms the standard models.

10.7 Doing it differently: conditional models

The topic model described in this section is a generative model, i.e. it models the
(hidden) causes that have generated the observed words. In this it follows common
practice in both hmm based speech recognition and Bayesian belief propagation in
probabilistic expert systems (Pearl 1988). Generative models have the advantage
that they can easily generalise; they provide a probability for every observed string.
Furthermore, they often make for simple and elegant models. On the downside,
generative models can seldomly exclude anything at all. In the topic based language
model this shows in the fact that every word has to have a non-zero probability in
every topic.

The alternative way of looking at things is from a conditional point of view. In
this case the observed variables are seen as features that help to identify the hidden
variables. Specifically, for the topic-based model this would mean that the topic at

165

Chapter 10. A Topic-based Language Model

H1 H2 H3
. . . HT

T1 T2 T3
. . . TT

W1 W2 W3
. . . WT

Figure 10.5 – A conditional topic-based language model. The topic Tt is conditioned on
the history Ht which is a function of the history in the previous time slice and the previous
word.

some point in time is directly conditioned upon the previously observed words. In
practice the topic will be conditioned upon a deterministic function of the history
rather than on the complete history itself to obtain reliable statistics. In fact almost
all topic based language models proposed in literature (Seymore and Rosenfeld 1997;
Mahajan et al. 1999; Zhang and Rudnicky 2002; Gildea and Hofmann 1999; Khudan-
pur and Wu 1999) are of this kind. In terms of dbns such a scheme can be realised
by introducing an explicit, deterministic history variable as shown in figure 10.5.
Instead of a dbn with history nodes the probability P(wi|T)P(T |w1 . . .wi−1) can be
modelled directly as the topic no longer depends on information from previous time
slices.

166

Acta est fabula.

Chapter 11

Conclusion

In which the research questions formulated in chapter 1 will be answered.

The statistical approach based on hidden Markov models forms the state of
the art in speech recognition. Having been introduced in the 1970s (Jelinek 1976)
it has been dominating the field since the early 1990s. In this time great leaps
forward in speech recognition have been made and some applications have become
feasible. However, compared with human speech recognition, the performance of
its automatic counterpart is still an order of magnitude behind. More importantly,
speech recognition is not yet robust enough to function as a general man-machine
interface. For example, dictation systems require extensive training to adapt to the
voice of a particular user and the acoustical properties of the environment before
they become useful.

Much of the recent progress in speech recognition has come from carefully crafting
systems for particular application domains, i.e. by keeping the context of use in
mind when defining the vocabulary of a recogniser and when selecting or fabricating
training data. Recognisers that deal with multiple contexts often select models
from a predefined set. For example systems for broadcast news transcription have
different acoustic models for different environments, ranging from the anchorman in
the studio to interviews with an eyewitness in the street, as wells as item specific
language models, each with its own vocabulary.

167

Chapter 11. Conclusion

Based on this practice and by drawing inspiration from models of human speech
recognition, I propose to include information about the context of use directly in the
models of speech recognition.

This information will allow a general purpose recogniser to focus on a particular
situation. The complex task of person independent recognition of any speech about
any topic reduces to a sequence of domain and person specific recognition tasks. The
difference with a domain specific recogniser is that such a system can dynamically
adapt to context changes. It is not limited to predefined context-dependent models,
but adjusts its parameters by reasoning over the context. As a consequence, this
approach also reduces the need for domain specific data. Systems for new domains
do not have to be developed from scratch, but can exploit similarities between do-
mains. For example, the differences between formal and informal speech are constant
across all conversation topics. Therefore, rather than needing a model for formal
conversations about politics and a model for informal conversations about politics,
a system in which the type of speech and the topic of a conversation are included
as variables can deal with an informal conversation about politics even if it has
only been trained on formal conversations about politics and informal conversations
about other subjects.

Using findings in sociolinguistics, psychology and linguistics, I define three types
of context: conversational knowledge, user knowledge and world knowledge. Con-
versational knowledge tells whether it is a conversation between a user and a system
or a conversation between multiple speakers that is transcribed by a system. In
addition, it includes the type of speech, i.e. whether we are dealing with for example
spontaneous speech, with broadcast speech or with more formal speech such as a
debate or read speech. It also includes the topic of a conversation which is a strong
determinant of the vocabulary used. User knowledge comprises speaker characteris-
tics such as dialect, gender, age and education level. All of which have been shown
to influence speech production and hence are relevant for speech recognition. World
knowledge is subdivided in knowledge provided by other modalities and domain
specific knowledge.

To find out whether context and language use do or do not correlate I analysed
a large corpus of spoken Dutch. This research confirmed that word use indeed
differs for different types of speech. In particular, I found that sentence length
distributions are very different for different types of speech as is the relative frequency
of parts of speech. It turns out that the relative frequencies of personal pronouns
are characteristic for the type of speech. I also found influence of speakers’ gender,
education level and age on word use.

The data analysis suggests that modelling context in speech recognition should
help. To further investigate this I conducted two case studies. The first case study
looked at the usefulness of information from other modalities in speech recognition.
In particular, I integrated a data stream obtained from an automated lipreader in a
speech recogniser. Experiments with different configurations show that integration
within the acoustic models of the recogniser gives better results than early integration
of the audio and video signals. A model that uses different classes for the two input

168

streams, phonemes for audio and visemes for video, outperformed the audio-only
speech recogniser. In case of background noise the audio-visual recogniser performs
considerably better than the standard speech recogniser. The recognition rates of
the bimodal system were up to 15% higher.

The second case study was about the use of domain knowledge in a speech
recogniser. A train table dialogue system was chosen as the domain of use. By
analysing transcriptions of conversations with such a system we found a correlation
between departure and arrival station. I used this finding to dynamically set the
language model probabilities with which a recogniser predicts a station name if
the other name is recognised. I found that use of this information directly in the
speech recogniser results in better performance than using this information in a
later stage. But even if the information is used afterwards, by rescoring several
hypotheses output by the recogniser using the context information the approach
outperforms a standard recogniser that does not use domain knowledge. I also
found that context information should not override perceptual information. The
best results were achieved if context information was only used if there was low
confidence in the recognition result. To decide when to use contextual information
a confidence measure was developed as part of this research.

From the data analysis and the case studies we can conclude that modelling
context does indeed improve speech recognition. However, putting contextual infor-
mation in hidden Markov models is far from simple. Our case studies fit in with
much research in speech recognition dedicated to developing variations on the hidden
Markov model to include a particular piece of additional knowledge that is thought
to be of help. Typically, these model variations require specialised inference routines.
Even though one might expect that many of the small improvements presented in
literature are additive, the specialised nature of the models makes them difficult to
integrate. Therefore, I argue that a new computational paradigm for speech recog-
nition is needed, in which context as well as other information can be included. I
compared several paradigms that have proven their worth in speech and language
processing before, and conclude that dynamic Bayesian networks provided a good
computational paradigm for speech recognition. Dynamic Bayesian networks can be
seen as a generalisation of the hidden Markov models and n-gram models typically
used in speech recognition. They retain the greatest strength of these models, their
statistical nature, but allow for a much richer representation of model state in terms
of random variables and the relations between those variables. Earlier research al-
ready showed how dynamic Bayesian networks can be used for acoustic modelling
(Zweig 1998; Bilmes 1999). In this thesis I show how a complete speech recogniser
can be formulated in terms of dynamic Bayesian networks. In particular, I reformu-
late existing language models in terms of dynamic Bayesian networks, and show that
in some cases the resulting models are even more efficient and conceptually clearer
than in the original formulation. I discuss how such models can be combined and
extended without the need to develop new algorithms.

The most important contributions of this thesis are a number of new language
models that include sentence length, context information and syntactic structure.

169

Chapter 11. Conclusion

Specifically, I designed a new adaptive language model that includes topic informa-
tion.

The assumption behind this model is that every conversation displays coherence.
Simply put, it has a topic. The model relies on Bayesian updating to find and track
the topic of a conversation. A topic is modelled as a distribution over words. At any
point in time the actual topic of a conversation is seen as a mixture of these topic
distributions. The composition of this mixture can change as topics may come and
go. The model thus focusses on words that are likely in the context. Unlike existing
topic-based models, the model separates the topic and the structure of a sentence.
The topic is used in the prediction of future content words in the discourse, while
part-of-speech information is used to better model the word sequences in which these
content words can appear and to detect sentence boundaries at which a chance of
topic is allowed. I developed an unsupervised learning algorithm for this model, that
extracts topics from a data set. Experiments show that this model performs better,
in terms of perplexity, than standard language models. The model can be seen as
an extension of sentence level mixture models and thus provides an explanation of
such models in terms of Bayesian updating.

