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Abstract

Music is built from sound, ultimately resulting from an elaborate interaction between

the sound-generating properties of physical objects (i.e. music instruments) and the sound

perception abilities of the human auditory system.

Humans, even without any kind of formal music training, are typically able to ex-

tract, almost unconsciously, a great amount of relevant information from a musical signal.

Features such as the beat of a musical piece, the main melody of a complex musical ar-

rangement, the sound sources and events occurring in a complex musical mixture, the

song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some

examples of the level of knowledge that a naive listener is commonly able to extract just

from listening to a musical piece. In order to do so, the human auditory system uses a

variety of cues for perceptual grouping such as similarity, proximity, harmonicity, common

fate, among others.

This dissertation proposes a flexible and extensible Computational Auditory Scene

Analysis framework for modeling perceptual grouping in music listening. The goal of the

proposed framework is to partition a monaural acoustical mixture into a perceptually

motivated topological description of the sound scene (similar to the way a naive listener

would perceive it) instead of attempting to accurately separate the mixture into its original

and physical sources. The presented framework takes the view that perception primarily

depends on the use of low-level sensory information, and therefore requires no training

or prior knowledge about the audio signals under analysis. It is however designed to be

efficient and flexible enough to allow the use of prior knowledge and high-level information

in the segregation procedure.

The proposed system is based on a sinusoidal modeling analysis front-end, from which

spectral components are segregated into sound events using perceptually inspired grouping

cues. A novel similarity cue based on harmonicity (termed “Harmonically-Wrapped Peak

Similarity”) is also introduced. The segregation process is based on spectral clustering

methods, a technique originally proposed to model perceptual grouping tasks in the com-

puter vision field. One of the main advantages of this approach is the ability to incorporate

various perceptually-inspired grouping criteria into a single framework without requiring

multiple processing stages.

Experimental validation of the perceptual grouping cues show that the novel

harmonicity-based similarity cue presented in this dissertation compares favourably to

other state-of-the-art harmonicity cues, and that its combination with other grouping



cues, such as frequency and amplitude similarity, improves the overall separation perfor-

mance. In addition, experimental results for several Music Information Retrieval tasks,

including predominant melodic source segregation, main melody pitch estimation, voicing

detection and timbre identification in polyphonic music signals, are presented. The use of

segregated signals in these tasks allows to achieve final results that compare or outperform

typical and state-of-the-art audio content analysis systems, which traditionally represent

statistically the entire polyphonic sound mixture. Although a specific implementation of

the proposed framework is presented in this dissertation and made available as open source

software, the proposed approach is flexible enough to be able to utilize different analysis

front-ends and grouping criteria in a straightforward and efficient manner.

Keywords: Sound, Computational Auditory Scene Analysis, Audio Source Separation,

Music Information Retrieval, Sinusoidal Modeling, Spectral Clustering, Normalized Cut,

Predominant Melodic Source Separation, Main Melody Pitch Estimation, Timbre

Recognition.



Resumo

A música é composta por som, e em última instância resulta de uma interacção com-

plexa entre as propriedades sonoras de objectos f́ısicos (i.e. instrumentos musicais) e as

capacidades de percepção sonora do sistema auditivo humano.

Os seres humanos, mesmo indiv́ıduos sem qualquer tipo de formação musical, tipica-

mente demonstram uma capacidade de extrair, de forma quase inconsciente, uma relevante

quantidade de informação sobre um sinal sonoro musical. A percepção do ritmo de uma

peça musical, a melodia principal de um arranjo musical complexo, as fontes e eventos

sonoros que têm lugar numa mistura musical complexa, a estrutura de uma música (e.g.

introdução, refrão) ou o seu género (e.g. rock, jazz, clássica) são apenas alguns exemplos

do ńıvel de conhecimento que um ouvinte, mesmo que sem formação musical, é normal-

mente capaz de inferir ao simplesmente escutar um excerto musical. Para este efeito,

o sistema auditivo humano faz uso de uma variedade de pistas de natureza perceptiva

que conduzem ao agrupamento perceptual dos est́ımulos acústicos em eventos ou enti-

dades sonoras coerentes. Este agrupamento é em grande parte baseado em critérios de

similaridade, proximidade harmónica e espacial, entre outras.

Esta dissertação propõe uma plataforma computacional flex́ıvel e extenśıvel para a

análise de sinais e cenas sonoras complexas, permitindo uma modelização de alguns dos

processos de agrupamento perceptual do sistema auditivo humano envolvidos na percepção

de sinais musicais. O objectivo desta plataforma é permitir representar uma mistura

sonora monaural através de uma descrição perceptualmente relevante da cena sonora (ou

seja, semelhante à forma como um ouvinte sem treino musical a percepcionaria), ao invés

de tentar obter uma separação exacta das várias fontes sonoras que a constituem. Esta

abordagem assume que a percepção se baseia principalmente no uso de informação sen-

sorial de baixo ńıvel, não carecendo por isso de treino ou conhecimento prévio acerca dos

sinais sonoros em análise. Não obstante, a plataforma proposta é suficientemente flex́ıvel

e eficiente, permitindo o uso de conhecimento prévio e de informação de alto ńıvel no

processo de segregação.

O sistema proposto baseia-se num modelo de análise sinusoidal, a partir do qual as

componentes espectrais são segregadas em eventos sonoros através do uso de métricas

baseadas em pistas de natureza perceptiva, entre as quais uma nova métrica de similari-

dade harmónica (chamada de “Harmonically-Wrapped Peaks Similarity”). O processo de

segregação é baseado em métodos de agrupamento espectral (“spectral clustering”), uma



técnica originalmente proposta para modelar as tarefas de agrupamento na área da visão

por computador. Uma das principais vantagens desta abordagem é a possibilidade de in-

corporar e combinar vários critérios de agrupamento inspirados em prinćıpios perceptuais

numa única plataforma, sem a necessidade de múltiplas fases de processamento.

A validação experimental destes critérios de agrupamento com relevância perceptual

demonstram que a nova métrica de similaridade harmónica proposta neste trabalho se

compara favoravelmente a outras técnicas estado da arte, e que a sua combinação com

outros critérios de similaridade, tais como proximidade em frequência e amplitude, per-

mite melhorar de forma global os resultados de segregação de misturas sonoras musi-

cais. Adicionalmente, resultados experimentais obtidos para várias aplicações na área da

Recuperação de Informação Musical (“Music Information Retrieval”) – e.g. segregação

da linha melódica predominante, estimação da melodia principal, detecção de segmentos

vozeados e identificação e reconhecimento de instrumentos musicais em misturas musicais

polifónicas – demonstram que o uso de sinais segregados nestas tarefas permitem obter

resultados finais comparáveis ou melhores que os obtidos por outras abordagens estado

da arte para a análise de conteúdos áudio onde os sinais polifónicos são tradicionalmente

representados no seu todo de forma estat́ıstica. Apesar de esta dissertação apresentar

uma implementação em software que é disponibilizada como software open source, a abor-

dagem proposta é suficientemente flex́ıvel, permitindo incorporar de forma simples e efi-

ciente diferentes metodologias de análise, novas métricas bem como outras técnicas de

segregação de sinais sonoros complexos.

Palavras-chave: Som, Música, Análise Computacional de Cenas Auditivas, Separação de

Fontes Sonoras, Recuperação de Informação Musical, Modelos Sinusoidais, Agrupamento

Espectral, Cortes Normalizados, Separação da Linha Melódica Predominante, Estimação

da Melodia Principal, Reconhecimento de Timbre.



Résumé

La musique est faite de sons et résulte d’une interaction complexe entre les propriétés

sonores d’objets physiques (i.e. instruments musicaux) et les capacités perceptives du

système auditif humain.

Les êtres humains, avec ou sans formation musicale, sont capables d’extraire, de

manière presque inconsciente, une énorme quantité d’information pertinente à partir d’un

signal sonore. Des caractéristiques comme le rythme d’une pièce de musique, la mélodie

principale d’un arrangement musical complexe, la structure d’une chanson (e.g. cou-

plet, refrain, etc.) ainsi que le genre musical sont juste quelques exemples du niveau

d’information qu’un auditeur, même sans formation musicale, est normalement capable

d’extraire en écoutant simplement une pièce de musique. A cette fin, le système auditif

humain utilise une variété d’indices de regroupement perceptuel tels que, entre autres, des

critères de similarité et de proximité harmonique et spatiale.

Cette dissertation propose une plate-forme de programmation informatique adaptative

et extensible pour l’analyse computationnelle de signaux sonores complexes (“Computa-

tional Auditory Scene Analysis”), permettant une modélisation de processus de groupe-

ment perceptuels impliqués dans l’écoute musicale. Le but de cette plate-forme est

de représenter un mélange sonore d’un unique canal sous la forme d’une description

topologique de grande pertinence perceptive (c’est-à-dire similaire à celle d’un auditeur

sans formation musicale), ceci sans essayer d’obtenir une séparation des signaux des sources

physiques constituant ce mélange sonore. L’implémentation de cette plate-forme fait

l’hypothèse que la perception dépend en première instance d’informations sensorielles de

bas niveau, et ne requière donc aucune formation ni connaissance a priori des signaux

musicaux écoutés. Cependant, cette plate-forme est adaptative et permet, si besoin est,

l’inclusion de connaissance a priori et d’information de haut niveau.

Le système proposé se base sur un modèle d’analyse sinusöıdal, à partir duquel les

composantes spectrales sont attribuées à divers événements sonores à partir d’indices

de groupements perceptifs. Un nouvel indice de similarité harmonique est par ailleurs

présenté (appelé “Harmonically-Wrapped Peak Similarity”). Ce processus d’attribution

se base sur des méthodes de groupement spectral (“spectral clustering”) dont l’origine se

trouve dans la modélisation des tâches de groupement perceptif utilisée dans la recherche

en vision artificielle. Un des avantages principaux de cette approche est la possibilité



d’inclure divers critères de groupements d’inspiration perceptuelle dans une même plate-

forme, sans requérir une multiplication de phases de calcul successives.

La validation expérimentale des critères de groupement perceptif montre que le nouvel

indice de similarité harmonique proposé dans cette dissertation est meilleur que les critères

utilisés dans l’état de l’art actuel, et que sa combinaison avec d’autres indices, tels que

la similarité fréquentielle et d’amplitude, améliore les résultats globaux du processus de

représentation. De plus, les résultats expérimentaux pour diverses tâches de récupération

d’information musicale (“Music Information Retrieval”), telles que la séparation de source

mélodique principale, l’estimation de fréquence fondamentale de la mélodie principale, la

détection de parties voisées et l’identification de timbres dans les signaux polyphoniques,

sont présentés. Ces résultats sont comparables, voire meilleurs que ceux des systèmes

d’analyses du contenu audio de l’état de l’art qui, eux, n’utilisent traditionnellement

pas de représentation en événements sonores séparés. Cette dissertation présente une

implémentation “software” de cette plate-forme qui est disponible sous une licence libre.

L’approche suivie est adaptative, l’incorporation d’autres modules de software d’analyse

est ainsi facilitée.

Mots-clés: Son, Analyse computationnelle des scènes auditives, Séparation de sources

acoustiques, Récupération d’information musicale, Modélisation sinusoidale, Groupement

spectral, Coupe normalisée, Séparation de source mélodique principale, Estimation de

mélodie principale, Reconaissance de timbres.
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Reader Notes

This document is composed of six chapters. All chapters begin with a small introduction to

its contents. In the end, bibliographic references are listed. These references are identified

in the text using the authors names and year of publication within square brackets.

Not surprisingly, many acronyms are used throughout the text. To avoid cluttering

the text with definitions, a list of acronyms at the beginning of the document is provided,

allowing easy referencing.

A final note regarding the fonts used to typeset this document. The font used in body

text is Computer Modern Roman and the blocks containing program code and class or

module names use the Adobe Courier font. Chapter and section titles are in various

sizes of Adobe Helvetica-Narrow Bold.
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Chapter 1
Introduction

“The beautiful thing about learning is that no one can take it away from you.”

B.B. King

1.1 Context and Motivation

This dissertation is framed in the general field of Sound and Music Computing (SMC),

which focuses the analysis and understanding of sound and music, synthesis and processing

of sound, music generation modeling, music interfaces, performance modeling and control,

and sound interaction design [Serra et al., 2007].

Sound is the effect of the resonance of objects and materials in a medium (e.g. the

air) while music can be coarsely defined as an intended organisation of sounds for par-

ticular uses in social and cultural contexts. Indeed, music is an important aspect of all

human cultures, being the language of human emotions, of social bonding, of personal

development and intellectual enrichment.

Sound and music are therefore intrinsically connected by a communication chain cover-

ing all aspects of the relationship between sonic energy and meaningful information, both

from sound to sense (as in musical content extraction or perception), and from sense to

sound (as in music composition or sound synthesis).

Finding its roots in the biology of humans and being intimately attached to their own

daily existence, music took a central position in the current technological society. Over

the past 50 years, music and technology have established such a strong connection that

all stages of the economic chain, from production to distribution and consumption, are
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now digital. As a result, music is quickly starting to become a commodity as ubiquitous

as water or electricity, at least in all first world societies [Serra et al., 2007].

However, the real sound and sense for music is still identified with the extremes of

this chain, where musicians play and where listeners search for and enjoy music as active

consumers. All the rest is virtual, digitally encoded and difficult to access. It is therefore

necessary to somehow bridge this semantic gap (i.e. the separation that currently exists

between sound and sense), stimulating a constructive interaction between culture, science

and industry.

Indeed, and accordingly to a recent roadmap proposed for the field of

SMC [Serra et al., 2007], the next revolution is about the connection between sound and

sense, that is, the connection between physical energy encoded in technology and the hu-

man subjective experience. Hence, new technology is required to close this gap and change

the way people normally interact with music at the different levels of the digital chain.

From early research in audio processing and synthesis during the second half of the past

century, the challenge is now in moving to a position where areas such as Music Infor-

mation Retrieval (MIR) [Downie, 2003], Interactive Multimedia Systems and sound- and

music-aware environments are more relevant than ever. Innovative products are starting

to foster social interaction among people and new opportunities will be further developed

by offering new tools for expression and communication. This revolution will be leveraged

by the dynamic forces that drive music itself, which in turn will lead to the creation of new

cultural and business opportunities, from industrial to creative industries, from developers

to artists, from creators to consumers.

1.2 Thesis Statement

The main problem this work tries to address is the identification and segregation of sound

events in monaural (i.e. single-channel) “real-world” polyphonic music signals1. The

approach presented has been inspired by the current knowledge of how listeners perceive

sound events in music signals, be it music notes, chords, harmonic textures, melodic

contours, instruments (i.e. sound sources) or any other type of event.

Indeed, when taking at hands the challenge of constructing a machine listening system,

approaching the problem through engineering alone may not be the most suitable strategy.

The perception of music is by nature intrinsically related to the perception of sound and

1In this text, the term polyphonic music, sound or mixture refers to sounds or musical pieces where
several acoustic sources are simultaneously present.
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therefore the principles upon which the human auditory system are based should first be

understood [Scheirer, 2000, pp.14].

However, the objective is not, at least at this stage, to provide a complete music-

listening framework that models the high level processes involved on how music expert

listeners turn musical data into models of musical structure, or how cognitive music struc-

tures give rise to affective response or even how musicians turn intentions into music. Such

problems mainly fall into the realm of Music Psychology [McAdams and Bigand, 1993,

Deutsch, 1999], and are out of the scope of this work.

Instead, the work presented and discussed in this dissertation attempts to propose a

sound segregation framework and some of the building blocks involved in sound and music

perception, while already paving the way for the future inclusion of higher level processes

involved in the cognition of acoustic and musical events in audio signals.

1.2.1 Current State

Typical sound analysis and MIR systems represent statistically the entire polyphonic

or complex sound mixture (e.g. [Pachet and Cazaly, 2000, Tzanetakis and Cook, 2002]),

without any attempt to first identify the different sound entities or events that may coexist

in the signal. There is however some evidence that this approach has reached a “glass

ceiling” [Aucouturier and Pachet, 2004] in terms of analysis and retrieval performance.

One obvious direction for further progress is to attempt to individually characterize

the different sound events comprising the polyphonic mixture, and use this structured rep-

resentation to improve the extraction of perceptually relevant information from complex

audio and musical mixtures.

However, such sound segregation systems (including the one proposed in this thesis)

face some demanding challenges, making their performance still quite limited compared

to the human auditory system. Nevertheless, some of the current results already provide

alternative and improved approaches to common sound analysis and MIR applications.

1.2.2 The Main Challenges

Human listeners are able to perceive individual sound events in complex mixtures, even

if listening to a monaural music recording, which may even include unknown timbres or

musical instruments.

Some techniques for sound separation are based on recordings done with multi-

ple microphones, enabling the use of the spatial location of the source in the separa-

tion [Torkkola, 2000], often making the separation task easier. However, often only a

3



INTRODUCTION

single-channel recording is available, and even the common stereo (i.e. two-channel) for-

mat usually used for music distribution may not be sufficient for spatial location based

separation (except in some trivial cases).

The use of prior information about the sources or musical instruments in a recording

can also help to optimize the segregation algorithm by using training signals where each

instrument is present in isolation (e.g. [Burred and Sikora, 2007]). However, such systems

may lack the ability to analyse generic sound signals, where the assumptions about the

pre-trained sound sources do not hold.

As a result, this work takes the challenge to attempt sound event segregation in monau-

ral “real-world” music signals (although stereo information can be easily incorporated and

made useful to the segregation task), using an approach that is not necessarily based

on the use of source-specific prior knowledge (i.e. it is not trained for a specific sound

source or music instrument). Instead, the general properties of the sound and music sig-

nals, together with some of the known principles of human auditory system, are explored,

requiring a multidisciplinary approach to the problem.

1.3 Related Research Areas

Being an intrinsically multidisciplinary field, Sound and Music Computing (SMC) is a con-

temporary designation encompassing disciplines historically known as Audio Processing,

Music Technology, Computer Music, Computer Audition, among others, all committed to

developing new and more advanced musical tools. The SMC field is generally considered

to include all types of sounds and human communication processes except speech. Speech

research has its own aims and methodologies (although most of them are of valuable

importance for sound processing in general [Rabiner and Juang, 1993]) and is therefore

outside the scope of the SMC field [Serra et al., 2007].

Specifically, the work presented in this thesis falls under the very active field of research

known as Computational Auditory Scene Analysis (CASA) [Wang and Brown, 2006],

which is in turn part of the Sound and Music Description and Understanding SMC sub-

topics [Serra et al., 2007, Ch.4]. CASA focuses on the development of computational

approaches for the segregation of different sound producing objects in an acoustical scene,

based on the principles underlying the human perception of complex acoustic mixtures, a

discipline known as Auditory Scene Analysis (ASA) [Bregman, 1990].

Several areas of study relate to CASA. Audio and especially music signals are complex

data-intensive, time-varying signals with unique characteristics that elicit new challenges
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to these relevant research areas. Therefore, research in CASA provides a good way to test,

evaluate and create new algorithms and tools in all those research areas. The following

paragraphs provide short descriptions of these research areas and their connection to

CASA.

Digital Signal Processing [Oppenheim and Schafer, 1975] is related to the computer

manipulation of analog signals (commonly sounds or images) which have been converted to

digital form (i.e. sampled). The various techniques of Time-Frequency analysis developed

for processing audio signals in many cases originally developed for Speech Processing and

Recognition [Rabiner and Juang, 1993], are of special importance for this work.

Machine Learning is a broad subfield of artificial intelligence and is focused on the de-

sign and development of algorithms and techniques that allow computers to improve their

performance in inferring relevant information from data, based on previous results and

training by humans [Duda et al., 2000, Witten and Frank, 2005]. In the particular case

of the work presented in this thesis, machine learning techniques are used to implement

a computer system which is able to identify sound “objects” in a complex acoustic mix-

ture, taking into consideration grouping cues inspired in Auditory Scene Analysis (ASA)

principles [Bregman, 1990] (e.g. the Spectral Clustering technique, as will be described in

Chapter 3).

Computer Vision [Marr, 1982] is a term used to describe any algorithm and system

that extracts information from visual signals such as image and video. The visual and

acoustical perception in humans, although based on different mechanisms, often follow

similar principles, hence some of the techniques and ideas developed in the realm of one

discipline may prove useful and successful at the other (e.g. the Normalized Cut criterion,

proposed for the segmentation of images [Shi and Malik, 2000], and proposed in this work

for sound segregation – see Chapter 3).

Information Retrieval [van Rijsbergen, 1979] refers to techniques for searching and re-

trieving text documents based on user queries (e.g. web searches provided by Google2).

More recently, techniques for multimedia information retrieval such as content-based re-

trieval systems for sound and music [Gouyon et al., 2008] have started appearing and a

related field of research of specific interest to this thesis is Music Information Retrieval

(MIR) [Downie, 2003, Orio, 2006]. MIR has been rapidly evolving over the past few years

and it encompasses a wide variety of ideas, algorithms, tools, and systems that have been

proposed to handle the increasingly large and varied amounts of musical data available

digitally.

2http://www.google.com
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Finally, Perception research. The human perceptual system has unique character-

istics and abilities that should be taken into account to develop more effective com-

puter systems for analysing and processing sensory data. The work on Psychoacous-

tics [Stevens, 1957, Moore, 1989, Zwicker and Fastl, 1990] and Auditory Scene Analysis

(ASA) [Bregman, 1990, McAdams and Bigand, 1993] describe the relationship between

acoustic sound signals, the physiology of the human ear and the cognitive processes in-

volved in the perception of sound and music.

1.4 Applications

Sound mixtures present challenging problems for most audio applications where the anal-

ysis or the application of some processing only to a certain source within the mixture is

virtually impossible. This presents an opportunity for the development of sound source

separation solutions which first separate the mixture into its constituent sources, subse-

quently allowing their individual analysis and processing.

Additionally to the scientific challenge of creating a listening machine, where a model

of the auditory apparatus could be experimentally tested and evaluated, there are several

other fields of application for a CASA system. Some examples are enumerated in the

following list.

• Sound and music description. The analysis of sound mixtures is difficult and

one approach towards simplifying the problem is to use source separation as

a pre-processing step. For instance, estimating the fundamental frequencies

of concurrent sounds in a polyphonic mixture may be easier to tackle if us-

ing the separated monophonic signals coming from each instrument playing

(e.g. [Lagrange et al., 2008a, Klapuri, 2008]).

• Sound manipulation. Separation enables the efficient manipulation of mixed

sound signals. The removal or volume adjustment of the playing sources, the

changing of the source location in the stereo field or the upmixing of audio

recordings (e.g. [Lagrange et al., 2007b]) are just some examples.

• Robust automatic speech and speaker recognition. Although much progress

has been made in automatic speech and speaker recognition in recent years,

the performance of these systems still degrades quickly when in the presence of

acoustic interference or concurrent signals, the normal situation in real-world

scenarios. CASA presents some new approaches to this problem, in which
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speech is regarded as just one of the many sources in a complex sound mixture.

After segregation from interfering components, the separated speech signal can

then be further processed in an attempt to improved speech and speaker recog-

nition in environmental mixtures.

• Object-based audio coding. The current and more common audio coding meth-

ods encode a polyphonic signal as a single stream (e.g. MPEG1–Layer 3,

a.k.a. MP3). However, higher coding flexibility and efficiency could be

achieved if each separated element or sound “object” in the mixture could

be independently encoded with specific source codecs (e.g. [Tolonen, 2000,

Ferreira and Sinha, 2005, Vincent and Plumbley, 2005]. The MPEG-4 stan-

dard [Pereira and Ebrahimi, 2002] implements this approach as the “Structured

Audio” component [Scheirer, 1998], and the standard includes a format for cod-

ing object-based audio scenes.

• Automatic music transcription. Automatic music transcription attempts to

derive a musical score from an acoustical recording of a music piece

(e.g. [Klapuri, 2006, Bello, 2003, Martins and Ferreira, 2002, Marolt, 2004,

Klapuri and Davy, 2006, Paiva et al., 2006]). Given the specific challenges

elicited by polyphonic music signals (as discussed in section 2.3.2), CASA can

contribute with new and robust approaches to this problem by firstly segregat-

ing the playing instruments in a mixture before proceeding with their individual

transcriptions.

• Audio and music information retrieval. One of the current key research chal-

lenges in the SMC field is the efficient automatic annotation and subsequent

search of audio recording archives (private or on the Internet). Given the huge

amounts of audio content on those archives, and the fact that most recordings

contain mixtures of sound sources, the separation of the such mixtures is a

prerequisite for automatic content based analysis.

• Auditory scene reconstruction. Audio restoration is another field of application

for CASA, where unwanted sources in a sound mixture can be separated and

subsequently removed or enhanced (e.g. [Esquef et al., 2002]). This area has

recently started finding application in the cell-phone industry, where CASA

principles are being used to enhance speech intelligibility in noisy environments.

• Hearing prostheses. Hearing aids that only provide amplification are of little help
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on understanding speech in noisy environments since they equally amplify both

signals. CASA could provide a solution to speech segregation from noisy signals,

improving speech intelligibility.

1.5 Main Contributions

The main contributions of this thesis towards a sound segregation approach for music

signals are summarized below.

1. Proposal and experimental validation of a flexible and efficient framework for sound

segregation of “real-world” polyphonic music, inspired by ideas from Computational

Auditory Scene Analysis (CASA).

2. Definition of a novel harmonicity cue, termed Harmonically Wrapped Peak Similarity

(HWPS), experimentally shown as a good grouping criteria for sound segregation in

polyphonic music signals.

3. Development of the proposed sound segregation approach as open source software,

based on the MARSYAS framework3.

Publications Related to the Thesis

The research work presented in this thesis has resulted in the collaborative publications

listed below (sorted by relevance). The articles are available in PDF format at http:

//www.fe.up.pt/˜lgustavo.

1. Lagrange, M., Martins, L. G., Murdoch, J., and Tzanetakis, G. (2008).

Normalized cuts for predominant melodic source separation. IEEE Transac-

tions on Audio, Speech, and Language Processing, 16(2). Special Issue on

MIR. [Lagrange et al., 2008a]

2. Martins, L. G., Burred, J. J., Tzanetakis, G., and Lagrange, M. (2007). Polyphonic

instrument recognition using spectral clustering. In Proc. International Conference

on Music Information Retrieval (ISMIR), Vienna, Austria. [Martins et al., 2007]

3. Lagrange, M., Martins, L. G., and Tzanetakis, G. (2008). A computationally efficient

scheme for dominant harmonic source separation. In Proc. IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, Nevada,

USA. [Lagrange et al., 2008b]
3http://marsyas.sf.net
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4. Tzanetakis, G., Martins, L. G., Teixeira, L. F., Castillo, C., Jones, R., and

Lagrange, M. (2008). Interoperability and the marsyas 0.2 runtime. In

Proc. International Computer Music Conference (ICMC), Belfast, Northern Ire-

land. [Tzanetakis et al., 2008]

5. Lagrange, M., Martins, L. G., and Tzanetakis, G. (2007). Semi-automatic mono to

stereo up-mixing using sound source formation. In Proc. 112th Convention of the

Audio Engineering Society, Vienna, Austria. [Lagrange et al., 2007b]

1.6 Outline of the Dissertation

The remainder of the thesis is organized as follows.

Chapter 2 will start by focusing on the main aspects involved in Auditory Scene Anal-

ysis (ASA) and in music listening. A brief overview of the human auditory system will

be presented, followed by a discussion about the most important principles involved in

the perceptual organization of sound, with an emphasis on music signals. The remain-

ing of the chapter will present some of the proposed computational approaches to model

the auditory perception system, a field known as Computational Auditory Scene Analysis

(CASA). The base architecture of a typical CASA system will be presented, including

discussions about the requirements for mid-level representations for music signals, and

the different computational approaches traditionally taken when attempting sound segre-

gation. A general and preliminary introduction to the different evaluation methodologies

typically used for CASA systems will also be presented, and the chapter concludes with a

review of some of the most important and relevant work previously conducted in the field

of CASA and sound analysis and segregation in music signals.

In Chapter 3 a computational framework for the segregation of sound events in “real-

world” polyphonic music, inspired by ideas from CASA, will be proposed. Following an

overview of the framework, a description of the sinusoidal modeling used as the underlying

signal representation will be presented. The concept of texture windows is then introduced

as a way to perform a preliminary time segmentation of the music signals, either based

on fixed and manually specified texture window lengths or using the onsets detected from

the input signal to dynamically perform the segmentation. The grouping of sound events

is subsequently formulated as a graph partitioning problem, that is solved using a spec-

tral clustering approach, based on the Normalized Cut (Ncut) criterion. Afterwards, the

definition of the specific perceptual cues used as grouping criteria is discussed and a novel

harmonicity cue, termed Harmonically Wrapped Peak Similarity (HWPS), is introduced.
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The analysis of the aspects involved in the sound event resynthesis of the segregated signals

conclude the chapter.

Chapter 4 presents a set of evaluation experiments and application scenarios where

several aspects of the sound segregation framework proposed in Chapter 3 are tested and

validated experimentally. Preliminary evaluations of the proposed perceptual grouping

cues are conducted, with special emphasis on the novel HWPS cue introduced in the pre-

vious chapter. Experimental results are presented for typical MIR application scenarios,

such as predominant melodic source segregation, main melody pitch estimation, voicing

detection in polyphonic music signals and timbre identification in polyphonic music sig-

nals.

Chapter 5 will discuss some of the most relevant aspects of the software implementa-

tion of the sound segregation framework proposed in this thesis. The design requirements,

implementation strategies and the major contributions towards the development of an

open source software framework for sound segregation in music signals are put into per-

spective and ultimately justify the adoption of the MARSYAS4 framework as the base

software platform. The software implementation of the different processing algorithms

that comprise the method proposed in this thesis are detailed and the final command line

tool for sound segregation, peakClustering, is briefly described.

Chapter 6 closes the thesis with the final conclusions and suggests possible directions

for future research.

This thesis also includes four appendixes. Appendix A includes additional and detailed

information about the use of graph Laplacians in the context of spectral clustering, used

for the grouping of sound events as described in Chapter 3. Appendix B describes the

evaluation metrics used at the different experiments presented in Chapter 4. Appendix C

provides an overview of the most important aspects of the MARSYAS software framework,

used for the software implementation described in Chapter 5. Finally, Appendix D presents

a computationally efficient dominant harmonic source segregation approach based around

the novel HWPS cue, proposed in Chapter 3. Because it follows a different and more

specialized approach than the framework proposed in this thesis, the goal of this appendix

is to provide additional experimental evidence of the grouping abilities of the HWPS cues,

mainly when dealing with highly harmonic or pitched music signals.

4http://marsyas.sf.net
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Chapter 2
Music Listening

“My first relationship to any kind of musical situation is as a listener”

Pat Metheny

2.1 Introduction

Since the day they are born (and probably even before) humans start developing knowledge

about their surrounding world. This is achieved by means of sophisticated mechanisms

of perception and cognition which allow the acquisition of detailed information from the

encircling environment. Among the several forms of events perceived by humans, auditory

information contributes in a fundamental way to the development of knowledge.

One of the most remarkable achievements of human auditory perception is the ability

to focus the attention into a single sound event in the presence of complex sound mixtures

(consisting of numerous simultaneously sounding events). The capacity to detect a distant

and threatening sound in a forest, the ability of focusing on a single voice deeply mixed

with simultaneous conversations in a party, or the aptitude to follow the melody from

a single instrument in a performing orchestra are just some examples. These scenarios

constitute the classical “cocktail party effect”, an effect first described and termed by

Cherry in the early 1950’s [Cherry, 1953]. When asked how they can listen to only one

sound in a mixture, people typically reply that they try to just listen to that sound and

not to be distracted by any others. This answer suggests that a number of separate sounds

have already been unconsciously distinguished in the mixture and that the challenge is now

just in deliberately focusing on one of them. Considering that the pressure waves radiated
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into the air by each one of the sound-producing events in the environment end up summed

together on the listener’s ear drums, this becomes a strong evidence that the cognitive

nature of the processes involved in auditory perception goes beyond the elementary phases

of processing. They must also include some sort of higher-level processes taking place in

the brain (and therefore not directly accessible) that allow to create individual descriptions

based on only those components of the sound that result from the same environmental

event.

In fact, human listening comprises many layers of information analysis and processing.

From the transduction of low-level auditory stimuli in the ears to their organization in

the brain, higher-level factors such as memory, experience, and context information take

an important role in the auditory process. Listening in general is influenced by a large

number of variables interacting, cooperating and competing with each other in a rather

complex network.

In the context of this thesis, the following sections will skim the surface of some of

the underlying principles involved in the human auditory perception mechanisms, with

a special focus on music listening. These principles form the basis for the development

of computational models of audition and music perception, and the later sections of this

chapter will present an introductory discussion on some of the main challenges and ap-

proaches proposed in this area of work.

2.2 The Human Auditory System

Insight into the processes underlying the perceptual mechanics involved in human audition

has come from several years of psychophysical research. The first stages of auditory

processing are of upmost importance since they are the ones responsible for feeding the

higher level perceptual processes with information about the acoustic stimulus coming

from the surrounding world. It is therefore important to understand the structure and

function of the very first stages of auditory processing. This section will present a brief

review of the human auditory system, but the interested reader my find more detailed

descriptions and discussions in the standard literature on this topic (e.g. [Moore, 1989,

Beranek, 1990, Moore, 1995, Yost, 2001]).

The peripheral region of the human auditory system is responsible for converting sound

vibrations into neural information which is conveyed to higher levels of the auditory system

located in the brain. Besides this transduction function (mechanical energy in the air

molecules into action potentials in the auditory nerve), the peripheral region also performs

12



THE HUMAN AUDITORY SYSTEM

Figure 1: A sketch of the peripheral region of the human auditory system (adapted
from [Beranek, 1990]).

a pre-processing of the acoustical signal, the most notable aspect being frequency analysis.

The structure of the peripheral region is represented in Figure 1. Broadly, the periphery

can be divided into three areas: the outer, the middle and the inner ear. The outer ear

(pinna) collects sound energy from the surrounding environment and transmits it through

the ear canal (meatus) to the eardrum (tympanic membrane), giving rise to an oscillatory

motion. The pinnae play a role in spatial hearing, by imposing spectral characteristics on

sound that depend on its direction of incidence with respect to the head. In the middle

hear, the vibrations in the eardrum are transmitted to the fluid-filled cochlea by means

of three tiny bones (the ossicles: the malleus, the incus and the stapes). They form a

mechanical lever system whose main purpose is to match the impedance of air to that of

the cochlear fluids and to protect the ear against aggressive sound intensities by modifying

the transmission gain. The middle ear is filled with air whose pressure is equalized with

that of the outside environment through the Eustachian tube. The inner ear corresponds

to the cochlea, the organ of hearing. It is a tube shaped like a snail shell, filled with fluid,

that is divided along its length by two membranes: Reissner’s membrane and the basilar

membrane. The basilar membrane varies in mass and stiffness along its length so that

different regions of the membrane vibrate at different resonant frequencies. As a result,

the basilar membrane exhibits a complex pattern of motion in response to sound-induced
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movement of the cochlear fluids. In particular, the response of the basilar membrane to

a sinusoidal stimulus is a traveling wave that moves along the length of the cochlea. The

travelling wave oscillates at the frequency of the stimulus and reaches its peak amplitude

at the location where the stimulus frequency matches the resonant frequency of the basilar

membrane. High frequencies resonate near the oval window, while low frequencies cause

the membrane to resonate near the cochlea apex (helicotrema). As a result, the basilar

membrane can be seen as a wide-band filter which is able to decompose a complex sound

into a number of frequency components. However, this peripheral frequency decomposition

is only partial and sharper frequency analysis is performed at higher levels of the human

auditory system.

In fact, although all these are interesting aspects providing valuable insight into some

of the properties of the human auditory system, they only refer to a pre-processing stage.

The most important processing functions, such as sound segregation or spatial perception,

take place at higher centers of the human auditory system, as discussed in the next section.

2.3 Scene Analysis in Audition

The first and more traditional psychophysical approaches to auditory perception at-

tempted to relate input (i.e. acoustic stimulus) to the output (i.e. auditory sensation),

deriving simplified models of the auditory system, without getting concerned with the

immense detail and entangled complexity of the physiological and psychological aspects

of the auditory system. They were mostly concerned with questions such as the smallest

sound manifestation the auditory system is able to sense, how far apart do frequencies

of two pure tones have to be in order to be distinguished when played sequentially or

simultaneously [Patterson and Moore, 1986], or how does the perceived loudness of a tone

grow as its physical intensity is increased [Fletcher, 1940, Stevens, 1957, Moore, 1989].

However, most of these phenomena happen at the early stages of the human auditory

system (as discussed in section 2.2) and fail to fully explain the more intricate cognitive

aspects of audition, mainly when in face of complex mixtures of sounds.

Bregman, who had been studying phenomena of perceptual organization in hearing

for several decades, realized in late 1960’s that, despite great success in characterizing

low-level detection and discrimination abilities, the sound domain had no work equiva-

lent to the ecological (i.e. environmentally-relevant) problems that were being studied in
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the field of vision [Gibson, 1979]. Researchers in the computer vision field, while study-

ing the theoretical principles and working on basic experimental data from vision re-

search [Marr, 1982, Pinker, 1984, Humphreys and Bruce, 1989], defined the term “Scene

Analysis”. Their challenge was to understand how humans analyse images or scenes of

varying complexity, and how the visible properties of existing elements (e.g. edges, sur-

faces, textures, colours, distances) were grouped together, enabling the viewer to determine

the correct global shape and properties of the pictured objects. Influenced by this work,

Bregman was the first to systematically explain the principles underlying the perception

of complex acoustic mixtures, whereby all the auditory evidence coming over time from a

single environmental source is put together as a perceptual unit. He coined this process

Auditory Scene Analysis (ASA) [Bregman, 1990].

This cognitive approach to perception implies that the information contained in the

stimuli that reach the sensory organs must be interpreted at some higher level processes,

since by itself, sensory information is not always sufficient to form a consistent image of

the surrounding sound environment [Bregman, 1990, McAdams and Bigand, 1993]. One

of the reasons for this is the temporal nature of sound, where sound events succeed one an-

other in time (a typical example would be music sounds). The perception of the structure

of these events requires the construction of a mental representation where the relations

among events (which may be separated in time by arbitrarily long intervals) can be es-

tablished. Furthermore, at the presence of insufficient sensory information, the perceptual

system tries to take into consideration knowledge that it has previously acquired of the

surrounding sound world. This prior knowledge interacts with the current sensory data

to interpret the auditory stimulation.

McAdams and Bigand [McAdams and Bigand, 1993] propose a summarized and

schematic representation of this process, where the most important types of auditory

processing blocks and their corresponding interactions are depicted, as in Figure 2.

Sound vibrations are received by the inner ear where they are analyzed and transduced

into nerve impulses that are sent through the auditory nerve to the brain (as described in

section 2.2).

The fusion and segregation of concurrent sound elements into sound events, as well as

the temporal integration and segregation of successive sound events into auditory streams,

are undertaken by auditory grouping processes taking place in the brain. As will be

discussed later in section 2.3.1, this process is based on a number of auditory cues taken by

the auditory system from the received acoustic stimulus, and known as primitive grouping.

From the resulting grouped sound events and inferred auditory streams, it is then
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Figure 2: The main types of auditory processing and their interactions (adapted
from [McAdams and Bigand, 1993]).

possible to extract perceptual attributes which provide a representation of each element in

the auditory system.

These attributes can now be interpreted with respect to evoked abstracted knowledge

structures that allow the recognition and identification of events and sequences of events,

as well as the assignment of meaning and significance. All this is performed at the light

of the local stimulus context and the past experience of the listener (see the discussion of

schema-based grouping in section 2.3.1).

These perceived relations among sound events can influence the perception of sub-

sequent events (and even revise past interpretations – e.g. the McAdams-Reynolds

oboe example [McAdams, 1984] or the “old-plus-new” organization principle described

in [Bregman, 1990, pp.261]). This event structure processing influences the establishment

of larger-scale structural relations.

The resulting elements from the event structure processing give rise to the progressive

creation of a mental representation of the sound environment involving the listener. Given

the transitory nature of the acoustic stimulus, information about acoustic events must

be somehow accumulated through time. This accumulated mental representation takes

a crucial part on the ability to dynamically focus attention to new incoming acoustic
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information and to process it taking into consideration the previous experience, allowing

the listener to establish larger-scale relations between the sound events perceived along

time. This is clearly visible when listening to music, where the listener may be following

the various lines of musical development in a song, creating a mental representation of the

musical piece since its beginning. This allows the listener to realize that the music may be

at some point moving towards a recapitulation of the main theme (e.g. the chorus section

of a pop song) or to the closing of the musical piece.

The interconnection between the event structure processing, abstract knowledge struc-

tures and the mental representation structures allows the listener to create expectations

and to anticipate forthcoming events, setting up the listener’s attention to events of a

particular kind at some specific times. Furthermore, these attentional processes may still

influence the activity at low-level organizational processes, even at the level of sensory

transduction.

2.3.1 Perceptual Organization of Sound

Although the early stages of the human auditory system are an important part of the

human ability to solve the ASA problem from eardrum vibrations, relatively little is known

at the physiological level about how higher order mechanisms participate in the perception

processes. It is intrinsically difficult to measure something as abstract and unobservable

as the internal perception of sounds that belong together.

Taking on the results from carefully prepared perceptual experiments using simple

stimuli (e.g. [Bregman and Ahad, 1996]), Bregman brought some light to these questions

and proposed an attractive conceptual framework for ASA where he assumes an important

distinction between the actual acoustic sources in a mixture and the corresponding mental

representations [Bregman, 1990].

Shepard has argued that because evolution took place in a world containing a lot of

examples of regularities, it is likely that the perception systems of animals evolved to

take advantage of them [Shepard, 1981]. He called the match of the perceptual abilities

developed by animals to the regularities exhibited in their physical environment as “psy-

chophysical complementarity”. Given so, and if taking Shepard’s hypothesis as right, a

good strategy for deriving the laws of auditory organization would be to try to understand

the relations among the components frequently present in the mixtures of incoming sounds

created by different environmental events.

Based on this assumption, and after several experiments, several au-

thors [Bregman, 1990, McAdams and Bigand, 1993, von Noorden, 1975, Hartmaan, 1988,
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Darwin, 1997, Moore, 1989, Bey and McAdams, 2002, Yost, 1997] have proposed a

number of auditory cues and principles exploited by the auditory system when performing

ASA, divided by Bregman into a a two-stage organization process, namely simultaneous

grouping and sequential grouping.

Additionally, Bregman also proposed a distinction between two other related processes

occurring in the human listener, although probably at a different level. They are known

as primitive grouping and schema-based grouping. The following sections will discuss in

detail each one of them.

Simultaneous versus Sequential Grouping

Bregman suggested the division of the ASA problem as a two-stage organization process.

In the first stage, called simultaneous grouping, acoustic energy occurring concurrently in

different frequency regions are fused into a single percept, which takes place in a specific

time-frequency region known as a segment. Fusion of harmonically related sinusoid

components (in the Fourier sense) into a single “rich” tone is a good example of this

process. This grouping principle is usually based on auditory cues as the ones summarized

next.

Simultaneous Grouping Cues

• Harmonicity. When a body vibrates with a periodic movement, its vibrations cre-

ate an acoustic pattern whose frequency components are multiples of a common

fundamental (i.e. harmonics of a fundamental frequency). Interestingly, the au-

ditory system tends to group a set of harmonically related acoustic components

into a single event.

• Common onset and offset. Sound components with the same onset time and, to

a lesser extent, the same offset time tend to be grouped into the same unit by

the auditory system. Since unrelated sounds seldom start or stop at exactly

the same time, the auditory system assumes that components exhibiting a

“common fate” are likely to have origin in a common single source.

• Common modulation. Another example of the sensibility of the auditory system

to “common fate” is the segregation of components of a mixture exhibiting a

common amplitude or frequency modulation. If a sound source exhibits ampli-

tude or frequency modulation, it is expected that all of its components exhibit

similar modulation manifestations.
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• Spatial proximity. One of the best generalizations that can be made about inde-

pendent sound sources is that they normally occupy distinct positions in space.

