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Abstract

Automatically making sense of digital information, and specially of music dig-
ital documents, is an important problem our modern society is facing. In fact,
there are still many tasks that, although being easily performed by humans,
cannot be effectively performed by a computer. In this work we focus on one
of such tasks: the identification of musical piece versions (alternate renditions
of the same musical composition like cover songs, live recordings, remixes,
etc.). In particular, we adopt a computational approach solely based on the
information provided by the audio signal. We propose a system for version
identification that is robust to the main musical changes between versions,
including timbre, tempo, key and structure changes. Such a system exploits
nonlinear time series analysis tools and standard methods for quantitative mu-
sic description, and it does not make use of a specific modeling strategy for
data extracted from audio, i.e. it is a model-free system. We report remarkable
accuracies for this system, both with our data and through an international
evaluation framework. Indeed, according to this framework, our model-free
approach achieves the highest accuracy among current version identification
systems (up to the moment of writing this thesis). Model-based approaches
are also investigated. For that we consider a number of linear and nonlinear
time series models. We show that, although model-based approaches do not
reach the highest accuracies, they present a number of advantages, specially
with regard to computational complexity and parameter setting. In addition,
we explore post-processing strategies for version identification systems, and
show how unsupervised grouping algorithms allow the characterization and
enhancement of the output of query-by-example systems such as the version
identification ones. To this end, we build and study a complex network of
versions and apply clustering and community detection algorithms. Overall,
our work brings automatic version identification to an unprecedented stage
where high accuracies are achieved and, at the same time, explores promising
directions for future research. Although our steps are guided by the nature of
the considered signals (music recordings) and the characteristics of the task at
hand (version identification), we believe our methodology can be easily trans-
ferred to other contexts and domains.
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Resum

Racionalitzar o donar significat de manera automàtica a la informació digital,
especialment als documents digitals de música, és un problema important que
la nostra societat moderna està afrontant. De fet, encara hi ha moltes tasques
que, malgrat els humans les puguem fer fàcilment, encara no poden ser rea-
litzades per un ordinador. En aquest treball ens centrem en una d’aquestes
tasques: la identificació de versions musicals (interpretacions alternatives d’u-
na mateixa composició de música tals com ‘covers’, enregistraments en directe,
remixos, etc.). Basant-nos en un enfocamen computacional, i utilitzant única-
ment la informació que ens proporciona el senyal d’àudio, proposem un sistema
per a la identificació de versions que és robust als principals canvis musicals
que hi pot haver entre elles, incloent canvis en el timbre, el tempo, la tonalitat
o l’estructura del tema. Aquest sistema explota eines per a l’anàlisi no linial
de sèries temporals i mètodes estàndard per a la descripció quantitativa de
la música. A més a més, no utilitza cap estratègia de modelat de les dades
extretes de l’àudio; és un sistema ‘lliure de model’. Amb aquest sistema obte-
nim molt bons resultats, tant amb les nostres dades com a través d’un entorn
d’avaluació internacional. De fet, d’acord amb aquestes últimes avaluacions,
el nostre sistema lliure de model obté a dia d’avui els millors resultats d’entre
tots els sistemes avaluats. També investiguem sistemes basats en models. A
tal efecte, considerem un seguit de models de sèries temporals, tant linials com
no linials. D’aquesta manera veiem que, encara que els nostres sistemes ba-
sats en models no aconsegueixen els millors resultats, aquests presenten certs
avantatges relatius a la complexitat computacional i a l’elecció de paràmetres.
A més a més, també explorem algunes estratègies de post-processat per a sis-
temes d’identificació de versions. Concretament, evidenciem que algoritmes
d’agrupament no supervisats permeten la caracterització i la millora dels re-
sultats de sistemes que funcionen a través de ‘preguntes per exemple’, tals com
els d’identificació de versions. Amb aquest objectiu construim i estudiem una
xarxa complexa de versions i apliquem tècniques d’agrupament i de detecció
de comunitats. En general, el nostre treball porta la identificació automàtica
de versions a un estadi sense precedents on s’obtenen molt bons resultats i, al
mateix temps, explora noves direccions de futur. Malgrat que els passos que
seguim estan guiats per la natura dels senyals involucrats en el nostre pro-
blema (enregistraments musicals) i les característiques de la tasca que volem
solucionar (identificació de versions), creiem que la nostra metodologia es pot
transferir fàcilment a altres àmbits i contextos.
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Preface

When this thesis started, there had been very few attempts to automatically
identify musical piece versions from audio. A quick look at the literature review
of this thesis for works done before 2007 corroborates this assertion. However,
in the course of this thesis, many interesting studies have appeared, changing
and shaping the task at hand. This thesis makes a valuable contribution with
the compilation of all this specific literature.
Automatic version identification has rapidly evolved from a quite incipient
topic to a well-established and partially solved one, from quite low accuracies
to salient results. We are very proud to say that our work from 2007 to 2010,
which is reported in this thesis, jointly with our preliminary work from 2006
to 2007, has been essential and key to such a rapid evolution of the topic,
developing a leading role within our scientific community. At the same time
we hope that our work will remain inspirational for forthcoming research in
both related and unrelated scientific areas.
The outcomes of this research have been published in a number of interna-
tional conferences, journals, and a book chapter. Some of these publications
have been featured in the media. Our approaches have participated in several
editions of an international evaluation campaign, obtaining the highest accu-
racies in each edition where we participated, and the highest accuracies among
all editions up to the moment of writing this thesis. Furthermore, part of this
research has been incorporated into a commercial media broadcast monitoring
service, and the author has patented two of his inventions separately.
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CHAPTER 1
Introduction

1.1 Motivation

1.1.1 Automatic version detection

To relate and compare musical pieces is a very complex task. Musical pieces
usually collapse multiple information sources (e.g. multiple instruments) and
exhibit several degrees of inner structure (e.g. syntactic structure; Lerdahl
& Jackendorff, 1983). Moreover, a number of complex multifaceted interac-
tions can be established between pieces (e.g. concept-sharing; Zbikowski, 2002).
However, in spite of such degrees of complexity, we humans are outstandingly
good at performing certain musical judgments, some of them requiring very
little conscious effort (Dowling & Harwood, 1985). A prominent example is the
ability to assess whether or not two audio renditions correspond to the same
underlying musical piece.
Think for instance in the song1 “Happy birthday to you”2. If somebody sings its
melody, even if some parts are out of tune, we can easily recognize this musical
piece. This recognition ability is present in any listener, provided that he/she
is familiar with the piece, and it could grow with increased exposure to music
(Bailes, 2010; Dalla Bella et al., 2003). Moreover, this ability is not restricted
to human beings. In particular, research has been conducted with whales
(Frankel, 1998) and birds (Comins & Genter, 2010; Marler & Slabbekoorn,
2004), showing that certain species present comparable capabilities.
Neither is the recognition of a musical piece is restricted to a specific audio
rendition. In fact, we group together variations of the same musical composi-
tion. This grouping is inherent in our music experiences and can be explained

1In this thesis we loosely employ the term song to refer to any rendition of a musical
piece, independently of the fact of whether there is any singing or not. Strictly speaking, a
song is “a piece of music for voice or voices, whether accompanied or unaccompanied, or the
act or art of singing” (Chew et al., 2010).

2http://en.wikipedia.org/wiki/Happy_birthday_song (all Internet links were checked
at the time of submission of this thesis).

1

http://en.wikipedia.org/wiki/Happy_birthday_song
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in terms of categorization (Zbikowski, 2002). Returning to the example above,
the fact of whether it is Marylin Monroe’s or The Ramones’ performance3

does not prevent us identifying the “Happy birthday” song. Notice however
that there are numerous objective differences between the two performances.
The first one is sung ‘a cappella’, with a slow and varying tempo. The sec-
ond one is rendered in punk style, including electric guitars, bass and drums,
and has a fast and strict tempo. Despite these important differences, we are
able to tell unequivocally that the two performances correspond to the same
musical piece. In other words, we recognize that the two songs are versions.
Furthermore, we group them under the category versions of Happy Birthday,
where other performances of this particular musical piece may also be found
(in the case of knowing more of them).
An interesting way to investigate version recognition is through computational
resources. Even before Turing (1950), researchers had already been interested
in determining whether a computer can imitate a human (Saygin et al., 2000).
This question is an essential concept in artificial intelligence (Russell & Norvig,
2003). Indeed, relevant knowledge can be gained from such imitations, both
with theoretical and practical consequences. Our research, framed in the con-
text of machine listening and music computing (Polotti & Rocchesso, 2008)
also follows this approach.
Think of a computer that could make decisions as a human would. In partic-
ular, imagine that you provide a computer with a pair of music items and it
tells you if they are the same or not. Moreover, imagine that the two items do
not correspond to the same interpretation, but to two different versions of the
same underlying musical piece, such as our “Happy birthday” example. If we
add the fact that the machine should perform such a judgment without any
prior information of the music items, just by analyzing two audio waveforms
at a time, we are facing quite a challenging task (Fig. 1.1). This thesis deals
with such a task.

1.1.2 Music information retrieval

In what regards to research around music and computers, developments within
the music information retrieval (MIR) community have a fundamental role.
MIR is an interdisciplinary research field that aims at automatically under-
standing, describing, retrieving and organizing musical contents (Casey et al.,
2008b; Downie, 2008; Lesaffre, 2005; Orio, 2006). In particular, the MIR com-
munity has invested much effort in automatically assessing music similarity
from an audio content-based perspective (e.g. Berenzweig et al., 2004; Pam-
palk, 2006; Pohle et al., 2009; West & Lamere, 2007). Music similarity is a key
feature for searching and organizing today’s million-track digital music collec-

3Due to copyright issues we cannot provide a link to listen to music items. In case the
reader may be interested in listening to the cited items we suggest searching for them by
artist and title on the web, e.g. in YouTube (http://www.youtube.com).

http://www.youtube.com
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Figure 1.1: Illustration of automatic version detection from the audio signal.

tions (Pachet, 2005), and developing automatic ways to quantify it addresses
part of a more general problem our modern society is facing: making sense of
digital information (Ratzan, 2004).
Music similarity, however, is an ambiguous term. Apart from involving dif-
ferent musical facets such as timbre, tonality or rhythm, it also depends on
cultural (or contextual) and personal (or subjective) aspects (Harwood, 1976;
Lynch et al., 1990). There are many factors involved in music similarity judg-
ments, and some of them, maybe the most relevant ones, are difficult to mea-
sure (Berenzweig et al., 2004). Therefore, it is not surprising that current
efforts to develop a computational music similarity measure based on the au-
dio content crash against the so-called “glass ceiling” (Aucouturier & Pachet,
2004). Indeed, average user scores4 for such current approaches for music sim-
ilarity do not surpass a value of 6 in a scale from 0 to 10.
To further proceed in assessing the similarity between music documents, some
MIR researchers have devoted their efforts to the related task of version identi-
fication. Remarkably, and in contrast to music similarity, the relation between
versions is context-independent and can be qualitatively defined and objec-
tively measured. In addition, research on this task can yield valuable clues on
how music similarity can be modeled. As Downie et al. (2008) indicate, consid-
ering the task of version identification “motivates MIR researchers to expand
their notions of similarity beyond acoustic similarity to include the impor-
tant idea that musical works retain their identity notwithstanding variations
in style, genre, orchestration, rhythm or melodic ornamentation, etc”.

1.2 Versions

1.2.1 Terms

In previously published work (e.g. Serrà et al., 2010a) we pragmatically used
the term cover songs to refer to “different renditions of the same underlying

4http://www.music-ir.org/mirex/wiki/2010:Audio_Music_Similarity_and_
Retrieval_Results

http://www.music-ir.org/mirex/wiki/2010:Audio_Music_Similarity_and_Retrieval_Results
http://www.music-ir.org/mirex/wiki/2010:Audio_Music_Similarity_and_Retrieval_Results
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musical piece”. This was motivated by the term’s extended usage within the
MIR community, including the MIR evaluation exchange (MIREX), an inter-
national initiative for the quantitative evaluation of MIR systems5 (Downie,
2008; Downie et al., 2008).
One should note that, strictly speaking, the term cover song may carry a lot
of ambiguities (Mosser, 2010). Many authors limit the term to popular music,
in particular pop and rock genres, and to the period after 1950s (Coyle, 2002;
Mosser, 2010; Solis, 2010; Weinstein, 1998; Witmer & Marks, 2010). In ad-
dition, they highlight its commercial, marketing and industrial connotations.
Indeed, cover songs were originally part of a strategy to profit from ‘hits’ that
had achieved significant commercial success. Record companies obtained im-
portant economic benefits by releasing alternative versions in other commercial
or geographical areas without remunerating the original artist or label. Little
promotion, different recording media and highly localized distribution in the
middle of the 20th century favored these practices6 (Plasketes, 2010; Weinstein,
1998; Witmer & Marks, 2010).
One may think about employing the term variation. Quoting the Grove Music
Online, variation is a musical form “in which a discrete theme is repeated
several or many times with various modifications” (Sisman, 2010). Although
variation forms can be written as ‘free-standing’ pieces, the term commonly
refers to the repetition of musical motifs within a piece. Moreover, in our
view, the term has some restrictions with regard to music style (classical and
contemporary music) and epoch (from 16th century on). To avoid any of these
connotations we opt for not using it in this thesis.
Another term that is usually employed in this context is plagiarism (Posner,
2007). According to the online Merriam-Webster dictionary7, plagiarizing im-
plies “to steal and pass off (the ideas or words of another) as one’s own” and
also “to use (another’s production) without crediting the source”. With these
definitions we can already see that the term clearly involves some sort of law
infringement. Besides, plagiarism might be used in a provocative way. There
are many artists who, without hiding the source, create art around the pla-
giarism concept by taking one or more existing audio recordings and altering
them in some way to make a new composition. An example of this practice is
found in the artist John Oswald and his project “Plunderphonics”8 (Oswald,
1985). Anyway, the term plagiarism leaves out many renditions of music that
do not conform to the above in its definition. Thus, in our opinion, plagiarism
is an even more restrictive term than cover song or variation.
In this thesis, instead of cover songs, cover versions, plagiarisms or variations,
we simply employ the term versions. We feel that this is a better way to de-

5We will introduce MIREX in more detail in Sec. 2.3.3.
6For additional information the reader may consult http://en.wikipedia.org/wiki/

Cover_version
7http://www.merriam-webster.com/dictionary/plagiarize
8http://en.wikipedia.org/wiki/Plunderphonics

http://en.wikipedia.org/wiki/Cover_version
http://en.wikipedia.org/wiki/Cover_version
http://www.merriam-webster.com/dictionary/plagiarize
http://en.wikipedia.org/wiki/Plunderphonics
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nominate the music material we consider for our experiments. Moreover, we
think it is the best term to be associated with the motivations that drive our
research (Sec. 1.1). With this term we aim to get rid of the economical, geo-
graphical, historical and social connotations outlined previously. In particular,
we would like to stress that our research is not particularly focused nor biased
to cover songs or plagiarisms.
We think about music versions as a term that globally encompasses any rendi-
tion or recording of the same musical piece, independently of the motivations
for performing it, the historical period or whether it is sung or not. Reuse
of music material has been a common practice for centuries, or even since
the beginning of human history (Mithen, 2007). An example of an ancient
reuse practice is the traditional Gregorian melody of “Dies Irae”, which has
been used as a ‘musical quotation’ in requiems and a number of other classical
compositions9 (see Caldwell & Boyd, 2010, and references therein). In gen-
eral, musicians can play versions simply as a homage or tribute to the original
performer, composer or band. But there are many more reasons to play a
version (c.f. Plasketes, 2010; Solis, 2010): to translate a song to another lan-
guage, to adapt a musical piece to a particular country or regional tastes, to
contemporize an old piece, to introduce a new artist, to parody or just for the
simple pleasure of playing a familiar song. In addition, one must not forget
that versions represent the opportunity for beginners and consolidated artists
to perform a radically different interpretation of a musical piece, incorporating
then a large amount of ‘creativity’ and ‘originality’.
Plasketes (2010) summarizes the last paragraph in one (long) sentence: “stan-
dardization, interpretation, incorporation, adaptation, appropriation and ap-
preciation have been manifest in a multitude of musical manners and methods,
including retrospectives and reissues, the emergence of rap and sampling as
commercially dominant pop styles, karaoke, and a steady flow, if not stream,
of cover compilations and tribute recordings which revisit a significant cross
section of musical periods, styles, genre and artists and their catalogs of com-
positions”.

1.2.2 Types

Many distinctions between versions can be made. The majority of these come
from musicology (e.g. Coyle, 2002; Mosser, 2010; Plasketes, 2010), although
few have been made from an MIR perspective (Gómez, 2006; Tsai et al., 2008;
Yang, 2001). In general, but specially true for the MIR-based ones, these
distinctions aim at identifying different situations where a song was performed
in the context of mainstream popular music. In this context, one can find a
huge amount of tags, terms and labels related to versions, many of them being
just buzzwords for commercial purposes.

9For a list the reader may consult http://en.wikipedia.org/wiki/Dies_irae

http://en.wikipedia.org/wiki/Dies_irae
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In Serrà et al. (2010a) we provided some examples of tags associated to versions,
which we now briefly extend.

Remaster Creating a new master for an album or song generally implies some
sort of sound enhancement to a previously existing product (e.g. com-
pression, equalization, different endings or fade-outs).

Instrumental Sometimes, versions without any sung lyrics are released. These
might include karaoke versions to sing or play along with, alternative ver-
sions for different record-buying public segments (e.g. classical versions
of pop songs, children versions, etc.) or rare instrumental takes of a song
in CD-box editions specially made for collectors.

Mashup It is a song or composition created by blending two or more pre-
recorded songs, usually by overlaying the vocal track of one song seam-
lessly over the instrumental track of another.

Live performance A recorded track from live performances. This can cor-
respond to a live recording of the original artist who previously released
the song in a studio album or to other performers.

Acoustic The piece is recorded with a different set of acoustical instruments
in a more intimate situation. Sometimes “unplugged” is used as synonym.

Demo It is a way for musicians to approximate their ideas on tape or disc,
and to provide an example of those ideas to record labels, producers or
other artists. Musicians often use demos as quick sketches to share with
band mates or arrangers. In other cases, a music publisher may need a
simplified recording for publishing or copyright purposes, or a songwriter
might make a demo in order to be sent to artists in the hope of having
the song professionally recorded.

Standard In jazz music, there are compositions that are widely known, per-
formed and recorded. Musicians usually maintain the main melodic
and/or harmonic structure but adapt other musical characteristics to
their convenience. There is no definitive list of jazz standards though
this might change over time. Songs that can be considered standards
may be found in the fake book (Kernfeld, 2006) or the real book10 (Hal
Leonard Corp., 2004).

Medley Mostly in live recordings, and in the hope of catching listeners’ at-
tention, a band performs a set of songs without stopping between them
and linking several themes. Usually just the more memorable parts of
the music work are included.

10See also http://www.myrealbook.com/home.htn or http://www.realbook.us

http://www.myrealbook.com/home.htn
http://www.realbook.us
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Remix This word can be very ambiguous. From a ‘traditionalist’ perspective,
a remix implies an alternate master of a song, adding or subtracting el-
ements or simply changing the equalization, dynamics, pitch, tempo,
playing time or almost any other aspect of the various musical compo-
nents. But some remixes involve substantial changes to the arrangement
of a recorded work and barely resemble the original one. A remix may
also refer to a re-interpretation of a given work such as a hybridizing
process simultaneously combining fragments of two or more works.

Quotation The incorporation of a relatively brief segment of existing music
in another work, in a manner akin to quotation in speech or literature.
Quotation usually means melodic quotation, although the whole musi-
cal texture may be incorporated. The borrowed material is presented
exactly or nearly so, but is not part of the main substance of the work.
Incorporating samples of other songs into one’s own song would fall into
this category.

Of course all this terminology is defined in the context of (mainstream, com-
mercial, popular) Western music. However, the near-duplicate repetition of
musical items and phrases is a global phenomena. Each culture might label
near-duplicate repetitions in a different manner and might apply different cri-
teria to distinguish between them. For instance, in the Japanese culture there
is a long and continuing tradition in enka, a sentimental ballad form that
through patterned repetition derives authenticity over time (Yano, 2005). In
general, one should be cautious in finding versions in other cultures because
many misinterpretations could arise. For example, it would be misleading to
consider two performances to be versions just because they are part of the
same raga11 (Bor, 2002; Daniélou, 1968).

1.2.3 Modifiable characteristics

According to our definition of the term version, we advocate a distinction based
on musical characteristics instead of using geographical, commercial, subjective
or situational tags like the ones above. The main musical characteristics that
can change in a version are listed below. For completeness we also include an
additional characteristic not strictly related to ‘musical variations’. Noticeably,
many of the listed characteristics may occur simultaneously in the same version.

1. Timbre: many variations changing the general color or texture of sounds
might be included in this category. Two predominant groups are:

11Quoting Bor (2002), “a raga is far more precise and much richer than a scale or mode,
and much less fixed than a particular tune”. It can be regarded as a “tonal framework for
composition and improvisation” that has “a particular scale and specific melodic movements”.
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a) Production techniques: different sound recording and processing
techniques introduce texture variations in the final audio rendition
(e.g. equalization, microphones or dynamic compression).

b) Instrumentation: the fact that the new performers can be using
different instruments, configurations or recording procedures can
confer different timbres to the version.

2. Tempo: as it is not as common to strictly control the tempo in a concert,
this characteristic can change or fluctuate even in a live performance of
a given song by its original artist. In fact, strictly following a predefined
beat or tempo might become detrimental for expressiveness and con-
textual feedback. Even in classical music, small tempo fluctuations are
introduced for different renditions of the same piece. In general, tempo
changes abound, sometimes on purpose, with different performers.

3. Timing: in addition to tempo, the rhythmical structure of the piece might
change depending on the performer’s intention or feeling. Not only by
means of changes in the drum section, but also including more subtle
expressive deviations by means of swing, syncopation, accelerandos, ri-
tardandos or pauses.

4. Structure: it is quite common to change the structure of the song. This
modification can be as simple as skipping a short introduction, repeating
the chorus where there was no such repetition, introducing an instru-
mental section or shortening one. On the other hand, such modifications
can be very elaborated, usually implying a radical change in the musical
section ordering.

5. Key: the piece can be transposed to a different key or main tonality.
This is usually done to adapt the pitch range to a different singer or
instrument, for aesthetic reasons or to induce some mood changes in the
listener. Transposition is usually applied to the whole song, although it
can be restricted just to a single musical section.

6. Harmonization: independently of the main key, the chord progression
might change (e.g. adding or deleting chords, substituting them by rela-
tives, modifying the chord types or adding tensions). The main melody
might also change some note durations or pitches. Such changes are very
common in introduction and bridge passages. Also, in instrumental solo
parts, the lead instrument voice is practically always different from the
original one.

7. Lyrics and language: one purpose for recording a version is to translate
it to other languages. This is commonly done by high-selling artists to
become better known in large speaker communities.
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Tag Timbre Tempo Timing Struct. Key Harm. Lyrics Noise
Remaster

√ √

Instrumental
√ √ √

Mashup
√ √ √ √

Live
√ √ √ √

Acoustic
√ √ √ √ √ √

Demo
√ √ √ √ √ √ √ √

Standard
√ √ √ √ √ √ √ √

Medley
√ √ √ √ √ √

Remix
√ √ √ √ √ √ √ √

Quotation
√ √ √ √ √ √ √ √

Table 1.1: Musical changes that can be usually observed within different version
tags. The ‘

√
’ mark indicates that the change is possible, but not necessary.

8. Noise: in this category we consider other audio manifestations that might
be present in a recording. Examples include audience manifestations such
as claps, shouts or whistles, speech and audio compression and encoding
artifacts.

We can of course relate music characteristics with the version-related ‘types’ or
tags presented above (Table 1.1). In spite of the qualitative difference between
both, music characteristics and version-related tags nowadays coexist. As an
example, consider Beethoven’s 5th symphony. If we randomly choose two clas-
sical music versions of it, we may see that one is tagged as, e.g. “instrumental”
and “acoustic”, while the other is only tagged as “live”. However, none of these
tags provide effective musical information for comparison. Indeed, when listen-
ing to such versions we may notice several musical variations (usually changes
in instrument configurations, overall equalization, reverberation, tempo and
loudness are noticeable). If we then listen, e.g. to the also “instrumental” Yng-
wie Malmsteen version, we will easily spot more changes (e.g. employing a full
rock instrument set, a faster tempo, some structure changes, etc.). Finally, if
we take a hip-hop remix by, e.g. 50 Cent, we may realize that nearly all original
characteristics of the song are gone, except a lick or a phrase that is in the
background. It is in this scenario where version identification becomes a very
challenging task.

1.2.4 Social interest

‘Versioning’ is a phenomenon that clearly captures social attention. People
have an increasing interest in versions of musical pieces, specially in versions
of popular pieces. We can get an impression of this interest by having a look at
the Internet. For instance, we can search for videos in YouTube that contain
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song version related terms. The result is a list of around 380000 videos12,
some of them having a play-count in the range of millions. These videos are
not only from more or less consolidated artists, but also from amateurs and
semi-professional bands.
If we perform the same search with Google we obtain around 3.5 million pages.
These web pages range from comprehensive editorial or metadata collections
(e.g. Second Hand Songs13) to social community portals where users can up-
load, listen and chat about their own song versions (e.g. Midomi14); from
podcasts and radio programs (e.g. Coverville15) to news portals (e.g. BBC16);
from personal blogs (e.g. Cover Me17) to research pages (e.g. LabROSA18).
One of these web pages, Second Hand Songs, provides some statistics that,
although being “heavily biased by the preferences of the editors and visitors”13

(popular music, from 1950 on), give interesting indicators such as the “most
covered songs”, “most covered authors”, “year statistics” or the “longest cover
chain” (some of these indicators are highlighted in Table 1.2). To the present,
their metadata collection contains “32009 works, 126427 performances, 2347
samples and 38629 artists (performers and songwriters)”.
Social interest in versions is not only visible in the Internet. Song versions
feature in many radio shows and even some of these shows are completely ded-
icated to them. Documentaries in musical television channels discuss or high-
light different aspects of music versioning. Bands play versions in any kind of
event: from weddings to big concerts. Amateur musicians perform versions.
Indeed, nowadays easy access to music, instruments and recording techniques
has greatly facilitated the repetition and modification of musical themes (Kot-
ska, 2005), reaching a volume of version material that was unthinkable some
decades ago.

1.2.5 Versions in other arts

The action of performing the same underlying ‘production’ despite numerous
relevant changes in its characteristics is not restricted to the music nor the au-
dio domains. Interestingly, we can straightforwardly draw some close analogies
within other artistic domains. The most obvious domain where ‘versions’ are
present is in literature (and, in general, in almost all kinds of writing activities).
In fact, the term quotation we have introduced before is directly borrowed from
there. Furthermore, if we think of a restatement of a text giving the meaning
in another form, we talk about a paraphrase, another common practice in all

12The data was obtained on Sep. 13, 2010, by searching for � "cover song" OR "cover
songs" OR "cover version" OR "cover versions" OR "song version" OR "song versions" �.

13http://www.secondhandsongs.com
14http://www.midomi.com
15http://coverville.com
16http://news.bbc.co.uk/2/hi/7468837.stm
17http://www.covermesongs.com
18http://labrosa.ee.columbia.edu/projects/coversongs

http://www.secondhandsongs.com
http://www.midomi.com
http://coverville.com
http://news.bbc.co.uk/2/hi/7468837.stm
http://www.covermesongs.com
http://labrosa.ee.columbia.edu/projects/coversongs
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“Most covered author” John Lennon (3581), Paul McCartney (3416), [Traditional]
(1980), Bob Dylan (1801), Ira Gershwin (1377), George
Gershwin (1294), Richard Rodgers (1285), Cole Porter
(1002), Burt Bacharach (964), Hal David (894), ...

“Most covered performer” The Beatles (3541), Bob Dylan (1593), Elvis Presley (1005),
Duke Ellington (782), The Rolling Stones (770), Hank
Williams (757), The Ramones (730), David Bowie (533),
Stevie Wonder (515), Chuck Berry (515), ...

“Most covering performer” Johnny Mathis (327), Frank Sinatra (288), Elvis Presley
(283), Ella Fitzgerald (281), Cliff Richard (267), Johnny
Cash (229), Willie Nelson (225), Andy Williams (219), Tony
Bennett (207), Jerry Lee Lewis (206), ...

“Most covered song” Summertime (311), Body and soul (257), St. Louis Blues
(207), Yesterday (184), Eleanor Rigby (160), Stille nacht!
Heilige nacht! (156), Unchained melody (154), Silent night!
Holly night! (146), Cry me a river (140), Over the rainbow
(137), ...

“Cover year statistics” Majority of originals performed from 1955 to 1985, majority
of covers performed from 1985 to 2010.

