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Zusammenfassung

Moderne Modulationsverfahren, die in mobilen Kommunikationssystemen @&Me€r
dritten Generation eingesetzt werden, erzeugen eine stark schwlenkartilllende des
Sendesignals. Diese Eigenschaft bewirkt eini#tg, die durch das nichtlineare Verhal-
ten des HF Versirkers (HF PA) hervorgerufen wird. Wir schlagen verschiedene-Mo
ellstrukturen @ir solche Versirker vor, die entweder auf Memory Polynome oder auf die
Approximationen von Frequenzbereichs Volterra Kernen beruheduseh sich die An-
zahl an freien Parametern W% gegefiber dem \olterra Reihen Ansatz verringesingt.

Da diese Modelle Getthtnis aufweisen, sind wir in der Lage die nichtlineareir8igen

von HF PAs mit ausreichender Genauigkeit (z-B0 dB rel. Modellierungsfehler) auch
fur Breitbandsignale ( 4-@iger WCDMA Signal mitB = 20 MHz) zu modellieren.
Ausserdem schlagen wir ein Verfahren zur Konstruktion von RF PA&ded basierend

auf frequenzabdngigen AM/AM und AM/PM Konvertierungen vor. Uif die Kompensa-
tion der Nichtlineariéten analysieren und simulieren wir verschiedene digitale Vorverzerrer
beZiglich Komplexitit und Linearisierungsleistung. Vorverzerrer basierend auf Memory
Polynomen Tter Ordnung), knnen eine vergleichbare Linearisierungsleistung wie \Volterra
Vorverzerrer erreichen, bétigen jedoch eine wesentlich geringere Anzahl an Parametern
(11 statt42). SchlieB3lich schlagen wir eine neue Vorverzerrer Struktur vor, beidie
Kosten fir die ADCs im Rickwartspfad auf Grund der niedrigen Abtastrate bei der Sys-
temidentifikation deutlich reduziert werdeiirnen.






Abstract

Modern modulation methods as usedid generation mobile communications (UMTS)
generate strongly fluctuating transmission signal envelopes with high tpemalerage
power ratios. These properties result in significant distortion due to thénear be-
havior of the radio-frequency power amplifier (RF PA). We propostedint nonlinear
model structures for such amplifiers, based on memory polynomials ancefregrdomain
Volterra kernel expansion, where we can reduce the number of &eangters by80%
compared to traditional Volterra series approaches. Because thdseeaomodels incor-
porate memory, we are able to model the nonlinear distortion of RF PAs witltisaffi
accuracy (e.g.+30 dB relative modeling error ), including the wideband case (bandwidth
B = 20 MHz as needed for four-carrier WCDMA). Furthermore, we propasaethod
to construct RF PA models from frequency-dependent AM/AM and AMviversions.
For the compensation of the nonlinearities, we analyze and simulate diftegéat predis-
torter structures in terms of complexity and linearization performance. Asudt renemory-
polynomial predistortersrth order) can achieve a linearization performance comparable to
the full Volterra predistorter, while the number of parameters is reduaed 42 to 11.
Finally we propose a new predistortion scheme with low-rate system identificatid
Volterra kernel interpolation which allows a drastic cost reduction for ¢eellback ADC.
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Chapter 1

Introduction

In the past years the rising number of subscribers in mobile communicationnkstied to
the development of nedrd -generation standards like UMTS (Universal Mobile Telecom-
munications Standard). In particular the demand for higher data ratedpemyltimedia
applications, and for fast internet access have been consider@dlheaddition both the
modulation scheme and the multiple user access method were designed foerasipigitt
tral efficiency compared with former mobile communications standards like GEbbél
System for Communication).

Modern modulation formats such as OFDM (Orthogonal Frequency Dividioltiplex-
ing) or WCDMA (Wideband Code Division Multiple Access) possess stfanguations in
their signal envelopes with high peak-to-average power ratios (PARPRAB) [48, 50, 32].
For this reason, highly linear transmitters are needed to avoid an unaagdpgh nonlin-
ear distortion of the transmission signal. To obtain a sufficient output plewekto cover
the range within a mobile communication cell, RF power amplifiers (RF PA) with RF out-
put powers ofP > 100 W are needed. As these devices are one of the most cost intensive
components within a basestation, it is of fundamental importance to operaté & Rear
thel dB compression point to obtain the highest possible efficiency [50, 32].

The main problem is the nonlinear behavior of the RF PA in combination with the men-
tioned high PAPR of the transmission signal envelope if we drive the RF By ddo
compression ( efficiency is approximately inversely proportional to linedbt, 32]. This
leads to intermodulation distortion and spectral regrowth of the transmissioal.sifjwe
made no attempt to linearize the RF PA, we would generally obtain an unadyelpigti
bit-error rate on the receiver side and a violation of the spectral tranismisgsks which
are specified by the regulatory bodies.

To overcome these problems we basically have two options. The first onbaskeoff
the RF PA which leads to bad efficiencies [32, 15, 16] or we can devetyepRF PA con-
cepts including linearization. The most widespread concept for tod&yRAR is Class-AB
with feedforward linearization [32, 15, 16]. Unfortunately, this condégpost-intensive be-
cause all blocks for the linearization (power splitter, delay-lines, auxdamplifier) have to
be implemented in the high frequency domain. Another difficulty is the demarsdi&ptive
control of the linearization scheme to be able to react to the slightly time-varghguor
of the RF PA (temperature, aging,...). The basic concept of a feediddimaarization is
depicted in the block diagram of Fig. 1.1. The RF input sign@) is fed to the RF PA,
which generates the distorted output signal given by

ypa(t) = Grz(t — 1) + d(t), (1.1)



where( denotes the gain of the RF PA andthe latency of the RF PA. The output signal
of the RF PA in (1.1) is composed of the amplified input signal and the distodiion
which is caused by the inherent nonlinearity of the RF PA. If we subtraaid¢itayed input
signaly;(t) = x(t — 7) from a portion of the RF PA output signal in (1.1), we obtain a
weighted error signal given by

e(t) =Gzt — 1) +nd(t) — z(t — 1), 1.2)

where the constant facter describes the attenuation of the directional-couplery; I=
1/G1, the error signal is purely determined by the weighted distortion of the RFh g

by
e(t) = md(t). (1.3)

Because the power of the error signal in (1.3) is in general much lowertkieapower of
the amplified RF PA input signal, we can use a linear low-power auxiliary PRtegte

y2(t) = Gae(t — )
= GQ’Yld(t — 7’2), (14)

which is used to cancel out the nonlinear distortion of the RF PA. The firtalib signal is
given by

Z(t) = Gl.%'(t —T1 — 7'2) + d(t — 7'2) — 'YQGQ'Yld(t — 7'2), (15)

wherer, denotes the latency of the low-power auxiliary PA. If the gain of the auxilR&y
G2 = 1/(7172), the output signal of the RF PA is given by

2(t) = Girx(t — 11 — T2). (1.6)

Thus the output signal of the feed-forward linearization concept inFigis an amplified
and time-delayed replica of the input signal with the nonlinear distortion frenmtain RF
PA removed.

1.1 Introduction to Digital Predistortion

As nowadays digital signal processors (DSPs) are very fast améerfad, the purely analog
state-of-the-art linearization methods such as feedforward [326150] are replaced more
and more by digital predistortion concepts. By using digital predistortionameirncrease
the overall efficiency (RF output power at the antenna over the whol@@@r which is
needed to operate a basestation) from approximdi@l§s for feedforward linearization
concepts to approximate0 %, because no auxiliary amplifier is needed anymore [50].
A digital predistorter is a functional block (it incorporates the inverse efRF PA) im-
plemented in the digital baseband domain which precedes the RF PA in ordeaddathe
whole transmitter chain. Therefore, we can advantageously employ@tydiygital signal
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Figure 1.1: Blockdiagram of a feedforward linearization concept.

processing methods for nonlinear system identification, parameter adagtatigpredistor-
tion without the difficulties which arise in an analog feedforward linearizatmmcept.

Figure 1.2 shows a block diagram of a wireless basestation transmitter witH gigita
distortion in a direct up-conversion architecture [39]. The complexizas® signal (1,Q)
from the baseband unit is fed to a peak-to-average power ratio (PAdeRRErtion block
[38], where the PAPR can be reduced from approximatélygB to approximatelys dB.
This allows us to increase the average input power of the multi-carrier RARR) without
increasing the nonlinear distortion (higher efficiency) [32]. The compkseband signal
after PAPR reduction is pre-distorted by the digital predistorter-coredfbére) and up-
converted to the desired RF carrier frequency. The multi-carrier RAEVRARA) is in gen-
eral designed to cope with input signal bandwidths of approximatelHz, to transmit up
to four WCDMA-carriers simultaneously. Because the behavior of the/REE I general
not known in advance and the behavior is also slightly time-varying (agingpeeature-
drifts,...), we need a feedback path (frequency down-converter irlR2yfrom the output
of the RF PA back to the digital predistortion processor (DPD-procgtsadijust the pre-
distorter parameters accordingly.

The most critical part of a digital predistorter is the right choice of the ipteder ar-
chitecture, which must be able to perform at least an approximate invacsg Qonlinear
systems do not possess an exact inverse [40, 12, 56]) of the RFtBAisAime, most of the
commercial digital predistorters used in basestation transmitters are bastdiomonlin-
ear systems which compensate the AM/AM-conversion and AM/PM-coiovel32, 8, 51]
of an RF PA with simple look-up table techniques [13, 32, 17, 43, 41, 14].

The basic concept of such a predistorter is shown in Fig. 1.3. The corbpkeband
input signalz from the PAPR reduction block (see Fig. 1.2 and Fig. 1.3) will be multiplied
with the complex correction terni’(|Z|) (based on the inverse AM/AM- and AM/PM-
conversion) from a look-up table. The predistorted output sigiial= z[k|F'(|z[k]|) will
be frequency up-converted to the desired carrier frequency anfifiehpvith the complex
gain G(|g|) (based on the AM/AM- and AM/PM-conversion) of the MC PA in Fig. 1.2.
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Figure 1.2: Blockdiagram of a wireless basestation transmitter inolgigpeak-to-average
power ratio reduction (PAPR) to increase the average pduighér efficiency) and digital
predistortion for the linearization of the multi-carrieFHPA (MC PA). The digital pre-
distorter core (DPD-core) incorporates the approximaterie of the MC PA in order to
linearize the transmitter chain. Because the behavioreoft@ PA is slightly time-variant,
a feedback path (down-converter) is necessary to adjuffieparameters accordingly.
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Figure 1.3: Blockdiagram of a particular digital predistorter-cor@rfgplex multiplier)

and a digital predistortion-processor (look-up table (Q@md LUT update) from Fig. 1.2
to linearize the MC PA in Fig. 1.2. The DPD is only suitable farrowband applica-
tions because this system is purely based on the inverse Mvidihd AM/PM-conversion

(static nonlinearities).
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Figure 1.4: Newton algorithm to update the look-up table (LUT) entri€be magnitude
of the complex input signak:| will be quantized to index a finite number of complex LUT
entriesF'(|Z|) (for a convenient representation the values in the figuresssumed to be
real valued). This values are are multiplied with the comflaseband input signain]

in order to linearize the RF PA in Fig. 1.2. Once we have caked one output sample we
can compare it with the corresponding input sample to reitatie a better LUT entry.

Therefore, the PA output signal in the equivalent discrete-time badelmanain is given by
z[k] = Z[k]F(|Z[k][)G(|Z[K]] [F(|Z[K])]), (1.7)

which is in the ideal case an amplified replica of the input signa[k|, whereK is a real
constant (gain). The look-up table will be indexed by the magnitude of thmlex input
signal|Z|, because the gai&(|g|) ( and also the AM/AM-conversion and the AM/PM-
conversion) of the MC PA are static nonlinear functions which are solghemtent on
the input signal magnitude. The optimum look-up table entfiég|) are calculated from
the input signal samples|k] and the down-converted and digitized MC PA output signal
samples in the DSP-processor. Once we have calculated one outplissigipéde in (1.7),

we can compare the scaled output signal samplé&’] with the corresponding input sig-
nal sample. If the LUT entry(|Z;|) is not the optimum value, the corresponding error
e(Fx(|Z;]) # 0 (see Fig. 1.4). If we use the present LUT entry and the correspoediog

at timek, we can calculate (e.g. with a Newton algorithm) a new LUT entry for the given
|z;| for the time-instan& + 1, which leads hopefully to a smaller error (see convergence



conditions in [13]). It is important to note that the LUT entries are updated iarhitrary
sequence which depends on the appearance of the different inpat siggnitudes.

Unfortunately, the digital predistorter in Fig. 1.3 is only suitable for naramebampli-
fiers (as will be explained further below in Chap. 2). If we consider dohel input signals
such as four-carrier WCDMA, and/or high power RF transistors, th&RIEan no longer
be described sufficiently accurately with the AM/AM-conversion and AM/Bdversion
[36, 51]. This is due to the memory effects of the RF PA which are introdbgedatching
networks, biasing networks and the self heating of the RF power trarssjinr36, 69, 70].
For such applications, the RF PA behaves as a dynamic nonlinear systese whtput
signal at a certain time-instant may depend on the whole history of the inmat sig

This fact makes the task of digital predistortion much more difficult, becautdsicase
we cannot perform a linearization by using a simple multiplicative correctidhefnput
signal as shown in Fig. 1.3 to achieve the required linearization perfoenatfthough most
commercial products still use feed-forward linearization or digital predisto based on
look-up table techniques, the growing demand for cheaper linearizatirepts which can
handle more than one carrier has lead to the development of more sophilgticadistortion
concepts.

Several researchers have shown that Volterra series [56, 52aA0je used to describe
RF PAs with memory and their (approximate) inverse [75]. Unfortunatelyntimber of
free parameters increases immensely with the order of the nonlinearity amdethery
length [40]. This leads in general to an unacceptably high computationgblegity for
the hardware which is available today. For this reason, several sgdeiures which are
based on a simplification of full Volterra series descriptions were develaop¢he past.
These are for example Wiener-models (cascade connection of a lineaafittea static
nonlinear function), Hammerstein-models (cascade-connection of a stafioear func-
tion and a linear filter) and models which are composed of a nonlinear furertitedded
between two linear filters (L-N-L) [5, 6, 4, 19, 30]. Although these modet®rporate
memory, the linearization performance is quite limited if the input signal bandwidih is
large as, e.g., in the case of a four carrier WCDMA excitation. Anotheblero is that
most of these models are nonlinear in their parameters (higher-orderrsdiemels are
products of lower-order kernels as elgy,(k1,. .., kn) = h(k1) - - - h(ky,)), which makes
the parameter estimation much more difficult. Other models such as parallel Vdiener
memory-polynomials are more promising to obtain the required linearizationrperfece
for wideband applications [36, 51, 33, 21].

In all these nonlinear models, the number of free parameters are in bsigeificantly
reduced compared to the full Volterra model, while the linearization perfore@nstill
comparable to full Volterra models.

For the estimation of the predistorter parameters, basically two differecéguoes are
known from the literature. The first one is used to identify the behavioreoRtk PA and to
calculate the approximate inverse epth-order inverse [56, 54, 40], and the second one is
used to identify the inverse of the RF PA directly [22, 20, 21].

The first procedure leads to complicated predistortion structures {akpdor higher
orders) which are composed of higher order nonlinear operatorthatierse of the linear
operator which describes the behavior of the RF PA. Another difficulty@sestimation



of the individual Volterra operators from input/output measurementsusecaf their non
orthogonal property [56].

The latter, called indirect learning architecture (direct estimation of thesayés easier
to handle especially if the predistorter is linear in its parameters. In this cagptineum
postdistorter can be found by minimizing a certain cost-function with standagdrliop-
timization algorithms (LMS, RLS,...) [26, 40]. Once the optimum post-inverse isdpu
the postdistorter is used as a predistorter with the assumption that the poseisva good
approximation for the pre-inverse of the RF PA. This assumption is valice(erpntally
verified) as long as the cost-function of the

if the resulting cost-function become sufficiently small during the postdistodatiiig
process.

1.2 Scope of the Work

The aim of this work is to use digital signal processing and mixed signal metokh-
earize an RF PA (whole transmitter) for wireless basestation transmittersintoridcrease
the efficiency and to reduce the nonlinear distortion. The predistortefdbe applicable
for modern modulation formats such as WCDMA or OFDM with bandwidths @0 tdlHz
(four WCDMA carriers). For such large input signal bandwidths, theFR can no longer
be described by two static nonlinearities (AM/AM-conversion and AM/PMveosion) as
in the case of small input signal bandwidths and/or low-power RF amplifityestefore the
predistortion structures become more complex, which increases the manghgairements
in general. For this reason, the focus should not only be the achievefreegbod lineariza-
tion performance, but also the hardware complexity should be considsra#ey-issue in
this work. Digital Predistorters act as an approximate inverse of the RF B&\@quivalent
baseband representation [49, 8]. To develop efficient predistottioctsgres, it is of funda-
mental importance to understand the RF PA behavior in the complex basedraathd For
this reason a considerable part of this work refers to nonlinear compgebland modeling.
Such nonlinear models can not only be used to develop digital predistditese models
can also be used in system-level simulations, e.g., to test the spectral emissi®) ondo
predict the error vector magnitudes (EVM) which is defined as the sqoatef the ratio
of the mean error vector power to the mean reference power expliegseatent. [50, 42].

To test the predistorter performance in terms of adjacent channel pati@(ACPR)
[3, 50], we apply the different predistorter algorithms implemented in a MAB®Aenvi-
ronment to an Infineof.2 GHz, 90 W, Class-AB RF power amplifier [28]. This amplifier
is implemented in the physical RF simulation tool Microwave Officevhich allows a re-
alistic simulation of RF components in the frequency (harmonic balance mofjeof3fie
time domain.

1.3 Outline of the Thesis and Main Contributions

In this thesis we focus on modeling nonlinear passband systems in thelequa@mplex
baseband domain and the digital predistortion of RF power amplifiers folbarakappli-



cations. The term "wideband” refers to input signal bandwidths wherertbmory effects
of the RF PAs are no longer negligible (e.g., four-carrier WCDMA) if wentvi@ obtain
a sufficient modeling accuracy or linearization performance. In the foligywwe give a
chapter by chapter overview for the thesis and for the main contributioithwften have
led to publications and/or patent applications during this work.

Introduction: In chapter 1 we give an introduction to digital predistorters and a problem

statement.

Baseband Modeling of Nonlinear Passband Systems: In chapter 2 we address the

problem of complex baseband modeling of real valued nonlinear patslyatems
such as RF PAs. We show the difficulties which arise if we apply the well know
guasi-memoryless models (AM/AM-conversion and AM/PM-conversionggzdbe

an RF PA baseband system under wideband excitation (four carrierMAJDTo
overcome the limitations of these quasi-memoryless models we replace them by com-
plex baseband Volterra series models which improve the modeling accunasig-co
erably. Furthermore, we show the relationship between \Volterra serieslsnaild
guasi-memoryless models and extend the concept of the AM/AM-conveasion
AM/PM-conversion to make these nonlinear functions frequency depéndehe
extended functions can be used to construct memory-polynomial modéter(so
series models where the off-diagonal entries are zero) from simple muttinh@a-
surements.

e Peter Singerl and Gernot Kubin, Constructing Memory-Polynomial Models
from Frequency-dependent AM/AM and AM/PM Measurements, submitted to
IEEE International Symposium on Circuits and Systems (ISCAS), New Qxlea
(USA), May 2007 [67].

e Peter Singerl, Gernot Kubin, Constructing Memory-Polynomial Modelmfro
Frequency-dependent AM/AM and AM/PM Measurements, pending pagen
plication, Germany and United States, 19.04.2006 [65].

Frequency-Domain Volterra Kernel Expansion: In chapter 3 we transform the time-

domain complex Volterra series models from chapter 2 to the frequency dolfrthim
frequency-domain Volterra kernels are quite smooth over the input digimalwidth,

it could be useful to expand these kernels with multi-variate orthogonatiturs to
reduce the number of free parameters. If we transform the new inegwdomain
representation back to the time-domain, we obtain a model which is composed of a
bank of linear filters and a multi-variate polynomial function. Because this mode
is still linear in the parameters, we can estimate them with linear optimization algo-
rithms as, e.g., least squares.

e Peter Singerl and Gernot Kubin, Chebyshev Approximation of Baskban
Volterra Series for Wideband RF Power Amplifiers, IEEE Internationahisy
sium on Circuits and Systems, Kobe (Japan), May 2005, vol. 32¢ifh-2658
[66].



e Peter Singerl, A New Approach for Efficient Modeling of Nonlinear Passl
Systems for Communication Applications, International Workshop on Nonlin-
ear Circuits and Signal Processing, Honolulu (USA), March 20053p9-382
[58].

e Peter Singerl and Gernot Kubin, Frequency-Domain Volterra Seriparision
for Efficient Modeling of Wideband RF Power Amplifiers, to be submitted to
IEEE Transactions on Circuits and Systems.

e Peter Singerl, Gernot Kubin, Efficient Approximation of Baseband \at8e-
ries for Wideband RF Power Amplifiers, pending patent application, Ggrman
and United States, 9.05.2006 [68].

Volterra Kernel Interpolation for System Modeling and Predistortio n Purposes:
In chapter 4 we use the fact that nonlinear systems can be identified ompéirgg
rate which only fulfills the Nyquist theorem regarding the input signal inéith.
Based on this knowledge, we show how such low-rate models can be upsiamyp
simple multi-dimensional zero-padding, to obtain high-rate models which adedee
for system modeling and digital predistortion as well. This technique recgiimesst
no additional computational complexity.

e Peter Singerl and Heinz Koeppl, Volterra Kernel Interpolation for Sydt#ond-
eling and Predistortion Purposes, IEEE International Symposium onISjgna
Circuits and Systems, lasi (Romania), July 2005, pp. 251-254 [63].

e Peter Singerl, Heinz Koeppl, Volterra Kernel Interpolation of Nonlinegs-S
tems, pending patent application, Germany and United States, 22.04.2005 [64

Digital Baseband Predistortion for RF Power Amplifiers: In chapter 5 we address
the problem of digital predistortion for RF power amplifiers. The digital jsted
tion is implemented by a functional block (approximate inverse of the RF PA)hwhic
precedes the RF PA in order to linearize them (whole transmitter). We dedilop
ferent predistorter architectures based on Volterra series modelg them to a2.2-
Ghz90-W Class-AB RF PA and compare their complexities and linearization perfor-
mances. Furthermore, we develop a simple predistorter architecture avlosverate
system identification and upsampling as shown in chapter 4 can be applied.

e Peter Singerl and Heinz Koeppl, A Low-Rate Identification Method for Digita
Predistorters Based on \olterra Kernel Interpolation, IEEE MidweshRy
sium on Circuits and Systems, Cincinnati (USA), August 2005, pp. 153%
[62].

e Peter Singerl, Aditya Agrawal, Aditya Garg, Neelabh, Gernot Kubin aad H
mann Eul, Complex Baseband Predistorters for Nonlinear Wideband R&rPow
Amplifiers, IEEE Midwest Symposium on Circuits and Systems, San Juan
(USA), August 2006, [60].

e Heinz Koeppl and Peter Singerl, An Efficient Scheme for Nonlinear Mogle
and Predistortion in Mixed Signal Systems, to appear in IEEE Trans. Circuits
Syst., December 2006 [34].



e Peter Singerl and Heinz Koeppl, A Low-Rate Identification Method for Digita
Predistorters Based on Volterra Kernel Interpolation, invited for subomige
the Springer Journal, Analog Integrated Circuits and Signal Processing

e Peter Singerl, Digital Predistorter Based on Frequency-Domain Voltezra K
nel Approximation, pending patent application, Germany and United States,
22.05.2005, [59].

e Peter Singerl, Heinz Koeppl, An Efficient Scheme for Nonlinear Modelimg) a
Predistortion in Mixed Signal Systems, pending patent application, Germany
and United States, 02.05.2006, [61].

Concluding Remarks: In chapter 6 we summarize and conclude the work and discuss
further research objectives.

Hilbert Transform of Complex Modulated Passband Signals: In appendix A we
derive the Hilbert transform of amplitude and phase modulated passigmalss
which is needed for the development of a closed-form representatiayuasi-
memoryless passband systems in Chap. 2.

Optimum Parameter Calculation of Multi-Variate Orthogonal Polynomia Is: In
appendix B we derive the optimum parameter calculation for multi-variate astredg
polynomials which are needed in Chap. 3.

Professional Awards:

e |IEEE Student paper award for "A Low-Rate Identification Method forifaig
Predistorters Based on Volterra Kernel Interpolation”, IEEE Midwesho-
sium on Circuits and Systems, Cincinnati (USA), August 2005.

e Student paper award for "A New Approach for Efficient Modeling aiinear
Passband Systems for Communication Applications”, from Research Institute
of Signal Processing Japan, International Workshop on Nonlineaui@rand
Signal Processing, Honolulu (USA), March 2005.

