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Abstract

Joint precoding and equalisation can help to effectively exploit the advantages of

multi-input multi-output (MIMO) wireless communications systems. For broad-

band MIMO channels with channel state information (CSI) such techniques to date

generally rely on block transmission where guard intervals are applied to mitigate

inter-block (IBI) and inter-symbol interference (ISI) but reduce spectral efficiency.

Therefore, this thesis investigates novel MIMO transceiver designs to improve the

transmission rate and error performance.

Firstly, a broadband MIMO precoding and equalisation design is proposed which

combines a recently proposed broadband singular value decomposition (BSVD) al-

gorithm for MIMO decoupling with conventional block transmission techniques to

address the remaining broadband SISO subchannels. It is demonstrated that the

BSVD not only helps to remove co-channel interference within a MIMO channel,

but also reduces ISI at a very small loss in channel energy, leading to an improved

error performance and transmission rate.

Secondly, a design for jointly optimal precoding and block decision feedback equal-

isation (BDFE) that can operate at low redundancy is proposed and demonstrated

to outperform existing similar design approaches.

Thirdly, an approach to improve error performance in block transmission systems

is proposed. This approach involves a modification of the precoder and an elimina-

tion of IBI either by sharing the guard interval between transmitter and receiver or

by employing a BDFE.
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Lastly, in order to assess the proposed BSVD methods in more realistic commu-

nications scenarios, an order reduction of matrices within the BSVD is proposed in

order to contain the system complexity. It is shown that the introduced error can

be controlled and confined below a pre-set threshold. The effect of such an error

— which can also arise from non-perfect CSI — on the BSVD-based system de-

sign is investigated. Simulation results show that the proposed BSVD-based designs

are more robust to estimation or truncation errors than state-of-the-art block-based

transmission system.
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Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed a substantial growth of wireless communication systems.

Today one can see systems such as cellular mobile networks, wireless local area

networks, wireless metropolitan area networks being deployed throughout the world.

By the end of 2007, the total number of mobile subscribers in the world had reached

3.3 billions, which is half of the world’s population [1]. The revolution in wireless

communication has been fuelled by two main factors [2], the significant progress

in semiconductor technologies and the advances in digital communications. These

factors allow mobile terminals to have much smaller size and more functions than

just a voice call. They also help to reduce the cost of a handset and the system as a

whole. This in turn has boosted the number of mobile users as people now can call

from almost anywhere at an often reasonable price. In order to provide more high

quality services to users and therefore attract more people to mobile services and

increase the market share, the manufacturers now are focusing on the development

of systems that can provide high quality multimedia services and can even allow the

communication between human and machines over wireless channels. These services

are known to require very high data rates and thus contributing to the development
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Chapter 1. Introduction

of wireless systems and devices that can provide high data rate at low cost is a major

focus of the manufacturers.

There exists, however, a contradiction between the growing demand for high

data rate wireless services and the scarcity of the available radio spectrum. High

data rate services are known to require high bandwidth and high link reliability,

while the electromagnetic spectrum available for wireless communication is limited.

Therefore, spectral efficiency is of primary concern in the design of future wireless

communication systems.

In addition to the spectral scarcity, the transmit power needs to be constrained

in order to extend battery life, limit concerns about harmful influence to human

health and reduce interference to other users. Paulraj [3] identifies the limited

average Signal-to-Interference-and-Noise-Ratio (SINR) in practical receivers of less

then 35 dB have as an obstacle that makes it generally impossible to implement

Non-Line-of-Sight (NLOS) wireless links that can provide data rates of 1 Gbit/s

and beyond based on using only conventional approaches [3].

A very promising method to increase capacity and link reliability of wireless

communications systems without bandwidth expansion is to exploit the spatial di-

versity in a wireless system. In current cellular systems, frequency reuse and cell

sectorization can be considered as a simple method to exploit spatial diversity. The

use of multiple antennas, especially adaptive antenna arrays or smart antennas, is

considered an active and more effective way to exploit spatial diversity. In many

scenarios, multiple antennas are exploited on either receiver or transmitter side to

combat fading, delay spread and co-channel interference (CCI) [4, 5, 6, 7, 8, 9].

In the case where multiple antennas are used at both sides of the link, a multiple

input multiple output (MIMO) channel arises. MIMO channels have a number of

potential advantages over single-input single-output (SISO) channels such as array

gain, diversity gain, multiplexing gain and interference reduction capability [3, 10].

Array gain is the improvement in average receive Signal-to-Noise ratio (SNR)

2



Chapter 1. Introduction

obtained by coherently combining the signals on transmit and receive arrays. Whether

the maximum array gain at the transmitter and receiver can be realised or not de-

pends on the availability of the channel status information (CSI) at the transmitter

and receiver, respectively. The transmit/receive array gain also depends on the

number of transmit and receive antennas.

Diversity gain is the improvement in the link reliability resulting from transmis-

sion of the same information over independently fading paths or dimensions. The

purpose of this transmission is to ensure with high probability that at least one or

more paths will not be in a fade at any given time instance. Thus the diversity gain

will result in smaller fluctuation of the received signal power. Some forms of diver-

sity that are exploited in wireless communications systems are temporal diversity,

frequency diversity and spatial diversity. Among these forms, the spatial diversity

is the most preferred as it does not require extra bandwidth or transmission time.

Multiplexing gain is the improvement in the capacity of a MIMO channel ob-

tained from the use of multiple antennas at both sides of the link. The exploitation

of multiple antennas at both transmitter and receiver sides in conjunction with a

richly scattering propagation environment helps to create several parallel subchan-

nels, which also are referred to as channel eigenmodes, within a MIMO channel.

This leads to a capacity that linearly increases with the number of transmit or re-

ceive antennas — whichever is the smaller — with out any requirement for extra

bandwidth or transmit power. Note that while the array gain and diversity gain

can be obtained when multiple antennas are used at either transmit or receive side,

multiplexing gain can only be exploited in MIMO channels where multiple antennas

are used at both sides of the link.

The above mentioned advantages lead to significant improvements in terms of

spectral efficiency and link reliability which in turn have made MIMO technology

an exciting component of future wireless communications systems that can provide

data rates claimed to be potentially as high as 1 Gbit/s [3], 2.5 Gbit/s [11] or even

5 Gbit/s [12].

3



Chapter 1. Introduction

To exploit the above mentioned leverages of MIMO channels, different approaches

to signal processing for MIMO communications have been proposed. They can be

generally divided into two groups, which either maximise the diversity gain or the

multiplexing gain.

Approaches to maximise the diversity gain aim to perform transmission of a sin-

gle data stream, as in a SISO system but at an increased SNR. Such approaches

usually involve an appropriate combining of the received signals, such as selection

combining, maximal ratio combining and equal-gain combining (see, for example

[13]), and require the knowledge of the CSI at the receiver (CSIR). In the case that

CSI is available at the transmitter (CSIT), approaches to achieve the transmit diver-

sity involve the transmission of judiciously weighted signals from different transmit

antennas such that they arrive in phase at the receive antenna, which can be accom-

plished by, for example, beamsteering at the transmitter [14, 15]. In case the CSI

is not known at the transmitter, space-time coding approaches can be applied. The

two main coding techniques are space-time trellis coding (STTC) [9] and space-time

block coding (STBC) [8, 16]. The STTC can provide not only full diversity gain, but

also coding gain [17], however it requires a multidimentional Viterbi algorithm for

decoding and thus the complexity of the decoder increases exponentially with the

diversity level and transmission rate [18]. STBC was proposed to address the draw-

back of STTC; it is based on the transmission of orthogonal vectors and therefore

the decoder can use a simple maximum likelihood algorithm based on only linear

processing at the receiver. STBC can provide full diversity gain, however it does

not provide coding gain [17]. STBC also suffers from a loss in capacity when the

number of receive antennas is greater than one [19, 17].

Approaches that aim to maximise the multiplexing gain increase the transmission

rate by transmitting independent streams of information over multiple parallel sub-

channels within a MIMO channel. In the case of no CSIT, the input data stream is

demultiplexed into independent substreams, which are passed to the various anten-

nas. At the receiver, the individual symbol streams can be separated and detected by

4



Chapter 1. Introduction

different types of receivers, such as maximum-likelihood (ML) or near ML receivers

[3, 20], linear receivers with ML detection [3], successive cancellation receiver [21],

or ordered successive cancellation or Vertical Bell Labs Space-Time (V-BLAST) re-

ceivers [22, 23]. In case CSIT is available, spatial multiplexing is often performed by

a precoder. Precoding helps to significantly improve the system performance and

reduce the receiver complexity. An attractive approach to exploit CSI when both

CSIT and CSIR are available is the joint transmit and receive processing, which will

be referred hereafter as joint precoding and equalisation. In a number of designs

proposed in the literature, joint precoding and equalisation is based on the standard

singular value decomposition (SVD) to decompose a MIMO channel into a number

of independent subchannels. Thereafter joint optimal precoders and equalisers are

designed under different criteria, such as to minimise the system mean square error

(MSE) [24, 25], maximise the receive SNR [26], maximise the information rate [27]

or minimise the system bit-error-rate (BER) [28, 29]. Another approach is based

on equal diagonal QR decomposition [30] or geometric mean decomposition [31] of

the channel matrix where a linear precoder can be used in combination with an

ML detector, V-BLAST receiver or can be jointly designed with a decision-feedback

equaliser [32].

One can see that a large number of contributions in the literature focus on

frequency-flat or narrowband MIMO channels where the standard SVD or QR de-

compositions can be appied directly and offer optimality in various respects [33].

For the broadband case, due to the frequency selectivity of the channel one cannot

apply the SVD and QR decomposition directly. A straightforward and quite popu-

lar approach is to apply Orthogonal Frequency-Division Multiplexing (OFDM) [10]

or block transmission schemes [25] where the guard intervals in the form of cyclic-

prefix or zero-padding intervals are used to remove the effect of channel frequency

selectivity and render the channel back to flat form such that the optimisation tech-

niques for flat MIMO channels can be applied. The use of guard intervals in OFDM

or block transmission systems restricts the spectral efficiency and therefore limits
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the performance of the system 1. Especially when the length of input block or the

number of subcarriers is not much higher than the channel order.

Therefore, this thesis will focus on maximising the multiplexing gain in case

of broadband MIMO channels by proposing joint precoding and equalisation ap-

proaches that can to a certain extent avoid the drawback of spectral inefficiency

found in block transmission systems and therefore can exploit the channel more

efficiently, leading to an improvement in multiplexing gain or BER performance.

1.2 Thesis Contributions

The following contributions contained in this thesis are believed to be novel:

• Joint precoding and equalisation design for broadband MIMO with

improved performance [34, 35, 36]

To reduce the effect of the guard periods on the spectral efficiency an approach

to joint precoding and equalisation that contains two steps has been proposed.

In a first step, with the help of a broadband singular value decomposition

(BSVD) algorithm a pair of precoders and equalisers which decompose the

original broadband MIMO channel into a number of independent frequency

selective (FS) SISO subchannels was designed. Due to the spectral majorisa-

tion property of the BSVD algorithm, some of the resulting subchannels are

less dynamic and have much higher gain than the remaining subchannels. In

a second step, standard approaches for joint precoding and equalisation for

FS SISO channels are applied to the decoupled subchannels resulting from the

previous step. A water-filling algorithm can be performed over all the SISO

subchannels in order to maximise the channel capacity. In this process, sub-

channels that are highly frequency selective and have low gains are discarded,

1It is appreciated that in, for example, IEEE 802.11x with 1024 subcarriers and cyclic prefix

length of 10, spectral efficiency is not a problem.
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Chapter 1. Introduction

which can be considered to be equivalent to a removal of a part of the ISI in

the original MIMO channel at a very small loss in channel power gain or chan-

nel energy. Also, since the SISO subchannels that are used for transmission

are less dynamic and have low order, more transmit power can be directed to

the strong eigenmodes of the channel. These factors lead to improvement in

system BER performance and data throughput.

The use of the BSVD to decompose broadband MIMO channels has been

initially proposed in [34], in [36] the BSVD is combined with linear precoding

and equalisation approaches for SISO subchannels and in [35] the BSVD is

combined with a nonlinear joint precoding and equalisation method.

• Joint optimal precoding and block decision feedback equalisation

(BDFE) design with low redundancy [37]

The use of guard intervals makes it difficult for block transmission to be applied

to channels with long impulse responses. Therefore a joint optimal precoding

and block decision feedback equalisation (BDFE) design with low redundancy

is proposed. This approach is based on two reported ideas, one for interblock

interference (IBI) elimination and the other for joint optimal precoding and

BDFE for flat MIMO channels. The proposed design can work with low redun-

dancy by relying on guard intervals that are shorter than the channel order.

The design is shown to outperform the analogous state-of-the-art designs.

• Block transmission based precoding and equalisation design with

improved performance [38]

Further, the thesis focuses on the system performance rather than on the

redundancy and analyses the loss in channel energy caused by the guard inter-

val in block transmission methods. Several designs that can exploit channel

energy more efficiently and therefore can provide a better BER performance

than the conventional block transmission based designs under the same code

rate are proposed. These designs can work for both frequency selective SISO

7



Chapter 1. Introduction

and MIMO channels. One of the proposed designs is also extended to the

broadband MIMO case both directly and in combination with BSVD and the

performance of the two designs is compared.

• Reduction the order of paraunitary matrices in the SBR2 algo-

rithm [39]

The algorithm for BSVD computation, which is also referred to as second order

sequential best rotation (SBR2) algorithm, results in paraunitary matrices of

rather high order. This reduces the applicability of the BSVD in communica-

tions. An approach to reduce the order of the paraunitary matrices produced

by the SBR2 algorithm is proposed. Simulation results show that the proposed

approach can help to significantly reduce the order of the paraunitary matrices

at very low loss in their paraunitarity by introducing a low and controllable

deviation from paraunitarity. This helps to greatly simplify the design of the

precoders and equalisers that are required to decompose broadband MIMO

channels.

The convergence of SBR2 when the matrix being diagonalised is based on

pseudo-circulant matrices is also investigated. The simulation results show

that in such cases SBR2 converges much slower than in the case of non-

circulant matrices, which has important ramifications for selecting time-multi-

plexing as a technique to increase the number of virtual MIMO subchannels.

• Evaluation of the effect of non-perfect CSI on BSVD based design

In practical systems, it is difficult to obtain perfect CSI. Therefore the evalu-

ation of the effect of non-perfect CSI on the performance of the BSVD based

precoding and equalisation design is considered. The simulation results show

that in case of small channel estimation errors the proposed BSVD based

design is more robust than a bench-mark block transmission based design.

However, in the presence of strong channel estimation errors, the robustness

of the BSVD based design suffers and attains a performance comparable to

8



Chapter 1. Introduction

that of the block transmission based design.

1.3 Organisation of the Thesis

The remainder of the thesis is organised as follows:

• Chapter 2 provides an overview of joint optimal precoding and equalisation

for different channels including frequency selective SISO channel, narrowband

point-to-multipoint MIMO channels and broadband MIMO channels.

• Chapter 3 proposes a design for precoding and equalisation for broadband

MIMO channels. The design is based on BSVD and standard joint optimal

precoding and equalisation methods for SISO channels. First, the BSVD is

applied to decompose the broadband MIMO channel into a number of time-

dispersive SISO subchannels. Second, either linear or nonlinear precoding

and equalisation schemes proposed in the literature are applied to the SISO

subchannels mentioned above. The spectral majorisation property of BSVD

is exploited by applying a water-filling algorithm to all the SISO subchannels.

This helps to eliminiate part of the ISI in the original MIMO channel at a

very low loss in channel power gain. Thus the loss caused by ISI elimination

can be reduced. The simulation results show that compared with the block

transmission based benchmark systems, the proposed design can achieve a

better performance in terms of error probability, mutual information and data

throughput.

• Chapter 4 considers several designs of block based precoding and equalisa-

tion schemes. First, the design of joint optimal precoding and BDFE with low

redundancy will be addressed. Based on a combination of two reported ideas,

one on ISI removal with low redundancy, the other on joint optimal precoding

and BDFE, an optimal precoding and equalisation scheme using guard inter-

vals that are shorter than the channel order is proposed. Second, the loss in

9



Chapter 1. Introduction

channel power gain caused by the use of guard intervals in block transmission

schemes is analised and several designs with improved performance are pro-

posed. In these designs the input redundancy, which is the difference between

the input block length and the transmit block length, is exploit in such a way

that the loss in channel power gain can be reduced and the strong eigenmodes

of the channel can be selected, leading to a higher performance compared with

the standard block transmission designs. Third, one of the proposed designs is

extended to the broadband MIMO scenario and the performance in two cases

is compared. The first case is a stand-alone system using the proposed design,

wherease the second case incorporates the BSVD for the decoupling of the

MIMO subchannels.

• Chapter 5 briefly describes the BEVD computation algorithm and proposes

an approach to reduce the order of paraunitary matrices resulting from the

algorithm. The evaluation of the influence of imperfect CSI to the performance

of the design proposed in Chapter 3 is also given in this chapter.

• Chapter 6 summarises the main results of the thesis and outlines proposed

future research topics.

10



Chapter 2

Theoretical Background

In this chapter, some precoding and equalisation techniques proposed in the liter-

ature are discussed. They include joint precoding and equalisation for single input

single output frequency selective channels, joint precoding and equalisation for nar-

rowband MIMO systems and linear precoding for broadband MIMO channels.

2.1 Channel model

In the following, a general discrete-time noise free model of baseband MIMO system

with T transmit and R receive antennas as shown in Figure 2.1 is considered. In

general case, the channel can be considered to be frequency selective with finite

impulse response (FIR). The channel transfer function C(z) ∈ C
R×T (z) can be

written as

C(z) =

L
∑

l=0

C[l] z−l (2.1)

The maximum support length of the channel impulse responses (CIRs) between each

pair of transmit and receive antennas is L+1. The matrix C[l] ∈ CR×T contains the

lth time slice of these CIRs. In general case, it can be further assumed that each

of the T MIMO inputs emerges from a time multiplex of P input lines. Similarly,

each of the R outputs can be demultiplexed into P signals. With the input symbol

11



Chapter 2. Theoretical Background

TX RX R(z)C(z)

PT PR

RT

H(z)

S(z)

Figure 2.1: General MIMO channel model

vector uuu[n] ∈ CPT and output symbol vector rrr[n] ∈ CPR at discrete time instance n

defined as

uuu[n] :=























































u1[nP ]
...

uT [nP ]

u1[nP + 1]
...

uT [nP + 1]
...

u1[nP + P − 1]
...

uT [nP + P − 1]























































, rrr[n] :=























































r1[nP ]
...

rR[nP ]

r1[nP + 1]
...

rR[nP + 1]
...

r1[nP + P − 1]
...

rR[nP + P − 1]























































,

where ui[n], (i = {1, . . . , T}) is the signal sent to the ith transmit antenna and

rj [n], (j = {1, . . . , R}) is the signal received on the jth receive antenna, the resulting

spatio-temporal MIMO system can be written as

R(z) = H(z)U(z) , (2.2)

12
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whereby U(z) •—◦ uuu[n], R(z) •—◦ rrr[n] and the spatio-temporal MIMO matrix takes

the block-pseudo-circulant form

H(z)=

















C0(z) z−1CP−1(z) · · · z−1C1(z)

C1(z) C0(z) · · · z−1C2(z)
...

. . .
...

CP−1(z) CP−2(z) · · · C0(z)

















. (2.3)

The matrices Cp(z), p = 0, 1, . . . P − 1, are the P polyphase components of C(z)

such that

C(z) =
P−1
∑

p=0

Cp(z
P ) z−p (2.4)

or alternatively Cp(z) =
∑

n C[nP + p] z−n.

In the following, based on the above general channel model, several joint precoding

and equalisation schemes will be reviewed.

2.2 Precoding and equalisation for SISO channels

In this section, a linear joint optimal precoding and equalisation design for block

transmission over frequency selective channel, which was proposed in [26] by Scaglione

et al. is discussed. Similar to other block transmission schemes, this approach

also utilises transmit redundancy in the form of zero padding intervals to miti-

gate the inter-block interference (IBI) caused by the channel frequency selectivity,

then the joint optimal precoder and equaliser filter banks are designed to remove

the intrablock interference and combat noise. The optimal criteria are maximum

output SNR (MaxSNR), minimum mean square error under constrained transmit

power(MMSE/CP) [26] and maximum information rate (MaxIR) [27].

The discrete-time system model is illustrated in Figure 2.2. The channel in this

case is a SISO frequency selective channel, corresponding to the model presented in

Section 2.1 with T = R = 1.

13
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yyy[n]
c[n]

xxx[n]

z

MP

MP

MP g0[n]

g1[n]

ŝss[n]

fM−1[n] gP−1[n]

z

z

sss[n]

z

z

z

M

M

M

P

P

P

f1[n]

f0[n]
uuu[n]

vvv[n]

Figure 2.2: Precoding and equalisation for SISO frequency selective channel

The input symbol stream is converted into a sequence of blocks of size M . A

guard interval is inserted to mitigate IBI through the upsamplers by P where P >

M . Thus, the input blocks of size M are mapped into blocks of size P by the

precoder filter bank. After being transmitted through frequency selective channel

with impulse response c[n], the received blocks of size P are mapped back to a

sequence of blocks of size M by the equaliser filter bank. The input and output

signal vectors are defined as

sss[n] :=

















s[nM ]

s[nM + 1]
...

s[nM + M − 1]

















, ŝss[n] :=

















ŝ[nM ]

ŝ[nM + 1]
...