From a computational point of view, speech recognition is challenging because
it searches through a huge state space. The time and space complexity of dynamic
Bayesian networks is exponential in the number of states. Therefore, straightforward
implementations of dynamic Bayesian networks cannot be used for speech recogni-
tion. Luckily, the search space in speech recognition is very sparse, because many of
its states do not occur in practice. I combined ideas scattered throughout literature
on Bayesian networks, hidden Markov models and speech recognition to design algo-
rithms and data-structures that make continuous speech recognition with dynamic
Bayesian networks possible. Novel contributions include a highly efficient algorithm
for inference with probability tables, the combination of lazy evaluation at the prob-
ability table level and tree-shaped distributions that exploit independencies in the
network that are not used by junction tree based inference algorithms such as the
frontier and forward algorithm and a generalisation of dynamic Bayesian networks
that consists of several chapters each of which contains a repeating substructure that
can span several slices in the time domain. These algorithms were implemented in a
toolkit to be used for rapid model construction and experimentation and opens up
the way for research in context-rich models for speech and language processing. A
particularity exciting direction for the future is to build on the large body of liter-
ature available on structure learning of Bayesian networks to learn new models for
speech recognition from data.

170

Bibliography

S. P. Abney (1991), ‘Parsing by chunks’, in R. C. Berwick, S. P. Abney, and C. Tenny
(eds.), Principle-Based Parsing: Computation and Psycholinguistics, pp. 257–278,
Kluwer, Dordrecht, URL citeseer.ist.psu.edu/abney91parsing.html.

R. Aji, S.M. McEliece (2000), ‘The generalized distributive law’, IEEE Transactions
on Information Theory, 46(2), pp. 325–343.

J. Allen (1995), Natural language understanding (second edition), Ben-
jamin/Cummings, Menlo Park, CA.

P. van Alphen (1992), HMM-based continuous-speech recognition, Ph.D. thesis, Uni-
versity of Amsterdam.

S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen (1989), ‘HUGIN—a shell
for building Bayesian belief universes for expert systems’, in Eleventh International
Joint Conference on Artificial Intelligence (ijcai89), vol. 2, pp. 1080–1085.

S. Argamon, M. Koppel, J. Fine, and A. R. Shimoni (2003), ‘Gender, genre, and
writing style in formal written texts’, Text, 23(3).

J. Austin (1962), How to Do Things with Words, Oxford University Press, New York.

R. Baeza-Yates and B. Ribeiro-Neto (1999), Modern Information Retrieval, Addison
Wesley.

L. R. Bahl, P. F. Brown, P. V. DeSouza, and R. L. Mercer (1989), ‘A tree-based
statistical language model for natural language speech recognition’, IEEE Trans.
on Acoustics, Speech, and Signal Processing, 37(7), pp. 1001–1008.

L. R. Bahl, F. Jelinek, and R. L. Mercer (1983), ‘A maximum likelihood approach
to continuous speech recognition’, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 5(2), pp. 179–190.

A. Batliner, R. Huber, H. Niemann, E. Nöth, J. Spilker, and K. Fischer (2000),
‘The recognition of emotion’, in W. Wahlster (ed.), Verbmobil: Foundations of
Speech-to-Speech Translations, pp. 122–130, Springer.

171

Bibliography

T. Bayes (1763), An Essay Toward Solving a Problem in the Doctrine of Chances,
vol. 53, reprinted in Facsimiles of two papers by Bayes, Hafner Publishing Com-
pany, New York, 1963.

A. Bell (1984), ‘Language style as audience design’, Language in Society, 13, pp.
145–204.

J. R. Bellegarda (1998), ‘A multispan language modeling framework for large vo-
cabulary speech recognition’, IEEE Transactions on Speech and Audio Processing,
6(5), pp. 456–467.

A. L. Berger, S. D. Pietra, and V. J. D. Pietra (1996), ‘A maximum entropy approach
to natural language processing’, Computational Linguistics, 22(1), pp. 39–71, URL
citeseer.ist.psu.edu/berger96maximum.htm.

R. van Bezooijen (1985), ‘Een vergelijkende stemkwaliteitsbeschrijving van vier
groepen Amsterdammers.’, Spectator, 13(3), pp. 182–192.

R. van Bezooijen (1995), ‘Sociocultural aspects of pitch differences between Japanese
and Dutch women.’, Language and Speech, 38, pp. 253–266.

J. Bilmes (1998), ‘A gentle tutorial on the EM algorithm and its application to
parameter estimation for Gaussian mixture and hidden Markov models’, Tech.
Rep. ICSI-TR-97-021, University of Berkeley, URL citeseer.ist.psu.edu/
bilmes98gentle.html.

J. Bilmes (1999), Natural Statistical Models for Automatic Speech Recognition, Ph.D.
thesis, Dept. of EECS, University of California, Berkeley, URL citeseer.ist.
psu.edu/bilmes99natural.html.

J. Bilmes (2002a), GMTK: the Graphical Models Toolkit, University of Washington.

J. Bilmes (2002b), ‘What hmms can do’, Tech. Rep. uweetr–2002–0003, Depart-
ment of Electrical Engineering, University of Washington.

J. Bilmes and G. Zweig (2002), ‘The graphical models toolkit: An open source
software system for speech and time-series processing’, in Proc. IEEE Intl. Conf.
on Acoustics, Speech, and Signal Processing, URL citeseer.ist.psu.edu/
bilmes02graphical.html.

D. Binnenpoorte, C. van Bael, E. den Os, and L. Boves (2005), ‘Gender in everyday
speech and language: a corpus-based study’, in Interspeech 2005, pp. 2213–2216.

E. Black, F. Jelinek, J. D. Lafferty, D. M. Magerman, R. L. Mercer, and S. Roukos
(1992), ‘Towards history-based grammars: Using richer models for probabilistic
parsing’, in Proceedings DARPA Speech and Natural Language Workshop, pp. 134–
139, Morgan Kaufmann, Harriman, New York.

172

Bibliography

S. Bordag and D. Bordag (2003), ‘Advances in automatic speech recognition by
imitating spreading activation’, in Text, Speech and Dialogue 2003.

H. Bourlard, S. Dupont, and C. Ris (1996), ‘Multi-stream speech recognition’, Re-
search Report 96-07, IDIAP.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller (1996), ‘Context-
specific independence in Bayesian networks’, in Uncertainty in Artifi-
cial Intelligence, pp. 115–123, URL citeseer.ist.psu.edu/article/
boutilier96contextspecific.html.

T. Boves and M. Gerritsen (1995), Inleiding in de sociolinguïstiek, Uitgeverij Het
Spectrum, Utrecht.

X. Boyen and D. Koller (1998), ‘Tractable inference for complex stochastic pro-
cesses’, in Proceedings of the Fourteenth Conference on Uncertainty in Ar-
tificial Intelligence, pp. 33–42, URL citeseer.ist.psu.edu/article/
boyen98tractable.html.

M. Brand, N. Oliver, and A. Pentland (1997), ‘Coupled hidden Markov models for
complex action recognition’, in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’97), 407.

J. van den Broeck (1980), ‘Beperkte en geelaboreerde stijl in ‘formele’ en ‘informele’
interviews in maaseik’, in G. Geerts and A. Hagen (eds.), Sociolinguistische studies
1. Bijdragen uit het Nederlandse taalgebied, Wolters-Noordhoff.

D. Brouwer (1989), Gender variation in Dutch, Ph.D. thesis, KU Nijmegen, Dor-
drecht.

D. Brouwer (1991), Vrouwentaal. Feiten en verzinsels, Aramit, Bloemendaal.

P. F. Brown, J. Cocke, S. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty, R. L.
Mercer, and P. S. Roossin (1990), ‘A statistical approach to machine translation’,
Computational Linguistics, 16(2), pp. 79–85, URL citeseer.ist.psu.edu/
brown90statistical.html.

P. F. Brown, V. J. D. Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer (1992),
‘Class-based n-gram models of natural language’, Computational Linguistics,
18(4), pp. 467–479, URL citeseer.ist.psu.edu/brown90classbased.
html.

D. Bruce (1958), ‘The effects of listeners’ anticipations in the intelligibility of heard
speech’, Language and Speech, 1, pp. 79–97.

R. Carlson, J. Edlund, M. Heldner, A. Hjalmarsson, D. House, and G. Skantze
(2006), ‘Towards human-like behaviour in spoken dialog systems’, in Proceedings
of Swedish Language Technology Conference (SLTC 2006), Gothenburg, Sweden.

173

Bibliography

E. Charniak (1993), Statistical Language Learning, The MIT Press.

E. Charniak (1997), ‘Statistical parsing with a context-free grammar and word
statistics’, in AAAI/IAAI, pp. 598–603, URL citeseer.ist.psu.edu/
charniak97statistical.html.

