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ABSTRACT

Many machine learning and signal processing problems are fundamentally nonconvex. One way to solve them is

to transform them into convex optimization problems (a.k.a. convex relaxation), which constitutes a major part of my

research. Although the convex relaxation approach is elegant in some ways that it can give information-theoretical

sample convexity and minimax denoising rate, but this approach is not efficient in dealing with high-dimensional

problems. Therefore, as my second major part of the research, I will directly focus on the fundamentally nonconvex

formulations of these nonconvex problems, with a particular interest in understanding the nonconvex optimization

landscapes of their fundamental formulations. Then in the third part of my research, I will develop optimization

algorithms with provable guarantees that can efficiently navigate these nonconvex landscapes and achieve the global

optimality. Finally, in the final part, I will apply the alternating minimization algorithms to general tensor recovery

problems and clustering problems.

Part 1: Convex Optimization. In this part, we apply convex relaxations to several popular nonconvex problems

in signal processing and machine learning (e.g. line spectral estimation problem and tensor decomposition problem)

and prove that the solving the new convex relaxation problems can return the globally optimal solutions of their

original nonconvex formulations.

Part 2: Nonconvex Optimization. In this part, we focus on the fundamentally nonconvex optimization land-

scapes for several low-rank matrix optimization problems with general objective functions, which covers a massive

number of popular problems in signal processing and machine learning. In particular, we develop mild conditions for

these general low-rank matrix optimization problems to have a benign landscape: all second-order stationary points

are global optimal solutions and all saddle points are strict saddles (i.e. Hessian matrix has a negative eigenvalue).

Part 3: Algorithms. In this part, we will develop optimization algorithms with provable second-order optimal

convergence for general nonconvex and non-Lipschitz problems. Further, in this part, we also solve an open problem

for the second-order convergence of alternating minimization algorithms that have been widely used in practice to

solve large-scale nonconvex problems due to their simple implementation, fast convergence, and superb empirical

performance. Then the second-order convergence guarantees, along with the knowledge (see Part 2) that a massive

number of nonconvex optimization problems have been shown to have a benign landscape (all second-order stationary

points are global minima), ensure that the proposed algorithms can find global minima for a class of nonconvex

problems.

Part 4: Applications. In this part, we apply the alternating minimization algorithms to several popular applica-

tions in signal processing and machine learning, e.g., the low-rank tensor recovery problem and the spherical Principal

Component Analysis (PCA).

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 APPROXIMATE SUPPORT RECOVERY OF ATOMIC LINE SPECTRAL ESTIMATION: A
TALE OF RESOLUTION AND PRECISION . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Signal Model and Atomic Norm Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Prior Art and Inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Proof by Primal-Dual Witness Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Proof Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 A Formal Proof: Applying the Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . 16

2.4.2.1 Two-step Construction Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2.2 Showing q? is a Dual Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

CHAPTER 3 A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 The Tensor Decomposition Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Prior Art and Inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Tensor Decomposition, Atomic Norms, and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



3.2.1 Tensor Decomposition as an Atomic Decomposition . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Dual Certificate and Subdifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Extension: Regularization Using Tensor Nuclear Norm . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 The Burer-Monteiro Factorization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 The Lasserre Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Outline of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Minimal-Energy Construction of Pre-certificate . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Far Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 Near Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.5 Angular Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.6 Near-Region Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.7 Combine the Far and Near Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

CHAPTER 4 THE NONCONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Our Approach: Burer-Monteiro Style Parameterization . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Enlightening Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2.1 Weighted PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2.2 Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.4 Stylized Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.4.1 Weighted PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.4.2 Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v



4.1.4.3 1-bit Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.4.4 Robust PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.4.5 Low-rank Matrix Recovery with Non-Gaussian Noise . . . . . . . . . . . . . . . . . 64

4.1.5 Prior Arts and Inspirations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.6 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Consequences of the Restricted Well-conditionedness Assumption . . . . . . . . . . . . . . . . 68

4.3 Understanding the Factored Landscapes for PSD Matrices . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Transforming the Landscape for PSD Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Metrics in the Lifted and Factored Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Proof Idea: Connecting the Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.4 A Formal Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Understanding the Factored Landscapes for General Non-square Matrices . . . . . . . . . . . . . . . . 79

4.4.1 Burer-Monteiro Reformulation of the Nuclear Norm Regularization . . . . . . . . . . . . . . . 79

4.4.2 Transforming the Landscape for General Non-square Matrices . . . . . . . . . . . . . . . . . . 80

4.4.3 Optimality Condition for the Convex Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.4 Characterizing the Critical Points of the Factored Program . . . . . . . . . . . . . . . . . . . . 83

4.4.4.1 The Properties of the Balanced Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.5 Proof Idea: Connecting the Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.6 A Formal Proof of Theorem 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

CHAPTER 5 GLOBAL OPTIMALITY IN LOW-RANK MATRIX OPTIMIZATION . . . . . . . . . . . . . . 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



5.2.2 Strict Saddle Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Problem Formulation and Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Stylized Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3.1 Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3.2 Weighted Low-Rank Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3.3 1-bit Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Supporting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 The Formal Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.2 Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.3 1-bit Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

CHAPTER 6 THE GLOBAL OPTIMIZATION GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION 112

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1.1 Summary of Results and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.2 Relation to Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Low-rank Matrix Optimization with the factorization approach . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Assumptions And Regularizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Global Geometry For General Low-Rank Optimization . . . . . . . . . . . . . . . . . . . . . 123

6.3.3 Stylized Application: Matrix Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

CHAPTER 7 THE GEOMETRY OF EQUALITY-CONSTRAINED GLOBAL CONSENSUS PROBLEMS . 132

vii



7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Relating Unconstrained Geometry to Constrained Geometry . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Geometry of Global Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4 Gradient ADMM (GADMM) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Application to Distributed Low-Rank Matrix Approximation . . . . . . . . . . . . . . . . . . . . . . 137

CHAPTER 8 GLOBAL OPTIMALITY IN DISTRIBUTED LOW-RANK MATRIX FACTORIZATION . . . 140

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2 General Analysis of DGD+LOCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Relation to Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.2.2 Algorithmic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.2.1 Objective Function Properties and Convergence of Gradient Descent . . . . . . . . 144

8.2.2.2 Convergence Analysis of DGD+LOCAL . . . . . . . . . . . . . . . . . . . . . . . 146

8.2.3 Geometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Analysis of Distributed Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.1 Distributed Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

CHAPTER 9 ALTERNATING MINIMIZATIONS CONVERGE TO SECOND-ORDER OPTIMAL
SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.3 Second-order Convergence of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.3.1 The Mapping Function of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.3.2 Proof of Theorem 9.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.3.3 Stylized Application of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.4 Second-order Convergence of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.4.1 The Mapping Function of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.4.2 Proof of Theorem 9.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.4.3 Stylized Applications of Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

viii



CHAPTER 10 PROVABLE BREGMAN-DIVERGENCE BASED METHODS FOR NONCONVEX AND
NON-LIPSCHITZ PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2.1 Beyond Lipschitz Via Bregman Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2.2 Extension to Bregman Alternating Minimizations . . . . . . . . . . . . . . . . . . . . . . . . 175

10.2.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.2.4 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.3 Stylized Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.3.1 Polynomial Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.3.2 Objective Functions with Polynomial-order Hessian Spectral Norm . . . . . . . . . . . . . . 180

10.3.3 Burer-Monteiro Factorization Method for Low-rank Matrix Recovery . . . . . . . . . . . . . 180

10.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.4.1 Main Ingredients of First-order Convergence for KL functions . . . . . . . . . . . . . . . . . 181

10.4.2 Main Ingredients of Second-order Convergence Using Random Initialization . . . . . . . . . 182

10.4.3 Convergence Analysis of Bregman Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 182

10.4.3.1 First-order Convergence of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . 182

10.4.3.2 Second-order Convergence of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . 183

10.4.4 Convergence Analysis of Bregman Proximal Minimization . . . . . . . . . . . . . . . . . . . 184

10.4.4.1 First-order Convergence of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . . 184

10.4.4.2 Second-order Convergence of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . 184

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

CHAPTER 11 GENERAL TENSOR RECOVERY VIA ALTERNATING MINIMIZATION . . . . . . . . . . 186

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.2 General Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11.3 Tensor Nuclear Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

11.3.1 Burer-Monteiro Optimization Form of Tensor Nuclear Norm . . . . . . . . . . . . . . . . . . 189

11.4 Alternating Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

ix



11.4.1 Boundedness of Variables Uk,Vk,Wk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

11.4.2 Lipschitz Continuity of Gradient∇f along Solution Path . . . . . . . . . . . . . . . . . . . . 194

11.4.3 Sufficient Decrease Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

11.5 Convergence of Algorithm 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

11.6 Extension to Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.7 Experiments on Synthetic and Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.7.1 Experiments on Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

11.7.2 Experiments on Real Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

CHAPTER 12 SPHERICAL CLUSTERING VIA ALTERNATING MINIMIZATION . . . . . . . . . . . . . 204

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

12.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

12.3 Formulation And Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

12.3.1 Objective Function with Proximal Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

12.3.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

12.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

12.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12.5.1 Synthetic Data Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12.5.2 Real-world Datasets Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

APPENDIX A APPENDICES FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.1 Jackson Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.1.1 Decomposing the Jackson Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A.1.2 Decomposing the Jackson Kernel Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.1.3 Bounding the Jackson Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.1.4 Bounding the Sums of the Jackson Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A.1.5 Numerical Bounds on the Jackson Kernel Sums . . . . . . . . . . . . . . . . . . . . . . . . . 243

x



A.1.6 Controlling the Jackson Kernel Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.2 Bounding the Dual Atomic Norm of Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.3 Gradient and Hessian for the Nonconvex Program (2.15) . . . . . . . . . . . . . . . . . . . . . . . . 251

A.3.1 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

A.3.2 Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

A.4 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.4.1 Showing the Contraction Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

A.4.2 Showing the Non-escaping Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.5 Proof of Lemma 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.5.1 Showing the Contraction Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.5.2 Showing the Non-escaping Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

A.6 Proof of Lemma 2.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

A.6.1 Showing the Interpolation Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

A.6.2 Showing the Boundedness Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

A.6.2.1 Bounding ‖β̃‖∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

A.6.2.2 Bounding ‖α‖∞ and R{α1} and |I{α1}| . . . . . . . . . . . . . . . . . . . . . . . 264

A.6.2.3 Controlling Q?(f) in Near Region . . . . . . . . . . . . . . . . . . . . . . . . . . 265

A.6.2.4 Bounding |Q?(f)| in Middle Region . . . . . . . . . . . . . . . . . . . . . . . . . 267

A.7 Proof of Lemma 2.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A.7.1 Near Region Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

A.7.2 Middle Region Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A.7.3 Far Region Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

A.8 Proof of Lemma 2.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

A.9 Proof of Proposition 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

A.10 Proof of Corollary 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

A.11 Proof of Lemma A.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

APPENDIX B APPENDICES FOR CHAPTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

xi



B.1 Proof of Lemma 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

B.2 Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

B.3 Proof of Lemma 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

B.4 Proof of Lemma 3.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

B.4.1 Proof of Lemma B.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

B.5 Proof of Lemma 3.4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

B.6 Proof of Lemma 3.4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

B.7 Proof of Lemma 3.4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

B.7.1 Proof of Eq. (B.26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

B.7.1.1 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

APPENDIX C APPENDICES FOR CHAPTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

C.1 Proof of Proposition 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

C.2 Proof of Lemma 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

C.3 Proof of Lemma 4.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

C.4 Proof of Lemma 4.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

C.5 Proof of Proposition 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

C.6 Proof of Lemma 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

C.7 Proof of Lemma 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

C.8 Proof of Proposition 4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

C.9 Proof of Lemma 4.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

APPENDIX D APPENDICES FOR CHAPTER 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

D.1 Proof of Lemma 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

D.2 Proof of Proposition 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

D.3 Proof of Lemma 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

D.4 Proof of Lemma 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

D.5 Proof of Eq. (5.20) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

D.6 Proof of Eq. (5.22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

xii



APPENDIX E APPENDICES FOR CHAPTER 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

E.1 The optimization geometry of low-rank matrix factorization . . . . . . . . . . . . . . . . . . . . . . 321

E.1.1 Relationship to PSD low-rank matrix factorization . . . . . . . . . . . . . . . . . . . . . . . 321

E.1.2 Characterization of critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

E.1.3 Strict saddle property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

E.1.4 Extension to over-parameterized case: rank(X?) < r . . . . . . . . . . . . . . . . . . . . . . 324

E.1.5 Extension to under-parameterized case: rank(X?) > r . . . . . . . . . . . . . . . . . . . . . 325

E.1.6 Robust strict saddle property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

E.2 Proof of Lemma 6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

E.3 Proof of Proposition 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

E.4 Proof of Lemma 6.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

E.5 Proof of Lemma E.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

E.6 Proof of Lemma E.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

E.7 Proof of Lemma E.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

E.8 Proof of Theorem E.1.1 (strict saddle property for (E.1)) . . . . . . . . . . . . . . . . . . . . . . . . 333

E.9 Proof of Theorem E.1.2 (strict saddle property of g(W) when over-parameterized) . . . . . . . . . . 336

E.10 Proof of Theorem E.1.3 (strict saddle property of g(W) when under-parameterized) . . . . . . . . . . 337

E.11 Proof of Theorem E.11.1 (robust strict saddle for g(W)) . . . . . . . . . . . . . . . . . . . . . . . . 339

E.11.1 Regularity condition for the regionR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

E.11.2 Negative curvature for the regionR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

E.11.3 Large gradient for the regionR′3 ∪R′′3 ∪R′′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . 346

E.11.3.1 Large gradient for the regionR′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

E.11.3.2 Large gradient for the regionR′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

E.11.3.3 Large gradient for the regionR′′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

E.12 Proof of Theorem 6.3.1 (robust strict saddle for G(W)) . . . . . . . . . . . . . . . . . . . . . . . . . 349

E.12.1 Local descent condition for the regionR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

E.12.2 Negative curvature for the regionR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

xiii



E.12.3 Large gradient for the regionR′3 ∪R′′3 ∪R′′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . 354

E.12.3.1 Large gradient for the regionR′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

E.12.3.2 Large gradient for the regionR′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

E.12.3.3 Large gradient for the regionR′′′3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

APPENDIX F APPENDICES FOR CHAPTER 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

F.1 Proof of Proposition 8.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

F.2 Proof of Theorem 8.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

F.3 Proof of Proposition 8.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

F.4 Proof of Proposition 8.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

F.5 Proof of Theorem 8.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

F.6 Proof of Theorem 8.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

APPENDIX G APPENDICES FOR CHAPTER 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

G.1 Implementations and Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

G.1.1 Implementations: Closed-form Updating Formula . . . . . . . . . . . . . . . . . . . . . . . . 366

G.1.1.1 Closed-form Updating Formula for Bregman Gradient Decent . . . . . . . . . . . . 366

G.1.1.2 Closed-form Updating Formula for Bregman alternating Gradient Decent . . . . . . 368