ŝ[nM + M − 1]

















,

the output vector of the precoder and the noise-free output of the channel as

uuu[n] :=

















u[nP ]

u[nP + 1]
...

u[nP + P − 1]

















, xxx[n] :=

















x[nP ]

x[nP + 1]
...

x[nP + P − 1]
















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and the received vector with noise and the corresponding noise vector as

yyy[n] :=

















y[nP ]

y[nP + 1]
...

y[nP + P − 1]

















, vvv[n] :=

















v[nP ]

v[nP + 1]
...

v[nP + P − 1]

















.

In the general case where there is no constraint on the length of precoding filters,

channel and equalisers, the relation between input and output vectors of precoder,

equaliser and channel can be written as

uuu[n] =

∞
∑

i=−∞

Fisss[n − i] (2.5)

ŝss[n] =
∞
∑

j=−∞

Gjyyy[n − j] (2.6)

yyy[n] =

∞
∑

l=−∞

Hluuu[n − l] + vvv[n] (2.7)

where

Fi =

















f0[iP ] f1[iP ] · · · fM−1[iP ]

f0[iP + 1] f1[iP + 1] · · · fM−1[iP + 1]
...

...
. . .

...

f0[iP + P − 1] f1[iP + P − 1] · · · fM−1[iP + P − 1]

















(2.8)

Gj =

















g0[jM ] g1[jM ] · · · gP−1[jM ]

g0[jM + 1] g1[jM + 1] · · · gP−1[jM + 1]
...

...
. . .

...

g0[jM + M − 1] g1[jM + M − 1] · · · gP−1[jM + M − 1]

















(2.9)

Hl =











c[lP ] · · · c[lP − P + 1]
...

. . .
...

c[lP + P − 1] · · · c[lP ]











(2.10)
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The relation between input and output blocks of the system is therefore described

by the following equation

ŝss[n] =

∞
∑

j,l,i=−∞

GjHlFisss[n − l − i − j] +

∞
∑

j=−∞

Gjvvv[n − j] . (2.11)

With the following assumptions

1. The channel is of order L with the CIR c[n] = {c[0], ..., c[L]}; (c[0], ..., c[L] 6= 0).

2. The parameters P, M, L are chosen so that P = M + L.

3. Transmit filters {fm[n]}M−1
m=0 are causal (fm[n] = 0 for n < 0) and have maximal

length of P (fm[n] = 0 for n > P ), and receive filters are causal and of length

M . The matrix F0 is selected so that rank(F0) = M .

the matrix Hl now can be simplified to

Hl = H0δ[l] + H1δ[l − 1] (2.12)

where

H0 =

























c[0] 0 0 · · · 0
... c[0] 0 · · · 0

c[L] · · · . . . · · ·
...

...
. . . · · · . . . 0

0 · · · c[L] · · · c[0]

























(2.13)

H1 =

























0 · · · c[L] · · · c[1]
...

. . . 0
. . .

...

0 · · · . . . · · · c[L]
...

...
...

. . .
...

0 · · · 0 · · · 0)

























, (2.14)

and the transmit and receive filter banks can be modeled as

Fi = F0δ[i] (2.15)

Gj = G0δ[j] . (2.16)
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Compare with the general channel model in Section 2.1, one can see that the

system being considered here is a specific case of the general model in Section 2.1

with T = R = 1 and the matrix H(z) is now given by H(z) = H0 + H1z
−1.

Equation (2.11) can be rewritten as

ŝss[n] = G0H0F0sss[n] + G0H1F0sss[n − 1] + G0vvv[n] . (2.17)

From equation (2.17) one can see that the term G0H1F0sss[n − 1] represents the IBI

and therefore it is necessary to have G0H1F0 = 0. With the form of H1 in (2.14),

this condition leads to the following two approaches.

(i) Set the last L components in the impulse responses of the transmit filters to

be zero so that F0 = (FT 0)T where F is an M × M matrix and 0 is an

L × M block of zeros. This approach is referred to as the trailing zero (TZ)

approach.

(ii) Set the first L filters in the receive filter bank to be zero, so that G0 = (0 G)

where G is an M × M matrix and 0 now is an M × L block of zeros. This

approach is referred to as the leading zero (LZ) approach.

With TZ precoder or LZ equaliser, IBI can be eliminated and equation (2.17) is

simplified to

ŝss[n] = GHFsss[n] + Gvvv[n] (2.18)

where in the TZ case G = G0 and in the LZ case F = F0. In the TZ case, H is a

P × M matrix defined as

H=































c[0] 0 · · · 0
...

. . .
. . .

...

c[L]
. . .

. . . 0

0
. . .

. . . c[0]
...

. . .
. . .

...

0 · · · 0 c[L]































(2.19)
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and in the LZ case, H is an M × P matrix defined as

H=



















c[L] · · · c[0] 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 c[L] · · · c[0]



















(2.20)

After elimination of IBI by applying the TZ or LZ approach, the precoder and

equaliser matrices are optimized further under several criteria, such as MaxSNR and

MMSE/CP [26] or MaxIR [27]. Here, the input signal sss[n] and the noise vvv[n] are

assumed to be mutually uncorrelated, wide-sense stationary with known covariance

matrices Rss and Rvv.

The optimal precoder and equaliser under MaxSNR criteria are designed to

maximise the SNR at the equaliser output subject to zero-forcing (ZF) constraint

GHF = I. The equaliser is derived as a function of the precoder matrix from the

condition of maximising the output SNR, the precoder matrix is then calculated

from the ZF constraint.

Based on the following eigendecompositions

Rss = U∆UH

HHR−1
vv H =



















VΛVH for TZ case

(V,Vn)





Λ 0

0 0



 (V,Vn)H for LZ case
(2.21)

where U,V,Vn are unitary matrices and ∆,Λ are diagonal matrices, the optimal

precoder and equaliser under the MaxSNR criterion are given by [26]:

Fopt =

√
K

σv

VΛ−(1/2)

Gopt = σv

√
KΛ−(1/2)VHHHR−1

vv (2.22)

where K is defined as transmit-amplification gain and depends on the transmit power

and σ2
v is the variance of noise.
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In case the input signal is white with Rss = σ2
sI and the transmit power is

constrained to be P0, K is given by [25]

K =
P0σv

σs

∑

i λ
−1
ii

. (2.23)

Under the MMSE/CP criterion, the optimal precoder and equaliser pair is de-

signed to minimise the arithmetic MSE of the system subject to constrained transmit

power. Here the equaliser matrix is derived as the Wiener solution and the precoder

requires a water-filling algorithm over diagonal elements of Λ. The MMSE/CP

optimal pair of precoder and equaliser is given by [26]

Fopt = VΦUH (2.24)

Gopt = RssF
H
optH

H(Rvv + HFoptRssF
H
optH

H)−1 (2.25)

where Φ is a diagonal matrix with main diagonal elements obtained by a water-filling

algorithm

|φii|2 = max

(

P0 +
∑M̄

j=1 λ−1
jj

∑M̄
j=1(δjj/λjj)1/2

1√
λiiδii

− 1

λiiδii
, 0

)

. (2.26)

For the MaxIR criteria [27], the precoder and equaliser pair is designed to max-

imise the mutual information between the input and the output signals. The optimal

MaxIR precoder can be writen as in (2.24). The maximisation of mutual information

is achieved by the power allocation according to a classical water-filling algorithm

with single water level [40], which results in the main diagonal elements of Φ as

|φii|2 = max

(

P0 +
∑M̄

j=1 λ−1
jj

M̄δii

− 1

λiiδii

, 0

)

. (2.27)

where in both MMSE/CP and MaxIR cases, M̄ is the number of positive |φii|2.

The optimal equaliser in this case can be derived under either ZF or MMSE

criteria. Given the optimal precoder, the ZF equaliser can be writen as

Gopt =
(

R−1/2
vv HFopt

)†
R−1/2

vv (2.28)

whereby (.)† is the pseudo-inverse operation. The MMSE equaliser in this case has

the same form as in (2.25).
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The optimal precoder and equaliser pairs mentioned above render a frequency

selective SISO channel into a number of flat subchannels. One should note that

the water-filling algorithm for MMSE/CP design differs from the water-filling algo-

rithm for MaxIR design. In the former, depending on the value of the water level,

the transmit power allocated for each flat subchannel can be a convex function or

monotonically decreasing function of λii while in the later the transmit power al-

located for each flat subchannel is always a monotonically increasing function of

λii.

2.3 Joint precoding and equalisation for narrow-

band MIMO systems

This section will discuss a joint precoding and equalisation design proposed in [41, 42]

to mitigate multiuser interference (MUI) while maximising the system capacity or

allowing power control in multiuser narrowband MIMO systems. The algorithm,

which is referred to as block diagonalisation, is based on the SVD of the channel

matrices, the precoder is designed to remove the inter-user interference and achieve

maximum capacity or allow power control and the equaliser is designed to separate

the individual data streams.

Consider a multiuser flat-fading MIMO system with a base station which has T

transmit antennas and K users, each with Ri receive antennas. Let the total number

of antennas of all receivers to be R =
∑K

i=1 Ri. The MIMO channel between the

transmitter and the ith user is represented by matrix Hi ∈ CRi×T . One can see

that this MIMO system is a specific case of the system described in Section 2.1

with L = 0, P = 1 and H(z) = C0 is actually a stacked version of all matrices Hi.

For simplicity, the matrix H(z) is written as H(z) = H. Let the precoding matrix

associated with the ith user be denoted by Bi ∈ CT×mi where mi is the length of

the vector of symbols sssi[n] which is destined to this user. The input vector sssi[n]
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is linearly mapped by the precoder Bi to vector uuui[n] which is actually broadcast

from the transmit antennas. At the input of the ith receiver, the received signal

includes the contributions from the signals for all users as well as the noise and can

be written as

yyyi[n] =

K
∑

k=1

HiBksssk[n] + vvvi[n] (2.29)

where vvvi[n] denotes the spatially white noise and interference with covariance matrix

E{vvvi[n]vvv∗
i [n]} = σ2

vI. To capture the operation of the whole system in matrix form,

the received data from all of the receivers are stacked together and represented as

yyy[n] =











yyy1[n]
...

yyyK [n]











=











H1

...

HK











[

B1 · · · BK

]











sss1[n]
...

sssK [n]











+











vvv1[n]
...

vvvK [n]











= HB sss[n] + vvv[n]

(2.30)

where the definitions of yyy[n],H,B, sss[n] are clear from the equation.

In order to remove inter-user interference, the precoders are designed so that

HiBi 6= 0 and HjBi = 0 for j 6= i. In other words, HB is a block-diagonal matrix.

Define matrix Ĥi ∈ C(R−Ri)×T as follow

Ĥi =
[

HT
1 · · ·HT

i−1H
T
i+1 · · ·HT

K

]T
(2.31)

Assume T > R and let rank(Ĥi) = Li ≤ (R − Ri), consider the following SVD

Ĥi = Ûi Σ̂i





V̂H
i,1

V̂H
i,0



 (2.32)

where V̂H
i,1 contains the first Li rows that correspond to the non-zero singular values

of Ĥi and V̂H
i,0 contains the last T − Li rows. It is clear that the columns of V̂i,0

span the null space of Ĥi (ĤiV̂i,0 = 0). Thus, V̂i,0 can help to eliminate MUI and

therefore let Bi = V̂i,0, the precoder matrix B for all users can be written as

B =
[

V̂1,0 · · · V̂K,0

]

. (2.33)
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The overall channel transfer matrix preprocessed by B now becomes

HB =





Hi

Ĥi





[

V̂1,0 · · · V̂K,0

]

=











H1V̂1,0 0

. . .

0 HKV̂K,0











. (2.34)

Further, let L
′

i = rank(HiV̂i,0) and consider the SVD

HiV̂i,0 = Ui





Σi 0

0 0









VH
i,1

VH
i,0



 (2.35)

where Vi,1 holds the first L
′

i right singular vectors that correspond to the non-zero

singular values in diagonal matrix Σi ∈ CL
′

i×L
′

i , one can see that

UH
i HiV̂i,0Vi,1 = Σi . (2.36)

This motivates the use of an equaliser Wi = UH
i and setting the precoder as

B =
[

V̂1,0V1,1 V̂2,0V2,1 · · · V̂K,0VK,1

]

(2.37)

so that the product











W1 0

. . .

0 WK











HB =











Σ1 0

. . .

0 ΣK











(2.38)

is a completely diagonal matrix, which means the MUI and the co-channel interfer-

ence caused by MIMO components is completely eliminated. The overall operation

of the system can be described through the following equation

ŝ̂ŝs[n] = WHBsss[n] + Wvvv[n]

= Σ sss[n] + Wvvv[n]
(2.39)

where W = diag
(

UH
1 · · · UH

K

)

, Σ = diag (Σ1 · · · ΣK) and ŝ̂ŝs[n] = [ŝ̂ŝsT
1 [n] · · · ŝ̂ŝsT

K [n]]T

with ŝ̂ŝsi[n] the vector of estimated symbols at the output of equaliser Wi.
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In order to maximise the system capacity, a water-filling algorithm with single

water level is performed on the diagonal elements of Σ so that the transmit power

will be allocated accordingly. Thus the precoder B now becomes

B =
[

V̂1,0V1,1 V̂2,0V2,1 · · · V̂K,0VK,1

]

Λ1/2 . (2.40)

where Λ is a diagonal matrix with diagonal elements λjj obtained from the above

mentioned water-filling algorithm.

The system capacity is given by [42]

C = log2

∣

∣

∣

∣

I +
Σ2Λ

σ2
v

∣

∣

∣

∣

. (2.41)

With the precoder matrix defined as in equation (2.40), it can be seen that

mi = L
′

i and therefore, it is necessary that L
′

i ≥ 1 so that the transmission for the

ith user can take place.

In the case of the power control problem where one have to minimise the transmit

power subject to achieving a desired transmission rate for each user, the precoder

and equaliser matrices can be derived in similar steps as mentioned above, except

that the matrix Λ is defined by performing water-filling separately for each user,

where the constrained transmit power for each user is scaled to achieve the required

transmission rate.

From the SVD in (2.32), one can see that in order for V̂i,0 to exist, it is required

that

T > max{rank(Ĥ1), · · · , rank(ĤK)}. (2.42)

This condition can be violated when R > T and therefore, to loosen the constraint

on the number of transmit antennas T , a coordinated transmit-receive beamforming

approach was proposed [41, 42]. There the equalisers Wi were initially set to be the

first mi left singular vectors of Hi, then the above algorithm is applied for matrices

H̄i = WH
i Hi to yield B and new Wi, finally the equaliser matrix is calculated as a

product between the first mi singular vectors of Hi with the new Wi.
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The new constraint on the number of transmit antennas now is

T ≥
K
∑

i=1

mi . (2.43)

2.4 Linear precoding and equalisation for broad-

band MIMO systems

In this section, an approach for joint precoding and equalisation for frequency se-

lective MIMO systems is discussed. This approach was proposed in [25] and similar

to the one in [26], it is also based on block transmission and utilises redundancy

in the form of guard intervals to mitigate inter-block interference and exploits the

channel eigendecomposition to design the optimal precoders and equalisers. Several

design criteria were proposed in [25] which targeted minimum MSE and BER under

constraints on the transmit average power or peak power. This section will focus on

the optimal designs under constrained transmit average power.

Consider the MIMO channel model in Section 2.1, assume that the channel is

stationary or slowly time-varying, the channel with linear precoder and equaliser is

illustrated in Figure 2.3.

The blocks of input symbols sss[n] ∈ CN are mapped into vectors uuu[n] ∈ CPT by

the precoder F so that

uuu[n] = Fsss[n] . (2.44)

yyy[n]

G

S PN

F

PT

P

C(z)

T R

S

N

sss[n] ŝss[n]

uuu[n]

PR

Figure 2.3: Linear precoding and equalisation for broadband MIMO

24



Chapter 2. Theoretical Background

Through the parallel-to-serial converter, each vector uuu[n] is divided into P blocks

of length T , which will be transmitted through T transmit antennas after pulse

shaping. At the receiver, the received symbol blocks of length R from the receive

antennas are stacked together by the serial-to-parallel converter to form the vector

yyy[n] ∈ CPR. The equaliser G ∈ CN×PR will perform the inverse mapping on yyy[n] to

give the estimated output symbol blocks ŝss[n].

The system can be equivalently illustrated as in Figure 2.4 where the MIMO

channel is now represented by pseudo-circulant matrix H(z) as in (2.3). With P > L,

polynomial matrix H(z) has unit order and the relation between the input and

output blocks can be written as

ŝss[n] = GH0Fsss[n] + GH1Fsss[n − 1] + Gvvv[n] (2.45)

whereby H0 and H1 are two coefficient matrices of H(z), vvv[n] is the block of noise

samples.

F H(z) Gsss[n]

N PT PR

vvv[n]

ŝss[n]

N

yyy[n]uuu[n]

Figure 2.4: Linear precoding for broadband MIMO - simplified scheme

Assume that the channel is stationary or slowly time-varying, one can write H0

and H1 in the following form

H0 =

























C[0] 0 · · · · · · 0
... C[0] 0 · · · 0

C[L] · · · . . . · · ·
...

...
. . . · · · . . . 0

0 · · · C[L] · · · C[0]

























(2.46)
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H1 =

























0 · · · C[L] · · · C[1]
...

. . . 0
. . .

...

0 · · · . . . · · · C[L]
...

...
...

. . .
...

0 · · · 0 · · · 0

























(2.47)

From equations (2.45) and (2.47), one can see that similar to the case of SISO

dispersive channels in Section 2.2, the IBI here can be eliminated by setting the

term GH1F to zero, which also leads to either the TZ approach where the last LT

rows of precoder matrix are forced to be zero or LZ approach where the first LR

columns of equaliser matrix are set to zero. These two approaches are equivalent to

the setting of the last L blocks among P transmitted blocks of length T to zero (TZ

method) or discarding the first L blocks among P received blocks of length R (LZ

method) as mentioned in [25].

With the IBI eliminated and P = M + L, equation (2.45) can be simplified as

ŝss[n] = G0HF0sss[n] + G0vvv[n] (2.48)

whereby in the TZ case G0 ∈ CN×PR, F0 ∈ CMT×N and H ∈ CPR×MT ,

H=































C[0] 0 · · · 0
...

. . .
. . .

...

C[L]
. . .

. . . 0

0
. . .

. . . C[0]
...

. . .
. . .

...

0 · · · 0 C[L]































, (2.49)

and in the LZ case G0 ∈ CN×MR, F0 ∈ CPT×N and H ∈ CMR×PT ,

H=











C[L] · · · C[0] · · · 0
...

. . .
. . .

. . .
...

0 · · · C[L] · · · C[0]











. (2.50)
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In the case when the channel is time-varying, H is a block-banded matrix.

Note that in order for the output symbols to be recovered by linear equaliser G,

it is necessary that N ≤ rank(H). Therefore in the TZ case, it is required that

N ≤ min(PR, MT ) and in the LZ case, N ≤ min(MR, PT ) is required.

Assume that the transmit symbols are white with the covariance matrix

Rss = E{sss[n]sss[n]H} = σ2
sI , (2.51)

the noise is Gaussian with positive definite covariance matrix Rvv, vvv[n] and sss[n] are

mutually uncorrelated. Consider the following eigenvalue decomposition

HHR−1
vv H = V̂Λ̂V̂H (2.52)

where Λ̂ is a Q
′ × Q

′

diagonal matrix, Q
′

= rank(HHR−1
vv H). Assume that the

elements in the diagonal of Λ̂ are sorted in decreasing order, denote the top left

N × N block of Λ̂ by Λ and denote the coresponding first N columns of V̂ by V.

The optimal precoders and equalisers are also designed under either the MMSE

criterion or a criterion similar to maximising the system SNR. Here for simplicity,

the latter will be referred to as the MaxSNR criterion.

Under the MMSE criterion, the optimal equaliser which minimises the arithmetic

MSE is given by

Gopt = RssF
H
0 HH

(

HF0RssF
H
0 HH + Rvv

)−1
. (2.53)

The error covariance matrix can then be written as a function of the precoder matrix

F0 as

Ree = σ2
s(I + σ2

sF
H
0 HHR−1

vv HF0)
−1 (2.54)

In the case of minimising trace(Ree) subject to power constraint trace(FoptF
H
opt)σ

2
s =

P0, the optimal precoder is given by

Fopt = VΦ (2.55)
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where Φ is a diagonal matrix with diagonal elements obtained from a water-filling

algorithm

|φii|2 = max

(

P0 +
∑N̄

j=1 λ−1
jj

σ2
s

∑N̄
j=1 λ

−1/2
jj

λ
−1/2
ii − 1

λiiσ2
s

, 0

)

, (2.56)

where N̄ ≤ N is the number of positive |φii|2 (|φii|2 > 0 for i ∈ [1, N̄ ] and |φii|2 = 0

for i ∈ [N̄ + 1, N ]).

In the case of minimising the determinant of error covariance matrix |Ree| subject

to power constraint trace(FoptF
H
opt)σ

2
s = P0, the optimal precoder also has the form

Fopt = VΦ where Φ is N × N diagonal matrix with diagonal elements obtained

from water-filling algorithm with single water level

|φii|2 = max

(

P0 +
∑N̄

j=1 λ−1
jj

N̄σ2
s

− 1

λiiσ2
s

, 0

)

, (2.57)

where similar to the previous case, N̄ ≤ N is the number of positive |φii|2. It has

been shown in [25] that this optimal precoder also maximises the mutual information

of the system.

The precoder that maximises the output SNR subject to constrained transmit

power is also given in the form Fopt = VΦ where Φ ∈ C
N×N is a digonal matrix

with diagonal elements given by

|φii|2 =
P0

σ2
s

∑

j λ−1
jj

λ−1
ii (2.58)

and the optimal equaliser is written as Gopt = SVHHHR−1
vv where S is N × N

invertible matrix.

