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ABSTRACT 

 

Gait can be defined as the individuals’ manner of walking. Its analysis can provide significant 

information about their identity and health, opening a wide range of possibilities in the field of 

biometric recognition and medical diagnosis. In the field of biometric, the use of gait to perform 

recognition can provide advantages, such as acquisition from a distance and without the 

cooperation of the individual being observed. In the field of medicine, gait analysis can be used 

to detect or assess the development of different gait related pathologies. It can also be used to 

assess neurological or systemic disorders as their effects are reflected in the individuals’ gait.  

This Thesis focuses on performing gait analysis in unconstrained environments, using a single 2D 

camera. This can be a challenging task due to the lack of depth information and self-occlusions 

in a 2D video sequence. The Thesis explores the use of gait, to perform biometric recognition 

and pathology detection and classification by reviewing the state-of-the-art and presenting 

novel taxonomies to organise the systems.  

In the field of biometrics, the work done in this Thesis improves the performance of the 

recognition systems by proposing two novel gait representations. It also addresses the problems 

faced by recognition systems in unconstrained environments, such as change in the viewpoint 

of the camera and change in the appearance of the individuals being observed, presenting three 

novel systems to detect the viewpoint of the camera and a system to tackle appearance change. 

Finally, the Thesis explores the possibility of obtaining gait features from the shadow cast by the 

individuals, presenting two systems to rectify the distortion and deformation in the shadow 

silhouettes and a system to detect if the shadow is usable. It also presents two datasets to 

evaluate these systems.  

In the field of medicine, this Thesis presents a novel system to obtain biomechanical features, 

from a video sequence captured with a 2D camera, with a high level of accuracy, while also being 

robust to viewpoint change. To evaluate the system the Thesis presents a dataset containing 

sequences acquired from a 2D camera and the “gold standard” motion capture system. The 

Thesis also explores the ability of gait to classify different gait related pathologies. It presents 

two novel systems that perform classification of gait across different gait related pathologies 

using biomechanical features and deep convolutional neural networks. 

A comprehensive evaluation of the proposed systems and comparison with the state-of-the-art 

highlight the advantages of the proposed systems for biometric recognition and pathology 

classification. 

 

Keywords: Gait analysis, Biometric recognition, Shadow analysis, Biomedical analysis, Pathology 

classification  
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RESUMO  

 

A marcha pode ser definida como a maneira de andar dos indivíduos. A análise automática da 

marcha pode fornecer informação sobre a identidade e a saúde de um individuo, podendo ser 

explorada no âmbito do reconhecimento biométrico e do diagnóstico médico. No campo da 

biometria, o reconhecimento usando características da marcha pode trazer vantagens, como a 

aquisição à distância e sem a cooperação explícita do indivíduo. No campo da medicina, a análise 

da marcha pode ajudar a detetar e avaliar o desenvolvimento de diferentes patologias. Também 

pode ser usado para avaliar perturbações de origem neurológica ou sistémica que se refletem 

na marcha dos indivíduos. 

Esta tese foca-se na análise da marcha em ambientes sem grandes restrições, usando uma única 

camara de vídeo 2D. Esta análise apresenta alguns desafios, pois numa sequência de vídeo 2D 

não está disponível informação de profundidade ou de auto-oclusões. A tese analisa as 

características da marcha para realizar reconhecimento biométrico e para a deteção e 

classificação de patologias da marcha, incluindo uma revisão do estado da arte e apresentando 

novas taxonomias para organizar as soluções existentes. 

No campo da biometria, o trabalho desenvolvido nesta tese contribui para melhorar o 

desempenho dos sistemas de reconhecimento, propondo duas novas representações da 

marcha. Também aborda os problemas enfrentados pelos sistemas de reconhecimento em 

ambientes sem restrições, como a mudança no ponto de vista da camara e as alterações na 

aparência dos indivíduos observados, apresentando três novos sistemas para detetar o ponto 

de vista da camara e um sistema para lidar com as alterações de aparência. Por fim, a tese 

explora a possibilidade de obter características da marcha a partir da sombra projetada pelos 

indivíduos, apresentando dois sistemas para retificar a distorção e deformação nas silhuetas de 

sombra e um sistema para reconhecimento baseado na sombra. Também apresenta duas bases 

de dados para avaliar estes sistemas. 

No campo da medicina, esta tese apresenta um novo sistema para obtenção de características 

biomecânicas a partir de uma sequência de vídeo, capturada com uma camara 2D, com alto nível 

de precisão, além de robusta à mudança de ponto de vista. Para avaliar o sistema, a tese 

apresenta uma base de dados contendo sequencias adquiridas em simultâneo por uma camara 

2D e por um sistema de captura de movimento 3D, considerado como a referência para 

comparações. A tese também explora a marcha para classificar diferentes patologias. Apresenta 

dois novos sistemas que detetam e classificação diferentes patologias da marcha, utilizando 

características biomecânicas e redes neuronais convolucionais profundas. 

É apresentada uma avaliação abrangente dos sistemas propostos, em comparação com o 

estado-da-arte, sendo de destacar as vantagens dos sistemas propostos para reconhecimento 

biométrico e para deteção e classificação de patologias da marcha. 

 

Palavras-chave: Análise da marcha, Reconhecimento biométrico, Análise de sombras, Análise 

biomédica, Classificação de patologias 
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1 INTRODUCTION 

 

1.1 CONTEXT AND MOTIVATION 
Gait can be defined as a coordinated, cyclic combination of movements that results in the 

individuals’ locomotion. Being a cognitive task, its analysis can provide useful information about 

the individuals’ health, identity, gender or walking patterns [1]. The analysis of gait involves a 

systematic study of the individuals’ motion by measuring body movements, activity of the 

muscles and other biomechanical aspects of the gait, to draw quantitative and interpretative 

conclusions from the resulting patterns. The information obtained has a wide range of 

application in the fields of medicine, biometrics, forensics and sports, as illustrated in Figure 1.1. 

In medicine, gait analysis can be used to detect or assess the development of different gait 

related pathologies, for instance resulting from neurological or systemic disorders, diseases, 

injuries or simply ageing [2]. Being a unique trait, gait can be used to recognise the identity of 

the individuals being observed, in biometric and forensic applications [3]. In sports, it can help 

athletes perform more efficiently by identifying posture-related or movement-related problems 

and can also help prevent injuries [4]. Gait analysis can also be used for determining an 

individuals’ sex, gender or age group with a high level of accuracy [5] and can even reveal more 

complex information, such as body weight, feelings and emotions [6]. 

 

   
(a) (b) (c) 

Figure 1.1: Application of gait analysis in (a) medical diagnosis, (b) biometric recognition and (c) sports [7]. 

Gait analysis has a rich history dating back to at least 350 BC, when Aristotle first kept written 

records of human and animal gait [8]. It was not until 1679 that Borelli associated mathematical 

models to the muscular movement and body dynamics of individuals [9]. Further studies about 

human gait were made by Wilhelm and Eduard Weber in 1836, describing the movements of 

the centre of gravity during walking and the pendulum-like behaviour of the legs during forward 

motion [10]. The progress made in the analysis of gait was slow as the observations were made 

through the naked eye. A significant improvement in the analysis of gait occurred after the 

invention of cameras, such as Marey's chronophotographic gun that could capture multiple 

frames per second (fps) [11]. This device, created in 1882, could capture video with a frame rate 

of 12 fps, providing a better insight into human gait, by capturing motion that is not perceptible 

to the naked eye. In 1895, Braune and Fischer improved on the study of the biomechanics of 

gait, by analysing the individuals’ mass, volume and the centre of mass [12]. Braune and Fischer’s 

study on gait was so complete that it was used as a reference for more than half a century. 
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The end of World War II led to a renewed interest in gait analysis, to assist injured soldiers and 

amputees returning from the war. This allowed Verne Inman and Howard Eberhart to study and 

present a unifying theory of gait following their observation that individuals move in such a way 

that the energy cost of moving the centre of gravity is the minimum [13]. In 1968, Jacqueline 

Perry identified the events that occur within a gait cycle and presented the division of the gait 

cycle into five stance and three swing phase events [14] - see Section 2.2. David Sutherland later 

improved on the model by substituting the three stance phase events with initial double 

support, single leg stance, and second double support [15]. 

In 1970, Patricia Murray became a world-renowned researcher for her contributions in gait 

analysis. She measured the kinematics of normal and impaired gait, recorded the change in the 

total movement pattern of normal individuals from infancy to old age and studied gait 

disturbances in individuals with neuromuscular and musculoskeletal pathologies. Her 

pioneering work in identifying features of normal gait that are consistent within an individual, 

but varied between individuals, provided the basis for forensic and biometric gait recognition 

[16]. The stability of normal gait and its distinctiveness between individuals was later 

demonstrated by Johansson, Cutting and Kozlowski in 1977, emphasizing its use in biometric 

recognition [17]. However, accurate localisation of key anatomical positions of the human body 

in 3D space was only possible after the development of the motion capture system in 1984 - see 

Section 2.3.2. Such systems are still considered as the gold standard in the acquisition of gait 

information [18]. 

Currently, gait analysis for medical diagnosis is performed in laboratories, under the supervision 

of clinical professionals. In addition, the biometric analysis of gait is often performed in 

constrained conditions, such as recognising the individuals walking along a predefined path. 

These limitations of the existing systems prevent their usage in a daily life setting or in generic 

surveillance scenarios. Thus, the need to perform automatic and objective gait analysis in 

unconstrained environments has gained significant interest of the research community. This 

Thesis deals with gait analysis in unconstrained environments, presenting systems that address 

several limitations of the current state-of-the-art. It explores the use of gait, acquired from a 2D 

camera, to perform the tasks of biometric recognition and pathology detection and 

classification. More details about these two tasks are given in the following sections. 

1.1.1 Gait-based biometric recognition 

Biometrics can be defined as the process of obtaining descriptive features based on either the 

behavioural, physical or physiological characteristics of the individuals’ body, which can 

distinguish them uniquely among other individuals [19]. A biometric recognition system 

automatically compares the features obtained from the observed biometric traits, against a 

database containing features recorded during enrolment, to either verify the identity of the 

individuals being observed or to identify them – see Figure 1.2. To verify the claimed identity of 

an individual, a biometric recognition system performs a one-to-one match of the features 

against those features stored in the database, to either confirm or deny the claimed identity. On 

the other hand, identification is performed when a biometric recognition system assigns an 

identity to an individual from the identities registered in the database. If the system is forced to 

infer the identity from a list of individuals registered in the database, it is called a closed-set 

identification system. If the system can return a no match response, it is called an open-set 

identification system. 

This Thesis explores biometric recognition systems because they have a significant advantage 

over traditional recognition systems, such as identity cards, passwords or pin numbers, as they 
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cannot be forgotten and cannot be easily stolen. The novel systems presented in this Thesis are 

closed-set identification systems, as they have a wider range of application than verification 

systems. 

 

 

Figure 1.2: Biometric recognition systems performing identification and verification [20]. 

The features used by the biometric recognition systems can be obtained from physiological or 

behavioural traits. Physiological traits are related to the shape of the body and include face, ear 

and fingerprint. Behavioural traits are related to the pattern of behaviour of the individuals, such 

as typing rhythm, voice and signature. These traits are unique to the individuals, to a varying 

degree, but depending on their application can obtain excellent recognition results [21]. The 

applications include physical access control, logging attendance or personal identification. 

However, most biometric traits are seldom used in unconstrained environments, such as 

surveillance, as they require the cooperation of the individuals being observed during the 

acquisition process [21]. 

Gait is a behavioural trait, which, in contrast to most of the commonly used biometric traits, can 

be captured from a distance and even from poor resolution videos. The more significant 

advantage of a gait-based biometric recognition system is its non-cooperative operation, which 

allows the system to acquire gait features without the active participation of the individuals 

being observed, using acquisition systems such as a 2D camera. Since features describing gait 

are obtained from the rhythmic motion pattern, they are not easily prone to spoofing attacks or 

forgery, and are difficult to conceal, when compared to other biometric traits, in a daily life 

setting [19]. Such advantages make gait-based biometric recognition systems suitable for 

operation in unconstrained environments. 

The performance of gait-based biometric recognition systems primarily depends on the quality 

of the features obtained. Thus, identifying novel gait representations that can best describe the 

gait of individuals can significantly improve the recognition results– see Figure 1.3 (a). When 

operating in unconstrained environments, other factors can affect the performance of the 

system – see Section 2.4, causing problems, such as: 

• Change in the viewpoint of the camera: A 2D camera captures only the part of the 3D 

world visible to it. Thus, for a given camera viewpoint, parts of the individual’s body will 

always be hidden from the camera. Due to the lack of cooperation from the individuals 

being observed, recognition systems may capture the gait from a viewpoint that is 

different from what is recorded in the database - see Figure 1.3 (b). Thus, although the 

captured gait features may correspond to a registered individual, they may differ from 

the representation stored in the database, leading to poor performance of the 

recognition system; 
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• Change in the appearance of the individual: In unconstrained environments, such as an 

area under surveillance, the appearance of individuals being observed can alter 

significantly due to changes in their clothing (e.g., by wearing a coat, a hat, or a long 

skirt) or by carrying items, such as a handbag or backpack. These changes can occlude 

parts of the individuals’ body– see Figure 1.3 (c). The features obtained from the 

occluded parts may not match with the features recorded in the database, thus leading 

to poor recognition results. 

An additional problem occurs when the viewpoint of the camera is changed such that the major 

articulations of the individuals’ body cannot be observed – see Figure 1.3 (d). Under such 

conditions, the shadow cast by an individual can be an alternative source of gait features [22]. 

However, when captured in an unconstrained environment, the shadow may contain distortions 

and deformation caused by the camera, by a change in the type of the light source and by a 

change in the position of the light source with respect to the individual. Thus, performing 

recognition without rectification of the shadow silhouettes may lead to poor recognition results. 

 

     
(a) (b) (c) (d) 

Figure 1.3: Illustrations of (a) a gait representation (b) change in viewpoint, (c) occlusion caused by change in 
appearance, (d) shadow cast by an individual [23]. 

1.1.2 Gait-based pathology classification 

The way individuals walk is affected when the body systems that control gait do not function in 

the usual way the resulting gait is called pathological gait. It may happen due to illnesses, genetic 

factors, injuries or other problems, especially those affecting the legs or feet. The difficulty in 

walking may also be caused by acute problems, such as a bruise, cut, or fracture, but these 

temporary situations are not usually considered as gait pathologies, as the individuals in such 

cases can recover, often without medical intervention. Pathological gait can generally be 

categorised into one of five types, based on the symptoms or on the appearance of the 

individuals’ gait [24], -see Figure 1.4: 

• Spastic gait: It occurs when individuals drag their feet while walking. It can also make 

the individuals appear very stiff; 

• Scissor gait: Individuals with scissor gaits will have their legs bend inward and they may 

even hit each other while walking. The crisscross motion resembles scissors opening and 

closing; 

• Steppage gait: It occurs when individuals’ toes point towards the ground while walking. 

Often, the toes will scrape against the ground as the individual steps forward; 

• Waddling gait: Individuals with a waddling gait move from side to side when walking; 

• Propulsive gait: It occurs when individuals walk with their head and neck pushed 

forward. It can appear as though the individual is rigidly holding a slouched position. 

Such gait pathologies can be caused by several factors, such as injuries to the legs or feet, 

arthritis, infections in the soft tissue of the legs, broken bones in feet and legs, birth defects, 
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shin splints, infections in the inner ear, cerebral palsy, stroke, tendonitis, conversion disorder or 

other psychological disorders. If the underlying conditions for the pathological gait are identified 

and treated, the gait of the individuals might be corrected. Even when medical treatment cannot 

correct the pathological gait completely, analysing the gait to identify the disorder can at least 

contribute to reduce the severity of the symptoms. 

 

     
(a) (b) (c) (d) (e) 

Figure 1.4: Illustration of (a) spastic gait, (b) scissors gait, (c) steppage gait, (d) waddling gait, (e) propulsive gait [25]. 

Pathological gait was traditionally diagnosed by medical professionals by asking the individuals 

questions about their medical history and symptoms, as well as by observing the way they walk. 

With the development of technology, gait analysis can now be performed using systems such as 

the motion capture system [18] or pressure mats [26]. Although such systems allow the 

collection of objective measurements for the analysis of the individuals’ gait, they still require 

trained clinical personnel for their operation. These systems are also expensive to use, requiring 

specialised equipment and dedicated laboratories, therefore being inaccessible to most 

individuals in a daily life setting. The use of inertial sensors [27] can tackle some of the identified 

shortcomings, such as the need for dedicated laboratories and cost. However, these sensors 

need to be mounted on specific and distinct locations on the individuals’ body, which can still 

only be done by trained clinical personnel. If one wishes to monitor individuals’ gait in daily life 

settings in a non-invasive manner, systems that capture and analyse the gait using 2D cameras 

may be used [28]. However, to perform such analysis in the absence of clinical professionals, the 

systems should be able to capture features that best describes the gait pathology and analyses 

them automatically. The use of 2D vision-based systems involve additional problems, such as 

possible changes in the observation viewpoint, which coupled with the lack of depth 

information, can significantly affect the accuracy of the features obtained. 

1.2 OBJECTIVES 
This Thesis explores the use of gait observed by a 2D camera, to perform biometric recognition 

and pathology classification in unconstrained environments. Its objectives are: 

• Reviewing the state-of-the-art systems available in the current literature; 

• Proposing systems to address the limitations of the state-of-the-art; 

• Capturing new datasets to evaluate the systems that operate on shadow silhouettes; 

• Evaluating the performance of the proposed systems, in terms of accuracy, 

generalisation and complexity, as well as comparing them with the available state-of-

the-art, while also ensuring the reproducibility of results. 

This Thesis aims to improve the performance of the state-of-the-art systems by tackling the 

following problems: 
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• Identifying better gait representations, to improve the performance of recognition 

systems; 

• Improving systems’ robustness to changes in camera viewpoint and individuals’ 

appearance; 

• Exploring the use of shadow silhouettes in gait-based biometric recognition systems; 

• Exploring the possibility of obtaining accurate biomechanical features that can be used 

to analyse gait impairments, even under a change in the viewpoint of the camera; 

• Identifying features that can be used to classify gait across different gait related 

pathologies. 

While examining the state-of-the-art systems that perform gait analysis, this Thesis also targets 

to propose novel encompassing taxonomies, whenever applicable. 

1.3 CONTRIBUTIONS 
This Thesis presents contributions that explore gait for biometric recognition and pathology 

classification in unconstrained environments. This work led to the following publications: 

Journal 

• T. Verlekar, H. Vroey, K. Claeys, H. Hallez, L. Soares, P. Correia. Robust Estimation and 

Validation of Biomedical Gait Indicators using 2D Video. Computer methods and 

programs in biomedicine, 175, 2019 [29]; 

• T. Verlekar, P. Correia, L. Soares. Automatic Classification of Gait Impairments Using a 

Markerless 2D Video-Based System. MDPI Sensors, 18(9), 2018 [1]; 

• T. Verlekar, L. Soares, P. Correia. Gait Recognition in the Wild using Shadow Silhouettes. 

Image and Vision Computing, 76, 2018 [30];  

• T. Verlekar, P. Correia, L. Soares. View-Invariant Gait Recognition System Using a Gait 

Energy Image Decomposition Method. IET Biometrics, 6(4), 2017 [31]. 

International Conference 

• T. Verlekar, P. Correia, L. Soares. Using transfer learning for classification of gait 

pathologies. IEEE International Conference on Bioinformatics and Biomedicine, BIBM 

2018, Madrid, Spain, 2018 [32]; 

• T. Verlekar, P. Correia, L. Soares. Gait Recognition Using Normalised Shadows. European 

Signal Processing Conference, EUSIPCO, Kos Island, Greece, 2017 [33]; 

• T. Verlekar, P. Correia, L. Soares. Sparse Error Gait Image: A New Representation for Gait 

Recognition. International Workshop on Biometrics and Forensics, IWBF, Coventry, 

United Kingdom, 2017 [34]; 

• T. Verlekar, P. Correia, L. Soares. View-Invariant Gait Recognition exploiting Spatio-

Temporal Information and a Dissimilarity Metric. International Conference. Of the 

Biometrics Special Interest Group, BIOSIG, Darmstadt, Germany, 2016 [35]. 

National Conference 

• T. Verlekar, L. Soares, P. Correia. Shadow Type Identification for Gait Recognition using 

Shadows. 23th Portuguese Conference on Pattern Recognition, RECPAD, Lisbon, 

Portugal, 2017 [36]. 
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In terms of biometric recognition, a novel taxonomy to organise the existing systems has been 

proposed [30] 

Two novel gait representations have been proposed in the Thesis. The first, called the gait 

dissimilarity vector (GDV), consists of a feature vector of dissimilarity values, and it was 

published as referenced in [35]. It is obtained by computing the distances between an 

individual’s gait energy image (GEI) and a set of GEIs called a prototype set, which is selected so 

that it is representative of the individuals registered in the database. 

The second novel gait representation presented in this Thesis is called the sparse error gait 

image (SEGI), and it can be derived from the application of robust principal component analysis 

(RPCA) to a set of GEIs belonging to an individual. It highlights the most significant differences 

that exist among several gait sequences of an individual. SEGI explores the uniqueness of the 

resulting dissimilarities/differences for recognition [34]. 

Three novel systems to detect the viewpoint of the camera are proposed in this Thesis. By 

detecting the viewpoint, the recognition systems can limit the matching module to a subset of 

the database that corresponds to the identified viewpoint, thus improving their recognition 

accuracy. The first system, detects the viewpoint of the camera by obtaining features, 

representing the viewpoint, from the leg region of the observed individuals, followed by 

matching those features with the database. The gait of the individuals is represented using the 

GEI and the features representing the overall structure of the leg region are obtained using a 

perceptual hash (PHash) function [31]. 

Since, the above viewpoint detection system can only detect the viewpoints it is trained for, a 

second system has been developed, performing view detection without any training [35]. This 

system operates in three steps: 

• It identifies the feet position of the individuals along time using a gait representation 

called the gait texture image (GTI); 

• The feet positions are used to estimate the direction of the dominant walking trajectory; 

• The viewpoint is determined by associating it to the identified walking trajectory 

direction. 

Since neither the PHash nor the GTI based walking viewpoint detection systems can operate in 

the presence of shadows under the feet, a third system is presented in this Thesis [30], [33]. This 

system analyses the orientation of the individuals’ body and the corresponding shadow to detect 

the feet position. The viewpoint can then be estimated by processing the evolution of feet 

positions over time, following the steps presented in the second system. Since, the shadow 

connects to the body at the feet position; the proposed system can also be used to segment the 

shadow silhouettes. 

The problem of appearance change is addressed by presenting a gait-based biometric 

recognition system that can identify and discard the altered sections of the individual’s GEI being 

observed [31]. It operates in four steps: 

• The gait of the individual is represented using a GEI; 

• The GEI is decomposed into sections; 

• The altered sections are identified by comparing the GEI to the normal appearance of 

the individuals in the database using a representation called the average GEI image; 
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• Altered sections are discarded and the recognition is performed by aggregating the 

votes from the remaining sections. 

Thus, the system performs well regardless of the type of appearance change encountered. 

The possibility of using shadow silhouettes as an alternative source of gait features for biometric 

recognition is also explored in this Thesis. To use the shadow silhouettes, they must first be 

rectified, compensating the distortions and deformations caused by the camera perspective and 

parameters. Two novel systems are presented to rectify the shadow silhouettes into a common 

canonical view, using a transformation matrix. The first system obtains a transformation matrix 

by applying the transform invariant low-rank texture (TILT) to a GTI gait representation [33]. The 

second novel system obtains the transformation matrix using a 4-point correspondence system. 

It identifies the head and feet position of the individual in the first and final frames of the video 

sequence and estimates their location in the canonical viewpoint. The system obtains the 

transformation matrix using these positions [30]. The two systems perform recognition using 

GEIs obtained from the rectified shadow silhouettes. To evaluate the performance of the 

systems the Thesis also presents a new dataset, consisting of 21 individuals moving along two 

walking directions [30] captured at Instituto Superior Técnico (IST) in Portugal. 

A limitation of the gait-based biometric recognition systems that rely on shadow silhouettes is 

that they operate only on shadow silhouettes that appear similar to the individuals’ body. 

However, the shadow cast by an individual may be useful for recognition or appear as a blob of 

undefined shape depending on the lighting conditions - see Section 2.4.3. Thus, a novel system 

is presented in this Thesis that analyses the intensity ratio between the static background and 

the dynamic foreground comprising of the individuals and their shadow, to check if the shadow 

is usable [36]. To evaluate its performance a dataset is also captured containing six individuals 

walking on two different days casting two different type of shadows. 

The second area in which this Thesis contributes is in the usage of gait analysis for detection of 

accurate biomechanical features and pathology classification. 

A novel system is presented to accurately estimate various temporal gait features, such as 

stance time, swing time and gait cycle time, by detecting for each gait cycle the moments of 

initial contact of a foot with the ground and when the foot loses contact with the ground, known 

as the toe off event, using a single 2D camera [29]. The proposed system maintains the high level 

of accuracy, even when the viewpoint of the camera changes, making it suitable for clinical 

evaluations. To validate its use in clinical evaluations the system is compared with the output of 

the motion capture system [18], considered as the gold standard for the medical analysis of gait. 

To perform the comparisons a new dataset has been captured in cooperation with the 

Rehabilitation Sciences group of the Katholieke Universiteit Leuven (KUL), Bruges campus, in 

Belgium. The acquired dataset contains data from 10 individuals, recorded using both a 2D 

camera and the motion capture system installed in KUL’s gait analysis lab [18]. 

The Thesis presents two novel systems to perform classification of gait across different gait 

related pathologies. The first system explores two different types of features to perform 

pathology classification: 

• Feet related features, including step length, step length symmetry, fraction of foot flat 

during stance phase, normalised step count and speed. These features help classify gait 

pathologies that affect the individuals’ feet; 
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• Body related features – since some gait related pathologies also affect other body areas 

and the body posture, body related features include the amount of movement while 

walking, shift in the centre of gravity and torso orientation. 

Together, feet and body related features allow performing classification of the observed walking 

sequences across different gait related pathologies [1]. 

The final system presented in this Thesis, explores the popular GEI biometric gait representation 

together with the usage of a deep convolutional neural network (CNN), to perform pathology 

classification [32]. The use of GEI makes the system robust to silhouette segmentation errors, 

which can severely affect the classification results. The performance of the system is further 

improved by using a fine-tuned VGG-19 convolutional neural network for feature extraction. The 

fine-tuning process, using a transfer learning strategy, allows the system to extract features that 

best represent the gait related pathologies, without the need of a very large training set. 

1.4 THESIS STRUCTURE 
This Thesis is organized into four parts. Part I discusses gait analysis basic concepts and the state-

of-the-art, containing three chapters. The first chapter (i.e., this chapter) introduces the Thesis 

presenting the context, motivation, objectives and contributions, along with a list of publications 

achieved during its preparation. Chapter 2 begins with a discussion about basic concepts of gait, 

followed by the presentation of various acquisition systems and a summary of challenges faced 

by 2D vision-based systems when used for gait analysis in unconstrained environments. The last 

chapter of Part I presents the current state-of-the-art systems, highlighting their advantages and 

disadvantages when operating in unconstrained environments. 

Part II of the Thesis comprises Chapters 4 to 7 and presents the biometric recognition 

contributions, along with their performance evaluation. The proposed GDV and SEGI gait 

representations are described in the fourth chapter. Chapter 5 presents three novel systems 

proposed to tackle the problem of change in viewpoint of the camera, by using minimal 

information from the leg region. Chapter 6 presents a system that tackles appearance change 

by decomposing GEIs into sections. The final chapter of Part II explores the use of shadow 

silhouettes for gait-based biometric recognition. It presents two novel systems for the 

rectification of shadow silhouettes and a system to identify the type of shadow cast by the 

individuals. 

Part III of the Thesis presents novel contributions for medical diagnosis, exploring the use of gait 

in clinical analysis and classification of gait related pathologies, along with their performance 

evaluation. A novel system is proposed in Chapter 8 that obtains temporal gait features with a 

high level of accuracy, even when the viewpoint of the camera changes. The Thesis then 

presents two novel systems to perform classification of gait across different gait related 

pathologies, in Chapter 9. The first system explores the use of biomechanical features for 

classification, while the second system presents the use of biometric gait representations along 

with a deep CNN. 

Finally, Part IV concludes the Thesis, with Chapter 10 containing a summary of achievements 

along with possible future research directions.
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2 GAIT ANALYSIS: BASIC CONCEPTS AND ACQUISITION SYSTEMS 

 

2.1 INTRODUCTION 
This chapter discusses some basic concepts related to gait representation, presents systems that 

can be used to acquire gait information, identifies a set of challenges faced by 2D vision-based 

gait analysis systems when operating in unconstrained environments, and concludes by 

presenting the general architecture of a gait analysis system and the evaluation metrics usually 

adopted in the literature. 