G.1.2 Numerical Experiments on Low-rank Matrix Factorization . . . . . . . . . . . . . . . . . . . 370

G.1.2.1 Low-rank Matrix Factorization Problem . . . . . . . . . . . . . . . . . . . . . . . 370

G.1.2.2 Implementations and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 371

G.1.2.3 More Experiments for Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 372

G.2 Proof of Lemma 10.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

G.3 Proofs in Section of Stylized Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

G.3.1 Application to Polynomial Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . 377

G.3.2 Application to Any Objective Functions with a Polynomial-order Hessian Spectral Norm . . . 381

G.4 Analysis of Algorithms 3-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

G.4.1 Convergence Analysis of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

G.4.1.1 First-order Convergence of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . 383

xiv



G.4.1.2 Second-order Convergence of Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . 384

G.4.2 Convergence Analysis of Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

G.4.2.1 First-order Convergence of Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . 385

G.4.2.2 Second-order Convergence of Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . 386

G.4.3 Convergence Analysis of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

G.4.3.1 First-order Convergence of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . . 391

G.4.3.2 Second-order Convergence of Algorithm 5 . . . . . . . . . . . . . . . . . . . . . . 391

G.4.4 Convergence Analysis of Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

G.4.4.1 First-order Convergence of Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . . 393

G.4.4.2 Second-order Convergence of Algorithm 6 . . . . . . . . . . . . . . . . . . . . . . 394

APPENDIX H APPENDICES FOR CHAPTER 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

H.1 Proof of Theorem 11.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

xv



LIST OF FIGURES

Figure 2.1 Use the true parameter vector θ? as an initialization and run the first weighted gradient
map (2.19) to obtain the first fixed point θλ ∈ N ?. Run the second weighted gradient
map (2.21) initialized by θλ to get the second fixed point θ̂ ∈ N λ. The closeness of θ̂ and θ? is
determined by the sizes of the two neighborhoods N ? and N λ, whose precise forms are given in
Lemmas 2.4.1 and 2.4.2, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.2 Rate of success for line spectral estimation by solving the atomic norm regularized program (2.8). . 24

Figure 2.3 Performance comparison: Atomic norm minimization (2.8) (labeled as “Atom"), MUSIC, MLE
initialized by the true parameters, and the CRB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.1 An outline of the proof of Theorem 3.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.2 Projection of the far region in the u coordinate. The blue band represents the region
{u : |〈u,u?1〉| ≤ δ} that is far away from u?1, while the green region {u : |〈u,u?2〉| ≤ δ} is the
far-region associated with u?2. The far region is their intersection

⋂2
p=1{u : |〈u,u?p〉| ≤ δ},

consisting of the two black diamonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.3 The two yellow spherical caps form the near region N1(δ) around the point (u?1,v
?
1,w

?
1)

projected onto the u coordinates. N2(δ), which is not shown here, consists of another two
spherical caps. The union of N1(δ),N2(δ) and the far region F(d) shown in Figure 3.2 will
cover the entire sphere {u : ‖u‖ = 1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 3.4 Parameterization of points on the unit sphere for u. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.5 The eight gray cubes of side-length π/2− δ at the corners form the angular near region N(δ). . . . 46

Figure 3.6 The eight colored cubes of size δv × δv × δv form the vertex region Nv(δv): the red ones are
corresponding to the vertexes in S? while the blue ones are corresponding to other vertexes in
the cube. Note that these colored corner-cubes are possibly much smaller than those gray ones
in Figure 3.5, whose side length is π/2− δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.7 The remaining region N(δ) \ Nv(δv) projected onto the (θ1, θ2)-coordinates. . . . . . . . . . . . . 49

Figure 3.8 The band region Nb(δb) projected onto the (θ1, θ2)-coordinates. Clearly, when δb ≤ min{δv, δ},
the band region Nb(δb) covers the remaining region N(δ) \ Nv(δv), as plotted in Figure 3.7. . . . . 50

Figure 3.9 Rate of success for tensor decomposition using ADMM-G, ADMM-R and SOS-2. . . . . . . . . . 53

Figure 4.1 Factored function landscapes corresponding to different dynamic ranges of the weights W: (a) a
small dynamic range with maxW 2

ij/minW 2
ij = 1 and (b) a large dynamic range with

maxW 2
ij/minW 2

ij > 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.2 The matrix D = U−U?R is the direction from the critical point U to its nearest optimal factor
U?R, whose norm ‖U−U?R‖F defines the distance dist(U,U?). Here, U is closer to −U?

than U? and the direction from U to −U? has more negative curvature compared to the
direction from U to U?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xvi



Figure 5.1 Rate of success for matrix sensing by (a) solving the factorized problem (5.11) with gradient
descent; (b) SVP ; (c) solving the convex problem (5.23). . . . . . . . . . . . . . . . . . . . . . 106

Figure 5.2 The performance in terms of (a) objective value and (b) the relative Frobenius norm of the error
versus the iteration k for the matrix factorization approach solving matrix sensing with
r? = 4, n = m = 50, p = 4Rn,R = 7 and r varying from r? to R. . . . . . . . . . . . . . . . . 107

Figure 5.3 Rate of success for matrix sensing by (a) the matrix factorization approach with gradient
descent; (b) SVP ; (c) solving the convex problem (5.24); (d) SVT . . . . . . . . . . . . . . . . . 109

Figure 5.4 Average computation time needed for different algorithms solving matrix completion. . . . . . . 109

Figure 5.5 The performance in terms of the relative Frobenius norm of the error for the matrix factorization
approach (denoted by NVX) and the convex approach in (denoted by CVX) for solving the 1-bit
matrix completion with probit regression model and (a) varying n and σ = 0.3, r = 7,
p = 0.5n2; (b) varying p and σ = 0.3, n = 200, r = 7; (c) varying r and σ = 0.3, n = 200,
p = 0.25n2; (d) varying σ and n = 200, r = 4, p = 0.25n2. The results are plotted in the log
scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 5.6 The performance in terms of the relative Frobenius norm of the error for the matrix factorization
approach (denoted by NVX) and the convex approach in (denoted by CVX) for solving the 1-bit
matrix completion with logistic regression model and (a) varying n and r = 2, p = 0.5n2; (b)
varying p and n = 200, r = 2. The results are plotted in the log scale. . . . . . . . . . . . . . . 111

Figure 6.1 An illustration of why we need RIP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 7.1 Solving (7.17) by using GADMM (7.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 11.1 Performing Algorithm 7, LRTC, HaLRTC, and FaLRTC to recover T ? for two different
missing-data ratio and recording their relative recovery errors ‖T̂ (k)− T ?‖F /‖T ?‖F versus
iteration, where T̂ (k) denotes the recovered tensor by certain algorithm after k-th iteration. (a)
missing-data ratio=70% and (b) missing-data ratio=80%. . . . . . . . . . . . . . . . . . . . . . 202

Figure 11.2 Compare Algorithm 7 with LRTC, HaLRTC, and FaLRTC in missing image recovery in term of
the relative recovery errors versus iteration. (Left) Test on the House image; (Right) Test on the
Tomato image. Here we denote the recovered image by Algorithm 7 by T̂ r with r indicating the
input rank of the algorithm. Both show that the proposed Algorithm 7 converges with fewer
iterations and to a better solution in term of the relative recovery errors. . . . . . . . . . . . . . . 203

Figure 12.1 Larger angles (θ2 > θ1) in the sphere will have larger Euclidean distance, and vice versa, which
unifies the cosine similarity and Euclidean distance simultaneously. . . . . . . . . . . . . . . . . 205

Figure 12.2 Left: two groups of data generated from two angles. Middle: clustering result with distance
-based method K-means. Right: clustering result with our method. Blue and red represent
different clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Figure 12.3 Left: ‖U(k + 1)−U(k)‖F with updates. Center: ‖V(k + 1)−V(k)‖F with updates. Both
converge to 0 after several iterations. Right: Objective converges at sub-linear rate. All validate
our analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xvii



Figure G.1 Comparing standard (alternating) gradient descent and Bregman (alternating) gradient descent in
solving symmetric and nonsymmetric matrix factorizations in (G.13). In particular, we set up the
symmetric matrix factorization experiments as follows. (a): We initialize U0 with each entry
drawn from N (0, 1); (b): We initialize U0 with each entry drawn from N (0, 100). We note that
in both cases (a) and (b), we have tuned the stepsizes of both algorithms to achieve optimal
performance. We observe that when the current ‖U‖F is large, the convergence of gradient
descent becomes very slow; while Bregman gradient descent is not sensitive to the norm of the
current ‖U‖F and still converges quickly to the global optimum. The same phenomenon
happens in non-symmetric matrix factorization. (c): We initialize U0 and V0 with each entry
drawn from N (0, 1); (d): We initialize U0 and V0 with each entry drawn from N (0, 100).
Similar to the symmetric case, we have tuned the stepsize of both algorithms to achieve optimal
performance in both cases. We observe that the performance of (alternating) gradient descent
degrades drastically and even fails (see (d)), while Bregman (alternating) gradient descent
maintains a stable and favorable performance regardless of the size of the initialization. . . . . . 373

Figure G.2 Comparing standard proximal alternating minimization and Bregman proximal alternating
minimization in solving the nonsymmetric matrix factorization problem (G.14). In particular,
we set up experiments as follows. (a): We initialize U0 and V0 with each entry drawn from
N (0, 1); (b): We initialize U0 and V0 with each entry drawn from N (0, 100). We note that in
both cases, we have tuned the proximal regularization parameter η for both standard and
Bregman proximal alternating minimization algorithms to achieve optimal performance. We
observe that both algorithms can maintain a stable and favorable performance regardless of the
size of the initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

xviii



LIST OF TABLES

Table 2.1 Comparison with the classical line spectral estimation methods. . . . . . . . . . . . . . . . . . . . 8

Table 2.2 Comparison with other modern line spectral estimation/super-resolution methods. The Positive
Measure column refers to whether the result requires the ground-truth measure to be positive.
RRC is short for Rayleigh Regularity condition Definition 1.1]support:morgenshtern2016super,
which generalizes the standard separation condition to clustered support. NDSC stands for the
non-degenerate source condition Definition 5]support:Duval:2015gk. In the Support Recovery
column, None indicates that the work considers signal recovery instead of support recovery;
Existence means that the work shows the existence of at least one recovered parameter around
each ground-true parameter, but fails to theoretically eliminate the possibility of spurious
recovered parameters; Uniqueness shows that around each true parameter there is one and only
one recovered parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 2.3 Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 12.1 Clustering performance of different algorithms on 20-newsgroup dataset . . . . . . . . . . . . . . 217

Table 12.2 Clustering performance of different algorithms on four UCI datasets . . . . . . . . . . . . . . . . 217

Table A.1 Numerical upper bounds on F`(2.5/n, f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Table A.2 Numerical upper bounds on W`(f1, f2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Table A.3 Numerical upper bounds on |K(`)(f)| and K ′′(f). . . . . . . . . . . . . . . . . . . . . . . . . . 244

xix



ACKNOWLEDGMENTS

The best part of graduate school at Mines has been the chance to meet and work with so many

amazing people. I have been fortunate to work with a large and talented group of collaborators:

Shuang Li, Kai Liu, Ashley Prater-Bennette, Lixin Shen, Youye Xie, Xinshuo Yang, Hua Wang,

Zhihui Zhu, and especially Michael Wakin, and Gongguo Tang with whom I collaborate closely

on the project—convex and nonconvex optimization geometries (also the title of this thesis).

I wish to express my gratitude to my committee for their valuable suggestions and contribu-

tions: to Stephen Pankavich for his enjoyable and inspiring class Math 500 Linear Vector Space;

to Tyrone Vincent for his motivating questions and discussions as well as his great course on Esti-

mation theory and Kalman filtering; to Michael Wakin for his helpful discussions and intuitions for

my research and writing; and most of all to my advisor Gongguo Tang for his every inspiration in

our meetings, his extreme patience in guiding me in the research, and his countless hours devoted

to helping me improve my writing and thinking.

I also want to thank all the fun people to work with over the years at Mines: Tong Bai, Armin

Eftekhari, Jonathan Helland, Justin Jayne, Shuang Li, Chia Wei Lim, Kai Liu, Weiping Pei, Xin-

ming Wu, Youye Xie, Dehui Yang, Xu Zhou, Zhihui Zhu.

Finally, I want to thank all of my other friends and family for their continued encouragement

and support: Grandma, Mom, Dad, Wife, Sister, Gang Li, Yue Wang, Jiaxi Ying, and everyone

else who helped me along the way.

xx



CHAPTER 1

INTRODUCTION

This work focuses on using convex and nonconvex optimization methods to model and solve problems in machine

learning and signal processing. When we formulate the problem as a convex problem, the statistical performance (cf.

2) can be well analyzed using a suit of powerful convex analysis tools, which have accumulated from several decades

of research. For example, a well-designed convex optimization method can achieve information-theoretically optimal

sampling complexity, have minimax denoising rate and satisfy tight oracle inequalities. In spite of their optimal sta-

tistical performance, the convex optimization methods cannot be scaled to solve the practical problems that originally

motivate their development even with specialized first-order algorithms. Further, there are many machine learning and

signal processing problems that are fundamentally nonconvex and too expensive/difficult to be convexified. There-

fore, as a second part of this work, we focus on the fundamentally nonconvex formulations of some popular machine

learning and signal processing problems. In this part, we are particularly interested in understanding the nonconvex

optimization landscapes of their fundamental formulations. Then based on this landscape knowledge of these non-

convex optimization problems, in the third part of this work, we focus on developing optimization algorithms with

with provable guarantees that can efficiently navigate these nonconvex landscapes and achieve the global optimality.

Finally, we some popular applications in signal processing and machine learning are analyzed using the developed

optimization algorithms.

Part 1: Convex Optimization

Chapter 2 This chapter investigates the parameter estimation performance of super-resolution line spectral estima-

tion using atomic norm minimization. The focus is on analyzing the algorithm’s accuracy of inferring the

frequencies and complex magnitudes from noisy observations. When the Signal-to-Noise Ratio is reason-

ably high and the true frequencies are well separated, we prove that the obtained error bound by the atomic

norm estimator matches the Cramér-Rao lower bound up to a logarithmic factor.

Chapter 3 This chapter develops theories and computational methods for guaranteed overcomplete, non-orthogonal

tensor decomposition using convex optimization. We view tensor decomposition as a problem of measure

estimation from moments. We develop a theory for guaranteed decomposition for those tensor factors uni-

formly distributed on the unit spheres, implying exact decomposition for tensors with random factors. The

optimal value of this optimization defines the tensor nuclear norm that can be used to regularize tensor

inverse problems, including tensor completion, decisioning, and robust tensor principal component analysis.
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Part 2: Nonconvex Optimization

Chapter 4 This chapter considers two popular minimization problems: (i) the minimization of a general convex

function f(X) with the domain being positive semi-definite matrices; (ii) the minimization of a general

convex function f(X) regularized by the matrix nuclear norm ‖X‖∗ with the domain being general matrices.