Table 1.2: Indicators from Second Hand Songs at Dec. 9, 2010. The rank of elements
in the table is the same as in the web.

kinds of writing. Also the notion of plagiarism is very present in written texts
(Posner, 2007).
Specially relevant is the notion of intertextuality (Agger, 1999; Allen, 2000),
which implies the shaping of texts’ meanings by other texts. This practice
is more or less clear in what could be considered old or ancient literature.
A prominent example are popular stories. In many stories, the main theme
can be kept while other contextual facets change (e.g. characters’ features,
action details or parts of the plot). These changes may be due to historical
or geographical circumstances, or just due to the storyteller’s taste. Another
example can be found in the New Testament, where some passages quote from
the Old Testament, and in Old Testament books such as Deuteronomy, where
the prophets refer to the events described in the Exodus (Porter, 1997). Other
more modern examples of intertextuality include19 “East of Eden” (Steinbeck,
1952), which constitutes a retelling of the story of Genesis, set in the Salinas
Valley of Northern California, or “Ulysses” (Joyce, 1918), a retelling of Homer’s
Odyssey set in Dublin.
Forms of intertextuality and ‘versioning’ are very present in painting, sculp-
ture and photography. A portion of the history of both Eastern and Western
visual art is dominated by motifs and ideas that reoccur, often with striking
similarities. Religious paintings are examples of these recurrences. They range
from artwork depicting mythological figures to Biblical scenes, scenes from the

19http://en.wikipedia.org/wiki/Intertextuality

http://en.wikipedia.org/wiki/Intertextuality
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Figure 1.2: Examples of different versions of the “Mona Lisa” painting (see text).

life of Buddha or other scenes of Eastern religious origin.
Alternative renditions of existing paintings may be done as a homage, or moti-
vated by important conceptual or technical changes. Furthermore, sometimes
a painting may strongly influence other paintings. That would be the case of,
for instance, “Las Meninas” (Velázquez, 1656), which has led to a number of
‘versions’ from the most famous artists, among them Picasso, who produced
44 interpretations of the painting20. Another example of a highly replicated
painting is the “Mona Lisa” (Da Vinci, 1519). A simple search through the
Internet can serve us to compile several renditions of it (Fig. 1.2). Some of
them vary in small details (Fig. 1.2a-d), while others constitute a more radical
reinterpretation of the picture (Fig. 1.2e-j). A few may even be a forgery or a
parody (e.g. Fig. 1.2b-d,h).
Still in the visual domain, we find another avenue for versioning: movies.
Of course here we find the obvious movie versions and remakes but, behind
these, it is worth noticing that many movies make small ‘references’ to older
movies. These references can be somewhat hidden or readily obvious, and
reveal influences, imitations or restatements of other authors’ works. Impor-
tantly, these references can go beyond textual phrases21. Such is the case with
entire sequences that remind the viewer of a previous film. These sequences are
usually ‘versioned’ on purpose, even within current mainstream films. We can
find some examples in many of Tarantino’s movies, where characters, scenes

20http://www.museupicasso.bcn.cat/meninas/index_en.htm
21For a compilation of quoted textual phrases see http://en.wikipedia.org/wiki/AFI%

27s_100_Years%E2%80%A6100_Movie_Quotes

http://www.museupicasso.bcn.cat/meninas/index_en.htm
http://en.wikipedia.org/wiki/AFI%27s_100_Years%E2%80%A6100_Movie_Quotes
http://en.wikipedia.org/wiki/AFI%27s_100_Years%E2%80%A6100_Movie_Quotes
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or frames are taken from other films that he considers inspiring. Another ex-
ample would be the film “Wall-E”22 (Stanton, 2008), which somehow reminds
us of the film “Dumbo” (Disney, 1941) and which incorporates clear references
to the musical “Hello Dolly!” (Merrick, 1964) or to the film “2001: A Space
Odyssey” (Kubrick, 1968). Noticeably, this ‘sequence versioning’ is not solely
done within movies. Just think about some episodes of “The Simpsons” series.
To the best of our knowledge, existing technologies do not specifically address
the problem of version identification within these ‘affine arts’. Song version
is a very characteristic concept in music and therefore it is difficult to com-
pare approaches from other arts. Nevertheless, one finds relevant works on
authorship attribution and plagiarism detection, both with text (Juola, 2008;
Stamatatos, 2009) and paintings (Hughes et al., 2010; Taylor et al., 2007).
Further relevant research is found within automatic recognition of image ob-
jects and faces (Roth & Winter, 2008; Zhao et al., 2003) and movie sequences
(Antani et al., 2002). In general, and roughly speaking, these approaches are
conceptually similar to what could be applied to music versions: one tries to
extract and compare features that are invariant towards common changes in
the characteristics of the object of study (see Sec. 2.3).

1.3 Version identification: application scenarios

As mentioned, version identification can be directly exploited in a music re-
trieval scenario, where there is a need for searching and organizing musical
pieces. One of the most basic paradigms of information retrieval, and by
extension of music retrieval, is the query-by-example task: a user submits a
reference query and the system returns a list of potential candidates thatmatch
the query. According to Casey et al. (2008b), we could talk about a “sense of
match”, which implies different degrees of specificity. A match can be exact,
retrieving candidates with specific musical content, or approximate, retrieving
near neighbors in a musical space where proximity encodes different senses of
music similarity. Following these directives, one could think of an imaginary
“specificity axis” where music retrieval tasks with different match specificities
can be placed, version identification being one of them (Fig. 1.3).
Currently, audio identification or fingerprinting techniques (Cano et al., 2005)
are used to identify a particular recording with a high match specificity (exact
duplicate detection). These techniques are applied in different contexts such
as audio integrity verification or broadcast radio monitoring and tracking [see
Cano et al. (2005) and references therein]. On the other side, we find e.g. the
genre classification task (Scaringella et al., 2006), which corresponds to a low
match specificity (category-based grouping). Version identification would be
placed somewhere in the middle of the specificity axis (near duplicate detection,
Fig. 1.3).

22http://armchairc.blogspot.com/2010/04/walle.html

http://armchairc.blogspot.com/2010/04/walle.html
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Figure 1.3: Picture of an hypothetical query match specificity scale.

We can see intuitively that both audio fingerprinting and category-based re-
trieval would fail to detect versions that incorporate some of the musical vari-
ations outlined above (Sec. 1.2.3). Thus version identification has its own
application scenario. In addition, version identification systems have the po-
tential to eventually replace and extend audio fingerprinting techniques by
allowing less specificity in the match of music documents. At the same time,
version identification systems represent a more specific retrieval that goes be-
yond genre or categorical associations. Furthermore, version identification can
provide insights both in exact duplicate detection and category-based grouping
(e.g. important musical aspects, new matching techniques or relevant algorithm
features). One should bear in mind that such a specificity axis is not limited by
strict boundaries: there is no well-defined point where something stops being
a version and becomes a different piece of music.
Apart from the retrieval scenario, it may be readily apparent to the reader that
algorithms for the automatic assessment of versions of musical pieces have di-
rect implications to musical rights’ management and licenses. For instance,
a quantitative assessment of the similarity between two versions could be ex-
tremely helpful in court decisions with regard to music copyright infringement.
To this extent, it is worth noting that lists of reference material are being col-
lected and made public. For example, the Copyright Infringement Project23

(Cronin, 2002) has the goal “to make universally available information about
U.S. music copyright infringement cases from the mid-nineteenth century for-
ward”. Such ground truth could be used to train future systems on the specifics
of plagiarism demands. Interestingly, and going further into some possible fu-
ture applications, one could even think of a system assisting judges and juries
in this aspect. The pioneering work by Müllensiefen & Pendzich (2009) sug-
gests that court decisions can be predicted on the basis of statistically informed
version similarity algorithms.
But not everything must be tied to commercial or economic purposes. Indeed,
there exist more creative application contexts than the ones presented above.

23http://cip.law.ucla.edu

http://cip.law.ucla.edu
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We can think for example of a musician who is composing a new piece. A
version similarity algorithm could assess him on the originality of his ideas,
providing a more informed compositional process. Musicologists can take ad-
vantage of such algorithms too. Automatic similarity measures could be used,
among other things, to facilitate the analysis of related compositions, to trace
the evolution of a musical piece, to establish relationships between perfor-
mances, to compare passages or to quantify tempo deviations. From a simple
user perspective, finding versions of a musical piece can be valuable and fun.
This is easy to anticipate given the current interest in song versions (Sec. 1.2.4).

1.4 Objectives and outline of the thesis

The main goal of this thesis is to develop methods for automatically assessing
whether two recordings are versions of the same musical piece. Our main
starting point is the audio signal (e.g. an MP3 file), which we use as the
unique source of information. Therefore most of the techniques we employ
and propose are placed within the fields of signal processing and time series
analysis. However, other techniques such as the ones derived from complex
networks are also used. As general guidelines for our research we strive for
simplicity, accuracy and generality. We focus overall on simple yet powerful
approaches that can yield outstanding accuracies and that furthermore can be
applied to signals and sources of a distinct nature. A further consideration with
regard to the present work is that we aim at using unsupervised techniques,
in the sense that no explicit learning is done on the basis of a pool of labeled
examples.
In Chapter 2 we proceed with a comprehensive literature review focused on
the specific topic of version identification. Since this topic is relatively new,
we first position it within the wider context of MIR research. In particular,
we place the task of version identification within both audio and symbolic
music processing scenarios (Secs. 2.2.1 and 2.2.2). Some words about relevant
research in music cognition are also given (Sec. 2.2.3). The remainder of the
chapter is devoted to reviewing approaches specifically designed for version
identification (Sec. 2.3). This review is organized around what we consider the
main functional blocks of a version identification system (Sec. 2.3.1), which seek
to tackle the aforementioned musical variations between song versions. Apart
from functional blocks, we review some pre- and post-processing strategies for
these systems (Sec. 2.3.2). The evaluation of version identification systems is
also reviewed, with emphasis on the music material, the evaluation measures
and the efforts to develop a common framework for the accuracy assessment
of such systems (Sec. 2.3.3).
In Chapter 3 we present our main approach for version identification. We fol-
low the major trend in the literature and devise a model-free approach, i.e. no
strong assumptions are made about the nature of the signals involved in the
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process of identifying a version. The approach goes from the raw audio signal
to a single measure reflecting version similarity. First, tonality-based descrip-
tors are computed from audio using a state-of-the-art methodology (Sec. 3.2.2).
Importantly, at this early stage we deal with timbre, noise and language in-
variance, three important characteristics that can change in versions (recall we
have presented them previously in Sec. 1.2.3). Next, we propose a novel strat-
egy for tackling different transpositions (Sec. 3.2.3). The two previous steps
yield time series of music descriptors, which are then compared on a pairwise
basis in order to obtain a version similarity measure. For that, nonlinear time
series analysis concepts are employed. First, cross recurrences between a pair
of songs are assessed in order to see which parts of the corresponding time series
match (Sec. 3.2.5). Then, these cross recurrences are quantified (Sec. 3.2.6)
and a dissimilarity measure is obtained (Sec. 3.2.7). These two stages specially
focus on achieving structure, tempo as well as timing invariance. The approach
is evaluated with a large in-house music collection and a common information
retrieval methodology (Sec. 3.3). As a main result, we show that our approach
yields a high accuracy with such a music collection (Sec. 3.4.2). This high accu-
racy is confirmed through an independent international evaluation framework
allowing the comparison between existing approaches (Sec. 3.4.3).
Chapter 4 is devoted to post-processing stages for version identification sys-
tems. In particular, we explore the relation between songs that are inferred
from such a system. To this end, we first study the network of version simi-
larities obtained with our approach and show that different groups (clusters or
communities) of songs are formed (Sec. 4.2.2). Such groups are detected in an
unsupervised way (Sec. 4.2.3) and this information is subsequently exploited
to enhance the accuracy of the original system (Sec. 4.2.4). Results prove the
feasibility and effectiveness of this idea (Sec. 4.4). To close the chapter, we
present a pioneer study on the role of the original song within its versions
(Sec. 4.5). In particular, we show that the original song tends to occupy a
central position within the group containing all possible versions of a musical
piece.
In Chapter 5 we return to the development of dissimilarity measures for ver-
sion identification. However, this time we take a radically different approach
and explicitly model descriptor time series. More specifically, we study how
common linear and nonlinear time series models can be used for the task at
hand (Sec. 5.2.4). A prediction-based framework is proposed in order to obtain
a suitable dissimilarity measure (Sec. 5.2.5). We base such a measure on the
predictions of the models and evaluate them through a standard error measure
(Sec. 5.2.6). Although the results for the model-based strategy are worse than
the ones for the model-free strategy (Sec. 5.4), we show that such a model-
based approach is very promising, specially with reference to computational
costs and user parameter settings (Sec. 5.5). We also comment on further de-
velopments that could lead to a very competitive version identification system
(Sec. 5.6).
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Chapter 6 concludes this thesis. It provides a summary of contributions and
discusses future perspectives for version identification.





CHAPTER 2
Literature review

2.1 Introduction

This literature review is divided into two main sections. The first briefly high-
lights the scientific background around automatic version detection. In par-
ticular, we focus on three areas of research: audio-based retrieval, symbolic
music processing and music cognition. In audio-based retrieval, we place the
task of version identification within music retrieval, focusing on audio content-
based approaches. With the section on symbolic music processing we stress the
importance of research done in the symbolic domain1 and briefly discuss its
applicability to the problem at hand. In the section devoted to music cognition
we review relevant knowledge for version detection coming from this discipline.
The second provides a comprehensive summary of version identification sys-
tems. The summary is based on a functional block decomposition of these
systems. Apart from the core blocks, some pre- and post-processing strategies
are relevant. We therefore give an outline of those that have been applied to
version identification. Finally, the evaluation of version identification systems
is discussed. In this second main section we only focus on methods that work in
the audio domain and explicitly consider versions of musical pieces as primary
music material. We furthermore restrict the review to methods specifically
designed to achieve invariance to the characteristic musical changes among
versions2 (Sec. 1.2.3).

1As symbolic domain we refer to the approach to music content processing that uses,
as starting raw data, symbolic representations of musical content (e.g. data extracted from
printed scores). In contrast, the audio domain processes the raw audio signal (e.g. data from
real-time recordings).

2Even considering these criteria, it is difficult to present the complete list of methods and
alternatives. We apologize for any possible omissions/errors and, in any case, we assert that
these have not been intentional.

19
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2.2 Scientific background

2.2.1 Audio-based retrieval

Approaches for music retrieval can use multiple information sources, e.g. the
raw audio signal, symbolic music representations, audio metadata, tags pro-
vided by users or experts or music and social networks data (Lesaffre, 2005;
Orio, 2006). In the case of version identification, a metadata or tag-based
approach would become trivial and would separate us from our initial moti-
vation, namely that the computer ‘hears’ two musical pieces and determines
if they are versions of the same composition3. Therefore, in our work we se-
lect an approach with the raw audio signal as its primary and only source of
information.
In general, music retrieval is organized around use cases defined through the
type of query, the sense of match and the form of the output (Casey et al.,
2008b; Downie, 2008). In particular, in Sec. 1.3 we discussed that the sense
of match implies different degrees of specificity and that version identification
would be positioned somewhere in the middle of an hypothetical match speci-
ficity axis (near-duplicate detection, Fig 1.3). However, it must be noted that
some systems that do not strictly focus on song versions approximate this in-
termediate match specificity region. This section provides a brief overview of
these systems.
In audio content-based MIR, much effort has been focused on extracting infor-
mation from the raw audio signal to represent certain musical aspects such as
timbre, melody, main tonality, chords or tempo. This information is commonly
called music description or descriptors. The computation of these descriptors
is usually done in a short-time moving window either from a temporal, spectral
or cepstral representation of the audio signal. The result is a descriptor time
series (or sequence) reflecting the temporal evolution of a given musical aspect.
The introduction and refinement of tonality descriptors, i.e. numeric quantities
reflecting the tonal content of the signal, has broadened the match specificity
of some music retrieval systems, specially those which can be placed near the
two extremes of high and low match specificity. Indeed, a common extension of
audio fingerprinting algorithms for achieving a lower match specificity consists
of using tonal descriptors instead of the more routinely employed timbral ones4

(e.g. Casey et al., 2008a; Miotto & Orio, 2008; Riley et al., 2008; Unal & Chew,
2007). The adoption of tonal descriptors adds an extra degree of timbre/noise
invariance to audio fingerprinting algorithms, which are usually invariant with
respect to song structure changes. Despite this, many of these fingerprinting
algorithms may still have a low recall in a version identification task. One

3Furthermore, in the case of versions that completely change the title and the lyrics,
there might be no clues to identifying them using only textual information.

4These approaches may also be termed audio identification, audio matching, or simply,
polyphonic audio retrieval.
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reason for this could be that, since these systems focus on retrieval speed, they
usually employ some kind of descriptor quantization. This quantization may
be excessively coarse for version identification (Riley et al., 2008). Another
reason for a low version recall could come from the lack of invariance with
respect to tempo variations or to key transpositions, which are frequent musical
changes between song versions. The importance of these and other invariance
characteristics in a version identification scenario may become evident through
the thesis. Further evidence was shown as work prior to this document (Serrà
et al., 2008b).
Like audio fingerprinting algorithms, many systems stemming from category-
based grouping or from music similarity may also fall into the aforementioned
region of intermediate match specificity. These systems, in general, differ from
traditional systems of their kind in the sense that they also incorporate tonal
information (e.g. Mardirossian & Chew, 2006; Pickens, 2004; Tzanetakis, 2002;
Yu et al., 2008). However, they can fail in identifying recordings with a dif-
ferent key or with strong structure modifications. Furthermore, since these
systems focus on timbre and this feature can radically change between versions
(Sec. 1.2.3), wrong groupings could be made. In general, they do not consider
full sequences of musical events, but just statistical summarizations of them,
which might blur and distort valuable information for version retrieval.

2.2.2 Symbolic music processing

Although our focus is on the audio domain, one should note that relevant
ideas for version identification can be also drawn from the symbolic domain.
As symbolic domain we refer to the approach to music content processing
that uses, as starting raw data, symbolic representations of musical content
(e.g. MIDI5 or **kern6 files, which are data extracted from printed scores).
Approaches using symbolic information are quite scattered among different
disciplines. In particular, MIR researchers have proposed many quantitative
approaches to symbolic similarity and retrieval. Good general resources are the
works by Lemstrom (2000), Pickens (2004), Typke (2007) and Van Kranenburg
(2010).
Of particular interest are query-by-humming systems (Dannenberg et al., 2007)
and extensions of these to the polyphonic and to the audio domains (Pickens
et al., 2003). In query-by-humming systems, the user sings or hums a melody
and the system searches for matches in a musical database. Thus, this query-
by-example situation is analogous to retrieving versions from a music collection
without any other prior information. Another very active area of research is
symbolic music similarity and matching (Grachten et al., 2005; Mäkinen et al.,
2005; Rizo et al., 2009; Robine et al., 2007). Generally speaking, symbolic
melodic similarity can be approached from very different points of view (Ur-

5http://www.midi.org
6http://wiki.humdrum.org

http://www.midi.org
http://wiki.humdrum.org
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bano et al., 2010): some techniques are based on geometric representations of
music, others rely on classic n-gram representations to calculate similarities
and others use editing distances and alignment algorithms.
All these techniques are relevant for version identification. However, the kind
of musical information that the systems above manage is symbolic (usually
MIDI files). Therefore, if considering audio, the query, as well as the music
material, must be transcribed into the symbolic domain. This would have the
additional advantage of removing some expressive trends from the performer
(c.f. Arcos et al., 1997; Juslin et al., 2002; Molina-Solana et al., 2010; Todd,
1992), thus potentially benefiting version detection systems. Unfortunately,
transcription systems of this kind do not yet achieve a significantly high ac-
curacy on real-world music signals. Current state-of-the-art algorithms for
polyphonic transcription yield overall accuracies below 75%, and melody es-
timation approaches are within the same accuracy range7. Consequently, we
argue that research in the symbolic domain cannot be directly applied to au-
dio domain systems without incurring several estimation errors in the early
processing stages of these systems. These errors, in turn, may have dramatic
consequences in the final systems’ accuracy.

2.2.3 Music cognition

Identification

The problem of version identification is also challenging from the point of view
of music cognition, but apparently it has not attracted much attention by itself.
Intuitively, in order to recognize versions, each individual needs to rely on some
invariant representation of the whole song or, at least, its critical features.
Currently we have little knowledge of which are the specific mechanisms that
give rise to this level of abstraction.
One might hypothesize that abstract representations are grounded on physical
neural templates that are shared across individuals (Schaefer et al., 2010). But
we still do not know what is the essential information that our brains encode
for solving this particular problem. Some knowledge has been gained about the
relevance of melody statistics for music similarity (Eerola et al., 2001) and the
sensitivity or insensitivity to certain melodic and rhythmic transformations
(Dalla Bella et al., 2003; Kuusi, 2009; Schulkind et al., 2003). Timbre cues
might provide important information, even from very short snippets of audio
(Schellenberg et al., 1999), but recent studies with noise excerpts suggest that a
rapid formation of auditory memories could be perfectly independent of timbre
(Agus et al., 2010).
In this quest to know the essential information that is preserved, one might
hypothesize that such ‘essence’ is not the same for all versions of a musical

7Recent results for these tasks can be found at the MIREX wiki: http://www.music-ir.
org/mirex/wiki/2010:MIREX2010_Results

http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results
http://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results
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piece. From a perceptual or cognitive point of view, a musical work or song
can be considered as a category (Zbikowski, 2002), one of the basic devices to
represent knowledge either by humans or by machines (Rogers & McClelland,
2004). Usually, categories are taken to rely on features that are common to
all items covered by them. Sometimes, a prototype for the whole category
can be established (prototype-based categorization). This way, all members of
the category can be compared against the prototype (Rosch & Mervis, 1975).
However, we usually see that abstraction can still take place in the absence
of a single common feature. This can be justified by the concept of family
resemblance (Wittgenstein, 1953). The concept states that things which may
be thought to be connected by one essential common feature may, in fact, be
connected by a series of overlapping similarities. Therefore, in the end, it can
easily happen that no one feature is common to all these connected entities.
A widely used example is with family members8: all of them share some traits
but maybe a common denominator does not exist.
Besides knowing which essential information to retain, there is the additional
issue of the memory representation of songs in humans. It could either be
the case that the similarity between two musical pieces is computed in their
encoding step, or that all the songs are stored in memory and their similarity
is computed at the retrieval phase. For example, Levitin (2007) discusses the
possibility of absolute and detailed coding of song-specific information. On the
other hand, Deliege (1996) discussed the possibility of encoding processes that
abstract and group certain musical cues by similarity.
Furthermore, music is a sequential process, and as such, it poses the question
of storage and retrieval of serial-order information in human working memory.
And again we find some controversies, specially with regard to the use of ab-
solute (hierarchically structured) or relative (associatively structured) position
information. Two general theoretical frameworks exist: chaining models (Hen-
son, 2001), which propose that individual items are coded in association with
their preceding and/or succeeding elements, and ordinal position models (Con-
rad, 1965), which suggest that each individual item is coded by its absolute or
relative position within a sequence.

Some insights from version identification

In general, version identification systems rarely pay attention to cognitive as-
pects (nor cognitive scientists pay attention to MIR systems). However, if
one draws intuitive cross-domain analogies, some interesting reasonings can be
made.
We find a first example with the essential information that we as humans need
to encode in order to recognize a song. We have seen that studies on music
cognition have put much emphasis on melodies. However, automatic version
identification systems may use other tonal representations such as chords or

8Wittgenstein (1953) also used games as an example.
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the so-called tonal profiles (see forthcoming Sec. 2.3.1). The fact that version
identification systems are able to perform their task in a reliable manner sug-
gests that the melody is not the only essential property to retain, and that
other tonal representations as well could be useful for song recognition in the
human brain.
A second example is found with regard to categorization aspects. If we con-
sider a group of versions forming a category, family resemblance mechanisms
may apply (in the sense of getting abstractions in the absence of a single com-
mon feature). However, from our point of view, some characteristic must be
retained by all versions in the category. We believe that tonal sequences are
so powerful that, in the case of song recognition, hardly any other boundary
between version groups can be established. Therefore, in such a scenario where
some feature is common to all items in the category, prototype-based catego-
rization may take place. We provide evidence for that in Chapter 4 when we
briefly study the relationships between versions and their originals.
A third example can be given with regard to the issue of memory representa-
tion. In this aspect, all version identification systems advocate the same: song
representations are stored in memory and their similarities are computed at
the retrieval stage. This might be due to pragmatic reasons, since similarity
computation at the encoding step intuitively seems hard to implement.
Finally, with regard to absolute and relative encoding of sequential elements,
we see that version identification systems use both strategies (Sec. 2.3.1). Im-
portantly, by looking at version identification systems, the usage of these en-
codings seems to be independent of the song representation. Although one
has to note that maybe the best performing systems are based on absolute
encodings.

2.3 Version identification: state-of-the-art

2.3.1 Functional blocks

The standard approach to version identification is essentially to exploit the
musical facets that are shared between multiple renditions of the same piece.
We have seen that several important characteristics are subject to variation
among versions: timbre, key, harmonization, tempo, timing, structure and so
forth (Sec. 1.2.3). An ideal version identification system must be robust against
these variations.
Usually, extracted music descriptors are in charge of overcoming the majority
of musical changes outlined above. However, special emphasis is put on achiev-
ing tempo, key or structure invariance, as these are very frequent changes that
are not usually managed by music descriptors themselves. Therefore, one can
group the elements of existing version identification systems into five basic
functional blocks (Fig. 2.1): descriptor extraction, key invariance, tempo in-
variance, structure invariance and similarity computation. We now elaborate
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Figure 2.1: Building blocks of a version identification system. The vertical arrows in
the intermediate blocks do not necessarily imply the sequential application of these,
except for the feature extraction and the similarity computation blocks, which are
usually at the beginning and end of the chain, respectively.

on these blocks based on Serrà et al. (2010a). A summary table for several
state-of-the-art approaches and the different strategies they follow in each func-
tional block is provided at the end of the section (Table 2.1).

Descriptor extraction

In general, one assumes that versions of the same piece preserve the main
melodic line and/or the harmonic progression, regardless of its main key.
Therefore, tonal or harmonic content is the most employed characteristic in
version identification. The term tonality is commonly used to denote a system
of relationships between a series of pitches, which can form melodies and har-
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monies, having a tonic or central pitch class as its most important or stable
element (Hyer, 2010). In its broadest possible sense, the term refers to the
arrangements of pitch phenomena. Tonality is ubiquitous in Western music,
and most listeners, whether musically trained or not, can identify the most
stable pitch while listening to tonal music (Dalla Bella et al., 2003). Further-
more, this process is continuous and remains active throughout the sequential
listening experience (Schulkind et al., 2003).
A tonal sequence can be understood, in a broad sense, as a sequentially-played
series of different note combinations. These notes can be unique for each time
slot (a melody) or can be played jointly with others (chord or harmonic pro-
gressions). That temporal and sequential information is important for retrieval
is also evident in many other fields such as speech recognition (Nadeu et al.,
2001) or string matching (Baeza-Yates & Perleberg, 1996). From an MIR point
of view, clear evidence on the importance of tonal sequences for music simi-
larity and retrieval exists (Casey & Slaney, 2006; Ellis et al., 2008; Hu et al.,
2003). In fact, almost all version identification systems exploit tonal sequence
representations extracted from the raw audio signals. More specifically, they
either estimate the main melody, the chord sequence or the harmonic pro-
gression. Only what would be considered early version identification systems
are an exception. For instance, Foote (2000a) worked with the audio signal’s
energy and Yang (2001) worked with spectral-based timbral features.
Melody is a salient musical descriptor of a piece of music (Selfridge-Field,
1998). Therefore, a number version identification systems use melody repre-
sentations as a main descriptor (Marolt, 2006, 2008; Sailer & Dressler, 2006;
Tsai et al., 2005, 2008). As a first processing step, these systems need to ex-
tract the predominant melody from the raw audio signal (Gómez et al., 2006b;
Poliner et al., 2007). Melody extraction is strongly related to pitch percep-
tion and fundamental frequency tracking, both having a long and continuing
history (De Cheveigne, 2005; De Cheveigne & Kawahara, 2001). However, in
the context of complex mixtures, the perception and tracking issues become
further complicated because, although multiple fundamental frequencies may
be present at the same time, at most just one of them will be the melody. This
and many other facets make melody extraction from real-world audio signals
a difficult task.
To refine the obtained melody representation, version identification systems
usually need to combine a melody extractor with, e.g. a singing voice detector,
or other post-processing modules in order to achieve a more reliable represen-
tation (Sailer & Dressler, 2006; Tsai et al., 2005, 2008). Another possibility
is to generate a so-called ‘mid-level’ representation for these melodies. The
emphasis then is not only on melody extraction, but also on the feasibility to
describe audio in a way that facilitates retrieval (Marolt, 2006, 2008). The level
of abstraction (or smoothing) of a representation is an important issue that
compromises the discriminatory power (see e.g. Grachten et al., 2004; Serrà
et al., 2008b).
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Figure 2.2: Example of a PCP descriptor. This may correspond to a C minor chord
environment (it mostly contains C, D# and G pitch classes), where the root pitch
class (C) is predominant.

Alternatively, version identification can be assessed by harmonic sequences,
rather than melodic ones. Harmonic sequences, as they are nowadays es-
timated in MIR, might already incorporate melody information. The most
straightforward way to carry out such an estimation is by means of so-called
pitch class profiles (PCP) or chroma descriptors (Fujishima, 1999; Gómez,
2006; Leman, 1995; Purwins, 2005). These mid-level descriptors can provide
a more complete, reliable and straightforward representation than melody es-
timation, as they do not need to tackle the pitch selection and tracking issues
outlined above. PCP-based descriptors are widely used in the MIR community
(Bartsch & Wakefield, 2005; Gómez & Herrera, 2004; Goto, 2006; Lee, 2008;
Müller, 2007; Müller & Ewert, 2008; Ong, 2007; Sheh & Ellis, 2003).
PCP descriptors are derived from the energy found within a given frequency
range (usually from 50 to 5000 Hz) in short-time spectral representations (typ-
ically 100 ms) of audio signals extracted on a frame-by-frame (or window)
basis. This energy is usually collapsed into a 12-bin octave-independent his-
togram representing the relative intensity of each of the 12 semitones of an
equal-tempered chromatic scale (the 12 pitch classes, Fig. 2.2). According to
Gómez (2006), reliable PCP descriptors should, ideally, (a) represent the pitch
class distribution of both monophonic and polyphonic signals, (b) consider the
presence of harmonic frequencies, (c) be robust to noise and non-tonal sounds,
(d) be independent of timbre and instruments played, (e) be independent of
loudness and dynamics and (f) be independent of tuning, so that the reference
frequency can be different from the standard A 440 Hz.
This degree of invariance with respect to several musical characteristics make
PCP descriptors very attractive for version identification systems. Hence, the
majority of systems use a PCP-based descriptor the primary source of infor-
mation (Di Buccio et al., 2010; Egorov & Linetsky, 2008; Ellis & Cotton, 2007;
Ellis & Poliner, 2007; Gómez & Herrera, 2006; Gómez et al., 2006a; Jensen
et al., 2008a,b; Kim & Narayanan, 2008; Kim et al., 2008; Kim & Perelstein,
2007; Kurth & Müller, 2008; Müller et al., 2005; Nagano et al., 2002; Serrà
et al., 2008b, 2010c, 2009a). Enhanced PCP information might also be consid-



28 CHAPTER 2. LITERATURE REVIEW

ered, either with relative (or delta9) representations (Kim & Narayanan, 2008;
Kim et al., 2008), or directly including multiple frame values in the analysis
[e.g. the state space reconstruction in Serrà et al. (2010c, 2009a) that we will
explain in the next chapter]. Distances between successive PCP vectors can
also be considered, as well as adding information of the strongest pitch class
(Ahonen, 2010).
An interesting variation of using raw PCP descriptors for characterizing the
tonal content of song versions is proposed by Casey & Slaney (2006). In this
work, PCP sequences are collapsed into symbol sequences using vector quanti-
zation, i.e. summarizing several PCP vectors by 8, 16, 32 or 64 representative
symbols via the K-means algorithm (Xu & Wunsch II, 2009). Nagano et al.
(2002) perform vector quantization by computing binary PCP vector compo-
nents in such a way that, with 12 dimensional vectors, a codebook of 212 = 4096
symbols is generated (named polyphonic binary feature vectors). On the other
hand, Di Buccio et al. (2010) use a hashing function of the rank of the elements
in a PCP vector. Sometimes, the lack of interpretability of the produced se-
quences and symbols makes the addition of some musical knowledge to these
systems rather difficult. This issue is addressed by Kurth & Müller (2008)
who, instead of quantizing in a totally unsupervised way, generate a codebook
of PCP descriptors based on musical knowledge (with a size of 793 symbols).
In general, vector quantization, indexing and hashing techniques result in
highly efficient algorithms for music retrieval (e.g. Casey et al., 2008a; Di Buc-
cio et al., 2010; Kurth & Müller, 2008; Nagano et al., 2002; Riley et al., 2008),
even though their accuracy has never been formally assessed for the specific ver-
sion identification task. It would be very interesting to see how these systems
perform on a well-established benchmark collection in comparison to specifi-
cally designed approaches. More specifically, it is still an issue if PCP quantiza-
tion strongly degrades version retrieval (see below). Some preliminary results
suggest that this is the case (Riley et al. 2008; c.f. Di Buccio et al. 2010).
Depending on how we look at it, another form of PCP quantization consists of
using chord or key template sequences (Ahonen & Lemstrom, 2008; Bello, 2007;
Izmirli, 2005; Lee, 2006). Estimating chord sequences from audio data has been
a very active research area in recent years (Bello & Pickens, 2005; Cho et al.,
2010; Fujishima, 1999; Lee, 2008; Papadopoulos & Peeters, 2007; Sheh & Ellis,
2003). The common process for chord estimation consists of two steps: pre-
processing the audio into a descriptor vector representation, usually a PCP, and
approximating the most likely chord sequence from these vectors, usually done
via template-matching or expectation-maximization trained hidden Markov
models (Rabiner, 1989).
Usually, 12 major and 12 minor chords are used, although some studies incor-
porate more complex chord types, such as 7th, 9th, augmented and diminished

9By delta representations we mean the component-wise differences between consecutive
descriptors.
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Figure 2.3: “Happy birthday” song score. Retrieved from http://www.
piano-play-it.com.

chords (Fujishima, 1999; Harte & Sandler, 2005). This way, the obtained
strings have a straightforward musical interpretation. Ahonen (2010) experi-
ments with a 12-symbol representation, i.e. what would correspond to a ‘power
chord’ representation10. He reports some accuracy increase with the addition
of this reduced-symbol codebook to the standard 24-chord one.
In general, chord-based representations may be too coarse for version detection,
and are also error-prone. Think for instance in the chord progression of the
example we used in the previous chapter, the “Happy birthday” song (Fig. 2.3).
There are just three chords, these being C, G and F (tonic, dominant and
sub-dominant, respectively). If one makes a query with this specific chord
progression, the answer would contain not only versions of “Happy birthday”,
but also lots of other songs that can be substantially different in terms of
melody and arrangements. Thus, behind potential errors in their estimation,
we conjecture that chord representations alone might be too ambiguous for
version retrieval. Analogous reasonings may be derived for alternative ‘tonal
quantizations’ in the case they do not use enough representative symbols.