As a consequence, sound source location could provide the strongest cue in the

construction of an ecological representation of the surrounding sound environ-

ment1. However, spatial location of sound sources is, accordingly to some au-

thors, taken as an auxiliary cue by the human auditory system [Bregman, 1990].

In fact, humans can still segregate sound mixtures when listening to monaural

acoustic signals (i.e. no spatial information is included for the different sources

comprising the mixture). Bregman suggests that due to the effects of reverber-

ation and to the transparency of sound, localization cues become comparatively

unreliable [Bregman, 1990, pp.83]). On the other hand, Huron does not find

these arguments compelling and suggests that “the relative unimportance of

localization in stream formation suggests that the ecological account may be

incomplete” [Huron, 1991].

In the second stage, known as sequential grouping, the series of segments from the first

stage are built up into one or more streams. Each stream is a sequence of events assumed

as coming from a single source (e.g. a human listener can easily assign the notes of two

melody lines played concurrently by two different instruments to the correct source). The

following list presents some of the auditory cues possibly involved in sequential grouping.

Sequential Grouping Cues

• Time and frequency proximity. Acoustic components close in frequency tend to

be interpreted by the auditory system as coming from the same sound source.

Additionally, components close in time tend to be perceptually grouped into a

same stream. Consequently, the closer in time and frequency components are,

the stronger the tendency of being grouped into a same auditory stream.

• Loudness proximity. Sources with different energy levels consist of acoustic com-

ponents with correspondingly distinct sound intensities. The auditory organiza-

tion of physical stimuli also resorts to loudness similarity to group components

into the same acoustic event.

1Following the argument presented by Gibson when proposing an ecological approach to visual per-
ception [Gibson, 1979], an ecological view of sound states that it is only possible to fully explain some
auditory behaviour if taking into account the environment in which that behaviour took place.
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• Timbral similarity. Sound elements that sound alike (i.e. have similar spectral

properties or similar timbres) tend to be grouped into the same auditory

stream [Bregman, 1990, pp.19; 92-127]. This similarity grouping is increased

by the temporal closeness of similar auditory components.

• Smoothness of change. A single sound tends to change its properties smoothly

over time. Consequently, a sequence of sounds from a same source also tends

to change its properties gradually over time. The auditory system favors the

sequential grouping of sound components whose properties are stable. Abrupt

discontinuities are perceived as new and unrelated events, probably with origin

in a distinct source. Smooth changes in pitch contour, intensity, spatial location

and spectral characteristics of a sound are usually interpreted as a continuation

of an existing sound.

• Periodicity. A sequence of rhythmically related tones, separated in time, tends

to be integrated into a same stream. This usually happens after a listener is

exposed for some time to periodic repetitions of sound events, which allow the

auditory system to establish a rhythmic relation between the individual sounds,

forming an auditory stream.

Primitive versus Schema-based Grouping

Listening resorts to aspects dealing with prior knowledge, learning, memory and con-

text, which govern attention, creation of expectations and the resolution of ambiguous

situations. Termed as Schema-based grouping by Bregman [Bregman, 1990, pp.38], this

top-down process is founded upon the activation of learned patterns (i.e. schemas), ei-

ther as a purely automatic process (e.g. when one thinks to hear someone calling his/her

name in a busy coffee shop) or as a voluntary action (e.g. when one is paying attention

to the calling of his/her name while someone is announcing a list of names). In either

case, automatic and voluntary recognition assume that knowledge about the structure of

particular sounds or classes of sounds (which for some reason were considered relevant to

the listener) have been acquired during previous exposures.

However, if this was the only process available for the human auditory system to decom-

pose sound mixtures, it would make learning new schemas for unfamiliar but important

sounds difficult, unless they had frequently occurred in isolation in the past. Conse-

quently, some other mechanism must exist that can explain how the auditory system is

capable of partitioning an incoming mixture composed of unknown sounds into separate
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and corresponding acoustic events (e.g. someone listening to electronic music, where orig-

inal synthesized sounds are used instead of more familiar timbres from traditional musical

instruments).

In fact, there is a more general mechanism, known as primitive grouping, which instead

of depending on acquired knowledge, is based on the intrinsic structure of environmental

sounds and is regarded as an innate ability of the human auditory system. Governed

by mechanisms similar to those proposed by Gestalt psychologists in relation to visual

perception [Palmer, 1999], the auditory system mainly employs a bottom-up strategy that

exploits general acoustic regularities in an incoming signal, known as auditory cues (as

described previously in this section). These cues are based upon certain relations between

the acoustic properties of a sound, being the result of general properties of sound-producing

events, and consequently not specific to any particular class of sound (e.g. voices, music,

noises).

Although all these organizational principles have in large part been derived from the

results on the use of simple and experimental acoustic stimuli based mainly on pure sine-

tones or gated white noise, they still prove useful and applicable to the analysis of real-

world complex sounds [McAdams and Bigand, 1993, Wang and Brown, 2006]. It is also

important to note that none of these cues by themselves would guarantee a successful sound

segregation from a complex mixture. The auditory system seems to dynamically adapt

the priority or attention given to each type of cue depending on the specific characteristics

of the signal arriving at the ears at each instant and the current mental representation of

the physical surrounding world.

On the other hand, situations exist where the extracted cues may conflict

with the correct perception of the actual surrounding world. Auditory illu-

sions [Warren and Warren, 1970] occur when the inference realized on the basis of the

available cues is incorrect and results in the perception of an unreal sound object. Music

is a specially fascinating and illusion rich domain [Deutsch, 1975] where composers have

been exploiting for centuries these perceptual characteristics in an attempt to create se-

ductive sound figures that trick the sound perception mechanisms. Baroque composers

provide remarkable examples of auditory illusions in music, where for example the lis-

tener has the clear impression of hearing two violins playing in different pitch registers,

but where in reality there is just one violinist rapidly alternating notes between registers

(termed as “virtual polyphony” in [Bregman, 1990, pp.464]).
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2.3.2 The Specific Case of Music Perception

Music is built from sound [Bregman, 1990, pp.455], arising in all its known instantiations

around the world as an elaborate interaction between the sound-generating properties of

physical objects (i.e. music instruments) and the sound perception abilities of the human

auditory system. The auditory capabilities humans possess and employ for survival while

in their environmental world are exactly the same they use when creating, listening and en-

joying music – “the same ears, the same cochleae, the same auditory brain” [Scheirer, 2000,

pp.14]. Through a complex socio-cultural evolution, music has been used by humans to

create special kinds of sounds that tickle the auditory apparatus in enjoyable and intrigu-

ing ways. Consequently some authors defend that much of the process of listening to and

understanding music follows very closely the very same basic principles of ASA, as pre-

sented in the previous section [Bregman, 1990, pp.455]. This statement is mostly based

on the fact that humans, even without any kind of musical background, are typically able

to extract, almost unconsciously, a great amount of relevant information from a musical

signal. Features such as the beat of a musical piece, the main melody of a complex musical

arrangement, the sound sources present in a complex musical mixture, the song structure

(e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the

level of knowledge that a naive listener is commonly able to extract just from listening to

a musical piece.

One of the main interests of this area for the cognitive sciences is that music is ubiq-

uitous in the cultures of the world. Musical systems have attained a degree of structural

(i.e. grammatical) complexity comparable to that of language, and similarly to it, humans

become sensitive to the musical conventions of their culture without formal training at

very early age [Handel, 1989, pp.381].

Naive and Trained Music Listeners

Although there has been a growing interest in the perception of complex auditory patterns,

the origins of musical competence remain an open question [Trehub and Trainor, 1993,

Bigand and Poulin-Charronnat, 2006]. The question is on when and how do humans de-

velop the ability of understanding, appreciating and participating in musical activity.

As discussed by Trehub and Trainor [Trehub and Trainor, 1993, pp.278], one hypoth-

esis would be to accept that music perception is almost entirely learned, consequently

founded in schema-based integration processes (as discussed in section 2.3.1) necessary

for acquiring musical knowledge – i.e. without such prior musical knowledge, no music
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listening or perception would be possible. Another approach is to assume that basic music

perception abilities could be innate and given in their entirety by nature (i.e. based on

primitive grouping processes, as discussed in section 2.3.1), in which case the perception

of auditory musical events would be uniform across individuals.

However, a more consensual hypothesis falls somewhere between these two extremes:

innate perceptual processes could be considered to set the stage for perceiving com-

plex patterns such as musical sequences, above which, learning processes would take

place [Handel, 1989, Krumhansl, 1992, Jones, 1990].

In fact, it may not be reasonable to assume that the music processing strategies of

musically untrained adults are due entirely to musical exposure, with no carry-over of

primitive processing strategies from early life. Handel argues that innate abilities supply

the basic perceptual structures which are then fine-tuned to the cultural context and

conventions of a particular musical system [Handel, 1989]. On the other hand, composers,

in creating music, intuitively capitalize on universal principles of auditory perception.

Rather than a result of ages of conformation to the task of listening to music by means

of evolution, the auditory system is instead on the genesis of the way music exists and

evolves alongside humans.

Bigand and Poulin-Charronnat recently conducted a series of experiments where they

tried to identify which musical abilities in human listeners do not depend on formal music

training [Bigand and Poulin-Charronnat, 2006]. Surprisingly, and not without some con-

troversy, they concluded that listeners without any musical training (called naive listeners

from now on) but with sufficient exposure to music use the same principles as musically

trained listeners when listening to music and structuring what they hear (even if in a more

limited way), suggesting that an intensive musical training is not required to respond to

music in a sophisticated way. In fact, they found that musically untrained listeners per-

ceive musical tensions and relaxations in both melodies and harmonic sequences similarly

to musicians, and show identical ability to anticipate musical events. They also concluded

that both groups encountered the same type of difficulty to integrate local structures in

large-scale structures, even though musicians performed usually better with explicit tasks.

Musically untrained listeners showed equivalent performance when required to learn new

compositional systems and both groups responded very consistently to music in an emo-

tional (i.e. affective) way. Overall, both naive and musically trained individuals have

shown to perform similarly in cognitive and emotional tasks. According to these authors,

“there seems to be an initial predisposition of the human brain for music processing that

is triggered by the extensive exposition to musical stimuli in everyday life. Thanks to
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both factors (predisposition and intensive exposure), non-musicians become “experienced

listeners” that do not strongly differ from musically trained listeners in numerous

experimental tasks”.

Despite this conclusion, the authors make clear that this claim does not imply that no

differences exist between both groups of individuals. Their findings indicate instead that

any formal and intensive musical training advantages in musical competence remain small

in light of the huge difference in training exhibited by the two groups of listeners.

At the light of the previous discussion, and as also suggested by Terhardt, it would not

be therefore surprising for some of the most basic music perception abilities to be already

operative in infancy [Terhardt, 1987]. As a matter of fact, at the outset of a number

of experiments conducted by Trehub and Trainor [Trehub and Trainor, 1993], primitive

perceptual grouping processes used for music listening (such as the ones described by

Bregman [Bregman, 1990, Bregman, 1993], Bigand [Bigand, 1993] and others, and par-

tially presented in section 2.3.1) seem indeed to be already operative in infancy.

This implicit music learning hypothesis goes into opposition to the more accepted

approach that stipulates that musical abilities are mostly determined by an intensive and

formal musical training, remaining rather crude in untrained listeners (see [Levinson, 1997]

for a debate). While it may still be true that when compared to naive listeners musically

trained listeners are believed to be in a better position for successfully resolving some of the

most intricate ambiguities frequently found in polyphonic music signals (e.g. recognizing

or identifying the real sources or musical instruments playing in a mixture, identifying the

name and individual notes of a chord, or transcribing by ear the musical score of a music

performance), it is also accepted that naive listeners are in fact able to extract a great deal

of musical information from an audio signal (e.g. although not able to identify by name a

chord or to recognize that such a sound consists of separate notes playing simultaneously

(they tend to perceive it as a combined whole sound – a tone color), naive listeners are

nevertheless able to feel the harmony and chord changes).

Physical and Perceptual Sounds in Music

One could discuss why humans are intrinsically able to segregate or identify sound “ob-

jects” or sound events in complex audio mixtures, but not necessarily the actual sound

sources. In fact, there is not an unique definition to what a sound source is. One pos-

sibility is to consider each vibrating physical entity (e.g. each musical instrument) as a

sound source. Alternatively, a sound source could be defined accordingly to the human
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perception of a single and coherent auditory unit. Kashino, in [Klapuri and Davy, 2006,

pp.302-303], refers to these two alternatives as physical sound and perceptual sound. As

an example, a chord formed by the combination of simultaneously sounding notes from

distinct musical instruments, may be perceptually interpreted as a single coherent audi-

tory object, becoming hard to identify the individual instruments playing (at least by a

naive listener).

Music composers frequently explore the combination of the sounds produced indepen-

dently by different musical instruments into intricate harmonies and new and complex

sound textures. Their intent is to often “fuse” sounds stemming from different origins

into one unified but distinct perceptual element, fooling the ear into hearing a single and

new “virtual” instrument timbre instead of the set of familiar musical instruments that

compose the mixture. Accordingly, tonally fused sounds seem to play an important role in

music perception [Scheirer, 2000, pp.30]. Bregman referred to these perceptual constructs

that result from the tonal fusion of individual sound elements as chimera [Bregman, 1990,

pp.459].

On the other hand, the chimeric nature of the sounds that emerge from the fusion

of different simultaneously sounding notes raises the argument of whether or not musical

notes, a central and atomic element in several music cultures, correspond to perceptual

units. As discussed in the previous sections, humans extract auditory cues that generate

percepts of the acoustical elements in a sound. And while in several circumstances such

percepts are closely related to musical notes, other cases exist where such a correlation

is not easy to establish (even for trained listeners). Scheirer argues that “most stages

of music perception have nothing to do with notes for most listeners” [Scheirer, 2000,

pp.69]. Furthermore, he states that “the acoustic signal must always be considered the

fundamental basis of music perception”, since “[it] is a much better starting point than a

notation invented to serve an entirely different mode of thought” [Scheirer, 2000, pp.68].

Consequently, music is in most senses more challenging to segregate than speech or

other environmental sounds, where music orchestration and composition intentionally

bound together multiple, distinct, and simultaneous sounds, turning them into a sin-

gle, perceptually indivisible auditory object. Huron defined music listening as “a type of

scene analysis problem, with the exception that the auditory scenes are populated by a cast

of mostly fictional sources” [Huron, 1991]. As briefly discussed in the previous section,

only trained listeners are usually able to identify with some degree of success the physical

sources involved in a complex polyphonic musical piece. In such situations, the informa-

tion available at the level of the sensory organs may be too ambiguous or even insufficient

25



MUSIC LISTENING

to give rise to a correct or unique perception of the current situation. The identification

of the sources of sound becomes highly dependent on pior knowledge and can be different

according to the kinds of information available to the listener. In such circumstances, a

naive listener or an expert musician would probably arrive at different interpretations of

the same musical sound since they do not share the same auditory knowledge base.

2.4 Computational Auditory Scene Analysis (CASA)

Bregman’s work, although being a careful report of empirically-observed psychoacous-

tic phenomena, proposed a plausible and almost formal specification of rules by which

acoustic stimuli could be converted into independent percepts [Bregman, 1990]. His work

provided a suitable foundation for most of the proposed computational attempts to model

the auditory perception system, including the one presented in this thesis. It paved the

way to a new field of study, known today as Computational Auditory Scene Analysis

(CASA) [Rosenthal and Okuno, 1998, Wang and Brown, 2006] and defined by Wang and

Brown as

“[CASA is] the field of computational study that aims to achieve human per-

formance in ASA by using one or two microphone recordings of the acoustic

scene” [Wang and Brown, 2006, pp.11].

Accordingly, in a CASA system the goal of the sound processing is to extract multiple

sounds from a mixture. The output sounds can be subsequently analyzed independently to

compute their features so that they can be subsequently interpreted, classified or processed.

Given its perceptual motivation, the output sounds of a CASA system should be similar

in some perceptually important way to the sound events or “objects” that constitute

the mixture. For instance, while state of the art automatic speech recognition (ASR)

systems perform well on clean speech, their performance rapidly decreases in the presence

of interfering sounds. An appealing idea to minimize such a degradation would be to

first “clean up” the speech signal from all the background interference and then feed the

separated signal into the same ASR system.

One way to approach the development of such a machine listening system is to follow

a pure computational model, where systems are viewed as “black-boxes”. These systems

are pragmatically goal-oriented, where the devised algorithms become less important than

the outcome. Consequently, in such an approach, the main concern is focused on the

development of a working system and not so much on modelling the human perception
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mechanisms. Although this strategy may pose some limitations to the ability to fully

explain the human auditory processes, it may still provide meaningful auditory information

by means of a reverse engineering exercise. A possible advantage of this approach is that

for some specific and constrained conditions it can be possible to attain performances that

surpass the ones delivered by the human auditory system.

On the other hand, a more psychologically and perceptually motivated approach would

allow putting emphasis on the detailed study and close modelling of the way humans hear,

perceive and understand sound and music, following a “clear-box” line of reasoning. This

allows the development of more or less sophisticated psychoacoustic models of the human

auditory system which may allow explaining some of the auditory phenomena otherwise

difficult to justify. Ultimately, this methodology could allow a better theoretical insight

into the human hearing abilities and consequently could pave the way to the development

of better artificial hearing systems, since no other system has proved to outperform human

listening abilities so far. However, several aspects of the auditory perception, deeply buried

in the brain, are still just superficially understood, making them very difficult to model

and simulate. Additionally, computer models of the human auditory system tend to be

computationally intensive.

Wang and Brown’s definition of CASA does not imply that the human auditory sys-

tem must be imperatively and rigorously modeled in a computer listening system. In

fact, a lot could be gained by exploiting both “black-box” analysis algorithms and the

knowledge about the mechanisms involved in the human auditory perception – a so-called

“gray-box” approach. Consequently, and differently from some other approaches to sound

separation that are based on more mathematical or statistically oriented techniques (e.g.

Independent Component Analysis (ICA) [Abdallah, 2002] and Non-negative Matrix Fac-

torization (NMF) [Vembu and Baumann, 2005]), most of the solutions proposed in the

area of CASA, including the one proposed in this thesis, follow to some extent the known

principles of the inner workings of the human auditory system.

However, and as argued by Ellis in his PhD thesis, the impression that there are a

set of rules waiting to be translated into computer code may be deceiving [Ellis, 1996,

pp.18]. The experimental principles coming from the use of simple and highly constrained

psychoacoustic stimuli such as sine-tones and gated white noise may in some cases map

poorly to the messier domain of real word sounds and mixtures. Therefore, although such

principles aid in the construction of more perceptually aware sound listening machines,

they provide no guarantee to the successful handling of real world signals the way humans

do.
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2.4.1 Computational Models for Music Scene Analysis

Looking at the specificities of music signals and their perception by human listeners when

compared to generic environmental sounds (see Section 2.3.2) created a particular interest

in the development of computational models for music scene description. Accordingly, the

goal of Computational Music Scene Analysis (CMSA) is to develop computer systems that

are able to describe and understand musical audio signals similarly to the way humans do

(or at least musically untrained humans, i.e. naive listeners – see section 2.3.2) [Goto, 2006,

pp.252]. Even if the primary research approaches to CMSA are based on signal processing

techniques, it is valuable to take on the knowledge about the human auditory processes

and their music listening abilities , as well as all the CASA contributions (discussed in the

previous section).

Similarly to CASA, the brain mechanisms underlying the human ability to interpret

music are not yet fully understood, making those high-level cognitive processes the most

difficult to model and simulate in a computer system. Furthermore, the difficulty of

estimating music scene descriptions is highly dependent on the various specific proper-

ties of musical signals, which in most senses are even more challenging to analyse than

non-musical sounds. Differently from non-musical sounds, and mainly resulting from the

exercise of composition and orchestration, sources in a musical piece often play simultane-

ously and favor consonant pitch intervals (as discussed in section 2.3.2). Music signals are

mostly polyphonic (i.e. signals where two or more sound sources are playing concurrently

at each time instant), temporally structured, and complex, which imposes a higher com-

plexity when compared to monophonic signals (i.e. signals where only one sound source is

playing at each instant). This increases significantly their time-frequency domain overlap,

turning their perception and segregation substantially harder. Furthermore, musical in-

struments present a wide range of sound production mechanisms, resulting in signals that

exhibit a high variety of spectral and temporal characteristics.

Consequently, techniques usually employed for music signals where there is just one

single sound source playing at each time instant tend to perform poorly when applied to

complex mixtures. Additionally, sound sources in musical signals are highly correlated

and usually exhibit a high degree of dependency among each other. This makes some

of the separation criteria and assumptions traditionally used in speech and non-musical

sound separation approaches (e.g. statistical independence) to become invalid or prone to

failure when applied to music signals.
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Yet, music signals are still well organized, presenting important and unique relation-

ships between various simultaneous and successive sounds. Hence, CMSA can be con-

sidered as a sub-topic of the larger field of CASA, since it makes use of most of the

approaches and principles used for the analysis and separation of speech and environmen-

tal sound mixtures, but dealing with the specific challenges posed by music signals. As a

result, it is desirable that ideas and techniques developed in the scope of CMSA may be

possible to be extended back to general audio signals, providing a good starting point for

creating new frameworks for understanding audio signals in general.

Given this close two-way relation between CASA and CMSA, and for the sake of

generality (although this work is focused on the analysis of music signals), CASA will

be used in the scope of the remaining of this thesis to broadly refer to the study and

development of computational models for generic environmental sounds as well as for

acoustical music signals.

2.4.2 Base Architecture of CASA Systems

Broadly founded on Bregman’s conceptual framework for ASA [Bregman, 1990], Figure 3

depicts a representative architecture of CASA systems, which is also the base structure

generically followed by the sound segregation framework proposed in this thesis (see Chap-

ter 3).

In this architecture a digitally recorded acoustic mixture is first processed by an

analysis front-end which somehow models the peripheral analysis processes in the hu-

man ear. This results in some form of time-frequency representation of the input signal

(e.g. an STFT spectrogram or a cochleagram [Wang and Brown, 2006, pp.15]). From

this representation it is then possible to generate mid-level representations (e.g. spec-

tral peaks, frequency tracks, harmonic structures), which are expected to bring out

important characteristics of the acoustic signal (see Section 2.4.3). Scene organiza-

tion can now take place on the basis of primitive grouping cues (see Section 2.3.1)

and, if available, take into account previously trained models of individual sound

sources [Ellis, 2006, Burred and Sikora, 2007], producing separated streams for the sound

sources and events existing in the acoustical signal.

From each separated stream it is then usually possible to resynthesize an audio wave-

form. Although it is a subject of discussion whether the human brain does resynthesize

or not the acoustic waveforms of each source separately (see the discussion about “under-

standing without separation” in [Scheirer, 2000, pp.70]) the auditory system is an useful
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Figure 3: System Architecture of a typical CASA system.

reference in the development of sound source separation systems, since it is the only ex-

isting system which can robustly separate sound sources in various circumstances. As

a result, the resynthesis of the separated signals allows to assess the performance of a

CASA system by means of listening tests or by using objective measurements (see Sec-

tion 2.4.5 for a more thorough discussion on the evaluation approaches traditionally used

in CASA). The resynthesis of the segregated components in an acoustic mixture is also of

great interest to most CASA applications (see Section 1.4).

2.4.3 Mid-level Representations for Music Signals

One of the most common digital representations of an acoustical signal is the sampled

waveform, also known as the time-domain representation (see top panel of Figure 4).

Each sample describes the sound pressure level of the acoustic signal at a specific time,

allowing an adequate visualization of the variation of the energy of the signal along time.

Although this representation allows the efficient visual inspection of some signal fea-

tures (e.g. it is easy to identify silence regions, the onsets of sound events, fade ins and

outs) and is the input of many basic audio signal analysis and processing operations, it is

not directly suitable for some more challenging tasks, such as the segregation of complex

music mixtures.

As a result, some other type of representation is necessary to bring out more clearly

the important characteristics of the signal for the application in hand, usually leading to

a so-called mid-level representation. Mid-level representation is a concept mainly coming
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(a)

(c)

(b)

(d)

TIME

Figure 4: Representations of an acoustic signal of a piano tone (C3) followed by an overlapping
clarinet tone (G3). The upper panel (a) shows the time domain representation of the signal,
followed in panel (b) by its spectrogram representation. Panel (c) shows a sparser spectrogram
where only spectral peaks are considered and panel (d) shows the corresponding peak trajectories
after tracking spectral peaks over time.
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from the field of computer vision research, particularly after the pioneering ideas of David

Marr [Marr, 1982]. It has also become widely accepted by the computer audition com-

munity as a concept useful to model hearing [Bregman, 1990, Cooke, 1991, Ellis, 1996,

Scheirer, 2000, Wang and Brown, 2006].

Auditory perception may be viewed as a hierarchy of representations from “low” to

“high”, where low-level representations roughly correspond to acoustic stimuli reaching the

cochlea, and high-level representations relate more closely to cognitive models of sound in

the brain [Ellis and Rosenthal, 1995]. Between these two levels it is admissible to presume

the existence of a network of representations, labeled mid-level, about which little direct

knowledge is available. Accordingly, the definition of such a mid-level representation must

take into consideration the limitations and strengths that it imposes on the evaluation of

the “meaning” of an acoustic signal during the process of reducing the number of “objects”

in it. The chosen representation should readily answer the questions asked by the higher

levels of processing, using the most efficient computational method possible.

As a result, CASA approaches usually start by defining an adequate representation of

the acoustic signal, and among the several levels of abstraction possible, the choice should

point towards the way information is supposedly represented by the human brain. The

key issue is how to define the “adequacy” of such a representation.

For the specific case of music, musical scores are the most common representation

of music in Western cultures. However, such a representation does not seem an appro-

priate mental representation of a musical scene [Goto, 2006, pp.252]. In fact, as argued

in [Scheirer, 2000], and as discussed in section 2.3.2, naive listeners are able to understand

music to a surprisingly great extent without mentally representing audio signals as mu-

sic scores. Given so, alternative sound and music representations should be considered.

Goto [Goto, 2006, pp.253] and Ellis and Rosenthal [Ellis and Rosenthal, 1995] proposed

the following guidelines for the definition of an appropriate sound (musical sound in par-

ticular) representation framework:

1. The representation should decompose sound to a granularity at least as fine as the

sources of interest.

2. The representation should have a reduced number of components compared with the

number of original samples. While the number of objects in the representation is

reduced, their perceptual relevance should increase.

3. The representation should present an intuitive description of the acoustical or music

scene, based on the way a naive listener would do.

4. Although basic and intuitive, the representation should still allow trained listeners to
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use it as a basis for higher-level music understanding.

5. The representation should be invertible so that an approximation of the original signals

can be regenerated from it.

6. The representation should be practical enough so it can be useful for the easy devel-

opment of various music analysis applications.

At the light of these guidelines, several mid-level representations have been proposed

for CASA and music listening systems. The following list summarizes some of the types

of representation traditionally used for the task of sound analysis and segregation.

Auditory mid-level representations. Auditory mid-level representations attempt to

model the signal processing of the human auditory system. The assumption is that

by mimicking the human auditory system it would be possible to achieve the sound

separation ability of humans. However, the exact mechanisms of higher-level sig-

nal processing which take place in the brain are not yet known. Nevertheless, the

lower-level processing already accounts for some of the separation abilities in human

hearing. Given so, the signal processing of the peripheral auditory system can be

modeled as a filter bank, followed by a cascade of half-wave rectification and low-

pass filtering of the subband signals which accounts roughly to the mechanical-neural

transduction of hair cells. Later stages often include a periodicity analysis mechanism

such as autocorrelation, but the exact mechanisms of this stage are not known. This

processing leads to a three-dimensional correlogram, which represents the signal in-

tensity as a function of time, frequency (i.e. filter bank channel), and autocorrelation

lag [Wang and Brown, 2006, pp.19]. Many algorithms sum the channel-wise autocor-

relations to result in a summary autocorrelation function [Ellis, 1996, Scheirer, 2000],

which has been used as a good basis for pitch estimation [Paiva, 2006].

Time-frequency representations. Numerous methods use a time-frequency represen-

tation, where the input signal is divided into short analysis windows, windowed, and

a frequency transform of each frame is computed (typically the discrete Fourier trans-

form, DFT). The frequency transform of a single frame is denoted by spectrum, and

the magnitude of its each coefficient shows the energy at a particular frequency. The

term spectrogram is used to denote the whole time-frequency representation, where

the temporal locations of the frames determine the time axis, usually obtained by

means of a short-time Fourier transform (STFT – see panel (b) of Figure 4). This

representation reasonably follows the known ability of the human auditory system

to perform frequency analysis, and many perceptually important characteristics of

a sound are determined by looking at its spectrum over time. For instance, the
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smoothed spectral energy distribution allows a good estimation of the formant struc-

ture of a sound, which is unique for each instrument, and therefore an important

cue for its identification. On the other hand, the fine spectral structure reveals the

vibration modes of the sound, which are often in harmonic relationships, resulting in

perception of pitch, the basis for tonal music. However, no dimensionality reduction is

attained with time-frequency representations such as the ones resulting from a STFT

analysis.

Adaptive bases. Instead of using fixed and predefined basis (as is the case of the DFT),

basis functions can be estimated directly from the data. Ideally, these basis functions

capture redundant characteristics of the data and therefore reduce the number of

required dimensions. Algorithms that have been used to estimate the basis functions

include, for example, Independent Component Analysis (ICA) [Abdallah, 2002], Non-

negative Matrix Factorization (NMF) [Vembu and Baumann, 2005] and Periodicity

Transforms [Sethares and Staley, 1999].

Sparse representations. Time-frequency representations of ecological sounds typically

present sparse distributions. This means that most of the coefficients are approxi-

mately zero, making it unlikely that two or more independent sources have a large

coefficient in the same time-frequency point (see for example the representations in

panels (c) and (d) in Figure 4, where only the peaks or corresponding trajectories in

the spectrogram have non-zero values). As a result, sparseness may provide a good ba-

sis for sound separation. Estimating the most dominant source at each time-frequency

point and then assigning all the energy at that point to the corresponding source of-

ten produces acceptable results. This is equivalent to applying a binary or soft mask

for each of the detected sources to the mixture spectrogram [Wang and Brown, 2006,

pp.22]. However, and as argued in Section 2.4.1, this source independence may not

hold true for the case of music signals, where more instruments are more likely to

have non-zero coefficients in the same time-frequency point.

Parametric models. Sparseness can also be used to develop parametric mod-

els for signals with a time-varying spectra. The active frequency compo-

nents (i.e. peaks) in the time-frequency domain can be tracked into si-

nusoidal trajectories (see panel (d) in Figure 4), which following a sinu-

soidal model are then parameterized by time-varying frequencies, amplitudes

and phases [McAulay and Quatieri, 1986, Ferreira, 2001, Ferreira and Sinha, 2005,

Lagrange and Marchand, 2007, Lagrange et al., 2007a] (Section 3.4 will summarize

sinusoidal modeling of music signals in the scope of the framework proposed in
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this thesis). Serra was one of the first to make use of such a sinusoidal model for

music signals in his spectral modeling synthesis (SMS) representation [Serra, 1989,

Serra and Smith, 1990]. He additionally removed the spectral peaks (termed the de-

terministic part) from the original signal by means of spectral subtraction, subse-

quently modeling the remaining noise component (known as stochastic part) as white

noise through a time-varying filter. Other parametric models for music signals include,

for example, transient models [Levine, 1998, Verma and Meng, 1998, Every, 2006],

instrument models (e.g. [Smith, 1992]) and abstract models (e.g. FM synthe-

sis, which attempts to provide musically useful parameters in an abstract for-

mula [Chowning, 1973]).

2.4.4 Computational Approaches to Scene Organization

Even if taking a suitable mid-level representation (see Figure 3), there are still many

possible partitions of a sound mixture into its individual sound elements or events, de-

pending on several conditions, as discussed in Section 2.3.2. As a result, when imple-

menting a computer system for the segregation of complex mixtures of sound, it be-

comes pertinent to raise the question about how to achieve the right partition. As argued

in [Shi and Malik, 2000] when considering a similar problem for image segmentation, there

are at least two main aspects to take into consideration.

The first is that there may not be a single correct answer. If taking a Bayesian view,

it is admissible to accept several possible interpretations in the context of prior world

knowledge. This means that, as discussed in Section 2.3.2, the perception of a sound

mixture strongly depends on the listener himself, his prior knowledge about the sounds

and the encircling environment (i.e. the context), among other factors. As a result, the

difficulty starts on the specification of the knowledge about the surrounding world. Some

of it may be low-level (e.g. spatial proximity, spectral similarity, harmonicity) but it may

also include important mid- or high-level prior knowledge about properties or models of

already known sounds.

If taking a bottom-up approach (also known as a data-driven model), processing is

assumed to start with small units of information, gathered at lower levels of the perceptual

hierarchy. These small units are then progressively grouped at the different levels of

the hierarchy forming more complex and larger units of information. At the top of the

hierarchy it is expected to see the final units that assign meaning to the overall scene being

perceived. However, the success of such a data-driven model is based on the assumption

that there is enough information at the stimuli level for a comprehensive scene to be
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constructed. Consequently, higher levels of comprehension cannot be accessed if lower

levels are still unresolved. This is the process that is basically involved in the primitive

grouping mechanism of the auditory system but, as discussed in Section 2.3.1, there are

several phenomena that cannot be fully explained by this model alone. As argued by some

authors [Ellis, 1996, Slaney, 1998], this suggests that more “global” information should in

some way come to influence the formation of the low-level representations.

In contrast, a top-down approach (also known as prediction-driven model) proposes

that comprehension occurs in a non-linear manner, starting at the top levels of the hier-

archy and selectively using the lower levels to maximise the acquisition of “meaningful”

stimuli. This model supports the problem-solving approach that accumulates past expe-

rience knowledge as a way to interpret what is being currently looked at on the sensory

level, further allowing to build up expectations about future stimuli. This provides an

explanation for the comprehension with very distorted inputs, and is on the base of the

schema-based grouping mechanism in auditory perception (see Section 2.3.1).

However, pure top-down systems cannot substitute analysis based on low-level infor-

mation, and therefore a satisfactory solution to the problem of automatic audition lies in

the integration of both bottom-up and top-down processing approaches.

The second main aspect argued in [Shi and Malik, 2000] regards the hierarchical nature

of the segregation processes in human perception. In fact, if following an attentional model

of perception [Treisman, 1964, Deutsch and Deutsch, 1993, Wrigley and Brown, 2004,

Kayser et al., 2005, Yost et al., 2007], it may be more appropriate to try to achieve a tree

structure representation of a sound mixture, which corresponds to a hierarchical partition

instead of a rigid and flat segregation of the sound scene. As a result, this suggests that a

CASA system based on low-level grouping cues cannot and should not aim to produce a

complete and final “correct” segregation. It should instead try to use low-level grouping

cues to sequentially come up with hierarchical partitions. Mid and high-level knowledge

can then be used to consolidate the resulting partitions as relevant sound “objects”, or

select them for further attention. This attention could result in further partitioning or

grouping. The final conclusion is that sound segregation is probably better modeled when

performed in a divisive manner2 [Duda et al., 2000, pp.552], starting from the “big pic-

ture” (i.e. the mid-level representation) downward, rather like “a painter first marking

2A divisive (i.e. top-down or splitting) clustering procedure starts with all of the elements in one cluster
and hierarchically and successively splits it into smaller clusters until some criteria is met. Inversely, an
agglomerative approach (i.e. bottom-up or clumping) starts with all elements as singleton clusters and
forms new clusters by successively merging them until some criteria is met. See [Duda et al., 2000, pp.552]
for more details.
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Figure 5: Tree representation of a simple music scene (i.e. a C major chord whose notes are
played by two different instruments – a flute and a piano). At each level of the tree a different
perception of the same acoustic mixture is represented (the white circles depict the “perceptual”
sound elements). Listeners usually start by hearing the sound as a whole chord and, depending on
prior knowledge, attention and listening context, may be able to also perceive the individual notes
or even the frequency components in the chord. For the sake of simplicity, the time structure of
the spectral components is omitted. Figure adapted from [Kashino, 2006].

out the major areas and then filling in the details” [Shi and Malik, 2000].

Such a hierarchical divisive approach allows to produce a tree representation of the

acoustic scene. Figure 5 shows an example snapshot of the different perceived sound

“objects” in a music performance (which for illustration purposes consists of a single

chord). At each level of the tree it is possible to observe a different hierarchical partition

of the initial complex sound mixture, which corresponds to the different perspectives taken

by a same observer at different levels of attention or in different listening contexts (or by

different observers perceiving a same scene, each one with different prior knowledges,

listening contexts or levels of awareness). Taking the example given in the figure, when

listening to music it is possible to hear multiple levels of “perceptual” sounds: sometimes

chords are heard, but if the listener is attentive, has knowledge about the sound of the

music instruments playing or is musically trained, he may be able to hear the independent

chord notes or even the individual frequency components.

Accordingly, the framework proposed in this thesis will take the view that perception

primarily depends on the use of low-level sensory information while being flexible enough

to allow the use of prior knowledge to award meaning to the observations and to effectively

modify the subject’s focus of attention. Chapter 3 will describe and discuss in detail the
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work conducted towards that goal.

2.4.5 CASA Evaluation Approaches

One of the challenges faced when developing CASA algorithms is the need to measure the

goodness of the results. CASA is often known as the field that studies the problems related

to the “sound source separation” in acoustic mixtures, and sound separation quality must

be somehow measured in ways that correlate as much as possible to the perceptual abilities

of the human hearing.

However, such an evaluation task may turn out to be an ill-posed problem. As noted

in [Wang and Brown, 2006, pp.12] and discussed in Section 2.3.1, perception is a process

private to the perceiver, and different observers may acquire different perceptions of the

same surrounding environment. Additionally, what perception obtains at each time is

a description of the environment and provides no guarantees about the faithfulness to

the factual reality (although one could argue if the perceived description is what in fact

defines reality). This creates some harsh difficulties when trying to define perceptually

relevant criteria for the evaluation of the performance of CASA systems when compared

to human performance. Thus, a perceptually motivated evaluation approach would be to

have humans listening to the segregated signals. However, reliable listening tests require

a large number of listeners, and are therefore complex, time consuming and expensive to

conduct [Vincent et al., 2006b].

As a result, formal listening tests are usually replaced in the quality evaluation of sound

source separation algorithms by objective computational measures [Vincent et al., 2006a],

which allow an objective score to be calculated repeatedly in order to compare and mea-

sure the evolution of a system. Typically such a quantitative evaluation of the separation

quality requires that reference signals (i.e. the original signals before mixing) are available,

where the sound separation quality is measured by objectively comparing the separated

signals with the corresponding reference sources. One important drawback of this approach

is that there is no guarantee that these reference “physical sounds” actually reflect the

perceptual acoustical image in the listener (i.e. the “perceptual sounds”– recall the discus-

sion in Section 2.3.2). In fact, and depending on the evaluation measures used for the task,

this approach may end up not evaluating the ability of the system to segregate sounds the

way humans do. What is assessed is the capacity of the system to approximate the origi-

nal sources present in the mixture signal in a mean-square sense, which is however not a

guarantee of the perceptual fidelity of the segregation process [Ellis and Rosenthal, 1995].

Furthermore, and for the case of music content, this approach may pose some additional
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practical difficulties. Although the production process of commercially available music

content includes the recording of music instruments as individual audio tracks that could

be used as references, such material is usually not delivered to the general public (although

sites such as CCMixter3 are starting to make available some of the individual recording

tracks of songs published by independent artists under the Creative Commons4 license).

On top of that, the mastering stage in music production often includes nonlinear effects

on the mixture signal, turning the reference audio tracks substantially different from the

signals within the final stereo or monaural mixture.

Several efforts have been recently conducted for creating a common evaluation frame-

work and large annotated datasets where researchers can test and compare the perfor-

mance of their algorithms and systems for audio and music analysis and processing. The

ISMIR 2004 Audio Description Contest [Cano et al., 2006] and the subsequent MIREX ini-

tiatives 5 are examples of such efforts, although an evaluation task specifically dedicated to

sound segregation in music signals is yet to be proposed and conducted. More recently, the

first community-based Signal Separation Evaluation Campaign (SiSEC 2008)6 has been

proposed, and it includes datasets and evaluation tasks focused on the separation of music

mixtures.

In the specific case of algorithms that aim at separating individual tones of individual

instruments, reference material where the tones are presented in isolation is difficult to

record, and the use of synthesized material is often a less than optimal solution. Databases

of audio recordings of isolated notes from various musical instruments have recently been

made available (e.g. the RWC Music Database [Goto et al., 2003] or the University of

Iowa Musical Instrument Sample Database7), allowing to artificially mix real instrument

samples into polyphonic mixtures without too much loss of generality and representative-

ness. This allows to use the original isolated note samples as reference for the separation

evaluation.

In all cases where several reference and separated signals are involved, an additional

difficulty comes from the fact that it is usually not easy to know which separated signal

corresponds to which reference source. There has to be some method to correctly associate

the separated signals to their references so they can be compared, otherwise evaluation

results will be penalized and in the limit become meaningless. Such an association can be

3http://ccmixter.org/
4http://creativecommons.org/
5http://www.music-ir.org/mirex/2008/index.php/Main_Page
6http://sisec.wiki.irisa.fr/tiki-index.php
7http://theremin.music.uiowa.edu/MIS.html
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done with varying degrees of error using, for example, the similarity between separated

signals and the references or, for the case of pitched musical signals, using pitch as a way

to match signals corresponding to similar musical notes. In applications where a single

source is to be segregated (e.g. the predominant melodic line, the singing voice, the bass

line), this problem is non existent and usually such an approach is used as a starting

strategy when developing a sound segregation system.

In order to cope with these constraints, several objective quality measures have been

proposed for the evaluation of sound separation systems. The following list summarizes

some commonly used evaluation metrics, here divided into three categories.

Low-Level Measures. Low-level measures are simple statistics of the separated and

reference signals. One of the most common measures is the signal-to-distortion ratio

(SDR), which summarizes the separation quality as the ratio of the energies of the

reference signal and the error between the separated and reference signal. Appendix B

presents a detailed description of this and some other related metrics used in the scope

of the evaluations presented in this thesis. Additional low-level performance measures

for audio source separation tasks have been discussed in [Vincent et al., 2006a], where

for instance the interference from other sources was measured by the correlation of

the separated signal to the other references.

Perceptual Measures. Perceptual measures in general estimate the audibility of the

separation errors. Typically these approaches process the reference and sepa-

rated signal using an auditory model, and the difference between signals is cal-

culated in the auditory domain [Beerends, 1998, Beerends and Stemerdink, 1992,

Beerends et al., 2002]. However, most of these perceptual measures have been de-

veloped for the quality evaluation of coded speech and audio. As a result they are

usually optimized for signals where the differences between the reference and target

are caused by quantization. Given that typical errors in sound source separation

are deletions (where a segment of a signal is an all-zero signal) and insertions (where

separated signal contains interference from another sources), these measures may pro-

duce misleading results when applied to separated signals. More recently, some novel

evaluation measures that do not require reference signals and that are perceptually

motivated have been proposed. Such an example is the structural similarity index, pre-

sented in the field of image processing [Channappayya et al., 2006]. This perceptual

distortion metric, has been used to derive new linear estimators for image denoising

applications. The results show that such structural similarity index optimized estima-

tors tend to outperform the traditional linear least squared error estimators in terms
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of the visual quality of the denoised images. Thus, this may as well be a promising

alternative worth exploring in the future for the evaluation of the performance of

sound segregation systems.

Application-specific Measures. In application-specific measures the separation accu-

racy is judged by the performance of the final application. In many of such applica-

tions, the separation is just one of the many algorithmic blocks in the complete system,

and the separation is used as an intermediate step instead of being the final output.

For example, when the separation is used as a preprocessing stage in a speech recog-

nition system, its performance can be indirectly measured by the word-error rate.