E. Charniak (1999), ‘A maximum-entropy-inspired parser’, Tech. Rep. CS-
99-12, Brown University, URL citeseer.ist.psu.edu/article/
charniak99maximumentropyinspired.html.

E. Charniak (2001), ‘Immediate-head parsing for language models’, in Meeting of the
Association for Computational Linguistics, pp. 116–123, URL citeseer.ist.
psu.edu/charniak01immediatehead.html.

C. Chelba (2000), Exploiting Syntactic Structure for Natural Language Modeling,
Ph.D. thesis, The Johns Hopkins University, URL citeseer.ist.psu.edu/
chelba00exploiting.html.

C. Chelba and F. Jelinek (1998), ‘Exploiting syntactic structure for language
modeling’, in C. Boitet and P. Whitelock (eds.), Proceedings of the Thirty-
Sixth Annual Meeting of the Association for Computational Linguistics and
Seventeenth International Conference on Computational Linguistics, pp. 225–
231, Morgan Kaufmann, San Francisco, URL citeseer.ist.psu.edu/
chelba98exploiting.html.

C. Chelba and F. Jelinek (1999), ‘Recognition performance of a structured lan-
guage model’, in Proceedings of Eurospeech ’99, URL citeseer.ist.psu.edu/
chelba99recognition.html.

S. F. Chen, D. Beeferman, and R. Rosenfeld (1998), ‘Evaluation metrics for language
models’, in DARPA Broadcast News Transcription and Understanding Workshop.

S. F. Chen and J. Goodman (1996), ‘An empirical study of smoothing techniques for
language modeling’, in A. Joshi and M. Palmer (eds.), Proceedings of the Thirty-
Fourth Annual Meeting of the Association for Computational Linguistics, pp. 310–
318, Morgan Kaufmann Publishers, San Francisco, URL citeseer.ist.psu.
edu/article/stanley98empirical.html.

K. Church and W. Gale (1991), ‘A comparison of the enhanced Good-Turing and
deleted estimation methods for estimating probabilities of English bigrams’, Com-
puter Speech and Language, 5, pp. 19–54.

P. Clarkson and A. J. Robinson (1997), ‘Language model adaptation using mixtures
and an exponentially decaying cache’, in Proc. ICASSP ’97, pp. 799–802, Munich,
Germany, URL citeseer.ist.psu.edu/clarkson97language.html.

174

Bibliography

P. Clarkson and T. Robinson (1999), ‘Towards improved language model evalu-
ation measures’, in Proceedings of EUROSPEECH 99, 6th European Confer-
ence on Speech Communication and Technology, vol. 5, pp. 1927–1933, URL
citeseer.ist.psu.edu/clarkson99toward.html.

N. Coccaro and D. Jurafsky (1998), ‘Towards better integration of semantic predic-
tors in statistical language modeling’, in ICSLP-98, vol. 6, pp. 2403–2406, Sydney.

M. Collins (1997), ‘Three generative, lexicalized models for statistical parsing’, in
P. R. Cohen and W. Wahlster (eds.), Proceedings of the Thirty-Fifth Annual
Meeting of the Association for Computational Linguistics and Eighth Conference
of the European Chapter of the Association for Computational Linguistics, pp.
16–23, Association for Computational Linguistics, Somerset, New Jersey, URL
citeseer.ist.psu.edu/article/collins97three.html.

M. Collins (1999), Head-Driven Statistical Models for Natural Language Pars-
ing, Ph.D. thesis, University of Pennsylvania, URL citeseer.ist.psu.edu/
collins03headdriven.html.

M. J. Collins (1996), ‘A new statistical parser based on bigram lexical dependencies’,
in A. Joshi and M. Palmer (eds.), Proceedings of the Thirty-Fourth Annual Meeting
of the Association for Computational Linguistics, pp. 184–191, Morgan Kaufmann,
San Francisco, URL citeseer.ist.psu.edu/collins96new.html.

T. M. Cover and J. A. Thomas (1991), Elements of Information Theory, Wiley Series
in Telecomunication.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999), Proba-
bilistic Networks and Expert Systems, Springer.

B. Daille (1995), ‘Combined approach for terminology extraction: lexical statistics
and linguistic filtering.’, Technical Report 5, Lancaster University.

R. C. van Dalen (2005), Lexical Stress in Speech Recognition, Master’s thesis, Delft
University of Technology.

R. C. van Dalen, P. Wiggers, and L. J. M. Rothkrantz (2005), ‘Modelling lexical
stress’, in Text, Speech and Dialogue, Lecture Notes in Artificial Intelligence, vol.
3658, pp. 211–218, Springer Verlag.

R. C. van Dalen, P. Wiggers, and L. J. M. Rothkrantz (2006), ‘Lexical stress in con-
tinuous speech recognition’, in Proceedings of the Ninth International Conference
on Spoken Language Processing (Interspeech 2006 - ICSLP), pp. 2382–2385.

M. Damhuis, T. Boogaart, C. In ’t Veld, M. Versteijlen, W. Schelvis, L. Bos,
and L. Boves (1994), ‘Creation and analysis of the Dutch Polyphone corpus’,
in Proceedings of the International Conference on Spoken Language Processing,
ICSLP’94, pp. 1803–1806, Yokohama, Japan.

175

Bibliography

R. Dechter (1999), ‘Bucket Elimination: A unifying framework for reasoning’,
Artificial Intelligence, 113(1–2), pp. 41–85, URL citeseer.ist.psu.edu/
article/dechter99bucket.html.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), ‘Maxi-
mum likelihood from incomplete data via the em algorithm’, Journal of
the Royal Statistical Society. Series B (Methodological), 39(1), pp. 1–38,
URL http://links.jstor.org/sici?sici=0035-9246%281977%2939%
3A1%3C1%3AMLFIDV%3E2.0.CO%3B2-Z.

A. Doucet, N. de Freitas, K. Murphy, and S. Russell (2000), ‘Rao-Blackwellised
particle filtering for dynamic Bayesian networks’, in UAI ’00 (Uncertainty in AI).

M. J. Druzdzel (1999), ‘SMILE: Structural modeling, inference, and learning engine
and GeNIe: a development environment for graphical decision-theoretic models’,
in AAAI ’99/IAAI ’99, pp. 902–903, Menlo Park, CA, USA.

M. J. Druzdzel (2005), ‘Intelligent decision support systems based on SMILE’, Soft-
ware 2.0, 2, pp. 12–33.

T. Dunning (1993), ‘Accurate methods for the statistics of surprise and coincidence’,
Computational Linguistics, 19(1), pp. 61–74, URL citeseer.ist.psu.edu/
dunning93accurate.html.

G. Evermann and P. Woodland (2000), ‘Posterior probability decoding, confidence
estimation and system combination’, in Proceedings of Speech Transcription Work-
shop.

E. Filisko and S. Seneff (2003), ‘A context resolution server for the Galaxy con-
versational systems’, in EUROSPEECH-2003, pp. 197–200, URL http://www.
isca-speech.org/archive/eurospeech_2003/e03_0197.html.

S. Fine, Y. Singer, and N. Tishby (1998), ‘The hierarchical hidden Markov model:
Analysis and applications’, Machine Learning, 32(1), pp. 41–62.

S. Fitrianie, R. Poppe, T. Bui, A. Chitu, D. Datcu, R. Dor, D. Hofs, P. Wig-
gers, D. Willems, M. Poel, L. Rothkrantz, L. Vuurpijl, and J. Zwiers (2007), ‘A
multimodal human-computer interaction framework for research into crisis man-
agement’, in ISCRAM2007.

R. Florian and D. Yarowsky (1999), ‘Dynamic nonlocal language modeling via hi-
erarchical topic-based adaptation’, in ACL-99, pp. 167–174, ACL, College Park,
MD.

V. Fromkin and R. Rodman (1993), An introduction to language, New York : Har-
court Brace Jovanovich, 5th edition ed.

S. Furui (2001), Digital Speech Processing, Synthesis and Recognition, Second Edition
Revised and Expanded, Marcel Dekker.

176

Bibliography

S. Furui (2005), ‘50 years of progress in speech and speaker recognition research’,
Transactions on Computer and Information Technology ECTI-CIT, 1(2), pp. 64–
74.

W. A. Gale and G. Sampson (1995), ‘Good-Turing frequency estimation without
tears’, the Journal of Quantitative Linguistics, 2, pp. 217–237.

M. Gales (1998), ‘Maximum likelihood linear transformations for hmm-based speech
recognition’, Computer Speech and Language, 12.