To develop faster and more scalable algorithms, we follow the proposal of Burer and Monteiro to factor the

low-rank variable X = UU> (for semi-definite matrices) or X = UV> (for general matrices) and also

replace the nuclear norm ‖X‖∗ with (‖U‖2F + ‖V‖2F )/2. In spite of the non-convexity of the resulting

factored formulations, we prove that each critical point either corresponds to the global optimum of the

original convex problems or is a strict saddle where the Hessian matrix has a strictly negative eigenvalue.

Chapter 5 This chapter considers the minimization of a general objective function f(X) over the set of rectangular

n×mmatrices that have rank at most r. To reduce the computational burden, we factorize the variable X into

a product of two smaller matrices and optimize over these two matrices instead of X. We analyze the global

geometry for a general and yet well-conditioned objective function f(X) whose restricted strong convexity

and restricted strong smoothness constants are comparable. In particular, we show that the reformulated

objective function has no spurious local minima and obeys the strict saddle property.

Chapter 6 In this chapter we characterize the global optimization geometry of the nonconvex factored problem and

show that the corresponding objective function satisfies the robust strict saddle property as long as the

original objective function f satisfies restricted strong convexity and smoothness properties, ensuring global

convergence of many local search algorithms (such as noisy gradient descent) in polynomial time for solving

the factored problem.

Chapter 7 A variety of unconstrained nonconvex optimization problems have been shown to have benign geometric

landscapes that satisfy the strict saddle property and have no spurious local minima. We present a general

result relating the geometry of an unconstrained centralized problem to its equality-constrained distributed

extension. It follows that many global consensus problems inherit the benign geometry of their original

centralized counterpart.

Chapter 8 We study the convergence of a variant of distributed gradient descent (DGD) on a distributed low-rank

matrix approximation problem wherein some optimization variables are used for consensus (as in classical

DGD) and some optimization variables appear only locally at a single node in the network. Using algo-

rithmic connections to gradient descent and geometric connections to the well-behaved landscape of the

centralized low-rank matrix approximation problem, we identify sufficient conditions where the new DGD

is guaranteed to converge with exact consensus to a global minimizer of the original centralized problem.
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For the distributed low-rank matrix approximation problem, these guarantees are stronger—in terms of con-

sensus and optimality—than what appear in the literature for classical DGD and more general problems.

Part 3: Algorithms

Chapter 9 This chapter studies the second-order convergence for both standard alternating minimization and proxi-

mal alternating minimization. We show that under mild assumptions on the (nonconvex) objective function,

both algorithms avoid strict saddles almost surely from random initialization. Together with known first-

order convergence results, this implies both algorithms converge to a second-order stationary point. This

solves an open problem for the second-order convergence of alternating minimization algorithms that have

been widely used in practice to solve large-scale nonconvex problems due to their simple implementation,

fast convergence, and superb empirical performance.

Chapter 10 A crucial and pervasive assumption needed by many modern optimization methods is the global Lipschitz

gradient condition. However, many machine learning problems do not admit a globally Lipschitz gradient.

In this chapter, we develop and establish second-order convergence guarantees of several Bregman-based

methods to deal with general nonconvex objective functions with non-Lipschitz gradients.

Part 4: Applications

Chapter 11 This chapter studies the problem of retrieving a low-rank tensor under a general linear observation model,

including both tensor sensing and tensor completion models. Inspired by the superiority of the matrix

nuclear norm in low-rank matrix recovery, we will focus on using tensor nuclear norm to regularize the

inverse problem of tensor recovery. Unlike the traditional ways of using approximating values of the tensor

nuclear norm due to the NP-hardness of computing the tensor nuclear norm, we use the Burer-Monteiro

optimization form of the tensor nuclear norm, and we show this form is tight for any randomly generated

tensors. Furthermore, we provide an alternating minimization algorithm to solve the tensor nuclear norm

regularized problem, as well as the rigorous mathematical analysis of its global convergence.

Chapter 12 Principal Component Analysis (PCA) is one of the most important methods to handle high dimensional

data. However, most of the studies on PCA aim to minimize the loss after projection, which usually measure

the Euclidean distance, though in some fields, angle distance is known to be more important and critical

for analysis. In this chapter, we propose a method by adding constraints on factors to unify the Euclidean

distance and angle distance. However, due to the nonconvexity of the objective and constraints, the optimized

solution is not easy to obtain. We propose an alternating linearized minimization method to solve it with

provable convergence rate and guarantee.
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CHAPTER 2

APPROXIMATE SUPPORT RECOVERY OF ATOMIC LINE SPECTRAL ESTIMATION: A TALE OF

RESOLUTION AND PRECISION

This work1 investigates the parameter estimation performance of super-resolution line spectral estimation using

atomic norm minimization. The focus is on analyzing the algorithm’s accuracy of inferring the frequencies and com-

plex magnitudes from noisy observations. When the Signal-to-Noise Ratio is reasonably high and the true frequencies

are separated byO( 1
n ), the atomic norm estimator is shown to localize the correct number of frequencies, each within

a neighborhood of size O(
√

log n/n3σ) of one of the true frequencies. Here n is half the number of temporal samples

and σ2 is the Gaussian noise variance. The analysis is based on a primal-dual witness construction procedure. The

obtained error bound matches the Cramér-Rao lower bound up to a logarithmic factor. The relationship between reso-

lution (separation of frequencies) and precision or accuracy of the estimator is highlighted. Our analysis also reveals

that the atomic norm minimization can be viewed as a convex way to solve a `1-norm regularized, nonlinear and

nonconvex least-squares problem to global optimality.

2.1 Introduction

Line spectral estimation, which aims at approximately inferring the frequency and coefficient parameters from a

superposition of complex sinusoids embedded in white noise, is one of the fundamental problems in statistical signal

processing. When the temporal and frequency domains are exchanged, this classical problem was reinterpreted as the

problem of mathematical super-resolution recently [13–15]. This line of work promotes the use of a convex sparse

regularizer to solve inverse problems involving spectrally sparse signals, distinguishing them from classical methods

based on root finding and singular value decompositions (e.g., Prony’s method, MUSIC, ESPIRIT, Matrix Pencil,

etc.). The convex regularizer, a particular instance of the general atomic norms, has been shown to achieve optimal

performance in signal completion [16], denoising [17], and outlier removal [18, 19]. For these signal processing

tasks, either one can recover the spectral signal exactly (and hence extract the true frequencies precisely), or the error

metric is defined using the signal instead of the frequency parameters. The most relevant question of the accuracy of

noisy frequency estimation has been elusive. This work investigates the parameter estimation performance of super-

resolution line spectral estimation using atomic norm minimization. More precisely, given noisy observations

y(t) = x?(t) + w(t), t = −n, . . . , n (2.1)

of a spectrally sparse signal

1This is a joint work with Gongguo Tang [2].
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x?(t) =

k∑
`=1

c?` exp(i2πf?` t), t = −n, . . . , n (2.2)

with unknown frequencies T ? = {f?` }
k
`=1 and complex amplitudes {c?`}

k
`=1, we will derive conditions under which

the atomic norm formulation will return the correct number of frequencies, and establish bounds on the frequency and

coefficient estimation errors. An informal version of our main result is given in the following theorem, while a formal

statement is presented in Theorem 2.2.1.

Theorem 2.1.1 (Informal). Suppose we observe 2n + 1 noisy consecutive samples y(t) = x?(t) + w(t) of the sig-

nal (2.2) with w(t) being i.i.d. complex Gaussian variables of mean zero and variance σ2. If the unknown frequencies

are well-separated, the Signal-to-Noise Ratio (SNR) is large, and the dynamic range of the coefficients is small, then

with probability at least 1 − 1
n2 , solving an atomic norm regularized least-squares problem with a large enough reg-

ularization parameter will return exactly k estimated frequencies {fglob
` }k`=1 and coefficients {cglob

` }k`=1 that, when

properly ordered, satisfy

max
1≤`≤k

|c?` ||fglob
` − f?` | = O(

√
log n

n3/2
σ), (2.3)

max
1≤`≤k

|cglob
` − c?` | = O(

√
log n

n
σ). (2.4)

We would like to first point out that this frequency estimator {fglob
` } given by the atomic norm regularized least-

squares is asymptotically unbiased. The `1 norm minimization (atomic norm minimization is an extension of it) is

usually considered biased because it pushes down the solution using the `1 norm. In the context of atomic norm

minimization, the estimator for the coefficient vector is indeed biased for the same reason. However, the frequency

estimator, which is of more interest, might still be unbiased since it is not pushed down by the atomic norm formulation.

Indeed, our result shows that the frequency estimator is at least asymptotically unbiased.

Corollary 2.1.1. Under the same setup as in Theorem 2.1.1, with probability at least 1− 1
n2 , the frequency estimator

obtained by the atomic norm regularized minimization is asymptotic unbiased.

Proof. To see this, we note that for any i,

E[fglob
i ]− f?i ≤ E{|fglob

i − f?i |} =

∫
Ω

|fglob
i (ω)− f?i (ω)|dω +

∫
Ωc
|fglob
i (ω)− f?i (ω)|dω

≤ O(

√
log n

c?minn
3/2

σ) +
2

n2

= o(
1

n
).
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Here Ω is the high-probability sample space where our main result (2.3) holds, Ωc is its complement space, and c?min is

defined as the smallest magnitude of {c?`}. The second inequality follows from Eq. (2.3),
∫

Ω
dω ≤ 1,

∫
Ωc

dω ≤ 1
n2 ,

and the fact that any frequency is defined in T = [0, 1]. Therefore, the frequency estimator is at least asymptotically

unbiased.

By the asymptotic unbiasedness of our atomic frequency estimator and considering that the Cramér-Rao bound

(CRB) [20] can be viewed as the best squared error bound for any unbiased frequency estimators, we now compare

our main result (2.3) (after taking the square) with the CRB, as well as the two most famous classical line spectral

estimation methods, i.e., the MUSIC and Maximum Likelihood Estimation (MLE), in Table 2.1. We conclude that

Table 2.1: Comparison with the classical line spectral estimation methods.

Method Squared-Error Bound

CRB [20] O( σ2

c?2
minn

3 )

MUSIC [20] O( σ2

Tc?2
minn

3 + σ4

Tc?4
minn

4 )

MLE [20] O( σ2

Tc?2
minn

3 + σ4

Tc?4
minn

4 )

This work (2.3) O(σ
2 logn
c?2
minn

3 )

the squared error bound of the atomic frequency estimator matches the CRB up to a logarithmic factor. We also note

that the MUSIC and the MLE only have asymptotic mean squared error in the sense that the number of snapshots T

has to be infinitely large [20]. We emphasize that our results are non-asymptotic, which hold for finite-length, single-

snapshot signals (i.e., T = 1), while classical methods such as MUSIC and MLE are not efficient (i.e., approaching

CRB) even with an infinite number of snapshots, as long as the signal length n is finite.

2.2 Signal Model and Atomic Norm Regularization

This work considers the spectral estimation problem: given noisy temporal samples, how well can we estimate

the locations and determine the magnitudes of spectral lines? The signal of interest x?(t) as expressed in (2.2) is

composed of only a small number of spectral spikes located in a normalized interval T = [0, 1]. We abuse notation

and call T ? = {f?` }k`=1 the support of x?. The number of frequencies, k, is referred to as the model order. The goal is

to approximately localize these parameters from a small number 2n + 1 of equispaced noisy samples given in (2.1).

For technical simplicity, we assume n = 2M is an even number. The noise components w(t) are i.i.d. centrally

symmetric complex Gaussian variables with variance σ2. To simplify notation, we stack the temporal samples into

vectors and write the observation model as

y = x? + w, (2.5)

where x? := [x?(−n), . . . , x?(n)]T , y := [y(−n), . . . , y(n)]T and w? := [w?(−n), . . . , w?(n)]T .
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To estimate the frequency vector f? := [f?1 , . . . , f
?
k ]T and the complex coefficient vector c? := [c?1, . . . , c

?
k]T , we

assume k is small and treat x? as a sparse combination of atoms a(f) := [ei2π(−n)f , . . . , ei2πnf ]T parameterized by

frequency f ∈ T, that is,

x? =

k∑
`=1

c?`a(f?` ). (2.6)

To exploit the structure of x? encoded in the set of atoms A := {a(f), f ∈ T}, we follow [16, 21] and define the

associated atomic norm as

‖x‖A = inf

{∑
`

|c`| : x =
∑
`

c`a(f`),∀f` ∈ T, c` ∈ C
}
. (2.7)

The dual norm of the atomic norm, which is useful both algorithmically and theoretically, is defined for any vector z

as ‖z‖∗A = supf∈T |a(f)Hz|, where H denotes the Hermitian (conjugate transpose) operation. To solve atomic norm

minimizations numerically, the authors of [17, 22] (see also [13]) first proposed to reformulate the atomic norm (2.7)

as an equivalent semidefinite program. Other numerical schemes are studied in [23–26].

Given the noisy observation model (2.5), it is natural to denoise x? by solving the atomic norm regularized mini-

mization program [17, 22]:

xglob = argmin
x

1

2
‖y − x‖2Z + λ‖x‖A. (2.8)

For technical reasons, we used a weighted `2 norm, ‖z‖Z :=
√

zHZz, to measure data fidelity. Here Z = diag( gM (`)
M ) ∈

R(4M+1)×(4M+1) with gM (`), ` = −2M, . . . , 2M defined in [16] as the discrete convolution of two triangular func-

tions. We remark that, in practice, both a standard `2 norm ‖ · ‖2 and a weighted `2 norm ‖ · ‖Z achieve similarly

satisfying performance. In this work, we use ‖ · ‖Z with Z = diag( gM (`)
M ) mainly for the purpose of introducing the

Jackson kernel K(f2 − f1) := a(f1)HZa(f2) so that we can exploit the beautiful decaying properties of the Jackson

kernel (see Section A.3 for more details). When we exchange the frequency and temporal domains, this weighting

scheme trusts low-frequency samples more than high-frequency ones, even though the noise levels are the same. The

second term is a regularization term that penalizes solutions with large atomic norms, which typically correspond

to spectrally dense signals. The regularization parameter λ, whose value will be given later, controls the trade-off

between data fidelity and sparsity.

Once xglob was solved, we can extract estimates of the frequencies either from the primal optimal solution xglob

or from the corresponding dual optimal solution. Our goal is to characterize conditions such that i) we obtain exactly k

estimated frequencies; ii) there is a natural correspondence between the estimated frequencies and the true frequencies,

whose distances can be explicitly controlled; iii) the distances between the corresponding coefficients can also be
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explicitly bounded.