Furthermore, the author contributed to publications which are outside tipe sifathis
thesis, which are

e Peter Singerl and Christian Vogel, An Analysis of a Low Complexity RecE8ignal
Strength Indicator for Wireless Applications, Austrochip 2004, Proogsdof the
Austrochip 2004, Villach (Austria), October 2004, pp. 57-60.

e Peter Singerl and Christian Vogel, A Fast and Accurate Automatic Gain @datr
a Wireless Local Area Network Receiver, Global Mobile Congress QG2005),
Chongging (China), October 2005, pp. 379-382.

e Wolfgang Horn and Peter Singerl, Thermally Optimized Demagnetization otindu
tive Loads, European Solid-State Circuits Conference, Leuven (Bejgbeptember
2004, pp. 21-23.
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Chapter 2

Baseband Modeling of Nonlinear
Passband Systems

This chapter deals with the problem of modeling nonlinear passband sysydhesineans
of quasi-memoryless models and \olterra series based models in the congeéabd do-
main. The resulting baseband models can be employed, e.g., in system-levalisimsy
to predict the generated distortion (intermodulation and spectral regrowitimout con-
sidering a frequency up-conversion unit which shifts the basebandlgigthe RF carrier
frequency. Since with these baseband models, we only relate the complgxaimp out-
put envelopes, the computational complexity to calculate the output signad abttlinear
model can be significantly reduced.

In Sec. 2.1 we introduce complex nonlinear baseband modeling and rexisting lit-
erature. In Sec. 2.2 we transform a static nonlinear system which is cechmdgwo
polynomial functions acting on two orthogonal carriers and a linear pastfilter to the
baseband domain. Depending on whether the resulting parameterslanea@aplex, we
either obtain a so called memoryless or a quasi-memoryless nonlinear modet. . Fe
we replace the passband nonlinearity from Sec. 2.2 by a real Volteies.s€he resulting
complex baseband Volterra series model is able to represent memorng efféch are of
fundamental importance for wideband applications. In Sec. 2.4 we cotisaleelationship
between a quasi-memoryless baseband model and a complex Volterrarsateds We ex-
tend the concept of the AM/AM and AM/PM-conversion for the case of kevia model
in Sec. 2.5, and use the frequency-dependent AM/AM and AM/PM sesfto identify the
complex linear filters of a memory-polynomial model.

2.1 Introduction

Nonlinear baseband behavior models relate the complex input and oweldes directly
in the complex baseband domain [8, 7, 10]. In general, these basebatalsngan be
applied to narrow and wideband applications as long as the carrier fregjisemuch larger
than the bandwidth of the complex-modulated passband input signal. If thesigmal
is narrowband, real nonlinear passband system behaves staticaltyy mbkans that the
complex output envelope of the passband system depends purely anréet cnagnitude
of the complex input envelope.

Such a nonlinear passband system can be modeled by two static nonlinetorfs
which act on two orthogonal carriers to affect both, the magnitude anghhse of the
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Time domain Frequency domain

Passband
Volterra model
+ 1st zonal filter

Passband

Baseband

Baseband :> Baseband
Volterra model Volterra model

Figure 2.1: The cascade of a nonlinear passband system and a lineacéiitdre trans-
formed to an equivalent baseband model, which relates timplex input and output en-
velopes of the nonlinear passband system. The frequenogidorepresentation of the
complex baseband model is used to derive a narrowband model.

output signal (cf. Fig. 2.3). This nonlinear passband model is well knamd discussed
in several publications [8, 7, 51, 32, 15, 16]. It is remarkable that agghahis kind of
a nonlinear passband model incorporates memory which is introduced by extHifdns-
former to shift the carrier phase by 9Qthe equivalent baseband model does not do so
(cf. Fig. 2.7). From a system point of view, the baseband model resudtpirely static
nonlinear model. For this reason the complex baseband model is callechogmmsiryless.
If we do not introduce a Hilbert transformer in the real passband modakrgaot able to
change the phase of the output signal. In this case the parameters aiitredesg baseband
model become real. Such a nonlinear baseband model is called memontessontept
of a quasi-memoryless nonlinear model is very popular in the RF literaturda.giod-
eling RF power amplifiers [8, 32, 15, 16, 53, 31], because this modele@hdracterized
through two static nonlinear functions called AM/AM-conversion (amplitudemplaude
conversion) and AM/PM-conversion (amplitude to phase conversi@a1i3 16, 36].

The so far considered quasi-memoryless baseband model is only suff@iearrow-
band applications, because only in this case, the frequency-domainrgdeznels can be
approximated by complex constants (will be considered in more detail in SBc.lRwe
employ modern modulation schemes such as OFDM (orthogonal frequemsipil multi-
plexing) or WCDMA (wideband code division multiple access) [32, 27],ittealeling of a
real passband system such as an RF power amplifier (PA) with a quasirghesssystem
generally leads to poor modeling results [36, 75]. The reason for the racgleling error
can be found in the frequency dependency of the nonlinear passistaiin which can be
physically explained by the electrical and thermo-electrical memory effé@t6p, 11].

These nonlinear memory effects generate additional spectral compavigiots are in
general not symmetric around the carrier frequency [11]. Unfotaiypave can not ex-
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Figure 2.2: AM/AM- and AM/PM-conversion of &.2-GHz, 90-W Class AB RF power
amplifier, excited with a single-tone with a frequency2of3 GHz and a swept power of
—10 dBm up to42 dBm. Both curves are evaluated for the fundamental outpuiasiat
2.13 GHz.

plain these spectral asymmetries neither with a memoryless nor with a quasi-nessory
baseband model as shown in [74].

To overcome this problem we employ a more general real passband &ottedel, and
transform this model to the baseband domain. This process is depicted irlLFigtiere
P denotes the transform of a cascade of a real passband Volterra amadal st-zonal [8,
10] filter, which only passes the frequency components centereddatbermmngular carrier
frequencyw,, to an equivalent baseband model. This procedure has been fipstspieb
in [7] for modeling a nonlinear satellite link. For developing a narrowband ehode
need a frequency-domain representation of the complex basebanda/afiedel, which is
obtained by applying the Fourier transforfto the output signal of the complex baseband
Volterra model (see Fig, 2.1).

A general treatise on real Volterra series in the continuous and digeretelomain can
be found in [56, 52, 40].

2.2 Memoryless and Quasi-Memoryless Baseband
Modeling

If we excite a nonlinear passband system, e.g., an RF PA, with a singlextohe=
a cojw.t + ¢p), wherea is the magnitudey.. is the angular carrier frequency (in the future
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simply called carrier frequency) ang is the phase, the output signal is composed of har-
monics at the multiples of the carrier frequentyw, for k = 0,1, ..., L, whereL denotes

the highest polynomial order of the nonlinearity in the real passbandwsy#Hteve vary the
input signal magnitude, both the amplitude and the phase of the fundamental output signal
at +w,. vary with the input signal magnitudein a nonlinear way. These nonlinear func-
tions are called AM/AM-conversion (amplitude modulation to amplitude modulatioth) an
AM/PM-conversion (amplitude modulation to phase modulation) [8, 32, 1553631].
Figure 2.2 shows the AM/AM-conversion and AM/PM-conversion f&.22GHz, 90-W,
Class AB RF PA excited with 8.13-GHz single tone. The curves are generated with a
physical RF simulator (Microwave Offic®) in harmonic balance mode [37].

Figure 2.3 depicts a real passband model whose input-output behawitieccharacter-
ized by an AM/AM and AM/PM conversion as depicted in Fig. 2.2. In order taehthe
amplitude dependent phase behavior, we employ two different polynomictidns acting
on two orthogonal carriers [7, 8, 32, 15, 16, 53, 31]. The resultistpded signals are
filtered with alst-zonal filter (passband filter centereddat.) to pass only the spectral
components of interest near the carrier frequeney [8, 10]. Therefore the real nonlinear
passband system can be modeled by a tandem connection of a nonlistean sgscribed
by the operatoG and a dynamic linear system decribed by the operatas illustrated
in Fig. 2.3. The real passband signdt) = a(t) cos(w.t + ¢o(t)) is fed to the nonlinear
system described by the nonlinear system opefattr obtain the output signal

u(t)=Glz(t)]
2
n=1
where
L L
ui(t) = bia'(t), ua(t) = awi(t), (2.2)
=1 =1

are the output signals of the static nonlinearities in Fig. 2.3. The siggl = H {z(t)} =
a(t) sin(w.t + ¢o(t)) (cf. Appendix A) denotes the Hilbert transform [45, 46, 29] of the
complex modulated passband input signél). The output signal(¢) of the nonlinear
operatolG is filtered by a lineat st-zonal filter described by the linear operdoto obtain
the overall output signal of the nonlinear passband systems in Fig. 2Bguwi4 by

y(tH)=(FoG)[z(t)]
=H[z(t)]
2

=> Flua(t)], (2.3)

n=1

which incorporates only the spectral components located around ther deggquency,.
H = F o G describes the cascade of the nonlinear passband system (e.g. RRdPRAka
1st-zonal filter in Fig. 2.4 in an operator notation. To describe the input-biiglavior

14



y(t)
_>

Figure 2.3: Nonlinear passband model which can be characterized by M@&KX- and
the AM/PM-conversion. The Hilbert transform&t shifts the carrier of the input signal at
90° to affect the phase of the output signal. The output sigii8l is fed to alst-zonal
filter F[u] (bandpass filter) to pass only the spectral componentsesitnear the carrier
frequency.

EION BEFeTS I CION B T FION

z(t) Hiz] y(t)

Figure 2.4: Cascade of the nonlinear passbhand systeand a linear st-zonal filterF to
pass only the spectral components of interest around thieciequencytw.. H = FoG
denotes the cascade of the nonlinear system and the lirteairfibperator notation.

of the passband model in Fig. 2.3 and Fig. 2.4 in the baseband domain, vite tbe real
passband input signals

z(t) = Re {Z(t)exp(jw.t)}
= 5 (Fexpliuet) + & (exp(~juet)) (2.4)

and

xs(t)=Im {Z(t)exp(jw.t)}

:Qlj (i’(t)exp(jwct) — F (Dexp(— jwct)) (2.5)

in an exponential form, wher@(t) = a(t)exp(j¢o(t)) describes the complex baseband
input signal. Therefore the output signal(t) of the static nonlinear system in Fig. 2.3 is
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given with (2.2) and (2.4) by [8, 72]

L

(=3 %(i‘(t)exp( jioet) + 2 (Dexp(—jart) )

l

=Y > (1) O 01 xpld - 20)
=1 k=0
L

:Z ull(t)ﬂ (26)
=1

where
l
w03 3 (1) EOI* 3 (0] explit(t - 20). @)
k=0

The output signaky(t) of the static nonlinear system in Fig. 2.3 is given with (2.2) and
(2.5) by

L
ug(t):z a (i‘(t)exp(jwct)—i*(t)exp(—ij))l

L c l I
=Y a0 Y (1) GV BN OF expliset - 26)

L
= ug,(t), (2.8)

where

u2, (t):

I
C
(72)! 2

k=0

() OB E O ettt - 20, @9)

Figure 2.5 depicts the different contributions from (2.7) and (2.9) in thguency-domain
for L = 3 qualitatively, wherd/;, (w) = F{u,(t)} andUs, (w) = F{ug,(t)} denotes the
Fourier transforms [45, 46, 48] of the corresponding time-domain signals) andus, (¢)
in (2.7) and (2.9).

Because of the bandpass behavior of the input sign@lsandz(t), each even order
nonlinearityl € N, in (2.6) and (2.8) generates spectral components around the even mul-
tiples of the carrier frequena@k w. for k = 0,1,...,1/2, and each odd order nonlinearity
I € N, generates spectral components around the odd multiples of the carqgeerficy
(2k + D wefork=0,1,...,(1—1)/2.

The shapes of the spectra in Fig. 2.5 illustrate the fact that the producte airte-
domain signals in (2.6) and (2.8) result in a convolution [45, 46, 48] of dteesponding
frequency-domain signals. df. > B(2L — 1), where2B is the bandwidth of the bandpass
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Figure 2.5: Output signal spectra of the quasi-memoryless system in2=8g with con-
tributions from the different orders of the nonlinearity topl. = 3.

signalz(t), the individual spectra caused by the different orders of the padsimmlinearity
remain separate (cf. Fig. 2.5). Therefore, the ideal frequency-aoiiltaring process in
Fig. 2.5 is accomplished in the time domain by equating the fundamental carrsarEra
the carrier phasor in (2.6) and (2.8), which is expressed by

exp(jwet(l — 2k))=exp(Ljw.t) . (2.10)

The equation in (2.10) can only be satisfied foe N, andk = (I + 1)/2. Therefore,
only the odd orderés = 2k + 1 of the passband nonlinearity contribute to the spectral
components around the fundamental carrigs.. The filtered output signal of the first
nonlinearityF|u4 (t)] is given with (2.6) and (2.10) by
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in the following compact form

Flun= " o {(

) 30 & (¢) exp(—jwed)
1=1, €N,

N
1\3‘4— ~
N

+ (1) 1) a0 exptnn |

L
Re{ 3 Qf’ll<l+ll> f(t)“f(t)exp(jwct)}. 2.12)

I=1,1eN,

If we apply the linear filteF to the output signal(¢) in (2.8) we obtain

L
= > | (zé) (1) () 3 (1) expl(—joet)

7
I=1,1€N, 72)

+ (1) 0T a0 a0 exptinn)

L Cl l ~ 1—1 ~ .
Im{ Z =1 (l+21) |z(t)|" " Z(t) eXp(]th)}. (2.13)

l:1, leNo

To calculate the output signal of the nonlinear passband sygten= Flu; (t)] + Fluza(t)],
we express the signal in (2.13) in terms of its real part With{z(¢) exp(jw.t)} =

Re {—ji(t) exp(jwct)} by

- - . a l ~ -1 ~ .
Flug(t)]=Re{ Y Jar | Z2()" E(t) exp(jwet) b . (2.14)

1=1,leN,

With (2.12) and (2.14), the real passband output signal is obtained withattadble substi-
tution! = 2k + 1 and the complex parametets, 1 = baxr1 — jcor+1 DY

y(t)=Hlx(t)]

(L2171 % +1
=Re{ > ;’;;1 (kH)\@(t)\%(t)exp(jwct) . (2.15)

k=0

Except for the carrier phasor, the expression within the braces &)(&fresents the base-
band output signa}(¢) of the real nonlinear passband system in Fig. 2.3 and Fig. 2.4, which
is expressed by [8, 51]
g(t)=H[z()]
L/2]—-1
_( /2] d2k+1 2k + 1\ . 2% ~
= > S (o ) EOP ED)
k=0
[L/2]-1
= Y dopg [E()*FE(D), (2.16)
k=0
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Figure 2.6: Equivalence between the nonlinear passband system whadmiposed of
the nonlinear operatdd and a frequency up- and down-conversion unit and the complex
baseband systeh.

wheredyy,.; = %2551 <2,f ++11
linear complex baseband operator of the real nonlinear passbanatmpér The com-
plex baseband system is memoryless because only a static nonlinear fluapgtiears in
(2.16), although the passband system in Fig. 2.3 itself contains memory whiof is
plicitly introduced by the Hilbert transformer in Fig. 2.3. Therefore, we alerthis
model as quasi-memoryless as long as the paraméigrs in (2.16) are complex val-
ued. If these parameters are real valued, we are not able to changhabke of the
baseband output signgl¢). In this case we denote the baseband model in (2.16) as
memoryless. Fig. 2.6 depicts the block diagrams of a nonlinear passbaeth$ysem-
bedded between a frequency up-conversion unit, a circuit to gertbm@nalytic signal
y(t)exp(jwet) = Re{y(t)exp(jwet)} + jlm{y(t)exp(jw.t)} and a frequency down-
conversion unit and the equivalent complex baseband sydt{88] (cf. Appendix A). An
alternative derivation with additional insights is given in the Appendix C.

>. The operatoH in (2.16) describes the equivalent non-

2.2.1 AM/AM- and AM/PM-Conversion

To see that the quasi-memoryless model in (2.16) can be fully represantiee AM/AM-
conversion and AM/PM-conversion (cf. Fig. 2.2), we expand (2.1&hw(t) =
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a(t) exp(joo(t)), which results in

g(t)=H[z(t)]
fL/21 1
=exp(jo(t) Z dap1 ()
=[v(a(t))] exp( (¢0( ) +arg {v(a(t))})), (2.17)
where the complex function
[L/2]-1
a(t))= Y dapsrfa(t)?FH! (2.18)

depends purely on the magnitudef the complex input signat(¢). The function|v(a)]
in (2.17) describes the AM/AM-conversion and the functiop {v(a)} in (2.17) describes
the AM/PM-conversion. These nonlinear functions are calculated by

1

[L/2]-1[L/2]-1
> Z doj, 41y a2 EHED | (2.19)
k=0 =0

and
[L/2]-1

S Im {az%ﬂ} a2k+1
k=0
[L/2]-1

kgo Re {d2k+1} a2k+1

arg {v(a)}=arctan (2.20)

respectively. Figure 2.7 depicts the quasi-memoryless complex basebaetHnehich is
equivalent, {(t) = Re{j(t)e’*'}) to the real nonlinear passband system in Fig. 2.3.

2.2.2 Frequency-Domain Representation

To express the output signal of the quasi-memoryless sygtenn (2.16) in the frequency
domain, we apply the Fourier transform denotedto (2.16), which yields

Y (w)=F {§(t)}
[L/2]-1 -

= kz éif;lkX’(w)*...*X(w)*X*(—w)*...*X’*(—w), (2.21)
=0

(k+1)x kx

whereX (w) = F {#(t)}, and* denotes the convolution operator.

If we consider stationary stochastic signals, we cannot calculate théeFtansform
because of their infinite energy. In this case, the spectral characteadbtite output signal
y(t) is obtained by computing the Fourier transform of the auto-covarian@tidmof (t)
in terms of its power spectrum density [47, 49, 44]. In [74], a closeahfexpression for the
guasi-memoryless system in (2.16) is given for a stationary complex Gaudistabuted
input signal.
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Figure 2.7. Baseband model of a quasi-memoryless system, which is cesdpof
two static nonlinear functions described by the AM/AM-cersion|v(a)| and AM/PM-
conversion argu(a)}. Although the baseband model is memoryless, the modellisdcal
quasi-memoryless because the corresponding passbantiméide 2.3 contains memory
(Hilbert transformer).

2.2.3 Two-Tone Response of a Quasi-Memoryless System

If we apply a two-tone signat(t) = a/2cos[(we + wm)t] + a/2cos[(we — wm)t] =
Re{a cos(wmt) exp(jw.t)} to a nonlinear passband system, whefge denotes the mod-
ulation frequency, we obtain a discrete output spectrum at the odd multipliee modu-
lation frequencyt nw,,,n € N, centered around.. Such a power spectrum is shown in
Fig. 2.8 for a modulation frequency ®6 MHz at the output of a simulated RF PA. We no-
tice that the spectral components around the center frequency angmoesric regarding
their output power. For the particular simulation example af2aGHz, 90-W RF PA we
obtain a power difference af dB if we consider thedrd-order intermodulation frequency
atw, + 3wy,. If we reduce the modulation frequeney,/(27) from 10 MHz to 1 MHz,
the RF PA output power spectrum is almost symmetric around the centeefregu. (cf.
Fig. 2.9). This bandwidth dependent effect is caused by the electridaharmo-electrical
memory effects of the RF PA, which are considered in detail in [70, 69, Thése mem-
ory effects make the complex baseband modeling of the nonlinear passistah difficult
if we consider wideband applications with modern modulation formats such B8
WCDMA [27].

To further analyze this effect, we calculate the output signal of the gquesioryless
system in Fig.2.3 for the mentioned two-tone signal which is described in theleomp
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baseband domain by(¢) = a cos(w,,t). The output signal is given with (2.16) by

[L/2]-1 2U%t1
. 5 a\ 2k+1 2k +1 _
y(t)= Z dok+1 <§> Z ( I ) exp(j (20 — 2k — 1) wi,t)
k=0 1=0
[L/21-1 .
4 2k+1 :
= 3 dop (%) { < z ) exp(j (2 — 2k — 1) wint)
k=0 1=0
2k +1 .
+ (—l 4ok + 1) exp(—j (21 — 2k — 1)wmt)} :

(2.22)

. , - . k+1 2k +1
Because of the binomial coefficient in (2.2€)2 ) > = (—l YA 1), the mag-
nitude and the phase of the output signal spectrum of the quasi-memobgssband
model must be symmetric because every pair of the phasor&tgxp,,,t), for n =
+1,43,...,+(2k 4+ 1) is weighted with the same complex constants. The output signal
g(t) in (2.22) can be simplified with real trigonometric functions to

[L/2]-1 k
3 . ay 2k+1 2% + 1
y(t)= E 2dag+1 (5) E < ] > cos [(2k — 20 + Vwpt] . (2.23)
k=0 =0

From the derivation above, we notice that we cannot model an asymmaetrér ppectrum
as depicted in Fig. 2.8 with the memoryless or the quasi-memoryless model in Fig. 2.3

2.3 Complex Baseband Modeling with Volterra Series

To overcome the problem of generating an asymmetric power spectrum @ittng of a
guasi-memoryless model (if the magnitude of the input signal spectrum is syitnastr
shown in Fig. 2.8, we have to introduce some memory into the complex basebaledl mo
\olterra series are a powerful mathematical tool to describe weak nonbgstems with
memory effects. For a thorough introduction to Volterra series and thesicésnput-
output relation the reader is referred to [56, 52, 40].

2.3.1 Time-Domain Representation

We replace the nonlinear passband oper&taf Fig.2.3, which is composed of two poly-
nomial series and a Hilbert transformer, by a more general opeBatehose functional
description is given by the Volterra series

L
u(t) = Gla(t)] =Y w(t)
=1

(oo} oo l
w®)= [+ [ hrie ) [Late = ) (2.24)
0 0 =1
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Figure 2.8: RF power amplifier output signal power spectrum for a tweetexcitation
with w. = 27 x 2.14 GHz andAw = wy — w1 = 2w,, = 27 x 20 MHz. The spectrum
around the carrier frequency is highly asymmetric whicteissed by the inherent memory
of the RF power amplifier.
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Figure 2.9: RF power amplifier output signal power spectrum for a tweetexcitation
with w, = 27 x 2.14 GHz andAw = wy — w; = 2w, = 27 x 2 MHz. The spectrum
around the carrier frequency is almost symmetric becawsmbierent memory of the RF
power amplifier does not affect the signal due to the smaijfemcy difference of the two
excitation components.
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whereh; is thelth-order time-domain Volterra kernel addis the highest order of the real
passband nonlinearity. The output signal is filtered by a linstizonal filter described

by the linear operatdf to suppress the unwanted spectral components located around the
multiples of the carrier frequencyw,. [8, 10]. Therefore the output signal of the linear
passband filter in Fig. 2.4

=H[z(t)] =) Fluf(t)) (2.25)

incorporates only the spectral components of interest which are locateddathe carrier
frequencytw,.. To express thé&h-order term of the output signal of the passband Volterra
systemu;(t) in (2.24), the product in (2.24) is expressed with the time delayed version of
the passband input signals in (2.4) in a mathematical closed form by

l

2 2 1 I
[l 3 53 (i) w00

=1 k=1 k=1 i=1
I
X exp (jwctz (—1)"”“) , (2.26)

where the signals; () = z(t) andxs(t) = z*(¢) in (2.26) are introduced for a convenient
representation. Thé&h-order output signal of the passband Volterra system in (2.24) is
expressed with (2.26) by

1 2 2 X o (l )
— hi(1,...,m) T, (t — i)
REPIE Y B LA &

k1=1 k=1

l
XGXp(ij (—1)ki Tz’) dTl---dTl
=1
l

X exp (jwth(—l)’“*l) , (2.27)

i=1

where the product in (2.27) is composed of the permutations of the baksigaalx, (¢) =
Z(t) and its conjugate,(t) = z*(t), respectively.

The overall output signa)(t) in Fig. 2.4 is calculated with (2.25) by applying the linear
operatorF to the [th-order output signals of the passband Volterra system in (2.27) for
l=1,...,L.

Each of the2! [-fold convolution integrals in (2.27) which contributes to th-
order output signaky(¢) is multiplied by a phasor which corresponds to integer mul-
tiples of the carrier frequency. Therefore, the spectra of the cotiwnlintegrals are
shifted in the frequency-domain to the corresponding multiples of the cdreguency
We Zl 1 (—1 1)**1 " If the order of the nonlinearity € N,, the spectra can only be located
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Figure 2.10: Frequency-domain output signal spectra of a \Volterra sariedel, with
contributions from the different orders of the nonlineatip to L = 3.

around the odd multiples of the carrier frequency updo If the order of the nonlinearity
I € Ng, the spectra can only be located around the even multiples of the carriefwp to

The bandwidths of the individual contributions to (2.27) aietimes the bandwidttB
of the complex baseband sigridl). If the carrier frequency satisfies > B(2L — 1) the
spectra of the individual contributions from (2.27) remain separateKgf.2.10). There-
fore the output signal passed by the linéat-zonal filterF in Fig. 2.4 can be calculated
from (2.27) if the carrier phasor in (2.27) is constraint to be

I
exp (jwth(—l)kﬁl) = exp(£jw.t). (2.28)
i=1

This equality can only be satisfied for the odd orders of the nonlindagti¥,. Therefore,
solely the odd orders of the nonlinearity contribute to the filtered output Isagmdered
around the carrier frequenceyw,. (c.f. Fig. 2.10). For the even orders of the nonlinearity
I € N, the filtered output signal[v;(t)] = 0. From the2' contributions in (2.27) only

l ,
2 <(l _ 1)/2> terms fulfill (2.28).