F. Gallwitz, M. Aretulaki, M. Boros, J. Haas, S. Harbeck, R. Huber, H. Niemann,
and E. Nöth (1998), ‘The Erlangen spoken dialogue system EVAR: A state-of-
the-art information retrieval system’, in Proceedings of the 1998 Symposium on
Spoken Dialogue (ISSD 98).

J. Gao and J. T. Goodman (2002), ‘Exploring asymmetric clustering for statistical
language modeling’, in Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 183–190, Philadelphia.

Z. Ghahramani and M. Jordan (1997), ‘Factorial hidden Markov models’, Machine
Learning, 29, pp. 245–275.

S. van Gijsel, D. Speelman, and D. Geeraerts (2006), ‘Locating lexical richness: a
corpus linguistic, sociovariational analysis’, in J. Viprey (ed.), Proceedings of the
8th International Conferene on the statistical analysis of textual data (JADT), pp.
961–971, Besan con, France.

D. Gildea and T. Hofmann (1999), ‘Topic-based language models using
EM’, in Proceedings of the 6th European Conference on Speech Commu-
nication and Technology (EUROSPEECH), URL citeseer.ist.psu.edu/
gildea99topicbased.html.

D. Gill-Günzburger (1979), Linguistic expectancy and word-initial consonant clus-
ters, Ph.D. thesis, Utrecht, Univ., Literatuurwetenschappen.

I. Good (1953), ‘The population frequencies of species and the estimation of popu-
lation parameters’, Biometrika, 40, pp. 237–264.

J. Goodman (2000), ‘A bit of progress in language modeling’, Tech. rep., Microsoft
Research, 56 Fuchun Peng, URL citeseer.ist.psu.edu/goodman01bit.
html.

Y. Gotoh and S. Renals (1999), ‘Topic-based mixture language modelling’, Natural
Language Engineering, 5(4), pp. 355–375.

F. Grosjean (1980), ‘Spoken word recognition processes and the gating paradigm’,
Perception and Psychophysics, 28, pp. 267–283.

177

Bibliography

E. Halgren, R. P. Dhond, N. Christensen, C. V. Petten, K. Marinkovic, J. D. Lewine,
and A. M. Dale (2002), ‘N400-like magnetoencephalography responses modulated
by semantic context, word frequency, and lexical class in sentences’, NeuroImage,
17, pp. 1101–1116.

A. Hämäläinen, L. ten Bosch, and L. Boves (2006), ‘Pronunciation variant-based
multi-path hmms for syllables’, in Interspeech 2006, pp. 1579–1582.

T. Harley (2001), The Psychology of Language: From Data to Theory, Psychology
Press, Hove.

K. Harnqvist, U. Christianson, D. Ridings, and J.-G. Tingsell (2003), ‘Vocabulary in
interviews as related to respondent characteristics’, Computers and the Human-
ities, 37, pp. 179–204, URL http://www.ingentaconnect.com/content/
klu/chum/2003/00000037/00000002/00396067.

D. Heckerman, D. Geiger, and . D. Chickering (1995), ‘Learning Bayesian networks:
The combination of knowledge and statistical data.’, Machine Learning, 20(3), pp.
197–243.

P. A. Heeman (1999), ‘POS tags and decision trees for language modeling’, in Pro-
ceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora (EMNLP/VLC-99), pp. 129–137,
ACL, College Park, MD.

V. J. van Heuven, R. van Bezooijen, and L. Edelman (2005), ‘Pronunciation of /ei/
in avant-garde Dutch: A cross-sex acoustic study’, in M. P. Markku Filppula,
Juhani Klemola and E. Penttilä (eds.), Dialects Across Borders; Selected papers
from the 11th International Conference on Methods in Dialectology (Methods XI),
pp. 185–210, John Benjamins Publishing Company, University of Joensuu / Uni-
versity of Tampere.

T. Hofmann (1999), ‘Probabilistic latent semantic analysis’, in Proc. of Uncertainty
in Artificial Intelligence, UAI’99, Stockholm, URL citeseer.ist.psu.edu/
hofmann99probabilistic.html.

J. Hu, M. K. Brown, and W. Turin (1996), ‘HMM based on-line handwriting recog-
nition’, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10),
pp. 1039–1045.

J. Hulst (2006), Modeling physiological processes with dynamic Bayesian networks,
Master’s thesis, Man-Machine Interaction Group, Delft University of Technology.

Intel Corporation (2004), Probabilistic Network Library - User guide and reference
manual.

Interspeech (2006), Proceedings of the Ninth International Conference on Spoken
Language Processing (Interspeech 2006 – icslp), Pittsburgh.

178

Bibliography

Interspeech (2007), Proceedings of Interspeech 2007 - Eurospeech, 10th European
Conference on Speech Communication and Technology, Antwerp.

R. Iyer and M. Ostendorf (1996), ‘Modeling long distance dependence in language:
Topic mixtures vs. dynamic cache models’, in Proc. ICSLP ’96, vol. 1, pp. 236–239,
Philadelphia, PA, URL citeseer.ist.psu.edu/iyer96modeling.html.

R. Iyer, M. Ostendorf, and M. Meteer (1997), ‘Analyzing and predicting lan-
guage model improvements’, in Proceedings of the IEEE Workshop on Auto-
matic Speech Recognition and Understanding., URL citeseer.ist.psu.edu/
iyer97analyzing.html.

R. Iyer, M. Ostendorf, and J. R. Rohlicek (1994), ‘Language modeling with sentence-
level mixtures’, in HLT ’94: Proceedings of the workshop on Human Language
Technology, pp. 82–87, Association for Computational Linguistics, Morristown,
NJ, USA.

I. Jacobi, L. C. Pols, and J. Stroop (2005), ‘Polder Dutch: Aspects of the /Ei/-
lowering in standard Dutch’, in Eurospeech 2005, pp. 2877–2880, ISCA, Lisbon.

F. Jansen (1981), Syntaktische konstrukties in gesproken taal., Huis aan de drie
grachten, Amsterdam.

H. Jeffreys (1948), Theory of Probability, Clarendon Press, Oxford, second edition
ed.

F. Jelinek (1976), ‘Continuous speech recognition by statistical methods’, Proceed-
ings of the IEEE, 64(4), pp. 532–557.

F. Jelinek (1990), ‘Self-organized language modeling for speech recognition’, in
A. Waibel and K.-F. Lee (eds.), Readings in Speech Recognition, Morgan Kaufman
Publishers, Inc.

F. Jelinek (1999), Statistical Methods for Speech Recognition (Language, Speech, and
Communication), MIT Press.

F. Jelinek and R. L. Mercer (1980), ‘Interpolated estimation of Markov source pa-
rameters from sparse data’, in E. S. Gelsema and L. N. Kanal (eds.), Proceedings,
Workshop on Pattern Recognition in Practice, pp. 381–397, North Holland, Ams-
terdam.

F. Jelinek and R. L. Mercer (1985), ‘Probability distribution estimation from sparse
data’, IBM Technical Disclosure Bulletin, 28, pp. 2591–2594.

F. Jelinek, B. Merialdo, S. Roukos, and M. Strauss (1991), ‘A dynamic language
model for speech recognition’, in HLT ’91: Proceedings of the workshop on Speech
and Natural Language, pp. 293–295, Association for Computational Linguistics,
Morristown, NJ, USA.

179

Bibliography

F. V. Jensen (2001), Bayesian Networks and Decision Graphs, Statistics for Engi-
neering and Information Science Series, Springer Verlag.

F. V. Jensen, S. L. Lauritzen, and K. G. Olesen (1990), ‘Bayesian updating in causal
probabilistic networks by local computations’, Computational Statistics Quaterly,
4, pp. 269–282.

M. I. Jordan (ed.) (1998), Learning in Graphical Models, MIT Press.

B. H. Juang and L. R. Rabiner (2005), ‘Automatic speech recognition–a brief history
of the technology’, in Elsevier Encyclopedia of Language and Linguistics, Second
Edition, Elsevier.

D. Jurafsky and J. H. Martin (2000), Speech and Language Processing, Prentice Hall.

D. Jurafsky, C. Wooters, J. Segal, A. Stolcke, E. Fosler, G. Tajchman, and N. Morgan
(1995), ‘Using a stochastic context-free grammar as a language model for speech
recognition’, in Proc. ICASSP ’95, pp. 189–192, Detroit, MI, URL citeseer.
ist.psu.edu/article/jurafsky95using.html.

S. M. Katz (1987), ‘Estimation of probabilities from sparse data for the language
model component of a speech recogniser’, IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3), pp. 400–401.

T. Kawahara, A. Lee, T. Kobayashi, K. Takeda, N. Minematsu, S. Sagayama,
K. Itou, A. Ito, M. Yamamoto, A. Yamada, T. Utsuro, and K. Shikano (2000),
‘Free software toolkit for japanese large vocabulary continuous speech recognition’,
in ICSLP-2000, vol. 4, pp. 476–479.

