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Zusammenfassung

Moderne Modulationsverfahren, die in mobilen Kommunikationssystemen (UMTS) der
dritten Generation eingesetzt werden, erzeugen eine stark schwankende Einḧullende des
Sendesignals. Diese Eigenschaft bewirkt eine Störung, die durch das nichtlineare Verhal-
ten des HF Verstärkers (HF PA) hervorgerufen wird. Wir schlagen verschiedene Mod-
ellstrukturen f̈ur solche Versẗarker vor, die entweder auf Memory Polynome oder auf die
Approximationen von Frequenzbereichs Volterra Kernen beruhen, wodurch sich die An-
zahl an freien Parametern um80% gegen̈uber dem Volterra Reihen Ansatz verringern lässt.
Da diese Modelle Ged̈achtnis aufweisen, sind wir in der Lage die nichtlinearen Störungen
von HF PAs mit ausreichender Genauigkeit (z.B.−30 dB rel. Modellierungsfehler) auch
für Breitbandsignale ( 4-Träger WCDMA Signal mitB = 20 MHz) zu modellieren.
Ausserdem schlagen wir ein Verfahren zur Konstruktion von RF PA Modellen basierend
auf frequenzabḧangigen AM/AM und AM/PM Konvertierungen vor. Für die Kompensa-
tion der Nichtlineariẗaten analysieren und simulieren wir verschiedene digitale Vorverzerrer
bez̈uglich Komplexiẗat und Linearisierungsleistung. Vorverzerrer basierend auf Memory
Polynomen (7ter Ordnung), k̈onnen eine vergleichbare Linearisierungsleistung wie Volterra
Vorverzerrer erreichen, benötigen jedoch eine wesentlich geringere Anzahl an Parametern
(11 statt 42). Schließlich schlagen wir eine neue Vorverzerrer Struktur vor, bei der die
Kosten f̈ur die ADCs im R̈uckwärtspfad auf Grund der niedrigen Abtastrate bei der Sys-
temidentifikation deutlich reduziert werden können.
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Abstract

Modern modulation methods as used in3rd generation mobile communications (UMTS)
generate strongly fluctuating transmission signal envelopes with high peak-to-average
power ratios. These properties result in significant distortion due to the nonlinear be-
havior of the radio-frequency power amplifier (RF PA). We propose different nonlinear
model structures for such amplifiers, based on memory polynomials and frequency-domain
Volterra kernel expansion, where we can reduce the number of free parameters by80%
compared to traditional Volterra series approaches. Because these nonlinear models incor-
porate memory, we are able to model the nonlinear distortion of RF PAs with sufficient
accuracy (e.g.,−30 dB relative modeling error ), including the wideband case (bandwidth
B = 20 MHz as needed for four-carrier WCDMA). Furthermore, we proposea method
to construct RF PA models from frequency-dependent AM/AM and AM/PMconversions.
For the compensation of the nonlinearities, we analyze and simulate differentdigital predis-
torter structures in terms of complexity and linearization performance. As a result, memory-
polynomial predistorters (7th order) can achieve a linearization performance comparable to
the full Volterra predistorter, while the number of parameters is reduced from 42 to 11.
Finally we propose a new predistortion scheme with low-rate system identification and
Volterra kernel interpolation which allows a drastic cost reduction for the feedback ADC.
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Chapter 1

Introduction

In the past years the rising number of subscribers in mobile communication networks led to
the development of new3rd -generation standards like UMTS (Universal Mobile Telecom-
munications Standard). In particular the demand for higher data rates, e.g.,for multimedia
applications, and for fast internet access have been considered here. In addition both the
modulation scheme and the multiple user access method were designed for a higher spec-
tral efficiency compared with former mobile communications standards like GSM (Global
System for Communication).

Modern modulation formats such as OFDM (Orthogonal Frequency Division Multiplex-
ing) or WCDMA (Wideband Code Division Multiple Access) possess strongfluctuations in
their signal envelopes with high peak-to-average power ratios (PAPR> 10 dB) [48, 50, 32].
For this reason, highly linear transmitters are needed to avoid an unacceptably high nonlin-
ear distortion of the transmission signal. To obtain a sufficient output powerlevel to cover
the range within a mobile communication cell, RF power amplifiers (RF PA) with RF out-
put powers ofP ≥ 100 W are needed. As these devices are one of the most cost intensive
components within a basestation, it is of fundamental importance to operate the RF PA near
the1 dB compression point to obtain the highest possible efficiency [50, 32].

The main problem is the nonlinear behavior of the RF PA in combination with the men-
tioned high PAPR of the transmission signal envelope if we drive the RF PA deep into
compression ( efficiency is approximately inversely proportional to linearity) [50, 32]. This
leads to intermodulation distortion and spectral regrowth of the transmission signal. If we
made no attempt to linearize the RF PA, we would generally obtain an unacceptably high
bit-error rate on the receiver side and a violation of the spectral transmission masks which
are specified by the regulatory bodies.

To overcome these problems we basically have two options. The first one is toback-off
the RF PA which leads to bad efficiencies [32, 15, 16] or we can develop proper RF PA con-
cepts including linearization. The most widespread concept for today’s RF PAs is Class-AB
with feedforward linearization [32, 15, 16]. Unfortunately, this concept is cost-intensive be-
cause all blocks for the linearization (power splitter, delay-lines, auxilary-amplifier) have to
be implemented in the high frequency domain. Another difficulty is the demand foradaptive
control of the linearization scheme to be able to react to the slightly time-varying behavior
of the RF PA (temperature, aging,...). The basic concept of a feedforward linearization is
depicted in the block diagram of Fig. 1.1. The RF input signalx(t) is fed to the RF PA,
which generates the distorted output signal given by

yPA(t) = G1x(t− τ1) + d(t), (1.1)
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whereG1 denotes the gain of the RF PA andτ1 the latency of the RF PA. The output signal
of the RF PA in (1.1) is composed of the amplified input signal and the distortiond(t),
which is caused by the inherent nonlinearity of the RF PA. If we subtract the delayed input
signaly1(t) = x(t − τ1) from a portion of the RF PA output signal in (1.1), we obtain a
weighted error signal given by

e(t) = γ1G1x(t− τ1) + γ1d(t) − x(t− τ1), (1.2)

where the constant factorγ1 describes the attenuation of the directional-coupler. Ifγ1 =
1/G1, the error signal is purely determined by the weighted distortion of the RF PA given
by

e(t) = γ1d(t). (1.3)

Because the power of the error signal in (1.3) is in general much lower than the power of
the amplified RF PA input signal, we can use a linear low-power auxiliary PA to generate

y2(t) = G2e(t− τ2)

= G2γ1d(t− τ2), (1.4)

which is used to cancel out the nonlinear distortion of the RF PA. The final output signal is
given by

z(t) = G1x(t− τ1 − τ2) + d(t− τ2) − γ2G2γ1d(t− τ2), (1.5)

whereτ2 denotes the latency of the low-power auxiliary PA. If the gain of the auxiliaryPA
G2 = 1/(γ1γ2), the output signal of the RF PA is given by

z(t) = G1x(t− τ1 − τ2). (1.6)

Thus the output signal of the feed-forward linearization concept in Fig.1.1 is an amplified
and time-delayed replica of the input signal with the nonlinear distortion from the main RF
PA removed.

1.1 Introduction to Digital Predistortion

As nowadays digital signal processors (DSPs) are very fast and powerful, the purely analog
state-of-the-art linearization methods such as feedforward [32, 15, 16, 50] are replaced more
and more by digital predistortion concepts. By using digital predistortion we can increase
the overall efficiency (RF output power at the antenna over the whole DC-power which is
needed to operate a basestation) from approximately10 % for feedforward linearization
concepts to approximately20 %, because no auxiliary amplifier is needed anymore [50].

A digital predistorter is a functional block (it incorporates the inverse of the RF PA) im-
plemented in the digital baseband domain which precedes the RF PA in order to linearize the
whole transmitter chain. Therefore, we can advantageously employ advanced digital signal
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Figure 1.1: Blockdiagram of a feedforward linearization concept.

processing methods for nonlinear system identification, parameter adaptation and predistor-
tion without the difficulties which arise in an analog feedforward linearizationconcept.

Figure 1.2 shows a block diagram of a wireless basestation transmitter with digital pre-
distortion in a direct up-conversion architecture [39]. The complex baseband signal (I,Q)
from the baseband unit is fed to a peak-to-average power ratio (PAPR)reduction block
[38], where the PAPR can be reduced from approximately10 dB to approximately6 dB.
This allows us to increase the average input power of the multi-carrier PA (MC PA) without
increasing the nonlinear distortion (higher efficiency) [32]. The complexbaseband signal
after PAPR reduction is pre-distorted by the digital predistorter-core (DPD-core) and up-
converted to the desired RF carrier frequency. The multi-carrier RF PA (MC PA) is in gen-
eral designed to cope with input signal bandwidths of approximately20 MHz, to transmit up
to four WCDMA-carriers simultaneously. Because the behavior of the RF PA is in general
not known in advance and the behavior is also slightly time-varying (aging, temperature-
drifts,...), we need a feedback path (frequency down-converter in Fig.1.2) from the output
of the RF PA back to the digital predistortion processor (DPD-processor) to adjust the pre-
distorter parameters accordingly.

The most critical part of a digital predistorter is the right choice of the predistorter ar-
chitecture, which must be able to perform at least an approximate inverse (most nonlinear
systems do not possess an exact inverse [40, 12, 56]) of the RF PA. At this time, most of the
commercial digital predistorters used in basestation transmitters are based onstatic nonlin-
ear systems which compensate the AM/AM-conversion and AM/PM-conversion [32, 8, 51]
of an RF PA with simple look-up table techniques [13, 32, 17, 43, 41, 14].

The basic concept of such a predistorter is shown in Fig. 1.3. The complexbaseband
input signalx̃ from the PAPR reduction block (see Fig. 1.2 and Fig. 1.3) will be multiplied
with the complex correction termF (|x̃|) (based on the inverse AM/AM- and AM/PM-
conversion) from a look-up table. The predistorted output signalỹ[k] = x̃[k]F (|x̃[k]|) will
be frequency up-converted to the desired carrier frequency and amplified with the complex
gainG(|ỹ|) (based on the AM/AM- and AM/PM-conversion) of the MC PA in Fig. 1.2.
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Figure 1.2: Blockdiagram of a wireless basestation transmitter including peak-to-average
power ratio reduction (PAPR) to increase the average power (higher efficiency) and digital
predistortion for the linearization of the multi-carrier RF PA (MC PA). The digital pre-
distorter core (DPD-core) incorporates the approximate inverse of the MC PA in order to
linearize the transmitter chain. Because the behavior of the MC PA is slightly time-variant,
a feedback path (down-converter) is necessary to adjust theDPD parameters accordingly.
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Figure 1.3: Blockdiagram of a particular digital predistorter-core (complex multiplier)
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to linearize the MC PA in Fig. 1.2. The DPD is only suitable fornarrowband applica-
tions because this system is purely based on the inverse AM/AM- and AM/PM-conversion
(static nonlinearities).
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Figure 1.4: Newton algorithm to update the look-up table (LUT) entries.The magnitude
of the complex input signal|x̃| will be quantized to index a finite number of complex LUT
entriesF (|x̃|) (for a convenient representation the values in the figures are assumed to be
real valued). This values are are multiplied with the complex baseband input signal̃x[n]
in order to linearize the RF PA in Fig. 1.2. Once we have calculated one output sample we
can compare it with the corresponding input sample to recalculate a better LUT entry.

Therefore, the PA output signal in the equivalent discrete-time baseband domain is given by

z[k] = x̃[k]F (|x̃[k]|)G(|x̃[k]| |F (|x̃[k]|)|), (1.7)

which is in the ideal case an amplified replica of the input signalKx̃[k], whereK is a real
constant (gain). The look-up table will be indexed by the magnitude of the complex input
signal |x̃|, because the gainG(|ỹ|) ( and also the AM/AM-conversion and the AM/PM-
conversion) of the MC PA are static nonlinear functions which are solely dependent on
the input signal magnitude. The optimum look-up table entriesF (|x̃|) are calculated from
the input signal samples̃x[k] and the down-converted and digitized MC PA output signal
samples in the DSP-processor. Once we have calculated one output signal sample in (1.7),
we can compare the scaled output signal sample (1/K) with the corresponding input sig-
nal sample. If the LUT entryFk(|x̃i|) is not the optimum value, the corresponding error
e(Fk(|x̃i|) 6= 0 (see Fig. 1.4). If we use the present LUT entry and the correspondingerror
at timek, we can calculate (e.g. with a Newton algorithm) a new LUT entry for the given
|x̃i| for the time-instantk + 1, which leads hopefully to a smaller error (see convergence
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conditions in [13]). It is important to note that the LUT entries are updated in an arbitrary
sequence which depends on the appearance of the different input signal magnitudes.

Unfortunately, the digital predistorter in Fig. 1.3 is only suitable for narrowband ampli-
fiers (as will be explained further below in Chap. 2). If we consider wideband input signals
such as four-carrier WCDMA, and/or high power RF transistors, the RFPA can no longer
be described sufficiently accurately with the AM/AM-conversion and AM/PM-conversion
[36, 51]. This is due to the memory effects of the RF PA which are introducedby matching
networks, biasing networks and the self heating of the RF power transistors [11, 36, 69, 70].
For such applications, the RF PA behaves as a dynamic nonlinear system whose output
signal at a certain time-instant may depend on the whole history of the input signal.

This fact makes the task of digital predistortion much more difficult, because inthis case
we cannot perform a linearization by using a simple multiplicative correction ofthe input
signal as shown in Fig. 1.3 to achieve the required linearization performance. Although most
commercial products still use feed-forward linearization or digital predistortion based on
look-up table techniques, the growing demand for cheaper linearization concepts which can
handle more than one carrier has lead to the development of more sophisticated predistortion
concepts.

Several researchers have shown that Volterra series [56, 52, 40]can be used to describe
RF PAs with memory and their (approximate) inverse [75]. Unfortunately, thenumber of
free parameters increases immensely with the order of the nonlinearity and thememory
length [40]. This leads in general to an unacceptably high computational complexity for
the hardware which is available today. For this reason, several specialstructures which are
based on a simplification of full Volterra series descriptions were developed in the past.
These are for example Wiener-models (cascade connection of a linear filter and a static
nonlinear function), Hammerstein-models (cascade-connection of a static nonlinear func-
tion and a linear filter) and models which are composed of a nonlinear functionembedded
between two linear filters (L-N-L) [5, 6, 4, 19, 30]. Although these modelsincorporate
memory, the linearization performance is quite limited if the input signal bandwidth isas
large as, e.g., in the case of a four carrier WCDMA excitation. Another problem is that
most of these models are nonlinear in their parameters (higher-order Volterra kernels are
products of lower-order kernels as e.g.hm(k1, . . . , km) = h(k1) · · ·h(km)), which makes
the parameter estimation much more difficult. Other models such as parallel Wieneror
memory-polynomials are more promising to obtain the required linearization performance
for wideband applications [36, 51, 33, 21].

In all these nonlinear models, the number of free parameters are in general significantly
reduced compared to the full Volterra model, while the linearization performance is still
comparable to full Volterra models.

For the estimation of the predistorter parameters, basically two different procedures are
known from the literature. The first one is used to identify the behavior of the RF PA and to
calculate the approximate inverse e.g.pth-order inverse [56, 54, 40], and the second one is
used to identify the inverse of the RF PA directly [22, 20, 21].

The first procedure leads to complicated predistortion structures (especially for higher
orders) which are composed of higher order nonlinear operators andthe inverse of the linear
operator which describes the behavior of the RF PA. Another difficulty is the estimation
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of the individual Volterra operators from input/output measurements because of their non
orthogonal property [56].

The latter, called indirect learning architecture (direct estimation of the inverse) is easier
to handle especially if the predistorter is linear in its parameters. In this case theoptimum
postdistorter can be found by minimizing a certain cost-function with standard linear op-
timization algorithms (LMS, RLS,...) [26, 40]. Once the optimum post-inverse is found,
the postdistorter is used as a predistorter with the assumption that the post-inverse is a good
approximation for the pre-inverse of the RF PA. This assumption is valid (experimentally
verified) as long as the cost-function of the

if the resulting cost-function become sufficiently small during the postdistorter training
process.

1.2 Scope of the Work

The aim of this work is to use digital signal processing and mixed signal methods to lin-
earize an RF PA (whole transmitter) for wireless basestation transmitters in order to increase
the efficiency and to reduce the nonlinear distortion. The predistorter should be applicable
for modern modulation formats such as WCDMA or OFDM with bandwidths up to20 MHz
(four WCDMA carriers). For such large input signal bandwidths, the RF PA can no longer
be described by two static nonlinearities (AM/AM-conversion and AM/PM-conversion) as
in the case of small input signal bandwidths and/or low-power RF amplifiers.Therefore the
predistortion structures become more complex, which increases the hardware requirements
in general. For this reason, the focus should not only be the achievementof a good lineariza-
tion performance, but also the hardware complexity should be consideredas a key-issue in
this work. Digital Predistorters act as an approximate inverse of the RF PA inits equivalent
baseband representation [49, 8]. To develop efficient predistortion structures, it is of funda-
mental importance to understand the RF PA behavior in the complex baseband domain. For
this reason a considerable part of this work refers to nonlinear complex baseband modeling.
Such nonlinear models can not only be used to develop digital predistorters, these models
can also be used in system-level simulations, e.g., to test the spectral emission masks, or to
predict the error vector magnitudes (EVM) which is defined as the square-root of the ratio
of the mean error vector power to the mean reference power expressedin percent. [50, 42].

To test the predistorter performance in terms of adjacent channel powerratio (ACPR)
[3, 50], we apply the different predistorter algorithms implemented in a MATLABr envi-
ronment to an Infineon2.2 GHz,90 W, Class-AB RF power amplifier [28]. This amplifier
is implemented in the physical RF simulation tool Microwave Officer, which allows a re-
alistic simulation of RF components in the frequency (harmonic balance mode [37]) or the
time domain.

1.3 Outline of the Thesis and Main Contributions

In this thesis we focus on modeling nonlinear passband systems in the equivalent complex
baseband domain and the digital predistortion of RF power amplifiers for wideband appli-
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cations. The term ”wideband” refers to input signal bandwidths where the memory effects
of the RF PAs are no longer negligible (e.g., four-carrier WCDMA) if we want to obtain
a sufficient modeling accuracy or linearization performance. In the following, we give a
chapter by chapter overview for the thesis and for the main contributions which often have
led to publications and/or patent applications during this work.

Introduction: In chapter 1 we give an introduction to digital predistorters and a problem
statement.

Baseband Modeling of Nonlinear Passband Systems: In chapter 2 we address the
problem of complex baseband modeling of real valued nonlinear passband systems
such as RF PAs. We show the difficulties which arise if we apply the well known
quasi-memoryless models (AM/AM-conversion and AM/PM-conversion) to describe
an RF PA baseband system under wideband excitation (four carrier WCDMA). To
overcome the limitations of these quasi-memoryless models we replace them by com-
plex baseband Volterra series models which improve the modeling accuracy consid-
erably. Furthermore, we show the relationship between Volterra series models and
quasi-memoryless models and extend the concept of the AM/AM-conversionand
AM/PM-conversion to make these nonlinear functions frequency dependent. The
extended functions can be used to construct memory-polynomial models (Volterra
series models where the off-diagonal entries are zero) from simple multi-tone mea-
surements.

• Peter Singerl and Gernot Kubin, Constructing Memory-Polynomial Models
from Frequency-dependent AM/AM and AM/PM Measurements, submitted to
IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans
(USA), May 2007 [67].

• Peter Singerl, Gernot Kubin, Constructing Memory-Polynomial Models from
Frequency-dependent AM/AM and AM/PM Measurements, pending patent ap-
plication, Germany and United States, 19.04.2006 [65].

Frequency-Domain Volterra Kernel Expansion: In chapter 3 we transform the time-
domain complex Volterra series models from chapter 2 to the frequency domain. If the
frequency-domain Volterra kernels are quite smooth over the input signalbandwidth,
it could be useful to expand these kernels with multi-variate orthogonal functions to
reduce the number of free parameters. If we transform the new frequency-domain
representation back to the time-domain, we obtain a model which is composed of a
bank of linear filters and a multi-variate polynomial function. Because this model
is still linear in the parameters, we can estimate them with linear optimization algo-
rithms as, e.g., least squares.

• Peter Singerl and Gernot Kubin, Chebyshev Approximation of Baseband
Volterra Series for Wideband RF Power Amplifiers, IEEE International Sympo-
sium on Circuits and Systems, Kobe (Japan), May 2005, vol. 3, pp.2655-2658
[66].
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• Peter Singerl, A New Approach for Efficient Modeling of Nonlinear Passband
Systems for Communication Applications, International Workshop on Nonlin-
ear Circuits and Signal Processing, Honolulu (USA), March 2005, pp.379-382
[58].

• Peter Singerl and Gernot Kubin, Frequency-Domain Volterra Series Expansion
for Efficient Modeling of Wideband RF Power Amplifiers, to be submitted to
IEEE Transactions on Circuits and Systems.

• Peter Singerl, Gernot Kubin, Efficient Approximation of Baseband Volterra Se-
ries for Wideband RF Power Amplifiers, pending patent application, Germany
and United States, 9.05.2006 [68].

Volterra Kernel Interpolation for System Modeling and Predistortio n Purposes:
In chapter 4 we use the fact that nonlinear systems can be identified on a sampling-
rate which only fulfills the Nyquist theorem regarding the input signal bandwidth.
Based on this knowledge, we show how such low-rate models can be upsampled by
simple multi-dimensional zero-padding, to obtain high-rate models which are needed
for system modeling and digital predistortion as well. This technique requiresalmost
no additional computational complexity.

• Peter Singerl and Heinz Koeppl, Volterra Kernel Interpolation for System Mod-
eling and Predistortion Purposes, IEEE International Symposium on Signals,
Circuits and Systems, Iasi (Romania), July 2005, pp. 251-254 [63].

• Peter Singerl, Heinz Koeppl, Volterra Kernel Interpolation of Nonlinear Sys-
tems, pending patent application, Germany and United States, 22.04.2005 [64].

Digital Baseband Predistortion for RF Power Amplifiers: In chapter 5 we address
the problem of digital predistortion for RF power amplifiers. The digital predistor-
tion is implemented by a functional block (approximate inverse of the RF PA) which
precedes the RF PA in order to linearize them (whole transmitter). We developdif-
ferent predistorter architectures based on Volterra series models, apply them to a2.2-
Ghz90-W Class-AB RF PA and compare their complexities and linearization perfor-
mances. Furthermore, we develop a simple predistorter architecture wherea low-rate
system identification and upsampling as shown in chapter 4 can be applied.

• Peter Singerl and Heinz Koeppl, A Low-Rate Identification Method for Digital
Predistorters Based on Volterra Kernel Interpolation, IEEE Midwest Sympo-
sium on Circuits and Systems, Cincinnati (USA), August 2005, pp. 1533-1536
[62].

• Peter Singerl, Aditya Agrawal, Aditya Garg, Neelabh, Gernot Kubin and Her-
mann Eul, Complex Baseband Predistorters for Nonlinear Wideband RF Power
Amplifiers, IEEE Midwest Symposium on Circuits and Systems, San Juan
(USA), August 2006, [60].

• Heinz Koeppl and Peter Singerl, An Efficient Scheme for Nonlinear Modeling
and Predistortion in Mixed Signal Systems, to appear in IEEE Trans. Circuits
Syst., December 2006 [34].
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• Peter Singerl and Heinz Koeppl, A Low-Rate Identification Method for Digital
Predistorters Based on Volterra Kernel Interpolation, invited for submission to
the Springer Journal, Analog Integrated Circuits and Signal Processing.

• Peter Singerl, Digital Predistorter Based on Frequency-Domain Volterra Ker-
nel Approximation, pending patent application, Germany and United States,
22.05.2005, [59].

• Peter Singerl, Heinz Koeppl, An Efficient Scheme for Nonlinear Modeling and
Predistortion in Mixed Signal Systems, pending patent application, Germany
and United States, 02.05.2006, [61].

Concluding Remarks: In chapter 6 we summarize and conclude the work and discuss
further research objectives.

Hilbert Transform of Complex Modulated Passband Signals: In appendix A we
derive the Hilbert transform of amplitude and phase modulated passband signals,
which is needed for the development of a closed-form representation ofquasi-
memoryless passband systems in Chap. 2.

Optimum Parameter Calculation of Multi-Variate Orthogonal Polynomia ls: In
appendix B we derive the optimum parameter calculation for multi-variate orthogonal
polynomials which are needed in Chap. 3.

Professional Awards:

• IEEE Student paper award for ”A Low-Rate Identification Method for Digital
Predistorters Based on Volterra Kernel Interpolation”, IEEE Midwest Sympo-
sium on Circuits and Systems, Cincinnati (USA), August 2005.

• Student paper award for ”A New Approach for Efficient Modeling of Nonlinear
Passband Systems for Communication Applications”, from Research Institute
of Signal Processing Japan, International Workshop on Nonlinear Circuits and
Signal Processing, Honolulu (USA), March 2005.

Furthermore, the author contributed to publications which are outside the scope of this
thesis, which are

• Peter Singerl and Christian Vogel, An Analysis of a Low Complexity Received Signal
Strength Indicator for Wireless Applications, Austrochip 2004, Proceedings of the
Austrochip 2004, Villach (Austria), October 2004, pp. 57-60.

• Peter Singerl and Christian Vogel, A Fast and Accurate Automatic Gain Control for
a Wireless Local Area Network Receiver, Global Mobile Congress (GMC 2005),
Chongqing (China), October 2005, pp. 379-382.

• Wolfgang Horn and Peter Singerl, Thermally Optimized Demagnetization of Induc-
tive Loads, European Solid-State Circuits Conference, Leuven (Belgium), September
2004, pp. 21-23.
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Chapter 2

Baseband Modeling of Nonlinear
Passband Systems

This chapter deals with the problem of modeling nonlinear passband systems by the means
of quasi-memoryless models and Volterra series based models in the complex baseband do-
main. The resulting baseband models can be employed, e.g., in system-level simulations,
to predict the generated distortion (intermodulation and spectral regrowth), without con-
sidering a frequency up-conversion unit which shifts the baseband signal to the RF carrier
frequency. Since with these baseband models, we only relate the complex input and out-
put envelopes, the computational complexity to calculate the output signal of the nonlinear
model can be significantly reduced.

In Sec. 2.1 we introduce complex nonlinear baseband modeling and review existing lit-
erature. In Sec. 2.2 we transform a static nonlinear system which is composed of two
polynomial functions acting on two orthogonal carriers and a linear passband filter to the
baseband domain. Depending on whether the resulting parameters are real or complex, we
either obtain a so called memoryless or a quasi-memoryless nonlinear model. In Sec. 2.3
we replace the passband nonlinearity from Sec. 2.2 by a real Volterra series. The resulting
complex baseband Volterra series model is able to represent memory effects which are of
fundamental importance for wideband applications. In Sec. 2.4 we consider the relationship
between a quasi-memoryless baseband model and a complex Volterra seriesmodel. We ex-
tend the concept of the AM/AM and AM/PM-conversion for the case of a Volterra model
in Sec. 2.5, and use the frequency-dependent AM/AM and AM/PM surfaces to identify the
complex linear filters of a memory-polynomial model.