2.5 Concluding Remarks

In this chapter some state-of-the-art joint precoding and equalisation designs have

been reviewed. The designs considered here exploit the standard SVD as a powerful

tool to decompose the channel matrix and eliminate the CCI. In Section 2.3, the

property of the SVD is also utilised to eliminate multiple access interference. The
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designs for frequency selective channels, either SISO or MIMO, in Section 2.2 and

Section 2.4 utilise zero-padding intervals of the length equal to the channel order

to eliminate IBI caused by channel frequency selectivity. The use of zero-padding

intervals allows the block based transmission over a frequency selective channel to be

described in the matrix form, thus the standard SVD can be applied to remove intra-

block interference. Zero-padding intervals, however, reduce the spectral efficiency of

the system, especially in case of broadband or frequency selective MIMO channels.

The next chapter will consider an approach to reduce the effect of the guard

intervals such that the channel can be better exploited in term of spectral efficiency,

and a better performance can be achieved.
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BSVD Based MIMO Precoding

and Equalisation

The use of guard intervals to eliminate IBI in block transmission systems reduces

the spectral efficiency of the system. This chapter will discuss a new approach to

precoding and equalisation for frequency selective MIMO channels by applying a

recently proposed broadband singular value decomposition (BSVD) to decouple the

MIMO channel matrix into approximately independent frequency selective SISO

subchannels. In a second step, the remaining ISI in the subchannels is eliminated

using methods reported in the literature. This first step helps to remove not only

co-channel interference (CCI) but can also eliminate part of the inter-symbol inter-

ference with a very small loss in channel power gain as will be demonstrated. A

numerical example given in this chapter shows that the proposed method can pro-

vide better bit error rate performance than that of a benchmark design. Under a

quality of service constraint, the proposed design can achieve higher data through-

put and mutual information than that of the benchmark design while maintaining

a similar symbol error performance.
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3.1 Introduction

In wireless communications MIMO systems arise when multiple antennas are used

at both the transmitter and receiver sides. Such systems can offer transmission

with increased capacity over SISO channels provided that the transmission paths

are uncorrelated [43, 44, 45] and at the same time provide an increase in range and

reliability without consuming additional bandwidth.

In many cases, it is assumed that the channel state information (CSI) is available

only at the receiver (CSIR). In such cases, either space-time coding [9, 16, 46], the

V-BLAST [47, 43] or equalisation techniques [48, 49, 50] can be applied. However,

in some scenarios, such as frequency division duplex (FDD) or time division duplex

(TDD) systems, the CSI can be made available at the transmitter (CSIT) either

through a feedback channel or through the reciprocity of the channel. In such cases,

the problem of joint transmit and receive processing or joint precoder and equaliser

design [51, 52, 41, 24, 25, 53, 54, 32] becomes very appealing as it can achieve much

higher performance than systems with isolated designs.

A large number of research publications focus on the case of narrowband or

frequency flat fading MIMO [41, 55, 56], where the channel can be represented by a

matrix and the standard singular value decomposition (SVD) plays a central role in

the joint design process in order to decouple the MIMO channel into independent

flat subchannels.

With the demand for higher transmission rates, the transmission channel can no

longer be considered as narrowband and designs for the resulting broadband MIMO

systems have attracted attention. In broadband MIMO systems, apart from the

elimination of CCI caused by the MIMO components, additionally the elimination

of ISI caused by the channel frequency selectivity is required. A widely applied

approach is based on block transmission. Firstly, multicarrier modulation can be

utilised to decompose the broadband problem into a number of narrowband ones,

where the above mentioned powerful SVD-based designs can decouple the MIMO
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system. Secondly, single carrier broadband approaches have been formulated for the

single-input single-output case in [26, 27], which can be easily extended to the MIMO

case [25]. In [53], Palomar et al. also assume that the IBI has been eliminated by

the use of guard intervals and then generalise the results on joint design of linear

precoding and equalisation for flat fading MIMO systems to several criteria using

convex optimisation functions. There, the equaliser is first derived as a Wiener

filter, then under different optimisation criteria that have been unified in form of

Schur-concave or Schur-convex functions, the precoder is determined via the SVD

of the whitened channel.

In [54], an iterative algorithm to design joint optimal precoder and equaliser for

broadband MIMO channels was proposed. There, the optimal precoder and equaliser

in the form of FIR MIMO filters are designed to minimise the system MSE under

constrained transmit power and in the presence of near-end crosstalk.

The designs in [26, 25, 53] generally rely on a block-transmission approach, which

requires a certain amount of redundancy to eliminate inter-block interference (IBI).

This redundancy limits the spectral efficiency of the system. The loss in spectral

efficiency can be reduced by increasing transmit block size, however due to the

constrained transmit power, the energy per symbol will be decreased and therefore

the bit error rate performance becomes poorer. Also, one can see that the use of

guard intervals always requires an amount of degrees of freedom (DOF) equal to the

channel order to be invested into IBI cancellation only and therefore it cannot be

traded-off against ISI and noise amplification unless channel shortening is used. In

[54], it is also shown that the use of zero-padding intervals as proposed in [26, 25] is

not optimal in terms of SNR performance.

In this chapter, a method for precoding and equalisation for point-to-point broad-

band MIMO channels is proposed. Different from block transmission based ap-

proaches in [25, 53], in the first step a recently proposed broadband singular value

decomposition (BSVD) [57, 58] is utilised to decompose the broadband MIMO chan-

nel matrix, which is polynomial, into two paraunitary matrices and a polynomial
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diagonal matrix and thus the broadband MIMO channel can be decomposed into

a number of nearly independent frequency selective (FS) SISO subchannels whose

transfer functions correspond to the main diagonal elements of the diagonal polyno-

mial matrix mentioned above. The use of BSVD helps to eliminate not only the CCI

in the MIMO channel but also a part of ISI when combined with a water-filling al-

gorithm in the second step. In the second step, the decoupled FS SISO subchannels

are precoded and equalised using standard methods such as in [26, 27, 32]. Since ISI

has been eliminated partly with the help of the BSVD, this approach loosens the

constraint of ISI elimination and provides a possibility to achieve a better spectral

efficiency for the decoupled FS SISO subchannels and thus leads to an improved

system performance.

This chapter is organised as follows. In Section 3.2, the overall channel and system

setup are laid out. Section 3.3 addresses the first step in the proposed design, aiming

at CCI cancellation, while Section 3.4 considers the elimination of remaining ISI on

FS subchannels. Finally, a numerical example is provided in Section 3.5, while

conclusions are drawn in Section 3.6.

3.2 Channel Model and System Set Up

3.2.1 MIMO System Model

Here the precoding and equalisation design for the stationary broadband MIMO

channel, whose model has been described in Section 2.1 will be considered. Recall

that the channel is of order L and has T inputs and R outputs, the transfer function

of the channel is

C(z) =
L
∑

l=0

C[l] z−l . (3.1)

It is further assumed that the exact CSI is available to both the transmitter and

receiver sides.
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In the general case, when one assumes that the signal on each of the T inputs

has resulted from a time-multiplexing of P input signals, and each of R outputs is

demultiplexed into P signals, the MIMO channel can be represented by the pseudo-

circulant matrix H(z) ∈ CRP×TP (z) as explained in Section 2.1. Recall that H(z)

is given by

H(z)=

















C0(z) z−1CP−1(z) · · · z−1C1(z)

C1(z) C0(z) · · · z−1C2(z)
...

. . .
...

CP−1(z) CP−2(z) · · · C0(z)

















, (3.2)

where Cp(z) are the polyphase components of C(z),

Cp(z) =
+∞
∑

n=−∞

C[nP + p] z−n . (3.3)

In the following a generic model with precoder P(z) ∈ CK×PT (z) and equaliser

E(z) ∈ CPR×K(z) and the channel H(z) as illustrated in Figure 3.1 is considered.

X(z)

V (z)

X̂(z)E(z)

RP KK TP

H(z)P(z)

Figure 3.1: MIMO channel H(z) with precoder P(z) and equaliser E(z)

including a multiplexing by P .

3.2.2 Block Based Precoder and Equaliser

When P = 1, H(z) = C(z) is an R × T polynomial matrix of order L. As the

number of polyphase components P increases, the size of H(z) becomes larger, but

its polynomial order reduces in accordance with the shortening polyphase responses.

Once P = L is reached, the polyphase components Cp(z) are constants with no
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dependency on z. However, the block-pseudo-circulant form of H(z) in (2.3) ensures

that for all P > L, the spatio-temporal MIMO system matrix H(z) will be a first

order polynomial, which means that IBI always exists.

As it has been reviewed in Sections 2.2 and 2.4, to overcome the polynomial order

and therefore to eliminate the ISI or IBI, the block transmission based system in

[26] for T = R = 1 and in [24, 25] for arbitrary T and R rely on a time multiplex

that is chosen longer than the channel order, i.e. P > L. As a result, H(z) now

becomes a sparse block-pseudo-circulant matrix of only first order in z, as noted

earlier. Specifically

H(z) = H0 + H1z
−1 (3.4)

whereby H0 and H1 are given in (2.13) and (2.14) for the SISO case and in (2.46)

and (2.47) for the MIMO case.

The polynomial order of the MIMO system matrix H(z) can be eliminated by

suppressing H1 through either TZ or LZ approaches as mentioned in Sections 2.2

and 2.4. Thus the polynomial nature of H(z) has been eliminated and the precoder

and equaliser can be selected as non-polynomial matrices. However, one can see

again that these TZ or LZ approaches or even the multicarrier approach which uses

cyclic prefix always require at least the first L degrees of freedom (DOF) to be used

only for the ISI elimination.

3.2.3 Proposed Design

The proposed design has two components. Firstly, the MIMO system matrix H(z)

is decoupled into a number of independent FS subchannels based on a recently

proposed broadband singular value decomposition [58, 57]. This allows to factorise

H(z) as

H(z) = U(z)





S(z) 0

0 0



 Ṽ(z) (3.5)
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whereby S(z) = diag{S00(z), S11(z), · · ·SK−1,K−1(z)} and U(z) and V(z) are para-

unitary matrices.

The factorisation (3.5) motivates the use of a precoder P(z) containing the first

K columns of V(z) and an equaliser E(z) containing the first K rows of Ũ(z) such

that the broadband MIMO channel matrix is decomposed into K ≤ min(RP, TP )

independent FS subchannels. One can write

X̂(z) = E(z)C(z)P(z)X(z) + E(z)V (z) (3.6)

= S(z)X(z) + E(z)V (z) (3.7)

where X(z) ∈ C
K(z) is the signal vector at the input of the precoder P(z), X̂(z) ∈

CK(z) is the signal vector at the output of the equaliser E(z), and V (z) ∈ CRP (z)

characterises additive white Gaussian noise as illustrated in Figure 3.1.

Although the CCI has been eliminated with the help of P(z) and E(z), the

decoupled subchannels are still dispersive and cause ISI. Therefore in a second step

a precoder and equaliser are designed for each decoupled subchannel so that the

remaining ISI is eliminated. These precoders and equalisers can be the linear optimal

precoders and equalisers in [26, 27] which are also reviewed in Section 2.2 or nonlinear

optimal precoders and equalissers proposed in [32]. One can see that depending on

the precoding and equalisation method applied for the SISO FS subchannels, the

block transmission might be invoked in the second step, but only for a small portion

of the system design. In addition, the second stage design of precoders and equalisers

can take the individual properties of each subchannel — such as its SNR — into

account.

Note that P is both the number of polyphase components and the block size. For

block transmission systems in [26, 25], P >> 1, while for the designs proposed here,

P is generaly very small and can be equal to 1.
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3.3 MIMO System Decomposition Via BSVD

3.3.1 Broadband Singular Value Decomposition

In the following the BSVD described in [58, 59, 57], and the resulting properties

of the subchannels are characterised. Different from the standard SVD, which can

diagonalise only scalar matrices, the BSVD is applied to diagonalise polynomial

matrices. A BSVD can be obtained via two broadband eigenvalue decompositions

(BEVD), whereby a parahermitian matrix R1(z) = H(z)H̃(z) is decomposed such

that

R1(z) = U(z)Γ1(z)Ũ(z) . (3.8)

In an ideal case, besides the diagonality of Γ1(z), one would demand the parauni-

tarity or losslessness of U(z) such that

U(z)Ũ(z) = Ũ(z)U(z) = I (3.9)

and spectral majorisation of Γ1(z) [60] such that its diagonal elements

Γ
(1)
00 (z), Γ

(1)
11 (z), . . . Γ

(1)
RP−1,RP−1(z)

are ordered according to
∣

∣

∣
Γ

(1)
kk (ejΩ)

∣

∣

∣
≥
∣

∣

∣
Γ

(1)
k+1,k+1(e

jΩ)
∣

∣

∣
∀ Ω and k = 0, 1, . . . , RP − 2, (3.10)

similar to the ranking of the singular values in a standard singular value decom-

position. Note that paraunitariness or losslessness of U(z) conserves power, which

means trace{Γ1[0]} = trace{R1[0]} with Γ1[τ ] ◦—• Γ1(z) and R1[τ ] ◦—• R1(z).

In a similar operation, V(z) can be obtained via BEVD of

R2(z) = H̃(z)H(z) = V(z)Γ2(z)Ṽ(z) . (3.11)

An iterative numerical algorithm reported in [58, 59, 57] which employs a sequence

of paraunitary operations to yield a close approximation of a diagonal and spectrally

majorised polynomial matrices Γ1(z) and Γ2(z) will be discussed in more details in

Chapter 5.
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3.3.2 Precoder and Equaliser for CCI Suppression

Applying the algorithm in Section 3.3.1 to find the decoupling precoder and equaliser

according to Section 3.2.3, an approximately diagonalised

S(z) = E(z)H(z)P(z) (3.12)

results for the overall system shown in Figure 3.1. Since S(z) is not absolutely

diagonal, there exists a certain amount of CCI at the output of equaliser E(z) and

thus the term that include the noise filtered by E(z) and the remaining CCI is

denoted as V
′

i (z). In the following the components of V
′

i (z) will be characterised.

Let Rv′iv
′

i
(z) be the power spectral density of V

′

i (z) on the ith subchannel, Sij(z)

the element of S(z) placed in the ith row and jth column. Further, Rxi,xi
(z) is

the power spectral density of the ith input in X(z), which is assumed to be mu-

tually uncorrelated with all other inputs. Then at the receiver, the remaining CCI

components can be characterised by the CCI power spectral density Ri,CCI(z),

Ri,CCI(z) =
∑

j,j 6=i

Sij(z) Rxj ,xj
(z) S̃ij(z) . (3.13)

The channel noise appears in the output X̂(z) filtered by the equaliser E(z), such

that its power spectral matrix at the output is

Rηη(z) = E(z)Rvv(z)Ẽ(z) . (3.14)

Thus the power spectral density of V
′

i (z) is given by

Rv′iv
′

i
(z) = R(ii)

ηη (z) + Ri,CCI(z) (3.15)

where R
(ii)
ηη (z) is an element on the main diagonal of Rηη(z), lying in the intersection

of the ith row and the ith column. If the noise power spectral density Rvv(z) = σ2
vvI,

then due to paraunitariness of E(z), Rηη(z) = σ2
vvI. Therefore, we obtain

Rv′
i
v′

i
(z) = Ri,CCI(z) + σ2

vv . (3.16)

Thus the effect of the remaining CCI will be taken into account in the designing of

the second stage precoder and equaliser pair, which is designed to remove ISI within

the selected subchannels.
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3.4 SISO Subchannel Precoding and Equalisation

As it has been mentioned, various methods can be employed to eliminate the re-

maining ISI from the FS subchannels. This section will consider two approaches, one

is the linear joint optimal precoding and equalisation for SISO channels proposed

in [26, 27], the other is the joint optimal precoding and block decision feedback

equalisation (BDFE) proposed in [32]. The extension of these approaches for the

frequency selective MIMO channels will be used as benchmarks to highlight the gain

in performance of our proposed method.

3.4.1 Linear Precoding and Equalisation for SISO subchan-

nels

Here the joint linear precoding and equalisation methods proposed in [26, 27], which

were also reviewed in Section 2.2, will be applied for decoupled SISO subchannels.

The system arrangement for the ith SISO subchannel is shown in Figure 3.2, which

is actually a generic version of the system illustrated in 2.2.

s/p s/p p/sp/sF(i) G(i)

Yi(z)

V
′

i (z)

Pi NiPiNi

Sii(z)
Xi(z) X̂i(z) Ŷi(z)

Figure 3.2: Linear joint precoding and equalisation for decoupled SISO frequency

selective subchannels

Assuming that the channel has a length of Li + 1, the transmit block length

including the redundancy for IBI cancellation Pi is chosen such that Pi > Li. The

input block length is Ni ≤ Mi where Mi = Pi − Li. Without loss of generality, we

assume that the TZ approach mentioned in [26] is used for IBI elimination. This
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leads to a precoder of the form

F(i) =





F(i),0

0Li×Ni



 , (3.17)

where F(i),0 ∈ CMi×Ni . The covariance matrix of the input signal Yi(z) is defined

as Ryiyi
∈ CNi×Ni and the noise covariance matrix arising from the signal V

′

i (z)

is defined as Rv′iv
′

i
∈ CPi×Pi. Note that the latter comprises of the channel noise

filtered by E(z) and the CCI components of the ith subchannel characterised in

(3.13). Further, similar to (2.19), with the use of a TZ precoder for IBI elimination,

the Toeplitz matrix S(i) containing the impulse response of length Li + 1 of the ith

subchannel, Sii(z), produced by the BSVD in Section 3.3.2 is written as

S(i) =































s(i)[0] 0 . . . 0
...

. . .
. . .

...

s(i)[Li]
. . . 0

0
. . . s(i)[0]

...
. . .

. . .
...

0 . . . 0 s(i)[Li]































, (3.18)

whereby Sii(z) =
∑Li

n=0 s(i)[n]z−n.

Based on Ryiyi
, Rv′iv

′

i
, and S(i), one can define the following EVD factorisations

Ryiyi
= Ui∆iU

H
i (3.19)

SH
(i)R

−1
v′iv

′

i
S(i) = ViΛiV

H
i , (3.20)

with the diagonal matrices

∆i = diag
{

δ
(i)
00 , δ

(i)
11 , · · · δ

(i)
Mi−1,Mi−1

}

(3.21)

Λi = diag
{

λ
(i)
00 , λ

(i)
11 , · · · λ

(i)
Mi−1,Mi−1

}

. (3.22)

The non-zero part F(i),0 of the precoder and the equaliser G(i) will be designed

under several optimal criteria as reviewed in Section 2.2. This subsection will con-

sider the MMSE/CP and the MaxIR optimal precoders and equalisers proposed in
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[26] and [27], respectively. With V(Ni) containing the first Ni columns of Vi, the

optimal MMSE filterbank pairs in both cases are given by

Fi,opt = V(Ni)ΦiU
H
i (3.23)

Gi,opt = Ryiyi
(Fi,opt)

HSH
(i)

[

Rv′iv
′

i
+ S(i)Fi,optRyiyi

(Fi,opt)
HSH

(i)

]−1
, (3.24)

where the elements of the diagonal matrix Φi are determined by the water-filling

algorithms as described in [26] and [27]. Note that in the design proposed here, the

total transmit power P0 for the whole MIMO system will be allocated by performing

the water-filling algorithm for all Λi, (i = 1, · · · , K) at the same time.

The use of the MMSE optimal precoder and equaliser filterbanks given in (3.23)

and (3.24) helps to decompose a frequency selective channel into M i ≤ Mi flat

subchannels with different SNRs, whereby the value of M i is determined by the

water-filling algorithm. With the input block size of Ni (Ni ≤ Mi) and the SNR on

each flat subchannel to be ρj with j = 1...Ni, the normalised mutual information

between the output and input of the ith frequency selective SISO subchannel is

given by

Ii =
1

Ni

Ni
∑

j=1

log2(1 + ρj) . (3.25)

The water-filling algorithm for the MaxIR case is based on the assumption that

the input signal has Gaussian distribution. In practice, however, the transmit sym-

bols come from finite order constellations and practical coding schemes. Thus for

practical scenarios, one often has to consider the problem of bit loading which helps

to achieve a desired performance while still maximising the data throughput by

selecting optimal constellation sizes for each flat subchannel under the quality of

service (QoS) constraint that the symbol error probability for the jth FS subchan-

nel P
(j)
se must be limited by an upper bound Pse,max [27, 25]. Assuming that QAM

modulation is used for all flat subchannels, the water-filling algorithm for the MaxIR

precoder design is modified accordingly when the QoS constraint P
(i)
se ≤ Pse,max is

applied, resulting in a reduction of M i [27].
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The maximum constellation size that satisfies QoS constraint on the jth flat

subchannel is given by

Qj =

⌊

1 +
ρj

(2/3)
[

erfc−1 (Pse,max/2)
]2

⌋

(3.26)

where bac is the foor operation which rounds off a to the nearest integer less than

or equals to a.

Therefore the total number of bits that can be transmitted over the ith SISO FS

subchannel under a given constraint Pse,max is

N
(i)
bit =

Ni
∑

j=1

log2Qj . (3.27)

The data throughput, which is the number of information bits transmitted through

the channel in one sampling period, for the ith subchannel is equal to

Di =
N

(i)
bitNi

Pi
[bits/sampling period] , (3.28)

such that the average data throughput of the overall MIMO system is given by

D =
1

K

K
∑

i

Di [bits/sampling period] . (3.29)

3.4.2 Joint Precoding and Block Decision Feedback Equal-

isation for SISO subchannels

This subsection considers the application of the joint optimal precoding and block

decision feedback equalisation (BDFE) design proposed in [32] for the decoupled

SISO FS subchannels. The jointly optimal precoder and BDFE equaliser proposed

in [32] are derived so that the mean square error (MSE) between the input and

output symbols can achieve its minimised lower bound. Although the derivation of

optimal precoder and BDFE in [32] was based on the flat MIMO channel model,

the authors have pointed out that the approach can also be applied for FS channels

using block based transmission with guard intervals of the length of the channel
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order to eliminate IBI as discussed in Sections 2.2 and 2.4. Due to the particular

structure and design criteria of the scheme in [32], this approach will be applied to

the decoupled SISO FS subchannels with a minor modification.