S. Khudanpur and J. Wu (1999), ‘A maximum entropy language model inte-
grating n-grams and topic dependencies for conversational speech reconition’,
in Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Phoenix, AZ, URL citeseer.ist.psu.edu/
khudanpur99maximum.html.

A. Kilgarriff (2001), ‘Comparing corpora’, International Journal of Corpus Linguis-
tics, 6(1), pp. 1–37.

B.-W. Kim, D.-L. Choi, Y. Um, and Y.-J. Lee (2006), ‘Phone vector DHMM to
decode a phone recognizer’s output’, in Interspeech 2006, pp. 1591–1594.

U. Kjaerulff (1995), ‘dhugin: a computational system for dynamic time-sliced
Bayesian networks’, International Journal of Forecasting, 11(1), pp. 89–111.

R. Kneser and H. Ney (1993), ‘Improved clustering techniques for class-based sta-
tistical language modelling’, in EUROSPEECH-93, pp. 973–976.

180

Bibliography

R. Kneser and H. Ney (1995), ‘Improved backing-off form-gram language modeling’,
in Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 1, pp. 181–184.

R. Kneser and V. Steinbiss (1993), ‘On the dynamic adaptation of stochastic lan-
guage models’, in Proceedings of ICASSP-93, Minnapolis(USA), vol. II, pp. 586–
589.

K. B. Korb and A. E. Nicholson (2004), Bayesian Artificial Intelligence, Chap-
man&Hall/CRC.

R. Kuhn and R. de Mori (1990), ‘A cache-based natural language model for speech
recognition’, EEE Transactions on Pattern Analysis and Machine Intelligence,
12(6), pp. 570–583.

W. Labov (1972), Sociolinguistic patterns, University of Pennsylvania Press.

P. Ladefoged (1996), Elements of Acoustic Phonetics, University of Chicago,
Chicago, IL, second Edition.

R. Lakoff (1975), Language and woman’s place, Harper & Row, New York.

R. Lau (1994), Adaptive Statistical Language Modelling, Master’s thesis, Department
of Electrical Engineering and Computer Science, MIT, Cambridge, MA, URL
citeseer.ist.psu.edu/lau94adaptive.html.

K. Ledoux, C. C. Camblin, T. Y. Swaab, and P. C. Gordon (2006), ‘Reading words
in discourse: The modulation of lexical priming effects by message-level context’,
Behav Cogn Neurosci Rev., 5(3), pp. 107–127.

G. J. Lidstone (1920), ‘Note on the general case of the Bayes-Laplace formula for
inductive or a posteriori probabilities’, Transactions of the Faculty of Actuaries,
8, pp. 182–192.

P. Lieberman (1963), ‘Some effects of semantic and grammatical context on the
production and perception of speech.’, Langauge and Speech, 6, pp. 172–187.

A. Madsen and F. Jensen (1999), ‘Lazy propagation: a junction tree inference algo-
rithm based on lazy evaluation’, Artificial Intelligence, 113, pp. 203–245.

D. M. Magerman (1994), Natural Language Parsing as Statistical Pattern Recogni-
tion, Ph.D. thesis, Stanford University.

D. M. Magerman (1995), ‘Statistical decision-tree models for parsing’, in Meeting
of the Association for Computational Linguistics, pp. 276–283, URL citeseer.
ist.psu.edu/magerman95statistical.html.

181

Bibliography

M. Mahajan, D. Beeferman, and X. Huang (1999), ‘Improved topic-dependent lan-
guage modeling using information retrieval techniques’, in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 1, pp. 541 – 544.

D. N. Maltz and R. A. Borker (1982), ‘A cultural approach to male-female mis-
communication’, in J. J. Gumperz (ed.), Language and social identity, Cambridge
University Press.

L. Mangu, E. Brill, and A. Stolcke (1999), ‘Finding consensus among words: Lattice-
based word error minimization’, in Proc. Eurospeech’99, pp. 495–498, Budapest,
URL citeseer.ist.psu.edu/284590.html.

C. D. Manning and H. Schütze (1999), Foundations of statistical natural language
processing, MIT Press.

K. Markov and S. Nakamura (2006), ‘Forward-backwards training of hybrid
HMM/BN acoustic models’, in Interspeech 2006, pp. 621–624.

W. Marslen-Wilson (1984), ‘Spoken word recognition: A tutorial review’, in
H. Bouma and D. Bouwhis (eds.), Attention and performance X: Control of lan-
guage processes, pp. 125–150, Lawrence Erlbaum Associates Ltd.

W. Marslen-Wilson (1987), ‘Functional parallelism in spoken word recognition’, Cog-
nition, 25, pp. 71–102.

W. Marslen-Wilson and A. Welsh (1978), ‘Processing interactions and lexical access
during word recognition in continuous speech’, Cognitive Psychology, 10, pp. 29–
63.

E. Mays, F. J. Damerau, and R. L. Mercer (1991), ‘Context based spelling correc-
tion’, Information Processing and Management, 27(5), pp. 517–522.

J. L. McClelland and J. L. Elman (1986), ‘Interactive processes in speech percep-
tion: The TRACE model’, in J. L. McClelland, D. E. Rumelhart, and the PDP
Research Group (eds.), Parallel Distributed Processing Volume 2: Psychological
and Biological Models, pp. 58–121, MIT Press, Cambridge, MA.

A. Miguel, E. Lleida, A. Juan, L. Buera, A. Ortega, and O. Saz (2006), ‘Local
transformation models for speech recognition’, in Interspeech 2006, pp. 1598–1601.

G. Miller, G. Heise, and W. Lichten (1951), ‘The intelligibility of speech as a function
of the text of the test materials.’, Journal of Experimental Psychology, 41, pp.
329–355.

R. K. Moore (2003), ‘A comparison of the data requirements of automatic speech
recognition systems and human listeners’, in EUROSPEECH-2003, pp. 2581–2584.

182

Bibliography

K. Murphy (2002), Dynamic Bayesian Networks: Representation, Inference and
Learning, Ph.D. thesis, University of California, Berkeley.

K. P. Murphy (2001), ‘The Bayes net toolbox for Matlab’, Computing Science and
Statistics, 33, pp. 331–350.

K. P. Murphy and Y. Weiss (2001), ‘The factored frontier algorithm for approximate
inference in dbns’, in UAI ’01: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, pp. 378–385, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

R. E. Neapolitan (1990), Probabilistic Reasoning in Expert Systems - Theory and
algorithms, John Wiley & Sons, Inc.

H. Ney, U. Essen, and R. Kneser (1994), ‘On structuring probabilistic dependencies
in stochastic language modelling’, Computer Speech and Language, 8, pp. 1–38.

L. Nguyen, X. Guo, R. Schwartz, and J. Makhoul (2002), ‘Japanese broadcast news
transcription’, in ICSLP-2002, pp. 1749–1752.

T. Niesler, E. Whittaker, and P. Woodland (1998), ‘Comparison of part-
of-speech and automatically derived category-based language models for
speech recognition’, in ICASSP ’98, Seattle, URL citeseer.ist.psu.edu/
niesler98comparison.html.

T. Niesler and P. Woodland (1996), ‘Combination of word-based and category-based
language models’, in Proc. ICSLP ’96, vol. 1, pp. 220–223, Philadelphia, PA, URL
citeseer.ist.psu.edu/niesler96combination.html.

N. Oostdijk, W. Goedertier, F. V. Eynde, L. Boves, J. Martens, M. Moortgat, and
H. Baayen (2002), ‘Experiences from the Spoken Dutch Corpus project’, in M. G.
R. C. P. S. Araujo (ed.), Proceedings of the third International Conference on
Language Resources and Evaluation, pp. 340–347.

L. Osterhout, M. D. Allen, J. Mclaughlin, and K. Inoue (2002), ‘Brain potentials
elicited by prose-embedded linguistic anomalies’, Memory & Cognition, 30(8), pp.
1304–1312.

S. Oviatt, G. Levow, M. MacEachern, and K. Kuhn (1996), ‘Modeling hyperarticu-
late speech during human-computer error resolution’, in Proc. ICSLP ’96, vol. 2,
pp. 801–804, Philadelphia, PA, URL citeseer.ist.psu.edu/432560.html.

J. Park and H. Ko (2006), ‘A new state-dependent phonetic tied-mixture model
with head-body-tail structured hmm for real-time continuous phoneme recognition
system’, in Interspeech 2006, pp. 1583–1586.

J. Pearl (1988), Probabilistic Reasoning in Intelligent Systems - Networks of Plausible
Inference, Morgan Kaufmann Publishers, Inc.

