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Abstract

For a number of applications like acoustic echo cancellation, adaptive filters are
required to identify very long impulse responses. To reduce the computational
cost in implementations, adaptive filtering in subband is known to be beneficial.
Based on a review of popular fullband adaptive filtering algorithms and vari-
ous subband approaches, this thesis investigates the implementation, design, and
limitations of oversampled subband adaptive filter systems based on modulated
complex and real valued filter banks.

The main aim is to achieve a computationally efficient implementation for
adaptive filter systems, for which fast methods of performing both the subband
decomposition and the subband processing are researched. Therefore, a highly
efficient polyphase implementation of a complex valued modulated generalized
DFT (GDFT) filter bank with a judicious selection of properties for non-integer
oversampling ratios is introduced. By modification, a real valued single sideband
modulated filter bank is derived. Non-integer oversampling ratios are particularly
important when addressing the efficiency of the subband processing. Analysis is
presented to decide in which cases it is more advantageous to perform real or
complex valued subband processing.

Additionally, methods to adaptively adjust the filter lengths in subband adaptive
filter (SAF) systems are discussed.

Convergence limits for SAFs and the accuracy of the achievable equivalent
fullband model based on aliasing and other distortions introduced by the em-
ployed filter banks are explicitly derived. Both an approximation of the minimum
mean square error and the model accuracy can be directly linked to criteria in

the design of the prototype filter for the filter bank. Together with an iterative



least-squares design algorithm, it is therefore possible to construct filter banks
for SAF applications with pre-defined performance limits.

Simulation results are presented which demonstrate the validity and properties
of the discussed SAF methods and their advantage over fullband and critically
sampled SAF systems.
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Chapter 1

Introduction

1.1 Context of Work

Despite the constant growth in processing power, many digital signal processing
algorithms are still too complex to be implemented in real time. In the field of
adaptive filtering the technological advances have recently enabled long-concepted
applications such as active noise control to be realized [37]. However almost con-
tinually new application ideas emerge that are yet more demanding in complexity.
Thus, in parallel with the increasing hardware optimization to realize faster and
more powerful DSPs, a second track of optimization is dedicated to reduce the
computational complexity of implemented DSP algorithms.

A key example is acoustic echo cancellation (AEC) for hands-free telephony
and teleconferencing as shown in Fig. 1.1, which is often claimed to be one of
the currently most computationally complex DSP applications [61, 62, 63]. In a
hands-free telephone environment, the signal z[n] of the far end speaker is out-
put to a loudspeaker. Over a free standing microphone, the near end speaker
communicates back to the far end. Unfortunately, the microphone signal d[n] not
only consists of the near end speaker’s speech, but has superimposed on it the
feedback of the far end speaker signal z[n] filtered by the impulse response of a
system composed of loudspeaker, acoustic room transfer function, and the mi-
crophone (LEMS — loudspeaker—enclosure-microphone system). This feedback

is perceived by the far end speaker as an echo of his/her own voice, which can
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room
from
far-end X[n] 4
speaker
| _room
— | model
to yln]
far-end 7@ -
speaker e[n] d[n]
near-end
speaker

Figure 1.1: Acoustic echo cancellation using an adaptive filter to identify a replica
of the room impulse response.

create considerable disturbance and, at worst, make communication impossible.

The acoustic echo cancellation approach is to incorporate a model of the
LEMS into the communication system, which filters the far end speaker signal
x[n] to produce a close replica y[n] of the echo contained in the near end signal
d[n]. Thus, the echo can be subtracted out to yield a signal e[n] containing the
near end speaker only. Since the room acoustics are likely to be time-varying due
to the changing presence, absence and mobility of conferees, the room model has
to be adjusted on-line to track changes; hence adaptive solutions are required.
Acoustic echo cancellation by adaptive means may be interpreted as the hybrid
form of two fundamental adaptive filtering set-ups, adaptive noise cancellation

and system identification.

Adaptive System Identification. For the adaptive identification of some un-
known system, a digital filter with variable coefficients is set up in parallel to the
system to be identified, as seen in Fig. 1.2. The adaptive filter will then try to

produce an output signal y[n] such that when subtracted from the desired signal
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| unknown
system
d[n]
f
adaptfive y[n]:
X[n] fi’/(;/r - e[n]

Figure 1.2: Adaptive filter in system identification set-up.

- z[n]
,,,,,,,,,,,,,, v
——————— s[n] - --+ dinJ
,,,,,,,,,,,,,, X’[n] !
| ‘ /
L 77777777777777777777777777777 % adapfive L[E] .
x[n] . X[n] fi‘/ir = e[n]

“‘history of signals’’

Figure 1.3: Adaptive filter in adaptive noise cancellation set-up.

d[n], the resulting error signal e[n] will be minimized in an appropriate sense. If
the error tends towards zero, the unknown system and the adaptive filter have
the same input/output behaviour. Thus, if the exciting signal xz[n] has been

broadband, a complete parameterization of the unknown system is achieved.

Adaptive Noise Cancellation. The application of adaptive filtering to noise
cancellation [174] is shown in Fig. 1.3. The desired signal d[n] consists of a signal
of interest z[n], which is corrupted by some unwanted noise (in case of AEC the
echo). If a noise probe z[n] is available, which is correlated with the corrupting
noise z'[n], an adaptive filter can be employed to suppress the corrupting noise
as best as possible, such that the error signal e[n| contains the signal of interest
only. Considering the history of the signals z[n] and d[n], the similarity to a
system identification set-up as given in Fig. 1.2 becomes apparent: the correlation
between the noise probe z[n] and the signal d[n] can be described by a filter s[n],

which the adaptive filter will try to identify, if the input signal z[n] is broadband.
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In case of system identification, the signal z[n] is termed observation noise.

The LEMS is to be identified over the spectral range of the human voice,
and has therefore some flavour of both system identification and active noise
cancellation. While the coloured speech input is a problem on its own since it
will considerably slow the convergence speed of many adaptive algorithms, the
main problem stems from the algorithmic complexity required for AEC, as the
length of the room impulse response in the LEMS usually spans several hundred
milliseconds. If the sampling rate is set to 16kHz, adaptive finite impulse response
filters of several thousand coefficients length would be required. Similar problems
arise when the classical system identification set-up is attempted to determine
room impulse responses and parameterize acoustics [46, 124].

One method for reducing the complexity of adaptive systems is given by the
subband approach, whereby the signals involved are split into a number of fre-
quency bands, which can be operated at a lower sampling rate. As shown for
the system identification set-up in Fig. 1.4, adaptive filtering is then performed
in the subbands at the decimated sampling rate and with shorter filter lengths,
which can yield a considerable reduction in computational complexity. Although
the original idea introduced by Kellermann [84, 85] and Gilloire [52] is now more
than a decade old, the research effort in this particular area has been probably
higher than ever in the last years, driven by the promise of the high commercial
relevance of acoustic echo cancellers.

To perform subband adaptive filtering (SAF) as shown in Fig. 1.4 a wide vari-
ety of approaches exist, including critically decimated and oversampled systems,
and ranging from perfectly reconstructing systems to some that introduce spec-
tral loss or even distortion. However, the case of critical decimation, where the
decimation ratio equals the number of uniform subbands, requires either cross-
terms at least between adjacent frequency bands [54], which compensates the
information loss due to aliasing distortion, or gap filter banks [176, 148], which
introduces spectral loss that may not be acceptable. Oversampled filter banks
can resolve this problem by introducing spectral redundancy, whereby oversam-
pling in this context means that the subband signals are decimated by a factor

smaller than the critical one. While complex analytic subband signals can be
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Figure 1.4: Adaptive filtering in subbands.

bank signal

decimated at any integer factor above the critical one, for the real valued case
bandpass signals are problematic to decimate, and oversampling requires either
non-uniform filter banks [71, 69] or single side band (SSB) modulation [27, 167].

1.2 Original Contribution

The research presented in this thesis has been mostly dedicated to a particular
type of oversampled complex valued filter bank, where the filters are derived by
a generalized DFT (GDFT) transform from a real valued prototype filter. The
efficiency when incorporated in an SAF system is given by two facts.

Firstly, despite the requirement of complex arithmetic, the complex subband
approach will be shown to be surprisingly efficient compared to the processing in
real valued oversampled subbands. This is particularly true if the computational
order of the algorithm to be implemented in subbands is greater than linear in the
length of the adaptive filter. It will also outperform critically sampled systems,
if the oversampling ratio is close to one.

Secondly, we will introduce a highly efficient way of implementing our GDFT
modulated filter bank based on a polyphase factorization for non-integer over-
sampling ratios, such that the filter bank can be operated close at the critical

rate. This will prove a common “subband” misconception wrong, which has led
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many researchers to use either less efficient integer oversampling ratios for SAF
systems, or to use other, less efficient implementations for the filter banks.

Another key point in this thesis is the analysis of final convergence limits for
subband adaptive filters based on aliasing and other distortions introduced by the
employed filter banks. We will derive explicit limits, and approximations thereof,
which can be directly linked to the prototype filter on which the modulated
filter banks are based. Together with an iterative least-squares design algorithm,
it will be possible to construct filter banks for SAF systems with pre-defined
performance limits.

The following ideas, derivations, and experiments summarise original contri-

butions of this work:

e a highly efficient implementation of GDFT banks based on a polyphase
representation, for K channel banks with arbitrary integer decimation ratio

(i.e. including non-integer oversampling);

e a real-valued single sideband modulated filter bank based on a modified

GDFT filter bank in polyphase implementation;

e a discussion of the computational complexity for complex and real valued

subband adaptive filter (or general subband processing) implementations;

e a description of aliasing in the subbands and its inhibition of adaptation; a

description of this phenomenon as information leakage in the time domain;

e the derivation of limits for the minimum error PSD, and the minimum mean

square error (MMSE) of an SAF system based on aliasing in the subbands;

e a derivation of the limit for the accuracy of the fullband equivalent model
identified by the SAF system;

e approximations linking the performance limitations to design specifications

of the prototype filter of a modulated filter bank;

a fast prototype filter design using an iterated least squares algorithm;
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e a discussion of adaptive tap-assignment in the light of global error mini-

mization;

e a simplified robust adaptation scheme for variable tap-profiles.

1.3 Overview

The following chapters of this thesis are organized as follows.

Chapter 2 introduces adaptive filters, with particular respect to their compu-
tational complexity. Where necessary and relevant for the subband approach,

other properties are discussed.

Chapter 3 introduces background theory for subband adaptive filtering. Start-
ing from basic operations and components of multirate systems, the justifications
for a sampling alteration are discussed. This leads to filter banks, for which anal-
ysis methods are presented. Using these methods, both efficient implementations
of the filter banks and the further analysis of subband adaptive systems are en-
abled. Based on the latter, different strategies for subband adaptive structures are
reviewed and evaluated. This includes critically sampled systems, which either
require additional cross-terms between bands in the structure shown in Fig. 1.4,
or spectrally lossy filter banks, and oversampled approaches using either complex

or real valued filter banks.

Chapter 4 concentrates on the description, analysis, and design of complex
valued oversampled GDFT modulated filter banks. Based on the prototype and
the parameters of the GDFT transform, properties of the filter bank such as
band-position and linear phase are discussed. By introducing a polyphase repre-
sentation of the filter bank, conditions for perfect reconstruction can be drawn.
Also, interesting properties can be derived from the connection of complex mod-
ulated filter banks to Gabor frames. Further, the polyphase representation is
factorized into a filter network consisting only of real valued polyphase compo-

nents of the prototype filter, and a rotation by a GDFT transform. The latter can
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be further factorized such that the transform matrix can be mainly implemented
using a standard FFT. This fast efficient implementation can also be used for
real valued subband processing by modification of the subband signals such that
effectively a single sideband modulated filter bank is performed.

This motivates to investigate which — real or complex valued subband pro-
cessing — can be considered more efficient when implementing a specific subband
adaptive filter; this can be answered by separately evaluating the costs for the
filter bank operations and for the algorithms operating in the subbands.

Finally, two design methods for GDFT and SSB modified GDFT filter banks
are introduced. The first is an iterated halfband method producing power-of-two
channel filter banks from tabled halfband filters; the second yields a prototype
filter using a least squares design to achieve both near perfect reconstruction and

high stopband attenuation.

Chapter 5 evaluates the performance of subband adaptive filters. This includes
a review of general aspects of performance, such as convergence speed and final
error behaviour. First, we identify aliasing in the subbands as an inhibition to
adaptation. Based on a source model of the subband signals, it is possible to
calculate the power spectral density of the final error signal due to aliasing. An
approximation for the MMSE is derived, which is solely based on the stopband
properties of the prototype filter. Second, we show how the fullband model can
be reconstructed from the final adapted weights of the SAFs. This then allows
us to establish a lower model accuracy of the equivalent fullband system as given
by the distortion function of the employed filter banks.

The experimentational part of this chapter demonstrates the influence of the
oversampling ratio and the number of subbands on the convergence speed of an
SAF system using the NLMS algorithm, for both white and coloured input noise,
and compares a number of different SAF structures, amongst themselves and
to a fullband implementation. Another part of experiments presents simulation
examples to validate our prediction of final error PSD, final MMSE and the model

accuracy of the reconstructed fullband equivalent model of the SAF system.
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Chapter 6 discusses and reviews the idea of a variable tap-profile for the SAF
system, whereby each subband may have a different number of filter coefficients in
its adaptive filter. We motivate this approach by evaluating the potential benefits
due to either decreased system complexity, or increased length of the equivalent
reconstructed fullband model of the SAF system. This also yields comparisons
for the computational efficiency of different subband structures, namely the over-
sampled complex and real valued subband approaches compared to a critically
decimated SAF structure with cross-terms.

Finally, based on an adaptive algorithm controlling the distribution of com-
putational power over different subbands, two different performance criteria are
derived using a global error minimization approach. Simulations are presented to
give an idea of the benefits offered by variable tap-profile algorithms, and some

insight into their convergence behaviour.

Chapter 7 summarizes the main results of this thesis, and puts forward ideas

for continued and future investigation.



Chapter 2
Adaptive Filtering Algorithms

The filter problem, characterized in Sec. 2.1, is under stationary conditions opti-
mally addressed in the linear least squares sense by the open loop Wiener filter
solution described in Sec. 2.2. Closed loop adaptive filters which converge to-
wards this optimal solution become attractive due to their reduced complexity
and tracking performance where non-stationary situations arise. Two different
types of adaptive filters, based on mean squared and least squares error min-
imization, are discussed in Secs. 2.3 and 2.4, respectively. Sec. 2.5 establishes
links and similarities between both algorithmic approaches. Finally, Sec. 2.6 re-
views methods to implement adaptive filters with reduced computational cost, of
which subband implementations of adaptive filters will be further researched in

Chap. 3. For generality, all algorithms will be presented in complex notation.

2.1 General Filtering Problem

The general application of filters within this thesis can be described as modelling
the relation (or more precisely correlation) between two signals: an input signal
x[n] to the filter, and a desired signal d[n] to which the filter output is compared.
This situation is illustrated in Fig. 2.1. The task is to minimize the error sig-
nal e[n] in some sense by selecting appropriate filter parameters. A number of
methods will be discussed in the following sections.

In terms of possible filters, the scope within this thesis is restricted to linear

10



d[n]

x[n] yln]
——»  w[n]

— e[n]

Figure 2.1: General filter problem with input z[n], filter impulse response w[n],
output signal y[n], desired signal d[n], and residual error signal e[n].

filters with finite impulse response (FIR). Particularly in the context of AEC,
acoustics are perfectly linear; non-linear distortions usually only arise from low-
cost audio equipment [74], and often can be compensated by some non-linear
structures in series with the linear processing [138]. The restriction to FIR filters
has two reasons. Firstly, infinite impulse response (ITR) filters include a feedback
which can cause some stability problems when adaptive solutions are sought.
Secondly, many researchers suggest that the nature of acoustic impulse responses
favours FIR filter over IIR [59, 60, 118, 64]. More generally, if the system being
modelled is not recursive then there is no advantage in using IIR.
For the derivations, we are interested in the filter output, calculated by a
discrete convolution denoted as ",
La—1
y[n] = wln] x x[n] = wlv] - v[n—v] = whx, (2.1)
v=0
between the coefficients or weights w[n] of a filter of length L, and the input
signal x[n]. This convolution can be conveniently expressed in vector notation,

whereby we define a coefficient vector w and a state vector x,,

w o= [wg, wi, ... wza_l]T (2.2)

x, = [z[n], z[n—1], ... zln—L,—1]]". (2.3)

Note, that for later convenience the coefficient vector w contains complex conju-

gate coefficients w;. Finally, the error is given by

e[n] = d[n] — y[n] = d[n] — wix, . (2.4)
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2.2 Optimum Wiener Filter

This section presents a mean squared optimum filter, given by the Wiener-Hopf
solution, for the general filtering problem introduced in Sec. 2.1. The derivation is

performed by optimization of a quadratic error cost function derived in Sec. 2.2.1.

2.2.1 Mean Squared Error Formulation

Minimization of the mean squared error (MSE) is common practice and widely
used for optimization problems due to the relative mathematical ease with which
the derivation can be performed. However, the MSE may be unsuitable for
stochastic signals with heavy-tail distributions [108] where norms other than [,
are more applicable. Also, perceptual error criteria may differ for some audio
[15] or video applications [55] from the MSE. However, for most applications
Gaussianity of the signals may generally be assumed.

The mean squared error (MSE) criterion &ysg is given by the statistical ex-

pectation of the squared error signal,
Evuse = E{elnle’[n]} = 5{(dn —wix,)(d} — xfw)}
= &{d.di} — E{wx,d;} — E{dxTw} + E{wx,x[w}
= ou— W'E{x L} — WwE{d xS} + W E{xnx) W
= 04 —wip—wlp"+wlRw,
where substitutions with the cross-correlation vector p and the auto-correlation

matrix (covariance matrix for zero-mean processes) R have taken place. The

cross-correlation vector p is thus defined by

p = E{xudi} = [E{mad}, E{zand}}, .. E{zarnd}) (29)
= [roal0), Toal=1], ... Toal~Lat1]]" (2.10)

where 7,4[7] is the cross-correlation function between z[n] and d[n] [57, 149],
realT] = E{x[n + 7]|d*[n]} = ri.[—7], (2.11)

where both z[n] and d[n| are assumed wide-sense stationary (wss) and indepen-

dent. The “classic” assumption of statistical independence of w and x,, was also
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assumed. The entries of the auto-correlation matrix R € Cke*La
([ Ty, Ty q Tnly_r, 41 1
Tp_1T5 Tp_1T)_ Tp1T)_
R = S{anf}zg{ ! et Lot
|| #n-Lat1¥n Tn-Lot1Tp1 Tn—Lot1Tp—Lot1 | |
[ (0] Faa[—1] roal—La +1] |
_ 7“;,1,[—1] TM[O] T:L‘:L‘[_La + 2] (2 12)
T;x[_La + 1] T;x[_La + 2] Tm[o]

are samples of the auto-correlation function r,,[7] defined analogously to (2.11).
R is Toplitz, i.e. has a band structure with identical elements on all diagonals
and is Hermitian, i.e. R¥ = R. Furthermore, R is positive semi-definite and has
real valued eigenvalues, by sole virtue of these structural properties [72, 58].
The cost function &ysy is apparently quadratic in the filter coefficients, and
due to the positive semi-definiteness of R, (2.8) has a minimum, which is unique
for a positive definite (full rank) auto-correlation matrix R. The cost function
therefore forms an upright hyperparabola over the L,-dimensional hyperplane

defining all possible coefficient sets wy,.

2.2.2 Minimization and Wiener-Hopf Solution

For the form of (2.8) and the properties of R mentioned in the last section,
optimization of the cost function can be yielded by determining a coefficient
vector, for which the first derivative of &usg with respect to the coefficients is

Z€ero.

Wirtinger Calculus. For a general function f(w) of the complex valued vari-
able w = w, + jw; € C, where w, is the real part and w; the imaginary part of w

with the complex number j = \/—1, Wirtinger calculus [43] gives derivatives

Of (w) L (0f(w) _ 9f(w)
ow 5( ow,  Ow ) (2.13)
ORICCR T R
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Using these equations, the two statements

ow ow*

—:]_ —
ow ’ ow

0 (2.15)

can easily be verified. To optimize for multiple parameters in the filter coefficient

vector w, a gradient operator V*

Vie —=| ™ (2.16)

is required. The asterix * indicates complex conjugation in accordance with the

definition of the weight vector in (2.3). By applying (2.15), the important deriva-

tives
- - *
dwo ow1 owr,, —1
owo Owo e owo
8WT owp ow1 6wLa—1
By Swr e T
S " " " =TI eRH"te (2.17)
dwo owq owr,, —1
| Owp,-1 Owp,—1 7" Owp,-1
and
owl
a—w - 0 € RLaXLa (218)

can be denoted.
For optimization of a convex functional of complex parameters, according to
(2.14) the functional has to be derived with respect to its complex conjugate

coefficients

! 8fMSE ; 0

to obtain the correct gradient. Therefore, to minimize the MSE performance

function with respect to the coefficients requires

OnsE N
S p+ p— Rw = 0. (2.20)
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With transposing the scalar quantity (wZRw)T = wlRTw*, the product rule

can be applied to solve the derivative for the second summand in (2.20),

O wpo (9 _u S W
pa—— Rw = <8w*w )Rw+<aw*w R" | w" (2.21)
Thus, with (2.17) and (2.18), (2.20) yields with R” = R*
O&nise !
= — =0. 2.22
P p+Rw=0 ( )

If the auto-correlation matrix R is regular, by inversion of R (2.22) can be solved

for the optimum coefficient set
Wops = R™'p, (2.23)

which is well-known as Wiener-Hopf solution.

If R has not full rank, (2.23) cannot be computed. Due to the non-uniqueness
of the minimum, an infinite number of optimal solutions exists. If R has reduced
rank 7, the solution for w with the smallest ls-norm is given by the pseudo-inverse
of a matrix consisting of r linearly independent rows of R and the according

entries in the cross-correlation vector p.

2.2.3 Minimum Mean Squared Error

If the desired signal d[n] is assumed to be a superposition of a signal correlated

with the input signal x[n], and uncorrelated noise z[n],
dy = Wi tXn + Zn, (2.24)

where wp is responsible for the correlation between z[n| and d[n], the residual
error signal e, will possess non-zero variance. The actual residual MSE at the
optimum solution, i.e. W = Wopt, is called Minimum MSE (MMSE) and can be
calculated by inserting the expansion (2.24) for d[n] into (2.5),

Evmse = E{eqer} =E{zu2} = 02, (2.25)

W=Wopt

which is the variance of the observation noise, z[n]. Any mismatches in the model
w, e.g. as a result of impulse response truncation due to a too short model, can
be included into the observation noise and will represent an offset from zero for
the MSE cost function.
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2.3 Least Mean Square Algorithms

2.3.1 Preliminaries — Gradient Descent Techniques

The quadratic form of the cost function &g derived in Sec. 2.2.2 allows for
iterative solutions to find the minimum. For minimization of convex functionals
the general rule is to step-by-step follow the negative gradient of the cost function,
which will eventually lead to the unique global minimum. Mathematically, this

can be phrased as
wn+1] = w[n| — uVéuse[n], (2.26)

where w[n| marks the current weight vector at time n, from where a step is taken
in direction of the negative gradient VE&[n] of the cost function to yield a new
improved coefficient vector w[n+1]. The notation V&ysg[n] is to indicate that
the gradient is applied to the MSE cost function yielded by the coefficient vector
w, at time n. The parameter p is referred to as step-size, loosely defining the
length of a step by relaxation of the modulus of the gradient.

The explicit term for the gradient has been derived with (2.22),

9
Véuse[n] = sfvSE — —p+Rw, , (2.27)

n

and insertion into (2.26) leads to the update equation known as the steepest de-
scent algorithm [174, 72]. Apparently, no more inversion of the auto-correlation
matrix is required, but both auto-correlation matrix R and cross-correlation vec-
tor p have to be reliably estimated. This can involve very long data windows,
however recursive estimates can be performed as discussed later in Sec. 2.4.2.

Furthermore, the multiplication with R creates a computational cost of order
O(L2).

2.3.2 One Sample Gradient Estimates

To lower the computational complexity and statistical record of the involved

signals, in a next step the true gradient is replaced by an estimate based only on
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LMS Algorithm ‘
1: H

oy =W, xp
2: | e, =dp —yYn
3 || Wpp1 = Wy, + puxpe

Table 2.1: Equations for filter update by LMS adaptive algorithm.

the previous samples of z[n] and d[n],

P = x,d, (2.28)

R = x,x/ (2.29)

which is equivalent to minimizing the instantaneous squared error, e,e;, rather
than the MSE. Inserting these estimates into (2.27)

V¢, = —p+Rw, = —Xp(df —xMw,) = —x,el (2.30)

gives a gradient estimate, which together with (2.26) forms the basis for the least
mean squares (LMS) algorithm [173, 174, 72]

W11 = W, + uxpe, . (2.31)

The complete LMS equations are listed in Tab. 2.1, and are compared to previ-
ous adaptive algorithms only of order O(L,). Some of the LMS’ properties are

discussed below.

2.3.3 Convergence Characteristics

For a full proof of convergence, the reader is referred to standard text books [174,
72, 73, 132, 93]. To prove that the LMS algorithm converges to the Wiener-Hopf
solution, two steps are required: (i) convergence in the mean to show that the
LMS solution is bias-free, (ii) convergence in the mean square to prove consistency.
Although (ii) presents a much stronger proof of convergence, (i) is easier to derive
and motivates some insight into the behaviour of the LMS algorithm. Therefore,

in the following, the presentation is restricted to (i).



CHAPTER 2. ADAPTIVE FILTERING ALGORITHMS 18

2.3.3.1 Convergence Limits

To prove convergence in the mean, the LMS update equation — the one sample

gradient estimate (2.30) inserted into (2.26) — is modified by taking expectations:
E{wpi1} =E{w,} +p-E{xue)}. (2.32)

We insert d,, = wgptxn + zp, i.e. the output of the unknown system at time n,

superposed by observation noise, into the error equation
er =di — xtw, =x (Wopt — Wn) + 25, (2.33)
and substitute this error term into (2.32) to yield
E{Wni1} = E{wn} + p- E{xuxl (Wopt — Wa) +Xn20 } - (2.34)

Assuming that the observation noise z, is uncorrelated with the input signal x,,,
i.e. E{xp2,} = 0 leads to

E{wpi1} = E{wn} + - E{xx} - (Wopt — E{W,}) (2.35)
By expanding with a summand —wgpt on either side, a substitution with
Vi = E{Wn} — Wopt (2.36)

translates the average weight vector £{w,} such that the resulting coefficient

vector v, fulfills
v, — 0 for n— o0 (2.37)

if the algorithm converges. The expected update equation in terms of v, now

can be written as
Vi1 =V, —pR-v,, = (I - puR)v,, . (2.38)
Now conider the eigenvalue decomposition of the auto-correlation matrix R,

R = QAQF (2.39)
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where A = diag{\g, A1, - Ar,_1} holds the eigenvalues \; > 0 and Q the eigen-
vectors of R. In particular, the modal matrix Q is unitary, i.e. possessing the
property Q™! = Q, and therefore QQ =1 € RF«*%a, Using the modal matrix
Q, a rotation
is introduced to substitute v,, = Q”u,, for u,,

1 = QI - uR)Q"u, = (I - pA)u,. (2.41)

Therefore, by taking expectations in (2.32), translation (2.36), and rotation
(2.40), the LMS weight update arrives at a form which exhibits coefficients in
a decoupled representation. Eqn. (2.41) also allows to trace adaptation back to

the initial coefficient vector uy,
u, = (I—pA)"uy ug arbitrary. (2.42)

The evolution of each decoupled weight is described by a geometric series

Uin = (1 — pX)"u;p  fori=0(1)L,—1 (2.43)
for arbitrary start values u; o, which converges iff
L= <1 e 0<M<% for i = 0(1) Ly —1 (2.44)
holds for each of the L, modes. Therefore, the general requirement on p demands
limits
0<pu< . (2.45)

In practice, the upper convergence limit on p can be safely approximated by
Lo—1
Amax < Y A = tr{R} = L, - 02, (2.46)
i=0
where the positive semi-definiteness of R insures the approximation by the trace
tr{-} of the auto-correlation matrix R, which according to (2.12) can be expressed

by the power or variance 02, = 7,,[0] of the input signal z[n] and the filter length

L,, yielding

0<pu< (2.47)

L,o?

a~ xx

as practically calculable convergence limits for p.
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2.3.3.2 Convergence Speed

In the mean, the LMS exhibits an exponential convergence, which can be seen
from the decoupled evolution of the algorithm in (2.43). A measure for the

convergence speed in form of a time constant 7 can be derived by fitting an

exponential e~™7 to the geometric series in (2.43),
1
1_ )\’Ln: n'ln(liﬂ/\i) :}7}:—7 f :0 1La_1
(1—pX)" =e =) o (1)
(2.48)
A simplification for the T; is possible by exploiting the series expansion [18]
a? o a”
n(l-a) = —a———>...- 2 .. v —1<a<l (249
wi-0) = -2 2. <a<1 (249)
X~ —« V o<1 . (2.50)

Thus for oo = p);, (2.48) yields

T; ~

1
Vi 1. 2.51
v < (251)
Although the validity of this approximation is based on restrictions on A, two

statements can be made:

e the overall convergence is governed by the slowest converging mode belong-

ing to the smallest eigenvalue A\, of R;

e the maximum speed of convergence has to be set according to (2.45) to

accommodate for the largest eigenvalue A\., of R.

Therefore, if the eigenvalues of R differ greatly, the convergence of the adaptive
system is slowed down. This influence of the auto-correlation sequence of the
input signal on the convergence speed of the adaptive system can be expressed
by the condition number of R [141, 58], also often referred to as eigenvalue spread
72)

)\min minQ SII (ejQ)

= . 2.52
P )\max - maxg Sxx(e]Q) ( )

This ratio between the minimum and maximum eigenvalue can be shown to relate
to the extrema of the power spectral density (PSD) of the input signal z[n],
S (€7?) [72] as indicated on the right hand side of (2.52).
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2.3.3.3 Bias and Consistency

The analysis of convergence of the LMS algorithm in the mean in Sec. 2.3.3.1
has shown that the coefficients approach the optimum if the step-size u of the
LMS algorithm is kept within its convergence bounds. Therefore, the adaptation
is free of bias terms [72]. This holds as long as the system to be identified is
stationary. If changes over time occur, or in the extreme case a dynamic system
has to be tracked, a bias is produced by lagging behind the optimum solution by
an amount proportional to the step size [93, 73, 165].

Analysis of LMS convergence in the mean squared reveals that the final error
variance will differ from the MMSE value by an excess MSE, &px = &usg[n] —

Evimsk With n — oo, which can be derived as [72]

(2.53)

a
= T ith a = :

Erx = SmmsE 1—a with a AN

The influence of p is such that a trade-off is created between convergence speed
(large for large i) and the size of the final MSE, &ysg[n] for n — oo, which is

kept small if a small parameter p is selected.

2.4 Least Squares Methods

Instead of trying to minimize the expectation of the squared error as done in the
gradient descent and LMS techniques in Sec. 2.3, least squares (LS) algorithms
directly optimize the coefficient set in terms of a sum of squared errors. Although
taking a different approach, in the limit this method will tend towards the Wiener-
Hopf solution. Here, first the general LS methodology is introduced. A recursive
estimation of required quantities then leads to the well-known recursive LS (RLS)
algorithm. The last part of this section will then discuss complexity issues of the
RLS.
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2.4.1 Least Squares Formulation

The performance criterion to be minimized in the least squares approach is a sum

of squared errors over all previous samples up to the current time, n

{LSm = Zﬂ”e[n —v]e*[n —v], (2.54)
v=0
where 0 < § < 1 — often referred to as forgetting factor — is introduced to

de-emphasize past error contributions by an exponential time window. Analogue

to (2.19), the minimization of this error criterion requires

_ aSLS,n i
Véisn = 2o Lo, (2.55)

n

The optimization procedure runs similar to the derivations in Sec. 2.2.2 [149, 72]

and yields
R,w, =pn (2.56)

with close similarity to the original Wiener-Hopf equation (2.23), whereby the

quantities R,, and p,, are defined as

R, = Z B'x[n — v]x"n — v (2.57)
and
Pn = Z BYd*[n — v|x[n — v, (2.58)

thus implementing estimates of the auto-correlation matrix R and the cross-
correlation vector p in the original derivation of the Wiener-Hopf solution. In
particular with # = 1 and for z[n] and d[n] being wide sense stationary (WSS)
signals, in the limit case the estimates (2.57) and (2.58) tend towards the true

statistical quantities, e.g. lim, ., R, = R, apart from a normalization factor.