The system set up of joint precoding and BDFE for the ith SISO subchannel is

illustrated in Figure 3.3, where for simplicity the serial-to-parallel and parallel-to-

serial converters have been removed. Note that the same input signal Y (z) is put

into all the SISO subchannels that are used for transmission. The signals at the

output of the feed-forward filterbanks are summed together before adding with the

feedback signal and then put into the decision device.

N

From other subchannels

F(i) S(i)(z) W(i)

Y (z)

B

Y
′

(z)

N Pi

V
′

i(z)

Pi N

N

Ŷ (z)

Figure 3.3: Joint precoding and BDFE for decoupled SISO frequency selective

subchannels

The input signal Y (z) is assumed to be white with unit variance. Similar to the

previous subsection, Rv′iv
′

i
∈ CPi×Pi is defined as the covariance matrix of V

′

i (z),

which comprises of the channel noise filtered by E(z) and the CCI components of

the ith channel as mentioned in subsection 3.3.2.

As mentioned above, the IBI elimination will be performed by the use of guard

intervals, thus similar to the case of linear design, the transmit block length Pi is

chosen such that Pi = Mi +Li where the definitions of Mi, Li are similar to those in

the previous subsection, N is the length of the input symbol block. A TZ precoder
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F(i) ∈ C
Pi×N of the form

F(i) =





F(i),0

0Li×N



 (3.30)

is also used to eliminate the IBI on each SISO FS subchannel.

Defining matrices F ∈ CPΣ×N , W ∈ CN×PΣ, H ∈ CPΣ×MΣ, R−1
v′v′ ∈ CPΣ×PΣ and

the vector V
′

(z) ∈ CPΣ(z) as

F =











F(1),0

...

F(K),0











, (3.31)

W =
[

W(1) · · · W(K)

]

, (3.32)

H =











S(1) 0

. . .

0 S(K)











, (3.33)

Rv′v′ =











Rv′
1
v′
1

0

. . .

0 Rv′
K

v′
K











, (3.34)

V
′

(z) =











V
′

1(z)
...

V
′

K(z)











, (3.35)

where PΣ =
∑K

i=1 Pi, MΣ =
∑K

i=1 Mi and S(i) (i = [1, . . . , K]) is the Toeplitz matrix

given by (3.18), one can write the relation between the input signal Y (z) and the

signal at the input of the decision device as

Y
′

(z) =
K
∑

i=1

W(i)S(i)F(i),0 Y (z) + B Ŷ (z) +
K
∑

i=1

W(i) V
′

i(z) (3.36)

= WHF Y (z) + B Ŷ (z) + W V
′

(z) (3.37)

The joint optimal transceivers proposed in [32] have been designed under either

zero-forcing or minimum mean square error criteria, in the proposed design the
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MMSE joint optimal precoding and BDFE scheme is applied since it can help to

implement a simple and effective water-filling algorithm to allocate transmit power

for the whole MIMO channel. Consider the eigenvalue decomposition

HHR−1
v′v′H = VΛVH (3.38)

with diagonal matrix

Λ = diag{λ1, λ2, · · · λMΣ
} , (3.39)

then according to [32], the minimisation of the MSE lower bound will maximise

the mutual information between transmitter and receiver for a Gaussian distributed

input. Therefore a water-filling algorithm with a single water level is applied to Λ

in order to obtain a (m × m) diagonal matrix Φ with

|φkk|2 =
P0 +

∑m
j=1

1
λj

m
− 1

λk

, (3.40)

whereby m = min{N̄ , N}, N̄ is the maximum integer satisfying

1

λN̄

<
P0 +

∑N̄
j=1 1/λj

N̄
. (3.41)

With Φ
′

= [Φ 0m×(N−m)] constructed from Φ, the optimal precoder that min-

imises the MSE lower bound takes the form

F = VmΦ
′

Θ (3.42)

where matrix Vm contains the first m columns of V and Θ is a unitary matrix

satisfying
(

IN×N + Φ
′TΛmΦ

′

)1/2

Θ = UR (3.43)

whereby Λm is the upper left m × m block of Λ, U is a unitary and R an upper-

triangular matrix with equal diagonal elements. The feedback and feedforward ma-

trices that achieve the minimum MSE lower bound are given by

B = σeR − Im×m (3.44)

W = σeR(HF)H
[

(HF)(HF)H + Rv′v′
]−1

(3.45)
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where

σ2
e = mm/N

(

P0 +
m
∑

j=1

1/λj

)−m/N m
∏

j=1

(λj)
−1/N . (3.46)

whereby P0 is the constrained transmit power for the MIMO channel. Equation

(3.40) shows that the water-filling algorithm is performed simultaneously over all

SISO subchannels.

3.5 Simulations and Results

In this section, the proposed approach will be illustrated by means of a numerical

example.

3.5.1 Channel Model

The channel is assumed to be a 4 × 4 broadband MIMO channel whose responses

are generated from a Saleh-Valenzuela model [61]. This statistical channel model of

an indoor LAN environment describes a series of clustered reflections, whose arrival

rate is governed by a Poisson process with an exponentially decaying amplitude.

In turn, each cluster contains a number of rays, which are controlled by a second

Poisson process in terms of their arrival times and an exponential decay for the

rays’ amplitudes. This model has been extensively used in the context of broadband

communications and is therefore not further elaborated here; instead, the interested

reader is referred to the original work by Saleh and Valenzuela [61] and extensive

descriptions in [62, 63, 64].

For this set of simulations, the following parameters have been used for the Saleh-

Valenzuela model: cluster arrival rate Λ = 1/300 ns−1, ray arrival rate λ = 0.2 ns−1,

cluster power-decay time constant Γ = 60 ns, ray power-decay time constant γ =

20 ns and the observation time is 800 ns. The length of the MIMO channel is

limited to L +1 = 11 as the components of the channel CIR with higher indices are
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statistically very small and can be neglected. The Frobenius norm of the channel

matrix is set to unity. The simulations are performed over 50 random channel

realisations. Figure 3.4 shows, as an example, the modulus of the CIR of one single

channel realisation.

3.5.2 Performance of the MIMO system with P = 1

First consider the case when the number of polyphase components is P = 1 leading

to H(z) = C(z). The diagonalisation of H(z) leads to a nearly diagonal polynomial

matrix S(z) whose coefficient moduli corresponding to the channel realisation in

Figure 3.4 are shown in Figure 3.5. It can be seen from this figure that the off-

diagonal elements of S(z) are very close to zero, which means in this example the

matrix H(z) is pretty well diagonalised. The frequency responses of the subchannels

corresponding to the diagonal elements of S(z) in Figure 3.5 are shown in Figure 3.6.

It can be seen from the figure that the spectral majorisation of H(z) makes these

frequency responses ordered in descending value. Defining the channel power gain

of an FS subchannel as the square of the norm of the CIR, one can see that the

subchannels possess different values for their power gains. In the example of Figure

3.6, power gains of subchannels share, in the order of their indices, 64.2%, 25.2%,

9.6% and 1% of the overall MIMO channel power gain. Furthermore, as it is shown

in Section 3.3.1, the BSVD algorithm is obtained from two BEVD algorithms which

in turn rely on sequences of delays and rotations, these operations, as it can be

seen later in Chapter 5, help to make some subchannels become flatter and have

higher gain. Thus one can note from Figure 3.6 that as the subchannel index is

increasing, the subchannel becomes more dynamic. This means that the subchannel

order as well as the amount of ISI in each FS subchannel are increasing with the

channel index. Also one can see that if the transmission is performed only on the

subchannels which have high gain then the amount of ISI one has to deal with is

smaller than that of the whole original MIMO channel. In other words, by making

some SISO subchannels to be less dynamic, the BSVD can help to reduce the amount
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Figure 3.4: Moduli of the coefficients of channel matrix C(z).
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Figure 3.5: Moduli of the coefficients of S(z).
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Figure 3.6: Frequency responses Sii(e
jΩ) of subchannels after diagonalisation of

H(z).

of ISI in a broadband MIMO channel. For the above example, it can be seen that

by discarding the fourth SISO subchannel and only use the first three subchannels

for transmission, a part of the ISI in the MIMO dispersive channel can be reduced

by sacrifying only 1% of the power gain of the overall MIMO channel.

3.5.2.1 Design with linear precoding and equalisation

First the design based on the BSVD and linear joint optimal precoding and equali-

sation as mentioned in subsection 3.4 is considered. The designs of MMSE/CP and

MaxIR linear precoding and equalisation for MIMO systems proposed in [25] which is

an extension of the designs in [26, 27] for MIMO scenarios are taken as benchmarks.

Note that these designs have been also reviewed in Section 2.4. In these benchmark

designs, a transmitted data block consists of 168 symbols, of which 4L = 40 symbols

redundancy are required for IBI cancellation. The input block size is chosen to be
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N = 96, which leads to a code rate of 0.57. The loss in channel power gain due to

IBI cancellation therefore is 40/168 ≈ 24%.

For each subchannel in the proposed design, MMSE/CP and MaxIR precoder and

equaliser pairs are computed according to subsection 2.2. Since the sampling rate

on every FS subchannel must be equal, Pi is chosen such that P1 = P2 = P3 = P4.

The parameter Mi will be calculated from Mi = Pi − Li and since the subchannels

have different orders 1, one can have M1 > M2 > M3 > M4 or in other words, the

FS subchannel with high gain also has large Mi. The input block size N is chosen

so that the code rate is equal to that of the benchmark design.

Transmit power in the proposed design is chosen to be equal to the transmit

power in the benchmark design and is allocated according to water-filling algorithms

performed across all the FS SISO subchannels. These water-filling algorithms will

decide which portion of the bandwidth of each SISO subchannel will be used for

transmission. Thus the parameter Ni is decided by water-filling algorithms under

the constraint
∑

i Ni = N .

The average power gain share over 50 random channel realisations is 64%, 26%,

9%, 1% for the first, the second, the third and the fourth SISO subchannels, respec-

tively. The average orders of the SISO FS subchannels are given as L1 = 3, L2 = 5

and L3 = 10 thus the total loss in channel power gain due to IBI cancellation is

(L1/P1)0.64 + (L2/P2)0.26 + (L3/P3)0.09 + 0.01 = 10%

which is obviously less than the loss of 24% in the benchmark design.

In order to assess the result of the MMSE/CP design, which scales the transmit

power on the flat subchannels to minimise the sum of MSE on all the flat subchan-

nels, one can measure the average BER in terms of SNR figure suggested in [26],

which sets the afforded transmit energy per bit against the channel noise measured

1Note that the order of a SISO subchannel mentioned here is the order of a portion of the CIR

shown in Figure 3.5 which contains more than 99.9% of the subchannel power gain
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at the receiver.

SNR =
P0

NKbσ2
v

. (3.47)

where Kb is the number of bits per symbol. In this simulation, the BPSK modulation

with Kb = 1 is chosen for both designs. It can clearly be noted from Figure 3.7 that

with the same transmit power, the proposed design has a better BER performance

than that of the benchmark. For example, at the BER of 10−3 the proposed design

can achieve a gain of about 2 dB in its SNR compared with the benchmark design.

Next, the performance of the proposed design which uses the MaxIR optimal

precoding and equalisation is compared with the performance of the linear design

under the same optimal criteria in [25] (Lemma 2). The mutual information of the

whole MIMO system, which is calculated as

I =
1

N

N
∑

j=1

log2(1 + ρj) , (3.48)

is illustrated as a function of SNR in Figure 3.8, highlighting the ability of the pro-

posed design to achieve higher mutual information than that of the benchmark. For

example, at the SNR = 15 dB the proposed design can achieve a mutual informa-

tion of nearly 3.9 bits/sec/Hz while the benchmark design can achieve a mutual

information of about 3.1 bits/sec/Hz.

Finally, the data throughput when Gray coded QAM modulation with a bit

loading applied for all flat subchannels under the QoS constraint Pse ≤ Pse,max =

10−5 is measured. With the symbol error probability of the two designs vs SNR

being well kept under the upper bound Pse,max = 10−5 as shown in Figure 3.9,

the result in Figure 3.10 underlines that the proposed design can achieve higher

data throughput than that of the benchmark design while still satisfying the QoS

constraint. For example, at the SNR = 20 dB, the proposed design can achieve a

data throughput of about 150 bits/sampling period while the data throughput of

the benchmark design is nearly 110 bits/sampling period.
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Figure 3.7: BPSK modulated, uncoded BER versus SNR for the proposed design

and for the benchmark design in Section 2.4.
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Figure 3.8: Mutual information versus SNR for the proposed design and for the

benchmark design in Section 2.4.
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Figure 3.9: Symbol error rate versus SNR for the proposed design and for the

benchmark design in Section 2.4.
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Figure 3.10: Data throughput versus SNR for the proposed design and for the

benchmark design in Section 2.4.
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3.5.2.2 Design with joint optimal precoding and BDFE

To obtain a more comprehensive view on the proposed approach, the performance of

the BSVD approach with joint optimal precoding and BDFE for SISO subchannels

as shown in subsection 3.4.2 will be compared with the performance of the MMSE

joint optimal precoder and BDFE proposed in [32] applied for broadband MIMO as

a benchmark.

The channel model is chosen to be similar to the one used in the previous sub-

section. The benchmark design also has the transmitted data blocks containing 168

symbols, of which 4L = 40 symbols are used as redundancy for IBI cancellation.

The input block length is also chosen to be N = 96 leading to the input code rate

of 0.57.

Similar to the case of linear design in the previous subsection, the length of the

transmitted blocks on all SISO subchannels is chosen such that P1 = P2 = P3 = P4,

and therefore one also can write M1 > M2 > M3 > M4 since the order of the SISO

FS subchannels is increasing with the channel index and Mi = Pi − Li.

The transmit power is allocated according to water-filling across all the FS SISO

subchannels for a total of N =
∑

i Ni whereby the Ni can vary across subchannels.

This ensures that both the benchmark and the proposed design afford the same

transmit power and redundancy across the given MIMO channel.

The average BER in terms of SNR figure, which is also given as in (3.47), of

the proposed design and of the benckmarker is illustrated on Figure 3.11. In this

simulation, Gray coded 4-QAM modulation with Kb = 2 is chosen for both designs.

Again, one can see from Figure 3.11 that with the same transmit power, the proposed

BSVD based design exhibits better BER performance than that of the benchmark.

For example, at the BER = 10−3, the proposed design can achieve a gain of about

1 dB compared with the benchmark design.
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Figure 3.11: Data throughput versus SNR for the proposed design and for the

benchmark design in [25].

3.5.3 Performance of the MIMO system with P > 1

When P > 1, the size of the pseudo-circulant matrix H(z) increases by a factor P

and its order drops to
⌈

L
P

⌉

. From equation (3.2), one can see that the number of

elements of H(z) is TP · RP · dL/P e ∝ P thus compared with C(z), H(z) can be

expected to consume a higher number of iterations to approximate a BSVD.

As an example, let us set P = 2 and consider the decomposition of a matrix

H(z) based on the same channel matrix C(z) which provided the result for P = 1

in Figure 3.6. The frequency responses of the decoupled FS SISO subchannels of

the approximately diagonalised S(z) obtained after 800 iterations where no further

significant convergence is observed are illustrated in Figure 3.12. One can see from

the figure that with P = 2, after 800 iterations the BSVD computation algorithm

cannot achieve a good spectral majorisation, the resulting subchannels are more
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dynamic and even the first and the second subchannels also have some deep fades

in their frequency responses.

To see how well S(z) is diagonalised, a matrix GS which has the same size as S(z)

and each element of GS is equal to the sum of the squares of polynomial coefficients

of the corresponding element of S(z) is considered.
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With the matrix S(z) obtained after 800 iterations, the value of GS is given as

GS =









































0.694 0.0186 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0186 0.5476 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.2907 0.0079 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0079 0.1963 0.0053 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0053 0.1172 0.0023 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0023 0.0627 0.0004 0.0001

0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0135 0.0011

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0059









































(3.49)

The ratio between the sum of the on-diagonal elements and the sum of the off-

diagonal elements of GS is taken as a measure of how close S(z) is to a diagonal

matrix. From the value of GS given above, one can see that this ratio can reach a

value of only about 27 after 800 iterations while for the same channel matrix with

P = 1, this ratio can reach a value of about 323 after only 190 iterations. This means

in case P = 2, the effectiveness of the BSVD computation algorithm is reduced and

the algorithm requires a much higher number of iterations than in the case P = 1 to

achieve a good diagonalisation of S(z). The remaining CCI between the decoupled

subchannels in the case P > 1 is higher than for the case P = 1. This is due to the

slow convergence of the BEVD computation algorithm in diagonalising the para-

Hermitian matrices constructed from the pseudo-circulant matrices. The interested

reader is referred to Section 5.1.2 for more details on this particular property of

BEVD computation algorithm.

To further investigate the system performance when P > 1, the MMSE linear

precoding and equalisation design in subsection 3.4.1 is applied to the SISO sub-

channels and the BER performance for the case P = 2 is compared with the BER

performance when P = 1. To keep the sampling rate on the MIMO channel un-

changed, the transmit block size on the subchannels Pi is chosen to be half of that

of the case P = 1. The input block length N is chosen such that the code rates in
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both cases are equal. Figure 3.13 compares the BER performance measured against

SNR in the case when P = 2 and P = 1.
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Figure 3.13: Comparison of the BER performance of proposed design when

P = 2 and P = 1.

From Figure 3.13, one can see that the BER performance in case P = 2 is poorer

than the BER performance in the case P = 1. This is due to the higher remaining

CCI level as can be seen above. Moreover, the subchannels in this case are more

dynamic, which means that the BSVD does not contribute to the elimination of

ISI as in case P = 1. Also, the system complexity is much higher as the BSVD

requires more iterations to decompose H(z) and subsequently results in precoding

and equalising filter banks of higher orders.
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3.6 Chapter Summary and Conclusion

In this chapter, a new design of precoding and equalisation for broadband MIMO

systems has been discussed. The design is based on two separate steps. First, the

CCI imposed by the MIMO transmission system is suppressed by means of a BSVD,

analogous to the procedure by which a standard SVD would be employed for a nar-

rowband MIMO channel. However, unlike the standard SVD, the BSVD is applied

to a polynomial matrix and provides decoupled but still dispersive subchannels. Sec-

ond, SISO precoding and equalisation techniques are invoked in order to mitigate

the ISI within the decoupled FS subchannels.

The simulation results show that in case P = 1 the BSVD can effectively suppress

the CCI and produce some SISO FS subchannels which have high power gain and

are rather flat in the frequency domain, therefore, one can effectively remove a

part of ISI in the system by losing a very small amount of channel power gain.

This makes the proposed scheme outperform the linear precoding and equalisation

scheme proposed in [25] in term of BER performance, mutual information and data

throughput. In the case that the joint optimal precoding and BDFE is applied for

the decoupled subchannels, the proposed design also has better BER performance

compared with the performance of the benchmark design.

When P = 2, however, the number of elements in H(z) becomes larger and the

diagonality of S(z) is much poorer than that of the case P = 1 although the BSVD

computation algorithm has used a number of iterations which is about four times

higher than that of the case P = 1. This leads to a higher amount of remaining

CCI and the resulting SISO subchannels are more dynamic, therefore in this case

the BSVD cannot help to effectively reduce ISI and CCI, leading to a poorer BER

performance compare with that of the previous case when P = 1.

In the next chapter, some different precoding and equalisation schemes which can

either work with the guard intervals that are shorter than the channel order or can

better employ the channel resource so that the error performance of the system can
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be improved will be proposed and discussed.
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Chapter 4

Advanced Precoding and

Equalisation Schemes

As it has been pointed out in previous chapters, although the use of guard intervals

in block transmission based precoding and equalisation schemes is very effective in

IBI eliminating, it reduces the spectral efficiency of the transmission system. In

this chapter, a number of approaches to tackle this drawback will be considered

initially for the broadband SISO and later for the broadband MIMO case. Firstly,

the Section 4.1 will propose two designs of joint optimal precoding and BDFE with

low redundancy which can work when the length of the guard intervals is shorter

than the length of the CIR. Secondly, Section 4.2 will suggest some approaches

to employ the redundancy in block transmission schemes in a more efficient way

so that the system performance can be improved. Finally, the application of one

of the approaches mentioned in Section 4.2 for the broadband MIMO case will be

considered.
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4.1 Jointly Optimal precoder and block decision

feedback equaliser design with low redundancy

In this section a filter bank based design for jointly optimal precoding and block

decision feedback equalisation is proposed. Precoding and equalisation using fil-

ter banks typically is block based, and redundancy needs to be injected into the

transmission in order to avoid inter-block interference. Here the case where spectral

efficiency demands low levels of redundancy such that some residual IBI remains is

targeted. For the proposed system, two recently reported ideas — one on equalisa-

tion in the presence of IBI, and one on jointly optimal design of the overall system in

the absence of IBI — are combined. The result is a jointly optimal design in terms

of both zero-forcing and minimum mean square error criteria that can operate in

the presence of IBI, i.e. at low levels of redundancy and with high spectral efficiency.

It is shown by means of simulation results, that the proposed system can provide

significantly better performance than a benchmark design.

4.1.1 Motivation

Block transmission has been shown to be a very effective method to combat ISI

caused by frequency selective channels. However, in order to eliminate IBI, block

transmission systems always require an amount of redundancy in the form of either

cyclic prefix or zero padded intervals whose length must be equal or larger than the

channel order. This requirement makes it difficult for block transmission systems to

be applied to channels with a long impulse response since a long guard interval will

decrease the bandwidth efficiency.