183

Bibliography

K. Pellom, B.; Hacioglu (2003), ‘Recent improvements in the cu sonic asr system for
noisy speech: the spine task’, in Proceedings of ICASSP ’03, vol. 1, pp. I–4–I–7
vol.1.

F. Pereira, M. D. Riley, and R. Sproat (1994), ‘Weighted rational transductions
and their applications to human language processing’, in ARPA Human Language
Technology Workshop, pp. 262–267, Morgan Kaufmann, Plainsboro, NJ.

C. van Petten, S. Coulson, S. Rubin, E. Plante, and M. Parks (1999), ‘Time course
of word identification and semantic integration in spoken language’, Journal of
Experimental Psychology: Learning, Memory and Cognition, 25, pp. 394–417.

A. Pfeffer (2001), ‘Sufficiency, separability and temporal probabilistic models’, in
UAI.

M. Phillips (2006), ‘Plenary talk: Creating speech interfaces for mass market appli-
cations’, in Ninth International Conference on Spoken Language Processing (In-
terspeech 2006).

S. D. Pietra, V. J. D. Pietra, and J. D. Lafferty (1997), ‘Inducing features
of random fields’, IEEE Transactions on Pattern Analysis and Machine In-
telligence, 19(4), pp. 380–393, URL citeseer.ist.psu.edu/article/
pietra97inducing.html.

R. Plamondon and S. Srihari (2000), ‘Online and off-line handwriting recognition:
a comprehensive survey’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22, pp. 63–84.

L. Rabiner and B. H. Juang (1993), Fundamentals of Speech Recognition, Prentice
Hall, Englewood Cliffs, N.J.

P. Ramesh and J. G. Wilpon (1992), ‘Modeling state durations in hidden Markov
models for automatic speech recognition’, Proceedings of icassp, 1, pp. 381–384.

A. Ratnaparkhi (1997), ‘A simple introduction to maximum entropy models for nat-
ural language processing’, Tech. rep., Institute for Research in Cognitive Science,
University of Pennsylvania, URL citeseer.ist.psu.edu/128751.html.

P. Rayson and R. Garside (2000), ‘Comparing corpora using frequency profiling’, in
proceedings of the workshop on Comparing Corpora, pp. 1–6, URL citeseer.
ist.psu.edu/rayson00comparing.html.

P. Rayson, G. Leech, and M. Hodges (1997), ‘Social differentiation in the use of
English vocabulary: some analyses of the conversational component of the British
National Corpus’, International Journal of Corpus Linguistics, 2(1), pp. 133 –
152.

184

Bibliography

R. Reddy (2006), ‘Plenary talk: Speech recognition: The unfinished agenda’,
in Ninth International Conference on Spoken Language Processing (Interspeech
2006).

A. Rietveld and V. van Heuven (1997), Algemene fonetiek, Coutinho.

B. Roark (2001), ‘Probabilistic top-down parsing and language modeling’, Com-
putational Linguistics, 27(2), pp. 249–276, URL citeseer.ist.psu.edu/
roark04probabilistic.html.

B. Roark and M. Johnson (1999), ‘Efficient probabilistic top-down and left-corner
parsing’, in Proceedings of the 37th annual meeting of the Association for Compu-
tational Linguistics on Computational Linguistics (ACL ’99), pp. 421–428, URL
http://acl.ldc.upenn.edu/P/P99/P99-1054.pdf.

R. Rosenfeld (1994), Adaptive Statistical Language Modeling: A Maximum Entropy
Approach, Ph.D. thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, URL citeseer.ist.psu.edu/rosenfeld94adaptive.
html.

R. Rosenfeld (2000), ‘Two decades of statistical language modeling: Where do we
go from here’, in Proceedings of the IEEE, vol. 88, pp. 1270–1278, URL http://
www.cs.cmu.edu/~roni/papers/survey-slm-IEEE-PROC-0004.pdf.

L. J. M. Rothkrantz, R. J. van Vark, A. Peters, and A. C. Andeweg (2000), ‘Dialog
control in the ALPARON system’, in Text Speech and Dialogue.

L. J. M. Rothkrantz, P. Wiggers, J. W. A. van Wees, and R. J. van Vark (2004),
‘Voice stress analysis’, in Lecture Notes in Artificial Intelligence 3206: Text, Speech
and Dialogue, pp. 449–456, Springer, Berlin-Heidelberg-New York.

M. J. Russell and R. K. Moore (1985), ‘Explicit modelling of state occupancy in
hidden Markov models for automatic speech recognition’, Proceedings of icassp,
10, pp. 5–8.

S. Russell and P. Norvig (1995), Artificial Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs, NJ.

S. Sakti, K. Markov, and S. Nakamura (2006), ‘The use of Bayesian network for
incorporating accent, gender and wide-context dependency information’, in Inter-
speech 2006, pp. 1563–1566.

C. Samuelsson and W. Reichl (1999), ‘A class-based language model for large vo-
cabulary speech recognition extracted from part-of-speech statistics’, in IEEE
ICASSP’99, pp. 537–540.

I. Schuurman, M. Schouppe, H. Hoekstra, and T. van der Wouden (2003), ‘CGN,
an annotated corpus of spoken Dutch’, in Proceedings of the 4th International
Workshop on Linguistically Interpreted Corpora (LINC-03), Budapest, Hungary.

185

Bibliography

S. Seneff (1992), ‘Tina: A natural language system for spoken language applications’,
Computational Linguistics, 18(1), pp. 61–86.

K. Seymore, S. Chen, and R. Rosenfeld (1998), ‘Nonlinear interpolation of topic
models for language model adaptation’, in ICSLP-98, vol. 6, pp. 2503–2506, Syd-
ney.

K. Seymore and R. Rosenfeld (1997), ‘Using story topics for language model
adaptation’, in Proc. Eurospeech ’97, pp. 1987–1990, Rhodes, Greece, URL
citeseer.ist.psu.edu/seymore97using.html.

G. R. Shafer and P. P. Shenoy (1990), ‘Probability propagation’, Annals of Mathe-
matics and Artificial Intelligence, 2, pp. 327–351.

C. E. Shannon (1951), ‘Prediction and entropy of printed English’, Bell System
Technical Journal, 30, pp. 50–64.

P. P. Shenoy and G. Shafer (1990), ‘Axioms for probability and belief-function prop-
agation’, in Readings in uncertain reasoning, pp. 575–610, Morgan Kaufmann,
San Francisco, CA, USA.

R. N. V. Sitaram and T. Sreenivas (1997), ‘Incorporating phonetic properties in hid-
den Markov models for speech recognition’, Acoustical Society of America Journal,
102, pp. 1149–1158.

M. Siu and M. Ostendorf (2000), ‘Variable n-grams and extensions for conversational
speech language modeling’, IEEE TRANSACTIONS ON SPEECH AND AUDIO
PROCESSING, 8(1), pp. 63–75.

R. Srinivasan (2002), Importance sampling - Applications in communications and
detection, Springer-Verlag, Berlin.

G. Stemmer, S. Steidl, E. Nöth, H. Nieman, and A. Batliner (2002), ‘Comparison and
combination of confidence measures’, in Proceedings of Text Speech and Dialogue
2002, pp. 181–188.

A. Stolcke (1995), ‘An efficient probabilistic context-free parsing algorithm that
computes prefix probabilities’, Computational Linguistics, 21(2), pp. 165–202.

A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Tay-
lor, R. Martin, C. V. Ess-Dykema, and M. Meteer (2000), ‘Dialogue act
modeling for automatic tagging and recognition of conversational speech’,
Computer Linguistics, 26(3), pp. 339–373, URL citeseer.ist.psu.edu/
stolcke00dialogue.html.

A. Stolcke, E. Shriberg, R. Bates, N. Coccaro, D. Jurafsky, R. Martin, M. Meteer,
K. Ries, P. Taylor, and C. Van Ess-Dykema (1998), ‘Dialog act modeling for
conversational speech’, in J. Chu-Carroll and N. Green (eds.), Applying Machine

186

Bibliography

Learning to Discourse Processing. Papers from the 1998 AAAI Spring Symposium.
Tech. rep. SS-98-01, pp. 98–105, AAAI Press, Stanford, CA.

J. Stroop (1990), ‘Towards the end of the standard language in the Netherlands’, in
J. Leuvensteijn van and J. Berns (eds.), Dialect and Standard Language in the En-
glish, Dutch, German, Norwegian Language Areas. Proceedings of he Colloquium
’Dialect and the Standard Language’, pp. 162–177, Amsterdam.

M. Tachibana, T. Nose, J. Yamagishi, and T. Kobayashi (2006), ‘A technique for
controlling voice quality of synthetic speech using multiple regression HSMM’, in
Interspeech 2006, pp. 2438–2441.