To formally present the main theorem, we need to define a few more quantities. It is known that there is a resolution

limit of the atomic norm approach in resolving the atoms, or the frequency parameter f?, even from the noiseless

data [27]. Therefore, to recover the support of the line spectral signal x?, we need to impose certain separation

condition on the distances of the true frequencies. For this purpose, we define ∆(T ) = min{f`,fm}⊂T :f` 6=fm |f`−fm|,

where | · | is understood as the wrap-around distance in T. For example, |0.1− 0.9| = 0.2 under this distance. We also

define 1) the dynamic range of the coefficients B? :=
c?max

c?min
, where c?max and c?min denote the maximal and minimal

modules of {c?`}k`=1; 2) the normalized noise level γ0 := σ
√

logn
n ; 3) the Noise-to-Signal Ratio γ := γ0/c

?
min and 4)

the regularization parameter λ = 0.646X?γ0 for some positive constant X? to be determined later. Now we are ready

to present our main result.

Theorem 2.2.1. Suppose we observe 2n+ 1 noisy consecutive samples y` = x?` +w` of the signal (2.2) or (2.6) with

w` being i.i.d. complex Gaussian valuables of mean zero and variance σ2. We assume n ≥ 130 and

∆(T ?) ≥ 2.5009/n, (2.9)

X?B?γ ≤ 10−3 and B?/X? ≤ 10−4. (2.10)

Then with probability at least 1− 1
n2 , the optimal solution of (2.8) has a decomposition xglob =

∑k
`=1 c

glob
` a(fglob

` )

involving exactly k atoms, whose frequencies and coefficients, when properly ordered, satisfy

max
1≤`≤k

|c?` ||fglob
` − f?` | ≤ 0.4(X? + 35.2)γ0/n, (2.11)

max
1≤`≤k

|cglob
` − c?` | ≤ (X? + 35.2)γ0. (2.12)

Several remarks on the conditions follow. Because of the weighting scheme we use in (2.8), our choice of λ differs

from the standard one in [22] by a factor 1/n and ensures that the weighted dual atomic norm of the noise, ‖Zw‖∗A,

is less than λ with high probability. For technical reasons, our separation condition (2.9) is stronger compared with

the previous works [13, 14, 17, 28–31]2. The conditions (2.10) wrap several requirements on the problem parameters

for the conclusions to hold: the dynamic range of the coefficients B?, the Noise-to-Signal Ratio γ, and the normalized

noise γ0 should all be small while the regularization parameter λ should be large enough as measured by X?.

It is worth noting that (2.10) implicitly imposes a strong assumption on the Noise-to-Signal Ratio

2Note that our separation condition is a bit larger when comparing to these recent works in super-resolution, while there are two other things to
be considered. One thing is that most of these works require strong assumptions on the noise in their models (e.g., the noise is bounded), while
our work removes such assumptions and hence can deal with the more general Gaussian noise. To make this possible, we have to develop a
new proof strategy involving the two-step construction process of the dual certificate. Another thing is that although some prior works achieve
small resolution limit (even comparable to the Relay diffraction limit [31]), they study a different problem. For example, [31] considers the signal
denoising problem, that is, stable recovery of the whole signal x rather than the parameter estimation (i.e., the source location recovery). While
the focus of our work is the accuracy of parameter estimation in Gaussian noise, which might be more significant for practical applications such as
Radar and single-molecule microscopy, where precisely locating each target/point source is extremely important. Since the parameter estimation
problem is much harder than the denoising problem, we have to relax a bit the separation condition for ease of analysis.
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γ ≤ 10−7/B?2

implying a sufficiently large n (but still finite). For high-level ideas, there might be two reasons to account for this

phenomenon. One is that the problem of line spectral estimation is known to be sensitive to noise. Another is inherently

from our proof regime, which makes the constants in Eq. (2.10) a bit conservative. More precisely, the ultimate

objective is to show the boundedness and interpolation property of the target polynomial (see Proposition 2.4.1 for

more details). Our method is using an “existing" dual polynomial in [13] satisfying this property and showing the

distance between these two polynomials is sufficiently small. So, we require the noise level to be small, since we will

see in Lemma 2.4.2 that the noise level will influence this distance.

One more remark is that the quantity 35.2γ0 in our results is related to the expected dual atomic norm of the

weighted Gaussian noise E‖Zw‖∗A. By noting the definition λ = 0.646X?γ0, we can rewrite the error bounds (2.11)

and (2.12) in a more concise way:

max
1≤`≤k

|c?` ||fglob
` − f?` | = O (λ+ E‖Zw‖∗A) /n, (2.13)

max
1≤`≤k

|cglob
` − c?` | = O (λ+ E‖Zw‖∗A) . (2.14)

Eq. (2.13) and (2.14) imply that the error bounds are determined jointly by the regularization parameter λ and the ex-

pected dual atomic norm of the weighted Gaussian noise E‖Zw‖∗A. Since the regularization parameter λ has the same

order as E‖Zw‖A, the estimated frequencies and coefficients are guaranteed to have errors of orders O (E‖Zw‖∗A/n)

and O (E‖Zw‖∗A), respectively. Remarkably, using atomic dual norm strategy allows us to deal with the Gaussian

noise, while most prior works [14, 28–30] in approximate support recovery have to build their theoretical foundations

on the bounded-noise assumption, which dramatically narrow down the applications.

Now we summarize the above comparisons of our result with those state-of-the-art modern support recovery meth-

ods in the Table 2.2.

Finally, our proof for Theorem 2.2.1 also reveals the connection between the atomic norm minimization (2.8) and

the following `1-norm regularized, nonlinear and nonconvex least-squares program:

minimize
f ,c

1

2
‖A(f)c− y‖2Z + λ‖c‖1, (2.15)

where f := [f1, . . . , fk]T , c := [c1, . . . , ck]T , and A(f) := [a(f1), . . . ,a(fk)]. The program (2.15) is highly noncon-

vex, with numerous local minima and saddle points, so solving it to global optimality is very difficult. Our analysis

shows that, under the conditions of Theorem 2.2.1, the convex program (2.8) shares the same global optimum as the

nonconvex program (2.15), implying that the atomic norm minimization provides a new convex way to solve the non-

convex program to global optimality. We summarize the result in the following corollary, with the formal proof listed
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Table 2.2: Comparison with other modern line spectral estimation/super-resolution methods. The Positive Measure
column refers to whether the result requires the ground-truth measure to be positive. RRC is short for Rayleigh
Regularity condition [31, Definition 1.1], which generalizes the standard separation condition to clustered support.
NDSC stands for the non-degenerate source condition [29, Definition 5]. In the Support Recovery column, None
indicates that the work considers signal recovery instead of support recovery; Existence means that the work shows the
existence of at least one recovered parameter around each ground-true parameter, but fails to theoretically eliminate
the possibility of spurious recovered parameters; Uniqueness shows that around each true parameter there is one and
only one recovered parameter.

Paper Bounded
Noise

Positive
Measure

Support
Condition SNR

Support
Recovery

[13, Theorem 1.5] Yes No ∆ ≥ 2
n Finite None

[14, Theorem 1.2] No No ∆ ≥ 2
n Finite None

[31, Theorem 1] No Yes RRC Finite None
[28, Theorem 1.2] Yes No ∆ ≥ 2

n Finite Exist
[17, Theorem 2] No No ∆ ≥ 2

n Finite Exist
[29, Theorem 2] Yes No NDSC Infinite Unique
[30, Theorem 2] Yes Yes NDSC Infinite Unique
Theorem 2.2.1 No No ∆ ≥ 2.5009

n Finite Unique

in Appendix A.10.

Corollary 2.2.1. Under the same setup as in Theorem 2.2.1, with probability at least 1− 1
n2 , the frequencies and coef-

ficients estimated by the atomic norm regularized minimization (2.8) constitute a global optimum of the `1-regularized

nonlinear least-squares program (2.15).

2.3 Prior Art and Inspirations

Classical line spectral estimation techniques can be broadly classified into two camps: non-parametric and para-

metric methods. Non-parametric methods are mainly based on Fourier analysis [32, 33]. Such approaches have low

computational complexities and no need for signal models. These methods have limited frequency resolution due to

spectral leakage. Parametric methods, however, can achieve high resolution for parameter estimation. For example,

Prony’s method based on polynomial root-finding [34, 35] can resolve arbitrarily close frequencies in the noiseless

setting. Yet this method is highly sensitive to noise and would fail even in the small noise regime. As stable ver-

sions of Prony’s method, the subspace methods recast the noise-sensitive polynomial root-finding problem into more

robust matrix eigenvalue problems. For instance, the matrix pencil method [36] arranges the observations into a ma-

trix pencil whose generalized eigenvalues and eigenvectors contain information about the frequencies; the MUSIC

algorithm [37] and the ESPRIT method [38] decompose the autocorrelation matrix into noise-subspace and signal

subspace using eigenvalue decomposition and extract frequency estimates from the signal subspace. Both algorithms

were shown to achieve CRB asymptotically [20, 39] when the signal length 2n + 1 and the number of snapshots ap-

proach infinite. However, these classical methods are not efficient (i.e., approaching the CRB) even with an infinite

number of snapshots, as long as the signal length is finite. Also, all classical parametric methods require knowledge
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of the model order.

Modern convex optimization based methods formulate line spectral estimation as a linear inverse problem and

exploit signal sparsity using `1-type regularizations. Such methods are modular, robust, and do not require knowledge

of model orders. To apply the `1 regularization techniques, the continuous frequency domain is divided into a grid

of discrete frequencies. When the true frequencies fall onto the discrete Fourier grid, work in compressive sensing

guarantees optimal recovery performance [40–42]. When the frequencies do not fall onto the Fourier grid, however,

the performance of `1 minimization degrades significantly due to basis mismatch [43]. The basis mismatch issue can

be mitigated by employing finer grids [44, 45], which unfortunately often leads to numerical instability.

Atomic norm regularization avoids basis mismatch by enforcing sparsity directly in the continuous frequency do-

main. Given a set of atoms, possibly indexed by continuous parameters, one constructs an atomic norm in a principled

way as a generalization of the `1-norm to promote signals with parsimonious representations. Using the notion of

descent cones, the authors of [46] argued that the atomic norm is the best possible convex proxy for recovering sparse

models. For the special line spectral estimation problem, where the atomic norm is induced by the set of parameter-

ized complex exponentials, atomic regularizations have been shown to achieve optimal performance for several signal

processing tasks. For instance, atomic norm minimization recovers a spectrally sparse signal from a minimal number

of random signal samples [16], identifies and removes a maximal number of outliers [18, 19], and performs denoising

with an error approaching the minimax rate [17]. When multiple measurement vectors are available, a method of ex-

ploiting the joint sparsity pattern of different signals to further improve estimation accuracy is proposed in [47–49]. All

these works draw inspirations from the dual polynomial construction strategy developed in the pioneer work [13]. This

work adds to this line of work by showing that the atomic framework produces optimal noisy frequency estimators.

Several closely related works also studied conditions for approximate support recovery from noisy observations.

The work [28] developed error bounds on spectral support recovery for bounded noise. In [17], the authors derived

suboptimal bounds for the Gaussian noise model. In [50], the authors extended this line of research to general mea-

surement schemes beyond Fourier samples using the Beurling-LASSO (B-LASSO) program. The B-LASSO program,

which minimizes a least-squares term plus the measure total variation norm, is mathematically equivalent to the atomic

norm formulation. All these works [17, 28, 50] cannot guarantee the recovery of exactly one frequency in each neigh-

borhood of the true frequencies. In this regard, the work by Duval and Peyré [29] showed that as long as the SNR

is large enough and the sources are well-separated and satisfy a non-degenerate source condition, then total variation

norm regularization can recover the correct number of the Diracs with both the coefficient error and the frequency

error scale as the `2 norm of the noise. Compared with their work, our result uses the (weighted) dual atomic norm

of the noise in place of the `2 norm, which differ by order of
√
n, allowing our bound to match the CRB up to a

logarithmic factor. In addition, their work relies on a non-degenerate source condition [29, Definition 5] that is not

proven to hold in the spectral super-resolution setting. In this sense, the present work is the first to rigorously establish
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that in a high SNR regime this approach yields the right number of frequencies. Further our proof technique based on

the primal-dual witness construction is also very different from that employed in [29] based on a perturbation analysis

of the dual certificate in the noise-free case. In particular, our analysis reveals the connection between the convex

approach and a natural nonlinear least-squares method for spectral estimation. More recently, [30] studies the support

recovery for positive measures. For a comparison, there are several major differences worth remarking here: 1) in [30]

more emphasis is put on the asymptotic analysis, while the presented work instead deals with non-asymptotic settings

with finite signal length; 2) [30] requires the underlying noise to have finite `2 norm, which severely restricts the scope

of noises satisfying such a property, excluding the well-known and most common Gaussian noise, while the presented

results allow the underlying noise to be Gaussian; 3) in addition to requiring a sufficiently large signal-to-noise ra-

tio, the main result in [30] also relies on a non-degenerate source condition that is not proven to hold in the spectral

super-resolution setting.

2.4 Proof by Primal-Dual Witness Construction

Duality plays an important role in understanding atomic norm regularized line spectral estimation. Standard La-

grangian analysis shows that the dual problem of (2.8) has the following form:

qglob = argmax
q

1

2
‖y‖2Z −

1

2
‖y − λq‖2Z

subject to ‖Zq‖∗A ≤ 1. (2.16)

The complex trigonometric polynomial Q(f) := a(f)HZq corresponding to a dual feasible solution q is called a

dual polynomial. The dual polynomial associated with the unique dual optimal solution Qglob(f) := a(f)HZqglob

certifies the optimality of the unique primal optimal solution xglob, and vice versa. The uniqueness of primal and dual

optimal solutions is a consequence of the strong convexity of the objective functions of (2.8) and (2.16), respectively.

In particular, the primal-dual optimal solutions are related by qglob = (y − xglob)/λ. We summarize these in the

following proposition, with the proof given in Appendix A.9:

Proposition 2.4.1. Let the decomposition x̂ =
∑k̂
`=1 ĉ`a(f̂`) with distinct frequencies T̂ = {f̂`} ⊂ T and nonzero

coefficients {ĉ`} and set q̂ = (y − x̂)/λ. Suppose the corresponding dual polynomial Q̂(f) = a(f)HZq̂ satisfies the

following Bounded Interpolation Property (BIP):

Q̂(f̂`) = sign(ĉ`), ` = 1, . . . , k̂ (Interpolation);

|Q̂(f)| < 1,∀f /∈ T̂ (Boundedness);

then x̂ and q̂ are the unique primal-dual optimal solutions to (2.8) and (2.16), that is, x̂ = xglob and q̂ = qglob. Here

the operation sign(c) := c/|c| for a nonzero complex number and applies entry-wise to a vector.
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Proposition 2.4.1 gives a way to extract the frequencies from the dual optimal solution – one can simply identify

the frequencies where the dual polynomial corresponding to the dual optimal solution achieves magnitude 1. The

uniqueness of the dual solution for (2.8) makes the construction of a dual certificate much harder compared with

the line spectral signal completion problem [16] and demixing problem [18, 19]. For the latter two problems, while

the primal optimal solution is unique, the dual optimal solutions are non-unique. One usually chooses one dual

solution that is easier to analyze (e.g., the one with minimal energy). For the support recovery problem, we need to

simultaneously construct the primal and dual solutions, which witness the optimality of each other. In the compressive

sensing literature, this construction process is called the primal-dual witness construction [51]. In sparse recovery

problems, a candidate primal solution is relatively easy to find, since when the noise is relatively small, the support of

the recovered signal would not change. So one only needs to solve a LASSO problem restricted to the true support

to determine the candidate coefficients, as was done in [51]. For the optimization (2.8), due to the continuous nature

of the atoms, even a bit of noise would drive the support away from the true one. So to construct a candidate primal

solution (hence a candidate dual solution), we need to simultaneously seek for the candidate support {f̂`} and the

candidate coefficients {ĉ`}.