Without any loss of generality, the passband Volterra kerhgis (2.27) are assumed
to be symmetric [56, 40, 52] and, therefore, the permutations of the prod(2.27) are

identical for<<l _ll)/2>

terms. The same is obtained for the second group of terms which
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are the conjugate of the first one. Therefore the filtered output siggalea by

Flu] = 5 (o 'y ) (G0 + 510

_ 2Re{2ll ((z _ll)/2> fl(t)}, (2.29)

where the functiory; in (2.29) is expressed withe N, by

0o oo (1+1)/2 !
fl(t) / /hl T1,...,Tl)eXp (]wc ( Z T — Z Tl))
o0 i=(1+3)/2
(1+1)/2 !
X x1(t — 75) H xo(t — ;) dry - - drexp(jwet). (2.30)
i=1 i=(1+3)/2

The final output signal passed by the lingat-zonal filterF in Fig. 2.4 is given with (2.25)
by

[L/2]-1
y(t) = > Fluges(t)]
k=0
[L/2]-1 ¢ e k+ 2k+1
= Re Z /"'/h2k+1(7'17~-77'2k+1)H t—TZ H z* t—TZ
k=0 7§ 0 i=k+2
X dry -+ dTop 1 €XP(jwe 75)}7 (2.31)

where the variable substitutidn= (I — 1) /2 is introduced for a more convenient represen-
tation of (2.31). The baseband-equivalent Volterra kernels in (2:&1defined with (2.30)

by

- 1 (2k+1
hokt1(th, ... togt1) = 2%( I >h2k+1(t17-~,t2k+1)

k+1 2k+1
xexp( jwe (Zt - >t )) (2.32)

i=k+2

The term baseband-equivalent means that the frequency-domaéseagation of the ker-
nels in (2.32) contains some frequency components around the zeverfigg(baseband)
and—2w,. The latter one do not contribute to the output sigi@) in (2.31), because the
frequency-domain representations of the baseband sigf@lsindz*(t) are zero around
—2we.

Except for the carrier phasor ejp. t), the signal within the braces of (2.31) repre-
sents the nonlinear passband output sigria) in the baseband domain becauge) =
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Figure 2.11: Complex baseband time-domain output signals #R2aGHz, 90-W, Class-
AB, RF PA, a quasi-memoryless PA model and a Volterra PA ma@gland (c) real and
imaginary parts of the output signals of the PA and the Vidterodel, (b) and (d) real and
imaginary parts of the output signals of the quasi-memas/RA model, (e) error signal
for the quasi-memoryless PA model, (f) error signal for tlodt&fra PA model.

Re{y(t) exp(jw.t)}. Therefore the complex baseband Volterra series [7]

g(t) = I:|[§: t)]
/ /h2k+1 Tl Tokt1)
k=079 0
k+1 2%k+1
X i‘(t—Ti) H j*(t—Ti)dTl"-dTgk+1. (233)
i=1 i=k+2

relates the baseband input and output signals without considering theefrey up- and
frequency down-conversion units in Fig. 2.6.
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Figure 2.12: Power spectrum of &.2-GHz, 90-W, Class-AB, RF PA and &th-order
Volterra PA model withi3 parameters for a four-carrier WCDMA input signal with=
20 MHz. (a) RF PA, (b) Volterra PA model.
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Figure 2.13: Power spectrum of 2.2-GHz, 90-W, Class-AB, RF PA and a quasi-
memoryless PA model for a four-carrier WCDMA input signaltwi3 = 20 MHz. (a)
RF PA, (b) quasi-memoryless PA model.
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Figure 2.14: Phase response of 22-GHz, 90-W, Class-AB, RF PA and ath-order
Volterra PA model withd3 parameters within the input signal bandwidth-bf0 MHz
for a four-carrier WCDMA input signal wittB = 20 MHz. (a) RF PA, (b) Volterra PA
model (no visible difference between the two graphs).
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Figure 2.15: Phase response of 22-GHz, 90-W, Class-AB, RF PA and a quasi-
memoryless PA model within the input signal bandwidthiafo MHz for a four-carrier
WCDMA input signal withB = 20 MHz. (a) RF PA, (b) quasi-memoryless PA model.

29



Figure 2.11 depicts the real and the imaginary parts of the complex basé@bead
domain output signals from22-GHz, 90-W, Class-AB, RF PA (The RF PA output signal
is down-converted as shown in Fig. 2.6), a quasi-memoryless PA modeal dolterra PA
model. The RF PA and the two PA models are excited with a four carrier WCDilgi#ak
with a bandwidth of approximately0 MHz. We see that the output signals of the quasi-
memoryless PA model (curve (b) and (d)), which is implemented as in Fig. 2.7théth
AM/AM and AM/PM-conversion depicted in Fig. 2.2, are quite differeninfrthe RF PA
baseband output signals. This is because the quasi-memoryless PA mondehlde to
model the long-term memory effects of the RF PA. If we reduce the bandwidtie input
signal to zero, the output signals of the RF PA and the quasi-memoryless & are ex-
actly the same, because the AM/AM and AM/PM-conversion in Fig. 2.2 is medsuth
a single RF tone (bandwidth is zero). The resulting magnitude of the comptediffer-
ence between the RF PA output signal and quasi-memoryless output ssgstedyvn in the
lower plot of Fig. 2.11 in curve (e). The mean valuei8 V. This error can be consider-
ably reduced if we model the RF PA with a complex baseband Volterra modaube this
model is able to consider the long-term memory effects. In the two upper plbtg.®2.11
(curve (a) and curve (b)), we do not see any difference betweeREhPA output signals
and the output signals of the Volterra PA model. For this reason, we shawageitude of
the complex error in the lower plot of Fig. 2.11 in curve (f), whicldis5 V. Therefore we
can improve the modeling error by approximatgdydB, if we employ &th-order Volterra
PA model with43 parameters instead of the quasi-memoryless PA model.

The power spectrum of the output signals of the RF PA and9theorder \olterra
PA model for a four-carrier WCDMA input signal witl8 = 20 M Hz are depicted in
Fig. 2.12. As expected from the error signal (curve (f)) in the lowet pfd-ig. 2.11, the
frequency-domain output signals are almost identical. On the other havnelcibmpare the
frequency-domain output signals of the RF PA and the quasi-memorylas®&él, the two
spectra are quite different as expected from the time-domain error in tlee ot (curve
(e)) of Fig. 2.11. The phase responses of the RF PA, the \olterra naodiethe quasi-
memoryless model are depicted in Fig. 2.14 and Fig. 2.15 within the input signdhlidth
of £10 MHz.

2.3.2 Frequency-Domain Representation

If we consider the frequency-domain representation of the complexbliadeVolterra
model in (2.33), we transform the one-dimensional nonlinear system)(®338 multi-
dimensional linear system [56, 40] and apply a multi-dimensional Fouriesfoem. For
this reason we span the one-dimensional time-domain signals

o0 o0

Yor41(1) :/"‘/B2k+1(7'17~-77'2k+1)
0 0
k+1 2k+1
x [[a¢t-7) [] & —m)dn - drgi (2.34)
=1 i=k+2
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in (2.33) in2k + 1 time-domain variablegy 1 (t) — Y(or+1)(t1, - - - tars1), Which yields

[e.o] o0

Yokg1) (t1s - - - takr1) :/"'/B2k+1(7'1a--'a7'2k:+1)
0 0
k+1 2k+1
X Hj(tl — Ti) H i‘*(ti — Ti) dTl . -dT2k+1. (235)

i=k+2
If we apply a(2k + 1)-dimensional Fourier transform to (2.35) we obtain tBé + 1)-
dimensional frequency-domain output signal as

Yiort1) (Wi, - - -y wagt1) / / Uk+1)(t1s - - tapy)
0

2%+1
X exp <—j Z Wz’tz‘) dty - - - dtopy1
i—1

) K+l 2k41
= Hypsr(wi, - waern) [[ X(wi) J[ X*(—wi), (2.36)
=1 i=k+2
where X (w) = F{z(t)} denotes the frequency-domain baseband input signal and

I{ngJrl(wl, - ,w2k+1) = f{ﬁ2k+1(t1 . ,t2k+1)} denotes the(2]€ + 1)-dimensional
frequency-domain Volterra kernel. The multi-dimensional time-domain signg(2.85)

can also be expressed through the corresponding multi-dimensionaéfregdomain sig-
nals in (2.36) by [56]

Uokgn) (T - - s tokgr) = 21<;+1 / / Y(2k+1 W1y e e Wk t1)

2k+1

x exp (] Z witi> dwl s dw2k+1. (237)
=1

If we undo the process of spanning the one-dimensional time-domain sigtea(8% + 1)

time-domain variables by(oy 1) (t1, - - -, tor+1) — Jor41(t), (2.37) can be rewritten as

Yok+1(t) 2k+1 / / Yiorsn) (@i, - -, wokt1)
x exp(j (wl + ot wakg1) ) dwy - dway . (2.38)

If we make a change of the variables + - - - + way41 In (2.38) by lettingw = w; + -+ - +
war+1 We can rewrite the time-domain output signal in (2.38) by [56]

1 o0 1 o0 OO~
Yok+1(t) = 27r/ |:(27r)2k/.../Y(2k+1)(wv1,vlvg,...,vgk)dvl...dvgk

— 00 —00

x exp(jwt) dw. (2.39)
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w, = —w, + w,

Figure 2.16: Frequency-domain convolution for2md-order Volterra system. The out-
put signal spectrum for and-order Volterra system is given by the integral exprassio
Yo (w f Y(2)(w — wa,ws)dws, which evaluates the two-dimensional output signal
Y(g)(wl,wg) anng the straight linesy, = —w; + wp within the arearR. If |w| > 2B, the
output signal spectrurlz(w) becomes zero, because the integration path (dotted lines)
does not cross the aréaanymore. Therefore, the output signal bandwidth becomiegtw
the input signal bandwidth.

The 2k-fold convolution integral within the braces of (2.39) represents theufreqy-
domain signal fok > 0 by

o0 [e.9]

Vo1 (w 27r e / /Y2k+l W — V1, V1 — V2, ..., V) dvy - - - dvgy.(2.40)

The final output spectrum of the complex baseband Volterra model in)(.8alculated
by the summation of the individual contributions from the different orde2 i40) which
results in

[L/2]—

Z Vo (@ (2.41)

From (2.40) and (2.41), we recognize that the frequency-domain bstgoal of the
Volterra system is broadened by the convolution operation in (2.40). Thieps is de-
picted in Fig. 2.16 for &nd-order system (in complex baseband systems we do not have
even orders, but this example demonstrates the convolution process inle siayp. The
bandwidth of the output signaf(w) is (2 [L/2] — 1)2B, where2B is the bandwidth of the
complex input signak (w).
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2.3.3 Two-Tone Response of a Complex Baseband Volterra mode |

If we apply a baseband two-tone signét) = a cos(w,,t) to the complex baseband Volterra
model described in (2.33) we obtain

[£/21-1 an 2k+1 ¥ e
y(t) = Z (5) /"'/h2k+1(7'17~--,7'2k:+1)
k=0 0 0
2k+1

X H (exp(jwm(t — 7;)) + exp(—jwm(t — 1)) dr1 - - - dropy1, (2.42)
1=1

where the product in (2.42) can be expressed in a closed mathematidlyor

2k+1

[T (exp(jwn(t — 7)) +exp(—jwn(t — 7)) =

- 2k+1
Z Z exp( > (-nmitly (t-@). (2.43)

n1=1 Nog+1=1 =1

The response of the complex baseband Volterra model in (2.42) canldugatad with
(2.43) which, after an interchange of the order of the integrals and sunmagiields

[£/21-1 2%+1 Zk+1
it =Y (3) DS exp( D (-1 e t)

k=0 ni=1 nak4+1= 1
2k+1
i+1
/ /h2k+1 Ty o5 Tokt1 EXIO< j Z N mei>
X dTl d72k+1. (244)

The(2k + 1)-dimensional integral expression in (2.44) represent$he- 1)-dimensional
frequency-domain baseband \Volterra kerfg)., ; evaluated on the modulation frequency
+wp,, which yields

o0 o0 2k+1
oo | hopgr (T T ex Vi o | dry - dr =
2%+1(T1, -+ -, Tok+1) EXP mTi 1 2k+1

0 0
Hopin ((—1)”1“%, N O D e i (2.45)

With the frequency-domain Volterra kernels in (2.45), we can expredsabeband output
signal in (2.44) by

[L/21-1 2k+1 2k+1
it =Y (5) Z Z exp( (- >”z+1wmt>

k=0 ny= 1 Nn2k4+1= 1 =1

X Hop1 ((—1)" M wp, ooy (=1)"2 g ) (2.46)
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If we compare the two-tone responses of the quasi-memoryless system2ah 4ad the
\olterra system in (2.46), we realize that the spectral components in (@rd6yeighted

by the frequency-domain Volterra kerndig; ., while the spectral components in (2.22)
are weighted by the complex constaﬁ§§+1. Because the magnitudes of the frequency-
domain kernels are in general not symmetric (Fourier transform of thelearime-domain
kernelshay 1), we are able to model the spectral asymmetries in Fig. 2.8 with a complex
baseband Volterra model in (2.33).

2.4 Relationship Between Complex Volterra Models and
Quasi-Memoryless Models

If the bandwidth of the input signak (w) in (2.36) becomes so small (ultra-narrowband
assumption) that the frequency-domain kerrféljml(wl, ...,wok+1) are approximately
constant over the input signal bandwidth, as we have shown in Fig. 2.@rfoRF
PA, we can replace the baseband frequency-domain kefﬁi@]$1(w1,...,w2k+l) —
H,+1(0,...,0). Therefore (2.36) can be rewritten by

_ ~ k+1 ~ 2k+1 _
Yoty (@i, - waps1) = Hop1 (0, 0) [[ X(wi) J] X*(-wi). (247
=1 i=k+2

If we apply the(2k + 1)-dimensional inverse Fourier transfotT ! to (2.47), we obtain
the (2k + 1)-dimensional time-domain output signal given by

o0 o0

. 1 -~

y(2k+l)(t17 o topr1) = (277)7%“ / e Y(2k+1)(wla ey W2kt 1)
0 0

2k+1
X exp <] Z witz’) dwy ... dwak+1

_ k+1 2k+1
= Hop1(0,...,0) [T #(t:) ] & (to)- (2.48)
=1 i=k+2

If we transform the multi-dimensional linear system in (2.48) back to a onerdiimeal
nonlinear system by letting , . . ., tox+1 — t we obtain

Joer1(t) = Haep1(0,...,0) [E()]** (). (2.49)

After a summation of the different order signals in (2.49) foe= 0,...,[L/2] — 1, we
obtain the quasi-memoryless system

[L/21-1
gty = > Hysr(0,...,0) |2 (1)[* &(1), (2.50)
k=0
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which is similar to the quasi-memoryless system in (2.16) which was derivattfre non-
linear passband model in Fig. 2.3. This narrowband model can also ibedler the time-
domain by replacing the delayed input baseband sigials- ;) — z(¢) in the complex
baseband Volterra system (2.33) [51]. To relate these two quasi-mes®Bylstems, we
calculate the baseband frequency-domain \olterra kerietsterms of the corresponding
passband frequency-domain Volterra kernels by applyingzhe- 1)-dimensional Fourier
transformF to (2.32), which yields

o o0

ﬁ2k+1(w1,---,w2k+1) :/"'/52k+1(t1,---,t2k+1)
0 0

2k+1
X exp (—] Z wltl) dtl .. dt2k+1
=1

1 2k +1
< k >H2k+1 (We + wi, ..+, we + Wiy,

= 2Tk;
—We + Wy -+, —We + Wk 1) -
(2.51)
Therefore the quasi-memoryless system in (2.50) is expressed with £8.51)

[L/2]-1
- 1 /2k+1
g(t) = Z 5ok < i ) Hopy1(wey -y Wey —Wey « oy —We)

k=0 (k+1)x kx
x |Z(t)|*F &(¢). (2.52)

After equating the output signals of the quasi-memoryless systems in (2d.63.8R2), we
can determine the odd paramet&sg, ; andcsy1 of the polynomial functions of the pass-
band model in Fig. 2.3 in terms of the corresponding frequency-domasibaad \olterra
kernelsH, which results in

bok+1 = Re{Hogr1(wey - -+, Wey —Wey e ooy, —we) } (2.53)
(k+1)x kx
and
Cok+1 = —Im{Hop11(wey .+« +yWey —Wey « ooy —we) (2.54)
(k+1)x kx

The even parametebs;, andcyy, in Fig. 2.3 can be chosen arbitrarily from the set of the real
numbersR, because the spectral components caused by the even-order nitidiseae
filtered out by thelst-zonal filter in Fig. 2.3 and do not contribute to the baseband output
signaly(t).
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2.5 Frequency-Dependent AM/AM-Conversion and
AM/PM-Conversion

In Sec. 2.2.1, we have considered the AM/AM-conversion and the AMéBMersion for a
guasi-memoryless nonlinear system. Both nonlinear functions were pegmdndent on the
input signal magnitude. In this section we extend the concept of the AM/AM-conversion
and the AM/PM-conversion for the case of a Volterra system.

2.5.1 Measurement Setup

If we pass the two-tone response of a Volterra model in (2.46) throughalex linear filter
(to observe the magnitude and the phase of the fundamental frequengy ahd sweep
both the magnitude and the angular frequency,, of the input signal (see Fig. 2.17), we
obtain

) . FETY ook f2k 4 1
i) = esplitent <) S (5) o)
X Hop 1 (Wi -« + > Wiy —Wrns + + + » —Win ), (2.55)
(k+1)x kx

where we have assumed, without losing generality, that the Volterra Ikerne

BQkH(n,...,TQkH) in (2.42) are symmetric [56, 52]. The two-tone response of the
complex Volterra model in (2.55) can be rewritten in the following form
g (t) = [v(a, wm)| exp(j(wmt + ¢ + arg{v(a, wn)})) (2.56)
where
[L/2]—1
a\2k+1 2k + 1Y\ ~
U(CL?wm) = Z (5) (k‘+ 1 > H2k+1(wm7"'7wm7_wm7"'7_wm)(2'57)
k=0 (k+1)x kx

describes a complex function which depends on both, the signal amplitidel the
modulation frequency,, of the input signal. The two-tone response of the complex
Volterra system in (2.56) is similar to the response of the quasi-memorylessTsys
(2.17). For this reason we defifig(a, w)| in (2.56) as the frequency-dependent AM/AM-
conversion ancirg{v(a,w)} in (2.56) as the frequency-dependent AM/PM-conversion.
It is important to note that the described concept of the frequencyndepe AM/AM-
conversion and of the AM/PM-conversion does not fully describe tHeeka system, be-
cause we only consider the frequency-domain \Volterra kernels alondidigenals and
not the full Volterra kernels. However, we are able to test a nonlinestesy, e.g., an
RF power amplifier whether memory is incorporated or not, which is importartirfo
earization issues [11, 33, 36]. The frequency-dependent AM/AN+ersion and AM/PM-
conversion can not only be considered for the fundamental fregueinthe output sig-
nal spectrum ab,,, it can also be derived for the harmonics of the input signal, e.g. the
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Figure 2.17: Setup for the measurement of the frequency-dependent AMéaMersion
and AM/PM-conversion of the RF PA. The input signal magrétudcand the modulation
frequencyw,, are varied, where the fundamental frequency@b. + w,,) is observed to
determine the frequency-dependent AM/AM- and AM/PM-casian.

third-order intermodulation distortion (IMD3) &tv,,,. Practical RF measurement meth-
ods and results for frequency-dependent IMD3 are reported e.d36inl11, 73]. In
Fig. 2.18, we show the power of the simulated frequency-dependent MM/@nversion
Pp = 101log(|v(a,w)|? /(2R x 1073)) of a2.2-GHz,90-W Class AB RF PA excited with a
passband two-tone signa(t) = a[cos((we +wm)t) + cos((we —wm, )t)], over the input sig-
nal power range of’; = 10log(a?/(2R x 1073)) = (—10...42) dBm, whereR = 50 {2
denotes the input impedance of the RF PA, and the modulation frequenaysréogn
wm/(2m) = (6...60) MHz. The corresponding frequency-dependent AM/PM-convarsio
is depicted in Fig.2.19. Figure 2.20 to Fig. 2.23 depict the two-dimensional pldteof
AM/AM-conversion and AM/PM-conversion in Fig. 2.18 and Fig. 2.19 , if wé them
along theP;-axes and the /(27)-axes respectively.

2.5.2 Constructing Memory-Polynomial Models from
Frequency-Dependent AM/AM and AM/PM Measurements

In this section we use the concept of the frequency-dependent AMIdiwtersion and the
AM/PM-conversion to construct a nonlinear model with memory. This modeh#et
on memory-polynomials [33, 18] and can be calculated from two-tone neyasuts. |f
we assume that the Volterra kernels of the complex baseband Volterra mo(#B3)
hoks1 (T1s -+ s Tope1) = 0, for 7 # 7 # --- # 79,41, We obtain the continuous-time

37



Figure 2.18: Frequency-dependent AM/AM-conversion oR&-GHz, 90-W Class AB
RF power amplifier excited with a two-tone signdt) = a[cos((we +wm )t) + cos((we —
wim)t)], with the angular carrier-frequency©f = 27 x2.17 GHz. P; = 10log(a?/(2R x

1073)) andPo = 10log(|v(a, wm)|? /(2R x 103)) denotes the input and output signal
power respectively, wherB = 50 2 is the input impedance of the RF PA.

memory-polynomial model with (2.33) as

[L/2]—-1

i= 3 / Gos1 (1) | (t — 1) 3(t — ) dr
k=0 0
[L/2]-1
= S Gt )+ E0) P () (2.58)
k=0

wheregoi11(7) = B%H(T, ...,T), describes the time-domain Volterra kernels along the
diagonals in a multi-dimensional space. Figure 2.24 illustrates a two-dimengieml
(although even order kernels do not exist in the baseband Voltemasegation, it simply
shows the concept of diagonal kerneﬁszln,m), and the cut along the diagonal =

and the corresponding diagonal kerpelr) = ho(7, 7). If we apply a baseband two-tone
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Figure2.19: Frequency-dependent AM/PM-conversion @f 2GHz,90-W Class AB RF
power amplifier excited with a two-tone signalt) = acos((we + wim)t) + cos((we —
wy, )t)], with the angular carrier-frequency©f = 27 x2.17 GHz. P; = 10log(a?/(2R x
10~?)) denotes the input signal power, wheke= 50 Q2 is the input impedance of the RF
PA.

signalz(t) = a cos(wm,t + ¢) to the memory-polynomial model in (2.58), we obtain

— oo
[£/21-1 an 2k+1

0= (5 [amn)|eptint - 1) +0)
k=0 0

:|2k—|—1

+exp(—j(wm(t —7) + ¢)) dr. (2.59)

If we evaluate th¢2k + 1)-th power of the expression within the brackets of (2.59), we can
rewrite (2.59) as

[L/2]-1 1

2%+
it = 3 <%>2k+1 3 <2k; 1) exp [j((zn — 2k — D)wmt + (2n — 2k — 1)¢)]
k=0 n=0
X /§2k+1(7) exp(—j(2n — 2k — V)wy,7) dr, (2.60)
0
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Figure 2.20: AM/AM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier
excited with a two-tone signal(t) = a[cos((we + wm )t) 4 cos((we — wr, )t)] for four dif-
ferent frequencies,,, (cuts through Fig. 2.18 along th&-axis), with the angular carrier-
frequency ofv, = 27 x 2.17 GHz.
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Figure 2.21: AM/AM-conversion of a2.2-GHz, 90-W Class AB RF power amplifier
excited with a two-tone signal(t) = a[cos((we + wm)t) + cos((we — wy,)t)] for four
different input signal power levels (cuts through Fig. 2al8ng thew,, /(27)-axis), with
the angular carrier-frequency of. = 27 x 2.17 GHz.
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Figure 2.22: AM/PM-conversion of &.2-GHz, 90-W Class AB RF power amplifier ex-
cited with a two-tone signal(t) = a[cos((we+wm, )t)+cos((w.—wy, )t)] for four different
frequencies (cuts throughrg{v(a, w,,)} in Fig. 2.19 along the>;-axis), with the angular

carrier-frequency ob, = 27 x 2.17 GHz.
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Figure 2.23: AM/PM-conversion of &.2-GHz, 90-W Class AB RF power amplifier ex-
cited with a two-tone signal(t) = a[cos((we+wn, )t)+cos((we—wn,)t)] for four different
input signal magnitudes (cuts througheg{v(a,w,,)} in Fig. 2.19 along the frequency-

axis), where the carrier-frequency = 27 x 2.17 GHz.
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Figure 2.24: Two-dimensional time-domain \olterra kernléi(ﬁ,rg), and the corre-
sponding diagonal kern@h(7) = ha(7, 7).

which yields for the fundamental angular frequencyat(n = k + 1)

[L/2]-1

a0 = eotint+o) 30 (5)7 (31]) Gnaton. 60
k=0

where Gopi1(wm) = F{gor+1(t)} denotes the Fourier transform of the diagonal time-
domain Volterra kernels in (2.58). The filtered two-tone response of timplex memory-
polynomial model in (2.61), can be rewritten in the following form

Ur(t) = |v(a,wm)| exp(j(wmt + ¢ + arg{v(a,wm)})) (2.62)
where
[L/2]-1
am) = 3 (& (z,fjf) Craprs (o) (2.63)

describes a complex function which depends on both the signal ampiitadé the modu-
lation frequency,,, of the input signal. Because the memory-polynomial model in (2.58) is
purely dependent on the. /2] complex linear filters (diagonal frequency-domain Volterra
kernels)é2k+1(wm) (see Fig.2.25), we can estimate them from the measured frequency-
dependent AM/AM-conversion and AM/PM-conversion in (2.63) fér/2] different input
signal magnitudes;, fori = 1,...,[L/2]. As in practical applications, these measure-
ments are noisy (imperfect measurements, model inaccuracies), we fterautéassical
linear least squares problem [26] to estimate the unknown linear filtars, (wm) in(2.63)

by

~

Glwm) = (ATA) AT (w,), (2.64)
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Figure 2.25: Complex baseband model built with memory-polynomials. Tiedel
is composed of a bank of known static nonlinearities and thienoawn linear filters
Gopi1(w) for k = 0,...,K where K = [L/2] — 1, which can be estimated from
frequency-dependent AM/AM and AM/PM-conversion meas\eets.

where

V(wm) = [0(a1, wm), 0(az,wn), . . - ,f)(aN,wm)]T, (2.65)

denotes anV x 1 vector (V > [L/2]), whose components are the measured (noisy) ver-

sions of the frequency-dependent AM/AM and AM/PM-conversioniestin (2.63), and
the[L/2] x 1 vector

G(Wm) = Iél (wWm), G3(Wm)a ces 7GQIL/21—1(Wm>IT (2.66)

describes the estimated linear filters in Fig. 2.25 for the modulation frequencyThe
N x [L/2] observation matriA in (2.64) is defined by

s e ()
A=1: : : : (2.67)
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To obtain the frequency-responses of the unknown linear fi@;&rl(w) over the
frequency-range of interest, we solve the least squares problen®#) (@r different mod-
ulation frequencies,,,. The calculated complex linear filte€s; (w) andGs(w) are shown
in Fig. 2.26 and Fig.2.27, where we have assumed the highest order obnlinearity
three. To evaluate the memory-polynomial model, we excit®.arGHz, 90-W, Class
AB RF power amplifier with a discrete multi-tone (DMT) signal with = 20 MHz and
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Figure 2.26: Frequency-response of the complex linear filfér(w) of the memory-

polynomial model in Fig.2.25. The filter is calculated with.§4) and the simulated
frequency-dependent AM/AM and AM/PM-surfaces depictedFig. 2.18 and Fig.2.19.
(a) Calculated values, (b) Cubic spline interpolated.