Key invariance

As stated in Sec. 1.2.3, versions may be transposed to different keys. Trans-
posed versions are equivalent to most listeners, as pitches are perceived relative
to each other rather than in absolute categories (Dowling, 1978). Transposi-
tion to a common key has been elucidated as a very important feature for any
version identification system, providing a deep impact on final system’s accu-
racy [e.g. up to 17% difference in standard evaluation measures, depending on
the method chosen, see Serrà et al. (2008a,b)]. In spite of being a common
change between versions, some systems do not consider transposition. This
is the case for systems that do not specifically focus on versions, or that do
not use a tonal representation (Foote, 2000a; Izmirli, 2005; Müller et al., 2005;
Yang, 2001).

10The so-called power chord is a chord with just its fundamental and the fifth, with possible
multiple octaves of these pitches.

http://www.piano-play-it.com
http://www.piano-play-it.com
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Several strategies can be followed to tackle transposition, and their suitability
may depend on the chosen descriptor. In general, transposition invariance
can be achieved by relative descriptor encoding, by key estimation, by shift-
invariant transformations or by applying different transpositions. We now
briefly comment on them.
The most straightforward way to achieve key invariance is to test all possible
transpositions (Ellis & Cotton, 2007; Ellis & Poliner, 2007; Jensen et al., 2008a;
Kim & Narayanan, 2008; Kim et al., 2008; Kurth & Müller, 2008; Marolt, 2008;
Nagano et al., 2002). In the case of an octave-independent tonal representation,
this implies the computation of a similarity measure for all possible circular or
ring-shifts in the ‘pitch axis’ for each test song. This strategy usually guaran-
tees a maximal retrieval accuracy (Serrà et al., 2008a) but, on the other hand,
it increases the time and the size of the database to search in.
Instead of testing all possible transpositions, one can select certain ‘preferred’
transpositions (Ahonen, 2010; Egorov & Linetsky, 2008; Serrà et al., 2008b,
2010c, 2009a). This way, version identification approaches can be computa-
tionally faster. The trick consists in computing a sort of probability index for
all possible relative transpositions and testing just those that are more likely
to produce a good match. This technique corresponds to the so-called optimal
transposition indices (Serrà et al., 2008a). The process for computing these
indices is very fast, since a pre-computed global representation of the signal’s
tonal content is used (e.g. a simple averaging of the PCP features over the
whole song, therefore reducing the whole PCP series to just a vector of num-
bers). Our results suggest that, for 12 bin PCP representations, a near-optimal
accuracy can be reached with just two shifts, thus reducing the computational
load by six (further details on this strategy are presented in the next chapter).
It should be mentioned that some systems do not follow the aforementioned
strategy, although they predefine a certain number of transpositions to com-
pute. In these cases, the number and the transpositions themselves are chosen
either arbitrarily (Tsai et al., 2005, 2008), or based on some musical and em-
pirical knowledge (Bello, 2007; Di Buccio et al., 2010). Decisions of this kind
are very specific for each system and, most of all, for the specific descriptor
being used.
A further approach is to off-line estimate the main key of the song and then
apply transposition accordingly (Gómez & Herrera, 2006; Gómez et al., 2006a;
Marolt, 2006). In this case, errors propagate faster and can dramatically
worsen retrieval accuracy (e.g. if the key for the original song is not correctly
estimated, no versions will be retrieved as they might have been estimated in
the correct one). However, it must be noted that a similar procedure to choos-
ing the most probable transpositions could be employed: one could compute
an optimal key transposition index.
In the case of using a more symbolic representation such as chords or melodies,
one can usually modify it in order to describe relative information changes, such
as pitch or chord intervals (Ahonen & Lemstrom, 2008; Lee, 2006; Sailer &
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Dressler, 2006). This way, a key-independent descriptor sequence is obtained.
This idea, which is grounded in existing research on symbolic music processing
(Sec. 2.2.1), has been recently extended to PCP sequences (Kim & Narayanan,
2008; Kim & Perelstein, 2007) by encoding such sequences using the optimal
(or minimizing) transposition indices introduced above (see also Müller, 2007).
A very interesting approach to achieving transposition invariance is to use a
two-dimensional power spectrum (Marolt, 2008) or a two-dimensional auto-
correlation function (Jensen et al., 2008b). Autocorrelation is a well-known
operator for converting signals into a delay or shift-invariant representation
(Oppenheim et al., 1999). Therefore, the power spectrum, which is formally
defined as the Fourier transform of the autocorrelation, is also shift-invariant.
As Marolt (2008) notes, other two-dimensional transforms could be also used,
specially shift-invariant operators derived from higher-order spectra (Heikkila,
2004). Such transforms are very common in the image processing domain
(Chandran et al., 1997; Klette & Zamperoni, 1996), and one can easily foresee
a future usage of them in the audio domain.

Tempo invariance

Different renditions of the same piece may vary in the speed they have been
played (Sec. 1.2.3), and any frame-based descriptor sequence will reflect this
variation. For instance, in case of doubling the tempo, frames i, i+1, i+2, i+3
might correspond to frames j, j, j + 1, j + 1, respectively. As a consequence,
extracted sequences cannot be directly compared.
Some version identification systems do not include a specific module to tackle
tempo fluctuations (Ahonen, 2010; Ahonen & Lemstrom, 2008; Di Buccio et al.,
2010; Kim & Narayanan, 2008; Kim et al., 2008; Yu et al., 2008). The major-
ity of these systems generally focus on retrieval efficiency and treat descriptor
sequences as statistical random variables. Thus, they discard much of the
sequential information that a given representation can provide (e.g. a repre-
sentation consisting of a 4-symbol pattern like ABABCD, would yield the same
statistical values as AABBCD or ABCABD, which is indeed a misleading over-
simplification of the original data).
A first option for achieving tempo invariance is again relative encoding. A
symbolic descriptor sequence can be encoded by considering the ratio of dura-
tions between two consecutive notes (Sailer & Dressler, 2006). This strategy is
commonly employed in query-by-humming systems (Dannenberg et al., 2007)
and, combined with the relative pitch encoding of the previous section, leads to
a representation that is key and tempo-independent. However, for the reasons
outlined above, extracting a symbolic descriptor sequence is not straightfor-
ward and may lead to important estimation errors. Therefore, one needs to
look at alternative tempo-invariance strategies.
Another way of achieving tempo invariance is to first estimate the tempo and
then aggregate the information contained within comparable units of time. In
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this manner, the usual strategy is to estimate the beat (Gouyon et al., 2006)
and then to aggregate the descriptor information corresponding to the same
beat. This can be done independently of the descriptor used. Some version
identification systems based on PCP descriptors (Ellis & Poliner, 2007; Nagano
et al., 2002) or melody estimations (Marolt, 2006, 2008) use this strategy, and
extensions with chords or other types of information could be easily worked
out. If the beat does not provide enough temporal resolution, a finer represen-
tation might be employed (e.g. half-beat or quarter-beat; Ellis & Cotton, 2007).
However, several studies suggest that systems using beat-averaging strategies
can be outperformed by others (see below).
An alternative to beat induction is to do temporal compression and expansion
(Kurth & Müller, 2008; Müller et al., 2005). This straightforward strategy
consists of re-sampling the descriptor sequence into several musically plausible
compressed and expanded versions, and then comparing all of them in order
to discover the correct re-sampling empirically. Another interesting way to
achieve tempo independence is again the two-dimensional power spectrum or
the two-dimensional autocorrelation function (Jensen et al., 2008a,b; Marolt,
2008). These functions are usually designed for achieving both tempo as well
as key independence (Sec. 2.3.1).
If one wants to perform direct comparisons of descriptors, a sequence alignment
or similarity algorithm must be used to determine the correspondences between
two distinct frame-based representations. Several alignment algorithms for
MIR have been proposed (e.g. Adams et al., 2004; Dixon & Widmer, 2005;
Grachten et al., 2004; Müller, 2007) which, sometimes, are derivations from
general string and sequence alignment/similarity algorithms (Baeza-Yates &
Perleberg, 1996; Gusfield, 1997; Rabiner & Juang, 1993; Sankoff & Kruskal,
1983).
In version identification, dynamic programming (Gusfield, 1997) is a routinely
employed technique for aligning two representations and automatically discov-
ering their local correspondences (Bello, 2007; Egorov & Linetsky, 2008; Foote,
2000a; Gómez & Herrera, 2006; Gómez et al., 2006a; Izmirli, 2005; Lee, 2006;
Marolt, 2006; Nagano et al., 2002; Serrà et al., 2008b, 2009a; Tsai et al., 2005,
2008; Yang, 2001). Overall, one reiteratively constructs a cumulative distance
matrix (Fig. 2.4) considering the optimal alignment paths that can be derived
by following some neighboring constraints or patterns (Myers, 1980; Rabiner
& Juang, 1993). These neighboring constraints determine the allowed local
temporal deviations and they have been shown to be an important parameter
in the system’s final accuracy (Myers, 1980; Serrà et al., 2008b). One might
hypothesize that this importance relies on the ability to track local timing
variations between small parts of the performance.
A number of studies suggest that systems using dynamic programming can
outperform those following a beat-averaging strategy (Bello, 2007; Liem &
Hanjalic, 2009; Serrà et al., 2008b). The most typical algorithms for dynamic
programming alignment and similarity are dynamic time warping algorithms
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Figure 2.4: Example of a cumulative distance matrix, computed with dynamic pro-
gramming, and its optimal alignment path.

(Rabiner & Juang, 1993; Sankoff & Kruskal, 1983) and edit distance variants
(Gusfield, 1997). Their main drawback is that they are computationally ex-
pensive (quadratic in the length of the song representations), although several
fast implementations may be derived (Gusfield, 1997; Mäkinen et al., 2005;
Ukkonen et al., 2003).

Structure invariance

The difficulties that a different song structure may pose in the detection of mu-
sical piece versions are very often neglected. However, this has been demon-
strated to be a key factor (Serrà et al., 2008b) and, in fact, recent version
identification systems thoughtfully consider this aspect, specially many of the
best-performing ones.
A classic approach to structure invariance consists in summarizing a song into
its most repeated or representative parts (Gómez et al., 2006a; Marolt, 2006).
In this case, song structure analysis is performed in order to segment sections
from the song’s representation used (Chai, 2005; Goto, 2006; Müller & Kurth,
2006b; Ong, 2007; Peeters, 2007). Usually, the most repetitive patterns are
chosen and the remaining ones are disregarded. This strategy might be prone
to errors since structure segmentation algorithms still leave much room for
improvement (see references above). Furthermore, sometimes the most identi-
fiable or salient segment of a musical piece is not the most repeated one, but
the introduction, the bridge and so forth.
It must be noted that some dynamic programming algorithms are able to
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deal with song structure changes. These algorithms are basically the so-called
local alignment algorithms (Gusfield, 1997). In particular, they have been
successfully applied to the task of version identification (Egorov & Linetsky,
2008; Serrà et al., 2008b, 2009a; Yang, 2001). These algorithms solely consider
the best11 subsequence alignment found between two tonal representations for
similarity assessment, what has been evidenced to yield very satisfactory results
(e.g. Serrà et al., 2008b). This is the approach followed in this thesis.
However, the most common strategy for achieving structure invariance consists
of windowing the descriptors representation (so-called sequence windowing;
Di Buccio et al., 2010; Kurth & Müller, 2008; Marolt, 2008; Müller et al.,
2005; Nagano et al., 2002). The whole descriptor sequence is cut into short
segments and the similarity measure is computed based on matches between
these. Sequence windowing can be performed with a small hop size in order
to faithfully represent any possible offset in the representations. However,
this hop size has not been found to be a critical parameter for accuracy, as
near-optimal values are found for a considerable hop size range (Marolt, 2008).
Sequence windowing is also used by many audio fingerprinting algorithms using
tonality-based descriptors (e.g. Casey et al., 2008a; Miotto & Orio, 2008; Riley
et al., 2008).

Similarity computation

The final objective of a version identification system is, given a query, to re-
trieve a list of versions from a music collection. This list is usually ranked
according to some similarity measure so that the topmost songs are the most
similar to the query. Therefore, version identification systems output a similar-
ity (or dissimilarity12) measure between pairs of songs. This similarity measure
operates on the obtained representation after the main building blocks of fea-
ture extraction, key invariance, tempo invariance and structure invariance.
Common dynamic programming techniques used for achieving tempo invari-
ance already provide a similarity measure as an output (Gusfield, 1997; Rabiner
& Juang, 1993; Sankoff & Kruskal, 1983). Accordingly, the majority of systems
following a dynamic programming approach use the similarity measure these
methods provide. This is the case for systems using edit distances (Bello, 2007;
Sailer & Dressler, 2006) or dynamic time warping algorithms (Foote, 2000a;
Gómez & Herrera, 2006; Gómez et al., 2006a; Izmirli, 2005; Lee, 2006; Tsai
et al., 2005, 2008). These similarity measures usually contain an implicit nor-
malization depending on the lengths of the representations, which can generate
some conflicts with versions of very different durations. In the case of the local
alignment techniques, the similarity measure usually corresponds to the length

11By “best” we mean the longest most stable aligned subsequence.
12For the sake of generality, we use the term similarity to refer to both the similarity

and the dissimilarity. In general, a distance measure can also be considered a dissimilarity
measure, which, in turn, can be converted into a similarity measure.
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of the found subsequence match (Egorov & Linetsky, 2008; Nagano et al., 2002;
Serrà et al., 2008b, 2009a; Yang, 2001). This is the approach favored in this
thesis, jointly with the new approach based on tonal sequence modeling (Serrà
et al., 2010c). In the latter, a similarity measure is obtained by means of the
prediction error made by a model trained on the query song when predicting
the candidate song’s tonal sequence.
Conventional similarity measures are also used, in particular cross-correlation
(Ellis & Cotton, 2007; Ellis & Poliner, 2007; Marolt, 2006), the Frobenius norm
(Jensen et al., 2008a), the Euclidean distance (Jensen et al., 2008b; Marolt,
2008), set intersection (Di Buccio et al., 2010) or the dot product (Kim &
Narayanan, 2008; Kim et al., 2008; Kurth & Müller, 2008; Müller et al., 2005).
These similarity measures are sometimes normalized depending on compared
lengths of representations. In the case of adopting a sequence windowing strat-
egy for dealing with structure changes, these similarity measures are usually
combined with multiple subsequent steps such as threshold definition (Kurth
& Müller, 2008; Marolt, 2008; Müller et al., 2005), TF-IDF13 weights (Marolt,
2008), term pruning (Di Buccio et al., 2010) or mismatch ratios (Kurth &
Müller, 2008). Less conventional similarity measures include the normalized
compression distance (Ahonen, 2010; Ahonen & Lemstrom, 2008), and the
hidden Markov model-based most likely sequence of states (Kim & Perelstein,
2007).
A summary table for several state-of-the-art approaches and the different
strategies they follow in each functional block is provided in the next page
(Table 2.1). A similar table with evaluation issues and results is given in the
next section (Table 2.2).

2.3.2 Pre- and post-processing strategies

In Sec. 1.1.2 we mentioned the existence of a “glass ceiling” in the accuracy of
music similarity approaches. However, the truth is that one can observe such
phenomenon in many other MIR tasks (Downie, 2008). Depending on the task,
several research directions can be considered for tackling this issue. Here we
focus on the version detection task but, as noted in Lagrange & Serrà (2010),
“most of the argumentation may be transferred to more general similarity tasks
involving a query-by-example system”.
One option to boost the accuracy of current query-by-example systems is to use
an enhanced description of the musical stream using the segregation principle
(Bregman, 1990). Intuitively, much can be gained if an audio signal is available
for each instrument. This way, one can easily focus on the stream of interest
for each MIR task. In this line, Foucard et al. (2010) show that considering
a dominant melody removal algorithm as a pre-processing step is a promising

13The TF-IDF weight (term frequency-inverse document frequency) is a weight often used
in information retrieval and text mining. For more details we refer to Baeza-Yates & Ribeiro-
Neto (1999).
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approach for observing more robustly the harmonic progression and, in this
way, achieve a higher accuracy in the version identification task. However, it
may be a long time until such pre-processing based on segregation is beneficial
for managing medium to large-scale music collections.
Related to the option of considering different streams is the consideration of
different descriptors extracted from the same song. In this context, a first
step has been done by Ahonen (2010). He extends the usual chord-based PCP
quantization (24 symbols, Sec. 2.3.1) by including ‘power chord’ information
(12 symbols), distances between successive PCP representations and the index
of the strongest pitch class. The similarity measures obtained by these features
separately are combined by averaging. This process may be computationally
costly but shows some improvement in overall accuracy.
Regarding post-processing strategies, an efficient alternative is to consider ap-
proaches exploiting the regularities found in the results of a query-by-example
system for a given music collection. Indeed, music collections are usually orga-
nized and structured at multiple levels. In the case of version detection, songs
naturally cluster into so-called version sets14 (Serrà et al., 2009b). Therefore,
if those version sets can be approximately estimated, one can gain significant
retrieval accuracy (Egorov & Linetsky, 2008; Serrà et al., 2010d, 2009b). A
different and very interesting post-processing alternative is the general clas-
sification scheme proposed by Ravuri & Ellis (2010), where they employ the
output of different version detection algorithms and a z-score normalization
scheme to classify pairs of songs. In general, we believe that the combina-
tion of supervised and unsupervised methods could yield the most interesting
approach for music retrieval (c.f. Baeza-Yates et al., 2006).

2.3.3 Evaluation

Music collection

A relevant issue when dealing with the evaluation of MIR systems is the music
material considered. In the case of version identification, both the complexity
of the problem and the selected approach largely depend on the studied music
collection and the types of versions we want to identify. These might range
from remastered tracks to radically different songs (Sec. 1.2.2). In this sense,
it is very difficult to compare two systems evaluated in different conditions and
designed to solve different problems.
Some works solely analyze classical music (Izmirli, 2005; Kim & Narayanan,
2008; Kim et al., 2008; Kurth & Müller, 2008; Müller et al., 2005), and it
is the case that all of them obtain very high accuracies. However, classical
music versions might not present strong timbral, structural or tempo variations.
Therefore, one might hypothesize that, when only classical music is considered,
the complexity of the version identification task decreases. Other works use a

14We originally termed it cover sets in Serrà et al. (2009b).
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more variated style distribution in their music collections, but it is often still
unclear which types of versions are used. These are usually mixed and may
include remastered tracks (which might be easier to detect), medleys (where
invariance towards song structure changes may be a central aspect), demos
(with substantial variations with respect to the finally released song), remixes
or quotations (which might constitute the most challenging scenario due to
their potentially short duration and distorted harmonicity). In our view, a
large variety in genres and version types is the only way to ensure the general
applicability of the method being developed.
Besides the qualitative aspects of the music material considered, one should
also take care with the quantitative aspects of it. The total number of songs
and the distribution of these can strongly influence final accuracy values. To
study this influence, one can decompose a music collection into version sets
(i.e. each original song is assigned to a separate song set). Then, their cardi-
nality (number of versions per set, i.e. the number of versions for each original
song) becomes an important parameter.
In Serrà et al. (2010a) we performed a simple test with the system described
in this thesis in order to assess the influence of these two parameters (number
of version sets and their cardinality) on the system’s final accuracy. Based on
a collection of 2135 songs, 30 random selections of songs were carried out for a
number of combinations of the previous two parameters. Then, an average for
the mean average precision of all runs was computed and plotted (Fig. 2.5a).
We can see that considering less than 50 version sets, or even just a cardinality
of 2, yields unrealistically high results. Higher values for these two parameters
at the same time all fall within a stable accuracy region15. This effect can also
be seen if we plot the standard deviations of the evaluation measure across
all runs (Fig. 2.5b). In particular, it can be observed that using less than
50 version sets introduces a high variability in the evaluated accuracy, which
may then depend on the chosen subset. This variability becomes lower as the
number of version sets and their cardinality increase.
With this small experiment we can see that an insufficient size or particular
configurations of the music collection could potentially lead to abnormally high
accuracies, as well as to parameter overfitting (in the case that the system re-
quired a training procedure). Unfortunately, many reported studies use less
than 50 version sets (Foote, 2000a; Gómez & Herrera, 2006; Gómez et al.,
2006a; Izmirli, 2005; Nagano et al., 2002; Tsai et al., 2005, 2008). There-
fore, one cannot be confident about the reported accuracies. This could even
happen with the so-called covers80 dataset16 (Ellis & Cotton, 2007), a freely
available dataset composed of 80 version sets with a cardinality of 2 that many
researchers use to test system’s accuracy and to tune their parameters (Aho-

15It is not the aim of the experiment to provide explicit accuracy values. Instead, we aim
at illustrating the effects that different configurations of the music collection might have for
final system’s accuracy.

16http://labrosa.ee.columbia.edu/projects/coversongs/covers80

http://labrosa.ee.columbia.edu/projects/coversongs/covers80


2.3. VERSION IDENTIFICATION: STATE-OF-THE-ART 39

Figure 2.5: Mean accuracy (a) and accuracy variability (b) of a version identification
system depending on the number of version sets, and the number of versions per set.

nen, 2010; Ahonen & Lemstrom, 2008; Ellis & Cotton, 2007; Ellis & Poliner,
2007; Jensen et al., 2008a,b).
When the music collection is not large enough, one may try to compensate the
potential variability in final accuracies by adding so-called ‘noise’ or ‘control’
songs (Bello, 2007; Downie et al., 2008; Egorov & Linetsky, 2008; Marolt, 2006,
2008). The inclusion of these songs in the retrieval collection might provide an
extra dose of difficulty to the task, as the probability of getting relevant items
within the first ranked elements becomes then very low (numbers are given by
Downie et al., 2008).

Evaluation measures

A further issue to be considered when evaluating the quantitative aspects of
version identification is the evaluation measure to employ. In general, the quan-
titative evaluation of version identification systems is usually set up as a typical
information retrieval ‘query and answer’ or query-by-example task, where one
submits a query song and the system returns a ranked list of answers retrieved
from a given collection (Baeza-Yates & Ribeiro-Neto, 1999; Voorhees & Har-
man, 2005). Therefore, several standard information retrieval measures have
been employed for evaluating the accuracy of version identification systems:
the R-precision (Bello, 2007; Izmirli, 2005), variants of precision or recall at
different rank levels (Ellis & Cotton, 2007; Ellis & Poliner, 2007; Foote, 2000a;
Jensen et al., 2008a,b; Kim & Narayanan, 2008; Kim et al., 2008; Kurth &
Müller, 2008; Tsai et al., 2005, 2008; Yang, 2001), the average of precision and
recall (Nagano et al., 2002), the F-measure (Gómez & Herrera, 2006; Gómez
et al., 2006a; Serrà et al., 2008b) and the mean of average precisions (Ahonen,
2010; Ahonen & Lemstrom, 2008; Egorov & Linetsky, 2008; Serrà et al., 2010c,
2009a).
Since each of these evaluation measures focus on specific aspects of the retrieval
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task (c.f. Serrà, 2007b), the quantitative comparison between systems of the
same kind becomes difficult. In addition, the above measures only provide
an overall accuracy for each system. A valuable improvement would be to
implement independent evaluations for the different functional blocks outlined
in this chapter, in order to analyze their contributions to the global system
behavior.

MIREX

The only existing attempt to find a common methodology for the evaluation of
MIR systems is the music information retrieval evaluation exchange (MIREX)
initiative. MIREX is an international community-based framework for the
formal evaluation of MIR systems and algorithms (Downie, 2008). Among
other tasks, MIREX allows the comparison of different algorithms for artist
identification, genre classification or music transcription17.
Since 2006, MIREX allows for an objective assessment of the accuracy of dif-
ferent version identification algorithms (the so-called “audio cover song identi-
fication task”; Downie et al., 2008). For that purpose, participants can submit
their algorithms and the MIREX organizers determine and publish the algo-
rithms’ accuracies and runtimes. The underlying music collections are never
published or disclosed to the participants, either before or after the contest.
Therefore, participants cannot tune their algorithms to the music collections
used in the evaluation process.
The main MIREX test collection is composed of 30 version sets, each set being
of cardinality 11. Accordingly, the total collection contains 330 songs. Another
670 individual songs, i.e. version sets of cardinality 1, are added to make the
identification task more difficult. This music collection is meant to include
“a wide variety of genres” (e.g. classical, jazz, gospel, rock, folk-rock), and a
sufficient “variety of styles and orchestrations” (Downie et al., 2008). How-
ever, beyond this general description, no further information about the test
collection is published or disclosed to the participants. In particular, only the
MIREX organizers know what actual musical pieces are contained in the test
collections. Since 2006, the same music collection has been used (so-called
‘mixed collection’).
For obtaining an accuracy value, each of the collection’s versions are used as
queries, and the submitted algorithms are required to return a distance matrix
with one row for each query (i.e. a 330 × 1000 matrix must be returned for
the ‘mixed collection’). From this distance matrix, a number of evaluation
measures are computed by the MIREX organizers. A number of evaluation
measures have been computed for all editions of the MIREX version identifi-
cation task (Downie et al., 2008): the total number of identified versions, the
mean number of identified versions, the mean of maxima, the mean reciprocal

17http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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rank and the mean of average precisions. Among all of these, the mean of av-
erage precisions is used as the principal accuracy measure for reporting results
(Downie, 2008).
In 2009 a new music collection was introduced (the so-called ‘mazurka col-
lection’). This collection consists of 539 pieces corresponding to 11 selected
versions from 49 Chopin mazurkas from the Mazurka Project18. Strictly speak-
ing, this collection is a version compilation. However, the variability of the set
is very reduced. All of them are Chopin’s mazurkas, all of them are classi-
cal versions, and none of them present important variations with regard to
song structure. Furthermore, the recordings that conform the entire Mazurka
Project’s collection are known. Therefore, one could overfit a system to it19.
Overall, one might consider the mazurka collection as more of a “music identi-
fication” collection rather than a representative version collection. It is worth
noting that all the systems submitted to MIREX that have been evaluated with
the mazurka collection have achieved particularly high accuracies (e.g. the sys-
tem we present in this thesis achieved a mean average precision of 0.96). With
this view, high accuracies highlight the good performance that version iden-
tification algorithms can have in tasks such as music identification or audio
fingerprinting (Sec. 1.3).
A summary table of the evaluation strategies and accuracies reported for the
version identification systems outlined in the previous sections is shown in next
page (Table 2.2).

18http://www.mazurka.org.uk
19However, the specific 539 pieces that are used for the MIREX evaluation are not known.

http://www.mazurka.org.uk
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CHAPTER 3
Model-free version detection

3.1 Introduction

In our literature review we realize that, if there is a general shared characteris-
tic among version identification systems, this is the lack of a model of the song
or its descriptor sequences. This is specially true for the similarity computa-
tion stage, since all approaches simply try to ‘match’ or align data of some sort
without making strong assumptions on the model that could generate or rep-
resent such data1 (Sec. 2.3.1). In this chapter we propose an approach which
also follows this outline, hence the “model-free” term in the title. We explore
modeling strategies in Chapter 5.
Before we enter into the details of our model-free approach, it is convenient to
contextualize the research done within this thesis, in particular with regard to
our publications and our submissions to the MIREX “audio cover song identi-
fication task” (Sec. 2.3.3). In 2007, prior to the work of this thesis, we made
a MIREX submission that we subsequently described in Serrà et al. (2008b).
This 2007 algorithm, which used a specifically designed similarity measure for
PCP features and a local alignment method, yielded the highest accuracy of
all algorithms submitted in 2007 or in earlier editions. For the 2008 edition we
submitted a qualitatively novel approach. The version identification measure
that we derived from this approach (Qmax) and a composition of this measure
with a simple post-processing step (Q∗max) yielded the two highest accuracies
of all algorithms submitted in 2008 or in earlier editions. In particular, the
accuracy of both Qmax and Q∗max clearly surpassed our earlier 2007 submis-
sion. Remarkably, the accuracies obtained by these two approaches remain
the highest accuracies in the MIREX “audio cover song identification task” to
date (this includes the 2008, 20092 and 2010 editions).

1The only exception is the approach by Kim & Perelstein (2007), who use hidden Markov
models.