2.1 Introduction

Nonlinear baseband behavior models relate the complex input and output envelopes directly
in the complex baseband domain [8, 7, 10]. In general, these baseband models can be
applied to narrow and wideband applications as long as the carrier frequency is much larger
than the bandwidth of the complex-modulated passband input signal. If the input signal
is narrowband, real nonlinear passband system behaves statically, which means that the
complex output envelope of the passband system depends purely on the current magnitude
of the complex input envelope.

Such a nonlinear passband system can be modeled by two static nonlinear functions
which act on two orthogonal carriers to affect both, the magnitude and thephase of the
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Figure 2.1: The cascade of a nonlinear passband system and a linear filtercan be trans-
formed to an equivalent baseband model, which relates the complex input and output en-
velopes of the nonlinear passband system. The frequency-domain representation of the
complex baseband model is used to derive a narrowband model.

output signal (cf. Fig. 2.3). This nonlinear passband model is well known and discussed
in several publications [8, 7, 51, 32, 15, 16]. It is remarkable that although this kind of
a nonlinear passband model incorporates memory which is introduced by a Hilbert trans-
former to shift the carrier phase by 90◦, the equivalent baseband model does not do so
(cf. Fig. 2.7). From a system point of view, the baseband model results ina purely static
nonlinear model. For this reason the complex baseband model is called quasi-memoryless.
If we do not introduce a Hilbert transformer in the real passband model weare not able to
change the phase of the output signal. In this case the parameters of the equivalent baseband
model become real. Such a nonlinear baseband model is called memoryless. The concept
of a quasi-memoryless nonlinear model is very popular in the RF literature e.g.for mod-
eling RF power amplifiers [8, 32, 15, 16, 53, 31], because this model can be characterized
through two static nonlinear functions called AM/AM-conversion (amplitude to amplitude
conversion) and AM/PM-conversion (amplitude to phase conversion) [32, 15, 16, 36].

The so far considered quasi-memoryless baseband model is only sufficient for narrow-
band applications, because only in this case, the frequency-domain Volterra kernels can be
approximated by complex constants (will be considered in more detail in Sec. 2.4). If we
employ modern modulation schemes such as OFDM (orthogonal frequency division multi-
plexing) or WCDMA (wideband code division multiple access) [32, 27], themodeling of a
real passband system such as an RF power amplifier (PA) with a quasi-memoryless system
generally leads to poor modeling results [36, 75]. The reason for the large modeling error
can be found in the frequency dependency of the nonlinear passbandsystem which can be
physically explained by the electrical and thermo-electrical memory effects [70, 69, 11].

These nonlinear memory effects generate additional spectral componentswhich are in
general not symmetric around the carrier frequency [11]. Unfortunately we can not ex-
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Figure 2.2: AM/AM- and AM/PM-conversion of a2.2-GHz, 90-W Class AB RF power
amplifier, excited with a single-tone with a frequency of2.13 GHz and a swept power of
−10 dBm up to42 dBm. Both curves are evaluated for the fundamental output signal at
2.13 GHz.

plain these spectral asymmetries neither with a memoryless nor with a quasi-memoryless
baseband model as shown in [74].

To overcome this problem we employ a more general real passband Volterra model, and
transform this model to the baseband domain. This process is depicted in Fig.2.1, where
P denotes the transform of a cascade of a real passband Volterra modeland a1st-zonal [8,
10] filter, which only passes the frequency components centered around the angular carrier
frequencyωc, to an equivalent baseband model. This procedure has been first proposed
in [7] for modeling a nonlinear satellite link. For developing a narrowband model, we
need a frequency-domain representation of the complex baseband Volterra model, which is
obtained by applying the Fourier transformF to the output signal of the complex baseband
Volterra model (see Fig, 2.1).

A general treatise on real Volterra series in the continuous and discrete-time domain can
be found in [56, 52, 40].

2.2 Memoryless and Quasi-Memoryless Baseband
Modeling

If we excite a nonlinear passband system, e.g., an RF PA, with a single tonex(t) =
a cos(ωct+φ0), wherea is the magnitude,ωc is the angular carrier frequency (in the future
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simply called carrier frequency) andφ0 is the phase, the output signal is composed of har-
monics at the multiples of the carrier frequency±kωc for k = 0, 1, . . . , L, whereL denotes
the highest polynomial order of the nonlinearity in the real passband system. If we vary the
input signal magnitudea, both the amplitude and the phase of the fundamental output signal
at ±ωc vary with the input signal magnitudea in a nonlinear way. These nonlinear func-
tions are called AM/AM-conversion (amplitude modulation to amplitude modulation) and
AM/PM-conversion (amplitude modulation to phase modulation) [8, 32, 15, 16,53, 31].
Figure 2.2 shows the AM/AM-conversion and AM/PM-conversion for a2.2-GHz, 90-W,
Class AB RF PA excited with a2.13-GHz single tone. The curves are generated with a
physical RF simulator (Microwave Officer) in harmonic balance mode [37].

Figure 2.3 depicts a real passband model whose input-output behavior can be character-
ized by an AM/AM and AM/PM conversion as depicted in Fig. 2.2. In order to model the
amplitude dependent phase behavior, we employ two different polynomial functions acting
on two orthogonal carriers [7, 8, 32, 15, 16, 53, 31]. The resulting distorted signals are
filtered with a1st-zonal filter (passband filter centered at±ωc) to pass only the spectral
components of interest near the carrier frequency±ωc [8, 10]. Therefore the real nonlinear
passband system can be modeled by a tandem connection of a nonlinear system described
by the operatorG and a dynamic linear system decribed by the operatorF as illustrated
in Fig. 2.3. The real passband signalx(t) = a(t) cos(ωct + φ0(t)) is fed to the nonlinear
system described by the nonlinear system operatorG to obtain the output signal

u(t)=G[x(t)]

=
2∑

n=1

un(t), (2.1)

where

u1(t) =

L∑

l=1

blx
l(t), u2(t) =

L∑

l=1

clx
l
s(t), (2.2)

are the output signals of the static nonlinearities in Fig. 2.3. The signalxs(t) = H{x(t)} =
a(t) sin(ωct + φ0(t)) (cf. Appendix A) denotes the Hilbert transform [45, 46, 29] of the
complex modulated passband input signalx(t). The output signalu(t) of the nonlinear
operatorG is filtered by a linear1st-zonal filter described by the linear operatorF, to obtain
the overall output signal of the nonlinear passband systems in Fig. 2.3 andFig. 2.4 by

y(t)=( F ◦ G) [x(t)]

=H [x(t)]

=
2∑

n=1

F [un(t)] , (2.3)

which incorporates only the spectral components located around the carrier frequencyωc.
H = F ◦ G describes the cascade of the nonlinear passband system (e.g. RF PA) and the
1st-zonal filter in Fig. 2.4 in an operator notation. To describe the input-output behavior
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Figure 2.3: Nonlinear passband model which can be characterized by the AM/AM- and
the AM/PM-conversion. The Hilbert transformerH shifts the carrier of the input signal at
90◦ to affect the phase of the output signal. The output signalu(t) is fed to a1st-zonal
filter F[u] (bandpass filter) to pass only the spectral components of interest near the carrier
frequency. � �� � � �� � � 	
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Figure 2.4: Cascade of the nonlinear passband systemG and a linear1st-zonal filterF to
pass only the spectral components of interest around the carrier frequency±ωc. H = F◦G
denotes the cascade of the nonlinear system and the linear filter in operator notation.

of the passband model in Fig. 2.3 and Fig. 2.4 in the baseband domain, we rewrite the real
passband input signals

x(t) = Re {x̃(t)exp(jωct)}

=
1

2

(

x̃(t)exp(jωct) + x̃∗(t)exp(−jωct)
)

(2.4)

and

xs(t)=Im {x̃(t)exp(jωct)}

=
1

2j

(

x̃(t)exp(jωct) − x̃∗(t)exp(−jωct)
)

(2.5)

in an exponential form, wherẽx(t) = a(t)exp(jφ0(t)) describes the complex baseband
input signal. Therefore the output signalu1(t) of the static nonlinear system in Fig. 2.3 is
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given with (2.2) and (2.4) by [8, 72]

u1(t)=
L∑

l=1

bl
2l

(

x̃(t)exp(jωct) + x̃∗(t)exp(−jωct)
)l

=
L∑

l=1

bl
2l

l∑

k=0

(
l
k

)

[x̃(t)]l−k [x̃∗(t)]k exp(jωct(l − 2k))

=

L∑

l=1

u1l
(t), (2.6)

where

u1l
(t)=

bl
2l

l∑

k=0

(
l
k

)

[x̃(t)]l−k [x̃∗(t)]k exp(jωct(l − 2k)). (2.7)

The output signalu2(t) of the static nonlinear system in Fig. 2.3 is given with (2.2) and
(2.5) by

u2(t)=
L∑

l=1

cl
(j2)l

(

x̃(t)exp(jωct) − x̃∗(t)exp(−jωct)
)l

=
L∑

l=1

cl
(j2)l

l∑

k=0

(
l
k

)

(−1)k [x̃(t)]l−k [x̃∗(t)]k exp(jωct(l − 2k))

=
L∑

l=1

u2l
(t), (2.8)

where

u2l
(t)=

cl
(j2)l

l∑

k=0

(
l
k

)

(−1)k [x̃(t)]l−k [x̃∗(t)]k exp(jωct(l − 2k)). (2.9)

Figure 2.5 depicts the different contributions from (2.7) and (2.9) in the frequency-domain
for L = 3 qualitatively, whereU1l

(ω) = F{u1l
(t)} andU2l

(ω) = F{u2l
(t)} denotes the

Fourier transforms [45, 46, 48] of the corresponding time-domain signalsu1l
(t) andu2l

(t)
in (2.7) and (2.9).

Because of the bandpass behavior of the input signalsx(t) andxs(t), each even order
nonlinearityl ∈ Ne in (2.6) and (2.8) generates spectral components around the even mul-
tiples of the carrier frequency2k ωc for k = 0, 1, . . . , l/2 , and each odd order nonlinearity
l ∈ No generates spectral components around the odd multiples of the carrier frequency
(2k + 1)ωc for k = 0, 1, . . . , (l − 1)/2.

The shapes of the spectra in Fig. 2.5 illustrate the fact that the products of the time-
domain signals in (2.6) and (2.8) result in a convolution [45, 46, 48] of the corresponding
frequency-domain signals. Ifωc ≥ B(2L− 1), where2B is the bandwidth of the bandpass
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Figure 2.5: Output signal spectra of the quasi-memoryless system in Fig. 2.3, with con-
tributions from the different orders of the nonlinearity uptoL = 3.

signalx(t), the individual spectra caused by the different orders of the passband nonlinearity
remain separate (cf. Fig. 2.5). Therefore, the ideal frequency-domain filtering process in
Fig. 2.5 is accomplished in the time domain by equating the fundamental carrier phasor and
the carrier phasor in (2.6) and (2.8), which is expressed by

exp(jωct(l − 2k))=exp(±jωct) . (2.10)

The equation in (2.10) can only be satisfied forl ∈ No andk = (l ± 1)/2. Therefore,
only the odd ordersl = 2k + 1 of the passband nonlinearity contribute to the spectral
components around the fundamental carrier±ωc. The filtered output signal of the first
nonlinearityF[u1(t)] is given with (2.6) and (2.10) by

F[u1(t)]=

L∑

l=1, l∈No

bl
2l

{(
l

l+1
2

)

[x̃(t)]
l−1

2 [x̃∗(t)]
l+1

2 exp(−jωct)

+

(
l

l−1
2

)

[x̃(t)]
l+1

2 [x̃∗(t)]
l−1

2 exp(jωct)

}

. (2.11)

If we apply the identities̃x(t) x̃∗(t) = |x̃(t)|2 and

(
l

l+1
2

)

=

(
l

l−1
2

)

we can rewrite (2.11)
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in the following compact form

F[u1(t)]=
L∑

l=1, l∈No

bl
2l

{(
l

l+1
2

)

|x̃(t)|l−1 x̃∗(t) exp(−jωct)

+

(
l

l+1
2

)

|x̃(t)|l−1 x̃(t) exp(jωct)

}

=Re







L∑

l=1, l∈No

bl
2l−1

(
l

l+1
2

)

|x̃(t)|l−1 x̃(t) exp(jωct)






. (2.12)

If we apply the linear filterF to the output signalu2(t) in (2.8) we obtain

F[u2(t)]=
L∑

l=1, l∈No

cl
(j2)l

{(
l

l+1
2

)

(−1)
l+1

2 |x̃(t)|l−1 x̃∗(t) exp(−jωct)

+

(
l

l+1
2

)

(−1)
l−1

2 |x̃(t)|l−1 x̃(t) exp(jωct)

}

=Im







L∑

l=1, l∈No

cl
2l−1

(
l

l+1
2

)

|x̃(t)|l−1 x̃(t) exp(jωct)






. (2.13)

To calculate the output signal of the nonlinear passband systemy(t) = F[u1(t)] + F[u2(t)],
we express the signal in (2.13) in terms of its real part withIm {x̃(t) exp(jωct)} =
Re {−jx̃(t) exp(jωct)} by

F[u2(t)]=Re







L∑

l=1, l∈No

−j cl
2l−1

(
l

l+1
2

)

|x̃(t)|l−1 x̃(t) exp(jωct)






. (2.14)

With (2.12) and (2.14), the real passband output signal is obtained with thevariable substi-
tution l = 2k + 1 and the complex parametersd2k+1 = b2k+1 − jc2k+1 by

y(t)=H[x(t)]

=Re







⌈L/2⌉−1
∑

k=0

d2k+1

22k

(
2k + 1
k + 1

)

|x̃(t)|2k x̃(t) exp(jωct)






. (2.15)

Except for the carrier phasor, the expression within the braces of (2.15) represents the base-
band output signal̃y(t) of the real nonlinear passband system in Fig. 2.3 and Fig. 2.4, which
is expressed by [8, 51]

ỹ(t)=H̃[x̃(t)]

=

⌈L/2⌉−1
∑

k=0

d2k+1

22k

(
2k + 1
k + 1

)

|x̃(t)|2k x̃(t)

=

⌈L/2⌉−1
∑

k=0

d̂2k+1 |x̃(t)|2k x̃(t), (2.16)

18



cj te
ω

( )x tɶ

j

[ ]xH +{ }Re

( ) ( ){ }Re cj ty t y t e
ω= ɶ

cj te
ω−

( )y tɶ

( ){ }Im cj tj y t e
ω

ɶ

( )x t

( )x tɶ ( )y tɶ
[ ]xHɶ ɶ

Up-Converter

Down-Converter

Figure 2.6: Equivalence between the nonlinear passband system which iscomposed of
the nonlinear operatorH and a frequency up- and down-conversion unit and the complex
baseband system̃H.

whered̂2k+1 =
d2k+1

22k

(
2k + 1
k + 1

)

. The operator̃H in (2.16) describes the equivalent non-

linear complex baseband operator of the real nonlinear passband operator H. The com-
plex baseband system is memoryless because only a static nonlinear functionappears in
(2.16), although the passband system in Fig. 2.3 itself contains memory which isim-
plicitly introduced by the Hilbert transformer in Fig. 2.3. Therefore, we denote this
model as quasi-memoryless as long as the parametersd2k+1 in (2.16) are complex val-
ued. If these parameters are real valued, we are not able to change thephase of the
baseband output signal̃y(t). In this case we denote the baseband model in (2.16) as
memoryless. Fig. 2.6 depicts the block diagrams of a nonlinear passband system H em-
bedded between a frequency up-conversion unit, a circuit to generatethe analytic signal
ỹ(t) exp(jωct) = Re{ỹ(t) exp(jωct)} + jIm {ỹ(t) exp(jωct)} and a frequency down-
conversion unit and the equivalent complex baseband systemH̃ [39] (cf. Appendix A). An
alternative derivation with additional insights is given in the Appendix C.

2.2.1 AM/AM- and AM/PM-Conversion

To see that the quasi-memoryless model in (2.16) can be fully represented by the AM/AM-
conversion and AM/PM-conversion (cf. Fig. 2.2), we expand (2.16) with x̃(t) =
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a(t) exp(jφ0(t)), which results in

ỹ(t)=H̃[x̃(t)]

=exp(jφ0(t))

⌈L/2⌉−1
∑

k=0

d̂2k+1[a(t)]
2k+1

=|v(a(t))| exp(j (φ0(t) + arg {v(a(t))})) , (2.17)

where the complex function

v(a(t))=

⌈L/2⌉−1
∑

k=0

d̂2k+1[a(t)]
2k+1 (2.18)

depends purely on the magnitudea of the complex input signal̃x(t). The function|v(a)|
in (2.17) describes the AM/AM-conversion and the functionarg {v(a)} in (2.17) describes
the AM/PM-conversion. These nonlinear functions are calculated by

|v(a)|=





⌈L/2⌉−1
∑

k=0

⌈L/2⌉−1
∑

l=0

d̂2k+1d̂
∗
2l+1a

2(k+l+1)





1

2

, (2.19)

and

arg {v(a)}=arctan







⌈L/2⌉−1∑

k=0

Im
{

d̂2k+1

}

a2k+1

⌈L/2⌉−1∑

k=0

Re
{

d̂2k+1

}

a2k+1







. (2.20)

respectively. Figure 2.7 depicts the quasi-memoryless complex baseband model H̃ which is
equivalent, (y(t) = Re{ỹ(t)ejωct}) to the real nonlinear passband system in Fig. 2.3.

2.2.2 Frequency-Domain Representation

To express the output signal of the quasi-memoryless systemỹ(t) in (2.16) in the frequency
domain, we apply the Fourier transform denoted byF to (2.16), which yields

Ỹ (ω)=F {ỹ(t)}

=

⌈L/2⌉−1
∑

k=0

d̂2k+1

(2π)2k
X̃(ω) ⋆ . . . ⋆ X̃(ω)
︸ ︷︷ ︸

(k+1)×

⋆ X̃∗(−ω) ⋆ . . . ⋆ X̃∗(−ω)
︸ ︷︷ ︸

k×

, (2.21)

whereX̃(ω) = F {x̃(t)}, and⋆ denotes the convolution operator.
If we consider stationary stochastic signals, we cannot calculate the Fourier transform

because of their infinite energy. In this case, the spectral characteristics of the output signal
ỹ(t) is obtained by computing the Fourier transform of the auto-covariance function of ỹ(t)
in terms of its power spectrum density [47, 49, 44]. In [74], a closed form expression for the
quasi-memoryless system in (2.16) is given for a stationary complex Gaussian distributed
input signal.
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Figure 2.7: Baseband model of a quasi-memoryless system, which is composed of
two static nonlinear functions described by the AM/AM-conversion|v(a)| and AM/PM-
conversion arg{v(a)}. Although the baseband model is memoryless, the model is called
quasi-memoryless because the corresponding passband model in Fig. 2.3 contains memory
(Hilbert transformer).

2.2.3 Two-Tone Response of a Quasi-Memoryless System

If we apply a two-tone signalx(t) = a/2 cos[(ωc + ωm)t] + a/2 cos[(ωc − ωm)t] =
Re{a cos(ωmt) exp(jωct)} to a nonlinear passband system, whereωm denotes the mod-
ulation frequency, we obtain a discrete output spectrum at the odd multiples of the modu-
lation frequency±nωm, n ∈ No centered aroundωc. Such a power spectrum is shown in
Fig. 2.8 for a modulation frequency of10 MHz at the output of a simulated RF PA. We no-
tice that the spectral components around the center frequency are not symmetric regarding
their output power. For the particular simulation example of a2.2-GHz, 90-W RF PA we
obtain a power difference of7 dB if we consider the3rd-order intermodulation frequency
at ωc ± 3ωm. If we reduce the modulation frequencyωm/(2π) from 10 MHz to 1 MHz,
the RF PA output power spectrum is almost symmetric around the center frequencyωc (cf.
Fig. 2.9). This bandwidth dependent effect is caused by the electrical and thermo-electrical
memory effects of the RF PA, which are considered in detail in [70, 69, 11]. These mem-
ory effects make the complex baseband modeling of the nonlinear passbandsystem difficult
if we consider wideband applications with modern modulation formats such as OFDM or
WCDMA [27].

To further analyze this effect, we calculate the output signal of the quasi-memoryless
system in Fig.2.3 for the mentioned two-tone signal which is described in the complex
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baseband domain bỹx(t) = a cos(ωmt). The output signal is given with (2.16) by

ỹ(t)=

⌈L/2⌉−1
∑

k=0

d̂2k+1

(a

2

)2k+1
2k+1∑

l=0

(
2k + 1
l

)

exp(j (2l − 2k − 1)ωmt)

=

⌈L/2⌉−1
∑

k=0

d̂2k+1

(a

2

)2k+1
k∑

l=0

{(
2k + 1
l

)

exp(j (2l − 2k − 1)ωmt)

+

(
2k + 1

−l + 2k + 1

)

exp(−j (2l − 2k − 1)ωmt)

}

.

(2.22)

Because of the binomial coefficient in (2.22)

(
2k + 1
l

)

=

(
2k + 1

−l + 2k + 1

)

, the mag-

nitude and the phase of the output signal spectrum of the quasi-memorylessbaseband
model must be symmetric because every pair of the phasors exp(±jnωmt), for n =
±1,±3, . . . ,±(2k + 1) is weighted with the same complex constants. The output signal
ỹ(t) in (2.22) can be simplified with real trigonometric functions to

ỹ(t)=

⌈L/2⌉−1
∑

k=0

2d̂2k+1

(a

2

)2k+1
k∑

l=0

(
2k + 1
l

)

cos [(2k − 2l + 1)ωmt] . (2.23)

From the derivation above, we notice that we cannot model an asymmetric power spectrum
as depicted in Fig. 2.8 with the memoryless or the quasi-memoryless model in Fig. 2.3.

2.3 Complex Baseband Modeling with Volterra Series

To overcome the problem of generating an asymmetric power spectrum at theoutput of a
quasi-memoryless model (if the magnitude of the input signal spectrum is symmetric) as
shown in Fig. 2.8, we have to introduce some memory into the complex baseband model.
Volterra series are a powerful mathematical tool to describe weak nonlinear systems with
memory effects. For a thorough introduction to Volterra series and their classical input-
output relation the reader is referred to [56, 52, 40].

2.3.1 Time-Domain Representation

We replace the nonlinear passband operatorG of Fig.2.3, which is composed of two poly-
nomial series and a Hilbert transformer, by a more general operatorG whose functional
description is given by the Volterra series

u(t) = G[x(t)] =
L∑

l=1

ul(t)

ul(t) =

∞∫

0

· · ·
∞∫

0

hl(τ1, . . . ,τn)
l∏

i=1

x(t− τi) dτi, (2.24)
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with ωc = 2π × 2.14 GHz and∆ω = ω2 − ω1 = 2ωm = 2π × 20 MHz. The spectrum
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Figure 2.9: RF power amplifier output signal power spectrum for a two-tone excitation
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around the carrier frequency is almost symmetric because the inherent memory of the RF
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wherehl is thelth-order time-domain Volterra kernel andL is the highest order of the real
passband nonlinearity. The output signal is filtered by a linear1st-zonal filter described
by the linear operatorF to suppress the unwanted spectral components located around the
multiples of the carrier frequency±ωc [8, 10]. Therefore the output signal of the linear
passband filter in Fig. 2.4

y(t) = ( F ◦ G) [x(t)]

= H [x(t)] =
L∑

l=1

F [ul(t)] (2.25)

incorporates only the spectral components of interest which are located around the carrier
frequency±ωc. To express thelth-order term of the output signal of the passband Volterra
systemul(t) in (2.24), the product in (2.24) is expressed with the time delayed version of
the passband input signals in (2.4) in a mathematical closed form by

l∏

i=1

x(t− τi) =
1

2l

2∑

k1=1

· · ·
2∑

kl=1

(
l∏

i=1

xki(t− τi)

)

exp

(

jωc

l∑

i=1

(−1)ki τi

)

×exp

(

jωc t
l∑

i=1

(−1)ki+1

)

, (2.26)

where the signalsx1(t) = x̃(t) andx2(t) = x̃∗(t) in (2.26) are introduced for a convenient
representation. Thelth-order output signal of the passband Volterra system in (2.24) is
expressed with (2.26) by

ul(t) =
1

2l

2∑

k1=1

· · ·
2∑

kl=1

∞∫

0

· · ·
∞∫

0

hl(τ1, . . . ,τl)

(
l∏

i=1

xki(t− τi)

)

×exp

(

jωc

l∑

i=1

(−1)ki τi

)

dτ1 · · · dτl

×exp

(

jωc t
l∑

i=1

(−1)ki+1

)

, (2.27)

where the product in (2.27) is composed of the permutations of the baseband signalx1(t) =
x̃(t) and its conjugatex2(t) = x̃∗(t), respectively.

The overall output signaly(t) in Fig. 2.4 is calculated with (2.25) by applying the linear
operatorF to the lth-order output signals of the passband Volterra system in (2.27) for
l = 1, . . . , L.

Each of the2l l-fold convolution integrals in (2.27) which contributes to thelth-
order output signalul(t) is multiplied by a phasor which corresponds to integer mul-
tiples of the carrier frequency. Therefore, the spectra of the convolution integrals are
shifted in the frequency-domain to the corresponding multiples of the carrierfrequency
ωc
∑l

i=1 (−1)ki+1. If the order of the nonlinearityl ∈ No, the spectra can only be located
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Figure 2.10: Frequency-domain output signal spectra of a Volterra series model, with
contributions from the different orders of the nonlinearity up toL = 3.

around the odd multiples of the carrier frequency up tolωc. If the order of the nonlinearity
l ∈ Ne, the spectra can only be located around the even multiples of the carrier up tolωc.

The bandwidths of the individual contributions to (2.27) are2 l times the bandwidthB
of the complex baseband signalx̃(t). If the carrier frequency satisfiesωc ≥ B(2L− 1) the
spectra of the individual contributions from (2.27) remain separate (c.f.Fig. 2.10). There-
fore the output signal passed by the linear1st-zonal filterF in Fig. 2.4 can be calculated
from (2.27) if the carrier phasor in (2.27) is constraint to be

exp

(

jωc t
l∑

i=1

(−1)ki+1

)

= exp(±jωc t) . (2.28)

This equality can only be satisfied for the odd orders of the nonlinearityl ∈ No. Therefore,
solely the odd orders of the nonlinearity contribute to the filtered output signal centered
around the carrier frequency±ωc (c.f. Fig. 2.10). For the even orders of the nonlinearity
l ∈ Ne, the filtered output signalF [ul(t)] = 0. From the2l contributions in (2.27) only

2

(
l

(l − 1)/2

)

terms fulfill (2.28).