P;r = 27 dBm and compare the complex baseband output signal of the amplifier and the
3rd-order memory-polynomial model (see Fig. 2.28 and Fig. 2.29). The lngderror
(10log(|gpalt) — 4(t)[* / |7ra(t)|?)) for the linear memory-polynomial model (ondy; (w)

in Fig.2.25) is approximately-22 dB, where the modeling error of ttg¥d-order model

is approximately—29 dB. The modeling error can be further reduced by increasing the
polynomial order of the memory-polynomial model.

2.6 Conclusion

We have reviewed the concept of memoryless and quasi-memoryless aofdaseband
systems which are equivalent to the corresponding real nonlineabgrabsystems de-
scribed by two static nonlinearities and a linéat-zonal filter. We have shown that these
nonlinear models are not sufficient to describe a general nonlinesigras system such as
an RF PA under a wideband excitation. The reason for this is that the meffextisdelec-
trical and electro-thermal) of the nonlinear passband system geneeateaspsymmetries
which cannot be generated by the mentioned static nonlinear models.

Therefore we have replaced the static nhonlinear passband systemdiyalterra system
and transformed the cascade of this real Volterra system and a liseaonal filter to
the baseband domain. As the resulting complex baseband Volterra seriekcoothins
memory we are able to generate spectral asymmetries. We have shown thatoeyless
and quasi-memoryless models are special cases of the complex Voltersasedel, which
are obtained from the complex baseband Volterra model if the bandwidtte afoiimplex
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Figure 2.27: Frequency-response of the complex linear fil&r(w) of the memory-

polynomial model in Fig.2.25. The filter is calculated with.64) and the simulated
frequency-dependent AM/AM and AM/PM-surfaces depictedFig. 2.18 and Fig.2.19.
(a) Calculated values, (b) Cubic spline interpolated.
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Figure 2.28: (a) Real output signal magnitude oR&-GHz, 90-W, Class AB RF power
amplifier excited with a DMT signal wittlB = 20 MHz, P; = 27 dBm.(b) Real output
signal magnitude of &rd-order memory-polynomial model in Fig.2.25,(c) Realpuuit
signal magnitude of a linear memory-polynomial model in.Eig5 (the graphs for (a) and
(b) essentially coincide).
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Figure 2.29: (a) Imaginary output signal magnitude ok&-GHz, 90-W, Class AB RF
power amplifier excited with a DMT signal with = 20 MHz, P; = 27 dBm.(b) Real
output signal magnitude of 3rd-order memory-polynomial model in Fig.2.25,(c) Real
output signal magnitude of a linear memory-polynomial mad&ig.2.25 (the graphs for

(a) and (b) essentially coincide).

baseband input signal becomes so small that the frequency-domainr&denels are
constant over the input signal bandwidth (ultra-narrowband assumption

Furthermore, we have extended the concept of the AM/AM and AM/PMrsion in
order to reflect the dependence on the modulation frequency. Thiingsuequency-
dependent AM/AM and AM/PM surfaces can be employed to calculate theowrkcom-
plex linear filters in a memory-polynomial model (simplified Volterra model). This ne
characterization of nonlinear passband systems can be obtained frola siegsurements
and its one-to-one correspondence with the memory-polynomial systectusguOn the
other hand memory-polynomial systems can be fully characterized byeinegtdependent
AM/AM and AM/PM measurements and are often sufficiently accurate appeiions of
a full Volterra kernel model for RF PA’s.
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Chapter 3

Frequency-Domain Expansion of
Volterra Kernels

In Chap. 2 we have developed complex baseband Volterra series modefsi€band and
narrowband applications. A serious drawback of Volterra series madiss large number
of parameters which grows immensely with the order of the nonlinearity and threorge
depth if the Volterra model is implemented in the discrete-time domain. However in many
practical wideband applications, the frequency-domain Volterra kevagjsjuite smoothly
over the input signal bandwidth if the carrier frequency is much larger tt@input signal
bandwidth (e.g.w. ~ 100 x B in a four carrier UMTS). Therefore, it could be reasonable
to expand the multi-dimensional frequency-domain Volterra kernels ambxpgate them
with multi-dimensional orthogonal polynomials. This results in general in a coafple
PA baseband model with a lower number of parameters and a performaideisicompa-
rable to Volterra series models. In Sec. 3.1 we consider the requireddbegicto obtain a
time-domain complex baseband model with approximated frequency-domaimnr&des-
nels in the baseband and passband domains. In Sec. 3.2 we exparetjttenéy-domain
kernels of a complex baseband Volterra series model with multi-dimensiothaigonal
polynomials and build a complex baseband model which is composed of a béinkay
filters, conjugate operators and a multi-variate polynomial series, whoampters deter-
mine the particular RF PA baseband model. If the RF PA input sighal becoanesi
band, the complex baseband model reduces exactly to the narrowbanbasdikcussed

in Chap. 2, which can be described by the AM/AM and AM/PM conversinrgdc. 3.3, we
transform the complex baseband model with the approximated frequemnastiad \Volterra
kernels back to the passband domain, which gives us some useful irsightispassband
modeling without explicitlst-zonal filtering. In Sec. 3.4, we consider the discrete-time
implementation and parameter estimation for the developed complex basebaris. mode

3.1 Introduction

Figure 3.1 depicts the basic steps which are required to develop a Vdisea non-
linear model with approximated frequency-domain kernels in the baselahgassband
domains. The first operation, which is denoted By transforms the cascade of a real
passband Volterra model andi st-zonal filter (bandpass filter centered around the carrier
frequencyw, [10, 8]) to the baseband domain. The resulting complex baseband Volterra
model is equivalent to the corresponding model in the passband domaich wieans
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Figure3.1: Development of a baseband and a passband Volterra modedpytoximated
frequency-domain Volterra kernels. The symb&landF ! denote the Fourier transform
and its inverse. The symbaandP ! denote the transform from a passband model to a
baseband model and vice versa.

that the output signal of the complex baseband Volterra mgfteland the output sig-
nal of the cascade of the passband Volterra model antstheonal filtery(t) are related by
y(t) = Re{y(t) exp(jw.t)}. If we transform this complex baseband Volterra model to the
frequency domain by applying the Fourier transfafirto the time-domain output signal
of the complex baseband Volterra model, we obtain a useful relationship ailti-linear
frequency-domain output signal representations and the frequimgin Volterra kernels.
As a next step, we expand these kernels with multi-dimensional orthogolyalgmials and
approximate the frequency-domain Volterra kernels within the input sigaradwidth with

a moderate number of parameters (low approximation order). The resutimglex base-
band Volterra model with the approximated frequency-domain kernels ihageneral a
lower number of parameters but a performance comparable to the amdasg Volterra
model. In the final step of Fig. 3.1, we transform the baseband Volterr&lnath the
approximated kernels back to the passband domain by applying a badebaassband
transform denoted b —!. This transform leads to an interesting representation of non-
linear passband systems, where the passband output gigha generated without any
explicit 1st-zonal filtering.

3.2 Volterra Kernel Expansion with Orthogonal

Polynomials
If we consider Ehe(zk: + 1)-dimensional frequency-domain output signal of a complex
Volterra modelY{g;, 11y (w1, - - ., wary1) in (2.36), we notice that the frequency-domain
\olterra kernelsHyy, 1 (w1, . ..,war+1) are masked out by the band-limit¢dk + 1)-
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dimensional input signdl[} " X (w;) [T7%1 1, X*S—wi). Therefore we can expand and ap-
proximate the frequency-domain Volterra kernBlg; 1 (w1, . . . , wor41) OVer the input sig-

nal bandwidth oft- B with a multi-dimensional orthogonal polynomial series [56, 35, 54]

Maj11 Mog 41
Haerr(w1, - wakr1) = Z o Z Cma,...;mak 11
m1=0 Mmog41=0
X Ty (w1) -+ - Tingy oy (Wak1), (3.1)

with Ms,+1 + 1 members of a complete set of real orthogonal polynonmialdor 0 <
i < Myi4+1 and the complex valued parametefs . The orthogonality condition

M2k 41"
is expressed by
B
Ap fm=n
[ T Tl o= {3 " (3.2)
-B

where the real functiop(w) > 0 is a certain weight, which defines the particular set of

orthogonal polynomials. To calculate the optimum parametgfs.. ., , in (3.1), the
integral-square error
B B
E= /~--/p(w1)"'p(w2k:+1)"ﬁ2k+1(w17--~,w2k+1)
-B  -B
A 2
—Hopyq(wi, ... ’W%—&-l)‘ dwy ... dwagi1 (3.3)

is minimized with respect to the complex coefficierts, ... m,,,,. If the approxima-
tion order of the multi-dimensional polynomial series in (3M)x,1 — oo, the numer-
ical value in (3.3) tends to zero, if the set of orthogonal polynomials is campled the
multi-dimensional frequency-domain kernéiskﬂ(wl, ...,wok+1) are square-integrable
in sense (cf. Appendix B)

B B
~ 2
/ c /p(u)l) .. -p(wng) H2k+1(w1, - ,w2k+1) dwl, - ,dw2k+1 < Q. (34)
‘B B

With (3.1), (3.2) and (3.3), the optimum complex parameters for the multi-dimeadsion
polynomial series in (3.1) are calculated by (cf. Appendix B)

B B
1 -
Colmi,wmaksn) = 3 / S / p(wr) - plwart1) Hopgr(wi, - wokgr)
1 2k+1 - Iy
X Tm1 (wl) s Tm%_'_1 (w2k+1) dwl A dw2k+1. (35)
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If we insert the optimum complex parameters from (3.5) in (3.1) and evaluatiatigral
square error in (3.3) we obtain the minimum integral square error (cfeAgi B)

B B
Bnin = [ oo [ )+ pomsn)
-B -B

Mag 1 Map 1

- Z to Z /\m1 to )\m2k+1 ‘Co(ml,...,m2k+1) ‘2 . (36)

mi1=0 mag4+1=0

dwl ce dwzk“

~ 2
Hopy1(wr, - .. ,w2k+1)’

Because the minimum error and right-hand side expressions in (3.6) aonakgative, the
following kind of Bessel's inequality [35] holds

Mag41 Mog 1 B B
2
Z o Z Amy /\m2k+1 ‘co(m1,~~-,m2k+1)‘ < / o /p(wl) o p(waky)
m1=0 mak4+1=0 B -B
- 2
X ‘Hka-i—l(wb e ,ka+1)‘ dwy ... dwop1, (3.7)

which implies equality if the approximation ordéfs; 1 — oo.

The frequency-domain approximation with orthogonal polynomials is denaiadtin
Figure 3.2 for the linear kernel of a simplst-order low-pass filter which is described by
Hi(w) = 1/(1 + jw/w.), wherew, denotes thé-dB cut-off frequency. The upper plots
in Fig. 3.2 depict the real and the imaginary parts of the linear keiféb), and thelst-
and2nd-order approximation ponnomiaf%l(w) in (3.1) fork =0, My, = 1andM; = 2,
respectively. The lowest plot shows the optimum approximation ¢ﬁ@(w) — ﬁl(w)|2
for the 1st- and2nd-order approximation polynomials.

If we express the multi-dimensional frequency-domain signal in (2.36) wehnhlti-
dimensional polynomial series in (3.1H§,1 — FI%H), we are able to transform the
approximate signal

Mag 1 Mag 1
Y(2k+1)(wla cee aw2k’+1) = Z t Z le,-~~:m2k+lel (wl) T Tm2k+1 (w2k+1)
m1:0 m2k+1:0
k+1 2k+1
x [T X)) I X (=), (3.8)
i=1 i=k+2

into the time-domain by a multi-dimensional inverse Fourier transform

Gy (P, topgr) = F {}A/(Qk:-i-l)(wla e 7W2k:+1)} (3.9)
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which results in

Map 1 Map 1
Yokt (e, ..o topra) = Z Z Cma,..ymapir T 1{Tm1(w1)X(wl)}"'
m1=0 mMag4+1= =0

X F~ { st (Whe1) X(warl)}
7 { M2 (Wk+2) X*(—wk+2)} ..
7 { T (W2k+1) X*(_W%—H)} : (3.10)

If we now undo the process of spanning the time-domain functi@t is 1 dimensions in
(2.35), the final approximate baseband output signal of the @ider1 is given by

Yok+1(t) = Jors1) (&5 - - - 1)

Moy 1 Moy 1
= Z T Z cm17-~~7m2k+1u~}ml (t) o .wmk+1 (t)
m1=0 Mmog+1=0
Xamk+2 (t) T am2k+1 (t)v (311)

where the time-domain signais (¢) anda;(¢) in (3.11) are defined fdd < i < M1 by

ai(t) = F 1 {Tiw) X ()}
@(t) = F! {ﬂ(w) X*(—w)} . (3.12)

The overall output signal is obtained by summing up all contributions froni)3vthich
yields
[N/2]-1

> Gora(t). (3.13)
k=0

The time-domain signals in (3.12) are calculated by applying the inverse Fopegator on
the product of the frequency-domain input signﬁl@w) and theith-order orthogonal poly-
nomialsT;(w) = Z};ZO a;w®, where the real coefficients,; are defined by the particular
set of orthogonal polynomials. This leads to a series with complex-scatedifferentiated
time-domain input signals of different orders, expressed by

= ZZ: apF ! {ka'(w)}

- Yo
- kl]k dtk

(3.14)
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Figure 3.3: Complex RF power amplifier model with approximated freqyedomain
Volterra kernels. The model is composed of a bank of linetar§il(differentiators) and a
static nonlinearity represented by a polynomial series.

and

N U (3.15)

The complex baseband PA model from (3.11) to (3.15) is depicted in Fig.Th8&.sys-
tem consists of a bank &f(M + 1) complex linear filters described by the orthogonal
polynomialsT;(w) (generalized complex differentiators) for< i < M, whereM =
max {Ml,Mg, e ,MQ(N/Q]_I} for M # M, and a static nonlinear system represented
by a polynomial series. If the linear term in (3.18)-€ 0) leads to the maximum/ = M,

we only need\/+ K +2 linear filters where’ = max {Ms, Ms, ..., Marn/21-1 }, because
the linear terms in (3.13) do not incorporate the signa(s).

3.2.1 Chebyshev Approximation

In this section we focus on the frequency-domain Volterra kernel appedion with a
particular set of orthogonal polynomials which allows us to develop a pehatiodel
for a given nonlinear system, e.g., an RF PA. For this reason, we corbk&leomplete
set of Chebyshev polynomials [35], which are linearly transformed tortbevgonal over
the desired frequency-domain interval [ef B, B] with respect to the weighting function
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B 1 , , .
p(w) = T because they have a simple representation [35, 72]. It is important to

note that any kind of orthogonal polynomials which are orthogonal orita filomain (e.g.,
Legendre polynomials) can be used for the approximation of frequenmtyaih \olterra
kernelsﬁ%ﬂ(wl, ...,wor+1) @s we have shown in the previous section. The squared norm
An in (3.2) of the transformed Chebyshev polynomiaki8 for n = 0 and% forn # 0.
From the recursive definition of the Chebyshev polynomialgw) = 1, C1(w) = %, and
Chi1(w) = 220, (w) — Cp—1(w), the Chebyshev polynomials are expressed in a closed
form fori > 0 by

. [i/2] k /- i—2k
i (=¥ (i—k\ (2w
k=0

The time-domain signal&; (¢) andw;(¢) in (3.12) are expressed wiffi(w) — C;(w) and
(3.16) by

Bi(t) = + Lf U (1K) ()7 4O (3.17)

Wity =5 -k \ k J\JB dti—2F) '
with the complex baseband input sigagt) and

. /2] E /. i—2k (i—2k) 7k
N (=D (i—k\ [ 2 d z*(t)
PO R < k ) <jB> a2 $19)

with the conjugate of the input signat (¢). The quantity(: — 2k) within the superscript
parentheses of the time-domain signals denotes the order of the derivdkitheese orders
within the series in (3.17) and (3.18) are even; i§ even, and odd, if is odd because
the term2k is always even. For the even orders, it does not matter whether thefdigm o
imaginary unitj in (3.17) and (3.18) is positive or negative and the constant values within
the series always result in real quantities and, therefore, the sig{a)scan be obtained
from the signalso;(¢) by a simple conjugation. If the ordeiis odd, the constants within
the series in (3.17) and (3.18) are purely imaginary and, thereforeigih& s, (¢) can be
obtained from a simple inversion of (the real part®@f}¢). For this reason the signails(t)

in (3.18) can be expressed for even and odd ordeidpf

wi(t) = (=1) @ (t). (3.19)

Figure 3.4 depicts the RF PA model of Fig. 3.3, where the general orthbgolynomials
T;(w) are replaced by the particular set of Chebyshev polynoniigls). Because of the
equality (3.19), the linear filters in Fig. 3.3, which generate the sighét$ from z*(¢), can
be replaced by + 1 (if M # M) or K + 1 (if M = M;) complex conjugate operators
and constant multipliers which can be more easily implemented than filters.

3.2.2 Narrowband Modeling

In the last section, we have modeled an RF PA in the complex baseband domexn b
panding the frequency-domain Volterra kernels with Chebyshev polynariiiais concept
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Figure 3.4: Complex RF power amplifier model with Chebyshev Volterranktapprox-
imation in the frequency domain. The model is composed ofrk lod linear filters (gen-
eralized differentiators), complex conjugate operatsigg) multipliers and a static nonlin-
earity represented by a polynomial series.

E(t i, (1) = & (1)
L} CO (w) - ( - 00 > A(t)
1 Polynomial >
jl—/ ) G, (t)=12"(1) series
conl C....0

Figure 3.5: Complex RF power amplifier baseband model with zero-ordexb@shev
\olterra kernel approximation in the frequency-domaindtira-narrowband applications.

The model is quasi-memoryless and can be described by an KM@nversion and an
AM/PM-conversion.
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results in a complex baseband model which is composed of a cascade ohrafiliee-
bank, complex conjugate operators with sign multipliers and a static nonlinedrith Vs
represented by a polynomial series as depicted in Fig. 3.4.

If the passband-signal(¢) becomes ultra-narrowband (see Ch. 2), the complex base-
band model in Fig. 3.4 is reduced to a simple system which incorporates sotektatic
nonlinearities, described by the AM/AM- and AM/PM-conversion (seeZ}h.

Because of the ultra-narrowband assumption, the approximationfgen in (3.1) can
be set to zero for alt’s and, therefore, the approximatek + 1)-dimensional frequency-
domain Volterra kernelﬁf[gkﬂ(wl, ooy wop1) In (3.1) (WithT;(w) — Cj(w)) can be sim-
plified with Cy(w;) = 1to fIQkH(wl, ..., Wak+1) = Co,...0. The optimum complex param-
etersc, (o, o) are given with (3.2), (3.5) andlloyi1 (w1 ..., wars1) — Hap1(0,...,0)
(because the bandwidiB tends to zero) by

Hopy1(0,...,0
Co(0,...,0) = 2 +)1\gk+1 ) / /p(wl) < plwogat) dwy « - - dwagyq
0 “B B

= Ho,y1(0,...,0). (3.20)

The (2k + 1)th order time-domain output signéd;.1(¢) in (3.11) is given with (3.20) and
the approximation orde¥/s; 1 = 0, for0 < k < [N/2] — 1 by

G(t) = Hops1(0, ..., 0) wo(t)* L aig(t)"
= Hopy1(0,...,0)|2(0)|%* Z(¢). (3.21)

The output signaj(t) in (3.13), which is obtained with (3.21) by a summation ovekall

[N/2]-1
§t)= > Hayp1(0,...,0)do(t)* g (t)"
k=0
[N/2]-1
k=0

is identical to the quasi-memoryless PA model in (2.50), and can therefatedoeibed by
the AM/AM-conversion and the AM/PM-conversion as we have shown iapCB. Fig. 3.5
depicts the RF PA model from Fig. 3.4 with an approximation ordgr.; = 0 for ultra-
narrowband applications. Because the zero-order ChebyshevopaigiCy(w) = 1, only
the signalso;(t) = z(t) andu;(t) = 2*(¢) are used to build the time-domain output signal
g(t) in (3.22) within the polynomial series block in Fig. 3.5.

3.3 Baseband to Passband Transform

To calculate the time-domain passband Volterra model with the Chebyshevopubin
expanded frequency-domain Volterra kernels in Fig. 3.1, we use thiorehipy(t) =
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Re{§(t) exp(jwet)}, which yields with (3.13), (3.11) and (3.19)

>3 Y
,,,,, m2k+1

{ [N/2]-1 Mag41 Mg 11

m1=0 M2k+1=0
k+1 2k+1
< [T am:®) TT @i, t) exp(jwct)}. (3.23)
=1 1=k+2

To express the passband output sigyi@) in (3.23), with the passband input signals

Wiy (1) = Re iy, (1) exp(juct) }
— [t (£)] €08 (wet + o (1)) (3.24)

of the corresponding baseband input signals of the polynomial seriels ibl¢-ig. 3.4 and
Fig. 3.5, we use the identip(jw.t) = (exp(jwet))* T (exp(—jwct))¥, which yields

D D S
,,,,, m2k+1

{ [N/2]-1 Mag41 Mg 11

m1=0 M2k +1=0
k+1 2k+1
X H(ﬁ)ml( ) exp(jwet) ) H (w ) exp( ij))}, (3.25)
=1 i=k+2

where the phase in (3.24) is defineddy;, (t) = arg {wm,(t)}. The product terms within
the braces of (3.25) can be expanded with, (t) = |Wm,(t)| exp(jim,(t)) and the well
known Euler formulaxp(+j6) = cos(0) + j sin(0) by

k+1 2k+1 1 1
H(wmi(t) exp(jwct)) H ( () exp(—jwet) ): Z
i=1 i=k+2 =0  logt1=0
2k+1
% (_1)lk+2+...+l2k+1jl1+...+l2k+1 Hmml(t)’ 1. (1) (3.26)
i=1

where the phase-modulated carrfe(t) in (3.26) is expressed by

B cos(wct + Y, (t)) if ;=0
Ju(t) = {sin(wct + (1) ifl; =1 (3:27)

Therefore the real passband signfais,, ()| f,(¢) in (3.26) can be expressed with (3.24)
and (3.27) by (see Appendix A)

im0 = {3 R (328
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Figure 3.6: Passband RF power amplifier model with approximated frecyrelomain
\olterra kernels. The model is composed of a bank of lineasipand filters (generalized
differentiators and Hilbert transformers) and a staticlimearity which is represented by
a polynomial series.

The real passband output signgt) in (3.25) can be expressed with (3.26) by the polyno-
mial series

[N/2]—1 Map41 Mojgt1
Dy
P SEPIRPS >y Re {3 "+ Re (.o )
mi= =0 ﬂ’L2k+1—0 l1 0 l2k+1 0

+j it tlog1+11y, {lew’m%ﬂ } } (-1) It Hogt1+mp ot +magi1

2k+1

NI EGEAGE (3.29)
=1

which results in the passband model shown in Fig. 3.6. While in the basebahel ofo
Fig. 3.4 the input signals of the polynomial series block are the output sightide base-
band differentiatorg’;(w) and the conjugate operators, the input signals of the polynomial
series block in Fig. 3.6 are the corresponding passband signals anditheit transforms.