2.4.1 Proof Outline

We use the `1-regularized, nonlinear and nonconvex program (2.15), which we copy below, to find plausible

candidates for {f̂`} and {ĉ`}:

minimize
f ,c

1

2
‖A(f)c− y‖2Z + λ‖c‖1,

where f = [f1, . . . , fk]T , c = [c1, . . . , ck]T and A(f) = [a(f1), . . . ,a(fk)]. Note that we have effectively fixed

the number of estimated frequencies k̂ in Proposition 2.4.1 to be k. But unlike in compressive sensing we cannot fix

f = f? to solve for c only as was done in [51]. The program (2.15) is highly nonconvex, with numerous local minima,

local maxima, and saddle points. So solving it to global optimality is hard even in theory. We are primarily interested

in its local minimum ({f̂`}, {ĉ`}) in a neighborhood of the true frequencies and coefficients (f?, c?). To find this local

minimum, we will run gradient descent to (2.15) using (f?, c?) as initialization. We will argue that under conditions

presented in Theorem 2.2.1, each f̂` and ĉ` stay close to f?` and c?` as given in (2.11) and (2.12), respectively. The

major tool we use is the contraction mapping theorem. As shown in Corollary 2.2.1, the local minimum found in this

manner is actually a global optimum of (2.15).

The rest of arguments consist of showing that x̂ =
∑k
`=1 ĉ`a(f̂`) with {f̂`} and {ĉ`} constructed as described

above satisfies the Bounded Interpolation Property of Proposition 2.4.1. The Interpolation property is automatically

satisfied due to the construction process and the main challenge is to show the Boundedness property |Q̂(f)| < 1,∀f /∈

T̂ . The harder part is showing the Boundedness property. For ease of interpretation we first collect the definitions of
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the most important variables that will be used throughout the proof, and then introduce the main logic and the two-step

construction process of the proof.

Table 2.3: Notations.

Symbol Definition

(fλ, cλ) The local minima of minimizef ,c
1
2‖A(f)c− x?‖2Z + λ‖c‖1 that is closest to (f?, c?)

(f̂ , ĉ) The local minima of minimizef ,c
1
2‖A(f)c− y‖2Z + λ‖c‖1 that is closest to (fλ, cλ)

xλ The primal solution defined by the local minima (fλ, cλ) via xλ :=
∑k
`=1 c

λ
` a(fλ` )

x̂ The primal solution defined by the local minima (f̂ , ĉ) via x̂ :=
∑k
`=1 ĉ`a(f̂`)

qλ The dual solution corresponding to the primal solution xλ, that is, qλ := (x? − xλ)/λ
q̂ The dual solution corresponding to the primal solution x̂, that is, q̂ := (y − x̂)/λ
q? q? := lim

λ→0
qλ, satisfying the Boundedness and Interpolation property for (f?, c?)

Main Logic: Firstly, identifying that Q?(f) := a(f)HZq? satisfies the Boundedness property with some similar

arguments used in [13]. Secondly, establishing that q̂ and q? are sufficiently close (so are Q̂(f) := a(f)HZq̂ and

Q?(f) = a(f)HZq?). Therefore Q̂(f) also satisfies the Boundedness property. It turns out that directly showing the

closeness of q̂ and q? is difficult. That is why we introduce the intermediate dual variable qλ and use the two-step

construction process, i.e., first showing q? is close to qλ and then showing qλ is close to q̂.

Two-step Construction Process: We will first find a local minimum (fλ, cλ) of 1
2‖A(f)c − x?‖2Z + λ‖c‖1 around

(f?, c?), where one should note we replaced the noisy signal y in (2.15) by the noise-free signal x?. We will then

run gradient descent to (2.15) using (fλ, cλ) as initialization. The intermediate quantities (fλ, cλ) will serve as a

bridge between (f?, c?) and (f̂ , ĉ) to make the proof easier. The key is noting that Q̂(f) = a(f)HZq̂ is close to

Qλ(f) = a(f)HZqλ, where qλ = (x?−xλ)/λ and xλ =
∑k
`=1 c

λ
` a(fλ` ), andQλ(f) is close toQ?(f) = a(f)HZq?.

Here q? = limλ→0 qλ is a dual certificate used to certify the atomic decomposition of x?. The former claim can be

showed using the closeness of (fλ, cλ) and (f̂ , ĉ). The later claim, however, must take advantage of the fact that

q? = limλ→0 qλ = − d
dλxλ|λ=0 and apply the triangle inequality to

Qλ(f)−Q?(f) =
1

λ

∫ λ

0

a(f)HZ

(
d

dt
x0 − d

dt
xt
)

dt,

where d
dtx

0 = limλ→0
d
dtx

λ := d
dtx

?. The closeness of (fλ, cλ) and (f?, c?) ensures that the derivatives in the

integrand are also close. Finally, we exploit the properties of Q?(f) which are similar to those established in [13] to

complete the proof.

2.4.2 A Formal Proof: Applying the Contraction Mapping Theorem

Theorem 2.4.1 (Contraction Mapping Theorem). Given a Banach space B equipped with a norm ‖ · ‖, a bounded

closed set N ⊂ B and a map Θ : N → B, if Θ(N ) ⊂ N (the non-escaping property) and there exists ρ ∈ (0, 1) such
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that ‖Θ(v)−Θ(w)‖ ≤ ρ‖v −w‖ for each v,w ∈ N (the contraction property), then there exists a unique v? ∈ N

such that Θ(v?) = v?.

This classical result helps to find a candidate solution for the construction of a valid dual certificate. To see this

we first choose the bounded closed set N to be a small region around the target joint frequency-coefficient vector

θ? := (f?,u?,v?) (where u? and v? denote respectively the real and imaginary parts of c?). Let the fixed point map

Θ be the gradient map of (2.15). The key is to determine the size of N in which the non-escaping and the contraction

properties of the fixed point map Θ hold. Then, the contraction mapping theorem implies that iteratively performing

the gradient map Θ from any initial point in N would produce a candidate solution that still lies in N (by the non-

escaping property) and hence is close to θ? (since N is small). Finally relating the fixed point equation to the BIP

property shows that such a candidate solution generates a valid dual certificate.

In order to apply the contraction mapping theorem to our problem, we choose the norm in Theorem 2.4.1 to be a

weighted `∞ norm ‖ · ‖∞̂ given by ‖(f ,u,v)‖∞̂ := ‖(Sf ,u,v)‖∞ with S :=
√
|K ′′(0)|diag(|c?|) and K(·) is the

Jackson kernel (refer to Appendix A.1 for an introduction). This weighted `∞ norm is used as a metric function to

define the neighborhood N around θ?. The choice of the weighting matrix S ensures that the larger a coefficient c?i

is, the smaller the neighborhood in the direction of the frequency fi. In addition, since
√
|K ′′(0)| is of order O(n),

the frequency neighborhood is smaller than the coefficient neighborhood by the same order. Next, we choose the fixed

point map Θ to be a weighted gradient map of (2.15)

Θ(θ) := θ −W?∇
(

1

2
‖A(f)c− y‖2Z + λ‖c‖1

)
, (2.17)

where the gradient∇ is taken with respect to the parameter θ = (f ,u,v) and the weighting matrix

W? =

S−2

Ik
Ik

 . (2.18)

Scaling the gradient vector by W? ensures that the Jacobian matrix of the second term in (2.17) is close to the identity

matrix, which makes it easier to show the contraction property of Θ.

2.4.2.1 Two-step Construction Process

As discussed in Section 2.4.1, we divide the construction process into two steps. We first analyze the fixed point

map Θλ obtained by replacing the noisy observation vector y in (2.17) by the noise-free signal x?. We determine a

region around θ?, sayN ?, such that both the contraction and non-escaping properties of Θλ are satisfied inN ?. Then

by the contraction mapping theorem, iterating the gradient map Θλ in N ? initialized by θ? generates a unique fixed

point θλ := (fλ,uλ,vλ). These results are summarized in the following lemma:

17



Lemma 2.4.1 (The First Fixed Point Map). Let the first fixed point map be the weighted gradient map of the nonconvex

program (2.15) with the noisy signal y replaced by the noise-free signal x?:

Θλ(θ) := θ −W?∇
(

1

2
‖A(f)c− x?‖2Z + λ‖c‖1

)
, (2.19)

where the gradient ∇ is taken with respect to the parameter θ = (f ,u,v). Let the regularization parameter λ vary

in [0, 0.646X?γ0]. Define a neighborhood N ? :=
{
θ : ‖θ − θ?‖∞̂ ≤ X?γ0/

√
2
}

. Suppose that the separation

condition (2.9) and the SNR condition (2.10) hold. Then the map Θλ has a unique fixed point θλ ∈ N ? satisfying

Θλ(θλ) = θλ. Furthermore, according to the implicit function theorem, θλ is a continuously differentiable function

of λ whose derivative is given by

d

dλ
θλ = −(∇2Gλ(θλ))−1 ∂

∂λ
∇Gλ(θλ). (2.20)

Finally, when λ turns to zero, the fixed point θλ converges to θ?, i.e., limλ→0 θ
λ = θ?, and therefore limλ→0 xλ = x?.

Proof of Lemma 2.4.1. See Appendix A.4.

We now turn to the gradient map Θ in (2.17) defined in a region N λ around θλ. Similar to the first step, we show

the contraction and non-escaping properties of Θ in N λ, which imply that iterating the gradient map Θ initialized by

θλ produces a unique fixed point θ̂ := (f̂ , û, v̂).

Lemma 2.4.2 (The Second Fixed Point Map). Let the second fixed point map be the weighted gradient map of the

nonconvex program (2.15):

Θ(θ) = θ −W?∇
(

1

2
‖A(f)c− y‖2Z + λ‖c‖1

)
(2.21)

and the region N λ :=
{
θ : ‖θ − θλ‖∞̂ ≤ 35.2γ0/

√
2
}

. Set the regularization parameter λ as 0.646X?γ0 in (2.21).

Suppose that the separation condition (2.9) and the SNR condition (2.10) hold. Then with probability at least 1− 1
n2 ,

Θ(θ) has a unique fixed point θ̂ living in N λ.

Proof of Lemma 2.4.2. See Appendix A.5.

The radius of the second contraction regionN λ is determined by a high probability bound on the dual atomic norm

of the Gaussian noise and ensures thatN λ is a non-escaping set for Θ(θ). So far, we have identified the neighborhoods

where the two fixed points θλ and θ̂ live in, which is the key to show the validity of the dual certificates later. Figure 2.1

illustrates the main results of Lemma 2.4.1 and Lemma 2.4.2.

Road Map. Define two pre-certificates using the two fixed points as qλ := (x? − xλ)/λ and q̂ := (y − x̂)/λ

with the corresponding pre-dual polynomials denoted by Qλ(f) and Q̂(f). Here xλ =
∑k
`=1 c

λ
` a(fλ` ) and x̂ =
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★

θ★ θλ λθ

Figure 2.1: Use the true parameter vector θ? as an initialization and run the first weighted gradient map (2.19) to
obtain the first fixed point θλ ∈ N ?. Run the second weighted gradient map (2.21) initialized by θλ to get the second
fixed point θ̂ ∈ N λ. The closeness of θ̂ and θ? is determined by the sizes of the two neighborhoods N ? and N λ,
whose precise forms are given in Lemmas 2.4.1 and 2.4.2, respectively.

∑k
`=1 ĉ`a(f̂`). Let q? = limλ→0 qλ. The remaining steps are to:

1. Show that q? is a valid dual certificate that certifies the atomic decomposition of x?, i.e., Q?(f) = a(f)HZq?

satisfies Q?(f?` ) = sign(c?` ), ` = 1, . . . , k and |Q?(f)| < 1,∀f /∈ T ?;

2. Use Lemma 2.4.1 to bound the pointwise distance between Q?(f) and Qλ(f);

3. Use Lemma 2.4.2 to bound the pointwise distance between Qλ(f) and Q̂(f).

2.4.2.2 Showing q? is a Dual Certificate

To show that q? is a dual certificate, it is sufficient to show thatQ?(f) satisfies the Bounded Interpolation Property

of Proposition 2.4.1. The Interpolation property is automatically satisfied due to the construction process, and we

will show the Boundedness property using the arguments of [13]. In particular, fix an arbitrary point f?0 ∈ T ? as the

reference point, and let f?−1 be the first frequency in T ? that lies on the left of f?0 while f?1 be the first frequency in

T ? that lies on the right. Here “left” and “right” are directions on the complex circle T. We remark that the analysis

depends only on the relative locations of {f?` }. Hence, to simplify the arguments, we assume that the reference

point f?0 is at 0 by shifting the frequencies if necessary. Then we divide the region between f?0 = 0 and f?1 /2

into three parts: Near Region N := [0, 0.24/n], Middle Region M := [0.24/n, 0.75/n] and Far Region F :=

[0.75/n, f?1 /2]. Also their symmetric counterparts are defined as−N := [−0.24/n, 0],−M := [−0.75/n,−0.24/n],

and −F := [f?−1/2,−0.75/n]. We first show that the dual polynomial has strictly negative curvature |Q?(f)|′′ < 0

in N = [0, 0.24/n] and |Q?(f)| < 1 in M∪ F = [0.24/n, f?1 /2], implying |Q?(f)| < 1 in N ∪M ∪ F\{f?0 }

by exploiting |Q?(f?0 )| = 1 and |Q?(f?0 )|′ = 0. Then using the same symmetric arguments as in [13], we claim that

|Q?(f)| < 1 in (−N )∪ (−M)∪ (−F)\{f?0 }. Combining these two results with the fact that the reference point f?0 is
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chosen arbitrarily from T ? (and shifted to 0), we establish that the Boundedness property of Q?(f) holds in the entire

T\T ?.

Lemma 2.4.3 (q? is a dual certificate). The dual polynomial Q?(f) satisfies both the Interpolation and Boundedness

properties with respect to the coefficients {c?`} and the frequencies {f?` }. In addition, Q?(f) satisfies first

Q?R(f) ≥ 0.887594, Q?R
′′(f) ≤ −2.24483n2,

|Q?I(f)| ≤ 0.0183836, |Q?′′I (f)| ≤ 0.113197n2,
|Q?′(f)| ≤ 0.821039n, |Q?′′(f)| ≤ 3.40320n2,

and

Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| ≤ −1.316313n2 < 0

for f ∈ N , implying |Q?(f)|′′ < 0 in N , and second,

|Q?(f)| ≤ 0.927615, f ∈M,

|Q?(f)| ≤ 0.734123, f ∈ F .