Similarly, in automatic music transcription systems, the performance can be mea-

sured by the transcription accuracy. Unlike the low-level and perceptual measures,

application-specific measures do not necessarily require reference signals.

Chapter 4 will present some experiments where the segregation performance of the

system proposed in this thesis is both directly assessed using low-level measures and

indirectly assessed by the improvements achieved in specific tasks, such as main melody

detection, voicing detection or timbre identification.

2.4.6 Previous Work on CASA

First attempts in separating sources from sound mixtures started in the area of speech

enhancement (for a review of early proposals see [Lim, 1983]). However, the main objective

of these approaches was to simply enhance a target voice among other concurrent voices or

sounds and not to separate all the sounding sources in the mixture as independent audio

signals.

Parsons was the first to propose a system that separated the voices of two talkers from

a monaural mixture signal [Parsons, 1976]. His system was mainly targeted to the prob-

lem of cross-talk on communication systems, and was mostly based on signal processing

techniques rather than on auditory modeling. He proposed a frequency domain approach

for the segregation of concurrent voices in a single-channel signal where the separation is

performed by selecting the harmonics belonging to each voice. Although this technique

narrows the scope of application to mainly voiced signals (i.e. signals where a strong har-

monic content is present), and consequently not being very well suited to the separation of

speech signals (which comprise voiced and unvoiced parts), Parsons’ work suggested some

influential directions of work that proved important for research on multipitch tracking,

F0-based sound segregation and the use of temporal continuity constraints.
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One of the first approaches to voice segregation inspired on principles of auditory pro-

cessing was proposed by Weintraub in [Weintraub, 1985]. Taking a harder challenge than

Parsons, Weintraub assumes that the two speech signals can be voiced, unvoiced or silence

at any given time. He uses a Markov model to represent the number of concurrent voices

present and their characteristics, enabling the creation of a common framework where

sequential and simultaneous grouping can be expressed. Similarly to Parsons, Weintraub

also uses F0 as the basis of his voiced speech separation technique, but instead of a fre-

quency domain front end, he employs a joint time-frequency approach – the correlogram

(see [Wang and Brown, 2006, pp.19] for a revision of this technique). Weintraub also de-

velops an evaluation framework for his system, where a waveform for each separated voice

is resynthesized by refiltering the input signal, weighted by spectral estimates from the

Markov model. The resulting resynthesized signal is then used as the input to an Auto-

matic Speech Recognition (ASR) system and its performance is compared to the results

obtained if using the two-voice mixture signal. Some limitations apply to Weintraub’s

work, as for instance, requiring that the two voices present a distinct average pitch range.

This allows avoiding the complex problem of sequential grouping, since voice segments

are possible to be grouped taking in consideration solely their pitch register. Weintraub’s

evaluations also showed that in some conditions, the ASR performance when taking the

separated voice signals deteriorate, making the results somewhat inconclusive.

Shortly after Bregman’s book publication [Bregman, 1990], Cooke presented his PhD

thesis strongly influenced by Bregman’s ASA theories [Cooke, 1991]. In fact, Cooke was

one of the first to note the relation between the principles proposed by Bregman and the

work developed by Marr in the field of vision [Marr, 1982]. He proposed a time-frequency

representation he termed “synchrony strands”, derived by applying local similarity and

continuity constraints to the output of a cochlear model. For each strand, he computes

the frequency, amplitude and modulation rate, building a rich representation of the input

signal. From this representation he was able to separate two mixed voice signals, even

with crossing F0s (a difficult scenario for previous systems). The system groups the

harmonics of each source in the time-frequency plane, avoiding the need of prior knowledge

of the fundamental frequency. Furthermore, Cooke’s system does not require the prior

specification of the number of sources in a mixture since the grouping process continues

until all the synchrony strands are accounted for. The number of sources is then a by-

product of the grouping process. Cooke’s system does not address the problem of assigning

a sequence of voiced and unvoiced speech sounds to a same source. This results from the

inability of the system to sequentially group acoustic events from a same source that
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are separated by silence intervals. Consequently, Cooke evaluates his system using a

corpus of acoustic mixtures8 where the target sound is always voiced. He then compares

the synchrony strand representation of two signals before mixing them to the analogous

representation after separated by his system.

In the same year as Cooke, Mellinger publishes his studies on the event formation

and separation in musical sound [Mellinger, 1991], citing Bregman and Marr as theoret-

ical influences. Mellinger’s system takes the output of a cochlear model and processes it

directly to form “feature maps”, which encode acoustic onsets and frequency modulation.

Harmonic components are grouped by calculating an affinity value between them. This

affinity starts by taking into account the onset synchrony of the harmonic components

and subsequently the coherence of their frequency modulation. An interesting aspect of

Mellinger’s system is its online approach where signal representations are computed and

grouped as time progresses. This approach is distinct from previous works (e.g. Cooke

first calculates the synchrony strand representation for the whole input and then, in a sec-

ond pass, tries to group them) and seems to better follow the way the human ear works.

Some of the results from Mellinger’s system show that some difficulties arise under some

“musically significant situations” [Mellinger, 1991, pp.183]: although harmonic relations

play a significant role in musical sound, his system fails at grouping harmonic components

unless they share a common onset and exhibit the same frequency modulation. Further-

more, and because in Mellinger’s system the tracking of harmonics is triggered by the

onset detection, failure to detect an acoustic onset (which is still today far from being a

solved problem – see e.g. [Dixon, 2006]) results in missing an entire acoustic event.

Avery Wang’s PhD thesis summarized several contributions to the areas of signal pro-

cessing and auditory source separation [Wang, 1994]. He introduced Frequency-Warped

Signal Processing as a means for separating the amplitude and frequency modulation con-

tributions to the bandwidth of a complex-valued, frequency-varying sinusoid, transforming

it into a signal with slowly varying parameters. This transformation was used to facilitate

the removal of such sinusoids from an additive mixture while minimizing the amount of

damage done to other signal components. To implement frequency tracking, a frequency-

locked loop algorithm was proposed, where a complex winding error to update its frequency

estimate was used. To improve tracking, Wang introduced a novel idea, termed Harmonic-

Locked Loop tracking, which used several harmonically constrained trackers for tracking

signals such as voices and certain musical instruments. The estimated fundamental fre-

quency was computed from a maximum-likelihood weighting of the tracking estimates, as

8http://www.dcs.shef.ac.uk/˜martin/corpora/cookephd.tar.gz
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a way to improve robustness. His system was able to isolate harmonic signals, such as

voices, from complex mixtures in the presence of other spectrally overlapping signals. Be-

cause his technique preserved phase information, he was able to remove the resynthesized

harmonic signals from the original mixtures without too much damage to the residual

signal.

Combining some ideas from previous systems, Brown proposes a representational ap-

proach to CASA [Brown, 1994, Brown and Cooke, 1994]. Similar to Mellinger’s, his sys-

tem makes use of maps of feature detectors based upon physiological grounds. These maps

extract features such as onset, offset, periodicity, frequency transition information from

the output of a cochlear model. Periodicity information is calculated from the correlo-

gram (see [Wang and Brown, 2006, pp.15] for a description of this representation), being

used for detecting resonances from harmonics and formants. These intermediate repre-

sentations are used to construct discrete time-frequency segments. In order to combine

resolved and unresolved harmonics of the same voice, a pitch contour is derived for each

segment using local correlograms, a mechanism that works the same way for both cases.

Brown’s system is based on the correlogram, but grouping is performed in the cochleagram

(see [Slaney and Lyon, 1993] for a description of the cochleagram) using pitch contours

that are computed for individual segments. Consequently this has the advantage of not

requiring any prior knownledge about the number of sources in the input signal. Brown

evaluated his system performance using the same corpora of voiced speech used by Cooke,

but using a different approach. The procedure is based on the principle of “exclusive

allocation” (see [Bregman, 1990, pp.12; 595]) and consequently assumes that the energy

at each point of the time-frequency space is assigned to a single source. The result of

this grouping is a binary time-frequency mask, allowing to resynthesize a target source by

refiltering the mask-weighted input. Although similar to the approach used by Weintraub,

Brown also resynthesizes the original sources (before mixing) using the estimated mask,

allowing to determine the signal-to-noise ratio in the corresponding separated target sig-

nal. This allows Brown to express the performance of his system using a well known and

accepted signal-to-noise ratio (SNR) metric.

Some authors, being very critical of the “batch processing” approach

of Cooke and Brown, proposed an online scheme based on a multi-agent

paradigm [Nakatani et al., 1995]. Nakatani and his colleagues introduced a novel

residue-driven architecture, where grouping processes are formulated as largely indepen-

dent agents that interact in an attempt to explain the auditory scene. There are three

types of agents: event detectors, trace generators and tracers. Event detectors subtract
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the predicted input from the actual input, generating a residue, which is then evaluated

by the trace generators. They determine if there is still sufficient evidence in the residue

to trigger a new tracer for further analysis. Tracers are then responsible to group the

features belonging to a same stream, and try to infer what the next input will be. This

predicted input is then sent to the event detector, completing the processing loop. There

are agents for tracing static background noise and harmonics, so that, for instance, a

noisy speech signal can be analysed by a noise tracer together with a harmonic tracer. In

case substantial harmonic residue is still found in the input, it may be an indication that

another source appeared and a new harmonic tracer is created to track it. This system is

evaluated by comparing the F0 contours output by harmonic tracers with ground-truth

F0 contours, and by measuring the spectral distortion between the original and the

separated sources.

In his PhD thesis, Ellis was inspired by the use of a feedback-loop in the residue-driven

architecture and proposed a prediction-driven approach to CASA [Ellis, 1996]. He starts

by extensively discussing previous “data-driven” approaches to CASA arguing that certain

important phenomena are not easily modelled without top-down information. Phenomena

such as “old-plus-new” or the interpretation of masked signals in the auditory continuity

effect are presented as explicit examples. As a result, Ellis proposes a system based on

an internal world model, where the auditory scene is represented using a hierarchy of

sound elements. This world model is then constantly confronted with the acoustic input,

following the generated hypothesis of the existing sound sources. A blackboard system

was used to implement the prediction-driven CASA approach. In such a system there are

independent knowledge sources that communicate via a shared pool of hypothesis (the

“blackboard”) providing a relatively unconstrained framework in which they can influence

alternative assumptions about the input. Ellis’ CASA system uses a broader signal model

than previous proposals, including representations for periodic elements derived from the

correlogram (termed “wefts”), aperiodic elements (called “noise clouds”) and transients.

Additionally, instead of following an “exclusive allocation” principle, his system allows the

energy in a specific time-frequency region to be shared between sources. His evaluation

framework is based on the comparison of the results of human listening tests on the same

corpus used to test his CASA system.

Another system based on the blackboard architecture was later proposed by Godsmark

and Brown [Godsmark and Brown, 1999, Godsmark, 2000], designed for the automatic

transcription of polyphonic music signals. Similar to the approach followed by Ellis, their

system used top-down predictions (concerning meter and familiar musical motifs) which
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influenced the organization of the lower level of the blackboard. They also introduced

the concept of an “organizational window” that slides through the input signal and inside

which grouping principles interact with the objective of forming multiple hypothesis about

the auditory scene, subsequently scored according to the acoustic evidence at the input.

As this window slides over the input, its organization in what regards formed streams

becomes fixed. This system also tries to extract features from groups of harmonics assumed

to belong to single musical notes. Such features include timbre information, which is

then used to achieve sequential grouping of the notes originating from a same musical

instrument.

Scheirer, in his PhD thesis, presented a new computational model for the processing

of complex sound scenes by the auditory system [Scheirer, 2000]. The model was based

on a new principle of sound processing termed “dynamic detection of subband modu-

lation” within an autocorrelogram representation (see e.g. [Summerfield et al., 1990] for

a detailed description of the autocorrelation representation). Following an assumption

about the processing of complex sound scenes by human listeners, where the formation

of perceptual auditory images is governed by the discovery of groups of cochlear channels

(see [Slaney and Lyon, 1993]) that exhibit common modulation behavior in the autocor-

relogram domain, Scheirer proposed and implemented a computational model for sound

and music listening. He showed that his model could be used to examine the predictions

the theory makes about the perceived segmentation of various sound stimuli and that sev-

eral well-known auditory grouping and segmentation phenomena could be qualitatively

explained by this theory. He stated that this theory is different in some ways from other

previous models for CASA, mainly because nearly all of the perceptual processing occurs

within-band, there are no mid-level “components” to maintain an intermediate description

of the auditory scene, and pitch is not used as a cue to perceptual grouping. He showed

that the proposed model could be applied to the analysis of simple psychoacoustic stimuli

as well as real musical sounds.

Srinivasan and Kankanhalli proposed a model for audio separation based on ASA

in the STFT domain [Srinivasan and Kankanhalli, 2003]. They presented a frequency

grouping algorithm based on principles of harmonicity and dynamics, where frequency

components with a harmonic relation and similar dynamics are grouped as belonging to

the same source. Srinivasan has later extended this work using peaks and onset times to

propose a new representation scheme for “auditory blobs” [Srinivasan, 2004]. “Auditory

blobs” are defined as the parts of an audio signal which have the same onset. The idea is

based on using the common onset as a cue to group frequency components into the same
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auditory object, using spectral clustering (see Section 3.6.1 and [von Luxburg, 2007] for

more information about spectral clustering). He has shown how “auditory blobs” can be

extracted, how to define harmonicity, dynamics, and onset features for each object, and

how this representation can be applied to audio separation.

Bach and Jordan have also recently proposed the use of spectral clustering for an

algorithm to perform blind one-microphone speech separation [Bach and Jordan, 2004,

Bach and Jordan, 2006]. Their algorithm is able to separate mixtures of speech without

modeling individual speakers, formulating the problem as a segmentation of the spectro-

gram into two or more disjoint sets. This segmentation is based on various harmonic and

non-harmonic cues which are used for tuning the parameters of affinity matrices required

for spectral clustering.

More recently, Mark Every has proposed in his PhD an empirical and heuristic ap-

proach to source separation from single-channel polyphonic real recordings [Every, 2006].

It has focused mainly on separating pitched notes without relying on source-specific in-

formation or prior knowledge of the recording, but MIDI information was used to provide

note timing and pitch information. His work was conducted within a framework in which

the music signal is considered to contain three main types of content: partials, transients

and noise. He presented work towards extracting the transient attack of a note from a

mixture, both when in isolation and when overlapping in time with other transient events,

and a method for separating the spectral noise content of a mix of overlapping notes was

also proposed. The approach relied upon the assumption that the harmonic and noise

content of a note are correlated in both the temporal and spectral domains. A series

of techniques for separating individual notes from a recording were used as the basis for

the proposal of a system aiming at separating complete sources from a mixture, where

an automatic note grouping system attempts to identify information that is generically

useful for discriminating between different source types.

In his PhD work, Virtanen also focused on the separation of monaural music record-

ings, but where the sources or played notes to be separated are not known before-

hand [Virtanen, 2006]. His proposed two separation approaches, both based on the com-

mon properties of real-world sound sources. The first separation approach uses unsu-

pervised learning and combines non-negative matrix factorization with sparseness and

temporal continuity objectives. The algorithm is based on minimizing the reconstruction

error between the magnitude spectrogram of the observed signal and the model, while

restricting the basis functions and their gains to non-negative values, and the gains to be

sparse and continuous in time. A second proposal uses model-based inference based on
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sinusoidal modeling. It minimizes the reconstruction error between the observed signal

and the model, and several methods are proposed for approximating the amplitudes of

overlapping overtones based on adjacent overtones.

Vincent recently proposed a family of probabilistic mixture generative models combin-

ing modified positive independent sub-space analysis, localization models, and segmental

models to the problem of source separation of stereo musical mixtures using prior informa-

tion about the sources (instrument names and localization) [Vincent, 2006]. He expresses

source separation as a Bayesian estimation problem and proposes efficient resolution al-

gorithms. The resulting separation methods rely on a variable number of cues including

harmonicity, spectral envelope, azimuth, note duration, and monophony. He shows that

these approaches outperform methods which only exploit spatial diversity and that they

are robust against approximate localization of the sources.

While taking the more specific task of singing voice separation, Li and Wang proposed

a CASA based system to separate singing voice from music accompaniment for monau-

ral recordings [Li and Wang, 2006, Li and Wang, 2007]. The proposed system starts by

partitioning and classifying the audio input into vocal and nonvocal segments. For vocal

segments, a predominant pitch detection block estimates the pitch of the singing voice and

finally a separation stage uses the detected pitch to group the time-frequency segments of

the singing voice. Pitch is used as the only organizational cue, but the system is supposed

to be able to incorporate other ASA cues, such as onset/offset and common frequency

modulation, allowing it to be able to separate not only voiced singing but also unvoiced

singing.

Approaches to CASA based on binaural or multi-channel processing have also been pro-

posed, where the audio input is taken from two or more spatially separated microphones.

Although this multi-channel information contributes to sound localization, auditory group-

ing and robustness to reverberation, the truth is that a human listener is still able to

perform ASA even if using a single ear (or listening to monaural signals). Some references

to works in this field are given in [Wang and Brown, 2006, pp.34] and [Virtanen, 2006,

pp.6].

Although Bregman’s studies say little about the neural mechanisms involved in

ASA [Bregman, 1990], approaches based on neural models have also been proposed for

CASA, and the interested reader may find references in [Wang and Brown, 2006, pp.35]).
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2.5 Summary

This chapter presented a summarized overview of the main perceptual principles involved

in human audition, with a special emphasis in music listening. In particular, the simultane-

ous and sequential grouping processes as well as the primitive and schema-based grouping

principles proposed in the field of ASA have been shown to have an influential impact on

the definition of computational approaches to ASA (i.e. CASA).

The typical build blocks that constitute a CASA system were introduced and a discus-

sion about the mid-level representations and computational approaches to the problem of

sound segregation, specifically in music signals, was presented.

Different methodologies can be used to evaluate a CASA system, and a summary of

the most common approaches was also presented as an introduction to the experimental

evaluation conducted during this work, as will be presented in Chapter 4.

The chapter concludes with an overview of some of the most important work previously

conducted in the field of CASA and that has been, in different degrees, influential to the

sound segregation framework proposed in the next chapter of this thesis.
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Chapter 3
A Framework for Sound Segregation in Music
Signals

“All models are wrong. Some are useful.”

George Box

3.1 Introduction

A fundamental characteristic of the human hearing system is the ability to selectively

focus on different sound elements and events in complex mixtures of sounds such as music.

The goal of computational auditory scene analysis (CASA) [Rosenthal and Okuno, 1998,

Wang and Brown, 2006] is to create computer systems that can take as input a mixture

of sounds and form units of acoustic evidence such that each unit most likely has arisen

from a single sound entity (see Chapter 2).

Humans use a variety of cues for perceptual grouping in hearing such as similarity, prox-

imity, harmonicity and common fate (see Section 2.3.1). However, many of the computa-

tional issues of perceptual grouping for hearing are still unsolved. In particular, considering

the several perceptual cues altogether is still an open issue [Roweis, 2000, Vincent, 2006],

and the definition of what a sound entity should sound like when segregated is an ill-posed

problem (see the discussion in Section 2.3.2).

Accordingly, this chapter will propose and discuss a flexible and extensible CASA

framework for modeling the perceptual grouping problem in music listening. The goal

of the proposed approach is to partition the acoustical mixture into a perceptually moti-

vated topological description of the sound scene (similar to the way a naive listener would

51



A FRAMEWORK FOR SOUND SEGREGATION IN MUSIC SIGNALS

perceive it) instead of attempting to accurately separate the mixture into its original con-

stituent “sources”. Thus, the term “sound source” will be used in the remaining of this

thesis to mainly refer to “perceptual” sound events or “objects” in complex audio mix-

tures instead of limiting its meaning to the actual “physical” sources active at each time

instant (see Section 2.3.2). The resulting topological representation leverages subsequent

feature analysis, sound resynthesis and further transformations and manipulation of the

segregated sound elements.

The framework proposed in this chapter will take the view that perception primarily

depends on the use of low-level sensory information, and therefore requires no training

or prior knowledge about the audio signals under analysis. It is however designed to

be flexible enough to allow the use of prior knowledge and high-level information in the

segregation procedure. Designed to be efficient, the resulting system can be used to

segregate sound events in a complex polyphonic mixture of “real-world” music signals,

paving the way to applications such as the predominant melody line detection, separation

of the singing voice, instrument segregation and identification (as will be presented in

Chapter 4).

3.2 System Overview

An overview of the main analysis and processing blocks that constitute the proposed

sound segregation system is presented in Figure 6. A summarized description of the main

blocks that constitute the proposed system will be presented in this section. More detailed

discussions about each of the processing stages will appear in the subsequent sections of

this chapter.

The system uses sinusoidal modeling as the underlying representation for the acous-

tic signals. Sinusoidal modeling is a technique for analysis and synthesis whereby

sound is modeled as the summation of sine waves parameterized by time-varying

amplitudes, frequencies and phases. In the classic McAulay and Quatieri method

[McAulay and Quatieri, 1986], these time varying quantities are traditionally estimated

by performing a short-time Fourier transform (STFT) and locating the peaks of the

magnitude spectrum. Partial tracking algorithms track the sinusoidal parameters from

frame to frame, and determine when new partials begin and existing ones termi-

nate [Lagrange et al., 2007a].
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Figure 6: Block-diagram of the proposed sound segregation framework.

If the goal is to identify potential sound sources then a separate stage of partial group-

ing is needed. Typically grouping cues such as common onsets and spectral proxim-

ity are used. These two processes of connecting peaks over time to form partials (i.e.

tracking) and grouping them to form potential sound sources (i.e. formation) roughly

correspond to the sequential and simultaneous aspects of organization proposed by Breg-

man [Bregman, 1990] and discussed in Section 2.3.1. Although frequently implemented as

separate stages (e.g. [Srinivasan, 2004]) these two organizational principles directly influ-

ence one another. For example, if one has knowledge that a set of peaks belongs to the

same source, then their correspondence with the next frame is easier to find. Similarly, the

formation of sound sources is easier if peaks can be tracked perfectly over time. However,

methods that apply these two stages in a fixed order tend to be brittle as they are sensitive

to errors and ambiguity.

To cope with this “circular cause and consequence” problem, the following sections try

to show how both sound source tracking and formation can be jointly optimized within a

unified framework using spectral clustering, and in particular the Normalized Cut criterion

(Ncut) [Shi and Malik, 2000, von Luxburg, 2007].

Correspondingly, for each audio analysis frame at the input (set to have a length

of about 46 ms) the system starts by computing the STFT (with a hop size of about

11 ms), where at each frame the local maxima of the magnitude spectrum are selected

and stored as peaks characterized by their precise amplitude, frequency and phase (see

Section 3.4). The current system selects the 20 highest amplitude peaks at each STFT

frame, but ignores peaks whose frequencies are above 2500 Hz (empirical experiments have

shown that components above 2500 Hz are often unstable, hurting the final segregation
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Figure 7: Similarity cues currently implemented in the proposed sound segregation framework
(black boxes). The system is flexible enough to accommodate new similarity cues (gray blocks)
allowing to model an increasing number of perceptual mechanisms involved in human hearing.
The individual similarity matrices from each grouping cue are combined into an overall similarity
matrix that can be subsequently used by the clustering algorithm for sound event segregation (i.e.
Normalized Cut).

performance).

The challenge is then to express perceptual cues in terms of similarity between these

time-frequency components in the signal. The peaks are therefore accumulated over a

“texture” window (amounting to approximately 150 ms, although this value can be user

or dynamically adjusted – see Section 3.5) and the problem is modeled as a weighted

undirected graph [Balakrishnan, 1997, Shneiderman and Aris, 2006], where the nodes of

the graph are the peaks of the magnitude spectrum and an undirected edge is formed

between each pair of nodes (see Figure 10 and refer to Section 3.6.2). The edge weight

is a function of the similarity between nodes and utilizes various grouping cues (recall

Section 2.3.1) such as frequency and amplitude proximity, as well as a novel harmonicity

criterion, termed Harmonically Wrapped Peak Similarity (HWPS) (see Section 3.7). The

system is nevertheless flexible enough to accommodate new similarity cues allowing to

model an increasing number of perceptual mechanisms involved in human hearing. Based

on these grouping cues, and as depicted in Figure 7, the similarity across all the peaks

is calculated and stored in similarity matrices, which are subsequently combined into an

overall similarity matrix (see Section 3.7.3).

Peak clustering is then performed on this overall similarity matrix and each peak is as-

signed to a particular cluster, ideally grouping together components which are close in the
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similarity space, and therefore have a higher chance of coming from a same sound source or

event. Clustering is performed in the same way for all peaks within the “texture window”

independently of whether they belong to the same frame or not, implementing some degree

of time integration in the process. The peak clustering procedure, hereby formulated as a

graph partitioning problem, can be efficiently solved using a spectral clustering approach,

a technique used in a variety of applications including high performance computing, web

mining, biological data and computer vision [Shi and Malik, 2000, von Luxburg, 2007].

Spectral clustering conveniently makes use of the computed similarity matrix to en-

code topological knowledge about a problem [von Luxburg, 2007] and to subsequently

group together similar components, all in an unsupervised manner. In particular, the

Ncut [Shi and Malik, 2000], a representative example of spectral clustering techniques, is

employed in the system proposed in this thesis (see Section 3.6.1). The Ncut algorithm is

computationally efficient and causal, eventually executing in real-time.

Once identified, the resulting clusters should ideally have a close perceptual corre-

spondence to the sound events or “objects” as perceived by a human listener (at least a

naive one – see the discussion about naive and trained listeners and schema and primitive

grouping in Sections 2.3.1 and 2.3.2, respectively). As a result, the clusters that most

likely represent the different sound events or “objects” in the mixture can be selected and

resynthesized for further sound processing or evaluation (see Section 3.8).

3.3 Concepts and Terminology

For the sake of clarity, some of the parameters and terminology used when describing

the audio segregation approach proposed in the remaining sections of this chapter are

summarized next.

• Frames or analysis windows are sequences of audio samples used to estimate si-

nusoidal peaks from the complex spectrum computed using a Short Time Fourier

Transform (STFT). For the experiments described in Chapter 4 a frame size corre-

sponding to 46 ms and a hop size of 11 ms are used.

• Peaks are the output of the sinusoidal modeling stage. For each frame, a variable

number of peaks corresponding to the local maxima of the spectrum are estimated.

Each peak is characterized by its amplitude, frequency and phase (see Section 3.4).

• Texture windows correspond to an integer number of frames. Clustering of peaks

across both frequency and time is performed for each texture window rather than per

frame. For the experiments described in this thesis a texture window corresponding
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to 10 frames (≈ 150 ms) is used, but this value can be user or dynamically adjusted,

as discussed in Section 3.5.2.

• Similarity cues express the similarity between spectral peaks belonging to the same

texture window. These cues are inspired by perceptual grouping cues such as ampli-

tude and frequency proximity, and harmonicity (see Section 3.7).

• The similarity or affinity matrix encodes the similarity of every peak to every

peak within a texture window. Hence, the similarity matrix represents the similarity

between peaks within the same frame (simultaneous integration) and across time

(sequential integration) within the “texture window” (see Section 3.6.2).

• Sound Events are the “perceptual” sound events, “objects” or sources in complex

audio mixtures, rather than the actual “physical” sources active at each time instant

(see Section 2.3.2).

• Clusters are groups of peaks that are likely to originate from the same sound event or

source. By optimizing the Normalized Cut criterion (Ncut), the overall peak similarity

within a cluster is maximized and the similarity between clusters is minimized. The

audio corresponding to any set of peaks (one or more clusters) can be conveniently

resynthesized using a bank of sinusoidal oscillators (see Section 3.8).

• Sound Segregation, also known as sound separation or sound source formation in

the scope of this thesis, is the process of approximately reconstructing a particular

sound event from a decomposition of the polyphonic mixture (see Section 3.6).

3.4 Sinusoidal Modeling of Music Signals

Section 2.4.3 presented some guidelines proposed for the definition of a suitable music rep-

resentation and a summary of the most common representations used in CASA. Accord-

ingly, several CASA approaches consider auditory filterbanks and correlograms as their

front-end [Wang and Brown, 2006]. In these approaches the number of time-frequency

components is relatively small. However closely-spaced components within the same crit-

ical band1 are hard to separate.

Other authors consider the Fourier spectrum as their front-

end [Srinivasan and Kankanhalli, 2003, Bach and Jordan, 2004, Vincent, 2006]. In

1A critical band is said to be the frequency bandwidth or frequency separation where perceptual prop-
erties change suddenly [Hartmann, 1998, pp.256]. It may be measured using masking experiments, where
a sine tone barely masked by a band of white noise around it is taken. When the noise band is nar-
rowed until the point where the sine tone becomes audible, its width at that point is the critical band-
width [Fletcher, 1940, Zwicker and Fastl, 1990].
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these approaches, in order to obtain sufficient frequency resolution a large number

of components is required. Components within the same frequency region can be

pre–clustered together according to a heuristically defined stability criterion computed

using statistics over the considered region. However, this approach has the drawback of

introducing another clustering step, and opens the issue of choosing the right descriptors

for those preliminary clusters. Furthermore, and as far as the sound segregation is

concerned, considering the entire mixture will become untractable when dealing with

audio streams, and as a result some complexity reduction methods should be considered.

Accordingly, in this work an alternative sinusoidal front-end is used. The sinusoidal

model fulfills most of the desirable properties of a mid-level representation, as discussed

in Section 2.4.3:

• it allows to provide a meaningful and precise representation of the auditory scene

while considering only a limited number of components;

• it is invertible, allowing to reconstruct an approximation of the segregated sound

components and it is efficient and intuitive to compute;

• it is particularly suited for sustained sounds with a well defined pitch and harmonic

structure such as the vowels of a singing voice or the notes from pitched music instru-

ment (e.g. trumpet, piano or violin);

• it allows to model consonants or non-pitched instruments (e.g. drums), although

requiring a large number of sinusoidal components to accurately represented such

signals [McAulay and Quatieri, 1986];

• it easily enables to use prior information about the harmonic spectral structure, mak-

ing it suitable for the separation of pitched musical instruments and voiced speech

and singing.

Because in traditional Western music pitched sounds tend to dominate and last for

longer periods when compared to transient signals (usually originated at the attacks or

onsets of notes and events, or resulting from percussion instruments such as drums), a

sinusoidal model can, in practice, capture most of the pitched information that is useful

for MIR applications. This includes the ability to detect musical events in a complex

mixture, such as the melodic line or the timbral characteristics of the instruments playing

or the main singing voice in the signal.

The following sections summarize the method used in this work for the precise

estimation of the frequency and amplitude of the most prominent spectral peaks in

an audio frame. The interested reader can find more detailed information about the

presented technique in [Marchand and Lagrange, 2006, Lagrange and Marchand, 2007,
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Lagrange et al., 2007a].

3.4.1 Short-Term Sinusoidal Analysis

Sinusoidal modeling represents a sound signal as a sum of sinusoids characterized by their

main parameters: amplitudes, frequencies, and phases. It is rooted in Fourier’s theorem,

which states that any periodic function can be modeled as a sum of sinusoids at various

amplitudes and harmonic frequencies. Since considering these parameters as constant

through the whole signal duration is not perceptually relevant, a common approach is to

segment the signal into successive frames of small duration. The length of each frame (N

samples), and the hop size (H samples) between successive frames should be set so that

the parameters can be considered constant within the frame (for a sampling frequency of

44100 Hz, N is set to 2048 samples and H is set to 512 samples, corresponding to a frame

length of about 46 ms and a hop size of about 11 ms – these are typically used values in

music analysis [Zölzer, 2002]). The discrete signal xk(n) at frame index k is then modeled

as follows:

xk(n) =
Lk∑

l=1

ak
l cos

(
2π

Fs
fk

l · n + φk
l

)
(1)

where n is the sample index, Fs is the sampling frequency, φk
l is the phase at the beginning

of the frame of the l-th component of Lk sinusoids, and fk
l and ak

l are respectively the

frequency and the amplitude. Both are considered as constant within the frame.

3.4.2 Peak Parameters Estimation

For each frame k, a set of sinusoidal parameters Sk = {pk
1, · · · , pk

Lk} is estimated. The

system parameters of this Short-Term Sinusoidal (STS) model Sk are the Lk triplets

pk
l = {fk

l , ak
l , φ

k
l }, often called peaks. These parameters can be efficiently estimated by

picking some local maxima from a Short-Term Fourier Transform (STFT).

To estimate each set of peaks Sk, the spectrum Xk is computed using a discrete Fourier

transform (DFT) applied to the windowed samples of frame k. The samples are weighted

by a Hann window with an even lenght N , and subsequently circularly shifted by N/2

samples prior to the DFT computation. This results in zero-phase windowing, a procedure

that allows to obtain a robust estimation of the phase [Serra, 1989].
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The precision of these estimates is further improved by using phase-

based frequency estimators which utilize the relationship between phases of

successive frames [Puckette and Brown, 1998, Marchand and Lagrange, 2006,

Lagrange and Marchand, 2007].

Assuming that the frequencies of the pseudo-periodic components of the analysed

signal are constant during the time-interval between two successive short-term spectra,

with a hop size of H samples, the frequency can be estimated from the phase difference:

ω̂ =
1

2πH
∆φ. (2)

The smaller the hop size the more accurate this assumption is. Two successive short-

term spectra separated by one sample are considered. The frequency is estimated directly

from the phase difference ∆φ ensuring that the phase is unwrapped so that the difference

is never negative. The resulting estimator, known as the difference estimator, is:

fk
l =

Fs

2π
(∠S[ml, nk + 1]− ∠S[ml, nk])unwrap (3)

where ∠S denotes the phase of the complex spectrum S, ml is the frequency bin index of

the peak pk
l within the spectrum, and nk is the index of the first sample of analysis frame

k. The frame index k is omitted in the remainder of this section.

During the analysis of natural sounds, the presence of several frequency components

in the same spectral bin or noise may lead to incoherent estimates. If the frequency fl

of a local maximum located at bin ml is closer to the frequency of another bin, the local

maximum should have been located at this bin. Therefore, a local maximum with an

estimated frequency that does not satisfy the following condition is discarded: |N/Fs ·fl−
ml| ≤ 0.5.

Since the power spectrum of an ideal sinusoid signal has the shape of the power spec-

trum of the analysis window, centered around the sinusoid frequency, the improved fre-

quency estimation can be used to estimate more precisely the amplitude:

al = 2
|S[ml]|

|WH(fl −ml Fs/N)| (4)

where |S[ml]| is the magnitude of the complex spectrum, WH(f) is the spectrum of the

Hann window used for the STFT computation, f being the frequency in Hz.

These more precise estimates of frequency and amplitude parameters are important

for calculating more accurate similarity relations between peaks. The importance of more
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precise frequency estimation for the proposed method, when compared to the basic ap-

proach of directly converting the FFT frequency bin number to frequency, is explored in

some of the experiments in Section 4.3.

Other frequency estimation methods can also be used, such as parabolic interpo-

lation [Abe and Smith, 2004] or subspace methods [Badeau et al., 2006]. In particular,

a technique based on the Odd-DFT filter bank that allows the accurate estimation of

the frequency, phase and magnitude of stationary sinusoids proposed by [Ferreira, 2001]

has been used with some promising results in a multi-pitch detection system presented

in [Martins, 2002, Martins and Ferreira, 2002].

3.5 Time Segmentation of Music Signals

In order to introduce some degree of temporal integration and simultaneously optimize

partial tracking and source formation, peaks should be grouped along time and fre-

quency, into what is known in this work as a texture window. This allows to compute

the proximity between peaks (as will be described in Section 3.7), both within a frame

as well as across frames belonging to a same texture window, resulting in the construc-

tion of a similarity graph (see Section 3.6.2). Unlike approaches based on local informa-

tion [McAulay and Quatieri, 1986], such a similarity graph enables the use of the global

Normalized Cut criterion to partition the graph over an entire texture window (see Sec-

tion 3.6.3). Thus, peaks are grouped over texture windows rather than per frame.

Two approaches for defining texture windows have been implemented: the first based

on fixed length texture windows, and a second one based on the use of an onset detector

to automatically define the texture window lengths.

3.5.1 Fixed Length Texture Windows

Texture windows can be obtained by simply accumulating a fixed number of frames over

time (which in this work is set to correspond to a length of about 150 ms – see Figure 6).

In such a case, if Lk is the number of peaks in frame k, then the number of peaks in a

texture window is T :

T =
N∑

k=1

Lk (5)

where N is the texture window length (in frames). As will be discussed in Section 3.6.2,

this will later allow to compute the pairwise similarity between all peaks pk
l and pk+n

m in
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the texture window, where l,m are the peak indices, n ∈ {0 . . . N − 1} is the frame offset

between the peaks and n = 0 is used for peaks of the same frame.

Although simple and computationally efficient, this fixed length approach does not take

into consideration the perceptual organization of sound as performed by the human ear. As

discussed in Chapter 2, the human auditory system is highly sensitive to the time structure

of a sound stream. In fact, onsets seem to be particularly important to the segregation of

complex mixtures of sounds [Scheirer, 2000, Srinivasan, 2004], and the human ear tries to

lock on such events as a way to perform a first low-level time segmentation of the acoustic

stimuli. This allows to divide the sound into perceptually coherent time regions, where

sources assume a clear presence and additional grouping principles become into play (e.g.

harmonicity grouping). This fact is even more evident in the case of music signals, where

in most cases a regular time structure exists, mainly resulting from the onset of the notes

and events in the musical piece [Gouyon, 2005].

As a result, a more perceptually motivated way to adjust the length of the texture

windows could be based on the use of an onset detector, an approach explored in this

work and explained in the following section.

3.5.2 Dynamic Length Texture Windows

Fixed length texture windows blindly chop an audio signal into segments without taking

into consideration the various sound events occurring over time. Additionally, by not

following a perceptually inspired approach, such a method will often result in texture

windows where only parts of the sound events in a signal are present – be it their attack

regions (i.e. onsets), sustained sections (i.e. usually the steady-state part of the sound

event) or the release sections (i.e. the offsets). Because sound event segregation will be

performed at the texture window level, this may result in an attempt to segregate sound

events poorly represented in the texture window and whose partial information may have

very little perceptual relevance. Consequently, one may expect that a better segregation

strategy could be achieved by dynamically adjusting the length of each texture window in

order to enclose as much as possible “perceptually complete” sound events.

One way to achieve this goal is to use an onset detector in order to identify the oc-

currence of new sound events in an audio signal, and to adjust texture windows to the

corresponding inter-onset audio segments. As an example, Figure 8 depicts the time do-

main and the corresponding spectrogram representations of a fragment of a jazz recording,

below which are plotted the onsets automatically identified using the algorithm described

in the following section. As it is clearly visible from this example, the audio segments
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Figure 8: Dynamic adjustment of the length of the texture windows based on the detection of
onsets in the audio signal. The top panel depicts the time domain representation of a fragment of a
polyphonic jazz recording, below which is displayed its corresponding spectrogram. The bottom panel
plots both the onset detection function SF (n) (gray line – see Equation 6), as well as its filtered
version (black line – see Equation 7). The automatically identified onsets (see Section 3.5.3) are
represented as vertical dotted lines.

between consecutive onsets present a high correlation to the occurrence of sound events

in the signal (visible in the spectrogram representation), be them pitched events such as

musical notes, or unpitched and noisy events such as percussion hits. As a result, taking

this onset information into account tends to result in more perceptually and musically

meaningful texture windows.

The following section presents a summarized description of the implemented onset

detector algorithm.

3.5.3 Onset Detection Algorithm

Onset detection aims at finding the starting time of musical events (e.g. notes, chords,

drum events) in an audio signal. However, polyphonic music poses an increased challenge
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since nominally simultaneous notes might be spread over tens of milliseconds, turning the

definition of onsets ambiguous. Similarly, it is hard to define a precise onset time for

sounds with slow attacks.

In a recent tutorial article, Simon Dixon revisited the problem of onset detec-

tion [Dixon, 2006], where a number of onset detection algorithms were reviewed and

compared on two datasets. This study was itself based on a previous article by Bello

et al. [Bello et al., 2005] where a theoretical and empirical comparison of several state-

of-the-art onset detection approaches is presented. Dixon concluded that the use of a

spectral flux detection function for onset detection resulted in the best performance ver-

sus complexity ratio.

Hence, and following the findings and results in [Dixon, 2006], the approach used in

this work is based on the use of the spectral flux as the onset detection function, defined

as:

SF (n) =
N/2∑

k=0

H(|X(n, k)| −|X(n− 1, k)|) (6)

where H(x) = x+|x|
2 is the half-wave rectifier function, X(n, k) represents the k-th fre-

quency bin of the n-th frame of the power magnitude (in dB) of the short time Fourier

Transform, and N is the corresponding Hamming window size. For the experiments per-

formed in this work a window size of 46 ms (i.e. N = 2048 at a sampling rate fs = 44100

Hz) and a hop size of about 11ms (i.e. 512 samples at fs = 44100 Hz) are used.

The bottom panel of Figure 8 plots the values over time of the onset detection function

SF (n) for an jazz excerpt example. The onsets are subsequently detected from the spectral

flux values by a causal peak picking algorithm, where it attempts to find local maxima

as follows. A peak at time t = nH
fs

is selected as an onset if it satisfies the following

conditions:

1. SF (n) ≥ SF (k) ∀k : n− w ≤ k ≤ n + w

2. SF (n) >
Pn+w

k=n−mw SF (k)

mw+w+1 × thres + δ

where w = 6 is the size of the window used to find a local maximum, m = 4 is a multiplier

so that the mean is calculated over a larger range before the peak, thres = 2.0 is a threshold

relative to the local mean that a peak must reach in order to be sufficiently prominent

to be selected as an onset, and δ = 10−20 is a residual value to avoid false detections on

silence regions of the signal. All these parameter values were derived from preliminary

experiments using a collection of music signals with varying onset characteristics.
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As a way to reduce the false detection rate, the onset detection function SF (n) is

smoothed using a Butterworth filter (see bottom panel of Figure 8), defined as:

H(z) =
0.1173 + 0.2347z−1 + 0.1174z−2

1− 0.8252z−1 + 0.2946z−2
. (7)

In order to avoid phase distortion (which would shift the detected onset time away

from the SF (n) peak) the input data is filtered in both the forward and reverse directions.

The result has precisely zero-phase distortion, the magnitude is the square of the filter’s

magnitude response, and the filter order is double the order of the filter specified in

Equation 7.

Additionally, a minimum and maximum texture window length was defined, so that

onsets detected inside a 50 ms range from the previous one are discarded (avoiding too

short texture windows) and a maximum inter-onset interval of 300 ms is used (avoiding

too long texture windows, a limitation mainly due to computational constraints).

In contrast to applications related to automatic beat or rhythm analysis, the use of an

onset detector for the purpose of dynamically adjusting the length of the texture windows

does not necessarily need to be highly precise. Because the onsets end up being used

as help guides for coarsely diving the audio stream into perceptually relevant texture

windows, the occurrence of false positives and missed onsets is not expected to have a

drastic negative impact on the final results of event segregation.

Considering that the described onset detection algorithm is closely based on proposals

extensively evaluated in [Bello et al., 2005, Dixon, 2006], added to the difficulty to build

and to find publicly available annotated datasets usable as onset ground truth, an objective

and comprehensive evaluation of the performance of the described onset detector is not

the central focus of this work. Nevertheless, a limited evaluation was performed in a few

music audio signals, which were representative of distinct musical styles (e.g. classic piano

music, choral pieces, pop/rock songs, jazz, among others)2.

Section 4.3.3 will present an experimental evaluation and discussion on the use of the

proposed onset detector for the dynamic adjustment of the length of the texture windows

and compare its results to the use of the fixed length approach for the segregation of the

main melody line from polyphonic music signals.

2Some audio examples of the results of the onset detector can be found at: http://www.fe.up.pt/

˜lgustavo
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3.6 Grouping Sound Events

Following the sinusoidal analysis front-end and the time segmentation of a complex mixture

signal into texture windows (as discussed in previous sections of this chapter), the challenge

is now to find a way to cluster (i.e. to group together) the spectral peaks into entities that

most likely represent sound events or “objects” in the mixture.