M. K. Tanenhaus, M. J. Spivey-Knowlton, K. Eberhard, and J. Sedivy (1995), ‘In-
tegration of visual and linguistic information in spoken language comprehension’,
Science, 268(5217), pp. 1632 – 1634.

G. Tur, J. Wright, A. Gorin, G. Riccardi, and D. Hakkani-Tür (2002), ‘Improving
spoken language understanding using word confusion networks’, in Proceedings of
ICSLP 2002.

J. P. Ueberla (1995), ‘More efficient clustering of n-grams for statistical language
modeling’, in EUROSPEECH-1995, pp. 1257–1260.

D. H. V. Uytsel, F. V. Aelten, and D. V. Compernolle (2001), ‘A structured language
model based on context-sensitive probabilistic left-corner parsing’, in NAACL ’01:
Second meeting of the North American Chapter of the Association for Computa-
tional Linguistics on Language technologies 2001, pp. 1–8, Association for Com-
putational Linguistics, Morristown, NJ, USA.

R. van Vark, J. de Vreught, and L. Rothkrantz (1997), ‘Analysis of the OVR log
files progress report’, Alparon report 97-07, Delft University of Technology.

J. Veronis (2004), ‘Hyperlex: lexical cartography for information re-
trieval’, Computer Speech & Language, 18(3), pp. 223–252, URL http:
//www.sciencedirect.com/science/article/B6WCW-4CKNCXH-1/2/
6f989b44a9c26c68c36bf2e67957bea1.

T. Virtanen (2006), ‘Speech recognition using factorial hidden Markov models for
separation in the feature space’, in Interspeech 2006, pp. 89–92.

R. A. Wagner and M. J. Fischer (1974), ‘The string-to-string correction problem’,
Journal of the Association for Computing Machinery, 21, pp. 168–173.

W. Wahlster, W. Reithinger, and A. Blocher (2001), ‘Smartkom: Multimodal com-
munication with a life-like character’, in Proceedings of Eurospeech 2001, Aalborg,
Denmark.

X. Wang (1997), Duration modelling in hmm-based speech recognition, Ph.D. thesis,
University of Amsterdam.

187

Bibliography

R. M. Warren (1970), ‘Perceptual restoration of missing speech sounds’, Science,
167, pp. 392–393.

R. M. Warren and R. P. Warren (1970), ‘Auditory illusions and confusions’, Scientific
American, 223, pp. 30–36.

P. Wiggers (2001), Hidden Markov models for automatic speech recognition and their
multimodal applications, Master’s thesis, Delft University of Technology, Delft.

P. Wiggers and L. J. M. Rothkrantz (2002), ‘Integration of speech recognition
and automatic lip-reading’, in Lecture Notes in Artificial Intelligence 2448, Text,
Speech and Dialogues, pp. 205–212, Springer, Berlin-Heidelberg-New York.

P. Wiggers and L. J. M. Rothkrantz (2003a), ‘Improving speech recognition by
utilizing domain knowledge and confidence measures’, in Lecture Notes in Artificial
Intelligence 2807: Text, Speech and Dialogues 2003.

P. Wiggers and L. J. M. Rothkrantz (2003b), ‘Using confidence measures and do-
main knowledge to improve speech recogntion’, in Proceedings of Eurospeech 2003,
Geneva, Switzerland.

P. Wiggers and L. J. M. Rothkrantz (2006), ‘Dynamic Bayesian networks for lan-
guage modeling’, in Lecture Notes in Artificial Intelligence 4188: Text, Speech and
Dialogue 2006.

P. Wiggers and L. J. M. Rothkrantz (2007a), ‘Exploratory analysis of word use and
sentence length in the Spoken Dutch Corpus’, in V. Matousek and P. Mautner
(eds.), Lecture notes in Artificial Intelligence 4629: Text, Speech and Dialogue
2007.

P. Wiggers and L. J. M. Rothkrantz (2007b), ‘Exploring the influence of speaker
characteristics on word use in a corpus of spoken language using a data mining ap-
proach’, in XII International Conference Speech and Computer (SPECOM’2007).

P. Wiggers, J. C. Wojdeł, and L. J. M. Rothkrantz (2002a), ‘Development of a
speech recognizer for the Dutch language’, in Proceedings of 7th annual scientific
conference on web technology, new media, communications and telematics theory,
methods, tools and applications (euromedia), pp. 133–138.

P. Wiggers, J. C. Wojdeł, and L. J. M. Rothkrantz (2002b), ‘Medium vocabulary
audio-visual speech recognition’, in the International Conference on Spoken Lan-
guage Processing (ICSLP) 2002, Denver, USA.

A. Wojdeł (2005), Knowledge Driven Facial Modelling, Ph.D. thesis, Delft University
of Technology.

J. C. Wojdeł (2003), Automatic Lipreading in the Dutch Language, Ph.D. thesis,
Delft University of Technology, Delft.

188

Bibliography

J. C. Wojdeł and L. J. M. Rothkrantz (2001), ‘Robust video processing for lipreading
applications’, in EUROMEDIA’2001, pp. 195–199, Valencia, Spain.

J. C. Wojdeł, P. Wiggers, and L. J. M. Rothkrantz (2002), ‘An audio-visual cor-
pus for multimodal speech recognition in Dutch language’, in the International
Conference on Spoken Language Processing (ICSLP) 2002.

P. C. Woodland, J. Odell, and S. J. Young (1994), ‘Large vocabulary continuous
speech recognition using HTK’, in Proceedings of ICASSP 1994, pp. 125–128.

S. Young (1995), ‘Large vocabulary continuous speech recognition: A review’, in
Proceedings of the IEEE Workshop on Automatic Speech Recognition and Under-
standing, pp. 3–28, Snowbird, Utah, URL citeseer.ist.psu.edu/article/
young96large.html.

H. Zen, Y. Nankaku, K. Tokuda, and T. Kitamura (2006), ‘Speaker adaptation of
trajectory HMMs using feature-space MLLR’, in Interspeech 2006, pp. 1141–1144.

N. L. Zhang and D. Poole (1996), ‘Exploiting causal independence in Bayesian net-
work inference’, Journal of Artificial Intelligence Research, 5, pp. 301–328, URL
citeseer.ist.psu.edu/article/zhang96exploiting.html.

R. Zhang and A. I. Rudnicky (2002), ‘Improve latent semantic analysis based lan-
guage model by integrating multiple level knowledge’, in Proc. of ICSLP 2002,
Denver, Colorado, pp. 893–896.

G. Zweig (1998), Speech Recognition with Dynamic Bayesian Networks, Ph.D. thesis,
Computer Science Division, University of California at Berkeley.

G. Zweig and M. Padmanabhan (2000), ‘Exact alpha-beta computation in loga-
rithmic space with application to map word graph construction’, in Proceedings
of ICSLP’00, Beijing, China, URL citeseer.ist.psu.edu/zweig00exact.
html.

189

Curriculum Vitae

Pascal Wiggers was born on July 29, 1977 in Den Helder, The Netherlands.
In 1991 he moved to Braunschweig, Germany where he attended the Martino-
Katharineum, the same high school once attended by Carl Friedrich Gauss. In
1996, he graduated at the Jan Arentsz College in Alkmaar, The Netherlands. In the
same year, he registered as a student of the Faculty of Technical Mathematics and
Informatics of Delft University of technology.

In 2001 he finished his master’s thesis work ‘Hidden Markov models for automatic
speech recognition and their multimodal applications’ under supervision of Leon
Rothkrantz. He graduated with honours in August 2001 and was awarded as his
year’s best graduate in Computer Science in 2002.

From September 2001 to April 2006 he worked as a Ph.D student in the Man-
Machine Interaction Group of the Department of Electrical Engineering, Mathemat-
ics and Computer Science of Delft University of Technology. Since August 2006 he
has been working as a Lecturer in the same group.

191

Samenvatting

Het modelleren van context voor automatisch spraakherkenning,
door Pascal Wiggers.