2.2 GAIT STRUCTURE AND REPRESENTATION 
The gait of an individual refers to the manner of walking, rather than the actual walking process 

[37]. Its analysis primarily involves observing the structured movement of the lower limbs, which 

repeat a series of phases constituting a gait cycle. Considered the functional unit of gait, a gait 

cycle can be divided into the stance and the swing phases [38]. 

The stance phase, as illustrated in Figure 2.1, is the part of a gait cycle that occurs when the foot 

being observed (highlighted right foot in Figure 2.1) is in contact with the ground. It begins with 

an event called the initial contact (IC) or the heel strike and ends with an event called the toe off 

(TO) of same foot. The stance phase accounts for around 60% of the duration of the entire gait 

cycle. The remaining 40% of the duration is composed of the swing phase, which is the part of 

the gait cycle that occurs when the observed foot is not in contact with the ground. It begins 

when the observed foot first leaves the ground and ends with the heel strike of the same foot; 

it is the non-weight bearing phase of the gait cycle. 

Alternatively, the gait cycle can also be divided into 2 double support and two single support 

phases [38], as illustrated in Figure 2.1. The double support phase covers the duration of the gait 

cycle when both feet of the individual are in contact with the ground. It begins when one limb 

ends the stance phase while the other limb begins it. About only 10 percent of the gait cycle is 

spent in the double support phases. The rest of the gait cycle, where only a single foot is in 

contact with the ground, is defined as the single support phase. The percentage of time spent in 

each phase changes with a change in the speed of an individual’s movement. Slower speeds lead 

to more percentage of time in the double support phase, while faster speeds lead to less 

percentage of time in the double support phase. The transitions from walking to running, is 

indicated by the addition of a third phase, called the non-support phase, where none of the feet 

are in contact with the ground. 

The gait cycle contains a series of events that correspond to very specific instants in each phase. 

The stance phase of the gait cycle includes five events and the swing phase includes three 

events, as illustrated in Figure 2.1. They can be defined as [39]: 

• Initial contact/Heel strike: It occurs when the heel of the leg being observed first meets 

the ground, as illustrated by the highlighted (right) leg in Figure 2.1. It is indicated by the 

ankle of the leg being observed in neutral position, slightly flexed knee and 

approximately 30 degrees flexion of the hip with respect to the vertical. With the heel 

strike, the body weight of an individual begins to shift onto the leg being observed; 
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• Loading response/Foot flat: It occurs when the observed foot is in complete contact 

with ground. It is indicated by an approximately 5 - 10 degrees extension of the ankle of 

the leg being observed, and 15 degrees flexion of the knee. The hip is extended, allowing 

the trunk and the body to catch up with the leg, while the weight of the body continues 

to shift onto the leg being observed; 

• Mid-stance: It is the instant during the gait cycle in which the body passes over the leg 

being observed. The leg approaches a vertical position, offering a single-leg support, 

with the other leg freely swinging forward. The ankle flexes, the knee extends while the 

hip of the leg being observed continues extending. The trunk enters a neutral position 

where the arms are parallel to the body; 

• Terminal stance/Heel off: It occurs when the heel of the leg being observed begins to 

lift off the ground. The ankle and the knee extend, the hip hyperextends, and the trunk 

rotates to the side of the leg being observed; 

• Pre-swing: It occurs at around 60 % of the duration of the gait cycle and marks the end 

of the stance phase. It corresponds to the start of the gait cycle's second period of 

double support in which the body weight is transferred from leg being observed to the 

other; 

• Toe off: It is the instant when the toes of the leg being observed just leave the ground 

while the other leg is in full contact with the ground. It indicates the end of the stance 

phase and beginning of the swing phase. During the toe off (TO), the toes of the leg 

being observed go into hyperextension, the ankle extends, while the knee and the hip 

start flexing; 

• Mid-swing: It involves shortening of the leg to clear the ground. The ankle of the leg 

being observed is in neutral position, the knee in maximum flexion, while the hip 

continues flexing; 

• Terminal swing: The knee joint of the leg being observed extends in the preparation for 

the stance phase. 

These events can be used to estimate various kinematic features useful to describe an 

individual’s gait. Accurate and reliable knowledge of these kinematic features and their 

evolution over time can help in the diagnosis of diseases, recognition of the walking person’s 

identity and the analysis of the different forces exerted on muscles, which can be useful for 

instance in the field of sports. These kinematic features can be divided into three different 

groups: spatial, temporal and spatiotemporal [2]. 

 

 

Figure 2.1: Key events and phases that occur during a gait cycle [39]. 

The spatial group includes distance and angular features, as illustrated in Figure 2.2, such as: 
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• Stride length: It is the distance travelled in one stride, i.e., between two consecutive 

heel strikes of the leg being observed, which constitutes a gait cycle; 

• Step length: It is the distance covered between heel strike of the leg being observed and 

heel strike of the other leg; 

• Step width: It is the distance by which two feet are spread apart during walking. It is 

measured as the lateral distance from the heel centre of the leg being observed to the 

line of progression formed by two consecutive foot contacts of the other foot; 

• Degree of toe out: It represents the angle formed by each foot’s line of progression and 

a line intersecting the centre of the heel and the index toe; 

• Joint angles: They represent the angles formed by different joints of the body, especially 

the ankle, the knee and the hip of the leg being observed. 

 

 
 

(a) (b) 
Figure 2.2: Illustration of spatial features, including (a) distance and (b) angular features. 

The temporal group includes time-related features, such as: 

• Stride time: It is the time required to complete one gait cycle, also called period of a gait 

cycle; 

• Step time: It is the time covered between the heel strike of the leg being observed and 

the heel strike of the other foot; 

• Stance time: It is the amount of time spent in the stance phase; 

• Swing time: It is the amount of time spent in the swing phase; 

• Single limb time: It is the amount of time spent with only a single foot in contact with 

the ground during a gait cycle; 

• Double limb time: It is the amount of time spent during a gait cycle, with both feet in 

contact with the ground. 

The spatiotemporal group includes features-related to both the spatial and temporal 

dimensions, such as: 

• Cadence: It is the total number of steps completed within a given period; 

• Speed: It is the distance covered per unit of time. 

 
Apart from kinematic features, several other features can contribute to describe an individual’s 

gait. They include: 

• Ability of an individual to walk without external support; 

• Existence of tremors while walking; 
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• Record of falls; 

• Ground reaction forces exerted by the foot while walking; 

• Electrical activity produced by muscles while walking; 

• Posture of the body, which includes bending of the spine and symmetry between the 

two sides while walking. 

Traditionally, walking individuals were observed by specialists to perform gait analysis, possibly 

including the estimation of a set of representative gait features. The subjective assessment of 

the individuals performed by the specialists included tasks such as observing the time taken by 

the individuals to get up from a sitting position, walking certain distances, turning around and 

sitting back down again. It also included observing and recording various gait features such as 

speed, step length and balance. Apart from visual cues, the assessment also included conducting 

interviews to obtain information about the individuals’ gait.  

2.3 GAIT ACQUISITION SYSTEMS 
Since a gait cycle involves several important motions that can be missed by a naked eye 
observation, various automatic acquisition devices are now routinely used to capture gait 
information and allow a subsequent more objective gait analysis.  
The various systems available for gait acquisition and analysis can be broadly classified into 
systems with wearable or non-wearable sensors [2], following the proposed taxonomy 
illustrated in Figure 2.3 and discussed in the following subsections. 
 

 

Figure 2.3: Proposed taxonomy for the state-of-the-art gait analysis systems. 

2.3.1 Systems with wearable sensors 

Wearable sensors can be attached to various parts of the body to acquire features that can 

describe an individual’s gait. Systems that use such sensors include: 

• Force sensing systems: These systems use sensors, such as force sensitive resistors [40], 

which measure the ground reaction forces under the foot as the potential difference 

proportional to the measured pressure. Such sensors are typically attached to the insole 

of the shoes, as illustrated in Figure 2.4 (a). As the weight placed on the sensors increase, 

their resistance decreases, thus providing the change in potential; 

• Inertial measurement unit (IMU) systems: These systems use sensors, such as 

accelerometers [27] and gyroscopes [41] , called the IMUs, which measure acceleration, 

velocity and orientation using the laws of motion - see Figure 2.4 (b). Accelerometers 

estimate the acceleration by measuring the net force acting on them. They can also 

estimate the angular velocities and the flexion angles from the resulting acceleration. 

The gyroscope tracks rotation, twist and change in orientation using rotational inertia. 

The resistance to change in rotation speed and turn direction produces a potential 

difference from which such values are sensed; 
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• Electromyography systems: Electromyograph [42] is another type of wearable sensor 

that detects the electrical signals resulting from contracting muscles - see Figure 2.4 (c). 

It can be used to measure the relative muscle tension caused by increased walking speed 

or the initiation of the various events of the gait cycle. 

 

   

(a) (b) (c) 
Figure 2.4: Examples of wearable sensors: (a) force sensitive resistors [43], (b) inertial measurement units [44], (c) 
electromyograph [45]. 

There are several advantages to using wearable sensor-based systems to analyse an individual’s 
gait. They are relatively cheap, portable and can transfer captured signals wirelessly or through 
memory transfer, allowing them to acquire gait over long periods. Such systems can also operate 
in uncontrolled environments, thus extending their use beyond special laboratories. These 
advantages allow the wearable systems to be used for daily and long-term monitoring. However, 
setting up an individual with such systems requires clinical professionals, as the position of the 
sensors on the body of the individuals must be precise. Clinical professionals are also required 
to interpret correctly the signals acquired from these sensors, which are also susceptible to noise 
and interference from external factors. Additionally, most of them can acquire only a limited 
number of gait features, thus limiting a complete analysis of individuals’ gait. 

2.3.2 Systems with non-wearable sensors 

Non-wearable sensor-based systems acquire gait features without physically attaching the 

sensors to the individual’s body. Depending on the type of sensors used, they can be further 

divided into: 

• Floor-based systems: They involve the use of sensors such as pressure mats [26] that 

quantify the pressure patterns under the feet. They also include the use of force 

platforms [46], which quantify the horizontal and shear components of the forces 

applied, along with the centre of pressure. These systems can be setup on the floor to 

capture information about the gait of individuals walking over it, as illustrated in Figure 

2.5 (a); 

• Vision-based systems: These systems acquire images using one or multiple optical 

sensors. The resulting images can then be processed to obtain the desired gait features. 

Vision-based systems can be further grouped into marker-based and marker-less 

systems: 

o Marker-based systems: The most widely used systems in medical environments, 

being considered the gold standard in clinical analysis, are marker-based 

systems, such as the motion capture system [18], which relies on the application 

of multiple markers to various parts of the body, together with a setup containing 

multiple calibrated optical sensors to capture the individuals’ gait - see Figure 

2.5(b). The markers are attached to key body positions that can best characterise 

individuals’ gait. The calibrated optical sensors then capture the light 

reflected/emitted by the markers to estimate its coordinates in 3D space.  
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o Marker-less systems: Marker-less systems can use depth-sensing cameras [47], 

or multiple 2D cameras [48], to capture individuals’ gait. Recently, a significant 

amount of work has also been done considering marker-less systems using a 

single 2D camera. The systems that rely on depth-sensing cameras project a 

known pattern onto the scene using for instance infrared laser light and infer the 

depth from the deformation of that pattern. The deformations, which indicate 

the distance the infrared light travels, are captured by an IR sensor to construct 

a depth map. They then estimate the body positions in 3D space using the depth 

map - see Figure 2.5 (c). The usage of multiple 2D cameras allows a system to 

capture images of individuals from multiple viewpoints. Every image can be used 

to estimate the 2D coordinates of the key joint positions from a different 

viewpoint. The systems can then combine those coordinates to obtain the joint 

positions in the 3D space, using the principles of a stereo camera system. 

Floor-based systems are non-intrusive in terms of attaching sensors to the body. However, the 

gait information acquired by these systems, such as the ground reaction forces, is often relatively 

basic and can only be used to perform a general analysis of the individuals’ gait. Another 

limitation of this type of systems is that they can only operate in controlled environments, such 

as laboratories, where the walking path is clearly defined. 

 

   
(a) (b) (c) 

Figure 2.5: Non-wearable sensor-based systems: (a) floor-based system [49], (b) marker-based vision system [50], (c) 
marker-less vision system [51]. 

The marker-based vision systems can acquire accurate and precise gait features from the 3D 

model they build for the individuals. However, the use of marker-based systems is also limited to 

special laboratories as the cameras are sensitive to illumination conditions and require calibration 

before use. This type of system is partially invasive, as the markers must be physically attached 

to the body of the individuals. In addition, the placement of the markers must be precise which 

necessitates the help of clinical professionals.  

The marker-less systems are popular for their non-invasive acquisition of gait. However, the 

accuracy of the estimated body positions is typically much lower than for the gold standard 

marker-based motion acquisition systems. In addition, depth-sensing cameras typically operate 

with a limited range between 80 cm and 4 m and the usage of multiple cameras requires 

calibration before use. 

Major articulations during a gait cycle occur in the sagittal plane [52]. Thus, 2D marker-less vision-

based systems usually rely on a side view observation of an individual to perform gait analysis. To 

obtain gait features, the captured images are typically converted into binary silhouettes using 

background subtraction [53] - see Figure 2.6 (a). The silhouettes that highlight the walking 

individuals can then be used to estimate various gait features such as step length, leg angles, gait 

cycle time [54], cadence, speed, and stride length [55], or the fraction of the stance and swing 
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phases during a gait cycle [56] - see Figure 2.6 (b). A drawback of such systems is that they do 

not have access to depth information, which limits their accuracy when compared to other vision-

based systems. However, they provide several advantages for gait acquisition. The number of 

features estimated by such systems is significantly larger than most wearable or floor-based 

systems. Being non-invasive, they do not require the use of markers on the individual’s body, do 

not require calibrations, and are robust to lighting conditions, making them suitable for usage 

also in unconstrained environments. They can be deployed in a wide range of applications, from 

surveillance of large spaces to gait analysis in clinics. They are also inexpensive, accessible and 

can be used by normal individuals in a daily life setting. Thus, due to their advantages over other 

acquisition systems, this Thesis considers a single 2D camera to perform gait analysis in 

unconstrained environments. 

 

 
 

(a) (b) 
Figure 2.6: Steps in 2D vision-based gait analysis (a) background subtraction, (b) feature estimation. 

2.4 CHALLENGES TO 2D VISION-BASED GAIT ANALYSIS IN UNCONSTRAINED ENVIRONMENTS 
2D vision-based systems can be used to analyse the gait of individuals to recognise their identity 

or detect whether their gait is affected by some pathology. Performing such analysis in a 

constrained environment provides several advantages such as active participation of the 

individuals, lighting control, calibrated systems, predefined walking path and speed, absence of 

occlusions, and appearance control. Such advantages are lost when gait is captured in an 

unconstrained environment. Under such conditions, the performance of 2D vision-based 

systems depends on many factors. To allow a better understanding of the relevant factors, a 

novel taxonomy, is presented in this Thesis – see Figure 2.7, grouping these factors into four 

main dimensions: 

• Individual-related factors; 

• Camera-related factors; 

• Light source-related factors; and 

• Environment-related factors. 

Some of the considered factors affect the individuals’ physical gait, while others affect the 

observation of gait and, therefore, the possibility to capture good features. Each of these 

dimensions, as well as some combinations of factors from different dimensions, is discussed in 

the following subsections. 

2.4.1 Individual-related factors 

To perform the analysis of individuals’ gait, most 2D vision-based systems rely on features 

describing the individuals’ appearance and the corresponding motion pattern while walking. As 

such, factors that affect the observable features or the physical gait of the individuals should be 

 
Background model 

Silhouette 

Current frame 
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taken into account. One such set of factors is related to the individuals’ appearance. Most 

systems that operate in a constrained environment assume that the individuals’ appearance 

remains the same along time [57]. However, this is not true in an unconstrained environment 

where the individuals’ appearance can be altered by clothing changes, e.g. when wearing a coat, 

a hat, or a long skirt, as well as by carrying items, such as a bag or backpack. This can result in 

(partial) occlusion of the gait features, as can be seen by comparing Figure 2.8 (a) and Figure 2.8 

(b). 

 

 
Figure 2.7: Factors affecting gait analysis using 2D vision-based systems. 

A second set of factors affect the individuals’ body dynamics, thus changing their gait. It includes 
factors such as speed, health, age and mood of the individuals. An increase in the walking speed 
of the individuals can cause changes to their gait, such as increase in the arms swing and the 
stride length, as well as torso orientation, as illustrated in Figure 2.8 (c). Similarly, injuries or 
other health issues may cause shorter or irregular strides, bending of the spine, or restricted 
limb movement, altering the individuals’ gait, as illustrated in Figure 2.8 (d). Age is another factor 
that affects individuals’ gait as the comparisons made between features acquired over longer 
periods of time are prone to be affected by changes in the individuals’ height, weight, and 
muscular and bone development. 
Other factors that can cause changes to individuals’ gait include footwear, and individuals’ 

mood. The impact of using different footwear has been addressed in the literature, for instance 

[58], and the influence of mood on gait has been discussed in the medical literature, such as 

[59]. 

2.4.2 Camera-related factors 

2D vision-based systems estimate features from images captured by a 2D camera. Therefore, 

any image distortions and deformations caused by the camera system, typically described by its 

external and internal parameters [60], can affect the computation of the gait features. Camera 

external parameters include rotation and translation matrices, denoting the transformations 

from the 3D world coordinate to the 3D camera coordinates. Camera internal parameters 

include focal length, image sensor format, principal point, scale factor and skewness coefficient, 

which defines the transformation of 3D camera coordinates into a 2D image (following a pinhole 
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camera model). Thus, the combination of internal and external parameters describes the 

transformation of the 3D world coordinates into a 2D image. The internal and external 

parameters also control the field of view, scale, skewness and resolution of the resulting image, 

with any distortions or deformations in the image affecting the captured gait features [33], as 

illustrated in Figure 2.9. 

 

    
(a) (b) (c) (d) 

Figure 2.8: Examples of silhouettes for: (a) normal gait, (b) gait partly occluded by a bag, (c) gait altered by speed and 
(d) gait affected by health. 

Estimation of good gait features depends on the successful capture of key events of a gait cycle, 

as illustrated in Figure 2.1. Since a normal gait cycle lasts for only a few seconds, the camera 

must capture images at a sufficiently high frame rate to capture these key events (accurately). 

Therefore, the acquisition frame rate of the camera is a determinant factor for the quality of the 

obtained gait features [61]. Other camera-related factors are the sensitivity, focus mode and 

brightness/white balance control settings, which can help to better distinguish the individuals 

from the background, thus affecting the quality of silhouettes from which features are often 

extracted. Poor camera settings may lead to incomplete or missing features. As discussed in [62], 

changes in silhouette quality (i.e., incomplete features) can affect the performance of the 2D 

vision-based system. 

 

  
Figure 2.9: Examples of shadow silhouette deformations caused due to field of view, skewness and scale changes. 

2.4.3 Light source-related factors 

The third taxonomy dimension is related to the light source illuminating the scene. Light 

intensity is the main factor determining whether it is possible for the camera to “see” and 

therefore acquire gait features, or if the scene is too poorly illuminated thus preventing the 

acquisition of usable features. Another important factor that characterises the light source is its 

spectrum range. For instance, the works reported in [63] and [64] discuss the merits of using 

infrared light to perform gait analysis. 

The scene illumination also determines whether there will be a shadow cast by the individuals, 

which can be used for analysing their gait [33]. The quality of the shadow silhouette depends 

primarily on the direction of the light rays emitted by the light source. When light rays travel in 

the same, well-defined direction, towards the individuals, i.e., under a collimate source of light, 

a sharp shadow is cast, displaying features similar to those that can be computed from the 

individuals’ body silhouette – see Figure 2.10 (a). If the light rays have many different directions, 

the resulting shadow will be diffused, appearing as a blob around the individuals with no 

distinguishing gait features – see Figure 2.10 (b). 

 



22 
 

  
(a) (b) 

Figure 2.10: Examples of (a) sharp and (b) diffused shadows cast by the walking individual. 

Other factors affecting the cast shadows are the distance and size of the light source. If the 

individuals are too close to the light source, an incomplete shadow will be produced, only 

including the body parts illuminated by it. On the other hand, if the individuals are too far away, 

a sufficient intensity of light may not reach them to cast a usable shadow. Finally, the 

illumination source size should be sufficiently large to illuminate uniformly the entire scene. 

However, if the light source size is large but not sufficiently far away then light rays from multiple 

directions might cause multiple overlapping shadow contributions, resulting in a diffused 

shadow from which gait features are not identifiable. 

2.4.4 Environment-related factors 

The environment, as observed by the camera, contains three main factors that can affect gait 

analysis: 

• Objects in front of the individuals: Objects in front of individuals can cause occlusions 

and make it impossible for the camera to capture all the necessary body parts, which 

can lead to missing features; 

• Background properties: Some properties of the background, such as colour and texture, 

if similar to the individuals’ clothing, can cause camouflage. In this case, distinguishing 

the individuals from the background becomes difficult, which can also lead to 

incomplete or missing features; 

• Terrain on which individuals walk: The terrain on which the individuals are walking can 

cause changes to their gait. Those changes can be attributed to terrain properties, such 

as elevation, friction and irregularities. For example, individuals have to put extra efforts 

to walk up a slope, when compared to a flat surface. These efforts, as well as terrain 

properties, alter their arm swing, stride length and the orientation of some body parts. 

Thus, the terrain can significantly affect the observed features, as discussed in [65]. 

2.4.5 Combination of factors 

The above taxonomy dimensions help to understand the factors affecting 2D vision-based 

systems. However, in unconstrained environments, some factors appear in combination across 

different dimensions, with further effects on the observed gait features. For instance, a camera 

captures only the part of the 3D world visible to it. Therefore, changes in the individuals’ position 

and walking direction relative to the camera result in a change in the viewpoint as observed by 

the camera. Under such conditions, the features captured by the camera can change even when 

the physical gait of the individuals remains unchanged and un-occluded. For example, when 

individuals walk towards the camera, their front view is observed, as illustrated in Figure 2.11 

(a), while if they walk perpendicularly to the camera axis, the observed side view – see Figure 

2.11 (b) – is significantly different. Even when they walk along a straight line across the (fixed) 

camera, the captured view at the start of the gait sequence – Figure 2.11 (c) – will be significantly 

different from the one at the end – see Figure 2.11 (d). Consequently, features computed for 

the same walking direction with a fixed camera may not match each other. 
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(a) (b) (c) (d) 

Figure 2.11: Different viewpoints of the same individual: (a) frontal view, (b) side view, (c) view at the start of the 
sequence, (d) view at the end. 

Another relevant combination across taxonomy dimensions, especially when considering the 

use of shadows for gait analysis, is that of individuals and light source factors. This is especially 

relevant when there are considerable body self-occlusions while the cast shadow is clearly 

visible, for instance, when a camera observes individuals from the top view. In this case, the cast 

shadows depend on the combination of their walking direction and the illumination direction, 

as illustrated in Figure 2.12 (a, b). 

 

   
(a) (b) (c) 

Figure 2.12: Change in the shadow cast by the same individual: (a, b) when the individual’s position w.r.t. the light 
source changes, and at the (b) start and (c) end of a linear walking sequence. 

In addition, depending on the relative positions of the individuals, light source and camera, the 

individuals’ body may occlude the cast shadow. However, one interesting observation is that, 

under a distant collimated light source, when the individuals walk along a straight line 

perpendicular to the camera axis, the shadows cast by them along the trajectory will always 

appear similar to each other, since their position with respect to the light source does not change 

significantly. This is different from what happens for body silhouettes, as illustrated in Figure 

2.12, where the shadow silhouette (b) appears to be a skewed version of the shadow silhouette 

(c). In addition, since the cast shadow corresponds to an area darker than its surroundings, it 

can be more easily distinguished from the background using background subtraction [66]. 

2.5 SYSTEM ARCHITECTURE AND EVALUATION METRICS 
The general architecture of a 2D vision-based system for gait analysis, as illustrated in Figure 

2.13, can be divided into 3 main modules: 

• Pre-processing: The pre-processing module converts an input obtained during 

acquisition into a usable sequence that can be processed by the system. 

• Feature extraction: The feature extraction module converts the results of the initial pre-

processing into a gait representation, which is capable of capturing individuals’ 

distinctive gait characteristics. The gait representation can itself be used as a feature for 

matching or additional features can be extracted from it. 

• Matching: The final module matches the features obtained from an input to the features 

recorded in the database during enrolment using a classifier. The matching module in 

the case of a gait-based biometric recognition system reveals the identity of the 

individuals, while in the case of gait-based pathology classification the system reveals 

the gait pathology the individuals are suffering from. 
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Figure 2.13: Architecture of the 2D vision-based systems for biometric recognition and pathology classification. 

The performance of a gait analysis system can be improved by improving the 3 modules. 

However, most state-of-the-art systems, discussed in Chapter 3, do not focus on pre-processing, 

as it is better addressed in other domains of computer vision, such as foreground detection [66] 

and video denoising [67]. The state-of-the-art systems improve their performance by enhancing 

the quality of the gait representations used and by using better performing classifiers. 

The performance of these systems can be visually represented using a confusion matrix. It is a 

specific table layout where each row presents the predictions while each column represents the 

ground truth. With respect to each entry in the confusion matrix, the table can be divided into 

4 quadrants as follows: 

• True positive (TP): It is a correct positive prediction; 

• True negative (TN): It is a correct negative prediction; 

• False positive (FP): It is a false positive prediction, also called as type 1 error; 

• False negative (FN): It is a false negative prediction. 

 

  Ground truth   

  1 2 … N 

Prediction 
1 TP FP 

2 

FN TN  … 

 N 

Figure 2.14: Illustration of a confusion matrix 

The confusion matrix can be used to evaluate the performance of the system by computing the 

(recognition/classification) accuracy. It is defined as the percentage of correct classifications 

among the total number of classifications performed. It can be computed according to (1.1). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1.1) 

 

The confusion matrix can be used to obtain other evaluation metrics, such as recall, precision 

and specificity of the system. Recall is also referred to as the true positive rate or the sensitivity 

of the system. It represents the percentage of correct classifications among the total number of 

individuals present in a group. It can also be interpreted as the probability that a (randomly 

selected) relevant individual is retrieved in a search. It can be computed according to (1.2). 
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 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1.2) 

 

Precision, which is also referred to as positive predictive value, represents the percentage of 

correct classifications among the total number of individuals classified. It also represents the 

probability that a (randomly selected) retrieved individual is relevant. It can be computed 

according to (1.3). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1.3) 

 

Specificity measures the proportion of actual negatives that are correctly identified as such. Also 

called the true negative rate, it can be measured according to (1.4). 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (1.4) 

 

Another possible way of visually representing the performance of the system is using the 

receiver-operating characteristic (ROC) or the cumulative match characteristic (CMC) curves – 

see Figure 2.15. ROC is a probability curve plotting recall against 1-specificity. The area under 

the curve represents the degree or measure of separability, i.e. the capability of the system in 

distinguishing between individuals/pathologies. The higher the area under the curve, the better 

the accuracy of the system. The CMC is a precision curve that provides the accuracy of the 

system for each rank, where the rank is defined by the number of queries made to the database 

to obtain the correct result. CMC is plotted with accuracy (classification/recognition rate) against 

the rank. 

 

  
(a) (b) 

Figure 2.15: Illustration of a (a) ROC and (b) CMC curve. 
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3 GAIT ANALYSIS: STATE-OF-THE-ART 

 

3.1 INTRODUCTION 
Gait analysis can be a challenging task, especially in unconstrained environments, where certain 

factors or the combination thereof can cause problems, which are perceived as change in the 

viewpoint of the camera or change in the appearance of the individuals being observed – see 

Section 2.4. This Thesis presents solutions to some of the problems faced when using gait 

analysis in 2D vision-based biometric recognition and pathology classification systems, operating 

in unconstrained environments. However, to emphasise the significance of the proposed 

systems they must be compared to the state-of-the-art 2D vision-based systems available in the 

current literature. This chapter provides a review of the current state-of-the-art, addressing the 

problems of: 

• Gait-based biometric recognition: The review of gait-based biometric recognition 

systems includes a discussion on various available gait representations, existing systems 

that are robust to viewpoint and appearance changes and systems that perform 

recognition using shadow silhouettes; 

• Gait-based pathology classification: The review of gait-based pathology classification 

systems includes a discussion on systems that perform classification of gait as either 

normal or impaired, or across different gait related pathologies. It also includes a review 

of systems that extract biomechanical gait features with a high level of accuracy. 