Clustering is the task of grouping items into different categories (i.e. clusters) according

to some defined similarity measure. Clustering is a common technique for statistical data

analysis and is used in many fields, including machine learning, data mining, pattern

recognition, bioinformatics and image and sound analysis. Also known as unsupervised

learning, where no prior information about the items is available apart from the features

directly observable, it can be applied to generic data sets, such as the collection of spectral

peaks extracted from a sound mixture (described in Section 3.4). Any feature from a peak,

such as its frequency, amplitude or phase can potentially be used to represent the peak

as a data point in a data set. However, some features may be more appropriate than

others depending on the final objective of clustering (see Section 3.7). In all the cases,

the partitioning of the dataset into clusters should ideally be done in a way so that data

in each cluster shares some common characteristic (according to some suitable distance

or proximity measure), and where each cluster is as distinct as possible from all the other

clusters (similarly to Fisher’s linear discriminant [Duda et al., 2000, pp.117]).

The problems of clustering and grouping is a well studied field, and the computational

task of partitioning or grouping a data set into k clusters is often referred to as k-clustering.

Two commonly used methods are k-means [Duda et al., 2000, pp.526] and Expectation-

Maximization (EM) [Duda et al., 2000, pp.124], being the latter traditionally used for

learning a mixture-model. EM and k-means in particular are based on estimating explicit

models of the data, providing high quality results when the data is organized according

to the assumed models. However, when data is arranged in more complex and unknown

shapes (as may happen with sound data), these methods tend to poorly explain the data

distribution. As a result, some other approach to clustering where the complex distribution

of sound data is better modeled should be investigated. In this thesis the choice was to

use a technique known as spectral clustering, discussed next.

3.6.1 Spectral Clustering

Spectral clustering, an alternative clustering approach that goes back to Donath and Hoff-

man [Donath and Hoffman, 1973], was shown to correctly handle complex and structured
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Figure 9: An example dataset containing non-convex and non-Gaussian shaped distributions (a)
and the resultant grouping of the data points after applying spectral clustering (b). Such a clustering
result would be hard to attain if using techniques such as k-means or EM, which assume convex
shaped or Gaussian distributed data sets.

data. As a result, in the machine learning community, spectral clustering has been made

popular by the works of Shi and Malik [Shi and Malik, 2000], Ng et al. [Ng et al., 2002]

and Meila and Shi [Meila and Shi, 2001]. A recent and comprehensive tutorial on spectral

clustering can be found in [von Luxburg, 2007].

Instead of estimating an explicit model of data distribution, spectral clustering rather

performs a spectral analysis of the matrix of point-to-point similarities (i.e. the similarity

or affinity matrix). The success of spectral clustering mainly results from the fact that it

does not make strong assumptions on the shape of the clusters. Differently from k-means,

where data is assumed to follow a convex shaped distribution, or opposed to EM, which

assumes a Gaussian distribution of the data, spectral clustering can solve very general

problems like the one exemplified in Figure 9.

Being based on the eigenstructure of the computed similarity matrix, spectral clus-

tering simply needs to solve a linear problem. This avoids risks of getting stuck in local

minima and consequently having to restart the algorithm for several times with different

initializations (as happens with k-means). On the other hand, spectral clustering allows to

extract a global impression of the data structure (e.g. the components of a sound mixture)

rather than focusing on local features and their consistencies in the data.

Moreover, compared to point based clustering algorithms such as k-means, the use of

a similarity matrix as the underlying representation enables expression of similarities that

can not be computed as a distance function of independently calculated feature vectors.

The Harmonically Wrapped Peak Similarity (HWPS) measure proposed in Section 3.7.2,

is an example of such as a similarity measure.
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Finally, spectral clustering can be computationally efficiently even for large data sets,

as long as the similarity matrix is made sparse. However, and as will be discussed in the

following sections, computing a suitable similarity matrix depends on the choice of a good

similarity graph, an operation which is not trivial, and spectral clustering can become quite

unstable under different choices of the parameters for the neighborhood graphs. Like in all

machine learning approaches, the main issue is in the definition of the feature or similarity

functions (i.e. the way data is abstracted) and not so much in the classifier or clustering

algorithms. As a result, and as argued in [von Luxburg, 2007], spectral clustering should

not be taken as a “black box algorithm” which is able to automatically detect the correct

clusters in any arbitrary data set. It can, nevertheless, be used as a powerful tool which

can produce interesting results if applied diligently.

Previous Use of Spectral Clustering in Sound Analysis

As far as it was possible to identify, there are few applications of spectral clustering to audio

processing. It has been used for the unsupervised clustering of similar sounding segments

of audio [Ellis and Lee, 2004, Cai et al., 2005]. In these approaches, each audio frame is

characterized by a feature vector and a self-similarity matrix across frames is constructed

and used for clustering. This approach has also been linked to the singular value decom-

position (SVD) of feature matrices to form audio basis vectors [Dubnov and Appel, 2004].

These approaches characterize the overall audio mixture without using spectral clustering

to form and track individual sound sources.

Spectral clustering has also been used for blind one-microphone speech separa-

tion [Bach and Jordan, 2004, Bach and Jordan, 2006]. Rather than building specific

speech models, the authors show how the system can separate mixtures of two speech

signals by learning the parameters of affinity matrices based on various harmonic and

non-harmonic cues. The entire STFT magnitude spectrum is used as the underlying rep-

resentation.

Closer to the approach proposed in this thesis, harmonicity relationships and common

fate cues underlie a short-term spectra-based similarity measure presented by Srinivasan

and Kankanhalli [Srinivasan and Kankanhalli, 2003]. To integrate time constraints, it

is alternatively proposed in [Srinivasan, 2004] to cluster previously tracked partials to

form auditory “blobs” according to onset cues. Spectral clustering (and in particular the

Normalized Cut criterion – explained in a following section) is then carried out on these

blobs.
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Figure 10: Example of an undirected similarity graph (where the nodes of the graph can be the
peaks of the magnitude spectrum of a sound signal), and an undirected edge is formed between each
pair of nodes. The edge weight is a function of the similarity between nodes (which can be defined by
means of various grouping cues, such as frequency, amplitude and harmonicity proximity, among
others – see Section 3.7).

In contrast, and as described in Section 3.4, a short-term sinusoidal modeling frame-

work is used in the approach proposed in this chapter. It results in more accurate and

robust similarity relations as well as significantly smaller affinity matrices that are com-

putationally more tractable, allowing to consider texture windows with a high number of

frames.

3.6.2 Constructing the Similarity Graph

Constructing a similarity graph appropriate for spectral clustering is not a trivial task and

very little is still known about the theoretical implications of the various constructions.

This results in several choices to be made and parameters to be set when attempting to

get the best out of spectral clustering for a specific application domain. This section will

present a discussion on the processes involved in constructing a similarity matrix that is

adequate for the sound segregation task.

The use of texture windows as a way to perform time segmentation of the audio signals

(see Section 3.5) will result in a dataset of T data points, corresponding to the total number

of spectral peaks pk
l over each frame k belonging to the texture window (see Equation 5).

As a result, given a set of data points x1, . . . , xT (corresponding for e.g. to the frequency

fk
l or the amplitude ak

l values of the peaks detected in a sound mixture – see Section 3.4)

and some definition of similarity wij ≥ 0 between all pairs xi and xj of data points (as

will be discussed in Section 3.7), the objective of clustering is to divide the data points

into k different groups (i.e. sound events or “sources” – see Section 3.6.4 for a discussion
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on how this number k can be defined) so that points in the same group are similar and

points in different groups are dissimilar to each other.

An elegant way of modeling the data set is to represent it as a weighted similarity graph

G = (V,E), where each vertex vi in V = {v1, . . . , vT } corresponds to a data point xi, and

where two vertices i and j are connected by a weighted edge in E if the similarity wij

between the corresponding data points xi and xj is larger than 0 (or some other defined

threshold). Figure 10 depicts an example graphical representation of a similarity graph.

There are several common ways to transform a given set x1, . . . , xT of data points with

pairwise similarities wij into a graph. When constructing these similarity graphs the goal

is to model the local neighborhood relationships between the data points. At least three

approaches are commonly used with spectral clustering: ε-neighborhood graph, k-nearest

neighbor graph and the fully connected graph. The choice of the type of graph has a direct

influence on the performance of spectral clustering and a comprehensive discussion about

their properties and differences can be found in [von Luxburg, 2007].

For the work proposed in this thesis the choice came down to using a fully connected

graph. In this approach all points in the data set end up connected: points in local

neighborhoods are connected with relatively high weights, while edges between distant

points have very small (but still positive and therefore non-zero) weights. This avoids

the specification of a threshold for the minimum weight necessary to connect two data

points. As a drawback, fully connected graphs result into non-sparse similarity matrices,

preventing the use of more efficient computation techniques that take advantage of data

sparsity.

Defining a Generic Similarity Function

Another important aspect is the definition of the similarity function to use. Since the

similarity graph should represent the local neighborhood relationships, this construction

is only useful if the similarity function itself models local neighborhoods. In other words,

it is important to guarantee that the local neighborhoods induced by the chosen similarity

function are “meaningful” – i.e. points considered as “very similar” by the similarity

function should also be closely related in the specific application the data comes from.

On the other hand, the global “long-range” behavior of the similarity function is not

so important for spectral clustering since it does not really matter whether two data

points have similarity score 0.01 or 0.001 (as just an example) – both values represent

data points with negligible similarity anyway. Ultimately, the choice of the similarity

function depends on the domain the data comes from, and no general advice seems to
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Figure 11: Gaussian similarity function as defined in Equation 8 for three values of σ.

be available [von Luxburg, 2007]. As a result, Section 3.7 will propose some similarity

functions inspired in auditory grouping principles (as discussed in Section 2.3.1), which,

as will be demonstrated, present promising results in capturing the perceptual proximity

between spectral components (i.e. peaks) in complex sound mixtures. This makes the use

of spectral clustering techniques feasible for the segregation of sound events.

Accordingly, the fully connected graph is usually used in combination with the Gaussian

similarity function, defined as

wij = e
−

„
d(xi,xj)

σ

«2

(8)

where the parameter σ controls the width of the neighborhoods and d(xi, xj) = ‖xi − xj‖
is some distance measure (e.g. the Euclidean distance). Figure 11 shows plots of the

Gaussian similarity function for three values of connectivity parameter σ. Unfortunately,

barely any theoretical results are known to provide guidance in the specification of σ.

As a result, some heuristics and rules of thumb have been proposed by several authors

in different domains. Shi and Malik, while using spectral clustering for image segmen-

tation, proposed to set σ to 10 or 20 percent of the total range of the feature distance

function d(xi, xj) [Shi and Malik, 2000]. On the other hand, von Luxburg proposed to

use σ in the order of the mean distance of a point to its k-th nearest neighbor, with k
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chosen as k ∼ log(n) + 1 [von Luxburg, 2007]. Ng et al. suggested an iterative approach,

where they select σ automatically by running their clustering algorithm repeatedly for

a number of values of σ and selecting the one which resulted in a minimum distortion

measure [Ng et al., 2002]. However, this approach increases significantly the computation

time, and still requires the manual specification of the range of values to be tested.

In a different approach, [Zelnik-Manor and Perona, 2004] argued that when the data

set includes clusters with different local statistics there may not be a single value of σ that

works well for all the data. Instead, the authors propose a self-tuning approach, where

they introduce an automatic selection of the local scaling value σ for each data point.

The approach used in this work is based on local statistics of the data in a texture

window, as will be detailed in Section 3.7.

Encoding the Similarity Graph into a Similarity Matrix

Having the constructed graph, it can now be represented internally by a similarity matrix

W of size T × T (where T is the number of peaks in a texture window, as defined in

Equation 5), which encodes the pairwise similarities W (pk
l , p

k+n
m ) of all peaks pk

l and pk+n
m

from the texture window with length N frames, where k is the frame index, l,m are the

peak indices, n ∈ {0 . . . N − 1} is the frame offset between the peaks and n = 0 is used for

peaks of the same frame (recall the definition of texture windows presented in Section 3.5).

For the sake of notation simplicity, let wi,j := W (pk
l , p

k+n
m ), where i, j ∈ {1, . . . , T} are the

single indices for the corresponding peaks pk
l and pk+n

m in the texture window. Using this

notation, the similarity or affinity matrix W can be represented as:

W =





w11 w12 . . . w1T

w21 w22 . . . w2T

...
... . . . ...

wT1 wT2 . . . wTT




. (9)

Assuming G as an undirected graph implies that wij = wji, making W symmetric

(other types of connected graphs are possible, but this symmetry leads to interesting

properties explored by spectral clustering – see [von Luxburg, 2007]).

The problem of clustering can now be formulated using the computed similarity matrix

W . The objective is to find a partition of the graph such that the edges between different

groups have very low weights (i.e. points in different clusters are dissimilar from each

other) and the edges within a group have high weights (i.e. points within the same cluster

are similar to each other). There are several ways to perform clustering, and some of the
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Table 1: Frequencies and amplitudes of the peaks from two harmonic series A and B, as depicted
in Figure 12.

A0 A1 A2 A3 A4,B3 B0 B1 B2 B4

f 440 880 1320 1760 2200 550 1100 1650 2750
a .8 .8 .6 .4 .4 1 .8 .6 .4
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Figure 12: Two sets A and B of harmonically related peaks, following the values specified in
Table 1.

most common approaches will be discussed in the following sections.

As a simple example, Figure 12 depicts the spectrum of two harmonic sound

“sources” (i.e. harmonic series), A and B, whose spectral peaks {A0, . . . , A4} ∈ A and

{B0, . . . , B4} ∈ B have the amplitudes and frequencies presented in Table 1. The peaks

in each source share a harmonic relation, i.e. they are integer multiples of a same funda-

mental frequency f0, which in this case is different for each source: source A has a f0 of

440 Hz while B has f0 equal to 550 Hz. In this particular example, the two sources share

a common harmonic: A4 has the same frequency and amplitude values as B3.

Assume for now that, for illustrative purposes, some “ideal” harmonicity metric is used

to construct a fully connected similarity graph where the similarities between each and

all peaks from A and B are encoded (a detailed discussion on harmonicity metrics will

be presented in Section 3.7.2). In this graph, two peaks xi, xj ∈ A ∪B whose frequencies

are harmonically related should have a high similarity value wij . Otherwise, they should

have a low similarity wij (recall from Section 2.3.1 that harmonicity is one of the main
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Similarity Matrix
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Figure 13: Graphic representation of the similarity matrix W for two harmonic series, as defined
in Table 1 and depicted in Figure 12, using some “ideal” harmonicity distance. High similarity
values are mapped to black and low similarity values to white.

perceptual cues used by the human ear to segregate sound sources).

Figure 13 presents a graphical representation of the affinity matrix W , which encodes

the harmonic similarity wij between all the peaks from A and B, ordered for the sake

of visualization in accordance to their corresponding source. The “ideal” harmonicity

similarity measure used in this example clearly succeeds in assigning high similarity values

for peaks coming from the same harmonic source (mapped to black), while attributing

low similarity values for peaks from different sources (mapped to light gray or white).

From this representation it is now possible to partition the peaks into clusters which will

hypothetically have some correspondence to the actual sound sources in the signal (two,

in this example).

Similarity Graph Notation

In order to formalize the rationale behind spectral clustering, it becomes helpful to in-

troduce some basic graph notation at this stage (following the notation defined and used

in [von Luxburg, 2007]).

Let the degree of a vertex vi ∈ V be defined as:

di =
T∑

j=1

wij . (10)

Note that, for a fully connected graph, this sum is only meaningful for the vertices

adjacent to vi, since for all other vertices vj the weight wij becomes negligible and in

practice will end up approximated by 0 (mainly due to numerical limitations).
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The degree matrix D can be defined as the diagonal matrix with the degrees d1, . . . , dT

on the diagonal:

D =





d1

d2

. . .

dT




. (11)

Given a subset of vertices A ∈ V , let its complement V \ A be denoted as A. Addi-

tionally, let the indicator vector f = (f1, . . . , fT )′ ∈ N0
T be the vector with entries fi = 1

if vi ∈ A and fi = 0 otherwise (i.e. each element fi indicates the cluster “label” assigned

to each data point). For convenience let i ∈ A be the shorthand notation for the set of

indices {i|vi ∈ A}, in particular when dealing with sums of the type
∑

i∈A wij . For two

not necessarily disjoint sets A, B ⊂ V define

cut(A, B) :=
∑

i∈A,j∈B

wij . (12)

The volume of a subset A ⊂ V can be defined as:

vol(A) :=
∑

i∈A

di. (13)

Intuitively, vol(A) measures the size of A by summing over the weights of all edges

attached to vertices in A.

A subset A ⊂ V of a graph is connected if any two vertices in A can be joined by a

path such that all intermediate points also lie in A. A subset A is termed as a connected

component if it is connected and if there are no connections between vertices in A and

A. The nonempty sets A1, . . . , Ak form a partition of the graph if Ai ∩ Aj = ∅ and

A1 ∪ · · · ∪Ak = V .

3.6.3 The Normalized Cut Criterion

When taking data in the form of a similarity graph, the task of separating points into

different groups according to their similarities can be restated as follows: find a partition

of the graph such that the edges between different groups have a very low weight (which

means that points in different clusters are dissimilar from each other) and the edges within

a group have high weight (which means that points within the same cluster are similar to

each other).
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Figure 14: Example of an undirected similarity graph, where the result of the mincut criterion
defined in Equation 14 is depicted in opposition to a better and more balanced cut where the simi-
larity between points in the same cluster and the dissimilarity between points in different clusters
are maximized.

Given a similarity graph with affinity matrix W , the simplest and most direct way to

assemble a partition of the graph is to solve the mincut problem. Recalling the notation

A for the complement of A, and the definition of cut(A, B) given in Equation 12, if taking

a given number of k subsets the mincut approach simply consists in choosing a partition

A1, . . . , Ak which minimizes:

ĉut(A1, . . . , Ak) =
k∑

i=1

ĉut(Ai, Ai) :=
1
2

k∑

i=1

cut(Ai, Ai) (14)

where the factor 1/2 is introduced for notational consistency, otherwise each edge would

be counted twice in the cut.

For the specific case of k = 2, the optimal bipartitioning of a graph is the one that

minimizes the cut(A, B) value (i.e. the mincut), a relatively easy problem that can be

solved efficiently. However, in practice it seldom leads to satisfactory partitions because

the solution tends to separate one individual vertex from the rest of the graph. If looking

at the example graph depicted in Figure 14, mincut would cut between xl and xk, because

the latter only has a single edge connecting it to another vertex. This goes against the

desirable partition of the data, where clusters should be reasonably large groups of points.

Obviously, a better cut would be between vertexes (xi, xj) and (xp, xq) which results in

more balanced and denser clusters.

As a result, a way to circumvent this problem is to explicitly request that the sets

A1, . . . , Ak are “reasonably large”. The two most common objective functions to en-

code this requirement are RatioCut and the Normalized Cut (Ncut) [Shi and Malik, 2000,

von Luxburg, 2007]. Due to the need to apply a relaxation operation for computational

tractability, the first leads to unnormalized spectral clustering while the latter leads to
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normalized spectral clustering, making the Ncut a better choice when compared to Ratio-

Cut (refer to Appendix A for more details). The Ncut was therefore the approach chosen

for the framework proposed in this thesis and will be described in the following.

Recalling the definition of the volume of a set A presented in Equation 13, let Ncut be

defined as:

Ncut(A1, . . . , Ak) :=
1
2

k∑

i=1

cut(Ai, Ai)
vol(Ai)

=
k∑

i=1

ĉut(Ai, Ai)
vol(Ai)

(15)

which, differently from mincut, takes a small value if the clusters Ai are not too small.

In particular, the minimum of the function
∑k

i=1 (1/vol(Ai)) is achieved if all vol(Ai)

coincide. Consequently, what Ncut tries to achieve is that clusters are “balanced”, as

measured by the edge weights.

However, introducing balancing conditions makes the previously simple to solve min-

cut problem become NP hard [Shi and Malik, 2000, von Luxburg, 2007]. Conveniently,

spectral clustering appears as a way to solve relaxed versions of these problems, and a

detailed discussion on the use of graph Laplacians for this purpose is presented in Ap-

pendix A. In summary, the solution should rely on the relaxation of the indicator vector

f = (f1, . . . , fT )′ (where, recall, each element fi is supposed to indicate the cluster “label”

assigned to each data point) to take on real values (i.e. allow fi ∈ R), making it possible

to find a partition that minimizes the Ncut criterion by solving a generalized eigenvalue

system, which leads to the eigenvalues λ of the normalized graph Laplacian, defined as

follows:

Lf = λDf (16)

where L = D − W , D is the degree matrix (see Equation 11) and W is the similarity

matrix (see Equation 9).

Once the eigenvectors are computed, it is possible to show that the second smallest

eigenvector of this generalized eigensystem is the real valued solution to the bipartite

Normalized Cut minimization [Shi and Malik, 2000, von Luxburg, 2007]. Similarly, it is

possible to demonstrate that the eigenvector with the third smallest eigenvalue is the

real valued solution that optimally subpartitions the first two parts. In fact, this line of

argument can be extended to show that one can subdivide the existing graphs, each time

using the eigenvector with the next smallest eigenvalue.
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3.6.4 Partitioning Approaches

Once the eigenvectors of the generalized eigensystem defined in Equation 16 are obtained,

it becomes possible to partition the graph into k pieces using the eigenvectors correspond-

ing to the k smallest eigenvalues [von Luxburg, 2007].

In the ideal case, the eigenvectors should only take on two discrete values and their

values would indicate exactly how to partition the graph. However, and because of the

applied relaxation, the computed eigenvectors can now take on continuous values and it

is therefore necessary to transform them into a discrete form.

Still, because in practice the approximation error from the real valued solution to

the discrete valued solution accumulates with every eigenvector taken and all eigenvec-

tors have to satisfy a global mutual orthogonality constraint, solutions based on higher

eigenvectors become unreliable. Several approaches to achieve this discretization have

been proposed [Shi and Malik, 2000, von Luxburg, 2007], and the following sections will

discuss two alternatives solutions to obtain a final partition of the dataset.

Simultaneous k-Way Cut

The Ncut solution is obtained by solving a generalized eigensystem, as defined in Equa-

tion 16. As detailed in Appendix A, this is equivalent to finding the eigenvectors of the

normalized random walk graph Laplacian Lrw (see Equation 45). Once the eigenvectors

of Lrw are computed, it becomes possible to partition the graph into k pieces using the

eigenvectors corresponding to the k smallest eigenvalues. Because of the relaxation used

to solve the Ncut minimization problem, the computed eigenvectors will take real values

and it is therefore necessary to transform them into a discrete form so they can be used as

k dimensional indicator vectors for each data point xi. Thus, taking these k eigenvectors

of Lrw it is possible to change the representation of the data points xi to points yi ∈ Rk,

an operation known as spectral embedding.

If u1, . . . , uk are the first k generalized eigenvectors of the generalized eigenproblem

Lu = λDu, then let U ∈ RT×k be the matrix containing the vectors u1, . . . , uk as columns

(where T is the number os data points, i.e. peaks, to cluster – see Equation 5):

U =





u1(1) . . . uk(1)

u1(2) . . . uk(2)
... . . . ...

u1(T ) . . . uk(T )




. (17)
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Then, for i = 1, . . . , T , let yi ∈ Rk be the vector corresponding to the i-th row of U .

The usefulness of this change of representation comes directly from the properties of the

graph Laplacians (see Appendix A), which allow to enhance the cluster properties in the

data and to consequently favour their detection [von Luxburg, 2007, pp.7].

Considering this spectral embedded representation, a simple clustering algorithm like

k-means can then be used to extract the final partition from the real valued matrix of

eigenvectors (i.e. cluster the points (yi)i=1,...,T in Rk into clusters C1, . . . , Ck using, for

e.g., k-means).

However, there is nothing principled about using the k-means algorithm in this stage.

Alternative approaches to the use of k-means in this step have been proposed by sev-

eral authors. For instance, Bach and Jordan take the subspace spanned by the first k

eigenvectors, and try to approximate this subspace as well as possible using piecewise con-

stant vectors [Bach and Jordan, 2004]. This also leads to minimizing certain Euclidean

distances in the space Rk, which can be done using some weighted k-means algorithm.

Shi and Malik also proposed an agglomerative approach based on “over-segmentation”

followed by a pruning and merging step [Shi and Malik, 2000]. If one sets k to be higher

than the maximum number of plausible clusters in the data, say k > k′, an over-

segmentation of the graph will occur. It is then possible to come with some forms to

iteratively merge segments until the desired k′ number of output clusters is obtained.

In any case, this partitioning step should be very simple if the data contains well

expressed clusters (e.g. in the ideal case where completely separated clusters exist, the

eigenvectors of Lrw will be piecewise constant – see Appendix A). In such a case, all points

xi belonging to the same cluster are mapped to exactly the sample point yi. In such a

trivial case, any clustering algorithm applied to the points yi ∈ Rk will be able to extract

the correct clusters.

This means that the choice of the clustering algorithm for this last step is somewhat ar-

bitrary and that the real question becomes whether or not the Euclidean distance between

the points yi is a meaningful quantity to look at. Several authors have studied this issue

and showed that this Euclidean distance is in fact meaningful (see [von Luxburg, 2007,

pp.24] and references within).

However, in all these solutions, the final number of clusters k still needs to be specified

beforehand. As previously argued, and particularly relevant for the segregation of sound

events from audio mixtures, this may not be desirable or even possible to do and therefore

should somehow be automatically inferred from the data. The choice of the number k of

output clusters is a general problem for all clustering algorithms, and a variety of more or
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less successful methods have been proposed for this problem.

Estimating the Number k of Output Clusters

In model-based clustering approaches there exist well justified criteria to choose the num-

ber of clusters from the data, usually based on the log-likelihood of the data, which can

then be treated in a frequentist or Bayesian way [von Luxburg, 2007, pp.22]. In approaches

where few or no assumptions on the underlying model are made, a large variety of different

measures can be used to select the number of clusters. Examples range from ad-hoc mea-

sures such as the ratio of within-cluster and between-cluster similarities, over information-

theoretic criteria, the gap statistic, to stability approaches [von Luxburg, 2007, pp.23].

Although all these approaches could be used for spectral clustering, one tool that

is intimately related to the formulation of graph Laplacians is the eigengap heuris-

tic [von Luxburg, 2007, pp.23]. In this approach the goal is to choose the number of

clusters k such that all eigenvalues λ1, . . . , λk are very small, but where λk+1 > 0 is rela-

tively large. However, although this heuristic works well if the clusters in the data are very

well pronounced, it becomes less effective for noisy or overlapping clusters. As a result,

the gap between the i-th eigenvalue and the next one can be either small or large, making

this criteria unreliable.

In an alternative approach, [Zelnik-Manor and Perona, 2004] propose a method based

on the structure of the eigenvectors and their rotation to create a maximally sparse repre-

sentation. They showed that their self-tunning spectral clustering algorithm (which addi-

tionally includes local scaling of the similarity graph, as briefly presented in Section 3.6.2)

can successfully handle multi-scale data, usually problematic for other approaches.

However, and as argued in Section 2.4.4, even if it was possible to robustly estimate a

number of clusters in a graph based on the structure of its eigenvalues and eigenvectors,

the question about the relevance of their correspondence to the sound elements perceived

by different listeners, or by a same listener in different contexts or attentional levels,

remains. Consequently, a divisive clustering solution could provide a better approach to

sound segregation, which intrinsically provides an hierarchical view on polyphonic music

mixtures.

Recursive Two-Way Cut

In a divisive clustering approach, the low-level grouping cues used for the construction of

the corresponding similarity graph can be used to come up with a hierarchical partition

of the data. Therefore this approach emerges as a more suitable framework for sound
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segregation. Additionally, the divisive nature of such a clustering approach does not

require a priori knowledge of the number of output clusters, which, as previously discussed,

is an ill-posed problem.

As described in Appendix A the second smallest eigenvector of the generalized eigen-

system Lrw is the real valued solution to the Normalized Cut minimization. However,

similarly to the k-way cut method described in the previous section, because the eigenvec-

tors can take on continuous values, it is necessary to choose a splitting point to partition

it into two parts.

There are many different ways of choosing a splitting point. One option would be to

take the value 0 or the median value as the splitting point. Another option, presented

in [Shi and Malik, 2000] and used in the system proposed in this thesis, is to search among

l evenly spaced splitting points within the eigenvector for the one that produces a partition

with the best Ncut value (i.e. smallest). After the graph is broken into two parts, the

algorithm can be run recursively on the two partitioned parts until the desired number of

clusters k have been extracted.

A more interesting alternative that does not need the prior specification of the number

of clusters k would be to keep the partitioning recursion going on until the Ncut value

exceeds a certain limit or when some stability criteria of the cut is no longer valid. Shi

and Malik propose a stability criterion on the partition that is based on the observation

that sometimes an eigenvector can take on the shape of a continuous function instead

of a discrete indicator function being sought [Shi and Malik, 2000]. This usually means

that, from the perspective of sound segregation, such an eigenvector is attempting to

break an element from a sound mixture in an uncertain way. In other words, if forcing

the partition of the sound element based on such an eigenvector, many different splitting

points will exist (all of them with similar Ncut values) and the segregation will become

highly uncertain and unstable.

The current version of the framework proposed in this work still requires the prior

specification that the number of maximum clusters k, but the system is flexible enough to

include a stopping criteria as proposed in [Shi and Malik, 2000]. Section 3.8.1 will provide

additional details on how the partitioning and final cluster selection is currently being

performed.
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3.6.5 The Grouping Algorithm

Following the previous discussions about the several issues involved in the implementa-

tion of a sound segregation solution based on spectral clustering, next the final algo-

rithm currently used in the framework proposed in this thesis is summarized. The algo-

rithm is based on the normalized random walk spectral clustering computation, as proposed

in [Shi and Malik, 2000] and described in Appendix A.

1. Given T data points x1, . . . , xT , set up a weighted graph G = (V,E);

2. Compute the similarity matrix W ∈ RT and the degree matrix D ∈ RT (the specific

similarity cues used for sound segregation are described in the following Section 3.7);

3. Compute the unnormalized Laplacian L = D −W ;

4. Calculate the first k generalized eigenvectors u1, . . . , uk of the generalized eigenprob-

lem Lu = λDu (which correspond to the eigenvectors of Lrw);

5. Recursively partition the dataset based on a recursive two-way Ncut approach, using

the eigenvector with the second smallest eigenvalue of Lrw from each sub-graph;

6. Stop when the specified number of clusters k is reached, and data points are clustered

into clusters C1, . . . , Ck.

7. Output clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci}.

The following section will present the perceptually motivated similarity functions used

in step 2, including a novel harmonicity similarity cue, known as Harmonically Wrapped

Peak Similarity (HWPS). Later on in this chapter a discussion about the way to select

the obtained clusters of peaks for resynthesis and further analysis will be presented.

3.7 Perceptual Cues as Grouping Criteria

Following the more generic considerations about the definition of a similarity function for

spectral clustering presented in Section 3.6.2, this section will focus on the specification

of grouping criteria that attempt to capture the perceptual proximity between sound

components (i.e. peaks) in accordance to some of the perceptual grouping principles

discussed in Section 2.3.1. These include frequency and amplitude proximity and a novel

harmonicity criterion, termed Harmonically Wrapped Peak Similarity (HWPS). Such a

harmonicity criterion is of upmost importance since amplitude and frequency cues are not

enough for segregating multiple overlapping harmonic sound sources.

Still, the proposed framework is able to easily accommodate future similarity functions

such as frequency or time masking [Lagrange et al., 2006], common fate, stereo location,
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or other grouping principles, allowing to model an increasing number of perceptual mech-

anisms involved in human hearing (discussed in Section 2.3.1).

3.7.1 Amplitude and Frequency Similarity

Two of the most basic similarities explored by the auditory system are related to the

frequency and amplitude features of the sound components in a sound mixture (see Sec-

tion 2.3.1).

Accordingly, the edge weight connecting two peaks pk
l and pk+n

m will depend on their

frequency and amplitude proximities. Following the generic considerations discussed for

the definition of a similarity function for spectral clustering in Section 3.6.2, amplitude

and frequency similarities, Wa and Wf respectively, are defined as follows:

Wa(pk
l , p

k+n
m ) = e

−
„

ak
l −ak+n

m
σa

«2

(18)

Wf (pk
l , p

k+n
m ) = e

−
„

fk
l −fk+n

m
σf

«2

(19)

where the Euclidean distances are modeled as two Gaussian functions, as previously de-

fined in Equation 8. The amplitudes are measured in deciBel (dB) and the frequencies

are measured in Barks (a frequency scale approximately linear below 500 Hz and logarith-

mic above), since these scales have shown to better model the sensitivity response of the

human ear [Hartmann, 1998].

The Distances in the Similarities

Before arguing about the adequacy of the final Gaussian similarity functions Wa and Wf

(which are discussed later in this section and again in Section 3.7.3 when arguing about

the combination of similarity cues), it is important to first try to understand the meaning

of the Euclidean distances |ak
l − ak+n

m | and |fk
l − fk+n

m |, since they should already be able

to capture relevant information about amplitude and frequency proximities between the

sound elements in a complex signal.

Correspondingly, the first three rows of Figure 15 show the histograms of the amplitude

and frequency distances between the peaks in four different audio examples. For the sake

of clarity and illustration, frequency distances are also represented in Hz for each example.

The first audio signal, Tone A, with a duration of about 15 seconds, corresponds to the

harmonic series A defined in Table 1 and depicted in Figure 12. Its amplitude histogram
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Figure 15: Histograms for the amplitude, frequency (in Hz and Bark) and HWPS distance dis-
tributions in four different audio signals (organized in columns). See text for details.
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clearly shows three peaks (see plot a of Figure 15), corresponding to the pairwise absolute

differences (in dB) between the three different amplitudes of its harmonics (i.e. 0.8, 0.6

and 0.4 – see Table 1). The frequency histogram (in Hz – see plot b) also clearly presents

peaks for distances that are multiple integers of the fundamental frequency of the harmonic

series A, i.e. 440Hz, corresponding to the pairwise distances between the frequencies of

all the harmonics. Given the non-linear nature of the Bark scale, the histogram of the

frequencies distances in Bark (see plot c) is not so easy to interpret.

The second example signal, Tones A+B, with a duration of about 15 seconds, is

the mix of the harmonic series A of the previous example with the harmonic series B,

whose complete definition is presented in Table 1 and depicted in Figure 12. In this case,

the histogram of the amplitude distances becomes more complex but it is still possible

to identify the main pairwise distances between the peaks in the mix as peaks in the

histogram (see plot e in Figure 15). A similar observation can be made for the frequency

distances (see plots f, g), where the pairwise absolute differences between the two harmonic

sets of peaks are also still possible to identify in the histogram (clearer when measured in

Hz – see plot f ).

The two last columns of Figure 15 show the histograms for two 30 second real-world

signals, Jazz1 and Daisy1, both from the MIREX dataset3. Given their higher complex-

ity, their amplitude and frequency distance distributions are equally more complex and

denser, and consequently harder to interpret in detail. Nevertheless, it is interesting to ob-

serve that both signals present similarly shaped distributions for amplitude and frequency

differences, even though Jazz1 is an excerpt from a jazz piece with a saxophone playing

the main melody over a piano, bass and drums background, while Daisy1 is an excerpt

from a japanese pop song, with a female singing voice.

Both amplitude distance histograms (see plots i and m) exhibit an exponentially de-

caying distribution, meaning that, on average, most of the spectral components in the

signal are close in amplitude. In fact, this is far from surprising since the current system

only selects the 20 higher amplitude spectral peaks in each frame.

The frequency distance histograms (see plots j, n, k and o) have identically shaped

distributions for both signals. Also interesting to note is the similar shape of the distri-

butions for the Hz and Bark representations. In all the cases, it is possible to observe a

very high peak for zero valued distances (over 1.5× 105) and, similarly to the amplitude

histograms, their shapes indicate that there is a high number of components in the signal

that are close in frequency. Additionally, in the frequency histograms expressed in Hz

3http://www.music-ir.org/mirex2005/index.php/Main_Page
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(plots j, n) it is possible to observe some harmonically related local maxima (resembling

the ones in plot b) which probably result from strong harmonic events in the signal (e.g.

long and strong notes).

For the sake of presentation clarity, Figure 15 also includes in plots d, h, l and p

information about the harmonicity cue proposed in this thesis, which will be discussed in

Section 3.7.2.

Using Amplitude or Frequency Similarity for Sound Segregation

The definition of the amplitude and frequency similarity functions Wa and Wf given in

Equations 18 and 19 takes the Euclidean distances between the amplitudes or frequency

values of each pair of peaks in the signal, and computes a Gaussian function where it is

necessary to specify neighbourhood width factors, σa and σf , respectively.

As discussed in Section 3.6.2, the specification of these neighbourhood parameters is

not trivial. In the current system implementation, both the amplitude and frequency

Euclidean distances are first normalized to values in the range [0, 1] (i.e. d(i, j) =
d(i,j)−min(d(i,j))

max(d(i,j))−min(d(i,j)) , where d(i, j) is the normalized distance and d(i, j) can be either

the amplitude or the frequency distance between peaks i and j).

Plots a and c in Figures 16 and 17 show the normalized distance histograms for the

Tones A+B and Jazz1 examples, respectively, where it is clear that although the range of

the distances is now in the interval [0, 1], their shape is unchanged (compared to plots f, j

in Figure 15). This means that their relative distances are preserved, making no difference

to the grouping algorithm. Still, this normalization allows to simplify the specification of

the neighborhood parameters since now both the amplitude and the frequency distances

span the same numeric range. Additionally, and as will be discussed in Section 3.7.3,

this will also simplify the combination of several similarity cues into a single similarity

function.

The current system uses a fixed and empirically found value of 1.2 for both σa and

σf , which provided satisfactory segregation results (see Chapter 4). The gray dashed lines

in plots a and c in Figures 16 and 17 present a segment of the corresponding Gaussian

function (recall Figure 11) overlaid with the histograms (for visualization purposes, the

Gaussian functions represented in the plots were scaled by the maximum bin value of each

histogram).

However, because the proposed system works in a causal manner, the normalization

operation is performed independently for each texture window and not for the full length

of the signals under analysis. This may result in local normalization artifacts, since for
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Figure 16: Histograms of the normalized distance histograms (left column) and the corresponding
histograms for the Gaussian similarity function Wa, Wf and Wh (right column) for the audio signal
“Tones A+B”. The gray dashed lines in the left plots represent scaled segments of the Gaussian
function defined in Equation 8 using the specified σ values for each similarity cue (see text for
details). Panel (g) shows the histogram of the combined Gaussian similarity function Wafh (defined
and discussed in Section 3.7.3). 86
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Figure 17: Histograms of the normalized distance histograms (left column) and the corresponding
histograms for the Gaussian similarity function Wa, Wf and Wh (right column) for the audio signal
“Jazz1”. The gray dashed lines in the left plots represent scaled segments of the Gaussian function
defined in Equation 8 using the specified σ values for each similarity cue (see text for details).
Panel (g) shows the histogram of the combined Gaussian similarity function Wafh (defined and
discussed in Section 3.7.3). 87
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each texture window the distance ranges may be substantially different, depending on

the window lengths and on the signal characteristics at that particular time interval. A

possible alternative worth exploring in the future is the use of prior information to help

setting up the neighborhood width for each similarity cue. The knowledge about the just

noticeable differences (JND) in amplitude and frequency perception [Hartmann, 1998]

may be a good criteria for defining the similarity widths, where diferences below the

corresponding JND would be considered as fully similar, while all the other distances

would gradually correspond to lower similarity values.

Nevertheless, if taking for now the normalized distances and using the specified fixed

neighborhood width parameters, it becomes possible to compute the similarity values for

amplitude and frequency between each pair of peaks, Wa and Wf . Plots b and d of

Figures 16 and 17 show the corresponding Gaussian amplitude and frequency similarity

histograms for the two audio examples. Notice that peaks whose features were close in the

feature space (i.e. they have a distance equal or close to 0) will now have a high similarity

value (i.e. equal or close to 1.0) and the specified σ parameters will make higher distances

less relevant.

As an example of the segregation results obtained when using a single similarity func-

tion in step 2 of the grouping algorithm (see Section 3.6.5), Figures 18 and 19 show the

bipartite segregated signals obtained by manually setting the number of clusters k to 2

and just using for each case either amplitude or frequency similarity functions (i.e. Wa in

plots b,c and and Wf in plots d,e, respectively)4.

Panel a in Figure 18 shows a time-frequency plot of the sinusoidal representation of the

Tones A+B example (whose spectral components are as defined in Table 1 and depicted

in Figure 12), where darker shades of gray represent higher amplitude values. Because

the spectral peaks in this signal are constant both in amplitude and frequency over time,

they are represented as horizontal dark lines5.

Panels b and c show the resulting bipartite clusters of using only the amplitude simi-

larity function Wa in the grouping algorithm. In this example it is clearly visible that the

higher amplitude peaks A0, B0, A1, B1 and A4 + B3 end up grouped together in the first

cluster (panel b), while peaks A2, B2 and A3, the lower amplitude peaks, are included in

the second cluster (panel c). In a similar way, panels d and e show the resulting bipartite

clusters of using only the frequency similarity function Wf for the grouping algorithm.

4Audio clips of the signals plotted in Figures 18 and 19 are available at http://www.fe.up.pt/

˜lgustavo
5Recall that, because the current system implementation ignores frequency components above 2500 Hz

(see Section 3.2), peak B4, whose frequency is 2750 Hz, is absent from the plots.
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Figure 18: Bipartite segregation results of the signal “Tones A+B” (see Table 1 and Figure 12)
using different similarity cues. Panel (a) shows the time-frequency plot of the sinusoidal repre-
sentation of the mixed signal, where darker shades of gray represent higher amplitude peak values.
The first three rows in the figure (plots (b) to (g)) represent the pairwise clusters obtained by using
in each case a single similarity cue, while the last row (plots (h), (i)) show the clusters obtained
by combining all the previous similarity cues (as discussed in Section 3.7.3).
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Figure 19: Bipartite segregation results of the signal “Jazz1” using different similarity cues.
Panel (a) shows the time-frequency plot of the sinusoidal representation of the mixed signal, where
darker shades of gray represent higher amplitude peak values. The first three rows in the figure
(plots (b) to (g)) represent the pairwise clusters obtained by using in each case a single similarity
cue, while the last row (plots (h), (i)) show the clusters obtained by combining all the previous
similarity cues (as discussed in Section 3.7.3).
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In this case, the components in the mixture end up grouped into low and high frequency

groups, depending on their frequencies.

Figure 19 also shows similar experiments, this time for a real-world signal (specifically,

a 2 second excerpt from the Jazz example used in the previous examples). Similarly to

Figure 18, panel a presents the time-frequency plot of the sinusoidal representation of the

mixture signal where the spectral peaks resulting from the sinusoidal analysis are depicted.

As before, darker shades of gray represent higher amplitude values. Plots b and c clearly

show that the spectral peaks with the highest amplitudes ended up grouped together in

one cluster while the peaks with lower amplitudes were clustered into another. In a similar

fashion, when using frequency similarity, low frequency spectral components are grouped

together into cluster 1 (see plot d) while the peaks with higher frequencies end up grouped

into the second cluster (see plot e).

However, all these results show that, by themselves, the amplitude and the frequency

similarity functions are not able to correctly segregate the harmonic “sources” in the

signals. Nevertheless, their role is important for grouping peaks from non-harmonic sound

sources (i.e. unpitched sounds), or inharmonic or noisy frequency components in harmonic

sounds. The following section will propose a novel harmonicity cue that, as will be shown,

is able to successfully segregate harmonic components in a mixture signal.

3.7.2 Harmonically Wrapped Peak Similarity (HWPS)

A wide variety of sounds produced by humans are harmonic, from singing voice and speech

vowels, to musical sounds. As stated by Alain de Cheveigné: “Harmonicity is the most

powerful among ASA cues. It is also the cue most often exploited in computational ASA

systems and voice-separation systems” [Wang and Brown, 2006]. It is therefore a critical

cue for separating harmonic sounds which are particularly important for musical signals.