2.4.2 Recursive Least Squares Algorithm

The aim of RLS is to allow an updated vektor w,,; to be produced from a

knowledge of w,,, R,, 1, and p,,_1, i.e. without explicitly solving w,,; = R 'p,.
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This is based on recursively updating the estimates (2.57) and (2.58) by

R, = BR,_; + x,x7 (2.59)
and

Pn = BPn-1 + d;,Xn, (2.60)

and solving (2.56) for each time index n. This equation involves an inversion of
R,,, which can also be performed iteratively by applying the Matrix Inversion
Lemma [174, 72]

(A+BCD)'=A"'—- A"'B(C' + DA"'B)"'DA! (2.61)

to (2.59) and identifying A = AR,,_;, B=x,, C =1, and D = xZ. By denoting
the recursive inverse of the estimated auto-correlation matrix by S,, = R, this

yields

]_ Sn—lanHSn—l
= — 1 — ik . 2.62
Sn ﬂ (Sn 1 ﬂ + X§Sn1xn> ( 6 )

Note that the initial Sy is required to be regular; it is usually set equal to some

small diagonal matrix. Defining a gain vector

_ Sn—lxn
ﬂ + ngnflxn

gn (2.63)

and inserting (2.59) and (2.62) into w, 11 = S,p,, one finally arrives with some

re-arrangements in the resulting equation [149] at the RLS weight update
Wil = Wy, + gne,. (2.64)

Together with the filter equations, the update procedure is listed in Tab. 2.2 in a
numerically efficient fashion.

The initial setting Sg = dI introduces a bias into the estimate of the inverse
auto-correlation matrix. When analyzing the convergence [72], it can be shown
that the bias tends to zero and the MSE converges — different from the LMS —
toward the MMSE without any excess MSE for n — oo under the assumption

of wss signals, a small observation noise level, and for a infinite memory with a
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| RLS Algorithm |
T

1 || yn =W, xp

2: | e, =d, — Yn

3: || r= fon,l

4: || kK = B+ rx,

5 || 8n = Sn_1xn/K

6: Wpt1 = Wy + gne;‘;
7S, = %(Sn,l — gur)

Table 2.2: Equations for filter update by RLS adaptive algorithm.

forgetting factor § = 1. Generally, in stationary environments, the behaviour of
the RLS is therefore far superior to the LMS, both in terms of convergence speed
and final misadjustment.

Problems arise in non-stationary situations. There, a forgetting factor § < 1
has to be chosen to ensure that the algorithm “focuses” on the current statistics
and is not biased by its old memory. This has a serious influence on the tracking of
dynamic systems which sometimes may arise in identification problems [165, 140],
for which the LMS can actually in certain situations attain better performances
[9, 92, 10, 94].

2.4.3 Algorithm Complexity

The computational complexity of the RLS algorithm as listed in the summary of
Tab. 2.2 results in

Cris = 3L, +3L2 (2.65)

multiplications, where L, is the filter length. Note that a total of L, divisions
per sampling period are required. Clearly, the RLS has a complexity which is an
order higher than the LMS with its O(L,) complexity Ciys = 1+2L,. Therefore
in the past much effort has been dedicated to achieve fast versions of the RLS

with reduced complexity.
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2.5 Links Between LMS and RLS Algorithms

2.5.1 Normalized LMS Algorithm

A couple of different approaches to derive the update equations of what is com-
monly known as the normalized LMS (NLMS) algorithm will give some insight
into the links between LMS and RLS. Furthermore, this will lead over to affine
projection algorithms which are very popular for applications like acoustic echo
cancellation [111, 50, 51, 95] due to there fast convergence even for coloured input

signals with high eigenvalue spread such as speech.

2.5.1.1 Approaching from the LMS: Normalization of the Step Size

A simple description of the step size bounds for the LMS has been derived in
Sec. 2.3.3.1, with a dependence on the signal energy and the filter length. A fixed
choice of i generally has the drawback that in a non-stationary environment,
where the variance of the input signal is changing, the convergence speed at
times of low variance may be insufficient, as the algorithm still has to be stable
at times of high signal power. Therefore, a step size normalization to exclude the
influence of the signal power appears desirable.

If the variance of the input signal x[n] is estimated over a rectangular window
of length L,, i.e.

L,—1

1 1
02— laln = v* = —xx, (2.66)
a v=0 a
the step size parameter p can be substituted by
fL
= 2.67
1= (2.67)

resulting in the update equation for the NLMS algorithm in Tab. 2.3. The substi-
tution introduced with (2.67) performs a normalization of the step size parameter

by imposing new convergence limits
0<fi<2. (2.68)

The selection of ji sets a relative convergence speed independent of the variance

of the filter input signal z[n].
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NLMS Algorithm ‘

1|y, = wfxn
2: | e, =dp —yYn

Wpt1 = Wy + [L

Table 2.3: Equations for filter update by NLMS adaptive algorithm.

The complexity of the NLMS has two additional multiplications over the LMS

Mx, if a moving average (MA) is considered

to compute the power estimate x
whereby the change over the previous power estimate is the inclusion of the new
value z;z, and the exclusion of x, ; x, r,, values which have to be kept in
the tap-delay line anyway. The required division can be circumvented by a fast

look-up table or an approximation with a shift and add procedure.

2.5.1.2 Least-Squares Approach to NLMS: Projection Algorithm

Different from the normalization approach, the NLMS can also be seen as the
solution of the following optimization problem:
Given the present weight vector w,,, the state vector X, and present value of the

desired signal d,,, calculate a new coefficient set w,, 1 such that
Lo
[Wnt1 — Wyll2 = min, (2.69)
subject to the condition

wl %, = d[n]. (2.70)

Haykin [72] explicitly shows how solving this problem analytically will yield the
NLMS with g = 1. Instead, here a geometrical interpretation will be given to
derive the NLMS solution from (2.69) and (2.70).

The interpretation starts from the scalar product (2.70) between the vectors
x, and w1, both of dimension L,, by introducing a normalization with 1/||x,||>
on either side,

bz Xn ! dn
W =
" |xallz  [lall2

(2.71)



Figure 2.2: Geometrical interpretation of the NLMS.

It follows from Fig. 2.2, that possible solutions for w,,,; orthogonally project onto
the unit length vector x,/[|x,||2 such that the resulting projection has length
dy/||xn||2- The solution space for w1 has dimension L,—1 and forms a hyper-
plane P, defined by its normal x,,/||x,||2-

Eqn. (2.70) demands that from the hyperplane P, ; we select the solution
with minimum distance from the previous solution w,. Again, minimum dis-
tance in the /5 sense means the orthogonal projection from w,, onto P, which
is marked as the innovation Aw, in Fig. 2.2. For this innovation vector, the

direction and length can be obtained by inspection:

e as the projection is orthogonal, the direction is given by the normal of P,, 1,

the normalized state vector x,/||x,||2;

e the length of the projection Aw, can be stated as e,/||Xs||2-

Together, this yields for the innovation

*

e, Xp

%nllz [I%nll2
S—— =

Wy =W, + Aw, = w, + (2.72)

length direction
By introducing a relaxation fz into the update, i.e. at each iteration the innovation

gets scaled by [,

n (2.73)
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Figure 2.3: NLMS with different convergence parameters, resulting in different
forms of adaptation.

finally the NLMS update equation is reached.

It can be noted that for the fastest convergence parameter, the NLMS can
be viewed as a best fit solution in the least squares sense of the filter output
to the desired signal regardless of correlations [130]. However different from the
RLS method discussed in Sec. 2.4.1 minimizing sums of squared errors, this least-
squares fit only refers to one single time step. This clearly forms a disadvantage in
the presence of noise, as the filter will try to suppress any desired signal regardless
of underlying statistics [140].

For the noise-free case, depending on the size of the relaxation factor, conver-
gence may be classified into three cases as shown in Fig. 2.3 for a single-coefficient
filter. Apart from fastest convergence for i = 1, slower convergence can either
mean sliding down the performance surface (2 < 1) or jumping from side to side

resulting in an alternating asymptotic behaviour (> 1).
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2.5.2 Affine Projection Algorithms

Affine projection algorithms (APA) are a class of popular algorithms within the
acoustic echo cancellation community [111, 50, 51, 95], and are therefore believed
to be important in this context. Furthermore, the APA forms a cohesive link
between NLMS and RLS, as will be shown in the following.

2.5.2.1 Formulation
Similar to the NLMS, the APA demands a change in the coefficients
W1 — Walls = min, (2.74)

which is minimum in the sense of the [, norm. However, besides the fit to the
present data, the new coefficient set w, ., also has to best fit p — 1 past input

vectors to the according desired signals

xTw, . = df (2.75)
X Wi = d) (2.76)

: (2.77)

XTIZ{PHWnJrl = dr—pi1s (2.78)

where p defines the order of the APA. The above system of equations can be

conveniently expressed in matrix notation

H . %
Xn Wpt1 = dn

(2.79)
Defining the coefficient innovation in (2.74) as Aw, 1 = W, 1 — W,, we have
XTAw,y =€ (2.80)

where e = d¥ — XZw,,. The minimum norm solution for Aw,; as demanded
in (2.74) is given by the pseudo-inverse of X [22, 58]. Depending on whether
the system of equations (2.80) is underdetermined (P < L,) or overdetermined
(P > L,), either the left or right pseudo-inverse has to be used. Here, we only
consider the underdetermined case P < L, which involves the left pseudo-inverse
(XH) = X, (XEX,, )L, yielding the APA update [111, 89]

W1 = W, + X (XIX,) el . (2.81)
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‘ pth order APA Algorithm ‘
update X,, and d,,

e, =d, — XIw;

R;' = (XX, +al)™!
Wpt1 = Wp + anRgle;kL

Table 2.4: Equations for filter update by APA adaptive algorithm.

Introducing a relaxation factor 7 into (2.81), one yields the update equation for

the pth order affine projection algorithm:
W1 = W, + 10X, (XIX,) el . (2.82)

A numerically efficient implementation of this algorithm is listed in Tab. 2.4,
where a weighted identity matrix is included in the matrix inversion of step (3)
for regularization purposes.

The convergence of APA is surveyed in e.g. [111, 100], and its speed is for rising
projection order p less dependent on the eigenvalue spread, i.e. the colouredness of
the input signal. A noise-free simulation for different projection orders is shown
in Fig. 2.4, where a system identification is attempted using a coloured input
signal. Also shown are the learning curves of NLMS and RLS, which represent
both extremes of the projection order. The APA for p = 1 yields an NLMS,
while for p = n, the function to be minimized is equal to an RLS with § = 1. For
p = L,, the APA can be linked to a block version of the RLS [100].

Following the implementation steps in Tab. 2.4, the computational complexity
of the APA can be recorded as

Capa = (p* +O(*)) +2pL, (2.83)

where L, is the length of the adaptive filter and p the projection order. The
term O(p?) indicates the complexity of the matrix inverse calculated in step (3:)
of Tab. 2.4. Fast implementations of APA (FAPA) claim to reduce this cost to
Crapa = 2L, + 20p [51, 145].
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Figure 2.4: Comparison of convergence speed for different algorithms with
coloured input signal; the curves represent the ensemble MSE averaged over 40
runs with NLMS (identical to first order APA), APAs of orders 2,3,4, and 8, and
an RLS adaptive filter.

2.5.2.2 Geometrical Interpretation

Similar to the geometrical consideration arising from the NLMS update, the APA
can be interpreted as a generalization of Fig. 2.2. If the hyperplane P, ;;
defines the solution space of the ith equation of the system of equations (2.75)
— (2.78), successive projections from the current coefficient vector w,, onto the
hyperplanes Py,_, 2, Pp_,y3, -+ Py will solve (2.79) if it is consistent, i.e. all
hyperplanes P,, ;4 cross at least in one point [50], which is equivalent to demand
X,, to have full column rank. Through observation noise in the measurements
d,, or model mismatch (e.g. insufficient filter length L,) this system can become
inconsistent [50] causing a noisy coefficient vector being projected around the
optimum solution, and thus an excess mean squared error is procduced.

Various versions of this algorithm have been introduced in different technical
areas. Depending on the application, they are known as e.g. row action projec-
tion (RAP) algorithms [78, 50] based on its geometrical interpretation, algebraic

reconstruction technique (ART) in tomographic applications [78], or simply “new
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Figure 2.5: Geometrical interpretation of affine projection algorithms; the exam-
ple shown uses a 4th order APA with 4 successive orthogonal projections onto
different solution hyperplanes marked by the system of equations (2.75) — (2.78).

algorithm” [100].

2.6 Implementations and Complexity Issues

A number of approaches exist to lower the computational complexity of adaptive
algorithms, like for RLS or APA. Often these are based on exploiting redundancies
in the processing, or on approximations. One technique to reduce the computa-
tional complexity of the general adaptive filtering problem is the application of
frequency domain methods, where convolutions can be simply expressed as prod-
ucts. Similarly, subband implementation, whereby the appeal lies in processing
filtering tasks more efficiently at a reduced sampling rate, can also be used to

efficiently implement adaptive filters.

2.6.1 Frequency Domain Implementation

The implementation of filters in the frequency domain is essentially based on
performing adaptive filtering in the time domain on blocks of data, rather than
for every sample of incoming data [23]. This requires that the input z[n] and the

error signal e[n] are buffered over a block length L,. Once the data is collected,
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in case of the LMS a convolution is performed between input and coefficients,
and a correlation for the weight update is calculated over the block of data. Both
correlation and convolution operations can be reduced to simple multiplications
of signals when transformed into the frequency domain [24, 42, 128]. However
drawbacks arise, as convergence speed and tracking ability of the algorithm are
likely to be reduced, since the maximum allowable step size is scaled down by the
block length L;. Furthermore, block processing introduces an overall delay into
the system which is equivalent to the block length [128].

The transformation of the blocked time domain data into the frequency do-
main is performed by DFT algorithms, which can be efficiently implemented using
the FEFT for appropriate block lengths [20]. Problems arise, as the DFT/FFT im-
plements a circular convolution, i.e. introduces a periodization of the time domain
data block. In the implementation, this will lead to inaccuracies and distortions
[8, 114]. To obtain linear convolution / correlation, modifications are necessary,
which can be implemented using either overlap-add or overlap-save strategies
[27, 24, 128].

Of the two methods for insuring a linear convolution, overlap-save performs
a DFT of twice the block length on the new data block, appended at the previ-
ous data block. After transformation, multiplication with the DFT of the filter
coefficients, and inverse transform, the correct block of data is selected, the rest
discarded. Overlap-add [24] works similarly, but adds the old, shifted data in
the frequency domain to the transformation of the current, zero-padded block.
In both cases, DFTs/FFTs of twice the block length are required to satisfy the
linearity of the convolution. Usually, the DFT/FFT length will match the length
of the filter, L, [128].

The computational complexity of this approach results in 2 FFTs for trans-
forming input and error signal, an inverse FFT for the output signal y[n|, 2L,
complex multiplications for both computing convolution and correlation in the
frequency domain. Additionally, the weight vector usually has to be constraint
in the time domain requiring another forward and inverse FFT of length 2L,,

resulting in

1
Crpar = T (40L4 log,(2L,) + 16L,) = 401log,(2L,) + 16 (2.84)
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Figure 2.6: Generic diagram of adaptive filtering in subbands.

real multiplications per sampling period for a frequency domain adaptive filter
(FDAF) implementation of the LMS [128]. The division by L, is justified, as
the complete procedure is only performed once per block, i.e. every L, samples.
Thus, savings can become substantial for large block sizes, although restrictions
may apply due to the also growing system delay.

If long filters are required to be implemented as found in e.g. acoustic appli-
cations like AEC, the overall system delay can be cut shorter by partitioning into
smaller blocks and applying shorter transforms [35, 39]. This however will also
drastically reduce the possible saving in computational complexity, such that rel-
ative complexities vary in the range of 20-30% [110] of the original time domain
method for typical AEC.

Although mainly applied to LMS-type FIR filters, frequency domain meth-
ods can also potentially be used for other algorithms like APA where the scalar
products (2.75) — (2.78) become a filtering operation in a block implementation

[49, 100], and thus motivate a possible frequency domain approach.

2.6.2 Subband Implementation

The idea behind subband implementations is to decompose a fullband signal into
a number of channels — usually with restricted bandwidth — which are allowed
to be sampled at a lower rate. Such a system is depicted in Fig. 2.6, whereby

both input and desired signals are split into subbands by analysis filter banks.
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Adaptive filtering can then be performed on the subband signals, and the error
or output signal, depending on the application, be reconstructed by a synthesis
filter bank. The components of the system in Fig. 2.6 will be subject of Chap. 3
and discussed in greater detail therein.

The advantages generally associated with subband structures include [52, 86,
53, b4]:

complexity reduction due to the reduced sampling rate, filters require fewer
taps to cover the same time interval as in the fullband, and are updated at

a lower rate;

parallelization the parallel structure of the subbands can be exploited to dis-
tribute tasks over different DSPs for systems of high computational com-

plexity;

spectral whitening occurs for the decomposition of coloured input signals, as
the filter banks divide the original fullband spectrum in smaller intervals

with reduced magnitude range and a greater likelihood of inband whiteness.

The motivational force here is the use of subband structures to reduce the compu-
tational complexity of implemented adaptive filter systems. While parallelization
is an obvious feature, spectral whitening has its pitfalls. The appeal of spectral
whitening lies in the dependency of algorithms like the LMS onto the eigenvalue
spread, linking the spectral characteristics by (2.52) to the convergence speed of
the algorithm, which then could be increased. However, as will be seen in the
following chapters, the filters in the filter banks themselves colour the subband
signals significantly and reduce or even compensate the advantage of separation
into spectral intervals.

Depending on the length of the filters used in the filter banks, a delay is
imposed on the overall system. The length of the filters depends on a number
of factors, like the number of subbands, the rate at which subband signals are
sampled, and the quality requirements of the filter bank, which can be linked to
the performance of the subband adaptive system [172]. Given a certain critical
delay which must not be surpassed, trade-offs can be applied to keep the filter
length within limits.
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Different from frequency domain methods, this approach is modular not only
in its parallelization of processing tasks, but also independent of the specific
algorithm used in the subband structure. Once the filter banks are set up, almost
any kind of adaptive filter can be placed there. This contrasts the inflexibility
of the frequency domain implementation, where individual solutions for different

algorithmic approaches have to be sought.

2.7 Concluding Remarks

This chapter has introduced adaptive filtering algorithms. Based on the opti-
mal Wiener filter for stationary problems, two classes of algorithms, least-mean
squares (LMS) and recursive least squares (RLS), have been derived along with
some important properties. As adaptive filtering in this thesis is targetted towards
the identification of systems with very long impulse responses, the computational
complexity of the adaptive algorithm is of high importance, and implementational
schemes to lower this complexity are in demand. Here, we have basically looked
at frequency domain and subband approaches to lower complexity. From these,
the subband approach is particularly valuable due its convenient modularization
of the processing task, the generality to apply just any algorithm to the subbands,
and its low computational complexity, which has not been demonstrated but will
be the main aspects of the following chapters.

In terms of adaptive algorithm performance, the LMS algorithm has been
shown to be dependent on the eigenvalue spread of the auto-correlation matrix
of the input signal, while this does not affect convergence of the RLS. Affine
projection algorithms (APA) as a generalization of the normalized LMS have
been introduced, which, depending on the projection order, show a convergence
behaviour linking LMS and RLS type algorithms. This aspect is important, as
for coloured input signals, as e.g. found with speech in the AEC environment, the
convergence rate of an algorithm can be seriously affected under this dependency.
The sensitivity to the eigenvalue spread will also be important, as the filter banks

to be constructed in Chap. 4 will impose a colouring on the input signal.



Chapter 3

Filter Banks and Subband
Structures for Adaptive Subband

Processing

This chapter discusses all components required for building and analysing sub-
band structures for subband adaptive filtering. We start by introducing basic
multirate operations in Sec. 3.1. These constitute the elements of filter banks, as
seen in Fig. 3.1, which perform signal decompositions to be addressed in Sec. 3.2.
The following Sec. 3.3 is dedicated to analysis methods for filter banks, which
will help to review prevalent subband structures for adaptive filtering discussed
in Sec. 3.4, as well as lay the foundations for fast filter bank implementations

that will be derived in Chap. 4.

analysis bank | synthesis bank

i el
x[n] H@—’QH@—’: x[n]

Ao o) @ ® G

Figure 3.1: Analysis and synthesis branch of a K-channel filter bank with sub-
bands decimated by N.

37
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z[n] y[n] z[n] y[n]
(a) @ (b) @

Figure 3.2: Basic multirate operations for sampling rate alteration: (a) decima-
tion; (b) expansion of signal x[n] by a factor of N.

3.1 Preliminaries on Multirate Systems

A multirate system comprises of components running at different sampling fre-
quencies. A typical example is the filter bank in Fig. 3.1, where each of the
K subband signals between analysis and synthesis bank is sampled slower by a
factor of N compared to the input or output fullband signal. This section will
introduce the basic operations and building blocks of a multirate system, and give
definitions and insight into the alteration of sampling rates for subband signals.
Before discussing another approach in Sec. 3.2 based on signal expansions, the
legitimation for sampling rate reductions will first be drawn from a review of the

sampling theorem.

3.1.1 Basic Multirate Operations

The sampling rate alterations motivating the term multirate system are per-
formed by two main operations, decimation and expansion, which are shown in
Fig. 3.2.

Decimation. If a signal is fed through a decimator in Fig. 3.2(a), only every

Nth sample is retained in the output signal y[n],
y[n] = z[Nn], (3.1)

where N € N is assumed '. An example is given in Fig. 3.3(b). Fractional values
N are possible and lead to non-uniform sampling [26], which is not considered

here, although it has been employed in the context of adaptive filtering [129]. In

! Throughout this thesis, this action is termed decimation or downsampling, performed by
decimators or downsamplers. Note that no prior anti-alias filtering is involved.
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Figure 3.3: Example for decimation and expansion by 2: (a) original time domain
signal; (b) decimated signal; (c) expanded signal; (d) frequency domain of a
complex signal; (e) frequency domain of decimated signal; (f) frequency domain
of expanded signal.
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the frequency domain, relation (3.1) can be expressed by [151]

N-1

V() = ;0 XNy (3.2)
where Wy = e7727/N, Thus, the spectrum Y (e/?) is assembled by superimposing
X (/%) stretched by a factor of N with N — 1 versions shifted by multiples of
27, as illustrated by an example in Fig. 3.3(e). This superposition leads to spec-
tral overlap (“aliasing”), if x[n] is not a suitably band-limited signal. Problems
associated with aliasing in a subband adaptive filter system will be discussed in
Sec. 3.4.1.

Expansion. The expander in Fig. 3.2(b) is described by

] n=AN
0 n # AN

|3

L AEZ, (3.3)

inserting N — 1 zeros between every original sample 2. An example for N = 2 is

depicted in Fig. 3.3(c). In the frequency domain, expansion can be expressed by
V() = X (), (3.4)

which for the spectrum Y (e/?) means a rescaling of the frequency axis with

respect to X (e/Y) by a factor of N. An illustration is given in Fig. 3.3(f).

3.1.2 Signal Bandwidth and Sampling

For an analogue signal x(¢) which is band-limited in the frequency domain to the

baseband interval [—wy;w,], Shannon’s sampling theorem [126, 127] states that

Theorem 1 (Sampling Theorem) if x(t) is sampled at an angular frequency
ws > 2wy, the analogue signal x(t) can be perfectly recovered by an ideal lowpass
filter with an angular cutoff frequency wy/2 (cited from [83]).

2This operation will be termed expansion or upsampling, and the according device named
upsampler or expander, which does not include interpolation filtering.
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Therefore, if a discrete baseband signal has signal components such that the
bandwidth is [—wp;wy|, where w, < ws/2, its sampling rate may be lowered in
adherence with the above theorem.

However for bandpass signals, the sampling theorem has to be amended. First,
the term bandwidth has to be defined by the following

Definition 1 (Bandwidth) The bandwidth B is the total length of frequency
intervals, on which the discrete time function x[n] has non-zero contributions

within the normalized angular frequency interval [—; .

Using this definition, we look into the validity of the sampling theorem for both
analytic and real valued functions, both of which are key elements within this

thesis.

3.1.2.1 Analytic Signals
An analytic signal is a complex valued signal z(?[n)],
2@ [n] = Re{z@n]} + jIm{z@[n]}, (3.5)

where real and imaginary part are related by the Hilbert transform, Im{2(¥[n]} =
H{Re{z®[n]}}. The Fourier domain of an analytic bandpass signal X (*)(e/?) is

characterized by the absence of a negative frequency spectrum,

X () Q€]0;7]
X@OE@M={ 1x(1) Q=0 : (3.6)
0 Qe]—mo[

with an example shown in Fig. 3.4. Although X(®(¢/?) has only been defined
on the interval | — m; 7|, it is in fact periodic with 27. Therefore, an analytic

bandpass signal of bandwidth B can be decimated by a factor
27
N=|— 3.7
E 37)

without causing spectral overlaps due to the aliasing present in (3.2).
It can be easily verified that the decimation according to (3.7) is also appli-
cable to general complex signals not fulfilling (3.6), as long as their bandwidth B

consists of one coherent interval.
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Figure 3.4: Spectrum of an analytic signal #(*)[n] with bandwidth B.
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Figure 3.5: Symmetric spectrum with respect to {2 = 0 of a real valued signal
x[n] with bandwidth B.

3.1.2.2 Real Valued Signals

A real valued signal x[n] possesses an axial symmetry to the frequency origin in

the frequency domain, and relates to an analytic signal 2(*[n] by

zln] = Re{x(“)[n]} (3.8)
X (') = X@(ed?) 4 X@ (eI, (3.9)

which is illustrated as an example in Fig. 3.5. The identity of X (¢/}) to the linear
superposition of its analytic spectrum and the frequency reversed version leads
to a straightforward explanation of the effects of decimation. As decimation is a
linear operation, it can be applied separately to each of the summands on the right
hand side of (3.9) with a superposition of the results. It is obvious, that critical
decimation is again limited by (3.7), but that the band-position (i.e. defined by
the upper cut-off frequency Q, in Fig. 3.5) has critical importance, as otherwise
spectral overlaps between the terms in (3.2) due to X (e/?) and X(@(e=79)
occur.

The restriction imposed by the band-position in addition to (3.7) for the
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Figure 3.6: Valid decimation rates /N for real valued bandpass signals in depen-
dency on the bandwidth B and the upper bound of the passband (2,; allowed
combinations lie within the shaded areas.

selection of a valid decimation ratio N is given by [153, 19]

k 27 k—1 200,
— < < = .
m~- N-B~ m-1’ K B-m’ meN, (3.10)

where the sampling frequency is normalized to 27, €2, is the upper bound of the
passband and B the bandwidth as in Fig. 3.5, and N the decimation factor by
which the sampling frequency may be lowered. Eqn. (3.10) has to be satisfied for
any integer m. Possible choices are illustrated in Fig. 3.6 [153, 26, 81].

3.2 Signal Decompositions

The band-limited nature of a signal as a motivation to reduce its sampling rate
is based on stringent frequency domain considerations. In the following, a time
domain approach by orthogonal signal decompositions is reviewed, which justifies
a lowering of the sampling rate by other means. Finally, this is generalized to

non-orthogonal, redundant signal expansions.
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3.2.1 Orthogonal Decompositions

Consider a signal expansion, which develops a discrete time input signal z[n] after
a set of functions hg[n], k € {0; K—1}

yeln] = > hilnK—v] - x[V] (3.11)

where the y,[n] are the coefficients of the expansion. Interpreted in terms of the
analysis filter bank in Fig. 3.1, the kernel functions hy[n]| can be associated with
the bandpass filters producing the K frequency bands. Note that the convolution
in (3.11) already performs an implicit decimation by K. Using the vector notation

definitions

h, = [h0] hi[l] -+ hy[Ln—1]]"; (3.12)
x, = [z zv—-1] - 2[v—L,+1]]" (3.13)

where L, is the length of the functions hg[n], the convolution in (3.11) can now

be written as an iterated evaluation of scalar products
ye[n] = hi -x.x . (3.14)

For each new calculation of the scalar product, the function hy[n] is shifted K
samples along the time axis n.

If additionally |hg||s = 1 is fulfilled, then (3.11) performs an orthonormal
projection, which can be geometrically interpreted as in Fig. 3.7. Therefore, the
scalar product performs a best approximation of x,,; by y[n]-hy in a least squares
sense. Note that the scalar product in the convolution 3.11 is only evaluated for

shifts of K, implicitly performing a critical decimation.

Orthonormal basis for [?(Z). If a set of functions hg[n] form an orthonormal
basis for the space [>(Z) of square integrable discrete signals, (3.11) performs a
rotation of the coordinate system of the vector space. While the original basis of
x[n] is a comb of Kronecker functions < §[n] >, the coefficients yi[n] express this
signal in terms of the new basis < hg[n] >. For the hi[n] to form an orthonormal

basis of the signal space [?(Z), two conditions have to be satisfied:
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Yk.n

Figure 3.7: Orthonormal projection as geometrical interpretation of the scalar
product for ||h||2 = 1.

(C1) Mutual orthonormality of the basis functions and versions shifted by K:

Lyp—1

> Bl hylv —nK] = 8i = j]- 6[n]; (3.15)

v=0

(C2) Dense representation: the set of basis functions < hg[v — nK] > is dense
in 1*(Z).

Parseval’s Theorem and Inverse Transform. From the orthonormal basis
representation of < hi[n] >, two useful properties follow. First, (3.11) represents
an orthonormal transformation, under which the l;-norm is invariant [58]. This

is also known as Parseval’s Theorem [149, 151]

K—1
ol =)0 P, (3.16)
n k=0 n
i.e. energy is preserved. Second, the existence of a unique inverse transform
K—1
2] = 3 S wlv] - hiln — K. (3.17)
k=0 v

is guaranteed.

Example. Fig. 3.8 shows a low- and highpass filter pair hg[n] and hy[n] fulfilling
the above conditions (C1) and (C2) for K = 2. The filter hy[n] is also known as
Haar wavelet filter [31].
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(a) Haar - lowpass filter (b) frequency response — lowpass (c) Haar — highpass filter
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Figure 3.8: Example for filters performing an orthonormal decomposition: (a)
lowpass filter ho[n]; (b) frequency response Hy(e’Y); (c) highpass filter hi[n]; (d)
frequency response H,(e/?).

(d) frequency response — highpass
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Note that the decomposition in (3.11) implicitly performs a decimation by
K between z[n] and yi[n]. The transform is therefore free of redundancy and
there is an equal number of samples in the coefficient sets {z[n]} and {y[n]}.
Returning to the decimation problem, the coefficients yi[n| form the samples
of K subband signals decimated by K, without reference to the bandwidth or
spectral characteristic of the filters hi[n| and solely based on the properties of an

orthonormal decomposition.

3.2.2 Redundant Decompositions

If the decomposition of a signal z[n] into K subbands is described by

weln] =Y hi[nN —v]-z[v], ke€[0,K—-1], N<K (3.18)

(3.15) is no longer valid since the implicit decimation is performed by some factor
N < K. The set of functions < hg[n] > now is linearly dependent, and constitutes
a frame when dense in [?(Z) [142, 113]. For frames there exists an energy relation
between the samples of the original signal and the transform coefficients in the

subbands similar to Parseval’s theorem,

A falol? < 3 Y lnlP < B3 lalnl, (319)

valid for every z[n] € [>(Z). The constants A and B are called frame bounds, and

have the interesting property A < K/N < B. If A = B, i.e. there is a fixed energy
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relation, the frame < hi[n] > is called tight. Through its linear dependency,

expanding a signal z[n] in a frame obviously is a redundant representation.

3.3 Filter Bank Analysis

The signal decompositions discussed in Sec. 3.2 are usually performed by filter
banks as shown in Fig. 3.1, i.e. a tree of filters of different spectral characteristics.
In the following, filter banks are analysed in the z-domain using the notation by

Vaidyanathan [151] with an extension to arbitrary integer decimation [88].