To express the passband signajs, (t) andH{w,,, (t)} in (3.29) as a function of the pass-
band input signak(t¢), we constrain the frequency responses of the baseband filters

in Fig. 3.4 and Fig. 3.5 to

(3.30)

(2

oy JCilw) —-B<w<B
Ci(w) = {0 otherwise ’

which is important to ensure that the frequency-shifted baseband ﬂlﬁéms— we) are
analytical (;(w — w.) = 0 for w < 0) [29, 49]. Therefore with (3.24), we can use the
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following identity

W, () = Re {(i"(t) x e (1) exp( jwct)}
= Re{i'(t) exp(jwct)} *2Re {c;m (t) exp(jwct)}, (3.31)

x(t) Bandpass-filter

to express the passband fil@(w) in Fig. 3.6 with the baseband filt&r;(w) in (3.30),
wherec(t) = F~1 {c; (w)}, which yields

Gi(w)=F {2Re {c;(t) exp(jwct)}}
= Cj(w —we) + Cj(—w — w,). (3.32)

It is important to note that the spectral components of the output signain Fig. 3.6
are only located around the carrier frequengy.. The spectral components around the
multiples of the carrier frequency will be canceled by &' contributions of the inner
sums of the polynomial series in (3.29) without any explisit-zonal filtering.

3.3.1 Narrowband Modeling

If the frequency-domain Volterra kernefszkﬂ (w1, ...,ws,1) @re constant over the input
signal bandwidth oftB or the input-signal bandwidth tends to zero, the nonlinear pass-
band model in (3.29) (Fig. 3.6) can be simplified by setting the approximatiar ofdhe
multivariate Chebyshev polynomialdy; 1 = 0, for0 < k£ < [N/2] —1. Therefore (3.29)
combined with (3.17)d(t) = z(t)) reduces to

[N/2]-1 1 1
y(t) = Z Z Z Re{j11+~~-+lzk+1Re{COW7O}
k=0 11=0  lop41=0
2k+1
+jll+-..+lzk+1+11m {607...70}}(_1)lk+2+"'+12k+1 H ‘f(t)’fll(t) (3.33)
i=1

Because the productin (3.33) is solely composed of the passband signaadH {=(¢)},
the narrowband model can be simplified to create the model depicted in Fig. 3.7.

To see the equivalence of the narrowband model in (3.33) and the meaasoryless
model in Fig. 2.3, we rewrite (3.33) with (3.26) in the following form

[N/2]-1

y(t) = Y Re{co,.. o} |Z(E)* cos(wet + vo(t))
k=0
[N/2]-1

— > Imf{eo,..o} @) sin(wet + o (1)), (3.34)
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Figure 3.7: RF power amplifier passband model with zero-order Chebysbkerra ker-

nel approximation in the frequency domain for ultra-natoawd applications. This pass-
band model without any explicitst-zonal filtering is equivalent to the quasi-memoryless
model in Fig. 2.3 and achieves implidist-zonal filtering.

which underlines the fact that the output signal spectra are solely logedadd the carrier
frequencytw,.. To introduce the real passband signa{s) and H {x(¢)} in (3.34), we
compute the(2k + 1)th power from the magnitude and the phase-modulated carriers in
(3.34), which yields|7 (t)| cos(wet + 1o (t))]2+1 and][|Z (2)] sin(wet + 1o (t))] 21, where

k
1
cos™ 1 at vu(0) = g D= (% ) osf ok 1 -2y
n=0

+ (2k 4+ 1 — 2n) ¢o(t)] (3.35)
and
_1)k &
sinZF 1 (wet +¢0o(t)) = ( 4? z:(*l)n (2k: 1) sin[(2k + 1 — 2n) wet
n=0
+ (2k + 1 —2n) ¢o(t)]. (3.36)

From (3.35) and (3.36), we notice that tt2&+1)th power computation of the passband sig-
nalsz(t) andH {z(t)} generates additional spectral components which are located around
the odd multiples of the carrier frequency. If we suppress these speatnponents with

a linearl1st-zonal filterF as depicted in Fig. 2.4, the output signét) in (3.34) could be
expressed with (3.35) and (3.36) by

[N/2]-1
y(t)F{ S 4y (2’“; 1) Re {co,...0} (z(1))*"
k=0
[N/2]-1
Y (Qk; 1) Im {co,. 0} (H{x(t)})%H] (3.37)
k=0

which represents a quasi-memoryless model as we have shown in (h@fofstant terms
#1) 2k I: 1
in (3.35) and (3.36) fon = k.

in (3.37) compensate the scaling of the fundamental carrier frequency
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Figure 3.8: Block diagram which shows the equivalence of a continugus-tonlinear
systemH [z (¢)] and a discrete-time nonlinear systd?ffll [Z[n]] if the input signalz(t) is
band-limited toB < 7 /(NT).

3.4 Discrete-Time Modeling

In the preceding sections we have developed continuous-time basebaals fooaonlin-
ear RF power amplifiers. In this section, we focus on the discrete-time eparttevhich is
of fundamental importance for the discrete-time implementation of a nonlinear neogle
digital predistortion, and for numerical simulation purposes.

To develop such a nonlinear discrete-time model, we sample the continuous-tipa¢ ou
signaly(t) of the nonlinear systerd in Fig. 3.8 with a sampling period & < 7/(NB),
where we have assumed that the Fourier transform of the basebauﬂsjgrrach(w) =0
for |w| > NB. The spectrum of the continuous-time sampled output signal is amplitude
weighted with1/7" and periodically extended witt2r) /7T [45, 46]. After a conversion
from the continuous-time impulse train to the discrete-time sequgpde= y(nT'), the
spectrum will be normalized regarding the frequency-axis and theréfaiill be periodic
with 27. To generate the discrete-time siggat| in Fig. 3.8 directly in the discrete-time
domain, we sample the continuous-time baseband input signplnd feed the resulting
sequence;(n] into the discrete-time model, which is described by the nonlinear operator

A

3.4.1 Structure Derivation

The two systems in Fig. 3.8 produce the same discrete-time output gjgtjalif the
discrete-time domain Volterra kernels are identical, e.g.,

HY 1 (exp(§), - . ., exp(jQasi1)) = Hoky1 (/T .., 1 Qok1/T),  (3.38)
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for —BT < Q; < BT, where(); = w;T denotes the normalized frequencies (see Fig. 3.9
for H[Z(t)] = (di(t)/dt)?). The equality of the frequency-domain Volterra kernels over the
normalized input signal bandwidth is sufficient because the output ssi;@ﬂatrumf/c(w)
is purely determined by the multi-dimensional Volterra kernels over the inpoakizand-
width as we have shown in Chap. 2.

Because the continuous-time model in Fig. 3.4 is composed of a cascadea#rdilier-
bank and a multi-variate static nonlinear system, the discrete-time countefrfagt 8.4
is obtained by replacing the continuous-time filt€k$w) in Fig. 3.4 by the corresponding
discrete-time filter<”¢ (exp(j©2)). The frequency responses of the discrete-time filters are
given with (3.16) and (3.38) by

Cil(exp(j2)) = ! f (Z.__l); <Z P k) <;>Hk @?)_% (3.39)

k=0

—

\V)

which have to be periodically extended with in the normalized frequendy after appro-
priate band limitation. The expressigf/T" in (3.39) represents the frequency-response
of a linear differentiator as depicted in Fig. 3.9 (curve (h) after periogieresion). The
frequency-domain output signals of the linear filters in (3.39) are giyen b

W (exp(jQ)) = CH(exp(j€)) X (exp(j©)) (3.40)

where X “(exp(j€2)) denotes the discrete Fourier transform of the sampled baseband input
signalz[n] = z(nT"). The discrete-time output signals of the generalized differentiators are
given with (3.39), (3.40) and the convolution property by

;i&ﬁczﬁ<;y%W“@W*~MWW(mn

—

(]

mng

(i—2k) x

wherehp[n] = F~1(jQ/T) denotes the impulse response of an ideal (band-limited) dif-
ferentiator. Because an ideal band-limited differentiator can not be imptenhéy using
a causal discrete-time system [45, 48], we approximate the frequesppiisg2/T over
the normalized frequency-range ofBT < < BT. This leads to a causal discrete-
time differentiator whose magnitude-response (FIR-filter with 5 parameags$)own in
Fig. 3.10. The number of parameters which are required to guaranty a nTa>xamorox-
imation error strongly depends on the highest order of the nonlinedrityf V is large,
the normalized input signal bandwidBi" = 7 /N becomes small (approximation range of
the differentiator), and therefore, the number of the required FIR-fiiemmeters becomes
low.

The discrete-time signals

ii;[n] = (—1)" @ [n], (3.42)

are obtained from (3.19) by replacing the continuous-time signglg by the correspond-
ing discrete-time signal®;[n] of (3.41). With (3.41) and (3.42), the discrete-time counter-
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Figure 3.9: Frequency-domain signals generated by the sampling madééise nonlinear
systemH [%(t)] = (d#(t)/dt)*. (a) Band-limited input signdlX (w)| , (b) Frequency re-
sponsef (jw) of a band-limited linear differentiatatz (¢) /dt, (¢) 1/(2n)H (jw) * H (jw)
(simplified shape), (d) Periodically extended spectruntptéused by the sampling with
a continuous-time pulse train, (e) Frequency-axis nomatbn caused by the pulse-
train to discrete-time sequence conversion, (f) Perididicextended spectrum of (a)
caused by the sampling with a continuous-time pulse trgnF(equency-axis normal-
ization caused by the pulse-train to discrete-time sequ&onversion, (h) Frequency
response of a band-limited discrete-time differentiatt(exp(;jQ2)), (i) Product of (g)
and (h), (j) Convolution of (i) with itself leads to the idédl output signal as in (e) if
Hi(exp(j)) = H(jQ/T) for -BT < Q < BT.
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and an approximated linear differentiator oyerr, 7], (b) Rel. error of the magnitude
response within the input signal bandwidthBT, BT, (c) Impulse response of the ap-
proximated differentiator (FIR-filter with parameters.)

part of the continuous-time model in Fig. 3.4 is described by

Moy 11 Mogyr1 Mokt Mag 41
Q%-l—l[n] = Z T Z Z T Z le,n-,mzkﬂwml [n] T wmk+1 [n]
m1=0 MEg+1=mMg Mp42=0 mag4+1=mM2k
X Ty, o (1] Umgy 1 [, (3.43)
and
[N/2]-1
glnl = > Gorln], (3.44)
k=0

which is shown in Fig. 3.11.
The indicesm; in (3.43) do not all start with zeros as in (3.11), because in (3.43), we
Mo 1+ 1+ k‘) » <M2k+1 +k

only consider th

bl I > different permutations of thek + 1
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Figure 3.11: Discrete-time complex RF power amplifier model with appnoaied
frequency-domain \Volterra kernels. The model is compodeal lpank of linear filters
(generalized differentiators) and a static nonlinearibjols generates a polynomial series.

products of the signal&,,, [n] anda,,,[n]. This is important to save computational com-
plexity on the one hand, and on the other hand we thereby avoid to usedeetunforma-
tion, which generally leads to numerical problems if we estimate the unknovameaers
Cmy,...;maxs, With least-squares methods [9, 25].

3.4.2 Parameter Estimation

The unknown parameters,, ... m.,,., in (3.43) can be computed from the discrete-time
counterpart of (3.5) only if the frequency-domain kernels are knofg).in general, they
are unknown, we have to estimate these parameters. As the relationships3inat34
(3.44) are linear in the parameters we can formulate a classical linear dgases problem
[26, 40]. For this we rewrite (3.44) in vector form as

ij[n] = cHW[n] (3.45)
where the vectors

cfl = [007 ce ey €My 5 €0,0,05 - -+ » CM3,Ma, Mz €0,....05 - - - » CMn 21 —10sMa /2] 1 ](3-46)

(2[N/2]-1)x
W [n] = [71)8 (], ..., Wy, [n], woln]wg[n]ag(nl, . . . Wiy, [R]Why, ], 1],

~ % ~ % ~ %

T ’w&ﬂN/ﬂﬂ [n] - "Wy N 2-1 ] UMyrny21-1 [n] - UMyin 211 ]

[N/2] % (IN/2]-1)x
(3.47)
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Figure3.12: Parameter estimation setup for the discrete-time complegdrver amplifier
model in Fig. 3.11. The error signaln] = d[n] — §[n] is used to perform an optimum
parameterd,) estimation for the RF PA model.

contain all kgﬂ 1 .
parameters and signalg[n| anda;[n] in (3.43).

Now the error energy over the intenjal; , ns]

IN/2]-1
< Mopy1 +1+k ) < Mater + 5 ) different permutations of the

=" |en]|” (3.48)

with e[n] = d[n] — g[n], whered|n] is the discrete-time complex baseband output signal of
the RF PA, is minimized to obtain the optimal parameter vector

co = (AFA) T AT, (3.49)
The data matriXA and the data vectat in (3.49) are given by
Al — [W[nl],\i\/[nl +1],... ,W[nQ]} (3.50)

and
d = [d[m],d[n1 1], .,d[nQ]}. (3.51)

Figure 3.12 depicts the parameter estimation setup for the discrete-time RF PRvitbde
approximated frequency-domain Volterra kernels in Fig. 3.11. The osigoéal of the RF
PA baseband systedin], and the output signal of the RF PA modéh| (composed of the
digital pre-filter and the polynomial series) is used to build the error sigindl which is
utilized to perform an optimum parameter estimation for the RF PA model.
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3.5 Simulation Results

To validate the frequency-domain approximation developed in the last sgctiensimu-

late an analytically tractableérd-order Wiener system which represents the RF PA. For of
simplicity, we assume a complex linear frequency-domain kernel directly indirealized
frequency domaif). The magnitude of this kerneﬁff(exp(jQ)) is depicted in Fig. 3.13

for —m < Q < m. The linear frequency-domain kernel is chosen in such a way, that the
variation over the input signal bandwidB7T = 27 /N, for N = 5 is moderate. Because
the input signal signal bandwidth is 20% of the entire frequency rangeyitd be possible

to consider nonlinearities up to théh-order, without aliasing effects.

Figure 3.14 depicts a complex baseband Wiener mod8tabrder, which represents
an RF PA in the baseband domain. The structure is chosen based on (2.33)
and with the assumption that the passband RF PA can be described by a Wiisne
temHz(t)] = [;5hi(m)a(t — 7)dr + [[;° ha(r) x(t — 7)dr]?, whereh(t) repre-
sents a real linear passband kernel. The frequency respgbfieg(t) exp(—jw.t)}, for
—7/T < w < w/T, is identical to H{(exp(j)) in Fig. 3.13 for—7 < Q < .

The frequency-domain baseband kernels in Fig. 3.14 are giveﬁ{jﬁyxp(jﬁ)) and

g (exp (7 (1 + Qo +Q3))) = Hiexp (j ) A (exp (j Q2)) [H{ (exp (—j 3))]*. The

1st- and2nd-order approximationsM; = 1, M; = 2) of the linear frequency-domain
kernels are depicted in Fig. 3.13. These kernels are identical to the orntalogolynomi-

als which minimizes the integral square error in (3.6) within the normalized irgoals
bandwidth of+ B T'. Outside they are different because the frequency response magnitud
of the approximated differentiator in Fig. 3.10 tends to zero. Therefoeesythtem model
becomes noise insensitive because the noise power outside the sigthalf kai 17" will

not monotonically increase with the model bandwidth. Bteeorder kernel will be approx-
imated with a2nd-order Chebyshev polynomiald; = 2) which is not explicitly depicted
here. However we will see the full information about the kernel approtiiman the error

of the output spectra of the complex baseband Wiener system (badebatimodel) and
the Volterra model with the approximated frequency-domain kernels (cf.3Fig) in Fig.
3.15. Itis important to note that, although we only approximate the kernels withiimth
put signal band, we obtain an accurate frequency response alneosheentire frequency
range (see Ch. 2, Sec. 2.3.2). Due to the smooth frequency-domagikeand the result-
ing low order approximation/,, M3 = 2), the number of free parameters can be reduced
from 120 for the complex basband Volterra model2b for the Volterra model with the
approximated frequency-domain kernels.

3.6 Conclusion

Baseband modeling of nonlinear devices such as RF power amplifiers isjof ooe-
cern in system level analysis. For this reason, we developed a ndieirf behavioral
model which is based on a frequency-domain Volterra kernel approximaitith multi-
variate orthogonal polynomials. The frequency-domain approximatiaritseis a time-
domain model which is composed of a bank of complex linear pre-filters aradi@multi-
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Figure 3.13: Linear frequency-domain kernel (magnitude) of the Wienardet in
Fig. 3.14 and itslst and2nd-order approximations, the range 27 denotes the ap-
proximation region (input signal bandwidth), afiddenotes the sampling time.

variate polynomial series. The number of free parameters can be cadideeduced if
the approximation order of the frequency-domain kernels can be kepThiwis generally
reached, if the bandwidth of the excitation signal is much smaller than the ldthdythe
linear frequency-domain kernel (frequency response). We exfoea the given simulation
example an efficiency factor of approximately five in the number of requisrdmeters.
If the frequency-domain kernels are completely flat over the input siganradwidth or the
bandwidth of the input signal tends to zero, the approximation order bexpere. This
results in a well known quasi-memoryless model which is described by twereliff static
nonlinear functions which are purely dependent on the input signal itodgn

Furthermore we have developed a new passband representationrapkexamonlinear
baseband system, whose frequency domain Volterra kernels aredexpaith multi-variate
orthogonal polynomials. This model does not incorporate an expstizonal filter to pass
only the spectral components of interest, which are located near ther dageency. This
filtering is accomplished by combining the corresponding output signalstaf stanlinear
operators within a multi-variate polynomial function. If the frequency-domaiméls are
completely flat over the input signal bandwidth or the bandwidth of the irignaktends to
zero, the model reduces to a well known quasi-memoryless passbantanddé¢he case
of the baseband representation.
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Figure 3.15: Frequency-domain output signals of the Volterra model \ilith approxi-
mated frequency-domain kernels in Fig. 3.11 and the comipéeseband Wiener model
(baseband RF PA) for a band-limite2ifT") white Gaussian noise excitation. The approx-
imation order ishM; = M3 = 2.
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Chapter 4

Volterra Kernel Interpolation for System
Modeling and Predistortion Purposes

In this chapter we address the problem of nonlinear system identificatibvicdterra kernel

interpolation for system modeling and digital predistortion purposes. IndSkone discuss
the basic problems and requirements of nonlinear system identification witletdigime

Volterra models. In Sec. 4.2 we consider nonlinear system identification detiased
on a sampling frequency which is at least twice the bandwidth of the outpual fjthe

nonlinear baseband system. The major drawbacks of this identification matbbds the
high condition numbers, if we formulate a least squares problem, or the loveence
speed, if we use adaptive algorithms, and, of course, the demand fosaigpling rate
ADCs (corresponding to on the highest order of the baseband noritineaotivate the

investigation of more appropriate identification methods in Sec. 4.3. This sehHeave the
advantage that the sampling frequency only has to fulfill the Nyquist theoggarding the
input signal.

4.1 Introduction

In Ch. 2 and Ch. 3, we have shown that complex baseband modeling ealvdigageously
employed in system level simulations to predict the behavior of nonlineabpadssys-
tems such as RF PAs. With this concept, we can perform much faster simsldtian
with transistor-based models, which is important if we assess the perfoenfeuac, spec-
tral transmission mask, bit error rate,...) of a whole communication transceleetinear
behavioral models can also be used to develop efficient(low number arnpéers) struc-
tures to implement the approximate inverse [40] of a nonlinear passbatetnsyghich is
important for linearization issues such as digital predistortion [32, 153,633, 18, 20].
Because the behavior of nonlinear passband systems is generallywumkme have to
estimate it, e.g., from input and output signal measurements. Because theiestiga
usually performed in the discrete-time domain [57], the sampling frequencyeafawn-
converted input and output signals of the nonlinear passband systetheadiscrete-time
nonlinear model plays a crucial role. It has be shown in [23, 76], tbatimear system
identification can usually be accomplished with a sampling frequency whichtisyice
the bandwidth of the input signal of the nonlinear system. This becomesfehgaconsider
the frequency-domain representation of \olterra systems of Ch. 2. lihfhe signal is
band-limited to+ B, than also the multi-dimensional output signal of the Volterra model
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Figure 4.1: Block diagram of a wireless communication transmitter veittigital base-
band processor for the identification and linearizatioedgstortion) of the RF power am-
plifier.

is band-limited, and therefore purely determined by the multi-dimensional \lokemels
within +B in each of the frequency dimensions.

The apparent advantage of this identification scheme is that we can usanphirgy rate
ADCs, which are cheaper and less power consuming as the high sampéirnpuaterparts
which are needed in a Nyquist sampling identification scheme. Furthermoeajdmeof the
low sampling frequency which is just twice the bandwidth of the input signahatéeve a
persistent excitation of the discrete-time Volterra model. This leads to smaiticonaum-
bers and, therefore, to accurate estimation results if we formulate a le@sesgroblem,
or to fast convergence speeds if we apply adaptive algorithms.

However in some applications as mentioned above, nonlinear discrete-timéswwhiteh
are able to generate the same spectral out-off-band componentsdbkpgtowth caused
by the nonlinearity) as nonlinear continuous-time systems are requiredhisaeason it
is important that the discrete-time nonlinear model is operated with a samplingfrey
which fulfills the Nyquist theorem regarding the output signal of the RF&eband model.
We will demonstrate that this can be accomplished by Volterra kernel int¢igrolaith no
additional computational costs.

Figure 4.1 depicts the block diagram of a wireless RF transmitter including tlitaldig
baseband processor. To identify the RF PA or its inverse from RF PA amgloutput signal
measurements for predistortion purposes, we use a feedback pathirnigctuttequency
down-converter and an ADC to provide the digital baseband procesibahe output signal
of the RF PA. Both the identification process of the RF PA baseband modslioverse
and the predistortion (see Ch. 5) is performed within the digital basebacdgsor.

If we build a complex baseband Volterra model for system modeling purgosg®-
dict the generated distortion of the RF PA or to assess the transceifernp@nce, we
can perform the identification process off-line with a mathematical softwalestach as
MATLAB ® shown in Fig. 4.2.
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Figure 4.2: Block diagram of a nonlinear system identification schenneétfe RF PA for
system modeling purposes. The identification is perfornfedire with a mathematical
software tool such as MATLAB.

4.2 Nonlinear System Identification Based on Nyquist
Sampling

One method to identify a cascade of a nonlinear passband system e.g.P&ndRHE alst-
zonal filter in the complex baseband domain is shown in Fig. 4.3 and Fig. 4.dreHg4

is a simplified version of Fig. 4.3, where we have used the fact that the panlrassband
system(F o G)[x] and the frequency down-converters can be represented in the complex
baseband-domain by the equivalent baseband ntbgélas shown in Ch. 2. The spectrum
of the complex baseband output siggét) which is calculated with (2.40) and (2.41) is
broadened td3(2 [L/2] — 1), whereB is the bandwidth of the complex baseband input
signalz(¢) and(2 [ L/2] — 1) the highest order of the baseband nonlinearity. Although we
do not have the even orders of the nonlinearity in the baseband refaése of Volterra
models (see Ch. 2), we use them to illustrate the identification process, vema course,
also be applied to identify real systems which incorporate the even oifdeesmnlinearity

as well.

To perform the identification process in the discrete-time domain, we sampl@ihe c
plex baseband output signa(¢) with an angular sampling frequency of = 27 /T >
2B(2[L/2] — 1) which satisfies the Nyquist theorem regarding the output sigftalto
avoid aliasing effects [45, 46, 48]. The broadening of the frequameyain input sig-
nal X¢(w) = F{z(t)} of a 2nd-order model, which is caused by the integration of the
two-dimensional output signal§ (wi,ws) = Ha(wi,w2)X (w1)X (w2) along the inte-
gration pathws = —w; + w, and the periodic extension of the output signal spectrum
Y¢(w) = F{g(t)} which is caused by the sampling process is depicted in Fig. 4.5 (a) and
Fig. 4.5 (b). While the periodically extended spectrum in Fig. 4.5 (b) still ipoates the
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Figure 4.3: Nonlinear system identification scheme for the cascadeeoRtk PA and a
1st-zonal filter. The ADCs and the nonlinear discrete-timelei®y/[Z] are operated on a
angular sampling frequencys, which is at least two times the bandwidth of the output

signaly(t).

sampling-timel” in the frequency scaling, the spectrum in Fig. 4.5 (c) does not so, fecau
of the normalization of the discrete-time signa[s] = z(nT) andy[n] = g(nT).
The goal of the nonlinear system identification in Fig. 4.4, is to determine therklte

kernelsvggy1[n1, - . ., nak11] Of the discrete-time complex baseband Volterra model
Z[n] =V [&[n]
[L/2]—1 Nogy1 Nog41
= Z Z Z Vopt1[n1, - - - N2k41)

k=0 mn1=0 Nap4+1=0
k+1 2k-+1

X Hﬁ’;[n—nz] H ¥ [n — nyl, (4.1)
=1 i=k+2

in such a way that the periodic output signal spectdififexp(jQ)) = F{z[n]} of the
discrete-time model in (4.1) is identical to the spectrum of the sampled RF Phdrase
model output signal’ % (exp(jQ)) = F{g[n]}. This is achieved if the frequency-domain
\olterra kernels/y;,. 1 of the discrete-time model in (4.1) satisfy

~ . ) ~ Q 0
Vor+1(exp(§), ..., exp(jQok+1)) = Hoppa <Tl, ey 2;“) ; (4.2)

for the frequency range of interest given [§%| < BT, whereBT denotes the normalized
bandwidth of the discrete-time input signan|. Outside this frequency rang&{" <
|€2;| < ), the kerneld/;.1 in (4.2) can have arbitrary values.
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Figure 4.4: Nonlinear system identification scheme operating in thelbasd which is

equivalent to the scheme in Fig. 4.3. The ADCs and the noalidescrete-time model
V[i] are operated on an angular sampling frequengyvhich is at least two times the
bandwidth of the output signal of the baseband power ampfifdelj ().