Accordingly, some of the source separation and multiple fundamental frequency esti-

mation algorithms iteratively estimate the dominant fundamental frequency f0, and then

remove the spectral components that are most likely to belong to the source attached to

the corresponding f0 (e.g. [Klapuri, 2004]). Few studies have focused on the identification

of harmonic relations between peaks without any prior fundamental frequency estimation.

By contrast, in this work the focus is on the definition of a similarity function between

time-frequency components, of the same frame or of different frames, that considers the

harmonicity cue without fully relying on the prior knowledge of the f0’s (although such

prior information can be easily embedded and improve the grouping capability of the pro-

posed similarity function – see discussion later in this section). The challenge is therefore
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to define a similarity measure between two frequency components (i.e. peaks) that is high

for harmonically related peaks and low for peaks that are not harmonically related.

Existing Harmonicity Cues

Most existing approaches use the mathematical properties of the harmon-

ically related frequencies to build a harmonicity similarity measure for a

single frame [Virtanen and Klapuri, 2000, Srinivasan and Kankanhalli, 2003,

Rosier and Grenier, 2004, Martins and Ferreira, 2002]. For example, Virtanen and

Klapuri [Virtanen and Klapuri, 2000] consider whether the ratio of the frequencies

of the components is a ratio of small positive integers, while Martins and Fer-

reira [Martins and Ferreira, 2002] select peaks whose frequencies are integer multiples of

a candidate f0 peak to form harmonic clusters in each frame.

Srinivasan and Kankanhallli consider a harmonicity map that can be precomputed to

estimate the harmonic similarity between two spectral bins. Considering two bin indexes

i and j, the map is computed as follows:

hmap(i, j) = 1 if mod(i, j) = 0 or mod(j, i) = 0. (20)

This map is next smoothed to allow an increasing level of inharmonicity using a

Gaussian function, normalized so that the sum of its elements is unity. The stan-

dard deviation of the Gaussian function is set to be 10% of its center frequency, see

[Srinivasan and Kankanhalli, 2003] for further details. The similarity between peaks pl

and pm is then:

Ws(pl, pm) = shmap(Ml, Mm) (21)

where shmap is the smoothed and normalized version of hmap, and Ml corresponds to the

bin index of peak pl. The frames indexes are omitted for clarity sake.

According to Virtanen and Klapuri [Virtanen and Klapuri, 2000], if two peaks pl and

pm are harmonically related, the ratio of their frequencies fl and fm is a ratio of two

small positive integers a and b (which correspond to the harmonic rank of each peak,

respectively). By assuming that the fundamental frequency cannot be below the frequency

resolution of the sinusoidal modeling front-end (i.e. fmin = 50 Hz), it is possible to obtain

an upper limit for a and b, respectively a <
⌊

fl
fmin

⌋
and b <

⌊
fm

fmin

⌋
. A harmonic distance

measure can be defined:

Wv(pl, pm) = 1−mina,b

∣∣∣∣log
(

fl/fm

a/b

)∣∣∣∣ , (22)
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by considering all the ratios for possible a and b and choosing the closest to the ratio of

the frequencies.

There are several issues concerning these approaches, both from the technical and per-

ceptual points of view. First, this type of measures can not be safely considered for peaks

belonging to different frames, which is a strong handicap when trying to simultaneously

optimize partial tracking and source formation (thus the importance of the use of texture

windows as proposed in Section 3.5). The reason of this restriction is that the fundamental

frequency of the source can change across frames.

Secondly, these mathematical conditions are not sufficient to determine whether two

peaks are part of a harmonic source. From a perceptual point of view, the fact that two

components have harmonic frequencies is not directly linked to the fact that an audible

pitch is perceived. And inversely, the fact that there is an audible pitch does not imply that

all of the frequencies of the spectral components of the pitched source will be in perfect

harmonic relation. Thus, two peaks should be close on the “harmonic” axis if these peaks

belong to a perceptible compound of harmonically-related peaks in the spectrum and not

simply because their frequencies happen to have a harmonic relation (probably caused

by noise or spurious spectral components from the analysis front-end). This fact perhaps

explains why some sound separation algorithms first attempt to identify the pitch of the

sounds within the mixture by considering the spectral information globally, and then as-

sign frequency components to each estimated pitch (e.g. [Parsons, 1976, Weintraub, 1985,

Every, 2006, Li and Wang, 2006, Li and Wang, 2007]).

In contrast, a novel similarity measure termed Harmonically Wrapped Peak Similarity

(HWPS) is proposed in the next section and works reasonably well without estimating

the underlying pitch. HWPS tries to take a global view when defining harmonic relations

between time-frequency components in the signal. A comparison of the HWPS cue with

some of the state of the art harmonicity measures discussed above will be presented in

Chapter 4.

The HWPS Algorithm

The Harmonically Wrapped Peak Similarity (HWPS) is a novel criterion for computing

similarity between sinusoidal peaks that are potentially harmonically related. The main

goal of the HWPS measure is to take advantage of the flexibility of a harmonically-related

similarity between peaks which not only considers each peak in isolation, but also takes

into consideration the entire spectral information associated with the remaining peaks.

This measure can be used both for peaks within the same frame and among peaks of
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different frames (although with slightly different properties, as will be discussed later).

The basic mechanism behind the HWPS measure is to assign each peak a spectral

pattern. The pattern captures information about the spectrum in relation to the specific

peak. The degree of matching between two spectral patterns is used as a similarity measure

between the two peaks thus utilizing more spectral information than just frequency of the

two peaks. Additionally, HWPS takes into account the relative amplitudes of all the peaks

involved in the computation, implicitly assigning more importance to the stronger peaks

and reducing the impact of weak peaks usually resulting from noise or spurious components

in the signal. As the spectral pattern of a peak might shift when changing frames and

contains peaks belonging to multiple harmonic sources, a harmonically wrapped frequency

space is used to align the two spectral patterns corresponding to the peaks. The goal is

that the similarity between peaks belonging to the “same” harmonic series is higher than

the similarity of peaks belonging to different harmonic series.

In the following, a formal description about the three steps involved in the HWPS

algorithm is introduced, after which a more motivational discussion is presented.

—————

STEP 1 – Shifted Spectral Pattern

The HWPS approach relies on a description of the spectral content using estimates

of the frequency and amplitude of local maxima of the power spectrum, i.e. the peaks.

Therefore, a given spectral pattern F k
l is assigned to each peak pk

l (recall that l is the

peak index, and k is the frame index), defined as the set of frequencies (in Hz):

F k
l = {fk

i ,∀i ∈ [1, Lk]} (23)

where Lk is the number of peaks in frame k.6 A shifted version of this spectral pattern

F̃ k
l can be defined as follows:

F̃ k
l = {f̃k

i |f̃k
i = fk

i − fk
l ,∀i ∈ [1, Lk]}. (24)

This shifted spectral pattern is essentially a shift of the set of peak frequencies such that

the frequency of the peak corresponding to the pattern maps to 0 (when i is equal to l).

One can easily see that two peaks of different frames modeling the same partial will have

roughly similar spectral patterns under the assumption that the spectral parameters evolve

6Although the F k
l definition in Equation 23 does not depend on the peak index l (i.e. according to

the current spectral pattern definition, peaks in a same frame will all have a similar spectral pattern;
F k

l = F k
m, ∀l, m ∈ [1, Lk]), it was nevertheless chosen, for the sake of generality, to keep the l index in the

expression.
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Figure 20: HWPS calculation for peaks A0 ♦ and A1 ∗, from Figure 12. From top to bot-
tom: Shifted Spectral Pattern, Harmonically-Wrapped Frequency and Histogram of Harmonically-
Wrapped Frequency. Notice the high correlation between the two histograms at the bottom of the
Figure.

slowly with time. This spectral pattern forms a peak-specific view of the spectral content

which is used to calculate a pitch invariant representation using a wrapped frequency space

as described in the following step. The top graphs of Figures 20 and 21 show overlaid

peak-specific spectral patterns for two pairs of peaks from the harmonic mixture depicted

in Figure 12 and defined as in Table 1.

—————

STEP 2 – Wrapped Frequency Space

To estimate whether two peaks pk
l and pk+n

m belong to the same harmonic source, the

proposal is to measure the correlation between the two shifted spectral patterns corre-

sponding to the peaks. To achieve this, it would be helpful to find a way to transform

the peak-specific shifted spectral patterns in such a way that when the peaks under con-

sideration belong to the same harmonic series the correlation is higher than when they

belong to different harmonic sources. In order to achieve this the following operations

are performed: the energy distribution of a harmonic source along the frequency axis can

be seen as a cyclic unfolding with periodicity equal to the fundamental frequency of the
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Figure 21: HWPS calculation for peaks A1 ♦ and B1 ∗, from Figure 12. From top to bot-
tom: Shifted Spectral Pattern, Harmonically-Wrapped Frequency and Histogram of Harmonically-
Wrapped Frequency. Notice the lack of correlation between the two histograms at the bottom of the
Figure.

“source”. To concentrate these energies as much as possible before correlating them, it is

proposed to wrap the frequencies of each spectral pattern as follows:

f̂k
i = mod

(
f̃k

i

h
, 1

)
(25)

where h is the wrapping frequency function and mod is the real modulo function.7

This wrapping operation would be perfect with the prior knowledge of the fundamen-

tal frequency. With this knowledge it would be possible to parametrize the wrapping

operation h as:

h = min(f0
k
l , f0

k+n
m ) (26)

where f0
k
l is the fundamental frequency of the source of the peak pk

l . Without such prior,

7The real modulo function is inhere defined as a modulo operation according to the following conditions:
if taking D = q × d + r, where D is the dividend, d is the divisor, q ∈ N is the quotient, and the returned
remainder r ∈ R is in the range 0 < r < d. E.g. mod(5.3, 2) = 1.3 or mod(5.3, 1) = 0.3.
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a conservative approach h′ is considered instead, although it will tend to over estimate

the fundamental frequency (as will be discussed later in this text):

h′ = min(fk
l , fk+n

m ). (27)

Notice that the value of the wrapping frequency function h is the same for both pat-

terns corresponding to the peaks under consideration. Therefore the resulting shifted and

wrapped frequency pattern will be more similar if the peaks belong to the same harmonic

“source”. The resulting shifted and wrapped patterns are pitch invariant and can be seen

in the middle plot of Figures 20 and 21.

Different approaches could have been taken for the definition of the fundamental fre-

quency estimation function h′. One possibility would be to select the highest amplitude

peak in the union of the two spectral patterns under consideration as the f0 estimate

(i.e. h′ = {fi|i = argmaxi(Ai)},∀i ∈ [1,#A], where A = Ak
l ∪ Ak+n

m , #A is its number

of elements and Ak
l is the set of amplitudes corresponding to the spectral pattern F k

l ).

The motivation for this approach is the fact that the highest amplitude partial in musical

signals often corresponds to the fundamental frequency of the most prominent harmonic

‘source” active in that frame, although this assumption will not always hold.

A more robust approach, though more computationally expensive, would be to calcu-

late all the frequency differences between all peaks in each spectral pattern and compute a

histogram. The peaks in these histograms would be good candidates for the fundamental

frequencies in each frame (in order to avoid octave ambiguities, a second histogram with

the differences between all the candidate f0 values could be again computed, where the

highest peaks would be selected as the final f0 candidates). The HWPS could then be

iteratively calculated using each f0 candidate in this short list, and select the one with

the best value as the final choice. In fact, this technique could prove an interesting way to

robustly estimate the number of harmonic “sources” in each frame, including their pitches,

but experimental evaluations are still required to validate these approaches.

—————

STEP 3 – Discrete Cosine Similarity

The last step is now to correlate the two shifted and harmonically wrapped spectral

patterns (F̂ k
l and F̂ k+n

m ) to obtain the HWPS measure between the two corresponding

peaks. The proposal is to discretize each shifted and harmonically wrapped spectral

pattern into an amplitude weighted histogram, Hk
l , corresponding to each spectral pattern

F̂ k
l . The contribution of each peak to the histogram is equal to its amplitude and the range

between 0 and 1 of the Harmonically-Wrapped Frequency is divided into 20 equal-size bins
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(preliminary tests conducted during experimental evaluation of the system, described in

Chapter 4, have shown that the use of 20 bin histograms resulted in the best segregation

results for the specific applications at hand).

In addition, the harmonically wrapped spectral patterns are also folded into a a pitch-

invariant profile. For example, in Figure 20, the energy of the spectral pattern in wrapped

frequency 1 (all integer multiples of the wrapping frequency) is mapped to histogram bin

0.

The HWPS similarity between the peaks pk
l and pk+n

m is then defined based on the

cosine distance between the two corresponding discretized histograms as follows:

Wh(pk
l , p

k+n
m ) = HWPS(pk

l , p
k+n
m ) = e

−

0

@1− c(Hk
l ,Hk+n

m )
r

c(Hk
l

,Hk
l

)×c(Hk+n
m ,Hk+n

m )

1

A
2

(28)

where c is the dot product between two vectors (which correspond to the histograms in

this particular case) and is defined as:

c(Hb
a, H

d
c ) =

∑

i

Hb
a(i)×Hd

c (i). (29)

The use of the cosine distance (which is bounded to the interval [0, 1]) allows to put

the emphasis on the alignment of the two histograms while reducing the impact of any

existing scale differences (i.e. if the two histograms have a similar shape, their distance will

be small, regardless of the absolute occurrence values at each bin). A Gaussian function

is then once again used to convert the cosine distance into a similarity value, where the

neighborhood width of the harmonicity similarity cue can be controlled by means of its

σh parameter (a σh = 1 is implicitly used in the current system implementation, as will

be discussed in Section 3.7.2).

Similarly to the cases of amplitude and frequency similarity functions, peaks with a low

HWPS distance will have a high HWPS value, while peaks far apart in the harmonicity

distance space will end up with a low HWPS value. One may also notice that due to the

wrapping operation of Equation 25, the size of the histograms can be relatively small (e.g.

20 bins), thus being computationally inexpensive.

An Intuitive View on HWPS

The three steps that compose the HWPS algorithm presented in the previous section can

be more intuitively understood if looking at the following example scenarios.

As a first example, imagine that in a frame k there are six peaks from two harmonic
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series (i.e. harmonic “sources”) A and B, so that {A0, A1, A2} ∈ A and {B0, B1, B2} ∈
B (see Figure 22). Assume for now and for the sake of clarity that their fundamental

frequencies are somehow known and have values f0A , f0B , respectively. In practice the true

fundamental frequencies of the harmonic series in each frame are not known, and their

values will have to be estimated (as discussed in the previous section while describing the

second step in the HWPS algorithm). A later discussion in this section will show that

although the use of f0 estimates may decrease the HWPS accuracy due to estimation

errors, its impact is limited and still allows to compute the harmonic similarity between

peaks with an acceptable accuracy.

Suppose now that the objective is to compute the HPWS between two peaks in frame

k, and that the two peaks selected are harmonically related, say A1 and A0. This implies

that the peaks will have to necessarily belong to a same harmonic series, in this case A. In

such a scenario, HWPS(A1, A0) is expected to result high valued, as will be shown in the

following. Under these conditions, the two peaks would have frequencies fk
A1

= a × f0A

and fk
A0

= b× f0A , where a and b are integer numbers, which for this particular example

assume the values 2 and 1, respectively. Additionally, because the two peaks come from

the same frame k, they will have the same spectral pattern, i.e. F k
A1

= F k
A0

(see the top

panel in Figure 22).

For visualization’s sake, assume that the spectral patterns F k
A1

, F k
A0

of each peak are

now represented along helixes (named F̄ k
A1

and F̄ k
A0

in Figure 22), and that their “spiraling”

periodicity is set accordingly to the idealized wrapping operation defined in Equation 26

h = f0A (i.e. the fundamental frequency of the harmonic series A). Since the two peaks

are from the same frame, their helix-shaped spectral patterns F̄ k
A1

and F̄ k
A0

are also equal.

As previously explained, the first step in the HWPS algorithm corresponds to perform-

ing a shifting operation in each peak’s spectral pattern, where all the frequency values in

F k
A1

are subtracted by the frequency of peak A1 (i.e. fk
A1

= 2f0A) and all the frequencies

in F k
A0

are subtracted by the frequency of peak A0 (i.e. fk
A0

= f0A). This results in two

wrapped and shifted spectral patterns F̃ k
A1

and F̃ k
A0

, which are no longer equal (see the

second and fourth helixes depicted in Figure 22). Intuitively, this shifting operation can

be understood as “spiraling” down all the peaks in the helixes F̄ k
A1

and F̄ k
A0

by the same

amounts, fk
A1

, fk
A0

, respectively (see the shifting operations depicted in Figure 22). But

because in this example both fk
A1

and fk
A0

are integer multiples of the “spiraling” period-

icity of the helixes (i.e. h = f0A), the result is that all peaks will be moved down in each

helix a different but integer number of turns (i.e. “twists”).

In fact, the key aspect in this shifting operation is not the absolute shifting applied to
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Figure 22: Example of the HWPS computation for two harmonically related peaks, A1 and A0,
from a same frame k, and assuming an ideal wrapping function h. The top panel shows the
illustrative spectrum representation used in this example and the helixes represent the shifting and
wrapping steps performed by the HWPS algorithm for each peak (see text for details). The bottom
panel shows the resulting combined histograms, where the white bars refer to the histogram F̂ k

A1
and

the black bars refer to F̂ k
A0

. Given the similarity between the two histograms, the HWPS value will
result high, as expected for two harmonically related peaks.
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each spectral pattern, but instead whether the shifting is an integer multiple of the helix

periodicity h. A shift corresponding to an integer number of turns will mean that the

relative position of each peak around the helix (i.e. discarding their “height” in the helix)

will still be the same. This is similar to the chroma and octave notions in music scales,

where a note when moved up or down by an integer number of octaves does not change

its chroma.

If the helixes corresponding to F̃ k
A1

and F̃ k
A0

are then projected down vertically (i.e.

flattened), the end result will be two wrapped spectral patterns, F̂ k
A1

, F̂ k
A0

(see the circles

at the bottom of each helix in Figure 22), where all the frequency values are wrapped

to the range [0, 1[ (this corresponds to the second step of the HWPS algorithm). This

wrapped representation will result unaltered as long as the shifting applied to each helix

is a multiple integer of the helix periodicity h, as is the case of the peaks A1, A0.

Consequently, if the wrapped representations corresponding to each peak under eval-

uation, F̂ k
A1

, F̂ k
A0

, are used to compute discretized histograms (where the magnitudes of

all peaks are stacked into the respective bins – this is where the magnitudes of each peak

come into play in the HWPS), it becomes possible to compute a distance between the two

histograms (e.g. the cosine distance, as defined in Equation 28 and used in the third step

of the HWPS algorithm). Accordingly, for peaks that belong to a same harmonic series,

their histograms will be very similar, resulting in an anticipated high harmonicity value

(i.e. an HWPS close to 1.0 – see bottom panel of Figure 22).

However, the same will not happen if the two peaks under HWPS evaluation do not

belong to a same harmonic “source”. As can be seen in Figure 23, in this case the HWPS

is being computed for the peaks A1 and B0, which clearly do not belong to the same

harmonic source. Because the two peaks still come from the same frame k, and the ideal

wrapping factor h is still equal to f0A , the two peaks share the same spectral patterns

(i.e. F k
A1

= F k
B0

) and their helix-shaped representations are still similar (i.e. F̄ k
A1

= F̄ k
B0

).

However, the shifting operation will no longer result into an integer number of turns down

the helix for the case of B0, causing a loss of alignment between the peaks in F̂ k
A1

and

F̂ k
B0

. As desired, this will result in quite different histogram representations for each peak

and by consequence into a substantially smaller HWPS value for peaks that do not have

a harmonic relation (see bottom panel of Figure 23).

In summary, for peaks in a same frame that have a harmonic relation, the shifting

operation in the HWPS algorithm will not affect the final shifted and wrapped spectral

pattern, F̂ k
l , resulting in a high HWPS value. On the other hand, peaks in a same frame

whose frequencies are not harmonically related will have substantially different shifted and
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Ã1
B̃0

Low HWPS(A1, B0)|h=f0A

=

0 1

Figure 23: Example of the HWPS computation for two non-harmonically related peaks, A1 and
B0, from a same frame k, and assuming an ideal wrapping function h. The top panel shows the
illustrative spectrum representation used in this example and the helixes represent the shifting and
wrapping steps performed by the HWPS algorithm for each peak (see text for details). The bottom
panel shows the resulting combined histograms, where the white bars refer to the histogram F̂ k

A1
and

the black bars refer to F̂ k
B0

. Given the difference between the two histograms, the HWPS value will
result low, as expected for two non-harmonically related peaks.
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wrapped spectral patterns, resulting in a low HWPS value.

Until now it has been assumed that the two peaks under HWPS evaluation belong

to the same frame. However, when taking peaks from two distinct frames there is some

probability that the two corresponding spectral patterns are substantially different. This

will happen more often for frames that are far apart in time, (e.g. due to different sources or

notes occurring at each time instant) since it is assumed that, because spectral parameters

evolve slowly with time, frames close in time will have similar spectral patterns.

Figure 24 depicts an illustrative scenario, where the peaks in two frames, k and k + n

(which are arbitrarily separated in time by n frames) are not exactly the same (see top

panel of the figure). In the first frame k, two harmonic series A and B, similar to the

ones used in the two previous examples, coexist. In a later frame, k + n, the harmonic

“source” A is still active, but B is no longer present. Instead, a new harmonic series C,

with a different fundamental frequency f0C is now mixed with A.

In this example the objective is to compute the HWPS between two peaks, Ak
1 and

Ak+n
0 , from a same harmonic series but now from different frames. Although being from

different instants in time, their HWPS should nevertheless be high valued since they still

have a harmonic relation.

Under these conditions, it is easy to see that their spectral patterns, F k
A1

and F k+n
A0

,

are no longer the same, and consequently their helix representations F̄ k
A1

and F̄ k+n
A0

are

also different (see Figure 24). Notice however that the idealized wrapping function h still

results in the same f0A value for the peaks selected for this example (recall Equation 26).

Looking at the shifted spectral patterns of each peak, F̃ k
A1

, F̃ k+n
A0

, it becomes clear that

all peaks from the harmonic series A are aligned in similar positions in the helixes of each

peak. The difference when compared to the example given in Figure 22 (where the HWPS

was also computed for peaks A1 and A0, though they were then from a same frame) is

that now the remaining peaks are not the same in each spectral pattern (as they were

in Figure 22). The end result of this difference is that the histograms will exhibit a high

similarity for bin 0 (which corresponds to the aligned and stacked peaks from “source”

A), but the remaining bins will be substantially different since they result from different

sources at each frame (i.e. B and C). However, because the discretized histogram stacks

the individual amplitudes of the peaks closely aligned on the wrapped representations,

F̃ k
A1

, F̃ k+n
A0

, the values of the bins corresponding to the peaks from B and C (which are

not aligned and therefore not stacked together into a same bin) can be neglected when

compared to the bin stacking the peaks from “source” A (i.e. bin 0). As a result, the

HWPS between harmonically related peaks, even if in different frames, is still high valued,
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even if slightly lower than when considering similar peaks form the same frame.

In fact, the influence of different spectral components at each frame (i.e. the “in-

terference”) has a direct impact on the HWPS computation. One way to minimize this

“interference” could be to modify the current HWPS implementation by just taking the

bin 0 of the histograms when computing their distances. Looking at the histograms at the

bottom of Figures 22, 23 and 24 it becomes clear that when the two peaks under HWPS

evaluation have a harmonic relation (e.g. HWPS(A1, A0), HWPS(Ak
1, A

k+n
0 )) the bin 0 of

their histograms will have similarly high values, while they present quite different values

otherwise (e.g. HWPS(A1, B0)). As mentioned previously, the bins other than the 0 bin

in the histograms refer to the peaks coming from the other “interfering sources”, and as

a result they do not directly contribute to the goal of obtaining a precise harmonicity

measure between two peaks. Given so, measuring the distance between the bins 0 of the

histograms could hypothetically provide a more robust harmonicity measure for peaks in

frames far apart in time. Additionally, such a distance could be implemented using an

Euclidean distance, which is more computationally efficient than the cosine distance used

in the current implementation of the HWPS, simplifying at the same time its combination

with the other Euclidean-based similarity cues (as will be discussed in Section 3.7.3). How-

ever, this idea still requires experimental evaluation, and as a result, the system proposed

in this thesis and all the experiments presented in Chapter 4 are based on the computation

of the cosine distance between the entire discretized histograms.

Finally, and regarding the impact of the use of estimated fundamental frequencies

instead of the true ones in the HWPS computation, consider now the case of the mixture

of two pitched sound sources, A and B, each consisting of four harmonics with fundamental

frequencies of 440 Hz and 550 Hz respectively, as presented in Table 1 and depicted in

Figure 12. For these experiments, random frequency deviations of a maximum of 5 Hz

are added to test the resilience of the algorithm to frequency estimation errors. Once

again, if considering two peaks of the same source A0 and A1, the discrete version of the

harmonically-wrapped sets of peaks are highly correlated, as can be seen in the histograms

at the bottom of Figure 20. On the other hand, if two peaks of different sources, A1 and

B0, are considered, the correlation between the two discretized histograms is low (see

Figure 21).

However, if instead of using the true fundamental f0, any harmonic of it is used as

the wrapping frequency (as proposed for the conservative wrapping function h′, defined

in Equation 27), the correlation between two histograms of harmonically related peaks

will still work, though to a lesser extent. Figure 25 (left) shows a HWPS similarity
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Figure 24: Example of the HWPS computation for two harmonically related peaks, Ak
1 and Ak+n

0 ,
from two different frames k and k + n, and assuming an ideal wrapping function h. The top panel
shows the illustrative spectrum representations for each frame as used in this example. The helixes
represent the shifting and wrapping steps performed by the HWPS algorithm for each peak (see text
for details). The bottom panel shows the resulting combined histograms, where the white bars refer
to the histogram F̂ k

A1
and the black bars refer to F̂ k+n

A0
. The similarity between the two histograms

is basically given by the high and similar values in bin 0, which correspond to the aligned peaks from
the harmonic series A. Given the low values of the remaining bins, their impact into the HWPS
result will be negligible. As a result, the HWPS will still result high valued, although smaller than
the value obtained for similar peaks when in the same frame (see Figure 22).
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Figure 25: Harmonically-Wrapped Peak Similarity (HWPS) matrix for two harmonic sources
using the correct f0 estimates (left), and using the conservative estimate of wrapping frequency
(likely a harmonic of the “true” f0) (right). High similarity values are mapped to black and low
similarity values to white.

matrix computed among the peaks of two overlapping harmonic sounds within a frame

(as shown in Figure 12) with perfect knowledge of the fundamental frequency for each

peak respectively. As can be seen clearly from the figure, the similarity is high for pairs

of peaks belonging to the same source and low for pairs belonging to different sources.

Figure 25 (right) shows the HWPS similarity matrix computed among the peaks of the

same two overlapping harmonic sounds within a frame using the conservative approach

to estimate the wrapping frequency (i.e. h′, where basically the lower peak is considered

as the “wrapping” frequency). As can be seen from the figure, although the similarity

matrix on the right is not as clearly defined as the one on the left, it still clearly shows

higher values for pairs of peaks belonging to the same sound source. Other approaches

for estimating the “pitches” present in each frame would allow better candidates to the

fundamental frequencies, potentially improving the current HWPS accuracy. However,

such approaches still need experimental evaluation.

Using HWPS for Sound Segregation

Comparably to the examples given for the sole use of the amplitude and frequency sim-

ilarities, Wa and Wf , in sound segregation (see Section 3.7.1), this section will present

some illustrative scenarios where the results from clustering of sound components based

on just using the HWPS cue will be discussed.

Plots d, h, l and p of Figure 15 depict the HWPS distances (i.e. the cosine distance, as

defined in the exponent of Equation 28) for the four sound examples used in the previous
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sections (see Section 3.7.1 for detailed descriptions on these signals).

For the case of the Tone A example, the HWPS distance histogram has two peaks.

The first at bin 0 represents, as expected, the harmonically related peaks in the signal,

for which HWPS correctly returned a null distance. In fact, in this particular example,

all peaks are known to be harmonically related (recall Table 1) and therefore they all

should be represented in bin 0. However, the histogram exhibits a second peak around

0.1. This peak results from the use of a conservative fundamental frequency estimation

h′ instead of the true f0 value given by the ideal function h (as defined in Section 3.7.2

and Equations 26 and 27). As discussed in the previous section, the current system

implementation computes the HWPS using the conservative f0 estimation h′, which for

high order harmonics provides poor estimates, hurting to some extent the final HWPS

precision. Similar observations can be drawn for the Tones A+B example (see plot h),

where three peaks appear in the HWPS distance histogram instead of the expected two.

The HWPS distance histograms for the two real-world examples (plots l, p) present

a similarly shaped distribution, and contrary to the cases of amplitude and frequency

distances, most peaks do not exhibit a harmonic relation. This is not surprising since in a

real-world music signal, although there is a highly predominant harmonic content in the

signals, there are still a lot of spectral components produced from unpitched sounds (e.g.

drums, percussion) or from the transient parts of pitched sounds (i.e. the attacks) or from

other noisy events in the signal.

Plot f in Figures 16 and 17 shows the Wh similarity function histogram for the two

example sound files, after applying the Gaussian function, as defined in Equation 28.

Similarly to the cases of amplitude and frequency similarity functions, peaks with a low

HWPS distance will have a high HWPS value, while peaks far apart in the harmonicity

distance space will end up with a low HWPS value.

Because the HWPS computation is based on the cosine distance, which is bounded to

the interval [0, 1], there is no need to perform any type of normalization to the distance

values. Furthermore, and as previously mentioned, the HWPS calculation uses an implicit

neighborhood value σh = 1.0 (represented as the dashed gray lines in plots e of Figures 16

and 17), which was found satisfactory during the experimental evaluations presented in

Chapter 4. Nevertheless, similarly to the amplitude and frequency cases, it could be

more adequate and perceptually motivated to set σh based on prior knowledge about

JNDs for harmonicity [Gerald Kidd et al., 2003]. Given the range of values output by

the cosine distance, another option would be to set σh to some value around 0.4, which

would smoothly divide the range of distances between similar and dissimilar values (see
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Figure 11). In any case, comprehensive experimental evaluation of such approaches would

be necessary to be conducted in order to validate their adequacy.

Plots f,g in Figures 18 and 19 show the segregation results when only using the HWPS

similarity function Wh. In the case of the Tones A+B example, it is clear that the HWPS

enabled the segregation algorithm to correctly separate the two harmonic sets, A and B

(note that the shared harmonic {A4, B3} was grouped with the components from harmonic

set B).

For the real-world example Jazz1, it is also clear that the HWPS allowed the grouping

algorithm to successfully group the most predominant harmonic content in the mixture

into a single cluster (see plot f ), separating it from the harmonic background and more

noisy components in the sound mixture (see panel g)8.

Section 4.2.1 will present additional experimental evaluations as well as a comparative

study including some of the most well known approaches for the computation of harmonic-

ity similarity. Additionally, Appendix D describes the use of the HWPS as the basis of

a computationally efficient scheme for the dominant harmonic source separation, further

demonstrating the ability of this novel similarity cue to correctly identify the harmonic

content in complex sound mixtures.

3.7.3 Combining Similarity Functions

The use of a single similarity cue for sound segregation has been presented in Sections 3.7.1

and 3.7.2, and the results have shown that each cue allows to obtain a different represen-

tation of the complex audio mixture. As a result, each cue by itself only provides a limited

ability to represent the different sound events in a complex mixture. Therefore, the com-

bination of different similarity cues could allow to make the best use of their isolated

grouping abilities towards a more meaningful segregation of a sound mixture.

Following the work of Shi and Malik [Shi and Malik, 2000], who proposed to compute

the overall similarity function as the product of the individual similarity cues used for

image segmentation, the current system combines the amplitude, frequency and HWPS

grouping cues presented in the previous sections into a combined similarity function W as

follows:

W (pl, pm) = Wafh(pl, pm) = Wa(pl, pm)×Wf (pl, pm)×Wh(pl, pm). (30)

8Audio clips of the signals plotted in Figures 18 and 19 are available at http://www.fe.up.pt/

˜lgustavo
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Plots g in Figures 16 and 17 show the histogram of the values resulting from the

combined similarity functions for the two sound examples, Tones A+B and Jazz1, respec-

tively. In both cases, it becomes clear that the HWPS cue contributes to the reduction

of the number of similar peaks (notice the peak around bins 0.7 and 0.5 in plots g in

Figures 16 and 17, respectively), which would be more likely to be considered as similar

if only looking at their frequency and amplitude similarities.

Plots h, i in Figures 18 and 19 show the bipartite clusters for the two example signals

Tones A+B and Jazz1 as used in previous illustrative scenarios. For the case of the simpler

example Tones A+B, the clustering results of the combined use of the three grouping cues

is equal to the one obtained when just using the HWPS cue (compare plots f,g and h,i

in Figure 18). This means that the harmonicity cue was, for specific example, sufficiently

strong to overcome the amplitude and frequency cues.

On the other hand, in the case of the more complex real-world signal Jazz1, the clus-

ters obtained from the use of the combined similarity function (see plots h, i in Figure 19)

seem to take a strong influence from the HWPS cue (see plots f,g), but also from the

amplitude similarity cues (see plots b,c). Still, comparing the results of the combined cues

in plot h, with the ones obtained using the HWPS cue alone (plot f ), there seems to exist

some degradation, probably resulting from the impact of the frequency cue, which influ-

ences clustering into two non-overlaping frequency bands (see plots d,e). Although these

segregation differences are clearly noticeable to the eye in the spectrogram representation,

they are hard to identify when hearing the actual audio signals9, which once again shows

that the evaluation of segregation results is a hard and ill-posed problem.

Actually, this raises some questions about the way the similarity functions are currently

being combined into the overall similarity Wafh. Because the combination is performed

by taking the product of the corresponding values of each similarity cue, this means that

if two peaks are very dissimilar regarding any of the similarity cues (i.e. their similarity

value is zero or close to zero) their overall similarity will also be very low, regardless of

the values of all the remaining cues. This makes the specification of the neighbourhood

width parameters σ in the similarity Gaussian functions critical, since it will control how

fast each cue will get values close to zero, and consequently outclassing the impact of all

the remaining cues.

Given the difficulty to specify a meaningful value for each similarity’s σ (recall the

discussion in Sections 3.6.2, 3.7.1 and 3.7.2), and the fact that the HWPS values are

9Audio clips of the signals plotted in Figures 18 and 19 are available at http://www.fe.up.pt/

˜lgustavo
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intrinsically bounded to the range [0, 1], the current system implementation attempts to

simplify this problem by first normalizing all distance values to the interval [0, 1] and

then using a fixed and empirically derived value for each neighbourhood width (i.e. σa =

σf = 1.2, σh = 1.0, which allowed to achieve satisfactory results in the experiments

described in Chapter 4). These fixed σ values can also be seen as weighting factor for each

similarity cue, but, as previously discussed, the use of prior knowledge could motivate a

more appropriate specification of these values.

Furthermore, although this fixed logical “AND” combination of similarity cues may be

appropriate for some cases (e.g. if trying to segregate the strongest harmonic components

in a complex signal, two peaks would only be considered similar if their harmonicity

“AND” amplitude proximities were high) it may be too restrictive for expressing more

perceptually motivated combination schemes. For instance, if trying to segregate peaks

that are close in amplitude “AND” frequency, “OR” harmonically related, but (i.e.“AND”)

that are placed in the same azimuth in a stereo signal, the corresponding logical expression

of the similarity cues combination could end up being something like Wafh = [(Wf ∧Wa)∨
Wh] ∧ Ws (where Ws is some stereo azimuth proximity cue). The logical “AND” and

“OR” operators could be easily implemented by means of product and sum operators, or

minimum or maximum expressions, respectively.

However, all these hypothesis require experimental validation, and are subject for

future work.

3.8 Sound Event Resynthesis

The last blocks of the framework proposed in this thesis (see Figure 6) are the ones

responsible for selecting and resynthesizing the segregated clusters as independent audio

signals.

Although it is commonly accepted that the human auditory system does not resynthe-

size the sounds it represents internally, the ability to achieve perceptual invertibility may

be considered conceptually equivalent to a representation that captures all the relevant

information [Ellis and Rosenthal, 1995]. Indeed, the resynthesis of the segregated sounds

is important when attempting to inspect and evaluate the segregation results, both by hu-

man listening or by some objective evaluation metrics (see the discussion in Section 2.4.5

and the experiments in Chapter 4). Furthermore, tractable inversion schemes are manda-

tory for some CASA applications, such as advanced hearing prostheses or auditory scene

reconstruction.
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The following sections will focus on the approach taken for the selection and subsequent

resynthesis of the sound events segregated from an audio mixture.

3.8.1 Cluster Selection

The work proposed in this thesis is a generic framework for sound event segregation in

complex music signals, and therefore aims at identifying and segregating the main musical

sound events in a polyphonic mixture, mostly inspired by the way a naive listener would

do (recall the discussion in Section 2.3.2). However, even if able to effectively identify

and resynthesize all the perceptually relevant sound events occurring at each time instant

in a music signal (i.e. corresponding to some texture window), the problem of how to

sequentially group them over time remains (e.g. how could the system only resynthesize

the sound events belonging to a saxophone playing the main melody or to the main singing

voice).

While the current framework implementation already includes some sequential group-

ing principles at the texture window level (achieved mainly by frequency and amplitude

proximity cues, as described in Section 3.7.1), it does not yet fully incorporate sequential

grouping among sound clusters detected in different texture windows. In fact, the same

frequency and amplitude grouping cues, added to timbre and smoothness cues among

others, could be used in the future to provide such a sequential integration following the

principles proposed by Bregman [Bregman, 1990] and discussed in Section 2.3.1.

Although not yet fully implementing sequential grouping, and given the relevance of

the predominant melodic source in popular western music, the current implementation

of the framework is already able to attempt to segregate the dominant melodic source

among all other musical events playing together in a polyphonic music signal (e.g. try

to segregate the singing voice from the accompaniment instruments, such as bass, piano,

drums and others). The approach used is general and straightforward and it does not

rely on any prior knowledge of the predominant source (e.g. singing voice, specific music

instruments).

The approach implemented in the current system starts by computing five clusters for

each texture window, from which the two clusters with the highest “density” (as defined

below) are selected as the ones corresponding to the predominant source signal. The

peaks corresponding to the selected clusters are then used to resynthesize the segregated

predominant signal using a bank of sinusoidal oscillators (as described in the following

section).

Specifically, among the several clusters Ci identified by the grouping algorithm in each
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texture window (see Section 3.6.5), the idea is then to select the clusters that most likely

represent the predominant source signal. A cluster of peaks corresponding to a predomi-

nant harmonic source should be “dense” in the feature space in which the similarities are

computed. The reason is that peaks belonging to a prominent harmonic “source” have

more precise parameter estimates and therefore comply better to the implicit model ex-

pressed by the various similarity functions. The peaks of a prominent source will therefore

tend to be more similar (mostly in terms of harmonicity) to peaks belonging to the same

source than to other sources. Thus, the intra-cluster similarities should be high for this

particular cluster. Accordingly, let a cluster of peaks Pc of cardinality #Pc be defined as

the set of peaks whose cluster or grouping label is c:

Pc = {pk
m|label(pk

m) = c}. (31)

It is then possible to define a density criterion as:

d(Pc) =
1

(#Pc)2
∑

pk
l ∈Pc

∑

pj
m∈Pc

W (pk
l , p

j
m) (32)

where k, j are the frame indices within the texture window and l,m are respectively the

peak indices within the frames k and j. The function W refers to the overall similarity

weight between peaks, as defined in Equation 30 and discussed in Section 3.7.3).

The numbers of clusters to segment and to subsequently select for resynthesis were

found during preliminary experiments. Although giving reasonable results (see Chapter 4),

they are in no way an optimal choice for all types of musical signals. However, given the

high number of degrees of freedom in the proposed system, it was for now necessary to fix

some of its parameters using the described values. This allowed to focus at this stage on

the evaluation of other equally important aspects of the framework, as will be shown by

the experiments presented in Chapter 4.

3.8.2 Additive Synthesis

Once the clusters resulting from the segregation process described in the previous sections

of this chapter are identified, it is now possible to resynthesize them as independent sound

signals. By picking the highest amplitude peaks of the spectrum (see Section 3.4), it is

usually possible to achieve fair resynthesis quality using a small number of sinusoids per

frame with a significant savings in computation time.

As a result, and given that clusters consist of a maximum of Lk spectral peaks
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pk
l = {fk

l , ak
l , φ

k
l } at each frame (in the current system Lk is set to 20), it is now sim-

ple to synthesize the corresponding audio signals using a bank of sinusoidal oscillators

implementing Equation 1 and using a 50% overlap-add scheme.

More details about the actual software implementation of the resynthesis of the segre-

gated signals may be found in Chapter 5.

3.9 Summary

This chapter presented and discussed the framework for sound segregation in music signals

proposed in this thesis. The different building blocks comprising the system were described

and the choices used for their current implementation were justified, allowing to provide a

base ground for future developments and improvements to the system. Some preliminary

and illustrative examples of the way the algorithms work were provided, but a more

objective and comprehensive evaluation and validation of the performance of the system

for the segregation of real-world signals will be conducted in the following chapter.
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Chapter 4
Experimental Validation and Applications

“If it sounds good and feels good, then it is good!”

Duke Ellington

4.1 Introduction

Typical audio content analysis systems for music signals represent statistically the entire

polyphonic sound mixture [Pachet and Cazaly, 2000, Tzanetakis, 2002]. There is some

evidence that this approach has reached a “glass ceiling” [Aucouturier and Pachet, 2004]

in terms of analysis and retrieval performance. One obvious direction for further progress

is to attempt to individually characterize the different sound events or sources comprising

the polyphonic mixture.

The overall goal of the sound segregation framework proposed in the previous chapter is

to extract structural information from a complex sound scene consisting of simultaneously

occurring sound events, mainly produced by musical sources (although in principle nothing

prevents environmental sources from also being considered). Still, the main objective of

this work is not to achieve an actual separation of all the physical sources in a sound

mixture. Instead, the aim is to provide a perceptually motivated topological description

of the sound scene similar to the way a naive listener would perceive it (as discussed in

Section 2.3.2).

However, and as previously discussed in Section 3.8.1, the current framework imple-

mentation, although already including some sequential grouping principles at the texture

window level, does not yet fully incorporate sequential grouping among sound clusters
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detected in different texture windows. In addition, and as discussed in Section 3.6.4, the

current system does not yet implement an automatic estimation of the number of sound

events at each time instant (or texture window) of a sound mixture. While these con-

straints prevent at this stage to achieve a complete description of a sound scene, they

do not hinder the use and evaluation of the proposed framework in application specific

scenarios (e.g. in MIR tasks).

In fact, one of the challenges faced when developing such a sound analysis framework

is the need to objectively evaluate the resulting structured representation. As discussed in

Section 2.4.5, one plausible way to validate the proposed framework is to demonstrate that

this approach can achieve a fair degree of segregation of the sound events corresponding to,

for example, the main melody in a polyphonic music signal. Due to practical reasons, such

an evaluation is performed using an objective measurement approach where the original

isolated sources (i.e. the “physical” sounds) are used as references. This raises a pertinent

question of whether such an evaluation is in fact assessing the ability of the system to

segregate “perceptual” sounds. The final assumption is that such an evaluation approach,

although being amenable to further improvements by conducting additional listening tests,

is nevertheless an adequate compromise solution for a first measurement of the framework

ability to perform sound segregation. Still, a supplementary way to substantiate the

relevance of such a structured representation is to show that, when compared to typical

audio content analysis and MIR systems, the use of segregated signals in MIR tasks leads

to improved (or comparable) final results.