3.3.1 Modulation Description

As described in Fig. 3.1, an input signal z[n] is split into K subband signals
decimated by factors N < K. For N = K, the filter bank is called critically
sampled, and oversampled for N < K. If the K decimated subband signals are
referred to as Vy(2),Vi(Z),---Vk_1(2) in the z-domain, we can write according
to (3.2)
1

V(z) = [Vol(2) Vi(z) -+ Vi (2)] = NHm(Zl/N)Xm(Zl/N) (3.20)
where the subscript (-),, refers to the use of the modulation representation®
[155, 131, 119] also known as alias component (AC) notation [151] of vectors

and matrices

Hy(2) Ho(zWx) ... Ho(zWJ™
H,(2) — le(z) Hl(Z:WN) Hl(ZV:VN ) (3.21)
i HK_l(Z) HK_l(ZWN) Ce HK_l(ZW]]\}[_l) ]
X,(2) = [X(2) X(zWy) - XY D], (3.22)

where Hy(z) e—o hy[n] is the z-transform of the kth filter of the analysis bank,
and X (z) e—o x[n] the input signal. The matrix H,,(z) is termed modulation

matrix of the synthesis filter bank.

3The modulation description expresses the aliasing introduced by decimation as a sum of
scaled and modulated terms, as defined in (3.2).
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Let the output of the expanders be denoted by Uy(z), U1 (2), - - - Uk —1(2), which

are given by
U(2) = V(") = tHu(2)X,0(2). (3.23)
With the synthesis filters
G(2) = [Go(2) Gi(2) -+~ Gra ()] (3.24)
the filter bank output on the synthesis side can be written as
X(2) = GT(2)U(2) = =GT(2)Hn(2)X,, (2). (3.25)

Therefore, (3.25) describes the input-output relationship of the filter bank in
Fig. 3.1. Conditions for perfect reconstruction, i.e. X (z) = ¢z 2X(z), ¢ € C/{0},
will be discussed in Sec. 3.3.3 based on a polyphase representation to be intro-

duced next.

3.3.2 Polyphase Representation

The polyphase representation [152, 7, 150, 151, 119] is an alternative form to
analyse multirate systems and has the advantage of leading to computationally
efficient implementations of filter banks. The term polyphase refers to the deci-
mation of a signal — if it is appropriately bandlimited and can be decimated by
a factor N, N possibilities exist which set of samples to keep; in fact, one is as
good as any, as in the Fourier domain they only differ by their phase, but not by
their magnitude.

Transfer functions Hy(z) and G(z) can be expressed in the forms

N—1
Hi(z) = Z z"Hyn(2")  (Type 1 polyphase) (3.26)
n=0
and
N—1
Gr(z) = z WG (2Y) (Type 2 polyphase) (3.27)

S
I
=)
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respectively, where

Hyn(z) = i hi(NEk +n)z " (3.28)
Gue(2) = i ge(Nk+N—-1-n)z"" | (3.29)

The terms Hy,(2), n = 0(1)N — 1, are the N Type 1 polyphase components
of Hy(z), which arise from decimation of differently phase shifted analysis filters
hi[n] and subsequent z-transformation. Correspondingly, Gpx(2), n = 0(1)N —1,
represent the N Type 2 polyphase components of G (z). Note that the special
case Gy(2) = Hy(2) gives Gpo(2) = Hyn—1-n(2).

Application of (3.26) yields

H(z)=HEY) -1zt .. 2 VO (3.30)
where
[ Hyoz)  Hou(s) ... Howa(2) |
H(z) = Hll?(z) Hl\_l(z) H1|N.,1(z) (3.31)
e e

Correspondingly, (3.27) leads to

GT(2) = [z D (2 1] G(N), (3.32)
where
- Gop(z)  Gop(z) ... Goxal(z) _
G(2) = Gur:(%) Gl?(Z) . G1|K:_1(z) (3:33)
_GNI.O(Z) Gyl . GNI;I(Z)_

The matrices H(z) and G(z) are called the polyphase matrices of the filter bank.
Using (3.30) and (3.32) in the filter bank in Fig. 3.1 yields an equivalent repre-

sentation shown in Fig. 3.9(a). With respect to subsampling and upsampling,
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Figure 3.9: (a) Polyphase representation of a K-channel filter bank decimated by
a factor N; (b) re-arrangement using noble identities.

the following identities hold [151, 142]

H(z)(} N) = (J N)H(2Y) First Noble Identity (3.34)
(1t N)G(2) = G(z")(+ N) Second Noble Identity, (3.35)

where (] N) denotes N-fold decimation, and (T N) N-fold expansion. By using
noble identities, the filter bank can be modified and the equivalent form shown
in Fig. 3.9(b) obtained. This structure has the advantage that the filtering is
performed at the subsampled rate.

In terms of analysis, the flow chart in Fig. 3.9(b) has separated the filter bank
into two system types. Time multiplexers, which perform the separation into or
interleaving of K channels decimated by NV, are linear periodically time-varying
(LPTV) systems with period N. In contrast, the polyphase matrices H(z) and
G(z) define multiple-input multiple output (MIMO) systems, which are linear

time-invariant (LTT) and therefore convenient to analyze.
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3.3.3 Lossless Expansions

In its most general form, the filter bank system can be shown to have perfect

reconstruction property if and only if the product G(z)H(z) fulfills [151]

0 IN—r
2 I, O

reZ,0<r<N-—1,

(3.36)
A eN, ceC/{0}.

G(2)H(z) = cz @ [

If this condition is satisfied, the reconstructed signal is only a scaled and delayed
version of the filter bank input #[n] = cx[n — k|, where Kk = AK +r + K — 1
constitutes the delay.

A sufficient even though not necessary condition to ensure (3.36) is the parau-
nitary property of H(z). A matrix H(z) € C(Ii)XN of transfer functions is called
paraunitary if

H(2)H(z) = Iy, c¢e C/{0}, (3.37)
where the matrix H(z) is called the parahermitian of H(z), i.e. is transposed with
its polyphase entries complex conjugated and time reversed [151, 29]. With H(z)

being paraunitary it is easy to recognize that simply choosing
G(z) = ez 'H(2), ¢#0, (3.38)

satisfies the perfect reconstruction condition. If its polyphase matrix H(z) is
paraunitary and N equals K, the filter bank is also denoted orthogonal [142].
As a consequence of (3.38) the synthesis filters can be easily found from the

analysis filters by

gln] = c-hpn—=1]=c-hi[l—n] time domain (3.39)
Ge(z) = ¢ 2 Hy(2) z-domain, (3.40)

where k = 0(1)K—1, ] = N—14+NA. For critical decimation by a factor K, this
is the only choice for the synthesis filters by assumption of a paraunitary H(z)
to achieve perfect reconstruction (PR).

Note that the derived results in the z-domain correspond to time domain ex-
pressions in Sec. 3.2. Later, the property of paraunitarity for polyphase matrices
will be explicitly linked to both orthogonal and redundant frame decompositions,
which are implemented by such PR filter banks [156, 14].
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3.4 Different Approaches to Subband Adaptive
Filtering

Based on the subband decompositions introduced in the above section in the
context of filter bank theory, the application of subband schemes to adaptive
filtering is reviewed. The idea to perform adaptive filtering in frequency bands
goes back to a number of researchers in the 1980s like Kellermann [84, 85, 86, 134],
Furukawa and Yasukawa [48, 181], and Gilloire et al. [52, 53, 54], who mainly
targeted the echo problem in telecommunication lines caused by hybrids [134], or
the acoustic feedback problem in hands-free telephony [48, 84, 85].

The main obstacle in subband adaptive filtering is the fact that although filter
banks may be perfectly reconstructing (i.e. aliasing is cancelled at the output of
a synthesis bank), aliasing present in the subband signals constitutes a rather
serious problem for adaptive filters. The origin of the problem and suggested

solutions around it are the subject of this section.

3.4.1 Aliasing in the Decimation Stage

Sec. 3.1 has introduced two concepts that motivate the decimation of subband
signals: the band-limited nature of signals, and an orthogonal basis or redundant
frame decomposition of signals, where aliasing may be permitted in the subband
domain but is subsequently cancelled in the signal reconstruction of the synthesis
bank. However, a problem with perfect reconstruction does arise when decimated
subbands of different fullband signals have to be compared.

Filter banks are linear, but periodically time-varying systems due to up- and
downsampling. The alias terms introduced in the decimation stage in (3.2) man-
ifests as a deviation from the linear time-invariant (LTT) system behaviour and
can be interpreted as a distortion [117]. An exact analysis of this phenomenon in
the z-domain will be performed in Sec. 3.4.2 following the explanations by Gilloire
and Vetterli [54].

Information Leakage. An example of the effect caused by the cyclic time-

varying nature of a critical decimation stage is shown in Fig. 3.10 [135, 19].
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There, a near PR filter pair < hg, hy > has been used for a decomposition, with a
halfband lowpass hg[n| tabulated as filter 32C in [27] and hy[n] = hy[n] - cos(mn)
the according QMF highpass filter modulated by 7. If this filter pair is excited
by the lowpass filter itself, the subband signals are

zo[n] = hg[n] * holn] lowpass subband (3.41)
z1[n] = hy[n] * holn] highpass subband, (3.42)

as shown in Fig. 3.10(a) and (d), respectively. Depending on whether even or
odd samples are dropped in the decimation, two different patterns arise for each
signal zq[n| and z;[n].

An awkward situation results when the differently decimated signals are cor-
related. Cross-correlation between the two highpass bands in Fig. 3.10(e) and (f)
yields zero, while for the correlation between (b) and (c) signal components are
missing that have leaked into the decimated highpass band in (e). In an adaptive
system identification of an odd-numbered delay, where an adaptive filter would
be expected to try and identify these cross-correlations, minimization of the error
would completely fail at least in the highpass band, thus yielding an insufficient
solution.

Note that an interesting case of non-causality can occur in this identification
problem when the even-indexed xy[2n] in Fig. 3.10(c) forms the input signal to
an adaptive filter, and the filter is supposed to provide a close fit solution to a
desired signal consisting of the odd-indexed z[2n + 1] in (b). This non-causality
will be further discussed in Sec. 3.4.2.

3.4.2 Critically Decimated Filter Banks

Adaptive system identification in critically decimated subbands, i.e. the deci-
mation ratio matches the number of subbands, N = K, was first analysed by
Gilloire [52] and Gilloire and Vetterli [53, 54], leading to a modified subband
structure with cross-terms between adjacent bands. A review of their approach
is given below.

The following definitions describe subband signals associated with adaptive
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Figure 3.10: Example for “leakage” effect in the time-domain of subband sig-
nals due to the phase-variant nature of the decimation process, when excitation
matches the lowpass filter 32C [27] of a 2-channel bank; (a) lowpass band zq[n]
with (b) even and (c¢) odd decimation; (d) highpass band z[n] with (e) even and
(f) odd decimation.
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Figure 3.11: Adaptive identification in subbands.

filtering in subbands, i.e. filter input, filter output, desired and error signals as-

sociated with different subbands according to Fig. 3.11:

X(2) = [Xo(2) Xi(2) -+ Xa(2)]; (3.43)
Y(z) = [Yo(2) Yi(z) -+ V(o))" (3.44)
D(z) = [Do(2) Di(2) -+ Dra(2)]'; (3.45)
E(z) = [Eo(2) Bi(z) -+ Ex-1(2)] (3.46)

With these definitions, and using the modulation matrix of the analysis filter
bank, H,,, as defined in (3.21) with N = K for critical sampling and a diagonal

matrix
Sm(2) = diag{S(2), S(zWk),---S(zWg 1} (3.47)

which represents the modulated spectra of the system to be identified, S(z), the
desired subband signals yield

D(z) = %Hm(zl/K)Sm(zl/K)X(zl/K). (3.48)

Similarly, using a matrix W,,(2%)

WU,O(Z) W0,1 (Z) T WO,Kfl(z)

W1,0(Z) W1,1(Z) T WI,Kfl(Z)

W, (") = (3.49)

_WKA,U(Z) WK71,1(Z) WKA,KA(Z)
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of polynomial entries for the adaptive filters, the output signals of the adaptive

filters can be written as

1
Y(z2) = ?Wm(z)Hm(zl/K)X(zl/K). (3.50)
Therefore, the subband error signals are obtained from
1
B(2) = = (Hip(o/9)8 (1) = Wy () Hy (215)) - X (V) (351)

yielding a fullband error E(z) by reconstruction with the synthesis bank filters
G(z) described in (3.24),

E(z) = G'(2)E(") (3.52)
_ % GT(2) (H(2)Sm(2) = Win(zX)Ho(2)) - X(2).  (3.53)

To ensure E(z) — 0, several sets of solutions exist [86]. The strictest condition

to force E(z) toward zero is given by

W, (2" )H,,(2) = Hp(2)Sh(2) . (3.54)

3.4.2.1 Filter Banks with Perfect Reconstruction Property

The further analysis of the critically decimated subband adaptive filter system
in [54] assumes that both analysis and synthesis filter bank are derived from a
common prototype filter, and that this employed filter bank has near perfect

reconstruction property. Therefore,
H,,(2) - G (2) = 2z =1, (3.55)

holds [155], where the modulation matrix Gy, (2) of the synthesis filters is defined
analogous to H,,(z) in (3.21). Eqn. (3.54) then yields

W, (%) = 27 H,,(2)S,,(2)GT (2). (3.56)

The matrix W,,(2%), as defined in (3.49), is not of diagonal form, but has off-
diagonal polynomial entries W; ;(z), which under the above mention assumptions
can be derived as
K1
Wij(z) m 270> " Hy(zWE) - Gi(eWE) - S(zWE). (3.57)
k=0
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It is important to note, that this solution is potentially non-causal due to the

Er=t . Therefore, an appropriate delay has to be placed in the path of the

factor z
desired signal. If in case of acoustic echo cancellation this delay is met by the
acoustic transfer delay of the direct path between loudspeaker and microphone,
no additional actions are required. Further, from (3.57) it can be easily seen, that
the length L, of the adaptive terms has to be [54, 135, 88|

2-Ly,+ L,
[, = |2ttt 3.58
[ & ] (3.58)

where L is the length of the impulse response of the system to be identified, in
order to achieve satisfactory adaptation without truncation of the adapted model.
The extreme example given in Fig. 3.10 of Sec. 3.4.1 underlines this case when
trying to adaptively identify a unit delay in the lowpass band, where the input
signal is even indexed (c) and the desired signal odd-indexed (b), also highlighting
the non-causality inherently arising from the decimated setup and the transients
of the analysis filters.

If the analysis filters are of good quality and reasonably selective, then only
adjacent filters will overlap in the frequency domain, and the adaptive filter matrix
W (z) in (3.49) can be well approximated by a tridiagonal form. In the actual
implementation of the subband adaptive filter, this therefore requires adaptive
cross-terms between adjacent subbands in addition to the main adaptive terms,
as shown in Fig. 3.12.

The cross-terms W; j(z),i # j, can be factorized into a fixed and an adaptive
part as shown in Fig. 3.14, where the fixed part is the convolution of adjacent
analysis and synthesis filters decimated by a factor K [135, 53, 54]. The fixed
part I/Vi(jxed)(z) forms a narrow bandpass covering the transition band between
the synthesis filter of the source band and the analysis filter of the target band
[170, 135]. Therefore, adjustment of the adaptive term Wi(jdapt)(a) is restricted to
this spectral interval, yielding improved convergence [54] over the unconstrained
unfactorized case. With regard to the leakage interpretation of the critically
decimated PR case introduced in Sec. 3.4.1, the cross-terms can be interpreted as
a means to supply the subbands with information of the transition region which

had leaked into adjacent frequency bands.
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Figure 3.12: Two channel critically decimated filter bank with adaptive cross-
terms between adjacent bands according to [54] and delays in the desired paths
to correct for potential non-causality in (3.57) .

lowpass HO
highpass H1|

magnitude / [dB]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
normalized frequency Q / pi

Figure 3.13: Frequency response of a near perfectly reconstructing QMF filter
pair derived from the prototype 32C in [27].
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4

(fixed)

adgpt)
D= W)
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Figure 3.14: Factorization of a cross-term into a fixed part Wi(’?xed)(z) depending
on the employed analysis / synthesis filters, and an adaptive system dependent

part I/Vi(jdapt) (2).

A popular class of filter banks for this application are cosine modulated filter
banks [151] which are very common in subband coding and image processing
standards [56] as they produce real valued subband signals, suitable for subband
adaptive filtering [54, 135, 170]. Starting from a real valued lowpass prototype,

bandpass filters for analysis and synthesis bank are derived from

heln] = g.p[n].cos(%’(m%)(n—Lpgl)—%(—nk), (3.59)
aln] = 2-p[n]-cos<2%(k+%)(n—Lp2_1)+%(—1)k>, (3.60)

with n = 0(1)L,—1 and k& = 0(1)K/2—1 *. This particular choice of offsets in
the argument of the cosine is referred to as DCT-IV [142]. With careful choice of
the prototype p[n] — some design methods will be introduced in Sec. 4.5 — the
resulting filter bank forms a pseudo-QMF bank with near perfect reconstruction
property. i.e. both alias and phase distortion of the filter bank are minimized
and aliasing is cancelled only between adjacent subbands [151, 142]. Since a
stronger overlap of not only adjacent filters would also introduce a much higher
number of cross-terms in the SAF system, this inconvenient case is excluded
here. Cosine modulated filter banks can be implemented very efficiently using

polyphase implementations [151, 170].

4Different from standard notation in the literature [151, 142], here we refer to the DCT
modulated filter bank as having K/2 (instead of K) subbands covering the frequency interval
2 € [0;7]. The reason will be elaborated on page 64.
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Figure 3.15: Power symmetric IIR filters with small alias level due to narrow
transition region according to [148].

3.4.2.2 Critically Sampled Filter Banks with Minimized Alias Distor-

tion

To avoid the large spectral overlap created by FIR filter banks as e.g. seen with
the filter 32C from [27] in Fig. 3.13, IIR filters can be used for the filter banks,
generally leading to shorter filters and a sharper cut-off. The latter property is
exploited to reduce the spectral overlap to a minimum. Very narrow spectral
intervals, where no identification of the unknown system or suppression of the
error signal is possible, are ignored.

An elegant approach [146, 148] is to utilize coupled allpass filter sections to
implement IIR filters with a flat passband and a very narrow transition band.
There, the allpasses are designed such that for one halfband their behaviour is
identical while for the other halfband they exhibit a phase shift of = with respect
to each other. A lattice stage combines the two allpass outputs such that low-
and highpass filters result. An example shown in Fig. 3.15 shows the magnitude
responses of both low- and highpass filters. Polyphase implementations of this
filter bank type are possible [65], but are strictly limited to critically sampled

systems or systems involving integer oversampling ratios [160].
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Although the low- and highpass filters arising from the allpass / lattice con-
catenation are power symmetric [146], the phase is considerably distorted at the
band edges, which may not be too disruptive for speech signals which are relatively
insensitive to phase distortions, but could not be accepted for data communica-

tions.

3.4.2.3 Filter Banks with Spectral Loss / Distortion

In [147, 148], the power symmetric IIR filter bank approach with small spectral
overlap at band edges is further refined by inserting notch filters prior to per-
forming the analysis filter bank operations. The notch filters are designed to
remove the spectral intervals around the band edges which would otherwise be
insufficiently adapted due to aliasing. This can significantly reduce the residual
error power and positively influence the overall convergence by the thus lowered
MMSE. However, clearly the resulting filter bank system is now lossy, as spectral
gaps occur due to the additional notch filters.

The same result can be achieved by employing lossy filter banks with spectral
gaps at the band edges in first place. Explicit descriptions of how these gap filter
banks are constructed to comply with subband adaptive filtering can be found
in [181, 179, 180, 178]. Subband adaptive filtering in combination with IIR, filter
banks is described in e.g. [176].

Two comments should be made here. Firstly, the introduction of spectral
gaps, although they may be kept to a minimum by using IIR filters with sharp
transition bands, may reduce the perceived quality for speech applications and can
even be unacceptable for e.g. data communication system applications. Secondly,
the filter design task of non-overlapping transition bands does not imply that the
resulting filter banks will be completely alias free. There always is a residual alias
level due to the finite stop-band attenuation of filters, which sets limits to the
achievable MSE in the adaptation [172]; this will be described in more detail in
Sec. 5.2.
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3.4.3 Oversampled Filter Banks

Distinct from critically sampled subband structures a non-critical decimation
of the subband signals can avoid the aliasing problem, which gave rise to ei-
ther complicated inclusion of cross-terms or gap-filter banks with spectral loss in
Sec. 3.4.2. In terms of the information leakage interpretation of the decimation
stage in Sec. 3.4.1, the redundancy introduced by non-critical decimation will be
located around the band-edges, such that in every band enough information is
available to succeed in adaptation. In the following, we want to briefly discuss
subband adaptive filter structures based on oversampled near PR filter banks.
From the introduction of the sampling theorem for bandpass signals in Sec. 3.1.2,
we distinguish between complex and real valued filter banks. More detail on some

underlying techniques will be highlighted in Chap. 4.

3.4.3.1 Complex Valued Filter Banks

If the bandpass filters in Fig. 3.1 are analytic, and the input signal real valued,
the output of the filters will also be analytic. Therefore, decimation of the sub-
band signals can usually be applied down to any rate above the critical sampling
frequency °. This means a decimation factor N < K is employed, whereby K
is the number of subbands covering the interval Q € [0;27]. Usually some of
these subbands will be complex conjugate and will not need to be processed as
they carry redundant information, depending on how the bandpass filters in the
analysis and synthesis filter bank are arranged. While other designs are possible,
in the following we will concentrate on uniform, modulated filter banks, as they

offer particularly efficient methods of implementation.

DFT Modulated Filter Banks. A simple organization of bandpass filters
hi[n] is given by DFT modulation of a lowpass filter by [27, 151, 29|

hi[n] = p[n] - R = 0(1)L,—1 and k=0(1)K—-1, (3.61)

where L, is the length of a prototype lowpass filter p[n| with a passband width
B = 2r/K. For an even number K, there result K/2 + 1 frequency bands to

5This also holds for complex valued filters and signals in the sense of Sec. 3.1.2.1.



CHAPTER 3. FILTER BANKS AND SUBBAND STRUCTURES ... 63

H, ()|
(@) N
\\‘ | /IV\Q
T o
H (P,
)
\:{’7\\‘ X X X X X X X
M%\

77777 -
! AN
! V[
Vi |1 v
v
0 3 i 3
[ s
I AR
v R ‘
\

Figure 3.16: Arrangement of bandpass filters for K = 8 for (a) DFT modulated
filter bank and (b) GDFT modulated filter bank with &y = 1/2 ; (¢) DCT modu-
lated filter bank; shaded spectra are redundant and are not required to process.

be processed. An example for K = 8 is sketched in Fig. 3.16(a). Obviously, the
lowest and highest band are only real valued, and decimation can be performed
for all subbands by a factor of N < K. If N is chosen sufficiently small, no
spectral overlap of image spectra as stated in (3.2) will occur, and the adaptive
filter matrix of the SAF system shown in Fig. 3.11 takes on a diagonal form
[86, 50, 3].

GDFT Modulated Filter Banks. A generalized DFT (GDFT) transform
[27] can also be employed to modulate a prototype filter p[n],

hin] = p[n] - (K EHho)nino)+0) o — (1)L,—1 and k= 0(1)K—1,
(3.62)
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where offsets ky and ng for frequency and time indices, respectively, and a phase

offset @, are introduced. For even K, the frequency interval Q € [0;7] will be

covered by exactly K /2 subband signals, while the rest is complex conjugate as de-

scribed by an example in Fig. 3.16(b). The case ko = 3 is also sometimes referred

to as “odd-stacked” DFT [12], in contrast to an “even-stacked” DFT in (3.61).
L1

Further note that insertion of a suitable parameter set {ko= %; nog=—"25—;0p =

T(—1)*} (3.62) represents the analytic expansion of a DCT-IV pseudo-QMF mod-
ulated filter bank for critical sampling as described in (3.59) [166]. Vice versa, a
real valued DCT modulated filter bank can be derived from a GDFT filter bank

by adding complex conjugate pairs of filters, i.e.
he[n] + hx—1-k[n] = he[n] + hi[n] = 2-Re{hi[n]} (3.63)

and the result agrees with (3.59).

Here a comment on the use of the number K associated with the number of
channels in a filter bank seems appropriate since its use is different from common
notation. As the filter banks discussed in this thesis are modulated, we define K
based on the passband width B = 2T of the prototype filter P(e/?). Similarly, N
is defined as the total bandwidth of P(e/?), i.e. including the transition bands.
It follows that

e for complex valued filter banks as in Fig. 3.16(a) and (b) the interval Q €
[0; 27] is covered by K subbands which can be decimated by N. For real
input, some bands are redundant. In case of the GDFT filter bank in
Fig. 3.16(b), only K /2 subbands need to be processed.

e For real valued filter banks as in Fig. 3.16(c), there are K /2 subbands,
which can be decimated by N/2 .

For the following discussions, it is easiest to realize that for any filter bank, real or
complex, the number K /2 refers to the number of subbands completely covering

the frequency interval Q2 € [0;7].

6Decimation usually cannot be directly applied as otherwise bandpass sampling will lead to
spectral overlap. Intermediate steps, like modulation of the subbands into the baseband prior
to decimation, may be required.
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With respect to implementation, complex modulated oversampled filter banks
can be efficiently calculated either by frequency domain implementation of the
bandpass filters [1, 90] using the overlap-add method [27] as discussed in Sec. 2.6.1
or via a polyphase representation. A somehow common misconception is that
polyphase implementations are restricted to integer oversampling ratios % eN
[27, 90]. Therefore, for polyphase implementations integer oversampling ratios
are employed (e.g. K/N = 2) [3, 106, 38|, which is less efficient and has poorer
properties in terms of whitening the subband signals than choosing N closer to
K, potentially resulting in reduced convergence rate as will be demonstrated in
Chaps. 4, 5 and 6. If the main task is to efficiently process subband signals, the
decimation ratio N has to chosen close to K, and preferred method in the litera-
ture are frequency domain approaches rather than polyphase implementations of
the filter banks [1, 90, 38|.

In a number of publications non-integer oversampling ratios are used [86, 129,
87, 32, 33], where the focus is fully concentrated on efficient subband processing

or convergence speed issues and but no statements are made regarding the actual

filter bank implementation.

3.4.3.2 Real Valued Filter Banks

For real valued signals, sampling of bandpass signals is restricted by the band-
width and band position according to Fig. 3.6. It can be verified, that decimation
by a factor of 1 < N < K will produce spectral overlap of images in at least one
of the subband signals. Even for integer oversampling ratios, although sometimes
applied, aliasing occurs at some of the band edges, as the sampling points in
Fig. 3.6 will partly fall onto the margins of “acceptable” areas. In the following,
two approaches of real valued oversampled subband structures for adaptive filter-
ing are reviewed, the first one based on a modulation of each frequency band into
the baseband prior to decimation, the second one using non-uniform filter banks,
whereby band-position and bandwidth of the single filters are chosen such as to

comply with Fig. 3.6.
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Figure 3.17: (a) Using SSB demodulation by means of quadrature modulation
for the kth branch of an analysis filter bank [27, 159].

Single Sideband Modulation Single sideband modulation (SSB) by means
of quadrature modulation, also know as Weaver method [88], can be employed
to construct oversampled real-valued filter banks. The analysis side is performed
as SSB demodulation as depicted in Fig. 3.17 by modulating different spectral
intervals into the baseband, where a lowpass filter is applied to filter out higher
frequency components above 2 = 7/K for the kth subband signal prior to dec-
imation [27, 159].  Similarly, the branches of the synthesis filter bank can be
constructed from an SSB modulation shown in Fig. 3.18. If the decimation factor
is chosen such that the images of the downsampled subband signals according to
(3.2) do not overlap, these filter bank implementations can be used to perform
subband adaptive filtering free of cross-terms [21, 95, 19, 88]. Note that in accor-
dance with the comments on page 64, the decimation factor is here referred to as
N/2.

A simple explanation of how the Weaver method works can be given when
interpreting the normal and quadrature components (i.e. the two branches in
Figs. 3.17 and 3.18) as real and imaginary part of a complex signal. Then, as
shown in Fig. 3.19(a)—(c), the analysis consists of a complex modulation of the
band of interest into the baseband, where it is filtered out by H(e’?) e—o h[n]
from the remaining signal components. The second modulation lifts the signal

up in frequency by 7/N. By a real operation, the spectrum is symmetrized with



CHAPTER 3. FILTER BANKS AND SUBBAND STRUCTURES ... 67

cos(%n) cos(2En)
é{) glnl é@
g G
@ glnl @
sin(%n) sin(2rEn)

Figure 3.18: (a) Using SSB modulation by means of quadrature modulation for
the kth branch of a synthesis filter bank [27, 159].
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Figure 3.19: (a) —(c) SSB demodulation as analysis filter of the kth subband; (d)
— (f) SSB modulation as kth synthesis filter operation in a filter bank.
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respect to = 0, and a real valued baseband signal of bandwidth B = 4r/N
is obtained, which may now be decimated by a factor N/2. The SSB synthesis
by Weaver can be performed by inverting the analysis process as illustrated in
Fig. 3.19(d)—(f). After modulating the spectrum of interest into the baseband
in Fig. 3.19(e), all image spectra introduced in the expander are removed by the
lowpass filter G(e/?) #—o g[n]. Finally, complex modulation by e/>™*/%X and a
real operation to restore a symmetric spectrum yield the original spectrum in the
kth frequency band of Fig. 3.19(a).

Real valued oversampled subband signals based on an SSB modulation concept
can be efficiently implemented by a modification of DFT/GDFT filter banks [27,
159, 167], which will be further discussed in the context of efficient factorizations
of oversampled GDFT polyphase filter banks in Sec. 4.3.

As all filtering is either performed with or derived by modulation from a
single prototype lowpass filter p[n] of bandwidth 27 /N, the resulting filter bank

implementation is uniform.

Non-Uniform Filter Banks Dropping the restriction of uniform filter banks,
band-position, bandwidth, and decimation factor of the corresponding subband
can be selected independently for every bandpass filter in analysis and synthesis
bank to comply with the criteria imposed by Fig. 3.6 and (3.10) [67, 71]. An
example is given in Fig. 3.20, where different from Fig. 3.13, the PSD of the
subband signals produced by lowpass Hy(e’?) and highpass filter H,(e’?) do not
overlap when decimated by factor 2, while the resulting gap is filled by a third
band, which can be downsampled by a factor 3 with no spectral overlap occurring.
A similar approach is described in [133], where the additional auxiliary band is
not decimated and therefore computational efficiency of subband processing is
not fully exploited. The subband approach introduced by [71] can be extended
to any number of channels, whereby some implementational efficiency can be
reached by constructing the filter bank from a number of modulated prototype
filters [70]. However when used for subband adaptive filter applications [68, 70]
on a DSP, the presence of different sampling rates and a number of prototype

filters can result in inconvenient implementations, which are costlier than fully
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Figure 3.20: Example for a non-uniform oversampled real valued filter bank ac-
cording to [67, 71]; the subband signals produced by the three filters Hj(e’?) are
each decimated by different factors N.

modulated filter banks [160].

Both SSB modulated and non-uniform filter banks can be designed to be near
PR. An elegant link between non-uniform filter banks as mention above and frame
theory is made in [70] and allows the of design filter banks with different filters in
analysis and synthesis bank. For the SSB case, we will return to the PR propery
in Sec. 4.5.

3.5 Concluding Remarks

This chapter has introduced filter banks, their description and analysis methods,
and reviewed their application to subband adaptive filter structures. Of all the
different types of subband adaptive filter system discussed, three properties are

believed to be of key importance:

Perfect Reconstruction. Generally, filter banks for subband adaptive filtering
should posses PR or near PR property, as otherwise applications are limited

to areas insensitive to distortion, spectral loss, or inadequate modelling.

Aliasing. Aliasing in the subband signals has to be suppressed as far as possible

in order to guarantee satisfactory performance of the adaptive system.
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Efficient Implementation. Subband processing is performed to save compu-
tations. Therefore, firstly subband signals should be sampled as close as
possible at the critical rate, N — K. Secondly, analysis and synthesis filter
bank operations should be performed with as few computations as possible.
This is the more important, since the computational complexity of the orig-
inal processing task usually decreases with the number of subbands, while

the cost involved in performing analysis and synthesis operations increases.

Although the demand for near PR property of the employed filter banks may
seem harsh for some applications, it is useful to have, and as will be seen later
in Chap. 5 can be relaxed and traded off against other properties of the subband
adaptive system such as the overall delay imposed on signals.

In the following two chapters, we will introduce and analyse a very efficient
implementation of complex oversampled GDFT filter banks based on a gener-
alization of the polyphase concept introduced in Sec. 3.3.2, and apply them for
subband adaptive filter structures. In terms of efficiency, the relation and trade-
off between critical and oversampled non-critical implementations, and filter bank
and subband calculations using complex and real valued arithmetic will be of par-

ticular interest and closely researched.