To show this, we calculate the output signal spectrum of the discrete-timerdattedel
in (4.1) with the discrete-time counterparts of (2.40) and (2.41) by

[L/2]-1
Zes) = Y. o / / Ty (exp(i (2~ O1))
k 0
exp(j(©1 — ©2)),..., eXP(J®2k)) dO1 ...dOy, (4.3)

where the multi-dimensional frequency-domain output signals

Zopei 1) (exp(i1), -, exp(iQar11)) = Va1 (exp(ih), - -, exp(jQ2x11))

k+1 2k+1
X HXd exp(j€%)) H X (exp(—j%))
=1 i=k+2

(4.4)

with X%(exp(jQ)) = F{i[n]} are band-limited tat BT, and periodic with2z in each
of the 2k + 1 frequency variables (gray shaded areas in Fig. 4.6 (a)). The speofrthe

discrete-time input signat[n] in (4.4) is related to the spectrum of the continuous-time

signalz(t) by
. LX) Q< BT
Xd i) = T T —
(exp(jQ)) {O BT < |9 <.

The multi-dimensional frequency-domain signal in (4.4) can be rewritten amve period
with (4.2) and (4.5) by

(4.5)

7 ; ; L oo M Qok+1
Zopyny (exp(0), -, exp(iQar41)) = Tt Vo) <T,..., 7 ) (46)
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Figure 4.5 Output signal spectra of 2nd-order Volterra system for the discrete-time
identification process in Fig. 4.4. (a) Building the outpigingl spectrunt’s(w) by inte-
grating the two-dimensional frequency-domain output aig ) (w1,ws) along the inte-
gration pathv, = —w; +w. (b) Magnitude-scaled and periodically extended outpgriali
spectrum caused by the sampling process with= 27/T = 4B. (c) Frequency-scaled
version of (b), caused by the samplifilr] = §(nT).



where|Q2;| < w. The spectrum in (4.6) is periodically extended w2th in each of the
2k + 1 frequency variable§);. If we use the relationship in (4.6) to evaluate the integral
expression in (4.3), we obtain with = wT one period of the output signal spectrum of the
discrete-time Volterra model in Fig. 4.6 (b) by

[L/2]-1 ok w/T w/T
74 (exp(j)) = T TN
(exp(jQ?)) = Z W e\ T
k=0 —7/T —7/T
0, — 0o, ... ,9%) dby ...dbooy, 4.7)

which is identical to one period of the spectru?ﬁ(exp(jﬁ)) in Fig. 4.5 (c). In practi-
cal applications, we are usually unable to identify the exact \olterra lefig, | of the
RF PA baseband modél[#] because of model uncertainties and noises. For this reason
we estimate the discrete-time Volterra moWék] e.g., with standard linear least squares
methods (the estimation problem is linear in the parameters) [40] or adaptiviblyaw
LMS-algorithm [40] to minimize a particular cost-function defined on the disetiene er-
ror signaléjn).

With the concept in Fig. 4.3 and Fig. 4.4, unfortunately two major difficultie®ari$e
first one is the demand for high sampling rate ADCs (depending on the higides of
the RF PA nonlinearityl), which are expensive and high power consuming. The second
one is that standard least squares algorithms tend to numerical unstalitnsdl, 25], if
the input signal bandwidth is below half the sampling frequency (nongtens excitation).
This is caused by the oversampling of the input sigifal by the factor of2 [L/2] — 1
to satisfy the Nyquist theorem regarding the output signal of the RF Pébbasl model
FI[&:] to avoid aliasing. Figure 4.7 depicts the ill-conditioning [25, 9] of the data matrix in
terms of its condition number (the ratio between the largest and the smalledasivajue)
for three different orders of the RF PA nonlinearity If the excitation of the discrete-
time baseband \olterra model becomes more persigepw; — 1, the condition number
decreases which improves the estimation accuracy considerably [25, 9].

4.3 Volterra Kernel Interpolation

To overcome the problems mentioned in the last section, we perform the ramdiye
tem identification process in Fig. 4.3 and Fig. 4.4 with an angular samplingenegof
w, = ws/K,whereK = 2[L/2]—1 denotes the highest order of the baseband nonlinearity,
which satisfies the Nyquist theorem only regarding the input sigf¥al This is possible
because the RF PA baseband madig] in Fig. 4.8 is purely determined by the correspond-
ing multi-dimensional frequency-domain Volterra kernélﬁkﬂ(wl, ...,wok+1) Over the
frequency range of B in each of thek + 1 frequency variables; if the input signalz(t)
is band-limited tat B (see Ch. 2).

It has been shown in [23] that if the equality in (4.2) holds, the output sigh#he
discrete-time modei[n| in Fig. 4.8 is identical to the sampled and aliased output signal of
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Figure 4.7: The condition number (ratio between largest and smallagugr value) for
least squares problems determines the parameter estinatturacy. If the excitation
becomes more persistent (more wide-band), the conditiotbeudecreases.

the RF PA baseband modgl] = §(nT”), whereT’ = KT denotes the new sampling
time.

The output signal of the RF PA baseband model in (2.40) and (2.41) is ditadtfor a
2nd-order model in Fig. 4.9 (a). The output signal spectrum for a péatiérequencywg
is given by the integration of the two-dimensional frequency-domain s@gg?qwl,@)
along the integration path af; = —w; + wyo.

Because of the low angular sampling frequengy= 2B (which fulfills the Nyquist
theorem only regarding the input signa(t)), the sampled output signgln| becomes
aliased, and results in a spectrum which is composed of magnitude-scdlegeaatapped
spectral copies of?(w). The output signal spectrum for a particular frequengyin
Fig. 4.9 (b) is given by the non aliased compon%nffzc (wp) (integration along the path
we = —w1 + wp) and the aliased componeﬁl{f’; (wo — %) (integration along the path
wy = —wy — 2B —|—w0).

While the aliasing in the output signal[n] is generated by the sampling of the
continuous-time output signgl(t) with the low angular sampling frequenq}, the pseudo-
aliasing in the output signal of the discrete-time model

[L/2]—1 Nog41 Nogt1
= Z Z e Z Vok1[n1, - - - N2k41]
k=0 mn1=0 Nok4+1=0
k+1 2k+1
X H Z[n — ny) H ¥ [n — nyl, (4.8)
i=1 i=k+2
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is introduced because the integration p&th= —; + Qg in Fig. 4.10 (a) contains the
spectral components of the first periodic extensioﬁég(exp(jﬂl), exp(j2)).

Therefore, the output signal spectrum of #mel-order discrete-time model in (4.8) which
is calculated by (see Fig. 4.10)

-7+
/ Z{h) (exp(§(Q — Qa)), exp(jQ2)) ds

—T

Ziexp(j) = 5

pseudo-aliasing
s

1

To - / Z{y (exp(j(2 — 2a)), exp(j§2)) dSs, (4.9)

—7+
is identical to the aliased output signal spectrﬁ’gﬁ(exp(j(z)) (see Fig. 4.9 (c)) of the
sampled output signain| of the RF PA baseband model [23].

Although, nonlinear system identification can be accomplished with a low argania
pling frequencyw, (Nyquist theorem regarding the input signal), in many applications for
example digital predistortion, the discrete-time model (the inverse of the RFRaB#bland
modelH) must be operated on a sufficiently high angular sampling frequepttygenerate
the spectral out-off-band components required for the nonlinear awsapen (see Ch. 5).
This is also true if we use the discrete-time RF PA baseband model in a transiniier c
for overall system performance simulations.

To avoid pseudo-aliasing in the output signal of the low-rate identified etisd¢ime
model\7[:é] in Fig. 4.8, we have to guarantee, that the integral operation in (4.3) is not
performed over more than one of the periodically extended multi-dimensipaaks of
(4.4). This can be accomplished by a frequency scaling of the multi-dimexidiotierra
kernelsVay 11 (exp(jQ1), . . ., exp(jQar11)), by the factor ofK, which is equivalent to a
multi-dimensional zero stuffing, in the time domain, and the masking of the unwsjéed
tral copies of the frequency scaled Volterra kernels by the multi-dimenisiomat signal
spectrun] [ X4(exp(jQ) [[755 1, X% (exp(—j).

To see this, we first apply a multi-dimensional upsampling to the time-domain \olterra

kernelsvog1[n1, ..., nok11] in (4.8), which yields
Noki1 Noj+1 2k+1
Uok+1[N15 - - - N2kt1] Z Z Vogg1[l1, - - - loky1] H 6[n; — Kl;](4.10)
l1=0 lagp+1=0

whered[n| denotes the discrete-time unit impulse [45, 46, 48]. The upsamplingZoda
order discrete-time Volterra kernel with a memory depth of two is depicted irdFig.
If we calculate the multi-dimensional discrete Fourier transform of (4.10) by

Nog41 Nop41
Ui1(exp (§), -, exp(iQapi1)) = Y -+ Y diggra[na, - nokp]
n1=0 N2k+1=0
2k+1
X H exp(—jQin;), (4.11)

i=1
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Figure 4.8: Nonlinear system identification scheme for the RF PA basbgstent [Z]
based on a low angular sampling frequem’;y The ADCs and the discrete-time Volterra
model\7[i] are operated with an angular sampling frequen/g;ywhich is only two times
the bandwidth of the input signal(¢). The frequency-domain Volterra kernels of the
resulting low-rate mode‘7[:E] are frequency scaled (multi-dimensional upsampling) to
obtain a high-rate Volterra mod&[f] which is able to generate the same spectral out-of-
band components as the high-rate Volterra matj| in Fig. 4.4.
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Figure 4.9: Output signal spectra of Znd-order RF PA baseband system for the discrete-
time identification process in Fig. 4.8. (a) Building the muttsignal spectrunyy(w) by
integrating the two-dimensional frequency-domain outgighal }7(62 (w1,ws) along the
integration pathv, = —w; + w. (b) Magnitude-scaled and periodically extended aliased
output signal spectrum which is caused by the sampling gpoeéthw, = (27)/T" =

2B, wherel” = KT. The factorK denotes the highest order of the baseband nonlinearity.
(c) Frequency-scaled version of (b), caused by the samp|itig= y(nT").
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Figure 4.10: Output signal spectra of 2nd-order Volterra model for the discrete-time
RF PA identification process in Fig. 4.8. (a) Generation oféys®-aliasing caused
by the integration of the two-dimensional sigr@fQ)(exp(le),exp(jQz)) along the
integration path of2; = —Q; + Q which intersects the first periodic extension of
Zé)(exp(le),eXp(ng)). (b) Pseudo-aliased output signal spectrum of the \Volterra

model\7[§:}, which is identical to the output signal spectrum in Fig. &P
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Figure 4.11: Time-domain kernels of and-order Volterra system with a memory depth
of two. (a) Kernel of the low-rate (Nyquist theorem regagithe input signal) identified
model\7[:f]. (b) Upsampled kernels constructed from (a) by introduciergs between the
kernel entries of (a).

we obtain the frequency scaled Volterra kernels of the high sampling ratelrd in
Fig. 4.8 by

Uni1 (exp (), - ., exp(jQ11)) = Varr1(exp (K1), ..., exp(jE Qaps1)) -
(4.12)

It is important to note, that the multi-dimensional upsampling in (4.10) is accomglishe
with almost no additional costs, because we simply have to replace eaclanngitesdelay
2~ 1in (4.8) by al-sample delay .

To show that the RF PA baseband motlék] in Fig. 4.8 generates the identical non-
aliased output spectrum as the RF PA moﬁkﬁ} in Fig. 4.4, itis sufficient to show that the
equation

Uziet1(exp(§), - .., exp(jQ2k+1)) = Va1 (exp(j), - . ., exp(jQ2x+1)) (4.13)

holds for|2;| < BT. Outside this frequency range froB(l" < |Q;| < =, the \Volterra
kernels in (4.13) differ becau$éy, . is periodically extended with (see Fig. 4.13), where
Var41 can take arbitrary values. Because the Volterra kefvigls; in Fig. 4.8 are related
to the frequency-domain Volterra kernels of the RF PA baseband rkdagby

v . . - M Qoy,

‘/Qk-‘rl (exp(]Ql)a s 7exp(392k+1)) = H2k+1 (KT’ B Iiv;l> (414)
for |2;| < 7, we can rewrite (4.12) with (4.14) by

- . , ~ Q Q

Uziy1(exp(j), - .., exp(jQak1)) = Hort1 (TI, ce 2;“) ;. (415)
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Figure 4.12: Equivalence between the discrete-time Volterra matjg| which was iden-
tified at a sampling frequency which fulfills the Nyquist them regarding the output
signal and the interpolated Volterra mod#fz]. This model is based on the discrete-time
Volterra modeN [ ] which was identified on a sampling frequency which only flsfihe
Nyquist theorem regarding the input signal. The equivademalds only for band-limited
input signalsz[n] with a bandwidthB < 7/ K.

where|Q;| < n/K = BT, which proofs the equality given in (4.13). Figure 4.12 de-
picts the two equivalent block diagrams of the discrete-time nonlinear m&ﬂé]sand
U[z], whose output signals[»] are in the ideal case (perfect kernel estimation) exactly
the sampled non-aliased output signal from the RF PA baseband rhzlcpﬂ]eiln Fig. 4.3.
While the modeN[z] is identified on the high angular sampling frequengy the model
U[Z] is obtained from the modél[#] identified at the low angular sampling frequency
(w; = w,/K), and a Volterra kernel upsampling (multi-dimensional zero insertion) show
in Fig. 4.8. While the multi-dimensional upsampling only changes the scaling ofehe f
guency variables of the low-rate identified moﬂé&], (as shown in Fig. 4.13), the interpo-
lation (masking of the unwanted spectral copies) is accomplished by the multipligétio
the spectra of the high-rate sampled input sigrjal as depicted in Fig. 4.13.

Figure 4.14 shows the output signal power spectra sdeorder RF PA baseband model
(see Fig. 3.14 in Ch. 3)[z] and the nonlinear modél[#] in Fig. 4.12 which was obtained
from the baseband mod¥l[] by applying a Volterra kernel interpolation. The relative
frequency-domain error signal in Fig. 4.13 reflects the imperfect Valiezrnel estimation
with a standard linear least squares algorithm, which is caused by the REdeddnd
model uncertainties and noise.

4.4 Conclusion

Although nonlinear systems can be identified with nonlinear discrete-time madalsam-
pling rate which is just twice the input signal bandwidth (Nyquist theorerardigg the
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Figure 4.13: \olterra kernel interpolation of and-order Volterra modeV/[i], which
was identified on the low sampling frequency. The unwanted spectral copies of the
two-dimensional frequency-domain output sigﬁf%) (exp(j1),exp(j§22)) are masked

by the input signal spectrunX?(exp(jQ1))X?(exp(jQs)). The resulting spectrum

Zé)(exp(le), exp(j€l2)) is exactly the same as we obtain with the high sampling fre-
guency identification scheme in Fig. 4.4.
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Figure 4.14: Frequency-domain input and output signals from the twoedgnt Volterra
models in Fig. 4.12. (a) Input signal power spectrum. (b)gDusignal power spectrum of
a3rd-order RF PA baseband mode|#] (see Fig. 3.14 in Ch. 3). (c) Output signal power
spectrum of the interpolated Volterra modi#li]. The (relative) frequency-domain error
signal does not vanish due to the imperfect Volterra kersiimation.

input signal), for some applications, nonlinear discrete-time models whiobpsmated on
a sampling frequency which is at least twice the output signal bandwidtieaassary.

One of these applications is digital predistortion. A predistorter is a fundtimoak
which precedes the RF PA in the digital baseband domain in order to lineagizé¢nall
transmitter chain. Such discrete-time models are also required for ovesthswimula-
tions of communication systems to predict their performance without the full atatipnal
complexity of a transistor-based circuit simulation.

One method to build such nonlinear discrete-time models is to identify a complex base
band RF PA with a sampling frequency which satisfies the Nyquist theorgandieg the
output signal bandwidth (Nyquist sampling). One of the inherent problathshis method
is the ill-conditioned data matrix (large condition number) if we formulate a lineat lea
squares problem. This become especially serious, if we model high-ootdinearities
with large memory depths, because this leads in general to bad kernel estimate

Another difficulty is the demand for high sampling rate ADCs (depends onitiest
order of the baseband nonlinearity) which are in general expensil/igh power consum-
ing. To overcome these major drawbacks, we employ a Volterra kerngbiétion to the
nonlinear discrete-time model which was identified with a sampling frequencyhbio
Nyquist theorem. This is possible because the nonlinear system is puretyniteed by the
frequency-domain Volterra kernels within the bandwidth of the input sigma&ch of the
frequency variables.

The Volterra kernel interpolation is accomplished by a multi-dimensional insextion
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of the discrete-time model mentioned above. This procedure requires ahmasidi-
tional computational complexity, because we only have to replace eachanmites de-
lay in the complex baseband Volterra model (predistorter or RF PA bagehadel) by

a K-sample delay. This operation leads to a frequency scaling of the multi-dinm@hsio
frequency-domain Volterra kernels, which results in a change of the pranpgiriod from
27 — 27/K. The unwanted spectral copies of the frequency-domain \olterralseane
interpolated by a spectral masking with the discrete-time input signal whiclsarapled
with a frequency which is at least twice the bandwidth of the RF PA basehapdt signal
(Nyquist theorem regarding the output signal).
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Chapter 5

Digital Baseband Predistortion for RF
Power Amplifiers

In this chapter, we address the problem of digital predistortion for Rrepamplifiers. This
complex baseband method is one of the most efficient ways to linearize af.RIRé&dig-
ital predistortion is implemented by introducing a nonlinear functional blochr@pmate
inverse of the RF PA) which precedes the RF block (frequency upectar, pre-driver and
PA) in order to obtain an almost linear overall system with a higher efficidmcgec. 5.2,
we compare three different predistorter architectures (\olterra sem@sory polynomials
and static predistorters) regarding their linearization performance nesbisythe adjacent
channel power ratio (ACPR) and their complexities regarding the numkee@fparame-
ters. In all cases the predistorters are determined by a direct estimatian mdttrinverse
of the RF PA baseband system. In Sec.5.3, we consider the sampling neguiisefor
predistorters based onggh-order inverse. In Sec.5.4, we develop a predistortion scheme
based on a low sampling-rate RF PA baseband system identification. Thiteetngre saves
computational complexity (low-rate ADCs) and avoids possible numericalgmts during
parameter estimation.

5.1 Introduction

To obtain a sufficient output power level covering the range within a mobitencunication
cell, high power amplifiers are needed. As this device is one of the most ¢essive
components (large chip area) within a basestation, it is of fundamental impett@operate
the RF PA in the region of compression to obtain the highest possible effidjefficiency
is approximately inverse proportional to the linearity of the RF PA) [15, 2, Bhe region
of compression is defined by the RF PA input power level where the rehtte ideal
RF PA output power levels differs by dB. The main problem with this concept is the
dynamic nonlinear behavior of the RF PA in combination with the high peak-d¢cage
power ratio (PAPR> 10 dB) in the envelope of the transmission signal. This generally
leads to spectral regrowth and intermodulation distortion in the signal beadC(s. 2). The
spectral regrowth leads to adjacent channel interference which mi@xeoeed some levels
imposed by the regulatory bodies. On the other hand, intermodulation distorti@ases
the bit-error rate on the receiver side if we make no attempt to linearize krdiithe RF
PA, where the latter one results in a very poor efficiency.

Several state of the art methods like feed-forward [15, 16, 32] aré instoday’s power
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amplifier products which have a tremendous expense in RF components (zald#ticor
amplifier, directional couplers, delay lines and amplitude- and phase shiftitvgorks).
The overall efficiency of feed-forward transmitters is in the rang&dgbercent for typical
multi-carrier signals [15, 16, 32, 50].

Digital predistortion is a more powerful linearization technique, which expthiéscon-
siderable processing power now available from DSP devices. Thisiteehallows us
to perform the predistortion and all other required operations suchsisnsyidentifica-
tion (RF PA or its inverse) and parameter adaptation (RF PA is slightly time-vatisnto
temperature and power supply drifts, aging effects,...) with digital algorithm®utittne
difficulties which occur in feed-forward concepts. The efficiencyigitel predistorters can
be increased to approximately percent for typical multi-carrier signals [15, 16, 32, 50].

Digital predistorters can be classified either into static predistorters for lawamnere-
quirements or predistorters with memory which are also suitable for widebafABR. The
first group is based on the assumption that RF PAs can be describedtiwp tstatic nonlin-
earities called AM/AM-conversion and AM/PM-conversion (see Ch. BphJredistorters
can be implemented with look-up table techniques. Because both, the AM/ANerion
and the AM/PM-conversion purely depends on the magnitude of the trafemggnal,
the magnitude can be used to find the look-up table entries with the corrésgauin-
plex correction parameters. Static digital predistorters based on thisptareereported,
e.g., in [13, 15, 16, 32, 50]. Unfortunately, these digital predistortave la very limited
performance if we apply them to RF PAs excited with wideband signals suzlficas car-
rier WCDMA. The reason for this performance loss are the memory effelestrical and
thermo-electrical [11, 69, 70]) of the RF PA which are not considerathitic predistorters.

To overcome this problem, Volterra series [56, 52, 40] based predistavtéch incor-
porate memory can be advantageously used to improve the predistortamngarte con-
siderably. The drawback of \Volterra series predistorters is in gettezdhrge number of
parameters which increases immensely with the order of the nonlinearity antethery
length [40]. For this reason several different predistorter strustwith a lower number of
parameters such as Hammerstein, Wiener, Parallel-Wiener or Memoryspubipredis-
torters are proposed in the literature [51, 20, 18].

5.2 Complex Baseband Predistorters Identified with an
Indirect Learning Architecture

A digital predistorter is a nonlinear functional block implemented in the baskthaorete-
time domain which precedes the RF transmitter chain in order to linearize the transmitte
(nonlinearity is mainly caused by the RF PA). Because the behavior of aRARE gen-
erally unknown, we have to identify either the RF PA itself and calculate theozippate
inverse, or we directly identify the approximate inverse of the RF PA. Fi§utelepicts
the block diagram of a wireless transmitter including a digital predistortiongssmr to the
transmitter chain and a feedback path (receiver) for system identificatioradaptation.
Unfortunately only a small class of nonlinear systems possesses anrsxegise [40]. One
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Figureb5.1: Block diagram of a wireless communication transmitter ipeoating a digital
baseband predistortion processor. The predistortionegsar identifies the approximate
inverse of the transmitter chain and linearizes it by caiscpithe identified inverse and the
transmitter in order to reduce the nonlinear distortiorheftransmission signal(¢).

method to find the approximate inverse of a nonlinear system describedteyr&series
is the theory of pth-order inverses.

It has be shown in [56, 40, 55] that a Volterra system can be lineariiteer evith a
\olterra pre- or a postdistorter (Volterra systenptif-order.) up to the order @f Therefore
the output signal of the cascade of the nonlinear system (RF PA) andether postdistorter
is composed of the input signal and a nonlinear distortion which is caustdtelmonzero
\olterra kernels of higher order than If we calculate thepth-order postdistorter of a
Volterra system, this system is also the predistorter of the Volterra systendifférence
between the two different cascaded systems is the remaining nonlineatiainstor

Unfortunately, the theory opth-order inverses leads to complicated structures for the
predistorter on the one hand, and on the other hand it is difficult (Volgsyseems are not
orthogonal) to identify the different Volterra kernels of the RF PA to buildgtreslistorter.