Without any loss of generality, the passband Volterra kernelshl in (2.27) are assumed
to be symmetric [56, 40, 52] and, therefore, the permutations of the product in (2.27) are

identical for

(
l

(l − 1)/2

)

terms. The same is obtained for the second group of terms which
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are the conjugate of the first one. Therefore the filtered output signal isgiven by

F [ul(t)] =
1

2l

(
l

(l − 1)/2

)

(fl(t) + f∗l (t))

= 2 Re

{
1

2l

(
l

(l − 1)/2

)

fl(t)

}

, (2.29)

where the functionfl in (2.29) is expressed withl ∈ No by

fl(t) =

∞∫

0

· · ·
∞∫

0

hl(τ1, . . . ,τl) exp



−jωc





(l+1)/2
∑

i=1

τi −
l∑

i=(l+3)/2

τi









×
(l+1)/2
∏

i=1

x1(t− τi)
l∏

i=(l+3)/2

x2(t− τi) dτ1 · · · dτl exp(jωc t). (2.30)

The final output signal passed by the linear1st-zonal filterF in Fig. 2.4 is given with (2.25)
by

y(t) =

⌈L/2⌉−1
∑

k=0

F [u2k+1(t)]

= Re







⌈L/2⌉−1
∑

k=0

∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1)
k+1∏

i=1

x̃(t− τi)
2k+1∏

i=k+2

x̃∗(t− τi)

× dτ1 · · · dτ2k+1 exp(jωc t)

}

, (2.31)

where the variable substitutionk = (l− 1)/2 is introduced for a more convenient represen-
tation of (2.31). The baseband-equivalent Volterra kernels in (2.31) are defined with (2.30)
by

h̃2k+1(t1, . . . , t2k+1) =
1

22k

(
2k + 1
k

)

h2k+1(t1, . . . , t2k+1)

×exp

(

−jωc

(
k+1∑

i=1

ti −
2k+1∑

i=k+2

ti

))

. (2.32)

The term baseband-equivalent means that the frequency-domain representation of the ker-
nels in (2.32) contains some frequency components around the zero frequency (baseband)
and−2ωc. The latter one do not contribute to the output signaly(t) in (2.31), because the
frequency-domain representations of the baseband signalsx̃(t) and x̃∗(t) are zero around
−2ωc.

Except for the carrier phasor exp(jωc t), the signal within the braces of (2.31) repre-
sents the nonlinear passband output signalỹ(t) in the baseband domain becausey(t) =
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Figure 2.11: Complex baseband time-domain output signals of a2.2-GHz,90-W, Class-
AB, RF PA, a quasi-memoryless PA model and a Volterra PA model. (a) and (c) real and
imaginary parts of the output signals of the PA and the Volterra model, (b) and (d) real and
imaginary parts of the output signals of the quasi-memoryless PA model, (e) error signal
for the quasi-memoryless PA model, (f) error signal for the Volterra PA model.

Re{ỹ(t) exp(jωct)}. Therefore the complex baseband Volterra series [7]

ỹ(t) = H̃[x̃(t)]

=

⌈L/2⌉−1
∑

k=0

∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1)

×
k+1∏

i=1

x̃(t− τi)
2k+1∏

i=k+2

x̃∗(t− τi) dτ1 · · · dτ2k+1. (2.33)

relates the baseband input and output signals without considering the frequency up- and
frequency down-conversion units in Fig. 2.6.
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Figure 2.12: Power spectrum of a2.2-GHz, 90-W, Class-AB, RF PA and a9th-order
Volterra PA model with43 parameters for a four-carrier WCDMA input signal withB =
20 MHz. (a) RF PA, (b) Volterra PA model.
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Figure 2.13: Power spectrum of a2.2-GHz, 90-W, Class-AB, RF PA and a quasi-
memoryless PA model for a four-carrier WCDMA input signal with B = 20 MHz. (a)
RF PA, (b) quasi-memoryless PA model.
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Figure 2.14: Phase response of a2.2-GHz, 90-W, Class-AB, RF PA and a9th-order
Volterra PA model with43 parameters within the input signal bandwidth of±10 MHz
for a four-carrier WCDMA input signal withB = 20 MHz. (a) RF PA, (b) Volterra PA
model (no visible difference between the two graphs).
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Figure 2.15: Phase response of a2.2-GHz, 90-W, Class-AB, RF PA and a quasi-
memoryless PA model within the input signal bandwidth of±10 MHz for a four-carrier
WCDMA input signal withB = 20 MHz. (a) RF PA, (b) quasi-memoryless PA model.
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Figure 2.11 depicts the real and the imaginary parts of the complex basebandtime-
domain output signals from a2.2-GHz,90-W, Class-AB, RF PA (The RF PA output signal
is down-converted as shown in Fig. 2.6), a quasi-memoryless PA model anda Volterra PA
model. The RF PA and the two PA models are excited with a four carrier WCDMA signal
with a bandwidth of approximately20 MHz. We see that the output signals of the quasi-
memoryless PA model (curve (b) and (d)), which is implemented as in Fig. 2.7 withthe
AM/AM and AM/PM-conversion depicted in Fig. 2.2, are quite different from the RF PA
baseband output signals. This is because the quasi-memoryless PA model isnot able to
model the long-term memory effects of the RF PA. If we reduce the bandwidthof the input
signal to zero, the output signals of the RF PA and the quasi-memoryless PA model are ex-
actly the same, because the AM/AM and AM/PM-conversion in Fig. 2.2 is measured with
a single RF tone (bandwidth is zero). The resulting magnitude of the complex error (differ-
ence between the RF PA output signal and quasi-memoryless output signal)is shown in the
lower plot of Fig. 2.11 in curve (e). The mean value is6.2 V. This error can be consider-
ably reduced if we model the RF PA with a complex baseband Volterra model because this
model is able to consider the long-term memory effects. In the two upper plots of Fig. 2.11
(curve (a) and curve (b)), we do not see any difference between the RF PA output signals
and the output signals of the Volterra PA model. For this reason, we show themagnitude of
the complex error in the lower plot of Fig. 2.11 in curve (f), which is0.15 V. Therefore we
can improve the modeling error by approximately33 dB, if we employ a9th-order Volterra
PA model with43 parameters instead of the quasi-memoryless PA model.

The power spectrum of the output signals of the RF PA and the9th-order Volterra
PA model for a four-carrier WCDMA input signal withB = 20 MHz are depicted in
Fig. 2.12. As expected from the error signal (curve (f)) in the lower plot of Fig. 2.11, the
frequency-domain output signals are almost identical. On the other hand, ifwe compare the
frequency-domain output signals of the RF PA and the quasi-memoryless PAmodel, the two
spectra are quite different as expected from the time-domain error in the lower plot (curve
(e)) of Fig. 2.11. The phase responses of the RF PA, the Volterra modeland the quasi-
memoryless model are depicted in Fig. 2.14 and Fig. 2.15 within the input signal bandwidth
of ±10 MHz.

2.3.2 Frequency-Domain Representation

If we consider the frequency-domain representation of the complex baseband Volterra
model in (2.33), we transform the one-dimensional nonlinear system (2.33) to a multi-
dimensional linear system [56, 40] and apply a multi-dimensional Fourier transform. For
this reason we span the one-dimensional time-domain signals

ỹ2k+1(t) =

∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1)

×
k+1∏

i=1

x̃(t− τi)
2k+1∏

i=k+2

x̃∗(t− τi) dτ1 · · · dτ2k+1. (2.34)
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in (2.33) in2k+ 1 time-domain variables̃y2k+1(t) → ỹ(2k+1)(t1, . . . , t2k+1), which yields

ỹ(2k+1)(t1, . . . , t2k+1) =

∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1)

×
k+1∏

i=1

x̃(ti − τi)
2k+1∏

i=k+2

x̃∗(ti − τi) dτ1 · · · dτ2k+1. (2.35)

If we apply a(2k + 1)-dimensional Fourier transform to (2.35) we obtain the(2k + 1)-
dimensional frequency-domain output signal as

Ỹ(2k+1)(ω1, . . . , ω2k+1) =

∞∫

0

· · ·
∞∫

0

ỹ(2k+1)(t1, . . . , t2k+1)

×exp

(

−j
2k+1∑

i=1

ωiti

)

dt1 · · · dt2k+1

= H̃2k+1(ω1, . . . , ω2k+1)
k+1∏

i=1

X̃(ωi)
2k+1∏

i=k+2

X̃∗(−ωi), (2.36)

where X̃(ω) = F{x̃(t)} denotes the frequency-domain baseband input signal and
H̃2k+1(ω1, . . . , ω2k+1) = F{h̃2k+1(t1 . . . , t2k+1)} denotes the(2k + 1)-dimensional
frequency-domain Volterra kernel. The multi-dimensional time-domain signals in(2.35)
can also be expressed through the corresponding multi-dimensional frequency-domain sig-
nals in (2.36) by [56]

ỹ(2k+1)(t1, . . . , t2k+1) =
1

(2π)2k+1

∞∫

−∞

· · ·
∞∫

−∞

Ỹ(2k+1)(ω1, . . . , ω2k+1)

×exp

(

j
2k+1∑

i=1

ωiti

)

dω1 · · · dω2k+1. (2.37)

If we undo the process of spanning the one-dimensional time-domain signalsinto (2k + 1)

time-domain variables bỹy(2k+1)(t1, . . . , t2k+1) → ỹ2k+1(t), (2.37) can be rewritten as

ỹ2k+1(t) =
1

(2π)2k+1

∞∫

−∞

· · ·
∞∫

−∞

Ỹ(2k+1)(ω1, . . . , ω2k+1)

×exp(j (ω1 + · · · + ω2k+1) t) dω1 · · · dω2k+1. (2.38)

If we make a change of the variablesω1 + · · · + ω2k+1 in (2.38) by lettingω = ω1 + · · · +
ω2k+1 we can rewrite the time-domain output signal in (2.38) by [56]

ỹ2k+1(t) =
1

2π

∞∫

−∞




1

(2π)2k

∞∫

−∞

· · ·
∞∫

−∞

Ỹ(2k+1)(ω − v1, v1 − v2, . . . , v2k) dv1 · · · dv2k





×exp(jωt) dω. (2.39)
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Figure 2.16: Frequency-domain convolution for a2nd-order Volterra system. The out-
put signal spectrum for a2nd-order Volterra system is given by the integral expression
Y2(ω) =

∫
∞

−∞
Y(2)(ω − ω2, ω2)dω2, which evaluates the two-dimensional output signal

Y(2)(ω1, ω2) along the straight linesω2 = −ω1 + ω0 within the areaR. If |ω| > 2B, the
output signal spectrumY2(ω) becomes zero, because the integration path (dotted lines)
does not cross the areaR anymore. Therefore, the output signal bandwidth becomes twice
the input signal bandwidth.

The 2k-fold convolution integral within the braces of (2.39) represents the frequency-
domain signal fork > 0 by

Ỹ2k+1(ω) =
1

(2π)2k

∞∫

−∞

· · ·
∞∫

−∞

Ỹ(2k+1)(ω − v1, v1 − v2, . . . , v2k) dv1 · · · dv2k.(2.40)

The final output spectrum of the complex baseband Volterra model in (2.33) is calculated
by the summation of the individual contributions from the different orders in(2.40) which
results in

Ỹ (ω) =

⌈L/2⌉−1
∑

k=0

Ỹ2k+1(ω) (2.41)

From (2.40) and (2.41), we recognize that the frequency-domain output signal of the
Volterra system is broadened by the convolution operation in (2.40). This process is de-
picted in Fig. 2.16 for a2nd-order system (in complex baseband systems we do not have
even orders, but this example demonstrates the convolution process in a simple way). The
bandwidth of the output signal̃Y (ω) is (2 ⌈L/2⌉−1)2B, where2B is the bandwidth of the
complex input signal̃X(ω).
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2.3.3 Two-Tone Response of a Complex Baseband Volterra mode l

If we apply a baseband two-tone signalx̃(t) = a cos(ωmt) to the complex baseband Volterra
model described in (2.33) we obtain

ỹ(t) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1)

×
2k+1∏

i=1

(exp(jωm(t− τi)) + exp(−jωm(t− τi))) dτ1 · · · dτ2k+1, (2.42)

where the product in (2.42) can be expressed in a closed mathematical form by

2k+1∏

i=1

(exp(jωm(t− τi)) + exp(−jωm(t− τi))) =

2∑

n1=1

· · ·
2∑

n2k+1=1

exp

(

j

2k+1∑

i=1

(−1)ni+1ωm(t− τi)

)

. (2.43)

The response of the complex baseband Volterra model in (2.42) can be calculated with
(2.43) which, after an interchange of the order of the integrals and summations yields

ỹ(t) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
2∑

n1=1

· · ·
2∑

n2k+1=1

exp

(

j
2k+1∑

i=1

(−1)ni+1ωmt

)

×
∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1) exp

(

−j
2k+1∑

i=1

(−1)ni+1ωmτi

)

× dτ1 · · · dτ2k+1. (2.44)

The(2k+1)-dimensional integral expression in (2.44) represents the(2k+1)-dimensional
frequency-domain baseband Volterra kernelH̃2k+1 evaluated on the modulation frequency
±ωm, which yields

∞∫

0

· · ·
∞∫

0

h̃2k+1(τ1, . . . ,τ2k+1) exp

(

−j
2k+1∑

i=1

(−1)ni−1ωmτi

)

dτ1 · · · dτ2k+1 =

H̃2k+1

(
(−1)n1+1ωm, . . . , (−1)n2k+1+1ωm

)
. (2.45)

With the frequency-domain Volterra kernels in (2.45), we can express thebaseband output
signal in (2.44) by

ỹ(t) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
2∑

n1=1

· · ·
2∑

n2k+1=1

exp

(

j
2k+1∑

i=1

(−1)ni+1ωmt

)

×H̃2k+1

(
(−1)n1+1ωm, . . . , (−1)n2k+1+1ωm

)
. (2.46)
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If we compare the two-tone responses of the quasi-memoryless system in (2.22) and the
Volterra system in (2.46), we realize that the spectral components in (2.46)are weighted
by the frequency-domain Volterra kernels̃H2k+1 while the spectral components in (2.22)
are weighted by the complex constantsd̂2k+1. Because the magnitudes of the frequency-
domain kernels are in general not symmetric (Fourier transform of the complex time-domain
kernelsh̃2k+1), we are able to model the spectral asymmetries in Fig. 2.8 with a complex
baseband Volterra model in (2.33).

2.4 Relationship Between Complex Volterra Models and
Quasi-Memoryless Models

If the bandwidth of the input signal̃X(ω) in (2.36) becomes so small (ultra-narrowband
assumption) that the frequency-domain kernelsH̃2k+1(ω1, . . . , ω2k+1) are approximately
constant over the input signal bandwidth, as we have shown in Fig. 2.9 for an RF
PA, we can replace the baseband frequency-domain kernelsH̃2k+1(ω1, . . . , ω2k+1) →
H̃2k+1(0, . . . , 0). Therefore (2.36) can be rewritten by

Ỹ(2k+1)(ω1, . . . , ω2k+1) = H̃2k+1(0, . . . , 0)

k+1∏

i=1

X̃(ωi)

2k+1∏

i=k+2

X̃∗(−ωi). (2.47)

If we apply the(2k + 1)-dimensional inverse Fourier transformF−1 to (2.47), we obtain
the(2k + 1)-dimensional time-domain output signal given by

ỹ(2k+1)(t1, . . . , t2k+1) =
1

(2π)2k+1

∞∫

0

· · ·
∞∫

0

Ỹ(2k+1)(ω1, . . . , ω2k+1)

×exp

(

j
2k+1∑

i=1

ωiti

)

dω1 . . . dω2k+1

= H̃2k+1(0, . . . , 0)

k+1∏

i=1

x̃(ti)

2k+1∏

i=k+2

x̃∗(ti). (2.48)

If we transform the multi-dimensional linear system in (2.48) back to a one-dimensional
nonlinear system by lettingt1, . . . , t2k+1 → t we obtain

ỹ2k+1(t) = H̃2k+1(0, . . . , 0) |x̃(t)|2k x̃(t). (2.49)

After a summation of the different order signals in (2.49) fork = 0, . . . , ⌈L/2⌉ − 1, we
obtain the quasi-memoryless system

ỹ(t) =

⌈L/2⌉−1
∑

k=0

H̃2k+1(0, . . . , 0) |x̃(t)|2k x̃(t), (2.50)
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which is similar to the quasi-memoryless system in (2.16) which was derived from the non-
linear passband model in Fig. 2.3. This narrowband model can also be derived in the time-
domain by replacing the delayed input baseband signalsx̃(t − τi) → x̃(t) in the complex
baseband Volterra system (2.33) [51]. To relate these two quasi-memoryless systems, we
calculate the baseband frequency-domain Volterra kernelsH̃ in terms of the corresponding
passband frequency-domain Volterra kernels by applying the(2k+ 1)-dimensional Fourier
transformF to (2.32), which yields

H̃2k+1(ω1, . . . , ω2k+1) =

∞∫

0

· · ·
∞∫

0

h̃2k+1(t1, . . . , t2k+1)

× exp

(

−j
2k+1∑

i=1

ω1ti

)

dt1 . . . dt2k+1

=
1

22k

(
2k + 1
k

)

H2k+1 (ωc + ω1, . . . , ωc + ωk+1,

−ωc + ωk+2, . . . ,−ωc + ω2k+1) .

(2.51)

Therefore the quasi-memoryless system in (2.50) is expressed with (2.51)by

ỹ(t) =

⌈L/2⌉−1
∑

k=0

1

22k

(
2k + 1
k

)

H2k+1(ωc, . . . , ωc
︸ ︷︷ ︸

(k+1)×

,−ωc, . . . ,−ωc
︸ ︷︷ ︸

k×

)

× |x̃(t)|2k x̃(t). (2.52)

After equating the output signals of the quasi-memoryless systems in (2.16) and (2.52), we
can determine the odd parametersb2k+1 andc2k+1 of the polynomial functions of the pass-
band model in Fig. 2.3 in terms of the corresponding frequency-domain passband Volterra
kernelsH, which results in

b2k+1 = Re{H2k+1(ωc, . . . , ωc
︸ ︷︷ ︸

(k+1)×

,−ωc, . . . ,−ωc
︸ ︷︷ ︸

k×

)} (2.53)

and

c2k+1 = −Im{H2k+1(ωc, . . . , ωc
︸ ︷︷ ︸

(k+1)×

,−ωc, . . . ,−ωc
︸ ︷︷ ︸

k×

)}. (2.54)

The even parametersb2k andc2k in Fig. 2.3 can be chosen arbitrarily from the set of the real
numbersR, because the spectral components caused by the even-order nonlinearities are
filtered out by the1st-zonal filter in Fig. 2.3 and do not contribute to the baseband output
signalỹ(t).
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2.5 Frequency-Dependent AM/AM-Conversion and
AM/PM-Conversion

In Sec. 2.2.1, we have considered the AM/AM-conversion and the AM/PM-conversion for a
quasi-memoryless nonlinear system. Both nonlinear functions were purely dependent on the
input signal magnitudea. In this section we extend the concept of the AM/AM-conversion
and the AM/PM-conversion for the case of a Volterra system.

2.5.1 Measurement Setup

If we pass the two-tone response of a Volterra model in (2.46) through a complex linear filter
(to observe the magnitude and the phase of the fundamental frequency atωm) and sweep
both the magnitudea and the angular frequencyωm of the input signal (see Fig. 2.17), we
obtain

ỹf (t) = exp(j(ωmt+ φ))

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
(

2k + 1
k + 1

)

×H̃2k+1(ωm, . . . , ωm
︸ ︷︷ ︸

(k+1)×

,−ωm, . . . ,−ωm
︸ ︷︷ ︸

k×

), (2.55)

where we have assumed, without losing generality, that the Volterra kernels
h̃2k+1(τ1, . . . , τ2k+1) in (2.42) are symmetric [56, 52]. The two-tone response of the
complex Volterra model in (2.55) can be rewritten in the following form

ỹf (t) = |v(a, ωm)| exp(j(ωmt+ φ+ arg{v(a, ωm)})) (2.56)

where

v(a, ωm) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
(

2k + 1
k + 1

)

H̃2k+1(ωm, . . . , ωm
︸ ︷︷ ︸

(k+1)×

,−ωm, . . . ,−ωm
︸ ︷︷ ︸

k×

),(2.57)

describes a complex function which depends on both, the signal amplitudea and the
modulation frequencyωm of the input signal. The two-tone response of the complex
Volterra system in (2.56) is similar to the response of the quasi-memoryless system in
(2.17). For this reason we define|v(a, ω)| in (2.56) as the frequency-dependent AM/AM-
conversion andarg{v(a, ω)} in (2.56) as the frequency-dependent AM/PM-conversion.
It is important to note that the described concept of the frequency-dependent AM/AM-
conversion and of the AM/PM-conversion does not fully describe the Volterra system, be-
cause we only consider the frequency-domain Volterra kernels along thediagonals and
not the full Volterra kernels. However, we are able to test a nonlinear system, e.g., an
RF power amplifier whether memory is incorporated or not, which is important for lin-
earization issues [11, 33, 36]. The frequency-dependent AM/AM-conversion and AM/PM-
conversion can not only be considered for the fundamental frequency of the output sig-
nal spectrum atωm, it can also be derived for the harmonics of the input signal, e.g. the
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Figure 2.17: Setup for the measurement of the frequency-dependent AM/AM-conversion
and AM/PM-conversion of the RF PA. The input signal magnitude a and the modulation
frequencyωm are varied, where the fundamental frequency at±(ωc + ωm) is observed to
determine the frequency-dependent AM/AM- and AM/PM-conversion.

third-order intermodulation distortion (IMD3) at3ωm. Practical RF measurement meth-
ods and results for frequency-dependent IMD3 are reported e.g. in[36, 11, 73]. In
Fig. 2.18, we show the power of the simulated frequency-dependent AM/AM-conversion
PO = 10 log(|v(a, ω)|2 /(2R×10−3)) of a2.2-GHz,90-W Class AB RF PA excited with a
passband two-tone signalx(t) = a[cos((ωc +ωm)t)+cos((ωc−ωm)t)], over the input sig-
nal power range ofPI = 10 log(a2/(2R × 10−3)) = (−10 . . . 42) dBm, whereR = 50 Ω
denotes the input impedance of the RF PA, and the modulation frequency ranges from
ωm/(2π) = (6 . . . 60) MHz. The corresponding frequency-dependent AM/PM-conversion
is depicted in Fig.2.19. Figure 2.20 to Fig. 2.23 depict the two-dimensional plots ofthe
AM/AM-conversion and AM/PM-conversion in Fig. 2.18 and Fig. 2.19 , if wecut them
along thePI -axes and theω/(2π)-axes respectively.

2.5.2 Constructing Memory-Polynomial Models from
Frequency-Dependent AM/AM and AM/PM Measurements

In this section we use the concept of the frequency-dependent AM/AM-conversion and the
AM/PM-conversion to construct a nonlinear model with memory. This model is based
on memory-polynomials [33, 18] and can be calculated from two-tone measurements. If
we assume that the Volterra kernels of the complex baseband Volterra modelin (2.33)
h̃2k+1(τ1, . . . , τ2k+1) ≡ 0, for τ1 6= τ2 6= · · · 6= τ2k+1, we obtain the continuous-time
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Figure 2.18: Frequency-dependent AM/AM-conversion of a2.2-GHz, 90-W Class AB
RF power amplifier excited with a two-tone signalx(t) = a[cos((ωc +ωm)t)+cos((ωc −
ωm)t)], with the angular carrier-frequency ofωc = 2π×2.17 GHz.PI = 10 log(a2/(2R×
10−3)) andPO = 10 log(|v(a, ωm)|2 /(2R × 10−3)) denotes the input and output signal
power respectively, whereR = 50 Ω is the input impedance of the RF PA.

memory-polynomial model with (2.33) as

ỹ(t) =

⌈L/2⌉−1
∑

k=0

∞∫

0

g̃2k+1(τ) |x̃(t− τ)|2k x̃(t− τ) dτ

=

⌈L/2⌉−1
∑

k=0

g̃2k+1(t) ⋆ |x̃(t)|2k x̃(t) (2.58)

whereg̃2k+1(τ) ≡ h̃2k+1(τ , . . . ,τ), describes the time-domain Volterra kernels along the
diagonals in a multi-dimensional space. Figure 2.24 illustrates a two-dimensionalkernel
(although even order kernels do not exist in the baseband Volterra representation, it simply
shows the concept of diagonal kernels)h̃2(τ1, τ2), and the cut along the diagonalτ1 = τ2
and the corresponding diagonal kernelg̃2(τ) ≡ h̃2(τ, τ). If we apply a baseband two-tone
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Figure 2.19: Frequency-dependent AM/PM-conversion of a2.2-GHz,90-W Class AB RF
power amplifier excited with a two-tone signalx(t) = a[cos((ωc + ωm)t) + cos((ωc −
ωm)t)], with the angular carrier-frequency ofωc = 2π×2.17 GHz.PI = 10 log(a2/(2R×
10−3)) denotes the input signal power, whereR = 50 Ω is the input impedance of the RF
PA.

signalx̃(t) = a cos(ωmt+ φ) to the memory-polynomial model in (2.58), we obtain

ỹ(t) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
∞∫

0

g̃2k+1(τ)
[

exp(j(ωm(t− τ) + φ))

+ exp(−j(ωm(t− τ) + φ))
]2k+1

dτ. (2.59)

If we evaluate the(2k+ 1)-th power of the expression within the brackets of (2.59), we can
rewrite (2.59) as

ỹ(t) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
2k+1∑

n=0

(
2k + 1
n

)

exp
[

j((2n− 2k − 1)ωmt+ (2n− 2k − 1)φ)
]

×
∞∫

0

g̃2k+1(τ) exp
(
−j(2n− 2k − 1)ωmτ

)
dτ, (2.60)
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Figure 2.20: AM/AM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier
excited with a two-tone signalx(t) = a[cos((ωc +ωm)t)+cos((ωc −ωm)t)] for four dif-
ferent frequenciesωm (cuts through Fig. 2.18 along thePI -axis), with the angular carrier-
frequency ofωc = 2π × 2.17 GHz.
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Figure 2.21: AM/AM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier
excited with a two-tone signalx(t) = a[cos((ωc + ωm)t) + cos((ωc − ωm)t)] for four
different input signal power levels (cuts through Fig. 2.18along theωm/(2π)-axis), with
the angular carrier-frequency ofωc = 2π × 2.17 GHz.
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Figure 2.22: AM/PM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier ex-
cited with a two-tone signalx(t) = a[cos((ωc+ωm)t)+cos((ωc−ωm)t)] for four different
frequencies (cuts througharg{v(a, ωm)} in Fig. 2.19 along thePI -axis), with the angular
carrier-frequency ofωc = 2π × 2.17 GHz.
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Figure 2.23: AM/PM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier ex-
cited with a two-tone signalx(t) = a[cos((ωc+ωm)t)+cos((ωc−ωm)t)] for four different
input signal magnitudes (cuts througharg{v(a, ωm)} in Fig. 2.19 along the frequency-
axis), where the carrier-frequencyωc = 2π × 2.17 GHz.
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Figure 2.24: Two-dimensional time-domain Volterra kernelh̃2(τ1, τ2), and the corre-
sponding diagonal kernel̃g2(τ) ≡ h̃2(τ, τ).

which yields for the fundamental angular frequency atωm (n = k + 1)

ỹf (t) = exp(j(ωmt+ φ))

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
(

2k + 1
k + 1

)

G̃2k+1(ωm), (2.61)

whereG̃2k+1(ωm) = F{g̃2k+1(t)} denotes the Fourier transform of the diagonal time-
domain Volterra kernels in (2.58). The filtered two-tone response of the complex memory-
polynomial model in (2.61), can be rewritten in the following form

ỹf (t) = |v(a, ωm)| exp(j(ωmt+ φ+ arg{v(a, ωm)})) (2.62)

where

v(a, ωm) =

⌈L/2⌉−1
∑

k=0

(a

2

)2k+1
(

2k + 1
k + 1

)

G̃2k+1(ωm) (2.63)

describes a complex function which depends on both the signal amplitudea and the modu-
lation frequencyωm of the input signal. Because the memory-polynomial model in (2.58) is
purely dependent on the⌈L/2⌉ complex linear filters (diagonal frequency-domain Volterra
kernels)G̃2k+1(ωm) (see Fig.2.25), we can estimate them from the measured frequency-
dependent AM/AM-conversion and AM/PM-conversion in (2.63) for⌈L/2⌉ different input
signal magnitudesai, for i = 1, . . . , ⌈L/2⌉. As in practical applications, these measure-
ments are noisy (imperfect measurements, model inaccuracies), we formulate a classical
linear least squares problem [26] to estimate the unknown linear filtersG̃2k+1(ωm) in (2.63)
by

Ĝ(ωm) = (AT A)−1AT v̂(ωm), (2.64)
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Figure 2.25: Complex baseband model built with memory-polynomials. Themodel
is composed of a bank of known static nonlinearities and the unknown linear filters
G̃2k+1(ω) for k = 0, . . . ,K whereK = ⌈L/2⌉ − 1, which can be estimated from
frequency-dependent AM/AM and AM/PM-conversion measurements.

where

v̂(ωm) = [v̂(a1, ωm), v̂(a2, ωm), . . . , v̂(aN , ωm)]T , (2.65)

denotes anN × 1 vector (N > ⌈L/2⌉), whose components are the measured (noisy) ver-
sions of the frequency-dependent AM/AM and AM/PM-conversion entries in (2.63), and
the⌈L/2⌉ × 1 vector

Ĝ(ωm) = [Ĝ1(ωm), Ĝ3(ωm), . . . , Ĝ2⌈L/2⌉−1(ωm)]T (2.66)

describes the estimated linear filters in Fig. 2.25 for the modulation frequencyωm. The
N × ⌈L/2⌉ observation matrixA in (2.64) is defined by

A =










a1

2 3(a1

2 )3 . . .
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. (2.67)

To obtain the frequency-responses of the unknown linear filtersĜ2k+1(ω) over the
frequency-range of interest, we solve the least squares problem in (2.64) for different mod-
ulation frequenciesωm. The calculated complex linear filtersG1(ω) andG3(ω) are shown
in Fig. 2.26 and Fig.2.27, where we have assumed the highest order of the nonlinearity
three. To evaluate the memory-polynomial model, we excite an2.2-GHz, 90-W, Class
AB RF power amplifier with a discrete multi-tone (DMT) signal withB = 20 MHz and
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Figure 2.26: Frequency-response of the complex linear filterG̃1(ω) of the memory-
polynomial model in Fig.2.25. The filter is calculated with (2.64) and the simulated
frequency-dependent AM/AM and AM/PM-surfaces depicted inFig. 2.18 and Fig.2.19.
(a) Calculated values, (b) Cubic spline interpolated.