Chapter 4

Oversampled GDFT Filter Banks

This chapter concentrates on the implementation and design of oversampled gen-
eralized DFT (GDFT) filter banks, beginning with a view of their general prop-
erties in Sec. 4.1. In Sec. 4.2 an extension and factorization of the polyphase
description will then produce a highly efficient implementation of this type of
filter bank producing complex valued subband signals. A restructuring of the
Weaver method for SSB modulated real valued filter banks then leads to a mod-
ified GDFT filter bank described in Sec. 4.3. Sec. 4.4 discusses real and complex
valued subband systems in terms of computational complexity of both filter banks
and subband processing. Finally, Sec. 4.5 introduces design methods for complex
oversampled GDF'T filter banks which comply with the intended application to
subband adaptive filtering.

4.1 Complex Valued GDFT Filter Banks

In Sec. 3.4.3.1 GDFT filter banks were briefly addressed. Here, a more detailed
account of the modulation of a prototype filter and the properties of the resulting

filter bank will be given.

71
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Figure 4.1: Analysis and synthesis branch of a K-channel filter bank with sub-
bands decimated by N.

4.1.1 GDFT Modulation

The general structure of a filter bank is shown in Fig. 4.1, consisting of an analysis
and a synthesis bank. The analysis bank decomposes a signal z[n] into K sub-
bands, each produced by a branch Hy(z) of the analysis bank. After decimation
and expansion by a factor NN, the fullband signal is reconstructed from the sub-
bands in the synthesis bank by filtering with filters Gy (2) followed by summation.
For modulated filter banks, both analysis and synthesis filters, hgx[n] and gx[n],
can be derived from a prototype filter by modulation. In the case of GDFT filter
banks, the filter components of the filter bank are derived from a real valued FIR
prototype lowpass filter p[n] of even length L, by modulation with a generalized
discrete Fourier transform (GDFT)

heln] = ten -pln] ,  tp, = el K kHho)nino) k,n €N (4.1)

The term generalized DFT [27] stems from offsets ky and ng applied to frequency
and time indices, which are responsible for important properties of the modulated
filter bank such as the band-position of the subbands and linear phase of the
modulated filters.

4.1.1.1 Bandpositions

The frequency offset kg is responsible for the positioning of the modulated band-
pass filters hi[n] along the frequency axis. In Sec. 3.4.3.1 and Fig. 3.16 the effect

of this parameter has been demonstrated, while for a full review the reader is
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Figure 4.2: (a) Real valued prototype lowpass filter P(e/) with bandwidth B =
27/16; (b) reduced modulated GDFT filter bank derived from the prototype
lowpass filter P(e’!) with K/2 = 8 filters covering the frequency range Q = [0; 7.

referred to [27]. With the choice of ky = 1/2 for even K, a convenient situation
arises, as for real input signals z[n] only K/2 subbands need to be processed,
since the remaining subbands are complex conjugate versions of these. On the
synthesis side, the K/2 unprocessed subbands can be restored by a real operation
Re{-}. However, other constellations are possible and in use [50].

An example for the spectral coverage of the described reduced GDFT modula-
tion is shown in Fig. 4.2. A lowpass filter with bandwidth B = 27/16 depicted in
Fig. 4.2(a) is modulated according to (4.1) with kg = 1, K = 16, with the result
given in Fig. 4.2(b). This reduced filter bank with only K/2 subbands has signifi-
cant bearing on the computational efficiency of processing complex subbands, as
will be further highlighted in Sec. 4.4.
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4.1.1.2 Linear Phase

Linear phase (or constant group delay) as a property of a filter ensures that the
filter output is not dispersed. Although any non-linear phase filter in the analysis
bank could be compensated in the synthesis by filtering with the time reversed
filter, linear phase is usually required for the filters hy[n] [31, 157].

In the time domain linear phase corresponds to a symmetry of the impulse
response for real valued FIR filters. In the z-domain a linear phase filter possesses
only zeros on the unit circle, |§;| = 1, or pairs of zeros (;1,&;2) with the same
phase but reciprocal magnitudes, i.e. &1 = 1/&;:

R | CERERR) | ((EOECE N E)

& j &

Clearly for real valued p[n], all complex valued zeros have to be complemented
by complex conjugate zeros.
A modulation with a general complex exponential h[n] = e/(®"*+9) . p[n] results
in
. 1 .
= Ael? H — el H(l — &l (1 - g—emz_l), (4.3)
; J
j
and therefore only rotates the zero locations by an angle ¢, but does not change
the linear phase condition of the overall filter. However, with the choice
L,—1
ng = —”T (4.4)
and starting from a real valued linear phase prototype p[n], both the real and
imaginary part of hy[n] will separately satisfy linear phase conditions, solely
through the linear phase of p[n] and the symmetry of the modulation sequence
tr[n] to the filter delay (L, —1)/2.

Example. Fig. 4.3 shows the impulse response and zero-plot of a real valued
linear phase lowpass filter p[n] with bandwidth B = 7 tabulated as 32C in [27]

37 and a time offset ny

with length L, = 32. An example for a modulation by <
according to (4.4) results in a modulated filter h[n], which is characterized in

terms of its zero-plot in Fig. 4.3(b) and real and imaginary parts of its impulse,
Re{h[n]} and Im{h[n|} in Fig. 4.3(d) and (e).
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Figure 4.3: Complex GDFT modulation of a real valued linear phase filter p[n]

(32C from [27]) with offset ng according to (4.4): (a) zeros of P(z); (b) zeros of

H(2); (c) axial symmetric impulse response of p[n]; (d) axial symmetric impulse
response Re{h[n|}; (e) point symmetric impulse response Im{h[n]}.
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Figure 4.4: Example for spectra after decimation and expansion: (a) 3rd bandpass
analysis filter Ho(e’?) from Fig. 4.2(b); (b) PSD of decimated subband signal as
reaction to white noise excitation; (¢) PSD of expanded subband signals with the
relevant spectral part filtered out by 3rd synthesis filter Go(e/%).

4.1.1.3 Decimation of Subband Signals

Assume that the prototype filter P(e’?) &—o p[n] has a total bandwidth including
the transition bands of 2r/N. The complex bandpass filters in the filter bank
obtained by modulation will posses the same bandwidth. Therefore according to
Sec. 3.1.2.1 the subband signals can be decimated by a factor N < K. Fig. 4.4(a)
shows the third bandpass of the GDFT modulation example in Fig. 4.2(b), and
the resulting power spectral density (PSD) of the subband signals for white noise
input after decimation by a factor N = 14 in Fig. 4.4(b). Clearly, there is no
spectral overlap occurring. After expansion in the synthesis bank, Fig. 4.4(c)

indicates that the relevant spectral signal part can be recovered by a synthesis
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filter with characteristics similar to Hy(e’?). How the synthesis filter can be
chosen to allow for perfect reconstruction will be discussed in Sec. 4.1.3 based on

conditions of the polyphase description of the analysis filter bank.

4.1.2 Polyphase Representation

With the kth analysis filter written in the z-domain in terms of its N polyphase
components Hy;(z), j = 0(1)N — 1,

N-1

Hy(z) =Y 27 Hy(2") (4.5)

=0
where the Hy ,(2) refer to the type-1 polyphase components described in (3.26),

a matrix H(z) with polynomial entries can be created for the analysis filter bank:

HU\O(Z) H0|1(Z) HO\Nfl(Z)
H(z) = HI?(z) Hinle) HlN:I(z) . (4.6)
i HK—1|0(Z) HK—1|1(Z) HK—1\N—1(Z) ]

Together with a polyphase decomposition X (z) = Z;.V;OI 279X;(zN) of the input
signal X (z) e—o z[n]| analogue to (4.5),

XU(Z)
Xi(2) T
X(z) = _ , Xi(z) &—o x;[n] = z[nN +i], i=0(1)N — 1.
| Xale)
(4.7)
the analysis bank operation can be expressed as
Y(z) = H(z)- X(2) (4.8)

where Y (z) € (C(Ig)Xl contains the K subband signals.
The filters in the synthesis bank can be represented by the type-2 polyphase
description (3.27),

N-1
ZfN+1+]G \k N) (49)

j=0

<.
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to form a polyphase matrix

- Gop(2)  Goplz) -+ Gor-1(2) _
G(2) = G1|?(z) Giji(2) | GuK‘—l(Z’) (4.10)
I GN.IO(Z’) Gy-in(z) -+ GN1|;(1(Z) |
Thus, the synthesis filter bank operation can now be expressed as
X =G(2)Y(2) = G(2)H(2) X (4.11)
with
- ):(O(Z) -
X(z) = Xlz(z) , (4.12)
I )A(N-l(z) ]

such that the reconstructed signal X(z) can be retrieved by interleaving its

polyphase components contained in X ,

N-1
X(z2) = Z 7VHHIX(2). (4.13)

§=0
Conditions under which X (2) is only a delayed version of the input signal have

been subject of Sec. 3.3.3 and will be further reviewed in the following section.

4.1.3 Perfect Reconstruction and Gabor Frames

For perfect reconstruction (PR) such that the reconstructed signal X (z) is iden-
tical to X (z) apart from a delay, Sec. 3.3.3 introduced a general condition on the
analysis and synthesis polyphase matrices H(z) and G(z). Allowing for synthesis
matrices with stable but not necessarily causal entries, the existence of a matrix
G(z) fulfilling

G(z)H(z) = ceC, (4.14)
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ensures that the filter bank implements a frame operator [30], which is identical
to the PR requirement in (3.36). Of particular interest is the special case where

H(z) is paraunitary, i.e.
H(z)H(z) =cI ceC, (4.15)

as the corresponding frame expansion is tight [29, 30]. As explained in Sec. 3.2.2,
a tight frame guarantees an a priori known, fixed energy translation between the
fullband and its subband samples similar to Parseval’s theorem for orthonormal
transforms and signal decompositions. This property has importance for the
derivation of performance limitations of subband adaptive filters with respect to
the employed filter banks in Sec. 5.3 and tap-assignment strategies discussed in
Chap. 6.

4.1.3.1 Gabor Frames and Properties

Gabor frames perform an expansion of a signal by expressing it in terms of win-
dowed complex exponentials [13, 41], offering a uniform resolution in the time-
frequency plane. In the discrete case [103] kernels of this expansion are therefore
identical to the definition of the filters in the presented GDFT filter bank in (4.1).

Generally, due to their redundancy frames posses superior robustness against
noise interference in the expansion domain (quantization noise, channel interfer-
ence) over basis representations of signals [28, 11], which can be exploited for
coding or data analysis.

Efficient schemes for computing Gabor frame expansions are reported in [47,
104, 12], however only for integer OSRs K/N € N. Therefore, fast schemes
for computing GDFT filter banks, which will be developed below in Sec. 4.2,
could also be employed for fast computational schemes to compute certain Gabor

expansions.

4.1.3.2 Selection of Synthesis Filters

For oversampled filter banks, usually an infinite number of polyphase synthesis

matrices G(z) exists fulfilling (4.14). One of these solutions is the pseudo-inverse
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of H(z) [29]

G(z) = (I:I(Z)H(Z)) H(z) (4.16)

which is particularly interesting since the resulting synthesis filters have minimum
[y norm. Therefore generally lowest sensitivity to noise interference in the subband
domain is achieved. If the analysis prototype filter is designed such that the
analysis polyphase matrix H(z) is paraunitary, the minimum norm solution is
the synthesis polyphase matrix being identical to the parahermitian of H(z),
G(z) = H(z). Thus, the synthesis filters will be time-reversed, complex conjugate

copies of the corresponding analysis filters,
gr[n] = hy[n] = B[L,—1—n]. (4.17)

If the GDFT transform is selected with a time off-set ny according to (4.4), the
symmetries of the real and imaginary parts of hg[n] as discussed in Sec. 4.1.1.2

result in
gr[n] = hi[n]. (4.18)

This simple choice has two favourable advantages. First, the filter bank system
represents a tight frame operator. Secondly, the implementation on a DSP be-
comes less memory demanding, since only one prototype filter needs to be stored,

from which all filters in both analysis and synthesis bank are derived.

4.1.3.3 Reduced Filter Bank for Real Valued Input

For real input signals z[n], an efficient GDFT filter bank implementation omits
K /2 subbands. Instead, missing subbands can be substituted on the synthesis
side by a real operation Re{-},

X(2) = Re {H,() - Y, (2)} = Re {FL.(2) - H.(2) - X(2) } (4.19)
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The subscript r refers to a reduced matrix representation including only the upper

K /2 rows of the analysis polyphase matrix H(z),

[ H, (2)

g, ] , for L, even;
H(z) = { LT (4.20)

H,
(2) . for L, odd.
JxH;(2)

where Jj is a reverse identity matrix flipping the rows of H,(z) upside down.

Since JxJ g = I it is easy to confirm the validity of (4.19).

4.2 Efficient Filter Bank Implementation

To efficiently implement oversampled GDFT filter banks with real valued input
signals, two steps have already been taken with the omission of K/2 redundant
complex conjugate subbands and the polyphase representation, which avoids com-
puting filter bank output samples that will be decimated afterwards. In this
section, we will further elaborate on the polyphase matrix H(z) to suppress cal-
culations common to different branches of the filter bank by factorization of H(2)
into a real valued polyphase network containing only components of the proto-
type lowpass filter and a transform matrix, which can be efficiently calculated

using FFT algorithms.

4.2.1 Polyphase Factorization

Since all filters in the analysis and synthesis filter bank are derived by modulation
from one single prototype filter p[n], the task in this section is to exploit any
calculations common to different branches of the filter bank.

The way the coefficients of the analysis filters emerge by modulation from
the coefficients of the prototype is illustrated in Fig. 4.5. The coefficients hi[n],
k = 0(1)K —1, in the nth column are all derived from the same coefficient p[n]
by multiplication with the nth column vector t, = [ton, tin, - tx/2-1,a]" Of &
GDFT matrix. Instead of multiplying each coefficient of p[n] with a transform
vector t,,, the periodicity of the GDFT transform of 2K can be exploited to create
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Figure 4.5: Factorization of the polyphase matrix: circles mark the coefficients
belonging to the first polyphase components of the analysis filters; shaded areas
indicate the periodicity of the GDFT transform, i.e. all coefficients in this area
emerge from the prototype filter multiplied by the same transform coefficient
vector.

sets of coefficients of p[n] which will be multiplied by identical transform vectors.
These coefficient sets are the 2K polyphase components of p[n]. In Fig. 4.5, the
periodicity of the transform is indicated by under-laid shaded areas, where the
coefficients {p[0], p[2K], p[4K], ---} all are multiplied by the same vector ty to
create the first of 2K polyphase coefficients of the analysis filters hy[n)].

However, for the polyphase representation in Sec. 4.1.2, the filters hi[n] need
to be expressed in terms of their N polyphase components. In the critically
sampled case N = K, this periodicity matches nicely with the arrangement of
the polyphase components of the analysis polyphase matrix H(z), such that H(z)
can be expressed as a matrix product between a polyphase network consisting
of the polyphase components of the prototype filter p[n| and a transform matrix
performing a complex rotation on the output of the polyphase network [27, 160,
151].

For the general oversampled case N < K, we need to have the correct
polyphase representation of the hy[n| and exploit the transform periodicity. It

is therefore necessary to divide p[n| into M polyphase components, where M is
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the least common multiple (lem) of the decimation ratio N and the transform

periodicity 2K,
M =lem(2K,N) € N. (4.21)

Further, we define M = J-2K =L-N, J,L € Z. In the following, it will first
be attempted to express the polyphase matrix H(z) from (4.5) in terms of M
polyphase components, which will then enable the exploitation of the transform
periodicity.

The polyphase entries of H(z) can be written in terms of the M polyphase
components of the analysis filters Hy(z), whereby the superscript indicates the

number of polyphase components in the referring representation

L—-1 L—-1

kln Z k:|lN+n (") = 2 N s Piven(27) (4.22)
=0 =0

and the polyphase components H,gfl/[]\),Jrn(zL) have been written in terms of their

modulation from the M polyphase components of the prototype filter P(z),

M-1

P(z) =Y z"Pu(z") . (4.23)

m=0

Using the expansion in (4.22), the kth component of the vector equation (4.8)

describing the analysis filter bank can be reformulated as

N-1 N—1TL-1
N —
Yk(Z) = ZH}EM)(Z) Zz lHk|lN+n )Xn(z) (4_24)
n=0 n=0 [=0
N-1L-1
- Zztkmm z u\%r)n( B Xa(z) (4.25)
n=0 [=0

Now the analysis filter bank, decimated by a factor NV, is fully expressed in terms
of the polyphase components of the prototype filter and the transform coefficients
employed for modulation. Rearranging the M = LN products in (4.25) to order
them in terms of the M prototype filter polyphase components yields

Z) = Z tk,m : F)7S1 ) Lm/NJ)( mmod(N )(Z) s (426)
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which can also be verified by inspection of Fig. 4.5. Considering all K/2 subband

signals in (4.8), (4.26) can be written in matrix notation
Y(z2) = TIGDFT,r : P,(ZL) 'XI(Z) ) (4.27)

where Tppr, € CX/2M is a GDFT transform matrix, P’(2") a diagonal matrix

containing the M polyphase components of the prototype filter,
PI(ZL) = diag{PO(ZL)a Pl(ZL)a Tt PM—l(ZL)} ’ (428)

and X'(z) is an assembly of delayed input polyphase vectors,

PN N S A
X'(2) = ZI:X(Z) - ZI:IN X(2) . (4.29)
I Z_L-HX(Z) | I Z_L+1IN |

Thus, with (4.27) a factorization into a network of prototype polyphase filters
and a GDFT modulation matrix has been established.
It remains to cut any redundancy in the transform matrix Tqppr,, which

contains J repetitions of the fundamental transform period, by writing

TIGDFT,T - [T,(I}DFT,r ) e TIéDFT,r] = T,(I}DFT,r [IQK IQK] ) (4-30)

where the matrix T¢ppp, € CX/#2K defines the upper half of a GDFT matrix,

to0 o ce toor—1
1,0 t11 e t1 oK -1
T,éDFT,r = : : . : ) (4-31)
| txp2-10 trpp-1n oo tRj2-12K-1 |

containing in its rows the fundamental and harmonics of the complex exponential
used in the modulation of the filter bank. The structure of the transform matrix
is such that the right half of the matrix is identical to the left half apart from a
sign change, and the possibility of writing

Téorr, = Tapery - Ik —Ik] (4.32)
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can easily be verified for the coefficients #;, = eI T (k+1/2)(n=(Lp=1)/2) " The con-
densed expression of the transform is now expressed in a matrix Tgppr, €
CK/2*K " With the modifications in (4.29), (4.30), and (4.32) we can define a

compact notation

P(z) = Ix —Ix...Ig]| - diag{Py("), P (z"),... Pu_1(2")} -

Z_L+1IN

(4.33)

for the prototype filter polyphase matrix. Using this generally sparse matrix
P(z) € (C(Ii)XN containing M non-zero entries with polyphase components of the
prototype filter, it is now possible to formulate a dense matrix notation for the

reduced polyphase analysis matrix
Hr (,Z) == TGDFT,T . P(Z) . (434)

A similar result for oversampled DFT filter banks is stated by Cvetkovi¢ and
Vetterli [30]. An approach omitting polyphase considerations is given by Wack-
ersreuther [160], who, based on time domain derivations, reaches a related com-
putational scheme which shifts NV samples at a time into the prototype filter, and

rearranges and rotates the output of N filter sections.

Synthesis. With the convenient choice for selection of the synthesis filters dis-
cussed in Sec. 4.1.3.2, the factorization of the polyphase synthesis matrix G(z)
can be readily based on (4.34),

G, (=) = F,(2) = P() - Thippr,- (4.35)

Therefore, using the factorizations of the polyphase analysis matrix, the analysis—

synthesis operation in (4.19) can now be written as
X(2) = P(2) - Re{ Téippr, Tavrr, P(2) X (2) } (4.36)

where it is advantageous to perform the real operation Re{-} prior to entering the

real valued polyphase network on the synthesis side. The computational scheme
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Figure 4.6: Computational scheme for analysis—synthesis operation with factor-
ized polyphase matrices; discarded matrix parts refer to omitted subbands in
accordance with Sec. 4.1.3.3.

is illustrated in Fig. 4.6. One particular appeal of the factorized representation
lies in the ability to perform the filter operations in the polyphase network using
entirely real valued arithmetic, while complex valued calculations are restricted
to the GDFT transforms only.

Modified Prototype. Based on a decomposition of the prototype filter P(2)
into 2K polyphase components

2K—-1

=Y PP (4.37)
k=0

whereby the superscript -2%) implies the number of polyphases, a modified pro-
totype filter ji[n] o—e P(e/?) can be defined

e — 2K — — 2K
P(z) =Y 2 FplH) KZ EpRR(2K) (4.38)

This modification divides the impulse response of the prototype filter into blocks
of K samples, and inverts the sign in every second block. The motivation for
this action is that if analysis and synthesis filters, hi[n] and gx[n], are GDFT
modulated versions of the modified prototype p[n|, the transform periodicity has
been cut to K, which can be verified by inspection of Fig. 4.5. By the virtual

reduction of the transform periodicity, the least common multiple defined in (4.21)
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can now be set to

V)

M =1em(K, N), (4.39)

which may potentially be smaller than M by a factor of two, and thus may result

in less indexing and book-keeping, since

L
O T A S 2y

P(z) = [IK...IK]-dlag{Pg(z ), P2, . Py (2 )}- | (4.40)
Z_Z—HIN

with L = M /N is identical to (4.33) but carries M polyphase components of p[n]
instead of M > M components of p[n].

4.2.2 Transform Implementation

In addition to the factorization of the polyphase analysis and synthesis matrices
and the resulting computational savings, this sections derives a further factoriza-
tion of the GDFT transform matrix Tgppr, to make use of efficient numerical

tools like the fast Fourier transform (FFT).

GDFT Matrix. For ease of presentation and later reference, first a factoriza-

tion of an unreduced GDFT matrix Tgppr € CK*2K | holding elements

35 (k+ko)(n+no) _ i kno | piFEkn i3 ko(ntno)

tk,n = €
DFET
with k=0(1)K -1, n=0(1)2K -1 |, (4.41)

is demonstrated. One way to implement this in matrix notations is given by
Teprr =Dy - T - Dy (4.42)
whereby Dy and D, are diagonal matrices

D, = /&, (4.43)
D, — diag{eﬂ'%%(”%)} € C2KX2K = (1)2K — 1 (4.44)
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and T € CK*2K with elements #, = e/ Tkn T can be expressed in terms of a

K-point DFT matrix Tppr,

T = [Tppr , Torr] = Torr - [Ix Ix] - (4.45)

The matrix DY, € C?5*2K in (4.44) can be shown to take the form

D, 0
D,=| : (4.46)
0 -D,

where Dy € CE*E only covers the first K diagonal elements of D). Thus, a

factorization of the original GDFT matrix
Teprr = D1 TpprDs [Ix —1x] (4.47)

is yielded.

Reduced GDFT Matrix. The above results can be transfered to the reduced
GDFT matrix in (4.34) which arose from the omission of K/2 subband signals in

the case of real valued input signals and can be denoted as
Taprry = D1,y - Topry - Do (4.48)

with the reduced phase correcting matrix D, , = 6]'2?’*197201[(/2 and the upper half
of a K-point DFT matrix Tppr,. Savings arise, as the latter may be calculated
using standard FFT algorithms [20]. Even though half the solution of this K-
point FFT will be discarded, the calculation can present a major reduction in

computations over performing matrix multiplications in either (4.34) or (4.48).

4.2.3 Computational Complexity

Applying both polyphase and transform factorization introduced in Secs. 4.2.1
and 4.2.2, an analysis filter bank operation can be expressed by
‘P(2)-X(2) . (4.49)

- D,
A
2K 4Klog, K 2K Ly

Y(2) =Dy, Tprr,
N S——
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We now record the necessary real valued multiplications ! when evaluating (4.49)

from right to left for N fullband sampling periods:

Polyphase Network. The scalar products between the polyphase components
of the input signal and the M polyphase components of length L,,/M in the

matrix P(z) result in L, multiplications.

Frequency Offset. The matrix multiplication with Dy can be mainly managed
by book-keeping operations, and K multiplications of the real valued output
of the polyphase network with both real and imaginary part of the diagonal

elements of Dy, resulting in 2K real valued multiplications.

DFT Matrix. If K is a power of two, an FFT requires 4K log, K real multipli-
cations for complex data. Unless K is prime, mixed-radix algorithms can

be found attaining a similar efficiency than a popular radix-2 FFT [20].

Phase Correction. The multiplication with Dy, requires K/2 complex, i.e. 2K

real valued multiplies with the diagonal elements.
Therefore, in total the computational complexity per fullband sample results in
1
Chank = N (4K 10g2 K+ 4K + Lp) (450)

real multiplications for the analysis filter bank operation.
For a synthesis operation, the same number of multiplications has to be com-

puted, if the parahermitian of the efficient factorization in (4.49) is applied:

N~~~
Lp 2K 4Klogy K 2K

X(z) =P(2)- D; - Thpr, Di Y(2) . (4.51)

Note, that the multiplication with D3 again only requires 2K real multiplications,
since the imaginary result does not need to be processed for the input to the

polyphase network 13(2)

I The multiplication of two complex numbers z; = z{" + jz{” and 25 = 2\ + jz{",

Ty - Xy = xgr)xg) - xgi)xgi) -I-j(xgr)xgi) + xgr)xgi)) ,
requires 4 multiplications and two additions. Alternatively by re-shuffling, this can be per-
formed in 3 multiplications and 5 additions in a structure somewhat harder to implement [115].

Therefore, one full complex multiplication will be accounted by 4 real valued multiplications.
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4.3 SSB Modulated Real Valued Filter Banks

This section will discuss a method for obtaining alias free, real valued subband
signals of uniform bandwidth by single sideband (SSB) modulation. We start, off
from the Weaver method introduced in Sec. 3.4.3.2, which with the help of an
equivalent complex modulation can be factorized into a complex modulated filter
bank and a modification term. Including the computationally efficient scheme for
implementing GDFT modulated filter banks derived in the previous section, an

SSB method with very low computational complexity will be obtained.

4.3.1 SSB by Weaver Method and Modifications

Single sideband modulation was introduced in Chap. 3 for oversampled real valued
filter bank techniques. The problem with decimating real valued bandpass signals
without spectral overlap in any of the subband signals was solved by modulating
the subbands into the baseband prior to decimation. In the Weaver method
based on quadrature modulation shown in Figs. 3.17 and 3.18, one branch of
the analysis filter bank can be compactly expressed by modulating the frequency
band of interest into the baseband, cut it out by a suitable lowpass filter h[n], and
finally modulate it up by half of the channel bandwidth. The orthogonality of
sine and cosine in the modulation procedure ensures that spectral overlaps in the
signals are cancelled at the summation of the normal and quadrature component
in Fig. 3.17.

To analyse the Weaver modulation, we employ an equivalent form to the
structures shown in Figs. 3.17 and 3.18 using complex notation and modulation,
which is illustrated in Fig. 4.7 [27]. For a reason to become apparent in Sec. 4.3.2
in order to compare to complex filter banks and with reference to the comments
on page 64, the decimation factor is here denoted as N/2. For the analysis of

the SSB demodulation applied as kth branch of the analysis filter bank, we can
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Figure 4.7: Complex quadrature modulation equivalent to the Weaver method for
SSB in Figs. 3.17 and 3.18: (a) demodulation and for analysis and (b) modulation
for synthesis filter branches.

describe the decimated subband signal at the output in Fig. 4.7(a) as

Ly—1
riln] = Re{e! N2 anN/2 —v] - e TRHONE g} (4.52)
v=0
‘ Lp—1
= Re{ej(%_%)’”w2 Z z[nN/2 —v] - ejz?”k”h[y] } (4.53)
N——

v=0 hy[v]

Obviously, the quadrature demodulation can be interpreted as filtering by a com-
plex DFT modulated bandpass filter hi[n], followed by a displacement in fre-

kv Tt is therefore possible to perform

quency by the modulation term e/(F =%
SSB analysis using a DFT filter bank followed by a modification which imposes
the frequency shift.

The SSB quadrature modulation shown in Fig. 4.7(b) results in an output
Zg[n] for the kth branch of the synthesis filter bank, which will form the recon-
structed signal #[n] when summed up together with the remaining K — 1 (or
K /2 — 1 for real valued input z[n]) branch outputs. In terms of the upsampled
kth subband signal y,(cf) [n], where the superscript (/) refers to sampling at the
fullband rate, the output Zx[n] is given by

Lp—1

il = Re{e ¥ 3 (4Pl — e RO g} L (45)
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By introducing a spurious modulation term e~/ "= into (4.54),

Lpy—1
TK[n] = Re{ Z SR S o G (y,(gf)[n - l/]e_j%("_”)> g[l/]} (4.55)
v=0
Ly—1
= Re{ 3 (/In - v]e TR R O) TRrg] L (4.56)
=0 T
grlv

the SSB modulation can be separated into a preprocessing of the subband sig-
nal by modulation with e‘j(%_%k)", thus reversing the frequency displacement
introduced in (4.53), and filtering with a modulated filter gx[n] belonging to a
DFT modulated synthesis filter bank.

Depending on the number of subbands K covering 2 € [0;27], according to
Fig. 3.16(a) for real valued input a modulated DFT filter bank will produce either
one or two real valued subband signals of bandwidth 27 /N: at k = 0 for odd K
and at k = 0 and £ = K/2 for even K. If these channels are passed unaffected
through the modification stages, these subband signals could be decimated by
a factor N. Then components of the subband systems will be running at two
different sampling rates, N and N/2, which can be unpleasant to implement. On
the other hand decimating the special subbands & = 0 and possibly £ = K/2
at only a factor of N/2 unnecessarily gives away efficiency. This provides the
motivation for modifying GDFT filter banks to decompose signals into real valued
subbands.

4.3.2 SSB by GDFT Filter Bank Modification

The previous section has derived how the SSB modulation using the Weaver
method can be linked to a DFT filter bank with modifications. Here, a GDFT
filter bank will be employed for the same purpose, with a structure shown in
Fig. 4.8, whereby the analysis filter bank is only decimated by a factor N/2. This
will leave large spectral gaps, which can be — after appropriately shifting the
spectrum by a modification stage — filled with reversed spectral images in the
real operation Re{-}. Reconstruction of the original fullband signal will require a

pre-processing to perform a complex modulation on the subband signals to bring
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Figure 4.8: Complex valued oversampled GDFT analysis and synthesis filter
banks with modifications stages to achieve real valued subband signals.

the correct spectral part into place to be retained by the synthesis filter bank. In
the following, the correct modifications of the subband signals will be established.

The kth filter hgx[n] of a GDFT analysis filter bank as described in (4.1) covers
a channel of bandwidth 27 /K with a center angular frequency at

QC _ 27T(I€ + ko)

~ (4.57)

This also describes the position of the passband characteristic in the PSD of the
kth undecimated subband signal, :r,gf ) [n]. If :c,(cf ) [n] is decimated by a factor N/2,
the frequency axis is re-scaled by a factor N/2, and N/2—1 image spectra are filled
in equidistantly between the originals. Although other solutions are possible, it is
easiest to locate the original band-position and to perform a complex modulation
from Q = %Qc down to 2 = 7/2, as indicated in Fig. 4.9. Thus, the modulation
frequencies for the analysis filter bank outputs can be chosen as

0, — M_l E_M
ke K N) 2 K

(4.58)

(ORI

to align the original images in the decimated subband signals in the spectral in-
terval 0 € [0;7]. The interval Q = [—; 0] is initially unoccupied and is filled with
a reversed image spectrum, since the real operation Re{-} enforces symmetry to

the frequency origin. Fig. 4.10 gives an example of what the PSDs of the subband
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Figure 4.9: Power spectral density of the kth undecimated subband signal to
explain the complex modulation procedure to align the passband in the region
Q € [0; 7] analytically.

signals on the analysis side look like prior to and after modulation with (4.58)
for white noise excitation. Here, the prototype filter shown in Fig. 4.2 is used for
K/2 = 8 subbands and decimation by N/2 = 7. Clearly, after modification the
spectra are aligned in the positive half of the baseband, and real operation will
not destroy the signal and preserve narrow spectral gaps between adjacent image
spectra similar to Fig. 4.4(b) for complex subband signals.