Apart from the state-of-the-art systems, the review also presents a summary of the publicly 

available datasets that are used to evaluate the performance of the state-of-the-art systems. 

3.2 GAIT-BASED BIOMETRIC RECOGNITION SYSTEMS 
The gait-based biometric recognition systems operate such that the gait representations, 

obtained during feature extraction, best characterise the identity of the individuals being 

observed. The features obtained from the gait representation can then be used to recognise the 

observed individual during matching. The quality of the gait representations used for recognition 

partially depends on the type of acquisition systems used to observe the walking individuals. 

However, most wearable, floor-based and marker-based acquisition systems that capture the 

individuals’ gait with a high level of accuracy often operate with the cooperation of specialised 

personnel - see Section 2.3. Thus, this Thesis focuses on 2D vision-based recognition systems 

that can effectively operate in unconstrained environments. 

The state-of-the-art 2D vision-based biometric recognition systems can be broadly classified into 

two groups, - Figure 3.1: 

• Model-based systems: They try to model the individuals’ body to perform recognition; 

• Appearance-based systems: They rely on the spatiotemporal information obtained 

from motion patterns of the individuals to perform recognition. 

3.2.1 Model-based systems 

Most model-based systems rely on the acquisition of a 3D skeletal model or a complete virtual 

3D reconstruction of the individual being observed to perform gait-based biometric recognition. 
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The 3D skeletal models are typically captured using a depth-sensing camera, as illustrated in 

Figure 3.2 (a). The static and dynamic features obtained from the 3D model, such as distances 

between joints and joint angles [68], speed, stride length and variation in barycentre position 

[69] can then be used to perform recognition, with an accuracy of 98% [68] and 92% [69] over 

48 and 52 individuals, respectively. Similar features can also be obtained from a 3D skeletal 

model constructed using multiple calibrated cameras [70]. However, their performance is 

inferior to the systems that rely on depth-sensing cameras with a recognition accuracy of only 

70%. A more complete/denser 3D model of the individuals can further improve the performance 

of the 3D model-based recognition systems to 96% over 20 individuals, using a k-NN classifier 

[71]. The high recognition accuracy is achieved by using affine moment invariant features, 

obtained from the 2D projections of the 3D model. 

 

  

Figure 3.1: Proposed taxonomy for the state-of-the-art vision-based systems. 

An advantage of 3D model-based systems is that they can effectively address the problem of 

viewpoint change using the skeletal models. Since the key points of the skeletal model are 

estimated by the system in the 3D space, using multiple calibrated 2D cameras [72], or depth-

sensing cameras [69], the resulting features are robust to viewpoint changes. Thus, these 

systems can achieve a high average recognition accuracy of 92% across 5 different views [69]. 

Similarly, a dense 3D model obtained from multiple 2D cameras can also be effective in tackling 

viewpoint change [73]. Such systems can transform the features acquired from the model to the 

desired viewpoint, achieving a recognition accuracy of 75% across 12 different viewpoints of 20 

individuals. In situations where only a single 2D camera observes the environment, some 3D 

model-based systems maintain a database of dense 3D models of the individual captured over 

time [74]. The features are then obtained with respect to the viewpoint of the camera to 

perform recognition. Such systems perform well with a recognition accuracy of 97%, when 

operating across 3 different viewpoints of 42 individuals. These systems can also perform 

recognition along curved trajectories, which is a significantly more challenging task, with a 

recognition accuracy of 72%. A second advantage of these systems is that they can also be robust 

to appearance changes, as the acquisition systems used are usually trained to detect key points 

over different types of clothing. 

A drawback of the 3D model-based systems is that they require calibrations before use, and 

depth-sensing cameras typically has a limited range of operation, making them ineffective in 

unconstrained environments. They are also adversely affected by occlusions, as they rely on 

successful detection of the model key points, which are estimated with respect to one other. 

The use of 3D models can also result in computationally expensive systems. Finally, the 3D 

model-based systems also need to consider information, such as camera parameters, distance 

from the camera, position of the individual, when fitting the model over the observed 

individuals. Such information is not always available in unconstrained environments. 
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Other model-based systems, called invariant feature systems, model the gait of the individuals 

using anatomical positions, such as the head and feet [75] or the hips, knees and ankles [76]. 

The systems can then obtain features such as angular measurements and movement trajectories 

of the individuals, to perform gait-based biometric recognition, as illustrated in Figure 3.2 (b). 

These systems when evaluated over 10, and 20 individuals, result in a recognition accuracy of 

98% [75] and 96% [76], respectively. These systems operate well even under viewpoint changes. 

When individuals are observed from a random viewpoint, the invariant feature systems can 

model the gait of the individuals in a canonical viewpoint using a rectification step. The resulting 

features, such as angular measurements and movement trajectories are viewpoint invariant and 

can be used to perform gait-based biometric recognition successfully. These systems achieve a 

recognition accuracy of 73.6% across 11 different viewpoints of 124 individuals from CASIA B 

dataset [77].  

However, transformation of gait models into a canonical viewpoint is effective within a small 

range of viewpoints, which limits their applicability to controlled environments. In addition, the 

systems that synthesise features for the canonical viewpoint by using a perspective projection 

model require camera calibrations [78]. Those systems also depend on approximated anatomy 

ratios to identify the knee and feet positions, which together with the other limitations make 

them difficult to be used in unconstrained environments. 

 

  
(a) (b) 

Figure 3.2: Gait representations obtained from (a) 3D model-based system, (b) feature invariant systems [75]. 

3.2.2 Appearance-based systems 

Unlike most model-based systems, the appearance-based systems can perform gait-based 

biometric recognition using the input from a single 2D camera. The spatiotemporal information 

obtained from the observed individuals, allows these systems to generate gait representations, 

such as the GEI [79], which can be obtained by averaging cropped binary silhouettes over a gait 

cycle, as illustrated in Figure 3.3. The use of GEI results in a recognition accuracy of 90% over 

124 individuals using a k-NN classifier [80]. Other gait representations, such as chrono gait image 

(CGI) and frame difference energy image (FDEI), that represent the evolution of the individuals’ 

silhouette over a gait cycle can further improve the recognition accuracy of the appearance-

based systems to 94% [80]. Some systems use gait representations, such as the gait entropy 

image (GEnI) [81], or the multiscale gait image (MGI) [58], which emphasise the dynamic part of 

the gait by computing the entropy or by applying Gaussian filters to the GEI. Such gait 

representations significantly improve the performance of the appearance-based systems 

performance to almost 100%, operating on the CASIA B dataset. 

Appearance-based systems can address the problem of change in camera viewpoint by adopting 

either view transformation or view tagging systems. Systems relying on view transformation, as 

the name suggests, transform features obtained for a given viewpoint to any other desired 

viewpoint. The view transformation system applies singular value decomposition to a matrix 

containing examples of individuals in different views, generating a set of gait feature vectors and 

a transformation matrix that can transform feature vectors from one viewpoint to another [82]. 
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Recognition in such cases is typically performed by exploring the correlations between and 

within individuals in different views. The system relies on gait representations such as the GEIs, 

to obtain the transformation matrix [82]. However, their performance can be improved by using 

different gait representations, such as the Radon transform-based energy images [83], as well 

as better performing classifiers, such as support vector machines [84], or multi-layer perceptron 

[85] achieving a recognition accuracy of 85% [83], 95% [84] and 98% [85], respectively, for 11 

different viewpoints of 100 individuals from CASIA B dataset.  

 

 
Figure 3.3: Illustration of a GEI and GEnI. 

A limitation of view transformation systems is that they tackle the problem of viewpoint change 

assuming that the viewpoint of the feature to be transformed is already known. This limitation 

can be dealt with using a view transformation model to generate feature vectors for virtual 

viewpoints, which are then projected onto a subspace, such as the Grassmann manifold [86], 

[87], achieving a recognition accuracy of 95% across 11 different viewpoints of 100 individuals 

from CASIA B dataset. Alternatively, a given silhouette, independently of the view, can be 

transformed into a canonical viewpoint using a transformation matrix obtained by optimisation 

techniques, such as the low-rank optimisation of a GTI [88], achieving a recognition accuracy of 

85% across 5 viewpoints of 124 individuals from CASIA B dataset. Nonetheless, in the current 

literature, systems that rely on correlation between views to perform recognition usually cannot 

address other problems associated with unconstrained environments, such as appearance 

changes. 

View tagging systems, on the other hand, are robust to both changes in the viewpoint of the 

camera and appearance of the individual being observed, as they follow a two-step approach. 

The first step of such systems involves viewpoint detection. It is typically performed by analysing 

the individuals’ leg region [89], which is provides a good indicator of the viewpoint, as illustrated 

in Figure 3.4. Recognition can then be performed with respect to the detected viewpoint of the 

camera. Thus, the two-step approach restricts comparisons of the individuals’ features to the 

identified view, implying that individuals must be registered in all the considered viewpoints. 

The use of leg region allows the system to detect 7 different views with an accuracy of 86% and 

can then perform recognition over 50 individuals with an accuracy of 98%. The performance of 

the first step of such systems can be further improved by obtaining features that can better 

represent the viewpoint, such as the entropy of the leg region. It improves the viewpoint 

detection accuracy to 87% [58] and 89% [90], over 11 different viewpoints from CASIA B dataset. 

While the performance of the second step, i.e. recognition, can be improved by using better 

performing classifiers, such as canonical correlation analysis [89] or random subspace learning 

[58], improving the recognition accuracy to almost 100% over 124 individuals. Recognition can 

also be improved by using a better gait representation, such as the MGI [58]. Thus, the two-step 

approach allows the systems to tackle the problem of appearance change in the second step 

making the view tagging systems suitable for operation in unconstrained environments. 

Change in appearance of the individuals can alter their gait representations, as illustrated in 

Figure 3.5. Most state-of-the-art appearance-based systems that tackle the problem of 



31 
 

appearance change do so by training the system using available altered gait representations. 

The system presented in [91] uses a ratio of amount of body covered by different type of clothing 

to identify the parts of the individuals’ body that will be altered by appearance change. The 

system can then perform recognition using only the unaltered parts of the individuals’ body, 

achieving an accuracy of 94% and 91% over 124 individuals from CASIA B dataset, carrying a bag 

and wearing a coat, respectively. However, a limitation of such systems is that they need to be 

trained with all the available types of clothing that the systems might encounter when deployed. 

In addition, the appearance of the individuals can be altered by other factors, such as wearing a 

backpack or carrying a bag, which limits the effectiveness of such systems to clothing-related 

appearance changes. 

 

  
Figure 3.4: GEIs of an individual corresponding to different angles representing the viewpoints of the camera.  

To be robust to different types of appearance changes, other appearance-based systems rely on 

exploring gait representations that highlight the dynamic parts of the individuals’ gait, such as 

the movement of the limbs. Gait representations, such the Poisson random walk [92] and the 

GEnI [81], [93] can be used in such situations to improve the recognition results. The Poisson 

random walk performs significantly better than the GEnI, with a recognition accuracy of 93% 

over 124 individuals carrying a bag. However, they perform poorly when the clothing of the 

individuals changes, with the recognition accuracy dropping to only 45%. Thus, it can be 

concluded that these gait representations can tackle the problem of appearance change 

introduced by static objects such as a backpack but fail when the objects move and alter the 

appearance of the individuals during walking.  

 

 
Figure 3.5: GEIs of an individual altered by wearing a coat and carrying a bag. 

A significant improvement in recognition results can be obtained by automatically identifying 

the parts of the individuals that are being altered. Systems, such as [94] can achieve this by 

automatically setting different weights to different parts of the individuals’ body. The system 

assigns lower weights to the altered parts of the individuals, thus reducing their influence during 

recognition. This allows the system to achieve a recognition accuracy of 92% and 78% for 124 

backpack and coat waring individuals, respectively [94]. The altered parts of the individuals can 

also be identified by comparing them to the available unaltered sequences [95]. The common 

parts between the two sequences can then be retained as the unaltered parts of the individuals 

to perform recognition. The recognition results can also be improved by applying Gaussian filters 

at different scales [58], which gradually reduces the effect of appearance change by highlighting 
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the unaltered shape of the individuals, resulting in 89% and 76% recognition accuracy for 124 

individuals from CASIA B dataset, whose appearance is altered by carrying a bag and wearing a 

coat, respectively. 

The appearance-based systems discussed above are effective in environments where the 

camera can observe the entire body of the individuals. In situations where the camera is carried 

by a drone or placed at elevated positions, observing the body of the individuals becomes 

difficult or even impossible, as illustrated in Figure 3.6. The self-occlusions caused by the 

individuals can hide the gait features necessary to perform recognition. In such situations, the 

shadow cast by the individuals can be an alternative source of features for biometric gait 

recognition. The shadow cast under certain conditions can depict the appearance of the 

individuals, as discussed in Section 2.4.3. Gait features obtained from such shadows can be 

successfully used to perform gait-based biometric recognition [22]. 

 

 

Figure 3.6: Image captured using an overhead camera in an unconstrained environment. 

The use of the shadows for gait-based biometric recognition involves additional challenges, such 

as separating individuals from their shadow and dealing with distortions and deformations 

caused by camera parameters, camera perspective and the time of the day. Using manual 

segmentation and normalisation of shadow silhouettes and considering a fixed camera 

viewpoint and a fixed time of the day can lead to good recognition results, but only in 

constrained environments [96]. The performance of such systems can be improved by 

introducing automatic shadow segmentation [97] and shadow silhouette normalisation [98]. 

However, they still require the manual setting of many parameters, such as the position of the 

sun and the position of the individuals with respect to the camera.  

To perform recognition, the shadow silhouette-based biometric recognition systems can use 

features such as harmonic coefficients obtained from gait stripes [96] or the contour of the 

shadow silhouette [99]. However, the fusion of the two features provides the best recognition 

accuracy of 98%, when evaluated with 20 individuals under controlled illumination [100]. 

To explore further the use of shadows for gait-based biometric recognition, some systems use 

multiple light sources to cast two shadows, perpendicular to each other [101]. The shadows 

captured using an overhead camera can then be used to obtain affine moment invariant 

features, to perform gait-based biometric recognition. Such systems can also tackle the problem 

of appearance change by assigning different weights to different parts of the shadow based on 

the influence of their clothing [64].The system presented in [64] achieves a recognition accuracy 

of 97% over 54 individuals. To address the problem of viewpoint change, some systems use 

dense 3D models to render the shadow silhouettes of the individuals in the desired viewpoint 

[102], achieving a recognition accuracy of 99% over 97 individuals. However, the use of 

additional information, such as the position of the light source and the position of the 

individuals, still limits their use to constrained environments. 
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3.2.3 Discussion 

From the state-of-the-art review, it can be concluded that the appearance-based systems are 

best suited to operate in unconstrained environments, as they can operate using a single 2D 

camera. Since, improving the gait representations improved the performance of most gait-based 

biometric recognition system, even when using simple classifiers such as k-NN, this Thesis 

focuses on identifying novel gait representations suitable for appearance-based systems. 

This Thesis also focuses on addressing problems such as changes in the viewpoint of the camera 

and changes in the appearance of the individual, faced by appearance-based systems operating 

in unconstrained environments. Among the systems discussed in the state-of-the-art review, the 

view tagging systems are best suited for operation in unconstrained environments. However, 

the view-detection accuracy of such systems still has a significant margin for improvement. 

These systems are also limited in their operation as they can detect only the viewpoints 

registered in the database. In addition, since they depend on the leg region of the individuals, 

their performance can suffer due to the presence of shadows under the individuals’ feet. Thus, 

the Thesis focuses on improving the view detection step of view tagging systems. It then focuses 

on automatically identifying the unaltered parts of the individuals’ body to tackle the problem 

of appearance change, as this strategy provides the best results in the state-of-the-art review. 

In addition, since the use of shadow silhouettes for gait-based biometric recognition faces 

several limitations, such as the distortion and deformation of the shadows - see Section 2.4.5, 

the Thesis focuses on automatically rectifying the shadow silhouettes to a canonical viewpoint 

before attempting recognition. In addition, since poor segmentation of the individuals from their 

shadow silhouettes can affect the performance of the recognition systems, the Thesis addresses 

the problem of shadow segmentation. 

3.2.4 Datasets 

To evaluate the performance of different gait-based biometric recognition systems, datasets 

must be collected such that they have enough variation among the captured individuals to 

obtain representative and statistically reliable results. The literature presents several datasets 

to perform gait-based biometric recognition, as reported in Table 3.1. However, most of them 

contain a relatively small number of individuals, such as the CMU MoBo [103], Georgia Tech 

[104], HID-UMD [105] and CASIA A [106]. One of the first datasets to capture data from more 

than 100 individuals is the SOTON Large dataset [107]. It captures individuals walking indoor, 

outdoor and on a treadmill from side and oblique viewpoints. Another dataset containing over 

100 individuals, captured in an outdoor environment, is the USF HumanID [108]. The individuals 

in this dataset are captured from two different viewpoints, walking on concrete and grass 

surfaces, with and without carrying a bag, and wearing two different types of shoes and 

captured in 2 different sessions.  

The most popular dataset used to evaluate the gait-based biometric recognition systems is the 

CASIA B dataset [109], illustrated in Figure 3.7. It contains data from 124 individuals, with 10 

walking sequences available for everyone captured during different sessions. These include 2 

sequences, where the appearance of the individuals is altered using coats, and in 2 other 

sequences the appearance of the individuals is altered by carrying backpacks. The dataset also 

contains a large variation in the observation viewpoints. The individuals are captured from front 

(0˚) to rear viewpoints (180˚), with an interval of 18˚. Thus, this dataset is suitable for evaluating 

cross-view gait recognition systems, as well as investigating the effects of appearance changes 

caused by clothing and carrying items, such as backpacks, on the gait-based biometric 

recognition systems. 



34 
 

The dataset with the largest number of recorded individuals is the OU-ISIR LP [110] with 4007 

individuals captured during 2 different sessions. It contains a wide age range from 1 year old to 

94 years old, with an almost balanced gender ratio. The individuals are also captured along 4 

different viewpoints (55˚, 65˚, 75˚ and 85˚). Due to the large number of captured individuals, the 

dataset is suitable to evaluate the recognition accuracy with a high level of statistical reliability. 

To test the performance of gait-based biometric recognition systems that rely on shadow 

silhouettes, the literature presents the KY IR shadow dataset [64], which contains shadow 

silhouettes of 54 different individuals. The dataset is captured from an overhead viewpoint, with 

a lighting setup such that the individuals cast 2 shadows perpendicular to each other. Everyone 

in the dataset is captured 6 different times. In the last 2 instances, the appearance of the 

individual is altered by carrying a bag and changing the clothing respectively. Thus, the dataset 

can also be used to tackle the problem of appearance change. 

Table 3.1: Summary of available datasets for biometric gait recognition 

Datasets 

 Properties 

Year 
Number of 

individuals 

Total 

sequences 

Number of 

viewpoints 

Appearance 

changes 

Silhouette 

type 

CMU MoBo [103] 2001 25 600 6 Y Body 

HID-UMD [105] 2001 25 100 1 N Body 

SOTON Large dataset 

[107] 
2002 115 2128 2 Y Body 

Georgia Tech [104] 2003 15 268 1 Y Body 

CASIA A [106] 2003 20 240 3 N Body 

USF HumanID [108] 2005 122 1870 2 Y Body 

CASIA B dataset [109] 2006 124 1240 11 Y Body 

OU-ISIR LP [110] 2012 4007 7842 4 N Body 

KY IR Shadow dataset 

[64] 
2014 54 324 1 Y Shadow 

 

 

 

(a) (b) 
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(c) (d) 

Figure 3.7: CASIA B dataset representing (a) change in camera’s view point and (b) appearance change, (c) OU-ISIR 
LP dataset representing viewpoint change, (d) KY IR shadow dataset. 

3.3 GAIT-BASED PATHOLOGY CLASSIFICATION SYSTEMS 
The architecture of gait-based pathology classification systems is similar to the architecture of 

gait-based biometric recognition systems, illustrated in Figure 2.13. However, unlike recognition 

systems, pathology classification systems perform classification across different gait-related 

pathologies in their final matching module, as illustrated in Figure 3.8. A second difference 

between the two systems lies in the type of features used. While performing recognition, the 

features acquired by the gait-based biometric recognition systems must best represent the 

individuals’ identity, the pathology classification focuses on acquiring features that best 

represent the individuals’ gait related pathologies. 

The gait of the individuals can be acquired by different types of sensors, as discussed in Section 

2.3. The wearable and floor-based systems that use accelerometers [27], gyroscopes [41], 

pressure mats [26] and other sensors can estimate features, such as the duration of the different 

gait cycle phases, the step count or the step length of the individuals with a high level of 

accuracy. These features can then be used to classify between different types of walking, such 

as level, upstairs, and downstairs, walking at different speeds and classify between normal and 

impaired walking. However, these systems cannot operate effectively in unconstrained 

environments, as some need the cooperation of clinical personnel to setup the sensors on 

specific parts of the body, while others need to be setup on the walkways being used. Due to 

such limitations, this Thesis focuses on vision-based systems to perform gait-based pathology 

classification.  

 

     
(a) (b) (c) (d) (e) 

Figure 3.8: Gait representing (a) Hemiplegia, (b) Parkinson’s diseases, (c) Cerebellar ataxia, (d) Foot drop and (e) 
Sensory ataxia [111].  

The state-of-the-art review provided in this section discusses the available systems in the 

current literature, highlighting the features obtained and the type of classifications performed. 

The review also discusses the systems that focus on the accuracy of the features obtained, when 

compared to the motion capture system [18]. The motion capture system [18] is considered the 

gold standard in clinical analysis, due to the accuracy of the features obtained. However, it can 

effectively operate only in special laboratories, as it requires camera calibrations before use. 
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Additionally, it is also very sensitive to the lighting conditions. Thus, the review considers other 

more unconstrained systems classifying them as either model-based or appearance-based 

systems. 

3.3.1 Model-based systems 

Model-based systems, similar to those discussed in Section 3.2.1, rely on depth-sensing cameras 

or multiple calibrated 2D cameras. However, when performing gait-based pathology 

classification, these systems try to accurately estimate features such as duration of gait cycle, 

stance phase, swing phase [112], step length, step width and other indicators [113], using the 

captured 3D skeletal model. These systems can also be used to perform classification of gait as 

being either normal or impaired using the 3D position of the skeletal joints captured during a 

gait cycle and achieving a classification accuracy of 98% [47]. Model-based systems that capture 

gait using multiple 2D calibrated cameras can perform classification of gait related pathologies 

using features such as the stride length, stride time and stride velocity [114]. 

Although most model-based pathology classification systems are non-invasive, the limited range 

of operation (between 80 cm and 4 m) of the depth-sensing cameras and the need for calibration 

and rectifications of the 2D cameras before use prevents them from being used in unconstrained 

environments. However, in laboratories, these systems can be used to obtain features, such as 

knee angles [115], step length and height of the individuals across time [116], with a high level 

of accuracy. The accuracy of the angles obtained is similar to the motion capture system, which 

is considered gold standard in clinical analysis [18], within ±3˚ error margin, when evaluated 

using 20 individuals. 

3.3.2 Appearance-based systems 

The appearance-based pathology classification systems use spatio-temporal information 

captured using a single 2D camera to perform classification of gait across different gait related 

pathologies. The features acquired to perform pathology classification may vary from biometric 

gait representations, such as GEI [28], to biomechanical features, such as step length, leg angles 

and gait cycle time [117]. However, biometric gait representations, as the GEI, has been used to 

classify the observed gait as either Parkinsonian, neuropathic, hemiplegic, diplegic or normal, 

with a classification accuracy of 74% using SVM classifier [28]. It can also be used to obtain 

biomechanical features, such as the amount of movement and movement broadness [118], 

which can then be used to classify gait as being either normal or impaired. In alternative, 

biomechanical features such as step length, leg angles, can be obtained by fitting a 2D skeletal 

model using anatomy ratios, onto the silhouette of the walking individuals [54]. The features 

used can achieve a classification accuracy of 100%, in classifying the gait as either normal or 

impaired using SVM classifier. Features, such as cadence, speed, and stride length can be 

obtained within an error margin of 1% by estimating the position of the feet when it is in 

complete contact with the ground [55]. Classification of gait as either normal or impaired can 

also be performed with an accuracy of 96% using temporal features, such as the duration of the 

stance phase and swing phases during a gait cycle [56]. The appearance-based systems can also 

estimate posture instabilities using features, such as lean and ramp angles [119], axial ratio and 

change in velocity of the individuals [120], while some other appearance-based systems can 

distinguish between normal and wavering, faltering or falling gait using features such as 

homeomorphisms between 2D lattices of binary silhouettes [121]. 



37 
 

3.3.3 Discussion 

Since the features obtained from a single 2D video camera, contain enough information to 

characterise individuals’ gait, appearance-based systems can be used in unconstrained 

environments to perform gait-based pathology classification. These systems are much easier to 

install and operate when compared to the model-based, floor-based or wearable systems. 

However, most existing appearance-based systems perform only binary classification of gait as 

either normal or impaired. The features acquired by such systems are also not validated for 

clinical use. In addition, most systems can only operate on gait captured in a canonical view. 

Thus, this Thesis focuses on improving the performance of the systems that classify gait across 

different gait-related pathologies. It also focuses on validating the accuracy of the features 

obtained for clinical use, while making the system robust to change in camera viewpoints.  

3.3.4 Datasets 

Since the Thesis focuses on appearance-based systems that perform classification of gait across 

different gait-related pathologies, it also reviews the available datasets used to evaluate such 

systems, as reported in Table 3.2. 

The three reported datasets are captured from a canonical viewpoint. The smallest dataset, the 

DAI Gait dataset [54], contains 30 gait sequences divided into two groups. The first 15 gait 

sequences are considered normal, while the remaining 15 contain impaired gait sequences, 

considering randomly selected pathologies, simulated by 5 walking individuals. The individuals 

are captured walking over 3 m using the RGB camera of the Kinect sensor. 

The next dataset, called the DAI Gait dataset 2 [28], contains healthy subjects simulating gait 

affected by diplegia, hemiplegia, neuropathy and Parkinson’s diseases, together with normal 

gait sequences, as illustrated in Figure 3.9 (b). Everyone is recorded 3 times walking 8 m, 

resulting in 75 samples. 

The largest dataset among them is the INIT Gait dataset [118], which contains binary silhouettes 

of 10 individuals simulating 3 different leg-related gait pathologies, 4 different arm-related 

pathologies and the normal gait, as illustrated in Figure 3.9 (a). Everyone is recorded 2 different 

times in a recording studio, at 30 fps, capturing multiple gait cycles in each of these 2 sessions. 

Table 3.2: Summary of available datasets for pathology classification 

Datasets 

 Properties 

Year 
Number of 

individuals 

Number of 

sequences 

Number of 

pathologies 

Total 

sequences 

DAI [54] 2016 5 3 2 30 

DAI 2 [28] 2017 5 3 5 75 

INIT [118] 2018 10 2 4 80 

 

 
(a) 
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(b) 

Figure 3.9: Examples of GEI belonging to (a) DAI 2 and (b) INIT dataset. 
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Part II: Gait-based biometric 
recognition 
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4 GAIT REPRESENTATION PROPOSALS 

 

4.1 INTRODUCTION 
The performance of a gait recognition system depends on the quality of gait representations 

and classifiers used, as discussed in Section 2.5. Most appearance-based systems that provide 

good recognition results in unconstrained environments use gait representations that capture 

the evolution of the individuals’ gait over a gait cycle, such as the GEI [79]. The recognition 

results of those systems are further improved by using gait representations, such as the GEnI 

[81] that highlights the dynamic parts of the individuals’ gait, as illustrated in Figure 3.3. 

Regardless of the gait representation used, most state-of-the-art appearance-based systems 

rely on a single gait cycle to obtain these representations. Since the gait of an individual when 

observed across multiple instances can display some variation, the state-of-the-art systems rely 

on training a classifier to learn such variations, which can then be used to perform recognition. 

Two novel proposals of this Thesis explore the possibility of incorporating the variations within 

and between the individuals into the gait representation.  

• Gait dissimilarity vector (GDV): It explicitly represents the variation between individuals 

by exploring the dissimilarity space [122]. It has the additional advantage of hiding other 

details about the individuals, for instance related to their health condition or gender, 

which can easily be inferred from the traditionally used gait representations, such as the 

GEI; 

• Sparse error gait image (SEGI): It explicitly incorporates variations within an individual’s 

gait across different instances into a single gait representation using RPCA. This can 

significantly improve the performance of a recognition system, independently of the 

classifier used. 

These novel gait representations are described in the following sections, together with examples 

of their usage in gait recognition systems. 