2In 2009 we resubmitted the same algorithm in order to see how it performed in a new test
collection (Sec. 2.3.3). This new submission just included some minor software modifications
and parameter adjustments, but the method remained exactly the same.
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The work in this thesis started right after the MIREX 2007 submission3. There-
fore Qmax and Q∗max are direct products of this work. The remainder of the
chapter provides a complete explanation of the Qmax measure and it is mostly
based on our publications Serrà et al. (2008a) and Serrà et al. (2009a). Details
about Q∗max, its post-processed version, are given in Chapter 4, which is mostly
based on our publications Serrà et al. (2009b) and Serrà et al. (2010d).
The Qmax algorithm shares some pre-processing steps with the MIREX 2007
submission (Serrà et al., 2008b). However, the crucial difference is that it in-
volves techniques derived from nonlinear time series analysis (Kantz & Schreiber,
2004). More specifically, Qmax is a recurrence quantification analysis (RQA;
Marwan et al., 2002b; Webber Jr. & Zbilut, 1994; Zbilut & Webber Jr., 1992)
measure that is extracted from cross recurrence plots (CRP; Zbilut et al.,
1998), which are the bivariate generalization of classical recurrence plots (RP;
Eckmann et al., 1987).
Repetition, or recurrence, is an important feature of music (Patel, 2008), and
is also a key property of complex dynamical systems and of a wide variety
of data series (Marwan et al., 2007). The framework of nonlinear time series
analysis offers a number of techniques to quantify similarities and recurrences
between signals measured from dynamical systems. Among these techniques,
the CRP seems to be the most suitable to analyze pairs of music descriptor time
series since it is defined for pairs of signals of different lengths and can easily
cope with variations in the time scale and non-stationarities of the dynamics
(Facchini et al., 2005; Marwan et al., 2002a). CRPs are constructed using delay
coordinates (Takens, 1981), a tool routinely employed in nonlinear time series
analysis (Kantz & Schreiber, 2004) that we will formally introduce in Sec. 3.2.4.
For obtaining quantitative information of the structures present in a CRP, one
uses RQA measures. These are actually measures of complexity that assess
the number and duration of the recurrences (Marwan et al., 2007). Intuitively,
when comparing two songs, we are specially interested in the duration of their
shared recurrences.
CRPs and RQA measures are known as very intuitive and powerful tools in
various disciplines such as astrophysics, earth sciences, engineering, biology,
cardiology or neuroscience [see Marwan et al. (2007) and references therein].
However, to the best of our knowledge, there are no previous applications of
CRPs and RQA measures to music-related signals. In general, only a few stud-
ies apply nonlinear time series analysis to these signals. Gerhard (1999) and
Reiss & Sandler (2003) apply delay coordinates to raw audio signals with re-
gard to audio analysis and visualization. Mierswa & Morik (2005) and Mörchen
et al. (2006a,b) apply delay coordinates to music descriptor time series with
regard to genre classification, user preferences and timbre modeling. Hegger
et al. (2000) apply delay coordinates to human speech signals for the purpose
of local projective noise reduction. Subsequently, Matassini et al. (2002) de-

3Specifically in September 2007. The MIREX submission was in August.
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fined an RQA measure to automatically adjust the best neighborhood size for
this local projection.
It should be noted that RPs and CRPs have certain analogies with commonly
used MIR methods. In particular, it is worth recalling the so-called self similar-
ity matrix, introduced by Foote (1999), to visualize music and audio tracks. It
was later used by Foote (2000b) for song structure segmentation and by Casey
& Westner (2000) for identifying components of an audio piece. Currently, self
similarity matrices are used for diverse tasks such as song structure analysis
(see references in Sec. 2.3.1) or music meter detection (Gainza, 2009). Cross
similarity matrices are used, either directly or indirectly, in audio matching
and synchronization algorithms (Müller, 2007), a task closely related to ver-
sion identification (Sec 2.2.1). However, in contrast to CRPs, these similarity
matrices do not apply any delay coordinate state space representation and are,
in general, not thresholded. Although the quantification of structures in self or
cross similarity matrices has received some attention from the MIR community
(the references cited in this paragraph provide some examples), the usage of
RQA measures as such is, to the best of the author’s knowledge, unprecedented
within the MIR literature.
On a more musical side, we can draw some analogies between the application of
delay coordinates and the smoothing of self-similarity matrices in MIR. Delay
coordinates allow us to bring together the information about both current and
previous samples. In addition, by evaluating vectors of sample sequences, delay
coordinates allow one to assess recurrences of systems more reliably than by
using only the scalar samples (Marwan et al., 2007). Noticeably, the use of note
sequences rather than isolated notes is essential in music (Huron, 2006) and
is important for melody perception and recognition (Schulkind et al., 2003).
Indeed, the concept of delay coordinates recalls some strategies that have been
used in MIR4. In particular, the smoothing of self-similarity matrices along
the main diagonal, sometimes referred to as the “incorporation of contextual
information”, has been used by Foote (2000b), Peeters et al. (2002), Peeters
(2007), Bartsch & Wakefield (2005) and Müller & Kurth (2006a). In addition,
Casey & Slaney (2006) discuss the importance of sequences, and use this fact in
their “shingling” framework (Casey et al., 2008a). Evidence about the benefits
of smoothing for self-similarity matrices has been reported within some MIR
tasks other than version identification, in particular in the context of structure
analysis (Müller & Kurth, 2006b) and partial music synchronization (Müller &
Appelt, 2008). Notably, Müller & Appelt (2008) also applied some thresholding
to their matrices.

4The author thanks M. Müller for providing insight on this aspect (M. Müller, personal
communication, September 2010).
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Figure 3.1: General block diagram of the Qmax approach.

3.2 Method

3.2.1 Overview

A brief overview of the Qmax algorithm and the resulting structure of this
chapter can be outlined as follows (Fig. 3.1). Given two songs, we first extract
descriptor time series (Sec. 3.2.2) and transpose one song to the main tonality
of the other (Sec. 3.2.3). From this pair of multivariate time series, we form
state space representations of the two songs using delay coordinates involving
an embedding dimension m and time delay τ (Sec. 3.2.4). From this state
space representation, we construct a CRP using a fixed maximum percentage
of nearest neighbors κ (Sec. 3.2.5). Subsequently, we use Qmax to extract
features that are sensitive to characteristics of song version CRPs, which results
in two additional parameters γo and γe. In particular, we derive Qmax from a
previously published RQA measure (Lmax; Eckmann et al., 1987), but adapt
it in two steps (via Smax) to the problem at hand (Sec. 3.2.6).
We evaluate our approach using a large collection of music recordings (Sec. 3.3.1)
and a standard information retrieval evaluation measure (Sec. 3.3.2). We use
a subset of this music collection to, first, study our transposition methodol-
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ogy, and then, to perform an in-sample optimization of parameters m, τ , κ, γo
and γe (Sec. 3.4.1). We subsequently report the out-of-sample accuracy with
optimized parameters of Lmax, Smax and Qmax (Sec. 3.4.2). All these steps
were carried out before we submitted the resulting algorithm to MIREX as a
further out-of-sample validation. We review results of all MIREX editions to
date (Sec. 3.4.3) and provide an error analysis of our system (Sec. 3.4.5) before
we draw some conclusions on the work presented in this chapter (Sec. 3.5).

3.2.2 Descriptor extraction

Pitch class profiles

Tonal information, and specially tonal hierarchies, are at the basis of human
musical conception (Krumhansl, 1990; Lerdahl, 2001). Moreover, there is evi-
dence that tonal hierarchies are primarily involved in important tasks related
to music understanding such as music prediction, memorization or interpreta-
tion (Huron, 2006). Therefore, it seems reasonable to think that tonal infor-
mation is one of the characteristics (if not the only one) that remains more
or less invariant among different versions. The majority of version detection
systems extract quantitative information related to this musical characteristic
(Sec. 2.3.1).
In order to exploit the tonal information that is present in the audio signal we
use pitch class profile (PCP) descriptors. In general, PCPs are robust against
non-tonal components (e.g. ambient noise or percussive sounds) and indepen-
dent of timbre and the specific instruments used (Gómez, 2006). Furthermore,
they are usually independent of the loudness fluctuations in a musical piece.
PCPs are derived from the frequency dependent energy in a given range (typ-
ically from 50 to 5000 Hz) in short-time spectral representations (e.g. 100 ms)
of audio signals computed in a moving window. This energy is usually mapped
into an octave-independent histogram representing the relative intensity of each
of the 12 semitones of the Western music chromatic scale (12 pitch classes).
To normalize with respect to loudness, this histogram can be divided by its
maximum value, thus leading to values between 0 and 1, or by the sum of its
elements, thus leading to probability values for each pitch. A PCP example
has been depicted in Fig. 2.2.
In our method we use an enhanced PCP descriptor: the so-called harmonic
pitch class profile (HPCP; Gómez, 2006). HPCPs share the aforementioned
PCP properties, but are based only on the peaks of the spectrum within a
certain frequency band, thereby diminishing the influence of noisy spectral
components. Furthermore, HPCPs are tuning independent, so that the refer-
ence tone can be different from the standard tone A at 440 Hz. In addition,
they take into account the presence of harmonic frequencies. A general block
diagram of the HPCP extraction process is provided in Fig. 3.2.
We now explain the process for obtaining HPCP descriptors, although some
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Figure 3.2: Basic block diagram for HPCP computation.

details are just summarized for the sake of brevity. For further information we
refer to Gómez (2006) and the citations within the text. For an additional,
more technical reference the reader may consult Gómez et al. (2008).
The employed HPCP extraction starts by converting each audio signal to a
mono signal with a sampling rate of 44100 Hz. Stereo to mono conversion is
done through channel averaging. We proceed with a moving window analysis
and compute a spectrogram by means of the short-time Fourier transform
(STFT; Smith III, 2010b). Let vector z = [z1, . . . zZ ]T be the raw audio signal
containing Z samples (since T denotes transposition, z is a column vector).
Then the spectrogram Y = [y1 · · ·yY ]T is obtained by means of the fast Fourier
transform (FFT; Smith III, 2010a). For successive windows with 75% overlap,
a magnitude spectrum yi is calculated as

yi,k =

∣∣∣∣∣
2W∑
n=1

z(i−1)W
2
+nwne

−jπ(k−1)n−1
W

∣∣∣∣∣ (3.1)

for k = 1, . . .W , where w = [w1, . . . w2W ]T is a windowing function of length
2W and j here corresponds to the imaginary number. For w we use a 92
dB Blackman-Harris function (Smith III, 2010b) and 2W = 4096 (i.e. 93 ms).
The last window is discarded due to possible insufficient length, therefore Y =
b2Z/W c (recall that we use a 75% overlap, therefore the hop size in samples
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is W/2 = 1024). Notice that Eq. (3.1) takes the magnitude of the result of the
FFT and that therefore discards phase information. Spectrum symmetries are
also discarded (k = 1, . . .W ).
Once the spectrogram Y is computed, a peak detection process is applied,
i.e. the local maxima of all spectra yi are extracted. The same procedure of
parabola fitting used in sinusoidal modeling synthesis is followed (Serra, 1997)
and only the 30 highest peaks found between 40 and 5000 Hz are taken. We
indicate these peaks as y(fk)i , fk being the frequency of the k-th peak found in
the i-th window.
With all y(fk)i for i = 1, . . . Y and k = 1, . . . 30, a reference tuning frequency
fref is computed for the whole song. First, a reference frequency is estimated
for each window i by analyzing the deviations of y(fk)i , for k = 1, . . . 30, with
respect to the frequencies of an equal-tempered chromatic scale with A4 tuned
at 440 Hz. Then, a histogram incorporating the deviations found in all windows
i = 1, . . . Y is used to estimate fref. Our approach is the same as the one
employed by Gómez (2006).
An important part of the HPCP extraction is the spectral whitening process
applied to each peak y(fk)i . In particular, each y(fk)i value is normalized with
respect to the corresponding value of the i-th spectral envelope at frequency
fk. The spectral envelope represents a crude approximation of the timbre
information. Therefore, with such a timbre normalization, notes on high oc-
taves contribute equally to the final HPCP vector as those on the low pitch
range. This way, one gains robustness to different instrument configurations
and equalization procedures (Gómez, 2006). To estimate a spectral envelope
we use the same approach as Röbel & Rodet (2005).
After obtaining whitened peak magnitudes ȳ(fk)i , we add their contributions
to an octave-independent histogram hi representing the relative intensity of
the 12 semitones of the Western chromatic scale. Not only the contributions
from peak values ȳ(fk)i are considered, but also the contributions of the fre-
quencies having fk as harmonic frequency. Apart from fk, we consider 7 such
frequencies, i.e. fn = fk, fk/2, . . . fk/8.
Developing from Gómez (2006), and considering the aforementioned 30 peaks,
12 semitones and 8 harmonics, the computation of an HPCP vector hi =
[hi,1, . . . hi,12]

T can be expressed as

hi,j =

30∑
k=1

8∑
n=1

αA
n−1

[
ω

(
j,
fk
n

)
ȳ
(fk)
i

]2
, (3.2)

where αA is a constant, αAn−1 is a harmonic weighting term, and ω (j, fn) is
a cosine weighting function such that

ω (j, fn) =

{
cos
(
π
2
υ(j,fn)
αB

)
if |υ (j, fn) | ≤ αB,

0 otherwise,
(3.3)
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Figure 3.3: Example of an HPCP time series extracted using a moving window from
the song “Day Tripper”, as performed by The Beatles.

where αB is a constant and

υ (j, fn) = 12

[
log2

(
fn

fref2
j
12

)
+ β

]
, (3.4)

β being the integer that minimizes |υ(j, fn)|. Constants αA and αB are both
experimentally set to 2/3. The HPCP of a given window is normalized by its
maximum value such that

h̆i =
hi

max (hi)
. (3.5)

We denote a multidimensional time series of normalized HPCP vectors by
H̆ = [h̆1 · · · h̆Y ]T. An example is depicted in Fig. 3.3.
The HPCP extraction procedure employed here is the same that has been
used in Gómez & Herrera (2004, 2006); Gómez et al. (2006a); Serrà et al.
(2008c) and Serrà et al. (2008b), and the parameters mentioned in this section
have been proven to work well for key estimation, chord extraction, tonal
profile determination and version identification, respectively, in the previously
cited references. Exhaustive comparisons between ‘standard’ PCP features
and HPCPs have been presented in Gómez (2006), Ong et al. (2006) and Serrà
et al. (2008c).

Tonal centroid

From a PCP representation it is quite straightforward to derive other tonal rep-
resentations. Of particular interest is the tonal centroid (TC) representation
proposed by Harte et al. (2006). In the line of Chew (2000), and inspired by
other well-known representations of pitch relations such as the tonnetz (Cohn,
1997), Harte et al. (2006) proposed an equal-tempered model for pitch space
that is specially suitable for data derived from audio. In their implementation,
PCP features are mapped to the interior space of a 6-dimensional polytope,
where perceptually close harmonic relations appear as small Euclidean dis-
tances. Then, in the same manner that Chew (2000) defines her “center of
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Figure 3.4: Example of a TC time series extracted using a moving window from the
song “All along the watchtower”, as performed by Jimi Hendrix.

effect” on the spiral array model, the coordinates inside the proposed polytope
correspond to the actual TC descriptor. Since a 6-dimensional model is nearly
impossible to visualize, Harte et al. (2006) proposed imagining it “as a projec-
tion onto the three circularities in the equal tempered tonnetz: the circle of
fifths, the circle of minor thirds and the circle of major thirds”. For the sake
of brevity, here we only provide the explicit formulae of the TC descriptor.
Further details, including explanatory pictures, are given in the cited work.
Given the i-th analysis window, the TC descriptor ci = [ci,1, . . . ci,6]

T is ob-
tained by multiplying the PCP vector hi by a suitable transformation matrix
Φ and then normalizing such that

ci,j =
1

‖h̄i‖1

12∑
k=1

φj,kh̄i,k, (3.6)

where ‖ · ‖1 is the L1 norm. The transformation matrix Φ represents the basis
of the 6-dimensional space and is defined as Φ = [Φ1 . . . Φ12]

T, where each
column vector

Φj =



φj,1
φj,2
φj,3
φj,4
φj,5
φj,6

 =



sin
(
(j − 1)7π6

)
cos
(
(j − 1)7π6

)
sin
(
(j − 1)3π2

)
cos
(
(j − 1)3π2

)
1
2 sin

(
(j − 1)2π3

)
1
2 cos

(
(j − 1)2π3

)

 . (3.7)

We denote a multidimensional time series of TC vectors as C = [c1 · · · cY ]T.
An example is depicted in Fig. 3.4.

Harmonic change

Harte et al. (2006) also define the harmonic change (HC) descriptor: a mea-
sure “for detecting changes in the harmonic content of music audio signals”.
This descriptor is simply computed as the Euclidean distance between pairs of
consecutive TC samples. Therefore, it yields a unidimensional descriptor time
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Figure 3.5: Example of an HC time series extracted using a moving window from
the song “All along the watchtower”, as performed by Jimi Hendrix.

series g = [0, g2, . . . gY ]T, gi = ‖ci − ci−1‖2, where ‖ · ‖2 is the L2 or Euclidean
norm. An example of g is depicted in Fig. 3.5.

Downsampling

After the extraction process above, we are left with a descriptor time series
(or sequence) of length Y . The HC descriptor is a unidimensional time series
g. The TC and PCP descriptors are multidimensional time series C and H̆ of
6 and 12 components, respectively. For further processing, these three time
series are downsampled according to a pre-specified averaging factor ν such
that the new length N = bY/νc. The downsampled time series H̄, C̄ and ḡ are
computed as

h̄n =

∑ν
i=1 h̆i+ν(n−1)

max
(∑ν

i=1 h̆i+ν(n−1)
) , (3.8)

c̄n =

∑ν
i=1 ci+ν(n−1)

ν
, (3.9)

and

ḡn =

∑ν
i=1 gi+ν(n−1)

ν
, (3.10)

for n = 1, . . . N , respectively. Alternatively to Eqs. (3.8)-(3.10), the median can
be taken. Preliminary analysis shows that it leads to a marginal improvement.
The downsampling above obviously favors computational speed since less win-
dows are used for further processing (N < Y ). Moreover, and for particular
values of ν, such downsampling has been proven to be beneficial for version
retrieval (Serrà, 2007a; Serrà et al., 2008b). According to these references,
we empirically set ν = 20. Since the previous hop size of Y was 23.2 ms
[W/2 = 1024 samples with a sampling rate of 44100 Hz, Eq. (3.1)] we now
obtain a hop size of 464 ms. Therefore, our resulting descriptor time series
have a sampling rate of approximately 2.1 Hz (e.g. a song of 4 minutes yields
a music descriptor time series of 516 samples). The resulting window size is
534 ms [2W + (ν − 1)W/2 samples, see also Eq. (3.1)].
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Figure 3.6: Example of a circular shift of the pitch class components by one position
along the vertical axis of a PCP time series.

3.2.3 Transposition

A change in the main tonality or key is a common alteration when musicians
perform song versions (Sec. 1.2.3). This change in tonality is usually done to
adapt the original composition to a different singer or solo instrument, or just
for aesthetic reasons. In PCP descriptors, a change in the main tonality is
represented by a circular pitch class shift (Purwins, 2005). Accordingly, one
can reverse this change using an appropriate circular shift of the pitch class
components along the vertical axis of a PCP time series (Fig. 3.6).
To determine the number of shifts, we use the optimal transposition index
procedure. We first compute a so-called global PCP h̄glo by averaging all
descriptor vectors in a sequence and normalizing:

h̄glo =

∑Y
i=1 h̆i

max
(∑Y

i=1 h̆i
) . (3.11)

We do it for the two songs being compared, say u and v, resulting in h̄(u)
glo and

h̄(v)
glo, respectively.

With the global PCPs for the two songs, we calculate a list of ‘transposition
likelihoods’ o(u,v) = [o

(u,v)
1 , . . . o

(u,v)
12 ]. Intuitively, if we test the likelihood be-

tween two global representations of the tonal content for all 12 possible shifts,
we can have a first guess of which shift is more likely to produce a good match
when comparing the two descriptor sequences. Mathematically, and using the
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dot product (·) as a measure of likelihood,

o
(u,v)
k = ok

(
h̄(u)

glo , h̄
(v)
glo

)
= h̄(u)

glo ·
[
h̄(v)

glo � (k − 1)
]
, (3.12)

for k = 1, . . . 12. The operation h � k implies the application of k circular
shifts to the right to vector h. For example, a circular shift to the right of one
position is a permutation of the entries in a vector where the last component
becomes the first one and all the other components are shifted to the right.
More formally, for an arbitrary shift k, h� k = ḣ = [ḣ1, . . . ḣ12]

T, where each
ḣi for i = 1, . . . 12 is obtained using the modulo operation:

ḣ(i+k)−12b i+k12 c = hi. (3.13)

Notice that, instead of 12, any number of components could be used in Eqs. (3.12)
and (3.13). Notice also that the aforementioned operations can be performed
by means of the circular convolution properties of the FFT, as we demonstrated
in Serrà (2007a). This option is interesting in that which regards computa-
tional speed, specially when more than 12 PCP bins are considered.
Once we have o(u,v), we sort its elements in descending order and obtain

o̊(u,v) = argsort
([
o
(u,v)
1 , . . . o

(u,v)
12

])
. (3.14)

With this ordered list, one can choose transposition indices in a more informed
way. In particular, indices that are more likely to produce a good match of the
PCP sequences might occupy the first positions of o̊(u,v). Thus, the preferred
options would be o̊(u,v)1 , then o̊(u,v)2 , then o̊(u,v)3 and so forth. Moreover, suppos-
ing that indices close to 12 yield a poor match, some of these transpositions
may be skipped. We denote with O the maximum number of transposition in-
dices considered. In our experiments we use O = 2, thus reducing 6 times the
computational costs of the overall system. The effect of parameter O is studied
in Sec. 3.4.1. A comparison with a key normalization strategy (Sec. 2.3.1) is
also presented. Insights on the internal organization of o̊(u,v) were provided in
Serrà et al. (2008a).
To effectively transpose the PCPs of song v to the k-th most likely transposition
we do

ḣ
(v)
i = h̄(v)

i � o̊
(u,v)
k (3.15)

for i = 1, . . . N . In case of using the TC or HC descriptors, the above proce-
dure is done for the corresponding PCP time series and then TC and HC are
computed, i.e. we do it with H̄ before Eq. (3.6).
To close the section, we should highlight that the above procedure [Eqs. (3.12)-
(3.14)] has also been used as part of a PCP binary similarity measure, termed
optimal transposition index (OTI) similarity. Basically, one considers two PCP
descriptors to be similar if the index o̊(i,j)1 corresponds to a shift smaller than
a semitone (e.g. in the case of 12-bin PCPs, o̊(i,j)1 must be zero in order to
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consider that PCPs i and j are the same). The OTI similarity measure has
been employed in a number of studies in the context of version detection (e.g.
Foucard et al., 2010; Liem & Hanjalic, 2009; Ravuri & Ellis, 2010), including
our previous system (Serrà et al., 2008b). Furthermore, it has been used in
other studies not strictly related to version identification (e.g. Müller & Ewert,
2010).

3.2.4 State space embedding

The preceding steps yield a descriptor sequence which reflects the temporal
evolution of a given song’s musical aspect, in our case tonality aspects. Such
sequence can be viewed as a multidimensional time series5 X . From this per-
spective, one can resort to the existing literature on time series analysis in order
to exploit the information contained in X (e.g. Box & Jenkins, 1976; Lütke-
pohl, 1993). In particular, we resort to techniques from nonlinear time series
analysis (Kantz & Schreiber, 2004). “Nonlinear time series analysis is a practi-
cal spin-off from complex dynamical systems theory and chaos theory. Among
others, it comprises a variety of techniques to characterize the nonlinearities
that give rise to a complex temporal evolution” (Andrzejak, 2010).
We consider a time series X to be a representation of a succession of system
states (for our purposes, the system might be associated to the musical com-
position and the states to a particular musical quality, e.g. instantaneous tonal
characteristics). In general, the information about a concrete state is not fully
contained in a single sample from a time series (Sauer, 2006). Therefore, to
achieve a more comprehensive characterization of such state, one can take into
account samples from the recent past6. This is formalized by the concept of
time delay embedding (Takens, 1981), also termed delay coordinate state space
embedding.
The construction of a state space by means of delay coordinates technically
solves the problem of the reconstruction of a succession of system states from
a single time series measured from this succession (Hughes, 2006). In particu-
lar, it specifies a vector space “such that specifying a point in this space specifies

5Many of the procedures below are not specific for tonal descriptor time series or se-
quences, but can be applied to any time series. Therefore, to emphasize this generality, a new
variable is introduced: we denote a multidimensional time series as a matrix X = [x1 · · ·xN ]T,
where N is the total number of samples and xi is a column vector with X components rep-
resenting an X-dimensional sample at window i. In particular, X may indistinctly refer to
time series of descriptors H̄, Ḣ, C̄, Ċ, ḡ or ġ. Element xi,k of X represents the magnitude of
the k-th descriptor component of the i-th window.

6The previous sentences can be illustrated as follows: think of a discrete (sufficiently
sampled) sinusoidal signal whose amplitude is between -1 and 1, and suppose we are told
that, at a certain moment of time, the signal has an amplitude of 0.85. If this is the only
information we have, we are unable to tell if the next sample will be higher or lower than 0.85,
i.e. we are unable to tell if we are in the ascending or the descending part of the sinusoidal
(ascending or descending state). However, if we know the value of the previous sample, the
solution becomes straightforward.
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the state of the system, and vice versa” (Kantz & Schreiber, 2004). Thus we
can then “study the dynamics of the system by studying the dynamics of the
corresponding [vector/state] space points”. Most commonly, the construction
of delay coordinate state space vectors is done from a unidimensional signal.
Nevertheless, extensions to multidimensional signals can be derived [see Vla-
chos & Kugiumtzis (2008) and references therein].
In our case, for multidimensional samples xi, we straightforwardly construct
delay coordinate state space vectors x̂i by vector concatenation such that

x̂i =
[
xT
i xT

i−τ · · · xT
i−(m−1)τ

]T
, (3.16)

where m is the embedding dimension and τ is the time delay. The sequence of
these reconstructed samples yields again a multidimensional time series X̂ =
[x̂λ+1 . . . x̂N ] of N̂ = N − λ− 1 elements, where λ = (m− 1)τ corresponds to
the so-called embedding window. Notice that Eq. (3.16) still allows for the use
of the raw time series samples (i.e. if m = 1 then X̂ = X ).
For nonlinear time series analysis, an appropriate choice ofm and τ is crucial to
extract meaningful information from noisy signals of finite length. Recipes for
the estimation of optimal fixed values of m and τ exist, e.g. the false nearest
neighbors method and the use of the auto-correlation function decay time
(Kantz & Schreiber, 2004). However, here we opt to first study the accuracy
of the proposed approach under variation of these parameters and then select
the best combination (Sec. 3.4.1).
One should note that the concept of delay coordinates has originally been de-
veloped for the reconstruction of stationary deterministic dynamical systems
from single variables measured from them (Takens, 1981). Certainly, a music
descriptor time series does not represent a signal measured from a station-
ary dynamical system which could be described by some equation of motion.
Nonetheless, delay coordinates, a tool that is routinely used in nonlinear time
series analysis (Kantz & Schreiber, 2004), can be pragmatically employed to
facilitate the extraction of information contained in descriptor time series X
(c.f. Hegger et al., 2000; Matassini et al., 2002). Analogies between music, MIR
and delay coordinates have been discussed in Sec. 3.1.

3.2.5 Cross recurrence plot

A recurrence plot (RP) is a straightforward way to visualize characteristics of
similar system states attained at different times (Eckmann et al., 1987). For
this purpose, two discrete time axes span a square matrix which is filled with
zeros and ones, typically visualized as white and black cells, respectively. Each
black cell at coordinates (i, j) indicates a recurrence, i.e. a state at time i which
is similar to a state at time j. Thereby, the main diagonal line is black.
A cross recurrence plot (CRP) allows one to highlight equivalences of states
between two systems attained at different times. CRPs are constructed in the
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same way as RPs, but now the two axes span a rectangular, not necessarily
square matrix (Zbilut et al., 1998). When a CRP is used to characterize
distinct systems, the main diagonal is, in general, not black, and any diagonal
path of connected black cells represents similar state sequences exhibited by
both systems (Marwan et al., 2007).
Let X̂ (u) and X̂ (v) be two different signals representing two songs u and v of
lengths N̂ (u) and N̂ (v), respectively. To analyze dependencies between these
two signals we compute a CRP R from

ri,j = Θ
(
ε
(u)
i −

∥∥∥x̂(u)
i − x̂(v)

j

∥∥∥)Θ
(
ε
(v)
j −

∥∥∥x̂(u)
i − x̂(v)

j

∥∥∥) (3.17)

for i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v), where x̂(u)
i and x̂(v)

j are state space
representations of songs u and v at windows i and j, respectively, Θ(·) is the
Heaviside step function [Θ(ζ) = 0 if ζ < 0 and Θ(ζ) = 1 otherwise], ε(u)i and
ε
(v)
j are two different threshold distances and ‖ · ‖ is any norm. Here we use
the Euclidean (L2) norm.
The thresholds ε(u)i and ε(v)j are adjusted such that a maximum percentage of

neighbors κ is used for x̂(u)
i and x̂(v)

j . In this way, the total number of non-zero
entries in each row and column never exceeds κN̂ (u) and κN̂ (v), respectively.
In-line with studies on the identification of deterministic signals in noisy en-
vironments (Zbilut et al., 1998), in pre-analysis we found the use of a fixed
percentage of neighbors κ to yield superior accuracies compared to the use of
a fixed threshold ε. We study the influence of the parameter κ in Sec. 3.4.1.
Notice that by Eq. (3.17) ri,j = 1 if and only if x̂(u)

i is a neighbor of x̂(v)
j and

at the same time x̂(v)
j is a neighbor of x̂(u)

i . When dealing with multiple CRPs,
a fixed threshold ε is difficult to choose. This is specially true when we have
data at different scales. Contrastingly, using a fixed percentage of neighbors
can connect points on different scales. However, with a fixed percentage of
neighbors, regions with a high density of points are usually connected with
regions of low density (c.f. Von Luxburg, 2007). The mutual nearest neighbor
strategy of Eq. 3.17 tends to connect points within regions of constant density
but, at the same time, does not connect regions of different densities with each
other. Therefore, this strategy can be considered as being ‘in between’ a fixed
absolute threshold and a fixed percentage of neighbors. For a similar discussion
in the context of spectral clustering see Von Luxburg (2007).
In general, pairs of unrelated songs result in CRPs that exhibit no evident
structure (Fig. 3.7b), while CRPs constructed for two song versions show dis-
tinct extended patterns (Fig. 3.7a). These extended patterns usually corre-
spond to similar sections, phrases or progressions between both music pieces u
and v.
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Figure 3.7: CRPs for the song “Day Tripper” as performed by The Beatles, taken as
song u, versus two different songs, taken as song v. These are a version made by the
group Ocean Colour Scene (a) and the song “I’ve got a crush on you” as performed by
Frank Sinatra (b). Black dots represent recurrences (see text). Parameters are m = 9,
τ = 1 and κ = 0.08.