One approach to cope with long CIR is channel shortening [65], where a time

domain equaliser rather than inverting the channel reduces the effective channel

length to a very short support. The shortened support permits the deployment

of complex detectors such as the Viterbi algorithm, although part of the channel
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energy (and therefore capacity) is lost [65]. In [66], an approach to design chan-

nel shortening receive filter and joint transmit-receive filters in frequency domain

for broadband MIMO channels has been proposed. Compared with time-domain

designs, the frequency-domain designs in [66] have much lower complexity and can

provide a better BER performance. The problem of long CIRs has also been ap-

proached in [67], where a Wiener filter is employed as equaliser and a precoder

minimises the mean square error of the system. In [68] Stamoulis et. al. have pro-

posed a block decision feedback equaliser for the case where IBI is present, e.g. if the

redundancy in the transmission does not allow a guard interval that is longer than

the CIR order. These BDFEs can work well even with small transmit redundancy,

however the precoder in [68] has been chosen independently from the equaliser and

the problem of joint optimisation of precoder and equaliser is still open. In [32], Xu

et. al. have proposed jointly optimal designs for the precoder and BDFE in the ab-

sence of IBI, which can achieve much better performance than linear designs in [25]

but still require sufficient redundancy to entirely suppress IBI.

Based on a combination of the designs in [68] and [32], a precoding and BDFE

scheme which can work in the case of insufficient redundancy to suppress IBI is

proposed in this section. Due to the joint optimisation of the precoder and equaliser,

the proposed design can perform better than the designs in [68] even when the

latter use optimal linear zero-forcing (ZF) or minimum mean-square error (MMSE)

precoders proposed in [25].

The section is organised as follows. In Section 4.1.2, the system model and its

components are described. Section 4.1.3 addresses the proposed jointly optimal

precoder and BDFE design, while Section 4.1.4 considers the designs of BDFEs

as proposed in [68] as well as the optimal linear precoders proposed in [25]. The

combination of the latter two designs form the benchmarks for a numerical example

provided in Section 4.1.5.
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4.1.2 System model

Consider a block transmission system over an FIR channel as illustrated in Fig-

ure 4.1.

PPN

P

rrr[i]

(b)

(a)

rrr[i]

sss[i] H(z)F

s̃ss[i]

vvv[i]

yyy[i]

W(z) ŝss[i]

B(z)

G(z) z−1

P

N N

N

Figure 4.1: System model comprising of (a) precoder, channel and (b) equaliser.

The channel is assumed to be stationary with CIR coefficients {c[0], . . . , c[L]};
(c[0], . . . , c[L] 6= 0), where L is the channel order. With the input symbol stream,

s[n], and the sampled version of the received signal, r[n], one can define the input

symbol blocks as sss[i] = [s[iN ], . . . , s[iN +N −1]]T, the symbol blocks at the receiver

input as rrr[i] = [r[iP ], . . . , r[iP +P −1]]T, the symbol blocks at the input of the feed-

forward filter bank as yyy[i] = [y[iP ], . . . , y[iP +P −1]]T, the symbol blocks before the
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decision device as s̃ss[i] = [s̃[iN ], . . . , s̃[iN + N − 1]]T, and the output symbol blocks

as ŝss[i] = [ŝ[iN ], . . . , ŝ[iN +N − 1]]T. Together with xxx[i], the blocks of noise samples

are defined as vvv[i] = [v[iP ], . . . , v[iP + P − 1]]T.

The input symbol blocks sss[i] are mapped into transmitted blocks of size P by the

precoder F ∈ CP×N , which has the following structure

F =





F0

0(P−M)×N



 , (4.1)

where F0 is an M ×N matrix, P ≥ M ≥ N , corresponding to the optimal precoder

proposed in [32]. The form of F in equation (4.1) shows that an amount of redun-

dancy in the form of P − M zeros is inserted into each transmitted block. In the

case of low redundancy, defined by P − M < L, the redundancy helps to reduce

only a part of IBI but not to entirely eliminate it.

As it has been explained in Section 2.1, due to the blocking and unblocking opera-

tions at the channel input and output, the channel can be described by a polynomial

pseudo-circulant matrix H(z) =
∑∞

n=0 Hnz−n. When P > L, the polynomial order

of H(z) is one, and the symbol blocks yyy[i] at the input of the feed-forward filter

bank are given by

yyy[i] = H0Fsss[i] + H1Fsss[i − 1] − G1ŝss[i − 1] + vvv[i] (4.2)

where H0 and H1 are P × P matrices given by (2.13) and (2.14). With P > L, the

first feedback filter bank G(z) =
∑∞

n=1 Gnz
−n suffices to be of non-polynomial form

and removes the remaining IBI from the received data stream by setting G1 = H1F.

Assuming that the past decisions are correct, one can re-write (4.2) as

yyy[i] = H0Fsss[i] + vvv[i] = HMF0s[i] + vvv[i] , (4.3)

where HM contains the first M columns of H0, and obtain

s̃ss[i] = W0HMF0s[i] + W0v[i] − B0ŝss[i] . (4.4)

In the proposed design, the feed-forward filter is set as W(z) = W0 whereby W0

is given by equation (4.9) or (4.16). Similarly, the inner feedback filter bank is set
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to non-polynomial form B(z) = B0, B0 is given by equation (4.8) or (4.15), and

aims to cancel the interference between symbols within each block. This interference

is referred to as intra-block ISI. The feedback filter bank B0 works such that the

symbols in each block s̃ss[i] are detected sequentially, starting from the Nth symbol,

whereby the detected symbols are weighted by the feedback filter bank and removed

from zzz[i] prior to the detection of the next symbol. This is referred to as successive

cancellation [68, 32] and the condition that makes it possible is the feedback filter

bank matrix B0 must be strictly upper triangular.

With the assumption that the past decisions are correct, the error between the

symbols at the input of the decision device, s̃ss[i], and the input symbols, sss[i], is

eee[i] = s̃ss[i] − sss[i] = (W0HMF0 −B0 − I)sss[i] + W0v[i]. (4.5)

The covariance matrix of the error, Ree = E{eee[i]eeeH[i]}, is given by

Ree = (W0HMF0 − B0 − I)(W0HMF0 − B0 − I)H + W0RvvW
H
0 , (4.6)

where the input signal sss[i] is assumed to be uncorrelated with unit variance, and

the noise covariance matrix is given by Rvv.

4.1.3 Joint precoding and BDFE with low redundancy

After the remaining IBI has been removed by the first feedback loop, the design of

joint optimal precoder and the BDFE proposed in [32] is applied to remove intra-

block ISI. With equation (4.2) being exact for the non-IBI case, and together with

HM , one can now derive the precoder matrix F0 as well as the feed-forward and

feedback matrices W0 and B0, such that the system MSE can achieve its minimised

lower bound.
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4.1.3.1 ZF Joint Optimal Precoding and BDFE

The design problem for a precoder and BDFE equaliser that are jointly optimal in

the zero-forcing (ZF) sense can be stated as [32]

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0HMF0 = B0 + I

B0 is strictly upper triangular,

where P0 is the transmit power.

The optimal precoder matrix for this case has the form

F0 =
√

P0/N VNΘ , (4.7)

and the feedback and feedforward matrices of the BDFE are given by

B0 =

(

N
∏

i=1

λii

)− 1

2N

R− I (4.8)

W0 = (B0 + I)(HMF0)
† , (4.9)

whereby VN contains the first N columns of V obtained from the EVD

HH
MR−1

vv HM = VΛVH , (4.10)

λii, (i = 1 . . .N) are the diagonal elements of Λ and R and Θ are obtained from

the following geometric mean decomposition

Λ1/2 = URΘH . (4.11)

The details on the derivation of the above optimal precoder and equaliser are

provided in appendix A.1.
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4.1.3.2 MMSE Joint Optimal Precoding and BDFE

The MSE precoder and BDFE equaliser are required to fulfill the following design

problem for the case of joint optimality in the MMSE sense [32]:

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0 = (B0 + I)RsyR
−1
yy

B0 is strictly upper triangular.

where

Rsy = (HMF0)
H (4.12)

Ryy = (HMF0)(HMF0)
H + Rvv . (4.13)

In this case, the optimal precoder that helps to minimise the MSE lower bound

and to achieve that bound is then given by

F0 = VqΦ
′

Θ , (4.14)

and the feedback and feedforward filterbanks under MMSE criterion are given by

B0 = R − I (4.15)

W0 = σeRRsyR
−1
yy (4.16)

For more details on the above optimal precoder and equaliser as well as their

derivation, please refer to the appendix A.2.

In the next subsection, some state-of-the-art designs in the literature, which are

taken as benchmark for the proposed designs, will be addressed.
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4.1.4 Existing BDFE Systems with Optimal Linear Precod-

ing

A BDFE which can work in the presence of remaining IBI has been proposed by

Stamoulis et. al in [68], which is referred to as IBI-BDFE and classified into zero-

forcing (ZF-) IBI-BDFE and MMSE-IBI-BDFE. On the transmitter side, a precoder

can be operated. Below the (locally) optimal ZF and MMSE linear precoders as

proposed in [25] are utilised. These precoders are similar to those used by [68] except

for an additional power constraint in order to be compatible with the approach

developed in subsection 4.1.3.

4.1.4.1 ZF-IBI-BDFE

The ZF-IBI-BDFE system in [68] has a structure similar to the one in Figure 4.1(b),

where the first feedback loop with a filter bank G = G1 = H1F aims to cancel the

remaining IBI. The feed-forward and feedback filter banks are designed to satisfy

the ZF requirement

W0H0F = B0 + I (4.17)

and the noise-whitening requirement

W0RvvW
H
0 = Σ , (4.18)

where Σ is diagonal matrix and B0 is an upper-triangular matrix in order to permit

sequential detection. Based on the Cholesky decomposition

(H0F)HR−1
vv (H0F) = AHΣA , (4.19)

where A is an upper triangular matrix with a unit diagonal, one can write [68]

B0 = A − I (4.20)

W0 = Σ−1A−H(H0F)HR−1
vv . (4.21)
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4.1.4.2 MMSE-IBI-BDFE

Instead of using a separate feedback loop to remove ISI, the MMSE-IBI-BDFE

system sets G(z) = 0, and uses more complex feed-forward and feedback filter banks

W(z) and B(z) to combat the inter-block interference, intra-block interference and

noise. With P ≥ L, the feed-forward filter bank in [68] is proposed to have three

taps W−1, W0, W1 and the feedback filter bank also to have three taps B−1, B0

and B1. Equation (4.2) now is replaced by

yyy[i] = H0Fsss[i] + H1Fsss[i − 1] + vvv[i] , (4.22)

and the signal before the decision device s̃ss[i] is given by

s̃ss[i] = W−1 yyy[i + 1] + W0 yyy[i] + W1 yyy[i − 1]−

− B−1ŝss[i + 1] −B0ŝss[i] −B1ŝss[i − 1] .
(4.23)

Assuming the input signal is white with unit variance, one can define the following

matrices

S =











H0F H1F 0

0 H0F H1F

0 0 H0F











(4.24)

Rv̄v̄ =











Rvv 0 0

0 Rvv 0

0 0 Rvv + H1F(H1F)H











(4.25)

Rȳȳ = SSH + Rv̄v̄ . (4.26)

The tap weights of the feed-forward and feedback filter banks of the IBI-MMSE-

BDFE are given by [68]

[W−1 W0 W1] = [0N×N Q22 Q23]S
HR−1

ȳȳ (4.27)

B−1 = 0 (4.28)

B0 = Q22 − I (4.29)

B1 = Q23 , (4.30)

70



Chapter 4. Advanced Precoding and Equalisation Schemes

where Q22 and Q23 are sub-matrices of the matrix Q ∈ C
(3N×3N) which is derived

from the following Cholesky decomposition

I + SHR−1
v̄v̄ S = QHΣQ (4.31)

and

Q =











Q11 Q12 Q13

0N×N Q22 Q23

0N×N 0N×N Q33











. (4.32)

4.1.4.3 ZF Optimal Linear Precoder

A ZF optimal linear precoder has been proposed in [25], which is designed in con-

junction with a linear equaliser such that the signal-to-noise ratio at the receiver

output is maximised. Linear equalisation is however only viable in the absence of

IBI, hence we replace the linear equaliser and combine the precoder with the ZF-IBI-

BDFE to form a benchmarker for the ZF case. The precoder design is accomplished

via the EVD in (A.9), whereby the ZF linear precoder is given by [25]

F0,ZF = VNΦ , (4.33)

where Φ is a N × N diagonal matrix with on-diagonal elements equal to

|φii|2 =
P0

∑N
k λ−1

kk

1

λii

. (4.34)

4.1.4.4 MMSE Optimal Linear Precoder

Similar to the ZF linear precoder, the MMSE linear precoder proposed in [25] is

meant to operate with a linear equaliser in the absence of IBI, but here it is com-

bined as a locally optimised precoder with the MMSE-IBI-BDFE of Section 4.1.4.2.

Similar to the design reviewed in Section 2.4, the MMSE precoder is also given by

F0,MMSE = VNΦ , (4.35)
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where the diagonal elements of the diagonal N × N matrix Φ are given by

|φii|2 = max

(

P0 +
∑M̄

k=1 λ−1
kk

∑M̄
k=1 λ

−1/2
kk

λ
−1/2
ii − λ−1

ii , 0

)

(4.36)

with M̄ the number of |φii|2 > 0.

4.1.5 Simulation and Results

In order to assess and compare the performance of the proposed design, consider a

channel of order L = 5 with coefficients drawn from a complex Gaussian distribution

with zero mean and unit variance. With a transmit block length of P = 18, the

input block length of N = M = 16 admits a very limited amount of redundancy that

is insufficient to permit the suppression of IBI by design of the precoder/equalisation

system. The transmit power is constrained to P0 = 10.

The results in terms of BER performance for QPSK transmision over the pro-

posed jointly optimal system comprising a linear precoder and a BDFE for the ZF

and MMSE case are shown in Figure 4.2, averaged over 50 randomised channel re-

alisations. Jointly optimised linear precoding and linear equalisation is unsuitable,

since linear equalisation such as in [25] offers no capability to combat IBI. Therefore,

the two composite schemes outlined in subsection 4.1.4 have been considered as a

benchmark:

1. optimal ZF linear precoding [25] combined with ZF-IBI-BDFE [68], and

2. optimal MMSE linear precoding [25] combined with MMSE-IBI-BDFE [68].

Although ZF and MMSE precoders are referred to as optimal, these are locally,

i.e. with view of the transmitter only, optimised components. Considering the

benchmark results in Figure 4.2, it is evident that the proposed design can achieve

a considerably lower BER performance than the BER of benchmark systems. For

example, at the SNR = 10 dB, the proposed designs can achieve a BER of about
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Figure 4.2: BER performance of the proposed IBI joint precoding and BDFE

equalisation designs and benchmark designs.

10−4 while the benchmark designs can only achieve a BER of 4 · 10−3 for the case of

MMSE precoder and MMSE-IBI-BDFE and 10−2 for the case of ZF precoder and

ZF-IBI-BDFE.

4.2 An Approach for Block Transmission Based

Precoding and Equalisation with Improved

Performance

Although block transmission is a very effective method to combat ISI, the way it uses

the guard intervals reduces the spectral efficiency of the system. In this section, a
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new approach to block transmission based precoding and equalisation for frequency

selective channels is proposed. Different from standard block transmission schemes,

the proposed method employs redundancy in a different way so that the channel

energy can be better employed, thus leading to improved performance under the

same code rate.

4.2.1 Motivation

It is well known that block transmission is an attractive method for wired and

wireless broadband communications as it can efficiently combat ISI caused by the

frequency selectivity of dispersive channels. In a number of designs for block trans-

mission based precoding and equalisation, guard intervals in form of zero padding

intervals [26, 27, 25] or cyclic prefix [69] are used to eliminate the IBI. The use

of guard intervals helps to effectively remove IBI, however it creates some loss in

channel energy as will be analysed later. Moreover, as it can be seen in [25] or [70],

after IBI removal by using guard intervals, one has to use an additional amount of

redundancy so that the system performance can be improved.

Therefore, this section will analyse the loss in channel energy due to the use of

guard intervals and then propose a method to exploit the channel resource more

efficiently. Several designs are proposed and the simulation results show that they

outperform the systems using guard intervals proposed in [26]. For simplicity, the

SISO scenario is concerned, but the proposed designs here can also be applied for

the MIMO scenarios with appropriate modification.

In subsection 4.2.2, the overall channel and conventional system setup are set

out. Then the analysis of the loss due to the use of guard intervals and the proposed

designs are addressed. Simulation results are provided in subsection 4.2.3.
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4.2.2 System Model and Proposed Designs

First, consider a system model of block transmission based linear precoding and

equalisation, which is illustrated in Figure 4.3. The model here is similar to the

one in section 3.2 and is actually a general form of the design proposed in [26]. The

channel is also assumed to be frequency selective with finite impulse response of order

L. The input symbol stream is demultiplexed into N substreams which compose

the sequence of symbol blocks sss[n] = [s[nN ], s[nN + 1], ..., s[nN + N − 1]]T. These

blocks are passed through the precoder F ∈ CP×N , which maps the input blocks into

output blocks xxx[n] = [x[nP ], x[nP + 1], ..., x[nP + P − 1]]T. At the channel output,

the filtered transmitted symbols mixed with noise are again demultiplexed into P

substreams that compose symbol blocks yyy[n] = [y[nP ], y[nP +1], ..., y[nP +P −1]]T

which are mapped back to output blocks ŝss[n] = [ŝ[nN ], ŝ[nN +1], ..., ŝ[nN +N−1]]T

by the equaliser G ∈ CN×P .

As it has been reviewed in Section 2.2, when P > L the system operation can be

described by

ŝss[n] = GH0Fsss[n] + GH1Fsss[n − 1] + Gvvv[n] (4.37)

where vvv[n] contains a block of noise samples of length P similar to yyy[n], and H0 and

H1 are given by (2.13) and (2.14), respectively.

For optimal linear precoding and equalisation in [26] and [27], the authors assume

that P = M+L, (N ≤ M) and that IBI can be eliminated either by the TZ approach

where the last L rows of the precoder F are set to zero or the LZ approach where

s/p s/p p/sp/s c[n] G
s[n]

v[n]

P NPN

ŝ[n]y[n]
F

x[n]

Figure 4.3: System model for linear precoding and equalisation.
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the first L columns of G are set to zero.

For simplicity, the TZ case is considered. The precoder then has the form

F =





F̂0

0L×N



 , (4.38)

where F̂0 ∈ CM×N will be jointly designed with the equaliser G under either ZF or

MMSE criteria.

With IBI being eliminated, equation (4.37) can be written as

ŝss[n] = GHF̂0sss[n] + Gvvv[n] (4.39)

where H contains the first M columns of H0,

H =































c[0] 0 · · · 0
...

. . .
. . .

...

c[L]
. . .

. . . 0

0
. . .

. . . c[0]
...

. . .
. . .

...

0 · · · 0 c[L]































. (4.40)

With the transmit power to be constrained to P0, the MMSE optimal precoder

and equaliser are given by

F̂0 = VΦUH (4.41)

G = RssF̂
H
0 HH(Rvv + HF̂0RssF̂

H
0 HH)−1 (4.42)

where U and V are unitary matrices derived from the EVD

Rss = U∆UH

HHR−1
vv H = VΛVH , (4.43)

and Φ is a diagonal matrix with main diagonal elements obtained from a water-

filling algorithm over diagonal elements of Λ as explained in Section 2.2, Rss is the

covariance matrix of the input signal and Rvv is the noise covariance matrix.
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As it has been shown in [26], the optimal precoder and equaliser render a fre-

quency selective SISO channel into a maximum of M = P −L flat subchannels with

SNRs proportional to the eigenvalues of HHR−1
vv H. It can also be seen that the sum

of these eigenvalues is proportional to the square of the Frobenius norm of H and

therefore, if the Frobenius norm of H is increased, these eigenvalues and thus the

SNRs on the flat subchannels will be increased as well. From (4.40), one can see

that H contains the first M columns of H0 (in the LZ case, H contains the last M

rows of H0) and therefore as M is getting closer to P , the Frobenius norm of H will

be increased, thus the EVD in (4.43) will result in some increased eigenvalues 1 and

therefore the SNRs on the corresponding flat subchannels can be improved.

From equation (2.8), we can write the structure of the TZ precoder as

F=































f̂0[0] f̂1[0] · · · f̂N−1[0]
...

...
...

...

f̂0[M − 1] f̂1[M − 1] · · · f̂N−1[M − 1]

0 0 · · · 0
...

...
...

...

0 0 · · · 0































, (4.44)

one can see that the columns of F correspond to the impulse responses of transmit

filters with length of M , thus increasing M in this case also means increasing the

length of the transmit filters.

From the above observations, it can be concluded that by increasing the length

of the transmit filters, one can increase the SNRs of the decoupled flat subchannels,

and thus the system performance can be improved. However, there are two issues

1Note that the Jacobian transform in the EVD decomposition always assigns more energy to

some “strong” eigenmodes and less energy to some “weak” eigenmodes thus resulting in unequal

eigenvalues. When M is increased, the Frobenius norm of H is increased but the number of

eigenvalues is also increased. However due to the above property of the Jacobian transform, a part

of the increased amount in the Frobenius norm of H will be given to some “strong” eigenmodes

resulting in some increased eigenvalues.
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that we have to consider. First, since the eigenvalues obtained from (4.43) are not

equal, the SNRs on the decoupled flat subchannels will be different from each other

and the system error performance will be dominated by the performance of the

subchannels with lowest SNRs. In order to improve the system BER, one should

discard the subchannels with low SNR as it has been shown in [25]. Therefore, in

our approach, although we are going to increase M ≥ N , we still keep the input

block size N unchanged and set N = P − L. Thus, we use the redundancy not to

eliminate the IBI but to discard the subchannels with low SNRs and retain only

the subchannels with high SNRs. Second, as M is increased, the amount of IBI will

increase and the question now is how to eliminate the IBI when M > P − L. In

order to do so, we proposed several designs as below.