4.2 GAIT DISSIMILARITY VECTOR 
This Thesis presents a new gait representation, called GDV that explores the dissimilarity space. 

GDV is created using a vector space whose dimensions are defined by pairwise dissimilarity 

measurements between a given input individual and a set of individuals registered in the so-

called representation set, 𝑅. Hence, a GDV representation, 𝐷(𝑋, 𝑅) can be addressed as a data-

dependent mapping 𝐷(. , 𝑅): 𝑋 → ℝ𝑛  from a given individual, 𝑋 , to the representation set, 

obtained using the Euclidean distance. Considering a GEI of the individual as an input, its gait 

representation can be obtained by computing the pairwise dissimilarities between that input 

GEI and the GEI of each of the individuals belonging to the representation set, as illustrated in 

Figure 4.1. 

The most important step for successfully obtaining the proposed gait representation involves 

the selection of the representation set, as it determines the quality of the GDV obtained. The 

representation set can be selected such that it contains: 

• All available GEIs from every registered individual; 
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• A random set of GEIs; 

• A carefully selected set of GEIs, called prototype set. 

 

. 

Figure 4.1: Proposed gait dissimilarity vector representation. 

The GDV representation proposed in this Thesis follows the third option, selecting the 

representation set such that it contains one GEI of each registered individual, resulting in a set 

of prototypes that best represent the variations in the database. Thus, every element of the GDV 

expresses the degree of difference between the individual being observed and every individual 

registered in the database. To perform recognition, the proposed GDV representations of the 

individuals, obtained from their GEIs and the representation set, must be registered into the 

database during enrolment, as illustrated in Figure 4.2. 

Using the GDV gait representation, recognition can then be performed using a classifier trained 

to distinguish between the registered individuals. To illustrate the usage of the new gait 

representation, the Thesis considers the use of a k-nearest neighbour (k-NN) classifier, along 

with principal component analysis (PCA) for dimensionality reduction and linear discriminant 

analysis (LDA) for data decorrelation, to obtain the recognition results. The use of such a simple 

classifier enables to highlight the effectiveness of the proposed gait representation. 

Recognition is performed by first computing the Euclidean distance between the GEI obtained 

from the individual to be recognised and the GEIs belonging to the representation set, to obtain 

the GDV. Then, the GDV of the individual to be recognised and the GDVs of the individuals 

registered in the database are compared using k-NN, and the one with the smallest Euclidean 

distance is selected as the recognised identity. 

 

 

Figure 4.2: Gait recognition using the proposed gait dissimilarity vector (GDV) representation. 
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4.3 SPARSE ERROR GAIT IMAGE 
The second novel gait representation presented in this Thesis, called SEGI, explores the 

differences between multiple GEIs of the same individual. Gait of an individual, captured across 

multiple instances, will contain some differences with respect to each other. The differences are 

significantly larger among different individuals. SEGI represents these differences to perform 

gait-based biometric recognition. 

To obtain the desired differences across multiple instances of the gait of an individual, the 

proposed SEGI representation uses the GEIs. The differences can then be computed using 

techniques, such as robust principal component analysis (RPCA) [123]. RPCA creates two types 

of outputs, a low-rank component and a sparse error component. In the case of SEGI the input 

to RPCA is a set of GEIs belonging to an individual, as illustrated in Figure 4.3 (a). The low-rank 

component is generated by projecting the GEIs onto the principal components identified by 

RPCA. It contains the common parts among all the input GEIs, along with minor variations, such 

as noise. Thus, it may not contain the most distinguishing features to perform recognition. The 

sparse error component on the other hand captures the larger differences in the GEIs. These 

differences cannot be incorporated into the low-rank component, providing a representation of 

the difference between a specific GEI and the other available GEIs, being called SEGI. 

The difference between the GEIs is represented as the variation in the intensity values in the 

corresponding SEGI representation. A significant difference between GEIs results in strong 

positive and negative intensity values in the corresponding SEGIs representation - see Figure 4.3 

(c). On the other hand, SEGIs obtained from the multiple GEIs belonging to the same individual 

will typically result in low intensity values, as the difference will not be significant, as illustrated 

in Figure 4.3 (b). To understand the difference between SEGI representations obtained using 

multiple GEIs of the same and different individuals, a plot representing the intensity at each pixel 

value in the SEGI, following a vertical scan from left to right is presented Figure 4.3 (b, c). The 

middle grey level of the SEGI corresponds to the zero-intensity level in the plot. 

 

 

 
(b) 

 

(a) (c) 
Figure 4.3: (a) Obtaining SEGI by applying RPCA to the GEIs, (b) SEGI representation and their intensity value plot when 
considering GEIs from the same individual and (c) different individuals. 

To use the proposed gait representation for recognition, at least 2 GEIs of everyone are required. 

The resulting SEGIs can then be used for recognition following the architecture presented in 
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Figure 4.4. During enrolment, the GEIs of the registered individuals can be transformed into their 

SEGI representation following the steps described below. 

Consider 𝑛 registered individuals with everyone containing 𝑚 GEIs represented as 1D-column 

vectors, obtained by transposing their concatenated rows. They can then be used to construct 

a matrix 𝐷𝑖  for every individual 𝑖  such that all GEIs 𝐼𝑖  belonging to individual 𝑖  are appended 

together according to (4.1). 

 

 𝐷𝑖 = [𝑣𝑒𝑐(𝐼𝑖
1)|… |𝑣𝑒𝑐(𝐼𝑖

𝑚)] (4.1) 

 

 

Figure 4.4: Proposed system architecture (SEGI). 

The SEGI representation for each individual 𝑖 can be obtained by applying RPCA to matrix 𝐷𝑖. 

RPCA decomposes the matrix  𝐷𝑖 into 𝐷𝑖 =  𝐿𝑖 +  𝐸𝑖, where  𝐿𝑖 is the underlying low-rank matrix 

and  𝐸𝑖  is the sparse error component, following (4.2). 

 

 min
 𝐿𝑖, 𝐸𝑖

𝑟𝑎𝑛𝑘( 𝐿𝑖) + 𝛾‖ 𝐸𝑖‖𝑜 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐷𝑖 =  𝐿𝑖 +  𝐸𝑖  (4.2) 

 

where ‖ 𝐸𝑖‖𝑜is the counting norm (i.e., the number of non-zero entries in the matrix), 𝑟𝑎𝑛𝑘( 𝐿𝑖) 

is the number of linearly independent rows or columns in the matrix 𝐿𝑖 and 𝛾 is a regularisation 

parameter. However, with the minimisation of rank being a nonconvex problem, the RPCA uses 

a convex relaxed form, expressed by (4.3) 

 

 min
 𝐿𝑖, 𝐸𝑖

‖ 𝐿𝑖‖∗ + 𝜆‖ 𝐸𝑖‖1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝐷𝑖 =  𝐿𝑖 +  𝐸𝑖  (4.3) 

 

where ‖ 𝐿𝑖‖∗denotes the nuclear norm of the matrix 𝐿𝑖, i.e., the sum of the singular values of 𝐿𝑖, 

and ‖ 𝐸𝑖‖1 denotes the 𝑙1-norm of 𝐸𝑖  and 𝜆 is a regularisation parameter. 

Thus, for each individual 𝑖, the use of RPCA results in a matrix 𝐸𝑖  that contains the vectorised 

SEGI representations 𝑒𝑖
𝑗

, 𝑗 ∈ 1,… ,𝑚, as illustrated in (4.4). The resulting SEGIs can then be 

registered into the database during enrolment to allow performing recognition. 

 

 𝐸𝑖 = [𝑣𝑒𝑐(𝑒𝑖
1)|… |𝑣𝑒𝑐(𝑒𝑖

𝑚)] (4.4) 
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Recognition can be performed over a test GEI  𝐼𝑝 , represented as a 1D-column vector, by 

obtaining its SEGI representation, using the registered GEIs of every individual registered in the 

database. This is done by appending the test GEI, 𝐼𝑝, to every GEI matrix 𝐷𝑖 according to (4.5): 

 

 𝐷𝑖,𝑝 = [𝑣𝑒𝑐(𝐼𝑖
1)|… |𝑣𝑒𝑐(𝐼𝑖

𝑚)|𝑣𝑒𝑐(𝐼𝑝)] (4.5) 

 

RPCA can then be applied to each matrix 𝐷𝑖,𝑝 to obtain the corresponding sparse error 

matrix 𝐸𝑖,𝑝 . The test SEGI, representing the variation between the test GEI  𝐼𝑝  and the GEIs 

belonging to individual 𝑖 is represented by 𝑒𝑝,𝑖, according to (4.6): 

 

 𝐸𝑖,𝑝 = [𝑣𝑒𝑐(𝑒𝑖
1)|… |𝑣𝑒𝑐(𝑒𝑖

𝑚)|𝑣𝑒𝑐(𝑒𝑝,𝑖)] (4.6) 

 

When the test GEI belongs to a genuine individual, the resulting SEGI contains low intensity 

values, as illustrated in Figure 4.3 (c). However, when the test GEI is obtained from an impostor, 

the resulting SEGI contains high intensity values, due to a significant variation between test and 

the database GEIs, as illustrated in Figure 4.3 (b). 

Recognition can be performed either by using the SEGI intensity values directly or by comparing 

the test SEGI with the database. The intensity values can be directly used by computing the 

Euclidean norm for every test SEGI obtained with respect to each individual. The recognition can 

then be performed by associating the identity of the individual with the smallest Euclidean norm 

to the SEGI being tested. The second alternative, which typically allows obtaining better 

recognition results, computes the Euclidean distance between the test SEGI and the database 

SEGIs with respect to each individual, using a k-NN classifier. Recognition can then be performed 

by associating the identity of the test GEI to the individual with the smallest Euclidean distance. 

4.4 PERFORMANCE EVALUATION 
To illustrate the effectiveness of the novel gait representations, they are evaluated using the 

k-NN classifier and the CASIA B dataset. Even though this dataset contains 11 different 

viewpoints of 124 individuals, the novel gait representations are evaluated using only the 90˚ 

viewpoint sequences, as dealing with viewpoint change is a different problem, discussed in 

Chapter 5. In addition, among the 10 available sequences of each individual, only the first 6 

normal sequences are used for the evaluation, as the remaining 4 sequences are altered in 

appearance by coats and bags, which again constitute a different problem, discussed in Chapter 

6. The first 4 sequences of each individual are used for training and the remaining 2 sequences 

are used for testing, as this is the testing protocol considered by the state-of-the-art systems 

considered for comparison purposes. 

The aim of the evaluation presented below is to understand the advantages of using the GDV 

and the SEGI representations for gait-based biometric recognition and to compare their 

performance to that of systems using state-of-the-art gait representations that operate under 

similar conditions. The results of the evaluation are reported in Table 4.1. 

To construct the GDV, a representation set must be selected as discussed in Section 4.2. Since 

the current dataset has only 124 individuals, a random selection of individuals for the 
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representation set provides poor recognition results. Thus, a representative GEI from each 

individual is selected for the representation set. To perform the evaluation, the first sequence 

of each individual is selected to obtain the GEIs for the representation set. The next 3 sequences 

are used to obtain the GDVs to be registered in the database. The remaining two sequences of 

each individual are then used to evaluate the recognition performance when using the GDV gait 

representation. 

The SEGI representations for each registered individual are obtained by applying the RPCA to 

the 4 training GEIs. Recognition can then be performed by either considering the intensity values 

of the test SEGI using the Euclidean norm or by comparing the training and the test SEGI 

representations using the Euclidean distance approach. As reported in Table 4.1, the Euclidean 

distance approach performs better than the Euclidean norm approach, improving the 

recognition accuracy by 0.8%. However, it should be noted that both approaches perform 

significantly better than most state-of-the-art gait representations, achieving a recognition 

accuracy of 98.4% and 99.2%, respectively. 

As reported in Table 4.1, the two proposed gait representations perform better than most state-

of-the-art alternatives and are equivalent to the MGI [58], which has a recognition accuracy of 

100%. However, the main advantage of the proposed gait representations lies in their simplicity. 

The MGI is obtained by applying Gaussian filters to a GEI at 5 different scales. It then selects 500 

random principal components, using 2D PCA, followed by 2D LDA. The selection process is 

repeated 10 times selecting a new set of 500 random principal components at each iteration. 

The recognition is then performed by a majoring voting policy. In comparison, the proposed GDV 

selects a limited number of principal components, that cover 95% of the total variance explained 

by each principal component, and through a single application of LDA provides a recognition 

accuracy of 99.6%. A second advantage of the GDV is that it only represents the identity of the 

individuals. As discussed in Section 3.3.2, the GEI and other similar representations can disclose 

additional information about the individuals, such as health issues, along with their identity, 

which most individuals would like to keep private. 

The proposed SEGI representation is also computationally inexpensive, with RPCA taking an 

average 0.03 s to obtain SEGIs using 4 GEIs on an Intel core i7 CPU @ 3.60 GHz, while the average 

time to perform recognition using the Euclidean norm approach is 9.5 s and the Euclidean 

distance approach is 9.6 s respectively. The average time to perform recognition using MGI, 

using the same CASIA B dataset, is reported to be 52.8 s, on Intel core i7 CPU @ 2.93 GHz [58]. 

However, the average time required just by the WRSL module, when implemented on Intel core 

i7 CPU @ 3.60 GHz using GEIs as features is 20.8 sec, which is more than double the time 

required by the SEGI representation. 

The proposed SEGI representation is also evaluated to analyse its performance based on the 

number of available database sequences for each individual. This evaluation is performed by 

starting with a single database SEGI per individual. The number of database sequences used to 

compute an individual’s SEGI is increased from 1 to a maximum of 5, since only 6 normal 

sequences are available in the CASIA B dataset. The results are illustrated in Figure 4.5 as a plot 

of recognition accuracy versus number of database sequences used for SEGI computation per 

individual. It can be concluded from the plot that using the Euclidean distance provides better 

results than the Euclidean norm approach. Moreover, if sufficient SEGI representations are 

made available in the database, a recognition accuracy of 100% can be achieved. 
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Table 4.1: Recognition accuracy of the proposed and state-of-the-art gait representations. 

Recognition systems Recognition accuracy (%) 

GDV + KNN (4.2) 80.2 

CGI [80] 87.0 

GEI [79] 90.0 

GEnI [81] 92.3 

GPPE [80] 93.3 

FDEI [80] 94.0 

ARA [124] 94.9 

AMI [94] 97.0 

SEGI + Euclidean Norm (4.3) 98.4 

SEGI + Euclidean distance (4.3) 99.2 

GDV + PCA + LDA (4.2) 99.6 

MGI+WRSL [58] 100.0 

5 SEGIs + Euclidean distance (4.3) 100.0 

 

 

Figure 4.5: Change in recognition accuracy w.r.t. increase in the number of registered sequences per individual. 

A drawback of the proposed representations is that they require at least 2 sequences of each 

individual to be registered in the database. The GDV also requires many enrolled individuals to 

obtain a good representation set. This prevents the evaluation of these representations using 

datasets, such as OU-ISIR LP [110], as well as the shadow IST shadow gait dataset, presented in 

Section 7.4. A second drawback of these representations is their inability to tackle appearance 

change. Individuals with altered appearance will seldom be recognised using the proposed 

representations. 

However, the proposed GDV and SEGI representation provide a recognition performance 

improvement over the state-of-the-art gait representations. They are computationally 

inexpensive and, even using the simple k-NN classifier, achieve recognition accuracies 

equivalent to the best state-of-the-art gait-based biometric recognition systems, which use 
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computationally expensive and better performing classifiers. The simplicity of the classifier used 

highlights the quality of the proposed gait representations. The GDV also provides an added 

advantage of acquiring only the identity information from the individuals’ gait, thus protecting 

their privacy. 
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5 PROPOSALS TO TACKLE CHANGES IN THE CAMERA VIEWPOINT  

 

5.1 INTRODUCTION 
The performance of gait-based biometric recognition systems can be affected by changes in the 

viewpoint of the camera observing the individuals. A possible solution to this problem is to use 

view tagging systems, which perform recognition by first detecting the camera viewpoint. As 

discussed in Section 3.2, the state-of-the-art systems perform viewpoint detection by using 

features that represent the registered individuals’ leg region [89], [58], [90]. Better performance 

can be achieved by using features that represent the general structure of the leg region, while 

also reducing the systems’ computational complexity. A limitation with the current state-of-the-

art systems is that they are not robust to problems such as different types of clothing, which can 

cover the legs of the individuals and adversely affect the systems that rely on the leg region. In 

addition, the presence of shadows under the feet can also hamper performance. Finally, since 

the systems cannot be trained considering all possible camera viewpoints, a range of viewpoints 

are usually represented within a single group and insufficient training data may hamper the 

resulting performance. 

To address these problems, the first proposal considers training the system with hash values 

computed from the observed leg region, which provide a representation of the camera 

viewpoint. These representations are obtained applying a PHash function over the leg region of 

the input GEI. However, since the proposed system depends on training for viewpoint detection, 

a second system is presented in this Thesis that performs viewpoint detection without any 

training. It observes the position of the individuals’ feet over time to estimate the dominant 

walking trajectory. The direction of the walking trajectory can then be used to detect the 

viewpoint of the camera. The third system improves on the second one by performing viewpoint 

detection even in the presence of shadows under the feet. The three systems are presented in 

the following sections. 

5.2 VIEWPOINT DETECTION USING A PERCEPTUAL HASH 
The structure of the leg region, as observed in a GEI, provides significant information about the 

camera’s viewpoint, as illustrated in Figure 3.4. To improve the performance of viewpoint 

detection systems, a way to extract the general structure of the leg region is needed. The 

proposed system achieves this by using a perceptual hash function – PHash. The PHash is a 

special type of hashing function that generates outputs that are comparable, as opposed to 

cryptographic hashing [125]. When applied to two similar images, the resulting Phash values will 

be similar, and the difference between them will represent a measure of the distance between 

the two images. 

The proposed system selects the bottom 33% [89] of the GEI to represent the leg region, as 

illustrated in Figure 5.1 (a, b). Next, the discrete cosine transform (DCT) can be applied to the 

leg region to obtain the DCT coefficients, as illustrated in Figure 5.1 (c), with the DCT coefficients 

corresponding to the lower frequencies representing the most relevant structure information of 

the leg region. The proposed system discards the higher frequency coefficients to obtain a 

compact descriptor, as illustrated in Figure 5.1 (d). It retains only the lower order 22×22 DCT 

coefficients, as they provided the best viewpoint detection results. The coefficients can then be 
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concatenated, using a raster scan order, to create a unidimensional vector. The hash values, for 

each element of the PHash vector, can then be computed using (5.1): 

 

 𝑃𝐻𝑎𝑠ℎ𝑐 = {
0 𝑖𝑓 𝐷𝐶𝑇𝑐 ≤ 𝐷𝐶𝑇̅̅ ̅̅ ̅̅

1 𝑖𝑓 𝐷𝐶𝑇𝑐 > 𝐷𝐶𝑇̅̅ ̅̅ ̅̅
 (5.1) 

 

where the hash bit 𝑃𝐻𝑎𝑠ℎ𝑐 at index 𝑐 is determined using the unidimensional vector 𝐷𝐶𝑇𝑐 and 

the mean of the unidimensional vector is 𝐷𝐶𝑇. 

 

 

   

(a) (b) (c) (d) 

Figure 5.1: Output of the intermediate steps of the PHash function (a) GEI, (b) selected leg region, (c) DCT coefficients, 
(d) matrix representing the hash bits. 

To perform viewpoint detection, the hash values corresponding to each of the available 

viewpoints are recorded in the database during enrolment, while also training the k-NN 

classifier, according to the system architecture presented in Figure 5.2. Next, given an input GEI, 

the proposed system can detect its viewpoint using the k-NN classifier with Hamming distance 

as the distance measure. The output of viewpoint detection can be used to limit the access of 

the recognition system to only the relevant part of the database, which is organised with respect 

to the available viewpoints, thus significantly improving the recognition accuracy of the system. 

 

Figure 5.2: Architecture of the proposed viewpoint detection system based on PHash. 

5.3 VIEWPOINT DETECTION USING GAIT TEXTURE IMAGE CONTOURS 
Systems that rely on the leg region of the GEI to detect the viewpoint are typically sensitive to 

certain types of clothing, such as long skirts [89], [58], [90]. Thus, the Thesis presents a novel 

system that relies on the feet position of the individuals to detect the viewpoint of the camera, 
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according to the system architecture presented in Figure 5.3. The system detects the viewpoint 

using the direction of the dominant walking trajectory of the individuals, identified using their 

feet positions. However, if the individual is walking towards or away from the camera the 

viewpoint is detected by observing the change in the size of the silhouettes over time. 

 

Figure 5.3: Architecture of the proposed viewpoint detection system based on GTI contour. 

To obtain the evolution of the feet positions over time, the proposed system constructs a gait 

texture image (GTI) representation. Given 𝑇 silhouettes  𝐼(𝑥, 𝑦, 𝑡) , the 𝐺𝑇𝐼(𝑥, 𝑦)  can be 

computed by averaging the silhouettes, on their original spatial positions, following (5.2): 

 

 𝐺𝑇𝐼(𝑥, 𝑦) =
1

𝑇
∑𝐼(𝑥, 𝑦, 𝑡)

𝑇

𝑡=1

 (5.2) 

 

 

Figure 5.4: Construction of a GTI 

The bottom part of the GTI corresponds to the evolution of the feet position of the individuals 

along time – see Figure 5.4. To select the feet position, the proposed system selects for each 

column the bottom-most non-zero values of the GTI contour, as illustrated in Figure 5.4 (a). The 

resulting values can contain positions (notably at its left and right sides) that correspond to the 

leg or the waist region in the GTI. To filter out these positions, the proposed system thresholds 

the difference between two consecutive values, discarding the higher difference values as 

belonging to the leg or the waist regions. The threshold value considered has been empirically 

set to 10 pixels. 

To detect the viewpoint of the camera, the proposed system applies PCA to the filtered feet 

positions. PCA transforms the feet positions onto a new coordinate space, such that the first 

principal component captures the largest variance in the feet positions, and therefore its 

direction θ represents the dominant walking trajectory, as illustrated in Figure 5.5. The 

viewpoint of the camera can be estimated by associating it to the identified walking direction. 
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(a) (b) 

Figure 5.5: Example of (a) selecting the feet position from the GTI contour and (b) application of PCA to the selected 
feet positions 

The viewpoint can be detected by the proposed system, except when the individuals walk 

towards or away from the camera, in such situations, the silhouettes will be overlapped in the 

GTI, not allowing tracing the feet positions, as illustrated Figure 5.6(c). The proposed system 

detects such situations by checking the number of peaks that appear in the plot of summation 

of intensities of the GTI along the y-axis. When the individuals walk towards or away from the 

camera, the proposed system detects a single peak in the intensity plot, while all other 

viewpoints are represented by multiple peaks, as illustrated in Figure 5.6 (b, d). Finally, the 

distinction between individuals walking towards or away from the camera can simply be made 

by comparing the size of the first and last silhouette of the sequence. 

 

 
 

 
 

(a) (b) (c) (d) 
Figure 5.6: GTI representing (a) 126˚ viewpoint, (c) 0˚ viewpoint, and the corresponding vertical sums of intensities 
for (b) 126˚ viewpoint and (d) 0˚ viewpoint GTI. 

Since, the proposed system estimates the viewpoint directly from the first principal component; 

it does not require any training to perform viewpoint detection. Once, the viewpoint is detected 

the proposed system can perform recognition with respect to the detected viewpoint. However, 

the GTI is not descriptive enough to represent the individuals’ identity. Thus, the proposed 

system must use a different gait representation, such as GEI, to perform recognition. 

5.4 VIEWPOINT DETECTION IN THE PRESENCE OF SHADOW 
The state-of-the-art viewpoint detection systems that rely on analysis of the leg region perform 

poorly in the presence of the shadows under the feet [89], [58], [90]. To improve the 

performance of those systems, shadow segmentation techniques, such as [100], can be used, 

which performs shadow segmentation by detecting the highest summation value, computed 

along the first principal component of a GTI as the feet position – see Figure 5.7 (a). As proposed 

in Section 5.3, the direction of the principal component can be used to detect the viewpoint of 

the camera, allowing the shadow segmentation technique to perform viewpoint detection. 
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However, as illustrated in Figure 5.7 (b), the shadow segmentation technique presented in [100] 

can fail as the principal component computed over the GTI does not always align itself with the 

walking direction and, when aligned, the highest summed intensity value may not always 

correspond to the individuals’ feet position. Thus, a novel system is proposed in the Thesis that 

improves on the work presented in [100]. 

 

  
(a) (b) 

Figure 5.7: Illustration of (a) success and (b) failure of the system presented in [100]  

In Figure 5.7, the positions where the feet of the individuals are in complete contact with the 

ground are represented by the higher intensity values in the GTI. Therefore, the proposed 

system uses an initial thresholding operation to identify those feet positions. The threshold is 

selected as 80% (empirically determined) of the highest intensity value in the image, as it usually 

corresponds to the feet positions of the individuals in the GTI. The system then fits a line through 

the centroids of the various feet positions, separating the body (above the line) from the shadow 

silhouettes (below the line), as illustrated in Figure 5.8. Under certain conditions, some of the 

high intensity values may correspond to the arm position, due to the overlapping silhouettes in 

the GTI. Thus, the proposed system uses a random sample consensus (RANSAC) line fitting 

algorithm [126] to fit the line through the identified feet positions. RANSAC classifies the 

centroids into inliers and outliers by obtaining a consensus over the fitted line. The resulting line 

passes through the inliers, while discarding the falsely identified feet positions as outliers. 

 

 

Figure 5.8: Fitting a line through the identified feet positions using RANSAC. 

The feet position of the individual can also be determined by analysing the relative orientation 

of the body and the shadow silhouette. Since the shadow silhouette is projected onto the 

ground, connecting to the body silhouette at the feet position, the orientation of the body 

silhouette differs from that of the shadow silhouette projected onto the ground, especially when 

the legs of the individual are spread wide apart. Thus, the feet position can be identified as the 

point on the silhouette’s contour that exhibits a sudden change in orientation. The proposed 

system considers only the lower part of the contour, i.e., the bottom-most non-zero values, and 

selects the contour point with highest y-coordinate value as the feet position, as illustrated in 
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Figure 5.9 (a). However, during a gait cycle, the arm or knee positions may be falsely identified 

as the feet position. The system filters out those positions by thresholding the difference 

between two consecutive y coordinate values with a threshold of 50 pixels, as it provided the 

best results. A line can then be fit through the feet positions using RANSAC. 

 

 
 

(a) (b) 
Figure 5.9: Illustration of the intermediate steps of the proposed system depicting (a) feet position detection, (b) line 
fitting using RANSAC. 

The line separating the shadow and body silhouettes represents the dominant walking trajectory 

of the individuals. Thus, instead of using the proposed system just for shadow segmentation, it 

can also be used to estimate the viewpoint by computing the direction of fitted line, similarly to 

Section 5.3. Recognition can then be performed using the segmented silhouettes and the 

detected viewpoint. 

5.5 PERFORMANCE EVALUATION 
To evaluate the accuracy of the proposed viewpoint detection systems, CASIA B dataset can be 

used. The dataset has been captured in a well-illuminated environment where the individuals 

being observed do not cast a shadow. Thus, only the first two systems proposed in Section 5.2 

and 5.3 can be evaluated using the CASIA B dataset. To evaluate the system proposed in Section 

5.4, a new dataset, later presented in Section 7.5, can be used. 

As discussed in Section 3.2.4, CASIA B dataset contains sequences captured from 11 different 

viewpoints, of 124 individuals. The system proposed in Section 5.2 uses the first 4 normal gait 

sequences for training and uses the remaining 6 sequences for testing, following the protocol 

presented in [58]. Since the viewpoint detection system proposed in Section 5.3, using GTI 

contour, does not require any training, the entire dataset is used to test the system. The 

evaluation in this case is performed by quantising the estimated direction of the walking 

trajectory to the nearest multiple of 18˚, as considered in the ground-truth. The results of the 

evaluation are reported in Table 5.1 where each system reports correct viewpoint detection 

accuracy for normal sequences (N) and sequences altered by coats (C) and bags (B) in each 

column. Table 5.1 also reports the performance of the state-of-the-art systems that operate 

following the protocol presented in [58]. 

From the mean results of the normal sequences reported in Table 5.1, it can be concluded that 

the two proposed systems perform significantly better than the state-of-the-art, with an average 

detection accuracy of 98% and 97%, respectively. The significant improvement in the 

performance can be attributed to the use of the PHash function and the detection of the feet 

position by the proposed systems. The best performance among the state-of-the-art systems is 

also achieved using normal sequences, with an accuracy of 86% and 89%, respectively. However, 
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their performance degrades due to the presence of bags and coat covering parts of the leg 

region, as observed for the results included in Table 5.1. The proposed systems address this 

problem by using the general structure of the leg region acquired by the PHash and by using the 

trajectory of the feet position, resulting in an average accuracy of 96% and 97% for the bag and 

coat sequences, respectively. 