3.2.6 Recurrence quantification measures for version
identification

Given a CRP representation of two songs, we need a quantitative criterion
to determine whether they are versions or not. In pre-analysis, we tested
different measures for recurrence quantification analysis (RQA; Marwan et al.,
2007) as input for binary classifiers such as trees or support vector machines in
combination with several feature selection algorithms7 (Witten & Frank, 2005).
This analysis showed that the maximal length of diagonal lines (Lmax) feature
yielded by far the highest discriminative power between CRPs from versions
and non-versions. All other RQA measures that we tried were found to have no
or very low discriminative power. In particular, we tried with the recurrence
rate, determinism, average diagonal length, entropy, ratio, laminarity, trapping
time, maximal length of horizontal or vertical lines and combinations of them
(Marwan et al., 2007).
Despite not being the standard way to compute it, the Lmax measure intro-
duced by Eckmann et al. (1987) can be expressed as the maximum value of a
cumulative matrix L computed from the CRP. We initialize l1,j = li,1 = 0 for
i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v), and then recursively apply

li,j =

{
li−1,j−1 + 1 if ri,j = 1,
0 if ri,j = 0,

(3.18)

7For that we used the data mining software Weka (Hall et al., 2009): http://www.cs.
waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
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Figure 3.8: CRPs for the song “Gimme, gimme, gimme” as performed by the group
ABBA, taken as song u (horizontal axis), versus three different songs, taken as song v
(vertical axis). These three different songs are a version made by the group A-Teens
(a), a techno performance of the song “Hung up” by Madonna (b) and the song “The
robots” by Kraftwerk (c). In (a) Lmax = 43 starting at windows (118,121), in (b)
Lmax = 34 starting at windows (176,130) and in (c) Lmax = 16 starting at windows
(373,245). Parameters are the same as in Fig. 3.7.

for i = 2, . . . N̂ (u) and j = 2, . . . N̂ (v) [recall that ri,j was defined in Eq. (3.17)].
Then we can define Lmax = max{li,j} for i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v).
To understand why Lmax performs so well we depict some example CRPs
(Fig. 3.8), where we use the same song for u (horizontal axis) and three different
songs for v (vertical axis). A high Lmax value is obtained when u and v
are versions (Fig. 3.8a), whereas a low value is obtained when that is not
the case (Fig. 3.8c). An intermediate value is obtained for two songs that
share a common tonal progression, but only for brief periods (Fig. 3.8b). It
turns out that this particular example of Fig. 3.8b is a border case where one
could consider the two songs to be versions or not. The two songs are very
different even in terms of main melody and tonality, but still they share a very
characteristic (short) sample featuring a flute hook that forms the basis of both
songs8.
Diagonal patterns are clearly discernible in Figs. 3.8a and 3.8b, and the longest
of these diagonals corresponds to the maximum time that u and v evolve to-
gether without disruptions, i.e. the maximal length of their continuously shared
tonal sequence (Lmax). Notice that only in Fig. 3.8a the longest diagonal is
found close to the main diagonal. However, that is not a necessary criterion of
v being a version of u (e.g. Fig. 3.8b). In general, this depends on the musical
structure of the versions. Often, new performers add, delete or change the
introduction, solo sections, endings, verses and so forth (Sec. 1.2.3). Thus, to
account for structure changes, it is necessary to consider any diagonal regard-
less of its position in the CRP. This allows one to detect passages of a recording
that have been inserted in any part of another recording.
However, while Lmax can account for such structural changes, it cannot account
for tempo changes. When versioning a music piece, musicians often adapt the

8http://news.bbc.co.uk/2/hi/entertainment/4354028.stm

http://news.bbc.co.uk/2/hi/entertainment/4354028.stm
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tempo to their needs and, even in a live performance of the original artist, this
feature can change with respect to the original recording (Sec. 1.2.3). Tempo
deviations between two song versions result in the curving of CRP diagonal
traces.
To quantify the length of curved traces we therefore extend Eq. (3.18) and
compute a cumulative matrix S from the CRP. We initialize s1,j = s2,j =
si,1 = si,2 = 0 for i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v), and then recursively apply

si,j =

{
max ([si−1,j−1, si−2,j−1, si−1,j−2]) + 1 if ri,j = 1,
0 if ri,j = 0,

(3.19)

for i = 3, . . . N̂ (u) and j = 3, . . . N̂ (v). Here, the maximum value Smax =
max{Si,j} for i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v) corresponds to the length of
the longest curved trace in the CRP. This formulation is inspired by common
alignment algorithms (Gusfield, 1997; Rabiner & Juang, 1993), but constrains
the possible alignments by excluding horizontal and vertical paths. We should
note that these particular path connections (si−1,j−1, si−2,j−1, si−1,j−2), which
are only one aspect of Eq. (3.19), were used before in the available literature.
They were found to work well for speech recognition in application to distance
matrices (Myers et al., 1980), and for version identification in application to the
so-called optimal transposition index-based binary similarity matrices (Serrà
et al., 2008b).
Apart from tempo deviations, musicians might skip some chords or part of the
melody when performing song versions (Sec. 1.2.3). This practice leads to short
disruptions in otherwise coherent traces (see e.g. Fig. 3.7a). Moreover, such
disruptions can also be caused by the fact that the considered tonal descriptors
might contain some energy not directly associated to tonal content.
To account for disruptions, we therefore extend Eq. (3.19) and compute a
cumulative matrix Q from the CRP. We initialize q1,j = q2,j = qi,1 = qi,2 = 0
for i = 1, . . . N̂ (u) and j = 1, . . . N̂ (v), and then recursively apply

qi,j =


max ([qi−1,j−1, qi−2,j−1, qi−1,j−2]) + 1 if ri,j = 1,
max([0, qi−1,j−1 − γ(ri−1,j−1),

qi−2,j−1 − γ(ri−2,j−1),

qi−1,j−2 − γ(ri−1,j−2)]) if ri,j = 0,

(3.20)

for i = 3, . . . N̂ (u) and j = 3, . . . N̂ (v), with

γ(r) =

{
γo if r = 1,
γe if r = 0.

(3.21)

Hence γo is a penalty for a disruption onset and γe is a penalty for a disrup-
tion extension. The zero inside the second max clause in Eq. (3.20) is used
to prevent that these penalties lead to negative entries of Q. Notice that for
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Figure 3.9: “Day Tripper” as performed by The Beatles, taken as song u (horizontal
axis), versus an Ocean Colour Scene performance, taken as song v (vertical axis).
Example plots of L (a), S (b) and Q (c). Notice the increase in the maximum values
(color scales). In (a) Lmax = 33 starting at windows (140,232), in (b) Smax = 79
starting at windows (216,142) and in (c) Qmax = 136 starting at windows (14,118).
CRP parameters are the same as in Fig. 3.7. Parameters for (c) are γo = 3 and γe = 7.

γo, γe → ∞, Eq. (3.20) becomes Eq. (3.19). For γo = γe = 0, qi,j becomes
a cumulative value indicating global similarity between two time series start-
ing at sample 0 and ending at samples i and j, respectively. Note that this
has certain analogies with classical dynamic time warping algorithms (Myers,
1980; Rabiner & Juang, 1993). Instead of setting γo and γe a priori, we study
their influence on the accuracy of our version identification system (Sec. 3.4.1).
Analogously to Lmax and Smax, we take Qmax = max{Qi,j} for i = 1, . . . N̂ (u)

and j = 1, . . . N̂ (v) to quantify the length of the longest curved and potentially
disrupted trace in the CRP.
For illustration we depict some examples for the three quantification measures
discussed in this section (Fig. 3.9). The Lmax measure (Fig. 3.9a) characterizes
straight diagonals regardless of their position. The Smax measure can account
for tempo fluctuations resulting in curved traces (Fig. 3.9b). Furthermore, the
Qmax measure allows for disruptions of the tonal progression (Fig. 3.9c).

3.2.7 Dissimilarity value

At the end of the process, we are interested in a notion of dissimilarity between
song versions. To obtain a dissimilarity value du,v between songs u and v we
simply take the inverse of Qmax,

du,v =
1

max
([

1, Q
(u,v)
max

]) , (3.22)

where Q(u,v)
max denotes the maximal Qmax value for songs u and v after O trans-

positions have been applied (Sec. 3.2.3). Optionally, one can weight Qmax by
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the length of the candidate song:

du,v =

√
N (v)

max
([

1, Q
(u,v)
max

]) . (3.23)

Such a weighting scheme is motivated by traditional information retrieval ap-
proaches (Baeza-Yates & Ribeiro-Neto, 1999; Manning et al., 2008) and it is
intuitively justified by the fact that Qmax is dependent on the length of the
descriptor time series. Therefore, one might compensate this dependency by
multiplying by a value proportional to the length of one of them. In the case
where a symmetric measure is needed,

√
min(N (v), N (v)) or

√
N (v) +N (v)

may be used. Nevertheless, in pre-analysis, all normalizations turned out to
be somehow equivalent, leading to very similar accuracies. In our experiments
we employ Eq. (3.23), which provided a marginal accuracy increment. Fur-
ther justification of length weighting terms can be found in our previous work
(Serrà, 2007a).

3.3 Evaluation methodology

3.3.1 Music collection

To test the effectiveness of the implemented approach, we analyze a music
collection comprising a total of 2125 commercial recordings. In particular,
we use an arbitrarily selected compilation of versions. This music collection
includes 523 version sets, where version set refers to a group of versions of
the same piece. The average cardinality of these version sets (i.e. the number
of performances per set) is 4.06, ranging from 2 to 18. To the best of our
knowledge, this is the largest version collection ever employed in MIR version
identification experiments. A complete list of the recordings in this music
collection can be downloaded from the author’s website9.
The collection spans a variety of genres, with their corresponding sub-genres
and styles: pop/rock (1226 songs), electronic (209), jazz/blues (196), world
music (165), classical music (133) and miscellaneous (196). The recordings
have an average length of 3.6 minutes, ranging from 0.5 to 8 minutes. Apart
from genre, additional editorial information has been compiled. A tag cloud
of the versioned artists and the 100 most versioned titles has been rendered
(Figs. 3.10 and 3.11, respectively). Quantitative information is provided in
Fig. 3.12.
The histogram of cardinalities has a very fast decay from 2 to 8 (Fig. 3.12a).
The versions with higher cardinalities are “Here comes the sun” (18 versions),
originally performed by The Beatles, “A forest” and “Boys don’t cry” (18 ver-
sions), originally performed by The Cure, “Stairway to heaven” (17 versions),

9http://mtg.upf.edu/files/personal/songList.pdf

http://mtg.upf.edu/files/personal/songList.pdf
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Figure 3.10: Tag cloud of versioned artists in our music collection. The tag clouds
were rendered with http://tagcrowd.com.

originally performed by Led Zeppelin, “Eleanor Rigby”, “We can work it out”
and “Yesterday” (16 versions), originally performed by The Beatles, and “Love
song” (16 versions), originally performed by The Cure. In the histogram of
most versioned artists we see that, on one hand, there are few artists with
more than 10 originals in our collection (Fig. 3.12b). These are The Beatles
(121 originals), Pink Floyd (52 originals), The Cure (51 originals), Depeche
Mode (36 originals), Kraftwerk (21 originals) and Genesis (15 originals). On
the other hand, in Fig. 3.12b we also see that there is a large number of artists
who are just represented by one original version in the collection.

http://tagcrowd.com
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Figure 3.11: Tag cloud of the 100 most versioned song titles in our music collection.

Despite this additional editorial information, the only information we use for
evaluation purposes is the version set and the original tag. The version set is
a textual description of the underlying composition a music piece is a version
of10. The original tag is a boolean variable indicating whether a recording
corresponds to the original performance (understanding as original the first
recorded version). In this chapter, solely the version set is used for quantitative
evaluation, while the original tag is used for error analysis. In Chapter 4 we
use the original tag for providing quantitative results. Further discussion on
the original tag can be found there.

10For example, the title of the original recording.
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Figure 3.12: Cardinality (a) and original artist (b) histograms. In the cardinality
histogram (a) we can see the distribution of version sets as a function of their cardi-
nality. In the original artist histogram (b) we can see the distribution of the number
of artists as a function of the original songs in the collection.

For training purposes (parameter optimization), a music collection composed of
17 version sets with cardinality 6 is used. For testing purposes (report of out-of-
sample accuracies), another music collection of 30 version sets with cardinality
11 is used. These collections are taken as subsets of the whole collection with
no particular preference for specific version sets. Furthermore, both collections
are non-overlapping, i.e. there are no version sets shared between them. We
denote each music collection by their total number of songs. This way, the
first subset is denoted as MC-102, the second subset as MC-330 and the whole
collection as MC-2125.

3.3.2 Evaluation measure

To evaluate the accuracy in identifying song versions we proceed as follows.
Given a music collection with U songs, we calculate du,v [Eq. (3.23)] for all
U × U possible pairwise combinations and then create a dissimilarity matrix
D. Once D is computed, we can use standard information retrieval measures
to evaluate the discriminative power of this information. We use the mean of
average precision measure (MAP), which we denote as

〈
ψ
〉
.

To calculate
〈
ψ
〉
, the rows of D are used to compute a list Λu of U − 1 songs

sorted in ascending order with regard to their dissimilarity to the query song
u. Suppose that the query song u belongs to a version set with cardinality
Cu + 1 (i.e. the set comprises Cu + 1 songs). Then, the average precision ψu is
obtained as

ψu =
1

Cu

U−1∑
k=1

ψu(k)Γu(k), (3.24)

where ψu(k) is the precision of the sorted list Λu at rank k,

ψu(k) =
1

k

k∑
i=1

Γu(i), (3.25)
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and Γu(j) is the so-called relevance function: Γu(j) = 1 if the song with rank
j in the sorted list is a version of song u, and Γu(j) = 0 otherwise. Hence ψu
ranges between 0 and 1. If the Cu versions of song u take the first Cu ranks,
we get ψu = 1. If all versions are found towards the end of Λu, we get ψu ≈ 0.
The mean of average precision

〈
ψ
〉
is calculated as the mean of ψu across all

queries u = 1, . . . U . Using Eqs. (3.24) and (3.25) has the advantage of taking
into account the whole sorted list where correct items with low rank receive
the largest weights.
In addition to the reported results, we estimate the accuracy level expected
under the null hypothesis that the dissimilarity matrix D has no discrimina-
tive power with regard to the assignment of versions. For this purpose, we
separately permute Λu for all u and keep all other steps the same. We re-
peat this process 99 times, corresponding to a significance level of 0.01 of this
Monte Carlo null hypothesis test (Robert & Casella, 2004), and take the av-
erage, resulting in

〈
ψ
〉
null. This

〈
ψ
〉
null is used to estimate the accuracy of all

considered approaches under the specified null hypothesis.

3.4 Results

3.4.1 Parameter optimization

Number of transpositions

Before testing the approach presented here we experimented with transposition
and the previous approach of Serrà et al. (2008b). In particular, we compared
different transposition strategies. These strategies consisted of (i) transpos-
ing with the optimal transposition index as done in Serrà et al. (2008b), (ii)
trying all possible transpositions and (iii) transposing by key normalization.
Furthermore we tested (iv) the effect of no transposition and (v) the effect of
a random transposition. Notice that (i) implies taking only the most likely
transposition index and (ii) implies taking all possible indices, i.e. O = 1 and
O = 12 in Eq. (3.14), respectively. Transposing by key normalization (iii)
consists in using a key estimation algorithm and then transposing the song
to a predefined key (C major or A minor). Then, no further processing step
needs to be done when comparing descriptor time series (Sec. 2.3.1). To auto-
matically estimate the key we use the algorithm by Gómez & Herrera (2004),
also explained in Gómez (2006), which had an accuracy of 75% for real audio
pieces, and scored among the first classified algorithms in the MIREX 2005 key
estimation contest11, with an accuracy of 86% with synthesized MIDI files.
In Table 3.1 we show the general accuracies for the different transposition
variants tested. We can appreciate that all transposition methods improve
the accuracy of the version identification system up to relative values higher

11http://www.music-ir.org/mirex/2005/index.php/Audio_and_Symbolic_Key_
Finding

http://www.music-ir.org/mirex/2005/index.php/Audio_and_Symbolic_Key_Finding
http://www.music-ir.org/mirex/2005/index.php/Audio_and_Symbolic_Key_Finding
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Transposition method
〈
ψ
〉

Random transposition 0.16
No transposition 0.51
Key estimation 0.53
O = 1 0.69
O = 12 0.73

Table 3.1: Effect of different transposition strategies with MC-102 and the algorithm
by Serrà et al. (2008b).

Figure 3.13: Accuracy
〈
ψ
〉
(MAP) for different number of transposition indices O

with MC-102 and the algorithm by Serrà et al. (2008b). Not applying any transposition
is depicted as O = 0. An additional evaluation measure (recall at rank 5) is shown for
completeness.

than 40% compared with simply not considering any transposition. The key
estimation method performs the worst among the three transposition methods
tested (i-iii). This might be due to the fact that automatic key estimation
algorithms are not completely reliable, which, surely, introduces errors in the
version identification system. Furthermore, as we query all songs against all,
these errors might be propagated among queries. For example, if we fail in
determining the key of one song, we will neither retrieve its versions nor re-
trieve it as a version of others. As expected, trying all possible transpositions
presents the best accuracy, followed by the method based on the first optimal
transposition index (i.e. with O = 1).
Additionally, we tested the possibility of considering multiple transposition in-
dices, i.e. O ∈ [1, 12] (Fig. 3.13). Note that just considering two transpositions
(O = 2), we are able to achieve the same accuracy as with all of them (O = 12).
This implies that, instead of computing all possible CRPs and Q matrices, we
only have to compute those corresponding to the two most probable or opti-
mal transposition indices. This is quite remarkable as we decrease by a factor
of 6 the number of operations carried out by the system. For the remaining
experiments we set O = 2.
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Figure 3.14: Accuracies
〈
ψ
〉
for different state space reconstruction parameters:

Qmax iso-τ (a-c) and iso-m (d-f) curves for κ = 0.05 (a,d), κ = 0.1 (b,e) and κ = 0.15
(c,f).

State space reconstruction

We also use the MC-102 collection to study the influence of the embedding
parameters m and τ and the percentage of nearest neighbors κ on our accu-
racy measure

〈
ψ
〉
. Results for Qmax (Fig. 3.14) illustrate that the use of an

embedding (m > 1) improves the accuracy of the algorithm as compared to no
embedding (m = 1). A broad peak of near-maximal

〈
ψ
〉
values is established

for a considerable range of embedding windows λ [approximately 7 < λ < 17,
recall that λ = (m − 1)τ , Sec. 3.2.4]. From these near-maximal values,

〈
ψ
〉

decreases slightly upon further increasing of the embedding window. Opti-
mal κ values are found between 0.05 and 0.15. Therefore, within these broad
ranges of the embedding window λ and κ values, no fine tuning of any of the
parameters is required to yield near-optimal accuracies. In the following we
use m = 10, τ = 1 and κ = 0.1.

Gap penalties

While accuracies shown in Fig. 3.14 are computed for a disruption onset γo =
2 and disruption extension γe = 2 penalties, the influence of these penalty
parameters is further studied in Fig. 3.15. Recall that γo and γe are introduced
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Figure 3.15: Accuracy for different gap penalties:
〈
ψ
〉
Qmax

depending on γo and γe
values.

only in the definition of Qmax and that for γo, γe → ∞, the measure Qmax

[Eq. (3.20)] reduces to Smax [Eq. (3.19)]. Using finite values of these terms
generally increases the accuracy, revealing the advantage of Qmax over Smax.
Optimal Qmax accuracy values are found for γo = 5 and γe = 0.5.

3.4.2 Out-of-sample accuracy

The same parameter optimization for state space reconstruction described
above for Qmax was carried out separately for Lmax and Smax and m = 10,
τ = 1 and κ = 0.1 yielded near-optimal accuracies as well. Furthermore, no
fine tuning was needed since iso-τ and iso-m curves for different κ values had
similar shapes as the ones depicted for Qmax in Fig. 3.14. For the MC-102
collection, this in-sample parameter optimization leads to the following ac-
curacies:

〈
ψ
〉
Lmax

= 0.64,
〈
ψ
〉
Smax

= 0.73 and
〈
ψ
〉
Qmax

= 0.83 (Fig. 3.16a).
The accuracy for MC-330 using the parameters determined by the optimiza-
tion on MC-102 is shown in Fig. 3.16b. The exact values are

〈
ψ
〉
Lmax

= 0.48,〈
ψ
〉
Smax

= 0.61 and
〈
ψ
〉
Qmax

= 0.74.
The good out-of-sample accuracies achieved with MC-330 indicate that our
results cannot be explained by parameter over-optimization. The accuracy
increase gained through the derivation from Lmax via Smax to Qmax is sub-
stantial. Most importantly, this increase in accuracy is reflected in the test
collection as well. Moreover, all values for Lmax, Smax and Qmax are outside
the range of

〈
ψ
〉
null. Therefore, our accuracy values are not consistent with

the null hypothesis that the dissimilarity matrices D have no discriminative
power.
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Figure 3.16: Mean average precision
〈
ψ
〉
for the MC-102 (a) and the MC-330 (b)

collections. Error margins in the leftmost bars correspond to the randomizations
described in Sec. 3.3.2.

Collection
〈
ψ
〉
null Descriptor

PCP TC HC
MC-102 0.18 0.83 0.77 0.30
MC-330 0.08 0.74 0.72 0.22
MC-2125 <0.01 0.70 0.64 0.13

Table 3.2: Accuracies
〈
ψ
〉
Qmax

for the different descriptors tested.

The same procedure of in-sample optimization has been carried out for the
other two descriptors introduced in Sec. 3.2.2, namely the TC and HC descrip-
tors. Again, no important differences for m, τ , κ, γo and γe were observed.
The final in-sample and out-of-sample accuracies for the three descriptors are
reported in Table 3.2. We see that the PCP descriptor performs best, followed
by the TC descriptor. We see that the HC descriptor is much less powerful than
the other two. This is to be expected, since HC compresses tonal information
to a univariate value. Furthermore, tonal change might be less informative
than tonal values themselves, which already contain the change information in
their temporal evolution. However, the HC accuracy is still higher than the
random baseline

〈
ψ
〉
null.

3.4.3 Comparison with state-of-the-art: MIREX submissions

As stated in the introduction of this chapter, the Qmax algorithm was submit-
ted12 to MIREX, as well as our previous approach of Serrà et al. (2008b) and
a post-processed version of Qmax that will be explained in the next chapter
(we denote the latter as Q∗max). We now report on the results for all sub-
missions to the “audio cover song identification task” (Table 3.3). These are

12For MIREX submissions we only used PCP descriptors, as these were found perform
the best (Table 3.2).
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Edition Method Accuracy Accuracy
(absolute)

〈
ψ
〉

2006 Sailer & Dressler (2006) 211 -
Lee (2006)-2 314 -
Lee (2006)-1 365 -
Ellis & Poliner (2007) 761 -

2007 Kim & Perelstein (2007) 190 0.06
Lee (2007)-2, unpublished 291 0.09
Lee (2007)-1, unpublished 425 0.13
Jensen et al. (2008a) 762 0.24
Bello (2007) 869 0.27
Ellis & Cotton (2007) 1207 0.33
Serrà et al. (2008b) 1653 0.52

2008 Jensen et al. (2008b) 763 0.23
Cao & Li (2008)-1, unpublished 1056 0.34
Cao & Li (2008)-2, unpublished 1073 0.34
Egorov & Linetsky (2008)-1 1762 0.55
Egorov & Linetsky (2008)-3 1778 0.56
Egorov & Linetsky (2008)-2 1781 0.56
Serrà et al. (2009a)-Qmax 2116 0.66
Serrà et al. (2009a, 2010d)-Q∗max 2422 0.75

2009 Ahonen & Lemstrom (2008) 646 0.20
Ravuri & Ellis (2010) 2046 0.66
Serrà et al. (2009a, 2010d)-Q∗max 2426 0.75

2010 Di Buccio et al. (2010) 471 0.15
Martin et al. (2010), unpublished 780 0.24
Rocher et al. (2010), unpublished 908 0.29

Table 3.3: MIREX accuracies for the “audio cover song identification task” from 2006
(first edition) to 2010. For completeness, and because the mean of average precisions〈
ψ
〉
was not used in 2006, we also report the absolute number of identified versions

in top 10 ranks (it ranges from 0, worst case, to 3300, best case). Furthermore, we
have skipped 2006 submissions that were not specifically designed for the task (they
obtained even lower accuracies than those reported here). The numbers behind the
references indicate different algorithmic variants. The term unpublished means that, to
the author’s knowledge, the algorithm has not been published nor disclosed previously.

comprised from the first edition of 2006 until 2010. All this data is available
in the MIREX wiki13 and, for editions before 2008, also in Downie (2008) or
Downie et al. (2008).
By looking at the table, we see that our previous algorithm of Serrà et al.
(2008b) was found to be the most accurate in the 2007 edition. However, the

13http://www.music-ir.org/mirex/wiki/MIREX_HOME

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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two most accurate algorithms in all editions to date are based on Qmax. The
raw Qmax algorithm as presented here reached an accuracy of

〈
ψ
〉
Qmax

= 0.66.
It was only outperformed by another algorithm from us which included Qmax as
described here, plus one additional post-processing step applied to the dissim-
ilarity matrix derived from Qmax, which we denote as Q∗max (

〈
ψ
〉
Q∗max

= 0.75).
The post-processing step consists of detecting version sets instead of isolated
songs, and will be explained in detail in the next chapter. The approach by
Ravuri & Ellis (2010) also achieves a similar accuracy to Qmax, although with
a smaller number of identified versions (Table 3.3). Notice however that this
approach is not based on a single dissimilarity measure but on a composition
of them, one being our previous approach of Serrà et al. (2008b). Furthermore,
it uses a supervised train/test post-processing step (Sec. 2.3.2), therefore being
more comparable to Q∗max than to Qmax. The approach by Egorov & Linetsky
(2008) is also based on Serrà et al. (2008b).
Importantly, the

〈
ψ
〉
Qmax

value obtained for the MIREX music collection is
very close to the

〈
ψ
〉
Qmax

values reported for the testing collections used here
(0.66 and 0.70, respectively). This provides evidence that the out-of-sample
accuracy values reported in Sec. 3.4.2 are not related to any hidden in-sample
optimization or overfitting which could have been introduced involuntarily, for
example, by a biased selection of songs for the testing collections.

3.4.4 Computation time

The average time spent in the dissimilarity assessment of two recordings is
around 0.34 s on an Intel(R) Pentium(R) 4 CPU 2.40GHz with 512M RAM.
The Qmax algorithm is quadratic in the length N of the descriptor time series,
with an execution speed that also depends on m. If we consider a descriptor
dimensionality of X, the algorithm is basically O

(
N2mX

)
. Such figure could

potentially be improved by considering fast methods for searching in metric
spaces (Andoni & Indyk, 2008; Chávez et al., 2001) or by approximating the
alignment step (Baeza-Yates & Perleberg, 1996; Ukkonen et al., 2003). One
should note that N is not very large, since a downsampling step is applied to
the time series (Sec. 3.2.2). Such downsampling, in turn, has been shown to
be beneficial for version retrieval (Serrà et al., 2008b).
The primary focus of this thesis was on accuracy (Sec. 1.4). Therefore, exe-
cution speed was not one of the main objectives of our research. In general,
there seems to be an important trade-off between accuracy and speed. Best-
performing approaches are computationally expensive, while computationally
cheap ones do not achieve competitive accuracies. This trade-off can be easily
seen by studying the approaches submitted to MIREX and their accuracies
(Table 3.3). In Chapter 5 we propose an alternative strategy that results in
substantially faster algorithms with competitive accuracies.
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3.4.5 Error analysis

It is always interesting to analyze the errors of an information retrieval system.
However, an exhaustive analysis of this kind is, in many cases, unfeasible due
to the amount of data and the complexity of the task. In our case, we opt
for a general non-exhaustive analysis, which can nevertheless provide valuable
information both about the task at hand and our specific approach.
The intended error analysis has two aims: assessing the main characteristics of
misidentified versions, and assessing the algorithmic reasons for this misiden-
tification. To narrow down the scope in the search for misidentifications in
MC-2125, we concentrate on a particular use-case consisting of querying for
the original song u and looking at the retrieved answer Λu. Furthermore, we
focus on what we call outstanding false negatives, i.e. versions that are not
detected to be close to the first Cu positions of Λu. This approach is moti-
vated by the fact that in the majority of cases we do not observe outstanding
false positives, i.e. there are no important misidentifications found between the
first Cu retrieved items. We only performed the error analysis with the system
using the PCP descriptors, as these were found to perform the best in the
previous section.
Following the above criteria and restrictions resulted in the manual analysis of
198 false negatives. Such analysis was done with the help of an online demo
of the system (see Appendix A). For each of the false negatives, we carried
out an assessment of which “type of version” was involved (Sec. 1.2.2), which
the musical variations with respect to the original song were (Sec. 1.2.3) and
which stage of the system which was, most probably, providing an unreliable
output (Sec. 3.2). With these data and the correlations between them we can
qualitatively derive some conclusions.
Firstly, we correlate the abovementioned data with the versions’ genre infor-
mation and normalize with respect to the total number of items of each genre.
With this process we see that one third (relative) of the analyzed errors corre-
spond to the electronic genre. We hypothesize that this is due to song remixes
and quotations that are usually done within the electronic context. Indeed, a
look at the version types present in our false negative analysis confirms this
hypothesis. Remixes and quotations are intuitively the most difficult versions
to detect due to the large amount of musical changes involved and the reduced
presence of the essential element of the underlying musical piece (Table 1.1),
and this was confirmed by our observations. Another third of the analyzed
errors are split between the classical and jazz/blues genres. A possible rea-
son for this is that some of the classical versions in our music collection are
highly arranged pieces with much ornamentation, therefore making the match
between tonal descriptors more difficult. With regard to jazz/blues genres,
we see that these are usually versions of jazz standards, which inherently in-
clude improvisation and important changes in both melodies and harmonies
(Table 1.1).
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Musical variation Count %
Timbre (a) 198 100
Timbre (b) 178 90
Tempo 158 80
Timing 143 72
Structure 142 72
Key 109 55
Harmony 116 58
Lyrics 85 43
Noise 36 18

Table 3.4: Distribution of false positives broken down into the changed musical facet
(% corresponds to the percentage of outstanding false negatives we analyzed, see text).
The row labels are those used in Sec. 1.2.3.

In fact, the number of musical characteristics that change between versions
seems to be a key aspect in our error analysis. From a total of 9 characteristics
(including the two sub-categories for timbre we underlined in Sec. 1.2.3), few
false negatives contained less than 4 musical changes at the same time. On the
other hand, many of the observed false negatives had 7 or 8. The mean number
of musical changes in the same false negative recording was found to be 5.93,
with a standard deviation of 1.74. This value of around 6 in a scale between 0
and 9 reinforces the (commonly held) belief that versions with more changes
are more difficult to detect. Table 3.4 provides the absolute and relative (%)
error counts distributed by musical facet.
With regard to the critical algorithm stages, we find a clear tendency of unre-
liable outputs at the very first stages of the system, in particular for descriptor
extraction (around two thirds of the analyzed false positives). This does not
mean that PCPs could be sensitive to timbre or other facets of the musical
pieces. On the contrary, we are able to detect many versions that have a radi-
cal change in the instrumentation, which we think it is due to the capacity of
PCPs to filter timbre out. However, some errors come from remixes and very
percussive pieces. Therefore, one may hypothesize that these are specially
challenging cases for such descriptor extraction procedure.
Furthermore, the tonal sequence might not always be, on its own, a valid
descriptor for a song version. In particular, our error analysis suggests the
consideration of alternative descriptions. Two relevant cases exemplify this:
the versions of “We will rock you”, originally performed by Queen, and a version
of The Rolling Stones’ “Satisfaction” performed by P. J. Harvey and Björk.
The former hardly contains any melodic or harmonic references. The latter is
performed just with a simple and common chord progression and is sung with
a forced plain melodic contour (mostly the same note all the time). Apart from
the description extraction process, some transposition errors were also found
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in medleys and versions that incorporated one or several key modulations that
were not in the original piece.
Finally, we correlated the three parameters of our error analysis (version type,
musical variation and algorithm stage) on a pairwise basis, i.e. version type
vs. musical variation, version type vs. algorithm stage and musical variation
vs. algorithm step. Nevertheless, no remarkable correlation was obtained. This
reveals that, for instance, no particular version type causes problems in a
concrete algorithm stage, or that no particular variation seriously affects an
algorithm stage. Marginal and quite low correlations (around 0.15) were found
between remixes and jazz standards and the descriptor extraction process, and
between structure and key changes and the transposition process. Overall,
these correlations corroborate what has been said in the rest of the present
section.