To describe the reconstruction properties of the modified GDFT filter bank,
we first look at the transfer from the kth output xi[n] of the GDFT analysis
filter bank to the kth synthesis filter input signal yx[n]. By representing zx[n] =
:1:,(:) [n]+ jx,(f) [n] in terms of its real and imaginary part, indicated by superscripts,
the applied modifications according to Fig. 4.8 by the modulation on analysis and

synthesis side are given by

wln] = Re{ (a'[n] + ji) [n])e %" | % (459)
= {:c,(;)[n] cos(—Qyn) — :c,(f) [n] sin(—an)} eJhn (4.60)

where Euler’s formula e/ = cos(¢) + j sin(¢) has been exploited. Further using

the equalities

cos(¢p) = %(ejd)—i-jej“b) (4.61)
sin(¢) = %j(ejd)— je %) (4.62)
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to and (b) after modulation for correcting the frequency alignment of the subband
spectra to the region 2 € [0; 7.
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we proceed to

1 r . i . j n
wlnl = 5 {2l (i) + o) (G + e L (4.63)
= z[n] + zi[n] - U+ (4.64)

where besides the original signal x[n] a modulated version has appeared. The
modulation frequency 2§, = 2N(k + 1/2)/Kn — m can be shown to shift with
its first summand onto a spectral repetition of X (¢/!), and finally by —= into a
previous unoccupied spectral gap. As for the original signal spectrum shown in
Fig. 4.9 the modifications are transparent according to (4.64), the synthesis filters

will pass it, while suppressing the added reversed spectra with their stopbands.

Complexity. Obtaining real valued subband signals is connected with some
additional costs in performing the filter bank calculations stated for the complex
GDEFT filter banks in (4.50). The additional overhead for performing the post-
and preprocessing of GDFT analysis and synthesis filter bank is given by K/2
complex valued multiplications. In case of the analysis bank, only the real output
of the modulation has to be computed, yielding K real multiplications. Similarly,
the synthesis side multiplies real valued subband samples with complex quantities,

yielding for both analysis and synthesis
2
Cbank = N (4K 10g2 K+ 5K + Lp) (465)

multiplications per fullband period. Note, that compared to the cost for complex
GDFT banks in (4.50) the computational effort for the SSB is approximately
doubled. For real valued input, both filter banks produce K /2 subband signals.
While however the complex GDFT subband signals can be decimated by N, this
factor is halved in the SSB case.

4.4 Complex Vs Real Valued Subband Process-
ing

The original incentive for subband adaptive filtering has been the reduction of

computational complexity. While the previous sections were focused on the
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derivation and implementation of oversampled filter banks with particular re-
spect to efficiency, no considerations have yet been made on the computational
complexity of the overall system, consisting of both subband processing task and
calculation of the filter bank operations. Therefore, this section will look into the
complexity of processing in subbands, and in particular address which preferences
should be made regarding the possibilities of real and complex valued subband
processing.

To judge subband processing for real and complex subbands on an equal basis,
we assume that the subbands are produced by filter banks derived from the same
prototype lowpass filter p[n| with bandwidth B = 2x/K. This ensures that for
both signal decompositions, aliasing in the subbands and reconstruction error are
approximately identical, as will be demonstrated in Sec. 4.5. Further, we can find
an N = |27 /B], where B is the bandwidth covering both passband and transition
bands of the prototype filter. Therefore generally the following statements can

be made:

1. the decimation rate N for complex subband signals can be twice as high as

for real valued signals, which are only allowed to be downsampled by N/2;

2. if for convenience integer decimation is employed (although possible [129],
fractional sampling is awkward), the complex approach offers twice the

number of possibilities of decimation ratios over a finer range to choose.

Point (1) will be exploited to compare the complexity of implemented subband
processing in real and complex arithmetic.

Let us assume some processing task is performed on L, samples in a real
valued subband implementation, e.g. by an adaptive filter of length L,. If the
computational complexity of performing the operations associated with this pro-

cessing is of order O(LL), the number of multiplications can be written in form

real

of a polynomial in L, with coefficients c;

T T
Corae(La) = Y ™ Ly = > Cpi, (4.66)

i=0 =0
where CTea . = ¢j*a . L., As an example from Chap. 2, the computational com-

plexity of the RLS can is given as Crrs = 3L2 + 3L, + x. For complex valued
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subband processing with identical filter bank quality and performance measures
[172], the doubling of the decimation factor results in shorter filters of length
L,/2 (or even slightly less if (3.58) is considered) and all processing to be run at
only half the rate. However, one complex multiplication usually requires 4 real
valued operations. Therefore, assuming that real and complex valued algorithms
differ by nothing more than the requirement of respectively real and complex
arithmetic, a ratio of computational complexity between processing with real

and complex valued subband signals for the ith term in sum (4.66), C™. . can

roc,i
be derived as !
cra . o L (4.67)
COmPE o 4. (%(%)) , (4.68)
yielding
Compt _ 6™ 1
Crl ;= g o (469

This ratio allows an approximation of the complexity ratio for real and complex
valued processing, by inserting the term of highest order I into (4.69) [166]. Here
however, the exact computational complexity of algorithms can be derived, which

with complex arithmetic now compares by [167]

I

; I
L , .
Cg?églx(La/Q) — § :C;Zmplx . ?a — E 21—1 . C;‘eal . LZ (470)
=0

i=0
Thus, generally where an algorithm or application exhibits high computational
complexity (I > 1), a complex valued implementation will be preferred. However,
for algorithms of O(L,) with a high number of overhead calculations ¢, a real
valued approach can be more efficient if the savings out-weigh the additional cost
in the filter bank calculation described in Sec. 4.3.2.

Tab. 4.1 lists the complexities for real valued processing of a number of adap-
tive filtering algorithms discussed in Chap. 2. The complex implementations
of NLMS, RLS, and affine projection (APA) algorithm have been introduced
and simply require a 4 times higher load in terms of real valued multiplications

[72, 106]. For RLS implementations, complex processing can roughly half the
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Computational Complexity
Algorithm roal p—
Cproc(La) C1pr01(? (La/2)
Normalized LMS 3 + 2L, 6 + 2L,
Fast APA, order p 20p + 2L, 40p + 2L,
Recurs. Least Squares 3L, + 3L? 3L, + 1.5L2

Table 4.1: Number of real multiplications of different algorithms in dependence
of the filter length L, for real valued implementation.

processing load over real valued calculations, while for LMS-type algorithms,
processing is approximately equal in both real or complex subbands. However,
for the latter, the lower processing gain for the filter bank calculation would
favour an implementation in complex subbands; a more detailed survey of this
case will be presented in Chap. 6. For the APA, the load independent of the filter
length can be large enough for high projection orders p to prefer a real valued

implementation.

4.5 Filter Design

The previous sections have dealt with modulated filter banks, where all filters in
analysis and synthesis bank are derived from one single prototype lowpass filter.
This section will discuss some properties that these prototype filters have to fulfill.
Furthermore we will give two methods of how to obtain appropriate prototype
filters. The first one uses an iteration method to construct prototype filters for
power-of-2 channel filter banks, the second directly constructs prototype filters

for an arbitrary number of bands K.

4.5.1 Requirements

This section discusses two requirements of the filter bank design — good stop-
band attenuation for the suppression of aliasing in the subbands, and perfect

reconstruction.
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Figure 4.11: Required frequency response of a real valued prototype filter p[n| for
a K channel oversampled modulated GDFT filter bank with decimation by N.

4.5.1.1 Filter Bandwidth and Cut-Off

The frequency response of a prototype filter p[n] for a K-channel GDFT bank with
decimation by N is shown in Fig. 4.11. Therefore, the cut-off of the real valued
prototype filter p[n] is required to be at 7/K, with a transition band reaching up
tom/N. Every frequency component of an input signal in the interval [7/N; 7] will
be aliased into the baseband after filtering and decimation, and cause a distortion
of the subband signal, which can be modelled as additive noise, motivating an
SNR-like measure for white Gaussian input signals [172]:

/N ;
sAR = do PP

L CIRUU

(4.71)

where SAR means signal-to-alias ratio. The denominator of (4.71) forms a mea-
sure of the stopband energy, which a filter design would have to minimize. A

formulation in terms of the coefficients of p[n] will be sought in Sec. 4.5.3.

4.5.1.2 Power Complementary Condition

If aliasing is sufficiently suppressed, approximate time-invariance of the input-
output behaviour of the filter bank system in Fig. 3.1 is ensured and the near PR
condition reduces to the requirement of power complementarity [69, 151],

ZZ:)I Hi(z™") - Hy(2) = H()H(z) =1 (4.72)
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where H(2) = [Hy(2)H,(2) -+ - Hx_1(2)]T is a vector holding the K analysis filters.
Exploiting the modulation of the bandpass filters Hy(z), H(z) can be expressed
by

H(z) = Tappr - diag{1, 27", -+ 272 ¥} . P(2) (4.73)

Ay

¥

where Tgppr € CH*?K is a full GDFT matrix as given in (4.47) and P(2) a
vector holding 2K polyphase components of P(z),

P(z) = | PP PO ) PO (474)

For the product on the left hand side of (4.72), one yields

- o~ I
H(2)H(z) = P(2)A. * P;TSFTDTDITDFTDQJ‘
K KIx
[k ~IJAP(z)  (4.75)
. I, -I |
= KPA, | F TFIAPR) =1, (4.76)
I Ik

with A, as defined in (4.73. With the definition of a modified prototype filter
in (4.38), the requirement of power complementarity condition in (4.72) for the
filter bank can now be identified to be equivalent to demanding
K-l o kv poKky L L
Do, Bl B =2 (4.77)
where f’k(z) are the K polyphase components of the modified prototype filter
P(z). By looking at an arbitrary summand & on the left hand side,

(+* PP ) = O PERE)) - (PO () = 2O PR 7))
(4.78)

it is clear that the auto-terms are non-zero only on a 2K grid, while the non-zero
components of mixed terms all lie exactly in between. Since this holds for all
k € {0; K — 1}, the requirement of (4.77) can be expressed directly in terms of
the K polyphase components of the unmodified prototype filter,

K-1 1

Zk:o Pu(z7") - Pu(2") = T (4.79)
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This is an important result, since (4.79) is fulfilled if and only if P(z)P(z) is a
Kth-band filter [151], also often referred to as Nyquist(K) filter in the communi-
cations flavoured literature [44, 83, 88]. In the time domain, the property (4.79)
corresponds to a Kth-band filter having zero coefficients at multiples of K apart

from the center sample at time n = 0,

rppln] = p[n]*p[n] is a Kth-band filter (4.80)
= rppnK] =0[n] (4.81)

where r,,[n] is the auto-correlation sequence of p[n]. The construction of K-
th band filters can be achieved by a variety of methods including constraint
optimization using e.g. linear algebraic [151, 142] or windowing techniques [159,
160]. Once the Kth-band filter r,,[n] is designed, a difficulty arises from necessary
factorization of R,,(z) e—o r,,[n] to extract analysis and synthesis filters [160,

88]. The design, for example, in [159] fails to provide linear phase filters.

4.5.2 Dyadically Iterated Halfband Filters

It is possible to create — with some restrictions — filters fulfilling the Kth-
band property with their auto-correlation function in good approximation from
a filter p°[n] with a halfband auto-correlation sequence, which are widely tabled
in literature [27, 31, 45] or can be constructed [99, 44]. In the following, we will
sketch an iterative method based on the close connection between filter banks
and the discrete wavelet transform [96, 136]. A similar approach is known in the
literature as interpolated FIR (IFIR) filters [107, 46].

The idea is to dyadically scale down the impulse response of a filter p°[n] ,
where p°[—n] * p°[n] has halfband property, i.e. stretch it to twice its support on
the time axis. This will also scale down the auto-correlation of p°[n] by a factor
of two, and zeros-crossings previously at periodicity 2 for the halfband filter, will
now appear spaced at 4 samples, thus fulfilling the definition of a quarter-band
filter [170]. Further scaling will finally provide filters p[n| creating Kth-band
filters for higher channel numbers.

Dyadic down-scaling can be achieved through expansion by 2 and a suitable
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Figure 4.12: Flow graph for dyadic iteration of a prototype filter py[n] to yield
p'[n], where K = 2'*! whose auto-correlations satisfy Kth-band conditions, if
the auto-correlation of pg[n] has halfband property.

interpolation, for which here the original filter p°[n] is employed,

pil = pGlenln], i€ N/0) (4.82)
with p°[—n] * p°[n]  halfband filter

which is shown as a flow graph in Fig. 4.12 for the first four iterations. With
i — 00, (4.82) will tend to a continuous scaling function belonging to the discrete
wavelet transform implemented by a dyadic, binary tree filter bank created from
the lowpass filter p°[n] and its dual highpass filter [45, 161]. If the iteration
(4.82) converges, the filters p‘[n] represent discrete sampled versions of the scaling
function. Finally, this connection ensures that scaling as described in the previous

paragraph will work.

Example. For the 32-tap filter 32C from [27], measures of power complemen-
tarity of dyadically iterated K-channel prototype filters according to (4.82) are
presented in Tab. 4.2 and prove the validity of the proposed method. In the
frequency domain, scaling an impulse response results in the scaling of the fre-
quency axis, as shown in Fig. 4.13. Expansion of the time domain signal with
zeros introduces a highpass image spectrum with center frequency (). = m, which
is subsequently filtered out by interpolation with the original filter p°[n], as illus-
trated by the frequency responses of the filter 32C and its first three iterations in
Fig. 4.13(a)—(d).

Besides its advantageous simplicity, the dyadic iteration has several draw-

backs. Firstly only filter banks can be constructed which have a power-of-two
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Figure 4.13: (a) Frequency response of original halfband QMF filter 32C [27] and
three iteration (b)—(d) yielding filters whos auto-correlation satisfy quarter-band,
1/8th-band, and 1/16th-band filter conditions.
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iteration no. ¢ 0 1 2 3 4 5
channel no. K 2 4 8 16 32 64
filter length L, 32 94 218 466 962 1954
error 10log,, €? || -64.96 | -64.02 | -63.42 | -63.10 | -63.26 | -63.36

Table 4.2: Dyadic iteration of halfband filter 32C [27], with resulting channel
number K, prototype filter length L,, and measure of power complementarity,
e= 1= 1" Pu(2 %) Pu(2%)]|s, at the ith iteration.

number of channels K. Furthermore, the choice of possible decimation rates is
limited, and the stopband attenuation, responsible for aliasing in the subband
signals invariably fixed. It is also clear from inspection of Fig. 4.13 that deep
gaps in the stopband appear in course of the interpolation, which costs filter

length and therefore unnecessary computations and filter bank delay.

4.5.3 Iterative Least Squares Design

This section presents a least-squares design of suitable prototype lowpass filters,
which directly minimizes both stopband energy and power complementarity as
discussed in Sec. 4.5.1 where both criteria have been expressed in terms of the
prototype filter. Here, first measures for stopband energy and power complemen-
tarity will be derived in terms of the filter coefficients, which are then used in a

least-squares formulation for iterative minimization [163, 164].

4.5.3.1 Stopband Energy

A common method to determine a measure for the stopband energy

1 [T :
E, = —/ |P(e’7)|d (4.83)
T Jx/N
introduced as a filter design criterion in Sec. 4.5.1.1 is given by the eigenfilter
method for linear phase filters [151, 142, 71|, whereby the real part of the fre-

quency response is evaluated for a set of discrete frequencies collected in a vector
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Q = [Qo, Ql v Q]_l]T, Qz € [7T/N, 7T], 7= 0(1)[- 1
Re{P(e/*)} = Tper-p - (4.84)

Note that the left hand side represents a vector quantity. The vector p € Rl» <!

contains the coefficients of the prototype filter,

p = [p[0], p[1],---p[L, —1]]", (4.85)

while Tper € RM*E» is a DCT transform holding cosine terms at the discrete

frequencies €2,

1 cos(p)  cos(2€) ... cos((L, — 1)) ]
Toor — 1 COS(:QI) COS(:QQI) - cos((Ly :_ i) . (4.86)
I 1 cos(Q-1) cos(2Q-1) ... cos((Ly, —1)Q—1) |

An approximation of the stopband energy in 4.83 is now given by
1 2
E, ~ ;HTDCT ply - (4.87)

Symmetry and therefore linear phase of the prototype filter p[n| is enforced by
introducing a matrix ST = [ILP/Q,JLP/Z] such that p is mapped onto a vector
b € R»/2 holding only the first L,/2 coefficients of the prototype,

1
b= 55{ ‘p . (4.88)

It is easily verified that this mapping can be reversed by p = S; - b.

4.5.3.2 Power Complementary Condition

In Sec. 4.5.1.2 the near perfect reconstruction condition for the filter bank had
been traced back to a power complementary condition of the prototype filter under
the assumption that the stopband energy of the filter was sufficiently small. To
create an expression in terms of the filter coefficients which can be minimized,
the power complementary condition (4.79) needs to be formulated in the time

domain.
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For a convenient matrix formulation of the time domain operations, a vector

pr € R*/K is defined to hold the kth polyphase component of p[n], i.e.
T
Pr = [p[k], p[K+k], - p[rK—l—kH , r=|=2], (4.89)

where for convenience L, is assumed to be an integer multiple of the channel

number K. Further, we define a convolutional matrix P, € RZLP/K-1)x(Ly/K)

Pk 0

P, = e . (4.90)

0 Pr

Using the definitions (4.89) and (4.90), the power complementary condition (4.79)

manifests itself in the time domain as

K-1 Q
Py-Jx-pr=| 1/K (4.91)
d

where the reverse identity matrix Jx has been used to convert a convolution
into the required correlation operation, and d defines a delay with suitable zero
vectors 0 of length L,/K —1. The sum on the left hand side of (4.91) can be

further condensed to matrix notation by defining a matrix V and an auxiliary

vector v,
Po
K-1 1
Y Pi-Jiopp=[PoJi, P, - PeiJi, |- | | =VSy-p. (4.92)
k=0 ‘\; .
Pr-1
I |

The matrix Sy is a suitable L, x L, permutation matrix such that SI performs
a mapping from the synchronously ordered prototype coefficients in p onto the

sequence of polyphase vectors in v = SI - p. The formulation

VS,S;-b=d (4.93)
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finally defines the power complementary condition including the symmetry con-

straint for the prototype filter.

4.5.3.3 Least Squares Formulation

To minimize stopband energy in (4.87) and achieve approximate power comple-

mentarity as defined by (4.93), a least squares (LS) problem

V(b)-S,-S, ] o [ d ]

v-Ther-S1 0

2

(4.94)

b = argmin
b

2

.

A

has to be solved, where v allows a weighting between both design criteria. The
notation V(b) is given to indicate the dependency of the system matrix A €
RZEp/K+T=1)xLp/2 ypon the filter coefficients. Thus, unfortunately (4.94) is not
a quadratic problem and may exhibit local minima. However, analysis in [66]
suggests for a similarly posed problem that the cost function in b possesses 3
minima, of which two are symmetric with opposite sign and a third one defines
a saddle point in between for b = 0.

The minimization can be performed iteratively [122, 121, 71], solving at each
iteration j
2

, (4.95)

2

b, = arg min
i

V(b 1) 8281 | [d
v-Ay-Tper-Sy ’ 0

where a previous solution b;_; is substituted to achieve a quadratic approximation
of (4.94). A similar approach is reported in [82], where e.g. alternately analysis
and synthesis filters are kept constant while the other one is optimized to achieve
a solvable quadratic expression.

The resulting quadratic LS problem (4.95) can be easily solved using stan-
dard linear algebraic tools [58]. As stopping criterion, the optimization may be
regarded as sufficient when the change from b, ; to b; falls below a certain
threshold [66].

An additional weighting matrix A,, in (4.95) can help to improve the stopband
attenuation towards the band edge. Furthermore, a relaxation can be introduced

to solve for an a priori solution bj, at iteration step j, from which the a posteriori
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Design | K | N | L, | CPU time | max(j) | RE | SAR
(a) 16 | 12 | 192 11s 11 -54dB | 56dB
b) | 1612240 235 13 | -68dB | 70dB
(c) 16 | 12 | 384 95s 14 -91dB | 92dB
() [16]14]448] 1255 12 | -54dB | 57dB

Table 4.3: Characteristics of four different iterative LS designs (a)—(d) for pro-
totype filters shown in Fig. 4.14; the left columns specify the design parameters
{K,N, L,}, while the right hand columns indicate the convergence speed of the
design algorithm and performance measures in terms of reconstruction error (RE)

and SAR.

solution is obtained by b; = ab) + (1 — a)b;_;, for 0 < a < 1, which adds

robustness to the convergence of the iterative LS algorithm.

4.5.3.4 Design Examples

Fig. 4.14 shows a couple of prototype filters obtained with the above iterative
LS design, with design specifications and resulting measures listed in Tab. 4.3.
The number of evaluated frequencies €); for the stopband energy has to be chosen
such that the resulting system of equations Ab; = [d 0]" is overdetermined.
A pseudo-inverse of A will then yield an optimum b, in the least squares sense.
Implemented in Matlab [97], the initial coefficients by are calculated by a remez
filter design, and for a relaxation @ = 0.5 the design converges quickly for the
discussed LS method. Tab. 4.3 states the number of iterations and CPU time
required on a Sparc20 workstation. The performance measure signal-to-alias ratio
(SAR) refers to (4.71) while the reconstruction error defines the inaccuracy in
(4.93), i.e.

RE = 10 - log,, [[VS2S:b — d||5 . (4.96)

Compared to the halfband iteration design introduced in the previous section,
the LS design yields considerably enhanced results. Comparing the LS design in
Tab. 4.3 to the K = 16 design in Tab. 4.2, which would allow for decimation
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Figure 4.14: Frequency responses of prototype filters constructed using an itera-
tive LS design for K = 16 channel filter bank with possible decimation by N < 12
for (a)-(c) and N < 14 for (d); performance measures are given in Tab. 4.3.
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by N = 12 with about 59dB and for N = 13 with 52dB SAR, clearly the filter
length can approximately be halved at almost identical performance for designs
(a) and (b), or reach a sharper transition band and higher possible decimation
rate at equal cost and quality measures with design (d), thus allowing for more

efficient subband processing.

Bifrequency Transfer Function. Aliasing distortion and imaging introduced
by decimators and expanders in multirate systems can be completely described
by bifrequency transfer functions [27]. The sampling rate conversion causes — if
aliasing is not sufficiently suppressed — the multirate system to be linear periodi-
cally time-varying (LPTV) with a period equivalent to the least common multiple
of all sampling rate changes occurring within the system. The overall impulse
response of such a system, h[ny, ns], therefore depends on the time of observation
ny and the time of excitation n; [76]. Based on h[ny, ns], the bifrequency transfer

function is given by

+oo +oo

H(ejm, ele) = % nl;oo m;oo hlng, nq] - ¢l (ini=an2) (4.97)
which relates a frequency €2; at the input to each frequency €2, at the system
output.

Using the measurement method by Reng and Heinle [120, 75], Fig. 4.15 shows
the bifrequency transfer function of a GDFT modulated filter bank consisting of
analysis and synthesis as shown in Fig. 4.1 with a reduced number of K/2 = 8
subbands and decimation by N = 14, based on the prototype filter listed in
Tab. 4.3 as design (d). The main diagonal in Fig. 4.15 indicates that the signal
components are passed without noticeable amplitude distortion, i.e. the overall
filter bank is power complementary. The off-diagonals represent the alias level
creating a noise floor at about -60 dB below. Note that for an LPTV system,
aliasing occurs only along so called Dirac lines [27, 76], i.e. discrete off-diagonals.
Further note that the lines for 2, + €2y = 7 are missing, since for this case the
modulated filters fulfill the quadrature mirror filter (QMF) condition, resulting
in alias cancellation in the synthesis bank.

Fig. 4.16 shows the measurement of the bifrequency transfer function of an
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Figure 4.15: Measurement of the bifrequency transfer function for a GDFT filter
bank with K/2 = 8 complex channels and decimation by N = 14, using the
prototype filter p[n] shown in Fig. 4.2(a).

SSB modified GDFT modulated filter bank with K/2 = 8 real valued subband
signals decimated by N/2 = 7. This filter bank is derived from the same prototype
filter as the GDF'T filter bank shown in Fig. 4.15. Since this system is decimated
at only half the rate of the previous complex filter bank, aliasing is restricted to

N/2 — 1 Dirac lines on either side of the main diagonal.

4.6 Concluding Remarks

In this chapter oversampled GDFT filter banks have been introduced. Some
particular conditions arising from the offset values for time and frequency in the
modulating complex exponential have been highlighted, notably the organization
of the passbands of the filter bank filters, and their linear phase property. An
efficient implementation of this type of filter bank has been suggested for arbitrary
integer decimation N < K. It is based on a factorization of the polyphase analysis
matrix into a real valued polyphase network and a GDFT transform, which can

be further factorized for fast implementations using FFT algorithms.
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Figure 4.16: Measurement of the bifrequency transfer function for a modified
GDFT filter bank to perform an SSB with K /2 = 8 real channels and decimation
by N/2 = 7, using the prototype filter p[n| shown in Fig. 4.2(b).

Modifications have been established for the GDFT filter bank to implement
an SSB modulated filter bank with real valued subbands. Again, the factorization
of the GDFT filter banks involved allows for a highly efficient implementation.
Based on the same prototype and therefore implementing approximately identical
performance characteristics, the SSB modified GDFT filter bank produces real
valued subbands at twice the rate of a complex GDFT subband implementation.

A comparison between real and complex subband processing has been made,
which takes into account both the computational complexity of the filter bank
implementation and the subband processing e.g. performed by adaptive filters.
This has yielded the initially surprising fact, that complex subband processing
is despite its complex arithmetic generally at level with real valued subbands
for O(L,) algorithms and outperforms for orders O(L?) algorithms and greater,
which is mainly due to the higher possible sampling rate for the complex system.
However, exceptions exist e.g. for the APA and potentially other algorithms, for

which a real valued implementation may be considered advantageous.
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Finally, design methods have been presented which allow to construct proto-
type lowpass filters for oversampled GDF'T filter banks with low aliasing level in
the subband signals, based on a dyadic iteration of tabulated filters and by an
iterative LS design. In Chap. 5, the performance of subband adaptive systems
will be closely linked to the optimization criteria in the latter design algorithm,
enabling to create application specific filter banks for subband adaptive systems

with predefined performance limits.



Chapter 5

Performance of Subband

Adaptive Filter Systems

This chapter discusses the performance and limitations in performance of subband
adaptive filtering (SAF) in oversampled subbands. Sec. 5.1 will first introduce
and review different general aspects of the performance of SAF systems. In
particular, aliasing in the subbands which may limit the MMSE performance
will be addressed in Sec. 5.2, and Sec. 5.3 will link inaccuracies in the adapted
equivalent fullband model to the employed analysis and synthesis filter banks.
Based on the use of GDF'T filter banks as introduced in the previous chapter, some
properties of the resulting subband adaptive structures are derived in these two
sections, which can be directly linked to quality measures of the filter bank design.
Finally, Sec. 5.4 will demonstrate the impact of different set-up parameters on the
subband adaptive system by simulation and validate the performance measures

given in Secs. 5.2 and 5.3.

5.1 General Performance Limiting Influences

First, we will concentrate on general performance limiting influences for subband
adaptive filter systems. Sec. 5.1.1 will define different aspects and measures of
SAF performance, e.g. final MSE, accuracy of the adapted SAF, and convergence

speed. A discussion of how they are affected by different parameters of the set-up
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will follow in Sec. 5.1.2.

5.1.1 Performance Criteria
5.1.1.1 Final MSE

The quality of adaptation can be judged from the final achievable mean squared
error value, which ideally represents an ensemble average and can therefore be
time-varying. For stationary situations the MSE level for n — oo gives an in-
dication for the quality of adaptation. Since the final MSE level is an absolute
quantity, sometimes it is more interesting to measure by how much an initial,
i.e. uncancelled, error level can be reduced through the application of the sub-
band adaptive filter system. This gives rise to the definition of noise reduction,

which represents an SNR-like measure

£{[n])
1) |m> ' (5-1)

Note that noise reduction is defined in terms of the fullband desired signal d[n]

noise reduction = 10 - log;, <

and the reconstructed fullband error signal e[n]. It is also possible to define a
noise reduction measure based on the subband desired and error signals, which
will be revisited in Sec. 5.2.2. Both measures for fullband and subbands can be
directly linked if the employed filter banks perform frame expansions, since a

fixed energy relation between subband and fullband signals exists.

5.1.1.2 Modelling Error

Besides measuring the MSE of the error signal, it is also possible to assess the
state or quality of adaptation in terms of the final weight values of the subband
adaptive filter impulse responses and their distance from the optimal solution.
This implies, that either the Wiener Solution for the subband filters is known, or
that a reconstruction of the fullband equivalent model to be derived in Sec. 5.3.1
can be compared to the “unknown” system that the SAF set-up is supposed to
identify. The latter clearly cannot give any indication for system performance

in the case of a band-limited input signal, since the optimally achievable model
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is only defined at the excited frequencies, and has an arbitrary since undefined

frequency response otherwise [86].

5.1.1.3 Convergence Speed

For most adaptive filter applications, it is desirable to find and reach optimal
or almost optimal performance as fast as possible. For algorithms like the LMS
discussed in Sec. 2.3, a measure for the convergence speed is given by a time
constant associated with its exponential convergence. For more complex set-ups
like subband adaptive filtering, where the adaptive algorithm is embedded in a
subband architecture, the behaviour is often difficult to condense into a single
measure. However, in practical applications, convergence speed can be judged by
observing the time required for the error of the SAF system to reach a stationary
value, i.e. the final MSE as introduced in Sec. 5.1.1.1.

5.1.1.4 Robustness towards Observation Noise

The presence of observation noise on the desired signal d[n], which is assumed
to be uncorrelated with the input signal z[n], has a number of implications on
the adaptive system. The MMSE is not equal to zero, and the residual error
signal injects noise into the adaptation of the adaptive filter coefficients. This
can (for example in the LMS’ case) cause inaccuracy of the identified model and
an additional variance term in the error signal, which in Sec. 2.3.3.3 was referred
to as excess MSE. If the level of observation noise is very high, i.e. the desired
signal has low SNR, the adaptive filters may not converge.

Another aspect of robustness is how well the algorithm preserves the obser-
vation noise contained in the desired signal. Although labelled noise, in many
applications like AEC or noise cancellation the observation noise is a speech sig-
nal or similar signal of interest, which is to be recovered. However, many fast
converging algorithms like NLMS or APA can show a rather aggressive behaviour
towards the observation noise, as for short filter lengths and large step size, a
best LS fit of the input signal to the current desired signal value is attempted
[130, 140], as indicated in Sec. 2.5.1.2. Thus, often a measure called echo return

loss enhancement (ERLE) similar to (5.1) is preferred, whereby the observation
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noise s[n] is subtracted from both the desired and error,

o ( EX(dn] — sfn)?)
ERLE =10-logyo <6{<e[n1—s[n]>2}|m> ’ (52)

therefore only judging the reduction of the signal of interest and considering any

changes made to the observation noise. The name ERLE refers to its original
application of assessing the performance of echo cancellers in the presence of near
end speech.

The literature provides an amazing number of suggestions how to improve
the robustness of adaptive algorithms [171], mostly by introducing a variable
step-size parameter p[n], which is to be adjusted such that optimal adaptation
is secured despite the (temporary) presence of observation noise, e.g. in the form
of a near end speaker in AEC. Approaches in [125, 98] steer the step-size based
on the estimated correlation between error and input signal. More sophisticated
methods in AEC attempt to detect double talk situations where the near end
speaker is active and adaptation of the SAF system has to be frozen [77, 17, 16].
However, clearly robustness is a mostly algorithmic related issue, and not specific

to subband adaptive systems.

5.1.2 Performance Limitations

Different parameters in the set-up of an SAF system are important in determin-
ing its performance. In the following, we will partly review the literature and
thereafter collect and discuss facts that have been striven for in Chapters 3 and
4.

5.1.2.1 Model Truncation

The question of how to choose the length of the subband adaptive filters is im-
portant in the sense that a too short model will — for the case of white noise
excitation — only be able to converge to a truncated response and thus noisy
version of what the optimal impulse response should be.

For the critically sampled case, Sec. 3.4.2 presented equations from [53, 54]
describing the optimal Wiener solution for the subband adaptive filters in (3.57),
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which allowed us to derive the required filter length (3.58) dependent on the order
of the unknown system to be identified, and the length of analysis and synthesis
filters. The latter cause an increase in filter length which can be justified by the
transients introduced by the filter banks. Due to the decimation, these transients
are likely to differ in the kth subband between desired and input signal, and
hence have to be appropriately modelled by the subband adaptive filters. It is
worthwhile to note that the transients caused by the analysis filter bank generally
require the subband adaptive filters to operate non-causally, which can be easily
pictured by inspecting the example in Fig. 3.10. Therefore, the desired signal
usually needs to be delayed for correct adaptation, unless the plant to be identified
is known to possess a sufficient delay.