Table 5.1: Correct viewpoint detection accuracy (%) for N - Normal, C - Coat and B - Bag sequences. 

View 

(˚) 

Entropy system 

[58] 

Improved entropy 

system [90] 

PHash system 

(5.2) 

GTI contour 

system (5.3) 

N C B N C B N C B N C B 

0 83 80 79 89 79 89 99 98 97 98 96 98 

18 94 87 85 98 84 92 99 97 96 99 99 99 

36 88 85 80 89 79 85 97 96 92 98 98 98 

54 92 90 89 98 95 95 98 98 93 99 99 98 

72 81 80 78 90 89 88 99 97 98 98 99 98 

90 89 79 72 86 69 73 94 92 90 97 97 97 

108 79 75 70 85 64 69 98 98 96 95 94 95 

126 90 88 85 93 83 89 99 98 98 98 99 99 

144 83 81 79 85 73 82 96 95 93 96 96 96 

162 89 86 84 88 88 85 97 94 93 97 96 99 

180 82 80 75 88 86 76 99 99 98 99 97 99 

Mean 86 82 78 89 80 83 98 97 95 97 97 97 

 

The state-of-the-art system presented in [89] follows a different protocol to evaluate its 

performance. It splits the dataset such that 60% of the total available individuals are used for 

training and the remaining 40% are considered for testing. The system discards some of the 

viewpoints, operating only on sequences between 36˚ to 144˚, and reports an average accuracy 

of 86%, 84% and 86% for normal, coat and bag sequences, respectively. Adopting the protocol 

presented in [89], the proposed PHash system achieves an average accuracy of 95% for normal 

sequences, 94% for coat sequences and 93% for bag sequences. The proposed GTI contour 

system performs significantly better with an average accuracy of 97% across all 3 types of 

sequences. 

An additional advantage of the proposed PHash system lies in its low computational complexity. 

The system is compared to a reimplementation of the entropy system [58] using a computer 

with an Intel(R) Core(TM) I7 @ 3.60GHz CPU, with 32GB of RAM, in both cases running the same 

MATLAB R2014b code, just replacing the feature selection by either PHash or the entropy. The 

proposed PHash system performs the viewpoint detection, with an average time of 0.02s, 

compared to 0.3s required by the entropy system [58]. Thus, it can be concluded that the 

proposed PHash system is computationally inexpensive, while performing significantly better 
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than the entropy system [58]. The proposed GTI contour system performs the best with an 

average detection accuracy of 97%, as reported in the Table 5.1 . However, the construction of 

the GTI makes the system computationally more expensive, with an average time of 0.4s to 

perform viewpoint detection. 

The Thesis also evaluates the performance of the systems using the OU-ISIR LP dataset [110], 

which contains 4016 individuals walking along 4 different viewpoints – see Section 3.2.4. 

However, since the proposed GTI contour system proposed in Section 5.3 does not operate on 

cropped silhouettes, only the proposed PHash system is evaluated using this dataset. The 

dataset also presents a protocol to evaluate and compare the performance of the proposed 

system to the state-of-the-art. According to the protocol, the dataset is divided into 5 predefined 

subset of 1912 individuals. Each subset is further divided into 2 disjoint groups of 956 individuals 

each. Following 2 fold cross validation for each subset, the final viewpoint detection accuracy of 

the system is obtained by averaging the 10 results. 

Since the silhouettes of the OU-ISIR LP dataset are rectified to compensate for the viewpoint 

changes, the shape information in the leg region of the GEI is distorted and thus the bottom 

third of the GEI (leg region) produces poor results. Therefore, for this dataset, the shape of the 

entire GEI is considered for computing the hash values, achieving a correct viewpoint detection 

accuracy of 80%. The resulting confusion matrix is presented in Table 5.2, which reports that 

most misclassifications occur within the neighbouring viewpoints. The misclassifications 

typically occur because of the visual similarities between the GEIs belonging to 75˚ and 85˚. The 

GEIs belonging to the 55˚ viewpoint appear much more distinct, resulting in a viewpoint 

detection accuracy of 93%, along that view. The visual similarity between the neighbouring 

viewpoints allows a generic recognition system using a GEI gait representation and a k-NN 

classifier, to achieve a correct recognition accuracy of 97%, when used with the proposed 

viewpoint detection system. 

Table 5.2: Confusion matrix for the proposed PHash system operating on OU-ISIR LP dataset. 

Viewpoints (˚) 
Ground truth 

55 65 75 85 

D
e

te
ct

e
d

  

55 93 7 0 0 

65 6 83 11 0 

75 0 11 71 18 

85 0 1 26 73 

 

To evaluate the performance of the third proposed view detection system, which is robust to 

the shadow under the feet, the IST shadow gait dataset, to be presented in Section 7.5 can be 

used. The dataset contains sequences from 21 individuals, captured from two different 

viewpoints. The first viewpoint corresponds to the individual walking along a lateral viewpoint 

of the camera (i.e., 0˚). The second viewpoint is that of the individual walking a diagonal to the 

camera. Since the system proposed in Section 5.4 does not require training, it performs camera 

viewpoint detection depending on the angle obtained from the observed direction of walking. 

If the observed angle is approximately equal to 0˚, the viewpoint is detected as the lateral 

viewpoint else, it is detected as the diagonal viewpoint. Since the classification is binary and the 
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separation between the two viewpoints is significant, the proposed system performs viewpoint 

detection with an accuracy of 100%. 

To observe the influence of the proposed viewpoint detection system on the recognition results, 

a generic recognition system [80] that uses a GEI gait representation and a k-NN classifier is 

evaluated with and without the use of the proposed viewpoint detection system proposed in 

Section 5.4. The GEIs are composed of body silhouettes obtained by using the line fitted through 

the feet position separating the individuals from their shadows. For performance evaluation, the 

system follows the protocol presented in Section 7.5. First, the recognition is performed without 

viewpoint detection. Next, the system proposed in Section 5.4 is used to identify the viewpoint 

of the input GEIs. Recognition is performed by limiting the performed comparison to a subset of 

the database identified by the detected viewpoint. This improves the recognition accuracy of 

the system as reported in Table 5.3. 

Table 5.3 Recognition accuracy of recognition system with and without viewpoint detection 

Recognition System Recognition accuracy 

Without viewpoint detection 64% 

With viewpoint detection (5.4) 69% 

 

It should be noted that in the current evaluation, the dataset considered contains only 2 

viewpoints. However, the use of the proposed viewpoint detection system improves the 

recognition accuracy by 5%. With increase in the number of viewpoints of the individuals 

registered in the database, more individuals will be falsely matched. Use of the proposed system 

can provide a gain in the performance under such conditions by identifying the viewpoint of the 

camera and limiting the matching step to the identified viewpoint. 

The three novel systems proposed in this Thesis provide some advantages over each other. The 

PHash systems proposed in Section 5.2 is the only system among the 3 that can operate on 

cropped silhouettes, making it is ideal for situations, such as when the individuals walk on a 

treadmill or the acquisition system provides only cropped silhouettes. The GTI contour systems 

proposed in 5.3 can operate without any training. Thus, it can detect all possible viewpoints of 

the camera. The third system proposed in Section 5.4 is the only system equipped to operate in 

the presence of shadow under the feet. However, the system can operate only for near lateral 

viewpoints. It cannot detect viewpoint when the individuals walk towards or away from the 

camera due to a complete overlapping of the silhouettes. 
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6 PROPOSAL TO TACKLE CHANGE IN THE APPEARANCE OF THE 

INDIVIDUALS 

 

6.1 INTRODUCTION 
The appearance of individuals can be altered due to changes in their clothing or other 

accessories, such as wearing of a coat or carrying a bag. Such appearance changes can 

significantly affect the performance of a gait-based biometric recognition system. As discussed 

in Section 3.2.2, most state-of-the-art systems tackle this problem by learning specific types of 

clothing models or by using features that highlight the dynamic aspect of the human gait. A 

drawback of such systems is that they cannot be trained with all possible models of clothing, 

and/or they cannot correctly represent objects that move and alter the appearance of the 

individuals while walking. The best results reported in the state-of-the-art are obtained when 

the altered parts of the individuals’ silhouettes are automatically identified. However, even 

those systems are sensitive to the type of appearance change. 

To overcome the limitations discussed above, a novel system robust to appearance change is 

proposed in this Thesis. The system operates in 4 steps, according to the system architecture 

presented in Figure 6.1: 

• It decomposes a GEI into sections; 

• It identifies the altered sections of the GEI by comparison to an average GEI image; 

• It matches each unaltered section with the database; 

• Recognition is performed using a weighted combination of the result of each section. 

The following section explains the details of each step. 

 

 

Figure 6.1: Architecture of the proposed gait recognition system robust to appearance changes, based on GEI 
decomposition 

6.2 TACKLING APPEARANCE CHANGES USING GEI DECOMPOSITION 
To perform recognition even when the individuals change their appearance the proposed 

system decomposes the GEI into 𝑁 horizontal sections of equal size – see. Figure 6.2 (e). The 

rationale behind splitting the GEI is that appearance change caused by carried bags or wearing 

coats do not typically alter the entire GEI, but only some small sections of it. Those small sections 

of the GEI are usually responsible for the poor recognition accuracy of the system, as the altered 

sections cause the GEIs to be seldom matched to the correct individuals. By decomposing the 
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GEI into sections, the effect of changes in appearance is limited to only a few of those sections, 

allowing the rest of the GEI to be successfully matched to the correct individual registered in the 

database. 

Given an input GEI, the proposed system decomposes it into 𝑁 horizontal sections of equal size, 

where the number of sections is empirically determined – see Section 6.3. Before matching the 

sections with the database, the proposed system identifies the altered sections of the GEI using 

an average GEI image. The average GEI image is obtained by averaging all the GEIs belonging to 

every individual registered in the database. It represents the general shape of the individuals 

registered in the database, as illustrated in Figure 6.2 (a). The unaltered sections can then be 

selected by applying a threshold to the difference between the average GEI image and the input 

GEI. Since the differences in the altered sections are significantly larger than the unaltered 

sections, a pixel is considered altered if its difference exceeds the empirically set value of 150. If 

a section contains altered pixels, that section is discarded. The high threshold value adopted 

ensures that only the altered sections of the GEI are discarded. 

Next, the proposed system applies PCA and LDA to each unaltered section for dimensionality 

reduction and data decorrelation. The Euclidean distance between each unaltered section and 

the corresponding sections of the individuals registered in the database are computed, 

associating the section to the individual with the smallest Euclidean distance.  

Finally, recognition is performed by a majority voting decision among the unaltered sections. 

Each section votes for the individual it is associated with. The input GEI can then be recognised 

as belonging to the individual with the highest number of votes. 

In Figure 6.2 (f), the sections altered by the coat are associated to apparently random individuals, 

while the unaltered sections corresponding to the leg region of the GEI, are matched with the 

correct individual (with the identity 1). Thus, in this example the recognition is successfully 

performed using the majority votes. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 6.2: Illustration of the operation of the gait recognition system robust to appearance changes based on GEI 
decomposition: (a) average GEI image, (b) example of an unaltered GEI, (c) example of a GEI altered by wearing a 
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coat, (d) binary mask representing the altered parts of the GEI, (e) illustration of the GEI sections considered, (f) GEI 
sections selected for recognition. 

6.3 PERFORMANCE EVALUATION 
To illustrate the effectiveness of the proposed GEI decomposition system, it is compared to the 

state-of-the-art systems that are robust to appearance change. Since most of those systems 

report their performance using only the 90˚ sequences from the CASIA B dataset, the evaluation 

here is also limited to those sequences. Therefore, the recognition accuracy of the proposed 

system is computed using the first 4 normal sequences of each individual for training and the 

remaining 6 sequences for testing. 

Before evaluating the system for its robustness to appearance change, a preliminary evaluation 

can be performed to identify the number of ideal sections, N, into which the GEI should be 

decomposed. Evaluation is conducted by varying the number of sections from 5 to 20, to obtain 

that optimal number. The results presented in Figure 6.3 suggest that the ideal number of 

sections to consider for sequences altered by wearing coat and carrying bags is 13 and 11, 

respectively. While the performance of the system for normal sequences is indifferent to the 

number of sections, because all the sections match with correct individual as none of them 

underwent appearance changes. The default value for the number of sections is set to 11, since 

it provides the best mean performance across all 90° sequences. 

 

 

Figure 6.3: Performance of the proposed system with respect to the number of sections N. 

The recognition accuracy, using the 90° sequences of the CASIA B dataset, for the proposed and 

state-of-the-art systems is reported in  Table 6.1. The results indicate that the mean recognition 

accuracy of the proposed GEI decomposition system is the best among the reported state-of-

the-art gait recognition systems, which claim to be robust to appearance changes. Most of these 

systems are effective when performing recognition over normal waking sequences, with an 

accuracy of almost 100%. The challenge arises in face of appearance changes, where the 

proposed system performs significantly better than the state-of-the-art, operating on sequences 

altered by wearing coats, while its performance when carrying bags is also among the best ones 

listed. The decomposition of the GEI into N sections allows isolation of the sections altered by 

appearance change, thus improving the performance of the system. Even if the voting is 

performed without discarding any sections, the proposed system obtains a competitive 

performance, with a recognition accuracy of 94% and 86% for coats and bags, respectively. It 
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should also be noted that the proposed system is indifferent to the reason for appearance 

change, while some state-of-the-art systems, such as the MGI [58], use the information about 

the reason for appearance change to adapt to that situation. 

Table 6.1: Recognition accuracy (%) of the proposed and the state-of-the-art systems robust to appearance change. 

Recognition System 
Recognition accuracy (%) 

Normal Coat Bag Mean 

P. Rw. GEI [92]   - - - 93.0 

Pal Entropy [93] 93.0 22.0 56.0 57.0 

Masked GEIs [95] 100.0 55.0 79.0 78.0 

AMI [94] 97.0 78.0 91.0 88.0 

MGI [58] 100.0 76.0 89.0 88.0 

GEI decomposition system 

(6.2) 

100.0 96.0 87.0 94.0 

 

To evaluate further the performance of the proposed system, its recognition accuracy is 

obtained with respect to every viewpoint available in CASIA B dataset. The evaluation protocol 

includes using the first 4 normal sequences of every individual for training and the remaining 6 

sequences for testing, for all 11 viewpoints of the 124 individuals. As reported in Table 6.2, the 

proposed system performs well with an average recognition accuracy of almost 90% for all 

available viewpoints, suggesting that the proposed system can be successfully used along a view 

tagging system. However, as expected the best results are obtained for 90° sequences with an 

average recognition accuracy of 94%. The reason for the best results corresponding to the 90° 

sequences can be associated to an easier detection of the altered sections of the GEI for near 

lateral viewpoints, as illustrated in Figure 6.4. Also, although the appearance changes caused by 

carrying bags is easy to detect, as it is more localised, the weight of the bags can additionally 

cause posture changes, which can adversely affect gait-based recognition systems – see Figure 

6.4 (a, b, e and f). However, even under such conditions, the proposed system achieves an 

average recognition accuracy of 87%. 

 

      

(a) (b) (c) (d) (e) (f) 

Figure 6.4: Lateral and frontal examples of GEIs obtained from (a, b) normal, (c, d) coat and (e, f) bag sequences. 
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Table 6.2: Recognition accuracy (%) of the proposed system w.r.t. different viewpoints of the camera 

Viewpoint (˚) 
Recognition accuracy of proposed system (%)  

Normal Coat Bag Mean 

0 100.0 83.0 89.0 91.0 

18 99.0 84.0 87.0 90.0 

36 99.0 86.0 86.0 90.0 

54 99.0 88.0 88.0 92.0 

72 100.0 92.0 86.0 93.0 

90 100.0 94.0 87.0 94.0 

108 100.0 90.0 88.0 93.0 

126 100.0 87.0 91.0 93.0 

144 99.0 90.0 88.0 92.0 

162 100.0 82.0 86.0 89.0 

180 100.0 88.0 81.0 90.0 

Mean 100.0 88.0 87.0  
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7 PROPOSALS FOR RECTIFICATION OF SHADOW SILHOUETTES 

 

7.1 INTRODUCTION 
The use of shadow silhouettes can be an alternative gait representation source, in situations 

where the body of the individuals is occluded due to factors such as the viewpoint of the camera, 

or the background properties, as discussed in Section 2.4. The use of shadow silhouettes can 

also provide an advantage in situations where the individuals are observed over long 

trajectories. Under such conditions, body silhouettes obtained at two different points can 

appear significantly different due to the change in the viewpoint of the camera. However, under 

the same conditions, the features acquired from the shadow silhouettes often appear similar to 

each other, as illustrated in Figure 7.1 (where the face is hidden to maintain privacy). When 

observed from a side view position, both the body and the shadow silhouettes can be used in a 

multimodal system, to improve recognition results. 

 

 

Figure 7.1: Change in viewpoint of the camera caused by observing individuals walking long distances. 

The literature presents several systems that use shadow silhouettes to perform gait-based 

biometric recognition – see Section 3.2.2. However, those systems are effective only in 

constrained environments, unable to tackle problems such as changes in orientation, skewness, 

scale and appearance of the shadow silhouettes caused by camera perspective and parameters 

and change in the position of the individuals with respect to the light source. Thus, the Thesis 

presents two novel systems to rectify the silhouettes, compensating for the distortions and 

deformations caused by the camera perspective and parameters. The proposed systems address 

the problems caused by changes in the position of the light source with respect to the 

individuals, using the view tagging system presented in Section 5.4, where a database containing 

shadow silhouettes sorted with respect to the light source position is available. 

7.2 RECTIFICATION OF SILHOUETTES USING ROBUST PRINCIPAL COMPONENT  
Images acquired by a camera can contain distortions and deformations caused by the camera 

perspective and parameters, which also affect the shadow silhouettes captured in those images 

– see Section 2.4.2. The state-of-the-art gait recognition systems operating on shadow 

silhouettes presented in Section 3.2.2 perform recognition if the training and test sequences 

contain the same distortions and deformations, which is not always the case in unconstrained 

environments. Thus, to rectify the silhouettes before performing recognition, the proposed 

system transforms them into a common canonical view, using a homographic projective 



66 
 

transformation. To obtain the transformation parameters directly from the image, the proposed 

system uses the transform invariant low-rank textures (TILT) [127]. However, TILT only operates 

on images with regular symmetric patterns. Since a GTI contains regular symmetric patterns, as 

the first half of the gait cycle roughly repeats in a symmetric way in the second half of the gait 

cycle, this type representation can be used as input to TILT. The proposed system therefore 

obtains a gait texture image, 𝐺𝑇𝐼𝑠(𝑥, 𝑦), by vertically flipping the K binary images containing the 

segmented shadow silhouettes, 𝐼𝑠(𝑥, 𝑦, 𝑡) and averaging them, according to equation (7.1) – see 

Figure 7.2 (a, b). 

 

 
𝐺𝑇𝐼𝑠(𝑥, 𝑦) =

1

𝐾
∑𝑓𝑙𝑖𝑝(𝐼𝑠(𝑥, 𝑦, 𝑡))

𝐾

𝑡=1

 (7.1) 

 

The proposed system can then use TILT to obtain a transformation matrix 𝜏  from 𝐺𝑇𝐼𝑠 by 

decomposing it into a low rank component 𝐺𝑇𝐼𝑠
𝑜 and a sparse error component 𝐸, according to 

(7.2). 

 

 𝐺𝑇𝐼𝑠 = (𝐺𝑇𝐼𝑠
𝑜 + 𝐸). 𝜏−1 (7.2) 

 

To obtain the transformation matrix 𝜏, (7.2) can be presented as an optimisation problem (7.3). 

 

 min
𝐺𝑇𝐼𝑠

𝑜,𝐸,𝜏 
𝑟𝑎𝑛𝑘 (𝐺𝑇𝐼𝑠

𝑜) + 𝛾‖𝐸‖0 ,   𝐺𝑇𝐼𝑠. 𝜏 = 𝐺𝑇𝐼𝑠
𝑜 + 𝐸 (7.3) 

 

where ‖𝐸‖0 denotes the number of nonzero entries in 𝐸. The regularisation parameter 𝛾 is a 

trade-off between the rank of the 𝐺𝑇𝐼𝑠
𝑜 and the sparsity of error 𝐸. 

TILT performs optimisation such that it obtains the lowest possible rank for 𝐺𝑇𝐼𝑠
𝑜, while having 

the fewest possible nonzero entries in 𝐸, that agree with the observed 𝐺𝑇𝐼𝑠 up to the domain 

transformation 𝜏. Since the optimisation problem presented in (7.3) is nonconvex, TILT uses the 

convex relaxed form expressed in (7.4) and solves it via successive convex programming, as 

detailed in [127]. 

 

 min
𝐺𝑇𝐼𝑠

𝑜,𝐸,𝜏 
‖𝐺𝑇𝐼𝑠

𝑜‖∗ + 𝜆‖𝐸‖1 ,   𝐺𝑇𝐼𝑠. 𝜏 = 𝐺𝑇𝐼𝑠
𝑜 + 𝐸 (7.4) 

 

where ‖𝐺𝑇𝐼𝑠
𝑜‖∗ denotes the nuclear norm, and ‖𝐸‖1denotes the 𝑙1 norm. 

The resulting transformation matrix 𝜏 can then be used to rectify the shadow silhouettes into a 

canonical view, as illustrated in Figure 7.2 (c, d). The transformation matrix corrects the 

orientation, rectifies the distortions and deformations caused by camera perspective and 

parameters. 
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The rectification of shadow silhouettes into a canonical view has some limitations. Notably, it 

cannot recover the self-occluded parts of the silhouette, with only the visible part being 

transformed into its canonical view. Thus, to minimise the impact of having incomplete shadow 

silhouettes, the proposed system performs recognition using GEIs obtained from the shadow 

silhouettes. The GEI compensates the missing parts of a silhouette by also considering the other 

silhouettes within a gait cycle where those parts may be visible. Given an input GEI, recognition 

can be performed by computing the Euclidean distance between the test GEI and the GEIs 

registered in the database and associating the identity to the individual with the smallest 

Euclidean distance. The performance can be further improved by using PCA for dimensionality 

reduction and LDA for data decorrelation. 

 

    
(a) (b) (c) (d) 

Figure 7.2: Proposed Shadow Silhouette rectification system: (a) flipped shadow silhouette, (b) GTIs, (c) 𝐺𝑇𝐼𝑠
𝑜 , (d) 

rectified shadow silhouette. 

7.3 RECTIFICATION OF SILHOUETTES USING 4-POINT CORRESPONDENCE 
Since the approach based on TILT relies on solving an optimisation problem, it cannot be fully 

controlled. Thus, in the Thesis another novel system that estimates the transformation 

parameters is proposed, using the head and feet positions in the shadow silhouettes detected 

at the beginning and at the end of a gait sequence, or portion of a sequence, where the 

individual is moving in a straight line. To obtain the best estimates for the head and feet 

positions, the proposed system selects the positions during the mid-stance and the mid-swing 

phases of the gait cycle, when the arms and feet of the individuals are closer to their body. The 

proposed system selects shadow silhouettes from the first mid-stance and last mid-swing phases 

available. It determines the mid-stance and the mid-swing phases by analysing the aspect ratio 

of the cropped shadow silhouettes along the gait sequence. The aspect ratio in this case is 

normalised by subtracting the mean and dividing by the standard deviation. The mid-

stance/mid-swing correspond to the lowest values within the resulting normalised aspect ratio 

plot – see Figure 7.3 (a). 

Once both the first and the last shadow silhouettes in the mid-stance/mid-swing phases are 

identified, the proposed system can apply PCA to estimate the orientation, convex hulls and 

centroids of the selected shadow silhouettes. By fitting a line through the centroid, along the 

first principal component’s direction intersecting the convex hull, the head and feet positions of 

the respective shadow silhouettes can be estimated, as illustrated in Figure 7.3 (b). Thus, the 

system obtains the 4-points corresponding to the head and feet position of the shadow 

silhouettes belonging to the first mid-stance and the last mid-swing phase. 

To rectify the silhouettes, the proposed system estimates the location of the 4 points in a 

canonical view according to (7.5), which allows the system to establish a one-to-one 

correspondence between the observed and the canonical views, as illustrated in Figure 7.4. 
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(a) (b) 
Figure 7.3: (a) mid-stance/mid-swing detection, (b) head and feet positions selection using the proposed system. 

 

 

𝑥𝑙 = 𝑥1, 

𝑥𝑟 = 𝑥1 + √(𝑥1 − 𝑥2)
2 + (𝑦1−𝑦2)

2,  
𝑦𝑡 = (𝑦1 + 𝑦2) 2 ⁄ , 
𝑦𝑏 = (𝑦3 + 𝑦4) 2⁄ . 

(7.5) 

 

where the points representing the head and the feet positions of the individual at the first mid-

stance phase are (𝑥1, 𝑦1), (𝑥3, 𝑦3) and at the last mid-stance phase are (𝑥2, 𝑦2), 

(𝑥4, 𝑦4), respectively. Their mappings onto a canonical view are (𝑥𝑙 , 𝑦𝑡), (𝑥𝑙 , 𝑦𝑏), (𝑥𝑟, 𝑦𝑡) and 

(𝑥𝑟, 𝑦𝑏), respectively. 

 

 

Figure 7.4: The head and feet positions in the observed view (red) and their corresponding mapping in the canonical 

view (blue). 

Using the estimated head and feet positions and their mappings into the canonical view, the 

proposed system can estimate the parameters for the homographic projective transformation 

as a matrix 𝐻, consisting of three sub-matrices 𝑇, 𝑅 and 𝑃 [60], where 𝑇 represents translation, 

𝑅  represents rotation, scaling and shear, and 𝑃  represents perspective transformations, 

according to (7.6). 

 

 

𝐻 = [
𝑅 𝑃
𝑇 1

] 

 

where 𝑅 = [
𝑟00 𝑟01

𝑟10 𝑟11
] , 𝑇 = [𝑡𝑥 𝑡𝑦], 𝑃 = [

𝑝𝑥

𝑝𝑦
] 

(7.6) 
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The parameters of 𝑇, 𝑅 and 𝑃 are obtained from (7.7), assuming (𝑥𝑙 , 𝑦𝑡) to be the coordinate 

axis origin. 

 

 

𝑃 =

[
 
 
 
 
 
 
 1

𝑥𝑟 − 1

|
𝑥1 − 𝑥2 + 𝑥4 − 𝑥3 𝑥3 − 𝑥4

𝑦1 − 𝑦2 + 𝑦4 − 𝑦3 𝑦3 − 𝑦4
|

|
𝑥2 − 𝑥4 𝑥3 − 𝑥4

𝑦2 − 𝑦4 𝑦3 − 𝑦4
|

1

𝑦𝑏 − 1

|
𝑥2 − 𝑥4 𝑥1 − 𝑥2 + 𝑥4 − 𝑥3

𝑦2 − 𝑦4 𝑦1 − 𝑦2 + 𝑦4 − 𝑦3
|

|
𝑥2 − 𝑥4 𝑥3 − 𝑥4

𝑦2 − 𝑦4 𝑦3 − 𝑦4
| ]

 
 
 
 
 
 
 

 

 
𝑇 = [𝑥1 𝑦1] 

 

𝑅 = [

𝑥2 − 𝑥1

𝑥𝑟 − 1
+ 𝑝𝑥𝑥2

𝑥3 − 𝑥1

𝑦𝑏 − 1
+ 𝑝𝑦𝑥3

𝑦2 − 𝑦1

𝑥𝑟 − 1
+ 𝑝𝑥

𝑦3 − 𝑦1

𝑦𝑏 − 1
+ 𝑝𝑦

] 

 

(7.7) 

 

Using the estimated parameters, a given point (𝑥𝑖𝑣 , 𝑦𝑖𝑣  ) belonging to a shadow silhouette in 

the observed view can be transformed into a point (𝑥𝑐𝑣, 𝑦𝑐𝑣  )in the canonical view, according to 

(7.8). 

 

 

𝑥𝑐𝑣 =
𝑟00𝑥𝑖𝑣 + 𝑟10𝑦𝑖𝑣 + 𝑡𝑥
𝑝𝑥𝑥𝑖𝑣 + 𝑝𝑦𝑦𝑖𝑣 + 1

 

 

𝑦𝑐𝑣 =
𝑟01𝑥𝑖𝑣 + 𝑟11𝑦𝑖𝑣 + 𝑡𝑦

𝑝𝑥𝑥𝑖𝑣 + 𝑝𝑦𝑦𝑖𝑣 + 1
 

(7.8) 

 

The proposed system, thus, transforms the available shadow silhouettes into a canonical view, 

correcting for distortions and deformations, such as skewness, scale, orientation. It then allows 

the system to perform recognition using the shadow silhouettes captured at any part of the gait 

sequence, which otherwise could be a challenging task. The proposed system can then perform 

recognition following the steps presented in Section 7.2. 