3.5 Discussion and conclusion

In the present chapter we combine concepts from music signal processing, non-
linear time series analysis, machine learning and information retrieval to build
a system that successfully identifies versions of musical pieces. The composi-
tion of concepts from these different disciplines naturally results in a modular
organization of our model-free approach. Given two audio signals we, at first,
use techniques from music signal processing to extract descriptor time series
representing their tonal progression. These time series are then used for mul-
tivariate embedding by means of delay coordinates. To assess equivalences
of states between both systems attained at different times, we use cross re-
currence plots and recurrence quantification measures derived from them. In
pre-analysis, existing recurrence quantification measures were evaluated using
machine learning techniques. The obtained result motivated us to introduce
new cross recurrence quantification measures Smax and Qmax. Using standard
information retrieval evaluation measures we quantify the accuracy for the task
at hand. A qualitative error analysis is also done.
We show here that our algorithm leads to a high accuracy for a version identi-
fication task on a comprehensive music collection compiled prior to and inde-
pendently from the study we did in Serrà et al. (2009a). This music collection
is divided into non-overlapping testing and training collections. We adjust the
parameters on the training collection and then determine the accuracy out-of-
sample on a testing collection. Nonetheless, in such a study design, one could
still overestimate the true accuracy of the algorithm by involuntarily introduc-
ing biases in the compilation of the music collection. However, the close match
of accuracy reported here for our music collection and the one obtained in the
MIREX campaigns support the generality of the reported results (the music
collection used here was compiled prior to and independently from our par-
ticipation in MIREX). Furthermore, the proposed algorithm has reached the
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highest accuracies in the MIREX “audio cover song identification task” up to
the moment of writing these lines. It has only been surpassed by further devel-
opments based on Qmax (details in the forthcoming chapter). This illustrates
its superiority in respect to current state-of-the-art algorithms, including our
previous approach of Serrà et al. (2008b).
One should note that the concept of delay coordinates has originally been devel-
oped for the reconstruction of stationary deterministic dynamical systems from
single variables measured from them (Kantz & Schreiber, 2004; Takens, 1981).
Also, the identification of coherent traces within the cross recurrence plot is
connected to the notion of deterministic dynamics [see Marwan et al. (2007)
and references therein]. Certainly, music pieces do not represent the output of
a stationary deterministic dynamical system, and therefore, one could argue
that applying concepts developed for deterministic systems to such signals is
inappropriate. However, if we consider a song as the output of some ‘compli-
cated system’ evolving in time and a descriptor sequence as a multivariate time
series measured from it, we can use the method of delay coordinates to facil-
itate the extraction of the information characterizing the underlying system.
In fact, we find that the accuracy of our version identification system is signifi-
cantly improved using an embedding, compared to not using it. In conclusion,
our work provides a further example for an application of nonlinear time series
analysis methods to experimental time series where the assumption of some
underlying deterministic dynamics is not fulfilled in a strict sense, but which
nonetheless allows one to successfully characterize the system underlying the
time series.
In closing, we would like to indicate that the Smax and Qmax measures are not
restricted to MIR nor to the particular application of version identification.
In Serrà et al. (2009a) we provided evidence for that. Curved structures have
been reported in RPs and CRPs of artificial and experimental signals. Artifi-
cial signals include frequency modulated periodic signals (Facchini et al., 2005;
Groth, 2005; Marwan et al., 2002a) or time series derived from Rössler dy-
namics with bidirectional couplings close to the onset of phase synchronization
(Groth, 2005). Experimental data include signals with nonlinearly re-scaled
or distorted time axes such as geophysical data of sediment cores subjected to
different compressions (Marwan et al., 2002a), symbolic dynamic representa-
tions of electroencephalographic recordings from the onsets of epileptic seizures
(Groth, 2005) or acoustic signals from calls of primates (Facchini et al., 2005).
Far beyond these particular examples, it can be conjectured that important fea-
tures of further experimental signals, e.g. from bioinformatics (Aach & Church,
2001), physiology (Webber Jr. & Zbilut, 1994), human speech processing (Ra-
biner & Juang, 1993) or climatology (Marwan & Kurths, 2002), are reflected
in curved and disrupted traces in RPs and CRPs. A quantitative assessment of
these traces by means of the proposed measures can thus help to characterize
a multitude of systems from different scientific disciplines.



CHAPTER 4
Characterization and

exploitation of version groups

4.1 Introduction

Traditionally, version identification has been set up as a standard informa-
tion retrieval task based on the query-by-example framework (Sec. 2.3.3). In
this framework, the user submits an example query (a song u) and receives
an answer (a list of songs Λu, ranked by their relevance to the query). Such
a setup has remarkably conditioned the way of implementing and evaluating
version identification systems. This assertion can be contrasted by looking at
the literature review of Sec. 2.3. In particular, with regard to the implementa-
tion of version identification systems, we have seen that the efforts have been
concentrated in achieving a metric that faithfully captures pairwise version
similarities (Sec. 2.3.1). With regard to the evaluation of version identifica-
tion systems, we have seen that the cited references always resort to common
measures from information retrieval that serve to quantify the accuracies of
query-by-example systems (Sec. 2.3.3). In fact, we ourselves have also used
the query-by-example framework in the previous chapter for evaluating our
system (Sec. 3.3.2).
In this chapter we consider a new approach that goes beyond query-by-example
to achieve a more complete characterization of a music collection composed of
song versions. In particular, instead of isolated songs, our approach focuses
on groups1 of songs. Therefore we identify, given a music collection, coherent
groups of versions of the same piece. This way one can exploit the regularities
found in the results of a query-by-example system for a given music collection.
Indeed, music collections are usually organized and structured at multiple lev-
els. In the case of version detection, songs naturally cluster into so-called

1Throughout the chapter we will use the words group, set, community or cluster inter-
changeably.
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version sets (we have already used this terminology in the presentation of our
evaluation framework, Sec. 3.3.2).
For automatically identifying the versions sets of a music collection we employ
a number of grouping algorithms on top of the Qmax measure explained in the
previous chapter. As grouping algorithms we consider unsupervised clustering
(Jain et al., 1999; Xu & Wunsch II, 2009) and community detection algorithms
(Danon et al., 2005; Fortunato, 2010). Notice that the task of version set detec-
tion can naturally be placed within a typical clustering framework. According
to Jain & Dubes (1988) and Jain et al. (1999), the “typical pattern cluster-
ing activity involves the following steps: (1) pattern representation, optionally
including feature extraction and/or selection, (2) definition of a pattern prox-
imity measure appropriate to the data domain, (3) clustering or grouping”
and, if needed, “(4) data abstraction” and “(5) assessment of output”. We now
observe that steps 1 and 2 have already been performed to obtain Qmax in
the previous chapter. Therefore, only step 3, the grouping step, remains to be
made. This is the main focus of this chapter. Nevertheless, we also explore
steps 4 and 5 with the detected groups of versions. In particular, we study
the version ‘prototypes’ found within a group and their relation to the original
piece.
Apart from the typical clustering framework above, the detection of version sets
can be formulated from a complex network perspective. Complex networks2

are a well-established way to represent the interactions between a number of
elements (Boccaletti et al., 2006; Costa et al., 2008; Newman, 2003; Strogatz,
2001), from proteins (Jeong et al., 2001) to web pages (Baeza-Yates et al.,
2007). The interaction between elements usually gives rise to certain struc-
tures in the network. In fact, one of the most relevant features of networks is
community structure (or clustering), i.e. the organization of vertices in clus-
ters, with many edges joining vertices of the same cluster and comparatively
few edges joining vertices of different clusters (Danon et al., 2005; Fortunato &
Castellano, 2009). Thus, detecting communities is of enormous importance in
disciplines where interacting elements are represented through networks, and
many successful approaches for community detection have been proposed, spe-
cially in biology, sociology and computer science [for an overview see Fortunato
(2010)].
The reader may easily see the resemblance between the detection of version
sets and a more classical community detection task. This way, a set of vertices
u ≡ {u1, . . . uU} represents the U recordings being analyzed, and the elements
of the U×U weight matrix D represent the dissimilarity between any couple of
nodes. Provided that the weights of this matrix are assigned with the help of
a suitable version dissimilarity metric (recall that D was obtained from Qmax,
Sec. 3.2.7), communities inside this complex network will represent version

2In this thesis we use the terms network and graph interchangeably. Node and vertex,
and link and edge are also used interchangeably.
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sets. Although complex networks and community detection algorithms have
been used in many problems involving complex systems (Boccaletti et al., 2006;
Costa et al., 2008), and more specifically in studying musical networks (Buldú
et al., 2007; Cano et al., 2006; Teitelbaum et al., 2008), to the best of our
knowledge they have never been applied to a retrieval task before. We also use
the framework of complex networks to study the characteristics of associations
between song versions, in particular to assess their clustering properties and
their relationships.
As we have noted in Serrà et al. (2009b), and subsequently in Serrà et al.
(2010d), there are many intuitive advantages behind the aforementioned change
of paradigm, namely going from specific query answers Λu to the detection of
coherent groups of items. Importantly, one should bear in mind that these
advantages are not specific for the version detection task, and that they hold
for any information retrieval (IR) system operating through query-by-example
(Baeza-Yates & Ribeiro-Neto, 1999), including analogous systems such as rec-
ommendation systems (Resnick & Varian, 1997). First, given that current
systems provide a suitable metric to quantify the similarity between single
query items, several well-researched options exist to exploit this information
in order to detect inherent groups of items (we have outlined them above and
present specific ones below). Second, focusing on groups of items may help the
system in retrieving more coherent answers for isolated queries. In particular,
the answers to any query belonging to a given group would coherently contain
the other songs in the group, an advantage that is not guaranteed by query-
by-example systems alone. Third, music collections are usually organized and
structured on multiple levels (e.g. the version sets in our case). Thus we can in-
fer and exploit these regularities to increase the overall accuracy of traditional
version identification systems. Note that the two previous advantages specifi-
cally aim to achieve higher user satisfaction and confidence in IR systems, as
they can be perceived as rational or intelligent agents or assistants (Russell &
Norvig, 2003). Finally, once groups of coherent items are correctly detected,
one can study these groups in order to retrieve new information, either from
the individual communities or from the relations between these.

4.2 Method

4.2.1 Overview

In this chapter, we use the Qmax measure and our version collection (MC-2125,
Sec. 3.3.1) in order to build a complex network. More specifically, the dissimi-
larity matrix D is used as a weighted adjacency matrix for a complex network.
First, this complex network is analyzed in order to confirm that communities
of versions are present (Sec. 4.2.2). We study both the topology of the network
and the characteristics of the percolation process, i.e. how the network proper-
ties change with the threshold used to define the links. Subsequently, several
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Figure 4.1: Example of the idea of inferring version similarities by exploiting group
detection. In the top row the relation between S1 and S4 is inferred (red broken arrow)
from the results of querying S1 (directed black arrows) and S2 (directed blue arrows).
In the bottom row all queries are available, allowing the detection of a coherent group
of items (red cloud) and to infer new relationships between the elements of this group
(red broken arrows).

strategies to correctly detect groups of versions are presented (Sec. 4.2.3). In
particular, we consider 4 clustering algorithms and 4 community detection ap-
proaches. Three of the community detection approaches are original ideas. In
addition, we show how the Qmax measure can be post-processed to include
the information gained by a group detection algorithm (Sec. 4.2.4, Fig. 4.1 ex-
emplifies these ideas). This yields Q∗max, a measure that improves the results
of a query-by-example system by exploiting the information obtained through
the detection of groups of versions. Finally, we investigate the organization
of these groups of versions (Sec. 4.5). In particular, we present a study on
the role that original songs play within a group of versions. To the author’s
knowledge, this work constitutes the first reported attempt in this direction.

4.2.2 Analysis of the version network

As mentioned, the consideration of elements du,v of D as link weights between
vertices representing the songs of MC-2125 results in a complex network repre-
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Figure 4.2: Graphical representation of the version network when a threshold of 0.2
is applied. Original songs are drawn in blue, while versions are in black. In Sec. 4.5,
the role of original songs inside each community will be further studied.

sentation. This resulting network is depicted in Fig. 4.2. A threshold has been
applied so that only links with du,v ≤ 0.2 are drawn. Some clusters, i.e. sets of
versions, are already visible, especially in the external zones of the network.
In order to understand how the network evolves when the threshold is modified,
we study six different classical metrics as a function of the threshold (Boccaletti
et al., 2006; Costa et al., 2007):
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1. Graph density: the number of existing edges, normalized by the total
number of possible edges between all vertices.

2. Number of independent components: alternatively called number of con-
nected components. A connected component of a graph is a sub-graph
in which any two vertices are connected, and which is connected to no
additional vertices [a directed sub-graph is called (strongly) connected if
there is a path from each vertex in the graph to every other vertex].

3. Size of the strong giant component: a giant component is the connected
component that contains the majority of the entire graph’s nodes. The
reported value corresponds to the proportion of nodes that belong to this
component.

4. Number of isolated nodes: the number of nodes that do not have any link.
We report the proportion of these nodes relative to the total number of
nodes.

5. Efficiency (Latora & Marchiori, 2001): the harmonic mean of geodesic
lengths, where geodesic length corresponds to the number of edges in
the shortest path connecting two nodes. Efficiency is an indicator of the
traffic capacity of a network.

6. Clustering coefficient: the fraction of connected triples of nodes (triads)
which also form triangles3 (three nodes that are fully connected). Clus-
tering coefficient is a measure of degree to which nodes in a graph tend
to cluster together.

4.2.3 Detection of version groups

We assess the detection of version groups by evaluating several methods either
based on clustering or on complex networks. Since standard implementations of
clustering algorithms do not operate with an asymmetric dissimilarity measure,
in this and in the subsequent section we use a symmetric dissimilarity matrix
D′. This matrix is obtained by simply taking the new values d′u,v = d′u,v =
(du,v + dv,u) /2.

K-medoids

K-medoids (KM) is a classical technique to group a set of objects inside a
previously known number of K clusters (Theodoridis & Koutroumbas, 2006;
Xu & Wunsch II, 2009). The most common realization of KM clustering is as
follows (Theodoridis & Koutroumbas, 2006):

1. Randomly select K data points as the medoids.
3To calculate this value we removed the directionality of the links.
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2. Associate each data point to the closest medoid (in our case this closeness
is determined using D′).

3. For each medoid uM:

a) For each non-medoid data point uD:

i. Swap uM and uD and compute the total cost of the configura-
tion.

4. Select the configuration with the lowest cost.

5. Repeat steps 2 to 4 until there is no change in the medoid or a suitable
number of iterations has been reached.

The K-medoids algorithm is a common choice when the computation of means
is unavailable (as it solely operates on pairwise distances). Such is the case that
fits better with the version identification task. Furthermore, the K-medoids
algorithm can exhibit some advantages compared to the standard K-means
algorithm, in particular when dealing with noisy samples (Xu & Wunsch II,
2009). The main drawback for its application is that, as well as with the
K-means algorithm, the K-medoids algorithm needs to set K, the number of
expected clusters. However, several heuristics can be used for that purpose
(Theodoridis & Koutroumbas, 2006).
In our experiments we employ the K-medoids implementation of the TAMO
package4, which incorporates several heuristics to achieve an optimal K value5.
We use the default parameters and try all possible heuristics provided in the
implementation.

Hierarchical clustering

Hierarchical clustering creates a hierarchy of clusters which may be represented
in a tree structure called a dendrogram (Jain et al., 1999; Xu & Wunsch II,
2009). The root of the tree consists of a single cluster containing all obser-
vations, and the leaves correspond to individual observations. Hierarchical
clusterings can be agglomerative (bottom-up, each observation starts in its
own cluster) or divisive (top-down, all observations start in one cluster). A
generic realization of an agglomerative hierarchical clustering algorithm is as
follows (Jain et al., 1999):

1. Compute the dissimilarity matrix containing the distance between each
pair of observations (in our case the observations are recordings and we
use the dissimilarity matrix D′). Treat each observation as a cluster.

4http://fraenkel.mit.edu/TAMO
5http://fraenkel.mit.edu/TAMO/documentation/TAMO.Clustering.Kmedoids.html

http://fraenkel.mit.edu/TAMO
http://fraenkel.mit.edu/TAMO/documentation/TAMO.Clustering.Kmedoids.html
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2. Find the most similar pair of clusters using the dissimilarity matrix and
merge these two clusters into one cluster.

3. Update the dissimilarity matrix to reflect this merge operation. A linkage
criterion is used to determine the distance between sets of observations
as a function of the pairwise distances between observations. Common
linkage criteria are single linkage (the minimum distance in a set of ob-
servations is taken), complete linkage (the maximum is taken) or mean
average linkage (a linear combination of the distances in a set of obser-
vations is done).

4. Repeat steps 2 and 3 until all patterns are in one cluster.

In our experiments we consider four representative agglomerative hierarchical
clustering methods: single linkage (SL), complete linkage (CL), group aver-
age linkage (UPGMA) and weighted average linkage (WPGMA). We use the
HCLUSTER implementation6 with the default parameters and, in order to cut
the dendrogram at a suitable layer we try different cluster validity criteria such
as checking descendants for inconsistent values or considering the maximal or
the average inter-cluster cophenetic distance7. In the end, all clustering al-
gorithms rely only on the definition of a distance threshold d′Th, which is set
experimentally.

Modularity optimization

This method (MO), as well as the next three algorithms, is designed to ex-
ploit a complex network collaborative approach. In particular, MO extracts
the community structure from large networks based on the optimization of
the network modularity (Danon et al., 2005; Fortunato, 2010; Fortunato &
Castellano, 2009). The modularity of a partition is a scalar value between
-1 and 1 that measures the density of links inside communities as compared
to links between communities. Although it may have some shortcomings, the
maximization of the network modularity is, by far, the most popular way to de-
tect communities in graphs (Fortunato, 2010). The standard implementation
for optimizing modularity as proposed by Clauset et al. (2003) consists of re-
cursively merging communities that optimize the production of such quantity
(analogously to hierarchical clustering algorithms). To merge links between
nodes of the same community one usually sums their weights.
In our experiments we use the method proposed by Blondel et al. (2008), with
the implementation by Aynaud8. This method first looks for ‘small’ commu-
nities by optimizing modularity in a local way and then aggregates nodes of

6http://code.google.com/p/scipy-cluster
7http://www.soe.ucsc.edu/~eads/cluster.html
8http://perso.crans.org/~aynaud/communities/index.html

http://code.google.com/p/scipy-cluster
http://www.soe.ucsc.edu/~eads/cluster.html
http://perso.crans.org/~aynaud/communities/index.html
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Figure 4.3: Example of the process of reinforcing the triangular coherence of the
network. The sub-network on the left (A) can be improved by either deleting a link
(B) or by adding a third link between the two nodes that were not originally connected
(C).

the same community and builds a new network whose nodes are the communi-
ties. These steps are repeated reiteratively until a maximum of modularity is
attained. The method proposed by Blondel et al. (2008) is reported to outper-
form all other known community detection algorithms in terms of computa-
tional time while still maintaining a high accuracy. Importantly, this method
has the capacity to manage networks containing millions of nodes and links.

Proposed method 1

Our first proposed method (PM1) applies a threshold to each network link in
order to create an unweighted network where two nodes are connected only if
their weight (dissimilarity) is less than a certain value d′Th. In addition, for
each row of D′ (each node), we only allow a maximum number of connections,
considering only the lowest values of the thresholded row as valid links. That
is, we only consider the first k′Th nearest neighbors for each node, where k′Th is
a threshold rank (i.e. top k′Th items). Values d′Th and k′Th are set experimen-
tally. Finally, each connected component is assigned to be a group of versions.
Although this is a very naïve approach, it will be shown that, given the con-
sidered network and dissimilarity measure, it achieves a high accuracy level at
low computational costs.

Proposed method 2

The previous approach could be further improved by reinforcing triangular
connections in the complex network before the last step of checking for con-
nected components. In other words, proposed method 2 (PM2) tries to reduce
the ‘uncertainty’ generated by triplets of nodes connected by two edges and to
reinforce coherence in a triangular sense. This idea can be illustrated by the
following example (Fig. 4.3).
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Suppose that three vertices in the network, e.g. ui, uj and uk, were versions:
the resulting subnetwork should be triangular, so that every vertex is connected
with the two remaining ones. On the other hand, if ui, uj and uk were not
versions, no edge should exist between them. If couples ui, uj and ui, uk are
respectively connected (Fig. 4.3A), we can induce more coherence by either
deleting one of the existing edges (Fig. 4.3B), or by creating a connection
between uj and uk (i.e. forcing the existence of a triangle, Fig. 4.3C). This
coherence can be measured through an objective function % which considers
complete and incomplete triangles in the whole network. We define % as a
weighted difference between the number of complete triangles N5 and the
number of incomplete triangles N∨ (three vertices connected by only two links)
that can be computed from a pair of vertices:

%(N5, N∨) = N5 − ιN∨. (4.1)

The constant ι, which weights the penalization for having incomplete triangles,
is set experimentally.
The implementation of this idea sequentially analyzes each pair of vertices
ui, uj by calculating the value of % for two situations: (i) when an edge between
ui and uj is artificially created and (ii) when such an edge is deleted. Then, the
option which maximizes % is preserved and the adjacency matrix is updated as
necessary. The process of assigning version sets is the same as with PM1.

Proposed method 3

The computation time of the previous method can be substantially reduced
by considering for the computation of % only those vertices whose connections
seem to be uncertain. This is what proposed method 3 (PM3) does: if the
dissimilarity between two songs is extremely high or low, this means that
the version identification system has clearly detected a match or a mismatch.
Accordingly, we only consider for % the pairs of vertices whose edge weight is
close to d′Th (a closeness margin is empirically set).

4.2.4 Accuracy improvement: from Qmax to Q∗max

Once a coherent group of versions is detected by means of the methods ex-
plained above, we can straightforwardly improve the overall accuracy of a
query-by-example system. The idea is to modify the original dissimilarity mea-
sure of the system by means of the information obtained through the detection
of version sets.
Given the dissimilarity matrix D and a solution for the cluster or community
detection problem, one can calculate a refined dissimilarity matrix D̂ by setting
its elements

d̂u,v =
du,v

max(D)
+ ςu,v (4.2)
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for u, v = 1, . . . U , where ςi,j = 0 if songs u and v are estimated to be in
the same community and ςi,j = M otherwise. To ensure that the songs in
the same community have d̂u,v ≤ 1 and the others have d̂u,v > 1 we use a
constant M > 1. Importantly, this refined matrix D̂ can be used to rank the
query answers Λu again and, consequently, to evaluate the achieved accuracy
improvement (for that we only have to compare the accuracies achieved with
D and D̂, see below). The resulting measure from this process has previously
been denoted as Q∗max, in contraposition to Qmax.

4.3 Evaluation methodology

4.3.1 Music collection

For the evaluation of the approaches in this chapter we use the results ob-
tained by query-by-example for PCP descriptors (matrix D). Furthermore, we
employ the MC-2125 music collection (Sec. 3.3.1) and its different (possibly
overlapping) subsets. These subsets are organized into different setups. Each
setup is defined by different parameters: the total number of songs U , the
number of version sets US the collection includes, the cardinality C of the ver-
sion sets (i.e. the number of songs in the set) and the number of added noise
songs UN (i.e. songs that do not belong to any version set, which are included
to add difficulty to the task). Because some setups can lead to wrong accuracy
estimations (Sec. 2.3.3), it is safer to consider several of them, including fixed
and variable cardinalities.
In our experiments we use the setups summarized in Table 4.1. The whole MC-
2125 collection corresponds to setup 3. For other setups we randomly sample
version sets from setup 3 and repeat the experiments NT times (number of
trials, average accuracies reported). We either sample version sets with a
constant cardinality (C = 4, the expected cardinality of setup 3, Sec. 3.3.1) or
with a variable cardinality (C = χ, a random value between 2 and 18 taken
from an exponential distribution9 with an expected mean of 4).

4.3.2 Evaluation measures

To quantitatively evaluate version set detection we resort to the classical F-
measure with even weighting (Baeza-Yates & Ribeiro-Neto, 1999),

F =
2P̄ R̄

P̄ + R̄
, (4.3)

which goes from 0 (worst case) to 1 (best case). In Eq. (4.3), P̄ and R̄ cor-
respond to precision and recall, respectively. For this evaluation, we compute

9We found the exponential function to be the best candidate to model the distribution
of version set cardinalities shown in Sec. 3.3.1.
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Setup Parameters
US C UN U NT

1.1 25 4 0 100 20
1.2 25 χ 0 〈100〉 20
1.3 25 4 100 200 20
1.4 25 χ 100 〈200〉 20
2.1 125 4 0 500 20
2.2 125 χ 0 〈500〉 20
2.3 125 4 400 900 20
2.4 125 χ 400 〈900〉 20
3 523 χ 0 2125 1

Table 4.1: Experimental setup summary. The 〈·〉 delimiters denote expected value.

Pu and Ru independently for each song u and average afterwards with all U
songs. Unlike other clustering evaluation measures, F is not computed on a
per-cluster basis, but on a per-song basis through the averaging of Pu and
Ru across all songs. This way, and in contrast with the typical clustering
F-measure or other clustering evaluation measures like Purity, Entropy or F-
Score (e.g. Sahoo et al., 2006; Zhao & Karypis, 2002), we do not have to blindly
choose which cluster represents a given version set.
The process for obtaining F is as follows. For each song u, we count the number
of true positives NT+

i (i.e. the number of actual versions of song u estimated
to belong to the the same community as u), the number of false positives NF+

i

(i.e. the number of songs estimated to belong to the same group as u that
are not actual versions of u) and the number of false negatives NF-

i (i.e. the
number of actual versions of u that are not detected as belonging to the same
group as u). Then we define

Pu =
NT+
i

NT+
i +NF+

i

(4.4)

and

Ru =
NT+
i

NT+
i +NF-

i

. (4.5)

These two quantities [Eqs. (4.4) and (4.5)] are finally averaged across all U
songs (u = 1, . . . U) to obtain P̄ and R̄, respectively.
To quantitatively evaluate the improvements in retrieval accuracy we again use
the mean of average precision measure

〈
ψ
〉
[Eqs. (3.24) and (3.25), Sec. 3.3.2].

We define the relative improvement in mean average precision as

∆ = 100


〈
ψ(D̂)

〉
〈
ψ(D)

〉 − 1

 , (4.6)
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where
〈
ψ(D)

〉
denotes the mean of average precisions for a dissimilarity matrix

D. Notice that
〈
ψ(D)

〉
∈ [0, 1]. Therefore, it could be the case that ∆ would

be undetermined or tending towards infinity. However, in our experiments,〈
ψ
〉
never reaches a value of zero. For that to happen, the list Λu should not

contain any version at all [see Eqs. (3.24) and (3.25)].

4.4 Results

4.4.1 Analysis of the version network

In order to understand how the network evolves when the threshold is modi-
fied, we represent six different classical metrics as a function of the threshold
(Fig. 4.4). In the same plots, we also draw the values for the last five measures
as expected in random networks with the same number of vertices and links
(i.e. with the same graph density).
By looking at the evolution of these metrics, some interesting knowledge about
the network and its structure can be inferred. Notice that, by reducing the
threshold (and therefore increasing the deleted links), the network splits into
a higher number of clusters than expected, which represents the formation of
version communities (Fig. 4.4, top right plot). This process begins around a
threshold of 0.5 (see for instance the evolution of the size of the strong giant
component, Fig. 4.4, middle left). When these communities are formed, they
maintain a high clustering coefficient, i.e. sub-networks of versions tend to be
fully connected, with triangular coherence (Fig. 4.4, bottom right plot, between
0.3 and 0.5). It is also interesting to note that the number of isolated nodes
remains lower than expected, except for high thresholds (Fig. 4.4, middle right
plot). This suggests that most of the songs are connected to some cluster while
a small group of them are different, with unique musical features. Overall,
the above analysis reports evidence for the formation of version sets from the
output of Qmax, and suggests a successful detection of these through some
clustering or community detection algorithm such as the ones presented above.

4.4.2 Detection of version sets

To assess the grouping algorithms accuracy we independently optimized the
highlighted parameters for each algorithm on setups 1.1 to 1.4. Within this
optimization phase, we saw that the definition of a threshold d′Th was, in gen-
eral, the only critical parameter for all algorithms (for our proposed methods
we used k′Th between 1 and 3). The different heuristics used for the clustering
algorithms were found to yield equivalent accuracies. Besides d′Th, all other
parameters turned out to be uncritical for obtaining near-optimal accuracies.
Methods that had specially broad ranges of these near-optimal accuracies were
KM, PM2 and all hierarchical clustering algorithms considered.
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Figure 4.4: (Black solid lines) Evolution of six metrics of the network as a function
of the threshold. These metrics are, from top left to bottom right: graph density,
number of independent components, size of the strong giant component, number of
isolated nodes, efficiency and clustering coefficient. (Red broken lines) Expected value
in a random network with the same number of nodes and links.

We report the accuracies for setups 2.1 to 3 in Table 4.2. We see that accuracies
for PM1 and PM3 are comparable to those achieved by the other algorithms
and, in some setups, even better. The high values obtained (above 0.8 in the
majority of cases, some of them nearly reaching 0.9) indicate that the consid-
ered approaches are able to effectively detect groups of versions. This allows
the possibility of enhancing the answer of a query-based retrieval system by
reporting these detected groups and thus reinforcing coherence within answers.
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Algorithm Setup
2.1 2.2 2.3 2.4 3

KM 0.657 0.662 0.681 0.692 n.c.
SL 0.786 0.808 0.876 0.889 0.777
CL 0.811 0.817 0.829 0.826 0.791
UPGMA 0.823 0.827 0.829 0.826 0.791
WPGMA 0.825 0.842 0.844 0.843 0.815
MO 0.802 0.829 0.885 0.894 0.808
PM1 0.807 0.834 0.881 0.890 0.807
PM2 0.773 0.771 n.c. n.c. n.c.
PM3 0.787 0.786 0.865 0.876 0.763

Table 4.2: Accuracy F for the considered algorithms and setups (see Table 4.1 for the
details on the different setups). Due to algorithms complexity, some results were not
computed (denoted as n.c.). The two highest F values for each setup are highlighted
in bold.