4.2.2.1 Linear Precoding and Equalisation with Shared Guard Interval

(LPE-SGI).

In this design we combine the ideas reported in [71] and [26] and propose an optimal

design of linear precoding and equalisation which can provide a better performance

than the design in [26]. The design is based on the solutions in [26], but the guard

interval now is shared between the transmitter and the receiver, namely instead of

setting last L rows of the precoder matrix to zero, we only set last K =
⌊

L
2

⌋

rows

to zero, at the receiver, the first L−K columns of G are also set to zero. Thus the

precoder and equaliser have the following form

F =





F̂0

0K×N



 (4.45)

G =
[

0N×(L−K) Ĝ0

]

(4.46)

where F̂0 ∈ CP−K×N and Ĝ0 ∈ CN×(P−L+K). Such a pair of precoder and equaliser

will drive the second term in (4.37) to zero. Thus the IBI is completely eliminated,

but now one can see that the transmit filters have the length of M = P − K which
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is larger than P − L. Equation (4.37) can be re-written as

ŝss[n] = Ĝ0ĤF̂0sss[n] + Ĝ0vvv
′[n] (4.47)

where by Ĥ ∈ C(P−L+K)×(P−K) is given by

Ĥ=































c[L − K] · · · c[0] 0 · · · 0
...

. . .
. . .

...

c[L]
. . . 0

0
. . . c[0]

...
. . .

. . .
...

0 · · · 0 c[L] · · · c[K]































(4.48)

and vvv′[n] is the block of noise samples of length P − L + K.

Figure 4.4 compares the loss in H0, which directly contributes to the transmission

of signal sss[n] as illustrated in equation (4.37), of the proposed approach and the loss

of the TZ or LZ case in [26]. From equation (4.40), one can see that in the TZ case

the last L columns of H0 are discarded by the TZ precoder, thus the elements in the

shaded triangular in Figure 4.4.(a) will be lost resulting in a reduction in channel

energy. In the LZ case, we can easily verify that the system bears exactly the same

loss. When the guard interval is shared between transmitter and receiver, the first

L − K rows of H0 are discarded by the equaliser and the last K columns of H0

are discarded by the precoder. The loss in H0 now can be described by the two

shaded triangles as illustrated in Figure 4.4.(b) where the triangle at the top-left

corner corresponds to the loss caused by the equaliser and the triangular at the

bottom-right corner corresponds to the loss caused by the precoder. We can shift

the triangular at the top-left corner and compare the loss in two cases as illustrated

in Figure 4.4.(c), here it is obvious that the loss of H0 in the proposed approach is

smaller than the loss in the TZ or LZ cases, as the elements of H0 lying in the shaded

rectangular area are retained within Ĥ and will contribute to the SNR increase after

eigenvalue decomposition.
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Figure 4.4: Comparison of the loss in H0 in two approaches.

The input block size is still kept to be N = P − L so that the flat subchannels

with low SNR can be discarded as we have mentioned above.

The precoder and equaliser matrices F̂0 and Ĝ0 can then be derived under the

same optimal criteria as in [26, 27]. For example, the MMSE precoder and equaliser

can be calculated as in equations (4.41), (4.42) with matrix H replaced by Ĥ and

Rvv resized accordingly.

4.2.2.2 Combined Linear Precoding and Equalisation with Decision Feed-

back Equalisation (LPE-DFE).

The LPE-SGI design still experiences a certain amount of loss in the matrix H0. To

fully exploit H0 for transmission, we will combine the ideas reported in [26] and [68]

and proposed the use of optimal linear precoders and equalisers in [26] with a decision

feedback loop. Different from the previous design, the precoder F and equaliser G

now do not contain any zero row or column and therefore the IBI elimination in the

system will entirely rely on the feedback loop containing a feedback filterbank

B = H1F . (4.49)
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In the next step, the linear precoder and equaliser will be jointly optimised as in [26]

with matrix H in equation (4.43) replaced with H0 from (2.13). The system model

of this approach is illustrated in Figure 4.5 where with the assumtion that P > L

the matrix H(z) = H0 + H1z
−1 represents the channel transfer function. Due to

limited space, we do not show the serial-to-parallel and parallel-to-serial converters.

N

vvv[n]

P

ŝss[n]H(z)

z−1

G

H1F

s̃ss[n]

sss[n] F

N P P N

Figure 4.5: System model for combination of linear precoding and equalisation

and decision-feedback equalisation.

The relation between the input and output signals can be written as

s̃ss[n] = G{H0Fsss[n] + H1Fsss[n − 1] − H1Fŝss[n − 1] + vvv[n]} . (4.50)

Assuming ŝss[n] = sss[n], the IBI can be eliminated and the above equation can be

re-written as

s̃ss[n] = GH0Fsss[n] + Gvvv[n] (4.51)

which is now similar to equation (4.37).

Although here the IBI elimination is performed by the feedback loop, we still

keep the input block size to be N = P − L so that the flat subchannels with low

SNRs resulting from linear precoding and equalisation can be discarded. Thus we

do use redundancy but in a different way compared with the standard approach,

and this leads to a significant improvement in system BER performance as one can

see later in simulation results. Note that keeping N = P −L also results in a certain
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loss in channel energy which corresponds to the power gain of the discarded flat

subchannels.

4.2.2.3 Modified Linear Precoder and Block Decision Feedback Equaliser

(MLP-BDFE)

In this design, we suggest the use of a modified optimal MMSE linear precoder pro-

posed in the previous subsection with the MMSE block decision feedback equaliser

(MMSE-IBI-BDFE) proposed in [68]. The system model is illustrated in Figure 4.6.

F H(z) G(z)sss[n]

N P

vvv[n]

P

B(z)

N

N

ŝss[n]

Figure 4.6: System model for proposed linear precoding and block

decision-feedback equalisation.

The transmit filters have the length of P so that the whole matrix H0 in (2.13)

can be exploited for transmission. The elimination of IBI will be performed by

the MMSE-IBI-BDFE. As it is explained in [68], the MMSE-IBI-BDFE contains a

three-tap feedforward filter bank and a two-tap feedback filter bank.

The precoder in this case is calculated similarly to the one in the LPE-DFE

design. The MMSE-IBI-BDFE is then calculated as a function of the precoder.

One can refer to [68] for more details on the derivation of the filter banks for the

MMSE-IBI-BDFE.
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Similarly to the previous subsection, we keep N = P − L and thus the pre-

coder does introduce some redundancy, but this redundancy is used for subchannel

selection rather than for IBI elimination.

4.2.2.4 Modified Joint Optimal Precoder and Block Decision Feedback

Equaliser (MJPR-BDFE)

In the previous section, we have combined the ideas reported in [68] and [32] and

proposed a design of joint optimal precoding and BDFE equalisation with low re-

dundancy. The system model is illustrated in Figure 4.1 where the precoder contains

zero-padding intervals which are shorter than the channel order and therefore the

IBI is removed partly. The remaining IBI is then removed by the outer feedback

loop. The precoder and the inner block decision feedback equaliser are then jointly

optimised so that the system mean square error can achieve its minimised lower

bound.

In this section we focus on the system performance improvement rather than on

saving the redundancy for long channels, therefore we propose the use of design in

Figure 4.1 but the precoder now does not contain any zero-padding interval so that

matrix H0 can be exploited for transmission as in LPE-DFE design and the IBI

elimination will be performed by the outer feedback loop. Then the precoder and

the inner BDFE are jointly optimised according to the idea in [32]. Similar to the

previous designs, the input block size is also N = P − L to ensure the selection of

the flat subchannels with high SNRs.

4.2.3 Simulation and Results

To highlight the advantage of our proposed designs, we compare their BER per-

formance with the performance of standard approaches in [26] and [32] where the

guard intervals of length L are used for IBI elimination. The channel is assumed

to be FIR with a length of L + 1 = 11, the components of the CIR are assumed
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to be i.i.d Gaussian complex numbers with zero mean and unit variance. Channel

CIR is normalised to have unit energy. The result is averaged over 100 channel

realisations. In all designs, the input block size is N = 22, the transmit block size

P = N + L = 32. Gray coded 4-QAM modulation is used for all designs.

The linear optimal precoders and equalisers used in our proposed LPE-SGI, LPE-

DFE, MLP-BDFE designs as well as in the benchmark design from [26] are calculated

under the MMSE criterion given by equations (4.41), (4.42) with matrix H replaced

by Ĥ or H0 accordingly. The joint optimal precoder and BDFE in the MJPR-

BDFE design and the benchmark design from [32] are also derived under the MMSE

criterion.

Figure 4.7 compares the BER performance of the MMSE optimal linear precoding

and equalisation scheme in [26] with the performance of the LPE-SGI, LPE-DFE,

MLP-BDFE designs. One can see, for example, from Figure 4.7 that under the same

code rate at the BER of 10−4 the MLP-BDFE and the LPE-DFE designs can achieve

a gain of about nearly 3 dB in SNR compared with the benchmark design and the

LPE-SGI design can achieve a gain of about 1 dB compared with the benchmark

design.

The result in Figure 4.8 shows the comparison of BER performance of the pro-

posed MJPR-BDFE design in subsection 4.2.2.4 with the performance of the MMSE

joint optimal precoder and BDFE proposed in [32] applied for the frequency selective

channel with redundancy of L. As we can note from the figure, our proposed design

also can achieve a gain of about 1.5 dB in its SNR at the BER of 10−4 compared

with the benchmark design which uses guard intervals of length L.

The above results show that our proposed designs can better exploit the channel

resource. Although the system design in our proposed approaches has a slightly

higher complexity compared with the standard designs, this appears easily justified

given the gain in performance that can be achieved.
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Figure 4.7: BER performance of the proposed designs and the optimal linear

design in [26].
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Figure 4.8: BER performance of the MJPR-BDFE design and the MMSE joint

optimal precoder and BDFE in [32].
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4.3 Precoding and Equalisation for Broadband

MIMO Systems with Improved Performance

As it has been mentioned, all the proposed designs in the previous section can be

extended to the MIMO case. We can also see that the LPE-DFE approach can

help to significantly improve the system performance while the system complexity

is just slightly higher than that of the linear design. In this section, we will apply

the LPE-DFE approach for the decoupled SISO FS subchannels resulted from the

BSVD in Chapter 3. The resulting system is referred to as LPE-DFE-BSVD design.

At the same time, we also extend the LPE-DFE design for broadband MIMO case

and form the LPE-DFE-MIMO design. The BER performance of the two afore-

mentioned designs will be investigated and compared.

4.3.1 System Model

The system model of the LPE-DFE-BSVD design is obvious from sections 3.4 and

4.2.2. This means that firstly, the BSVD is applied to decompose the broadband

MIMO channel into independent FS SISO channels as explained in Section 3.2.3,

then the LPE-DFE design proposed in the previous subsection is applied to remove

the remaining ISI on the decoupled FS SISO subchannels resulted from the first step.

Similar to the design in Section 3.4, the input symbol block of length N is divided

into sub-blocks of length Ni. We give higher priority for some first FS subchannels

which have high gain due to the spectral majorisation and write

Ni = Pi − Li . (4.52)

For the last subchannel, the input block length is given by

NK = N −
K−1
∑

i=1

Ni , (4.53)

where K is the number of FS subchannels which are selected for transmission.

86



Chapter 4. Advanced Precoding and Equalisation Schemes

The transmit power P0 is allocated with the help of the water-filling algorithm

as explained in equation (2.26). Similar to the design proposed in Chapter 3, the

water-filling algorithm is performed simultaneously for all FS SISO subchannels.

The LPE-DFE-MIMO design has a similar structure to the one illustrated in

Figure 4.5, with the channel matrix H(z) now being of size PR×PT , the precoder

F ∈ CPT×N and the equaliser G ∈ CN×PR. Similar to the design in Section 2.4,

with matrix H0 given by (2.46), consider the EVD

HH
0 R−1

vv H0 = V̂Λ̂V̂H . (4.54)

The optimal precoder and equaliser in LPE-DFE-MIMO design are given by

F = VΦ (4.55)

G = RssF
HHH

0

(

H0FRssF
HHH

0 + Rvv

)−1
, (4.56)

where the diagonal elements of matrix Φ are given by the MMSE water-filling algo-

rithm in (2.56), V contains the first N columns of V̂. The IBI is eliminated by the

feedback filter bank B = H1F with matrix H1 given by (2.47).

4.3.2 Simulation Results

In this section, we will investigate the BER performance of our proposed designs in

the previous subsection and compare it with the BER performance of the standard

MMSE design in [25] (Lemma 2) and of the design based on the combination of

MMSE/CP linear optimal precoding and equalisation and BSVD in Chapter 3,

where guard intervals of a length of the channel order are used for IBI elimination.

For convenience, the last two designs are referred to as MMSE-LPE-MIMO and

MMSE-LPE-BSVD designs, respectively.

We consider a 4×4 broadband MIMO channel which is generated from the Saleh-

Valenzuela channel model in [61]. Similar to the channel model in Section 3.5, the

parameters of the model considered here are also chosen to be 1/Λ = 300 ns, 1/λ =
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5 ns, Γ = 60 ns, γ = 20 ns, and the observation time is 800 ns. Similar to the case

in Section 3.5, the channel length is also limited to L+1 = 11 as the components of

the CIR after 11 are statistically very small and can be neglected. The simulation

is performed over 50 channel realisations.

We also choose BPSK modulation for all the designs being considered. The

length of input symbol block and the length of the transmitted block in all designs

considered in this section are chosen similar to those in Section 3.5, leading to a

code rate of 0.57.

Figure 4.9 illustrates the average BER of the designs for broadband MIMO case

mentioned above as well as the average BER of the MMSE-LPE-BSVD design in

Chapter 3 and the MMSE-LPE-MIMO design in [25]. The SNR used here is also de-
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Figure 4.9: BER performance comparison for broadband MIMO case.
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fined as the one in (3.47). From the figure, one can see that the LPE-DFE approach

helps to achieve significant improvement when it is applied directly to broadband

MIMO channels. However, in case of combination with BSVD, the improvement in

BER by the LPE-DFE design is not very high. This is because among the FS SISO

subchannels resulting from the BSVD, the subchannels with high gain are less dy-

namic and have lower order while the subchannels with low gain are more dynamic

and have higher order. Furthermore, we can see that the higher the channel order

is, the larger the amount of channel energy that can be saved by the LPE-DFE

design. Thus the amount of channel energy saved by the LPE-DFE approach when

it is applied to the FS subchannels resulting from the BSVD is less than in the case

of the LPE-DFE-MIMO design where the LPE-DFE approach is applied directly to

broadband MIMO channels.

One can also see from Figure 4.9 that the BER performance of the LPE-DFE-

MIMO design is slightly better than the BER performance of the LPE-DFE-BSVD

design. This is because in the LPE-DFE-BSVD design, the BSVD cannot achieve

a perfect diagonalisation and therefore there always exists a certain amount of CCI

that slightly deteriorates the BER performance.

4.4 Concluding Remarks

In this chapter, we have proposed several approaches for block transmission based

joint optimal precoding and equalisation schemes that can either work with low

redundancy or can provide an improved performance at the same redundancy com-

pared with the standard block transmission based linear approaches.

In Section 4.1, we have proposed a design which can work with low levels of re-

dundancy where linear block transmission schemes such as in [25] will suffer from

IBI. The proposed approach utilises a non-linear block decision feedback equaliser

suggested in [68]. We have used this receiver structure to create a jointly optimal de-
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sign of both precoder and BDFE, overcoming the required absence of IBI in previous

work [32].

Simulation results have demonstrated the advantage of the system in terms of

BER when compared to a design akin to [68] where precoder and equaliser are

locally optimised at the transmitter and receiver.

In Section 4.2, we have disscused the efficiency of the standard block transmission

method and proposed some designs which can better exploit the channel resource. In

the LPE-SGI design, the guard interval is shared between transmitter and receiver so

that the IBI can be eliminated while the length of the transmit filter can be increased

to reduce the loss in channel energy. The input code rate is kept unchanged so that

we can have an additional amount of redundancy to discard the flat subchannels

with low SNRs. In all other proposed designs, the length of the transmit filters

is set equal to the transmit block size P so that the channel energy can be better

utilised and the IBI elimination is performed by the receiver only. Again in these

designs the redundancy introduced by the precoder is used for the selection of the

flat subchannels with the highest SNRs.

The simulation results show that our proposed designs can achieve better perfor-

mance than state-of-the-art approaches.

Finally, in Section 4.3 we applied the LPE-DFE approach for the broadband

MIMO channels in two cases, with BSVD and without BSVD and formed two de-

signs, LPE-DFE-BSVD and LPE-DFE-MIMO. The simulation results in this section

also show that the LPE-DFE approach helps to better exploit the channel resource

and thus leads to a better BER performance than that of the linear designs which

use guard intervals for IBI elimination only. The result in Section 4.3 also shows that

the LPE-DFE is more effective when applied directly to broadband MIMO channels

that in combination with BSVD.

Analysing the complexity of the various approaches is difficult, as the proposed

methods generally depend on the number of steps required by SBR2 to converge, as
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well as the resulting channel lengths of the SISO subsystems. Beyond the analysis

of the SBR2-related part of the design, it was qualitatively found that DFE-based

methods are expensive due to the requirement of inverting a 3P×3P matrix at a cost

of O(P 3) operations, which is higher than the linear designs. The MJPR-DFE and

the LPE-DFE designs have generally been seen to have a slightly lower complexity

due to P × P covariance matrices, while the LPE-SGI design’s complexity is of the

same order of complexity as linear designs. To curb the high impact of SBR2 on the

system complexity, Chapter 5 will explore methods to shorten the SISO responses

and paraunitary filter banks in an attempt to drastically reduce the computational

complexity of proposed transceiver systems that are based on the BSVD.

In the previous chapters, we have investigated the applicability of the BSVD

algorithm to communication over broadband MIMO channels. The results have

shown that the BSVD can help to remove a part of ISI in the system at very small loss

in channel power gain. In the next chapter, we will take a deeper look at the BSVD

algorithm and consider an approach to simplify the paraunitary matrices resulting

from this algorithm, namely we will try to shorten the order of these paraunitary

matrices and therefore simplify the precoder and equaliser filterbanks that help to

decompose our boradband MIMO channels. We also evaluate the influence of non-

perfect CSI onto the system performance.
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Performance Studies

In Chapter 3 we have seen that generally the BSVD is effective in diagonalising

the broadband MIMO channel matrix and therefore suppressing CCI. We have also

demonstrated that the BSVD helps to remove a part of the ISI in the system at only

a very small loss in channel power gain or channel energy. Both the methods as well

as the performed simulations have assumed perfect knowledge of the channel.

In this chapter, firstly we will discuss some issues related to the computational

complexity of the paraunitary filterbanks that are based on the paraunitary matri-

ces resulting from the BEVD computation algorithm, since the BEVD is the key

component of BSVD as shown in Section 3.3.1. Therefore, shortening the order of

the matrices implementing the BSVD will be considered in Section 5.1. Secondly,

the performance of the proposed BSVD based precoding and equalisation design in

the case when the CSI is not perfect will also be evaluated in Section 5.2.
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5.1 Shortening the Order of Paraunitary Matri-

ces in BEVD Computation Algorithm

In order to compute a BEVD, an algorithm has recently been proposed as an effec-

tive tool in decomposing a para-Hermitian polynomial matrix R(z) into a diagonal

polynomial matrix Γ(z) and a paraunitary matrix B(z), extending the eigenvalue

decomposition to polynomial matrices, R(z) = B(z)Γ(z)B̃(z). However, the algo-

rithm can result in polynomials of very high order, which may limit its applicability.

Therefore, in this section we evaluate approaches to reduce the order of the parauni-

tary matrices, either within each step of the BEVD computation algorithm, or after

its convergence. The paraunitary matrix B(z) is replaced by a near-paraunitary

quantity BN(z), whose error will be assessed. Simulation results show that the

proposed truncation can greatly reduce the polynomial order while retaining good

near-paraunitariness of BN(z).

5.1.1 Introduction

An algorithm to compute the BEVD, originally referred to as second order sequential

best rotation (SBR2) algorithm, was proposed by McWhirter et al. in [58, 57]. It

is an iterative algorithm which aims to decompose a polynomial para-Hermitian

matrix R(z) ∈ CQ×Q(z) into a diagonal polynomial matrix Γ(z) and a polynomial

paraunitary matrix B(z), such that matrix R(z) = B(z)Γ(z)B̃(z) can be regarded as

a generalisation of the standard eigenvalue decomposition to the broadband case [57].

Different from conventional methods which often perform the diagonalisation of

polynomial matrices in the frequency domain, the SBR2 algorithm diagonalises para-

Hermitian matrices in the time domain by applying a sequence of suitably chosen

delays and Givens rotations.

The algorithm has been demonstrated to be rather effective in diagonalising R(z)
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such that ideally

Γ(z) = diag{Γ0(z), Γ1(z), · · ·ΓQ−1(z)} (5.1)

with on-diagonal elements Γi(z), which are generally spectrally majorised, i.e. their

power spectral densities fulfil

∣

∣Γi(e
jΩ)
∣

∣ ≥
∣

∣Γi+1(e
jΩ)
∣

∣ ∀Ω , i ∈ [0, . . . , Q − 2] . (5.2)

BEVDs based on SBR2 have been applied to a number of problems, such as source

separation of array data [57], subband-based source coding [59], subspace-based

channel coding in the presence of structured noise [72], precoding and equalisa-

tion for broadband MIMO systems [35], or beamforming for broadband MIMO

systems [73]. However, the iterative SBR2 algorithm often results in matrices of

rather high polynomial order, which for many applications leads to filter banks of

considerable delay and computational complexity.