Het proefschrift begint met een overzicht van mogelijke toepassingen van automa-
tische spraakherkenning. De stand van de techniek en het onderzoek wordt be-
schreven, waarbij wordt aangegeven dat, hoewel automatische spraakherkenning een
enorme ontwikkeling heeft doorgemaakt, de meeste toepassingen nog niet haalbaar
zijn. Vervolgens wordt vanuit een drietal invalshoeken onderzocht hoe automati-
sche spraakherkenning verbeterd kan worden. Ten eerste worden fouten, gemaakt
door een herkenner, onder de loep genomen. Vervolgens wordt expliciet gemaakt
wat spraakherkenning moeilijk maakt en als derde wordt gekeken naar menselij-
ke spraakherkenning. Uit deze analyse volgt de conclusie dat spraakherkenners te
kampen hebben met ambiguïteit veroorzaakt door gebrek aan informatie. De in
de praktijk gekozen oplossing is veelal het domein waarvoor de herkenner gebruikt
wordt zodanig te beperken dat deze ambiguïteiten grotendeels verdwijnen. In dit
proefschrift wordt een alternatieve oplossing voorgesteld, namelijk context expliciet
mee te nemen in spraakherkenningsmodellen. Dit heeft het voordeel dat een systeem
zich kan aanpassen aan veranderende gebruiksomstandigheden zoals de stem van een
nieuwe spreker, een overgang van gespreksonderwerp, of achtergrondgeluiden.

De gedachte dat spraakherkenning verbeterd kan worden door toevoeging van
kennis is niet nieuw. Toch beperkt onderzoek in deze richting zich vaak tot kleine
uitbreidingen op het standaardmodel. De oorzaak lijkt te liggen in de beperkingen
van de huidige wiskundige modellen voor spraakherkenning. Deze zijn ongeschikt om
context mee te modelleren. Aan het eind van hoofdstuk 1 wordt derhalve gesteld dat
om contextgevoelige modellen te realiseren een krachtiger modelleertechniek nodig
is.

De huidige aanpak van spraakherkenning, gebaseerd op hidden Markov modellen
wordt in hoofdstukken 2 en 3 besproken. Hoofdstuk 2 behandeld akoestische model-
len die onderdeel uitmaken van een spraakherkenner, hoofdstuk 3 taalmodellen die
aangeven hoe waarschijnlijk het is dat een herkende reeks woorden een zin vormt in
de te herkennen taal. Variaties op de standaardmodellen en eerdere pogingen om
meer kennis in deze modellen mee te nemen worden behandeld.

In hoofdstuk 4 wordt het begrip context nader gedefinieerd als kennis van de

193

Hoofdstuk 11. Samenvatting

gebruiker, kennis van de conversatie en kennis van de wereld. Voor ieder van deze
categorieën wordt vervolgens mede aan hand van (socio)linguïstische en psychologi-
sche theorieën onderzocht hoe deze van belang kunnen zijn voor spraakherkenning.
Verder wordt een kort overzicht van taalkundige begrippen en constructies gegeven
die van belang kunnen zijn om contextinformatie te koppelen aan de woorden en
klanken die herkend worden.

Hoofdstukken 5 en 6 beschrijven empirisch onderzoek naar de in hoofdstuk 4 op
theoretische basis bepaalde invloeden van context op spraak en taal. Hierbij is de
vraag niet alleen of dergelijke invloeden gevonden kunnen worden, maar vooral ook
of deze gevonden kunnen worden in het soort gegevens dat gebruikt wordt bij de
ontwikkeling van spraakherkenners en of deze kennis nuttig is voor spraakherkenning.

Hoofdstuk 5 presenteert de resultaten van een statistische analyse van de invloed
van het conversatietype en sprekerskenmerken op woordgebruik en zinslengte in een
corpus van ruim 8 miljoen gesproken woorden. Het blijkt dat de verdeling van zins-
lengten sterk verschilt voor verschillende conversatietypen zoals spontane spraak,
debatten, nieuwsberichten en voorgelezen teksten. Opvallender is dat er een sterk
verband is tussen frequentie van gebruik van lidwoorden en persoonlijke voornaame-
woorden en het conversatietype. Het woord ‘ik’ is bijvoorbeeld prominent aanwezig
in spontane spraak, terwijl ‘je’, ‘jij’ en ‘u’ veel frequenter zijn in debatten, discussies
en lessen en de derde persoon vooral gebruikt wordt in verhalen. De analyse toont
eveneens aan dat woordgebruik verschilt voor sprekers van verschillende leeftijden,
van verschillend geslacht en voor sprekers met verschillende opleidingsniveaus.

In hoofdstuk 6 wordt een tweetal casestudies besproken die in het kader van dit
onderzoek zijn uitgevoerd om te bepalen of, wanneer en hoe context informatie nuttig
is voor spraakherkenning. De eerste casestudy betreft toevoegen van informatie uit
een automatische liplezer aan een spraakherkenner. Dit blijkt in omgevingen met
veel achtergrondruis de herkenning te verbeteren. De tweede casestudy beschrijft
een dialoogsysteem voor treinreisinformatie dat gebruik maakt van reisfrequenties
om de verwachting van de stationsnamen die een gebruiker noemt bij te stellen. Voor
een spraakherkenner is bijvoorbeeld het onderscheid tussen de namen ‘Middelburg’
en ‘Tilburg’ niet altijd duidelijk. Analyse van reisfrequenties toont echter aan dat
bijvoorbeeld veel vaker van Breda naar Tilburg dan naar Middelburg gereisd wordt.
Als het vertrekstation Breda herkend wordt, kan dit dus helpen bij het bepalen van
het aankomststation. Deze aanpak blijkt inderdaad het herkenningsresultaat ten
goede te komen, met name als deze informatie al vroegtijdig in het herkenningsproces
gebruikt wordt.

De casestudies en de data analyse geven aan dat spraakherkenning baat kan heb-
ben bij context informatie. Integreren van extra informatie in spraakherkennings-
modellen is echter moeilijk. De voor de casestudies gevolgde aanpak om modellen en
bijbehorende algoritmen te ontwikkelen om specifieke informatie te kunnen toevoe-
gen is algemene praktijk in spraakherkenningsonderzoek. Deze verbeterde modellen
leiden vaak tot kleine verbeteringen in de herkenning. Men mag aannemen dat veel
van deze verbeteringen elkaar aanvullen en gezamenlijk een aanzienlijke herkennings-
verbetering kunnen realiseren. Helaas zijn de gespecialiseerde, complexe modellen

194

moeilijk te combineren, zodat deze stap in de praktijk uitblijft.
In hoofdstuk 7 wordt de noodzaak van een krachtiger modelleerparadigma bepleit

en worden aan hand van de bevindingen uit voorgaande hoofdstukken eisen aan dit
paradigma opgesteld. Verschillende paradigmas, die hun bruikbaarheid in automa-
tische spraak- en taalverwerking hebben bewezen, worden aan deze eisen getoetst.
De keuze valt op dynamische Bayesiaanse netwerken, een techniek die kan worden
gezien als een generalisatie van de hidden Markov modellen en n-gram modellen die
gebruikelijk zijn in spraakherkenning.

In hoofdstuk 8 wordt getoond hoe bestaande modellen voor spraakherkenning in
termen van dynamische Bayesiaanse netwerken kunnen worden geformuleerd en ver-
volgens zonder ontwikkeling van nieuwe algoritmen kunnen worden gecombineerd.
Daarnaast worden een aantal nieuwe modellen, waarin context informatie wordt mee-
genomen, opgesteld. In het bijzonder wordt in hoofdstuk 10 een nieuw taalmodel
gedefinieerd dat het onderwerp van gesprek in de berekening van de waarschijnlijk-
heid van zinshypothesen meeneemt. In dit model wordt aan hand van de woorden
in een gesprek de kans op het onderwerp bepaald. Het onderwerp maakt vervolgens
gerelateerde woorden waarschijnlijker en ongerelateerde woorden onwaarschijnlijker.
Deze cyclus van bijstellen van de waarschijnlijkheden van onderwerpen aan hand van
al verwerkte woorden en het bijstellen van de waarschijnlijkheden van woorden aan
hand van het onderwerp herhaalt zich voor elk nieuw woord. Het gevolg hiervan is
dat het model, en daarmee een spraakherkenner, de voorkeur geeft aan zinshypothe-
sen die inhoudelijke samenhang vertonen. Experimenten tonen aan dat dit model
beter werkt dan standaard taalmodellen.

Spraakherkenning is een rekenintensief proces. Een groot aantal mogelijke klank-
en zinshypothesen wordt door de computer vergeleken. Hoofdstuk 9 bespreekt al-
goritmes en datastructuren die spraakherkenning met dynamische Bayesiaanse net-
werken mogelijk maken. Deze technieken combineren ideeën uit de literatuur over
spraakherkenning, hidden Markov modellen en Bayesiaanse netwerken. Nieuwe bij-
dragen in dit proefschrift zijn: een efficient algoritme voor het rekenen met kansta-
bellen, het gebruik van lazy evaluation voor kanstabellen onafhankelijk van de infe-
rentiemethode, algoritmen voor het rekenen met boomvormige kanstabellen en een
uitbreiding van dynamische Bayesiaanse netwerken die k-de orde Markov relaties
toestaat en het mogelijk maakt de netwerkstructuur te laten variëren voor verschil-
lende tijdstappen.

195