One method to overcome this difficulty is to identify directly an approximate postsev
of the RF PA with an indirect learning architecture [33]. This identificatiarhéecture is
shown in the upper part of Fig. 5.3 (part of the predistortion procdssbig. 5.1). The
postdistorter will be identified by minimizing a cost function defined on the egigmal
é[n]. If the nonlinear model described by the operatas linear in the parameters, we can
use a standard linear optimization algorithm (LMS, RLS,...) [26, 40] to find thienon
parameters of the postdistorter. If we have found the optimum parameepy them
into the predistorter which precedes the DAC and the RF PA baseband Fhaal&lig. 5.3
(lower part), in order to linearize the transmitter chain (mainly the RF PA). THieect
learning architecture is based on the assumption that if we have found tiheuoppost-
inverse , this post-inverse is a good approximation for the pre-inveredr{gerse and the
post-inverse of a nonlinear system are in general different), whimims¢o be true (verified
from simulations) if the cost function converges to a small value. [22,3018].
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5.2.1 \olterra Predistorter

We have shown in Ch. 2, that RF PAs can be successfully described dortmgex base-
band domain with nonlinear models which are based on \olterra series (solt@eemory-
polynomials, AM/AM-conversion and AM/PM-conversion,...). The most appamethod
to realize a digital predistorter with an indirect learning architecture as rshowig. 5.1
and Fig. 5.3 is to implement the postdistorter described by the nonlinear aperasoone
of these models.
If we discretize the complex baseband Volterra series model in (2.33)pgohyg iaito the

predistortion setup in Fig. 5.1 and Fig. 5.3 we obtain

K—1Mspy1—-1 Mopy1—1

= o Y Dopga[ma, gk
k=0 m1=0 map4+1=
E+1 2k+1
x [Taln—mid [ 40 —ma, (5.1)
=1 i=k+2
wherel}kﬂ[ml, ..., mok1] denotes the unknown discrete-time \olterra kerngfg;

is the memory length of the different orders of the nonlinearity of the distim&Volterra
model an®2K — 1 is the highest order of the postdistorter nonlinearity. Figure 5.4 shows
a 3rd-order discrete-time Volterra postdistorter with a memory lengtiifgf = 3. The
Volterra system is implemented as a static nonlinear block which builds the diffeven-
binations of the delayed and conjugate input signals and a bank of commex filters to
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Figure 5.3: Detailed illustration of the predistortion processor a@ggi in Fig. 5.1. The
upper part shows the identification (postdistorter trajhiof the post-inverse of the base-
band power amplifier modél with an adaptive algorithm (LMS, RLS, ...). This struc-
ture is called indirect learning architecture, because weetly identify the inverse of the
baseband power amplifier instead of the baseband powerfanfiielf (direct learning
architecture). After the postdistorter training, the piéstorterL is cascaded as predis-
torter with the ADC and the baseband power amplifiew linearize the transmitter chain
as depicted on the lower part.
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perform the convolution operations in (5.1) in the following way

(5.2)

The big drawback of the Volterra series model in (5.1) and (5.2) is the faxgeer of
unknown parameters (Volterra kernel entries, é,§0], 71 [1], I3[1, 0, 2],...) which increases
immensely with the order of the nonlinearity and the memory length and which isssqu
for the (2k + 1)th-order by

Pojer1 = (Mapyr) (5.3)
where the total number of parameters is is given by
K-1
P=>" Py (5.4)
k=0

The number of parameters in (5.3) can be reduced if we exploit the comneupatiperty
of the products of the delayed input signals in the discrete-time \Volterraseris.1)

k+1 2k+1 k+1 2k+1
[Ton—ma T #n—mid=]]dln-mnwl ] 50— mmel (6.5)
=1 i=k+2 i=1 i=k+2

wherem; (i) andms (i) denotes the distinct permutations of the indiees ..., ms; and
Miao, ..., Mok respectively. Therefore the discrete-time Volterra series model in (5.1)
can be simplified with (5.5), which results in

z[n] = L[g[n]]
K—1Mspy1—1 Mop1—1 Mopyq1—1 Mop1—1
k=0 m1=0 Mpp1=Mf My y2=0 Mok 41="mM2k
B k+1 2k+1
X logy1[ma, ..., maky1] H gln —m;] H g [n —my], (5.6)
=1 i=k+2

which reduces the number of parameters for the + 1)th-order of the discrete-time
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Figure5.4: 3rd-order discrete-time Volterra postdistorter with a meyriength of M3 =

3. The postdistorter is composed of a static nonlinear blobickwbuilds the different
combinations of the delayed input signals and its conjugatka bank of linear complex
filters to perform the convolution operations in (5.1).

Volterra series model in (5.6) to [40]

P (Morr TR\ (Mops + k-1
_ Mapa +k [(M2k+1 +k— 1)!}2

5.7
k+1 I (Maq — 1)! (®.7)

5.2.2 Memory-Polynomial Predistorter

Although, the number of parameters of discrete-time Volterra series modebecaduced
if we exploit some symmetry properties, the number of parameters Zf:_ol Pogyq,
wherePy 1 is given by (5.7), are in general still quite large (efy. = 18 with M3 = 3).
In Ch. 2 we have considered a special case of a continuous-time Vdegiea model called
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Figure 5.5: A complex baseband postdistorter described by the nonlioeeratorL in
Fig. 5.3 is built with discrete-time memory-polynomialshélpostdistorter is composed of
a bank of static nonlinearities and the linear discreteefiiters G+ 1 (exp(52)).

memory-polynomial model where the off-diagonal Volterra kernels eserasd to be zero.
In this section we apply a discretized version of this memory-polynomial to liretre RF
PA baseband model of Fig. 5.3 in an indirect-learning architecture sétwp.donstrain the
discrete-time Volterra kernels in (5.6).1[m1, ..., marr1] = 0, formy # mg # --- #
mog11, We obtain the discrete-time memory-polynomial model given by

Z[n] = L{g[n])

K—1Masp -1

-3 Gowe1lm] (5l — m)[* §ln —m]
k=0 m=0
K—1

=" Goeraln] * [§[n]]** §[n] (5.8)
k=0

wheregoy1[m] = }k“ [mi1, ..., mok1] describes the discrete-time Volterra kernels along

the diagonals in a multi-dimensional space. The memory-polynomial postdisto(teB)
is shown in Fig. 5.5, wher€@sy., 1 (exp(jQ)) = F{gors1[n]}.

The postdistorter is composed of a bank of static nonlinearities (monomialksjewach
of these nonlinear systems is cascaded with a complex linear diltgr; (exp(jQ)) as
given by the convolution operation in (5.8). The output sigrals.[n| of these filters
are summed up to build the final output sigi&k]. The number of parameters for the
(2k + 1)th-order term is now purely determined by the corresponding memory lehtta o
linear filters in Fig. 5.5, given by

Py 1 = Mop4a, (5.9)

where the total number of parameters is given with (5.9) and (5.4) byzf:‘ol Mogyq.
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If we compare the number of parameters for the memory-polynomial postdisior(5.9)
with the number of parameters for the Volterra series based postdistorte7)n \fe re-
alize a considerable reduction of parametersifor 0 (factor of 6 for P; = M3 = 3).

This parameter reduction can of course result in a poorer linearizatiorpeance if the
assumption regarding the off-diagonal Volterra kernel entries is tisfisd.

5.2.3 Static Predistorter

Static predistorters are based on the assumption that the RF PA which skdinddrized
can be sufficiently described by the two static nonlinearities called AM/AM+emion and
AM/PM-conversion (see Ch. 2 and Ch. 3). This kind of linearization entsuccessfully
applied by many researchers to linearize low-power RF PAs (handesdig)h-power RF
PAs (basestations) with narrowband transmission signals [13, 50, B2, 15

If the memory length in (5.1) is constraint to Bds;,,; = 1 for0 < k£ < K — 1,
the complex baseband Volterra postdistorter in (5.1) reduces to the welinkoase of a
complex static polynomial function given by (see Ch. 2)

<
=)

I
= M
L

k+1 2k+1

Cokt1 H?)[n] H g [n]

1=k+2

ol
L

Ganr ] ** gln], (5.10)

b
Il
o

whereéy 1 = Gor+1[0] = lor41]0, . . ., 0] describes the Volterra kernel entries for the time-
lag of zero. The structure of this static postdistorter is shown in Fig. 5.6:eithe complex
linear filters in Fig. 5.5 have been replaced by simple complex constantsefofethe
number of unknown parameters for tf# + 1)th-order term in (5.10) reduces to

Popy1 =1, (5.11)

which results with (5.4) in a total number of parameters give®by K.

As by using this kind of postdistorter, we do not consider any memorytsftddche RF
PA, we usually have a very limited linearization performance if the transmisgjoalss
not narrowband. This is caused by the approximation of the frequéoityain Volterra
kernels with complex constants over the input signal frequency raegeGh. 3). If this
kernels are almost flat (low-power RF PAs) or the transmission signa\iidth becomes
small, the approximation with complex constants is more accurate, which gengeddly
an acceptable linearization performance [13].

5.2.4 Simulation Results of Different Predistorters in an Ind irect
Learning Architecture

In this section we simulate the performance of three different complex \@kenies based
predistorters (Volterra, memory-polynomial and static predistorter) whielapplied to a
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Figure5.6: Complex baseband linearizer described by the nonlineaatpé in Fig. 5.3
for the case of static polynomials. The postdistorter is posed of a bank of static non-
linearities and the variable complex valued constasis; .

2.2-GHz 90-W Class AB RF power amplifier with an Infineon PTF210901 LDMOS tran-
sistor [28]. The identification of the unknown parameters is performed witimdinect
learning architecture as shown in Fig. 5.3, where the optimum post-inyeosal{storter)

is determined by solving a linear optimization problem. Once we have found thmeup
post-inverse (postdistorter) we copy the postdistorter parameters intodtistprter and
hope that the post-inverse is a good approximation for the pre-invethe &F PA. This is

in general satisfied if the error signgh] in Fig. 5.3 becomes sufficiently small during the
optimization process [22, 33]. A direct identification of the optimum pre-iswaevould be
more difficult because in this case we have to solve a nonlinear optimizatibiepr¢2],
even if we use predistorters which are linear in their parameters.

In this simulation setup we employ a linear least-squares algorithm with trundatgd s
lar value decomposition [25, 9, 26] to find the optimum parameters of the passaand
to avoid the numerical instabilities as discussed in Chap. 4. The RF PA is simulited
the microwave circuit simulator Microwave Offiein harmonic balance mode, where the
optimization and predistortion is performed in a MATL&Benvironment.

To test the performance of the three different predistorters we usg-adorier WCDMA
signal with a bandwidth of approximate?y) MHz (to see the impact of memory effects) and
a carrier frequency df.17 GHz. After the output signal of the RF PA is passed trough the
1st-zonal filter (BPF) in Fig. 5.2 to filter out the frequency componentsratdie angular
carrier frequency o, the input signak:(¢) and the output signal(t) are down converted
to the complex baseband domain.

Both signals are sampled with. / (27) = 122.88 Mhz (32 x ¢, wherec is the chip-rate of
3.84 MHz) which is sufficiently high to consider the out-off-band spectrunmseduby the
PA nonlinearity up to frequencies where the absolute power level becoegégibly low.

To compare the performance of the different predistorters we measuagljdgicent chan-
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ACPR (-5 MHz) | ACPR (+5 MHz) | Number of
parameters’
\olterra predistorter 20 dB 20 dB 42
Static predistorter 4dB 6 dB 4
Memory-polynomial 17dB 16 dB 11
predistorter

Table 5.1: Adjacent channel power ratios (ACPR) between the linedr2z2-GHz 90-W
Class AB RF power amplifiers [28] and the RF power amplifiehwitt linearization. The
ACPR is evaluated with a root raised cosine filtBr-£ 5 MHz, roll off factor R = 0.22).

nel power ratio (ACPR= 101log(P;,/Paq;), WhereP;, and P,4 denotes the inband and
adjacent channel power respectively) of the linearized RF PA and fheARwithout lin-
earization (highest nonlinear order of the post- and predistorter isnaskto be seven, root
raised cosine filter wittB = 5 MHz (consider only one carrier), roll off factd? = 0.22)
in a frequency distance af5 Mhz from the centers of thést and4th carrier respectively.
The memory lengttd/y 1 for the different orders of the nonlinearities of the postdistorters
are chosen in such a way that we increase the memory length step by stamrzewith
the lowest order of the nonlinearity until the cost function becomes a minimure If
use the Volterra predistorter in (5.1) with the memory lengtldff = 4 for the 1st-order
term, M3 = 2 for the 3rd-order term and\/; = M, = 2 respectively, we obtain the lin-
earization performance depicted in Fig. 5.7, curve (d). The adjacennehpower can be
considerably reduced (20 dB) compared to the RF PA without linearizadiibmough, the
Volterra predistorters offer a good linearization performance, the nuofggrameters is
large (P = 42) (see Tab. 5.1). To overcome this drawback, we can use static préglistor
given in (5.10) to linearize the RF PA. In this case the number of parameteisecreduced
to P = 4 (see Tab. 5.1). Nevertheless, as expected from the theory, the swtistprter
performance is poor if we use a four-carrier WCDMA sign&l £ 20 MHz), because we
do not consider any memory effects of the RF PA (frequency-domainn@lkernels are
approximated with complex constants). The normalized power spectrum pfduiistorter
is shown in Fig. 5.7, curve (b). The memory-polynomial predistorter in &f&)ys a good
trade-off between complexity{ = 11) and linearization performance as shown in Fig. 5.7,
curve (c) and Tab. 5.1 for the memory lengthidf = 4, M3 = 3, M5 = 2 andM7 = 2.
Figure 5.8 and Fig. 5.9 show the magnitude and phase responses of thiexctingar
filters (up to therth-order with the memory length given above) of the memory-polynomial
post- and predistorter depicted in Fig. 5.5. The frequency resporseslaulated by ap-
plying a Fourier transform to the identified complex impulse responses miviEb. 5.2.
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Figure5.7: Comparison of the normalized power spectrum (PS) of thatined (Volterra

, memory-polynomial and static predistort@r2-GHz 90-W Class AB RF power ampli-
fiers [28] and the RF power amplifier without linearization) PS of the RF PA without
linearization, (b) PS of the static predistorter lineadiZF PA , (c) PS of the memory-
polynomial predistorter linearized RF PA , (d) PD of the ¥oit predistorter linearized
RF PA.

g1[n] gsln] gs[n] guln]

—1.144 4+ 50322 | (=17+j56)E~4 | (-27—j3)E~* | (285.8 —j45.1)E—¢

0.324 —j0.04 | (47T+j1TVE~* | (-12+5)E~* | (43.2+451.7)E~S

(=54 —FT3)E=3 | (=15 —j1T)E~* 0 0

(=20 + j45)E3 0 0 0

100

Table 5.2: Complex impulse responses of the linear filters (identifiathmeters of the
post-inverse) of the memory-polynomial predistorter ig.FH.5.
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Figure 5.8. Normalized magnitude responses of the complex linear dil@&h the
polynomial-predistorter depicted in Fig. 5.5, (a)Jlog‘Gl(exp(jQ/(ZWT)))‘, (b)
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Figure 59: Phase responses of the complex linear filters of the polyalemi
predistorter depicted in Fig. 5.5, (a) 4t (jQ/(2xT))}, (b) arg G (iQ/(2xT))}, (c)
arg{ G5 (j/(2nT))}, (d) arg G7(i€/ (27 T)) }-
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5.3 Sampling-Rate Requirements for Volterra
Predistorters Based on a pth-Order Inverse

The identification of the Volterra postdistorter in an indirect-learning arctiteshown in
Fig. 5.3 is accomplished at a sampling frequency which fulfills the Nyquistémeoegard-
ing the output signal bandwidth. Unfortunately we cannot perform ireggra low-rate
system identification and a Volterra kernel interpolation afterwards, assfied in Ch. 4.
To see this, we consider a cascade of two continuous-time complex bdséditarra sys-
temsQ[z] = (HoR)[Z] as shown in Fig. 5.10, wheR{i] andH [Z] describe the predistorter
and the RF PA baseband system respectively. The output signals attlistprter and the
RF PA baseband model in Fig. 5.10 are given by [56, 52].

Z(t) = R[z(1)]

K
R
and
j(t) = H[z(t)]
M ~
= Z Hom+1[2(t)], (5.13)
m=0

where2 K +1 and2M + 1 denote the highest orders of the predistorter and RF PA baseband
nonlinearities (see Fig. 5.11). The cascade of these \olterra seridts iesa new \olterra
series, whose response to the scaled input sigi{@) is given by

j(t) = Q[e&(t)]
N
= AHQun [E(D)]. (5.14)
k=0

This system is depicted in Fig. 5.12, where the highest order of the nontineéthe
cascade of the two Volterra systems is given by the product of the pomdisg orders of
the Volterra system2N + 1 = (2K + 1)(2M + 1). The output signaj(¢) in (5.13) can be
expressed with (5.12) anglt) — cz(t) by

gt) =H[z(®)]

M K
Z +1 [ZC2 22k+1 ]
m=0 k=0

Iz

M 2K+1 2K+1
=303 Y e Ay {E (0 B (D) (5.15)
m=0 n1=1 Nam41=1
n; €Ny
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Figure 5.10: Cascade of two continuous-time \Volterra systems wh#@ andR[z] de-
scribe the baseband RF power amplifier and the predistoetgoectively. The cascade of
the two Volterra systems results in a new Volterra systeroriteedd byQ[z] = (H o R)[Z].

where the(2m + 1)st-linear operator in (5.15) can be expressed as a complex \olterra
functional given by

o oo
s (o0 Zoma(0) = [ [ Famia (e )
0 0
m+1 2m+1
X H éni(t — Ti) H é:zi(t — Ti) dT1 R dem_H.
=1 i=m+2

(5.16)

The Volterra operatmé%Jrl in Fig. 5.12 can be expressed in terms of the \Volterra operators
Rom+1 andHo41 by equating the corresponding powers:df (5.14) and (5.15) [55, 52].
The resulting Volterra system is illustrated in Fig. 5.13 #dr= K = 1, where thelst and
3rd-order operators are expressed by

Qi 7] = (Hi o Ry)[]
Q3[Z] = (H1 o R3)[Z] + (H3 o Ry)[Z]. (5.17)
To remove thedrd-order nonlinear distortion of the RF PA baseband sydtewe set the

3rd-order operator in (5.1~7f23[92] = 0. If we preserve the linear response of the RF PA
baseband moded); [Z] = H[Z]) we obtain the3rd-order predistorter with (5.17) given by

Ri[#] = 1
Rs[z] = (—Hy o Hg)[a]. (5.18)
The higher order operatof3;, . .., Qq in Fig. 5.13 are not explicitly calculated because

they represent the added higher order nonlinear distortion (was esgmirwithout predis-
tortion), which cannot be adjusted independently once the predistoséelea determined.

If we insert the calculated predistorter operators from (5.18) into theatgs in (5.17),
we obtain a Volterra system where tBe-order nonlinear distortion has been completely
removed (see Fig. 5.14).
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Figure 5.11. Detailed block diagram of the cascade of two complex baskhatterra
systems (predistorter and RF PA baseband system). Bo#nsystre purely described by
odd-order nonlinear operators.
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Q(2N+1) [j]

Figure 5.12: Complex baseband Volterra system which develops from tkeack in
Fig. 5.10 and Fig. 5.11. The highest order of nonlinearitgiven by2N + 1 = (2K +
1)(2M + 1) where2K + 1 and2M + 1 are the highest nonlinear orders of the predistorter
and RF power amplifier, respectively.
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Figure 5.13: Complex baseband \Volterra system from Fig. 5.12 which dpgefrom

the cascade connection of twod-order Volterra systems. The system is implemented in
terms of the corresponding Volterra operatbirs, ., of the RF PA baseband system and
the \olterra operatorR,;,, of the predistorter, respectively.
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Figure 5.14: Block diagram of thedrd-order \olterra operatd®, from Fig. 5.13 which

incorporates the implement&ed-order term of the predistort&®; = 7|:|1_lo Hs in terms
of the RF PA baseband system operators.

105



As predistorters are usually implemented in the discrete-time domain, they muateope
on a sufficiently high sampling frequency > 2B(2K + 1). The term(2K + 1) denotes
the highest order of the nonlinear distortion caused by the RF PA babslgatem which
should be removed, and denotes again the bandwidth of the input signal.

If we consider the time-domain output signal of re-order predistorter in Fig. 5.14

R3
—///773(71772,73)33(t—n)§7(t—Tg)j’;*(t_q—g)dﬁd@drg (5.19)
000

in the three-dimensional frequency space, we obtain the output signal

U (w1, wa, w3) = Ry (w1, w2, ws) X (w1) X (wa) X*(~w3) (5.20)

which is band-limited tatB in each of the three frequency variables. Therefore, it seems
that the3rd-order nonlinear systetRs in Fig. 5.14 could be identified on a sampling fre-
quency which is just twice the input signal bandwidth because the functi@naf) is zero
outside the cube shown in Fig. 5.15. But if we consider the frequency-dovéterra
kernel of the cascade connectienﬂflo Hs in (5.18) we obtain the new frequency-domain
\olterra kernel given by [52R3 (w1, wa, ws) = —Hz(w1, wa, wy) Hy (w1 +wa+ws), which
yields with (5.20)

0(3)((.«)1,(4}2,(4}3) = —ﬁg(wl,wg,wg)flfl(wl + wsy —l—wg)X(wl)X(wg) X*(—w3).
(5.21)

From (5.21), we realize that evenl|it;| < B for i = 1,2,3 (point inside the cube of
Fig. 5.15), we generally need the frequency response of the inveese Bystenf; ! (w)
for w > B. Unfortunately, this information cannot be obtained from a system ideniifica
scheme whose input signal bandwidth is beR¥:

If we consider the time-domain signal in (5.19) and calculate the corresmpnd
frequency-domain signal with (2.40) and (5.21), we obtain

Ulw) = —Hfl(w)(27lr)2 / / Hs3(w — v1,v1 — v2,02) X (w — v1) X (v1 — v2)

x X*(—w2) dvy dus. (5.22)

From (5.22), we realize that the output sigﬁmu) is determined as expected by the product
of the frequency-domain output signal of 8rel-order nonlinear part of the RF PA baseband
system (integral expression) and the frequency response of the padaof the RF PA
baseband system. This can also be explained graphically, cf. Fig. 5i&.integrand
within the double-integral in Fig. 5.15 describes a plane inside a cube wapdnds on the
angular frequency. The frequency-domain output sigrfa(w) is calculated by integrating
the three dimensional functidﬂg) (w1,we,ws) along this plane.
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Figure5.15: Frequency-domain output signal oed-order nonlinear system. Depending
on the frequency, we have different planes within a cube with an edge-len@th®
(determined by the input signal bandwidth). The integratid U(g) (w1,ws,ws) along
these planes yields the corresponding frequency resﬁb@s}a

5.4 Predistorters Based on Low Sampling Frequency
Identification and Volterra Kernel Interpolation

In this section, we focus on a simple predistortion architecture proposet#jn Wwhich
makes it possible to apply the low sampling rate system identification and Voltmalk
interpolation as shown in Ch. 4. The discrete-time predistartercomposed of a parallel
structure of a delay operater?® and a cascade of the purely nonlinear péyt with the
inverse of the linear paH of an operatoH, described by the equatidn= Z_6+|:|1_10|:|p.
The architecture of as part of the overall system is shown in Fig. 5.16, whédescribes
the RF PA baseband model in terms of its linear opetdtoand its nonlinear operatét p

in the discrete-time domain. The highest order of the RF PA baseband modekited by
P € N,. The composition of the predistorter and the RF PA baseband system inTg. 5

V= (ﬂlmp)o(z—un;lonp) (5.23)
—_——
H C
yields a linearization iffH p || < ||H1|| with H; = —H; andH p = H p, where the operator
norm corresponds to the signal norm withl || = SUP|<1 [Hiu||. Qualitatively this

becomes clear by decomposing (5.23) as

V:Z_50|:|1—2_60HP+HPO(Z_6—|:|;10HP) (5.24)

where we used the fact that the delay operator commutes with all time-invagardtors
andH; o H; ' = 279,
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Figure 5.16: Cascade of a simple predistorterand the RF power amplifier baseband
modelH. The amplifier is composed of its linear and nonlinear paits the highest
order of nonlinearity ofP. If the nonlinearity is weak, which is expressed Hj'ylpH <

HH ||, the RF power amplifier baseband model can be linearizediwith; = —H; and
Hp = Hp), which yieldsjj[n] ~ H1[Z[n — 4]).

The above assumption on weak nonlinearity impliésp o A,

that we can approximate the last term in (5.24las> (=0 —H;  oH p) ~ Hpoz—?. Thus
the overall system response is obtaineWas % o H,. Therefore the time-domain output
signal of the cascade of the predistorteand the RF PA baseband systéhin Fig. 5.16
yieldsjj[n] ~ Hy[Z[n — d]].