Here the subscripts R and I denote respectively the real and imaginary parts of Q?(f). Thus q? is a valid dual

certificate to certify the atomic decomposition x? =
∑k
`=1 c

?
`a(f?` ) such that ‖x?‖A =

∑k
`=1 |c?` |.

Proof of Lemma 2.4.3. See Appendix A.6.

Next lemma, with the proof given in Appendix A.7, exploits the closeness of θ? and θλ shown in Lemma 2.4.1 to

bound the pointwise distance between Q?(f) and Qλ(f).

Lemma 2.4.4 (Qλ(f) is close to Q?(f)). Under the settings of Lemma 2.4.1, let Qλ(f) and Q?(f) be the dual

polynomials corresponding to θλ and θ?, respectively. Then the distances between Qλ(f) and Q?(f) and their

various derivatives are uniformly bounded:

|Q?(f)−Qλ(f)| ≤ 28.7343X?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 39.3557X?B?γ, f ∈M,

|Q?′(f)−Qλ′(f)| ≤ 44.4648nX?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 66.1596X?B?γ, f ∈ F ,
|Q?′′(f)−Qλ′′(f)| ≤ 140.808n2X?B?γ, f ∈ N .

In the following, we will control the pointwise distance between Qλ(f) and Q̂(f) by taking advantage of the

closeness of θλ and θ̂ given by Lemma 2.4.2. The key is to observe that

q̂− qλ =
(y − x̂)− (x? − xλ)

λ
=

w

λ
+

xλ − x̂

λ

implying
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|Qλ(f)− Q̂(f)| ≤ |a(f)HZw|
λ

+
|a(f)HZ(xλ − x̂)|

λ
. (2.22)

This separates the distance between Qλ(f) and Q̂(f) into two parts: one is |a(f)HZw/λ| determined by the dual

atomic norm of the Gaussian noise w, which is upperbounded in Appendix A.2; the other is |a(f)HZ(xλ − x̂)/λ|

that can be upperbounded by the dual atomic norm of xλ − x̂. We summarize the final result in Lemma 2.4.5, where

the proof is given in Appendix A.8.

Lemma 2.4.5 (Q̂(f) is close to Qλ(f)). Under the settings of Lemma 2.4.2, let Q̂ and Qλ be the dual polynomials

corresponding to θ̂ and θλ, respectively. Then the pointwise distances between Qλ(f) and Q̂(f) and their derivatives

are bounded:

|Q̂(f)−Qλ(f)| ≤ 82.5975B?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 114.323B?/X?, f ∈M,

|Q̂(f)′ −Qλ′(f)| ≤ 180.283nB?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 162.903B?/X?, f ∈ F ,
|Q̂(f)′′ −Qλ′′(f)| ≤ 758.404n2B?/X?, f ∈ N .

Proof of Theorem 2.2.1

By combining Lemmas 2.4.3, 2.4.4, and 2.4.5, we are now ready to prove Theorem 2.2.1.

Basically, we will show that θ̂ constructed from the two-step gradient descent procedure and θglob := (fglob,uglob,vglob)

are the same point. Then the error bounds follow from the closeness of θ̂ and θ?. First, we show that the signal

x̂ =
∑k
`=1 ĉ`a(f̂`) and q̂ = (y − x̂)/λ constructed from the second fixed point θ̂ form primal and dual optimal

solutions of (2.8). It suffices to show that the dual polynomial Q̂(f) = a(f)HZq̂ satisfies the Bounded Interpolation

Property of Proposition 2.4.1.

1) Showing the Interpolation property.

The Interpolation property has the following equivalences:

Q̂(f̂`) = sign(ĉ`), ` = 1, . . . , k ⇐⇒ a(f̂`)
HZ(y − x̂) = λ sign(ĉ`), ` = 1, . . . , k

⇐⇒ a(f̂`)
HZ(y −A(f̂)ĉ) = λ sign(ĉ`), ` = 1, . . . , k

⇐⇒ A(f̂)HZ(y −A(f̂)ĉ) = λĉ./|ĉ|. (2.23)

From Lemma 2.4.2, θ̂ is the fixed point solution of the map Θ(θ) = θ −W?∇G(θ), i.e., Θ(θ̂) = θ̂, implying

∇G(θ̂) = 0 due to the invertibility of W?. Invoking the explicit expression for ∇G(θ) developed in Appendix A.3,

we get
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∇G(θ̂) =

R{(A′(f̂) diag(ĉ))HZ(A(f̂)ĉ− y)}
R{A(f̂)HZ(A(f̂)ĉ− y) + λĉ./|ĉ|}
I{A(f̂)HZ(A(f̂)ĉ− y) + λĉ./|ĉ|}

 =

0
0
0

 . (2.24)

Then the Interpolation property (2.23) follows from the last two row blocks of (2.24).

2) Showing the Boundedness property.

Following the same arguments preceding Lemma 2.4.3, it is sufficient to show |Q̂(f)| < 1 in N ∪M∪F\{f̂0}.

First, since f̂0 might be located in −N or N , we bound |Q̂(f)| for f ∈ (−N ) ∪ N . The second-order Taylor

expansion of |Q̂(f)| at f = f̂0 states

|Q̂(f)| = |Q̂(f̂0)|+ (f − f̂0)|Q̂(f̂0)|′ + 1

2
(f − f̂0)2|Q̂(ξ)|′′

= 1 + (f − f̂0)|Q̂(f̂0)|′ + 1

2
(f − f̂0)2|Q̂(ξ)|′′ for some ξ ∈ (−N ) ∪N , (2.25)

where for the second line we used a consequence of the interpolation property. We argue that

|Q̂(f̂0)|′ =
Q̂R(f̂0)Q̂R(f̂0)′ + Q̂I(f̂0)Q̂I(f̂0)′

|Q̂(f̂0)|
=
R{ĉ0}Q̂R(f̂0)′ + I{ĉ0}Q̂I(f̂0)′

|ĉ0||Q̂(f̂0)|
= 0.

The last equality is a consequence of the first row block of (2.24) sinceR{ĉ0}Q̂R(f̂0)′+I{ĉ0}Q̂I(f̂0)′ = R{ĉH0 a(f̂0)HZ(y−

A(f̂)ĉ)}. Therefore, it suffices to show that |Q̂(f)|′ has strictly negative derivative in the symmetric Near Region

f ∈ (−N ) ∪N . By the symmetric arguments, it suffices to show this in N . Since

|Q̂(f)|′′ = − (Q̂R(f)Q̂R(f)′ + Q̂I(f)Q̂I(f)′)2

|Q̂(f)|3
+
Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′|

|Q̂(f)|
,

we only need to show that

Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′| < 0,

which can be obtained by applying Lemma 2.4.3, Lemma 2.4.4, Lemma 2.4.5 and the triangle inequality to control

these three terms Q̂R(f)Q̂R(f)′′, |Q̂(f)′|2 and |Q̂I(f)||Q̂I(f)′′|, respectively.

More precisely, the first term can be bounded by

Q̂R(f)Q̂R(f)′′

≤Q?R(f)Q?R(f)′′ + |Q̂R(f)−Q?R(f)||Q̂R(f)′′ −Q?R(f)′′|+ |Q?R(f)||Q̂R(f)′′ −Q?R(f)′′|+ |Q̂R(f)−Q?R(f)||Q?R(f)′′|
≤(0.887594)(−2.24483n2) + (28.7343X?B?γ + 82.5975B?/X?)(140.808n2X?B?γ + 758.404n2B?/X?)

+ (1)(140.808n2X?B?γ + 758.404n2B?/X?) + (28.7343X?B?γ + 82.5975B?/X?)3.40320n2

≤− 1.64194n2, (2.26)
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where we have used the SNR condition (2.10): X?B?γ ≤ 10−3, B?/X? ≤ 10−4 in the last line. We now bound the

second term

|Q̂(f)′|2 =|Q̂(f)′ −Q?′(f)|2 + |Q?′(f)|2 + 2|Q?(f)′||Q̂(f)′ −Q?′(f)|
≤(44.4648nX?B?γ + 180.283nB?/X?)2 + (0.821039n)2 + 2(0.821039n)(44.4648nX?B?γ + 180.283nB?/X?)

≤0.780629n2. (2.27)

Finally, the third term can be bounded by

|Q̂I(f)||Q̂I(f)′′|
≤(|Q?I(f)|+ |Q̂(f)−Q?(f)|)(|Q?I ′′(f)|+ |Q̂(f)′′ −Q?′′(f)|)
≤(0.0183836 + (28.7343X?B?γ + 82.5975B?/X?))0.113197n2 + (140.808n2X?B?γ + 758.404n2B?/X?)

≤0.222917n2. (2.28)

From (2.26), (2.27) and (2.28), we have

Q̂R(f)Q̂R(f)′′ + |Q̂(f)′|2 + |Q̂I(f)||Q̂I(f)′′| ≤ (−1.64194 + 0.780629 + 0.222917)n2 < 0,

implying that |Q̂(f)|′′ < 0 in N . This completes showing |Q̂(f)|′′ < 0 in (−N ) ∪N and

|Q̂(f)| < 1, for f ∈ (−N ) ∪N\{f̂0}. (2.29)

Next, we bound |Q̂(f)| in Middle Region

|Q̂(f)| ≤|Q?(f)|+ |Q?(f)−Qλ(f)|+ |Q̂(f)−Qλ(f)|
≤0.927615 + (39.3557X?B?γ + 114.323B?/X?)

≤0.978403 < 1, for f ∈M. (2.30)

Finally, we arrive at an upper bound of |Q̂(f)| in Far Region:

|Q̂(f)| ≤|Q?(f)|+ |Q?(f)−Qλ(f)|+ |Q̂(f)−Qλ(f)|
≤0.734123 + (66.1596X?B?γ + 162.903B?/X?)

≤0.81658 < 1, for f ∈ F . (2.31)

From (2.29), (2.30) and (2.31), we obtain that Q̂(f) satisfies the BIP property and hence q̂ is a valid dual certificate

that certifies the optimality of x̂ =
∑k
`=1 ĉ`a(f̂`). The uniqueness of the decomposition as also certified by q̂ implies

that {f̂`}k`=1 = {fglob
` }k`=1 and {ĉ`}k`=1 = {cglob

` }k`=1, i.e., θ̂ and θglob are the same point.

As the final step, using Lemma 2.4.1, Lemma 2.4.2 and the triangle inequality, we have

‖θ̂ − θ?‖∞̂ ≤ ‖θ̂ − θλ‖∞̂ + ‖θλ − θ?‖∞̂ ≤ (X? + 35.2)γ0/
√

2.
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Then the desired results follow from the definition of the norm ‖ · ‖∞̂ and the fact that
√
|K ′′(0)| ≥ 3.289n2 for

n ≥ 130 by (A.2) and hence 1/
√

2|K ′′(0)| ≤ 1/
√

2(3.289)/n ≤ 0.3899/n ≤ 0.4/n. �

2.5 Numerical Experiments

We present numerical results to support our theoretical findings. In particular, we first examine the phase transition

curve of the rate of success in Figure 2.2. In preparing Figure 2.2, k complex coefficients c?1, . . . , c
?
k were generated

uniformly from the unit complex circle such that c?min = c?max = 1 hence B? = 1. We also generated k normalized

frequencies f?1 , . . . , f
?
k uniformly chosen from [0, 1] such that every pair of frequencies are separated by at least 2.5/n.

Then the signal x? was formed according to (2.6). We created our observation y by adding Gaussian noise of mean

zero and variance σ2 to the target signal x?. Let λ = xγ0 (recall that λ = 0.646X?γ0 in Theorem 2.2.1 and hence

x = 0.646X?). We varied x and the Noise-to-Signal Ratio γ. For each fixed (x, γ) pair, 20 instances of the spectral

line signals were generated. We then solved (2.8) for each instance and extracted the frequencies and coefficients. We

declared success for an instance if i) the recovered frequency vector is within γ/2n `∞ distance of the true frequency

vector f?, and ii) the recovered coefficient vector is within 2λ `∞ distance of the true frequency vector c?. The rate of

success for each algorithm is the proportion of successful instances.

x

γ

Success rate

1 2 3 4 5 6 7 8

0.1
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1

Figure 2.2: Rate of success for line spectral estimation by solving the atomic norm regularized program (2.8).

From Figure 2.2, we observe that solving (2.8) is unable to identify the sinusoidal parameters if x ≤ 1 and the

performance of the method is unstable when x is around 1. When x is set to be slightly larger than 1, however,

we almost always succeed in finding good estimates of the sinusoidal parameters as long as xγ ≤ c for some small

constant c. This matches the findings in Theorem 2.2.1. Figure 2.2 also shows the constants in Theorem 2.2.1 are a bit

conservative.
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We also run simulations to compare the mean-squared error for our frequency estimate with those for MUSIC

and the MLE, as well as the CRB. The simulation results are listed in Figure 2.3. We emphasize that the MLE is

initialized using the true frequencies and coefficients, which are not available in practice. We focus on the case of two

unknown frequencies and examine the effect of separation. We observe that the atomic norm minimization method

always outperforms MUSIC, with increased performance gap when the frequencies become closer. While the MLE

performs the best, its initialization is not practical.

2.6 Conclusions

This work considers the problem of approximately estimating the frequencies and coefficients of a superposition

of complex sinusoids in white noise. By using a primal-dual witness construction, we have established theoretical

performance guarantees for atomic norm minimization algorithm in line spectral parameter estimation. The obtained

error bounds match the Cramér-Rao lower bound up to a logarithmic factor. The relationship between resolution

(separation of frequencies) and precision or accuracy of the estimator is highlighted. Our analysis also reveals that the

atomic norm minimization can be viewed as a convex way to solve a `1-norm regularized, nonlinear and nonconvex

least-squares problem to global optimality.
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Figure 2.3: Performance comparison: Atomic norm minimization (2.8) (labeled as “Atom"), MUSIC, MLE initialized
by the true parameters, and the CRB.
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CHAPTER 3

A SUPER-RESOLUTION FRAMEWORK FOR TENSOR DECOMPOSITION

This work considers a super-resolution framework for overcomplete tensor decomposition. Specifically, we view

tensor decomposition as a super-resolution problem of recovering a sum of Dirac measures on the sphere and solve it

by minimizing a continuous analog of the `1 norm on the space of measures. The optimal value of this optimization

defines the tensor nuclear norm. Similar to the separation condition in the super-resolution problem, by explicitly

constructing a dual certificate, we develop incoherence conditions of the tensor factors so that they form the unique

optimal solution of the continuous analog of `1 norm minimization. Remarkably, the derived incoherence conditions

are satisfied with high probability by random tensor factors uniformly distributed on the sphere, implying global

identifiability of random tensor factors.