PI = 27 dBm and compare the complex baseband output signal of the amplifier and the
3rd-order memory-polynomial model (see Fig. 2.28 and Fig. 2.29). The modeling error
(10 log(|ỹPA(t) − ỹ(t)|2 / |ỹPA(t)|2)) for the linear memory-polynomial model (onlỹG1(ω)
in Fig.2.25) is approximately−22 dB, where the modeling error of the3rd-order model
is approximately−29 dB. The modeling error can be further reduced by increasing the
polynomial order of the memory-polynomial model.

2.6 Conclusion

We have reviewed the concept of memoryless and quasi-memoryless nonlinear baseband
systems which are equivalent to the corresponding real nonlinear passband systems de-
scribed by two static nonlinearities and a linear1st-zonal filter. We have shown that these
nonlinear models are not sufficient to describe a general nonlinear passband system such as
an RF PA under a wideband excitation. The reason for this is that the memory effects (elec-
trical and electro-thermal) of the nonlinear passband system generate spectral asymmetries
which cannot be generated by the mentioned static nonlinear models.

Therefore we have replaced the static nonlinear passband system by a real Volterra system
and transformed the cascade of this real Volterra system and a linear1st-zonal filter to
the baseband domain. As the resulting complex baseband Volterra series model contains
memory we are able to generate spectral asymmetries. We have shown that thememoryless
and quasi-memoryless models are special cases of the complex Volterra series model, which
are obtained from the complex baseband Volterra model if the bandwidth of the complex
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Figure 2.27: Frequency-response of the complex linear filterG̃3(ω) of the memory-
polynomial model in Fig.2.25. The filter is calculated with (2.64) and the simulated
frequency-dependent AM/AM and AM/PM-surfaces depicted inFig. 2.18 and Fig.2.19.
(a) Calculated values, (b) Cubic spline interpolated.
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Figure 2.28: (a) Real output signal magnitude of a2.2-GHz, 90-W, Class AB RF power
amplifier excited with a DMT signal withB = 20 MHz, PI = 27 dBm.(b) Real output
signal magnitude of a3rd-order memory-polynomial model in Fig.2.25,(c) Real output
signal magnitude of a linear memory-polynomial model in Fig.2.25 (the graphs for (a) and
(b) essentially coincide).
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Figure 2.29: (a) Imaginary output signal magnitude of a2.2-GHz, 90-W, Class AB RF
power amplifier excited with a DMT signal withB = 20 MHz, PI = 27 dBm.(b) Real
output signal magnitude of a3rd-order memory-polynomial model in Fig.2.25,(c) Real
output signal magnitude of a linear memory-polynomial model in Fig.2.25 (the graphs for
(a) and (b) essentially coincide).

baseband input signal becomes so small that the frequency-domain Volterra kernels are
constant over the input signal bandwidth (ultra-narrowband assumption).

Furthermore, we have extended the concept of the AM/AM and AM/PM-conversion in
order to reflect the dependence on the modulation frequency. The resulting frequency-
dependent AM/AM and AM/PM surfaces can be employed to calculate the unknown com-
plex linear filters in a memory-polynomial model (simplified Volterra model). This new
characterization of nonlinear passband systems can be obtained from simple measurements
and its one-to-one correspondence with the memory-polynomial system structure. On the
other hand memory-polynomial systems can be fully characterized by frequency-dependent
AM/AM and AM/PM measurements and are often sufficiently accurate approximations of
a full Volterra kernel model for RF PA’s.
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Chapter 3

Frequency-Domain Expansion of
Volterra Kernels

In Chap. 2 we have developed complex baseband Volterra series models for wideband and
narrowband applications. A serious drawback of Volterra series modelsis the large number
of parameters which grows immensely with the order of the nonlinearity and the memory
depth if the Volterra model is implemented in the discrete-time domain. However in many
practical wideband applications, the frequency-domain Volterra kernelsvary quite smoothly
over the input signal bandwidth if the carrier frequency is much larger than the input signal
bandwidth (e.g.,ωc ≈ 100 × B in a four carrier UMTS). Therefore, it could be reasonable
to expand the multi-dimensional frequency-domain Volterra kernels and approximate them
with multi-dimensional orthogonal polynomials. This results in general in a complex RF
PA baseband model with a lower number of parameters and a performance which is compa-
rable to Volterra series models. In Sec. 3.1 we consider the required basicsteps to obtain a
time-domain complex baseband model with approximated frequency-domain Volterra ker-
nels in the baseband and passband domains. In Sec. 3.2 we expand the frequency-domain
kernels of a complex baseband Volterra series model with multi-dimensional orthogonal
polynomials and build a complex baseband model which is composed of a bank of linear
filters, conjugate operators and a multi-variate polynomial series, whose parameters deter-
mine the particular RF PA baseband model. If the RF PA input signal becomes narrow-
band, the complex baseband model reduces exactly to the narrowband model as discussed
in Chap. 2, which can be described by the AM/AM and AM/PM conversion. In Sec. 3.3, we
transform the complex baseband model with the approximated frequency-domain Volterra
kernels back to the passband domain, which gives us some useful insightsabout passband
modeling without explicit1st-zonal filtering. In Sec. 3.4, we consider the discrete-time
implementation and parameter estimation for the developed complex baseband models.

3.1 Introduction

Figure 3.1 depicts the basic steps which are required to develop a Volterra-based non-
linear model with approximated frequency-domain kernels in the baseband and passband
domains. The first operation, which is denoted byP, transforms the cascade of a real
passband Volterra model and a1st-zonal filter (bandpass filter centered around the carrier
frequencyωc [10, 8]) to the baseband domain. The resulting complex baseband Volterra
model is equivalent to the corresponding model in the passband domain, which means
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Figure 3.1: Development of a baseband and a passband Volterra model withapproximated
frequency-domain Volterra kernels. The symbolsF andF−1 denote the Fourier transform
and its inverse. The symbolsP andP−1 denote the transform from a passband model to a
baseband model and vice versa.

that the output signal of the complex baseband Volterra modelỹ(t) and the output sig-
nal of the cascade of the passband Volterra model and the1st-zonal filtery(t) are related by
y(t) = Re {ỹ(t) exp(jωct)}. If we transform this complex baseband Volterra model to the
frequency domain by applying the Fourier transformF to the time-domain output signal
of the complex baseband Volterra model, we obtain a useful relationship of the multi-linear
frequency-domain output signal representations and the frequency-domain Volterra kernels.
As a next step, we expand these kernels with multi-dimensional orthogonal polynomials and
approximate the frequency-domain Volterra kernels within the input signal bandwidth with
a moderate number of parameters (low approximation order). The resulting complex base-
band Volterra model with the approximated frequency-domain kernels havein general a
lower number of parameters but a performance comparable to the corresponding Volterra
model. In the final step of Fig. 3.1, we transform the baseband Volterra model with the
approximated kernels back to the passband domain by applying a basebandto passband
transform denoted byP−1. This transform leads to an interesting representation of non-
linear passband systems, where the passband output signaly(t) is generated without any
explicit 1st-zonal filtering.

3.2 Volterra Kernel Expansion with Orthogonal
Polynomials

If we consider the(2k + 1)-dimensional frequency-domain output signal of a complex
Volterra modelỸ(2k+1)(ω1, . . . , ω2k+1) in (2.36), we notice that the frequency-domain

Volterra kernelsH̃2k+1(ω1, . . . , ω2k+1) are masked out by the band-limited(2k + 1)-
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dimensional input signal
∏k+1

i=1 X̃(ωi)
∏2k+1

i=k+2 X̃
∗(−ωi). Therefore we can expand and ap-

proximate the frequency-domain Volterra kernelsH̃2k+1(ω1, . . . , ω2k+1) over the input sig-
nal bandwidth of±B with a multi-dimensional orthogonal polynomial series [56, 35, 54]

Ĥ2k+1(ω1, . . . , ω2k+1) =

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1), (3.1)

with M2k+1 + 1 members of a complete set of real orthogonal polynomialsTi, for 0 ≤
i ≤ M2k+1 and the complex valued parameterscm1,...,m2k+1

. The orthogonality condition
is expressed by

B∫

−B

p(ω)Tn(ω)Tm(ω) dω =

{
λn if m = n
0 if m 6= n

(3.2)

where the real functionp(ω) > 0 is a certain weight, which defines the particular set of
orthogonal polynomials. To calculate the optimum parameterscm1,...,m2k+1

in (3.1), the
integral-square error

E =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1) ·
∣
∣
∣H̃2k+1(ω1, . . . , ω2k+1)

−Ĥ2k+1(ω1, . . . , ω2k+1)
∣
∣
∣

2
dω1 . . . dω2k+1 (3.3)

is minimized with respect to the complex coefficientscm1,...,m2k+1
. If the approxima-

tion order of the multi-dimensional polynomial series in (3.1)M2k+1 → ∞, the numer-
ical value in (3.3) tends to zero, if the set of orthogonal polynomials is complete and the
multi-dimensional frequency-domain kernels̃H2k+1(ω1, . . . , ω2k+1) are square-integrable
in sense (cf. Appendix B)

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)
∣
∣
∣H̃2k+1(ω1, . . . , ω2k+1)

∣
∣
∣

2
dω1, . . . , dω2k+1 <∞. (3.4)

With (3.1), (3.2) and (3.3), the optimum complex parameters for the multi-dimensional
polynomial series in (3.1) are calculated by (cf. Appendix B)

co(m1,...,m2k+1) =
1

λm1
· · ·λm2k+1

B∫

−B

· · ·
B∫

−B

p(ω1) · · · p(ω2k+1) H̃2k+1(ω1, . . . , ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1) dω1 . . . dω2k+1. (3.5)
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If we insert the optimum complex parameters from (3.5) in (3.1) and evaluate the integral
square error in (3.3) we obtain the minimum integral square error (cf. Appendix B)

Emin =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)
∣
∣
∣H̃2k+1(ω1, . . . , ω2k+1)

∣
∣
∣

2
dω1 . . . dω2k+1

−
M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

λm1
· · ·λm2k+1

∣
∣co(m1,...,m2k+1)

∣
∣2 . (3.6)

Because the minimum error and right-hand side expressions in (3.6) are allnonnegative, the
following kind of Bessel’s inequality [35] holds

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

λm1
· · ·λm2k+1

∣
∣co(m1,...,m2k+1)

∣
∣2 ≤

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)

×
∣
∣
∣H̃2k+1(ω1, . . . , ω2k+1)

∣
∣
∣

2
dω1 . . . dω2k+1, (3.7)

which implies equality if the approximation orderM2k+1 → ∞.
The frequency-domain approximation with orthogonal polynomials is demonstrated in

Figure 3.2 for the linear kernel of a simple1st-order low-pass filter which is described by
H̃1(ω) = 1/(1 + jω/ωc), whereωc denotes the3-dB cut-off frequency. The upper plots
in Fig. 3.2 depict the real and the imaginary parts of the linear kernelH̃1(ω), and the1st-
and2nd-order approximation polynomialŝH1(ω) in (3.1) fork = 0,M1 = 1 andM1 = 2,
respectively. The lowest plot shows the optimum approximation error|H̃1(ω) − Ĥ1(ω)|2
for the1st- and2nd-order approximation polynomials.

If we express the multi-dimensional frequency-domain signal in (2.36) with the multi-
dimensional polynomial series in (3.1) (H̃2k+1 → Ĥ2k+1), we are able to transform the
approximate signal

Ŷ(2k+1)(ω1, . . . , ω2k+1) =

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1
Tm1

(ω1) · · ·Tm2k+1
(ω2k+1)

×
k+1∏

i=1

X̃(ωi)
2k+1∏

i=k+2

X̃∗(−ωi), (3.8)

into the time-domain by a multi-dimensional inverse Fourier transform

ŷ(2k+1)(t1, . . . , t2k+1) = F−1
{

Ŷ(2k+1)(ω1, . . . , ω2k+1)
}

(3.9)
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Figure 3.2: Approximation of a linear frequency-domain Volterra kernel with Chebyshev
polynomials over the normalized frequency range ofΩ ∈ [−1, 1]. (a) showsRe{H̃1(Ω)}
and (d) showsIm{H̃1(Ω)}, where (b) and (c) are the1st- and2nd-order approximations.
The lowest figure shows the optimum approximation squared-magnitude error in (e) and
(f) for the1st- and2nd-order approximations.
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which results in

ŷ(2k+1)(t1, . . . , t2k+1) =

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1
F−1

{

Tm1
(ω1) X̃(ω1)

}

· · ·

×F−1
{

Tmk+1
(ωk+1) X̃(ωk+1)

}

×F−1
{

Tmk+2
(ωk+2) X̃

∗(−ωk+2)
}

· · ·

×F−1
{

Tm2k+1
(ω2k+1) X̃

∗(−ω2k+1)
}

. (3.10)

If we now undo the process of spanning the time-domain function in2k + 1 dimensions in
(2.35), the final approximate baseband output signal of the order2k + 1 is given by

ŷ2k+1(t) = ŷ(2k+1)(t, . . . , t)

=

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1
w̃m1

(t) · · · w̃mk+1
(t)

×ũmk+2
(t) · · · ũm2k+1

(t), (3.11)

where the time-domain signals̃wi(t) andũi(t) in (3.11) are defined for0 ≤ i ≤M2k+1 by

w̃i(t) = F−1
{

Ti(ω) X̃(ω)
}

ũi(t) = F−1
{

Ti(ω) X̃∗(−ω)
}

. (3.12)

The overall output signal is obtained by summing up all contributions from (3.11), which
yields

ŷ(t) =

⌈N/2⌉−1
∑

k=0

ŷ2k+1(t). (3.13)

The time-domain signals in (3.12) are calculated by applying the inverse Fourier operator on
the product of the frequency-domain input signalsX̃(ω) and theith-order orthogonal poly-
nomialsTi(ω) =

∑i
k=0 akiω

k, where the real coefficientsaki are defined by the particular
set of orthogonal polynomials. This leads to a series with complex-scaled and differentiated
time-domain input signals of different orders, expressed by

w̃i(t) =
i∑

k=0

akiF−1
{

ωkX̃(ω)
}

=

i∑

k=0

aki
1

jk

dkx̃(t)

dtk

(3.14)
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Figure 3.3: Complex RF power amplifier model with approximated frequency-domain
Volterra kernels. The model is composed of a bank of linear filters (differentiators) and a
static nonlinearity represented by a polynomial series.

and

ũi(t) =
i∑

k=0

akiF−1
{

ωkX̃∗(−ω)
}

=

i∑

k=0

ak
1

jki

dkx̃∗(t)

dtk
. (3.15)

The complex baseband PA model from (3.11) to (3.15) is depicted in Fig. 3.3.The sys-
tem consists of a bank of2(M + 1) complex linear filters described by the orthogonal
polynomialsTi(ω) (generalized complex differentiators) for0 ≤ i ≤ M , whereM =
max

{
M1,M3, . . . ,M2⌈N/2⌉−1

}
for M 6= M1, and a static nonlinear system represented

by a polynomial series. If the linear term in (3.13) (k = 0) leads to the maximumM = M1,
we only needM+K+2 linear filters whereK = max

{
M3,M5, . . . ,M2⌈N/2⌉−1

}
, because

the linear terms in (3.13) do not incorporate the signalsũi(t).

3.2.1 Chebyshev Approximation

In this section we focus on the frequency-domain Volterra kernel approximation with a
particular set of orthogonal polynomials which allows us to develop a practical model
for a given nonlinear system, e.g., an RF PA. For this reason, we consider the complete
set of Chebyshev polynomials [35], which are linearly transformed to be orthogonal over
the desired frequency-domain interval of[−B,B] with respect to the weighting function
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p(ω) = 1√
1−(ω/B)2

, because they have a simple representation [35, 72]. It is important to

note that any kind of orthogonal polynomials which are orthogonal on a finite domain (e.g.,
Legendre polynomials) can be used for the approximation of frequency-domain Volterra
kernelsH̃2k+1(ω1, . . . , ω2k+1) as we have shown in the previous section. The squared norm
λn in (3.2) of the transformed Chebyshev polynomial isπB for n = 0 and πB

2 for n 6= 0.
From the recursive definition of the Chebyshev polynomials,C0(ω) = 1, C1(ω) = ω

B , and
Cn+1(ω) = 2 ω

B Cn(ω) − Cn−1(ω), the Chebyshev polynomials are expressed in a closed
form for i > 0 by

Ci(ω) =
i

2

⌊i/2⌋
∑

k=0

(−1)k

i− k

(
i− k
k

)(
2ω

B

)i−2k

. (3.16)

The time-domain signals̃wi(t) andũi(t) in (3.12) are expressed withTi(ω) → Ci(ω) and
(3.16) by

w̃i(t) =
i

2

⌊i/2⌋
∑

k=0

(−1)k

i− k

(
i− k
k

)(
2

j B

)i−2k d(i−2k)x̃(t)

dt(i−2k)
(3.17)

with the complex baseband input signalx̃(t) and

ũi(t) =
i

2

⌊i/2⌋
∑

k=0

(−1)k

i− k

(
i− k
k

)(
2

j B

)i−2k d(i−2k)x̃∗(t)

dt(i−2k)
(3.18)

with the conjugate of the input signalx̃∗(t). The quantity(i− 2k) within the superscript
parentheses of the time-domain signals denotes the order of the derivative. All these orders
within the series in (3.17) and (3.18) are even, ifi is even, and odd, ifi is odd because
the term2k is always even. For the even orders, it does not matter whether the sign of the
imaginary unitj in (3.17) and (3.18) is positive or negative and the constant values within
the series always result in real quantities and, therefore, the signalsũi(t) can be obtained
from the signalsw̃i(t) by a simple conjugation. If the orderi is odd, the constants within
the series in (3.17) and (3.18) are purely imaginary and, therefore, the signalsũi(t) can be
obtained from a simple inversion of (the real part of)w̃i(t). For this reason the signals̃ui(t)
in (3.18) can be expressed for even and odd orders ofi by

ũi(t) = (−1)i w̃∗
i (t). (3.19)

Figure 3.4 depicts the RF PA model of Fig. 3.3, where the general orthogonal polynomials
Ti(ω) are replaced by the particular set of Chebyshev polynomialsCi(ω). Because of the
equality (3.19), the linear filters in Fig. 3.3, which generate the signalsũi(t) from x̃∗(t), can
be replaced byM + 1 (if M 6= M1) orK + 1 (if M = M1) complex conjugate operators
and constant multipliers which can be more easily implemented than filters.

3.2.2 Narrowband Modeling

In the last section, we have modeled an RF PA in the complex baseband domain by ex-
panding the frequency-domain Volterra kernels with Chebyshev polynomials. This concept
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results in a complex baseband model which is composed of a cascade of a linear filter-
bank, complex conjugate operators with sign multipliers and a static nonlinearity which is
represented by a polynomial series as depicted in Fig. 3.4.

If the passband-signalx(t) becomes ultra-narrowband (see Ch. 2), the complex base-
band model in Fig. 3.4 is reduced to a simple system which incorporates solely two static
nonlinearities, described by the AM/AM- and AM/PM-conversion (see Ch.2).

Because of the ultra-narrowband assumption, the approximation orderM2k+1 in (3.1) can
be set to zero for allk’s and, therefore, the approximate(2k + 1)-dimensional frequency-
domain Volterra kernelŝH2k+1(ω1, . . . , ω2k+1) in (3.1) (withTi(ω) → Ci(ω)) can be sim-
plified withC0(ωi) = 1 to Ĥ2k+1(ω1, . . . , ω2k+1) = c0,...,0. The optimum complex param-
etersco(0,...,0) are given with (3.2), (3.5) and̃H2k+1(ω1 . . . , ω2k+1) → H̃2k+1(0, . . . , 0)
(because the bandwidthB tends to zero) by

co(0,...,0) =
H̃2k+1(0, . . . , 0)

λ2k+1
0

B∫

−B

· · ·
B∫

−B

p(ω1) · · · p(ω2k+1) dω1 · · · dω2k+1

= H̃2k+1(0, . . . , 0). (3.20)

The(2k + 1)th order time-domain output signalŷ2k+1(t) in (3.11) is given with (3.20) and
the approximation orderM2k+1 = 0, for 0 ≤ k ≤ ⌈N/2⌉ − 1 by

ŷ(t) = H̃2k+1(0, . . . , 0) w̃0(t)
k+1 ũ0(t)

k

= H̃2k+1(0, . . . , 0) |x̃(t)|2k x̃(t). (3.21)

The output signal̂y(t) in (3.13), which is obtained with (3.21) by a summation over allk’s

ŷ(t) =

⌈N/2⌉−1
∑

k=0

H̃2k+1(0, . . . , 0) w̃0(t)
k+1 ũ0(t)

k

=

⌈N/2⌉−1
∑

k=0

H̃2k+1(0, . . . , 0) |x̃(t)|2k x̃(t), (3.22)

is identical to the quasi-memoryless PA model in (2.50), and can therefore bedescribed by
the AM/AM-conversion and the AM/PM-conversion as we have shown in Chap. 2. Fig. 3.5
depicts the RF PA model from Fig. 3.4 with an approximation orderM2k+1 = 0 for ultra-
narrowband applications. Because the zero-order Chebyshev polynomialC0(ω) = 1, only
the signalsw̃i(t) = x̃(t) andũi(t) = x̃∗(t) are used to build the time-domain output signal
ŷ(t) in (3.22) within the polynomial series block in Fig. 3.5.

3.3 Baseband to Passband Transform

To calculate the time-domain passband Volterra model with the Chebyshev polynomial
expanded frequency-domain Volterra kernels in Fig. 3.1, we use the relationshipy(t) =
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Re{ŷ(t) exp(jωct)}, which yields with (3.13), (3.11) and (3.19)

y(t) = Re







⌈N/2⌉−1
∑

k=0

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1
(−1)mk+2+···+m2k+1

×
k+1∏

i=1

w̃mi(t)
2k+1∏

i=k+2

w̃∗
mi

(t) exp(jωct)

}

. (3.23)

To express the passband output signaly(t) in (3.23), with the passband input signals

wmi(t) = Re {w̃mi(t) exp(jωct)}
= |w̃mi(t)| cos (ωct+ ψmi(t)) (3.24)

of the corresponding baseband input signals of the polynomial series block in Fig. 3.4 and
Fig. 3.5, we use the identityexp(jωct) = (exp(jωct))

k+1 (exp(−jωct))
k, which yields

y(t) = Re







⌈N/2⌉−1
∑

k=0

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

cm1,...,m2k+1
(−1)mk+2+···+m2k+1

×
k+1∏

i=1

(

w̃mi(t) exp(jωct)
) 2k+1∏

i=k+2

(

w̃∗
mi

(t) exp(−jωct)
)
}

, (3.25)

where the phase in (3.24) is defined byψmi(t) = arg {w̃mi(t)}. The product terms within
the braces of (3.25) can be expanded withw̃mi(t) = |w̃mi(t)| exp(jψmi(t)) and the well
known Euler formulaexp(±jθ) = cos(θ) ± j sin(θ) by

k+1∏

i=1

(

w̃mi(t) exp(jωct)
) 2k+1∏

i=k+2

(

w̃∗
mi

(t) exp(−jωct)
)

=
1∑

l1=0

· · ·
1∑

l2k+1=0

× (−1)lk+2+···+l2k+1 j l1+···+l2k+1

2k+1∏

i=1

|w̃mi(t)| fli(t) (3.26)

where the phase-modulated carrierfli(t) in (3.26) is expressed by

fli(t) =

{
cos
(
ωct+ ψmi(t)

)
if li = 0

sin
(
ωct+ ψmi(t)

)
if li = 1

(3.27)

Therefore the real passband signals|w̃mi(t)| fli(t) in (3.26) can be expressed with (3.24)
and (3.27) by (see Appendix A)

|w̃mi(t)| fli(t) =

{
wmi(t) if li = 0
H{wmi(t)} if li = 1

. (3.28)
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Figure 3.6: Passband RF power amplifier model with approximated frequency-domain
Volterra kernels. The model is composed of a bank of linear passband filters (generalized
differentiators and Hilbert transformers) and a static nonlinearity which is represented by
a polynomial series.