In [74, 57], the authors address the truncation of the para-Hermitian matrix dur-

ing the diagonalisation process and show that with a small loss in its Frobenius norm,

the order of the para-Hermitian matrix can be significantly reduced. The trunca-

tion of the extracted paraunitary matrix B(z) is not considered there, although the

matrix is utilised for a number of applications [72, 35, 73]. As one can see later, the

order of B(z) can be prohibitively high, although generally the coefficient matrices

corresponding to high and low powers of z in B(z), which will be referred to as outer

coefficient matrices, can be observed to tail off to very small values.

In this section we will propose a method to shorten the order of the parauni-

tary matrix B(z). This method will discard the outer coefficient matrices which

have the smallest Frobenius norm, thus replacing the paraunitary matrix B(z) with

B(z)B̃(z) = I by a near-paraunitary matrix BN(z) such that BN(z)B̃N(z) ≈ I. We

aim to keep the loss in paraunitariness bounded, with simulation results showing

that the order of BN(z) can be significantly reduced even with a low error threshold.

The remaining part of this section is organised as follow. In subsection 5.1.2, a

brief description of the SBR2 algorithm will be laid out. Subsection 5.1.3 addresses
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the proposed method for shortening the order of paraunitary matrices and simulation

results are given in subsection 5.1.4.

5.1.2 SBR2 Algorithm [57]

The SBR2 algorithm is an iterative eigenvalue decomposition technique for the

broadband case. In each step the algorithm eliminates the largest off-diagonal ele-

ment at a specific lag value of R[τ ] ◦—• R(z),

R(z) =
L
∑

τ=−L

z−τR[τ ] (5.3)

where L is maximum lag for which cross-correlation coeffcients are non-zero, by

means of an elementary paraunitary operation. After a sufficient amount of itera-

tions, the algorithm converges to a diagonalised version of the para-Hermitian matrix

R(z). Note that since R(z) is a para-Hermitian polynomial matrix, the elements of

its coefficient matrices R[τ ] satisfy

rij [τ ] = r∗ji[−τ ] . (5.4)

The algorithm commences its operation on the original para-Hermitian matrix,

Γ(0)(z) = R(z) with B(0)(z) = I, and the gradually diagonalised matrix after the

ith iteration is denoted as Γ(i)(z) with coefficient r
(i)
kl [τ ].

At the ith iteration, the algorithm finds the two largest off-diagonal polyno-

mial coefficients - suppose one is r
(i−1)
lk [Td] which belongs to the coefficient matrix

Γ(i−1)[Td] then according to (5.4) the other should be r
(i−1)
kl [−Td] which belongs to

Γ(i−1)[−Td]. A delay of Td then will be applied to the kth column of Γ(i−1)(z) by

means of

Λi(z) = IQ×Q − vkv
H
k + z−Tdvkv

H
k (5.5)

with vk = [0 · · · 0 1 0 · · · 0]T containing zeros except for a unit element in the kth

position. Thus Λi(z) is an identity matrix with the kth diagonal element replaced by

a delay z−Td . In conjunction with advancing the kth row of Γ(i−1)(z) by Td sampling
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periods, the power of z associated with r
(i−1)
lk [Td] and r

(i−1)
kl [−Td] will become zero.

In other words, the maximum off-diagonal elements at lags Td and −Td are now

brought to lag zero of Λi(z)Γ(i−1)(z)Λ̃i(z).

In the same ith step, the above mentioned maximum elements now in lag zero

are eliminated by a Givens rotation Qi, which is an identity matrix with elements

at the intersections of the kth and lth rows and the kth and lth columns given by




q
(i)
ll q

(i)
lk

q
(i)
kl q

(i)
kk



 =





cos(θ) sin(θ)eiφ

− sin(θ)e−iφ cos(θ)



 (5.6)

where

φ = arg{r(i−1)
lk [−Td]} (5.7)

θ =
1

2
arctan

{

2|r(i−1)
lk [−Td]|

r
(i−1)
ll [0] − r

(i−1)
kk [0]

}

. (5.8)

Therefore, the overall operation in the ith step is characterised by

Γ(i)(z) = QiΛi(z)Γ(i−1)(z)Λ̃i(z)QH
i (5.9)

= B̃(i)(z)R(z)B(i)(z) (5.10)

B(i)(z) = QiΛi(z)B(i−1)(z) =

i
∏

j=1

QjΛj(z) . (5.11)

It is shown in [57] that in order to ensure a strong spectral majorisation of

the BEVD algorithm, the angle θ in equation (5.8) should be calculated using the

fourquadrant arctangent function which gives the value of θ in the range of (−π, π].

The operations described above can be visualised as in Figure 5.1 where all the

coefficient matrices of Γ(i−1)(z) are placed next to each other and ordered according

to their time indicies. Figure 5.1.a shows the coefficient matrices of para-Hermitian

matrix Γ(i−1)(z) with the two dominant elements r
(i−1)
lk [Td] and r

(i−1)
kl [−Td]. Figure

5.1.b shows the application of a delay of Td to kth column of Γ(i−1)(z) which actually

“shifts” all the kth columns, which are lying in the plane surrounded by the dotted

lines in the figure, in the coefficient matrices to the left, such that r
(i−1)
lk [Td] is
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brought to the central lag. The application of an advance of Td to the kth row of

Λi(z)Γ(i−1)(z) is shown in Figure 5.1.c where we can see all the kth rows of the

coefficient matrices are shifted to the right, such that r
(i−1)
kl [−Td] is also brought to

the central lag. The coefficient matrices of the resulting Γ(i)(z) after the ith step are

shown in Figure 5.1.d where the dashed circles illustrate the dominant off-diagonal

elements that have been nullified by the Given rotations. One can also see from

the figure that due to the application of the delay and advance, the order of the

para-Hermitian matrix becomes higher.

The algorithm is stopped either after reaching a certain measure for suppressing

off-diagonal terms or after exceeding a specified number of iterations [58, 57].

After N iterations, the original matrix is decomposed as

R(z) = B(N)(z)Γ(N)(z)B̃(N)(z) (5.12)

where Γ(N)(z) is an approximately diagonalised polynomial matrix and B(N)(z) is

the paraunitary matrix given by

B(N)(z) =
N
∏

i=1

QiΛi(z) . (5.13)

Example. Figure 5.2 characterises a para-Hermitian matrix R(z) ∈ C4×4(z) of

order 20. This matrix may, for example, emerge from a signal vector x[n] ∈ C4

obtained from a 4-element sensor array, by correlating

R(z) •—◦ R[τ ] = E
{

x[n]xH [n − τ ]
}

,

whereby E{·} is the expectation operator. In this case, the responses on the main

diagonal of figure 5.2 are the auto-correlation sequences of each sensor signal, while

off-diagonal responses are the cross-correlation sequences between the various sen-

sors. Figure 5.2 shows the moduli of the - potentially complex valued - elements in

the para-Hermitian matrix.

Figure 5.3 depicts the moduli of the elements of the resulting

Γ(N)(z) = B̃(N)(z)R(z)B(N)(z) (5.14)
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(central lag)

central lag

central lag

(d)

central lag

(c)

(a)

(b)

Γ(i−1)[0]

r
(i−1)
lk [Td]

r
(i−1)
kl [−Td]

Figure 5.1: Visualisation of the ith iteration in the SBR2 algorithm:

(a) coefficient matrices of para-Hermitian matrix Γ(i−1)(z); (b) applying a delay of

Td to the kth column of Γ(i−1)(z); (c) applying an advance of Td to the kth raw of

Γ(i−1)(z); (d) coefficient matrices of the para-Hermitian matrix Γ(i)(z).
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Figure 5.2: Moduli of coefficients of a para-Hermitian matrix R(z) ∈ C4×4(z).
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Figure 5.3: Moduli of coefficients of the para-Hermitian matrix Γ(N)(z) after

applying the SBR2 algorithm.
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obtained by applying the SBR2 algorithm as described above. A windowed version

of Γ(N)(z) which contains 21 central coefficients is shown in Figure 5.4. It is evident

from Figures 5.3 and 5.4 that off-diagonal elements have been largely suppressed,

and only on-diagonal components remain. Note however that the order of the matrix

Γ(N)(z) has significantly increased as compared to R(z) in Figure 5.2.

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

0 10 20
0

0.5

Lag indices

C
o
effi

ci
en

t
m

o
d
u
li

Figure 5.4: Moduli of coefficients of a windowed version of Γ(N)(z).

The effect of spectral majorisation is highlighted in Figure 5.5, where the power

spectral densities along the diagonal of Γ(N)(z) are shown. As we can see, these

frequency responses are ordered in descending values, which shows that the spectral

majorisation according to (5.2) has been achieved along with the diagonalisation of

R(z).

Since in each iteration the SBR2 algorithm eliminates only a pair of the maxi-

mum off-diagonal elements, the resulting matrix Γ(N)(z) after N iterations is only

approximately diagonal. The higher the number of iterations, the closer Γ(N)(z)
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Figure 5.5: Power spectral densities Γ
(N)
i (ejΩ) along the main diagonal of Γ(N)(z)

in Figure 5.3.

approaches a diagonal matrix.

SBR2 and pseudo-circulant matrices. Section 3.5 indicated that spectral

majorisation and diagonalisation are not performed well when SBR2 is applied

to pseudo-circulant matrices. Here a deeper investigation on the convergence of

the SBR2 algorithm applied to a para-Hermitian matrix R(z) constructed from a

pseudo-circulant matrix H(z) by R(z) = H(z)H̃(z) will be provided.

Defining a function which reflects the diagonality of matrix Γ(i)(z) as

κ =

∥

∥

∥
Γ(i)(z) − D

(i)
Γ (z)

∥

∥

∥

2

F
∥

∥

∥
D

(i)
Γ (z)

∥

∥

∥

2

F

, (5.15)

where D
(i)
Γ (z) is a diagonal polynomial matrix with the main diagonal elements

equal to those of Γ(i)(z), we consider the diagonalisation of the para-Hermitian
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matrix R(z) = H(z)H̃(z) where H(z) is a pseudo-circulant matrix derived from a

MIMO channel transfer function C(z) given P according to (2.3). As a reference, we

compare R(z) to another para-Hermitian matrix Φ(z) = H
′

(z)H̃
′

(z), where H
′

(z)

has the same dimension of H(z) and the same statistics for matrix entries.

Example. We assume H(z) to be constructed from a 2 × 2 channel matrix

C(z) of order 3 and complex Gaussian random numbers with zero mean and unit

variance elements. Figure 5.6 shows the ensemble-averaged value of κ during the

diagonalisation of the matrices R(z) and Φ(z) with different numbers of polyphase

components. Note that the number of iterations is chosen to be only 500 since

from this value onward, the convergence of R(z) becomes very slow. It is clear

from Figure 5.6 that for the matrix Φ(z), SBR2 converges much faster than for

R(z) although both matrices have exactly the same size, order and number of non-

zero elements. For example, in the case that the number of polyphase components

P = 2, one can see from Figure 5.6 that the value of κ in case of diagonalising

R(z) (labelled as “R(z), P = 2”) is considerably higher than for the corresponding

matrix Φ(z) (labelled as “4 × 4 Φ(z)”). Similar observations can be made for the

cases P = 3, 4, 5.

Thus we can see that for pseudo-circulant matrices the SBR2 algorithm converges

slower than for polynomial matrices without this structure and therefore requires a

higher number of iterations to approximate a BSVD.

As one can note from Figures 5.1 and 5.3, the order of the para-Hermitian matrix

Γ(i)(z) along with the order of paraunitary matrix B(i)(z) is growing with each

iteration. In the next subsection, we will consider the problem of shortening the

order of the paraunitary matrix, in order to simplify the structure of the paraunitary

filterbank based on this matrix.
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matrices.

5.1.3 Truncation of Paraunitary Matrix

Due to the delays and advances applied in the diagonalisation process, the order

of the polynomial matrix Γ(N)(z) as well as the order of the paraunitary matrix

B(N)(z) grow as the number of iterations increases [58, 74]. This growth requires

large memory to accommodate a record of both the para-Hermitian Γ(i)(z) and the

paraunitary B(i)(z) within SBR2. Also, the computational complexity to perform

one iteration step increases with the iteration number. In order to avoid this, in

[74] the authors have proposed to discard the outer coefficient matrices of Γ(i)(z)

while allowing an acceptable small loss in its Frobenius norm 1. This approach

can help to significantly reduce the order of the para-Hermitian matrix, while the

1The Frobenius norm of a polynomial matrix A(z) is defined as ‖A(z)‖F =
√

∑+∞

τ=−∞
‖A[τ ]‖2

F

where A[τ ] are the coefficient matrices of A(z)
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order of the paraunitary matrix remains unaltered. Note that despite of truncation,

Γ(i)(z) will retain its para-Hermitian property. However, the order of the paraunitary

matrix B(N)(z) remains very high, which affects the speed of convergence for SBR2

and is likely to inhibit the application of B(N)(z) in practical senarios where long

paraunitary filter banks with large delay and complexity are undesired. Therefore it

is important to consider the problem of lowering the order of the paraunitary matrix

B(N)(z) or B(i)(z) for the more general case.

Similar to the approach in [74], we also consider the approach which discards the

outer coefficient matrices of B(i)(z) with smallest Frobenius norm. The truncation

of B(i)(z) to a matrix B
(i)
T (z) of lower order in the course of SBR2 leads to a loss of

paraunitarity. We therefore refer to B
(i)
T (z) as a near-paraunitary matrix, provided

that the deviation from a paraunitary matrix can be kept small. In order to quantify

how close B
(i)
T (z) is to a paraunitary matrix, we therefore define a cost function

ξ =
1

P

∞
∑

τ=−∞

‖Q[τ ]‖2
F (5.16)

where

Q[τ ] ◦—• Q(z) = IP×P − B
(i)
T (z)B̃

(i)
T (z) . (5.17)

In the case of no truncation, B
(i)
T (z) = B

(i)
N (z) and ξ equals to zero. Truncation of

B(i)(z) will lead to a positive error. The truncation of B(i)(z), either during each

SBR2 step or after convergence, can be performed under the condition

ξ ≤ ε . (5.18)

where ε is a given upper bound of the cost function.

A second measure evaluates by how much the matrix R
′

(z) = B̃
(i)
T (z)Γ(i)(z)B

(i)
T (z)

deviates from the original para-Hermitian matrix R(z) due to truncation of B(i)(z),

for which we consider the normalised error

χ =
‖R′

(z) − R(z)‖2
F

‖R(z)‖2
F

. (5.19)

Again, this error depends on whether B(i)(z) is truncated only after convergence,

i.e. for i = N , or as an ongoing operation in each step of SBR2. Unlike ξ, the error
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χ is not a design parameter which permits control, but a true output to assess the

impact of truncation. Note that if we perform the truncation of Γ(i)(z) in each step

of SBR2 as proposed in [74], it causes another deviation in addition to the deviation

caused by the truncation of B(i)(z). Thus, in such case the error χ has two sources,

whereby one is from the truncation of Γ(i)(z) and the other is from the truncation

of B(i)(z).

5.1.4 Simulations and Results

To highlight the advantage of the proposed truncation scheme, we consider the diag-

onalisation of a covariance matrix R(z), which is generated from a 4×4 polynomial

MIMO channel matrix C(z) based on the Saleh-Valenzuela indoor statistical chan-

nel model in [61]. The parameters of this channel model are chosen to be similar to

that of the MIMO channel in Section 3.5, thus the channel order is also 10 leading to

R(z) = C(z)C̃(z) to be of order 21. Simulation is performed over an ensemble of 50

randomly generated MIMO channels. The MIMO channel matrices are normalised

such that they all have unit Frobenius norm.

First we consider the truncation of the paraunitary matrix when there is no

truncation of the para-Hermitian matrix Γ(i)(z) in the diagonalisation process. The

truncation of the paraunitary matrix is performed after the convergence of SBR2.

The ensemble-averaged length of the resulting near-paraunitary matrix B
(N)
T (z) as a

function of the number of iterations in case ε = 10−6 and ε = 10−5 is compared with

the length of the untruncated paraunitary matrix B(N)(z) in Figure 5.7. As one

can see from the figure, without truncation the length of the paraunitary matrix is

rather high. However, this length can be significantly (more than 5 times) reduced

by truncating the matrix with a very small loss in its paraunitarity, namely the

cost function defined in (5.16) for the truncated cases has been chosen to be upper

bounded by ε = 10−6 or ε = 10−5 such that ξ ≤ 10−6 and ξ ≤ 10−5.

Figure 5.8 shows the dependence of the cost function on the number of iterations
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Figure 5.7: Ensemble-averaged length of the paraunitary matrix with and

without truncation.

with the upper bound to be 10−6 and 10−5.

We see from the figure that the cost function is always kept under the given

upper bound. The dependence of the error funtion χ on the number of iterations is

illustrated in Figure 5.9. From the figure, one can see that the distortion caused by

the truncation of the paraunitary matrix is very small.

Figure 5.10 and Figure 5.11 show the averaged length of the near-paraunitary

matrix and the ensemble-averaged error function in two cases where the truncation of

the paraunitary matrix is performed (i) after and (ii) during the diagonalisation. One

can see from the figures that performing the truncation during the diagonalisation

process results in a higher order of the truncated near-paraunitary matrix under the

same upper error bound. The error caused by truncation in this case is also higher

but more stable than in the case of truncation after the diagonalisation process. This

can be explained as in the case of performing the truncation in the diagonalisation
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process, due to the accumulated error caused by the truncation, the near-paraunitary

matrix might not satisfy the condition (5.18) in some iterations and therefore it is

not truncated in those steps, this leads to a higher order of the near-paraunitary

matrix B
(i)
T (z) and more stable error function as well.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Number of iterations

Le
ng

th
 o

f n
ea

r−
pa

ra
un

ita
ry

 m
at

rix

 

 

Truncation after diagonalisation
Truncation during diagonalisation

Figure 5.10: Ensemble-averaged length of the near-paraunitary matrices

truncated after and during diagonalisation.

Next we consider the case where the truncation of the para-Hermitian matrix

Γ(i)(z) is performed during the diagonalisation process as proposed in [74] with a

loss of 10−5 in Frobenius norm of Γ(i)(z) after each iteration. As one can see from

Figure 5.12, the truncation of Γ(i)(z) does not have a significant effect on the length

of near-paraunitary matrix, but it results in the error function increasing with the

number of iterations, which means the error function χ is dominated by the error

component caused by the truncation of para-Hermitian matrix.

This section has demonstrated that the order of the paraunitary matrices obtained

from the SBR2 algorithm can be significantly reduced by truncating B(N)(z). The

loss in paraunitarity of B
(N)
T (z) can be controlled by an error bound and the deviation
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of R
′

(z) = B̃
(N)
T (z)Γ(N)(z)B

(N)
T (z) from the original para-Hermitian matrix R(z) is

very small.
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5.2 Performance of Recent Precoding and Equa-

lisation Schemes with Non-Perfect CSI

In the previous chapters, we have considered different precoding and equalisation

designs which can to some extent avoid the disadvantage of standard block transmis-

sion systems and cause a smaller loss in channel power gain, leading to better BER

performance as well as higher data throughput. However, all the designs considered

in previous chapters are based on the assumption that perfect CSI is available at

both the transmitter and receiver. In practice, CSI has to be estimated, which may

be prone to some estimation errors [75] unless very long data windows are available.

Even then, in a realistic environment the channel may be time varying, such that a

trade-off arises in the identification of the channel between an inconsistent estimate

due to too short a time window, and a tracking error if the estimation error is too

long. Therefore, although in the designs considered in Chapter 3, we have assumed

that the channel is stationary, perfect CSI cannot be obtained due to channel es-

timation errors and thus an evaluation of the influence of non-perfect CSI on the

performance of the considered designs is necessary.

Generally, CSI is obtained at the receiver either by means of a training sequence

sent by the transmitter or identified blindly. In the former case, the training se-

quence, which is also referred to as pilot sequence, is known to the receiver before-

hand. The receiver will, based on the knowledge of the training sequence and the

received signal, attempt to estimate the CSI. In the later case, instead of using a

training sequence, the receiver will utilise a specific structure of the transmitted

signal or of the channel to estimate the CSI.

If the channel is estimated at the receiver end, CSI may be shared with the

transmitter via a feedback channel. In 3G LTE [76], where OFDM is employed, a

codebook entry to a very coarsely quantised version of the precoding matrix is fed

back to the transmitter side.
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Alternatively, the reciprocity of the channel may be exploited to employ a channel

estimate for the reversed link. This is often considered practical for TDD systems,

provided that the channel can be assumed stationary, i.e. the duration of a time

slot should be sufficiently shorter than the coherence time of the channel.

For FDD systems, where the reverse link often occurs over neighbouring a fre-

quency band, narrowband MIMO systems may use channel reciprocity if the coher-

ence bandwidth of the channel is larger than the total bandwidth of both the up-

and downlink. For the broadband MIMO systems considered in this thesis, this is

not fullfilled and FDD cannot be used to obtain CSI via reciprocity.

The problem of designing transceivers under non-perfect CSI has been considered

in a number of papers where the approaches generally assume flat-fading or OFDM

based MIMO channels and can be classified into Bayesian techniques and worst-case

techniques (see [77, 78] and references therein). In this section, we only consider

the evaluation of the effect of non-perfect CSI on the system performance of our

proposed design in Chapter 3. The problem of designing robust precoding and

equalisation schemes for our design will be left opened for the future research.

In Section 5.2.1, we will first introduce our model for channel estimation er-

rors. The influence of non-perfect CSI on the performance of the precoding and

equalisation designs discussed in Chapter 3 will be examined through simulations

in Section 5.2.2.