3.1 Introduction

Tensors provide natural representations for massive multi-mode datasets encountered in many applications includ-

ing image and video processing [52], collaborative filtering [53], array signal processing [54], convolutional networks

design [55,56] and psychometrics [57]. Tensor methods also form the backbone of many machine learning, signal pro-

cessing, and statistical algorithms, including independent component analysis (ICA) [58, 59], latent graphical model

learning [60], dictionary learning [61], and Gaussian mixture estimation [62]. The utility of tensors in such diverse

applications is mainly due to the ability to identify overcomplete, non-orthogonal factors from tensor data as already

suggested by Kruskal’s theorem [63]. This is known as tensor decomposition, which describes the problem of decom-

posing a tensor into a linear combination of a small number of rank-1 tensors. The identifiability of tensor factors is

in sharp contrast to the inherent ambiguous nature of matrix decompositions without additional assumptions such as

orthogonality and non-negativity.

In addition to its practical applicability, tensor decomposition is also of fundamental theoretical interest in solving

linear inverse problems involving low-rank tensors. For one thing, theoretical results for tensor decomposition inform

what types of rank-1 tensor combinations are identifiable given full observations. For another, a dual polynomial is

constructed to certify a particular decomposition, which is useful in investigating the regularization power of the tensor

nuclear norm for tensor inverse problems, including tensor completion, tensor denoising, and robust tensor principal

component analysis. We expect that the dual certificate constructed in this work will play a role in these tensor

inverse problems similar to that of the subdifferential characterization of matrix nuclear norm in matrix completion

and low-rank matrix recovery [64, 65].
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3.1.1 The Tensor Decomposition Inverse Problem

In this work, we focus on third-order nonsymmetric tensors that can be decomposed into a linear combination of

unit-norm, rank-1 tensors of the form u⊗v⊗w, with the (i, j, k)th entry being uivjwk. More precisely, consider the

following decomposition of a third-order nonsymmetric tensor

T =

r∑
p=1

λ?pu
?
p ⊗ v?p ⊗w?

p. (3.1)

Here the factors {(u?p,v?p,w?
p)}rp=1 ⊂ Rn1 × Rn2 × Rn3 might be overcomplete (that is, r is potentially greater

than the individual tensor dimensions n1, n2 and n3), non-orthogonal and live on the real unit spheres. Without loss

of generality, we assume that the coefficients λ?p are positive as their signs can be absorbed into the factors. Tensor

decomposition is the inverse problem of retrieving its rank-1 tensor factors {(u?p,v?p,w?
p)}rp=1 from the tensor data

T in (3.1). After retrieving the tensor factors, finding the coefficients {λ?p}rp=1 is simply a linear regression problem.

Since the theory on complex and real tensors are very different, we emphasize that this work focuses on tensors with

real entries and decompositions with real factors.

3.1.2 Our Approach

Tensor decomposition, as a generalization of the matrix singular value decomposition, is extremely challenging.

First, tensor problems themselves are inherently difficult – in fact, most tensor problems are NP hard [66]. Second, we

lack proper theories for basic tensor concepts and operations such as singular values, vectors, and singular value de-

compositions. To address these challenging issues, we view tensor decomposition as a problem of measure estimation

from moments.

First of all, observe that retrieving the decomposition from the observed tensor entries in T is equivalent to recov-

ering a weighted sum of Dirac measures

µ? =

r∑
p=1

λ?pδ(u− u?p,v − v?p,w −w?
p) (3.2)

defined on the product of unit spheres K := Sn1−1 × Sn2−1 × Sn3−1 from its third-order moments

T =

∫
K

u⊗ v ⊗w dµ?.

In most practical scenarios, we are interested in the case where r is much smaller than the product n1n2n3 (but can be

significantly larger than individual dimensions n1, n2, and n3). Therefore, the decomposition (3.1) is sparse.

Several advantages offered by this point of view are as follows. First, it provides a natural way to extend the `1

minimization in finding sparse representations for finite dictionaries [67] to tensor decomposition. By viewing the set
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of rank-1 tensorsA = {u⊗v⊗w : (u,v,w) ∈ K} as a dictionary with an infinite number of atoms, this formulation

allows us to find a sparse representation of T by minimizing the `1 norm of the representation coefficients with respect

to the dictionary A. More precisely, we recover µ? from the tensor T by solving the following optimization problem

minimize
µ∈M(K)

µ(K) subject to T =

∫
K

u⊗ v ⊗w dµ (3.3)

where M(K) is the set of (nonnegative) Borel measures on K, and µ(K) is the total measure/mass of the set K

measured by the Borel measure µ ∈M(K). Second, the optimal value of the total mass minimization defines precisely

the tensor nuclear norm [68, Proposition 3.1], which is a special case of atomic norms [21, Eq. (2)] corresponding to

the atomic set A. The tensor nuclear norm is useful in many tensor inverse problems, such as, tensor completion [52],

robust tensor principal component analysis [69], and stable tensor recovery [70].

3.1.3 Main Results

The main theoretical problem investigated in this work is under what assumptions on the tensor factors {(u?p,v?p,w?
p)}rp=1,

the total mass minimization (3.3) returns the tensor decomposition (3.1). Three assumptions, namely, incoherence,

bounded spectral norm, and Gram isometry, will be introduced in this work and our main result will be built upon

them. For ease of exposition, in what follows, these assumptions and the main result of this work will be presented for

square tensors with n1 = n2 = n3 = n.

Assumption I: Incoherence. The tensor factors are incoherent, i.e., the incoherence ∆ defined below satisfies

∆ := max
p 6=q

max{|〈u?p,u?q〉|, |〈v?p,v?q〉|, |〈w?
p,w

?
q〉|} ≤

τ(log n)√
n

, (3.4)

where τ(·) is a polynomial function of its argument3.

Assumption II: Bounded spectral norm. The spectral norms of U :=

[
u?1 · · · u?r

]
, V :=

[
v?1 · · · v?r

]
,

W :=

[
w?

1 · · · w?
r

]
are well-controlled:

max{‖U‖, ‖V‖, ‖W‖} ≤ 1 + c

√
r

n
(3.5)

for some constant c > 0.

Assumption III: Gram isometry. The Hadamard product (denoted as �) of the Gram matrices of U and V satisfies

an isometric condition:

‖(U>U)� (V>V)− I‖ ≤ κ(log n)

√
r

n
, (3.6)

3Hence τ(logn) is a polylogarithmic function of n, which is o(nε) for every exponent ε > 0.
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where κ(·) is a polynomial. Similar bounds hold for U,W, and V,W (without loss of generality with the same

polynomial κ(·)).

With these assumptions, we are ready to address our theoretical problem of this work in the following theorem:

Theorem 3.1.1. Suppose the tensor T ∈ Rn×n×n admits a decomposition (3.1) with the factors {(u?p,v?p,w?
p)}rp=1

satisfying Assumptions I, II, III and

r ≤ n17/16

32c2
√

15τ(log n)
(3.7)

with the polynomial τ(·) given in (3.4) and the constant c in (3.5). Then for sufficiently large n, the true factors

{(u?p,v?p,w?
p)}rp=1 can be uniquely recovered by (3.3) up to the sign ambiguity.

We note that Assumptions I, II and III hold with high probability if the tensor factors {(u?p,v?p,w?
p)}rp=1 are

generated independently according to uniform distributions on the unit spheres [71, Lemmas 25, 31].

Corollary 3.1.1. If the tensor factors {(u?p,v?p,w?
p)}rp=1 are generated independently according to uniform distribu-

tions on the unit spheres, and if r satisfies (3.7), then for sufficiently large n, solving optimization (3.3) is guaranteed

to recover µ? with high probability.

We close this section with some comments on Theorem 3.1.1 and Corollary 3.1.1.

Remark 3.1.1. Tensor decomposition using total mass minimization is an atomic decomposition problem [21, Section

2.2], which studies the conditions under which a decomposition in terms of atoms in an atomic set A achieves the

corresponding atomic norm. For example, the singular value decomposition is an atomic decomposition for the set

of unit-norm, rank-1 matrices. As shown in [27], for a large class of atomic sets, only decompositions composed of

sufficiently different atoms are valid atomic decompositions. In particular, a necessary condition for tensor atomic

decomposition is that the incoherence ∆ defined in (3.4) is less than cos( 2
3 ) [72, Theorem 2]. However, our sufficient

incoherence condition (3.4) is still significantly stronger than this necessary condition.

Remark 3.1.2. The tensor decomposition with the smallest number of rank-1 tensors is called a Canonical Polyadic

(CP) decomposition and the corresponding number of rank-1 tensors is the CP-rank of the tensor, or simply the rank

of the tensor. The number of factors r recovered by the optimization (3.3) may be different from the CP rank, which

is called the nuclear rank of the tensor [68, Eq. (4.3)], and the according tensor decomposition is a nuclear rank

decomposition.

Remark 3.1.3. Since r could be as large as O
(
n17/16/

√
τ(log n)

)
� n (i.e., the number of factors r could be far

more than the dimension n), total mass minimization is guaranteed to recover overcomplete tensor decompositions.

Remark 3.1.4. Assumptions I-III are reasonable since they are satisfied with high probability for tensor factors uni-

formly lying on the unit spheres [71, Lemmas 25, 31]. Moreover, it is well-known that the incoherence for an overcom-
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plete matrix U = [u1 u2 · · · ur] ∈ Rn×r with n ≤ r is bounded below: maxp 6=q |〈up,uq〉| ≥
√

r−n
n(r−1) [73, Chapter

1.3] and the upper bound in Assumption I is clearly larger than this lower bound for properly defined polynomial τ(·).

Remark 3.1.5. The sign ambiguity is inherent in the problem formulation. In particular, we can replace the factor

(u?p,v
?
p,w

?
p) with (apu

?
p, bpv

?
p, cpw

?
p) without changing the decomposition (3.1), provided that |ap| = |bp| = |cp| = 1

and apbpcp = 1 (there are four such (ap, bp, cp) for each p). However, this transformation gives rise to different

measure representations µ? of the decomposition (there are 4r of them). Therefore, the optimal solutions to (3.3) can

only be unique up to this form of ambiguity.

Remark 3.1.6. It is worth commenting on the relationship between Theorem 3.1.1 and the classical Kruskal’s unique-

ness theorem for tensor decompositions. The Kruskal rank of matrix U of size n×r is defined as the maximal number

kU such that any kU columns of U are linearly independent. Kruskal’s theorem states that if r in the expansion (3.1)

satisfies

r ≤ 1

2
(kU + kV + kW)− 1,

then T has a unique rank-r decomposition (up to permutation and sign ambiguities). Since the inequalities kU ≤ n,

kV ≤ n, and kW ≤ n are achievable for generic matrices U, V and W in Rn×r, Kruskal’s theorem ensures an unique

decomposition involving up to r = 3
2n − 1 rank-1 (generic) factors. Note that our result holds for r up to the order

n17/16, which can be significantly larger than 3
2n for large n. Recently, the Kruskal rank r is improved to order O(n2)

in [74, Corollary 6.2]. Our result on r still cannot match this bound. One might wonder whether Theorem 3.1.1 is

trivial given the uniqueness of the decomposition. The caveat here is that the uniqueness holds when the decomposition

involves exactly r terms, while the tensor nuclear norm, i.e., the optimal value of (3.3), can potentially be achieved by

decompositions involving more than r, even an infinite number of terms. In fact, the formulation takes into account

decompositions with continuous supports. Theorem 3.1.1 excludes such possibility under the given conditions.

Remark 3.1.7. Corollary 3.1.1 will also be justified by numerical experiments in Section 3.5. In the experiments, we

randomly sampled vectors on the unit spheres to generate the true factors of the tensor and then applied our proposed

approach to decompose it. We will see that in this case, we can exactly recover the factors even for r � n.

3.1.4 Prior Art and Inspirations

Despite the advantages provided by tensor methods in many applications, their widespread adoption has been slow

due to inherent computational intractability. Although the decomposition (3.1) is a multi-mode generalization of the

singular value decomposition for matrices, extracting the decomposition from a given tensor is a nontrivial problem

that is still under active investigation (cf. [75,76]). Indeed, even determining the rank of a third-order tensor is an NP-

hard problem [66]. A common strategy used to compute a tensor decomposition is to apply an alternating minimization
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scheme. Although efficient, this approach has the drawback of not providing global convergence guarantees [75].

Recently, an approach combining alternating minimization with power iteration has gained popularity due to its ability

to guarantee the tensor decomposition results under certain assumptions [71, 77].

Tensor decomposition is a special case of atomic decomposition which is to determine when a decomposition with

respect to some given atomic set A achieves the atomic norm. For finite atomic sets, it is now well-known that if

the atoms satisfy certain conditions such as the restricted isometry property, then a sparse decomposition achieves the

atomic norm [78]. For the set of rank-1, unit-norm matrices, the atomic norm (the matrix nuclear norm), is achieved

by orthogonal decompositions [65]. When the atoms are complex sinusoids parameterized by the frequency, Candès

and Fernandez-Granda showed that atomic decomposition is solved by atoms with well-separated frequencies [13].

Similar separation conditions also show up when the atoms are translations of a known waveform [79, 80], spherical

harmonics [81], and radar signals parameterized by translations and modulations [82]. Tang and Shah in [72] em-

ployed the same atomic norm idea but focused on symmetric tensors. In addition, the result of [72] does not apply to

overcomplete decompositions. Under a set of conditions, including the incoherence condition ensuring the separation

of tensor factors, this work characterizes a class of nonsymmetric and overcomplete tensor decompositions that achieve

the tensor nuclear norm ‖T ‖∗.

Another closely related line of work is matrix completion and tensor completion. Low-rank matrix completion and

recovery based on the idea of nuclear norm minimization has received a great deal of attention in recent years [64, 65,

83]. A direct generalization of this approach to tensors would have been using tensor nuclear norm to perform low-

rank tensor completion and recovery. However, this approach was not pursued due to the NP-hardness of computing

the tensor nuclear norm [66] and the lack of analysis tools for tensor problems. The mainstream tensor completion

approaches are based on various forms of matricization and application of matrix completion to the flattened tensor [52,

84,85]. Alternating minimization can also be applied to tensor completion and recovery with performance guarantees

established in recent work [86]. Most matricization and alternating minimization approaches do not yield optimal

bounds on the number of measurements needed for tensor completion. One exception is [87], which used a special

class of separable sampling schemes.

In contrast, we expect that the atomic norm, when specialized to tensors, will achieve the information theoretical

limit for tensor completion as it does for compressive sensing, matrix completion [83], and line spectral estimation

with missing data [16]. Given a set of atoms, the atomic norm is an abstraction of `1-type regularization that favors

simple models. Using the notion of descent cones, Chandrasekaran et al. in [21] argued that the atomic norm is the

best possible convex proxy for recovering simple models. Particularly, atomic norms are shown in many problems be-

yond compressive sensing and matrix completion to be able to recover simple models from minimal number of linear

measurements. For example, when specialized to the atomic set formed by complex exponentials, the atomic norm

can recover signals having sparse representations in the continuous frequency domain with the number of measure-
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ments approaching the information theoretic limit without noise [16], as well as achieving near minimax denoising

performance [17]. Continuous frequency estimation using the atomic norm is also an instance of measure estimation

from (trigonometric) moments.