The real passband output signaly(t) in (3.25) can be expressed with (3.26) by the polyno-
mial series

y(t) =

⌈N/2⌉−1
∑

k=0

M2k+1∑

m1=0

· · ·
M2k+1∑

m2k+1=0

1∑

l1=0

· · ·
1∑

l2k+1=0

Re
{

j l1+···+l2k+1Re
{
cm1,...,m2k+1

}

+j l1+···+l2k+1+1Im
{
cm1,...,m2k+1

}}

(−1) lk+2+···+l2k+1+mk+2+···+m2k+1

×
2k+1∏

i=1

|w̃mi(t)| fli(t), (3.29)

which results in the passband model shown in Fig. 3.6. While in the baseband model of
Fig. 3.4 the input signals of the polynomial series block are the output signals of the base-
band differentiatorsCi(ω) and the conjugate operators, the input signals of the polynomial
series block in Fig. 3.6 are the corresponding passband signals and theirHilbert transforms.
To express the passband signalswmi(t) andH{wmi(t)} in (3.29) as a function of the pass-
band input signalx(t), we constrain the frequency responses of the baseband filtersCi(ω)
in Fig. 3.4 and Fig. 3.5 to

C
′

i(ω) =

{
Ci(ω) −B ≤ ω ≤ B
0 otherwise

, (3.30)

which is important to ensure that the frequency-shifted baseband filtersC
′

i(ω − ωc) are
analytical (C

′

i(ω − ωc) = 0 for ω < 0) [29, 49]. Therefore with (3.24), we can use the
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following identity

wmi(t) = Re
{

(x̃(t) ⋆ c
′

mi
(t)) exp(jωct)

}

= Re
{

x̃(t) exp(jωct)
}

︸ ︷︷ ︸

x(t)

⋆ 2Re
{

c
′

mi
(t) exp(jωct)

}

︸ ︷︷ ︸

Bandpass-filter

, (3.31)

to express the passband filterGi(ω) in Fig. 3.6 with the baseband filterCi(ω) in (3.30),

wherec
′

i(t) = F−1
{

C
′

i(ω)
}

, which yields

Gi(ω) = F
{

2Re
{

c
′

i(t) exp(jωct)
}}

= C
′

i(ω − ωc) + C
′

i(−ω − ωc). (3.32)

It is important to note that the spectral components of the output signaly(t) in Fig. 3.6
are only located around the carrier frequency±ωc. The spectral components around the
multiples of the carrier frequency will be canceled by the22k+1 contributions of the inner
sums of the polynomial series in (3.29) without any explicit1st-zonal filtering.

3.3.1 Narrowband Modeling

If the frequency-domain Volterra kernels̃H2k+1(ω1, . . . , ω2k+1) are constant over the input
signal bandwidth of±B or the input-signal bandwidth tends to zero, the nonlinear pass-
band model in (3.29) (Fig. 3.6) can be simplified by setting the approximation order of the
multivariate Chebyshev polynomialsM2k+1 = 0, for 0 ≤ k ≤ ⌈N/2⌉−1. Therefore (3.29)
combined with (3.17) (̃w0(t) = x̃(t)) reduces to

y(t) =

⌈N/2⌉−1
∑

k=0

1∑

l1=0

· · ·
1∑

l2k+1=0

Re
{

j l1+···+l2k+1Re {c0,...,0}

+j l1+···+l2k+1+1Im {c0,...,0}
}

(−1) lk+2+···+l2k+1

2k+1∏

i=1

|x̃(t)| fli(t). (3.33)

Because the product in (3.33) is solely composed of the passband signalsx(t) andH{x(t)},
the narrowband model can be simplified to create the model depicted in Fig. 3.7.

To see the equivalence of the narrowband model in (3.33) and the quasi-memoryless
model in Fig. 2.3, we rewrite (3.33) with (3.26) in the following form

y(t) =

⌈N/2⌉−1
∑

k=0

Re {c0,...,0} |x̃(t)|2k+1 cos
(
ωct+ ψ0(t)

)

−
⌈N/2⌉−1
∑

k=0

Im {c0,...,0} |x̃(t)|2k+1 sin
(
ωct+ ψ0(t)

)
, (3.34)
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nel approximation in the frequency domain for ultra-narrowband applications. This pass-
band model without any explicit1st-zonal filtering is equivalent to the quasi-memoryless
model in Fig. 2.3 and achieves implicit1st-zonal filtering.

which underlines the fact that the output signal spectra are solely locatedaround the carrier
frequency±ωc. To introduce the real passband signalsx(t) andH{x(t)} in (3.34), we
compute the(2k + 1)th power from the magnitude and the phase-modulated carriers in
(3.34), which yields[|x̃(t)| cos(ωct+ψ0(t))]

2k+1 and[|x̃(t)| sin(ωct+ψ0(t))]
2k+1, where

cos2k+1
(
ωct+ ψ0(t)

)
=

1

4k

k∑

n=0

(
2k + 1
n

)

cos
[
(2k + 1 − 2n)ωct

+ (2k + 1 − 2n)ψ0(t)
]

(3.35)

and

sin2k+1
(
ωct+ ψ0(t)

)
=

(−1)k

4k

k∑

n=0

(−1)n

(
2k + 1
n

)

sin
[
(2k + 1 − 2n)ωct

+ (2k + 1 − 2n)ψ0(t)
]
. (3.36)

From (3.35) and (3.36), we notice that the(2k+1)th power computation of the passband sig-
nalsx(t) andH{x(t)} generates additional spectral components which are located around
the odd multiples of the carrier frequency. If we suppress these spectral components with
a linear1st-zonal filterF as depicted in Fig. 2.4, the output signaly(t) in (3.34) could be
expressed with (3.35) and (3.36) by

y(t) = F





⌈N/2⌉−1
∑

k=0

4k 1/

(
2k + 1
k

)

Re {c0,...,0}
(
x(t)

)2k+1

−
⌈N/2⌉−1
∑

k=0

4k 1/

(
2k + 1
k

)

Im {c0,...,0}
(
H{x(t)}

)2k+1



 (3.37)

which represents a quasi-memoryless model as we have shown in (3.37). The constant terms

4k 1/

(
2k + 1
k

)

in (3.37) compensate the scaling of the fundamental carrier frequencyωc

in (3.35) and (3.36) forn = k.
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systemH̃[x̃(t)] and a discrete-time nonlinear system̃H
d[
x̃[n]

]
if the input signalx̃(t) is

band-limited toB ≤ π/(NT ).

3.4 Discrete-Time Modeling

In the preceding sections we have developed continuous-time baseband models for nonlin-
ear RF power amplifiers. In this section, we focus on the discrete-time counterpart, which is
of fundamental importance for the discrete-time implementation of a nonlinear model, e.g.,
digital predistortion, and for numerical simulation purposes.

To develop such a nonlinear discrete-time model, we sample the continuous-time output
signalŷ(t) of the nonlinear system̃H in Fig. 3.8 with a sampling period ofT ≤ π/(NB),
where we have assumed that the Fourier transform of the baseband output signalŶ c(ω) = 0
for |ω| > NB. The spectrum of the continuous-time sampled output signal is amplitude
weighted with1/T and periodically extended with(2π)/T [45, 46]. After a conversion
from the continuous-time impulse train to the discrete-time sequenceŷ[n] = ŷ(nT ), the
spectrum will be normalized regarding the frequency-axis and therefore it will be periodic
with 2π. To generate the discrete-time signalŷ[n] in Fig. 3.8 directly in the discrete-time
domain, we sample the continuous-time baseband input signalx̃(t) and feed the resulting
sequencẽx[n] into the discrete-time model, which is described by the nonlinear operator

H̃
d
.

3.4.1 Structure Derivation

The two systems in Fig. 3.8 produce the same discrete-time output signalŷ[n], if the
discrete-time domain Volterra kernels are identical, e.g.,

H̃d
2k+1(exp(jΩ1), . . . , exp(jΩ2k+1)) ≡ H̃2k+1(jΩ1/T, . . . , jΩ2k+1/T ), (3.38)

61



for −BT ≤ Ωi ≤ BT , whereΩi = ωiT denotes the normalized frequencies (see Fig. 3.9
for H̃[x̃(t)] = (dx̃(t)/dt)2). The equality of the frequency-domain Volterra kernels over the
normalized input signal bandwidth is sufficient because the output signalspectrumŶ c(ω)
is purely determined by the multi-dimensional Volterra kernels over the input signal band-
width as we have shown in Chap. 2.

Because the continuous-time model in Fig. 3.4 is composed of a cascade of a linear filter-
bank and a multi-variate static nonlinear system, the discrete-time counterpart of Fig. 3.4
is obtained by replacing the continuous-time filtersCi(ω) in Fig. 3.4 by the corresponding
discrete-time filtersCd

i (exp(jΩ)). The frequency responses of the discrete-time filters are
given with (3.16) and (3.38) by

Cd
i (exp(jΩ)) =

i

2

⌊i/2⌋
∑

k=0

(−1)k

i− k

(
i− k
k

)(
2

jB

)i−2k (jΩ

T

)i−2k

. (3.39)

which have to be periodically extended with2π in the normalized frequencyΩ after appro-
priate band limitation. The expressionjΩ/T in (3.39) represents the frequency-response
of a linear differentiator as depicted in Fig. 3.9 (curve (h) after periodic extension). The
frequency-domain output signals of the linear filters in (3.39) are given by

W̃ d
i (exp(jΩ)) = Cd

i (exp(jΩ))X̃d(exp(jΩ)) (3.40)

whereX̃d(exp(jΩ)) denotes the discrete Fourier transform of the sampled baseband input
signalx̃[n] = x̃(nT ). The discrete-time output signals of the generalized differentiators are
given with (3.39), (3.40) and the convolution property by

w̃i[n] =
i

2

⌊i/2⌋
∑

k=0

(−1)k

i− k

(
i− k
k

)(
2

jB

)i−2k

x̃[n] ⋆ hD[n] ⋆ . . . ⋆ hD[n]
︸ ︷︷ ︸

(i−2k)×

. (3.41)

wherehD[n] = F−1(jΩ/T ) denotes the impulse response of an ideal (band-limited) dif-
ferentiator. Because an ideal band-limited differentiator can not be implemented by using
a causal discrete-time system [45, 48], we approximate the frequency-responsejΩ/T over
the normalized frequency-range of−BT ≤ Ω ≤ BT . This leads to a causal discrete-
time differentiator whose magnitude-response (FIR-filter with 5 parameters)is shown in
Fig. 3.10. The number of parameters which are required to guaranty a maximum approx-
imation error strongly depends on the highest order of the nonlinearityN . If N is large,
the normalized input signal bandwidthBT = π/N becomes small (approximation range of
the differentiator), and therefore, the number of the required FIR-filterparameters becomes
low.

The discrete-time signals

ũi[n] = (−1)i w̃∗
i [n], (3.42)

are obtained from (3.19) by replacing the continuous-time signalswi(t) by the correspond-
ing discrete-time signalswi[n] of (3.41). With (3.41) and (3.42), the discrete-time counter-
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Figure 3.9: Frequency-domain signals generated by the sampling process of the nonlinear
systemH̃[x̃(t)] = (dx̃(t)/dt)

2. (a) Band-limited input signal|X̃(ω)| , (b) Frequency re-
sponseH(jω) of a band-limited linear differentiatordx̃(t)/dt, (c)1/(2π)H(jω) ⋆H(jω)
(simplified shape), (d) Periodically extended spectrum of (c) caused by the sampling with
a continuous-time pulse train, (e) Frequency-axis normalization caused by the pulse-
train to discrete-time sequence conversion, (f) Periodically extended spectrum of (a)
caused by the sampling with a continuous-time pulse train, (g) Frequency-axis normal-
ization caused by the pulse-train to discrete-time sequence conversion, (h) Frequency
response of a band-limited discrete-time differentiatorHd(exp(jΩ)), (i) Product of (g)
and (h), (j) Convolution of (i) with itself leads to the identical output signal as in (e) if
Hd(exp(jΩ)) ≡ H(jΩ/T ) for −BT ≤ Ω ≤ BT .
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part of the continuous-time model in Fig. 3.4 is described by

ŷ2k+1[n] =

M2k+1∑

m1=0

· · ·
M2k+1∑

mk+1=mk

M2k+1∑

mk+2=0

· · ·
M2k+1∑

m2k+1=m2k

cm1,...,m2k+1
w̃m1

[n] · · · w̃mk+1
[n]

×ũmk+2
[n] · · · ũm2k+1

[n], (3.43)

and

ŷ[n] =

⌈N/2⌉−1
∑

k=0

ŷ2k+1[n], (3.44)

which is shown in Fig. 3.11.
The indicesmi in (3.43) do not all start with zeros as in (3.11), because in (3.43), we

only consider the

(
M2k+1 + 1 + k

k + 1

)

×
(
M2k+1 + k

k

)

different permutations of the2k+1
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Figure 3.11: Discrete-time complex RF power amplifier model with approximated
frequency-domain Volterra kernels. The model is composed of a bank of linear filters
(generalized differentiators) and a static nonlinearity which generates a polynomial series.

products of the signals̃wmi [n] andũmi [n]. This is important to save computational com-
plexity on the one hand, and on the other hand we thereby avoid to use redundant informa-
tion, which generally leads to numerical problems if we estimate the unknown parameters
cm1,...,m2k+1

with least-squares methods [9, 25].

3.4.2 Parameter Estimation

The unknown parameterscm1,...,m2k+1
in (3.43) can be computed from the discrete-time

counterpart of (3.5) only if the frequency-domain kernels are known.As, in general, they
are unknown, we have to estimate these parameters. As the relationships in (3.43) and
(3.44) are linear in the parameters we can formulate a classical linear least-squares problem
[26, 40]. For this we rewrite (3.44) in vector form as

ŷ[n] = cHw̃[n] (3.45)

where the vectors

cH =
[

c0, . . . , cM1
, c0,0,0, . . . , cM3,M3,M3

, c0,...,0, . . . , cM2⌈N/2⌉−1,...,M2⌈N/2⌉−1
︸ ︷︷ ︸

(2⌈N/2⌉−1)×

]

(3.46)

and

w̃H [n] =
[

w̃∗
0[n], . . . , w̃∗

M1
[n], w̃∗

0[n]w̃∗
0[n]ũ∗0[n], . . . , w̃∗

M3
[n]w̃∗

M3
[n]ũ∗M3

[n],

. . . , w̃∗
M2⌈N/2⌉−1

[n] · · · w̃∗
M2⌈N/2⌉−1

[n]
︸ ︷︷ ︸

⌈N/2⌉×

ũ∗M2⌈N/2⌉−1
[n] · · · ũ∗M2⌈N/2⌉−1

[n]
︸ ︷︷ ︸

(⌈N/2⌉−1)×

]

(3.47)
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Figure 3.12: Parameter estimation setup for the discrete-time complex RF power amplifier
model in Fig. 3.11. The error signale[n] = d[n] − ŷ[n] is used to perform an optimum
parameter (co) estimation for the RF PA model.

contain all
⌈N/2⌉−1∑

k=0

(
M2k+1 + 1 + k

k + 1

)

×
(
M2k+1 + k

k

)

different permutations of the

parameters and signals̃wi[n] andũi[n] in (3.43).
Now the error energy over the interval[n1, n2]

E =

n2∑

n=n1

∣
∣e[n]

∣
∣2 (3.48)

with e[n] = d[n]− ŷ[n], whered[n] is the discrete-time complex baseband output signal of
the RF PA, is minimized to obtain the optimal parameter vector

co =
(
AHA

)−1
AHd. (3.49)

The data matrixA and the data vectord in (3.49) are given by

AH =
[

w̃[n1], w̃[n1 + 1], . . . , w̃[n2]
]

(3.50)

and
dH =

[

d[n1], d[n1 + 1], . . . , d[n2]
]

. (3.51)

Figure 3.12 depicts the parameter estimation setup for the discrete-time RF PA model with
approximated frequency-domain Volterra kernels in Fig. 3.11. The outputsignal of the RF
PA baseband systemd[n], and the output signal of the RF PA modelŷ[n] (composed of the
digital pre-filter and the polynomial series) is used to build the error signalẽ[n], which is
utilized to perform an optimum parameter estimation for the RF PA model.
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3.5 Simulation Results

To validate the frequency-domain approximation developed in the last sections, we simu-
late an analytically tractable3rd-order Wiener system which represents the RF PA. For of
simplicity, we assume a complex linear frequency-domain kernel directly in the normalized
frequency domainΩ. The magnitude of this kernel̃Hd

1 (exp(jΩ)) is depicted in Fig. 3.13
for −π ≤ Ω ≤ π. The linear frequency-domain kernel is chosen in such a way, that the
variation over the input signal bandwidth2BT = 2π/N , for N = 5 is moderate. Because
the input signal signal bandwidth is 20% of the entire frequency range, itwould be possible
to consider nonlinearities up to the5th-order, without aliasing effects.

Figure 3.14 depicts a complex baseband Wiener model of3rd-order, which represents
an RF PA in the baseband domain. The structure is chosen based on (2.32), (2.33)
and with the assumption that the passband RF PA can be described by a Wiener sys-
tem H[x(t)] =

∫∞
0 h1(τ)x(t − τ) dτ + [

∫∞
0 h1(τ)x(t − τ) dτ ]3, whereh1(t) repre-

sents a real linear passband kernel. The frequency responseF{h1(t) exp(−jωct)}, for
−π/T ≤ ω ≤ π/T , is identical toH̃d

1 (exp(jΩ)) in Fig. 3.13 for−π ≤ Ω ≤ π.
The frequency-domain baseband kernels in Fig. 3.14 are given byH̃d

1 (exp(jΩ)) and
H̃d

3 (exp (j (Ω1 +Ω2 +Ω3))) = H̃d
1 (exp (j Ω1)) H̃

d
1 (exp (j Ω2)) [H̃d

1 (exp (−j Ω3))]
∗. The

1st- and2nd-order approximations (M1 = 1, M1 = 2) of the linear frequency-domain
kernels are depicted in Fig. 3.13. These kernels are identical to the orthogonal polynomi-
als which minimizes the integral square error in (3.6) within the normalized input signal
bandwidth of±B T . Outside they are different because the frequency response magnitude
of the approximated differentiator in Fig. 3.10 tends to zero. Therefore, the system model
becomes noise insensitive because the noise power outside the signal band of ±B T will
not monotonically increase with the model bandwidth. The3rd-order kernel will be approx-
imated with a2nd-order Chebyshev polynomial (M3 = 2) which is not explicitly depicted
here. However we will see the full information about the kernel approximation in the error
of the output spectra of the complex baseband Wiener system (basebandRF PA model) and
the Volterra model with the approximated frequency-domain kernels (cf. Fig. 3.11) in Fig.
3.15. It is important to note that, although we only approximate the kernels within the in-
put signal band, we obtain an accurate frequency response almost over the entire frequency
range (see Ch. 2, Sec. 2.3.2). Due to the smooth frequency-domain kernels and the result-
ing low order approximation (M1,M3 = 2), the number of free parameters can be reduced
from 120 for the complex basband Volterra model to21 for the Volterra model with the
approximated frequency-domain kernels.

3.6 Conclusion

Baseband modeling of nonlinear devices such as RF power amplifiers is of major con-
cern in system level analysis. For this reason, we developed a novel efficient behavioral
model which is based on a frequency-domain Volterra kernel approximation with multi-
variate orthogonal polynomials. The frequency-domain approximation results in a time-
domain model which is composed of a bank of complex linear pre-filters and a static multi-
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proximation region (input signal bandwidth), andT denotes the sampling time.

variate polynomial series. The number of free parameters can be considerably reduced if
the approximation order of the frequency-domain kernels can be kept low. This is generally
reached, if the bandwidth of the excitation signal is much smaller than the bandwidth of the
linear frequency-domain kernel (frequency response). We expect from the given simulation
example an efficiency factor of approximately five in the number of requiredparameters.
If the frequency-domain kernels are completely flat over the input signalbandwidth or the
bandwidth of the input signal tends to zero, the approximation order becomes zero. This
results in a well known quasi-memoryless model which is described by two different static
nonlinear functions which are purely dependent on the input signal magnitude.

Furthermore we have developed a new passband representation of a complex nonlinear
baseband system, whose frequency domain Volterra kernels are expanded with multi-variate
orthogonal polynomials. This model does not incorporate an explicit1st-zonal filter to pass
only the spectral components of interest, which are located near the carrier frequency. This
filtering is accomplished by combining the corresponding output signals of static nonlinear
operators within a multi-variate polynomial function. If the frequency-domain kernels are
completely flat over the input signal bandwidth or the bandwidth of the input signal tends to
zero, the model reduces to a well known quasi-memoryless passband model as in the case
of the baseband representation.
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Chapter 4

Volterra Kernel Interpolation for System
Modeling and Predistortion Purposes

In this chapter we address the problem of nonlinear system identification and Volterra kernel
interpolation for system modeling and digital predistortion purposes. In Sec. 4.1, we discuss
the basic problems and requirements of nonlinear system identification with discrete-time
Volterra models. In Sec. 4.2 we consider nonlinear system identification methods based
on a sampling frequency which is at least twice the bandwidth of the output signal of the
nonlinear baseband system. The major drawbacks of this identification methodsuch as the
high condition numbers, if we formulate a least squares problem, or the low convergence
speed, if we use adaptive algorithms, and, of course, the demand for high sampling rate
ADCs (corresponding to on the highest order of the baseband nonlinearity), motivate the
investigation of more appropriate identification methods in Sec. 4.3. This schemes have the
advantage that the sampling frequency only has to fulfill the Nyquist theorem regarding the
input signal.

4.1 Introduction

In Ch. 2 and Ch. 3, we have shown that complex baseband modeling can beadvantageously
employed in system level simulations to predict the behavior of nonlinear passband sys-
tems such as RF PA’s. With this concept, we can perform much faster simulations than
with transistor-based models, which is important if we assess the performance (e.g., spec-
tral transmission mask, bit error rate,...) of a whole communication transceiver. Nonlinear
behavioral models can also be used to develop efficient(low number of parameters) struc-
tures to implement the approximate inverse [40] of a nonlinear passband system, which is
important for linearization issues such as digital predistortion [32, 15, 16,13, 33, 18, 20].

Because the behavior of nonlinear passband systems is generally unknown, we have to
estimate it, e.g., from input and output signal measurements. Because the estimation is
usually performed in the discrete-time domain [57], the sampling frequency of the down-
converted input and output signals of the nonlinear passband system and the discrete-time
nonlinear model plays a crucial role. It has be shown in [23, 76], that nonlinear system
identification can usually be accomplished with a sampling frequency which is just twice
the bandwidth of the input signal of the nonlinear system. This becomes clearif we consider
the frequency-domain representation of Volterra systems of Ch. 2. If theinput signal is
band-limited to±B, than also the multi-dimensional output signal of the Volterra model
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Figure 4.1: Block diagram of a wireless communication transmitter witha digital base-
band processor for the identification and linearization (predistortion) of the RF power am-
plifier.

is band-limited, and therefore purely determined by the multi-dimensional Volterra kernels
within ±B in each of the frequency dimensions.

The apparent advantage of this identification scheme is that we can use low sampling rate
ADCs, which are cheaper and less power consuming as the high sampling rate counterparts
which are needed in a Nyquist sampling identification scheme. Furthermore, because of the
low sampling frequency which is just twice the bandwidth of the input signal, weachieve a
persistent excitation of the discrete-time Volterra model. This leads to small condition num-
bers and, therefore, to accurate estimation results if we formulate a least squares problem,
or to fast convergence speeds if we apply adaptive algorithms.

However in some applications as mentioned above, nonlinear discrete-time models which
are able to generate the same spectral out-off-band components (spectral regrowth caused
by the nonlinearity) as nonlinear continuous-time systems are required. Forthis reason it
is important that the discrete-time nonlinear model is operated with a sampling frequency
which fulfills the Nyquist theorem regarding the output signal of the RF PA baseband model.
We will demonstrate that this can be accomplished by Volterra kernel interpolation with no
additional computational costs.

Figure 4.1 depicts the block diagram of a wireless RF transmitter including the digital
baseband processor. To identify the RF PA or its inverse from RF PA input and output signal
measurements for predistortion purposes, we use a feedback path including a frequency
down-converter and an ADC to provide the digital baseband processorwith the output signal
of the RF PA. Both the identification process of the RF PA baseband model orits inverse
and the predistortion (see Ch. 5) is performed within the digital baseband processor.

If we build a complex baseband Volterra model for system modeling purposesto pre-
dict the generated distortion of the RF PA or to assess the transceiver performance, we
can perform the identification process off-line with a mathematical software tool such as
MATLAB r shown in Fig. 4.2.
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Figure 4.2: Block diagram of a nonlinear system identification scheme for the RF PA for
system modeling purposes. The identification is performed off-line with a mathematical
software tool such as MATLABr.

4.2 Nonlinear System Identification Based on Nyquist
Sampling

One method to identify a cascade of a nonlinear passband system e.g. an RFPA and a1st-
zonal filter in the complex baseband domain is shown in Fig. 4.3 and Fig. 4.4. Figure 4.4
is a simplified version of Fig. 4.3, where we have used the fact that the nonlinear passband
system(F ◦ G)[x] and the frequency down-converters can be represented in the complex
baseband-domain by the equivalent baseband modelH̃[x̃] as shown in Ch. 2. The spectrum
of the complex baseband output signalỹ(t) which is calculated with (2.40) and (2.41) is
broadened toB(2 ⌈L/2⌉ − 1), whereB is the bandwidth of the complex baseband input
signalx̃(t) and(2 ⌈L/2⌉ − 1) the highest order of the baseband nonlinearity. Although we
do not have the even orders of the nonlinearity in the baseband representation of Volterra
models (see Ch. 2), we use them to illustrate the identification process, which can of course,
also be applied to identify real systems which incorporate the even orders of the nonlinearity
as well.

To perform the identification process in the discrete-time domain, we sample the com-
plex baseband output signalỹ(t) with an angular sampling frequency ofωs = 2π/T ≥
2B(2 ⌈L/2⌉ − 1) which satisfies the Nyquist theorem regarding the output signalỹ(t) to
avoid aliasing effects [45, 46, 48]. The broadening of the frequency-domain input sig-
nal X̃c(ω) = F{x̃(t)} of a 2nd-order model, which is caused by the integration of the
two-dimensional output signal̃Y c

(2)(ω1, ω2) = H̃2(ω1, ω2)X̃(ω1)X̃(ω2) along the inte-
gration pathω2 = −ω1 + ω, and the periodic extension of the output signal spectrum
Ỹ c(ω) = F{ỹ(t)} which is caused by the sampling process is depicted in Fig. 4.5 (a) and
Fig. 4.5 (b). While the periodically extended spectrum in Fig. 4.5 (b) still incorporates the
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Figure 4.3: Nonlinear system identification scheme for the cascade of the RF PA and a
1st-zonal filter. The ADCs and the nonlinear discrete-time model Ṽ[x̃] are operated on a
angular sampling frequencyωs, which is at least two times the bandwidth of the output
signaly(t).

sampling-timeT in the frequency scaling, the spectrum in Fig. 4.5 (c) does not so, because
of the normalization of the discrete-time signalsx̃[n] = x̃(nT ) andỹ[n] = ỹ(nT ).