7.4 SHADOW TYPE IDENTIFICATION 
As discussed in Section 2.4.3, depending on the light source, individuals can cast either a sharp 

or a diffused shadow, in an unconstrained environment. The systems proposed in Sections 7.2 

and 7.3 can operate only on sharp shadows, which appear similar to the body silhouettes. In 

addition, the proposed viewpoint detection system, presented in Section 5.4, operates 

effectively only in the presence of sharp shadows. Thus, there is a need to identify the type of 

shadow cast, as the presence of diffused shadow surrounding the individuals’ feet can hamper 

the systems’ performance. Diffused shadows do not provide useful information but, if identified 
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correctly they can be easily segmented out using systems such as the one proposed in [53]. Thus, 

this Thesis presents a novel system that identifies the type of shadow cast by the individuals. 

The proposed system uses the silhouette, a foreground image (FGI) containing the individual 

being observed, and a background image (BGI), used as a reference for background subtraction, 

to identify the type of shadow cast by the individual – see Figure 7.5. It uses the luminance 

components of the FGI, 𝐹𝐺𝐼𝑖
𝑖𝑐, and the BGI, 𝐵𝐺𝐼 𝑖

𝑖𝑐 to obtain an intensity ratio 𝜇𝑖  for every pixel 

value 𝑖, according to (7.9). 

 

   
(a) (b) (c) 

Figure 7.5: Illustration of (a) silhouette, (b) background and (c) foreground image. 

 

 𝜇𝑖 =
𝐹𝐺𝐼𝑖

𝑖𝑐

𝐵𝐺𝐼 𝑖
𝑖𝑐

 (7.9) 

 

The system then filters the intensity ratio values 𝜇𝑖  using the binary silhouette such that only 

those values that belong to either the individuals’ body or their shadow are retained. A 

histogram can then be generated for the selected intensity ratio values. The plot, depending on 

the type of shadow cast by the individual, can contain one of the two distinct shapes, as 

illustrated in Figure 7.6 (a, c). The difference in the plot shape is caused by the distribution of 

intensity ratio values in the sharp and the diffused shadow areas. The individual’s body area, 

usually having a significant contrast with the background, as illustrated in Figure 7.5 (b, c), results 

in low intensity ratio values – see Figure 7.6 (b). On the other hand, a sharp shadow contains a 

significant contrast with its background and, being a darker area, also changes the background 

chromaticity resulting in a large number of low intensity ratio values in the histogram plot, as 

illustrated in Figure 7.6 (a, b). 

In the case of a diffused shadow, a significant contrast still exists between the individual’s body 

and the background. However, the diffused shadow only slightly reduces the intensity of the 

background, not causing significant changes to its chromaticity. Thus, the diffused shadow 

generates many high intensity ratio values. Therefore, the resulting histogram plot contains a 

significant amount of both low and high intensity ratio values, as illustrated in Figure 7.6 (c, d). 

To identify automatically the type of shadow, the histogram is organised into 20 bins, followed 

by the application of a Gaussian filter. The bins corresponding to peaks in the histogram are then 

identified, as illustrated in Figure 7.7. It is observed that the sharp shadows, i.e., those with low 

intensity ratio values, are represented by histograms with a single peak – see Figure 7.7 (a), while 

diffused shadows, i.e., containing large numbers of both low and high intensity ratio values, are 

represented by two clearly separated peaks – see Figure 7.7 (b). Therefore, depending on the 
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number of peaks identified it is possible to have a classification of the type of shadow cast by 

the walking individual. 

 

 
   

(a) (b) (c) (d) 
Figure 7.6: Intensity ratio histogram plot and the corresponding images for (a, b) sharp and (c, d) diffused shadows 

 

  
(a) (b) 

Figure 7.7: Illustration of the two different type of plots obtained for (a) sharp, (b) diffused shadows. 

7.5 THE IST SHADOW DATASETS  
Two new datasets of gait including shadows have been acquired to allow a more complete 

evaluation of the novel systems proposed in the Thesis. The “IST shadow gait dataset” and the 

“IST shadow type dataset” are presented in the following.  

7.5.1 The IST shadow gait dataset 

The proposed systems presented in Sections 7.2, 7.3 and 7.4 address several limitations of the 

state-of-the-art, such as robustness against viewpoint changes, rectification of shadow 

silhouettes and shadow type detection. The proposals open the possibility to explore the 

advantages of using rectified shadow silhouettes as an alternative, or as complement, to using 

body silhouettes. To test those possibilities, the existing KY IR Shadow dataset [64] can be used. 

However, it captures gait of the individuals along a single viewpoint for approximately 1 gait 

cycle. It also lacks an unoccluded view of the body silhouettes, preventing comparisons between 

systems that use body and shadow silhouettes Thus, to perform a complete evaluation of the 

proposed systems, a new dataset has been acquired containing unoccluded body and shadow 

silhouettes, captured along different viewpoints. 

The new dataset, called “IST shadow gait dataset”, includes silhouettes captured from 21 

individuals. The dataset is collected outdoors, with the setup illustrated in Figure 7.8 (a), where 

each individual walks along two directions: BA and BC, as illustrated in Figure 7.8 (b), registering 

sequences captured from two different viewpoints. Video acquisition is performed using a Nikon 

D300S camera, at 24 fps with a spatial resolution of 640×424 pixels. The data has been collected 

in July 2017, between 5:30 and 6:30 pm, in the campus of Instituto Superior Técnico, Lisbon, 

Portugal. Each individual is recorded on 2 different days (sessions). Everyone walks 3 times in 

each direction during each session, amounting to 12 gait sequences, each one including at least 

3 complete gait cycles. 



72 
 

To evaluate the proposed shadow rectification systems using the dataset, this Thesis considers 

the following protocol. The system is first trained using the sequences belonging to the first 

session and tests use the sequences of the second session. Next, the system is trained using the 

sequences belonging to the second session and tested against the sequences of the first session. 

Finally, the mean of the two results is presented as the recognition accuracy of the proposed 

systems. 

 

  
(a) (b) 

Figure 7.8: IST shadow gait dataset acquisition setup: (a) camera position, and (b) walking directions. 

7.5.2 The IST shadow type dataset 

A second new dataset, called the “IST shadow type dataset”, has been captured to allow 

evaluating the performance of the proposed shadow type identification system. This database 

consists of sequences captured from six individuals across two days. On the first day, individuals 

are recorded under a clear sky and, thus, the shadows cast by the individuals are sharp – see the 

right side of Figure 7.9 (b). On the second day, individuals are recorded under a cloudy sky, 

casting a diffused shadow – see the left side of Figure 7.9 (b). The recordings were conducted at 

Instituto Superior Técnico, Lisbon, Portugal, on a tennis court, between 10:00 and 12:00, in the 

month of June 2016, using Xiaomi Redmi 1s cell phone camera. Although this dataset contains 

video sequences of only 6 individuals, around 300 frames are captured, as each individual walks 

the full length of the tennis court – see Figure 7.9 (a). Thus, approximately 3600 images are 

available to evaluate the proposed system. To create the ground truth, all the frames acquired 

on the first day are indexed as sharp shadows and all the frames acquired on the second day are 

indexed as diffused shadows. The classification accuracy of the proposed shadow type 

identification system is obtained by comparing the output of the system to the ground truth. 

 

 
 

(a) (b) 
Figure 7.9: IST shadow type dataset acquisition setup (a) camera position (b) captured types of shadow. 

7.6 PERFORMANCE EVALUATION 
To evaluate the proposed systems and to compare their performance with the state-of-the-art, 

the use of the KY IR Shadow dataset [64] is considered in this Thesis. However, since the 
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proposed systems in their current form are not robust to appearance changes, only the first 4 

normal gait sequences were used for the evaluation. In addition, unlike the system presented in 

[64] that uses both shadows and body silhouettes, the proposed systems are evaluated only on 

the lateral viewpoint shadow silhouettes. The recognition accuracy of the systems is obtained 

following the 4-fold cross validation protocol presented in [64]. Following the protocol, 3 normal 

gait sequences are used for training and 1 normal gait sequence is used for testing. The test is 

repeated until all possible combinations are explored. 

Among the systems presented in the state-of-the-art, the use of the feature gait stripe [96], [97], 

[98], which is computed as the maximum width of the shadow silhouette, does not work well 

with larger datasets. The use of shadow silhouettes [101] and shadow GEIs [64] operate with a 

recognition accuracy of 94% and 97%, respectively on the KY IR Shadow dataset, as reported in 

Table 7.1. The proposed systems perform equally well under such conditions with a recognition 

accuracy of 94% and 97%, respectively. However, it should be noted that under similar 

conditions, even the conventional shadow GEI achieves a good recognition accuracy of 92%. The 

good results can be attributed to the training sequences, which contain the same type of 

distortions and deformations as observed in the testing sequences. The state-of-the-art systems 

[101] [64] rely on the same assumption to obtain good recognition results, as illustrated in Figure 

7.10 (a, b). Further improvements in the recognition accuracy obtained by such systems can be 

achieved by employing better performing classifiers. 

The proposed systems rectify the shadow silhouettes, compensating for the distortions and 

deformations present in the shadow silhouettes. However, rectification using TILT can 

sometimes retain some residual deformations, as illustrated in Figure 7.10 (c), which end up 

affecting its recognition accuracy, while the proposed 4-point correspondence system always 

results in rectification of the shadow silhouettes into a canonical view, as illustrated in Figure 

7.10 (d). Their performance does not depend on previous knowledge of distortions and 

deformations in the database, leading to good recognition results even with a simple classifier, 

as reported in Table 7.1. 

Table 7.1: Recognition accuracy (%) of the state-of-the-art and proposed systems that rely on shadow silhouettes. 

Recognition systems Recognition accuracy (%) 

Shadow GEI without rectification 92 

Shadow GEI AMI system [64] 94 

TILT system (7.2) 94 

Shadow silhouette AMI system [101] 97 

4-point correspondence system (7.3) 97 

 

As discussed along Chapter 7, under certain conditions the recognition results using body 

silhouettes can be inferior to the ones obtained using shadow silhouettes. The difference in 

performance can be attributed to the change in the viewpoint, which affects the body 

silhouettes, as discussed in Section 2.4.5, while in some conditions the shadow silhouettes can 

remain relatively unaffected. However, shadow silhouettes are affected by distortions and 

deformations caused by the camera, which the proposed systems rectify leading to improved 

recognition results. 
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..…     
(a) (b) (c) (d) 

Figure 7.10: Features used by the state-of-the-art and proposed systems (a) shadow silhouettes; (b) GEI, GEI obtained 

using rectified silhouettes using (c) TILT and (d) 4-point correspondence system. 

To highlight the significance of the proposed rectification systems and the advantages of using 

shadow silhouettes over body silhouettes, the 4-point correspondence system is evaluated using 

the IST shadow gait dataset, where the three gait cycles obtained along each walking direction 

(BA and BC) are used to obtain three GEI groups: 1 (start), 2 (middle) and 3 (end). Recognition 

can then be performed across groups, following the protocol presented in Section 7.5. 

 

Table 7.2: Recognition accuracy (%) of the system using GEIs composed of body silhouettes. 

 Training set 

Test set 
Group 1 (start) Group 2 (middle) Group 3 (end) 

BA BC BA BC BA BC 

Group 1 60 62 27 39 05 19 

Group 2 31 33 58 68 29 40 

Group 3 08 09 28 27 65 73 

 

Table 7.3: Recognition accuracy (%) of the system using GEIs composed of shadow silhouettes. 

 Training set 

Test set 
Group 1 (start) Group 2 (middle) Group 3 (end) 

BA BC BA BC BA BC 

Group 1 86 84 43 50 10 11 

Group 2 21 13 73 85 43 34 

Group 3 10 06 32 30 73 77 

 

In Table 7.2, Table 7.3 and Table 7.4, each entry represents the recognition accuracy along the 

two considered walking directions: BA and BC – see Figure 7.8 (b). In all cases, diagonal entries 

in the tables represent the best recognition results, as the testing and the training sequences 

are obtained from the same part of the gait sequence (start, middle or end). Most state-of-the-

art systems rely on such conditions to perform recognition. However, recognition performance 

when using either body (Table 7.2) or shadow (Table 7.3) silhouettes deteriorates when training 

and testing is performed using silhouettes from different parts of the gait sequence. The 

deterioration is caused because the body silhouettes undergo a viewpoint change as the user 
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proceeds along a walking direction, as illustrated in Figure 7.11 (a, b, c). In the case of shadow 

silhouettes, since the position of the light source (Sun) with respect to the individual along a 

walking direction remains the same, the shadow silhouettes can be expected to remain almost 

unchanged, apart from the camera distortions and deformations – see Figure 7.11 (d, e, f). 

However, such distortions and deformations lead to poor recognition results, as reported in 

Table 7.3. The problem is addressed by rectifying the shadow silhouettes using the proposed 

4-point correspondence system – see Figure 7.11 (g, h, i). The significance of the proposed 

system is highlighted in Table 7.2 and Table 7.3, where the mean recognition accuracy using the 

body and shadow silhouette GEIs is 38% and 43%, respectively. Under the same conditions, the 

proposed 4-point correspondence system performs significantly better, as shown in Table 7.4, 

as rectifying the shadow silhouettes allows achieving a more consistent performance across all 

parts of the gait sequence, with a mean recognition accuracy of 75%. Also, given training 

silhouettes belonging to Group 2 (i.e., the middle part of the gait sequence), only the proposed 

system performs gait recognition consistently with a mean recognition accuracy of 80%, as 

reported in Table 7.4. 

Table 7.4: Recognition accuracy (%) of the system using GEIs composed of rectified shadow silhouettes obtained using 

the proposed 4-point correspondence system. 

 Training set 

Test set 
Group 1 (start) Group 1 (start) Group 1 (start) 

BA BC BA BC BA BC 

Group 1 73 80 64 86 45 79 

Group 2 71 77 81 89 70 91 

Group 3 53 65 74 80 81 90 

 

To evaluate the performance of the proposed shadow type identification system, the Thesis 

considers the IST shadow type dataset and follows the protocol presented in Section 7.5. The 

system operates on each frame of the video sequence to identify the type of shadow cast by the 

individual in it. The system achieves a recognition accuracy of 90%. However, it should be noted 

that gait features are usually acquired from an integer number of complete gait cycles, each with 

a typical duration between 1 and 2 seconds. Thus, using a voting policy the shadow type can be 

identified for the entire duration of the gait cycle, further improving the recognition accuracy of 

the proposed system to almost 100%. 

The proposed system cannot tackle situations where the individuals’ attire blends in with the 

background creating a camouflage effect. Due to the lack of contrast under such conditions, the 

individuals’ body region is represented with high intensity ratio values in the histogram plot. 

Thus, the proposed system fails to identify the type of shadow under such conditions. 

In the results obtained, it is observed that some sharp shadows are falsely identified as diffused 

shadows, as the histograms representing the intensity ratio values of the individual and the 

shadow detect two peaks. However, under such conditions, the distance between the two peaks 

is extremely small, when compared to the diffused shadows. Thus, by applying a threshold value 

to the distance between the two peaks, the system’s accuracy can be easily improved. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 7.11: Silhouettes at the start, middle and end of a gait sequence. (a, b, c) represent body silhouettes; (d, e, f) 

represent shadow silhouettes and (g, h, i) rectified shadow silhouettes. 
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Part III: Gait-based pathology 
classification 





79 
 

8 PROPOSAL FOR ACCURATE ESTIMATION OF TEMPORAL 

BIOMECHANICAL GAIT FEATURES 

 

8.1 INTRODUCTION 
Gait analysis for medical diagnosis, as discussed in Section 3.3, is typically performed using 

systems such as the motion capture system [128], or a force plate-based system [129], for their 

reliability and accuracy. However, these systems are expensive to install and are inaccessible to 

most individuals in a daily life setting as they can operate effectively only in dedicated 

laboratories, under the supervision of trained professionals. Consequently, the use of such 

systems for the assessment of the individuals’ gait on a regular basis may not be easy. 

Alternatively, using systems based on IMUs can address some of the identified shortcomings 

[130]. However, since IMU devices must be mounted on distinct and specific locations of the 

individuals’ body, trained professionals are required to obtain the best results. 

To obviate the limitations, 2D vision-based systems can be used to perform gait analysis in a 

non-invasive manner, as discussed in Section 3.3.2. Nevertheless, most of the 2D vision-based 

systems reported in the literature focus on the classification of gait as either normal or impaired, 

and only a limited number explore the temporal gait features for a more detailed analysis, 

notably to help the medical diagnosis. Additionally, among the latter group of systems, the 

accuracy of the features obtained is seldom validated for clinical use. This Thesis presents a novel 

system to obtain temporal gait features, including stance time, swing time and gait cycle time, 

by detecting the initial contact (IC) and toe off (TO) events during a gait cycle. The system’s usage 

for clinical assessment is also validated, by comparing the obtained results against those 

obtained when using a motion capture system, which is considered as the gold standard in 

clinical assessment [128]. 

8.2 ESTIMATION OF STANCE TIME, SWING TIME AND GAIT CYCLE TIME USING IC AND TO 
A novel system is proposed in this Thesis that estimates a set of biomechanical gait features that 

are frequently used in the clinical evaluation of individuals suffering from some type of gait 

related pathology. Temporal gait features are estimated by first detecting the occurrence of the 

IC of a foot with the floor and the instant of TO, which occurs when the foot leaves the floor, 

during a gait cycle. 

The IC and TO are detected by first identifying the position when the foot is in complete contact 

with the floor, as illustrated in Figure 8.1. For this purpose, the proposed system creates a “foot 

flat image” using a GTI. As discussed in Section 5.3, the GTI highlights the feet positions of the 

individuals due to the overlap between their silhouettes – see Figure 8.2 (a). The overlap among 

the silhouettes is highest at locations that remain static over a long period, i.e., the foot flat 

positions during the gait cycle, which can thus be identified in the proposed system by applying 

a threshold to the GTI. To prevent the selection of other body parts, only the bottom 10% of the 

individual silhouettes in the GTI is considered – see Figure 8.2 (b). The threshold value for each 

foot flat location can be selected using the highest intensity values along the walking direction, 

which can be identified following the steps presented in Section 5.3. As illustrated in Figure 8.2 

(c), the proposed system uses the valleys in the intensity plot to separate two neighbouring foot 
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flat positions, followed by the application of Otsu's thresholding [131], to obtain the 

corresponding foot flat positions. The resulting image, called the “foot flat image”, contains the 

foot flat locations for a given gait sequence – see Figure 8.2 (d). 

 

 

Figure 8.1: Architecture of the proposed temporal features estimation system. 

 

  

(a) (b) 

  

(c) (d) 

Figure 8.2: Illustration of the proposed foot flat identification steps: (a) GTI, (b) selected feet region of the GTI, (c) 
thresholding, (d) resulting “foot flat image”. 

After foot flat detection, the proposed system can analyse the overlap between the foot flat and 

the silhouettes obtained from a video sequence to estimate the IC and TO events. However, to 

avoid false positives, the proposed system first identifies two sets of silhouettes in which each 

of the two events are most likely to occur. The two sets of silhouettes are selected near every 

double support phase of the gait cycle, which corresponds to the moment when both feet are 

in contact with the floor, as candidates for initial contact (CIC) and candidates for toe off (CTO) 

respectively. The CIC set includes silhouettes that lie between the silhouette with the mean 

width value and the next silhouette with the maximum width, as the IC instant that marks the 
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start of double support phase occurs somewhere in-between. Similarly, the CTO set includes 

silhouettes that lie between the silhouettes with maximum width value and the next silhouette 

with the mean width, as illustrated in Figure 8.3. The width of the silhouette is normalised by 

subtracting each width value by the mean and dividing it by the standard deviation. 

 

 

Figure 8.3: Selection of candidate frames for the estimation of initial contact and toe off. 

The IC occurs at the individuals’ leading foot, while the TO occurs at the individuals’ trailing foot. 

Thus, the proposed system selects only the leading foot from every CIC set and the trailing foot 

from every CTO set, as illustrated in Figure 8.4 (b). 

As illustrated in Figure 8.4, for a given gait sequence, two double support phases will be detected 

per each observed gait cycle. For every double support phase 𝑖, a set of CICs, 𝐶𝐼𝐶𝑖
𝑛, and CTOs, 

𝐶𝑇𝑂𝑖
𝑚, can be obtained, where 𝑛, 𝑚 are the index of candidates in each set. The estimation of 

the occurrence of the IC and the TO instants can then be performed by analysing the overlap 

between a foot flat and the selected foot from the set of CICs and CTOs, respectively – see Figure 

8.4 (d). 

As illustrated in Figure 8.4 (b, c) for 𝑘 double support phases, there exist 𝑘 foot flats in the foot 

flat image. Thus, the selection of the foot flat and the corresponding set of CICs and CTOs, to 

estimate the IC and the TO can be done as follows. 

For 𝐶𝐼𝐶𝑖
𝑛  and 𝐶𝑇𝑂𝑖

𝑚  corresponding to double support phase 𝑖 , the foot flat 𝑖  is selected to 

estimate the TO, and foot flat 𝑖 + 1 is selected to estimate IC. As an example, considering Figure 

8.4, for 𝐶𝐼𝐶2
𝑛  and 𝐶𝑇𝑂2

𝑚 corresponding to the second double support phase, foot flat 2  is 

selected to estimate TO and foot flat 3 is selected for estimating IC. The overlap between the 

foot flat 3 and  𝐶𝐼𝐶2
1 , 𝐶𝐼𝐶2

6 and 𝐶𝐼𝐶2
10 and the flat foot 2  and  𝐶𝑇𝑂2

1 , 𝐶𝑇𝑂2
5  and 𝐶𝑇𝑂2

9  are 

illustrated in Figure 8.4 (d), highlighting the instants where the IC and TO occur with red boxes. 

Also, in Figure 8.4 (d), white represents overlapping areas, while grey represents the remaining 

parts of the feet. 

For the selected set of CIC/CTO and the corresponding foot flat, the overlap can be measured as 

the percentage of CIC/CTO foot covered by the selected foot flat. As illustrated in Figure 8.4 (e), 

for the IC, the percentage of overlapped area increases rapidly at the start and tends to stabilize 

at the end. Thus, the initial contact can be estimated as the point where slope of the increase in 

the overlapped area slows down significantly. It is observed that such slow down occurs when 

almost 80% of the CIC foot is overlapped. Thus, the proposed system estimates the IC as the first 

frame for which the overlap of the CIC foot and the foot flat exceeds 80%. Similarly, the toe off 

can be estimated by analysing the overlap between the feet from the set of CTOs and the 

selected foot flat. The toe off can be estimated as the first frame for which the overlap between 

the CTO foot and the selected foot flat becomes zero – see example in Figure 8.4 (f). 
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(a)  (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8.4: Examples of intermediate steps in IC and TO estimation: (a), (b) selection of foot from CIC and CTO, (c) flat 
feet selection, (d) overlap between flat foot and CIC/CTO feet, estimation of: (e) Initial contact (f) toe off. 

The result from the previous step is a sequence of frame numbers indicating the estimated 

instances of IC and TO. To have a better understanding of the individuals’ gait, frame numbers 

can be converted into timestamps using the frame rate of the video sequence. The timestamps 

can then be used to estimate additional temporal gait features, such as the left and right stance 

times, left and right swing times and the left and right gait cycle times. 

8.3 IST-KUL DATASET ACQUISITION 
The proposed system estimates the temporal gait features using silhouettes obtained from a 

single 2D video sequence. To evaluate its performance, and validate the proposed system, this 

Thesis presents a new dataset, called “IST-KUL gait dataset”, which consists of ten individuals (7 

male and 3 females between the ages of 20-25) each recorded five times, using a Casio Exilim 
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EX-ZR100 camera, which has a spatial resolution of 1920×1080 and captures video with a frame 

rate of 30 fps. The individuals are recorded walking in a perpendicular direction with respect to 

the camera axis (i.e., a side viewpoint is recorded), as illustrated in Figure 8.5. Everyone is also 

simultaneously recorded using a motion capture system, installed in a laboratory of the 

Rehabilitation Sciences Group of the Bruges Campus of KU Leuven, consisting of six infrared 

Optitrack Flex 13 cameras, each with a resolution of 1280×1024 and a maximal frame rate of 

120 fps. All cameras are synchronized and calibrated using Motive Tracker v.01.90. The 

individuals’ gait is captured using forty-four reflective markers secured at carefully selected 

locations on their bodies, according to the lower limb and trunk model [128], to estimate the 

gait features. The gait features are obtained using the marker and coordinate based algorithm 

presented in [128]. The motion capture system is considered as the gold standard for the 

estimation of biomechanical gait features [128]. 

 

 

Figure 8.5: Camera setup for the IST-KUL dataset. 

8.4 PERFORMANCE EVALUATION 
The proposed system detects the IC and the TO events to estimate various temporal gait 

features. Before evaluating the accuracy of the features obtained, the IC and the TO detection 

accuracy of the proposed system is evaluated using the CASIA A [106] dataset. Following the 

protocol presented in [54], the system is evaluated using the 0°, lateral viewpoint sequences, of 

20 individuals captured on 4 different days. Before the evaluation, the frames corresponding to 

the IC and TO events are manually annotated to construct the ground truth. Considering the 

camera frame rate of 30 fps, and since normal gait cycles usually last for 1-2 seconds, it is 

observed that in several cases the exact instant of IC or TO is not recorded. Thus, the ground 

truth is constructed considering the frame just before or the frame just after the event. The 

decision is made by visually inspecting each frame. Therefore, for evaluation purposes, the 

system can be allowed an error margin of ±1 frame with respect to the ground truth. 

The proposed system is evaluated by analysing the distance between its output and the ground 

truth. As illustrated in Figure 8.6, it estimates IC and TO with an accuracy of 72% and 88%, 

respectively. The TO estimation is significantly better than the IC, as it is very easy to detect zero 

overlap between the foot flat and the foot from the CTO set using the proposed system. 
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(a) (b) 

Figure 8.6: Percentage of correctly estimated (a) ICs and (b) TOs w.r.t. the distance from the ground truth. 

When allowing an error margin of ±1 frame w.r.t. the ground truth, the detection accuracy of IC 

and TO improves significantly, to 99%. Using an error margin of ±2 frames, which is adopted by 

most state-of-the-art systems [54], [56], the accuracy further improves to almost 100%, which 

is significantly better than achieved by the state-of-the-art systems, as reported in Table 8.1. A 

root means square error (RMSE) is also computed using the distance between the frame 

numbers estimated by the proposed system and the ground truth, which confirms that the 

proposed system performs significantly better than the state-of-the-art. It should also be noted 

that the systems presented in [54], and [56] ignore the IC and TO occurring at the beginning and 

the end of the gait sequences due to the presence of incompletely segmented silhouettes. The 

results presented in Table 8.1 report these ignored events as a part of the failed detections. The 

proposed system, unlike the state-of-the-art, can operate even on such silhouettes. 

Table 8.1: IC and TO estimation with an error margin of ±2 frames w.r.t. the ground truth. 

 System [56] System [54] 
Proposed System 

(8.2) 

 IC TO IC TO IC TO 

Correct Estimations 316 315 319 305 332 330 

False Estimations 8 5 9 8 0 1 

Failed Detections 10 12 6 19 2 1 

RMSE 0.98 0.95 0.89 1.62 0.54 0.42 

 

To evaluate the performance of the proposed system when operating on gait sequences 

acquired from different viewpoints, 10 individuals from CASIA B dataset are considered. The 

evaluation is performed using only a subset of the dataset, as the ground truth needs to be 

created by visually inspecting and manually annotating each video frame. The CASIA B dataset 

contains 6 normal sequences of the individuals, captured along 11 different viewpoints – see 

Section 3.2.4. However, for the current evaluations only the 7 viewpoints between 36˚ to 144˚ 

are considered, because for the rest, the overlapping silhouettes lead to poor foot flat detection. 

Considering an error margin of ±1 frame w.r.t. the ground truth, the proposed system detects 

the IC and TO with an accuracy of almost 100%, as reported in Table 8.2. This is a significant 

improvement over the state-of-the-art systems [54], [56] that operate only on lateral (90˚ 

viewpoint) sequences. 
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Table 8.2: IC and TO estimation with an error margin of ±1 frame across different viewpoints. 