Analysis in one of the pioneering papers by Kellermann [86] and more recently
in [175] argues on the basis of (3.54), by assuming ideal analysis filters with a
rectangular frequency response and hence infinite support in the time domain.
Their results for the optimum subband filters are decaying but infinite solutions.

Based on the analysis in Sec. 3.4.2 and on practical results in [135, 88, 66],
it usually appears reasonable for worst case scenarios to choose the length of the
adaptive filter, L,, as

2L, + L
L,—= |22tz ) 5.3
[ R ] (5.3)

where L, and L, are the lengths of filter bank prototype filter p[n] and the
unknown system s[n|, respectively, and N the decimation ratio. This formula
can be derived analogous to (3.58) assuming a paraunitary relationship between
analysis and synthesis filter bank for the oversampled case. Similarly, in worst
case scenarios delaying the desired signal by L,/N samples in the subbands has
been shown to be more than sufficient in practice.

If a truncated model should occur, the unknown system can be imagined as
a superposition of an identifiable and an unidentifiable part, where the output of
the latter contributes to the observation noise in the system, since the correlation
it imposes on the desired signal is inaccessible to the SAF structure. This causes
an additional term on the MMSE and will create an inaccurate, and in the case

of LMS-type algorithms noisy model. However, even if infinitely long subband
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adaptive filters were required for optimum performance and adaptation without
model truncation [175], other limiting factors to be introduced in Sec. 5.2 will

dominate the lower error bound.

5.1.2.2 Spectral Separation and Eigenvalue Spread

Spectral Separation. By dividing the spectrum of the input signal into in-
tervals, filter banks are often viewed as to “whiten” the spectra of the subband
signals with respect to the fullband signal. However, instead of whitening we here
rather refer to this phenomenon as spectral separation, since the filter banks also
have an adverse effect on the whiteness of the subband signals by introduceing
notches due to non-perfect filter banks and OSRs > 1, as seen in Fig. 4.4. The
convergence speed of mainly LMS-type adaptive filters depends on the eigenvalue
spread of the input signal as introduced in Sec. 2.3, which can be approximated by
the ratio between minimum and maximum value of its PSD as in (2.52). Clearly
for a strongly coloured input signal a separation into smaller spectral intervals
as performed by the analysis filter bank can help to form more balanced ratios,
i.e. a smaller eigenvalue spread, and thus increase the convergence speed. This

will be demonstrated in Sec. 5.4.

Eigenvalue Spread. As mentioned before, the increase in convergence speed
due to spectral separation can be degraded by the colouring (notches) introduced
by the filter banks. As input frequencies in the transition band of analysis filters
are considerably attenuated, the input to the adaptive algorithm carries only
weak spectral information on this part of the signal and thus indirectly of the
unknown system, and the SAFs can adapt these spectral parts only very slowly
[101]. With narrower transition bands as required for filter banks operating close
to critical decimation, a better overall convergence behaviour of the SAF system
seems achievable. On the other hand, broader transition bands that allow only
a lower decimation ratio to be implemented will result in a faster update rate of
the adaptive algorithm, which again enhances convergence. Sec. 5.4 will discuss

the resulting differences in performance.
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5.2 Minimum Mean Squared Error Limitations

In Sec. 3.4.1 the problem caused by aliasing in the subbands was introduced.
Here, novel limits will be derived for the PSD of the minimum residual error
signal due to aliasing in the subbands, and the resulting minimum mean squared
error (MMSE). Also, an easy-to-apply measure will be created, that can directly
link the stopband attenuation of the prototype filter design in Sec. 4.5 to the

noise reduction achievable by an SAF.

5.2.1 Measuring Aliasing

Sec. 4.5 introduced an SNR-type measure for the aliasing in the subbands caused
by decimation and non-perfect stopband attenuation of the prototype filter for
white Gaussian input. For a further discussion of the adaptation error, we are
interested in a power spectral density description of the minimum error of the
Wiener solution, to be compared to the adaptively achievable power spectral
densities of both the subband and reconstructed fullband final error signals.
While the SAR measure in Sec. 4.5 has ignored colouredness of the input
signal to solely judge the quality of the filter bank, now the spectral character-
istics of the input signal have to be taken into account. This poses a problem,
as the power spectral density of the input signal is a quadratic quantity, and a
simple superposition of spectral parts to describe aliasing would give an incom-
plete solution, lacking the cross-terms in the PSD as spectral de-correlation of
the input signal cannot generally be assumed. Therefore, the approach taken
here assumes the knowledge of a white iid noise excited source model, L(e/), as
shown in Fig. 5.1, which together with the filters Hy(z) of the analysis bank is
used to calculate aliasing terms from the systems’ spectra, while the excitation
noise remains white iid in the decimation stage. With these two steps, finally the

power spectral densities due to aliasing can be derived.

5.2.1.1 Method

Sec. 3.1.1 introduced the formulation for the frequency domain effect of dec-

imation. Assume we want to decimate the signal z[n] in Fig. 5.1(a) and would
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(a)  uln] z[n] vln]
L) {1v)
(b) L(e7)ar/n (9 )) IN
u[n] u'[n] L&) ggr /v (/W) IN — v[n]

L(e/?)gor/n (7 1=¥1)) IN

Figure 5.1: The identity of the structures (a) and (b) is exploited to calculate
the PSD of a decimated signal v[n] by assuming a source model L(e’?) excited
by white noise u[n]; the qg,r/g(ej(Q’Q”) are appropriately positioned rectangular
windows of width 27 /N; the notation “| N” indicates decimation of the windowed
source model by N.

like to have knowledge about the PSD S,,(e’?) of the decimated signal, v[n], it
cannot be directly expressed in terms of S,,(e/?) since the PSD is a quadratic
quantity, and a decimation description analogue to (3.2) would be incomplete
since it omits any terms due to spectral correlation in the input signal z[n]. The
strategy used here is to include a white noise excited source model L(e/?) such
that

Sxx(ejg) = |L(ej9)|25uu(6jﬂ) (5.4)

is fulfilled with an uncorrelated process u[n] of unit variance, i.e. Sy, (e’) = 1.
This source model is also often termed the innovations filter and its existence
is guaranteed if the Paley-Wiener condition is fulfilled, i.e. z[n] is not strictly
band-limited or has a line spectrum [112]. In the following, both existence and
knowledge of L(e’t) are assumed. Thus, it becomes possible to swap the source
model L(e’?) with the decimator, carefully taking into account the occurring
spectral superpositions indicated in (3.2). In the resulting scenario shown in

Fig. 5.1(b), the decimation can be directly applied to the white noise process
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Figure 5.2: Block diagram for analysis of aliasing due to decimation by N in the
kth subbands

exciting the source model L(e’*?). After decimation by N, obviously this noise is
still white with identical variance, i.e. Sy (/%) = 1.

For the following analysis, for a branch of the analysis / synthesis filter bank
the model in Fig. 5.2 is used. There, the kth branch of the analysis filter bank,
characterized by the filter Hy(e/%), is excited by a signal x[n], which we assume
to be a non-deterministic signal arising from a white noise excited source model
L(e’) as discussed previously. After decimation and expansion by N, on the
synthesis side the signal is filtered by the kth synthesis filter G (e’?). By defi-
nition of our GDFT filter bank, we have Gy, (e/?) = Hy(e’) according to (4.18).

5.2.1.2 Power Spectral Density Description for Decimated and Ex-
panded Subbands

Decimation and expansion of a signal by a factor of NV causes the original spectrum
to be superimposed by N — 1 shifted copies of itself. Following the thoughts in
Sec. 5.2.1.1, we only apply this superposition to a combined system consisting of
the source model L(e’!) and the kth analysis filter Hy(e/?)

n

N-1

. 1 (2t (2t

Fx;(]Q) =5 ZL (63(9 N )) - H, (63(9 N )) QorN (=) (5.5)
n=0

where gor/n (22— ) is a rectangular frequency domain window,

1 for Qe [QpQ+%&
Gor/N (2 —S) = (23 QN} , (5.6)
0 for Q¢ [+ Z]
and a frequency offset
2k +1
S Gl (5.7)



CHAPTER 5. PERFORMANCE OF SAF SYSTEMS 124

is chosen such that according to Fig. 4.9 the passband defined for the £th analysis
filter including its transitions bands is always contained in the term n = 0 within
the sum (5.5). All other terms n € [1; N — 1] define aliased spectral parts. Note

that the superposed filter spectrum F) + (j€2) is only non-zero for a small window
defined by (5.6). It is periodized by

Fy (67) = i Py <j (2- %)) (5.8)

which represents the sum over all parallel branches in Fig. 5.2(b) with the addi-
tional inclusion of the kth analysis filter. Now the PSD of x}[n] is given by

Sz;cz;c (@jﬂ) = ‘F:rgc (6jﬂ)‘2 ) Su’u’(ejg) = ‘Fx; (6jn)‘2 . (5'9)

From this PSD description of z'[n], it is easy to obtain both PSD of decimated
subband signal and reconstructed fullband signal. The first arises from rescaling

the frequency axis in (5.9), yielding

For the PSD of the reconstructed fullband signal, the synthesis filters Gy (/) =

Hy.(e7%) are included into the transfer function model,

=

Fi(e??) = - Fy (/%) - Hi (%) (5.11)

ES
Il

and the PSD is similarly given by

oo 2
Sza(e7?) = | Fa( 679 Z - Hi(e7Y) . (5.12)
k=0

5.2.1.3 Power Spectral Densities of Minimum Error Terms

The formulations of PSDs for MMSE terms is based on a partitioning of the
intermediate spectrum in (5.5) of the transfer from the decimated source model

input to the upsampled subband signal z}[n] into

Fy (59) = ES Q) + FSV () (5.13)
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where the superscripts (%) and (Y refer to signal of interest and aliased parts,

respectively, defined as

5(8) - 1 . ,

G = SFEH(E) - (=), and (5.14)
1 3= ., a2 (a2

G = 5 Y FE@ O FNHE ) oy (=) (5.15)

n=1

By periodization analogous to (5.8) formulations for decimated and expanded

systems £

xT

With these two quantities, the PSD of the kth expanded subband signal in (5.9)

,S)(ejﬂ) and FI(,A)(ejQ) can be derived from these intermediate spectra.
k k

can be split into four terms,

Sy (%) = S (%) + ST (@) + SN + 500 (), (5.16)

! !
Ty Ty, k T,

where two auto-terms

. X 2

SP, (1) = Fi?(eﬂﬂ)‘ and (5.17)
. . 2

S&, (1) = Fgg,:‘)(?")‘ , (5.18)

and two cross-terms between signal of interest and aliased parts

sEE) = FOE) - (FPE™) and (5.19)
k" k k k

(A8) gy _ ( () i )* (A, i :( (S,A)/_j0 )*

kal‘?c (e”*) Fl‘k (e”*) ka (e”*) SI;CI% (e’*) (5.20)

define the different contributions from signal of interest and alias signal compo-
nents to the overall power spectral density.

Assuming that an optimal filter removes all un-aliased signal components, the
PSD of the minimum mean square error (MMSE) signal will only consist of the
auto-term of aliased signal parts in (5.16),

2

MMSE/ i\ _ «(A)

(@) = [P (5.21)

which has already been rescaled in terms of its frequency index by a factor of
N to correctly reflect the minimum error PSD of the kth decimated subband
signal xx[n]. The superscript MMSE indicates that (5.21) gives the PSD of the

error signal provided the adaptive filter has achieved optimum adaptation and
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the error signal is minimum. The above PSD can be related to the MMSE value

by evaluating the inverse Wiener-Khintchine transform [123] for zero time shift,

EMMSE R = —/lef,cSE (e7)dQ . (5.22)

Similarly, the PSD of the reconstructed minimum error signal is derived from
(5.12) by splitting F (¢’?) into true and aliased components, and assuming that
all true signal parts have been removed by the optimally adjusted adaptive filter.
This yields for the PSD

ZF eJQ

Analogous to the subband case, the minimum mean squared reconstructed error

K-1 2

ZF' (%) - Hy(e")

=0

SMMSE ]Q

(e (5.23)

value due to aliasing is given by

2w

EMMSE = 5= /

The MMSE value of the fullband reconstructed error signal can also be accessed by

2

dQ. (5.24)

K-1

ZF (e7?) - ] Hp(e79)

exploiting the fixed energy — and therefore power — relation between subbands
and fullband given by a tight frame condition in (3.19) such as satisfied by the
employed GDFT filter bank when constructed according to Sec. 4.5.

5.2.2 MMSE Approximations

In the following, approximations to estimate the MMSE will be derived, which
are more workable than the limits stated in Sec. 5.2.1.3 since they can be calcu-
lated directly from the frequency response of the prototype filters. The involved
approximations will be justified by considering the two extrema of white noise
and narrowband (sinusoidal) input in Sec. 5.2.2.3, and underpined by simulations
in Sec. 5.4.

5.2.2.1 Subband MMSE

In a first approximation step, spectral correlation between different signal parts

superposed in the decimation stage is neglected. Thus, the PSD of the subband
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signals can be directly related to the PSD of the input signal. Instead of cal-
culating the absolute levels of aliasing in the subbands, we can now also create
an SNR-like ratio between the signal levels of true signal of interest and aliased

signal parts, which is referred to here as signal-to-aliasing ratio (SAR)

P,gs) B pr,k |Hk(6jﬂ)|25m(em)d9
P R AL M Y

SAR, — (5.25)
The quantity S;;(e’) is the PSD of the input signal to a filter bank with filters
Hi(e’?), and €, and Qg4 are the passband and stopband frequency intervals
of the kth analysis filter Hy(e’?). In a second approximation, S,,(e/?) if further

assumed to be white, i.e. S,,(e/?) = o2, yielding

w/N '
[ 1P(e7)2dQ)
SARy =

(5.26)

| 1P(e1?)[2dQ
/N
which only depends on the characteristics of the prototype filter p[n]. This di-
rectly corresponds with (4.71) and the design criterion demanding good stopband

attenuation in Sec. 4.5.

5.2.2.2 Fullband MMSE

For uniform modulated filter banks implementing tight frames, all subband sig-
nals contribute with the same proportion to the reconstructed fullband signal.
This fact is exploited by looking for the maximum true signal and aliased signal
levels amongst all subbands, which will hence reconstruct to determine the maxi-
mum levels of true signal of interest and aliased components in the fullband. The

maximum power level for the signal of interest amongst the K /2 subbands may
be defined as

max

1 , .
P =max { oo [ M@ Sua(ean (5.27)
Vs
Q

D,k
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while

1 . .
P = max { o / |y (7°) 2, (67) 2 (5.28)
s
Qs,k
determines the maximum level of aliasing found in the subbands. €, and €2
define the frequency range of passband (p) and stopband (s) of the k analysis
filter Hy(e’?). Thus, in the reconstructed signal, the SAR is given by
PRk
SAR = —m& (5.29)

Sk

For uncorrelated Gaussian input, S,,(e’?) = o2, (5.27) now takes the form

P = 2i/|Hk(eﬂ'Q)|20§IdQ, Vke{0;K-1} (5.30)
71'ka
/N
ng iy 12
= 7/|P(ef )PdQ (5.31)
0

where p[n] o—e P(e/?) is the prototype lowpass filter, from which the complex
passband filters Hj(e’) emerge by modulation. A similar figure can be estab-
lished for the aliased contributions, and finally the SAR of the reconstructed
fullband signal can be expressed as
x/N
[ 1P(e)]?dQ
SAR = % (5.32)

| 1P(er?)2dQ)
w/N

entirely in terms of the prototype filter’s characteristics.

5.2.2.3 Considerations for Narrowband Input

The above approximations were assumed to be white noise input signals. In the
following we want to look at the opposite extreme by considering narrowband
(i.e. sinusoidal input) to demonstrate the validity of the above SAR, approxima-

tions also for other input signal types. The presented analysis will be based on the



CHAPTER 5. PERFORMANCE OF SAF SYSTEMS 129

Ag-

\ Q
\

T
Figure 5.3: Idealized frequency response of prototype filter P(e/®) with constant
gain A, and A, in passband and stopband to analyse SAR for narrowband input.

idealized frequency response of a prototype filter P(e’!) in Fig. 5.3 with constant
gain in both passband and stopband,

A Qe [0;7/K]
Py =4 A, A,>A>A, , Qe (r/K;n/N) (5.33)
A, Q€ [r/N;7]

Note that here P(e/??) has only been defined on the frequency interval [0; 7], but
is in fact symmetric to 2 = 0 and periodic with 27.

With a sinusoid of frequency Qg, € [0;7] as the input signal, X (e/?) =
>, 8(Q2—Qq,+27v), for one bandpass filter H;(e’), i € [0; K —1] the sinusoid
will lie exactly within its passband covering a frequency interval 2,;, and the

maximum signal level is given by

1 - 2
Pn(nsa‘)x = % / ‘Hz(egg) : 6(Q_Qsin)‘ df ) Qsin € Qp,i (534)
Qpi
A? A2
:-l/mp%@mzl. (5.35)
2w 2w
Qpi

Thus, the SAR in the ith subbands tends towards SAR; — +oo. Similarly, for
a number of frequency bands, the sinusoidal frequency will lie in the stopband
causing an aliased signal energy PY) = A2/(27). Since no signal of interest is
present, for these subbands we have SAR; — —oo. Finally, remaining frequency

bands will contain the sinusoid in one of their transition bands and posses infinite
SAR.
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To evaluate the SAR of the reconstructed signal without knowledge of how
many bands exactly will have SAR — +o00 or —o0, we look at one single analysis
filter — without loss of generality we choose P(e/®?) — and assume that the sinu-
soidal frequency (), is a random variable uniformly distributed on the interval
[0; 7]. The probabilities for Qg, to fall into either passband, transition band, or

stopband respectively are given by

1
pp = P(0< Q4 < %) =% (5.36)
™ s 1 1
P = P(E < Qi < N) VKT (5.37)
N -1
ps = P(% < Qqp <) = N (5.38)

Omitting the unspecified contribution(s) from any transition bands, the SAR on

the synthesis side is approximately given by

/K

f A2dS)
SAR ~ P _ A w7 (5.39)
~ A2.p T A2 (N-) Tom :
s s s N [ A2dQ
w/N
w/K ' w/N '
[ PP [P 2dQ
0 0
= L ~ L , (5.40)
el el
[ 1P [ |P(ef?)[2dQ
/N /N

where an ideal frequency response P(e/?) as shown in Fig. 5.3 has been assumed
and the approximation is based on the negligible contribution of the transition
band energy to the whole passband energy. This approximation is very accurate
for small oversampling ratio OSR = K/N. Thus, the original approximation for
white Gaussian input in (5.32) has been reached, and validated for a wider range
of input signals.

The main advantages of the approximation with the SAR measure over the
MMSE introduced in the previous section lies in the sole dependence on charac-
teristics of the prototype filter. By considering a power ratio between the signal
of interest and alias components, all signal dependent quantities dropped using

simplifications which seem to be justified, and which will be further justified
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by experiments in Sec. 5.4. In the interpretation of the MMSE and SAR, the
MMSE defined the absolute lower limit for the adaptation error, while SAR will
give the difference in error power between the unadapted state and optimal filter

adjustment, i.e. a relative quantity.

5.3 Modelling Accuracy

Apart from the residual error variance, another criterion for the state of adap-
tation is the Euclidean distance between the optimum weights and the Wiener
solution. In the subband adaptive filter case, a distinction has to be made be-
tween the Wiener solution for the subband adaptive filter, and the question, how
the subband adaptive filter system as a whole can represent the unknown sys-
tem. While the first question has been addressed in e.g. [53, 54, 66], here we
are interested in how the choice of the analysis and synthesis filter banks affects
the accuracy of a representation of the unknown system. This is achieved by
reconstructing an “equivalent fullband model” from the subband adaptive filter

responses, which in the following will be assumed to be optimally adapted.

5.3.1 Equivalent Fullband Model Reconstruction

The reconstruction of an equivalent fullband model will first be performed an-
alytically by a 2-band example using PR or near PR critically decimated filter
banks, based on expressions for the optimal subband adaptive filter responses in
[53, 54]. In a second part, a general reconstruction method will be based on a

modification of the graphical flow graph of the subband adaptive filter system.

5.3.1.1 Analytical Two-Band Example

For the case of critically sampled filter banks with cross-terms as discussed in

Sec. 3.4.2.1, the optimal subband responses are given by the filter matrix (3.56),
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which for the case of two subband channels can be brought into the form [53, 54]

(5.41)
where A = H?(z) — H*(—z) is approximated in [53, 54] by a delay. Also, for
ease of representation, the original analysis and synthesis filters in [54] have been

replaced by selecting a QMF filter pair in analysis and synthesis filter bank, and

choosing the synthesis filters as reversed copies of the analysis filters,

Ho(z) = H(z) (5.42)
H(z) = Hy(—2)=H(-=2) (5.43)
Go(z) = Hi(—z2)=H(z) (5.44)
Gi(z) = —Ho(—2)=—-H(-2) , (5.45)

where H(z) is a suitable symmetric prototype lowpass filter.
If the unknown system S(z) is projected into subbands using the analysis filter

bank, the formulations

So(z) = %{Ho(z%)S( D) Ho(—h)S(-2h) ) = (5.46)
_ %{H(z%)S( 3) & H(—25)8(—2%) (5.47)
$1(2) = 3 {H(EH)SE + H(-2h)s (—z%>}= (5.48)
_ %{H(—z%)S( 5+ H(z4)S(—2h) ) (5.49)

arise. A reconstruction of the subband projections Sp(z) and Si(z) from the

subbands finally yields

S(z) = Sp(22)Go(z) + S1(22)G4(2) = (5.50)
1
= 5 (H*(2) — H*(=2)) - S(2) , (5.51)
where the term H?(z) — H?(—z) according to the selection (5.42)—(5.42) obviously

can be expressed as

H?(2) — H*(—2) = Ho(2)Go(2) + H\(2)G,(2) (5.52)
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which is a power complementary condition as introduced in Sec. 4.5.1.2 and with
PR filter banks will only constitute a delay.

Next, a reconstruction from the subbands is performed by multiplying from
the right with the decimated and expanded analysis filters in modulation descrip-
tion, and from the left with the synthesis filter bank,

W) = (Gl Gl<z>1-vv(z2>-[gf8 gg:;”i] 5:)

1

= 7 (H*(2) — H*(=2)) - (H(2) — H(~2)) -
S(2)- (H(z) + H(—2) (5.54)
= (H(2) = H*(=2)) - S(2) (5.55)

which yields a result identical to (5.51). Thus, the overall impulse response of the
subband adaptive system, the equivalent fullband model, is obtained by applying
an impulse to the entire subband adaptive filter system consisting of the analysis
bank in series with the adapted subband filter impulse responses including the

cross-terms and the synthesis bank [170].

5.3.1.2 General Reconstruction Method

We are now interested in the equivalent fullband model of a general subband
adaptive system, with particular interest in the oversampled, cross-term free case
shown in Fig. 5.4. If optimal adaptation of the subband adaptive filter responses
is assumed, the subband error signals will have minimum variance. Since the
filter banks under consideration implement tight frames, the minimum condition
of the subband error variances also ensures the variance of the reconstructed error
will be minimum. Thus, in the optimally adapted case, the synthesis bank can be
split to separately reconstruct a fullband desired signal and perform a synthesis
operation on the output of the adapted subband filters. When finally subtracting
the two fullband signals, the result should remain the same.

The separation of the synthesis is visualized as a block diagram in Fig. 5.5
hinting at the reconstruction procedure [172]: if an impulse is applied to both
branches, the desired signal followed by an analysis—synthesis operation, and the

lower branch containing the subband adaptive filter system, the two outputs
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Figure 5.4: Cross-term free subband adaptive filter system in a system identifi-
cation setup with an unknown system s[n|.
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Figure 5.5: Separation of system identification structure for reconstruction of
fullband equivalent model.
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should be identical under the assumption of perfect adaptation, and the absence
of any other inhibiting circumstances like observation noise or truncation effects
due to too short adaptive filters.

Therefore, the fullband equivalent model is formed by the response to an
impulse applied to serial system of analysis bank, adapted subband filters, and
synthesis bank, like in the preceding example for the critically sampled two chan-
nel case. The difference from the true system is marked by the response of the
combined analysis — synthesis bank, which under ideal condition again should

only form a delay.

5.3.2 Maximally Achievable Model Accuracy

The discussed reconstruction of the fullband equivalent model from the subband
adaptive filter responses allows interpretations on the maximum accuracy or the
minimum error of the subband adaptive filter system with respect to its distance
from the ideal overall fullband system to be identified. If we assume perfect
adaptation conditions, the resulting equivalent fullband model w[n| will be given
by

w[n] = s[n| * t[n] (5.56)

where s[n] is the impulse response of the unknown system and ¢[n] the distortion
function of the filter bank. The notation in (5.56) already assumes that the
overall filter bank possesses negligible alias distortion, as otherwise ¢[n] would be
periodically time-varying. Thus, if it is taken for granted that the filter bank
design as discussed in Sec. 4.5 has provided a filter bank with very low aliasing in
the subbands and thus in the reconstructed signal, the overall transfer function of
the series of analysis and synthesis bank can be considered to be an LTI system
t[n] o—e T(z), which is often termed distortion function [151] and describes
both amplitude and phase distortion of the filter bank systems in Fig. 3.1. This
allows us to state the limit for the model accuracy in terms of the reconstruction
error (RE)

RE = ||t[n] — d[n—Ly+1][2 = [IT(z) — 2|2, (5.57)



CHAPTER 5. PERFORMANCE OF SAF SYSTEMS 136

where || - ||2 indicates the [y norm. Since T'(z) is given by [151]
K—1
T(z) = Hp(z) Gi(z) | (5.58)
k=0

the error measure (5.57) for model accuracy is equivalent to the deviation from
power complementarity in Sec. 4.5.1.2. If designing a prototype filter using the
iterated LS method of Sec. 4.5.3, the power complementarity requirement is de-
scribed by (4.93), and can therefore be used to a priori state the model accuracy

as

This also describes the distortion imposed on any signal fed through the SAF
system.

The analysis presented here assumed that aliasing is sufficiently suppressed.
Is this a reasonable and valid assumption? Sec. 5.2.1 has indicated that the
minimum achievable error within the subbands is limited by the SAR, which has
been linked to the stopband attenuation of the employed prototype filter. The
residual noise again causes an excess MSE, which for example with LMS type
algorithms is proportional to the MMSE and prohibits an accurate adjustment
of the subband adaptive filters. Therefore, if the error in perfect reconstruction
was considerably lower than the SAR, the error limit would still be linked to the
subband SAR. It is therefore vital to design the prototype filter such that its
stopband energy is at least as small as its deviation from perfect reconstruction.
With this balance between stopband attenuation and perfect reconstruction, it
is justified to swap the requirements of perfect reconstruction (PR) with power

complementarity (PC).

5.4 Simulations and Results

Simulations presented within this section will evaluate the influence of various
parameters in an SAF system using GDFT filter banks. Furthermore, examples
are given to underline the validity of the performance limitations calculated in
Secs. 5.2 and 5.3.
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K/N | L, | RE/[dB] | SAR/[dB] p
pi[n] | 32/28 | 896 | -55 57 2.7-1072
paln] | 32/24 | 960 | -114 109 | 4.5-10°*
psn] | 32/20 | 960 | -175 170 [ 5.6-107°
paln] | 32/16 | 896 | -193 180 [8.5-1078

Table 5.1: Filter design using the iterative LS method of Sec. 4.5.3 for K/2 = 16
subbands and various decimation ratios N = 16(4)28.

5.4.1 Subband Parameters

This section will evaluate how the choice of the channel number K and the dec-
imation ratio NV of the SAF will affect convergence. Sec. 5.4.1.1 investigates the
adaptation for a fixed number of subbands and a variable decimation ratio, while
in Sec. 5.4.1.2, the impact of the number of subbands will be surveyed by varying
K at a fixed oversampling ratio (OSR) K/N.

5.4.1.1 Oversampling Ratio

Filter Banks. Tab. 5.1 lists 4 prototype filters, which are designed for K/2 =
16 subbands and a number of different decimation ratios. With these proto-
type filters, subband adaptive systems operating at different oversampling ratios
(OSR)

OSR=— >1 (5.60)

2=

can be created. For convenience, the lengths of the prototype filters have been
chosen such that polyphase implementation of the filter banks can be kept simple
with L, being an integer multiple of lem(K, N). Fig. 5.6 shows the resulting
frequency responses of the four prototype filters. Note that the 3 dB crossing
point | P;(e/7/19)| = \/1/2, i = 1(1)4 is given through the required power comple-
mentarity of the filters.
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Figure 5.6: Frequency response of prototype filters p;[n], i = 1(1)4, for K = 32
and various decimation ratios N = 16(4)28, belonging to the prototype design
listed in Tab. 5.1.

Eigenvalue Spread. To analytically estimate the eigenvalue spread of the sub-
band signals, the input signal to the analysis filter bank will be assumed to be
normally distributed and white. Since all bandpass filters in the filter bank are
modulated versions, only a representative subband signal produced by the proto-
type filter will be evaluated. An approximation of the PSD for the subband signals
omitting any spectral correlations between aliased components in the decimation
stage similar to the proceeding in Sec. 5.2.2 is given by the squared magnitude of

the prototype filter decimated by N,

Saa(e™) = PP (e7) (5.61)
rzln] & piln]xpl-n] (5.62)

where pi[n], I = 0(1)N —1, is the [th of N polyphase components of the proto-
type filter. A result of the approximation is that it does not matter which of
the N polyphase components is picked to calculate (5.62). If N is chosen such

that no aliasing in the subbands will occur, all N polyphase components will
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Figure 5.7: (a) subband PSD for filter bank with K = 32 and various decima-
tion ratios N = 16(4)28; (b) eigenspectra of a 20 x 20 auto-correlation matrix
belonging to the curves in (a).

have an identical magnitude response, but differ in their phase. However, in the
auto-correlation operation, any phase information is lost, and thus all N com-
ponents will yield identical results in (5.62). Fig. 5.7 shows the approximated
PSDs of a subband produced by the lowpass prototype filters in Tab. 5.1 deci-
mated by the according factor N, as well as the eigenspectra, which are composed
of ordered eigenvalues of a 20 x 20 ! auto-correlation matrix R,, based on the

auto-correlation sequence r,,[n] in (5.62), closely corresponding with the subband
PSDs.

Simulations. The following simulations consist of the identification of a delay
of 1000 taps using an NLMS algorithm with normalized step size i = 0.4. A
simple delay has been shown to be difficult to adapt to, since a delay passes all

frequencies equally and the slow convergence at the band-edges will have a main

! The dimension of R, is likely to influence the eigenvalue spread. Here, it has been selected
arbitarily, we are only interested in the relative difference between different subband realizations.
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Figure 5.8: ERLE curves for identification of a delay with white input signal in
both fullband and K/2 = 16 subbands produced by a complex valued GDFT
modulated filter banks with different decimation ratios N = {16, 20, 24, 28}.

influence on the overall adaptation behaviour [101, 88]. To enforce equal condi-
tions on the subband adaptive filters despite the various aliasing levels produced
by different filter banks in Tab. 5.1, observation noise at an SNR of 45dB is added
to the desired signal.

Simulations for white Gaussian input z[n] are shown in Fig. 5.8 for a complex
valued GDFT filter banks with K/2 = 16 subbands and decimation ratios N of
28, 24, 20, and 16. For comparison, the convergence curve of a fullband NLMS
algorithm for same system specifications has been added. Identical simulations
using an SSB modified GDFT filter bank for adaptation in real valued subband
signals are shown in Fig. 5.9 for decimation ratios of N/2 = 14, 12, 10, and 8.
Apparently, for both SAF systems using complex valued GDFT and real valued
SSB subband signals, the decimation ratio has no really strong effect on the
convergence, and they converge with approximately equal speed at the different
OSRs. Compared to the fullband performance, apparently the SAFs exhibit after

an initially equally fast adaptation a slower convergence to the final MSE, and
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Figure 5.9: ERLE curves for identification of a delay with a white input signal in
real valued subbands produced by SSB modified GDFT filter banks for decimation
ratios N/2 = {8,10,12,14}.
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Figure 5.10: PSD of input signal for simulations with coloured noise.
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Figure 5.11: ERLE curves for identification of a delay with coloured input signal
in both fullband and K/2 = 16 subbands produced by a complex valued GDFT
modulated filter banks with different decimation ratios N = {16, 20, 24, 28}.

are still far from being completely adapted after 0.1-10° iterations. This is due to
the very high eigenvalue spread p of the decomposed input signal for the SAFs,
which is listed in the last column of Tab. 5.1 for the prototype filters employed
for the different OSRs. Also interestingly, the SSB modified GDFT system has
a considerably poorer convergence towards the final MSE, since the PSDs of
the subband signals posses two notches compared to one in the complex valued
subband signals, as can be easily pictured from Fig. 4.10. No explanation has yet
been found for the “bumps” of slow convergence appearing in the learning curves
with increasing OSR.