The goal of the nonlinear system identification in Fig. 4.4, is to determine the Volterra
kernelsṽ2k+1[n1, . . . , n2k+1] of the discrete-time complex baseband Volterra model

z̃[n] = Ṽ
[
x̃[n]

]

=

⌈L/2⌉−1
∑

k=0

N2k+1∑

n1=0

· · ·
N2k+1∑

n2k+1=0

ṽ2k+1[n1, . . . ,n2k+1]

×
k+1∏

i=1

x̃[n− ni]
2k+1∏

i=k+2

x̃∗[n− ni], (4.1)

in such a way that the periodic output signal spectrumZ̃d(exp(jΩ)) = F{z̃[n]} of the
discrete-time model in (4.1) is identical to the spectrum of the sampled RF PA baseband
model output signal̃Y d(exp(jΩ)) = F{ỹ[n]}. This is achieved if the frequency-domain
Volterra kernels̃V2k+1 of the discrete-time model in (4.1) satisfy

Ṽ2k+1(exp(jΩ1), . . . , exp(jΩ2k+1)) ≡ H̃2k+1

(
Ω1

T
, . . . ,

Ω2k+1

T

)

, (4.2)

for the frequency range of interest given by|Ωi| ≤ BT , whereBT denotes the normalized
bandwidth of the discrete-time input signalx̃[n]. Outside this frequency range (BT <
|Ωi| ≤ π), the kernels̃V2k+1 in (4.2) can have arbitrary values.
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Figure 4.4: Nonlinear system identification scheme operating in the baseband which is
equivalent to the scheme in Fig. 4.3. The ADCs and the nonlinear discrete-time model
Ṽ[x̃] are operated on an angular sampling frequencyωs which is at least two times the
bandwidth of the output signal of the baseband power amplifier modelỹ(t).

To show this, we calculate the output signal spectrum of the discrete-time Volterra model
in (4.1) with the discrete-time counterparts of (2.40) and (2.41) by

Z̃d(exp(jΩ)) =

⌈L/2⌉−1
∑

k=0

1

(2π)2k

π∫

−π

· · ·
π∫

−π

Z̃d
(2k+1)

(
exp(j(Ω − Θ1)),

exp(j(Θ1 − Θ2)), . . . , exp(jΘ2k)
)
dΘ1 . . . dΘ2k, (4.3)

where the multi-dimensional frequency-domain output signals

Z̃d
(2k+1)

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
= Ṽ2k+1

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)

×
k+1∏

i=1

X̃d(exp(jΩi))
2k+1∏

i=k+2

X̃d∗(exp(−jΩi))

(4.4)

with X̃d(exp(jΩ)) = F{x̃[n]} are band-limited to±BT , and periodic with2π in each
of the2k + 1 frequency variables (gray shaded areas in Fig. 4.6 (a)). The spectrum of the
discrete-time input signal̃x[n] in (4.4) is related to the spectrum of the continuous-time
signalx̃(t) by

X̃d
(
exp(jΩ)

)
=

{
1
T X̃

c(Ω
T ) |Ω| ≤ BT

0 BT < |Ω| ≤ π.
(4.5)

The multi-dimensional frequency-domain signal in (4.4) can be rewritten over one period
with (4.2) and (4.5) by

Z̃d
(2k+1)

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
=

1

T 2k+1
Ỹ c

(2k+1)

(
Ω1

T
, . . . ,

Ω2k+1

T

)

, (4.6)
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Figure 4.5: Output signal spectra of a2nd-order Volterra system for the discrete-time
identification process in Fig. 4.4. (a) Building the output signal spectrum̃Y c

2 (ω) by inte-
grating the two-dimensional frequency-domain output signal Ỹ c

(2)(ω1, ω2) along the inte-
gration pathω2 = −ω1 +ω. (b) Magnitude-scaled and periodically extended output signal
spectrum caused by the sampling process withωs = 2π/T = 4B. (c) Frequency-scaled
version of (b), caused by the samplingỹ[n] = ỹ(nT ).
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where|Ωi| ≤ π. The spectrum in (4.6) is periodically extended with2π in each of the
2k + 1 frequency variablesΩi. If we use the relationship in (4.6) to evaluate the integral
expression in (4.3), we obtain withΩ = ωT one period of the output signal spectrum of the
discrete-time Volterra model in Fig. 4.6 (b) by

Z̃d(exp(jΩ)) =

⌈L/2⌉−1
∑

k=0

T 2k

(2π)2kT 2k+1

π/T∫

−π/T

· · ·
π/T∫

−π/T

Ỹ c
(2k+1)

(
Ω

T
− θ1,

θ1 − θ2, . . . , θ2k

)

dθ1 . . . dθ2k, (4.7)

which is identical to one period of the spectrum̃Y d
2 (exp(jΩ)) in Fig. 4.5 (c). In practi-

cal applications, we are usually unable to identify the exact Volterra kernels H̃2k+1 of the
RF PA baseband model̃H[x̃] because of model uncertainties and noises. For this reason
we estimate the discrete-time Volterra modelṼ[x̃] e.g., with standard linear least squares
methods (the estimation problem is linear in the parameters) [40] or adaptively with an
LMS-algorithm [40] to minimize a particular cost-function defined on the discrete-time er-
ror signalẽ[n].

With the concept in Fig. 4.3 and Fig. 4.4, unfortunately two major difficulties arise. The
first one is the demand for high sampling rate ADCs (depending on the highest order of
the RF PA nonlinearityL), which are expensive and high power consuming. The second
one is that standard least squares algorithms tend to numerical unstable solutions [9, 25], if
the input signal bandwidth is below half the sampling frequency (non-persistent excitation).
This is caused by the oversampling of the input signalx̃[n] by the factor of2 ⌈L/2⌉ − 1
to satisfy the Nyquist theorem regarding the output signal of the RF PA baseband model
H̃[x̃] to avoid aliasing. Figure 4.7 depicts the ill-conditioning [25, 9] of the data matrix in
terms of its condition number (the ratio between the largest and the smallest singular value)
for three different orders of the RF PA nonlinearityL. If the excitation of the discrete-
time baseband Volterra model becomes more persistent2B/ωs → 1, the condition number
decreases which improves the estimation accuracy considerably [25, 9].

4.3 Volterra Kernel Interpolation

To overcome the problems mentioned in the last section, we perform the nonlinear sys-
tem identification process in Fig. 4.3 and Fig. 4.4 with an angular sampling frequency of
ω

′

s = ωs/K, whereK = 2 ⌈L/2⌉−1 denotes the highest order of the baseband nonlinearity,
which satisfies the Nyquist theorem only regarding the input signalx̃(t). This is possible
because the RF PA baseband modelH̃[x̃] in Fig. 4.8 is purely determined by the correspond-
ing multi-dimensional frequency-domain Volterra kernelsH̃2k+1(ω1, . . . , ω2k+1) over the
frequency range of±B in each of the2k+ 1 frequency variablesωi if the input signal̃x(t)
is band-limited to±B (see Ch. 2).

It has been shown in [23] that if the equality in (4.2) holds, the output signalof the
discrete-time model̆z[n] in Fig. 4.8 is identical to the sampled and aliased output signal of
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Figure 4.6: Output signal spectra for a2nd-order discrete-time Volterra modelṼ[x̃] in
Fig. 4.4. (a) Building the output signal spectrum̃Zd

2 (exp(jΩ)) by integrating the two-
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the integration pathΩ2 = −Ω1 + Ω. (b) Output signal spectrum̃Zd
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least squares problems determines the parameter estimation accuracy. If the excitation
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the RF PA baseband modely̆[n] = ỹ(nT ′), whereT ′ = KT denotes the new sampling
time.

The output signal of the RF PA baseband model in (2.40) and (2.41) is illustrated for a
2nd-order model in Fig. 4.9 (a). The output signal spectrum for a particular frequencyω0

is given by the integration of the two-dimensional frequency-domain signalỸ c
(2)(ω1, ω2)

along the integration path ofω2 = −ω1 + ω0.
Because of the low angular sampling frequencyωs = 2B (which fulfills the Nyquist

theorem only regarding the input signalx̃(t)), the sampled output signal̆y[n] becomes
aliased, and results in a spectrum which is composed of magnitude-scaled and overlapped
spectral copies of̃Y c

2 (ω). The output signal spectrum for a particular frequencyω0 in
Fig. 4.9 (b) is given by the non aliased component1

T ′ Ỹ c
2 (ω0) (integration along the path

ω2 = −ω1 + ω0) and the aliased component1T ′ Ỹ c
2

(
ω0 − 2π

T ′

)
(integration along the path

ω2 = −ω1 − 2B + ω0).
While the aliasing in the output signal̆y[n] is generated by the sampling of the

continuous-time output signalỹ(t) with the low angular sampling frequencyω
′

s, the pseudo-
aliasing in the output signal of the discrete-time model

z̆[n] = V̆
[
x̆[n]

]

=

⌈L/2⌉−1
∑

k=0

N2k+1∑

n1=0

· · ·
N2k+1∑

n2k+1=0

v̆2k+1[n1, . . . ,n2k+1]

×
k+1∏

i=1

x̆[n− ni]
2k+1∏

i=k+2

x̆∗[n− ni], (4.8)

79



is introduced because the integration pathΩ2 = −Ω1 + Ω0 in Fig. 4.10 (a) contains the
spectral components of the first periodic extension ofZ̆d

(2)(exp(jΩ1), exp(jΩ2)).
Therefore, the output signal spectrum of the2nd-order discrete-time model in (4.8) which

is calculated by (see Fig. 4.10)

Z̆d
2 (exp(jΩ)) =

1

2π

−π+Ω∫

−π

Z̆d
(2)(exp(j(Ω − Ω2)), exp(jΩ2)) dΩ2

︸ ︷︷ ︸

pseudo-aliasing

+
1

2π

π∫

−π+Ω

Z̆d
(2)(exp(j(Ω − Ω2)), exp(jΩ2)) dΩ2, (4.9)

is identical to the aliased output signal spectrumY̆ d
2 (exp(jΩ)) (see Fig. 4.9 (c)) of the

sampled output signal̆y[n] of the RF PA baseband model [23].
Although, nonlinear system identification can be accomplished with a low angular sam-

pling frequencyωs (Nyquist theorem regarding the input signal), in many applications for
example digital predistortion, the discrete-time model (the inverse of the RF PA baseband
modelH̃) must be operated on a sufficiently high angular sampling frequencyωs to generate
the spectral out-off-band components required for the nonlinear compensation (see Ch. 5).
This is also true if we use the discrete-time RF PA baseband model in a transmitter chain
for overall system performance simulations.

To avoid pseudo-aliasing in the output signal of the low-rate identified discrete-time
model V̆[x̆] in Fig. 4.8, we have to guarantee, that the integral operation in (4.3) is not
performed over more than one of the periodically extended multi-dimensional spaces of
(4.4). This can be accomplished by a frequency scaling of the multi-dimensional Volterra
kernelsV̆2k+1(exp(jΩ1), . . . , exp(jΩ2k+1)), by the factor ofK, which is equivalent to a
multi-dimensional zero stuffing, in the time domain, and the masking of the unwantedspec-
tral copies of the frequency scaled Volterra kernels by the multi-dimensional input signal
spectrum

∏k+1
i=1 X̃

d(exp(jΩi)
∏2k+1

i=k+2 X̃
d∗(exp(−jΩi).

To see this, we first apply a multi-dimensional upsampling to the time-domain Volterra
kernelsv̆2k+1[n1, . . . , n2k+1] in (4.8), which yields

ũ2k+1[n1, . . . , n2k+1] =

N2k+1∑

l1=0

· · ·
N2k+1∑

l2k+1=0

v̆2k+1[l1, . . . , l2k+1]
2k+1∏

i=1

δ[ni −Kli](4.10)

whereδ[n] denotes the discrete-time unit impulse [45, 46, 48]. The upsampling for a2nd-
order discrete-time Volterra kernel with a memory depth of two is depicted in Fig.4.11.

If we calculate the multi-dimensional discrete Fourier transform of (4.10) by

Ũ2k+1(exp (jΩ1), . . . , exp(jΩ2k+1)) =

N2k+1∑

n1=0

· · ·
N2k+1∑

n2k+1=0

ũ2k+1[n1, . . . , n2k+1]

×
2k+1∏

i=1

exp(−jΩini), (4.11)
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Figure 4.8: Nonlinear system identification scheme for the RF PA baseband systemH̃[x̃]
based on a low angular sampling frequencyω

′

s. The ADCs and the discrete-time Volterra
modelV̆[x̆] are operated with an angular sampling frequencyω

′

s, which is only two times
the bandwidth of the input signal̃x(t). The frequency-domain Volterra kernels of the
resulting low-rate model̆V[x̆] are frequency scaled (multi-dimensional upsampling) to
obtain a high-rate Volterra modelŨ[x̃] which is able to generate the same spectral out-of-
band components as the high-rate Volterra modelṼ[x̃] in Fig. 4.4.
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we obtain the frequency scaled Volterra kernels of the high sampling rate model Ũ[x̃] in
Fig. 4.8 by

Ũ2k+1(exp (jΩ1), . . . , exp(jΩ2k+1)) = V̆2k+1(exp (jKΩ1), . . . , exp(jKΩ2k+1)) .

(4.12)

It is important to note, that the multi-dimensional upsampling in (4.10) is accomplished
with almost no additional costs, because we simply have to replace each unit-sample delay
z−1 in (4.8) by aK-sample delayz−K .

To show that the RF PA baseband modelŨ[x̃] in Fig. 4.8 generates the identical non-
aliased output spectrum as the RF PA modelṼ[x̃] in Fig. 4.4, it is sufficient to show that the
equation

Ũ2k+1

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
≡ Ṽ2k+1

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
(4.13)

holds for |Ωi| ≤ BT . Outside this frequency range fromBT < |Ωi| ≤ π, the Volterra
kernels in (4.13) differ becausẽU2k+1 is periodically extended withπ (see Fig. 4.13), where
Ṽ2k+1 can take arbitrary values. Because the Volterra kernelsV̆2k+1 in Fig. 4.8 are related
to the frequency-domain Volterra kernels of the RF PA baseband modelH̃[x̃] by

V̆2k+1

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
≡ H̃2k+1

(
Ω1

KT
, . . . ,

Ω2k+1

KT

)

(4.14)

for |Ωi| ≤ π, we can rewrite (4.12) with (4.14) by

Ũ2k+1

(
exp(jΩ1), . . . , exp(jΩ2k+1)

)
≡ H̃2k+1

(
Ω1

T
, . . . ,

Ω2k+1

T

)

, (4.15)
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Figure 4.12: Equivalence between the discrete-time Volterra modelṼ[x̃] which was iden-
tified at a sampling frequency which fulfills the Nyquist theorem regarding the output
signal and the interpolated Volterra modelŨ[x̃]. This model is based on the discrete-time
Volterra modelV̆[x̆] which was identified on a sampling frequency which only fulfills the
Nyquist theorem regarding the input signal. The equivalence holds only for band-limited
input signals̃x[n] with a bandwidthB ≤ π/K.

where|Ωi| ≤ π/K = BT , which proofs the equality given in (4.13). Figure 4.12 de-
picts the two equivalent block diagrams of the discrete-time nonlinear modelsṼ[x̃] and
Ũ[x̃], whose output signals̃z[n] are in the ideal case (perfect kernel estimation) exactly
the sampled non-aliased output signal from the RF PA baseband modelH̃[x̃] in Fig. 4.3.
While the modelṼ[x̃] is identified on the high angular sampling frequencyωs, the model
Ũ[x̃] is obtained from the model̆V[x̆] identified at the low angular sampling frequency
(ω

′

s = ωs/K), and a Volterra kernel upsampling (multi-dimensional zero insertion) shown
in Fig. 4.8. While the multi-dimensional upsampling only changes the scaling of the fre-
quency variables of the low-rate identified modelV̆[x̆], (as shown in Fig. 4.13), the interpo-
lation (masking of the unwanted spectral copies) is accomplished by the multiplication with
the spectra of the high-rate sampled input signalx̃[n] as depicted in Fig. 4.13.

Figure 4.14 shows the output signal power spectra for a3rd-order RF PA baseband model
(see Fig. 3.14 in Ch. 3)̃H[x̃] and the nonlinear model̃U[x̃] in Fig. 4.12 which was obtained
from the baseband model̆V[x̆] by applying a Volterra kernel interpolation. The relative
frequency-domain error signal in Fig. 4.13 reflects the imperfect Volterra kernel estimation
with a standard linear least squares algorithm, which is caused by the RF PA baseband
model uncertainties and noise.

4.4 Conclusion

Although nonlinear systems can be identified with nonlinear discrete-time models on a sam-
pling rate which is just twice the input signal bandwidth (Nyquist theorem regarding the
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Figure 4.14: Frequency-domain input and output signals from the two equivalent Volterra
models in Fig. 4.12. (a) Input signal power spectrum. (b) Output signal power spectrum of
a3rd-order RF PA baseband modelH̃[x̃] (see Fig. 3.14 in Ch. 3). (c) Output signal power
spectrum of the interpolated Volterra modelŨ[x̃]. The (relative) frequency-domain error
signal does not vanish due to the imperfect Volterra kernel estimation.

input signal), for some applications, nonlinear discrete-time models which areoperated on
a sampling frequency which is at least twice the output signal bandwidth arenecessary.

One of these applications is digital predistortion. A predistorter is a functional block
which precedes the RF PA in the digital baseband domain in order to linearize the overall
transmitter chain. Such discrete-time models are also required for overall system simula-
tions of communication systems to predict their performance without the full computational
complexity of a transistor-based circuit simulation.

One method to build such nonlinear discrete-time models is to identify a complex base-
band RF PA with a sampling frequency which satisfies the Nyquist theorem regarding the
output signal bandwidth (Nyquist sampling). One of the inherent problemswith this method
is the ill-conditioned data matrix (large condition number) if we formulate a linear least
squares problem. This become especially serious, if we model high-ordernonlinearities
with large memory depths, because this leads in general to bad kernel estimates.

Another difficulty is the demand for high sampling rate ADCs (depends on the highest
order of the baseband nonlinearity) which are in general expensive and high power consum-
ing. To overcome these major drawbacks, we employ a Volterra kernel interpolation to the
nonlinear discrete-time model which was identified with a sampling frequency below the
Nyquist theorem. This is possible because the nonlinear system is purely determined by the
frequency-domain Volterra kernels within the bandwidth of the input signalin each of the
frequency variables.

The Volterra kernel interpolation is accomplished by a multi-dimensional zero-insertion
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of the discrete-time model mentioned above. This procedure requires almostno addi-
tional computational complexity, because we only have to replace each unit-sample de-
lay in the complex baseband Volterra model (predistorter or RF PA baseband model) by
a K-sample delay. This operation leads to a frequency scaling of the multi-dimensional
frequency-domain Volterra kernels, which results in a change of the primitive period from
2π → 2π/K. The unwanted spectral copies of the frequency-domain Volterra kernels are
interpolated by a spectral masking with the discrete-time input signal which wassampled
with a frequency which is at least twice the bandwidth of the RF PA basebandoutput signal
(Nyquist theorem regarding the output signal).
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Chapter 5

Digital Baseband Predistortion for RF
Power Amplifiers

In this chapter, we address the problem of digital predistortion for RF power amplifiers. This
complex baseband method is one of the most efficient ways to linearize an RF PA. The dig-
ital predistortion is implemented by introducing a nonlinear functional block (approximate
inverse of the RF PA) which precedes the RF block (frequency up-converter, pre-driver and
PA) in order to obtain an almost linear overall system with a higher efficiency. In Sec. 5.2,
we compare three different predistorter architectures (Volterra series, memory polynomials
and static predistorters) regarding their linearization performance measured by the adjacent
channel power ratio (ACPR) and their complexities regarding the number offree parame-
ters. In all cases the predistorters are determined by a direct estimation of the post-inverse
of the RF PA baseband system. In Sec.5.3, we consider the sampling requirements for
predistorters based on apth-order inverse. In Sec.5.4, we develop a predistortion scheme
based on a low sampling-rate RF PA baseband system identification. This architecture saves
computational complexity (low-rate ADCs) and avoids possible numerical problems during
parameter estimation.

5.1 Introduction

To obtain a sufficient output power level covering the range within a mobile communication
cell, high power amplifiers are needed. As this device is one of the most cost intensive
components (large chip area) within a basestation, it is of fundamental importance to operate
the RF PA in the region of compression to obtain the highest possible efficiency (efficiency
is approximately inverse proportional to the linearity of the RF PA) [15, 16, 32]. The region
of compression is defined by the RF PA input power level where the real and the ideal
RF PA output power levels differs by1 dB. The main problem with this concept is the
dynamic nonlinear behavior of the RF PA in combination with the high peak-to-average
power ratio (PAPR> 10 dB) in the envelope of the transmission signal. This generally
leads to spectral regrowth and intermodulation distortion in the signal band (see Ch. 2). The
spectral regrowth leads to adjacent channel interference which may not exceed some levels
imposed by the regulatory bodies. On the other hand, intermodulation distortionincreases
the bit-error rate on the receiver side if we make no attempt to linearize or back-off the RF
PA, where the latter one results in a very poor efficiency.

Several state of the art methods like feed-forward [15, 16, 32] are used in today’s power
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amplifier products which have a tremendous expense in RF components (additional error
amplifier, directional couplers, delay lines and amplitude- and phase shiftingnetworks).
The overall efficiency of feed-forward transmitters is in the range of10 percent for typical
multi-carrier signals [15, 16, 32, 50].

Digital predistortion is a more powerful linearization technique, which exploitsthe con-
siderable processing power now available from DSP devices. This technique allows us
to perform the predistortion and all other required operations such as system identifica-
tion (RF PA or its inverse) and parameter adaptation (RF PA is slightly time-variantdue to
temperature and power supply drifts, aging effects,...) with digital algorithms without the
difficulties which occur in feed-forward concepts. The efficiency of digital predistorters can
be increased to approximately20 percent for typical multi-carrier signals [15, 16, 32, 50].

Digital predistorters can be classified either into static predistorters for low memory re-
quirements or predistorters with memory which are also suitable for wideband RF PAs. The
first group is based on the assumption that RF PAs can be described by thetwo static nonlin-
earities called AM/AM-conversion and AM/PM-conversion (see Ch. 2). Such predistorters
can be implemented with look-up table techniques. Because both, the AM/AM-conversion
and the AM/PM-conversion purely depends on the magnitude of the transmission signal,
the magnitude can be used to find the look-up table entries with the corresponding com-
plex correction parameters. Static digital predistorters based on this concept are reported,
e.g., in [13, 15, 16, 32, 50]. Unfortunately, these digital predistorters have a very limited
performance if we apply them to RF PAs excited with wideband signals such asa four car-
rier WCDMA. The reason for this performance loss are the memory effects(electrical and
thermo-electrical [11, 69, 70]) of the RF PA which are not considered instatic predistorters.

To overcome this problem, Volterra series [56, 52, 40] based predistorters which incor-
porate memory can be advantageously used to improve the predistorter performance con-
siderably. The drawback of Volterra series predistorters is in generalthe large number of
parameters which increases immensely with the order of the nonlinearity and thememory
length [40]. For this reason several different predistorter structures with a lower number of
parameters such as Hammerstein, Wiener, Parallel-Wiener or Memory-polynomial predis-
torters are proposed in the literature [51, 20, 18].

5.2 Complex Baseband Predistorters Identified with an
Indirect Learning Architecture

A digital predistorter is a nonlinear functional block implemented in the baseband discrete-
time domain which precedes the RF transmitter chain in order to linearize the transmitter
(nonlinearity is mainly caused by the RF PA). Because the behavior of an RFPA is gen-
erally unknown, we have to identify either the RF PA itself and calculate the approximate
inverse, or we directly identify the approximate inverse of the RF PA. Figure5.1 depicts
the block diagram of a wireless transmitter including a digital predistortion processor to the
transmitter chain and a feedback path (receiver) for system identificationand adaptation.
Unfortunately only a small class of nonlinear systems possesses an exactinverse [40]. One
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Figure 5.1: Block diagram of a wireless communication transmitter incorporating a digital
baseband predistortion processor. The predistortion processor identifies the approximate
inverse of the transmitter chain and linearizes it by cascading the identified inverse and the
transmitter in order to reduce the nonlinear distortion of the transmission signaly(t).

method to find the approximate inverse of a nonlinear system described by Volterra series
is the theory of pth-order inverses.

It has be shown in [56, 40, 55] that a Volterra system can be linearized either with a
Volterra pre- or a postdistorter (Volterra system ofpth-order.) up to the order ofp. Therefore
the output signal of the cascade of the nonlinear system (RF PA) and the pre- or postdistorter
is composed of the input signal and a nonlinear distortion which is caused bythe nonzero
Volterra kernels of higher order thanp. If we calculate thepth-order postdistorter of a
Volterra system, this system is also the predistorter of the Volterra system. Thedifference
between the two different cascaded systems is the remaining nonlinear distortion.

Unfortunately, the theory ofpth-order inverses leads to complicated structures for the
predistorter on the one hand, and on the other hand it is difficult (Volterrasystems are not
orthogonal) to identify the different Volterra kernels of the RF PA to build thepredistorter.

One method to overcome this difficulty is to identify directly an approximate post-inverse
of the RF PA with an indirect learning architecture [33]. This identification architecture is
shown in the upper part of Fig. 5.3 (part of the predistortion processorin Fig. 5.1). The
postdistorter will be identified by minimizing a cost function defined on the errorsignal
ẽ[n]. If the nonlinear model described by the operatorL̃ is linear in the parameters, we can
use a standard linear optimization algorithm (LMS, RLS,...) [26, 40] to find the optimum
parameters of the postdistorter. If we have found the optimum parameters, we copy them
into the predistorter which precedes the DAC and the RF PA baseband modelH̃ in Fig. 5.3
(lower part), in order to linearize the transmitter chain (mainly the RF PA). The indirect
learning architecture is based on the assumption that if we have found the optimum post-
inverse , this post-inverse is a good approximation for the pre-inverse (pre-inverse and the
post-inverse of a nonlinear system are in general different), which seems to be true (verified
from simulations) if the cost function converges to a small value. [22, 40, 33, 18].
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Figure 5.2: Block-diagram of the transmitter and receiver chain of the wireless transmitter
in Fig. 5.1 and the equivalent representation by the complexbaseband power amplifier
model described by the nonlinear operatorH̃.

5.2.1 Volterra Predistorter

We have shown in Ch. 2, that RF PAs can be successfully described in thecomplex base-
band domain with nonlinear models which are based on Volterra series (Volterra, memory-
polynomials, AM/AM-conversion and AM/PM-conversion,...). The most apparent method
to realize a digital predistorter with an indirect learning architecture as shown in Fig. 5.1
and Fig. 5.3 is to implement the postdistorter described by the nonlinear operator L̃ as one
of these models.