Accordingly, this chapter will present a set of experiments and evaluation scenarios

that validate the suitability of the framework proposed in this work for the segregation

of sound events in music signals. It will start with a preliminary evaluation of the per-

ceptual grouping cues proposed in Section 3.7, and proceed with more application-specific

scenarios, where different aspects of a music analysis system are evaluated.

Unless stated otherwise, all experiments whose results are presented and discussed

in this chapter use the following parameters (see Chapter 3 for more details): 46 ms

analysis windows using a hop size of 11 ms, 20 spectral peaks are selected from the highest

amplitude peaks in each analysis frame, and texture windows are set to a fixed length of

about 150 ms.

One of the first decisions to make is which type of evaluation criteria to use for each

evaluation task. Following the discussion in Section 2.4.5, various approaches and different

objective evaluation metrics (see Appendix B) will be used in each specific evaluation

scenario. Different datasets will also be used for each particular experiment, depending
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on the features under evaluation. Thus, each section will present a detailed description of

the evaluation corpus and information about the experimental setup used.

The interested reader may find some audio examples related to most of the experiments

presented in this chapter in http://www.fe.up.pt/˜lgustavo, where it is possible

to appreciate the relative perceptual relevance of the obtained segregation results.

4.2 Preliminary Evaluation of Perceptual Grouping Cues

The grouping cues presented in Section 3.7 play a determinant role on the performance

of the sound segregation framework proposed in this thesis. As a result, it is of upmost

importance to start by objectively validating their influence on the segregation ability of

the system. In particular, the novel HWPS cue will be shown to have an important impact

on the system capacity to identify harmonic sources in complex audio signals.

4.2.1 Evaluation of the HWPS Cue

In this section, the properties of the HWPS cue, introduced in Section 3.7.2,

will be studied and compared to existing state-of-the art harmonicity cues using a

generic evaluation methodology. The experiments show the improvement in segre-

gation performance achieved by using the HWPS similarity cue compared to two

existing cues proposed in Srinivasan [Srinivasan and Kankanhalli, 2003] and Virta-

nen [Virtanen and Klapuri, 2000], as described in Section 3.7.2.

To evaluate the capabilities of the presented harmonic cues, two synthetic sets of peaks

with harmonically related frequencies and exponentially decaying amplitude envelope were

considered. The first set of peaks has a fundamental frequency of 440 Hz, whereas the f0

of the second set is iteratively changed to values from 10 to 5000 Hz, using a 10 Hz step

(both sets of peaks follow harmonic distributions similar to the ones presented in Table 1).

It is then possible to define a Fisher criterion F (loosely based on the Fisher discrim-

inant commonly used in statistical analysis [Duda et al., 2000, pp.117]) as the sum of the

inter-class scatter divided by the sum of the intra-class scatter. Since the Fisher criterion

is not scale invariant, it may not be the best choice to compare the performance of distinct

cues. Nevertheless, it is still an interesting way of evaluating the performance of a metric

with respect to different scenarios.

Given so, a Density criterion D, computed as the number of peaks that have the

closest neighboring peak in the feature space belonging to the same set, is also defined.

This criterion is scale invariant and closer to the one considered by clustering algorithms.
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Ws Wv Wh Wh(f0)
F 1.44 (0.31) 1.00 (0.01) 1.22 (0.05) 2.27 (0.37)
D 0.50 (0.01) 0.55 (0.11) 0.80 (0.12) 0.94 (0.16)

Table 2: Results for the separation of two harmonics sets of peaks. Mean and standard deviation
values of the Fisher and Density criteria are computed for the Srinivasan (Ws), Virtanen (Wv),
HWPS (Wh), and HWPS with prior knowledge of the two f0’s (Wh(f0)).

The partitioning of a set of elements X is represented using an indicator function, as

follows:

E: X → N
x 2→ i

where i is the partition index x belongs to. The closest neighbour of a peak a ∈ X,

V (a), can be represented as:

V (a) = b|b ∈ X \ {a} ∧ d(a, b) = minc∈X\{a}d(a, c). (33)

The Density criterion can then be defined as:

D(X) =
1

(#X̃)2
(34)

where X̃ is defined as:

X̃ = {c|c ∈ X ∧ E(c) = E(V (c))}. (35)

This Density criterion will result higher when peaks belonging to a same harmonic

set end up close together in the similarity space (and hence, there is a higher chance of

being the nearest neighbours of each other), as desired. Table 2 presents the average

performance of the evaluated harmonic cues in the [100, 5000] Hz range, using the Fisher

and Density criteria. The last column shows the performance of the HWPS with prior

knowledge of the f0’s of the two sets of peaks.

Figure 26(a) shows the evolution of the Fisher criterion with respect to the f0 of the

second set for the three harmonic cues. The Srinivasan cue shows the expected behavior,

with minimal performance when the two sources have close f0’s (around 440 Hz). Another

local minima is found around 880 Hz and the performance globally increases with the

second f0. Since the Virtanen and HPWS cues consider more precise frequency estimates,

a finer behavior can be noticed around frequencies multiple of the first peak f0. Differently
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Figure 26: Fisher (a) and Density (b) criteria versus the f0 of the second source for the Srinivasan
cue (dotted line), the Virtanen cue (dashed line) and the HPWS cue (solid line). The f0 of the
first source is set to 440 Hz.

from the cue proposed by Virtanen, the HWPS performance increases with the frequency

difference between the two f0’s, as desired. As shown in Figure 26(b), the HWPS performs

well as far as the Density criterion is concerned, except at frequency locations multiple of

440 Hz, the f0 of the reference set.

4.2.2 Combined Use of Grouping Cues

For the evaluation of the combination of the different grouping cues an experimental

setup inspired by the “old+new” heuristic described by Bregman [Bregman, 1990, pp.261]

is used. The dataset consists of synthetically-created mixtures of isolated instrument

sounds, voice, harmonic sweeps and noise. Each clip is approximately 1 second long and is

created by mixing two sound sources in the following way: for the first part of the sound

only the “old” sound source is played followed by the addition of the “new” sound source

(i.e. “old+new”) in the second part of the sample.

Ncut clustering is then performed over the entire duration of the clip. The clusters

that contain peaks in the initial “old”-only part are selected as the ones forming the

separated source. The remaining peaks are considered to be part of the “new” sound

source. The Signal-to-Distortion ratio (SDR – see Appendix B) is used to measure the

distortion/interference caused by this “new” sound source to the separation algorithm.

Similar experiments were presented in [Lagrange and Tzanetakis, 2007].

Table 3 compares different mixtures of isolated sounds separated using only frequency
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Table 3: SDR values (in dB) for experiments using different “old+new” mixtures. The following
conventions are used : X is saxophone, N is noise, V is violin, S is harmonic sweep, and C is
voice. A, F, H correspond to using amplitude, frequency and HWPS similarities, respectively.

XN XS VN VS CN CS
A+F 12.87 9.33 10.11 7.67 2.94 1.52

A+F+H 13.05 9.13 11.54 7.69 3.01 2.09

Table 4: SDR values (in dB) using “texture windows” for experiments with different “old+new”
mixtures. The same experimental setup and conventions described in Table 3 are used.

XN XS VN VS CN CS
A+F 9.79 3.09 3.29 6.50 3.01 3.01

A+F+H 7.33 5.03 4.73 5.35 3.08 3.07

and amplitude similarities, and also separated with the additional use of the HWPS sim-

ilarity. As can be seen from the table, in almost all cases the use of the HWPS improves

the SDR measure of separation performance.

A second set of experiments where the “old+new” mixtures are separated directly

using the approach described in section 3.8.1 to select the dominant sound source were

conducted. Unlike the previous experiments, the spectral clustering is performed sepa-

rately for each “texture window” and the highest density cluster is selected as the separated

voice. This is a more realistic scenario as no knowledge of the individual sound sources

is utilized. The results are presented in Table 4 and, as expected, the SDR values are

lower than the ones in Table 3, but once again the use of the HWPS improves separation

performance in most cases.

4.3 Predominant Melodic Source Segregation

The predominant melodic source is an important component of musical signals. It is

usually related to the singing voice or, in the case of instrumental music, to the musical

instrument playing the main melodic line. Given the relevance of the singing voice in

popular western music, and because it was easier to find audio datasets where the isolated

singing voice track was available to be used as the segregation reference, in this section

the predominant melodic source will be assumed to be the singer’s voice. In fact, the voice

and melodic characteristics of singers are some of the primary features of music listeners

relate to, and its separation and characterization has a large number of applications in

MIR.
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Most existing query-by-humming systems [Ghias et al., 1995, Dannenberg et al., 2004]

can only retrieve songs from a database containing music in symbolic format. By per-

forming pitch extraction on the extracted voice signals, it is possible to perform query-by-

humming in databases of audio signals. Another potential application is singer identifica-

tion that is independent of the instrumentation or the “album” effect [Kim et al., 2006].

Other possible applications include automatic accompaniment, music transcription, and

lyrics alignment.

There has been limited work on singing voice separation from monaural record-

ings. Many existing systems require predominant pitch detection in order to per-

form separation [Li and Wang, 2006, Li and Wang, 2007] or rely on prior source mod-

els [Ozerov et al., 2005]. Other approaches are based on statistical methods such as Inde-

pendent Component Analysis (ICA) [Abdallah, 2002] and Non-Negative Matrix Factoriza-

tion (NMF) [Vembu and Baumann, 2005]. The non-stationarity of the singing voice and

music signals as well as their heavy computational requirements are some of the challenges

of applying statistical methods to this problem.

In contrast, the CASA framework proposed in this thesis (see Chapter 3), being based

on basic perceptually-inspired grouping cues [Bregman, 1990], allows to directly perform

the segregation of sound events (including the prominent melodic source) in polyphonic

music signals without first estimating the predominant pitch.

Accordingly, the following sections will present the results obtained for the task of ex-

tracting the predominant source (namely the singing voice) from “real-world” polyphonic

music. A description of the audio dataset used for the evaluation will be firstly presented,

followed by the discussion about experimental setup and the obtained results. The use

of the dynamically adjusted texture windows, based on the automatic onset detection as

described in Section 3.5 will also be evaluated using this same experimental scenario.

4.3.1 Corpus Description and Experimental Setup

This experiment will evaluate the performance of the segregation of the predominant

sound source in “real-world” polyphonic music signals using different similarity measures.

A dataset of 10 polyphonic music signals (with lengths in the range 3-5 minutes), each

including their original vocal and music accompaniment tracks before mixing as well as

the final mix, is used for this evaluation. Although relatively small, this dataset is diverse

and covers different styles of singing and music background, containing the following types

of music: rock, celtic and hiphop.
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Given the analysis front-end used in this work (see Section 3.4), a sinusoidal represen-

tation of the original voice-only track using 20 sinusoidal peaks per analysis frame is also

used as the reference signal for computing the SDR. This assures that the SDR compari-

son is measured between similar representations of the original and separated signals, and

therefore is more meaningful. This representation of the reference signal is perceptually

very similar to the original voice-only signal and captures the most important information

about the singing voice, such as the identity of the singer, pitch, vibrato.

In this experiment fixed length texture windows are used (recall the discussion about

time segmentation in Section 3.5) and the dominant sound source is separated and selected

directly using the approach described in Section 3.8.1. Furthermore, no post-processing

of the extracted signals was performed in order to provide a better insight about the

algorithm and its limitations. For example, a dominant cluster is always selected inde-

pendently of the presence of a main melody line (in this specific case, the singing voice).

4.3.2 Experimental Results

Several polyphonic music separation experiments were conducted using different combi-

nations of similarity measures, whose results are summarized in Table 5. The first column

in the table shows the performance of the proposed system using only the amplitude

and frequency similarities (defined in Section 3.7.1). The other columns show the perfor-

mance of using the three different harmonicity similarities (see Section 3.7.2) in addition

to amplitude and frequency. All the configurations utilize the same parameters for the

Ncut algorithm (see Section 3.6.3) and the only thing that changes is the definition of the

similarity function.

As can be seen, in most cases the HWPS similarity provides better results than

the Virtanen similarity (HV) [Virtanen and Klapuri, 2000] and the Srinivasan similar-

ity (HS) [Srinivasan and Kankanhalli, 2003] and behave similarly otherwise, confirming

the preliminary evaluation results of Section 4.2. Finally the last two columns show the

importance for the HWPS computation of the precise frequency estimation (described in

Section 3.4) when compared to rough frequency estimation directly from FFT bins. A

similar drop in performance between rough and precise estimation was also observed for

HV and HS but not included in the table.

Once again, these results illustrate the improvement in separation performance when

using the HWPS, which confirms the importance of the harmonicity cue for the segregation

of pitched components from complex audio mixtures.
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Table 5: SDR measurements (in dB) of predominant sound source separation in polyphonic music
using different similarity measures. The first column (AF) shows the results of using only the
amplitude and frequency similarity cues, while the remaining ones present the performance of
adding the use of the harmonicity cues proposed by Srinivasan (HS), Virtanen (HV) and the rough
(rHWPS) and precise (HWPS) frequency estimation HWPS cues, respectively.

Track Title AF HS HV rHWPS HWPS
bentOutOfShape 2.66 1.19 1.17 5.65 8.03
intoTheUnknown 0.65 3.24 0.81 3.29 4.05
isThisIt 1.94 2.71 2.07 2.18 2.65
landingGear 1.29 5.29 0.81 4.40 6.37
schizosonic 0.57 3.11 0.59 2.86 3.96
smashed 0.22 1.15 0.29 1.17 1.54
chavalierBran 4.25 7.21 1.6 4.02 6.83
laFee 7.7 6.62 2.48 4.88 6.93
lePub 0.23 0.48 0.23 0.38 0.47
rockOn 0.96 1.78 0.79 1.60 1.74

4.3.3 On the Use of Dynamic Texture Windows

Following the discussion about the time segmentation of music audio signals in Section 3.5,

this section presents a comparative evaluation on the impact of the use of fixed or dynami-

cally adjusted texture windows for the segregation of the predominant melodic source from

monaural polyphonic music signals. As detailed in Section 3.5.2, the dynamic adjustment

of the length of the texture windows is based on the use of an onset detector.

For this experiment, a dataset of 10 polyphonic music signals almost identical to the

one used in the previous evaluation was used. Similarly to the previous setup, a sinusoidal

representation of the original voice-only track using 20 sinusoidal peaks per analysis frame

is also used as the reference signal for computing the SDRogf . The fixed texture windows

have a length of 10 frames (≈ 150 ms, given the use of a window size of about 46 ms and

a hop size of 11 ms), and for the case of the dynamic texture windows, their sizes will be

in the range 50 ms - 300 ms.

Table 6 presents the comparative results for the predominant melodic source segrega-

tion for the two types of the texture windows. There is on average a small improvement

of 0.15 dB in the SDRogf measure when using texture windows dynamically adjusted by

the automatically detected onsets in the signal. Nevertheless, the statistical relevance

of such a small difference may not be as significant as expected (recall the discussion in

Section 3.5).

This small improvement may in fact result from the cluster selection approach used
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Table 6: SDRogf measurements (in dB) of predominant melodic source segregation from monaural
polyphonic audio recordings using fixed and dynamic adjustment of the length of texture windows.

Track Title Fixed Text.Windows Dynamic Text.Windows ∆dB
bentOutOfShape 5.46 5.50 0.05
intoTheUnknown 2.45 2.46 0.01
isThisIt 1.90 1.84 -0.06
landingGear 4.21 4.13 -0.07
schizosonic 2.09 2.15 0.06
smashed 0.78 0.81 0.04
chavalierBran 4.24 6.01 1.77
lePub 3.02 2.78 -0.23
rockOn 0.90 0.91 0.02
latinoRemix 2.05 2.07 0.06
tudoBem 2.14 2.19 0.06
Mean (Stdev) 2.66 (1.45) 2.81 (1.71) 0.15 (0.54)

for the current implementation (recall the discussion in Section 3.8.1). In this method,

the peaks in each texture window are over-segmented into five clusters, from which the

two most “dense” ones are selected for resynthesis. Because the dynamic adjustment

of the texture windows to inter-onset segments will desirably increase the probability

of getting windows containing just a single sound event (e.g. a single note), this over-

segmentation approach may, in such a case, end up breaking a single event into incoherent

sub-structures, hurting the final segregation. Differently, when using fixed windows the

probability of having multiple (complete or partial) events per texture window is higher

and consequently the over-segmentation will better fit the different events under analysis.

One drawback of using dynamically adjusted texture windows is related to the com-

putational costs involved in the computation of the Ncut for longer texture windows. As

discussed in Section 3.6, longer texture windows will in most cases account to a higher

number of peaks, resulting in larger similarity matrices. Because the specific NCut im-

plementation in this work is based on SVD computation, its complexity is in the order of

O(n3). Consequently its computational cost increases steeply with the increase of the num-

ber of peaks n to cluster, having as a consequence an increased average computation time

when using dynamically adjusted texture windows. In fact, this problem is more related

to the use of the Ncut than to the dynamic texture window approach, and some solutions

and alternatives have been proposed to improve the computational cost of the cluster-

ing procedure (e.g. [Dhillon et al., 2007]). As a result, and given the small improvements

provided by the use of dynamically adjusted texture windows, mainly when compared to
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the resulting computational costs, all the evaluations and experiments presented in the

following sections will use fixed length texture windows.

Nevertheless, these slightly better segregation results show that the use of the detected

onsets to automatically segment the audio signal into texture windows may be a promising

strategy. As a result, further experimentation and evaluation as well as the implementation

of more computationally efficient clustering methodologies should be explored in the future

in an attempt to get the most out of this approach.

4.4 Main Melody Pitch Estimation

The main melodic line is a critical piece of information for describing music and is very

influential in the identity of a musical piece. A common approach to automatic melody

extraction is to attempt multiple pitch extraction on the polyphonic mixture and select

the predominant pitch candidate as the pitch of the singing voice (e.g. [Paiva, 2006]). The

detected pitch can then be used to inform source separation algorithms. In the method

evaluated in this section the singing voice is first separated and the melodic pitch is

subsequently extracted directly from the separated audio.

It is important however to note that the main goal of the framework proposed in

this thesis is not just predominant pitch estimation but also separation and resynthesis

of the separated voice preserving additional information such as timbral characteristics

and singer identity. As a result, this evaluation should be taken as an additional way to

validate the proposed method.

Entire works have been dedicated to this topic (e.g. [Ryynanen and Klapuri, 2006,

Li and Wang, 2006, Klapuri et al., 2006, Paiva et al., 2006, Poliner et al., 2007]), and the

interested reader should refer to them for a comprehensive discussion on the definition of

the problem, its challenges and proposed solutions.

4.4.1 Corpus Description and Experimental Setup

For each song in the dataset of 10 songs already used for the experiments presented

in Section 4.3 (for which, recall, the original voice-only tracks are available) the pitch

contours were calculated for three configurations: the original clean vocal signal, the

polyphonic recording with both music and vocals (V M), and the vocal signal separated

by the algorithm proposed in this work (V Sep).

Two pitch extraction algorithms were utilized: a time domain autocorrelation mono-

phonic pitch extraction algorithm implemented in Praat [Boersma and Weenink, 2006],
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and a recent multipitch estimation algorithm developed by Klapuri [Klapuri et al., 2006].

Both approaches were configured to estimate fundamental frequencies in the range

[40, 2200] Hz, using a hop size of 11ms and an analysis window with a length of about

46ms.

The pitch contours estimated using Praat from the polyphonic recordings with both

music and vocals will be referred in the text, figures, and tables as V Mpraat, while the

ones extracted using Klapuri’s algorithm will be referred as V Mklap. Similarly, for the

separated vocal signals V Seppraat and V Sepklap will be used. For ground truth Praat is

used to extract a reference pitch contour from the original voice-only track of each song.

This ground truth was confirmed as sufficiently correct and therefore suitable for this

evaluation by listening to the generated contours.

For the purpose of this specific evaluation only the singing segments of each song are

considered. They are identified as the segments in the ground truth pitch contours that

present non-zero frequency values. For each pitch contour the normalized pitch error is

computed at each frame as follows:

NE[k] =
∣∣∣∣log2

f [k]
fref[k]

∣∣∣∣ (36)

where fref [k] corresponds to the frequency values of the ground truth pitch contour,

measured in Hertz, and k is the frame index. f [k] is either related to the frequency value

of the pitch contour extracted from the mixed signal (i.e. V Mpraat or V Mklap), or to the

pitch contour extracted using the vocal track separated by the proposed algorithm (i.e.

V Seppraat and V Sepklap). The normalized error NE is zero when the pitch estimation is

correct, and an integer number for octave errors (i.e. when f [k] = 2n × fref [k], n ∈ N).

Since only the singing segments of the signals are being considered, both f [k] and fref [k]

will never be zero.

Given that this evaluation is related to (musical) pitch estimation, a chroma-based

error measure NEchr derived from NE was also defined. In this measure the errors are

folded into a single octave as follows:

NEchr[k] =






0 if NE[k] = 0

1 if NE[k] 3= 0 ∧ mod(NE[k], 1) = 0

mod(NE[k], 1) otherwise

(37)

where mod() is the real modulo function1. This allows bringing to evidence the chromatic
1The real modulo function is inhere defined as a modulo operation according to the following conditions:
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Table 7: Normalized Pitch Errors (NE and NEchr) and Gross Errors (GE and GE−8ve) across
corpus, for different evaluation scenarios.

NE NEchr GE(%) GE − 8ve(%)
V Mpraat 8.62 (±11.86) 0.51 (±0.35) 82.44 66.00
V Mklap 0.55 (±0.83) 0.26 (±0.33) 55.70 48.68
V Seppraat 3.89 (±8.35) 0.35 (±0.36) 64.45 55.23
V Sepklap 1.34 (±1.09) 0.56 (±0.37) 79.65 62.04

distribution of the errors, wrapping all pitch inaccuracies into the interval [0, 1], where 0

corresponds to no pitch estimation error and 1 accumulates all the octave-related errors.

The following section will also present the results of similar experiments conducted us-

ing the corpus created for the MIREX automatic melody extraction evaluation exchange2.

It consists of 23 clips of various styles including instrumental and MIDI tracks for which

case the dominant melodic voice is estimated. In this case there was no access to the

original melody-only tracks, but ground truth pitch contours were provided for the evalu-

ation. As a result, this gives an opportunity to test the system’s segregation performance

for signals where there is no singing voice, but instead a predominant musical instrument

usually playing the main melody in a song.

4.4.2 Experimental Results

Table 7 shows the normalized pitch errors across the dataset of 10 songs for the different

evaluation scenarios. It also presents the gross error (GE) for each case, defined as the

percentage of all errors larger than half a semitone (i.e. for NE > 1
24). This tolerance

allows accepting estimated frequencies inside a one semitone interval centered around the

true pitch as correct estimates. Also presented is the gross error excluding all octave

errors (GE − 8ve). Octave ambiguities can be accepted as having smaller impact than

other errors for many musical applications.

From the results obtained from the V Mpraat evaluation, a GE in excess of 82% con-

firms the expected inability of monophonic pitch detectors such as the Praat algorithm to

accurately estimate the most prominent pitch on polyphonic music recordings. However,

if using the same exact pitch estimation technique on the voice signal separated by the

proposed system (i.e. V Seppraat), the results demonstrate a clear improvement, reducing

the gross error rate GE to about 64%. Although the proposed scheme does not com-

pare favourably to the state-of-the-art multipitch algorithm by Klapuri (GE of 55.7%),

if taking D = q × d + r, where D is the dividend, d is the divisor, q ∈ N is the quotient, and the returned
remainder r ∈ R is in the range 0 < r < d. E.g. mod(5.3, 2) = 1.3 or mod(5.3, 1) = 0.3.

2http://www.music-ir.org/mirex2005/index.php/Main_Page
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Figure 27: Distribution of errors as percentages of total pitch estimates across corpus. The
top plot presents a segment of the normalized error distribution, NE (no significant error values
exist outside the plotted ranges), while the bottom plot depicts the corresponding octave wrapped
error distribution, NEchr. The pitch errors from using Praat on the separated voice signals are
represented in black colour, while its use on mixed signals is represented by the slashed line and
white bars. The multiple pitch approach of Klapuri is represented in gray.

it shows the ability of the proposed method to simplify the acoustic scene by focusing on

the dominant harmonic source.

Intriguing to note are the results obtained when using the algorithm by Klapuri in

the separated signal (i.e. V Sepklap). Given the good results obtained when applying this

algorithm to the mixed signals (i.e. V Mklap), it would be expectable to get even better

results when applying the same method to the separated signals. Resynthesis artifacts and

phase distortions in the separated signals may be in the origin of these poor results, but

additional research and study of Klapuri’s algorithm will have to be conducted in order

to fully understand these results.

It is also interesting to look at the distribution of errors. Figure 27 shows the distribu-

tion of the normalized and octave wrapped errors as percentages over the total number of

estimated pitch frames (the upper plot presents the significant section of the NE distribu-

tion while the lower plot shows the NEchr distribution). All three evaluations presented

in the plots show a similar tendency to output one-octave ambiguities (i.e. about 6% for

NE = 1). V Mpraat presents several additional high-valued error peaks caused by incorrect
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Table 8: Normalized Pitch Errors (NE and NEchr) and Gross Errors (GE and GE − 8ve) for
MIREX Dataset, using different evaluation scenarios.

NE NEchr GE(%) GE − 8ve(%)
V Mpraat 3.29 (±6.62) 0.48 (±0.37) 76.02 55.87
V Mklap 0.34 (±0.75) 0.15 (±0.28) 34.27 29.77
V Seppraat 1.34 (±4.13) 0.36 (±0.40) 54.12 34.97
V Sepklap 0.48 (±0.58) 0.33 (±0.40) 53.07 36.67

pitches estimated due to the presence of multiple overlapping notes from the musical back-

ground. These errors are significantly reduced in the case of the pitch estimation on the

separated signal using the proposed method. When compared to V Mklap most of the pitch

estimation errors from V Seppraat result from octave and perfect-fifth (i.e. NEchr = 7/12)

ambiguities.

Similar experiments were also conducted using the corpus created for the MIREX

automatic melody extraction evaluation exchange. The MIREX examples include some

synthesized MIDI pieces, which are simpler to separate as they do not include reverber-

ation and other artifacts found in realworld signals. Most of the examples also have a

more pronounced vocal line or dominant melody than the corpus used for the previous

experiments, and therefore most of the results were better. Table 8 shows the normalized

pitch errors and gross errors for the MIREX corpus. The distribution of the normalized

errors are depicted in Figure 28.

4.5 Voicing Detection in Polyphonic Music Signals

Given the relevance of the singing voice in popular western music, a system able to

reliably identify those portions of a music audio file containing vocals would be use-

ful to obtain a “signature” of the piece or to serve as pre-processing stage to auto-

matic recognition of lyrics. Several authors have been working in this specific problem,

and the interested reader can find detailed discussions and approaches to this problem

in [Berenzweig and Ellis, 2001, Nwe et al., 2004, Rocamora and Herrera, 2007]. In par-

ticular, Rocamora and Herrera recently explored a set of descriptors proposed in the lit-

erature to perform this task and compared the performance of a statistical classifier using

each one of them, concluding that Mel-Frequency Cepstral Coefficients (MFCC) are the

most appropriate [Rocamora and Herrera, 2007]. Accordingly, the goal of the experiments

described in this section is to determine whether the proposed sound segregation algorithm

can be used to improve voicing detection accuracy in monaural polyphonic recordings.
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Figure 28: Distribution of errors over the MIREX audio melody extraction dataset. The top
plot presents a segment of the normalized error distribution, NE (no significant error values exist
outside the plotted range), while the bottom plot depicts the corresponding octave wrapped error
distribution, NEchr. The pitch errors from using Praat on the separated voice signals are repre-
sented in black colour, while its use on mixed signals is represented by the slashed line and white
bars. The multiple pitch approach of Klapuri is represented in gray.

4.5.1 Corpus Description and Experimental Setup

The dataset of the 10 polyphonic music pieces for which the original separate vocal track

are available (described in Section 4.3.1) was once again used for the experiments. For this

evaluation, voiced/unvoiced decisions extracted using Praat [Boersma and Weenink, 2006]

from the original vocal track were used as the ground truth. A supervised learning ap-

proach was then used to train voiced/unvoiced classifiers for three configurations:

• V MMFCC refers to using MFCC [Davis and Mermelstein, 1980] calculated over the

mixed voice and music signal;

• V SepMFCC refers to MFCC calculated over the automatically separated voice signal;

• V SepCPR refers to using the Cluster Peak Ratio (CPR), a feature that can be directly

calculated on each extracted clusters of peaks. It is defined as:

CPR =
max(Ak)
mean(Ak)

(38)

where Ak are the extracted peak amplitudes for frame k. Voiced frames tend to have

more pronounced peaks than unvoiced frames and therefore tend to have higher CPR
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Table 9: Voicing Detection Percentage Accuracy using different classifiers and evaluation scenar-
ios, where NB refers to a Naive Bayes classifier, SVM to a support vector machine and ZeroR is
the “random” baseline classifier.

ZeroR NB SVM
V MMFCC 55 69 69
V SepMFCC 55 77 86
V SepCPR 55 73 74

values.

4.5.2 Experimental Results

The experiments were performed using the Weka machine learning frame-

work [Witten and Frank, 2005], where NB refers to a Naive Bayes classifier and

SVM to a support vector machine trained using the sequential minimal optimization

(SMO) . The ZeroR classifier classifies everything as voiced and was used as a baseline.

The goal was to evaluate the relative improvement in classification performance when

using the separated voice signal rather than building an optimal voicing detector. No

smoothing of the predictions was performed.

Table 9 shows the classification accuracy (i.e the percentage of frames correctly clas-

sified using these 3 configurations). All the results were computed using 10-fold cross-

validation over features extracted from the entire corpus. In 10-fold cross-validation the

feature matrix is shuffled and partitioned into 10 “folds”. The classification accuracy is

calculated by using 9 of the folds for training and 1 fold for testing and the process is

repeated 10 times so that all partitions become the testing set once. The classification

results are averaged. 10-fold cross-validation is used to provide a more balanced estimate

of classification accuracy that is not as sensitive to a particular choice of training and

testing sets [Witten and Frank, 2005].

The results show that using the automatically separated voice results in significant

improvements in voicing detection accuracy. Additionally, the use of the simple and

direct CPR feature still outperforms a more complex classifier trained on the mixed data.

Since CPR is computed directly on the mid-level peak representation (see Section 3.4),

this result shows that such a compact sound event representation can be directly used for

MIR tasks, without the need of resynthesizing the separated signals.
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4.6 Timbre Identification in Polyphonic Music Signals

The increasing quantity of music titles available in digital format added to the huge amount

of personal music storage capacity available today has resulted in a growing demand for

more efficient and automatic means of indexing, searching and retrieving music content.

The computer identification of the instruments playing in a music signal can assist the

automatic labeling and retrieval of music.

Several studies have been made on the recognition of musical instruments on isolated

notes or in melodies played by a single instrument. A comprehensive review of those

techniques can be found in [Herrera et al., 2003]. However, the recognition of musical

instruments in multi-instrumental, polyphonic music is much more complex and presents

additional challenges. The main challenge stands from the fact that tones from perform-

ing instruments can overlap in time and frequency. Therefore, most of the isolated note

recognition techniques that have been proposed in the literature are inappropriate for poly-

phonic music signals. Some of the proposed techniques for the instrument recognition on

polyphonic signals consider the entire audio mixture, avoiding any prior source separation

[Essid et al., 2005, Livshin and Rodet, 2004]. Other approaches are based on the separa-

tion of the playing sources, requiring the prior knowledge or estimation of the pitches of the

different notes [Kashino and Murase, 1999, Kostek, 2004]. However, robustly extracting

the fundamental frequencies in such multiple pitch scenarios is difficult.

In this section, the segregation framework proposed in this thesis is used and evaluated

for the task of timbre classification of polyphonic, multi-instrumental music signals. This

work and the corresponding results have also been published in [Martins et al., 2007]. A

work on source separation based on the use of the same timbre models, originally proposed

in [Burred et al., 2006], can be found in [Burred and Sikora, 2007].

4.6.1 System Overview

Figure 29 presents a block-diagram of the complete timbre identification system. After

grouping the spectral peaks into separated sound events (which will ideally have a per-

ceptual correspondence to the notes played by each instrument in the sound mixture – see

Chapter 3 for a detailed description of the sound source formation block) each identified

cluster is matched to a collection of six timbre models, namely piano, oboe, clarinet, trum-

pet, violin and alto sax. These models are a compact description of the spectral envelope

and its evolution in time, and were previously trained using isolated note audio recordings.

The design of the models, as well as their application to isolated note classification, were
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Figure 29: Block diagram of the timbre recognition system.

originally proposed in [Burred et al., 2006].

As in the previous experiments, in this evaluation the system was configured to extract

a maximum of 20 sinusoids per frame which are 46 ms long, using a hop size of 11 ms.

However, texture windows were now set to the duration of the audio signals (i.e. the

duration of the notes being played).

However, the number of clusters to be segregated and selected for resynthesis (recall

the discussion in Section 3.8.1) was in this case set manually to correspond to the known

number of notes playing in each audio signal (see the description of the datasets used for

this evaluation presented in Section 4.6.3 for more details on the type of sound signals

under analysis).

Although this approach requires prior knowledge about the number of notes playing at

each instant (which were in this case available as ground truth), and may raise the question

whether each note would be in fact perceived as a single sound event by a naive listener

(recall the discussion about “physical” versus “perceptual” sources in Section 2.3.2), one

objective of this experiment was to verify if the segregated events had some perceptual

correspondence to known timbres and their corresponding models. While listening tests

would have been the ideal way to evaluate the perceptual relevance of the segregated

sounds, due to practical constraints a more pragmatic evaluation was conducted, as pre-

sented in the following sections. Nevertheless, the interested reader may find some audio

examples in http://www.fe.up.pt/˜lgustavo, where it is possible to appreciate the

relative perceptual relevance of the segregation results.

As an example of the output of the sound source formation block, Figure 30 depicts

the result of the sound segregation for a single-channel audio signal with mixture of two

notes (E4 and B43, same onset, played by a piano and an oboe, respectively). Each

3Throughout this section the convention A4 = 440Hz will be used.
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Figure 30: Resulting sound source formation clusters for two notes played by a piano and an
oboe (E4 and B4, respectively).

dot corresponds to a peak in the time-frequency space (see Section 3.4) and the different

coloring reflects the cluster to which it belongs (i.e. its source). Each cluster is then

matched to a set of pre-trained timbre models, described in the following section.

4.6.2 Timbre Models and Instrument Recognition

Once each single-note cluster of sinusoidal parameters has been extracted, it is classified

into an instrument from a predefined set of six: piano (p), oboe (o), clarinet (c), trumpet

(t), violin (v) and alto sax (s). The method, originally described in [Burred et al., 2006],

models each instrument as a set of time-frequency templates, one for each instrument. The

template describes the typical evolution in time of the spectral envelope of a note. The

spectral envelope is an appropriate representation to generate features to analyze sounds

described by sinusoidal modeling, since it matches the salient peaks of the spectrum, i.e.,

the amplitudes ak
l of the partials (recall the notation defined in Section 3.4).

Training the Timbre Models

The training process consists of arranging the training dataset as a time-frequency matrix

X(g, k) of size G × K, where g is the frequency bin index and k is the frame index,

and performing spectral basis decomposition upon it using Principal Component Analysis
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Figure 31: Examples of prototype envelopes for a range of one octave.

(PCA). This yields a factorization of the form X = BC, where the columns of the G×G

matrix B are a set of spectral basis sorted in decreasing order of contribution to the total

variance, and C is the G×K matrix of projected coefficients. By keeping a reduced set of

R < G basis, a reduction of the data needed for a reasonable approximation is obtained

and, more importantly for the purpose of this application, a representation is also obtained

that is based only on the most essential spectral shapes.

Having as goal a pitch-independent classification, the time-frequency templates should

be representative for a wide range of notes. In the training process, notes from several

pitches must be considered to give rise to a single model. The training samples are sub-

jected to sinusoidal modeling, and arranged in the data matrix X by linearly interpolating

the amplitude values to a regular frequency grid defined at the locations of the G bins.

This is important for appropriately describing formants, which are mostly independent of

the fundamental frequency.

The projected coefficients of each instrument in the R-dimensional PCA space are

summarized as a prototype curve by interpolating the trajectories corresponding to the

individual training samples at common time points and point-wise averaging them. When

projecting back into the time-frequency domain by a truncated inverse PCA, each P i-point

prototype curve will correspond to a G × P i prototype envelope Mi(g, k) for instrument

i. The same number of time frames P = P i are considered for all instrument models.

Figure 31 shows the obtained prototype envelopes for the fourth octave of a piano and of

an oboe.
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Figure 32: Weak matching of an alto sax cluster and a portion of the piano prototype envelope.

As argued in [Burred et al., 2006], depending on the application, it can be more conve-

nient to perform further processing on the reduced-dimensional PCA space or back in the

time-frequency domain. When classifying individual notes, a distance measure between

unknown trajectories and the prototype curves in PCA space has proven successful. In

the current source separation application, the clusters to be matched to the models can

contain regions of unresolved overlapping partials or outliers, which can introduce impor-

tant interpolation errors when adapted to the G-bin frequency grid needed for projection

onto the bases. This makes working in the time-frequency domain more convenient in the

present case.

Timbre Matching

Each one of the clusters obtained by the sound source separation step is matched against

each one of the prototype envelopes. Let a particular cluster of K frames be represented

as an ordered set of amplitude and frequency vectors A = (a1, . . . ,aK), F = (f1, . . . , fK)

of possibly differing lengths L1, . . . , LK .

It becomes now necessary to evaluate the prototype envelope of model i at the fre-

quency support of the input cluster j. This operation is denoted by M̃(i, j) = Mi(F(j)).

To that end, the time scales of both input and model are first normalized. Then, the model

frames closest to each one of the input frames in the normalized time scale are selected.

Finally, each new amplitude value m̃k
l (i, j) is linearly interpolated from the neighboring

amplitude values of the selected model frame.
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It is then possible to define the distance between a cluster j and an interpolated

prototype envelope i as

d(A(j), M̃(i, j)) =
1

K(j)

K(j)∑

k=1

√√√√
Lk(j)∑

l=1

(ak
l (j)− m̃k

l (i, j))2 (39)

i.e., the average of the Euclidean distances between frames of the input clusters and

interpolated prototype envelope at the normalized time scale.

The model M̃(i, j) minimizing this distance is chosen as the predicted instrument for

classification. Figure 32 shows an attempt to match a cluster extracted from an alto sax

note and the corresponding section of the piano prototype envelope. As it is clearly visible,

this weak match results in a high distance value.

Other alternative metrics could have been used (e.g. since the timbre models are

in fact parametrically defined as probability distributions [Burred et al., 2006], the likeli-

hood of a cluster corresponding to a specific template would be an interesting approach

to implementing the matching procedure), but preliminary tests and the simplicity and

computationally efficiency of the Euclidean distance ended up determining its choice for

this specific evaluation.

4.6.3 Corpus Description and Experimental Setup

The current implementation of the sound source formation framework does still not fully

take into consideration timing information and continuity issues, such as note onsets and

durations (see the discussion on Section 3.8.1). Given so, the evaluation procedure will

be limited to the separation and classification of concurrent notes sharing the same onset

and played from different instruments.

The evaluation dataset was artificially created mixing audio samples of isolated notes

of piano, oboe, clarinet, trumpet, violin and alto sax, all from the RWC Music Database

[Goto et al., 2003]. The training dataset used to derive the timbre models for each instru-

ment (as described in Section 4.6.2) is composed of audio samples of isolated notes, also

from the RWC Music Database. However, in order to get meaningful timbre recognition

results, independent instances of each instrument for the evaluation dataset and for the

training dataset were used. Ground-truth data was also created for each mixture and

includes information about the notes played and the corresponding instrument. Given

that the timbre models used in this work have shown good results for a range of about

two octaves [Burred et al., 2006], the notes used for evaluation were constrained to the
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True instruments classified
p o c t v s as

100 0 0 0 0 0 p
0 100 8 8 0 0 o
0 0 67 0 33 0 c
0 0 0 92 0 8 t
0 0 0 0 58 8 v
0 0 25 0 8 83 s

Table 10: Confusion matrix for single–note instrument identification. Six different instruments
from the RWC database were considered: piano (p), oboe (o), clarinet (c), trumpet (t), violin (v),
alto sax (s).

range C4 to B4. Furthermore, for simplicity’s sake, only notes with a fixed intensity were

considered for this evaluation .

4.6.4 Experimental Results

Several experiments were conducted for evaluating the system ability to identify sound

events produced by specific instruments in a sound mixture. These evaluations range

from a simple single-note instrument identification problem (as a way to define a baseline

evaluation of the sinusoidal model and subsequent matching algorithm), go through the

evaluation of the ability to detect the presence of a specific timbre in a sound mixture, to

the final test where the system tries to perform event segregation and subsequent timbre

recognition in signals with a varying number of notes playing simultaneously.

Timbre identification for single note signals

The first evaluation tested the performance of the timbre matching block (as described

in Section 4.6.2) for the case of isolated notes coming from each of the six instruments

modeled. This provides a base-ground with which it will be possible to compare the abil-

ity of the framework to classify notes separated from mixtures. For the case of isolated

notes, the sound source separation block reduces its action to just performing sinusoidal

analysis, since there are no other sources to be separated. This basically only results in

the loss of the non-harmonic residual, which although not irrelevant to timbre identifi-

cation, has been demonstrated to have a small impact in the classification performance

[Livshin and Rodet, 2006].

Table 10 presents the confusion matrix for the instrument classification for a dataset of

72 isolated notes, ranging from C4 to B4, from each one of the six considered instruments.

The system presents an overall classification accuracy of 83.3%, being violin and clarinet

the instruments causing the biggest difficulties. This result is not as strong as the one

138



TIMBRE IDENTIFICATION IN POLYPHONIC MUSIC SIGNALS

2-note 3-note 4-note total
RCL PRC F1 RCL PRC F1 RCL PRC F1 RCL PRC F1

p 83 100 91 22 100 36 0 0 0 23 100 38
o 100 75 86 100 46 63 67 40 50 86 50 63
c 33 100 50 33 100 50 40 86 55 36 93 52
t 89 100 94 58 100 74 58 64 61 67 85 75
v 67 67 67 83 45 59 83 36 50 80 43 56
s 100 43 60 67 60 63 60 75 67 67 62 64

total 75 79 77 56 64 59 46 56 50 56 64 60

Table 11: Recall and precision values for instrument presence detection in multiple-note mixtures.

published in [Burred et al., 2006], based on the same timbre models, where a 94.86%

classification rate was presented. This difference may result from the use of independent

datasets for training and testing in this work, instead of cross-validation over the entire

dataset.

Instrument presence detection in mixtures of notes

In the next experiment the objective was to evaluate the ability of the system to separate

and classify the notes from audio signals with up to 4 simultaneously sounding instruments.

A combination of 54 different instruments and mixtures of 2-, 3- and 4-notes was created

(i.e. 18 audio files for each case).

The first and simplest evaluation performed was to test the system ability to detect

the presence of an instrument in a mixture of up to 4 notes. In this case it was just a

matter of matching each one of the six timbre models with all the separated clusters and

counting the true and false positives for each instrument.

A true positive (TP) is here defined as the number of separated clusters correctly

matched to an instrument playing in the original mixture (such information is available in

the dataset ground-truth). A false positive (FP) can be defined as the number of clusters

classified as an instrument not present in the original audio mixture. Given these two

values, it is then possible to define three performance measures for each instrument –

Recall (RCL), Precision (PRC) and F-Measure (F1):

RCL =
TP

COUNT
, PRC =

TP

TP + FP
, F1 =

2×RCL× PRC

RCL + PRC
, (40)

where COUNT is the total number of instances of an instrument over the entire dataset

(i.e. the total number of notes it plays). As shown in Table 11, the system was able to

correctly detect 56% of the occurrences of instruments in mixtures of up to 4 notes, with
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a precision of 64%. Piano appears as the most difficult timbre to identify, specifically

for the case of 4-note mixtures, where from the existing 15 notes playing in the dataset,

none was correctly detected as coming from that instrument. As anticipated, the system

performance degrades with the increase of the number of concurrent notes. Nevertheless,

it was still possible to retrieve 46% of the present instruments in 4-note mixtures, with a

precision of 56%.