4.4.3 Accuracy improvement

To assess accuracy improvements we independently optimized all distance
thresholds d′Th for each algorithm on setups 1.1 to 1.4. The relative accuracy
increments ∆ obtained for setups 2.1 to 3 are reported in Table 4.3. Overall,
these relative increments are between 3 and 5% for UPGMA, WPGMA, MO
and all PMs, with some of them reaching nearly 6 or 7%. We see that, in gen-
eral, methods based on complex networks perform better, specially MO and
PM1. We also see that the inclusion of ‘noise’ or ‘control’ songs (UN = 400,
setups 2.3 and 2.4) affects the performance of nearly all algorithms, with the
exception of poorly performing ones.
An additional out-of-sample test was done within the MIREX “audio cover
song identification” task (Sec. 2.3.3). In the editions of 2008 and 2009 we
submitted the same two versions of our system and obtained the two highest
accuracies achieved up to the moment of writing this thesis10. The first version
of the system (submitted solely to the 2008 edition) corresponded to the Qmax

measure alone (explained in the previous chapter). The accuracy achieved
with the Qmax approach was

〈
ψ
〉

= 0.66 (MIREX results have been shown in
the previous chapter, Table 3.3). The second version of the system (submitted
to both editions) comprised Qmax plus PM111 and the dissimilarity update
of Eq. (4.6). This approach was called Q∗max, and achieved an accuracy of

10The results for 2008 and 2009 are available from http://music-ir.org/mirex/2008 and
http://music-ir.org/mirex/2009, respectively.

11We only submitted PM1 because it was the only algorithm we had available at that
time.

http://music-ir.org/mirex/2008
http://music-ir.org/mirex/2009
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Algorithm Setup
2.1 2.2 2.3 2.4 3

KM 2.26 2.40 2.06 2.29 n.c.
SL 2.26 2.40 1.16 2.29 2.05
CL 1.93 1.19 1.43 1.10 1.28
UPGMA 5.87 5.22 3.96 3.49 4.37
WPGMA 4.91 3.58 3.83 2.67 3.60
MO 6.84 5.37 5.14 2.94 5.54
PM1 6.15 5.70 4.95 3.28 5.49
PM2 5.98 4.85 n.c. n.c. n.c.
PM3 6.05 5.10 3.81 2.97 4.73

Table 4.3: Relative accuracy increase ∆ for the considered setups (see Table 4.1
for the details on the different setups). Due to algorithms complexity, some results
were not computed (denoted as n.c.). The two highest ∆ values for each setup are
highlighted in bold.

〈
ψ
〉

= 0.75 (Table 3.3). This corresponds to a relative increment ∆ = 13.64.
Such an increment is substantially higher than those achieved here with our
data, most probably because the setup for the MIREX task is UC = 30, C = 11
and UN = 770. This specific setup might capitalize the effects that version
set detection can have in improving the accuracy. In particular, when high
cardinalities are considered, one can think of the techniques presented in this
chapter to achieve more dramatic impacts in final accuracies.
As a further example, it may also be interesting to also see the results in
absolute terms based on the collection subsets presented in Sec. 3.3.1 and
PM1. With this setting we can compare the accuracies achieved by Qmax and
Q∗max in the same way as in the previous paragraph. We have that for MC-2125
(setup 3 here) we go from

〈
ψ
〉

= 0.70 to
〈
ψ
〉

= 0.74 (∆ = 5.71), for MC-330
we go from

〈
ψ
〉

= 0.75 to
〈
ψ
〉

= 0.82 (∆ = 9.33) and for MC-102 we go from〈
ψ
〉

= 0.82 to
〈
ψ
〉

= 0.91 (∆ = 10.98).

4.4.4 A note on the dissimilarity thresholds

In the parameter optimization stages reported for the two previous sections we
have stated that the dissimilarity threshold d′Th seems to be a critical parameter
for all approaches. We should notice that alternative approaches for reducing
the dependency to d′Th were presented in Lagrange & Serrà (2010). In the same
reference, we also provided evidence that d′Th was more or less independent of
the music collection (Fig. 4.5). For that we used MC-2125 and the “covers80”
dataset12 (Ellis & Cotton, 2007), a version collection commonly used in the

12http://labrosa.ee.columbia.edu/projects/coversongs/covers80

http://labrosa.ee.columbia.edu/projects/coversongs/covers80
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Figure 4.5: Normalized histograms for the dissimilarity measure d′u,v [plot obtained
from Lagrange & Serrà (2010); the vertical axis represents the probability of d′u,v].
The plot compares the d′u,v values obtained with the MC-2125 collection (solid lines
with crosses, denoted in the legend as “Serra”) and with the “covers80” collection (solid
lines with triangles, denoted as “Ellis”, see text). Values for versions and not versions
are reported (denoted as “covers” and “not covers”, respectively). A threshold estimate
can be obtained visually.

MIR community13. In spite of this collection independence, we nevertheless
hypothesize that d′Th may still vary depending on the version identification
approach, i.e. each approach might need its own d′Th.

4.4.5 Computation time

In the application of these techniques to big real-world music collections, com-
putational complexity is of great importance. To qualitatively evaluate this as-
pect, we report the average amount of time spent by the algorithms to achieve
a solution for each setup (Fig. 4.6). We see that KM and PM2 are completely
inadequate for processing collections with more than 2000 songs (e.g. setup 3).
The steep rise in the time spent by hierarchical clustering algorithms to find
a cluster solution for setup 3 also raises some doubts as to the usefulness of
these algorithms for huge music collections [O(U2 logU), Jain et al. (1999)].
Furthermore, hierarchical clustering algorithms, as well as the KM algorithm,
take the full pairwise dissimilarity matrix as input. Therefore, with a mu-
sic collection of, for instance, 10 million songs, this distance matrix might be
difficult to handle.
In contrast, algorithms based on complex networks show a better performance
(with the aforementioned exception of PM2). More specifically, MO, PM1
and PM3 use local information (i.e. at most the nearest r′Th neighbors of the
queries), while PM3 furthermore acts on a small subset of the links. It should
also be noticed that the resulting network is very sparse, i.e. the number of

13Some remarks on this dataset have been made in Sec. 2.3.3.
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Figure 4.6: Average time performance for each considered setup. Algorithms were
run with an Intel(R) Pentium(R) 4 CPU 2.40GHz with 512M RAM.

links is much lower than U2 (Boccaletti et al., 2006) and, therefore, calculations
on such graphs can be strongly optimized both in memory requirements and
computational costs [as demonstrated, for instance, by Blondel et al. (2008),
who have applied their method to networks of millions of nodes and links].

4.4.6 Error analysis

With the information about the identified version groups we can perform a
further error analysis. In particular, it is interesting to look at the most out-
standing ‘confusions’. For instance, it could be interesting to look at groups
of versions that are in fact composed of two or more real groups, i.e. two or
more version groups that share a single detected cluster. Leaving behind a few
cases which we are not able to explain in an intuitive manner, we find that
the abovementioned ‘cluster sharing’ phenomenon usually has a musicologi-
cal explanation. Indeed, the major source for this kind of ‘confusions’ seems
to be the strong similarities between harmonic progressions of different songs
(Table 4.4). Inside this category we can highlight some subgroups.
The first and primary source of confusion is the fact of sharing a chord pro-
gression. Indeed, there are many songs that can share their tonal or chord
progression. However, by considering PCP descriptors instead of chords, and
thus using a finer, more detailed characterization, one should presumably have
less confusions of this kind. Nonetheless, the usage of tempo, transposition and
structure invariance strategies again dramatically boost the number of possible
confusions. That is, if there is a harmonically equivalent sequence of PCPs,
the system sometimes detects it in spite of tempo and transposition changes,
no matter its location within the piece.
A second source of confusions are the songs that have a chord progression
involving just dominant and sub-dominant chords (I, IV and V, sometimes
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Version sets Original performer Chord progression
“All along the watchtower” Bob Dylan C]m, B, A
“Stairway to heaven” Led Zeppelin Am, G, F
“Boys don’t cry” The Cure A, Bm, C]m, D
“Here there and everywhere” The Beatles G, Am, Bm, C
“Canon in D major” Pachelbel D, A, Bm, G
“Let it be” The Beatles C, G, Am, F
“No woman no cry” Bob Marley C, G, Am, F
“Go west” Pet Shop Boys C, G, Am, Em, F
“A whiter shade of pale” Procol Harum C, Em/G, Am, C, F
“Help me make it through the night” Kris Kristofferson D, D, G, G, D, D, E, E, A
“Oh darling” The Beatles A, D, A, B, E
“Imagine” John Lennon C, F, C, F, C, F, G, G
“Watching the weels” John Lennon C, F, C, F, C, F, Dm, G, G
“Take the A train” Duke Ellington C, C, D, D, Dm, G, C, Dm, G, C
“The lady is a tramp” Mitzi Green C, C, Dm, G, G, Cm, Dm, G, C
“O amor em paz” Joao Gilberto Bm, E, Am, D, G
“Mr. Sandman” The Chordettes B, E, A, D, G
“I’ll survive” Gloria Gaynor Am, Dm, G, C, F
“Over the rainbow” Judy Garland Csus4, Dm, G, C, F

Table 4.4: Some examples of version group confusions due to shared chord progres-
sions.

substituting I by its minor relative VIm). One example employing a chord
progression based on I, IV and V degrees is the common blues progression (I,
IV, I, V, IV, I, V). Other examples are the song “Knocking on heaven’s door” (I,
V, IV), originally performed by Bob Dylan, “Just like heaven” (V, IV, VIm, I),
originally performed by The Cure or “No woman no cry”, originally performed
by Bob Marley (I, V, VIm, IV, I). In fact, these songs, jointly with a few others
that also combine the I, IV and V degrees, form a single compact cluster after
our group detection stage.
A third example of confusions between version groups is found with songs that
just have a one or two-chord progression. In this case, the tonal progression
is barely definitive of the song and one should look at more detailed elements
such as the melody and ornamentations.
Finally, we find some confusions with typical cadences or bass-lines. In par-
ticular when there is a dominant/tonic chain with the same root or predomi-
nant/fundamental notes. This is the case for example with the last group of
songs in Table 4.4. All the confusions we have highlighted in this section were
visible in the online demo of the system (see Appendix A).

4.5 The role of the original song within its versions

Following the “typical pattern clustering activity” we outlined in the intro-
duction (Sec. 4.1), we now introduce the concepts of “cluster assessment” and
“data abstraction” to clusters of versions. That is, assuming that we are able
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to correctly detect coherent groups of versions, we study the relationships be-
tween the songs inside these groups. In particular, we focus on the issues of
prototype determination and compactness description.
It could be relevant to note that, in a data clustering context, many applica-
tions exploit compact cluster descriptions (Jain et al., 1999; Xu & Wunsch II,
2009). These compact descriptions are usually given in terms of representative
patterns such as the centroid or, if we want to restrict ourselves to existing
elements within the cluster, the medoid. In the context of version networks,
one could also be interested in finding a compact representative description of
a group of versions. Indeed, analogously to the clustering context, the cen-
troids and medoids of version groups can be effectively estimated. This way,
the centroid and the medoid of a group of versions would correspond to the
‘average realization’ and the ‘best example’ of the underlying musical piece,
respectively (in other words, to the prototype).
From the point of view of music perception and cognition, a musical work or
song can be considered as a category (Zbikowski 2002; see also Sec. 2.2.3). Cat-
egories are one of the basic devices to represent knowledge, either by humans
or by machines (Rogers & McClelland, 2004). According to existing empirical
evidence, some authors postulate that our brain builds categories around pro-
totypes, which encapsulate the statistically most-prevalent category features,
and against which potential category members are compared (Rosch & Mervis,
1975). With this view, after listening to several song versions, a prototype for
the underlying musical piece would be abstracted by listeners. This prototype
might encapsulate features such as the presence of certain motives, chord pro-
gressions or contrasts among different musical elements. In this scenario, new
items will be then judged in relation to the prototype, forming gradients of
category membership (Rosch & Mervis, 1975).
In the context of version communities, we hypothesize that the aforementioned
gradients of category membership, in most cases, may point to the original
song, i.e. the one which was released first14. In particular, we conjecture that,
in one way or another, all song versions inherit some characteristics from this
‘original prototype’. This feature, combined with the fact that new versions
may also be inspired by other renditions, leads us to infer that the original song
occupies a central position within a version community, being a referential or
‘best example’.
To evaluate this hypothesis we manually check for original versions in setup 3
and discard the sets that do not have an original, i.e. the ones where the oldest
song we have was not performed by the original artist. We find 426 originals out
of 523 version sets. Throughout this section, we employ the directed weighted
graph defined by the asymmetric matrix D (Sec. 4.2.2).
Initial supporting evidence that the original song is central within its commu-

14We want to avoid making subjective judgments about a song’s popularity with regard
to its versions.
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Figure 4.7: Graphical representation of the versions network with a strong threshold
of 0.1. Original songs are drawn in blue, while other versions are in black.

nity is given by Figs. 4.7 and 4.8. In Fig. 4.7, we depict the resulting network
after the application of a strong threshold (only using du,v ≤ 0.1). We see
that communities are well defined and also that many of the original songs are
usually ‘the center’ of their communities. In Fig. 4.8, two cumulative distribu-
tions have been calculated: one for the weights of links exiting an original song
(performed by the original artist, black solid line), and one for links exiting
versions (performed by the original or another artist a posteriori from the origi-
nal recording, blue broken line). The plotting of these cumulative distributions
indicates that original songs tend to be connected to other nodes through links
with smaller weights, that is, shorter distances (or higher similarities). The
fact that the original song occupies a central position can be also observed
qualitatively with the online demo of the system (Appendix A).
To evaluate the aforementioned hypothesis in a more formal way, we propose
a study of the ability to automatically detect the original version within a
community of versions. To this extent, we consider an ideal community detec-
tion algorithm (i.e. an algorithm detecting version communities with no false
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Figure 4.8: Cumulative weights distributions for links in the network, divided be-
tween links outgoing from an original song (black solid line) and from a song version
(blue broken line) songs.

positives and no false negatives) and propose two different methods. These
methods are based on the structure of weights of the obtained sub-network
after the ideal community detection algorithm has been applied.

Closeness centrality This algorithm estimates the centrality of a node by
calculating the mean path length between that node, and any other node
in the sub-network (Barrat et al., 2004; Boccaletti et al., 2006). Note
that the sub-network is fully connected, as no threshold has been ap-
plied in this phase. Therefore, the shortest path is usually the direct
one. Mathematically, let D(k) denote the sub-network containing the k-
th community. Then the index i of the original (or prototype) song v(k)i

of the k-th community corresponds to

i = arg min
1≤u≤Ck

 Ck∑
v=1
v 6=i

d(k)u,v

 , (4.7)

where Ck is the cardinality of the k-th community. Notice that a similar
methodology is employed in the clustering context to infer the medoid of
a cluster (Jain et al., 1999; Xu & Wunsch II, 2009). Indeed, this was the
initial strategy we followed in Serrà et al. (2009b).

MST centrality In this second algorithm we reinforce the role of central
nodes. First, we calculate the minimum spanning tree (MST) for the
sub-network under analysis (Costa et al., 2007). After that, we apply
the previously described closeness centrality [Eq. (4.7)] to the resulting
graph.

The results in Table 4.5 show the percentage of hits and misses for the de-
tection of original songs in dependence of the cardinality Ck of the considered
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Algorithm Ck
2 3 4 5 6 7

Null hypothesis 50.0 33.3 25.0 20.0 16.7 14.3
Closeness centrality 59.4∗∗ 53.6∗∗ 43.1∗ 60.5∗∗ 48.0∗∗ 27.2
MST centrality 50.0 52.4∗∗ 60.7∗∗ 52.6∗∗ 48.0∗∗ 63.6∗∗

US 190 82 51 38 25 11

Table 4.5: Percentage of hits and misses for the original song detection task depend-
ing on the cardinality Ck of the version communities. The ∗ and ∗∗ symbols denote
statistical significance at p < 0.05 and p < 0.01, respectively. The last line shows US,
i.e. the number of communities for each cardinality.

community. We report results for Ck between 2 and 7 (the cardinalities for
which our music collection has a representative number of communities UC).
The percentage of hits and misses can be compared to the null hypothesis of
randomly selecting one song in the community.
We observe that, in general, accuracies are around 50% and, in some cases,
they reach values of 60%. An accuracy of exactly 50% is obtained with Ck = 2
by both the null hypothesis and the MST centrality algorithm. This is because
the MST is defined undirected, and there is no way to discriminate the original
song in a sub-network of two nodes. As soon as Ck > 2, accuracies become
substantially higher than the null hypothesis and statistical significance arises.
Statistical significance is assessed with the binomial test (Kvam & Vidakovic,
2007).

4.6 Discussion and conclusion

In this chapter we build and analyze a musical network that reflects communi-
ties, where vertices correspond to different audio recordings and links between
them represent the measure of resemblance between their musical (tonal) con-
tent. Moreover, we analyze the possibility of using such a network to apply
different clustering and community detection algorithms to detect coherent
groups of versions. Apart from considering a number of common approaches,
three new alternatives for community detection are proposed. These alterna-
tives achieve comparable accuracies to existing state-of-the-art methods, with
similar or even faster computation times. In addition, we discuss a particular
outcome from considering version communities, namely the analysis of the role
of the original song within its versions. We show that the original song tends
to occupy a central position within its group and, therefore, that a measure of
centrality can be used to discriminate original songs from versions when the
sub-network of these communities is considered. To the best of the authors’
knowledge, the present work is the first attempt in this direction.
In the light of these results, complex networks stand as a promising research
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line within the specific task of version detection; but, at the same time, the
proposed approach can be applied to any query-by-example system (Baeza-
Yates & Ribeiro-Neto, 1999; Manning et al., 2008), and specially to other
query-by-example MIR systems (Casey et al., 2008b; Downie, 2008).
In order to mitigate the confusions found in Sec. 4.4.6 we feel that the post-
processing strategy we propose should be combined with some pre-processing
ones. In particular, we hypothesize that, by considering descriptions of differ-
ent musical facets, one could partition communities of more than one version
set. We have seen that, for example, a common chord progression was the most
remarkable musical facet between the elements of big communities joining two
or more version sets. Therefore, the consideration of, for example, melodies
or tempo-invariant rhythm descriptions could provide some informed ways of
breaking down these communities of multiple sets. Such new descriptions could
also be exploited in the case of incomplete communities, i.e. communities that
do not contain the entire set of versions of the same piece. In general, more
research is needed with regard to the combination of pre- and post-processing
strategies. We have discussed individual pre- and post-processing strategies in
Sec. 2.3.2. However, their combination still remains an open issue.
Finally, we should notice that some of the optimal thresholds for accuracy
increments do not necessarily need to be the same as the ones used in version
set detection. This therefore implies that the best performing methods for
version set detection do not necessarily correspond with those achieving the
highest accuracy increments (Secs. 4.4.2 and 4.4.3). In particular, the role
of false positives becomes important due to the definition of D̂ [Eq. (4.2)]:
false positives will be ranked higher than false negatives independently of their
previous rank (see below). Furthermore, due to the use of different evaluation
metrics, small changes in the optimal parameters could take place.
To illustrate the above reasoning, namely that the role of false positives deter-
mines different accuracies in the tasks of group detection and accuracy incre-
ment, consider the following example. Suppose the first items of the ranked
answer to a concrete query ůi are Λu = {̊vj , vk, v̊l, vm, . . .}, where v̊ indicates
effective membership to the same version group. Now suppose that clustering
algorithm CA1 selects songs ůi, v̊j , vk and vm as belonging to the same clus-
ter, and that clustering algorithm CA2 selects ůi, v̊j and vm. Both clustering
algorithms would have the same recall R̄ but CA2 will have a higher precision
P̂ , and therefore higher accuracy value F [Eqs. (4.3-4.5)]. On the other hand,
when evaluating ∆ [Eq. (4.6)], CA2 will take a lower

〈
ψ(D̂)

〉
value than CA1

(and thus a lower ∆) since vm will be ranked higher than v̊l [Eq. (4.2)]. In
summary: the clustering and community detection algorithms giving better
community detection and more suitable false positives will achieve the highest
increments.



CHAPTER 5
Towards model-based version

detection

5.1 Introduction

A major characteristic that is largely shared among state-of-the-art approaches
for version detection is the lack of specific modeling strategies for descriptor
time series (Sec. 2.3). This is somehow surprising since, apart from benefits
related to the generality and the compactness of the description, a modeling
strategy could bring some light to the underlying dynamics of descriptor time
series. In the present chapter we proceed in this direction by introducing a
model-based system for version detection. In particular, we study a model-
based forecasting approach, where we employ the concept of cross-prediction
error. We now elaborate on this aspect based on Serrà et al. (2010b) and Serrà
et al. (2010c).
Our approach essentially consists of first training a model to learn the charac-
teristics of a query song’s descriptor time series, and then assessing the predic-
tions of the model when a target time series of a candidate song is considered.
Intuitively, once a model has learned the patterns found in the time series of a
given query song, one would expect the average prediction error to be relatively
small when the time series of a candidate version is used as input. Otherwise,
i.e. when an unrelated (non-version) candidate song is considered, the predic-
tion error should be higher (provided that we use a suitable descriptor).
Although music descriptor time series are commonplace within the MIR com-
munity, little research has been done with regards to music modeling and
forecasting using these time series as a starting point (bottom-up or data-
driven approaches; Dubnov, 2006; Dubnov et al., 2007; Hazan et al., 2009).
In fact, many strategies start from musical knowledge and test whether the
observed data are consistent with the models (top-down or knowledge-driven
approaches). In general, these top-down approaches are basically probabilis-
tic (Abdallah & Plumbey, 2009; Eerola et al., 2002; Pachet, 2002; Paiement
et al., 2009) and only consider melodic, simple, synthetic and/or few musical
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examples (Abdallah & Plumbey, 2009; Eerola et al., 2002; Paiement et al.,
2009). Furthermore, they usually focus on scores or symbolic data (Abdallah
& Plumbey, 2009; Eerola et al., 2002; Pachet, 2002), thus leaving aside many
important aspects of the musical context and the specific rendition that can
be captured by the music descriptor time series. For a quantitative charac-
terization of descriptor time series, simple statistical moments, autoregressive
modeling, or nonlinear time series analysis techniques have been used (Joder
et al., 2009; Meng et al., 2007; Mierswa & Morik, 2005; Mörchen et al., 2006b;
Serrà et al., 2009a).
In this chapter we take a bottom-up (data-driven) approach starting from mu-
sic descriptor time series. Thereby we implicitly consider music recordings as
the output of dynamical systems from which corresponding descriptor time
series are recorded. We explore a number of popular modeling strategies from
the linear and nonlinear time series analysis fields (Box & Jenkins, 1976; Kantz
& Schreiber, 2004; Lütkepohl, 1993; Van Kampen, 2007; Weigend & Gershen-
feld, 1993). We assess the out-of-sample cross-prediction capabilities of these
strategies by training with one song’s descriptor time series and testing against
other songs with potentially similar musical content (a potential version).
We see that a model characterizing music descriptor time series allows for a sim-
plified but still useful image of what is sequentially happening in a song’s mu-
sical facet. In particular, we demonstrate that the concept of cross-prediction
error can be effectively used for version detection. We show that the ap-
proach is very promising in the sense that it achieves competitive accuracies
and furthermore provides additional advantages when compared to state-of-
the-art approaches (such as lower computational complexities and potentially
less storage requirements). Perhaps the most interesting aspect of the proposed
approach is that no parameters need to be adjusted. More specifically, models’
parameters and coefficients are automatically learned for each song and each
descriptor time series individually (no intervention of the user is needed). Ac-
cordingly, the system can be readily applied to different music collections or
descriptor time series.

5.2 Method

5.2.1 Overview

A brief overview of the model-based approach and the resulting structure of
this chapter can be outlined as follows (Fig. 5.1). First, we extract tonal de-
scriptor time series and perform transposition (Sec. 5.2.2). Then, a model is
trained on the samples of a query song u. To do so we preliminarily perform
state space embedding (Sec. 5.2.3). We study several time series models, both
linear and nonlinear (Sec. 5.2.4). For each model, a number of parameter com-
binations are tested and the combination that achieves a lower in-sample (self-)
prediction error is kept (Sec. 5.2.5). Indeed, by choosing the best parameter
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Figure 5.1: General block diagram of the model-based approach.

combination for each time series of each individual piece, we are already per-
forming a partial modeling of the time series1. Next, we test the out-of-sample
cross-prediction capabilities of the learned model (the model of query song
u) on the samples of a candidate song v and compute the error done in this
prediction (Sec. 5.2.6). This cross-prediction error is finally regarded as an
indicator of version similarity.
We evaluate the approach following a similar methodology than the one ex-
plained in Chapter 3 (Sec. 5.3) and report the out-of-sample version retrieval
accuracies for each model (Sec. 5.4). A brief discussion section is included in
order to weigh the advantages of the proposed model-based approach (Sec. 5.5).
In closing, we briefly summarize the achievements and propose some lines for
further research (Sec. 5.6).

1We believe that the modeling of a time series is not only determined by the actual
coefficients that we learn, but also by the parameters of the model themselves. We explain
this aspect in detail in Sec. 5.2.5.
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5.2.2 Descriptor extraction and transposition

The descriptor time series used in this chapter are the same as the ones ex-
plained in Chapter 3 (Sec. 3.2.2). We use PCP, TC and HC time series, which
were denoted as H̄, C̄ and ḡ, respectively. The only difference is that now the
downsampling factor of these time series is lower, thus we have more samples
to train our models. Specifically, we use a downsampling factor ν = 5, which
implies that the hop and frame sizes become 117 and 186 ms, respectively (see
Sec. 3.2.2).
The way to achieve transposition invariance is again the same as explained in
Chapter 3 (Sec. 3.2.3). We transpose PCP time series before obtaining TC and
HC descriptors and test the O = 2 most probable transposition indices. From
now on we also employ the notation X = [x1 · · ·xN ]T introduced in Sec. 3.2.4
to refer to a time series of descriptors.

5.2.3 State space embedding

All the models described hereafter aim at predicting the future states of dy-
namical systems based on their present states (Kantz & Schreiber, 2004). Since
an isolated sample xi may not contain the necessary information for a reliable
prediction at some future time step t, one could consider information from past
samples. As a notational representation of the present and recent past of a
time series we use the concept of delay coordinate state space embedding, a
tool which is routinely employed in nonlinear time series analysis and which
we already used in Sec. 3.2.4 [Eq. (3.16)]. Therefore, following the same steps
of that section, we obtain a reconstructed time series X̂ =

[
x̂λ+1 . . . x̂N̂

]
. Re-

call that λ = (m − 1)τ denotes the embedding window, with m and τ being
the embedding dimension and the time delay, respectively. If each column
vector xi has X components, representing the X-dimensional sample of the
i-th frame, the embedding operation produces column vectors x̂i, representing
(mX)-dimensional samples.

5.2.4 Time series models

To model and predict music descriptor time series we employ popular, simple,
yet flexible time series models; both linear and nonlinear (Box & Jenkins,
1976; Kantz & Schreiber, 2004; Lütkepohl, 1993; Van Kampen, 2007; Weigend
& Gershenfeld, 1993). Since we do not have a good and well-established model
for music descriptor prediction, we try a number of standard tools in order
to identify the most suitable one. All modeling approaches we employ have
clearly different features. Therefore they are able to exploit, in a forecasting
scenario, different structures that might be found in the data. In particular, in
the case of music, we could expect them to exploit repetitions and transitions at
multiple levels (notes, motifs, phrases, sections, etc.). As a linear approach we
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consider autoregressive models. Nonlinear approaches include locally constant,
locally linear, globally nonlinear and probabilistic predictors.

Autoregressive models

A widespread way to model linear time series data is through an autoregres-
sive (AR) process, where predictions are based on a linear combination of m
previous measurements (Box & Jenkins, 1976). We here employ a multivariate
AR model (Lütkepohl, 1993). In particular, we first construct delay coordinate
state space vectors x̂i and then express the forecast x̃i+t at t steps ahead from
the i-th sample xi as

x̃i+t = A x̂i, (5.1)

where A is the X ×mX coefficient matrix of the multivariate AR model. By
considering samples i = λ+ 1, . . . N̂ − t, one obtains an overdetermined system

X̃T = A X̂T (5.2)

which, by ordinary least squares fitting, allows the estimation of A (Press et al.,
1992).

Threshold autoregressive models

Threshold autoregressive (TAR) models generalize AR models by introducing
nonlinearity (Tong & Lim, 1980). A single TAR model consists of a collection
of AR models where each single one is valid only in a certain domain of the
reconstructed state space (separated by the “thresholds”). This way, points
in state space are grouped into patches, and each of these patches is used to
determine the coefficients of a single AR model (piecewise linearization).
For determining all TAR coefficients we partition the reconstructed space
formed by X̂ into K non-overlapping clusters with a K-medoids algorithm
(Parka & Jun, 2009) and determine, independently for each partition, AR
coefficients as above [Eqs. (5.1) and (5.2)]. Importantly, each of the K AR
models is associated to the corresponding cluster. When forecasting, we again
construct delay coordinate state space vectors x̂i from each input sample xi,
calculate their squared Euclidean distance to all k = 1, . . .K cluster medoids
and forecast

x̃i+t = A(k′) x̂i, (5.3)

where A(k′) is the X × mX coefficient matrix of the multivariate AR model
associated to the cluster whose medoid is closest to x̂i.

Radial basis functions modeling

A very flexible class of global nonlinear models are commonly called radial
basis functions (RBF; Broomhead & Lowe, 1988). As with TAR models, one



106 CHAPTER 5. TOWARDS MODEL-BASED VERSION DETECTION

partitions the reconstructed state space into K clusters but, in contrast, a
scalar RBF function φ is used for forecasting such that

x̃i+t = a0 +
K∑
k=1

ak φ (‖x̂i − bk‖) , (5.4)

where ak are coefficient vectors, bk are the cluster centers and ‖ ‖ is a norm.
In our case we use the cluster medoids for bk, the Euclidean norm for ‖ ‖ and
a Gaussian RBF function

φ (‖x̂i − bk‖) = e
−‖x̂i−bk‖2

2θρk . (5.5)

We partition the space formed by X̂ with the K-medoids algorithm as above,
set ρk to the mean distance found between the elements inside the k-th cluster
and leave θ as a parameter. Notice that for fixed centers bk and parameters ρk
and θ, determining the model coefficients becomes a linear problem that can be
resolved again by ordinary least squares minimization. Indeed, a particularly
interesting remark about RBF models is that they can be viewed as a (non-
linear, layered, feed-forward) neural network where a globally optimal solution
is found by linear fitting (Broomhead & Lowe, 1988; Weigend & Gershenfeld,
1993). In our case, for samples i = λ+ 1, . . . N̂ − t, we are left with

X̃T = A Φ, (5.6)

where A = [a0a1 . . .aK ] is now an X × (K + 1) coefficient matrix and Φ =[
Φλ+1 . . . ΦN̂−t

]
is a transformation matrix formed by column vectors

Φi = (1, φ (‖x̂i − b1‖) , . . . φ (‖x̂i − bK‖))T . (5.7)

Locally constant predictors

A zeroth-order approximation to the time series is given by a locally constant
predictor (Farmer & Sidorowich, 1987). With this predictor, one first deter-
mines a neighborhood Ωi of radius ε around each point x̂i of the reconstructed
time series X̂ . Then forecasts

x̃i+t =
1

|Ωi|
∑

xj∈Ωi

xj+t, (5.8)

where |Ωi| denotes the number of elements in Ωi. Notice that the unrecon-
structed versions xj of the neighbors of x̂i are used.
In our experiments, ε is set to a percentage εκ of the mean distance between
all state space points X̂ (we use the squared Euclidean norm). In addition, we
require |Ωi| ≥ η, i.e. a minimum of η neighbors is always included indepen-
dently of their distance to x̂i. Notice that this is almost a model-free approach
with no coefficients to be learned: one just needs to set parameters m, τ , εκ
and η.
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Model Parameter Values
All m 1, 2, 3, 5, 7, 9, 12, 15
All τ 1, 2, 6, 9, 15
TAR & RBF K 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40, 50
RBF θ 0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 7, 9
Locally constant εκ 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
Locally constant η 2, 5, 10, 15, 25, 50
Naïve Markov Ki 8, 15, 30, 40, 50, 60, 70
Naïve Markov Ko 5, 10, 20, 30, 40, 50

Table 5.1: Parameter values used for grid search.