If we discretize the complex baseband Volterra series model in (2.33) and apply it to the
predistortion setup in Fig. 5.1 and Fig. 5.3 we obtain

z̃[n] = L̃[ỹ[n]]

=
K−1∑

k=0

M2k+1−1
∑

m1=0

· · ·
M2k+1−1
∑

m2k+1=0

l̃2k+1[m1, . . . ,m2k+1]

×
k+1∏

i=1

ỹ[n−mi]
2k+1∏

i=k+2

ỹ∗[n−mi], (5.1)

where l̃2k+1[m1, . . . ,m2k+1] denotes the unknown discrete-time Volterra kernels,M2k+1

is the memory length of the different orders of the nonlinearity of the discrete-time Volterra
model and2K − 1 is the highest order of the postdistorter nonlinearity. Figure 5.4 shows
a 3rd-order discrete-time Volterra postdistorter with a memory length ofM3 = 3. The
Volterra system is implemented as a static nonlinear block which builds the different com-
binations of the delayed and conjugate input signals and a bank of complex linear filters to
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Figure 5.3: Detailed illustration of the predistortion processor depicted in Fig. 5.1. The
upper part shows the identification (postdistorter training) of the post-inverse of the base-
band power amplifier model̃L with an adaptive algorithm (LMS, RLS, ...). This struc-
ture is called indirect learning architecture, because we directly identify the inverse of the
baseband power amplifier instead of the baseband power amplifier itself (direct learning
architecture). After the postdistorter training, the postdistorterL̃ is cascaded as predis-
torter with the ADC and the baseband power amplifierH̃ to linearize the transmitter chain
as depicted on the lower part.
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perform the convolution operations in (5.1) in the following way

z̃[n] = L̃[ỹ[n]]

=

M1−1∑

m=0

l̃1[m]ỹ[n−m]

+

M3−1∑

m=0

l̃3[m,m,m] |ỹ[n−m]|2 ỹ[n−m]

+

M3−2∑

m=0

l̃3[m,m,m+ 1]y2[n−m]y∗[n−m− 1]

... (5.2)

The big drawback of the Volterra series model in (5.1) and (5.2) is the largenumber of
unknown parameters (Volterra kernel entries, e.g.,l̃1[0], l̃1[1], l̃3[1, 0, 2],...) which increases
immensely with the order of the nonlinearity and the memory length and which is expressed
for the(2k + 1)th-order by

P2k+1 = (M2k+1)
2k+1, (5.3)

where the total number of parameters is is given by

P =
K−1∑

k=0

P2k+1. (5.4)

The number of parameters in (5.3) can be reduced if we exploit the commutative property
of the products of the delayed input signals in the discrete-time Volterra series in (5.1)

k+1∏

i=1

ỹ[n−mi]
2k+1∏

i=k+2

ỹ∗[n−mi] =
k+1∏

i=1

ỹ[n−mπ1(i)]
2k+1∏

i=k+2

ỹ∗[n−mπ2(i)], (5.5)

whereπ1(i) andπ2(i) denotes the distinct permutations of the indicesm1, . . . ,mk+1 and
mk+2, . . . ,m2k+1 respectively. Therefore the discrete-time Volterra series model in (5.1)
can be simplified with (5.5), which results in

z̃[n] = L̃[ỹ[n]]

=
K−1∑

k=0

M2k+1−1
∑

m1=0

· · ·
M2k+1−1
∑

mk+1=mk

M2k+1−1
∑

mk+2=0

· · ·
M2k+1−1
∑

m2k+1=m2k

× l̃2k+1[m1, . . . ,m2k+1]
k+1∏

i=1

ỹ[n−mi]
2k+1∏

i=k+2

ỹ∗[n−mi], (5.6)

which reduces the number of parameters for the(2k + 1)th-order of the discrete-time
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Figure 5.4: 3rd-order discrete-time Volterra postdistorter with a memory length ofM3 =
3. The postdistorter is composed of a static nonlinear block which builds the different
combinations of the delayed input signals and its conjugateand a bank of linear complex
filters to perform the convolution operations in (5.1).

Volterra series model in (5.6) to [40]

P2k+1 =

(
M2k+1 + k
k + 1

)(
M2k+1 + k − 1

k

)

=
M2k+1 + k

k + 1

[
(M2k+1 + k − 1)!

k!(M2k+1 − 1)!

]2

. (5.7)

5.2.2 Memory-Polynomial Predistorter

Although, the number of parameters of discrete-time Volterra series models can be reduced
if we exploit some symmetry properties, the number of parametersP =

∑K−1
k=0 P2k+1,

whereP2k+1 is given by (5.7), are in general still quite large (e.g.P3 = 18 with M3 = 3).
In Ch. 2 we have considered a special case of a continuous-time Volterraseries model called
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Fig. 5.3 is built with discrete-time memory-polynomials. The postdistorter is composed of
a bank of static nonlinearities and the linear discrete-time filtersG̃2k+1(exp(jΩ)).

memory-polynomial model where the off-diagonal Volterra kernels are assumed to be zero.
In this section we apply a discretized version of this memory-polynomial to linearize the RF
PA baseband model of Fig. 5.3 in an indirect-learning architecture setup. If we constrain the
discrete-time Volterra kernels in (5.6)l̃2k+1[m1, . . . ,m2k+1] ≡ 0, for m1 6= m2 6= · · · 6=
m2k+1, we obtain the discrete-time memory-polynomial model given by

z̃[n] = L̃[ỹ[n]]

=
K−1∑

k=0

M2k+1−1
∑

m=0

g̃2k+1[m] |ỹ[n−m]|2k ỹ[n−m]

=
K−1∑

k=0

g̃2k+1[n] ⋆ |ỹ[n]|2k ỹ[n] (5.8)

whereg̃2k+1[m] ≡ l̃2k+1[m1, . . . ,m2k+1] describes the discrete-time Volterra kernels along
the diagonals in a multi-dimensional space. The memory-polynomial postdistorterin (5.8)
is shown in Fig. 5.5, wherẽG2k+1(exp(jΩ)) = F{g̃2k+1[n]}.

The postdistorter is composed of a bank of static nonlinearities (monomials), where each
of these nonlinear systems is cascaded with a complex linear filterG̃2k+1(exp(jΩ)) as
given by the convolution operation in (5.8). The output signalsz̃2k+1[n] of these filters
are summed up to build the final output signalz̃[n]. The number of parameters for the
(2k+1)th-order term is now purely determined by the corresponding memory length of the
linear filters in Fig. 5.5, given by

P2k+1 = M2k+1, (5.9)

where the total number of parameters is given with (5.9) and (5.4) byP =
∑K−1

k=0 M2k+1.
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If we compare the number of parameters for the memory-polynomial postdistorter in (5.9)
with the number of parameters for the Volterra series based postdistorter in (5.7), we re-
alize a considerable reduction of parameters fork > 0 (factor of 6 for P3 = M3 = 3).
This parameter reduction can of course result in a poorer linearization performance if the
assumption regarding the off-diagonal Volterra kernel entries is not satisfied.

5.2.3 Static Predistorter

Static predistorters are based on the assumption that the RF PA which should be linearized
can be sufficiently described by the two static nonlinearities called AM/AM-conversion and
AM/PM-conversion (see Ch. 2 and Ch. 3). This kind of linearization has been successfully
applied by many researchers to linearize low-power RF PAs (hand-sets)or high-power RF
PAs (basestations) with narrowband transmission signals [13, 50, 32, 15].

If the memory length in (5.1) is constraint to beM2k+1 = 1 for 0 ≤ k ≤ K − 1,
the complex baseband Volterra postdistorter in (5.1) reduces to the well known case of a
complex static polynomial function given by (see Ch. 2)

z̃[n] = L̃[ỹ[n]]

=
K−1∑

k=0

c̃2k+1

k+1∏

i=1

ỹ[n]
2k+1∏

i=k+2

ỹ∗[n]

=

K−1∑

k=0

c̃2k+1 |ỹ[n]|2k ỹ[n], (5.10)

wherec̃2k+1 = g̃2k+1[0] ≡ l̃2k+1[0, . . . , 0] describes the Volterra kernel entries for the time-
lag of zero. The structure of this static postdistorter is shown in Fig. 5.6, where the complex
linear filters in Fig. 5.5 have been replaced by simple complex constants. Therefore the
number of unknown parameters for the(2k + 1)th-order term in (5.10) reduces to

P2k+1 = 1, (5.11)

which results with (5.4) in a total number of parameters given byP = K.
As by using this kind of postdistorter, we do not consider any memory effects of the RF

PA, we usually have a very limited linearization performance if the transmission signal is
not narrowband. This is caused by the approximation of the frequency-domain Volterra
kernels with complex constants over the input signal frequency range (see Ch. 3). If this
kernels are almost flat (low-power RF PAs) or the transmission signal bandwidth becomes
small, the approximation with complex constants is more accurate, which generallyyields
an acceptable linearization performance [13].

5.2.4 Simulation Results of Different Predistorters in an Ind irect
Learning Architecture

In this section we simulate the performance of three different complex Volterra series based
predistorters (Volterra, memory-polynomial and static predistorter) which are applied to a
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Figure 5.6: Complex baseband linearizer described by the nonlinear operatorL̃ in Fig. 5.3
for the case of static polynomials. The postdistorter is composed of a bank of static non-
linearities and the variable complex valued constantsc̃2k+1.

2.2-GHz 90-W Class AB RF power amplifier with an Infineon PTF210901 LDMOS tran-
sistor [28]. The identification of the unknown parameters is performed with anindirect
learning architecture as shown in Fig. 5.3, where the optimum post-inverse (postdistorter)
is determined by solving a linear optimization problem. Once we have found the optimum
post-inverse (postdistorter) we copy the postdistorter parameters into the predistorter and
hope that the post-inverse is a good approximation for the pre-inverse ofthe RF PA. This is
in general satisfied if the error signalẽ[n] in Fig. 5.3 becomes sufficiently small during the
optimization process [22, 33]. A direct identification of the optimum pre-inverse would be
more difficult because in this case we have to solve a nonlinear optimization problem [2],
even if we use predistorters which are linear in their parameters.

In this simulation setup we employ a linear least-squares algorithm with truncated singu-
lar value decomposition [25, 9, 26] to find the optimum parameters of the post-inverse and
to avoid the numerical instabilities as discussed in Chap. 4. The RF PA is simulatedwith
the microwave circuit simulator Microwave Officer in harmonic balance mode, where the
optimization and predistortion is performed in a MATLABr environment.

To test the performance of the three different predistorters we use a four-carrier WCDMA
signal with a bandwidth of approximately20 MHz (to see the impact of memory effects) and
a carrier frequency of2.17 GHz. After the output signal of the RF PA is passed trough the
1st-zonal filter (BPF) in Fig. 5.2 to filter out the frequency components around the angular
carrier frequency ofωc, the input signalx(t) and the output signaly(t) are down converted
to the complex baseband domain.

Both signals are sampled withωc/(2π) = 122.88 Mhz (32×c, wherec is the chip-rate of
3.84 MHz) which is sufficiently high to consider the out-off-band spectrum caused by the
PA nonlinearity up to frequencies where the absolute power level becomesnegligibly low.

To compare the performance of the different predistorters we measure the adjacent chan-
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ACPR (−5 MHz) ACPR (+5 MHz) Number of

parametersP

Volterra predistorter 20 dB 20 dB 42

Static predistorter 4 dB 6 dB 4

Memory-polynomial 17 dB 16 dB 11

predistorter

Table 5.1: Adjacent channel power ratios (ACPR) between the linearized 2.2-GHz 90-W
Class AB RF power amplifiers [28] and the RF power amplifier without linearization. The
ACPR is evaluated with a root raised cosine filter (B = 5 MHz, roll off factorR = 0.22).

nel power ratio (ACPR= 10 log(Pin/Padj), wherePin andPadj denotes the inband and
adjacent channel power respectively) of the linearized RF PA and the RF PA without lin-
earization (highest nonlinear order of the post- and predistorter is assumed to be seven, root
raised cosine filter withB = 5 MHz (consider only one carrier), roll off factorR = 0.22)
in a frequency distance of±5 Mhz from the centers of the1st and4th carrier respectively.
The memory lengthM2k+1 for the different orders of the nonlinearities of the postdistorters
are chosen in such a way that we increase the memory length step by step beginning with
the lowest order of the nonlinearity until the cost function becomes a minimum. Ifwe
use the Volterra predistorter in (5.1) with the memory length ofM1 = 4 for the1st-order
term,M3 = 2 for the3rd-order term andM5 = M7 = 2 respectively, we obtain the lin-
earization performance depicted in Fig. 5.7, curve (d). The adjacent channel power can be
considerably reduced (20 dB) compared to the RF PA without linearization.Although, the
Volterra predistorters offer a good linearization performance, the number of parameters is
large (P = 42) (see Tab. 5.1). To overcome this drawback, we can use static predistorters
given in (5.10) to linearize the RF PA. In this case the number of parameters can be reduced
to P = 4 (see Tab. 5.1). Nevertheless, as expected from the theory, the static predistorter
performance is poor if we use a four-carrier WCDMA signal (B = 20 MHz), because we
do not consider any memory effects of the RF PA (frequency-domain Volterra kernels are
approximated with complex constants). The normalized power spectrum of thispredistorter
is shown in Fig. 5.7, curve (b). The memory-polynomial predistorter in (5.8)offers a good
trade-off between complexity (P = 11) and linearization performance as shown in Fig. 5.7,
curve (c) and Tab. 5.1 for the memory length ofM1 = 4,M3 = 3,M5 = 2 andM7 = 2.

Figure 5.8 and Fig. 5.9 show the magnitude and phase responses of the complex linear
filters (up to the7th-order with the memory length given above) of the memory-polynomial
post- and predistorter depicted in Fig. 5.5. The frequency responses are calculated by ap-
plying a Fourier transform to the identified complex impulse responses givenin Tab. 5.2.
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Figure 5.7: Comparison of the normalized power spectrum (PS) of the linearized (Volterra
, memory-polynomial and static predistorter)2.2-GHz 90-W Class AB RF power ampli-
fiers [28] and the RF power amplifier without linearization. (a) PS of the RF PA without
linearization, (b) PS of the static predistorter linearized RF PA , (c) PS of the memory-
polynomial predistorter linearized RF PA , (d) PD of the Volterra predistorter linearized
RF PA.

g̃1[n] g̃3[n] g̃5[n] g̃7[n]

−1.144 + j 0.322 (−17 + j 56)E−4 (−27 − j 3)E−4 (285.8 − j 45.1)E−6

0.324 − j 0.04 (147 + j 17)E−4 (−12 + j)E−4 (43.2 + j 1.7)E−6

(−54 − j 73)E−3 (−15 − j 17)E−4 0 0

(−20 + j 45)E−3 0 0 0

Table 5.2: Complex impulse responses of the linear filters (identified parameters of the
post-inverse) of the memory-polynomial predistorter in Fig. 5.5.
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Figure 5.9: Phase responses of the complex linear filters of the polynomial-
predistorter depicted in Fig. 5.5, (a) arg{G̃1(jΩ/(2πT ))}, (b) arg{G̃3(jΩ/(2πT ))}, (c)
arg{G̃5(jΩ/(2πT ))}, (d) arg{G̃7(jΩ/(2πT ))}.
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5.3 Sampling-Rate Requirements for Volterra
Predistorters Based on a pth-Order Inverse

The identification of the Volterra postdistorter in an indirect-learning architecture shown in
Fig. 5.3 is accomplished at a sampling frequency which fulfills the Nyquist theorem regard-
ing the output signal bandwidth. Unfortunately we cannot perform in general a low-rate
system identification and a Volterra kernel interpolation afterwards, as discussed in Ch. 4.
To see this, we consider a cascade of two continuous-time complex baseband Volterra sys-
temsQ̃[x̃] = (H̃◦R̃)[x̃] as shown in Fig. 5.10, wherẽR[x̃] andH̃[z̃] describe the predistorter
and the RF PA baseband system respectively. The output signals of the predistorter and the
RF PA baseband model in Fig. 5.10 are given by [56, 52].

z̃(t) = R̃[x̃(t)]

=
K∑

k=0

R̃2k+1[x̃(t)]
︸ ︷︷ ︸

z̃2k+1(t)

, (5.12)

and

ỹ(t) = H̃[z̃(t)]

=
M∑

m=0

H̃2m+1[z̃(t)], (5.13)

where2K+1 and2M+1 denote the highest orders of the predistorter and RF PA baseband
nonlinearities (see Fig. 5.11). The cascade of these Volterra series results in a new Volterra
series, whose response to the scaled input signalcx̃(t) is given by

ỹ(t) = Q̃[cx̃(t)]

=

N∑

k=0

c2k+1Q̃2k+1[x̃(t)]. (5.14)

This system is depicted in Fig. 5.12, where the highest order of the nonlinearity of the
cascade of the two Volterra systems is given by the product of the corresponding orders of
the Volterra systems2N + 1 = (2K + 1)(2M + 1). The output signal̃y(t) in (5.13) can be
expressed with (5.12) and̃x(t) → cx̃(t) by

ỹ(t) = H̃[z̃(t)]

=
M∑

m=0

H̃2m+1

[
K∑

k=0

c2k+1z̃2k+1(t)

]

=
M∑

m=0

2K+1∑

n1=1

. . .
2K+1∑

n2m+1=1
︸ ︷︷ ︸

ni∈No

cn1+···+n2m+1H̃2m+1 {z̃n1
(t), . . . , z̃2m+1(t)} , (5.15)
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Figure 5.10: Cascade of two continuous-time Volterra systems whereH̃[z̃] andR̃[x̃] de-
scribe the baseband RF power amplifier and the predistorter,respectively. The cascade of
the two Volterra systems results in a new Volterra system described byQ̃[x̃] = (H̃ ◦ R̃)[x̃].

where the(2m + 1)st-linear operator in (5.15) can be expressed as a complex Volterra
functional given by

H̃2m+1 {z̃n1
(t), . . . , z̃2m+1(t)} =

∞∫

0

. . .

∞∫

0

h̃2m+1(τ1, . . . , τ2m+1)

×
m+1∏

i=1

z̃ni(t− τi)
2m+1∏

i=m+2

z̃∗ni
(t− τi) dτ1 · · · dτ2m+1.

(5.16)

The Volterra operators̃Q2k+1 in Fig. 5.12 can be expressed in terms of the Volterra operators
R̃2m+1 andH̃2l+1 by equating the corresponding powers ofc in (5.14) and (5.15) [55, 52].
The resulting Volterra system is illustrated in Fig. 5.13 forM = K = 1, where the1st and
3rd-order operators are expressed by

Q̃1[x̃] = (H̃1 ◦ R̃1)[x̃]

Q̃3[x̃] = (H̃1 ◦ R̃3)[x̃] + (H̃3 ◦ R̃1)[x̃]. (5.17)

To remove the3rd-order nonlinear distortion of the RF PA baseband systemH̃, we set the
3rd-order operator in (5.17),̃Q3[x̃] = 0. If we preserve the linear response of the RF PA
baseband model (̃Q1[x̃] = H̃1[x̃]) we obtain the3rd-order predistorter with (5.17) given by

R̃1[x̃] = 1

R̃3[x̃] = (−H̃
−1
1 ◦ H̃3)[x̃]. (5.18)

The higher order operators̃Q5, . . . , Q̃9 in Fig. 5.13 are not explicitly calculated because
they represent the added higher order nonlinear distortion (was not present without predis-
tortion), which cannot be adjusted independently once the predistorter has been determined.

If we insert the calculated predistorter operators from (5.18) into the operators in (5.17),
we obtain a Volterra system where the3rd-order nonlinear distortion has been completely
removed (see Fig. 5.14).
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Figure 5.11: Detailed block diagram of the cascade of two complex baseband Volterra
systems (predistorter and RF PA baseband system). Both systems are purely described by
odd-order nonlinear operators.
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Figure 5.12: Complex baseband Volterra system which develops from the cascade in
Fig. 5.10 and Fig. 5.11. The highest order of nonlinearity isgiven by2N + 1 = (2K +
1)(2M +1) where2K+1 and2M +1 are the highest nonlinear orders of the predistorter
and RF power amplifier, respectively.
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Figure 5.13: Complex baseband Volterra system from Fig. 5.12 which develops from
the cascade connection of two3rd-order Volterra systems. The system is implemented in
terms of the corresponding Volterra operatorsH̃2k+1 of the RF PA baseband system and
the Volterra operators̃R2k+1 of the predistorter, respectively.
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Figure 5.14: Block diagram of the3rd-order Volterra operator̃Q3 from Fig. 5.13 which

incorporates the implemented3rd-order term of the predistorter̃R3 = −H̃
−1

1 ◦ H̃3 in terms
of the RF PA baseband system operators.
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As predistorters are usually implemented in the discrete-time domain, they must operate
on a sufficiently high sampling frequencyωs ≥ 2B(2K + 1). The term(2K + 1) denotes
the highest order of the nonlinear distortion caused by the RF PA baseband system which
should be removed, andB denotes again the bandwidth of the input signal.

If we consider the time-domain output signal of the3rd-order predistorter in Fig. 5.14

ũ(t) = R̃3[x̃(t)]

=

∞∫

0

∞∫

0

∞∫

0

r̃3(τ1, τ2, τ3) x̃(t− τ1) x̃(t− τ2) x̃
∗(t− τ3) dτ1 dτ2 dτ3 (5.19)

in the three-dimensional frequency space, we obtain the output signal

Ũ(3)(ω1, ω2, ω3) = R̃3(ω1, ω2, ω3) X̃(ω1) X̃(ω2) X̃
∗(−ω3) (5.20)

which is band-limited to±B in each of the three frequency variables. Therefore, it seems
that the3rd-order nonlinear system̃R3 in Fig. 5.14 could be identified on a sampling fre-
quency which is just twice the input signal bandwidth because the function in(5.20) is zero
outside the cube shown in Fig. 5.15. But if we consider the frequency-domain Volterra

kernel of the cascade connection−H̃
−1
1 ◦ H̃3 in (5.18) we obtain the new frequency-domain

Volterra kernel given by [52]̃R3(ω1, ω2, ω3) = −H̃3(ω1, ω2, ω3)H̃
−1
1 (ω1+ω2+ω3), which

yields with (5.20)

Ũ(3)(ω1, ω2, ω3) = −H̃3(ω1, ω2, ω3)H̃
−1
1 (ω1 + ω2 + ω3) X̃(ω1) X̃(ω2) X̃

∗(−ω3).

(5.21)

From (5.21), we realize that even if|ωi| ≤ B for i = 1, 2, 3 (point inside the cube of
Fig. 5.15), we generally need the frequency response of the inverse linear systemH̃−1

1 (ω)
for ω > B. Unfortunately, this information cannot be obtained from a system identification
scheme whose input signal bandwidth is below3B.

If we consider the time-domain signal in (5.19) and calculate the corresponding
frequency-domain signal with (2.40) and (5.21), we obtain

Ũ(ω) = −H−1
1 (ω)

1

(2π)2

∞∫

−∞

∞∫

−∞

H̃3(ω − v1, v1 − v2, v2)X̃(ω − v1)X̃(v1 − v2)

×X̃∗(−v2) dv1 dv2. (5.22)

From (5.22), we realize that the output signalŨ(ω) is determined as expected by the product
of the frequency-domain output signal of the3rd-order nonlinear part of the RF PA baseband
system (integral expression) and the frequency response of the linearpart of the RF PA
baseband system. This can also be explained graphically, cf. Fig. 5.15. The integrand
within the double-integral in Fig. 5.15 describes a plane inside a cube which depends on the
angular frequencyω. The frequency-domain output signalŨ(ω) is calculated by integrating
the three dimensional functioñU(3)(ω1, ω2, ω3) along this plane.
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Figure 5.15: Frequency-domain output signal of a3rd-order nonlinear system. Depending
on the frequencyω, we have different planes within a cube with an edge-length of 2B
(determined by the input signal bandwidth). The integration of Ũ(3)(ω1, ω2, ω3) along
these planes yields the corresponding frequency responseŨ(ω).

5.4 Predistorters Based on Low Sampling Frequency
Identification and Volterra Kernel Interpolation

In this section, we focus on a simple predistortion architecture proposed in [24], which
makes it possible to apply the low sampling rate system identification and Volterra kernel
interpolation as shown in Ch. 4. The discrete-time predistorterL̃ is composed of a parallel
structure of a delay operatorz−δ and a cascade of the purely nonlinear partH̆P with the

inverse of the linear part̆H1 of an operator̆H, described by the equatioñL ≡ z−δ+H̆
−1
1 ◦H̆P .

The architecture of̃L as part of the overall system is shown in Fig. 5.16, whereH̃ describes
the RF PA baseband model in terms of its linear operatorH̃1 and its nonlinear operator̃HP

in the discrete-time domain. The highest order of the RF PA baseband model is denoted by
P ∈ No. The composition of the predistorter and the RF PA baseband system in Fig. 5.16

Ṽ =
(
H̃1 + H̃P

)

︸ ︷︷ ︸

H̃

◦
(

z−δ + H̆
−1
1 ◦ H̆P

)

︸ ︷︷ ︸

L̃

(5.23)

yields a linearization if
∥
∥H̃P

∥
∥≪

∥
∥H̃1

∥
∥with H̆1 = −H̃1 andH̆P = H̃P , where the operator

norm corresponds to the signal norm with
∥
∥H̃1

∥
∥ ≡ sup‖u‖<1

∥
∥H̃1u

∥
∥. Qualitatively this

becomes clear by decomposing (5.23) as

Ṽ = z−δ ◦ H̃1 − z−δ ◦ H̃P + H̃P ◦ (z−δ − H̃
−1
1 ◦ H̃P ) (5.24)

where we used the fact that the delay operator commutes with all time-invariantoperators

andH̃1 ◦ H̃
−1
1 = z−δ.
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Figure 5.16: Cascade of a simple predistorterL̃ and the RF power amplifier baseband
model H̃. The amplifier is composed of its linear and nonlinear parts with the highest
order of nonlinearity ofP . If the nonlinearity is weak, which is expressed by

∥
∥H̃P

∥
∥ ≪

∥
∥H̃1

∥
∥, the RF power amplifier baseband model can be linearized withL̃ (H̆1 = −H̃1 and

H̆P = H̃P ), which yieldsỹ[n] ≈ H̃1[x̃[n− δ]].

The above assumption on weak nonlinearity implies
∣
∣
∣
∣H̃P ◦ H̃

−1
1 ◦ H̃P

∣
∣
∣
∣≪

∥
∥H̃P

∥
∥, such

that we can approximate the last term in (5.24) asH̃P ◦(z−δ−H̃
−1
1 ◦H̃P ) ≈ H̃P ◦z−δ. Thus

the overall system response is obtained asṼ ≈ z−δ ◦ H̃1. Therefore the time-domain output
signal of the cascade of the predistorterL̃ and the RF PA baseband system̃H in Fig. 5.16
yields ỹ[n] ≈ H̃1[x̃[n− δ]].

A quantitative analysis of the linearization performance of the architecture inFig. 5.16
can be done if we employ the Volterra series representation of the involved operators.
Subsequently, the set of frequency-domain Volterra kernelsṼ2p+1(z1, . . . , z2p+1) for p =
0, 1, 2, . . . , (P 2 − 1)/2 of Ṽ is expressed in terms of the Volterra kernels of the operators
according to the composition in (5.23). If we apply theZ-domain cascade rule for discrete-
time Volterra series [52] tõV = H̃ ◦ L̃ and arrange the indices in order to consider only the
present odd-order Volterra kernels, we obtain

Ṽ2p+1(z1, . . . , z2p+1) =

p
∑

n=0

∑

m1=1

. . .
∑

m2n+1=1
︸ ︷︷ ︸

u(2n+1)=2p+1
mi∈No

{

H̃2n+1(zl(1) · · · zu(1), . . . , zl(2n+1) · · ·

· · · zu(2n+1))
2n+1∏

k=1

L̃mk
(zl(k), . . . , zu(k))

}

, (5.25)

where the lower and upper index bound functions are defined byl(k) ≡ l(m1, . . . ,mk−1) =
1 +

∑k−1
j=1 mj , andu(k) ≡ u(m1, . . . ,mk) =

∑k
j=1mj , respectively withl(1) = 1. If we

substitute the Volterra kernels of the cascade of the nonlinear operatorH̆P and the linear

operatorH̆
−1
1 given by (see Fig. 5.17)

L̃2p+1(z1, . . . , z2p+1) = H̆2p+1(z1, . . . , z2p+1)H̆
−1
1 (z1 · · · z2p+1) (5.26)
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with L̃1(z) = H̆1(z)H̆
−1
1 (z) = z−δ into (5.25), we obtain

Ṽ2p+1(z1, . . . , z2p+1) =

p
∑

n=0

∑

m1=1

. . .
∑

m2n+1=1
︸ ︷︷ ︸

u(2n+1)=2p+1
mi∈No

{

H̃2n+1(zl(1) · · · zu(1), . . . , zl(2n+1) · · ·

· · · zu(2n+1))
2n+1∏

k=1

H̆mk
(zl(k), . . . , zu(k))H̆

−1
1 (zl(k) · · · zu(k))

}

.