Note separation and timbre identification in mixtures of notes

Although informative, the previous evaluation has a caveat – it does not allow to precisely

verify if a separated and classified cluster does in fact correspond to a note played with

the same instrument in the original audio mixture. In order to fully assess the separation

and classification performance of the framework, an attempt to make a correspondence

between each separated cluster and the notes played in the mix (available in the ground-

truth) was conducted.

A possible way to obtain such a correspondence is by estimating the pitch of each one

of the detected clusters, using the following simple technique. For each cluster the his-

togram of peak frequencies was calculated. Since the audio recordings of the instruments

used in this evaluation are from notes with steady pitch over time (i.e. no vibrato, glissan-

dos or other articulations), the peaks on the histogram provide a good indication of the

frequencies of the strongest partials. Having the set of the strongest partial frequencies,

another histogram of the differences among all partials was computed, and the highest

mode as the best f0 candidate for that cluster was selected.

Given these pitch correspondences, it is now possible to check the significance of each

separated cluster as a good note candidate, as initially hypothesized. For the entire

dataset, which includes a total of 162 notes from all the 2-, 3- and 4-note audio mixtures,

the system was able to correctly establish a pitch correspondence for 55% of the cases

(67%, 57% and 49% for the 2-, 3- and 4-note mixtures, respectively). These results can not

however be taken as an accurate evaluation of the sound source separation performance,

as they are influenced by the accuracy of the used pitch estimation technique.

The results in Table 12 show the correct classification rate for all modeled instruments

and multiple-note scenarios, excluding the clusters whose correspondence was not possible

to establish. This allows decoupling the source separation/pitch estimation performance

from the timbre identification accuracy. Table 12 shows a correct identification rate of

47% of the separated notes overall, diminishing sharply its accuracy with the increase of

concurrent notes in the signal. This shows the difficulties posed by the overlap of spectral
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Instrument Detection Rate
2-note 3-note 4-note overall

p 67 67 0 55
o 100 86 60 81
c 33 29 19 26
t 75 33 22 43
v 67 100 50 75
s 75 36 42 44

total 65 50 33 47

Table 12: Instrument classification performance for 2-, 3- and 4-note mixtures.

True instruments classified
p o c t v s as

55 0 0 4 0 0 p
27 81 21 30 8 15 o
9 0 26 0 8 3 c
0 6 5 43 0 32 t
0 6 28 4 75 6 v
9 6 21 17 8 44 s

Table 13: Instrument classification confusion matrix for 2-, 3- and 4-note mixtures

components from different notes/instruments into a single detected cluster. Table 13

presents the overall confusion matrix for the instrument classification.

4.7 Summary

This chapter presented a set experiments where the sound segregation framework proposed

in Chapter 3 was evaluated.

The first experiments attempted to directly demonstrate the influence of the proposed

perceptual grouping cues in the segregation performance of the system, both individually

and in combination. In particular, the novel HWPS cue has been shown to compare

favourably to two state-of-the-art harmonicity cues, and that its combination with other

grouping cues, such as frequency and amplitude similarity, improved the overall separation

performance.

In addition, experimental results for several MIR tasks using “real-world” polyphonic

music signals showed that the use of segregated signals allows to achieve final results that

compare or outperform typical and state-of-the-art audio content analysis systems, which

traditionally represent statistically the entire polyphonic sound mixture.

Although not all of these experiments directly evaluate the separation performance

of the proposed system using low-level measures, they allowed to indirectly assess the

improvements achieved in specific application tasks.

141



EXPERIMENTAL VALIDATION AND APPLICATIONS

142



Chapter 5
Software Implementation

“Everything should be made as simple as possible but not simpler.”

Albert Einstein

5.1 Introduction

Attempting to do research on the topic of audio analysis and processing poses challenging

demands on the development of software modules and tools so that any proposed hypoth-

esis and algorithms can be objectively implemented and evaluated. In fact, the use of

working software prototypes in research is essential to the validation and improvement

of the implemented algorithms, ultimately allowing to create a “self-improving feedback

loop” [Tzanetakis, 2002, p.10]. Inevitably, during the development of this thesis a great

deal of work has been invested into software development, mainly focused on the sound

segregation framework proposed and discussed in the previous chapters.

The following sections will discuss the requirements, choices and the major contribu-

tions towards the development of a software framework for the computational analysis of

sound signals. However, a thorough and profound discussion about Software Engineering

specificities is out of the scope of this thesis, and the reader will be redirected to the

specialized literature whenever appropriate.

5.2 Design Requirements

The design and implementation of a multimedia signal processing software framework is

challenging especially when efficiency or real-time performance is at stake. Given the huge
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amounts of multimedia data available today (where audio and music content is included),

real-world multimedia applications should be able to process content in a timely manner,

otherwise their usefulness is compromised. In addition, if the framework is to remain

useful with the passing of time, an effort should be put into designing it so that it makes

the best use of the increasingly available computational power, allowing it to scale as well

as possible with increasing amounts of data to process.

Furthermore, modularity and code reusability are usually highly desired attributes

in a flexible software framework. This allows developers to perform rapid-prototyping

of complex algorithmic processes or even develop fully fledged applications without the

need to repeat from scratch the cycle of coding, testing, debugging and validating all the

building blocks that make up such a project, being able instead to focus on the development

of new and highly specialized software modules.

Another important feature is portability, which means that it should be possible to

use the same software code in different conditions (e.g. as a console service running

in a server, or as a GUI application providing easy interaction with the end user), ar-

chitectures (e.g. x86, Power-PC, SPARC) and platforms (e.g. UNIX/Linux, MacOSX,

Microsoft Windows). However, this requires the use of well established coding standards

(e.g. ANSI C, portable C++, JAVA) and discourages the use of architecture and platform

specific features and optimisations (e.g. assembly coding, platform specific libraries or

technologies).

This issue is particularly difficult to tackle for the case of multimedia drivers (e.g.

audio and MIDI drivers), whose technologies, implementation and APIs are traditionally

distinct and incompatible between different operating systems and platforms (e.g. Di-

rectShow in Microsoft Windows, CoreAudio in MacOSX, ALSA in Linux). This requires

specific software implementations for each particular case, which can put an unacceptable

burden into the development cycle. One possible solution is to make good use of exter-

nal libraries (commercially or freely available) that already implement a common API for

abstracting the end-user from all the platform-specific code calls (e.g. RTAUDIO and

RTMIDI [Scavone and Cook, 2005]).

In fact, multi-platform external libraries are also available for other code modules, such

as processing algorithms (e.g. FFTW1), input and output handling of file formats (e.g.

libsndfile2), graphic user interfaces (e.g. Trolltech Qt43, GTK+4), numerical routines (e.g.

1http://www.fftw.org/
2http://www.mega-nerd.com/libsndfile/
3http://trolltech.com/products/qt
4http://www.gtk.org/
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BLAS5 ), among others. Consequently, code reusability can additionally be achieved by

integrating with already existing libraries for specific tasks, but some tradeoff should be

exerted if the software framework is to remain with as limited as possible dependencies in

order to avoid portability issues.

Interoperability with existing software packages or applications (e.g. MATLAB6,

WEKA7, Python8, Trolltech Qt4) is another valuable feature. This is different from the

use of external libraries, as presented above. In this case there is no actual integration of

external code into the framework (i.e. by means of some sort of static or dynamic linking

with external libraries). Instead, interoperability simply implies the usage of the features

provided by those packages or applications by means of some existing data communication

interface (e.g. input/output of a common file format or some way of run-time interpro-

cess communication using a vendor provided API) [Tzanetakis et al., 2008]. This has an

added virtue of also making the software framework a potentially useful package those

applications can interface and build upon.

A final but significant feature of a software framework is its code complexity. Avoiding

highly complex or over-engineered software architectures (an aspect easily overlooked when

dealing with feature-rich and sophisticated projects) may prevent an excessive burden on

code understandability, creation and usability. This takes great importance when the

framework aims at bringing non-experts in software engineering to contribute with the

creation of valuable and specialized software modules, but who would otherwise be turned

down by a steep learning curve or high complexity and programming overheads. However,

this is always a compromise situation, where increasing flexibility and efficiency usually

bring along added complexity.

5.3 Implementation Strategies

Different strategies may be adopted when facing the task of implementing software modules

that are just a small part of a larger system.

5http://www.netlib.org/blas/
6http://www.mathworks.com/products/matlab/
7http://www.cs.waikato.ac.nz/ml/weka/
8http://www.python.org/
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One possible approach would be to use commercially available platforms (e.g. MAT-

LAB, Simulink9, LabView10, MAX/MSP11). Traditionally, these software packages al-

ready provide some ready-to-use building blocks and routines for commonly known and

used tasks (which may range from basic mathematical or numerical routines to advanced

signal processing algorithms), and allow in most of the cases coding new user-defined ones.

However, and at the light of the discussion in the previous section, it may not always be

easy to find a commercial software package that perfectly fits all the requirements posed

by a specific research task. And since the majority of the available commercial software

packages is released as closed source, it may become difficult to tailor the platform to the

specific needs of the project at hands. Finally, the cost of purchasing and maintaining

a commercial software license is often high, turning such solutions unsustainable for a

low-budget or unfunded projects.

Another option would be to write all the software from scratch and find some way to

integrate the different software modules into a working system. If good Software Engineer-

ing practices are followed, this would usually require the definition of a system architecture

that should take into consideration the design requirements of the project. It would de-

mand taking the time and effort to implement, test and evaluate the system and all its

processing modules. Although potentially complex and challenging (both in time and

in expertise), this approach has obvious advantages: it allows defining and fine-tunning

the software architecture taking into consideration any specific requirements, staying in

complete control of the way the software is designed and subsequently implemented. The

learning experience gained from undertaking such an endeavor would also be a valuable

added bonus.

In fact, some of these individual or team efforts have been released to the com-

munity as Free12 and Open Source13 Software (FOSS) projects. Successful exam-

ples include projects like the Synthesis ToolKit (STK)14 [Cook and Scavone, 1999],

MARSYAS15 [Tzanetakis, 2008], CLAM16 [Amatriain, 2007], Aubio17, PureData (Pd)18,

9http://www.mathworks.com/products/simulink/
10http://www.ni.com/labview
11http://www.cycling74.com/products/maxmsp
12As defined by the Free Software Foundation (http://www.fsf.org/)
13As defined by the Open Source Initiative (http://www.opensource.org/)
14http://ccrma.stanford.edu/software/stk/
15http://marsyas.sourceforge.net
16http://clam.iua.upf.edu/
17http://aubio.org/
18http://crca.ucsd.edu/˜msp/software.html
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“The RESPITE CASA Toolkit Project” (CTK)19, among others20.

These projects are an interesting opportunity for carrying on existing work and con-

tributing back with any original or relevant achievements (be it software, algorithms or

improved results). This usually ends up originating a positive feedback loop of contri-

butions of software modules, tools, collections of routines and even complete frameworks

around a field of study. An entire community may end up using the software and putting it

to the test, eventually reporting any found deficiencies or limitations, posting new feature

requests, or even becoming an active collaborator of the project.

Specially relevant when used for research, FOSS allows using code as a means of

communication, where publications can not possibly describe all the nuances and details

of how an algorithm is implemented. At the same time, replication of experiments is

essential for progress in research especially in new emerging areas such as MIR and CASA.

For complex systems and algorithms it is almost impossible to know if a reimplementation

is correct and therefore the ability to run the original code is crucial.

Finally, FOSS solutions have a lower cost when compared to proprietary or comercial

software, a particularly important point given that traditionally researchers have limited

financial resources.

5.4 Developing with MARSYAS

At the light of the previous discussions, and taking into account the past experi-

ence from doing research using both commercial software packages (i.e. MATLAB)

[Martins, 2002, Martins and Ferreira, 2002] and open source software frameworks (i.e.

MARSYAS-0.1 [Tzanetakis and Cook, 2000]) [Kotti et al., 2006a, Kotti et al., 2006b], a

decision was made to look for a suitable FOSS framework.

Among the available options, MARSYAS-0.221, a recent version of the origi-

nal MARSYAS-0.1 framework, stood out as a strong candidate [Tzanetakis, 2008,

Tzanetakis et al., 2008]. As presented in Appendix C, MARSYAS-0.2 meets most of the

discussed requirements for a research software framework and the previous acquaintance

with the original version implied a smoother learning curve and a good prospect of easily

reusing most of the code previously developed. All things considered, MARSYAS22 was

19http://www.dcs.shef.ac.uk/spandh/projects/respite/ctk/
20For an extensive list of the most used software tools in the area of MIR and CASA (both FOSS and

commercial), visit: http://www.music-ir.org/evaluation/tools.html
21http://marsyas.sourceforge.net
22For simplicity sake, from now on the more compact MARSYAS designation will be used when referring

to the specific MARSYAS-0.2 version of the framework.
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the software framework of choice.

Given the free and open source nature of MARSYAS, this decision opened the op-

portunity for the involvement in the development of the framework. This resulted in a

close collaboration with the MARSYAS development team (which at the time was ba-

sically composed by MARSYAS original creator, George Tzanetakis, but that has since

then grew into an actual group of people working around several aspects of the software

framework23). Their openness and availability for discussing and integrating new ideas

into the framework gave space for most of the software development contributions that

will be described in the following sections.

5.4.1 Contributions to the MARSYAS Framework

MARSYAS provides a general, extensible and flexible framework that enables the easy

and efficient combination of a variety of existing building blocks as dataflow components

which ultimately allow to implement efficient audio analysis and synthesis tools. Ap-

pendix C presents the base architecture of MARSYAS and some of its key features (e.g.

Implicit Patching and Composition architecture). It also provides a detailed descrip-

tion of the MARSYAS basic processing blocks, composite modules, dynamic access and

linking to controls and modules as well as the interoperability with other software plat-

forms [Tzanetakis et al., 2008].

As a result, MARSYAS provided a solid software base upon the sound segregation

framework proposed in this thesis was implemented. However, given the challenging and

specific requirements posed by the proposed sound segregation framework, its implemen-

tation as a MARSYAS processing network asked for the substantial development of new

processing (e.g. an HWPS module) and composite modules as well as some changes, op-

timizations and some profound and extensive refactoring of the core MARSYAS code.

The following list summarizes some of the main contributions to the MARSYAS software

framework conducted in the scope of this thesis.

Refactoring and optimization of the MarSystem update mechanism. The com-

plexity of the MARSYAS networks required for the implementation of the sound

source segregation system proposed in this thesis (see Figures 33 to 38) posed new

challenges to the way the MARSYAS data flow configuration mechanism worked.

Changes in the data flow configuration (e.g. different number of peaks at each tex-

ture window) had now to be handled dynamically and efficiently at runtime, requiring

the optimization of the update routines and a redefinition of the MarSystem API.
23For more information about the MARSYAS core development team, visit http://marsyas.sf.net/
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Refactoring and optimization of MARSYAS controls. Controls in MARSYAS

(i.e. the objects MarControl, MarControlValue, MarControlPtr) are now

implemented using C++ templates, increasing code generality and flexibility while

keeping read and write accesses to controls fully encapsulated.

Refactoring and optimization of the control linking mechanism. The linking of

controls is a powerful mechanism which allows to specify parameters of processing

modules as well as to pass information among modules in the processing network.

However, the way they were originally implemented made it hard to achieve a flexible

management and reconfiguration of intricate linking configurations such as the ones

required by the sound segregation system proposed in this work. Links between

controls are now directed links, allowing to easily reconfigure complex linking schemes

between child and Composite MarSystem’s. Furthermore, a profound change in the

way the linked control values are kept in sync was implemented: linked controls

now point to a same shared memory object, facilitating the synchronization between

writing and reading operations and optimizing memory usage (important when linking

controls which store big real valued matrices, such as similarity matrices).

New Composite MarSystem’s. Several new composite MarSystem’s have been imple-

mented. Two of the most important ones (see Figure 36) are the FanOutIn (which

is the key element in the flexible way similarity cues can now be combined) and

the SimilarityMatrix composite (which was implemented as a generic similarity

matrix computation module, already proven usable out of the scope of this work –

e.g. [Tzanetakis et al., 2007]).

New helper classes. The use of complex data structures encoded in MARSYAS

realvec’s required the implementation and use of helper classes, such as the

peakView. This class provides a simple and concise API for handling peak data

structures (see Figure 34/B) encoded in a realvec.

The complexity and time requirements of this endeavor demanded the involvement

and commitment of the entire MARSYAS core development team at different stages of the

development. At the end, this effort allowed the implementation of the sound segregation

framework proposed in Chapter 3 and to subsequently conduct the evaluation experiments

presented in Chapter 4.

Furthermore, because it is designed as a flexible and efficient platform, MARSYAS

allows the current sound segregation framework to be easily expanded to include future

ideas and algorithms, such as the ones anticipated during the course of this work, and

compiled in Section 6.2.
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The following sections will present and describe the main aspects of the implementation

of the sound segregation framework proposed in this thesis as a MARSYAS processing

network. It is assumed that the reader is sufficiently familiarized with the MARSYAS

platform. Detailed information about the MARSYAS specificities can be found in the

documentation24 and in Appendix C.

5.5 Implementing the Sound Segregation Framework in MARSYAS

Figure 33 shows the overall MARSYAS network that implements the system proposed in

this thesis (see Chapter 3). Each dark box in the figure represents a basic MarSystem

while the white boxes represent composite MarSystem’s. Optional MarSystem’s are

represented as light gray boxes, and their existence is not mandatory for the base purpose

of the system, being used for added functionality. For the sake of clarity, Figures 35 and

36 present detailed views of some of the more complex composite MarSystems, using

numbers inside black circles to cross-reference the different views of a same composite

along the different figures. In all figures, a link between two controls is represented by

dashed directed lines (whose orientation represents the original linking direction).

As described in Appendix C, MARSYAS uses two-dimensional real valued matrices

(known as realvec’s) for expressing data flowing in a network. However, the data at

each point in the network can be very different, depending on the particular MarSystem

producing it (e.g. it can be used to represent time domain audio samples at the output

of an audio file source, or a complex spectrum data at the output of an FFT block). As

a result, Figure 34 presents schematic views on how data is expressed using realvec’s

at some relevant points in the network. Capital letters inside dark and bracketed squares

are used as cross-references between all the figures.

5.5.1 Implementing Texture Windows

The first block in the main Series/mainNet composite MarSystem (see Figure 33),

named Accumulator/textWinNet, is a composite module where audio frames are

read from an audio file (by the Series/oriNet), their spectrum computed (in

Parallel/par, and as discussed in the following sections) and the resulting outputs

accumulated into texture windows. This is implemented using an Accumulator com-

posite MarSystem.

24Available at the MARSYAS website (http://marsyas.sf.net) or in the code distribution.
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Whenever ticked, an Accumulator iteratively ticks all its children modules, accumu-

lating their output into an internal memory buffer. When the number of internal ticks

reaches a specified value, or when the accumulator is explicitly flushed, the internal ticking

is stopped and the accumulated results are sent to its output for further processing by the

following module (in this case the PeakConvert/conv module, described later).

Accordingly, and following the discussion in Section 3.5, the length (in frames) of

each texture window can be set either as a fixed value, by setting the control nTimes

of the Accumulator to some integer value (e.g. 10 frames), or dynamically, based on

the onsets detected in the signal. In such a case, an optional onset detector implemented

in FlowThru/onsetdetector (see the composite network labeled as 1a in Figure 35)

will automatically toggle the Accumulator flush control whenever an onset is detected

(notice the link between the onsetDetected control in PeakerOnsetPeaker/peaker

and the flush control of the Accumulator/textWinNet).

The size (in samples) of each audio frame is specified in the ShiftInput/si block

(see Figure 35), by setting its windowSize control to the desired number of samples.

The hop size is defined by setting the number of samples to be read at each tick by

the SoundFileSource/src inside Series/oriNet. Given the way the MARSYAS

architecture propagates data flow configurations along a network (see Appendix C and

the MARSYAS documentation25), the correct way to specify this number is by setting the

inSamples control of the top most composite, i.e. Series/mainNet (see Figure 33).

An optional audio source is included in FanOutIn/mixer (see the

Series/mixSeries composite in Figure 35), but is only used for SNR evalua-

tions and experiments not important for the sound segregation process. It is nevertheless

depicted in the figure for the sake of the correspondence with the C++ MARSYAS code.

5.5.2 Implementing Spatial Cues from Stereo Audio Signals

Although this thesis does not discuss the use of spatial proximity cues for sound segre-

gation, the proposed sound segregation framework has been presented as being flexible

enough to allow the implementation of spatial localization cues.

In fact, Figure 35 depicts some of the modules already implemented in the current

MARSYAS system (see the Series/stereoSpkNet composite), which are enabled when

taking a stereo audio file. These modules implement an azimuth discrimination technique

known as ADRess, proposed in [Cooney et al., 2006] (another similar stereo technique

proposed in [Avendano, 2003] is also implemented in MARSYAS and can be easily used
25http://marsyas.sf.net
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in a similar way).

The output of this composite is a spectrum representation where a pan or azimuth

coefficient is computed for each spectral bin (see the lower section of the data structure with

the label A in Figure 34) [Tzanetakis et al., 2007]. The idea is that bins in the spectrum

with similar azimuth values are probably originating from a same source, becoming a good

proximity cue for sound segregation. Further evaluations and experiments still need to be

conducted in order to demonstrate the relevance of spatial cues in the overall segregation

performance of the proposed system.

5.5.3 Implementing Sinusoidal Modeling

The framework proposed in this thesis is based on the use of a sinusoidal model of the audio

signals under analysis, where precise estimates of the frequency, amplitude and phase of

the most prominent peaks in the spectrum are computed (see Section 3.4). The specific

technique used to obtain these precise estimates of each peak requires the calculation of

the spectrum of two audio analysis windows both with a size of N samples but shifted by

a single sample.

A way to achieve this in MARSYAS is to set the output frame size in ShiftInput/si

(see Figure 35) to N + 1 samples (i.e. by setting its windowSize control to the corre-

sponding value – see the I data structure in Figure 34). Afterwards, a Shifter module

can be used and configured to perform a shift of one sample, resulting in two shifted

versions of the initial audio frame, as depicted by the data structure S of Figure 34.

After applying a Hamming windowing function (performed by the Windowing/win

block) to the two shifted analysis windows, they can now be used to compute two complex

spectra (performed by Spectrum/spk1 and Spectrum/spk2 in Parallel/par, as

shown in Figure 35, respectively).

The two resulting spectra (stacked on top of each other and accumulated over the

specified texture window as depicted in the data structure A of Figure 34) can now be

sent to the following processing module, PeakConvert/conv (see Figures 33 and 35).

This module will use the provided spectral information to estimate the precise frequency,

amplitude and phase of a user-specified number of the highest amplitude peaks from each

frame in the texture window (e.g. 20 peaks per frame as used in the current system imple-

mentation, specified by setting the frameMaxNumPeaks control of the PeakConvert

module).

Additionally, and in the case of a stereo signal, the optional azimuth spectrum infor-

mation (see the lower section of the data structure with the label A in Figure 34) could
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also be used by PeakConvert/conv to add panning information to each detected peak.

Encoding Peak Information into a MARSYAS realvec

The PeakConvert module outputs several features for each detected peak in each frame

(up to the user-defined frameMaxNumPeaks value), including their precise frequency,

amplitude, phase, panning (in case of a stereo signal). The way PeakConvert encodes

such information into an output realvec is depicted in the data structure B in Figure 34,

where each column represents a frame, and the peak’s features are organized in groups of

rows (where each peak maintains its relative position inside each feature group of rows).

Several other features are also provided for each peak in this structure, such as the

group (i.e. the cluster) each peak belongs to (initially set to zero but later filled by the

Ncut modules when clustering peaks in a texture window – see Section 5.5.5), their pan-

ning and volume and support for future features (e.g. the track each peak belongs to,

allowing to encode trajectories resulting from some type of McAulay-Quatieri process-

ing [McAulay and Quatieri, 1986] into this representation).

In order to avoid potential memory reallocations and network reconfigurations at each

processing tick (which would drastically hurt the computational efficiency of the network)

the information is encoded in the data structures using a fixed memory footprint. For

instance, for the case of the B data structure, its memory allocation is set to accommodate

the specified maximum number of peaks per frame (i.e. frameMaxNumPeaks). When

the number of detected peaks in a frame is lower than the specified maximum number of

peaks per frame, the remaining peak slots in the data structure are encoded as peaks with

a zero frequency value, meaning that all the remaining features are irrelevant and should

be ignored.

In order to simplify the access and interaction with this somewhat complex data

structure, a peakView viewer class was implemented in MARSYAS (look for the

peakView.h/.cpp C++ files in the MARSYAS source code). It provides utility and

helper methods that simplify the encoding of the information about the peaks in the frames

of a texture window into a generic realvec data structure, as depicted in Figure 34/B.

The interested reader should refer to the source code for more detailed information.

5.5.4 Implementing Similarity Cues

The sinusoidal model information provided by the module PeakConvert (described in

the previous section) can now be used to compute different similarity metrics, which will
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ultimately result in similarity matrices that encode the pairwise proximity between all

peaks in each texture window (as discussed in Section 3.6.2).

This similarity computation is performed in the FlowThru/ClustNet composite

(see Figures 33 as well as the more detailed block diagram in Figure 36). Following the

discussion in Section 3.7, the current system implements frequency, amplitude and HWPS

(i.e. harmonicity) similarities, as shown in the FanOutIn/simNet composite depicted

in Figure 36.

Although not discussed in this thesis, a spatial proximity cue (only enabled when

analyzing stereo signals) is also implemented and depicted in the figure (in the mod-

ule Series/panSim). It is presented here as an example of the flexibility of the

proposed framework to easily incorporate additional grouping cues into the sound seg-

regation process. This allows to anticipate the straightforward addition of new sim-

ilarity cues to the system, such as common onsets/offsets (e.g. using peak trajecto-

ries [McAulay and Quatieri, 1986]), timbre models, among others.

In the current system, each similarity computation is performed in their own branch of

the FanOutIn/simNet composite, all implemented in a similar manner. From the peak

information at the input, the required features for the computation of the frequency, ampli-

tude and HWPS distances are first selected by the corresponding PeakFeatureSelect

modules, outputting the data structures C1, C2 and C3 depicted in Figure 34, respec-

tively. C1 and C2 are basically vectors containing all the frequency and amplitudes of

each peak in the texture window. Differently, C3 contains additional information given

that the HWPS computation requires not only the frequency of each peak in the texture

window but also the corresponding spectral pattern (as described in Section 3.7.2). The

spectral pattern for each peak is encoded in C3 as the number of peaks in each peaks’

frame as well as their frequencies and amplitudes.

The PeakFeatureSelect modules need to know beforehand the total number

of peaks in each texture window (which may vary over time), as well as the spec-

ified maximum number of peaks per frame. The latter was already specified in

the PeakConvert/conv (see the previous section) and therefore a simple link be-

tween the controls frameMaxNumPeaks in PeakConvert/conv and each one of the

PeakFeatureSelect modules allows to easily and automatically configure the simi-

larity computation network (see Figure 36). Regarding the total number of peaks at

each texture window, such information is only available while actually processing the
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input audio data, and is expected to vary over time. The PeakConvert/conv mod-

ule should therefore inform the PeakFeatureSelect modules about the actual num-

ber of peaks at each texture window (i.e. at each tick). Once again, the use of links

between the frameMaxNumPeaks controls of PeakConvert/conv and the different

PeakFeatureSelect modules enable to efficiently pass this information down the net-

work. Given the MARSYAS flexible and dynamic dataflow architecture, the network can

then automatically and efficiently reconfigure itself at each tick accordingly.

Having all the required features for each peak in the texture window currently under

analysis, the SimilartyMatrix block at each similarity branch is then responsible for

the pairwise computation of some distance metric between all peaks in the texture win-

dow, generating at its output the corresponding distance matrix. In fact, and in order

to allow greater flexibility, the SimilartyMatrix module was designed as a composite

MarSystem. This allows it to use a Metric or a HWPS module (or any other distance

algorithm module) as a child, where the distance computation is actually performed. Dif-

ferent metrics are provided by the Metric module (e.g. Euclidean, Mahalanobis, cosine),

while the HWPS provides a novel and more specialized harmonicity distance computation,

as described in Section 3.7.2.

The SimilarityMatrix module also provides the ability to compute normalization

of the data at its input, either based on the mean and standard deviation values (estimated

from the input data or manually set by means of controls), or based on its maximum

and minimum values. Diagonal of full covariance matrices can also be computed, and

these values are automatically passed using controls to the child Metric (or any other)

module, allowing, for e.g. to compute both a simple or standardized Euclidean distance.

This mechanism provides the flexibility to perform the normalization of the amplitude and

frequency values of the peaks to the range [0, 1], as well as to manually set the neighbouring

widths σ used for each similarity function (see the detailed discussion about this subject

in Section 3.7).

Following the computation of the pairwise distances between all peaks, the RBF mod-

ules at each branch are used to apply a Gaussian function to the values (i.e. the RBF

modules implement a Gaussian radial basis function of the form y = e−x2β, where β is

set to 1.0 – other functions, such as multi quadratic or thin plate spline [Carlin, 1992]

are also implemented and can be selected using the RBFtype control). As defined in

Section 3.6.2, this results in the final similarity function (see Equation 8) and the output

of each branch will be a square similarity matrix corresponding to the pairwise amplitude,

frequency, HWPS and azimuth (for stereo signals) peak similarity values, respectively (see
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FanOutIn/simNet

Series/panSim
SimilarityMatrix/PANsimMat

Metric/
PanL2Norm

RBF/
PANrbf

PeakFeatureSelect/
PANfeatSelect

.*

FanOutIn/ORnet

FanOutIn/ANDnet

.*

Series/freqSim
SimilarityMatrix/FREQsimMat

Metric/
FreqL2Norm

RBF/
FREQrbf

PeakFeatureSelect/
FREQfeatSelect

Series/ampSim
SimilarityMatrix/AMPsimMat

Metric/
AmpL2Norm

RBF/
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PeakFeatureSelect/
AMPfeatSelect max

Series/HWPSim
SimilarityMatrix/HWPSsimMat

HWPS/
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RBF/
HWPSrbf

PeakFeatureSelect/
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Figure 37: The hierarchical composition and Implicit Patching architecture of MARSYAS allows
to efficiently express complex combination schemes of similarity cues by using different instances
of FanOutIn composite MarSystem’s. The figure shows an illustrative composition expressing
Wafh = max[(Wf .∗Wa), Wh].∗Ws (where the .∗ operator represents the element-by-element matrix
multiplication).

Figure 34/D).

The FanOutIn/simNet composite module will now combine the individual similarity

matrices into an overall matrix, which will be used by the following NCut modules for

peak grouping. As discussed in Section 3.7.3, this combination of the individual matrices

is currently done by means of a multiplication operation, but the FanOutIn composite

already provides other means of combination, such as the sum of the individual values of

each matrix or the choice of the maximum or minimum values at each matrix position.

Furthermore, the hierarchical composition and Implicit Patching architecture of

MARSYAS allows to easily and efficiently define more complex similarity combination

schemes by hierarchically combining several instances of FanOutIn modules. Because

each FanOutIn instance allows to use a different combination operation, it becomes

straightforward to efficiently express more perceptually motivated similarity combination

schemes (see Figure 37 and recall the discussion in Section 3.7.3).
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5.5.5 Implementing the Grouping Algorithm

The grouping algorithm described in Section 3.6.5 is implemented in the module

NormCut/NCut (see Figure 36). It takes the overall similarity matrix for each texture

window (see previous section) and outputs an indicator vector where a cluster label (i.e. a

number in the range [1, k], where k is the specified number of clusters – see Section 3.6.3)

is assigned to each peak, which represent the grouped peaks.

Given the way clusters are selected in the current system (see Section 3.8.1), the peaks

indicator vector output by the NormCut/NCut module is stacked on top of the input

similarity matrix (see Figure 34/E) before being sent to the following cluster selection

module, PeakClusterSelect/clusterSelect. This module uses the indicator vec-

tor output by the normalized cut module as well as the similarity values in order to

select the “denser” clusters, in a number which can be manually specified by means of its

numClustersToKeep control.

The PeakClusterSelect/clusterSelect outputs a modified indicator vector,

where the selected clusters will preserve their numeric label, while the remaining will be

set to −1 (see Figure 34/F).

The selected clusters indicator vector is then used by the subsequent

PeakLabeler/labeler module (see Figure 36), which is the module responsible

to fill the corresponding cluster information into the GROUP field of the original peak

feature data structure (see Figure 34/B).

This is efficiently achieved by passing the final indicator vector using the innerOut

control of the FlowThru/clustNet composite, which is linked to the labels control

of PeakLabeler/labeler, while the data structure containing the original peak infor-

mation is passed in the data flow (see Figure 36).

Following this procedure, the final clustered peaks information can optionally be saved

to a text file using the PeakViewSink/peSink module (see Figure 33) and then sent to

the resynthesis modules, described next.

5.5.6 Implementing the Sound Event Resynthesis

Once the clusters resulting from the grouping process are identified and selected (see pre-

vious section), it is now possible to resynthesize them as independent sound signals. The

resynthesis of the clustered and selected peaks is performed at the Shredder/synthNet

composite (see Figure 33 and a more detailed view in Figure 36).

The Shredder composite MarSystem takes texture windows and “shreds” them
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Shredder/synthNet

Series/postNet

Gain/
outGain

PeakSynthOsc/
pso

Windowing/
wiSyn

OverlapAdd/
ov

SoundFileSink/
dest

3

B

Figure 38: Sound event resynthesis MARSYAS network, based on an additive synthesis approach
and implemented as a bank of sinusoidal oscillators using an overlap-add scheme.

into individual frames (i.e. separates the data structure in Figure 34/B into individ-

ual column vectors). This requires that the Shredder module to be in sync with the

Accummulator/textWinNet module, where the texture windows are created. This is

achieved by simply linking their nTimes controls, as depicted in the figures.

For each frame, and as discussed in Section 3.8.2, it is now possible to synthesize

the audio signals corresponding to each cluster of peaks (i.e. to each one of the sound

“sources” segregated from the mixture signal). The synthesis is done using a bank of

sinusoidal oscillators implemented in PeakSynthOsc/pso (see Equation 1) and using a

50% overlap-add scheme carried away by the Windowing/wSyn and OverlapAdd/ov

modules.

It is now possible to resynthesize each one of the segregated groups of peaks into inde-

pendent audio files, but the current system is configured by default to just output a single

audio stream where the “denser” clusters selected by the preceding PeakClusterSelect

block are mixed together (see previous section).

At the end, the resulting segregated audio data is finally written to an audio file by

the SoundFileSink/dest block (using e.g., the WAV format).

5.5.7 The peakClustering Tool

The sound segregation system whose implementation as a MARSYAS network was de-

scribed in the previous sections is available as a command line application known as

peakClustering. Its source code can be found in the MARSYAS distribution in the

src/apps/peakClustering path.

After building MARSYAS (instructions for building MARSYAS in several platforms

are provided in detail in the documentation), it is possible to experiment with the cur-

rent system implementation by running peakClustering, found at bin/release, as

follows:
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> peakClustering myAudioFile.wav

After completing execution, the program returns two files: an audio file (in this ex-

ample, named myAudioFileSep.wav) which is the result of the resynthesis process

explained in Section 5.5.6 and a text file (named for this example, myAudioFile.peak)

which lists all the peaks in the signal and their corresponding features (i.e. time frame,

frequency, amplitude, phase, group – see Figure 34/B) in a table format.

By running peakClustering without any options, the default parameters are used

(e.g. maximum number of peaks per frame is set to 20; number of clusters k is set to 5,

from which the 2 “denser” clusters are selected at each texture window for resynthesis;

texture windows are set to have a fixed length and equal to 10 frames). Several other

options exist and they can be consulted by calling peakClustering with the -h option.

The peakClustering although being quite efficient, still does not run in realtime

(mainly depending on the specified texture window length and the maximum number of

peaks extracted per frame). Preliminary code profiling indicate that most of the com-

putational cost is taken by the Normalized Cut calculations. Future code optimizations

and different algorithms (e.g. [Dhillon et al., 2007]) may allow achieving realtime sound

segregation of real world complex music signals.

5.6 Summary

Following the proposal of a sound segregation framework proposed in Chapter 3, this

chapter discussed some of the requirements, choices and the major contributions towards

the development of an open source software platform (based on the MARSYAS project)

for the computational analysis of sound signals.

Some implementation details about the main building blocks of the sound segrega-

tion framework proposed in this work were described, where the efficiency, flexibility and

code reusability aspects taken into consideration during the software development, were

highlighted.
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Chapter 6
Conclusions

“About the time we think we can make ends meet, somebody moves the ends.”

Herbert Hoover

6.1 Results and Contributions

This dissertation proposed a flexible and extensible CASA framework for modeling per-

ceptual grouping in music listening. The goal of the proposed framework is to partition a

monaural acoustical mixture into a perceptually motivated topological description of the

sound scene (similar to the way a naive listener would perceive it) instead of attempting

to accurately separate the mixture into its original and physical sources.

The presented framework is data-driven and takes the view that perception primarily

depends on the use of low-level sensory information, and therefore requires no training or

prior knowledge about the audio signals under analysis. It is however flexible enough to

allow the use of prior knowledge and high-level information in the segregation procedure.

Designed to be causal and efficient (close to real-time on a fast computer), the resulting

system can be used to segregate sound events in a complex polyphonic mixture of “real-

world” music signals, paving the way to applications such as the predominant melody

line detection, separation of the singing voice, instrument segregation and identification,

voicing detection, among others.

The proposed system is based on a sinusoidal modeling analysis front-end, from which

spectral components are segregated into sound events using perceptually inspired grouping

cues. Grouping cues based on amplitude, frequency and harmonicity are incorporated in

an unified optimization framework, and a novel harmonicity similarity measure, termed

165



CONCLUSIONS

“Harmonically-Wrapped Peak Similarity” (HWPS), was also proposed. The segregation

process is then based on spectral clustering methods (in particular in the Normalized Cut

criterion) for graph partitioning, a technique originally used to model perceptual grouping

tasks in the computer vision field.

Experimental validation of the perceptual grouping cues have shown that the novel

HWPS cue presented in this dissertation compare favourably to other state-of-the-art

harmonicity cues, and that its combination with other grouping cues, such as frequency

and amplitude similarity, improved the overall separation performance. In addition, exper-

imental results for several MIR applications were presented. The use of segregated signals

in these tasks allowed to achieve final results that compare or outperform typical and

state-of-the-art audio content analysis systems, which traditionally represent statistically

the entire polyphonic sound mixture.

In this dissertation a specific implementation of the sound event segregation frame-

work is also presented, where several assumptions had to be considered due to practical

constraints. Nevertheless, the proposed framework was designed to be modular, efficient

and flexible enough to be able to utilize different analysis front-ends and to incorporate

new perceptually-inspired grouping criteria in a straightforward manner.

A software implementation of the system described in this thesis was also made avail-

able as free and open source software. Together with the belief that this work showed the

potential of spectral clustering methods for sound event segregation, it is expected that the

software implementation may stimulate further research in this area as it can have signif-

icant impact in many MIR applications such as singer identification, music transcription

and lyrics alignment.

6.2 Future Work

After a great deal of investment in the area of algorithm development, which has given rise

to the framework proposed in Chapter 3 and to the results presented in Chapter 4, paving

the way to several papers submitted for publication with success, there are nevertheless

several lines of future work that are now possible to anticipate.

The development and evaluation of additional grouping cues are interesting possi-

bilities for future work. The proposed framework is able to easily accommodate future

similarity functions such as common amplitude and frequency modulation, frequency or

time masking [Lagrange et al., 2006], spatial proximity, onsets, timbre models, or other

grouping principles, allowing to model an increasing number of perceptual mechanisms
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involved in human hearing.

Regarding spatial proximity cues, an interesting possibility is the addition of common

panning cues for stereo signals as proposed in [Jourjine et al., 2000, Avendano, 2003]. The

idea is that bins in the spectrum with similar azimuths are probably originating from a

same source, becoming a good proximity cue for sound segregation.

The preliminary results presented in Section 3.5 have shown that the use of an on-

set detector to automatically segment the audio signal into texture windows may be a

promising strategy. Indeed, further experimentation and evaluation as well as the imple-

mentation of more computationally efficient clustering methodologies should be explored

in the future in an attempt to get the most out of this approach. Furthermore, onsets

can also be used to estimate beat and tempo, and therefore allow the incorporation of

top-down anticipations and expectations in the segregation process.

Although not necessary for the operation of the algorithm, prior knowledge such as

sound source models or score representations could easily be incorporated into the simi-

larity calculation. For example the likelihood that two peaks belong to the same sound

source model [Vincent, 2006] could be used as an additional similarity cue.

Following the discussion in Section 3.7.2, different approaches should also be consid-

ered for the definition of the fundamental frequency estimation function in the HWPS

calculation. Improved methods for estimating the “pitches” present in each frame would

allow better candidates to the fundamental frequencies, potentially improving the cur-

rent HWPS accuracy. Nevertheless, all such approaches will require careful experimental

evaluations. Additionally, and given the segregation performance of the HWPS cue for

harmonic events in complex music mixtures [Lagrange et al., 2008b], further work could

be conducted towards the use of Harmonically Enhanced Spectral Representations for

chroma-based music analysis [Gomez, 2006, Ellis, 2007].

The definition of the similarity functions, discussed in Section 3.7, could make good

use of prior information to help setting up the neighborhood width for each similarity cue.

The knowledge about the just noticeable differences (JND) in amplitude and frequency

perception may be a good criteria for defining the similarity widths, where distance val-

ues below the corresponding JND would be considered fully similar, while all the other

distances would gradually becomes more dissimilar.

The combination of the different grouping cues, as discussed in Section 3.7.3, should

also receive additional attention. Although the current use of a logical “AND” combina-

tion of similarity cues may be appropriate for some cases, it may be too restrictive for
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expressing more perceptually motivated combination schemes. More expressive combi-

nation operators, such as the logical “OR”, the maximum and minimum of the different

similarities, could result in better segregation results.

The current version of the framework presented in this work still requires the prior

specification of the number of sound events or sources at each texture window. This is

a key limitation of the current implementation, but the framework is flexible enough to

include new approaches to an automatic estimation of the number of clusters to segregate

at each time instant. Section 3.6.4 presented some pertinent options, but additional imple-

mentation and evaluation efforts must be conducted in order to validate their application

to the task of sound segregation in music signals.

In addition, in the current implementation, clustering and cluster selection are per-

formed independently for each “texture” window. In the future the goal is to explore

cluster continuity constraints (for example neighbouring clusters in time corresponding to

the same source should have similar overall characteristics) as well as more sophisticated

methods of cluster selection. While the current framework implementation already in-

cludes some sequential grouping principles at the texture window level (achieved mainly

by frequency and amplitude proximity cues, as described in Section 3.7.1), it does not yet

fully incorporate sequential grouping among sound clusters detected in different texture

windows. In fact, the same frequency and amplitude grouping cues, added to timbre and

smoothness cues among others, could be used in the future to provide such a sequential

integration following the principles proposed by Bregman [Bregman, 1990] and discussed

in Section 2.3.1. Aspects such as temporal masking phenomena in perception or prior

knowledge on timbre models could prove helpful to achieve sequential continuity of the

segregated sound events (e.g. see [Lagrange et al., 2006, Burred and Sikora, 2007]).

Alternative analysis front-ends such as perceptually-informed filterbanks or sinu-

soids+transient representations could be a way to address some of the sinusoidal mod-

eling limitations. Even though some grouping of components corresponding to tran-

sients and consonants can be achieved by amplitude and frequency similarity cues,

the sinusoidal representation is not particularly suited for non-pitched sounds such

as transient sounds. In what regards frequency estimation methods of sinusoidal

components, alternative approaches could be considered, such as parabolic interpola-

tion [Abe and Smith, 2004] or subspace methods [Badeau et al., 2006]. In particular,

a technique based on the Odd-DFT filter bank that allows the accurate estimation of

the frequency, phase and magnitude of stationary sinusoids proposed by [Ferreira, 2001]

has been used with some promising results in a multi-pitch detection system presented
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in [Martins, 2002, Martins and Ferreira, 2002].