A quantitative analysis of the linearization performance of the architectureginb.16
can be done if we employ the \olterra series representation of the invojvetors.
Subsequently, the set of frequency-domain Volterra kerﬁgA&(zh o 29pp1) forp =
0,1,2,...,(P? —1)/2 of V is expressed in terms of the Volterra kernels of the operators
accordmg to the composition in (5.23). If we apply thedomain cascade rule for discrete-
time Volterra series [52] t = H o L and arrange the indices in order to consider only the
present odd-order Volterra kernels, we obtain

‘72p+1(21>-"722p+1 Z Z Z {H2n+1 RU1) " Ru(l)s oo Rl(2n+1) T

n=0mi=1 map4+1=1

u(2n+1)=2p+1

miENO
2n+1 _
Zu@nin) || Lo Giggys -+ - Zu(k))}? (5.25)
k=1
where the lower and upper index bound functions are definétby= ((m1,...,mg_1) =

1+ Y 21 my, andu(k) = u(my,. .., mg) = Y r_, mj, respectively with (1) = 1. If we
substitute the Volterra kernels of the cascade of the nonlinear opétatand the linear
operatotd;  given by (see Fig. 5.17)

I~/2p+1<21, N ,Z2p+1) = E’QP_H(Zl, ceey Z2p+1)ﬁ1_1(zl cee ng+1) (526)
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Figure5.17: Equivalent representations of the predistorter strudtuire Fig. 5.16 which

is based on the superposition property of the linear oplel:af(%. The resulting Volterra
kernelsL 5,11 are determined by the cascade connection of the keHhgls, and the

. —
linear kerneH, .
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with L1 (z) = Hy(2)H; '(2) = 279 into (5.25), we obtain

‘72p+1(21, cees Z2p4) Z Z Z {H2n+1 ZU1) " Fu(l)s ey Rl(2n41) T

n=0mi=1 maon41=1

u(2n+1)=2p+1
m;EN,

2n+1

o

Zu@nt1)) L1 Ho gy - - Zuie) Hi gy - 'Zu(k))}'
k1
(5.27)

Figure 5.17 depicts the expanded predistorter strudtifrem Fig. 5.16 and its equivalent

structure (based on the superposition principle of the linear opdrf‘lq_t%))which is used in
(5.27).
If we separate the terms in (5.27) for= 0 andn = p, (5.27) results in

Vapi1 (21, .-y 2opy1) = Hi(21 -+ zopi1 ) Hy Hz1 - - 2ops1) Hopra (21, - -, 22ps1)
+H2p+1(217-~ s 2ap1) (21 - 22p41) 70
+Z Yoo > {H2n+1 Z1(1) " Zu(1)s - - - Z(2n41)
n=1mp=1 mant1=1

u(2n+1)=2p+1
m;EN,

2n+1
Zu@nsn) || Hl_l(zl(k)"‘Zu(k))Hmk(zl(k)w--azu(k))}’

(5.28)

where the first two summands in (5.28) equalize if the linear frequency-doviodierra
kernel is given by 3
H{Y(2) = —H;Y(2)279, (5.29)

and the higher order frequency-domain Volterra kernelgforl are

ﬁ2p+1 (Zl, e ,Zp) = g2p+1(21, e ,Zp). (530)

Thus a system with a perfectly adjusted predistorter results in the followidgomtkr
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frequency-domain Volterra kernels

Vi (2) = H, (z)z_‘S

Va(z1, 22,23) = 0

V2p+1(21,-. 22p+1 Z Z Z {H2n+1 RU1) " Ru(1)s - ey Rl(2n4+1)

n=1mi=1 mant+1=1

u(2n+1)=2p+1
m;EN,

2n+1
Zu@nrn) LT Hi e - 2ame) Gy~ Za)~°

X Hmk (Zl(k)a RN zu(k))}
(5.31)
Although perfect equalization is only possible for the third order \oltersanél
173(21, z9,23), the resulting distortion of the predistorted PA output signal is much
, because all the ker-
neIsV'ng(zl, ..., z2p+1) for p > 2in (2.32) incorporate the multiplicative inverse of the
linear kernelfl;” ( ).

To establlsh a relation to the more general linearization method gfttherder inverse
[56] we consider the special case of thel-order inverse for a system described by the
operator decompositidd = H; + Hs + H p, where the operatdt p contains all odd-order
operator components with> 3. The predistorter based on tBe-order inverse, where the
linear frequency response is not equalized, is given with (5.18) by 90 (1—H ' oHs),
while according to (5.23) the applied predistortefis- %0 (1—H; o(H3+Hp)). From
that, it is obvious that for &rd-order nonlinear modéH, the two predistortion schemes
coincide. The comparison of the two schemes in case of a higher-oréesénof a system
e.g. thesth-orderH = H; + Hs + Hs + Hp will point out an essential difference of
which the important consequences for a low-rate implementation are diddugbe next
subsection.

5.4.1 Predistortion and Upsampling

As shown in Ch. 4, the low sampling-rate identified RF PA baseband nwdeV; + V p
can be upsampled to a higher sampling frequency such that it exactlyduse® the
output of the RF PA baseband systétn The natural question posed in this section is
whether or not we can apply the upsampled model of Ch. 4 for the praédistarchi-

tecture shown in Fig. 5.16 withil; 1(z) = —V; 1 ()20 and Hopi1(21, - - -, 22p11) =
Vapi1 (2, ..., Z§o+1) such that it yields the identical result as the corresponding applica-

tion of kernels oH in (5.29) and (5.30). As the model is able to reproduce the exact output
of the RF PA baseband system, one is tempted to answer this question poditivigstu-
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nately, they do not perform in the same way when applied to the predistortbitesture.
To see this, first note that the kernels of the upsampled model and the REdehand
system coincide only over the input signal bandwidth. Reconsideringtthetsre of the

predistorter. = >~% + H, ' o Hp reveals that, due to the spectral regrowthbf, the
linear operatoﬂl_1 acts on a signal with a bandwidth that is in gendrdimes the input

signal bandwidth. Thus, the output signal of the upsampled versiBIq_%)ﬂiffers from the
correct version given in (5.29) and (5.30) by an amount that depamtise flatness of the
linear frequency response of the RF PA baseband system. The flatresgunse is, the
less the effect of the periodic extension in the upsampled version outsidgptitesignal
bandwidth. Once we have copied the linear kernel of the upsampled éri?gﬁs(zp) of
the RF PA into the predistorter, we can correct the periodic extensionse@dny the low-
rate identification) oﬂflf 1(2) by adapting the corresponding filter parameters with standard
linear optimization algorithms (e.g. least-mean-square algorithm). Although, e fiih
terlfll‘1 is operated on the high sampling rate, the modification of the filter parameters is
accomplished on the low sampling rate. The initialization is taken to be the upsampled
respons&f/l‘l(zp)z—‘s. The adaptation process is depicted in Fig. 5.18.

In this context, an important property of the applied predistortion archietter =9 +

Iill_1 o Hp becomes evident. As the operatp with the kernelsiy, 1 (21, . . . , 22p41) =
Vapi1 (2.0, zQJ;H) operates on the input signal bandwidth, its response is identical to

the response d¥lp with flgp+1(z1, ..., z2p+1) and thus requires no adaptation.

This feature allows for efficient low-rate adaptive predistortion, wioelg the few pa-
rameters off[l‘l(z) need to be tuned, while the mass of parameters from the higher-order
frequency responses require no adaptation. This stands in conttiastdpplication of the
upsampled kernel%'gp+1(zf, e zgjﬂ) to thepth-order inverse architecture.

In the case of upsampled kernels, every composition of operators wheralinear op-
eratorH,; ., with & > 0 precedes one or more operators, an adaptation of all consecutive
operators foIIowing:I%H is necessary to yield equivalent performance ttaorder in-
verse utilizing the correct high-rate kernels of the RF PA basebandhsyte

The overall system including the identification of the low-rate madef the systenH,
predistortei with its optional adaptation, and the kernel upsampling is shown in Fig. 5.18.
The switch in Fig. 5.18 indicates that for the initial identification of the low-rateehddhe
predistorter is bypassed. Note that simultaneous low-rate identificatiorredigiortion is
generally not possible, because of the spectral regrowth at the aitiingt predistorter.

In the derivations above we have focused on Volterra predistortérepgh we can em-
ploy other nonlinear models as e.g. memory-polynomials or models basedqoeficy-
domain expansion, if they are sufficient to model the RF PA who should beriaeel.

5.4.2 Application and Simulation Results

To evaluate the performance of the proposed low-rate predistortiomscheFig. 5.18,

the linearization of two different PAs for wireless and wireline transmissi@tesns are
performed. Théth-order complex baseband Volterra model in Fig. 5.19 is used to simulate
the behavior of an RF PA for wireless applications.
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N

Figure 5.18: Multi-rate digital predistortion architectuté o L composed of a high-rate
systemH, a high-rate predistortdr = 29 + H;l o Hp with an optional low-rate adap-

. . o —1 : Y
tation of the linear operatdf; , a low-rate system identificatiodi, and Volterra kernel
upsampling (zero insertion); switch positibrior identification and position for predis-
tortion; withé = nP

B ﬁl(z)
> Hgl(z)
Z[n] ~ ~
> Hi(z) H3y(z)

Figure 5.19: Complex baseband Volterra model ofth-order RF power amplifier for
wireless applicationd;l = H; + Hz + Hs.
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Figure 5.20: Normalized power spectra for the RF PA baseband model (ait lsignal
power spectrum, (b) Output signal power spectrum for the Rb&seband model with-
out linearization, (c) Output signal power spectrum for linearized RF PA baseband
model (without adaptation of the linear kernel), (d) Outgiginal power spectrum for the
linearized RF PA baseband model (with adaptation of thalikernel).

_The frequency-domain Volterra kernels in this example are choserH gg),
Hg(zl, 29, 23) = H34(212223)H31(Zl)HgQ(ZQ)H§3(23) and H5(Zl, ceey 25) = a (Cf

Fig. 5.19). Following the exposition of the previous sections, the normaliaedvaidth of

the discrete-time input signa[n] has to be lower than/5. If we apply the low-rate predis-
tortion scheme in Fig. 5.18 we can reduce the nonlinear distortion measutieel &gjacent
channel power ratio (ACPR) depending on the flatness of the lineardnegtdomain
\olterra kernelH,(z) as discussed in the previous section. In this simulation we have
applied a linear kernel with magnitude variations arouriddB (pessimistic assumption
see Ch. 2). For this case we obtain an ACPR of approximalgB (see Fig. 5.20) if

we apply the predistorter with the upsampled (zero insertion) Volterra lsawithout any

adaptation of the systeﬁilfl. The ACPR can be further increased to approxima2elgB,
if we additionally adjust the linear system with a low-rate adaptive algorithm.

The predistortion scheme in Fig. 5.18 is not restricted to wireless RF PAs wainich
described in the equivalent complex baseband domain, it can also bedajgpliereline
transmission systems where the predistorter is applied to real-valued si§oathis case
we also incorporate the even-order operators to describe nonlingeeslsuch as PAs . To
evaluate the performance of the proposed low-rate predistortion sctteni@earization of
a PA for a wireline transmission system is performed. The systémtaken to be a high-
rate discrete-time model of a PA for a VDSL analog front-end [71] that ¢desmvith the
distortion ratios of the standard [1]. To be able to apply predistortion oxesléstic distor-
tion range, the circuit was mistuned to yield a harmonic distortion rati® o8. The model
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Figure 5.21: Normalized power spectrum at, for the output of the power amplifie
(dashed), the output of the linearizatibho L applying the upsampled kernels for the
predistortion (solid), and the ideal linear response (dddlotted); results averaged over
50 different randomly chosen DMT input signals.

has been obtained by fitting a simgith-order Volterra model to the 1/O measurement of
a transistor-level circuit simulation. The standard 4-band VDSL systenuiiiize a band-
width of up to12 MHz, where each band is DMT modulated. The frequency allocation for
this simulation according to the standard [1] (Band Plan 998) consists ofawasiream
bands with bandwidth of each59 MHz, located at center frequencie225 MHz and
6.885 MHz. Following the exposition of the previous sections the sampling rate of digita
predistortion for that system has to be at least= 27 x 81.8 MHz. Conventionally, this
directly translates to the sampling requirements of the ADC in the feedbackrpéth to

5.1) used for the parameterization of the predistorter. The proposedaabprequires an
ADC sampling rate of onlyw; = 27 x 16.36 MHz.

The following results are all obtained by averaging over 50 differenflzdiginals with
constant peak-to-average power ratio (PAPR) but randomly chdseegonstellation. The
constant PAPR corresponds to the average PAR occurring if the pbaseellations are
drawn from the uniform distributiot[0, 27r)", with N being the number of carriers. In
Fig. 5.21 the average power spectrum of the output of the amplifier and isilied version
using the upsampled kernels of the low-rate identification is depicted. Thesponding

results with an additional low-rate adaptation\bff1 where the initialization is taken to be

V' (27), are shown in Fig. 5.22.

The graph in Fig. 5.21 indicates the general result that for systems withfeefiaency
response over the input signal bandwidth, such as power amplifierapgieation of the
upsampled kernels already yields a good linearization performance. Videng from

Fig. 5.22 that a gain in linearization can be achieved by the low-rate adaptxsltkuziﬁ1
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Figure 5.22: Normalized power spectrum at, for the output of the power amplifie

(dashed), the output of the linearizatibho L applying a low-rate adaptation fclﬁll_1
in the predistorter (solid), and the ideal linear responisstied-dotted); results averaged
over50 different randomly chosen DMT input signals.

initialized with \7;1(2P). The underlying optimization problem for the adapth?é1 is
nonlinear because its output signal passes through the nonlineataspéta generate the
low-rate error signal for the adaptation. Although good initialization is resrgsfor such
problems in general, extensive simulations have not shown any criticahdepce of the
performance on the initialization.

5.5 Conclusion

We have shown that state-of-the art digital predistorters which arellmasstatic nonlin-
earities are not sufficient to linearize RF PAs for wideband applicaticeause they do
not consider memory effects. \Volterra series based predistorterdlaréoaconsider such
memory effects and have in general a very good linearization perfoendme drawback
of Volterra series predistorters is the large number of required paraveseecially for the
higher orders of the nonlinearity. Therefore many different modelsdas a reduction of
\olterra series models such as Memory polynomials (only the diagonal eotiies time-
domain Volterra kernels are considered) can be used for digital predistoThe number
of parameters for these simplified predistorters can be considerablgegtdompared to
the full Volterra predistorter, while the linearization performance is still ptadde for most
applications.

Although nonlinear systems such as RF PAs can be identified on a samplighiate
is just twice the input signal bandwidth, for digital predistortion a sampling wdtieh
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Figure 5.23: Block diagram of a wireless transmitter including digitaégistortion and
low sampling-rate system identification (equivalent to thgital baseband system in
Fig. 5.18).

is at least twice the output signal bandwidth is required. However we $taaen for a
particular predistortion architecture that it is sufficient to interpolate théimemar kernels
of the low-rate identified PA and copy these high-rate kernels into the poeis The
unwanted spectral copies of the higher order kernels are maskeq ol tband-limited
input signals. This multi-rate predistorter works perfectly (compared touhedyphigh-rate
system) if the linear kernel of the RF PA is completely flat over the input sigaadlwidth
(interpolated linear kernel is equal to the high-rate identified kernel) notbe we have
a sub-optimal solution which can be improved upon, if we apply an additiomaldte
adaptive algorithm to adjust the frequency response of the interpolated kamel in the
predistorter over the whole frequency band. With a typical smooth lineaekéor the
PA (magnitude variation is approximately 1.5 dB) we obtain a neighbor charovetr
suppression of approximately) dB if we solely apply Volterra kernel interpolation on the
low-rate identified kernels, areh dB if we additionally adjust the frequency response of
the interpolated linear kernel over the whole frequency band. Thi®meaince can be
obtained, although we only employ a low-cost, low-rate ADC in the analog-&nd of the
transmitter feedback path. Figure 5.23, depicts a block diagram of a veiresmitter
including the digital predistortorter, the low sampling-rate system identificatiohtle
Volterra kernel upsampling block from the multi-rate predistortion architedtuFig. 5.18
in a real world environment.
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Chapter 6
Concluding Remarks

In this thesis we analyzed different methods to describe nonlinear passipstems such
as RF PAs with input-output behavior models in the complex baseband dombese T
models can be advantageously used in system-level simulations to predietthd per-
formance (spectral masks, bit error rate,...) of wireless communicatiomsysiecluding
the nonlinear RF PA) without the full computational complexity of transistoe@as$rcuit
simulations. In Ch. 2 we started with the well known description of RF PAs withdiffer-
ent static nonlinearities called AM/AM-conversion and AM/PM-conversidndels based
on this concept are unfortunately not able to describe memory effecte@ihand electro-
thermal) [70, 69, 11] of RF PAs, which are important for wideband apiptioa such as
four-carrier WCDMA. For this reason we used the concept of compdeseband Volterra
series models introduced by S. Benedetto [7] for the modeling of nonliegelti® links
and applied them to Class-AB RF PAs for basestation applications. Théac&wf such
Volterra series models is that the complexity grows immensely with the order obtie n
linearity and the memory length of the RF PA. In Ch. 3, we developed a mooieaffi
representation of complex baseband Volterra series models which is tagezjuency-
domain Volterra kernel expansion with orthogonal polynomials. If the it of the
wideband input signal is still small compared to the carrier frequency, éheels vary in
general quite smoothly over the input signal band. In this case we cam reftieice the
number of parameters considerably. One of the key issues in system ngadedonlinear
system identification. Although we know from the work of W. A. Franck][2Bat non-
linear system identification can be accomplished efficiently at a sampling-racé wnly
fulfills the Nyquist theorem regarding the input signal, the identified modelgemneral not
sufficient for system modeling where the spectral out-of-band cormieméays a crucial
role. For this reason, we developed the concept of Volterra kernepoitgion in Ch. 4,
which allows nonlinear identification on a low sampling rate as considered |n Zf3
ter the low-rate identification (reduced hardware costs), we transfa&mtidel to a new
model which is operated on a sufficiently high sampling rate to be able to demieesspec-
tral out-of-band components generated by a nonlinear system. It basshewn that this
transformation can be accomplished with almost no additional computationalexdtyp
by simple zero insertion.

The second topic of this thesis is the linearization of nonlinear RF PAs with digéelis-
tortion. State of the art digital predistorters are primarily based on static eanfianctions
implemented with look-up table techniques. With this method the complex baseband in-
put signal will be multiplied with a complex correction factor, in order to obtain adin
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transmitter in the ideal case[13]. As discussed above, such static naiflinedons are not
sufficient to describe memory effects of RF PAs, which become importabfeestations
operated with wideband signals such as four-carrier WCDMA.. In Che fwestigated dif-
ferent predistorter structures and nonlinear identification methods bagérect or indirect
methods, with a special focus on implementation complexity. Furthermore weshawa
that special predistorter structures are applicable to apply low-rate pankystem identi-
fication in combination with Volterra kernel interpolation to obtain a sufficiendiietion
performance with an adequate hardware complexity.
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Appendix A

Hilbert Transform of Complex
Modulated Passband Signals

If we consider the amplitude and phase modulated passband sighat a(t) cos(w.t +
¢o(t)) = Re{x(t)e?<'} in the frequency-domain, where we assume that the angular carrier
frequencyw, > B, andz(t) is band-limited tot- B, we obtain with [46]

X(w) = F{a(t)}
17~ -
=3 [F@—w) + X (~w+w)], (A1)
where X (w) = F{z(t)} denotes the Fourier transform of the complex baseband signal
i(t) = a(t)e?®® . The complex transfer function of a Hilbert transformer is given in the

frequency-domain by [46, 48, 29]

Hy(w) = —jsgn(w), (A.2)
where
1 forw>0
sen(w) = {—1 forw <0 (A3)

If we apply this complex transfer function to the frequency-domain sign#Aia), we
obtain

Xs(w) = Hy(w) X (w)

= 2 [ @ - w) + X (o + )] (A4)

If we transformX(w) back to the time domain by applying the inverse Fourier transform
F~1 we obtain

zs(t) = FH{Xo(w)}
[ (t)e]wct + j*e—jwct]
Im {a: t)ejwﬂt} , (A.5)

wherelm {Z(t)e/*' } = a(t) sin(wct + ¢o(t)). Therefore the Hilbert transformer shifts the
carrier of the passband signal®t°, where the amplitude(¢) and the phase(t) of the
passband input signalt) are preserved.
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Appendix B

Optimum Parameter Calculation of
Multi-Variate Orthogonal Polynomials

To calculate the optimum parameters of the multi-dimensional orthogonal polyhsenia
ries in (3.1), we first evaluate the integral square error in (3.3) with thetitgld Hor 11 —
H2k+1‘2 = (H2k+1 — H2k+1)(H§k+1 — H;k:-‘rl)’ which results with (31) in

B B ~ Mok 1
E = / . /p(wl) .. .p(w2k+1) <H2k+1(w2k+1) — Z Cmy Mgt
-B -B mi,...,Mak+1=0
Mo 11
X Tm1 (wl) . . .Tm2k+1 (W2k+1)> <H§k+1 (w2k+1) — Z C:nl,...,m2k+1
mi,...,Mog41=0
X Ty (W1) - Trngys (w2k+1)> dwoj 1. (B.1)
wherewsy, 1 = [w1, . .., warr1]! anddwar 1 = dwy - - - dwsy 1 are introduced for a more

compact notation. If we evaluate the product terms in (B.1) we obtain

B B
. 2
E = /---/P(W1)"'P(w2k+1)’H2k+1(w2k+1)‘ dwaj 41
‘B B
Mo 41

B B
- Z Cmy,...,;mag41 / s / p(wl) o 'p(w2k+1)ﬁ;k+l(w2k+1)
‘B B

ml,...,m2k+1:O

X Ty (W1) -+ - Tongyyy (Wok 1) dwagy1
Mag 41 B

B
- > C?}Ll,...,m%ﬂ/~-/P(M)"'P(W2k+1)ﬁ2k+1(w2k+1)
B

ml,‘..,m2k+1:O B

X Ty (w1) -+ 'Tm2k+1 (wokt1) dwap 1
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Maog41 Moy 41 B
Y S e Corns / P(1)Tons (1) Ty (1) ooy
’B

mi,...,Mag+1=0n1,...,n2k+1=0

B
- / P(Wok+1) Doy 1 (Wok+1) Tgy sy (Wokt1)dwop 11
B
(B.2)

If we apply the orthogonality condition in (3.2) to the last summation term in (B.2), th
integral square error reduces to

B B
E = / /p wi) - plwags1) ‘H2k+1(w2k+1 ‘ dwaj 1
Mag 1 B B
[ 7%
- 5 Cmy,.. Mg /---/P(wl)"'P(w2k+1)H2k+1(w2k+1)
mi,...,Mag4+1=0 -B -B

X Ty (W1) -+ Trngysy (Wok41) dwoky

Mag 41

B B
o Z ml, :m2k+1/ /pwl uJQk-l—l)]J%-f—l(‘-‘-’Zk—f—l)

mi,...,map41=0
X Ty (W1) -+ Ty (Wo41) dwog i1

Moy 11

+ Z ‘le,...,m2k+1 ‘2 )\m1 e >\’I’I’L2k+1 . (83)

mi,...,Mag41=0

By completing the magnitude square in (B.3), the final expression for therahteguare
error is given by

B B
E = / /p wi) - plwak+1) ‘H2k+1(w2k+1 ‘ dwoy 1
M2k+1
1
—+ Cmi,...,mapt1 /\ml e /\m2k+1 - P\ \
m1,...,Mok1=0 mi M2k+1
B B 2
X /-~-/p(wl)"'p(w2k+1)H2k+1(w2k+1)Tm1(wl)“‘Tm2k+1(w2k+1)dw2k+1
‘B B
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B B

/--~/p(wl)"'p(w2k+1)ﬁ2k+1(w2k+l)

2k+1
"B B

Mok t1

2.

mi,...,Mak+1=0

1
A Am

2

X Ty (W1) - Trngyy (Woky1) dwop 1|,  (B.4)

where only the middle summation term depends on the unknown complex pammeter

Cmy,..;mais, - BECAUSE this term is always nonnegative, the integral square emoniis
mized by

B B
1
Co(my,...;mag 1) \/ Amy ')‘m2k+1 - W / cee /p(wl) - p(wWak1)
mi mMmak+1 B B
X Hop+1(wa1) Tony (W1) ++ + Trgges s (Wok41) dwger1 = 0, (B.5)

which yields the optimum complex parameters in (3.5)

B B
1
Colmaeomarst) = Y N /---/p(m)-~-p(w2k+1)
mi
- -B

o )\m2k+1

X Hops1(wo1) Tiny (1) Trnggeyy (wort1) w1, (B.6)
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Appendix C

Quasi-Memoryless Systems Based on
Fourier Series Expansion

If we consider the nonlinear passband model in Fig. 2.3 Git] = v(z), the output signal
u(t) can be rewritten in the following form

u(t) = vla(t) cosy(t)], (C.1)
wherey(t) = w.t + ¢o(t). Because the expression in (C.1) is periodi@in) with 27, we
can expand (C.1) in a Fourier series [10]

u(t) =mo(a(t)) + > 2Re{my(a(t))exp(jk(t))}, (C.2)
k=1

where the complex magnitude dependent Fourier coefficients are segreg

27
mila) = 5 [ olacos w)expl(—ju)dv, (€3)
0

Thelst-zonal filte=[u] in Fig. C.1 passes only the frequency components which are located
near the carrier frequency. Therefore the filtered output signavéngiith (C.2) by

y(t) = 2Re{mi(a(t))exp(ji(1))}- (C.4)
The complex Fourier coefficient;(a) can be calculated with (C.3) andacosvy) =
S blacos ) 4+ S elasiny] (see Fig. 2.3) by
2

L 1 L 1 27
mifa) =3 by [leosulexp(—juldu + 3 ea'y - [lsinullexp(~ju)e.
=1 =1 0

0

(C.5)
The evaluation of the integral expressions in (C.5) yields
L7 (! forl e N
o / [cosw]lexpuww{21<<1+1>/2> orte o (C.6)
2w .
0 0 otherwise
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Figure C.1: Memoryless nonlinear passband system from Fig. 2.3, wiher@onlinear
operatorG|z] is represented by the static nonlinear functidn).

and
7 1 ! forle N
or [nvllexp(—u)as = 7 \@enyz) OISR e
WO 0 otherwise

Therefore the complex Fourier coefficient in (C.5) can be expresgbd®@:6) and (C.7) by

[L/2]-1

1 2k +1 .
mi(a) = Z a2"“+122k+1 (k 41 > (bok+1 — JC2k+1) - (C.8)
k=0

dopy1

If we express (C.4) with (C.8), we obtain wifl(t) = a(t)exp(joo(t)) the desired result
given by

k=0

[L/2]-1
y(t)Re{ Yy (i’fjf) f(t)”%)expuwct)}. (C9)
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