Naïve Markov models

This approach is based on grouping inputs X̂ and outputs X̃ into Ki and
Ko clusters, respectively (Van Kampen, 2007). Given this partition, we fill
in a Ki × Ko transition matrix P, whose elements pki,ko correspond to the
probability of going from cluster ki of X̂ to cluster ko of X̃ (i.e. the rows of
P sum up to 1). Then, when forecasting, a state space reconstruction x̂i of
the input xi is formed and the distance towards all Ki input cluster medoids
is calculated.
In order to evaluate the performance of the Markov predictor in the same way
as the other predictors, we use P to construct a deterministic output in the
following way:

x̃i+t =

Ko∑
ko=1

pk′i ,ko bko , (5.9)

where bko denotes the medoid of (output) cluster ko and k′i is the index of the
(input) cluster whose medoid is closest to x̂i.

5.2.5 Training and testing

All previous models are completely described by a series of parameters (m,
τ , K, θ, εκ, η, Ki, or Ko) and coefficients (A, A(k), P, bk, or ρk). In our
experiments, these values are learned independently for each song and de-
scriptor using the entire time series as training set. This learning is done in
an unsupervised way, with no prior information about parameters and coeffi-
cients. More specifically, for each song and descriptor time series we calculate
the corresponding model coefficients for different parameter configurations and
then select the solution that leads to the best in-sample approximation of the
data. We perform a grid search for each possible combination that results from
Table 5.1 on each model.
Since we aim at obtaining compact descriptions of our data and we want to
avoid overfitting, we limit the total number of model parameters and coeffi-
cients to be less than 10% of the total number of values of the time series data.
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This implies that parameter combinations leading to models with more than
(N×X)/10 values are automatically discarded at the training phase2. We also
force an embedding window λ < N/20.
Intuitively, with such a search for the best parameter combination for a specific
song’s time series, part of the time series modeling is also done through the
appropriate parameter setting, since m, τ and K are parameters that also
define time series’ characteristics (Kantz & Schreiber, 2004). Notice that the
prediction horizon t cannot be optimized in-sample since best approximations
would always correspond to t = 1 due to inherent sample correlations. The
impact of t can only be assessed on the out-of-sample prediction, when the
model is applied to the candidate song.

5.2.6 Prediction error

To evaluate prediction accuracy we use a normalized mean squared error mea-
sure (Weigend & Gershenfeld, 1993), both when training our models (to select
the best parameter combination) and when retrieving versions based on cross-
prediction. We define this error as

ξ =
1

N − t− λ

N−t∑
i=λ+1

1

X

X∑
j=1

(x̃i+t,j − xi+t,j)2

σj2
, (5.10)

where σj2 is the variance of the j-th descriptor component over all samples
i = λ + t + 1, . . . N of the target time series X . We use the notation ξu,u
when a model trained on song u is used to forecast further frames of song u
(self-prediction, in-sample error) and ξu,v when a model trained on song u is
used to forecast frames of song v (cross-prediction, out-of-sample error).

5.3 Evaluation methodology

5.3.1 Music collection and evaluation measure

The music collection we employ here is the same used in the other parts of the
thesis (Sec. 3.3.1). In particular we use MC-102 and MC-2125. To evaluate
the accuracy in identifying song versions we proceed exactly as in Chapter 3.
Given a music collection with U songs, we calculate ξu,v for all U ×U possible
pairwise combinations and then create a symmetric dissimilarity matrix D,
whose elements are du,v = ξu,v + ξv,u. Once D is computed, we use the mean
of average precisions measure

〈
ψ
〉
to evaluate version retrieval (Sec. 3.3.2).

2Of course this does not apply to the locally constant predictor, which, as already said,
is an almost model-free approach.
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5.3.2 Baseline predictors

Besides models in Sec. 5.2.4, we further assess our results with a set of baseline
approaches that do not require parameter adjustments nor coefficient determi-
nation.

Mean

The prediction is simply the mean of the training data:

x̃i+t = µ, (5.11)

µ being a column vector. This predictor is optimal in the sense of Eq. (5.10)
for i.i.d. time series data. Notice that, by definition, ξ = 1 when predicting
with the mean of the time series data. In fact, ξ allows an estimation, in a
variance percentage, of how our predictor compares to the baseline prediction
given by Eq. (5.11).

Persistence

The prediction corresponds to the current value:

x̃i+t = xi. (5.12)

This prediction yields low ξ values for processes that have strong correlations
at t time steps.

Linear trend

The prediction is formed by a linear trend based on the current and the previous
samples:

x̃i+t = 2xi − xi−1. (5.13)

This is suitable for a smooth signal and a short prediction horizon t.

5.4 Results

In the work we reported in Serrà et al. (2010c) we saw that the prediction
horizon t had an important impact on the system’s performance, so we decided
to study the accuracy

〈
ψ
〉
for different t values with MC-102 (Fig. 5.2). We see

that, except for the locally constant predictor, all models perform worse than
the mean predictor for short horizons (t ≤ 3). This performance increases
with the horizon (4 ≤ t ≤ 7), but reaches a stable value for mid-term and
relatively long horizons (t > 7), which is much higher than the mean predictor
performance. In general, the maximal accuracy is obtained for t = 19, although
it is not substantially different than accuracies reached for t > 7 (recall that
t = 1 corresponds to 117 ms).
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Figure 5.2: Mean of average precisions
〈
ψ
〉
depending on the prediction horizon t.

Results for the TC descriptor with all considered models (MC-102). PCP and HC
time series yield qualitatively similar plots.

The ability to perform reliable cross-predictions at long horizons is, of course,
related to the ability of the learned model to perform (self-) predictions at such
a time span. To assess this latter ability we studied the self-prediction error
ξu,u as a function of the forecast horizon t (Serrà et al., 2010c). In general, we
saw that ξu,u increased rapidly for t ≤ 4 but, surprisingly, it reached a stable
plateau with all descriptors for t > 10, i.e. for prediction horizons of more than
1 s. Notably, in this plateau, ξu,u < 1. This indicated that, on average, there
was a certain capability for the models to still perform predictions at relatively
long horizons, and that these predictions were better than predicting with the
mean. Overall, the previous fact reveals that descriptor time series are far from
being i.i.d. data (even at relatively long t) and that models are capturing part
of the long-term structures and repetitions found in our collection’s recordings.
We conjecture that these two facts play a crucial role in the cross-prediction
scenario, allowing the correct detection of versions. For more details concerning
the in-sample self-prediction capabilities of the considered models we refer the
reader to Serrà et al. (2010c).
The fact that we detect versions better at mid-term and relatively long horizons
could also have a musicological explanation. To see this we study matrices
quantifying the transition probabilities between states separated by a time
interval corresponding to the prediction horizon t. We first cluster a time series
X into, for instance, 10 clusters and compute the medoids. We subsequently
fill a transition matrix P, with elements pi,j . Here i and j correspond to the
indices of the medoids to which respectively xi and xi+t are closest. This
transition matrix is normalized so that each row adds up to 1. In Fig. 5.3
we show P for three different horizons (t = 1 in the first column, t = 7 in
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Figure 5.3: Transition matrices P for two versions (top) and two unrelated songs
(bottom) using 10 input and 10 output clusters (see text). These transition matrices
are computed for t = 1 (a,d), t = 7 (b,e) and t = 15 (c,f). Bright colors correspond to
high transition probabilities (white and yellow patches).

the second column and t = 15 in the third column). Two unrelated songs are
shown (one row each). The musical piece that provided the cluster medoids
to generate P is a version of the first song (top row) but not of the second
(bottom row).
We see that, for t = 1, P is highly dominated by persistence to the same cluster,
both for the version (Fig. 5.3a) and the non-version (Fig. 5.3d) pair. This
fact was also corroborated with the self-prediction results of the persistence-
based predictor (Serrà et al., 2010c). Once t increases, characteristic transition
patterns arise, but the similarity between matrices in Fig. 5.3b and 5.3e show
that these patterns are not characteristic enough to define a musical piece.
Compare for example the high values obtained for both matrices (b) and (e)
at p7,6, p9,8, p2,4, p1,9, or p3,10. We conjecture that these transitions define
general musical features that are shared among a large number of subsets of
recordings, not necessarily just the versions. For example, it is clear that
there are general rules with regard to chord transitions, with some particular
transitions being more likely than others (Krumhansl, 1990). Only when t > 7
transitions that discriminate between the dynamics of songs start to become
apparent (see the distinct patterns in Figs. 5.3c and 5.3f). This distinctiveness
can then be exploited to differentiate between versions and non-versions.
Results for version retrieval with MC-2125 indicate that the best model is the
TAR model; although notable accuracies are achieved with the RBF method
(Table 5.2). The AR and the naïve Markov models come next. Persistence
and linear trend predictors perform at the level of the random baseline

〈
ψ
〉
null.

This is to be expected since no learning is performed for these predictors.
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Methods Descriptors
PCP TC HC

Linear trend <0.01 <0.01 <0.01
Persistence <0.01 <0.01 <0.01
Mean 0.15 0.09 0.01
Locally constant 0.25 0.28 0.05
Naïve Markov 0.37 0.38 0.05
AR 0.37 0.41 0.04
RBF 0.38 0.44 0.05
TAR 0.39 0.44 0.06

Table 5.2: Mean of average precisions
〈
ψ
〉
for the version identification task (MC-

2125). A prediction horizon of t = 19 was used. The maximum of the random baseline〈
ψ
〉
null was found to be 0.008 within 99 runs.

In addition, we see that the HC descriptor is much less powerful than the
other two. This is to be expected, since HC compresses tonal information to
a univariate value. Furthermore, HC might be less informative than PCP or
TC values themselves, which already contain the change information in their
temporal evolution. Apart from this, we see that TC descriptors perform better
than PCP descriptors. This does not necessarily imply that TC descriptors
provide a better representation of the tonal information that is present in a
recording, but that TAR models are better in capturing the essence of their
temporal evolution.

5.5 Discussion

Even though the considered models yield a significant accuracy increase when
compared to the baselines, it might still seem that a value of

〈
ψ
〉
around 0.4

in an evaluation measure that ranges between 0 and 1 is not a big success for
a version identification approach. To properly asses this accuracy one has to
compare it against the accuracies of state-of-the-art approaches.
According to MIREX, the best accuracy achieved until the moment of writing
this thesis for the version identification task was obtained with the previous
model-free system of Chapter 3. This system, without any post-processing
step, reaches

〈
ψ
〉

= 0.66 with the MIREX dataset and yields
〈
ψ
〉

= 0.70
with MC-2125 (Sec. 3.4.2). A former method by Serrà et al. (2008b) scored〈
ψ
〉

= 0.55 with the MIREX data. Thus the cross-prediction approach does not
outperform these methods. However, the cited methods were specifically de-
signed for the task of identifying versions, while the cross-prediction approach
is a general schema that does not incorporate all the specific modifications that
could be beneficial for such a task (e.g. it does note take into account tempo or
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structural changes between versions, Sec. 2.3). To make further comparisons
(at least qualitatively), one should note that

〈
ψ
〉
values around 0.4 are in line

with other state-of-the-art accuracies, or even better if we consider comparable
music collections (see e.g. Table 2.2 in Sec. 2.3.3).
Beyond accuracy comparisons, some other aspects can be discussed. Indeed,
another reason for appraising the solution obtained here comes from the con-
sideration of storage capacities and computational complexities at the query
retrieval stage. Since we limit our models to a size of 10% of the total number
of training data (Sec. 5.2.5), they require 10% of the storage that would be
needed for saving the entire time series (state-of-the-art systems usually store
the full time series for each song). This fact could be exploited in a single-query
retrieval scenario. In this setting, it would be sufficient to determine a dissim-
ilarity measure ξ (Eq. 5.2.6) from the application of all candidates’ models to
the query song. Hence, only the models rather than the raw data would be
required. Regarding computational complexity, many approaches for version
identification are quadratic in the length of the time series, requiring at least
an Euclidean distance calculation for every pair of sample points3 (Sec. 2.3).
Contrastingly, the approaches presented here are linear in the length of the
time series. For example, with TAR models, we just need to do a pairwise
distance calculation between the samples and the K medoids, plus a matrix
multiplication and subtraction (notice that the former is not needed with AR
models). If we compare the model-free approach of Chapter 3 with the TAR-
based strategy by considering an average time series length N̄ , we have that
the former is roughly O

(
N̄2mX

)
, while the latter is O

(
N̄(K +X)mX

)
, with

K+X � N̄ . To illustrate this with specific numbers: with N̄ = 2304 (approx-
imately 4 min of music), descriptor dimensionality X = 12 (the largest among
PCP, TC and HC) and K = 50 (the maximum allowed, Table 5.1), we obtain
a minimal relative speed improvement of 2304/(50 + 12) ≈ 37.
A further and very interesting advantage of using the approaches considered
in this chapter is that no parameters need to be adjusted by the user. More
specifically, models’ parameters and coefficients are automatically learned for
each song and descriptor time series individually by the minimization of the in-
sample training error ξu,u. Usually, version identification algorithms have mul-
tiple parameters that can be dependent, for instance, on the music collection,
the music descriptor time series, or the types of versions under consideration
(Sec. 2.3). The model-free approach of Chapter 3 and our previous method of
Serrà et al. (2008b) were not an exception: as there was no way to a priori set
their specific parameters, these were set by trial and error with a representative
(ideally out-of-sample) music collection. Since for the current approaches no
such manual parameter optimization is required, their application to version
identification is robust and straightforward.

3As examples we can mention the model-free approach of Chapter 3, or our previous
method of Serrà et al. (2008b).



114 CHAPTER 5. TOWARDS MODEL-BASED VERSION DETECTION

5.6 Conclusions and future work

In this chapter we explore a number of modeling strategies for version retrieval.
In particular, we test a number of routinely employed time series models. These
include linear and nonlinear predictors such as AR, TAR, RBF, locally con-
stant and naïve Markov. These models are automatically trained for each song
and descriptor time series individually. Training is done in an unsupervised
way, performing a grid search over a set of parameter combinations and auto-
matically determining the corresponding coefficients. We perform an in-sample
self-prediction of the descriptor time series in order to assess which parameter
combination gives the best approximation to the time series.
With the experiments above we demonstrate both the capacity of generaliza-
tion of the considered models and the real-world applicability of out-of-sample
cross-prediction errors. More specifically, we show that cross-predictions at
mid-term and relatively long horizons permit the performance of version re-
trieval. In particular, AR, TAR and RBF methods achieve competitive accu-
racies.
In general, we see that considering cross-predictions of time series models leads
to a parameter-free approach for version identification. Furthermore, the ap-
proach is fast, allows for reduced storage and still maintains a highly compet-
itive accuracy when compared to state-of-the-art systems. Thus, time series
modeling strategies stand as a really promising approach for version detection
and, by extension, for music and multimedia retrieval in general.
Two important research lines stem from the work in the current chapter. First,
it would be interesting to consider further time series models and to see how
accurate they are in the version identification task. This partially points out
the necessity of knowing more about the nature of a descriptor time series,
an aspect which was initially assessed in Serrà et al. (2010c). In particu-
lar, our findings suggested that the temporal evolution of music descriptors
might be explained by a concatenation of multiple autoregressive processes
with superimposed noise. Interestingly, AR and TAR models yielded the low-
est self-prediction errors (recall that they also reach the highest accuracies in
the case of version retrieval presented in Sec. 5.4 above). In spite of the evi-
dence found, we should be cautious since some contradictory evidence on the
use of AR models for music descriptor time series exists. In particular, Meng
et al. (2007) reported that AR modeling of descriptor time series was beneficial
for genre classification, while Joder et al. (2009) reported that such a strategy
was not useful for instrument classification.
The second research line to pursue is more practical and it is focused on the
version retrieval task. Indeed, it would be important to see whether the accu-
racies achieved by a model-based approach can surpass the ones achieved by
the best model-free approaches. In particular, there have been two important
aspects missing in the formulation of our model-based approach: tempo and
structure invariance. With regard to tempo invariance, we hypothesize that
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possibly working with tempo-insensitive representations of tonal information,
such as the ones used e.g. by Ellis & Cotton (2007), could partially solve the
problem. However, one should be careful in the beat-detection stage, since it
could introduce additional errors to the system (Sec. 2.3). Notice that the in-
troduction of a tempo invariant representation is only the most straightforward
option and that further strategies can be devised, specially with the setting
of the prediction horizon t and the time delay τ . With regard to structure
invariance, the easiest way would be to cut the time series into short (maybe
30 s) overlapping segments and train different models on each segment. How-
ever, this solution would introduce additional computational costs since each
error for each segment would need to be evaluated. Notice that both training
and testing (error computation) phases should be appropriately ‘tuned’ in or-
der to achieve structure invariance. Therefore, only modifying Eq. (5.2.6) to
take the possibility of changes in the song structure into account would not
be sufficient. Preliminary experiments with our data showed that the version
retrieval accuracy was not increased when considering only the latter strategy.
An additional issue with the overall structure invariance strategy is that of the
number of samples that are needed to train a time series model. It could be
the case that the time series samples found in 30 s may not be sufficient for a
proper training.





CHAPTER 6
Summary and future

perspectives

6.1 Introduction

Can a computer recognize the underlying musical composition behind a given
interpretation? Can we automatically detect if two songs correspond to the
same music piece despite many important musical variations? These were
the kind of questions that motivated our research (Sec. 1.1). In the light of
the results presented in this thesis we can now answer: yes. Certainly the
solutions we propose are able to perform such tasks effectively in the majority
of cases. Of course we should give a word of caution since our system is not
100% accurate. However, we have shown that part of the errors produced by
the system are explainable from a perceptual and a musicological perspective
(Secs. 3.4.5 and 4.4.6). Therefore, we could expect that humans would show
similar mistakes than those observed in our systems.
We started this thesis with an introduction to automatic version identifica-
tion, with a special focus on the context of music information retrieval, with
some terminology remarks, and with the common musical variations between
song versions (Chapter 1). The context of music information retrieval was
further reviewed in our literature summary, emphasizing current approaches
for version identification (Chapter 2). We then presented and evaluated our
main approach for version identification, a model-free system (Chapter 3). We
subsequently studied and assessed a post-processing strategy for the output
of this system (Chapter 4). Finally, in contraposition to our model-free sys-
tem, we presented and evaluated a model-based system which, although not
outperforming the model-free one, had remarkable advantages (Chapter 5).
Towards the end of each chapter we have been providing the main conclusions
regarding our work. These conclusions summarize in detail the work reported
within each chapter, highlight relevant results and outcomes and comment on
concrete aspects of each specific approach. Alternatively, in this chapter, more
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general or global statements are made. We end this dissertation with some
brainstorming on future perspectives.

6.2 Summary of contributions

This thesis contributes to the processing, retrieval, organization and under-
standing of digital information, specifically multimedia information. More
specifically, it strongly contributes to the field of audio content-based music
information retrieval:

• It is, to the best of the author’s knowledge, the first thesis entirely de-
voted to the topic of automatic audio-based version identification.

• It critically discusses version identification in the context of music in-
formation retrieval. This includes a critical assessment of current ap-
proaches and evaluation procedures.

• It provides a comprehensive overview of the scattered available literature
on version identification based on the audio content. Specific emphasis
is given to the main functional blocks that are needed to build a version
identification system.

• It proposes a successful model-free approach for version identification.
Noticeably, the quantification measures derived from this approach have
many potential applications beyond music information retrieval (see be-
low).

• It characterizes and exploits the output of a version identification system.
In particular, it is shown that song versions of the same piece naturally
cluster together, that these clusters can be effectively detected and that
this information can be used to enhance the results of existing systems.
Again, the application of the developed strategies goes beyond version
retrieval.

• It explores the role that original songs play inside a group of versions,
showing that there is a certain tendency for the original song to be central
within the group.

• It explores model-based approaches for version identification. These ap-
proaches represent a very promising research line with regard to obtaining
parameter-free systems that are fast, allow for reduced storage and are
still competitive in accuracy.

In addition, it is worth noticing that the proposed model-free approach (Qmax),
together with its post-processed version (Q∗max), reached the two highest accu-
racies in the MIREX 2008 and 2009 editions of the “audio cover song identifica-
tion task”. At the moment of writing this thesis, the aforementioned accuracies
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remain the highest in all MIREX editions of said task (including the one in
2010). These accuracies clearly surpass those achieved by current state-of-the-
art approaches, including a previous approach by the author which, at its time
in 2007, achieved the highest MIREX score (Serrà et al., 2008b).
With regard to the general applicability of the proposed methods, it may be
relevant to cite the words from the board member’s report after reviewing
our paper submitted to New Journal of Physics (Serrà et al., 2009a): “Both
referees agree that the study is interesting. However the first referee does not
think that the studying music retrieval problem is of interest to the readership
of NJP. I do not agree with this view since much of our physics studies in
recent years are applications of physics methods to multidisciplinary fields. I
think that developing novel physical methods for automatic classification of
digital information and in particular automatic identification of cover songs is
of much interest. I therefore recommend accepting the paper in NJP”. Time
has shown that the board member was right: the paper was among the 10%
most downloaded papers across all Institute of Physics1 journals within the
first month of publication2.
The outcomes of the research carried out in this thesis have been published
in the form of several papers in international conferences, journals and a book
chapter. Some of these publications have been featured in a number of public
and private communication media3. An online demo of the system was also
presented at an international conference (Appendix A). Moreover, part of this
research has been deployed into a commercial media broadcast monitoring
service4 by the company Barcelona Music and Audio Technologies and the
author is inventor of two patents applied by the same company. The full list
of the author’s publications and patents is provided in an annex to this thesis
(Appendix B).

6.3 Some future perspectives

Some new avenues for research have already been advanced in the last chapters
of the thesis. For example, it is clear that further pre- and post-processing
techniques can provide a valuable accuracy increase in current systems. An
additional issue is that of the simultaneous combination of pre- and post-
processing strategies.
With regard to pre-processing techniques, we are particularly optimistic about
the combination of different sources of information. Indeed, there are different
musical facets that can be shared within versions. Therefore different methods
for extracting these ‘essential’ characteristics would be necessary. Although

1http://www.iop.org
2Tim Smith, publisher of New Journal of Physics, personal communication, October 2009.
3A selection of these appearances can be found in the author’s web page: http:

//joanserra.weebly.com
4http://www.bmat.com/vericast

http://www.iop.org
http://joanserra.weebly.com
http://joanserra.weebly.com
http://www.bmat.com/vericast
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many of these methods already exist, there still is much room for improve-
ment. We are particularly thinking about methods for melody and polyphonic
pitch estimation, chord recognition and descriptor extraction in general (Casey
et al., 2008b). Source separation would also be an important tool in version
identification (Foucard et al., 2010).
An important issue arises regarding the combination of these multiple sources
of information. In particular, one needs to decide where to combine the in-
formation and to devise the corresponding strategy for doing so (early and
late-fusion schemes). This is a general problem shared across information sci-
ence disciplines (e.g. Ross & Jain, 2003; Tahani & Keller, 1990; Temko et al.,
2007). Many strategies exist, however there does not seem to be a clear win-
ner. With regard to specific post-processing techniques, we advocate general
clustering and classification techniques. Although these techniques are already
incorporated in the state-of-the-art, we think they deserve further exploration.
Perhaps a good starting point would be the incorporation of time series inside
the clustering or classification algorithm (e.g. the alignment kernels of Joder
et al., 2009).
The discussion above leads us to the use of different strategies to model the
information extracted from audio. Related to this aspect, we believe that
model-based approaches for version identification are a promising research di-
rection to pursue. We find the reasons presented in the corresponding section
to be a good indicator of what further research on this aspect can offer. It
would be particularly interesting to see how hidden Markov models (HMM;
Cappé et al., 2005; Rabiner, 1989) can be adapted to version identification.
Such models have been very successful within the speech processing commu-
nity (Rabiner & Juang, 1993) and thus are well-researched and established (see
e.g. Pujol et al., 2005; Wilpon et al., 1990; Woodland & Povey, 2002). How-
ever, we conjecture that specific adaptations would be needed, in particular
adaptations dealing with tempo and structure invariance (see e.g. Batlle et al.
(2002) for some structure invariance adaptations of HMMs in the context of
audio fingerprinting). In addition, one should use a continuous version of such
models, since quantization of observations is not trivial in the case of version
identification systems. Finally, an important point would be the incorporation
of musical knowledge to the model. One way to incorporate such knowledge is
by a case-based reasoning approach [Kolodner (1993); c.f. Arcos et al. (1997)].
In general, model-based approaches have an important industrial advantage
over model-free ones: computational complexity. Indeed, more effort is needed
in order to achieve scalable solutions that are able to effectively deal with music
collections of millions of items. This is not a straightforward task, and current
low-complexity methods fail to detect many songs when they are submitted to
a pure/genuine version identification task (Sec. 2.3). Scalable methods need
to achieve comparable (or better) accuracies than current non-scalable ones.
Another avenue for research is that of detecting musical quotations (Sec. 1.2.2).
In classical music, there is a long tradition of composers citing phrases or
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motives from other composers (e.g. Alban Berg quoting Bach’s chorale “Es ist
genug” in his “Violin Concerto” or Richard Strauss quoting Beethoven’s “Eroica
symphony” in his “Metamorphosen for 23 solo strings”). In popular music there
are also plenty of quotations (e.g. The Beatles’ ending section of “All you need
is love” quotes the French anthem “La Marseillaise” and Glen Miller’s “In the
mood” or Madonna’s “Hung up” quoting ABBA’s “Gimme, gimme, gimme”),
and even modern electronic genres massively borrow loops and excerpts from
any existing recording. As the quoted sections are usually of short duration,
special adaptations of the current version identification algorithms would be
required to detect them. In addition to facilitating legal procedures, linking
diverse musical works this way opens new interesting ways for navigating across
huge music collections. A related but different approach is to find, on a large-
scale, music audio segments “that are similar not only in feature statistics, but
in the relative positioning of those features” in time (Ellis et al., 2008).
The role of original songs within a group of versions is a research issue that
deserves further exploration. In particular, it remains to be seen if some way to
quantify the ‘originality’ of recordings exists or, at least, if some trends can be
observed. Not only experiments with groups of versions should be performed,
but also with pairwise comparisons. In the latter scenario perhaps one could
maybe employ some measures of causality (e.g. Granger, 1969) or information
transfer (e.g. Schreiber, 2000). However, we hypothesize that more informed
and precise descriptions of the recordings should be used.
In order to identify song versions, the usual approach pays attention solely
to the musical facets that are shared among them. This makes sense if we
consider the task as a pure identification task. However, if we want to go
beyond identification, we cannot suppose that musical changes do not affect
the similarity between versions. With current systems, if two songs are versions
and have the same timbre characteristics and a third song is also a version but
does not exhibit the same timbre, they will score the same similarity. Future
works approaching version similarity in a stricter sense (not just identification)
might benefit from also considering also differences between music recordings
so that, in the previous example, the third version is less similar than the first
two (c.f. Tversky, 1977).
Determining version similarity in a stricter sense would have some practical
consequences and would be a useful feature for music retrieval systems. There-
fore, depending on the goals of the listeners, different degrees of similarity could
be required. Here we have a new scenario where the ill-defined but typical mu-
sic similarity problem needs to be addressed (Berenzweig et al., 2004).
Finally, on a more general side, automatic version identification calls for a
human-motivated approach (Sec. 2.2.3). Current methods are constituted by
a number of algorithms that do not resemble the ways humans process music
information at all. It would be very interesting to devise a version identifica-
tion system that performs the task as humans would. Indeed, a perceptually-
inspired model for the processing of music signals plus a cognitively-motivated
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way to select and store relevant information items and a psychologically-sound
comparison of such items would be a remarkable outcome.



Joan Serrà, Barcelona, February 9, 2011.
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Appendix A: the system’s
demo

We presented an online demo of our version identification system in 2009 at
the International Society for Music Information Retrieval Conference (ISMIR)
which was held in Kobe, Japan. With it, we assessed the output of a version
similarity system through a graphical user interface (Fig. 1). The demo is
still running at the moment of writing this thesis, although it is not publicly
available (for more details please contact the author).
The system is based on the Q∗max measure, i.e. it is based on the Qmax mea-
sure as explained in Chapter 3 and furthermore incorporates a version group
detection layer such as the ones we have exposed in Chapter 4 (Serrà et al.,
2009a, 2010d). For group detection we used the firstly proposed method in
that chapter (PM1, Sec. 4.2.3). The recordings shown in this demo correspond
to our music collection MC-2125 (Sec. 3.3.1). It has to be noted that, for
favoring speed and due to some technical issues, all computations have been
made off-line.
With this demo the user can browse a version collection via query-by-example.
The results of the search are shown in a ranked list, together with the obtained

Figure 1: Snapshot of the online demo.
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Figure 2: Detail of a version network.

distances to the query (Fig. 1, top right). For comparison purposes, metadata
and ground truth information are also shown (Fig. 1, left). Furthermore, for
exploring and visualizing the results of the system, a graph renderization for
each automatically detected version set is depicted (Fig. 1, bottom right). A
zoom on this part can be seen in Fig. 2. In the graph, nodes correspond to
music recordings and edges reflect the similarity between these recordings.
To build such a graph we exploit Q∗max, which is reflected in the thickness of
the edges (the thicker the edge, the more similar in terms of a tonal progres-
sion). Nevertheless, we also incorporate timbral similarity, which is reflected
in the length of the edges (the shorter the edge, the more similar in terms of
timbre). This timbral similarity is computed via the common Kullback-Leibler
divergence between one-Gaussian mixture models of Mel-frequency cepstral co-
efficients extracted on a frame-by-frame basis [see e.g. Jensen et al. (2009) and
references therein].
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