View (˚) Correct Estimations (%) False Estimations (%) Failed Detections (%) 

 IC TO IC TO IC TO 

36 100 99 0 1 0 0 

54 100 99 0 1 0 0 

73 100 100 0 0 0 0 

90 100 100 0 0 0 0 

108 100 100 0 0 0 0 

126 100 100 0 0 0 0 

144 100 100 0 0 0 0 

 

A second set of evaluations is performed to analyse the possibility of using the proposed system 

for clinical assessment. These evaluations are conducted using the IST-KUL gait dataset, to 

compare the results against the motion capture system [128], which is considered as the gold 

standard in clinical assessment. The evaluation involves estimating the temporal features from 

the 2D sequences available in the IST-KUL gait dataset using the proposed system. It is observed 

that using the error margin of ±1 frame, the proposed system correctly estimates the IC and the 

TO with 99% accuracy, when compared to the manually annotated ground truth. It should be 

noted that the proposed system attempts to perform the same type of assessment as the 

motion capture system [128], but without any calibrations or initial setup and with a single 

camera. The camera also operates at approximately one forth the framerate of the motion 

capture system [128]. 

Table 8.3 reports the obtained results, where “L” and “R” represent the left and right legs, 

respectively. The agreement between the two systems is calculated using an intra class 

correlation coefficient (ICC). Notice that according to Fleiss and Cohen [132], an ICC in the ranges 

0.00 – 0.39 is considered ‘bad’, 0.40 – 0.73 ‘moderate’, 0.74 – 0.90 ‘good’ and 0.91 – 1.00 

‘excellent’. 

As reported in Table 8.3, the ‘good’ to ‘excellent’ ICC values obtained suggest a high level of 

agreement between the results of the proposed system and the optoelectronic system [128]. 

For the left and right gait cycle times, a small proportional bias (the difference between the 

means obtained by the two systems) of 0.02 sec is observed. The ICC indicates that the proposed 

system can estimate IC with a high level of accuracy. A slightly higher bias is found when 

evaluating the left and right swing and stance times. However, a good correlation can still be 

observed between the two systems. The evaluation also provides reliability value for the 

observed correlation, called the p-value. A score of less than 0.001 for the p-value of every entry 

in Table 8.3 also suggests a very strong evidence for the observed correlation. 

From the obtained results, it can be concluded that the proposed system is a viable alternative 

to the motion capture system [128]. More importantly, the proposed system can operate in 

unconstrained environments, thus allowing a more frequent follow up of the individuals in 

between visiting the laboratory, where the motion capture system is installed. 
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Table 8.3: Comparison between the proposed and motion capture system. 

 
Proposed 

System (8.2) 

Optoelectronic 

System [128] 
ICC 

Mean 

Diff 

SD 

(sec) 

RMSE 

(sec) 

 
Mean 

(sec) 

SD 

(sec) 

Mean 

(sec) 

SD 

(sec) 
    

Stance Time L 0.77 0.08 0.72 0.07 0.85  0.05 0.06 0.06 

Stance Time R 0.80 0.09 0.72 0.08 0.83  0.08 0.06 0.09 

Swing Time L 0.42 0.05 0.47 0.05 0.81 -0.05 0.04 0.05 

Swing Time R 0.45 0.05 0.47 0.06 0.83 -0.03 0.04 0.04 

Cycle Time L 1.22 0.13 1.20 0.11 0.92  0.02 0.07 0.05 

Cycle Time R 1.21 0.12 1.20 0.12 0.92  0.02 0.06 0.05 
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9 PROPOSAL FOR CLASSIFICATION OF GAIT RELATED PATHOLOGIES 

 

9.1 INTRODUCTION 
The second problem addressed in terms of medical diagnosis is related to the classification of 

impaired gait, and to the possibility of identifying the corresponding gait pathology. Most state-

of-the-art 2D vision-based systems perform only a binary classification of gait as being either 

normal or impaired, as discussed in Section 3.3. A further classification of gait pathologies can 

provide a preliminary assessment of the type or the severity of the observed gait disorder. 

Supporting the latter possibility using a simple system based on a single 2D camera would make 

such assessment accessible to individuals in daily life settings, where the constant presence of 

trained professionals is not possible. 

Some of the existing 2D vision-based systems can distinguish between different types of gait 

pathologies using gait representations such as the GEI [28]. However, they perform poorly when 

trying to discriminate certain types of pathologies, such as diplegia and Parkinson’s diseases. 

Thus, this Thesis presents two novel systems able to perform classification across different gait 

related pathologies. The first system explores “hand-crafted” biomechanical features, such as 

the well-known step length, speed, torso orientation and shift in centre of gravity (COG), and 

proposes additional novel features, such as the foot flat ratio, normalized step count and the 

amount of movement while walking, to classify the different gait related pathologies. The 

second system uses a fine-tuned VGG-19 deep convolutional neural network (CNN) [133] to 

obtain features from the GEIs that best represent the different gait pathologies. Both proposed 

systems can perform well even under self-occlusions (i.e., when the part of the body closer to 

the camera occludes other parts of the body), which can be difficult to handle in certain 

pathologies for which one foot of the individual remains occluded by the other throughout the 

gait cycle. 

9.2 CLASSIFICATION OF PATHOLOGIES USING “HAND-CRAFTED” BIOMECHANICAL FEATURES 
The first proposed system uses the silhouettes obtained from the lateral viewpoint of the 

walking individuals to estimate “hand-crafted” biomechanical gait features, which can then be 

used to classify gait sequences across different gait related pathologies. The proposed system 

architecture is illustrated in Figure 9.1. The features used can be classified into two groups: 

• Feet related features: These features are obtained using the spatio-temporal 

information acquired from the individuals’ feet area. They include well-known left and 

right step lengths, step length symmetry, speed, and novel left and right foot flat ratios 

and the normalized step count. 

• Body related features: These features are obtained using the information acquired from 

the entire body of the individual. They include the novel amount of movement in the 

left and the right side of the body, movement symmetry and the shift in the COG with 

respect to its centre of support (COS), and torso orientation. 

The proposed system estimates the step length as the distance covered between the initial 

contacts of the observed foot and the other foot. In healthy individuals, detecting the initial 

contact, and thus estimating the step length can be easy as the feet are separated by some 
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distance while walking, as illustrated in Figure 9.2 (a) [54]. However, due to certain pathologies, 

the stride of the individuals can be extremely short, leading to self-occlusions as illustrated in 

Figure 9.2 (b). Under such conditions, identifying the exact instant of initial contact or estimating 

the step length using silhouettes can be difficult. The proposed system tackles this problem by 

detecting the “foot flat” positions during the gait cycle. A gait cycle includes two foot flats, one 

for each foot, occurring right after the initial contact. To minimize the effect of self-occlusions, 

foot flat instances are detected by analysing half gait cycle at a time, i.e., the span between two 

consecutive initial contact events (of opposite feet). However, since determining the exact 

instant of initial contact is difficult, the proposed system approximates it as the instant in time 

for which the distance between the two feet is maximum [118], as illustrated in Figure 9.3. 

 

 

Figure 9.1: Architecture of the proposed gait-based pathology classification system, using “hand-crafted” 
biomechanical features. 

 

  
(a) (b) 

Figure 9.2: Silhouettes belonging to a healthy individual and (b) an individual suffering from Parkinson’s diseases. 

 

 

Figure 9.3: Plot representing the distance between feet for a gait cycle. 

To obtain foot flat positions, the proposed system uses the feet region of the silhouettes to 

obtain an average feet image (AFI). The feet region can be selected as the lower 10% fraction of 

the silhouettes [134]. The 𝐴𝐹𝐼(𝑥, 𝑦) can then be computed by averaging the resulting 𝑇 feet 
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silhouettes images, 𝐼 𝑓𝑒𝑒𝑡 (𝑥, 𝑦, 𝑡), available between two initial contacts, according to (9.1), and 

illustrated in Figure 9.4 (a) and (b). 

 

 𝐴𝐹𝐼(𝑥, 𝑦) =
1

𝑇
∑𝐼 𝑓𝑒𝑒𝑡 (𝑥, 𝑦, 𝑡)

𝑇

𝑡=1

 (9.1) 

 

The AFI highlights the foot when it is in complete contact with the ground. Thus, by applying the 

Otsu thresholding [131] to the AFI, the proposed system can estimate the position of the foot 

flat, as illustrated in Figure 9.4 (c), which can then be used to compute the various feet related 

features. 

 

  
(a) (b) 

  
(c) (d) 

Figure 9.4: Intermediate steps for step length estimation: (a) segmented feet silhouettes between two initial contacts; 
(b) AFI obtained by averaging the feet silhouettes, (c) position of the foot flat obtained by applying a threshold, (d) 
centroids of foot flats obtained for the entire video sequence. 

The proposed system measures the step length (SL) using the foot flat positions obtained from 

the entire sequence. However, due to the lack of depth information, there can be a significant 

difference between the scales of the two feet. Thus, to minimize errors, the proposed system 

computes the centroid of each foot flat and measures the Euclidean distance between two 

consecutive centroids as the step length. Knowing the walking direction of the individuals with 

respect to the camera, the proposed system can identify the foot closer to the camera as the 

right or the left foot. Thus, the proposed system can estimate both the left and right step 

lengths. To identify which foot is closer to the camera, since depth information is not available, 

the foot flat centroid positions can be used. As illustrated in Figure 9.4 (d), the centroid of the 

foot further away from the camera appears at a more elevated position in the image. Thus, by 

comparing the y-coordinate of the centroids, the step lengths can be classified as either left or 

right step lengths. Since the video sequence contains multiple gait cycles and thus allows 

computing multiple feature values, a median is computed to increase the proposed system’s 

robustness to outliers [134]. Therefore, the proposed system computes the median of the left 

and right step lengths as 𝑆𝐿𝑖
𝑙𝑒𝑓𝑡

 and 𝑆𝐿𝑗
𝑟𝑖𝑔ℎ𝑡

, where 𝑖 and 𝑗 represent the indices of the left and 

right step lengths respectively. The distance is measured in pixels but, since the silhouettes are 

normalized with respect to height, while maintaining their original aspect ratio, the system is 
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robust to scale changes. A step length symmetry score, 𝑆𝐿𝑠𝑦𝑚𝑚, can then be computed as the 

absolute difference between the medians of left and the right step lengths, according to (9.2). 

The symmetry score is consistent across different individuals, observed at different distances 

from the camera due to the normalisation step. 

 

𝑆𝐿𝑠𝑦𝑚𝑚 = |𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝐿𝑖
𝑙𝑒𝑓𝑡

) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑆𝐿𝑗
𝑟𝑖𝑔ℎ𝑡

)| (9.2) 

 

The proposed system can also compute the normalized step count and speed of the individuals’ 

movement using the foot flat information. Normalized step count (NSC) is computed as the total 

number of foot flat instances 𝑘, divided by the total distance travelled, according to (9.3). The 

distance travelled is measured as the length summation of the 𝑛 observed step lengths. 

 

 𝑁𝑆𝐶 =
𝑘

∑ 𝑆𝐿𝑖
𝑛
𝑖=1

 (9.3) 

 

The speed (S) of an individual’s movement is computed by dividing the total distance travelled 

by the duration of the video sequence, according to (9.4). The duration of the video sequence, 

𝑑 (in sec), is measured between the first and last IC. 

 

 𝑆 =
1

𝑑
∑𝑆𝐿𝑖

𝑛

𝑖=1

 (9.4) 

 

A video sequence of the walking individual is composed of several repetitions of a gait cycle, 

delimited by the IC of the observed foot. It is also possible to divide each gait cycle into two 

phases separated by a TO event. The phase before the TO is called the stance phase, while the 

phase following the TO is called the swing phase. Using the IC and the TO, the proposed system 

can estimate the duration of the stance phase. As discussed in [118], the duration of the stance 

and swing phases are not unique enough to distinguish between different types of gait 

pathologies. However, the duration of foot flat during the stance phase, can change significantly 

depending on the type of gait pathologies. Thus, the proposed system computes a “foot flat 

ratio” (FFR) feature, which can be defined as the fraction of the stance phase during which the 

foot flat occurs. 

To compute the FFR, the proposed system measures the amount of overlap between the foot 

flat and the silhouettes belonging to the corresponding stance phase. It estimates the foot flat 

duration by counting the number of frames for which the foot flat is completely covered by the 

silhouettes – see Figure 9.5. Foot flat ratio values, for both the left and right feet, can then be 

computed according to (9.5) 
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 𝐹𝐹𝑅 =
𝑓𝑙𝑎𝑡 𝑓𝑜𝑜𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

𝑠𝑡𝑎𝑛𝑐𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
 (9.5) 

 

Apart from the feet, several biomechanical features can also be estimated from the body 

silhouettes, which can characterise some gait pathologies that an individual may be suffering 

from. For example, an individual’s movements can get severely restricted and the posture of the 

individual can be severely altered due to disorders such as Parkinson's disease [28]. Thus, a 

measurement of the amount of movement and posture instability can be useful for classifying 

such gait pathologies. In addition, in some cases, the movement of a single limb may be 

restricted, or more restricted than the other limb. To collect information about the movement 

of each leg, analysing the movement for every half gait cycle can be useful. 

 

 
 
 

     
1 2 3 4 5 

Figure 9.5: Plot representing the foot flat overlap ratio (top) and the corresponding foot and walking individual’s 
silhouettes (bottom). 

The proposed system computes the entropy during every half gait cycle as a measure of the 

amount of movement. However, unlike what is done for feet related features computation, here 

the half gait cycle is delimited by the mid-stance and mid-swing events, as it contains the part 

of the gait cycle where individuals shift the body weight from one side of the body onto the 

other. The proposed system can thus capture movement restrictions while shifting weight onto 

the impaired side of the body. The mid-stance and mid-swing instants are approximated as the 

instants of the gait cycle when the distance between the two feet is minimum, corresponding to 

the valleys represented in Figure 9.3. The silhouettes belonging to each half gait cycle, numbered 

from 1  to 𝑁 , can then be cropped, 𝐼𝑐(𝑥, 𝑦, 𝑛)  and averaged to obtain the half cycle GEI, 

𝐺𝐸𝐼ℎ𝑐(𝑥, 𝑦), according to (9.6). 

 

 𝐺𝐸𝐼ℎ𝑐(𝑥, 𝑦) =
1

𝑁
∑ 𝐼𝑐(𝑥, 𝑦, 𝑛)

𝑁

𝑛=1

 (9.6) 
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The amount of movement (AOM), can then be computed over the half cycle GEI according to 

(9.7), where 𝑃𝑖 is the probability calculated using the grey level histogram of the half cycle GEI 

for each pixel value  𝑖. As illustrated in Figure 9.6 (b, d), the restriction in movement can be 

effectively represented using Shannon entropy [135]. 

 

 𝐴𝑂𝑀 = −∑𝑃𝑖𝑙𝑜𝑔2𝑃𝑖

𝑖

 (9.7) 

 

    
(a) (b) (c) (d) 

Figure 9.6: Half cycle GEI computed using (a) impaired and (c) healthy gait silhouettes, and (b, d) the corresponding 
GEnI representations, where entropy highlights the amount of movement. 

Following the foot flat, the amount of movement features can also be classified into left, 

𝐴𝑂𝑀𝑖
𝑙𝑒𝑓𝑡

 and right, 𝐴𝑂𝑀𝑗
𝑟𝑖𝑔ℎ𝑡

, where 𝑖 and 𝑗 represent the indices of the left and right half gait 

cycles. The classification is performed according to the foot that enters an initial contact during 

the considered half gait cycle. A symmetry measure,  𝐴𝑂𝑀𝑠𝑦𝑚𝑚  can then be computed to 

represent the difference in movement between left and right sides, according to (9.8). 

 

 𝐴𝑂𝑀𝑠𝑦𝑚𝑚 = |𝑚𝑒𝑑𝑖𝑎𝑛(𝐴𝑂𝑀𝑖
𝑙𝑒𝑓𝑡

) − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴𝑂𝑀𝑗
𝑟𝑖𝑔ℎ𝑡

)| (9.8) 

 

As illustrated in Figure 9.7, certain types of gait pathologies can affect the posture of individuals, 

being reflected as a change in the orientation of the torso and therefore as a shift in the 

individuals’ COG with respect to the COS. Healthy individuals walk such that their COG and COS 

are always approximately vertically aligned. The proposed system computes the amount of shift 

using a GEI computed similarly to (9.6), but over the entire gait cycle. Using the GEI provides 

robustness to variations in the shift in COG occurring at different instants of the gait cycle. The 

COG is measured as a weighted centroid of the GEI, using the GEI intensity values as weights. 

The COS is measured as the centre of the feet region of the GEI, obtained by segmenting the 

bottom 10% of the GEI as feet using a human anatomy ratio [134]. The shift in COG, 𝐶𝑂𝐺𝑠ℎ𝑖𝑓𝑡  

can then be computed as the absolute difference between the horizontal coordinates of the 

COG and COS, according to (9.9) 

 

 𝐶𝑂𝐺𝑠ℎ𝑖𝑓𝑡 = |𝐶𝑂𝐺𝑥 − 𝐶𝑂𝑆𝑥| (9.9) 

 

The last feature considered, called orientation of the torso (OT), is also computed using the GEI 

obtained from a complete gait cycle. The proposed system selects the torso as the top 50% of 

the GEI, according to the human anatomy ratios presented in [134]. It then performs principal 
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component analysis over the torso and measures the angle between the horizontal axis and the 

first principal component, 𝑃𝐶(𝑃𝐶𝑥, 𝑃𝐶𝑦), according to (9.10). 

 

 𝑂𝑇 = |𝑡𝑎𝑛−1 (
𝑃𝐶𝑦

𝑃𝐶𝑥

) ×
180

𝜋
| (9.10) 

 

 

Figure 9.7: GEI highlighting shift in COG (middle silhouette point in red) with respect to the COS (lower silhouette point 
in blue) and the orientation of the torso. 

The proposed system can perform classification in two different ways. First, the system can use 

each feature to classify gait as either normal or impaired. Although an individual feature can be 

used to classify the gait, the type of pathology that can be detected may vary depending on the 

features used. For instance, features such as the shift in COG or the OT can help detect posture 

instabilities, features such as SL or AOM can be used to detect asymmetric gait, while features 

such as FFR, NSC or S can be used to detect slow movements and other deviations. Thus, using 

all the available features together can allow the proposed system, not only to detect impaired 

gait, but to further classify gait based on the type of pathology. It might even allow determining 

the severity of the observed disorders. For example, Parkinson’s disease reduces the walking 

speed, alters the posture and restricts the movement of an individual, while disorders such as 

hemiplegia restrict the movement of a single side of the body. The proposed system can 

distinguish between gait pathologies using the proposed biomechanical features. It is also 

possible to identify the side of the body whose movement is affected, such as in the case of 

hemiplegia, as the considered features allow differentiating between left and right side 

impairments. The proposed system performs such classifications using an SVM, a discriminative 

classifier that separates data using a hyperplane [136]. To improve the classification accuracy of 

the proposed system, the SVM is used with a quadratic kernel. 

9.3 CLASSIFICATION OF PATHOLOGIES USING A DEEP CNN AND TRANSFER LEARNING 
The performance of most 2D vision-based systems that classify gait across different gait related 

pathologies, depend on the quality of silhouettes used - see Section 3.3. Thus, poor 

segmentation of the silhouettes can significantly reduce their classification accuracy. Since gait 

representations used for biometric recognition, such as the GEI, are robust to such limitations 

[28], they can provide a more reliable analysis of the individuals gait, allowing operation even in 

less constrained settings where silhouettes are expected to contain segmentation errors, for 

instance due to video acquisition against a dynamic background. Apart from gait representation, 

the performance of the pathology classification systems can also be improved by using better 

performing classifiers. Recently, the use of deep CNNs, such as VGG-16 [137], pose-based 

temporal-spatial networks [138], have shown a significant improvement in the performance of 

silhouette-based gait recognition systems. Similar improvements have also been seen in the 

medical domain, especially in detecting Alzheimer’s disease [139]. Thus, this Thesis explores the 
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use of deep learning techniques along with GEI, to improve the performance of the gait-based 

pathology classification systems. 

The proposed system uses GEIs as input to a fine-tuned VGG-19 [133], to obtain features to 

perform classification of gait across different gait related pathologies. VGG-19 is selected as it is 

the best performing deep CNN for pathology classification – see Section 9.4. VGG-19 is a 19-

layer CNN [133] that can be considered as a stack of convolutional layers, as illustrated in Figure 

9.8, with a filter size of 3×3, with stride and pad of 1, along with max pooling layers of size 2×2 

with stride of 2. The convolutional layers in VGG-19 detect the local features available in the 

input GEI. Next, the max pooling layers reduce the size of the feature vectors obtained, thus 

reducing the computational complexity of the network. A series of such layers is followed by 

two fully connected layers that learn the non-linear relationship among the local features. The 

final layer of the network is a softmax layer, which performs classification. 

The starting point for development has been the VGG-19 trained on ImageNet [133], which can 

classify images across 1000 different image groups. That model has been trained using over 1.3 

million images. However, a dataset of such a scale containing sequences of gait affected by 

different gait pathologies is currently unavailable. In addition, training VGG-19 with a small 

dataset is expected to result in problems, such as overfitting to the small training set. This 

limitation can be addressed using transfer learning, a machine learning technique where a 

model trained to address one problem is re-purposed to address a second related problem. The 

proposed system therefore uses the VGG-19 model pre-trained on ImageNet [133] and part of 

the network is retrained with gait GEIs from an available dataset, to fine-tune the model 

parameters. In a deep CNN, the initial convolutional layers of the network typically detect simple 

features, and features become more complex in subsequent network layers, with final layers 

capturing more problem specific features. Thus, when using transfer learning, the final layers of 

the network can be re-trained such that they are fine-tuned for the classification of gait 

pathologies. The details of the fine-tuning process are discussed in Section 9.4. 

 

 

Figure 9.8: Feature extraction (VGG-19) architecture. 

Although the complete VGG-19 can be used as a classifier, the output of the first fully connected 

layer is more effective as a feature vector [137] when the training data is small. Thus, the 

proposed system extracts the 4096-dimensional vector from the first fully connected layer as a 
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feature vector. The resulting feature vector can then be used to perform pathology 

classification. Before performing the final classification step, the proposed system uses PCA and 

LDA for dimensionality reduction and data decorrelation. Classification of gait across different 

gait related pathologies could then be performed over an input GEI by comparing its features to 

the features registered in the database using k-NN. 

9.4 PERFORMANCE EVALUATION 
The performance evaluation section of the Thesis is divided into two halves. In the first half, the 

“hand-crafted” biomechanical feature-based system is evaluated using only the INIT dataset, as 

the features, such as shift in centre of gravity, torso orientation and amount of movement, 

cannot be reliably computed in the presence of silhouette segmentation errors present in DAI 

and DAI 2 datasets. The ability of each feature to differentiate between normal and impaired 

gait is evaluated using the two sample t-test. It is followed by the evaluation of the proposed 

system to check its accuracy in pathology classification. The second half evaluates the deep CNN-

based pathology classification system. It first discusses the fine-tuning of the system using the 

INIT dataset. It then evaluates the system’s performance using DAI and DAI 2 datasets. 

9.4.1 Performance evaluation of the biomechanical feature-based system 

The performance of the “hand-crafted” biomechanical feature-based system proposed in 

Section 9.2 is evaluated using the INIT dataset [118], which contains 10 individuals simulating 3 

different gait related pathologies along with the normal gait, as described in Section 3.3.4. To 

evaluate the ability of each feature to differentiate between normal and impaired gait, a two 

sample t-test with unequal variances, with a significance level of 0.05 is conducted [140]. If the 

two feature samples are normally distributed, the t-test provides an assessment of the reliability 

of a given feature in being able to differentiate between normal and impaired gait. Thus, given 

two sample sets of a feature, drawn from the available normal gait sequences (NM) and one of 

the other sequence groups corresponding to gait with: (i) restricted full body movement (FB), 

(ii) restricted right leg movement (RL), and (iii) restricted left leg movement (LL), the test will 

either accept or reject a null hypothesis, which states that the two samples are drawn from the 

same population group. The decision is made using a p-value, which is the probability of finding 

the observed result, or an extreme one, when the null hypothesis of the t-test is true. If the p-

value is above the significance level (in this case 0.05), the null hypothesis is accepted. The 

rejection of the null hypothesis suggests that the two sample sets are drawn from two different 

population groups. It indicates that the feature being tested is discriminative enough to 

differentiate between normal and impaired gait. 

In Table 9.1, each entry presents the p-value of the two sample t-test. The bold entries in the 

table indicate the significant results. The first row of the table presents the results between the 

NM and FB groups. The results show significantly low p-values for almost all the computed 

features. The lowest values are observed for step length, amount of movement and torso 

orientation, suggesting that these features are more significant when differentiating between 

NM and FB gait. The low p-values are due to shorter step lengths, restricted body movement 

and a hunched posture. The hunched posture also causes a significant difference in the shift in 

the COG feature, represented by a low p-value in Table 9.1. The speed of the individuals in the 

NM group is also significantly different from the FB group. This is represented by low p-values 

for the speed, normalized step count and the foot flat ratio. The only feature that accepts the 

null hypothesis is the step length symmetry, as expected, indicating that when differentiating 

between NM and FB gait the step lengths of both the legs are similar, and so the symmetry 
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feature cannot be used to identify this type of gait impairment. However, the step length 

symmetry and amount of movement symmetry features are significant when differentiating 

between NM and RL/LL gait, as indicated by their low p-values in Table 9.1. The p-value for the 

other features, such as step length, foot flat ratio, speed, normalized step count and shift in 

COG, are also low suggesting that they are significant enough to distinguish between the two 

groups. The features that accept the null hypothesis for RL/LL gait are the torso orientation and 

the amount of movement for the unrestricted side of the body. However, this is expected as the 

torso orientation feature is only effective in severe posture instability cases, such as hunchbacks, 

and the amount of movement of the unrestricted side is expected to be similar to NM group. 

Table 9.1: Two sample t-test with unequal variances and significance level of 0.05 performed between normal and 
impaired gait. 

 FB RL LL 

SL Left 1.56×10-21 2.59×10-02 4.01×10-09 

SL Right 1.05×10-23 1.44×10-10 3.88×10-02 

SL Symmetry 1.74×10-01 5.29×10-10 1.38×10-09 

FFR Left 4.48×10-07 1.00×10-03 4.89×10-04 

FFR Right 4.82×10-07 3.25×10-04 1.08×10-01 

S 7.02×10-16 1.33×10-04 1.48×10-04 

NSC 4.47×10-11 2.50×10-05 1.11×10-05 

OT 2.94×10-14 6.46×10-01 8.75×10-01 

COGshift 6.87×10-03 1.54×10-04 4.97×10-02 

AOM Left 8.04×10-16 3.328×10-01 2.04×10-09 

AOM Right 1.98×10-19 1.25×10-07 5.97×10-01 

AOM Symmetry 2.46×10-3 1.21×10-07 1.94×10-09 

 

To better illustrate the difference between the different types of gait, each entry in Table 9.2 

presents the mean and standard deviation of each feature belonging to the respective group. As 

reported in Table 9.2, the FB gait is significantly slower than the NM gait, indicated by low speed, 

high NSC and a large fraction of time spent in foot flat during stance phase. The step lengths are 

also significantly shorter than in the NM group. However, there is no significant difference 

between the left and the right foot, as indicated by low step length symmetry values and the 

amount of movement symmetry values. In addition, the bending of torso and the shift in COG is 

significantly larger than for the NM gait – see Table 9.2. For the RL/LL groups, the restricted 

leg/side of the body is indicated by short step length and low amount of movement (entropy 

values) in Table 9.2. However, the gait is relatively fast as indicated by the higher speed and 

lower normalized step count values. Finally, it should be noted that the shift in COG feature is 

effective in differentiating between normal and all the three types of impaired gait, as reported 

in Table 9.2 , but it is not very precise in its measurement. The low precision in the measurement 

is caused by camera distortions, whose effect is severe, especially at the start and at the end of 
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the gait sequence. Although its precision is not as good as that of other features, its ability to 

differentiate between different gait impairments allows the proposed system to classify the gait 

as being either normal or impaired. 

Table 9.2: Mean and standard deviation of all the observed gait features belonging to different gait related 
pathologies. 