The same simulations are repeated using a coloured input signal with a
PSD shown in Fig. 5.10. Simulation results for SAF systems using GDFT and
SSB modified GDFT filter banks with different oversampling ratios are given in
Figs. 5.11 and 5.12. Remarkably, while the fullband NLMS algorithm is now
severly slowed down, the convergence characteristics for SAF have hardly changed

compared to the white noise excitation in Figs. 5.8 and 5.9, since the spectrum
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Figure 5.12: ERLE curves for identification of a delay with coloured input sig-
nal in real valued subbands produced by SSB modified GDFT filter banks for
decimation ratios N/2 = {8,10,12, 14}.

2 = [0; 7] is divided into 16 intervals, thus reducing the relative difference between
extrema of the PSD in each band.

Concluding, the subband approach appears reasonably competitive for the
white noise excitation case, where it maintains speed through shorter adaptive
filters in the subbands, and gives great benefit for adaptation for coloured noise
input. The relative insensitivity of the SAF to the OSR suggests that lower
filter order at low OSR is traded off against longer filters, higher update rates,
and higher eigenvalue spread at higher OSR, with a very slight convergence speed
advantage for decimation ratios close to the critical rate. This allows us to choose
the OSR of an SAF based on the criterion of computational complexity, as low

OSRs will allow for more efficient implementations.

5.4.1.2 Number of Subbands

In the previous section, the decimation ratio was varied for a fixed number of

subbands. Now the interest in on how the number of subbands K/2 influences
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Figure 5.13: ERLE curves for identification of a delay with white input signal in
subbands produced by complex valued GDFT filter banks for different number
of subbands K/2 = {4,8,16}

convergence, which will be performed at a fixed OSR K/N = 8/7 for different
values of K. Simulations for the identification of a delay of 1000 samples by SAF's
using complex GDFT filter banks are given for white input signal in Fig. 5.13
and for coloured input in Fig. 5.14 with a PSD drawn in Fig. 5.10, in comparison
with a fullband adaptive NLMS algorithm.

For the broadband noise simulation in Fig. 5.13, the SAF learning curves
migrate towards the fullband behaviour as the number of subbands is lowered.
The subbands of the different systems will have similar eigenvalue spread since
the OSR is constant, however the reduced adaptive filter length for the higher
number of subbands seems not to completely compensate for the slower algorith-
mic convergence due to the lower update rate. With coloured noise excitation in
Fig. 5.14, the SAF systems with K/2 = 8 and 16 subbands perform almost identi-
cal to the case of white noise excitation in Fig. 5.13, since they seem to provide a
sufficient separation of the coloured input spectrum to balance convergence. The

opposite appears to be true for the case K/2 = 4 which now falls back behind
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Figure 5.14: ERLE curves for simulation as in Fig. 5.13 for coloured input signal.

K/2 = 8 in terms of convergence speed.

In terms of convergence speed, the performance of the SAF system depends
on the noise shape of the input signal in the particular application. For the
example given in Fig. 5.14, the choice K/2 = 8 would be preferred over K/2 = 4
or 16. However, besides convergence speed issues, in Chap. 6 the computational
complexity of SAF systems will be researched, which will depend to a large extend

on the number of subbands.

5.4.2 Performance Limits
5.4.2.1 PSD of Minimum Error Signal

To demonstrate the validity of the PSD description for the minimum error signal
as introduced in Sec. 5.2.1.2 based on aliased signal components in the subbands,
a system identification example is described in the following. The system is an IR,
filter with 5 complex conjugate pole pairs shown in the pole-zero plot in Fig. 5.15.

Thus, the system possesses an exponentially decaying impulse response shown in
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Im{z}

Figure 5.15: Pole-zero plot of the unknown system used for system identification;
poles are marked by “x”.

Fig. 5.16, which slowly drops in power at a rate of approximately 40dB / 1000
samples. This slow decay is due to two pole pairs sitting in close proximity of the
unit circle. To exclude other error sources, correct filter lengths for the subband

adaptive filter was ensured, and no observation noise was added.

Example 1. For identification, a decomposition into K/2 = 8 subbands deci-
mated by N = 14 is used to perform subband adaptive filtering using an NLMS
algorithm with step size i = 0.8. Since one of the poles lies exactly at a band
edge, the convergence exhibits a very slow mode [101] and only after half a million
iterations, the algorithm appears to be almost completely adapted, as the MSE
curve in Fig. 5.17 illustrates. A number of PSDs of the error signal have been
calculated in Fig. 5.18 over time intervals in which the error was assumed station-
ary. The solid upper line marks the PSD of the error signal before adaptation is
switched on at time n = 10000, which also represents the magnitude response of
the unknown system, since it is excited by white noise of unit variance. More PSD
samples of the measured error signal have been evaluated over a time window of
40-10% samples at n = 0.2-10%, n = 0.3-10%, and n = 0.5-10°. Clearly, while the
error’s energy at the band edges (marked in Fig. 5.18 by dashed vertical lines) is
further reduced with each PSD sample, some spectral peaks remain unaffected.
Fig. 5.19 give a comparison between the PSD of the reconstructed fullband
error signal of the SAF and a prediction of the residual error PSD based on
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system characterized in Figs. 5.15 and 5.16.
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aliased components in the subband signals. This prediction has been calcu-
lated by approximating the equations presented in Sec. 5.2.1.3 with DFTs of the
source model, analysis and synthesis filters. The peaks in this spectrum represent
aliased components of the input signal caused by the resonances at {2 = 0.17 and
Q2 = 0.57. Fig. 5.20 shows both curves overlaid, and it can be appreciated that
the measured PSD forms an envelope of the predicted lower error PSD bound
over large spectral intervals. Deviations occur at the band edges, and for the
frequencies 2 = 0.17 and €2 = 0.57, where the original peaks of the uncancelled
error signal resided. This insufficient adaptation of the error can be justified by
the slow convergence properties at band edges [101] and by the fact that the error
power is dominated by the aliased peak at 2 = 0.17+ 57 2T ~ 0.247, and minimizing

the rest of the spectrum will not greatly contribute to a lowering of the MSE.

Example 2. A second example demonstrates the prediction of the residual error
PSD for a system identification set-up with coloured input signals as shown in
Fig. 5.10. The system to be identified is identical to the one used in the previous

example, apart from the strong pole originally at the band-edge 2 = 0.57 now
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Figure 5.21: PSD of error signal before and after adaptation, using an unknown
system with 5 poles and coloured input signal.

sitting at an angle of 2 = 0.457. Again, the SAF set-up uses a modulated GDFT
filter bank with K /2 = 8 subbands, decimation by N = 14, and NLMS algorithms
with i = 0.8 operating in the subbands. Fig. 5.21 shows the measured PSDs of
the error signal before and after adaptation (n = 0.2-10%). The prediction of the
residual error PSD used a source model consisting of the unknown system and
the noise shaping filter producing the PSD of the input signal as in Fig. 5.10.
The result is overlaid with the measured PSD in Fig. 5.22, and obviously fits
very well as a lower bound. As one pole has been moved from the band edge
to the center position of the 3rd subband, the adaptation is more accurate after
shorter time than in the previous example, and the error signal contains less
uncancelled energy at the band edges and the strong original peaks at 2 = 0.17
and Q = 0.457.

5.4.2.2 Performance Measures

Performance limitations of SAF systems closely related to the filter design param-

eters of power complementarity and stopband attenuation have been derived in
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Figure 5.22: Comparison between the predicted PSD of the minimum error and
the measured error PSD for coloured input signal.

Secs. 5.2.2 and 5.3.2. To test for validity, a number of prototype filters have been
designed using the iterative LS design of Sec. 4.5.3 for the application in SAF sys-
tems with K /2 = 8 subbands and decimation by N = 12, but different weighting
v between the conditions of power complementarity and stopband attenuation.
The resulting measures of perfect reconstruction (RE) and signal-to-alias ratio
(SAR) according to (4.71) and (4.96) three different y-designs with a filter length
of L, = 192 taps are shown in Tab. 5.2.

The unknown system was set to be a simple delay, and identification with a
white Gaussian input signal used an RLS algorithm for adaptation of the SAF
with a forgetting factor # = 0.9995. The RLS was here preferred over LMS-
type algorithms to avoid slow convergence due to the coloured nature of the
subband signals introduced by the analysis filter bank. Tab. 5.2 displays in its
two right columns the noise reduction, i.e. the difference between the variances
of the uncancelled and adapted error signal, and the error of the reconstructed
equivalent fullband model with respect to the delay to be identified. Apparently
for all three designs, both quantities match very closely with the measures derived

from the prototype filter, and can therefore be well used for predicting the MMSE
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Prototype Design Simulation Results
10logyy(7) | RE/dB | SAR/dB || 10logo([[w—sl[3) | 101ogyg(0g./0%)
0 -54.0821 55.6 -54.0153 54.0
30 -34.6191 65.2 -34.6143 66.2
60 -18.0016 77.8 -18.0010 78.5

Table 5.2: Predicted fullband model error and final MSE compared to simulation
results (all quantities in [dB]).

performance of the implemented SAF system.

For the more complex simulations presented in Sec. 5.4.2.1, the noise reduction
values attained by the SAF systems were measured to be -53.93dB for example
1 as shown in Fig. 5.17, and -56.73dB for example 2, for which the PSDs of
uncancelled and cancelled error signal are given in Fig. 5.21. The characteristics
of the prototype filter p[n] used for the decomposition into K/2 = 8 subbands
and decimation by N = 14 — contained in Tab. 4.3 as design (d) — exhibit an
SAR value -57.01dB calculated according to (4.71). This very closely agrees with
the measured noise reduction for the system identification in example 2, which
used a very long impulse response as the unknown system and a coloured input
signal. For example 1, the discrepancy between the SAR value of the prototype
filter and the noise reduction of -53.93dB can be explained by the SAF not being
completely adapted after 0.5 - 10° iterations, which is indicated in Fig. 5.18 by
the remaining energy in the PSD at the band edges.

5.5 Concluding Remarks

A number of performance characteristics of subband adaptive filter systems have
been addressed in this chapter. The main aspects were focused on the convergence
behaviour of the SAF set-up, and the performance limitations in the MMSE
behaviour.

For the minimum error performance of SAF, the analysis of aliased signal
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components has been used to calculate the limits for the power spectral density
of the minimum error signal, based on the knowledge of a source model and the
characteristics of the analysis and synthesis filter bank. Approximations have
been derived for the MMSE in both subbands and fullband, which have been
linked to the stopband attenuation of the prototype filter of the filter bank. The
equivalent fullband model, i.e. the impulse response of the overall SAF system
consisting of analysis filter bank, subband adaptive filters, and synthesis filter
bank, has been shown to be limited in its accuracy by the reconstruction error of
the employed filter banks.

The calculated or estimated performance limitation on MMSE and fullband
equivalent model have been verified by simulation, which agree well with the two
design criteria of the prototype filter, stopband attenuation and reconstruction
error. Although these measures have specifically addressed GDFT modulated
filter banks, similar derivation can be made for other filter bank types. The
appeal lies in the fact that these measures provide convenient tools to design filter
banks for SAF systems fulfilling pre-specified performance limits [172]. Thus, for
applications like acoustic echo control, where the adaptation error is the most
important issue, the banks can be designed to be just good (and short) enough
to satisfy relaxed constraints on the model error.

Concerning convergence speed, several influencing factors have been addres-
sed, including the filter length of the adaptive filter, the update rate, and the
eigenvalue spread of the subband decomposition of the input signal. The effect
of varying the oversampling ratio and the number of subbands was highlighted in
a number of simulations. Results from these simulations suggest that the OSR
has a minor influence on the convergence speed, while the number of subbands
is governed by an optimal trade-off between the spectral separation for coloured
PSD of the input signal, and the reduced update rate and SAF filter length
prevalent with higher channel numbers K for constant OSR. Generally compared
to a fullband adaptive solution, the convergence speed slowed down particularly
when approaching the MMSE, but was considerably enhanced for coloured input
signals.

As lowering the OSR has hardly any influence — and if at all, it appears to
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be a positive one — on the convergence speed, but does greatly reduce the com-
putational complexity of the implemented system due to the reduced adaptive
filter length and lower update rate of all involved filters, it appears sensible to
run the SAF system at the lowest possible rate, i.e. using an oversampling ratio
close to one. Since the demand for an efficient implementation also includes the
maximum exploitation of computational saving in the filter bank implementa-
tion, we finally come back to the GDFT filter banks presented in Chap. 4 when
assessing the complexity of the overall SAF system and comparing it to other

implementations in the following chapter.



Chapter 6

Variable Tap-Profiles For
Subband Adaptive Filters

The subband adaptive filtering approach allows a selection of a different set of
algorithmic parameters for each subband. While in the past section this has
been exploited to choose different convergence parameters to increase the overall
convergence speed, here we will discuss methods to vary the filter lengths of the
different adaptive filters in an SAF system. We first introduce the underlying idea
and review related work in Sec. 6.1. Sec. 6.2 analyses the potential benefits and
also gives an insight and comparison into the computational savings achievable
with different subband approaches. Two algorithms for variable filter tap-profile

are presented in Sec. 6.3. Finally, Sec. 6.4 discusses some simulations and results.

6.1 Idea and Background

6.1.1 Motivation

For the identification of long impulse responses, such as found in acoustic echo
control problems, the achievable model is often a truncated representation due
to the computational limitation of the digital signal processor (DSP) on which
an adaptive system is implemented. As a solution to reduce the computational
complexity, the subband adaptive approach has been discussed in Chap. 3. A

method to further enhance the efficient use of computational resources on a DSP

155
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Figure 6.1: (a) uniform and (b) optimized tap-profile for an SAF with K/2 =8
subbands, with decay levels for the power of the unknown system; the under-laid
shaded areas represent the equivalent lengths of the subband filters with respect
to the fullband.

is by introducing a variable tap-profile subband adaptive system, whereby com-
putational resources can be dynamically allocated to subbands where they are
required. If the unknown system to be identified is spectrally unbalanced or the
involved signals are coloured, this approach can be advantageous.

Fig. 6.1 shows three decay levels of the spectral power belonging to the spec-
trogram of some unknown system. In many applications, this decay is spectrally
unbalanced, as for example in room acoustics low frequencies generally reverber-
ate longer due to frequency dependent absorption by the walls. If such a spectrally
unbalanced system is to be identified by an SAF system, and each subband has
an adaptive filter of equal length (as indicated in Fig. 6.1(a)), the resulting full-
band model error will be dominated by the subband whose filter length is shortest
compared to the unknown system’s decay time in that frequency band. As an
example, in Fig. 6.1(a)), the band & = 0 would be mainly responsible for the
magnitude of the final modelling error after adaptation. Fig. 6.1(b) shows an
optimization of the tap-profile — i.e. the lengths of the different SAFs — such
that with the same overall number of coefficients the SAF system will actually
have improved performance, since the remaining truncation errors in the different
subbands are approximately equalized.

The optimization of the tap-profile of an SAF system can therefore by viewed
as the task to exploit the resources of a DSP with a given computational bench-

mark to achieve an enhanced overall performance. The author’s idea was based
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on subband ADPCM, where signals are decomposed and differently quantized in
each frequency band. From a fixed pool of bits, each band is allocated a differ-
ent bit resolution depending on the relative signal energy within that band, thus
increasing the signal quality at a fixed bit rate of transmission. Transfered to
the SAF problem, more computations and thus longer filters can be dedicated to
subbands with a high error power, while coefficients are withdrawn from those
with low power. Thus, balancing the different subband errors can help to achieve

a minimization of a global (fullband) error, as will be derived in Sec. 6.3.

6.1.2 Approaches and Methods

The idea of tap-profile optimization is not new. Different approaches can be found
in the literature and will be discussed in the following, whereby we first look into
schemes calculating an approximate optimum profile prior to start running the

SAF system. Finally, adaptive solutions will be reviewed.

6.1.2.1 A Priori Optimization

The approach illustrated in Fig. 6.1 is performed in [1], which describes the
implementation of a commercial AEC system. Based on the measured energy
decay of an impulse in two representative rooms, the filter lengths of the SAFs
are set to a pre-specified tap-profile [1, 2]. Work presented in [34] not only takes
spectrally unbalanced room impulse responses into account, but also considers
the spectral shape of speech and the characteristics of the human ear to derive

an LS solution for a fixed optimum tap-profile.

6.1.2.2 Adaptive Schemes

To achieve and maintain approximate optimality of the SAF system during
operation in order to track changes and to be able to take set-ups in different
environments into account, the tap-profile can be varied adaptively. The original
SAF system is then ammended by a second adjustment algorithm as shown in
Fig.6.2, which will try to balance the subband errors. This idea was first presented

in [91] and referred to as automatic tap-assignment. The exchange of coefficients
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between two filters in undecimated subbands was performed based on a criterion
dependent on the subband error signals only. Modifications of this tap-assignment
algorithm are presented in [143, 144], which perform a tap-allocation based on
a mixed criterion of the input signal and the trailing coefficients of the impulse
responses of the SAFs. A general theory on both the methods by [91] and [143,
144] will be developed in Sec 6.3. The work in [158] extends the ideas in [91, 143]
by the inclusion of perceptual criteria based on the human ear similar to the a
priori optimization by [34].

The benefit of yielding a lower model truncation error with tap-profile adapta-
tion over standard subband or fullband adaptive filtering is demonstrated in [170],
which also describes a simplified criterion over [143]. The experimentation uses
critically decimated filter banks with cross-terms according to [54], but with a
suboptimal filter bank implementation. A generalization of the global error mini-
mization presented in [170] is performed in [162] to include tap-profile adaptation
in oversampled non-uniform subbands [71, 69] as depicted in Fig. 3.20. Both ap-
proaches in [170] and [162] are somewhat tedious, the first through the necessary
inclusion of cross-terms, the latter through various subsampling ratios in different
subbands and the resulting subband-dependent computational cost and fullband
time-representation of coefficients, which requires inconvenient exchange rates'

for shifting filter taps between subbands.

6.2 Equivalent Fullband Model Length and
Complexity

In the following, we will motivate the variable tap-profile approach by comparing
a fullband adaptive filter with a number of different SAF systems based on the
critically decimated [54], and the oversampled GDFT and SSB modified GDFT
filter banks [167] presented in Chap. 4. First, the resulting complexities based
on constant equivalent fullband model length will be evaluated in Sec. 6.2.1. In

Sec. 6.2.2, the problem will reversed, and we ask for the fullband model length

Yin ECU — equal complexity units [162]
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based on an implementation with a fixed number of computations, as, for exam-

ple, given when implementing SAF systems on a DSP.

6.2.1 Complexity Based on Constant Equivalent Fullband
Model Length

Although generally any adaptive filtering algorithm can be employed, for the
following analysis and examples, the complexity of the NLMS algorithm will be
used. The linear order of complexity creates an interesting case since real and
complex subband processing costs are approximately the same, as derived in
Sec. 4.4.

6.2.1.1 Computational Cost

For a general SAF system as depicted in Fig. 6.2, the computational cost consists
of three filter bank operations and the filtering and update procedures in the
subbands. Concerning the subband adaptive filters, we want to look at two

extrema for the tap-profile:

e uniform tap-profile, where all subband filters have equal length?;

e concentrated tap-profile, where all computations are dedicated to one single
subband.

Let us first consider the uniform case. A practical relation between the length of
the equivalent fullband model LY and the length of the SAF length L, has been
derived in Sec. 5.3.1, where the superscript (/) refers to the fullband sampling
rate. Therefore, the length of the subband adaptive filters can be calculated
according to (5.3) as
Ly +2L,

N ;

which accounts for the transients in the subband domain caused by the filter

L, = (6.1)

banks. Including the filter bank operation, the total computational costs for SAF

2The restriction to uniform filter banks ensures that the fullband time representation of each
filter is equal. For similar considerations for SAF in non-uniform subbands with a number of
different decimation ratios, please see [162].
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systems with real input can be stated for oversampled GDFT modulated complex
filter banks as

1 K { LY £or
CUPFT — v {3 -(4Klogy, K + 4K + L,) + 43 (2% + 3) } (6.2)

real multiplication per fullband period, where the filter bank cost is given by
(4.50), K/2 is the number of subbands decimated by N, and L, the length of the
prototype filter. For an SAF employing SSB modified GDFT filter banks, whose
computational complexity is given by (4.65), processing in real valued subbands

amounts to a total cost of

2 K (LY +or
CS5B — v {3- (4K log, K + 5K + L,) + 5 (QT/QP 13 (6.3)

real valued multiplications.

For comparison, the total computational cost for an NLMS subband adaptive
filter operating in critically decimated subbands produced by DCT modulated
filter banks, which requires using the structure suggested in [53, 54], is given by

2 K (. LY 121
CBST = E{3.(iLK'logQK;i—4K—|—L]g) +?<2K7/2p+3> +

Chank
adaptive main terms

r-n (B2 o) e () L o

~~

adaptive cross terms fixed cross terms

This assumes that cosine modulated filter banks have been used, and have been
calculated using an efficient polyphase structure almost identical to the one for
oversampled SSB modified GDFT filter banks discussed in Chap. 4. It is easy to
realize that the additional modulation for the SSB modification is not required,
since the subband spectra are already aligned. The subband dependent phase
shift £7/4 can be incorporated into the phase correcting matrix D, in (4.43).
Thus only a real operation is performed (at no cost) on the output of a GDFT
filter bank with decimation by K/2. The cost for the SAF consists of three
contributions in (6.4): the adaptive main terms in each of the K/2 subbands,

and K —2 cross-terms, which can be split into a fixed and an adaptive part as
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discussed in Sec. 3.4.2.1 (Fig. 3.14). The adaptive cross-terms are set to one third
of the length of the main adaptive subband filters®, as hinted in [54]

To obtain the total cost for a concentrated tap-profile, i.e. SAF is only per-
formed within one single subband, the factor K/2 in the adaptive terms of (6.2)—
(6.4) is omitted.

6.2.1.2 Example and Comparison

Fig. 6.3 shows the total cost CGPFT derived in (6.2) for an SAF system using
oversampled GDFT filter banks relative to the cost of a fullband implementation
of the NLMS, yvielding C() = 2L + 3. For four different lengths of the fullband
equivalent model Lgf), the graphs indicate the cost ratio as a function of the
number of subbands, K/2, of the specific subband implementation with a constant
OSR = 8/7 ~ 1.14. As a rule of thumb, the length L, of the prototype filter was
set to L,(K) = 16 - K, a realistic value for real-time AEC applications [137],
which yields an approximately constant filter quality for variable K and constant
OSR when using the iterative LS design introduced in Sec. 4.5.3.

The cost ratios plotted in Fig. 6.3 illustrate how the computational savings
initially rise with the number of subbands K /2, until for large K /2 most of the
computations are used for the required filter bank operations, and the cost reduc-
tion levels out and would even recede for very large numbers of subbands. For
a flexible tap-profile as indicated in Fig. 6.1, the pair of curves for uniform and
concentrated tap distribution form the margins in between which the true cost
reduction with a variable tap-profile will lie. As an example, using an implemen-
tation with K /2 = 32 subbands, the computational cost is reduced to 5% (10%) of
the fullband implementation for the given response lengths of 16000(2000) taps,
assuming a uniform tap-profile. For a concentrated tap-profile, this cost ratio
would be down to 1%(7%) of the cost for a fullband implementation.

For an SAF system employing SSB modified oversampled GDFT filter banks
for real valued subband processing, Fig. 6.4 shows cost curves according to (6.3)

for identical conditions to the previous complex subband processing example in

3Experiments in [88] show that system identification problems, where the unknown systems
have poles at band-edges, 1/3 of the adaptive main term’s length is not sufficient. Thus, for a
high performance system, the cost may be higher than shown here.
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Figure 6.3: Relative cost CGPFT/C() as a function of the number of subbands

K /2 for various given lengths L,(If ) of the equivalent fullband model and uniform
(x) and concentrated (o) tap-profiles.

Fig. 6.3. As discussed in Sec. 4.4, the cost for the actual subband processing
is identical, however the filter bank operation requires approximately twice the
number of multiplications. Therefore, the curves behave similarly to Fig. 6.3
whenever the cost for filter bank operations is small relative to the computational
cost of the subband processing, i.e. for small channel numbers K /2 and very long
response lengths LY. Otherwise, SAF systems using GDFT filter banks and
complex arithmetic are clearly advantageous.

Fig. 6.5 displays the cost ratios achievable when critically sampled filter banks
are used, yielding the computational complexity derived in (6.4). Compared to
the previous SSB example, the higher decimation ratio of K/2 clearly cannot
compensate for the cost introduced by the required cross-terms, and the cost
performance is generally worse than for the SSB case in Fig. 6.4, and far behind

the cost reduction achieved for the GDFT case in Fig. 6.3.
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Figure 6.5: Relative cost CPCT/C) as a function of the number of subbands

K /2 for various given lengths LY of the equivalent fullband model and uniform

(x) and concentrated (o) tap-profiles.
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6.2.2 Equivalent Fullband Model Length Based on Con-
stant Complexity

An interesting case arises when (6.2) — (6.4) are solved for the equivalent fullband
model length L,(lf ) in dependency of the overall computational cost. Thus, for a
fixed number of computations, which are for example given by the benchmark
performance of a specific DSP chip, it is possible to predict which model length the
overall SAF system is capable to provide for different subband implementations
(oversampled GDFT, oversampled SSB modified GDFT, and critically sampled
cosine modulated filter bank) and a variable number of subbands K/2.

For SAF systems with complex subbands produced by GDFT filter banks,
the fullband equivalent model length in dependency of the available number of
computations Ci,, can be derived from (6.2) by rearrangement. In Fig. 6.6,
these equivalent fullband lengths are depicted relative to the length of an NLMS
implementation in the fullband with L = (Cio; — 3)/2. As in Sec. 6.2.1, it is
distinguished between the two cases of “uniform” and “concentrated” tap-profile.
Thus, for a given benchmark performance C},; and a variable tap-profile, the true
increase in the fullband model length will lie between these two marginal cases
indicated in Fig. 6.6.

Fig. 6.7 shows the same curves for a real valued SAF system using SSB modi-
fied GDF'T filter banks. Clearly noticeable, the groups of curves are wider spread
and the increase in model length for low benchmarks Ci; is not as good compared
to Fig. 6.6. This is again due to the doubled cost of the filter bank operation,
which has a stronger influence if the complexity for the subband processing is
rather low.

The relative increase in model length for a real valued SAF system based on
critically decimated cosine modulated subbands is illustrated in Fig. 6.8. Due
to the number of computations required for the cross-terms, the resulting gain
in filter length is not only further spread for the different given computational
complexities Cyo, but also drops for a high number of subbands K/2. The ex-
planation is that the filter bank operations become so costly for high K/2, that
there is hardly any computational power left to perform the subband processing.

A similar behaviour could be demonstrated for the curves depicted in in Fig. 6.6
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Figure 6.6: Relative equivalent fullband model length LYy /L of an SAF system
with GDFT modulated filter banks as a function of the given total complexity
C'ot and the number of subbands K/2 for (x) and concentrated (o) tap-profiles.

[eXoXoXe]

relative length of equivalent fullband model

number of subbands K/2

Figure 6.7: Relative equivalent fullband model length LYy /L of an SAF system
with SSB modified GDFT modulated filter banks as a function of the given total
complexity Cio and the number of subbands K/2 for (x) and concentrated (o)
tap-profiles.
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Figure 6.8: Relative equivalent fullband model length LYy /L of an SAF system
with critically sampled cosine modulated filter banks as a function of the given
total complexity Cio; and the number of subbands K/2 for (x) and concentrated
(o) tap-profiles.

and in Fig. 6.7, if only the K /2 was selected to be high enough.

The examples given here used an NLMS algorithm, which exhibits an order
of complexity that is linear in the adaptive filter’s length. For other algorithms
as introduced in Chap. 2, similar curves can be determined by inserting the
appropriate complexity as discussed in Sec. 4.4 into (6.2) — (6.4). This enables
us to judge the efficiency of a certain filter bank operation in combination with
the desired algorithm and thus helps to derive the required numbers of subbands

for an SAF system to be acceptable for a specific application.

6.3 Tap-Profile Adaptation

Motivated by the likely increase in efficiency when adopting non-uniform SAF
lengths, we now look into schemes of how to determine the optimum tap-profile
below. For adaptive methods, we proceed with a description for a tap re-distribu-

tion mechanism, which can be driven by a selection of criteria briefly introduced.
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vi[n]

sl

Figure 6.9: Separation of the optimum filter wqpx[n] into an identifiable part,
w(n], and an unidentifiable component, v[n] due to model truncation at n = L, .

6.3.1 Optimum Tap-Profile
6.3.1.1 Minimum Subband MSE

The minimum mean squared error (MSE) in the kth subband is given by

2
e{[exlm)|’} = £{(uln) — yulnl) (@iln] - )" } (6.5)
with signals defined as in Fig. 6.2. In particular, the desired signal di[n] can be
expressed in terms of a system si[n] representing the unconstrained (in terms of
filter length) Wiener solution for the subband adaptive filter, and an observation
noise term z;[n| including true observation noise and artifacts like aliased signal

components,
dp[n] = s xpn + 2xn] (6.6)

The output of a filter of length L, ; which is optimal in the MSE sense is given
by

yr[n] = wf;t’kxk,n ) (6.7)

By defining the mismatch between the unconstraint optimum solution, si[n],
and the constraint optimum solution, wWep; x, as Vi = 8 — Wopt . as illustrated in
Fig. 6.9, the minimum MSE (MMSE) in the kth band, {vwsek, is denoted as

EMMSEER = 5{‘619[””2} -

- 8{(vka,n + zi[n]) (Vi xpn + zk[n])H} : (6.9)

(6.8)
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Under the assumption that the observation noise zx[n] has zero mean and is
uncorrelated with the input signal zx[n], and both z;x[n] and zx[n] are wide sense
stationary, the subband MMSE yields

EMMSEER = 5{V1?Xk,nXkH,nd} + E{zk[n]z;[n]} (6.10)
= vil&{xpuxi,} v+ 02 . (6.11)

212k
Let us further assume that the analysis filter bank is ideal and performs a suffi-
ciently fine decomposition such that the input signal in the kth subband, xx[n], is
approximately decorrelated. Therefore the auto-correlation matrix R of the kth

subband input signal can be approximated as

R, = E{xpnxt,} mol ., -1 . (6.12)

TrTh

Using this assumption, the MMSE in (6.11) can be written as

EMMSEE = Uf;kka;?Vk + Uzkzk . (6.13)
If the mismatch vector vy is expanded,
o
2
EMMSEE = ngxk' Z ‘Sk[n]‘ + Gszk , (6.14)
n:La,k.

it becomes clear that the approximated MMSE depends on the energy of the resid-

ual impulse response of the unknown system after model truncation, weighted by

2

the variance of the input signal and biased by the noise variance o7, , .

6.3.1.2 Minimization of Global MSE

Considering that the filter banks employed in an SAF system, as for example
shown in Fig. 6.2, implement tight frame decompositions, (3.19) guarantees a
fixed energy transfer between the fullband and the different subband signals of
the decomposition. If we further assume that the SAFs operate in steady-state,

the frame equation can be written for the error signals as

No 1 K—-1 N2/N
Z e’ln] = 1 Z Z ex[n]ex[n] (6.15)
n=N1 k=0 n:Nl/N

K/2—1 Nz/N

= > Y enlein] (6.16)

k=0 n=N;/N

| o
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where the samples in fullband and subbands have been evaluated over a fullband
interval of sufficient length No— N;, which in the subbands is accordingly shorter
by the decimation factor N. The constant A is the frame bound of the tight
frame and is equal to the oversampling ratio, A = OSR = K/N. By taking
expectations £{-} of both sides, we yield

No K/2-1 Ny/N

Sy = 2 Y ellam) (6.17)

n:N1 k=0 n= Nl/N
Assuming steady-state behaviour of the adaptive filters and ergodicity of the
involved signals, the expectation values can be regarded as constants over time.

Therefore, the sums over n can be simplified, and finally an expression for the
fullband MSE has been reached:

K/2-1
g{eQ[n]}:% Z ellestnll’} (6.18)

Although this result may seem rather obvious in the uniform case, its modification
for non-uniform subband signals [69] is interesting, as it introduces fixed weight-
ings for the different subband contributions to the variance of the reconstructed
error signal [162].