The resynthesis also suffers from artifacts that result from the limitations of the sinu-

soidal representation. An interesting alternative would be to retain the sinusoidal modeling

front-end for grouping but use the entire STFT spectrum for the resynthesis of the seg-

regated sound events. As studied in [Lagrange et al., 2007b], such a resynthesis stage is

more flexible and reduces artifacts.

Another option worth exploring is the use peak tracking methods

(e.g. [McAulay and Quatieri, 1986]) as a pre- or post-processing stage. After com-

puting the sinusoidal representation, and prior to clustering, peak tracking could be used

to identify spectral tracks between spectral peaks, which could be subsequently used to

derive grouping cues (e.g. peaks that belong to a same track probably result from a

same sound event; peaks that belong to tracks whose onset or offset are close in time

have a higher chance to belong to a same sound event). On the other hand, partial

tracking could be applied to each segregated cluster of peaks, where peaks not belonging

to a track would be discarded, reducing the existence of spurious spectral content at the

resynthesis stage (though this would also have a negative impact on the resynthesis of

the non-harmonic content of each segregated sound event).

The extraction of descriptors (e.g. pitch, timbre features, timing information) directly

from the mid-level representation (which results from the analysis front-end) of each segre-

gated cluster without the need of resynthesis is also an interesting line of future work. The

Cluster Peak Ratio (CPR) feature proposed in Section 4.5, a feature extracted directly

from the sinusoidal mid-level representation, already presented some promising results

when trying to perform voicing detection in polyphonic music signals.
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Appendix A
Graph Laplacians for Spectral Clustering

Spectral clustering is mainly based on the properties of graph Laplacian matrices (the

naming comes from the fact that graph Laplacians formally look like a continuous Laplace

operator – refer to [von Luxburg, 2007, pp.28] for more insight). There exists a whole area

of study dedicated to those matrices, called spectral graph theory (e.g. see [Chung, 1997]).

Basically, the spectral theory provides conditions under which an operator or matrix can

be represented as a diagonal matrix in some basis.

Accordingly, this section will summarize the most important properties of graph Lapla-

cians and try to point out their importance in the way spectral clustering works. The in-

terested reader may find more detailed discussion about this topic in [von Luxburg, 2007].

In the following discussion it will be always assumed that G (i.e. the similarity graph)

is an undirected, weighted graph with weight matrix W , where wij = wji ≥ 0. It will

not necessary be assumed that, when taking the eigenvectors of a matrix, they will be

normalized. This means that, for instance, the constant one vector I and a multiple aI
for some a 3= 0 will be considered as the same eigenvectors. Eigenvalues will always be

ordered increasingly, respecting multiplicities. By “the first k eigenvectors” it is meant to

refer to the eigenvectors corresponding to the k smallest eigenvalues.

Two main types of graph Laplacians have been traditionally proposed: the unnor-

malized and the normalized graph Laplacians (which correspond to unnormalized and

normalized spectral clustering, respectively). The latter can yet be divided in two sub-

types: symmetric or random walk (see [von Luxburg, 2007, pp.3]).

This raises the question of which of the three graph Laplacian matrices should be

used for spectral clustering. In order to make a decision, it is usually advised to look

at the degree distribution of the similarity graph (see Equation 10). If the graph is very

regular and most vertices have approximately the same degree, then all the three types of
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Laplacians will result very similar to each other, and will work equally well for clustering.

However, if the degrees in the graph are very broadly distributed, then the Laplacians

differ considerably.

The use of normalized rather than unnormalized spectral clustering is usually advo-

cated, and in particular the recommendation goes to the random walk variant. This advice

is justified by several arguments, as clearly discussed in [von Luxburg, 2007, pp.24] and

summarized next.

In general, clustering has two different objectives: find a partition such that points

in different clusters are dissimilar to each other (i.e. minimize the between-cluster simi-

larity) and find a partition such that points in the same cluster are similar to each other

(i.e.maximize the within-cluster similarities). It is shown that normalized spectral clus-

tering implements both clustering objectives, while unnormalized spectral clustering only

implements the first one.

Furthermore, and on a different argument based on the statistical analysis of both

normalized and unnormalized versions of spectral clustering, it was demonstrated the

superiority of the normalized spectral clustering in what regards the consistency of re-

sults [von Luxburg, 2007, pp.24]. More specifically, if taking a statistical setting where it

is assumed that the data points x1, . . . , xT have been sampled i.i.d. according to some

probability distribution P on some underlying data space X , the question of consistency

is whether the clustering results of spectral clustering converge to a useful partition of

the underlying space X while drawing more and more data points from X . Once again,

it can be proved that, while the above question is true for both variants of normalized

spectral clustering, the same can not be said when using unnormalized clustering. For the

latter case, it was shown that convergence may completely fail, or may end up converging

to trivial solutions, which construct clusters consisting of one single point of the data

space [von Luxburg, 2007].

Finally, and after ruling out the unnormalized spectral clustering approach, the ques-

tion about which one of the two variants of the normalized clustering remains. It was

also shown that all the above arguments favour the random walk variant rather than the

symmetric one [von Luxburg, 2007, pp.27]. The main reason results from the way both

matrices are defined, which for the symmetric case ends up leading to some undesired

artifacts. Given that there are no computational differences between the two variants, the

final advise goes to the use of the random walk normalized spectral clustering approach,

the one used in this thesis.

In the following the properties of the graph Laplacian will be discussed, starting with
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the unnormalized graph Laplacian, and subsequently deriving the normalized random walk

variant.

A.1 The Unnormalized Graph Laplacian

The unnormalized graph Laplacian matrix L is defined as

L = D −W (41)

where D is the degree matrix (see Equation 11) and W is the affinity matrix corresponding

to the similarity graph (see Equation 9). This matrix L has several interesting properties

(see [Mohar, 1991]) and one of the most relevant ones for spectral clustering is that if

taking any indicator vector f ∈ RT (where T is the number of data points to cluster

and that f = (f1, . . . , fT )′ indicates the cluster “label” assigned to each data point – see

Section 3.6) then the following applies (see [von Luxburg, 2007] for the proof):

f ′Lf =
1
2

T∑

i,j=1

wij(fi − fj)2. (42)

The challenge of spectral clustering is then to minimize f ′Lf . Thus, what this expres-

sion basically states is that data points close in the similarity space (i.e. with high wij

values) will be penalized if they are clustered into different clusters (i.e. fi 3= fj). In case

they are not similar (i.e. wij is negligible and close to zero), it becomes irrelevant in what

cluster they end up (this fact gives some justification on why the unnormalized spectral

clustering fails on the second objective of clustering, as discussed before).

Additionally, L is symmetric (which directly follows from the symmetry of D and W )

and positive semi-definite (from Equation 42 is trivial to see that f ′Lf ≥ 0), which by

definition means that L will have T non-negative, real valued eigenvalues 0 = λ1 ≤ λ2 ≤
· · · ≤ λT . It is also easy to prove that the eigenvector corresponding to λ1 = 0 will be a

constant one vector I.
Also interesting to note is that the unnormalized graph Laplacian does not depend

on the diagonal elements of the affinity matrix W . Each affinity matrix which coincides

with W on all off-diagonal positions leads to the same unnormalized graph Laplacian L.

This means that the self-similarities in a graph do not change the corresponding graph

Laplacian.

From these properties an important observation results: the multiplicity k of the

eigenvalue 0 of L equals the number of connected components A1, . . . , Ak in the graph.
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The eigenspace of eigenvalue 0 is spanned by the indicator vectors IA1 , . . . , IAk of those

components. This can be easily proven as follows. Starting with the case k = 1 (i.e. the

graph is connected), assume that f is an eigenvector with eigenvalue 0. This implies that

0 = f ′Lf =
T∑

i,j=1

wij(fi − fj)2. (43)

In other words, given that the weights wij are non-negative, this sum can only vanish if

all terms wij(fi− fj)2 vanish. Thus, if two vertices vi and vj are connected (i.e. wij > 0),

then fi needs to equal fj . This implies that f needs to be constant for all vertices which

can be connected by a path in the graph. Since all vertices of a connected component in

an undirected graph can be connected by a path, f needs to be constant on the whole

connected component. In a graph consisting of only one connected component the eigen-

vector corresponding to the eigenvalue 0 will have to be the constant one vector I, which

obviously is the indicator vector of the connected component.

If now considering the case of k connected components, assume that, without loss

of generality and for the sake of visualization, the vertices are ordered according to the

connected components they belong to. In this case, the affinity matrix W has a block

diagonal form, and the same is true for the matrix L:

L =





L1

L2

. . .

Lk




. (44)

It is interesting to note that each one of the blocks Li in L is a proper graph Laplacian

on its own. They correspond to the subgraph of the i-th connected component. As it is

the case for all block diagonal matrices, it is known that the spectrum of L is given by the

union of the spectra of Li, and therefore the corresponding eigenvectors of L are nothing

more than the eigenvectors of Li, filled with 0 at the positions of the other blocks. Because

each Li is a graph Laplacian of a connected graph, then every Li will have its eigenvalue 0

with multiplicity 1, and the corresponding eigenvector will obviously be the constant one

vector on the i-th connected component. Thus, the matrix L will have as many eigenvalues

0 as there are connected components, and the corresponding eigenvectors will be nothing

more than the indicator vectors of the connected components.
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A.2 The Normalized Graph Laplacian

Taking the definition of the unnormalized graph Laplacian presented above, it is now easy

to define the normalized random walk graph Laplacian Lrw as

Lrw := D−1L = I −D−1W. (45)

Note that D−1W is a random walk transition matrix (hence the name of this graph

Laplacian). A random walk on a graph is a stochastic process which randomly jumps from

vertex to vertex, where the transition probability of jumping in one step from vertex vi to

vertex vj is proportional to the edge weight wij and is given by pij := wij/di. Under this

formulation, spectral clustering can also be interpreted as the attempt to find a partition

of the graph such that the random walk stays long within the same cluster and seldom

jumps between clusters (see [von Luxburg, 2007, pp.14]).

Similarly to the unnormalized graph Laplacian, Lrw is also positive semi-definite and

has T non-negative real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λT . Its eigenvalue 0 will also

have the constant one vector I as eigenvector. In general, λ will be an eigenvalue of Lrw

with eigenvector u if and only if λ and u solve the generalized eigenproblem Lu = λDu.

As is the case for the unnormalized graph Laplacian, the multiplicity of the eigenvalue 0

of Lrw is related to the number of connected components: its eigenspace is spanned by

the indicator vectors IAi of those components.

Furthermore, by the standard Rayleigh-Ritz theorem [Golub and Loan, 1989], the sec-

ond smallest eigenvector of this generalized eigensystem is the real valued solution to the

bipartite Normalized Cut minimization [Shi and Malik, 2000, von Luxburg, 2007]. Simi-

larly, it is possible to show that the eigenvector with the third smallest eigenvalue is the

real valued solution that optimally subpartitions the first two parts. In fact, this line of

argument can be extended to show that one can subdivide the existing graphs, each time

using the eigenvector with the next smallest eigenvalue.

Thus, once the eigenvectors are computed, it becomes possible to partition the graph

into k pieces using the k smallest eigenvectors. In the ideal case, the eigenvectors should

only take on two discrete values and their values would indicate exactly how to parti-

tion the graph. However, and because of the applied relaxation (see Section 3.6.3), the

computed eigenvectors can now take on continuous values and it is therefore necessary to

transform them into a discrete form.

However, in practice, because the approximation error from the real valued solution
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to the discrete valued solution accumulates with every eigenvector taken and all eigenvec-

tors have to satisfy a global mutual orthogonality constraint, solutions based on higher

eigenvectors become unreliable.

Several approaches to achieve this discretization have been proposed and the in-

terested reader can find detailed information about them in [Shi and Malik, 2000,

von Luxburg, 2007].

176



Appendix B
Evaluation Metrics

B.1 Signal-to-Distortion Ratio (SDR)

One of the most common measures used to evaluate CASA systems is the signal-to-

distortion ratio (SDR) [Klapuri and Davy, 2006], which summarizes the separation quality

as the ratio of the energies of the reference signal and the error between the separated

and reference signal. Although the SDR is only an approximate measure of the perceptual

quality of the separated signals, its simplicity of calculation will justify its use in some of

the experiments presented in this chapter. It is defined in decibels as:

SDR[dB] = 10 log10

∑
t s(t)2∑

t[ŝ(t)− s(t)]2
(46)

where s(t) is the reference signal with the original separated source and ŝ(t) is the extracted

source (both represented as row vectors).

B.2 Signal-to-Distortion Ratio with Optimized Gain Factor (SDRogf )

When computing the SDR between the original and the separated signals, it is important

to assure that both signals are normalized to a similar gain. Otherwise the SDR will get

biased by the gain differences between the two signals and loose its ability to measure

accurately the distortion level between the two signals. Because it is not always easy (or

even possible) to control the gain of the resynthesis process used to obtain the separated

signals, a more convenient solution is to find a way to compensate the gain diferences in

the SDR calculation itself. This is the objective of the SDR with optimized gain factor

(SDRogf ), which can be calculated as follows (in dB):
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SDRogf [dB] = 10 log10
1

1− r2
, (47)

where r is the normalized correlation coefficient:

r =
∑

t[s(t)ŝ(t)
′]√∑

t s(t)2
∑

t ŝ(t)2
, (48)

where s(t) is the reference signal with the original separated source and ŝ(t) is the ex-

tracted source (both represented as row vectors). In other words, the SDRogf calculation

corresponds to using an optimized gain factor Sf for the separated signal ŝ(t), as follows:

Sf =
∑

t[s(t)ŝ(t)
′]∑

t ŝ(t)2
. (49)

B.3 Segmental Signal-to-Distortion Ratio (SSDR)

A simple objective measure which is perceptually more plausible than the SDR is the

segmental signal-to-distortion ratio (SSDR), which is calculated as the average of frame-

wise SDR’s [Mermelstein, 1979]. Unlike the normal SDR, this measure takes into account

the fact that errors in low-intensity segments are usually more easily perceived. The

segmental SDR has often been used to measure the subjective quality of speech, and

it can be defined as follows. For each segment k, a signal-to-distortion ratio SS(k) is

calculated as:

SS(k) = 1 +
∑

t s(t)2

δ +
∑

t[ŝ(t)− s(t)]2
. (50)

The term δ in the denominator prevents divides by zero. The additive unity term

discounts segments with SNR’s less than unity. The final average segmental SDR in dB

is calculated as:

SSDR[dB] = 10 log10

(
10

P
k

log10 SS(k)
N − 1

)
(51)

where N is the total number of segments considered. The exponent term is the geometric

mean of SS(k). The subtraction of the unity term tends to compensate for the unity term

in SS(k).
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Appendix C
MARSYAS: An Open Source Audio Processing
Framework

MARSYAS (Music Analysis Retrieval and SYnthesis for Audio Signals) is a free and open

source software (FOSS) framework with specific emphasis on building music information

retrieval (MIR) and sound analysis and processing systems. Originally created in 1998

by George Tzanetakis [Tzanetakis and Cook, 2000, Tzanetakis, 2002], it has been under

steady development and is used for a variety of projects, both in academia and industry.

The guiding principle behind the design of MARSYAS has always been to provide a

flexible, efficient and extensible framework without sacrificing computational efficiency.

MARSYAS provides a general, extensible and flexible framework that enables exper-

imentation with algorithms and provides the fast performance necessary for developing

efficient and real-time and audio analysis and synthesis tools. A variety of existing build-

ing blocks that form the basis of many published algorithms are provided as dataflow

components that can be combined to form more complicated algorithms (black-box func-

tionality). In addition, it is straightforward to extend the framework with new building

blocks (white-box functionality). These blocks can be combined into data flow networks

that can be modified and controlled dynamically while they process data in soft real-time1.

1A system is said to be real-time if the total correctness of an operation depends not only upon its
logical correctness, but also upon the time in which it is performed. The classical conception is that in a
hard or immediate real-time system, the completion of an operation after its deadline is considered useless,
ultimately leading to a critical failure of the complete system. A soft real-time system on the other hand
will tolerate such lateness, and may respond with decreased service quality (e.g. dropping frames while
playing an audio stream).
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C.1 Framework Architecture

MARSYAS-0.2 [Tzanetakis, 2008, Tzanetakis et al., 2008] evolved from MARSYAS-0.1

which focused mostly on audio analysis [Tzanetakis and Cook, 2000]. One of the main

additions to the new version was support for audio synthesis, which got inspiration from

the design of the Synthesis ToolKit (STK) [Cook and Scavone, 1999]. Supporting audio

synthesis is an welcome new feature, since the ability to hear the results of audio analysis

algorithms can be very useful for validating and understanding algorithms.

Other influences in MARSYAS2 include the powerful but more complex architec-

ture of CLAM [Amatriain, 2007], the patching model and strong timing of ChucK3

[Wang and Cook, 2004], and ideas from the Aura project [Dannenberg and Brandt, 1996].

C.1.1 Dataflow Programming

Dataflow programming is based on the idea of expressing computation as a network

of processing nodes/components connected by a number arcs/communication channels.

Dataflow programming has a long history. The original (and still valid) motivation

for research into dataflow was to take advantage of parallelism. Motivated by criti-

cisms of the classical von Neumann hardware architecture such as [Ackerman, 1982],

dataflow architectures for hardware were proposed as an alternative in the 1970s and

1980s. During the same period a number of textual dataflow languages such as Lucid

[Ashcroft and Wadge, 1977] were proposed. Despite expectations that dataflow architec-

tures and languages would take over from von Neumann concepts this didn’t happen.

However during the 1990s there was a new direction of growth in the field of dataflow vi-

sual programming languages that were domain specific. In such visual languages program-

ming is done by connecting processing objects with “wire” to create “patches”. Successful

examples include LabView, Simulink and in the field of Computer Music MAX/MSP

[Zicarelli, 2002] and Pure Data4 [Puckette, 1997].

In fact, expressing audio processing systems as dataflow networks has several advan-

tages [Tzanetakis, 2008]. The programmer can provide a declarative specification of what

needs to be computed without having to worry about the low level implementation details

of how it is computed. The resulting code can be very efficient and have a small memory

2For simplicity sake, from now on the more compact MARSYAS designation will be used when referring
to the specific MARSYAS-0.2 version of the framework.

3http://chuck.cs.princeton.edu/
4http://crca.ucsd.edu/˜msp/software.html
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footprint as data just “flows” through the network without having complicated dependen-

cies. In addition, dataflow approaches are particularly suited for visual programming. One

of the initial motivations for dataflow ideas was the exploitation of parallel hardware and

therefore dataflow systems are particularly good for parallel and distributed computation.

A comprehensive overview of audio processing frameworks from a Software Engineering

perspective can be found in [Amatriain, 2007].

Another recent trend has been to view dataflow computation as a software en-

gineering methodology for building systems using existing programming languages

[Manulescu, 1997].

As a result, the idea of dataflow programming has been determinant in the design of

MARSYAS-0.2, where complex network of processing objects can be assembled to form

systems that can handle audio and data flows with expressiveness and efficiency.

C.1.2 Implicit Patching and Composition

The basic idea behind Implicit Patching [Bray and Tzanetakis, 2005] is to use object com-

position [Gamma et al., 1995] rather than explicitly specifying connections between input

and output ports in order to construct the dataflow network. It evolved from the in-

tegration of different ideas that were developed independently in previous versions of

MARSYAS [Tzanetakis, 2008].

Combined with Implicit Patching, the expressive power of composition is increased

and a large variety of complex dataflow networks can be expressed only using object

composition, and therefore no Explicit Patching.

Another side benefit of Implicit Patching is that it enforces the creation of trees and

therefore avoids problems with cycles in the dataflow graph.

C.1.3 Basic Processing Units and Networks

As previously described, systems in Marsyas are expressed as interconnected dataflow

networks of processing modules. Each processing module performs a specific task that

always consists of a matrix transformation.

Audio and other types of data are represented by matrices with some semantics asso-

ciated with them: rows represent observations (over time) and columns represent samples

in time. For instance, a stereo audio signal might be processed in chunks of 2 observations

(i.e. two channels) and 512 samples in time. This clean data structure, although quite

specific, suits well audio processing applications. All modules process one input matrix

(known as a slice) and store the result on another matrix so it can be shared with the next
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processing module. Hence, each module accepts only one input and produces one output.

Processing is performed on defined chunks of data and is executed whenever the tick()

function of the module is called.

All processing blocks in MARSYAS are called MarSystems and provide the basic com-

ponents out of which more complicated networks can be constructed. Essentially any

audio processing algorithm can be expressed as a large composite MarSystem (discussed

below) which is assembled by appropriately connected basic MarSystems.

Some representative examples of MarSystems include sound file reading and writing

(e.g. wav, au, mp3 and ogg audio file formats), real-time audio input and output (i.e.

from and to a soundcard), signal processing algorithms (e.g. filters, STFT, DWT), feature

extraction (e.g. MFCC, centroid, rolloff, flux) and machine learning modules (e.g. KNN,

GMM, SVM, PCA, SVM).

To assemble multimedia processing systems, modules are implicitly connected us-

ing hierarchical composition. Special “Composite” modules such as Series, Fanout,

Parallel are used for this purpose. The basic idea behind Implicit Patching

[Bray and Tzanetakis, 2005] is to use object composition rather than explicitly specifying

connections between input and output ports in order to construct the dataflow network.

For instance, modules added to a Series composite will be connected in series, following

the order they were added – the first module’s output is shared with the second module’s

input and so on. Moreover, the tick() method is called sequentially following the same

order. Figure 39 shows an example of how composite and non-composite modules can be

used. This paradigm differs from typical processing tools based on explicit patching such

as CLAM [Amatriain, 2007], MAX/MSP [Zicarelli, 2002] or PD [Puckette, 1997].

As another example, consider a small network consisting of a Series module which

contains three other modules: a source, a processing module and a sink. When tick() is

called in the Series, implicitly the tick() method is called in all three modules as shown

in Figure 40.

Dataflow in MARSYAS is synchronous which means that at every “tick” a specific

slice of data is propagated across the entire dataflow network. This eliminates the need

for queues between processing nodes and enables the use of shared buffers which improves

performance. This is similar to the way UNIX pipes are implemented but with audio

specific semantics.
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Series (network)

Series (series1) Fanout (fanout1)
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Legend:           Controls

Processing

Control link

Figure 39: Building blocks in MARSYAS 0.2.

C.1.4 Dynamic Access to Modules and Controls

In MARSYAS, each module in a processing network can be accessed by querying the

system with a path-like string. In addition to being able to process data, MarSystems

need additional information that can change their functionality while they are running

(i.e. processing data). For example a sound file reader MarSystem needs the name of the

sound file to be opened, while a volume block (known as Gain MarSystem in MARSYAS)

can be adjusted while data is flowing through in real-time. This is achieved by a separate

message passing mechanism, where there is a clear distinction between dataflow, which is

synchronous, and control flow, which is asynchronous.

Taking the example shown in Figure 39, if we wanted to reach

the processing module named module1, the query path would be

/Series/network/Series/series1/Module/module1. The first “/” indicates

the outermost module and the rest of the path is always composed by the concatenation

of Type/Name strings. This naming scheme was inspired from the way messages are

exchanged in Open Sound Control (OSC)5 [Wright et al., 2003]. It is possible to have

access to some of the internal parameters of the modules using controls. Each module
5http://opensoundcontrol.org/
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Figure 40: Processing slices of data in MARSYAS 0.2.

exports a list of controls which may be of different types (e.g. integers, floats, strings,

vectors, or arbitrary user-defined types). They can be accessed for reading or writing

by specifying the path to their parent module plus the Type/Name corresponding to the

control.

One of the most useful characteristics of MarSystems is that they can be instantiated

at run-time. Because they are hierarchically composable that means that any complicated

audio computation expressed as a dataflow network can be instantiated at run-time. For

example multiple instances of any complicated network can be created as easily as the basic

primitive MarSystems. This is accomplished by using a combination of the Prototype and

Composite design patterns [Gamma et al., 1995].

C.1.5 Dynamic Linking of Controls

Controls can be linked as shown in Figure 39, so that changes to the value of one control

are automatically propagated to all the others. There are plenty of interesting uses for

this feature: parameter values that must be passed to more than one module in a system;

feedback loops where results from modules ahead in the processing network are sent back

to the first modules in the chain; shortcuts for other links, etc. Links can be defined (both

at compile-time and at run-time) for controls with the same value type, either belonging

to a same module, or to any other module in the network.

Links can also be used to create proxy controls – in order to create a shortcut to a

control from a module deep inside other composite modules, it is possible to link it to a
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proxy control in the outmost module, created on demand for this task. This way multiple

and easy to understand views for the control of the same algorithm can be created.

C.2 Interoperability

MARSYAS has provided almost since its creation some interoperability layers with

other software packages and projects (e.g. WEKA). More recently, several addi-

tional interoperability interfaces have been implemented and included in the frame-

work [Tzanetakis et al., 2008]. The following section will describe the implementation

and use of the interfaces to software platforms such as MATLAB, Qt4, MAX/MSP, OSC,

Python, Ruby and Java.

C.2.1 MATLAB

MATLAB is a powerful and widely used tool in several areas of research and development,

with a large community of users and available routines for math and multimedia analysis

and processing algorithms. Additionally, MATLAB provides easy to use and advanced

plotting facilities, a major asset for researchers developing algorithms for audio, image and

video processing. Until recently, developers always had to make a hard choice regarding

their development language: either opt for the flexibility and ease of use of MATLAB

or decide in favor of efficiency and performance as provided by an OOP language like

C++. In its latest versions, MATLAB includes the ability to exchange data in run-time

with applications developed in Fortran, C or C++, through and API named MATLAB

Engine6. Marsyas implements a singleton wrapper class for the MATLAB Engine API,

enabling Marsyas developers to easily and conveniently send and receive data (i.e. integers,

doubles, vectors and matrices) to/from MATLAB in run-time. It is also possible to execute

commands in MATLAB from calls in the C++ code as if they have been called in the

MATLAB command line. This enables the execution of MATLAB scripts and the access

to all MATLAB functions and toolboxes from within Marsyas C++ code. The MATLAB

wrapper class in Marsyas provides three basic methods:

• MATLAB PUT(Marsyas var, MATLAB var name);

• MATLAB GET(Marsyas var, MATLAB var name);

• MATLAB EVAL(MATLAB cmd);

6http://www.mathworks.com
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By means of function overloading, these three methods allow exchanging different types

of variables from Marsyas/C++. They can be called from anywhere in the Marsyas C++

code without any need of changes in the Marsyas interfaces, making it simple to send data

structures to MATLAB for convenient inspection and analysis, calculations and plotting,

and then get them back in Marsyas for additional processing. These features are only

available when MATLAB is installed in the system and Marsyas is built with MATLAB

Engine support. Any MATLAB Engine calls in Marsyas code are automatically ignored

otherwise. A code snippet in C++ is presented next, illustrating how a vector of real

values can be processed and exchanged with MATLAB, using the Marsyas MATLAB

Engine wrapper class:
// create a std::vector of real numbers

std::vector<double> vector_real(4);

vector_real[0] = 1.123456789;

vector_real[1] = 2.123456789;

vector_real[2] = 3.123456789;

vector_real[3] = 4.123456789;

// send a std::vector<double> to MATLAB

MATLAB_PUT(vector_real, "vector_real");

// do some dummy math in MATLAB

MATLAB_EVAL("mu = mean(vector_real);");

MATLAB_EVAL("sigma = std(vector_real);");

MATLAB_EVAL("vector_real = vector_real/max(vector_real);");

// get values from MATLAB

double m, s;

MATLAB_GET(m, "mu");

MATLAB_GET(s, "sigma");

MATLAB_GET(vector_real, "vector_real");

C.2.2 Trolltech Qt4

Trolltech’s Qt4 is a comprehensive development toolkit that includes features, capabilities

and tools that enable the development of cross-platform C++ applications. Such features

include multi-platform APIs and classes for the development of Graphic User Interfaces

(GUIs), signalling, and multi-threaded execution. In its 4th version, Qt is available as

a dual-license software toolkit for all the supported platforms (i.e. Linux, MacOSX and

Windows). For open source applications such as Marsyas one of the licences is open-source

GPL.

Marsyas, although not bound specifically to Qt, uses this toolkit as its preferred so-

lution for the development of GUIs. Its use is however totally optional, allowing the
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Figure 41: Common and specialized GUIs for Marsyas modules.

developer to choose any other library, or even including no GUI support at all (missing in

this case all of the GUI extra features already implemented in some Marsyas classes and

applications). There are currently two approaches available for GUI development using

Qt4 in Marsyas.

The first way is using a delegation design pattern, where the core C++ Marsyas classes

in charge of the actual processing are wrapped by an entity that takes care of all the

message passing between the GUIs and the processing network. Additionally, using Qt’s

multithread features, this wrapper makes sure that GUIs and the processing code are

executed in independent threads. This allows the implementation of responsive GUIs and

the best use of the last generation multi-core processors. This approach is most suited

for the development of customized GUI front-ends for Marsyas based applications. It

allows interacting with the processing network (by means of reads/writes to its module’s

controls) in an intuitive and real-time manner.

The second way is to conditionally make all Marsyas modules inherit from Qt’s base

class QObject. This automatically embeds Qt’s most advanced features (such as signals

and slots) into most Marsyas core classes. This avoids the use of middle-layers for message

exchange between GUIs and the processing modules. Additionally to improving efficiency,
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this approach facilitates the implementation of more advanced functionalities for GUI

and multi-threaded processing. As a drawback, this implies a tighter compile-time bind

between Marsyas and Qt, which can make the desired independence between the two

frameworks more difficult to assure and maintain. Given the additional features inherited

from Qt, this approach allows the common implementation of GUIs for all Marsyas mod-

ules, such as widgets for viewing/modifying the list of controls from any Marsyas module,

or even the creation of specialized GUIs for data plotting or parameter modification (see

Figure 41.

C.2.3 Open Sound Control

Open Sound Control (OSC) [Wright et al., 2003] is a protocol for communication among

computers, sound synthesizers, and other multimedia devices that is optimized for modern

networking technology. There many implementations of OSC and most computer music

environments (such as Max/MSP, PD, Chuck, CSound) have the ability to send and receive

open sound control messages.

The control mechanism in Marsyas was inspired from OSC so the mapping of controls

to OSC messages is very straightforward. The path notation is used to specify the full

name of the control and the value of the message is directly mapped to the value of the

control.

The mapping of OSC messages to Marsyas controls is part of the Qt4/Marsyas integra-

tion code. OscMapper is the interface between OSC, Marsyas and Qt4. It acts as both an

OSC server and client and allows particular OSC hosts and clients to be associated with

particular MarSystems. The communication is abstracted as signals and slots following

the way Qt4 structures communication between interface components. The user interface

programmer only needs to specify the information about where the OSC messages will be

coming from and all the rest is taken care directly by the mapping layer.

For example, this way it is straightforward to use PureData to send OSC messages to

modify the parameters of a phasevocoder running in Marsyas. The data flowing through

a Marsyas network is also accessible through controls so audio information can also be

exchanged.
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C.2.4 Marsyas runtime as a Max/MSP external

Max/MSP7 allows the creation of so called “external” processing units which can be

written in C/C++ following a specific API. These externals can then be used as building

blocks in the visual programmming environment.

Efforts have been put into the implementation of a general external that can be used

to load any audio processing system expressed in Marsyas. The main challenge was to

completely decouple the audio buffer rate of Max/MSP from the audio buffer size used

by the Marsyas runtime. This is achieved through a dynamic rate adjusting sound source

and sound sink for the input and output to the Marsyas part of the patch.

For example if the audio buffer size of the Max/MSP patch is 64 samples and Marsyas

requires buffers of 256 samples then four buffers of 64 samples will be accumulated before

sent to Marsyas for processing. Similarly at the Marsyas output the 256 samples will be

broken into 64 sample buffers to be sent back to Max/MSP. Arbitrary sizes are supported

and there is no requirement that one buffer should be smaller than the other. This is

achieved by using circular buffers with dynamically adjustable length. Controls can be

read and written through control outlests and inlets of the external.

C.2.5 SWIG Bindings

There are only a few commands that need to be supported in order to interface the Marsyas

runtime. They basically consist of commands for assembling the dataflow network through

hierarchical composition (create, addMarSystem) and commands for linking, updating

and setting controls (linkctrl, updctrl, setctrl). SWIG8 is a software development tool

that connects programs written in C and C++ with a variety of high-level programming

languages. It includes support for both scripting and non-scripting languages and can

be used to create high-level interpreted programming environments. We have used it

to provide Marsyas bindings for several programming languages (currently Lua, Ruby,

Python, Java).

The following piece of code shows a simple soundfile player written in Ruby using the

bindings:

msm = Marsyas::MarSystemManager.new

file = msm.create "SoundFileSource","file"

sink = msm.create "AudioSink","sink"

net = msm.create "Series","net"

7http://www.cycling74.com
8http://www.swig.org
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net.addMarSystem file

net.addMarSystem sink

fn = net.getctrl "SoundFileSource/file/mrs_string/filename"

ne = net.getctrl "SoundFileSource/file/mrs_bool/notEmpty"

filename.setctrl_string "test.wav"

while ne.to_bool

net.tick

end

A more complex examples shows how feature extraction can be written in Python:

import marsyas_python

# Create top-level patch

mng = marsyas_python.MarSystemManager()

fnet = mng.create("Series", "featureNetwork");

# functional short cuts to speed up typing

create = mng.create

add = fnet.addMarSystem

link = fnet.linkControl

upd = fnet.updControl

get = fnet.getControl

msr = marsyas.MarControlPtr.from_string

# Add the MarSystems

add(create("SoundFileSource", "src"))

add(create("TimbreFeatures", "featExtractor"))

add(create("TextureStats", "tStats"))

add(create("Annotator", "annotator"))

add(create("WekaSink", "wsink"))

# link the controls to coordinate things

link("mrs_string/filename",

"SoundFileSource/src/mrs_string/filename")

link("mrs_bool/notEmpty",

"SoundFileSource/src/mrs_bool/notEmpty")

link("WekaSink/wsink/mrs_string/currentlyPlaying",

"SoundFileSource/src/mrs_string/currentlyPlaying")

link("Annotator/annotator/mrs_natural/label",

"SoundFileSource/src/mrs_natural/currentLabel")

link("SoundFileSource/src/mrs_natural/nLabels",

"WekaSink/wsink/mrs_natural/nLabels")

upd("mrs_string/filename", mstr("bextract_single.mf"))

upd("WekaSink/wsink/mrs_string/labelNames",

get("SoundFileSource/src/mrs_string/labelNames"));

while (get("mrs_bool/notEmpty")):
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fnet.tick()

As an example of using the bindings with a compiled language, it is shown next how

the same network as the Ruby example can be created and used to play sound in Java.

This approach utilizes the JNI (Java Native Interface) and therefore would not be portable

across different operating systems. However it allows Java programs to utilize the Marsyas

functionality which has much higher run-time performance than a full Java port would

have.

import edu.uvic.marsyas.*;

class Test {

static {

System.loadLibrary("marsyas");

}

public static void main (String [] args){

MarSystemManager msm = new MarSystemManager();

MarSystem file = msm.create("SoundFileSource","file");

MarSystem gain = msm.create("Gain", "gain");

MarSystem sink = msm.create("AudioSink","sink";)

MarSystem net = msm.create("Series","net");

net.addMarSystem(file);

net.addMarSystem(gain);

net.addMarSystem(sink);

MarControlPtr filename =

net.getControl("SoundFileSource/file/mrs_string/filename");

MarControlPtr notempty =

net.getControl("SoundFileSource/file/mrs_bool/notEmpty");

filename.setValue_string("test.wav");

while (notempty.to_bool()) net.tick();

}

C.3 MARSYAS Source Code

MARSYAS source code is available at Sourceforge9, an internet hosting service for open

source projects. It is written in portable C++ (as much as possible) and it compiles under

Linux, MacOSX and Microsoft Windows. Subversion (SVN) is used for version control

and the latest unstable source code can be obtained from the webpage.

9http://marsyas.sourceforge.net
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Appendix D
Using HWPS for Efficient Dominant Harmonic
Source Segregation

The leading voice or instrument is an important feature of musical pieces and can often

be considered as the dominant harmonic source. This appendix describes a new scheme

for the purpose of efficient dominant harmonic source separation.

In comparison to the evaluation conducted for the predominant melodic source sep-

aration approach presented in Section 4.3, a simpler but more computationally efficient

scheme for the dominant harmonic source separation will be described and evaluated in

this section . Although both evaluations focus a similar problem, the approach presented

in this section is far from being a complete and generic framework for sound segregation,

where much more demanding requirements exist. Nevertheless, its efficiency makes it well

suited for being integrated in feature extraction algorithms with real-time constraints or

as a good choice for a MIR pre-processing stage for very large datasets, allowing to focus

on the dominant harmonic content in the audio signals.

The proposed technique is based around the HWPS cue (described in Section 3.7.2)

and the resulting representation is termed Harmonically Enhanced Spectral Representa-

tion (HESR). Consequently, this evaluation also serves the purpose of demonstrating the

ability of the HWPS cue to identify the harmonic content in complex audio mixtures and

future work could potentially show the suitability of this approach as good pre-processing

stage for chroma-based analysis of music signals (see for e.g. [Gomez, 2006, Ellis, 2007,

Ellis et al., 2008, Serrà and Gómez, 2007, Serrà and Gómez, 2008]).

Given so, this new separation scheme will be compared to the generic CASA framework

described in Chapter 3 (termed in the following sections as the Ncut approach). Therefore,

its evaluation results presented previously in this chapter will be considered as the reference
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for the experiments described in the following sections. The HESR approach and the

results described in this section have also been presented in [Lagrange et al., 2008b].

D.1 Proposed Algorithm

The novel HWPS cue proposed in Section 3.7.2 estimates the degree of harmonic relation-

ship between two frequency components and more precisely the likelihood that those two

components belong to a dominant harmonic source. Focusing on the task of determining

the dominant harmonic source in an audio signal using the HWPS cue only, it becomes

possible to substantially reduce the the computational effort by considering the following

algorithm: for each audio frame the precise frequencies and magnitudes of spectral peaks

are estimated (see Section 3.4). An harmonicity factor, assigned to each selected peak pl,

can then be computed as follows:

hl =
∑

i%=l

aiWh(pl, pi) (52)

where Wh(pl, pi) is the HWPS between the peak pl under analysis and all the remaining

peaks pi in the same frame , being ai their corresponding amplitudes. This factor indicates

the likelihood that the considered peak belongs to a dominant harmonic source, and the

peaks with the highest factor value can be amplified or selected for creating a harmonically

enhanced spectral representation (HESR).

In fact, there are several alternatives to compute the HESR in practice. The one chosen

for this specific task and used in the evaluations presented in the following section selects,

for each frame, the 10 peaks with the highest harmonicity factor hl among the 20 peaks

output by the sinusoidal analysis front-end used to represent the input audio signals (see

Section 3.4). Only the selected peaks are used in the resynthesis, which becomes equivalent

to applying a harmonicity-based mask to the input spectral peaks. Other approaches could

have been used such as scaling the amplitudes of the peaks depending on their hl factor

(equivalent to a “ soft masking” procedure). In the current implementation, no smoothing

or inter-frame information is used as an attempt to improve the harmonic selection over

time frames. This allows to, for now, focus the evaluation on the raw ability of the HWPS

cue to identify the harmonic content in complex music signals.

The next section will evaluate the performance of the HESR against the Ncut ap-

proach using the different tasks considered in the previous sections, namely singing voice

separation, dominant pitch estimation, and voice detection.
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Ncut HESR
Separation Performance (SSDR in dB) 4.25 1.07
Pitch Estimation Accuracy (Praat) (%) 46 64
Voice Detection Accuracy (MFCC/SMO) (%) 86 83
Computational Cost (× real-time) 1.91 0.23

Table 14: Performance comparison between the Ncut and HESR approaches. Computational cost
is expressed in terms of real-time and separation performance in terms of SSDR (in dB).

D.2 Corpus Description and Experimental Setup

The same 10 song dataset and the 23 music clips from the MIREX audio melody extraction

dataset used for the evaluation of the Ncut approach (both described in Section 4.3.1) were

used for the evaluations of the HESR. This allows a direct comparison with the Ncut results

presented in the previous sections.

D.3 Experimental Results

For the separation experiment, the 10 song dataset was used similarly to the way explained

in Section 4.3.1. Table 14 presents the comparative results between the Ncut and the

HESR approaches for different tasks. The first row in the table presents the mean value

of the SSDR achieved when using all the signals in the dataset. As it is possible to see,

the separation performance drops by approximately 3 dB when using the HESR method.

This may be due to the fact that the HESR algorithm only considers the HWPS cue to

select the frequency components with the highest harmonicity index, ignoring all other

grouping cues (e.g. frequency and amplitude proximity) used by the Ncut approach.

For the main pitch estimation experiment, the music tracks from the MIREX dataset

were used. The pitch contour from the dominant melodic voice was estimated for each

audio signal using the Praat pitch estimation [Boersma and Weenink, 2006] on the resyn-

thesized signals coming out of both HESR and Ncut methods. In this experiment the

HESR achieved better results, which seems to confirms the hypothesis that the proposed

harmonicity criterion is able to select a significant number of components from the domi-

nant harmonic source.

A voicing detection evaluation was also conducted, where the objective was to identify

whether a given time frame contains a “melody” pitch or not. The goal of this experiment

was to determine whether the HESR algorithm can be used to achieve a good voicing detec-

tion accuracy in monaural polyphonic recordings. The dataset of the 10 polyphonic music
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pieces was used for this experiment. As before, the voicing regions were manually labeled

from the original vocal track and were used as the ground truth. A supervised learning

approach was then used to train voicing/no-voicing classifiers for two configurations, as

presented in table 14: Ncut refers to using Mel-Frequency Cepstral Coefficients (MFCC)

calculated over the Ncut automatically separated voice signal, and HESR refers to MFCC

calculated over the HESR mixed voice and music signal. The experiments were once again

conducted using the Weka machine learning framework [Witten and Frank, 2005], where

a support vector machine was trained using the sequential minimal optimization (SMO).

As shown, the HESR MFCC accuracy compares well to the slightly superior value

achieved when using the Ncut and MFCC approach. Not presented in the table, but of

comparative interest, is the accuracy of the MFCC feature using the same classifier but

when applied directly to the original mixed signal (i.e. without any Ncut separation or

HESR processing). For this case a 69% accuracy is obtained, a quite inferior value in

comparison to the two values discussed above.

For all the above experiments a 2.2 GHz Intel machine was used for running the

HESR and Ncut algorithms, both implemented in C++ using the Marsyas framework 1

(see Chapter 5 for more details on the software implementation conducted in the scope

of this thesis). The last row of Table 14 shows a relative measure of the computation

time taken by running the HESR and Ncut algorithms on the all the songs in the 10 song

dataset. The HESR approach is about 8 times faster than the Ncut algorithm, making it

a more practical option, mainly when used as a front-end of pre-processing step in MIR

tasks. Nevertheless, the much more complex and generic Ncut algorithm is just roughly 2

times real-time, and this figure will eventually be improved and allow real-time operation

by mainly introducing optimizations in the normalized cut implementation.

D.4 Discussion

All the presented experiments show that the proposed HESR approach, even though not

capable of achieving comparable results for the source separation task, is able to attain

convincing results as a front-end for MIR tasks such as pitch estimation and voicing

detection at a low computational cost. Additionally, and because the HESR is based

on the sole use of the HWPS, the results confirm the relevance of this grouping cue to

the segregation of harmonic content from complex audio mixtures. Thus, HESR could

potentially be used as a efficient front-end for chroma-based analysis of music signals.

1http://marsyas.sourceforge.net
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