(5.27)

Figure 5.17 depicts the expanded predistorter structureL̃ from Fig. 5.16 and its equivalent

structure (based on the superposition principle of the linear operatorH̆
−1
1 ) which is used in

(5.27).
If we separate the terms in (5.27) forn = 0 andn = p, (5.27) results in

Ṽ2p+1(z1, . . . , z2p+1) = H̃1(z1 · · · z2p+1)H̆
−1
1 (z1 · · · z2p+1)H̆2p+1(z1, . . . , z2p+1)

+H̃2p+1(z1, . . . , z2p+1)(z1 · · · z2p+1)
−δ

+

p−1
∑

n=1

∑

m1=1

· · ·
∑

m2n+1=1
︸ ︷︷ ︸

u(2n+1)=2p+1
mi∈No

{

H̃2n+1(zl(1) · · · zu(1), . . . , zl(2n+1)

· · · zu(2n+1))
2n+1∏

k=1

H̆−1
1 (zl(k) · · · zu(k))H̆mk

(zl(k), . . . , zu(k))

}

,

(5.28)

where the first two summands in (5.28) equalize if the linear frequency-domainVolterra
kernel is given by

H̆−1
1 (z) = −H̃−1

1 (z)z−δ, (5.29)

and the higher order frequency-domain Volterra kernels forp ≥ 1 are

H̆2p+1(z1, . . . , zp) = H̃2p+1(z1, . . . , zp). (5.30)

Thus a system with a perfectly adjusted predistorter results in the following odd-order
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frequency-domain Volterra kernels

Ṽ1(z) = H̃1(z)z
−δ

Ṽ3(z1, z2, z3) = 0

...

Ṽ2p+1(z1, . . . , z2p+1) = −
p−1
∑

n=1

∑

m1=1

· · ·
∑

m2n+1=1
︸ ︷︷ ︸

u(2n+1)=2p+1
mi∈No

{

H̃2n+1(zl(1) · · · zu(1), . . . , zl(2n+1)

· · · zu(2n+1))
2n+1∏

k=1

H̃−1
1 (zl(k) · · · zu(k))(zl(k) · · · zu(k))

−δ

× H̃mk
(zl(k), . . . , zu(k))

}

.

(5.31)
Although perfect equalization is only possible for the third order Volterra kernel
Ṽ3(z1, z2, z3), the resulting distortion of the predistorted PA output signal is much
lower compared to the non-compensated PA if

∥
∥H̃P

∥
∥ ≪

∥
∥H̃1

∥
∥, because all the ker-

nelsṼ2p+1(z1, . . . , z2p+1) for p ≥ 2 in (2.32) incorporate the multiplicative inverse of the
linear kernelH̃−1

1 (z).
To establish a relation to the more general linearization method of thepth-order inverse

[56] we consider the special case of the3rd-order inverse for a system described by the
operator decompositioñH = H̃1 + H̃3 + H̃P , where the operator̃HP contains all odd-order
operator components withp > 3. The predistorter based on the3rd-order inverse, where the

linear frequency response is not equalized, is given with (5.18) byĽ = z−δ◦(1−H̃
−1
1 ◦H̃3),

while according to (5.23) the applied predistorter isL̃ = z−δ◦(1−H̃
−1
1 ◦(H̃3+H̃P )). From

that, it is obvious that for a3rd-order nonlinear model̃H, the two predistortion schemes
coincide. The comparison of the two schemes in case of a higher-order inverse of a system
e.g. the5th-orderH̃ = H̃1 + H̃3 + H̃5 + H̃P will point out an essential difference of
which the important consequences for a low-rate implementation are discussed in the next
subsection.

5.4.1 Predistortion and Upsampling

As shown in Ch. 4, the low sampling-rate identified RF PA baseband modelV̆ = V̆1 + V̆P

can be upsampled to a higher sampling frequency such that it exactly reproduces the
output of the RF PA baseband system̃H. The natural question posed in this section is
whether or not we can apply the upsampled model of Ch. 4 for the predistortion archi-
tecture shown in Fig. 5.16 with̆H−1

1 (z) = −V̆ −1
1 (zP )z−δ andH̆2p+1(z1, . . . , z2p+1) =

V̆2p+1(z
P
1 , . . . , z

P
2p+1) such that it yields the identical result as the corresponding applica-

tion of kernels ofH̃ in (5.29) and (5.30). As the model is able to reproduce the exact output
of the RF PA baseband system, one is tempted to answer this question positively. Unfortu-
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nately, they do not perform in the same way when applied to the predistortion architecture.
To see this, first note that the kernels of the upsampled model and the RF PA baseband
system coincide only over the input signal bandwidth. Reconsidering the structure of the

predistorterL̃ = z−δ + H̆
−1
1 ◦ H̆P reveals that, due to the spectral regrowth ofH̆P , the

linear operator̆H
−1
1 acts on a signal with a bandwidth that is in generalP times the input

signal bandwidth. Thus, the output signal of the upsampled version ofH̆
−1
1 differs from the

correct version given in (5.29) and (5.30) by an amount that dependson the flatness of the
linear frequency response of the RF PA baseband system. The flatter theresponse is, the
less the effect of the periodic extension in the upsampled version outside theinput signal
bandwidth. Once we have copied the linear kernel of the upsampled inverse V̆ −1

1 (zP ) of
the RF PA into the predistorter, we can correct the periodic extensions (caused by the low-
rate identification) ofH̆−1

1 (z) by adapting the corresponding filter parameters with standard
linear optimization algorithms (e.g. least-mean-square algorithm). Although, the linear fil-
ter H̆−1

1 is operated on the high sampling rate, the modification of the filter parameters is
accomplished on the low sampling rate. The initialization is taken to be the upsampled
response−V̆ −1

1 (zP )z−δ. The adaptation process is depicted in Fig. 5.18.
In this context, an important property of the applied predistortion architecture L̃ = z−δ +

H̆
−1
1 ◦ H̆P becomes evident. As the operatorH̆P with the kernelsH̆2p+1(z1, . . . , z2p+1) =

V̆2p+1(z
P
1 , . . . , z

P
2p+1) operates on the input signal bandwidth, its response is identical to

the response of̆HP with H̃2p+1(z1, . . . , z2p+1) and thus requires no adaptation.
This feature allows for efficient low-rate adaptive predistortion, whereonly the few pa-

rameters ofH̆−1
1 (z) need to be tuned, while the mass of parameters from the higher-order

frequency responses require no adaptation. This stands in contrast tothe application of the
upsampled kernels̆V2p+1(z

P
1 , . . . , z

P
2p+1) to thepth-order inverse architecture.

In the case of upsampled kernels, every composition of operators wherea nonlinear op-
eratorH̃2k+1 with k > 0 precedes one or more operators, an adaptation of all consecutive
operators followingH̃2k+1 is necessary to yield equivalent performance to a5th-order in-
verse utilizing the correct high-rate kernels of the RF PA baseband system H̃.

The overall system including the identification of the low-rate modelV̆ of the system̃H,
predistorter̃L with its optional adaptation, and the kernel upsampling is shown in Fig. 5.18.
The switch in Fig. 5.18 indicates that for the initial identification of the low-rate model V̆ the
predistorter is bypassed. Note that simultaneous low-rate identification and predistortion is
generally not possible, because of the spectral regrowth at the outputof the predistorter.

In the derivations above we have focused on Volterra predistorters, although we can em-
ploy other nonlinear models as e.g. memory-polynomials or models based on frequency-
domain expansion, if they are sufficient to model the RF PA who should be linearized.

5.4.2 Application and Simulation Results

To evaluate the performance of the proposed low-rate predistortion scheme in Fig. 5.18,
the linearization of two different PAs for wireless and wireline transmission systems are
performed. The5th-order complex baseband Volterra model in Fig. 5.19 is used to simulate
the behavior of an RF PA for wireless applications.

112



a

b
z−δ

↑ P

↓ P ↓ P

H̃1

V̆1

V̆1

V̆
−1
1

H̆
−1
1H̆P

V̆P

H̃P

V̆2p+1(z
P
1 , . . . , z

P
2p+1)

V̆ −1
1 (zP )

up
sa

m
pl

in
g

x̃[n] ỹ[n]
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Figure 5.18: Multi-rate digital predistortion architecturẽH ◦ L̃ composed of a high-rate

systemH̃, a high-rate predistorter̃L = z−δ + H̆
−1

1 ◦ H̃P with an optional low-rate adap-

tation of the linear operator̆H
−1

1 , a low-rate system identification̆V, and Volterra kernel
upsampling (zero insertion); switch positionb for identification and positiona for predis-
tortion; with δ = nP
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H̃31(z)
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Figure 5.19: Complex baseband Volterra model of a5th-order RF power amplifier for
wireless applications,̃H = H̃1 + H̃3 + H̃5.
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Figure 5.20: Normalized power spectra for the RF PA baseband model (a) Input signal
power spectrum, (b) Output signal power spectrum for the RF PA baseband model with-
out linearization, (c) Output signal power spectrum for thelinearized RF PA baseband
model (without adaptation of the linear kernel), (d) Outputsignal power spectrum for the
linearized RF PA baseband model (with adaptation of the linear kernel).

The frequency-domain Volterra kernels in this example are chosen asH̃1(z),
H̃3(z1, z2, z3) = H̃34(z1z2z3)H̃31(z1)H̃32(z2)H̃

∗
33(z3) and H̃5(z1, . . . , z5) = a (cf.

Fig. 5.19). Following the exposition of the previous sections, the normalized bandwidth of
the discrete-time input signalx̃[n] has to be lower thanπ/5. If we apply the low-rate predis-
tortion scheme in Fig. 5.18 we can reduce the nonlinear distortion measured bythe adjacent
channel power ratio (ACPR) depending on the flatness of the linear frequency-domain
Volterra kernelH̃1(z) as discussed in the previous section. In this simulation we have
applied a linear kernel with magnitude variations around1.5 dB (pessimistic assumption
see Ch. 2). For this case we obtain an ACPR of approximately10 dB (see Fig. 5.20) if
we apply the predistorter with the upsampled (zero insertion) Volterra kernels without any

adaptation of the system̆H
−1
1 . The ACPR can be further increased to approximately20 dB,

if we additionally adjust the linear system with a low-rate adaptive algorithm.
The predistortion scheme in Fig. 5.18 is not restricted to wireless RF PAs whichare

described in the equivalent complex baseband domain, it can also be applied to wireline
transmission systems where the predistorter is applied to real-valued signals.For this case
we also incorporate the even-order operators to describe nonlinear devices such as PAs . To
evaluate the performance of the proposed low-rate predistortion scheme,the linearization of
a PA for a wireline transmission system is performed. The systemH̃ is taken to be a high-
rate discrete-time model of a PA for a VDSL analog front-end [71] that complies with the
distortion ratios of the standard [1]. To be able to apply predistortion over arealistic distor-
tion range, the circuit was mistuned to yield a harmonic distortion ratio of40 dB. The model
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Figure 5.21: Normalized power spectrum atωs for the output of the power amplifier̃H
(dashed), the output of the linearizatioñH ◦ L̃ applying the upsampled kernels for the
predistortion (solid), and the ideal linear response (dashed-dotted); results averaged over
50 different randomly chosen DMT input signals.

has been obtained by fitting a simple5th-order Volterra model to the I/O measurement of
a transistor-level circuit simulation. The standard 4-band VDSL system can utilize a band-
width of up to12 MHz, where each band is DMT modulated. The frequency allocation for
this simulation according to the standard [1] (Band Plan 998) consists of two downstream
bands with bandwidth of each2.59 MHz, located at center frequencies2.225 MHz and
6.885 MHz. Following the exposition of the previous sections the sampling rate of digital
predistortion for that system has to be at leastωs = 2π × 81.8 MHz. Conventionally, this
directly translates to the sampling requirements of the ADC in the feedback path (refer to
5.1) used for the parameterization of the predistorter. The proposed approach requires an
ADC sampling rate of onlyωf = 2π × 16.36 MHz.

The following results are all obtained by averaging over 50 different DMT signals with
constant peak-to-average power ratio (PAPR) but randomly chosen phase constellation. The
constant PAPR corresponds to the average PAR occurring if the phaseconstellations are
drawn from the uniform distributionU [0, 2π)N , with N being the number of carriers. In
Fig. 5.21 the average power spectrum of the output of the amplifier and its linearized version
using the upsampled kernels of the low-rate identification is depicted. The corresponding

results with an additional low-rate adaptation ofV̆
−1
1 where the initialization is taken to be

V̆
−1
1 (zP ), are shown in Fig. 5.22.
The graph in Fig. 5.21 indicates the general result that for systems with a flat frequency

response over the input signal bandwidth, such as power amplifiers, theapplication of the
upsampled kernels already yields a good linearization performance. It is evident from

Fig. 5.22 that a gain in linearization can be achieved by the low-rate adaptationof V̆
−1
1
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Figure 5.22: Normalized power spectrum atωs for the output of the power amplifier̃H

(dashed), the output of the linearizatioñH ◦ L̃ applying a low-rate adaptation for̆H
−1

1

in the predistorter (solid), and the ideal linear response (dashed-dotted); results averaged
over50 different randomly chosen DMT input signals.

initialized with V̆
−1
1 (zP ). The underlying optimization problem for the adaptiveV̆

−1
1 is

nonlinear because its output signal passes through the nonlinear operator H̃ to generate the
low-rate error signal for the adaptation. Although good initialization is necessary for such
problems in general, extensive simulations have not shown any critical dependence of the
performance on the initialization.

5.5 Conclusion

We have shown that state-of-the art digital predistorters which are based on static nonlin-
earities are not sufficient to linearize RF PAs for wideband applications, because they do
not consider memory effects. Volterra series based predistorters are able to consider such
memory effects and have in general a very good linearization performance. The drawback
of Volterra series predistorters is the large number of required parameters especially for the
higher orders of the nonlinearity. Therefore many different models based on a reduction of
Volterra series models such as Memory polynomials (only the diagonal entriesof the time-
domain Volterra kernels are considered) can be used for digital predistorters. The number
of parameters for these simplified predistorters can be considerably reduced compared to
the full Volterra predistorter, while the linearization performance is still acceptable for most
applications.

Although nonlinear systems such as RF PAs can be identified on a sampling ratewhich
is just twice the input signal bandwidth, for digital predistortion a sampling ratewhich
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Figure 5.23: Block diagram of a wireless transmitter including digital predistortion and
low sampling-rate system identification (equivalent to thedigital baseband system in
Fig. 5.18).

is at least twice the output signal bandwidth is required. However we haveshown for a
particular predistortion architecture that it is sufficient to interpolate the nonlinear kernels
of the low-rate identified PA and copy these high-rate kernels into the predistorter. The
unwanted spectral copies of the higher order kernels are masked out by the band-limited
input signals. This multi-rate predistorter works perfectly (compared to the purely high-rate
system) if the linear kernel of the RF PA is completely flat over the input signalbandwidth
(interpolated linear kernel is equal to the high-rate identified kernel), otherwise we have
a sub-optimal solution which can be improved upon, if we apply an additional low-rate
adaptive algorithm to adjust the frequency response of the interpolated linear kernel in the
predistorter over the whole frequency band. With a typical smooth linear kernel for the
PA (magnitude variation is approximately 1.5 dB) we obtain a neighbor channelpower
suppression of approximately10 dB if we solely apply Volterra kernel interpolation on the
low-rate identified kernels, and20 dB if we additionally adjust the frequency response of
the interpolated linear kernel over the whole frequency band. This performance can be
obtained, although we only employ a low-cost, low-rate ADC in the analog front-end of the
transmitter feedback path. Figure 5.23, depicts a block diagram of a wireless transmitter
including the digital predistortorter, the low sampling-rate system identification and the
Volterra kernel upsampling block from the multi-rate predistortion architecture in Fig. 5.18
in a real world environment.

117



118



Chapter 6

Concluding Remarks

In this thesis we analyzed different methods to describe nonlinear passband systems such
as RF PAs with input-output behavior models in the complex baseband domain. These
models can be advantageously used in system-level simulations to predict the overall per-
formance (spectral masks, bit error rate,...) of wireless communication systems (including
the nonlinear RF PA) without the full computational complexity of transistor based circuit
simulations. In Ch. 2 we started with the well known description of RF PAs with twodiffer-
ent static nonlinearities called AM/AM-conversion and AM/PM-conversion.Models based
on this concept are unfortunately not able to describe memory effects (thermal and electro-
thermal) [70, 69, 11] of RF PAs, which are important for wideband applications such as
four-carrier WCDMA. For this reason we used the concept of complex baseband Volterra
series models introduced by S. Benedetto [7] for the modeling of nonlinear satellite links
and applied them to Class-AB RF PAs for basestation applications. The drawback of such
Volterra series models is that the complexity grows immensely with the order of the non-
linearity and the memory length of the RF PA. In Ch. 3, we developed a more efficient
representation of complex baseband Volterra series models which is basedon frequency-
domain Volterra kernel expansion with orthogonal polynomials. If the bandwidth of the
wideband input signal is still small compared to the carrier frequency, the kernels vary in
general quite smoothly over the input signal band. In this case we can often reduce the
number of parameters considerably. One of the key issues in system modeling is nonlinear
system identification. Although we know from the work of W. A. Franck [23], that non-
linear system identification can be accomplished efficiently at a sampling-rate which only
fulfills the Nyquist theorem regarding the input signal, the identified model is ingeneral not
sufficient for system modeling where the spectral out-of-band components plays a crucial
role. For this reason, we developed the concept of Volterra kernel interpolation in Ch. 4,
which allows nonlinear identification on a low sampling rate as considered in [23]. Af-
ter the low-rate identification (reduced hardware costs), we transform the model to a new
model which is operated on a sufficiently high sampling rate to be able to generate the spec-
tral out-of-band components generated by a nonlinear system. It has been shown that this
transformation can be accomplished with almost no additional computational complexity
by simple zero insertion.

The second topic of this thesis is the linearization of nonlinear RF PAs with digitalpredis-
tortion. State of the art digital predistorters are primarily based on static nonlinear functions
implemented with look-up table techniques. With this method the complex baseband in-
put signal will be multiplied with a complex correction factor, in order to obtain a linear
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transmitter in the ideal case[13]. As discussed above, such static nonlinear functions are not
sufficient to describe memory effects of RF PAs, which become important forbasestations
operated with wideband signals such as four-carrier WCDMA. In Ch. 5 we investigated dif-
ferent predistorter structures and nonlinear identification methods basedon direct or indirect
methods, with a special focus on implementation complexity. Furthermore we haveshown
that special predistorter structures are applicable to apply low-rate nonlinear system identi-
fication in combination with Volterra kernel interpolation to obtain a sufficient linearization
performance with an adequate hardware complexity.
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Appendix A

Hilbert Transform of Complex
Modulated Passband Signals

If we consider the amplitude and phase modulated passband signalx(t) = a(t) cos(ωct +
φ0(t)) = Re{x̃(t)ejωct} in the frequency-domain, where we assume that the angular carrier
frequencyωc > B, andx̃(t) is band-limited to±B, we obtain with [46]

X(ω) = F {x(t)}

=
1

2

[

X̃(ω − ωc) + X̃∗(−(ω + ωc))
]

, (A.1)

whereX̃(ω) = F{x̃(t)} denotes the Fourier transform of the complex baseband signal
x̃(t) = a(t)ejφ0(t). The complex transfer function of a Hilbert transformer is given in the
frequency-domain by [46, 48, 29]

HH(ω) = −jsgn(ω), (A.2)

where

sgn(ω) =

{
1 for ω ≥ 0
−1 for ω < 0

(A.3)

If we apply this complex transfer function to the frequency-domain signal in(A.1), we
obtain

Xs(ω) = HH(ω)X(ω)

=
1

2

[

−jX̃(ω − ωc) + jX̃∗(−(ω + ωc))
]

. (A.4)

If we transformXs(ω) back to the time domain by applying the inverse Fourier transform
F−1, we obtain

xs(t) = F−1{Xs(ω)}

=
j

2

[
−x̃(t)ejωct + x̃∗e−jωct

]

= Im
{
x̃(t)ejωct

}
, (A.5)

whereIm
{
x̃(t)ejωct

}
= a(t) sin(ωct+φ0(t)). Therefore the Hilbert transformer shifts the

carrier of the passband signal at90◦, where the amplitudea(t) and the phaseφ0(t) of the
passband input signalx(t) are preserved.
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Appendix B

Optimum Parameter Calculation of
Multi-Variate Orthogonal Polynomials

To calculate the optimum parameters of the multi-dimensional orthogonal polynomial se-
ries in (3.1), we first evaluate the integral square error in (3.3) with the identity |H̃2k+1 −
Ĥ2k+1|2 = (H̃2k+1 − Ĥ2k+1)(H̃

∗
2k+1 − Ĥ∗

2k+1), which results with (3.1) in

E =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)

(

H̃2k+1(ω2k+1) −
M2k+1∑

m1,...,m2k+1=0

cm1,...,m2k+1

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)

)(

H̃∗
2k+1(ω2k+1) −

M2k+1∑

m1,...,m2k+1=0

c∗m1,...,m2k+1

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)

)

dω2k+1. (B.1)

whereω2k+1 = [ω1, . . . , ω2k+1]
T anddω2k+1 = dω1 · · · dω2k+1 are introduced for a more

compact notation. If we evaluate the product terms in (B.1) we obtain

E =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)
∣
∣
∣H̃2k+1(ω2k+1)

∣
∣
∣

2
dω2k+1

−
M2k+1∑

m1,...,m2k+1=0

cm1,...,m2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃
∗
2k+1(ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1

−
M2k+1∑

m1,...,m2k+1=0

c∗m1,...,m2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃2k+1(ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1
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+

M2k+1∑

m1,...,m2k+1=0

M2k+1∑

n1,...,n2k+1=0

cm1,...,m2k+1
c∗n1,...,n2k+1

B∫

−B

p(ω1)Tm1
(ω1)Tn1

(ω1)dω1

· · ·
B∫

−B

p(ω2k+1)Tm2k+1
(ω2k+1)Tn2k+1

(ω2k+1)dω2k+1.

(B.2)

If we apply the orthogonality condition in (3.2) to the last summation term in (B.2), the
integral square error reduces to

E =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)
∣
∣
∣H̃2k+1(ω2k+1)

∣
∣
∣

2
dω2k+1

−
M2k+1∑

m1,...,m2k+1=0

cm1,...,m2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃
∗
2k+1(ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1

−
M2k+1∑

m1,...,m2k+1=0

c∗m1,...,m2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃2k+1(ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1

+

M2k+1∑

m1,...,m2k+1=0

∣
∣cm1,...,m2k+1

∣
∣2 λm1

· · ·λm2k+1
. (B.3)

By completing the magnitude square in (B.3), the final expression for the integral square
error is given by

E =

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)
∣
∣
∣H̃2k+1(ω2k+1)

∣
∣
∣

2
dω2k+1

+

M2k+1∑

m1,...,m2k+1=0

∣
∣
∣
∣
∣
cm1,...,m2k+1

√

λm1
· · ·λm2k+1

− 1
√
λm1

· · ·λm2k+1

×
B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃2k+1(ω2k+1)Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1

∣
∣
∣
∣
∣

2
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−
M2k+1∑

m1,...,m2k+1=0

∣
∣
∣
∣
∣

1
√
λm1

· · ·λm2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)H̃2k+1(ω2k+1)

×Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1

∣
∣
∣
∣
∣

2

, (B.4)

where only the middle summation term depends on the unknown complex parameters
cm1,...,m2k+1

. Because this term is always nonnegative, the integral square error ismini-
mized by

co(m1,...,m2k+1)

√

λm1
· · ·λm2k+1

− 1
√
λm1

· · ·λm2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)

×H̃2k+1(ω2k+1)Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1 = 0, (B.5)

which yields the optimum complex parameters in (3.5)

co(m1,...,m2k+1) =
1

λm1
· · ·λm2k+1

B∫

−B

. . .

B∫

−B

p(ω1) · · · p(ω2k+1)

×H̃2k+1(ω2k+1)Tm1
(ω1) · · ·Tm2k+1

(ω2k+1)dω2k+1. (B.6)
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Appendix C

Quasi-Memoryless Systems Based on
Fourier Series Expansion

If we consider the nonlinear passband model in Fig. 2.3 withG[x] = v(x), the output signal
u(t) can be rewritten in the following form

u(t) = v[a(t) cosψ(t)], (C.1)

whereψ(t) = ωct+ φ0(t). Because the expression in (C.1) is periodic inψ(t) with 2π, we
can expand (C.1) in a Fourier series [10]

u(t) = m0(a(t)) +
∞∑

k=1

2Re{mk(a(t))exp(jkψ(t))}, (C.2)

where the complex magnitude dependent Fourier coefficients are expressed by

mk(a) =
1

2π

2π∫

0

v(a cosψ)exp(−jψ)dψ. (C.3)

The1st-zonal filterF[u] in Fig. C.1 passes only the frequency components which are located
near the carrier frequency. Therefore the filtered output signal is given with (C.2) by

y(t) = 2Re{m1(a(t))exp(jψ(t))}. (C.4)

The complex Fourier coefficientm1(a) can be calculated with (C.3) andv(a cosψ) =
∑L

l=1 bl[a cosψ]l +
∑L

l=1 cl[a sinψ]l (see Fig. 2.3) by

m1(a) =
L∑

l=1

bla
l 1

2π

2π∫

0

[cosψ]lexp(−jψ)dψ +
L∑

l=1

cla
l 1

2π

2π∫

0

[sinψ]lexp(−jψ)dψ.

(C.5)

The evaluation of the integral expressions in (C.5) yields

1

2π

2π∫

0

[cosψ]lexp(−jψ)dψ =







1
2l

(
l

(l + 1)/2

)

for l ∈ No

0 otherwise
(C.6)
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Figure C.1: Memoryless nonlinear passband system from Fig. 2.3, where the nonlinear
operatorG[x] is represented by the static nonlinear functionv(x).

and

1

2π

2π∫

0

[sinψ]lexp(−jψ)dψ =







−j 1
2l

(
l

(l + 1)/2

)

for l ∈ No

0 otherwise
(C.7)

Therefore the complex Fourier coefficient in (C.5) can be expressed with (C.6) and (C.7) by

m1(a) =

⌈L/2⌉−1
∑

k=0

a2k+1 1

22k+1

(
2k + 1
k + 1

)

(b2k+1 − jc2k+1)
︸ ︷︷ ︸

d2k+1

. (C.8)

If we express (C.4) with (C.8), we obtain with̃x(t) = a(t)exp(jφ0(t)) the desired result
given by

y(t) = Re







⌈L/2⌉−1
∑

k=0

d2k+1

22k

(
2k + 1
k + 1

)

|x̃(t)|2k x̃(t) exp(jωct)






. (C.9)
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