5.2.1 Channel Error Model

Consider a broadband MIMO channel with T transmit and R receive antennas as

described in Section 2.1. Assuming that the channel transfer function is C(z) ∈
CR×T (z) while the estimated channel transfer function is Ĉ(z) ∈ CR×T (z), we can

write

Ĉ(z) = C(z) + ∆(z) (5.20)

112



Chapter 5. Performance Studies

where ∆(z) is the channel estimation error, whose elements are assumed to be

complex Gaussian random numbers with variance σ2
E . We define an inverse SNR of

estimation as

εE =
‖∆(z)‖2

F

‖C(z)‖2
F

. (5.21)

In some literature, the estimation error of the channel noise statistics is also

considered in the design of robust precoders and/or equalisers. However, since this

error has no influence on the BSVD operation in our proposed design in Chapter 3,

we will not consider it here and assume that the noise is white with perfectly known

variance σ2
n.

5.2.2 Effect of Non-Perfect CSI on Precoding and Equali-

sation Performance - Simulation Results

In this subsection, we will investigate the effect of non-perfect CSI on the per-

formance of the precoding and equalisation designs considered in Chapter 3. We

take the same broadband MIMO channel model as described in Section 3.5 with

the error model described in the previous subsection being taken into account.

Similar to the error model in [75], the variance σ2
E of the error is choosen to be

σ2
E = 0.01. The error matrix ∆(z) is normalised such that the inverse SNR of

estimation εE = {0.02, 0.05, 0.1, 0.15}.

The number of polyphase components is choosen to be P = 1. The transmit

block size for all the SISO FS subchannels resulting from the BSVD is choosen to

be P1 = P2 = P3 = P4. These block sizes and the input block length N are choosen

similar to those in Section 3.5, leading to a code rate of 0.57. The benchmark design,

which is the MMSE optimal linear precoding and equalisation scheme proposed in

[25], utilises the same sizes of its transmit as well as its input blocks.

In order to evaluate the influence of non-perfect CSI on the performance of our

proposed design and the benchmark, we measure the average BER of the two designs
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under various values of εE . To highlight the influence of the channel estimation error

only, we keep the channel matrix C(z) in (5.20) fixed and randomise the error matrix

∆(z).

Figure 5.14 compares the BER performace of our proposed MMSE-LPE-BSVD

design and of the benchmark design (MMSE-LPE-MIMO design). From the figure,

one can see that at a BER of 10−4 when the channel error is small (εE = 0.02; εE =

0.05) our proposed design experiences a loss of nearly 1 dB for εE = 0.02, and of

nearly 3 dB for εE = 0.05 while the benchmark design bears a loss of more than 1 dB

for εE = 0.02 and nearly 4 dB for εE = 0.05. Thus under small channel estimation

error, our proposed design is less sensitive to channel error than the benckmark

design. However, when the channel estimation errors become larger, namely in case

εE = 0.1 or εE = 0.15, one can see from the figures that the BER performance of

our proposed design becomes much poorer and closer to the BER performance of

the benckmark design. This shows that under strong channel error, the proposed

design approaches the BER performance of the benchmark design.

5.3 Concluding Remarks

In this chapter, several issues relating to the performance of our proposed design

have been addressed. First, after reviewing the BEVD computation algorithm, we

have proposed an approach to shorten the order of the paraunitary matrix obtained

from the BEVD. The algorithm tries to reduce the order of a paraunitary matrix

while still keeping the loss in its paraunitarity below a given upper bound. The

simulation results show that our proposed approach can significantly reduce the

order of the paraunitary matrix while the upper bound of the loss in paraunitarity

can still be controlled and the error introduced by the truncation of the paraunitary

matrix to the diagonalisation process is very small. Performing the truncation of

the paraunitary matrix after the diagonalisation process has been shown to result in

a lower order of the near-paraunitary matrix as compared to when performing the
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Figure 5.14: Comparison of the BER performance of the proposed

MMSE-LPE-BSVD design and the benchmark with non-perfect CSI.

truncation during the diagonalisation process.

Second, the influence of non-perfect CSI on the BER performance of the proposed

design in Chapter 3 has been investigated and compared with that of a benchmark

design based on block transmission. The simulation results show that the proposed

design has a better performance in the case of perfect CSI and is less sensitive

to small errors compared to the benchmark design, however under stronger channel

errors our proposed design becomes less robust and its BER performance approaches

that of the benchmark design. This can be explained as follow. The effect of the

channel error on the system performance depends on how much error is “transferred”

from the estimated channel matrix to the FS SISO subchannels resulting from the

BSVD operation. Since the SBR2 is looking for maximum off-diagonal elements

to be eliminated during its iteration process, after a certain number of iterations,

there is always a number of off-diagonal elements that are small enough so that they

are not eliminated by the BEVD. The value of those small elements depends on the
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number of iterations as well as the criterion terminating the iteration: the higher the

number of iteration is, the smaller off-diagonal elements are. Thus when the channel

error is small, by setting an appropriate number of iterations, we discard a part of

the channel error occupying those small off-diagonal elements and therefore reduce

the amount of channel error that is “transferred” to the design of the precoders and

equalisers of the FS SISO subchannels. Meanwhile, the benchmark design relies

entirely on the EVD of the channel matrix as shown in (2.52) which can entirely

eliminate the off-diagonal elements and may therefore suffer from a higher amount

of channel error.
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Conclusions and Future Works

In this thesis, several approaches for precoding and equalisation for broadband

MIMO channels have been addressed. Standard techniques for broadband MIMO

utilise block transmission schemes, such as OFDM, which require the introduction

of a guard interval. The main focus of this thesis has rested on achieving a higher

spectral efficiency by reducing or circumventing the use of a guard interval in block

transmission. In the following, we first summarise the main outcomes of this thesis

before providing thoughts for future work.

6.1 Summary

In Chapter 3 we have proposed a design for precoding and equalisation for broadband

MIMO channels. First, based on the recently proposed BSVD algorithm, we have

derived a pair of precoders and equalisers that decompose a broadband MIMO

channel into a number of independent FS SISO subchannels. Second, we have

applied conventional block transmission based approaches to design second-tier pairs

of linear joint optimal precoders and equalisers to remove the remaining ISI on each

SISO subchannel. The use of BSVD based precoders and equalisers not only removes

the CCI in the MIMO channels, but also helps to indirectly suppress part of the
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ISI caused by the channel’s frequency selectivity. This aids in reducing the loss in

channel energy due to elimination of ISI and also helps to direct more power towards

strong eigenmodes when a water-filling algorithm is performed following the second

step. Overall, it has been shown that the proposed system can achieve a better

BER performance or higher data throughput under a quality of service constraint

compared to a benchmark system.

The first part of Chapter 4 has focused on the reduction of the redundancy used

for ISI cancellation in block transmission systems and proposed an approach to

joint precoding and block decision feedback equalisation. The proposed design has

emerged from two recently reported methods: first, IBI is removed by a decision-

feedback equaliser, then a joint optimal linear precoder and non-linear BDFE is

designed for the remaining fading MIMO channel. With the help of the decision-

feedback equaliser in the first step, the precoder can use guard intervals that are

much shorter than the channel order. It is the optimality inherited from the design

in the second step that provides an enhanced BER performance compared to other

analogous designs in the literature.

The second part of Chapter 4 has focused on the improving the performance

of block transmission systems. Based on an analysis of the loss in channel energy

caused by the conventional use of guard intervals, we have proposed several designs

to reduce this loss. In the first design, although the guard interval is used for

IBI elimination, it is shared between the precoder and the equaliser. In all the

other designs, the IBI elimination entirely relies on a DFE at the receiver, and the

redundancy introduced by the precoder is used to discard the weak subchannels. Our

proposed designs have been shown to outperform conventional block transmission

designs. The proposed designs can also be applied to broadband MIMO scenarios.

In order to further improve the applicability of the BSVD algorithm for com-

munications scenarios, Chapter 5 has been dedicated to reduce the order of the

paraunitary matrices as well as the SISO subchannels obtained from the BSVD

algorithm. This allows near-paraunitary filterbanks based with a reduced imple-
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mentation cost. From the simulation results, it has been evident that it is possible

to significantly reduce the order of the parauniraty matrices while keeping the loss

in paraunitarity below a given threshold.

Finally, the second part of Chapter 5, has considered the situation where the only

non-perfect CSI is available to both transmitter and receiver. The simulation results

in this part have shown that our proposed design in Chapter 3 is more robust than

the standard linear joint optimal precoding and equalisation design when the channel

error is small. For larger estimation errors, the proposed design and the benchmark

system showed similar performance. Thus, overall it appears advantageous to utilise

the proposed system.

6.2 Future Work

Beyond the research summarised in Sec. 6.1 a number of issues have been identified

as relevant, but are beyond the scope of this thesis and are recommended for future

investigation:

Combination of BSVD with non-linear precoding methods. The combina-

tion of BSVD based precoding and equalisation with non-linear precoding methods,

such as Tomlinson-Harashima precoding (THP) [79, 80, 81], can help to avoid the

problem of error propagation in a DFE and may offer performance advantages over

the BDFE designs presented in Chapter 4. For both DFE and THP, the detection

order is critical and will require optimisation. If these techniques are combined

with the BSVD MIMO decoupling, spectral majorisation would help to determine

a suitable detection order, whereby the data streams are detected in order of their

subchannel gain and subsequently their SNR.

Combination of BSVD with robust precoding and equalisation schemes.

Robust designs of precoding and equalisation proposed in the literature, such as
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[77, 75], require the knowledge of an upper bound for the channel estimation error.

This could be utilised to achieve a more robust design with enhanced performance,

if, after decoupling the MIMO channel using the BSVD, the channel estimation error

of the SISO subchannels was known. The known error bounds that are imposed on

the system as part of the truncation of the precoding, equalisation, as well as the

para-Hermitian matrices within SBR2 during the BSVD calculation could contribute

to such an improved robust design.

Hardware implementation issues of the SBR2 algorithm. The effect of

quantisation noise and rounding errors when using fixed point arithmetic, such as

found on many hardware platforms, should be investigated for the SBR2 algorithm.

Some numerical techniques may be more robust and less prone to error propagation

than others, and the aim would be to identify a suitable computational scheme and

quantify any performance loss compared to a floating point calculation.

Channel coding. In addition to precoding and equalisation, paraunitary filter

banks can also be used for channel coding. Discarded subchannels can form a syn-

drom vector, which should have a zero output in the receiver. Deviations may be

used to detect impulse noise [82] in order to increase the robustness of a transmission

system. In an impulse noise environment, filter bank based precoding and equalisa-

tion already adds robustness, as information is spread over time and therefore less

affected by impulsive interference. If additionally decoded symbols in the presence

of a detected noise impulse are labelled as erasures, the error correction capability of

some codes, such as Reed-Solomon, may be increased. Prelimininary work on using

paraunitary filter banks designed by SBR2 for channel coding has been performed

in a power line communications scenario [72, 83], but combination of such coding

techniques with the precoding and equalisation techniques for broadband MIMO

systems as presented in this thesis appear very attractive.
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Appendix A

Derivation of Joint Optimal

Precoders and BDFEs

This appendix will provide a brief description of the derivation of the joint optimal

precoders and BDFEs in subsections 4.1.3.1 and 4.1.3.2. The derivations in this

section are based on the work by Xu et. al in [32]. Since these design problems are

central to this thesis, the problem formulations, derivations, and solutions for the

ZF and MMSE design case are set out below.

A.1 Derivation of ZF Joint Optimal Precoding

and BDFE

The design problem for ZF joint optimal precoding and BDFE is stated as [32]

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0HMF0 = B0 + I

B0 is strictly upper triangular,
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where P0 is the transmit power.

With the ZF constraint W0HMF0 = B0 + I, the error covariance matrix in (4.6)

can be written as

Ree = W0RvvW
H
0

= (B0 + I) (HMF0)
† Rvv

[

(HMF0)
†
]H

(B0 + I)H .
(A.1)

Setting HR = R
−1/2
vv HM , one can write

Ree = (B0 + I) (HRF0)
†
[

(HRF0)
†
]H

(B0 + I)H . (A.2)

If F0 is selected such that rank(F0) = N then rank(HRF0) = N and therefore the

matrix
(

FH
0 HH

RHRF0

)

is invertible and one can write

(HRF0)
† =

(

FH
0 HH

RHRF0

)−1
FH

0 HH
R . (A.3)

Applying this result to the equation (A.2), one can have

Ree = (B0 + I)
(

FH
0 HH

RHRF0

)−1
(B0 + I)H . (A.4)

Based on the trace-determinant inequality [32] 1, one can now write

trace(Ree)

N
≥
∣

∣

∣
(B0 + I)

(

FH
0 HH

RHRF0

)−1
(B0 + I)H

∣

∣

∣

1/N

. (A.6)

Since |B0 + I| = 1 as B0 is a strictly upper triangular matrix, the above inequality

can be rewritten as
trace(Ree)

N
≥
∣

∣FH
0 HH

RHRF0

∣

∣

−1/N
(A.7)

or
trace(Ree)

N
≥
∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣

−1/N
. (A.8)

1This inequality is a consequence of the arithmetic-geometric mean inequality [84] and is for-

mulated as: for an N × N positive semidefinite matrix A

trace(A)

N
≥ |A|1/N

(A.5)

with equality holds if and only if A = αI for some α ≥ 0.
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This inequality shows that the system arithmetic MSE trace(Ree)/N has a lower

bound of
∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣

−1/N
. Thus, the minimisation of the lower bound of

the arithmtic MSE is the minimisation of
∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣

−1/N
which in turn is

equivalent to the maximisation of
∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣. Therefore one now has to

find a precoder F0 which maximises the aforementioned determinant subject to the

transmit power constraint.

To calculate F0, from the EVD

HH
MR−1

vv HM = VΛVH , (A.9)

let VN contain the first N columns of V, ΛN to be the upper left N × N block of

the diagonal matrix Λ holding the eigenvalues λii, i = 1 · · ·N , and let Γ =
√

ΛN .

Since rank(F0) = N , it can be decomposed as

F0 = UFΦVF (A.10)

where UF ∈ CM×N and VF ∈ CN×N are unitary matrices, Φ is an N ×N diagonal

positive definite matrix. With the above decompositions and notations and again

based on the trace-determinant inequality in (A.5) one can write

∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣ =
∣

∣Φ2
∣

∣

∣

∣UH
FVΛVHUF

∣

∣ , (A.11)

∣

∣Φ2
∣

∣

∣

∣UH
FVΛVHUF

∣

∣ ≤
[

trace(Φ2)

N

]N N
∏

j=1

λjj =

(

P0

N

)N N
∏

j=1

λjj , (A.12)

as trace(F0F
H
0 ) = trace(Φ2) = P0. Therefore

∣

∣FH
0 HH

MR−1
vv HMF0

∣

∣ ≤
(

P0

N

)N N
∏

j=1

λjj . (A.13)

From (A.8) and the above inequality, it can be seen that the MSE lower bound can be

minimised to (N/P0)(
∏N

j=1 λjj)
−1/N . In order for the first equality in (A.12) to hold,

which also means that the MSE lower bound is then minimised, it is required that

Φ = αI for some α > 0 and UF = VN . Therefore it can be derived from the transmit

power constraint that α =
√

P0/N and F0 now has the form F0 =
√

P0/NVNVF .
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One now has to find VF and B0 such that the system MSE can achieve its

minimised lower bound. For this, it is required that the equality in (A.6) to hold,

which in turn requires that Ree = αI for some α > 0. From the value of the

minimised lower bound of MSE found above, one can see that now

Ree =
N

P0

(

N
∏

j=1

λjj

)−1/N

I . (A.14)

Replacing the F0 found above into the the product in the right hand side of (A.6)

gives

(B0 + I)VH
FΛ−1

N VF (B0 + I)H =

(

N
∏

j=1

λjj

)−1/N

I (A.15)

Based on the geometric mean decomposition [31], which decomposes the matrix

Γ such that

Γ = URΘH , (A.16)

whereby U and Θ are unitary matrices and R is an upper-triangular matrix with

equal diagonal elements identical to the geometric mean of the diagonal elements of

Γ

rii =

(

N
∏

j=1

γjj

)1/N

=

(

N
∏

j=1

λjj

)1/(2N)

, (A.17)

one can see that by choosing

VF = Θ (A.18)

B0 + I =

(

N
∏

i=1

λii

)− 1

2N

R , (A.19)

the condition in (A.15) will be satisfied. Thus the optimal precoder matrix has the

form

F0 =
√

P0/N VNΘ . (A.20)

The feedback and feedforward matrices are then given by

B0 =

(

N
∏

i=1

λii

)− 1

2N

R− I (A.21)

W0 = (B0 + I)(HMF0)
† . (A.22)
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A.2 Derivation of MMSE Joint Optimal Precod-

ing and BDFE

The design problem of a precoder and BDFE equaliser for the case of joint optimality

in the MMSE sense is stated as [32]:

min
F0,W0,B0

trace(Ree)

subject to trace(F0F
H
0 ) = P0

W0 = (B0 + I)RsyR
−1
yy

B0 is strictly upper triangular.

where

Rsy = (HMF0)
H (A.23)

Ryy = (HMF0)(HMF0)
H + Rvv . (A.24)

In this case, the error covariance matrix in (4.6) can be re-written as [32]

Ree = (B0 + I)(I + FH
0 HH

MR−1
vv HMF0)

−1(B0 + I)H . (A.25)

Based on the trace-determinant inequality, it can be seen that

trace(Ree)

N
≥

∣

∣(B0 + I)(I + FH
0 HH

MR−1
vv HMF0)

−1(B0 + I)H
∣

∣

1/N
(A.26)

=
∣

∣I + FH
0 HH

MR−1
vv HMF0

∣

∣

−1/N
. (A.27)

Therefore the problem of minimising the lower bound of the system MSE is equiv-

alent to the problem of maximising the value of
∣

∣I + FH
0 HH

MR−1
vv HMF0

∣

∣, which rep-

resents the mutual information of the system with Gaussian input, subject to the

transmit power constraint. This requires that the singular values of the precoder

matrix F0
2 are derived from a water-filling algorithm with single water level which

2The precoder matrix F0 is assumed to have the form F0 = Vq

[

Φ 0q×(N−q)

]

UF where Vq

contains q first columns of V in (A.9), Φ is a q × q diagonal matrix and UF is an N × N unitary

matrix.

125



Chapter A. Derivation of Joint Optimal Precoders and BDFEs

is applied to the diagonal elements of Λ as in (A.9). Thus the singular values of F0

belong to a q × q diagonal matrix Φ and are given by

|φii|2 =
P0 +

∑q
j=1

1
λjj

q
− 1

λii
, (A.28)

whereby q = min{N̄, N}, and N̄ is the maximum integer satisfying

1

λN̄N̄

<
P0 +

∑N̄
j=1

1
λjj

N̄
. (A.29)

With the singular values of the precoder matrix described above, the inequal-

ity (A.26) can be re-written as

trace(Ree)

N
≥ qq/N

(

P0 +

q
∑

j=1

1

λjj

)−q/N q
∏

i=1

λ
−1/N
ii . (A.30)

For the system MSE to achieve its lower bound, it is required that Ree = αI for

some α > 0. Thus similar to the case of ZF design, the right-singular vectors of the

precoder matrix F0 must be the columns of the matrix Θ which is a unitary matrix

derived from the following geometric mean decomposition [31]

(

IN + Φ
′TΛqΦ

′

)1/2

= URΘH (A.31)

whereby Φ
′

= [Φ 0q×(N−q)], Λq is the upper left q × q block of Λ in (A.9), U is a

unitary and R an upper-triangular matrix with equal diagonal elements.

The optimal precoder that helps to minimise the MSE lower bound and to achieve

that bound is then given by

F0 = VqΦ
′

Θ , (A.32)

where matrix Vq contains the first columns of V.

The feedback filter bank that helps to achieve the minimised MSE lower bound

under the MMSE criterion is given by

B0 = R− I (A.33)
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and the feedforward filter bank under the MMSE criterion is given by

W0 = σeRRsyR
−1
yy (A.34)

where

σ2
e = qq/N

(

P0 +

q
∑

j=1

1

λjj

)−q/N q
∏

j=1

λ
−1/N
jj . (A.35)
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Mathematical Notations

General Notations

h scalar quantity

h or H vector quantity

H matrix quantity

h(t) function of a continuous variable t

h[n] function of a discrete variable n

H(ejω) periodic Fourier spectrum of a discrete function h[n]

H(z) z-transform of a discrete function h[n]

Relations and Operators

•—◦ transform pair, e.g. h[n] •—◦ H(ejΩ) or h[n] •—◦ H(z)

(·)∗ complex conjugate

(·)H Hermitian (conjugate transpose)

(̃·) Parahermitian (Ã(z) = AH(z−1))

(·)T transpose

(·)+ pseudo-inversion

E{·} expectation operator

d·e ceiling operator

b·c flooring operator

|A| determinant of A
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‖A‖F Frobenius norm of A

diag(·) diagonal matrix with as diagonal elements equal to (·)
max(·) select the maximum value

trace(·) trace of a matrix

rank(A) rank of A (number of linearly independent rows)

Sets and Spaces

C set of complex numbers

CM×N set of M × N matrices with complex entries

R set of real numbers

RM×N set of M × N matrices with real entries

Z set of integers

Symbols and Variables

Γ majorised diagonal matrix

λ eigenvalue

Ω or ω (angular) frequency

σ2 variance

τ delay / lag

C(z) MIMO channel matrix

H(z) time-multiplexed MIMO channel matrix

R(z) para-Hermitian matrix

I identity matrix

L channel order

P number of polyphase components

R number of receive antennas

T number of transmit antennas
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