 FB RL LL NM 

SL Left (pixels) 48.49±12.70 115.16±13.24 70.95±25.26 124.19±11.28 

SL Right (pixels) 41.19±10.24 63.24±23.36 108.69±21.90 120.68±11.56 

SL Symmetry (pixels) 7.28±6.18 51.92±18.61 45.90±17.20 5.137±3.08 

FFR Left (%) 0.80±0.09 0.70±0.05 0.68±0.09 0.64±0.04 

FFR Right (%) 0.75±0.09 0.66±0.05 0.67±0.06 0.60±0.06 

S (pixels/sec) 37.04±8.86 63.11±15.31 64.77±13.44 81.41±11.37 

NSC (steps/pixels) 0.025±0.005 0.013±0.002 0.013±0.001 0.010±0.000 

OT (˚) 62.87±6.25 84.97±3.00 85.25±3.24 85.40±2.85 

COGshift (pixels) 12.39±5.93 4.65±2.25 6.40±2.85 8.08±2.84 

AOM Left (entropy) 1.76±0.31 3.12±0.14 2.51±0.29 3.17±0.11 

AOM Right (entropy) 1.58±0.25 2.35±0.42 3.01±0.24 3.10±0.11 

AOM Symmetry (entropy) 0.17±0.12 0.77±0.39 0.55±0.21 0.06±0.05 

 

The “hand-crafted” biomechanical feature-based system proposed in section 9.2 is further 

evaluated to check its ability to classify gait across different gait related pathologies. The 

classification accuracy of the proposed system is obtained using a fivefold cross-validation 

technique. This technique divides the data into five sets, where each set contains features from 

two different individuals. Thus, the training and testing set are mutually exclusive, with respect 

to the participating individuals. Next, the classification step is repeated 5 times such that each 

time, four sets are used for training and one set is used for testing the system. Finally, an average 

is computed to represent the classification accuracy of the system. The advantage of using 

fivefold cross-validation is that the variance of the resulting estimate is reduced, as the results 

do not depend on the partitioning the data. The classification accuracy of the proposed system 

is reported in Table 9.3, performing better than the state-of-the-art, being able to classify gait 

sequences as FB, RL, LL or NM with a correct classification accuracy of 98.8%. The proposed 

system can identify the left and the right leg, which allows a more complete characterization of 

gait impairments than what is possible with the current state-of-the-art. This can be concluded 

from the result reported in Table 9.3 that contains a comparison of the proposed system against 

the state-of-the-art markerless 2D vision-based systems, evaluated using the same fivefold 

cross-validation technique. The leg angle system presented [54], can be effective when there is 

enough separation between legs. However, even in NM group, it becomes difficult to distinguish 

between the two legs during mid stance and mid swing phases, while in the FB sequences there 

is no separation between the two legs during the entire gait cycle. The work presented in [28] 
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uses a GEI along with SVM to perform classification of gait impairments. The use of the GEI 

allows the system to successfully differentiate between FB and NM groups, but there are 

significant misclassifications between the NM, RL and LL groups, reducing the overall 

classification accuracy to 75% – see Table 9.3. Even with a linear SVM, the proposed system 

performs better than the GEI-based system with a correct classification accuracy of 95.0%, 

following the same fivefold cross-validation technique. A second drawback of the GEI-based 

system [28] is that the GEIs used for the classification process do not provide any additional 

information about the gait impairments, while the proposed system provides measurable 

features that can be used to analyse the individuals’ gait. Thus, it can be concluded that the 

biomechanical features used by the proposed system provide a good representation for gait 

impairment detection and classification. 

Table 9.3: Classification accuracy (%) of the proposed “hand-crafted” biomechanical feature-based system and state-
of-the-art systems in classifying between FB, RL, LL and NM gait. 

Pathology classification system Classification accuracy 

Leg angles-based system [54] 72.5 

GEI-based system [28] 75.0 

Biomechanical features-based system (9.2) 98.8 

 

The performance of the proposed system can also be analysed using the confusion matrix 

presented in Table 9.4. It shows that when using the proposed system only a single sequence is 

misclassified, which is due to the limited size of the available database, and results in a 5% 

penalty to the classification accuracy of the RL group. It should also be noted that the falsely 

classified sequence is a poor simulation of a RL gait impairment, as can be observed by the mean 

step length of the left and right legs, leading to its classification into the NM group.  

Table 9.4: Confusion matrix (%) for the proposed biomechanical features-based system. 

Ground truth 

  FB RL LL NM 

Prediction 

FB 100 0 0 0 

RL 0 95 0 5 

LL 0 0 100 0 

NM 0 0 0 100 

 

9.4.2 Performance evaluation of the deep CNN-based system 

The deep CNN-based pathology classification system proposed in Section 9.3 is evaluated using 

the INIT [118], DAI [56] and DAI 2 [28] datasets, discussed in Section 3.3.4. However, unlike the 

hand-crafted system presented in Section 9.2, this system uses the INIT dataset only for fine-

tuning the weights of the VGG-19 network. The other two datasets can then be used to train the 

classifier and evaluate the performance of the proposed system. The DAI dataset is used to 
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evaluate the ability of the proposed system to classify gait as either normal or impaired, and the 

DAI 2 dataset is used to perform classification of gait across different gait related pathologies. 

Since the size of the three available datasets is relatively small, it is decided to take 60% of the 

largest dataset for fine-tuning the CNN weights, and use the remaining gait sequences of that 

dataset for validation. Evaluation can then be performed on the other two datasets, using the 

previously adopted CNN weights, to test the generalization ability of the obtained model. 

The INIT dataset is thus selected to fine-tune VGG-19, as it includes 20 video sequences for each 

of the four pathology groups. Since each sequence captures at least two gait cycles, a GEI for 

every gait cycle is generated, increasing the total number of GEIs to 160. As mentioned above, 

the dataset is split into a training set, with 60% of the sequences, and a validation set, with the 

remaining 40%. To further increase the size of the training set and to make the network robust 

to minor changes such as flips, scale changes and translations, data augmentation is performed 

on the training dataset. Data augmentation allows the system to account for situations not 

foreseen in the original training set, such as walking in the opposite direction of that available in 

the training sequences. Each GEI in the training set is thus augmented using small shifts, shear, 

zoom, as well as horizontal flipping, resulting in 480 GEIs. 

The pre-trained VGG-19 model has been optimized to perform classification across the 1000 

ImageNet image groups. In the proposed system the classification is performed using LDA, while 

the output from the first fully connected layer is used as a feature vector. However, to fine-tune 

the network for pathology classification the final softmax layer of the VGG-19 network is 

replaced by a different softmax layer that performs classification only across the four INIT 

dataset groups considered. Fine-tuning is done using backpropagation on the validation set. It 

considers a learning rate of 0.001, as further increasing the learning rate can lead to convergence 

problems. The batch size is set to 34 to use optimally the available graphic card memory size, 

and the number of training epochs is set to 150, with early stopping to prevent overfitting. The 

remaining parameters, such as dropout regularisation and loss function, maintain their default 

settings. 

For the fine-tuning of the VGG-19, several alternatives are considered, notably hanging the set 

of layers whose weights are adjusted when running the backpropagation optimization. In a first 

experiment, only the fully connected layers (FC) are re-trained. In the following experiments, 

the FC layers along with one or more convolutional layers (CONV) are re-trained. This process is 

repeated while re-training an extra CONV layer at each experiment. The classification accuracy 

over the training and the validation sets is reported in Table 9.5. The final column reports the 

results on the validation set after replacing the softmax layer with the proposed LDA classifier. 

During each experiment, the LDA classifier is trained using features extracted by the fine-tuned 

VGG-19 over the INIT training set. 

As reported in Table 9.5, the best results are obtained by re-training the fully connected and the 

convolutional layers 4 and 5 for 38 epochs. Further training other layers reduces the accuracy in 

the validation set, indicating overfitting of the model. Thus, this configuration was selected for 

feature extraction. It can also be concluded from the results in Table 9.5 that the fine-tuned 

VGG-19 is better suited for feature extraction rather than classification of gait pathologies, as 

the LDA classifier outperforms the softmax classifier included in the VGG-19 architecture. The 

proposed system achieves a classification accuracy of 89% on the INIT dataset through fine-

tuning. Using the same evaluation protocol, the “hand-crafted” biomechanical features-based 

system presented in Section 9.2 achieves a classification accuracy of 95%. However, its 
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performance degrades significantly in the presence of segmentation errors, present in DAI and 

DAI 2 datasets. 

Table 9.5: VGG-19 configurations and the corresponding classification accuracy (%). 

Trained VGG-19 blocks 

Classification accuracy 

Training 
Validation 

(softmax classifier) 

Proposed system 

(LDA classifier) 

FC layers 100 80 79 

FC + CONV 5 layers 100 81 85 

FC + CONV 5, 4 layers 100 84 89 

FC + CONV 5, 4, 3 layers 100 81 82 

 

Once VGG-19 is fine-tuned, the proposed system can use it to obtain features for the classifier. 

Since the VGG-19 is fine-tuned using the INIT dataset, the proposed system can be evaluated 

using the DAI and DAI 2 datasets. These two datasets respectively contain 2 and 5 different types 

of gait pathologies, as discussed in Section 3.3.4. Thus, the LDA classifier must be trained 

separately on the two datasets. The training and the testing sets are obtained using a fivefold 

cross-validation technique, which divides the data into five mutually exclusive sets of individuals. 

The process is repeated 5 times, such that each time four sets are used for training and fifth sets 

is used for testing the system. Finally, an average is computed to represent the classification 

accuracy of the system. 

Before evaluating the classification accuracy of the proposed system, the quality of features 

obtained from several deep CNNs such as ResNet50, Xception, InceptionV3, VGG-16 and VGG-

19, trained on ImageNet, are considered. The resulting features are not specifically fine-tuned 

for classification of gait across different pathologies. However, even without fine-tuning, VGG-

16 and VGG-19 achieve a classification accuracy of above 90% across both datasets. As reported 

in Table 9.6, the accuracy of the system improves when VGG-16 is replaced with VGG-19 for the 

feature extraction step. Since the deeper VGG-19 network performs better than VGG-16, it is 

selected for the fine-tuning process. It should also be noted that although VGG-19 is fine-tuned 

for the INIT Dataset, the resulting model improves the classification accuracy across the other 

two datasets. This is significant because the INIT dataset is captured in a LABCOM studio [118], 

which produces perfectly segmented silhouettes. The other two datasets, however, are 

captured in less constrained environments, where the segmentation of silhouettes is far from 

perfect, often missing parts of the walking person’s silhouette. Thus, it can be concluded that 

the proposed fine-tuning scheme generalizes well across datasets, even in the presence of 

silhouette segmentation errors, which affect the performance of the systems based on 

biomechanical features – see Section 9.2. 

Table 9.6 also reports results for the state-of-the-art systems. Among them, only the GEI system 

[28] operates on both the datasets, as this system also uses the GEI, making it robust to 

silhouette segmentation errors. The GEI system [28] performs well with the binary classification 

problem of the DAI Gait dataset, but its performance degrades significantly when the number 

of pathologies increases. Finally, the leg angle-based system [54] is very effective in performing 
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binary classification over the DAI dataset but, as reported in [28], it cannot be used to perform 

pathology specific classification. 

Table 9.6: Classification accuracy (%) of the system proposed and the state-of-the-art. 

Classification Systems 
Classification accuracy 

DAI DAI 2 Mean 

Leg angles-based system [54] 100 - - 

GEI-based system [28] 97 74 86 

Proposed system + VGG-16 90 92 91 

Proposed system + VGG-19 92 94 93 

Proposed system + VGG-19 (fine-tuned) 97 95 96 

 

Although the proposed system does not have the best performance in all situations across both 

datasets, it performs consistently well under different conditions, even when its feature 

extraction module has been trained on a dataset different from the ones considered for testing. 

It also provides the best results in the presence of silhouettes with segmentation errors, which 

can be a challenging task for the current state-of-the-art 2D vision-based systems. This is 

reported in Table 9.6, where the proposed system performs better than the state-of-the-art with 

a mean classification accuracy of 96%. Thus, it can be concluded that the proposed system is 

best suited for classification of such gait pathologies. 

It should also be noted that the proposed system could distinguish between different gait 

pathologies with a high level of certainty, as reported in the confusion matrix in Table 9.7. Only 

the gait affected by hemiplegia presents a classification accuracy lower than 90%, due to its 

similarities with gait affected by diplegia and neuropathy. This is a significant improvement over 

the GEI system [28], which fails in classifying diplegia, with a classification accuracy of only 40 %. 

It also performs poorly in the classification of gait affected by hemiplegia and neuropathy. 

Hence, the proposed system can be considered a step forward, when compared to the current 

state-of-the-art 2D vision-based systems. 

Table 9.7: Confusion matrix (%) for the system proposed in Section 9.2 operating on DAI 2 dataset. 

  Ground truth 

  Diplegia Hemiplegia Neuropathy Parkinson Normal 

Prediction 

Diplegia 98 2 0 0 0 

Hemiplegia 8 87 5 0 0 

Neuropathy 0 6 94 0 0 

Parkinson 2 0 0 98 0 

Normal 0 6 0 0 94 
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Part IV: Conclusion
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10 FINAL REMARKS 

 

10.1 INTRODUCTION 
This Thesis highlights the use of gait in unconstrained environments for the purpose of biometric 

recognition and pathology classification. To address the limitations of the existing gait-based 

biometric recognition systems, such as change in the viewpoint of the camera and change in the 

appearance of the individuals being observed, this improved solutions are proposed in this 

Thesis. New gait representations that improve the recognition accuracy of gait-based biometric 

recognition systems, capturing only the identity information while preserving health-related and 

other private data, are presented in this Thesis. New areas in gait-based biometric recognition, 

such as the use of shadow silhouettes to obtain features for the recognition systems, are also 

explored. The Thesis also presents new systems for medical diagnosis using gait. A novel system, 

proposed in this Thesis, can estimate the IC and the TO events as well as temporal gait features 

with a high level of accuracy, using a single 2D video camera. Two novel 2D vision-based systems 

for pathology classification are also presented in this Thesis. The first system explores the use of 

biomechanical features to perform gait-based pathology classification. The second system uses 

GEI along with deep CNN to classify gait across different gait related pathologies. This chapter 

presents a summary of the contributions followed by a discussion about the possible future 

directions. 

10.2 SUMMARY OF CONTRIBUTIONS 
The work presented in this Thesis focuses on the use of gait acquired from a 2D video camera 

to perform biometric recognition and pathology classification in unconstrained environments. 

10.2.1 Gait-based biometric recognition 

The gait-based biometric recognition systems can be affected by several factors, notably related 

to the individuals being observed, the camera characteristics, the light source and the 

environment. The problems caused by these factors or the combination thereof can be 

perceived as changes in the viewpoint of the camera or changes in the appearance of the 

individuals being observed. The current literature lacks an encompassing discussion of such 

factors. Therefore, a novel taxonomy discussing the factors affecting the gait-based biometric 

recognition systems is presented in this Thesis. 

Two novel gait representations are presented in this Thesis that improve the recognition 

accuracy of the gait-based biometric recognition system. The GDV proposed in Section 4.2 

explores the dissimilarity space, resulting in a gait representation that captures only the identity 

information of the individuals being observed, unlike other gait representations, such as the GEI, 

which can reveal information about the individuals’ health, gender or age. The representation is 

obtained by computing the Euclidean distance between an input GEI and a representation set 

called the prototype. Using this representation allows achieving a recognition accuracy of 99.6% 

when tested on CASIA B dataset, which is equivalent to the best state-of-the-art 2D vision-based 

systems. 

The gait representation proposed in Section 4.3 called the SEGI can be obtained for the 

individuals registered in the database by applying RPCA to the GEIs belonging to each individual. 
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Given an input GEI, its SEGI representations are generated with respect each individual 

registered in the database using their GEIs. Recognition can then be performed by associating 

the identity of the individual to the SEGI with the smallest Euclidean norm/Euclidean distance. 

The proposed SEGI representation is evaluated using CASIA B dataset, which results in a 

recognition accuracy of 99.2%. The result is equivalent to the best state-of-the-art systems that 

employ better performing classifiers. The simplicity of the matching module used in evaluating 

the proposed gait representations highlights their effectiveness in gait-based biometric 

recognition. 

Novel systems that address the problems faced by the gait-based biometric recognition systems 

operating in unconstrained environments, such as the change in the viewpoint of the camera 

and change in the appearance of the individuals being observed are also presented in this Thesis. 

To address the problem of change in the viewpoint of the camera a novel system is proposed in 

Section 5.2 that applies a PHash function to the leg region of an input GEI, to obtain a hash value 

that represents the general structure of the leg region. The hash value can then be matched 

with the database, using k-NN with Hamming distance as measure, to detect the viewpoint of 

the camera. The proposed system performs significantly better than the state-of-the-art 

viewpoint detection systems, with an average accuracy of 97.0% when evaluated on the CASIA 

B dataset. However, a limitation of the proposed system is that it can detect only those 

viewpoints that are registered in the database. Thus, a second system is presented in Section 

5.3, which performs viewpoint detection without the use of a database. The system captures 

the evolution of the feet position of the individuals over time using the bottom part of a GTI 

contour. The feet positions represent the dominant walking trajectory of the individuals. Thus, 

the viewpoint of the camera can be estimated using the direction of the walking trajectory. The 

proposed system also achieves an average viewpoint detection accuracy of 97.0% on CASIA B 

dataset, but without any need for previous training. 

The two proposed viewpoint detection systems operate using the leg region or the feet positions 

of the observed individuals. Thus, the presence of shadows under the feet can affect their 

performance. To tackle this limitation, a third novel system is presented in Section 5.4, which 

performs viewpoint detection by fitting a line through the feet positions such that the direction 

of the line represents the viewpoint of the camera. The system identifies the feet position by 

analysing the intensity values of the GTI. 

The problem of appearance change is addressed in this Thesis by presenting a novel system in 

Section 6.2 that selects only the unaltered sections of a GEI to perform gait-based biometric 

recognition. The proposed system decomposes a GEI into 11 sections and compares them to the 

average GEI image, obtained by averaging the available GEIs in the database, to identify the 

unaltered sections. Each unaltered section is matched with the corresponding sections 

registered in the database. Recognition is performed by a majority voting decision among the 

unaltered sections. The proposed system performs significantly better than the state-of-the-art 

systems with an average recognition accuracy of 94.0% on CASIA B dataset. 

The Thesis also explores the use of shadow silhouette for gait-based biometric recognition, as 

under certain conditions the shadow cast by the individuals appears similar to the body 

silhouettes and can be an alternative source of gait features. However, the shadow silhouettes 

may contain distortions and deformations caused by the camera perspective and parameters 

that can hamper the performance of the system. The two novel systems presented in this Thesis 

rectify the shadow silhouettes, so that they can be successfully used to perform gait-based 

biometric recognition. The first novel system presented in Section 7.2 uses TILT to obtain a 
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transformation matrix that rectifies the input silhouettes into a canonical viewpoint. GEIs 

obtained from the rectified silhouettes can then be used to perform recognition. When 

evaluated using the KY IR Shadow dataset, the proposed system achieves a recognition accuracy 

of 94.0%. The recognition accuracy can be further improved to 97.0% using the 4-point 

correspondence system presented in Section 7.3. Being an optimisation problem TILT cannot be 

fully controlled. The novel 4-point correspondence system uses the head and feet positions of 

the shadow silhouettes, and their projections into the canonical viewpoint, to obtain the 

transformation matrix. The rectification of the shadow silhouettes using this transformation 

matrix is significantly better than the TILT system. Thus, the GEIs obtained from the rectified 

silhouettes result in improved recognition results. 

The shadow silhouettes used by gait-based biometric recognition systems must be sharp and 

appear similar to the body of the individuals being observed. The usability of the shadow 

silhouettes can be checked using the novel system proposed in Section 7.4. The system 

generates a histogram of intensity ratios computed between the foreground containing the 

individuals and their shadow and the static background. The usable sharp shadows and the other 

diffused shadows are both represented with two distinct plots. Sharp shadows are saturated 

with low intensity ratio values, while diffused shadows contain a significant amount of both low 

and high intensity ratio values. Thus, the shadow type can be identified by analysing the peaks 

in these histograms. 

To evaluate the performance of the systems presented in Chapter 7, the IST shadow gait dataset 

and the IST shadow type dataset are presented in Section 7.5. The IST shadow gait dataset is 

used to evaluate the 4-point correspondence system presented in Section 7.3. The results 

suggest that under certain conditions the use of rectified shadow silhouettes can even provide 

better performance than using the body silhouettes. The IST shadow type dataset is used to 

evaluate the shadow type identification system, presented in Section 7.4. 

10.2.2 Gait-based pathology classification 

The use of gait analysis for medical diagnosis is explored in Chapters 8 and 9 of this Thesis. A 

novel system is presented in Section 8.2 that estimates temporal gait features by detecting the 

occurrences of the IC and the TO during a gait cycle. The system detects the IC and the TO by 

analysing the overlap between the foot flat position and the position of the feet during a gait 

cycle. The proposed system estimates the IC and the TO events with an accuracy of 99.0% on 

the CASIA A dataset. The system performs equally well on the CASIA B dataset, which contains 

viewpoint changes. The system is also evaluated using the IST-KUL gait dataset presented in 

Section 8.3. This dataset allows to compare the results of the proposed system, which operates 

without markers and using a single 2D camera, with those of a motion capture system, 

considered the gold standard for this type of analysis. The obtained results indicate ‘good’ to 

‘excellent’ correlation between the two systems. The correlation suggests that the proposed 

system estimates the temporal gait features in a very reliable way using a simple and inexpensive 

2D camera. 

Chapter 9 of the Thesis proposes two novel systems that perform pathology classification using 

video sequences acquired from a 2D video camera. The first system, presented in Section 9.2, 

uses biomechanical features to classify gait across different gait related pathologies. The 

features acquired by the proposed system can be classified into two groups. The first group is 

related to the feet of the individuals. They include features such as step length, normalized step 

count, speed and the fraction of foot flat during a stance phase. The proposed system can 

distinguish among the features obtained from the left and the right foot, thus allowing to 
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estimate gait symmetry. The second group of features are related to the entire body of the 

individuals. It include features such as the amount of movement while walking, torso orientation 

and the shift in the COG with respect to its COS. Features such as the amount of movement are 

computed separately for each foot, allowing to compute a symmetry score. Apart from detecting 

the left-right symmetry, the proposed system also detects posture instabilities, using torso 

orientation and the shift in COG, while other features such as the normalized step count and 

speed are used to detect the deviation from the normal gait. Using an SVM classifier the 

proposed system achieves a classification accuracy of almost 100.0% across four different of 

pathologies, using the INIT dataset. 

The second system, presented in Section 9.3, is capable of classifying gait related pathologies 

caused by neurological or systemic disorders such as diplegia, hemiplegia, neuropathy and 

Parkinson’s diseases with an accuracy of 95%. It operates even in situations where most state-

of the-art systems fail, such as in the presence of poorly segmented silhouettes. The proposed 

system tackles this problem by using a gait representation called the GEI. To further improve the 

classification accuracy, the proposed system obtains the best features from the GEI using the 

VGG-19 deep CNN, fine-tuned on INIT dataset. The results indicate that VGG-19 fine-tuned for 

the classification of gait pathologies performs significantly better than deep CNNs, such as VGG-

16 or VGG-19, trained on ImageNet, while also generalizing well to other datasets, such as the 

DAI and the DAI 2 datasets. 

10.3 FUTURE RESEARCH DIRECTIONS 
The work presented in this Thesis highlights the effectiveness of analysing gait sequences 

captured using a 2D camera for biometric recognition and pathology classification systems 

operating in unconstrained environments. Several problems faced by such systems are 

addressed in this Thesis, but there is scope for further improvement and development of these 

systems. This section summarises some possible future research directions. 

10.3.1 Gait-based biometric recognition 

Three novel systems to detect the viewpoint of the camera are presented in Chapter 5 of this 

Thesis. These systems operate under the assumption that the dominant walking direction of the 

individuals remains fixed along the observed gait sequence. If the individuals change their 

walking direction in between, the observed features will undergo a viewpoint change, as 

illustrated in Figure 10.1. The problem of viewpoint change along curved trajectories is 

significantly more difficult, as a single gait cycle contains features belonging to several different 

viewpoints, which can lead to poor recognition results. Model-based systems can perform well 

along curved trajectories because of the availability of additional information about the camera 

parameters and the scene – see Section 3.2.1. Such information is unavailable for 2D vision-

based systems. 

A possible solution to the problem can be the rectification of the silhouettes into a canonical 

viewpoint. Unwrapping a GTI along a curved surface using techniques such as RPCA [141] can 

result in a transformation matrix that can be used to rectify silhouettes into the canonical 

viewpoint. RPCA is currently used to rectify textures along curved surfaces without any 

additional information about the camera parameters or the scene. Thus, their effectiveness in 

rectifying silhouettes can be evaluated as future work. Another possible solution can include 

fitting a 3D skeletal model onto a 2D image, for instance by using deep CNNs, such as 3D pose 

[142]. Such systems can capture the 3D skeletal model of the individuals without any camera 



109 
 

calibrations, depth information or information about the scene, making them suitable for usage 

in unconstrained environments. 

 

  

(a) (b) 

Figure 10.1: Illustration of an individual (a) walking along a straight line, (b) walking along a curved trajectory 

A second possible future direction can involve the use of shadow silhouettes for gait-based 

biometric recognition. The novel systems proposed in Chapter 7 of this Thesis address the 

problems faced by the state-of-the-art due to camera perspective and parameters. However, 

the proposed systems operate under the assumption that the position of the light source 

illuminating the scene remains unchanged throughout the day. As illustrated in Figure 10.2, the 

shadow cast by the individuals change with changes in the position of the light source. From 

early to mid-morning, the low position of the sun in the sky casts a long, side view shadow. From 

mid-morning to noon the shadow turns shorter as the sun moves to an overhead position. Noon 

to mid-evening the shadow starts turning longer with the sun now illuminating the other side of 

the individual. Finally, mid to late evening the sun casts a long shadow illuminating the side 

again. Thus, the shadow cast from mid-morning to mid-evening can be expected to provide poor 

gait features, due to the overhead position of the light source. The change in the quality of the 

shadow silhouettes along the day must be studied to improve the performance of the 

recognition systems that use the shadow silhouettes. 

 

 

Figure 10.2: Shadow cast throughout the day. 

10.3.2 Gait-based pathology classification 

To perform classification of gait across different gait related pathologies or to acquire accurate 

gait features suitable for clinical evaluations, the systems presented in this Thesis rely on the 

use of silhouettes. The quality of the silhouettes depends on several factors, which cannot be 

controlled in unconstrained environments, as discussed in Section 2.4. A possible solution to 

such problems can be obtaining gait features directly from the given video sequence. Deep 

CNNs, such as 3D pose [142], can fit a 3D skeletal model onto a 2D image without any additional 

information about the camera or the scene. It obtains the skeletal model using a sequence of 

CNNs that repeatedly produce and improve on the belief map for the location of each key point 
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in the image. The belief map is generated by learning the image dependent spatial models of 

the relationship between key points. Thus, such systems can detect the key points even under 

occlusions, as illustrated in Figure 10.3. Although the use of deep CNNs appears promising, the 

information used by them is still 2D. Thus, its performance against a motion capture system still 

needs to be evaluated in the future. 

 

 

Figure 10.3: Output of the 3D pose system [142]. 

Novel systems to perform classification of gait across different gait related pathologies are 

presented in Chapter 9 of this Thesis. The evaluation of those systems can be further improved 

by using a large-scale dataset. The largest dataset currently available is the INIT dataset, which 

contains only 4 different types of gait, with only 10 individuals recorded per gait type. The 

different types of gait themselves do not correspond to any specific gait pathology, as discussed 

in Section 3.3.4.. To obtain significant results, a new dataset must be captured containing large 

number of individuals actually suffering from different types of gait pathologies. Since finding 

individuals suffering from such pathologies can be difficult, a possible future direction can 

include the capture of a large-scale dataset containing different type of simulated gait 

pathologies. 

Another possible alternative can involve the acquisition of a large-scale dataset where 

individuals simulate different stages of different gait pathologies. As illustrated inFigure 10.4, 

the deterioration of gait due to Parkinson’s diseases is gradual and can be classified into 5 stages. 

Availability of such datasets will allow the development of systems that can estimate the severity 

of the illness using a 2D camera, in a daily life setting. 

 

 

Figure 10.4: Deterioration of gait due to Parkinson’s diseases. 

Finally, a possible future direction involves the combination of all the work presented in this 

Thesis, i.e., performing gait based biometric recognition on individuals suffering from various 

gait related pathologies. Individuals in hospitals or elderly homes suffering from various 

disorders are very unlikely to cooperate with the recognition systems due to factors, such as 
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deterioration of the memory or frailty of the body. Under such conditions automatic access 

control to their rooms or other facilities can turn extremely difficult. Since gait analysis can be 

performed without the cooperation of the individuals, and can reveal their identity and 

pathology, it is well suited to be used for feature acquisition in automatic access control. 

However, the change in the quality of the features representing the individuals’ identity due to 

deterioration of the gait is yet to be studied. 
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