Minimizing the global MSE obviously leads to the problem of appropriately
minimizing the K /2 subband MSEs. Since the task is to vary the tap-profile while
the overall complexity of the SAF system remains constant, this minimization can
be formulated as a constraint optimization problem:

Minimize the subband MSEs

: 2
r{’lvlkn{g{‘ek[n” }} Vk e {0,K/2—1} (6.19)
subject to the constraints
2\ ! 2 .
5{\62.[74\} L 5{\ej[n]\} Vi, j € {0, K/2—1}, (6.20)
K/2-1
ZLW = const. (6.21)
K=0

For a fixed solution, this constraint optimization problem could be solved using

standard optimization techniques, e.g. Lagrange [18].
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Here, we are looking for an adaptive solution over the global MSE by con-
trolling the filter lengths. Thus, if the subband errors converge to the subband
MMSEs, and we can adjust the tap profile such that these errors are all of the
same size, the global error will converge to its minimum. However, this decision
may be unwillingly, e.g. in the presence of observation noise due to (6.14), or
willingly biased, e.g. by introducing a weighting in (6.18) to account for psycho-

acoustic considerations [34, 158].

6.3.2 Tap-Distribution Mechanism

For adapting the tap profile of subband adaptive filters, Ma et al. [91] and
Sugiyama et al. [143] provide two approaches. Both have in common to mod-
ify the tap profile every @ samples, such that every filter is shortened by AL taps
and the pool of AL - K/2 freed taps is then redistributed by
AL-K  (a[n/Q])”

2 Lo (ex[n/ QL

according to an appropriate criterion ¢x[n/Q], which reflects a measure of how

La,k[n/Q—l—l] = La,k[n/Q] — AL + (622)

well the adapted filter in the kth subband performs. Two such measures will be
introduced in Sec. 6.3.3. The criterion ¢x[n/@] in (6.22) is normalized using a
p-norm such that the sum over all K /2 criteria yields unity, and hence the total
number of taps is preserved. However, this only presents a possibility; in the
literature as well as within the experimentation in Sec. 6.4, only the case p =1
has been surveyed.

The algorithms in [91, 143] use complex additional exchange rules to avoid
fractional values in (6.22) while preserving the overall number of coefficients to
be constant for all times n. The approach employed here keeps a fractional record
for the tap-profile, which by normalization can be easily stabilized against the
accumulation of rounding errors. Finally the tap-profile employed during the next
() subband sampling periods is a round-off version of this fractional record.

A vital assumption for (6.22) to converge is that the ideal subband impulse
response is decaying. This ensures that the subband error variance is inversely
proportional to the length L, of the SAFs. As the unknown systems may in-

volve a delay (e.g. in acoustic room impulse responses due to the transport delay
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between loudspeaker and microphone) or the desired signal is delayed to enable
adaptation, it has to be made sure that a minimum number of taps remain in
each SAF to match and model at least that delay.

For critically sampled SAF systems based on DCT-IV modulated filter banks,
the tap-profile of both the main and cross-terms could be adapted [170]. Concern-
ing the cross-terms however, a required minimum number of coefficients in each

band usually allows only few changes and therefore does not give much benefit.

6.3.3 Distribution Criteria

How can we estimate how well the adaptive filter in the kth subband performs
with respect to the other K/2 subbands? In the following, we will look at two
criteria based on the subband MMSE in (6.14), that will allow a formulation of
an adaptive tap exchange between subbands in Sec. 6.3.2. However, we will also

see that the previously introduced global optimization is open to interpretations.

6.3.3.1 Error-based Performance Measure.

The first approach to a criterion is based on a direct estimate of the subband
MSEs. First introduced in [91], the measure ¢ is an estimate of the error power

or variance, &zkek over the last R subband samples,

lnfQ] = 0 = 4 S euln—r] cilnr] (6.23)

To obtain a reasonable estimate, firstly the interval R has to be sufficiently large.
Secondly, ideally this measurement should only take place at times when the
adaptive filters have already reached their steady-state operation, i.e. ideally R <
Q.

Problems arise in the presence of coloured observation noise. Since the ob-
servation noise power angk in (6.14) is not influenced by the filter length, a
tap-distribution algorithm using this criterion would dedicate most of the taps to
subbands with a high observation noise, although the source for the error level
is not model truncation. This is an ideal example for a situation in which this

tap-adaptation criterion would fail to provide an unbiased solution [135, 170].
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6.3.3.2 Reduced Criterion

Eqn. (6.14) has been exploited to create a criterion similar to [143], whereby the
power of the last S taps of an adaptive filter is taken to estimate the truncation

error, weighted by a measurement of the input signal power over a window of R

samples,
| B! =
ck[n/Q] = R Z zr(n—r)zi(n—r) - g Z W, [Lak[n] —s] wj; [Lak[n]—s]
r=0 s=0
estimate of gignal power estimate of trrlncation error

(6.24)
Although clearly the influence of observation noise has been suppressed, this cri-
terion introduces a twofold bias in the MSE estimate for (6.14). Firstly, bands
with shorter decay will be favoured since their last S untruncated coefficients
will be more powerful than those of a longer decay, if decays are approximately
exponential. Secondly, a colouring of input signal power will somewhat deviate
the result from what has previously been assumed as “optimum” for the iden-
tification of an unknown system. The motivation for a variable tap-profile has
originally been to balance the filter lengths of the SAFs according to the decay
of the unknown system in different frequency bands. If the specific application
is less targeted on the identification of an unknown system, but the cancellation
of some unwanted signal, as e.g. the far end speaker’s echo in AEC, then mini-
mization of (6.24) across all SAFs will be “optimum” in the sense of a minimum
variance of the fullband reconstructed error signal, not necessarily a “best-fit” for
the unknown system as indicated in Fig. 6.1.

Compared to the error-based criterion (6.23), the reduced criterion can be
computed with a minimum overhead over the regular update procedure of the
SAFs. While the criterion in Sec. 6.3.3.1 requires to keep track of R past val-
ues of the error signal (which otherwise does not need to be memorized), the
evaluation of (6.24) only performs an estimate of the input power, which is sim-
ilarly required in the normalization step of the NLMS algorithms. Finally, the
weights wy are readily accessible for the approximation of the truncation error.
While the criterion in [143] is a computationally intensive average of the right

hand side of (6.24) over the last P iterations, the approach presented above only
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introduces a very low additional computational overhead of (S + 3)/NR multi-
plications and K/(2NR) divisions per fullband sampling period for a complex

subband implementation.

6.4 Simulations

This section will give some examples and insight into the benefit and behaviour
of variable tap-profiles for SAF systems. First, a system identification problem
will be discussed, whereby for a realistic result, a fixed computational benchmark
is used to demonstrate the efficiency of subband adaptive filtering, and how a
variable tap-profile can further enhance its performance. A brief comparison of

the two tap-assignment criteria presented in Sec. 6.3.3 will conclude this section.

6.4.1 Performance at Given Benchmark

To obtain a realistic benchmark figure, we assume a Motorola DSP56002 processor
[105], capable of 20 million multiply accumulate (MAC) operations per second.
Supposing that about 50% of the instruction cycles are required for overheads
like data transfer with ADC/DAC devices, interrupt handling, and indexing, at a
sampling rate of 16kHz there will be approximately Ci,; = 1250 MACs available
per sampling period.

Re-arranging equations (6.2) — (6.4), the total number of available filter coeffi-
cients in the SAFS, L., can be determined for SAF systems based on oversampled
GDFT, oversampled SSB modified GDFT, and critically sampled DCT-IV mod-
ulated filter banks. The according value for each SAF system type are stated in
Tab. 6.1. For the DCT-IV modulation based SAF system, only the total number
of coefficients in the main terms is given.

The unknown system S(z) to be identified by the different adaptive architec-

tures is an all-pole model

—

1
1 —2p;icos(6;)z1 + piz2

S(z)=A- (6.25)

I—

=0

where for this specific case the 5 poles described in Tab. 6.2 have been selected.

The gain factor A was chosen such that the impulse response s[n] o—e S(z)
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method | tap-profile | L | LY | 10log(02,/02) | 10logy, ||s — wl|2
fullband — 624 624 -3.11 dB 2.20 dB
uniform 1285 | 1200 -2.28 dB 0.39 dB
DTV adaptive || 1285 | 2400 6.57 dB -5.42 dB
uniform 3187 | 2900 15.75 dB -11.76 dB
558 adaptive || 3187 | 6600 48.96 dB -48.80 dB
uniform 1887 | 3400 21.21 dB -12.43 dB
GDET adaptive || 1887 | 6150 48.73 dB -47.83 dB

Table 6.1: Comparison of fullband and SAF systems for system identification
of long impulse response at a fixed computational benchmark in terms of noise

reduction and model error.

L ¢ Jo [t [2 [3 [4 |
6./ |01 | 045 |048]06]009
p, || 0.9987 [ 0.099 | 0.85 | 0.9 | 0.8

Table 6.2: Angles 6 and radii p of poles of unknown system S(z).
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Figure 6.10: Impulse response s[n] of the unknown system.
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(shown in Fig. 6.10) satisfies ||s[n]||s = 1, i.e. possesses unit energy. For the
different SAF systems, the unknown system was given an additional delay of 1000
taps to avoid non-causality of the subband responses to be identified. No delay
was set for the system identification using the fullband NLMS adaptive filter. For

all simulations, the normalized step size of the NLMS was set to g = 0.9.

Critically Sampled SAF System. The simulation results for adaptive sys-
tem identification in critically sampled DCT-IV modulated subbands is shown in
Fig. 6.11. The prototype filter used here is an iterated halfband design listed in
Tab. 4.2 for K = 16. The learning curves in Fig. 6.11(a) are given for the two
cases of fixed uniform and adaptive tap-profile using the error criterion in (6.23).

,(If ) is supplied

For both cases, the resulting fullband equivalent model length L
in Tab. 6.1. Clearly for uniform tap-distribution, this model length is not long
enough to allow the SAF system to properly adapt, since the observation noise
level caused by the truncation is too high. For a similar reason, the fullband iden-
tification completely fails. With a variable tap-profile, the algorithm manages to
reduce the error variance by a small amount, since the tap-profile is adapted to a
more suitable form for this problem, as indicated in Fig. 6.11(c). The PSD of the
final MSE in Fig. 6.11(b) clearly shows how the error spectrum is further reduced
with an adaptive profile in the two bands £ = 0 and & = 3 dominating the overall

error. Note that band edges are marked by vertical dashed lines.

Real Valued Oversampled SAF System. Fig. 6.12 presents the SAF sys-
tem identification results using SSB modified GDFT filter banks with K/2 = 8
subbands and decimation by N/2 = 7, and the prototype design of Tab. 4.3(d).
In general, the results are far superior to the DCT case in Fig. 6.11, since the
cross-terms required in the DCT based SAF systems are as costly as the com-
plete filter bank operation, and not enough calculations remain to allow sufficient
SAF lengths. As in the SSB modified GDFT based system no cross-terms are
required, the system can dedicate a much higher number of computations to
adaptive filtering.

Note in particular how in the SSB case the error PSD in Fig. 6.12(b) is bal-

anced when the tap-profile adaptation is introduced. While the error spectrum
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Figure 6.11: K/2 = 8 subband SAF system with critically sampled DCT-IV
modulated filter banks: (a) locally averaged squared reconstructed fullband error;
(b) PSD of desired signal (dotted) and of final error for uniform (solid) and
adaptive (dashed) tap-profile; (¢) uniform (straight line) and adapted (bar plot)
tap-profile.
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Figure 6.12: K/2 = 8 subband SAF system with oversampled SSB modified
GDFT filter banks: (a) locally averaged squared reconstructed fullband error;
(b) PSD of desired signal (dotted) and of final error for uniform (solid) and
adaptive (dashed) tap-profile; (¢) uniform (straight line) and adapted (bar plot)
tap-profile.
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Figure 6.13: K /2 = 8 subband SAF system with oversampled GDFT filter banks:
(a) locally averaged squared reconstructed fullband error; (b) PSD of desired
signal (dotted) and of final error for uniform (solid) and adaptive (dashed) tap-
profile; (¢) uniform (straight line) and adapted (bar plot) tap-profile.

is slightly increased in unimportant bands due to the withdrawal of coefficients
there, the error in the dominating bands can be more effectively suppressed, thus
yielding a considerably enhanced noise reduction and a better accuracy for the

identified fullband equivalent model, for which measures are stated in Tab. 6.1.

Complex Valued Oversampled SAF System. Results for a complex valued
SAF system using a GDFT modulated filter bank, which are based on the same
prototype as the SSB modified GDFT bank system discussed above, are given in
Fig. 6.13. Although the overall number of coefficients is smaller than in the SSB

case, the GDFT system is running at only half the sampling rate, and therefore
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manages to achieve a better performance than the SSB for a uniform tap-profile.
Again, the introduction of a variable tap-profile allows the balancing of the various
subband errors as indicated in Fig. 6.13(b) and hence further reduces the fullband
final MSE.

Truncation Error. To demonstrate that the main hindrance in the adaptation
of the above SAF systems was in fact the model truncation due to the very long
impulse response s[n] of the unknown system, the errors of the equivalent recon-
structed fullband model, w[n], are plotted in Fig. 6.14. The fullband models have
been calculated from the adapted subband responses (for the critically sampled
system including the cross-terms) according to Sec. 5.3.1. Shown are the results
for the three different SAF systems, each for uniform and adaptive tap-profile.
The approximate lengths of the reconstructed fullband models L,(If ) are listed in
Tab. 6.1. It is easy to appreciate that truncation is the main source of error, as
no observation noise has been injected, and the SAR values for the prototypes are
approximately 57 dB for all filter banks used. Since the truncation contributes

to the MMSE, also the identifiable part of the impulse response will be noise
corrupted due to the excess MSE yielded when using LMS-type algorithms.

6.4.2 Bias of Tap-Profile Adaptation

To give an example of the tap assignment algorithms’ behaviour, we try to
identify a slowly decaying system similar to previous examples, with a frequency
response as shown in Fig. 6.15(a), using both the error based and reduced criterion
discussed in Sec. 6.3.3. For identification, we employ an NLMS subband adaptive
system operating in 8 critically decimated subbands, which are produced by DCT-
IV modulated filter banks based on the prototype lowpass filter from Tab. 4.2
for K = 16. Factorized cross-terms have been included according to [53, 54] and
Fig. 3.4.2.1, where the lengths of the adaptive cross-terms are set to one third of
the initial uniform SAF length of the main terms.

Fig. 6.15(b) and (c) show the learning curves of the tap-profile evolving over
time for a white noise (unit variance) excited system identification set-up with no

added observation noise. Numbers at the right margin of each figure indicate the



CHAPTER 6. Variable Tap-Profiles for SAF 181

1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(b)
=
i
=
)
—0.05 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.01
()
=
i
=
[%]
_001 1 1 1 1 1 1 1 1 1
0 10 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
X

s[n]-w[n]

1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0
x107°
5
(e)
=
3o
L.
)
_5 ! ! ! ! ! ! ! ! !
0 10t 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
X
® 7
=
=
T
L.
@
-2 ! ! ! ! ! ! ! ! ! ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
time n

Figure 6.14: Error in the equivalent reconstructed fullband model: critically sam-
pled SAF system with (a) uniform and (b) adaptive tap-profile; oversampled real
valued SAF system with (¢) uniform and (d) adaptive tap-profile; (e) oversam-
pled complex valued SAF system with (e) uniform and (f) adaptive tap-profile.
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(a) frequency response of system and noise spectrum
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Figure 6.15: (a) Frequency response of unknown system to be identified (solid)
and the PSD of the observation noise (dashed); band edges are plotted as vertical
dotted lines; tap-profile trajectories for noiseless (b,c) and noisy (d,e) case for
error and reduced criterion based tap distribution algorithms (taken from [170]).
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criterion || error (6.23) | reduced (6.24)

noise free 50.7 dB 43.5 dB
noisy 15.0 dB 17.4 dB

Table 6.3: Noise reduction measures, 10log,,(03,/02,), for the noise-free and noisy
(SNR -18.5 dB) system identification examples given in Fig. 6.15 using adaptive
tap-distribution based on two different criteria.

subband number £ for each line, corresponding successively to the 8 frequency
intervals specified in Fig. 6.15(a) by vertical dashed lines. Obviously, the noise free
simulation behaves as expected, and with either criterion most taps are dedicated
to the subbands for £ = 7 containing one strong pole of the unknown system,
and to k = 3 and 4, which share a strong pole sitting at the band edge Q = 7/2.

The same system identification simulations are repeated with coloured obser-
vation noise added at -18 dB SNR to the desired signal; the PSD of the noise is
plotted in Fig. 6.15(a) as a dashed line. The resulting trajectories of the 8 SAF
lengths are depicted in Fig. 6.15(e) and (f). While the assignment behaviour of
the reduced criterion of (6.24) is hardly influenced, the error based criterion [91]
is completely biased by the observation noise. For the latter case, the tap distri-
bution algorithm dedicates most adaptive filter coefficients to the bands £ = 0
and 1, where the observation noise is spectrally strongest, although an increase
in filter length cannot help to further reduce the error power.

The final reduction in error power achieved by the four different system iden-
tification simulations described above is given in Tab. 6.3. From these values, it
becomes obvious that for the noise free case, the error based criterion outperforms
the reduced criterion, which is likely to yield a bias as discussed in Sec. 6.3.3.2.
With observation noise added, the reduced criterion however performs more ro-
bustly as seen in Fig. 6.15(f) and yields a higher noise reduction than the strongly

biased error criterion.
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6.5 Concluding Remarks

This chapter has been concerned with the efficient use of system resources by
exploiting spectral properties of the unknown system or the input signal. In
such an environment of spectrally unbalanced signals, the largest subband error
dominates the accuracy and performance of the overall SAF system. This has
motivated the idea of adopting a non-uniform tap-profile which is able to balance
truncation errors occurring e.g. due to the spectrally different decay of the un-
known system to be identified. A number of approaches found in the literature
for both fixed and adaptive adjustment of the tap-profile have been reviewed.

Two extrema for distributing computations over the subbands have been anal-
ysed. The first extreme case is a uniform tap-profile, where each subband has the
same time representation, which for uniform subband decompositions is equiva-
lent for the SAF's to posses identical filter lengths and same number of computa-
tions per subband. The other extremum is formed by a concentrated tap-profile,
where all computations are dedicated to one single subband. These extrema
defined the performance margins for variable tap-profiles.

For the NLMS algorithm, the total cost of an SAF system based on different
subband decompositions (oversampled GDFT, oversampled SSB modified GDFT,
and critically sampled DCT-IV modulated filter banks) has been derived. Based
on this, the performance margins have been calculated for two scenarios, where
(i) the cost reduction for a fixed time representation of the SAF system and (ii)
the time representation at fixed cost (e.g. given by the benchmark performance
of a DSP) are of interest. For required cost reduction or increase in time repre-
sentation, it is therefore possible to select an SAF system suitable for a particular
application, specified by its parameters (filter bank type, number of subbands,
decimation rate).

For an adaptive adjustment of the tap-profile, we have adopted a tap-distribu-
tion mechanism driven by a criterion for the performances of the different SAFs
in the system. We have based our derivation for a suitable SAF performance mea-
sure on the minimization of the global error, which creates a background theory
for distribution criteria reported in the literature. This has yielded a subband

error based criterion, and a reduced criterion suppressing the bias introduced
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by coloured observation noise. Their properties when employed to adjust the
tap-profile of SAF systems have been demonstrated and verified by simulation.
The benefit of the subband approach and a possible further enhancement by
tap-profile adaptation for adaptive filtering has been demonstrated in a series of
examples, where a fixed computational benchmark was given for the identification
of a very long impulse response. As a side effect, this has also highlighted the
superior properties of oversampled subband approaches in terms of computational

system complexity over the critically sampled case.



Chapter 7

Conclusions

7.1 Résumé

Motivated by the identification of long impulse responses, this thesis has dis-
cussed and compared subband adaptive filter structures based on complex and
real valued oversampled modulated filter banks, their components, implementa-

tions, limitations, and design.

Adaptive Filter Algorithms. Adaptive filtering has been reviewed, with a fo-
cus on popular algorithms such as LMS, RLS, and affine projection. Some insight
has been given into the derivation of these algorithms and their similarities, with
the main emphasis on their computational complexity, and their convergence and
tracking properties. In particular, the convergence speed of LMS-type algorithms
was strongly affected by coloured input signals. Regarding the computational
complexity, the only difference between real and complex valued implementa-
tions for the presented algorithms was the use of complex arithmetic, which in

terms of real valued multiplications is simply an increase by a factor of four.

Background and Review of Adaptive Filtering in Subbands. Moving to-
wards subband implementations, first basic multirate operations were introduced.
The reason for reducing the sampling rate was based on two facts. Firstly, for
band-limited signals the sampling rate could be lowered in accordance with the

bandpass sampling theorem, where differences arose for the decimation of real
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valued and complex valued signals. While for analytic or complex bandpass sig-
nals, decimation of a signal based on its bandwidth is unproblematic, for real
valued signals bandpass sampling is bound by strict rules. Secondly, another le-
gitimation for decimation was given based on orthonormal decompositions of a
signal into a number of decimated subbands, which was extended to redundant
decompositions representing frame expansions. This naturally led to filter banks
implementing such signal expansions.

To analyse filter banks, we introduced two analysis methods: modulation
description and polyphase representation. From the latter, efficient implementa-
tions of filter banks and the conditions for perfect reconstruction were derived.
The modulation description approach was used to analyse subband adaptive fil-
ter (SAF) systems based on critically decimated perfect reconstruct (PR) filter
banks, which resulted in the requirement of cross-terms at least between adjacent
subbands due to aliasing. An example illustrating the corresponding time domain
effect of “information leakage” was given.

To avoid cross-terms in the SAF structure, a number of different approaches
were reviewed, including critically sampled systems based on non-PR filter banks
with spectral loss or other distortions, and oversampled approaches. The latter
covered complex valued and real valued filter banks. For real valued oversampled
filter banks, two strategies where discussed to circumvent problems encountered
with bandpass sampling: filter banks with non-uniform bandwidths and band-
positions of the frequency bands, and a single-sideband modulation approach,

whereby subbands are modulated into the baseband prior to decimation.

GDFT Filter Banks. Aiming for near PR filter banks only, we investigated a
certain type of complex valued modulated filter bank based on a generalized DFT
(GDFT) modulation. The generalization of the DFT modulation consisted of the
inclusion of offsets in time and frequency indices to obtain a linear phase property
and an odd-stacked positioning of the analysis filters’ passbands. For real valued
input signals, this allowed us to retain only half the number of complex valued

subbands, based on redundancy considerations. For the synthesis filter bank, an
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infinite number of solutions existed in the oversampled case. Here, the minimum-
norm solution, i.e. the parahermitian or left pseudo-inverse of the analysis bank
has been chosen. Backed by frame theory, this selection bore useful numerical
properties such as improved robustness towards noise in the subband domain and
a fixed energy relation between fullband and subbands, and practical advantages,
as the synthesis prototype filter is identical to the one for the analysis bank.

Regarding implementation, starting from the polyphase representation for
general non-integer oversampling, we derived a factorization into a real valued
polyphase network, that only depended on the polyphase components of the pro-
totype filter, and followed by a GDFT transform applying a complex rotation to
the outputs of the polyphase network. This transform could be further factor-
ized, such that it mainly reduced to the computation of a DFT, which could be
realized by an FFT for fast evaluation. Thus, a highly efficient implementation
was obtained.

The presented GDFT filter bank has been modified such that an SSB modu-
lated real valued filter bank was implemented, circumventing the Weaver method.
Due to the low complexity of the GDFT implementation, we thus obtained a fast
Weaver-like SSB decomposition. For the same number of subbands, this filter
bank required about twice the number of computations of the standard GDFT
filter bank, and produced real valued subband samples at twice the rate.

To judge the overall computational complexity of implemented SAF systems,
a comparison for the cost ratio between real and complex valued processing has
been derived. While for example for linear algorithmic orders of subband pro-
cessing (like LMS), both methods were shown to be equally costly, the complex
implementation turned out to be more efficient by about a factor of two for a
quadratic order of complexity (e.g. RLS).

Two methods have been introduced to obtain suitable prototype filters for
GDFT and SSB modified GDFT filter banks. The first would construct prototype
filters for filter banks with higher channel numbers (restricted to powers of two)
by appropriate scaling of a halfband filter, which was accomplished by iterative
expansion and interpolation. Secondly, criteria for perfect reconstruction and

low aliasing level in the subband signals were derived in terms of the prototype



CHAPTER 7. CONCLUSIONS 189

filter which enabled a fast converging iterative least squares optimization. A
weighting between the two criteria allowed us to trade power complementarity

against stopband attenuation.

Subband Adaptive Filter Performance. Novel limits for the power spectral
density (PSD) of the error signal at the Wiener solution have been derived, based
on the aliasing created in the filter banks, and a knowledge of the source models
of the decomposed signals. This allowed us to state the minimum mean squared
error (MMSE), which has approximated by an easy-to-apply measure (SAR —
signal-to-aliasing ratio) describing the lower limit for the MSE solely based on the
prototype filter of the filter bank. The equivalent fullband model of the overall
SAF system has been derived from the adapted weights of the SAF's, and has been
shown to be limited in its accuracy by the distortion function (i.e. the deviation
from power complementarity) of the filter bank. Thus, the two main limits of
final error performance could be directly linked to the design of the prototype
filter.

A number of simulations were performed to verify the derived limits, for which
the results matched remarkably well with the predicted quantities. Further exper-
iments aimed to evaluate the convergence speed showed that SAF systems using
an NLMS algorithm were almost insensitive to coloured input signals. While for
white noise excitation, fullband algorithms gave a clear, but narrow advantage,
for coloured input signals subband approaches considerably outperformed the
fullband algorithm. Remarkably, the oversampling ratio was shown to have none
or only little influence on the convergence speed of SAF systems. For the number
of subbands, it turned out that, with regard to convergence speed, an optimum
existed, given by a trade-off between the spectral separation of the coloured input
signal, the spectral notches introduced by the analysis filters, and the different
update rates and subband adaptive filter lengths.

Tap-Profile Adaptation. Finally, we have discussed the possibility of vari-
able tap-profiles for subband adaptive filters. This enabled the application of
more filter coefficients to subbands where they are required to identify an oth-

erwise truncated model. Based on a global error minimization approach two
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different distribution criteria were derived, of which the first attempted a direct
minimization of the error. A second, reduced criterion for unbiased performance
in the presence of coloured observation noise was introduced which presented a
simplified algorithm compared to a similar method in the literature.

The performance of SAF systems with variable tap-profile was illustrated by
noise-free and noisy simulations, which gave an account of the sensitivity and
bias of the discussed algorithms. For system identification experiments with a
spectrally balanced unknown system with a long impulse response, the benefit of
variable tap-profile approach was clearly demonstrated. Also comparison for the
efficiency of different SAF systems was performed, which was exercised using the
NLMS algorithms as an example. This gave a clear indication of the advantage of
oversampled SAF systems with low OSR over critically decimated systems with

cross-terms.

7.2 Core Results

The main aim throughout this thesis was to achieve an efficient implementation
for adaptive filter systems, for which we have chosen the subband approach.
Therefore, the clear task was to find methods to ensure that both the subband
decomposition and processing algorithms were as computationally efficient as
possible.

Since subband processing is most efficient at low OSR, thus avoiding cross-
terms but still operating close to the critical rate, this has to be accommodated
by the filter banks. This has been enabled by deriving a highly efficient polyphase
implementation of a complex valued modulated GDFT filter bank with a judi-
cious selection of properties for non-integer OSRs. A real valued filter bank using
an SSB modified GDFT bank allowed a highly efficient implementation of sub-
band decompositions for real valued subband processing. The choice whether to
perform real or complex subband processing is specific to the particular adaptive
algorithm to be used, and can be answered based on its computational complexity.
The high performance advantage of complex valued systems has been surprising

in this context.
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Final convergence limits for subband adaptive filters and the accuracy of the
achievable equivalent fullband model based on aliasing and other distortions in-
troduced by the employed filter banks were explicitly derived, and agreed very
well with simulation results. Both an approximation of the MMSE and the model
accuracy were linked to conditions on the prototype filter of the filter bank, which
are directly related to criteria in the prototype filter design. Together with a pre-
sented iterative least-squares design algorithm, it is therefore possible to construct
filter banks for SAF applications with pre-defined performance limits. The ap-
peal is that for applications like acoustic echo cancellation, where the adaptation
error is the most important issue, the filter banks can be designed to be just good

(and short) enough to satisfy relaxed constraints on the model error.

7.3 Outlook

This thesis concludes with suggestion for further work, either to improve and

elaborate, or to transfer some of the presented ideas to other applications.

7.3.1 Extensions

In Chap. 6, the tap-distribution mechanism was introduced implicitly using the
p-norm for normalization of the criterion used, although only p = 1 was employed.
In fact, different values for p could be tried, which would yield possibly interesting
cases of convergence. For the case p > 1, it is expected that the band with the
largest error will be assigned coefficients more quickly, while for 0 < p < 1, the
tap withdrawal from bands with smallest error would be enforced.

Although the subband approach has been shown to improve convergence in
the presence of coloured input, a number of other methods could be evaluated for
their additional benefit in particular to combat slow convergence at band-edges
[101] e.g. as encountered in Fig.5.18. Fast converging algorithmic approaches
include transform-domain adaptive filtering [128, 5], where the filter input is pre-
processed by a sliding unitary transform. This approximately decorrelates the
input values in the tap-delay line of the filter. A complete decorrelation is given
by the Karhunen-Loeve transform [72], but other transforms like DFT or DCT can
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already provide a considerable whitening [4]. An evaluation of a transform of the
length of the adaptive filter is required to be calculated at every sampling period.
Although elegant methods exist to reduce complexities of some of the transforms
to linear order in the filter length [6], it appears promising for inclusion into
the subband approach, since the computational load would be considerably lower
than for a fullband transform-domain implementation.
A second approach to increase convergence speed at the band-edges is given by a
selection of filter banks such that the analysis filters are wider than the synthesis
filters [32, 79, 40, 106]. Thus, the SAF's are supplied with enough signal energy at
the band-edges, while superfluous slow converging modes are filtered out on the
synthesis side. Particularly, it should be interesting to survey which conditions
have to be fulfilled by the filter banks to guarantee the PR property, and develop
an appropriate prototype design.

Finally, the iterative least-squares design presented in Chap. 4 exhibited an
uneven stopband attenuation. To yield a flatter stopband response as obtained
with minimax filter designs, a re-weighting during the iterative design steps could

be attempted.

7.3.2 Related Applications

A dual application to filter banks for subband decompositions are transmulti-
plexers as shown in Fig. 7.1, which stack several users for transmission over one
line [154]. There, a synthesis filter bank performs the multiplexing of data at
the sender, while an analysis bank acting as demultiplexer retrieves the users
on the receiving side. An oversampled approach (or rather undersampled with
respect to the filter banks) could lead to an increased robustness against channel
interference.

Since fast implementations of the Gabor expansion have so far only been
reported for integer oversampling ratios [104, 47, 11], the fast polyphase imple-
mentation of the GDFT filter bank presented in Chap. 4 can be transfered and
applied.

Wavelet-based applications like detection [171, 80] or noise reduction [168, 169]
suffer from the phase-sensitivity of the orthogonal DWT and therefore currently
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Figure 7.1: Transmission of K users over one channel by a transmultiplexer using
filter banks; note that N > K.

require “translation-invariant” DW'T transforms implemented by undecimated
filter banks [25]. Although oversampled Gabor expansions are not “translation-
invariant” in the true sense, signal energy is guaranteed to be found within a
specific subband independent of the fullband signal’s phase, if the expansion
produces a low level of subband aliasing. Hence, oversampled Gabor transforms
appear as a useful alternative to wavelet techniques [41], while a low OSR can
maintain a low level of additional computational complexity.

Apart from the system identification / noise cancellation set-up targeted
within this thesis, other applications like adaptive equalization [116] or line en-
hancement are possible [177]. For adaptive equalization (or inverse system iden-
tification [174]), very long impulse responses can occur when the channel to be
inverted is considerably distorting. Also coloured channel output may motivate
an SAF system to be applied. Although the delay of the filter banks inhibits di-
rect use for delay sensitive applications like active noise control (ANC [36, 139]),
a possibility is given by so called delay-less structures [102, 38, 109] where adap-
tation is performed in the subband domain but filtering is done in the fullband.
In each decimated period the updated subband weights are transformed back into
the time domain. This calculation is based on frequency domain methods and
assumes a uniform tap-profile. For a general case, applying the reconstruction

method in Sec. 5.3.1 could be employed.
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