The rest of the chapter is organized as follows. In Section 3.2, we connect tensor decomposition to atomic decom-

position, apply duality theory to derive a sufficient condition for exact decomposition, and describe extensions of the

framework to tensor inverse problems. Section 3.3 presents computational methods to solve the tensor decomposition.

We then proceed to develop a proof of Theorem 3.1.1 in Section 3.4. In Section 3.5, we validate our theory using

numerical experiments. Additional proofs are given in the appendix.

3.2 Tensor Decomposition, Atomic Norms, and Duality

3.2.1 Tensor Decomposition as an Atomic Decomposition

In this work, we view tensor decomposition in the frameworks of both atomic norms and measure estimation. The

unit sphere of Rn is denoted by Sn−1, and the direct product of three unit spheres Sn−1 × Sn−1 × Sn−1 by K. The

tensor atomic set is denoted by A = {u⊗ v ⊗w : (u,v,w) ∈ K} parameterized by the set K, where u⊗ v ⊗w is

a rank-1 tensor with the (i, j, k)th entry being uivjwk. For any tensor T , its atomic norm with respect to A is defined

by [21, Eq. (2)]

‖T ‖A = inf{t : T ∈ t conv(A)}

= inf

{∑
p

λp : T =
∑
p

λpup ⊗ vp ⊗wp, λp > 0, (up,vp,wp) ∈ K
}
, (3.8)

where conv(A) is the convex hull of the atomic set A, and a scalar multiplying a set scales every element in the set.

Therefore, the tensor atomic norm is the minimal `1 norm of its expansion coefficients among all valid expansions in

terms of unit-norm, rank-1 tensors. The atomic norm ‖T ‖A defined in (3.8) is also called the tensor nuclear norm and

denoted by ‖T ‖∗ in [68, Eq. (2.7)]. We will use these two names and notations interchangeably in the following. The

way of defining the tensor nuclear norm is precisely the same as that of defining the matrix nuclear norm.

We argue that the two lines in the definition (3.8) are consistent and are also equivalent to (3.3) as follows. Since

conv(A) = {T : T =
∫
K u ⊗ v ⊗ w dµ, µ ∈ M(K), µ(K) ≤ 1}, the first line in the definition (3.8) implies that

‖T ‖A is equal to the optimal value of (3.3). Compared with the measure optimization (3.3), the feasible region of the

minimization defining the atomic norm in the second line of (3.8) is restricted to discrete measures. However, these

two optimizations share the same optimal value as a consequence of Carathéodory’s convex hull theorem, which states

that if a point x ∈ Rd lies in the convex hull of a set, then x can be written as a convex combination of at most d+ 1

points of that set [88, Theorem 2.3]. Since T ∈ ‖T ‖A conv(A) = conv(‖T ‖AA), T can be expressed as a convex

combination of at most n3 + 1 points of the set ‖T ‖AA, implying that the optimal value is achieved by a discrete
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measure with support size at most n3 + 1. This argument establishes that the two lines in (3.8) as well as the measure

optimization (3.3) are equivalent. Therefore, the atomic norm framework and the measure optimization framework are

two different formulations of the same problem, with the former setting the stage in the finite dimensional space and

the latter in the infinite-dimensional space of measures.

Given an abstract atomic set, the problem of atomic decomposition seeks the conditions under which a decompo-

sition in terms of the given atoms achieves the atomic norm. In this sense, the tensor decomposition considered in this

work is an atomic decomposition problem.

3.2.2 Duality

Duality plays an important role in analyzing atomic tensor decomposition. We again approach duality from both

perspectives of atomic norms and measure estimation.

First, we find the dual problem of the optimization problem (3.3). Given Q,T ∈ Rn×n×n, we define the tensor

inner product 〈Q,T 〉 :=
∑
i,j,kQijkTijk. Standard Lagrangian analysis shows that the dual problem of (3.3) is the

following semi-infinite program, which has an infinite number of constraints:

maximize
Q∈Rn×n×n

〈Q,T 〉

subject to 〈Q,u⊗ v ⊗w〉 ≤ 1,∀(u,v,w) ∈ K (3.9)

The polynomial q(u,v,w) := 〈Q,u ⊗ v ⊗ w〉 =
∑
i,j,kQijkuivjwk corresponding to a dual feasible solution Q

of (3.9) is called a dual polynomial. The dual polynomial associated with an optimal dual solution can be used to

certify the optimality of a particular decomposition, as demonstrated by the following proposition.

Proposition 3.2.1. Suppose the set of rank-1 tensors {u?p ⊗ v?p ⊗ w?
p}rp=1 given in (3.1) is linearly independent. If

there exists a dual solution Q ∈ Rn×n×n to (3.9) such that the corresponding dual polynomial q : K→ R

q(u,v,w) := 〈Q,u⊗ v ⊗w〉 (3.10)

satisfies the following Boundedness and Interpolation Property (BIP):

q(u?p,v
?
p,w

?
p) = 1 for p ∈ [r] (Interpolation) (3.11a)

q(u,v,w) < 1 inK \ S? (Boundedness) (3.11b)

where [r] := {1, . . . , r} and

S? := {(apu?p, bpv?p, cpw?
p) :|ap| = |bp| = |cp| = apbpcp = 1, p ∈ [r]}, (3.12)

then µ? given in (3.2) is the unique optimal solution to (3.3) up to sign ambiguity.
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Proof. In view of (3.9), any Q that satisfies the BIP in (3.11) is a dual feasible solution. We also have

〈Q,T 〉 =

〈
Q,

r∑
p=1

λ?pu
?
p ⊗ v?p ⊗w?

p

〉
=

r∑
p=1

λ?p〈Q,u?p ⊗ v?p ⊗w?
p〉 =

r∑
p=1

λ?pq(u
?
p,v

?
p,w

?
p) = µ?(K)

establishing a zero-duality gap of the primal-dual feasible solution (µ?,Q). As a consequence, µ? is a primal optimal

solution to (3.3) and Q is a dual optimal solution to (3.9).

For uniqueness, suppose µ̂ is another primal optimal solution to (3.3). If µ̂(K \ S?) > 0, then

µ?(K) = 〈Q,T 〉 =

〈
Q,
∫
K

u⊗ v ⊗w d µ̂

〉
=

∑
(u,v,w)∈S?

µ̂(u,v,w)q(u,v,w) +

∫
K\S?

q(u,v,w) d µ̂

<µ̂(S?) +

∫
K\S?

1 d µ̂

=µ̂(K)

contradicting the optimality of µ̂. So all optimal solutions are supported on S?. To remove the sign ambiguity, we can

assume an optimal solution is supported on {u?p ⊗ v?p ⊗w?
p}rp=1. Since {u?p ⊗ v?p ⊗w?

p}rp=1 is linearly independent

by assumption, the coefficients λ?p can be uniquely determined from solving the linear system of equations encoded in

T =
∑r
p=1 λ

?
pu

?
p ⊗ v?p ⊗w?

p. This proves the uniqueness (up to sign ambiguity).

3.2.3 Dual Certificate and Subdifferential

The dual optimal solution Q satisfying the BIP is called a dual certificate, which is used frequently as the starting

point to derive several atomic decomposition and super-resolution results [13, 16, 72, 81]. In Section 3.4, we will

explicitly construct a dual certificate to prove Theorem 3.1.1. In this subsection, we will relate the dual certificate

with the subdifferential of the tensor nuclear norm.

First, the dual norm of the tensor nuclear norm, i.e., the tensor spectral norm, of a tensor Q is given by

‖Q‖ := sup
T :‖T ‖∗≤1

〈Q,T 〉 = sup
(u,v,w)∈K

〈Q,u⊗ v ⊗w〉.

The equality is due to the fact that the atomic set A are the extreme points of the unit nuclear norm ball {T : ‖T ‖∗ ≤

1}. In light of the spectral norm definition, we rewrite the dual problem (3.9) as

maximize
Q∈Rn×n×n

〈Q,T 〉 subject to ‖Q‖ ≤ 1 (3.13)

which is precisely the definition of the dual norm of the tensor spectral norm, i.e., the tensor nuclear norm.

The subdifferential (the set of subgradients) of the tensor nuclear norm is defined by [73, Definition B.20]

∂‖ · ‖∗(T ) = {Q ∈ Rn×n×n : ‖R‖∗ ≥ ‖T ‖∗ + 〈R− T ,Q〉, for all R ∈ Rn×n×n}, (3.14)
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which has an equivalent representation [89, Section 1]

∂‖ · ‖∗(T ) =
{
Q ∈ Rn×n×n : ‖T ‖∗ = 〈Q,T 〉, ‖Q‖ ≤ 1

}
. (3.15)

For T having an atomic decomposition given in (3.1), it can be established that the defining properties of subdif-

ferential (3.15) are equivalent to

〈Q,u?p ⊗ v?p ⊗w?
p〉 = 1, for p ∈ [r] (3.16a)

〈Q,u⊗ v ⊗w〉 ≤ 1, for(u,v,w) ∈ K (3.16b)

We recognize that the BIP in (3.11) is a strengthened version of the subdifferential conditions (3.16). Therefore,

a dual certificate, i.e., any Q satisfying the BIP, is an element of the subdifferential ∂‖ · ‖∗(T ). The BIP in fact

means that Q is an interior point of ∂‖ · ‖∗(T ). Our proof strategy for Theorem 3.1.1 is to construct such an interior

point in Section 3.4. This is in contrast to the matrix case, for which we have an explicit characterization of the

entire subdifferential of the nuclear norm using the singular value decomposition (more explicit than the one given

in (3.15)). More specifically, suppose X = UΣV> is the (compact) singular value decomposition of X ∈ Rm×n

with U ∈ Rm×r,V ∈ Rn×r and Σ being an r × r diagonal matrix. Then the subdifferential of the matrix nuclear

norm at X is given by [65, Eq. (2.9)]

∂‖ · ‖∗(X) = {UV> + W : U>W = 0,WV = 0, ‖W‖ ≤ 1}.

It is challenging to obtain such a characterization for tensors unless the tensor admits an orthogonal rank-1 decompo-

sition.

3.2.4 Extension: Regularization Using Tensor Nuclear Norm

Independent from practical considerations, we investigate tensor decomposition for theoretical reasons. Similar to

regularizing matrix inverse problems using the matrix nuclear norm, the tensor nuclear norm can be used to regularize

tensor inverse problems. Suppose we observe an unknown low-rank tensor T ? through the linear measurement model

y = B(T ?), we would like to recover the tensor T ? from the observation y. For instance, when B samples the

individual entries of T ?, we are looking at a tensor completion problem. We propose recovering T ? by solving

minimize
T ∈Rn×n×n

‖T ‖∗ subject to y = B(T ) (3.17)

which favors a low-rank solution. To establish recoverability, we can construct a dual certificate Q of the form B∗(λ),

whose corresponding dual polynomial satisfies the BIP. Here B∗ is the adjoint operator of B. When the operator B

is random, the concentration of measure guarantees that we can construct a dual certificate B∗(λ) that is close to
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the one constructed in the full data case. This fact can then be exploited to verify the BIP of B∗(λ) and to establish

exact recovery. When the atoms are complex exponentials parameterized by continuous frequencies, this strategy

is adopted to establish the compressed sensing off the grid result (the completion problem) [16] building upon the

dual polynomial constructed for the super-resolution problem (the full data case) [13]. It shows that the number of

random linear measurements required for exact recovery approaches the information theoretical limit. In addition to

exact recovery from noise-free measurements, the dual certificate for the full data case can also be utilized to derive

near-minimax denoising performance [17, 22], approximate support recovery [1, 2, 28], and robust recovery from

observations corrupted by outliers [19, 90]. We expect that the dual polynomial constructed for tensor decomposition

will play a similar role for tensor inverse problems, enabling the development of tensor results parallel to their matrix

counterparts such as matrix completion, denoising, and robust principal component analysis. We leave these as our

future work.

3.3 Computational Methods

Our main theorem shows that when the tensor factors {(u?p,v?p,w?
p)}rp=1 satisfy Assumptions I, II, III, we can

recover the tensor decomposition of r up to the order of n17/16 by solving the convex, infinite-dimensional optimiza-

tion (3.3). However, as a measure optimization problem, optimization problem (3.3) is not directly solvable on a

computer. In this section, we propose two computational methods, which are respectively based on:

1. The Burer-Monteiro factorization approach [6, 8, 91–93];

2. The Lasserre hierarchy [94, 95].

3.3.1 The Burer-Monteiro Factorization Approach

When dealing with convex programs involved with a large matrix variable X, Burer and Monteiro in [91] proposed

factoring the variable X into the product of two smaller rectangular matrices X = UV> and then treating them as the

new optimization variables. As a typical example, Recht et al. in [65] used this approach to get that the matrix nuclear

norm for any X ∈ Rn1×n2 equals the optimum value of the following optimization

minimize
U∈Rn1×r̃,V∈Rn2×r̃

1

2

(
‖U‖2F + ‖V‖2F

)
subject to X = UV>

with r̃ ≥ rank(X). Similarly, when applying this idea to the tensor nuclear norm, we have the following result.

Proposition 3.3.1. Suppose the decomposition that achieves the tensor nuclear norm ‖T ‖∗ involves r terms and

r̃ ≥ r, then ‖T ‖∗ is equal to the optimal value of the following optimization:
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minimize
{up,vp,wp}r̃p=1

r̃∑
p=1

1

3

(
‖up‖32 + ‖vp‖32 + ‖wp‖32

)
subject to T =

r̃∑
p=1

up ⊗ vp ⊗wp (3.18)

Proof. Suppose the tensor nuclear norm is achieved by the decomposition T =
∑r
p=1 λ

?
pu

?
p⊗v?p⊗w?

p. Then we note

that {λ?p1/3u?p, λ
?
p

1/3v?p, λ
?
p

1/3w?
p}r̃p=1 forms a feasible solution to (3.18) when r̃ = r. When r̃ > r, we can zero-pad

the remaining factors {up,vp,wp}r̃p=r+1. The objective function value at this feasible solution is 1
3 (
∑r̃
p=1 3λ?p) =

‖T ‖∗. This shows that ‖T ‖∗ is greater than the optimal value of (3.18).

To show the other direction, suppose an optimal solution of (3.18) is {up,vp,wp}r̃p=1. Define λp := ‖up‖2‖vp‖2‖wp‖2,

for p ∈ [r̃]. Then,

T =
∑

p:λp 6=0

λp
up
‖up‖2

⊗ vp
‖vp‖2

⊗ wp

‖wp‖2
.

Finally, by definition of the tensor nuclear/atomic norm (3.8), we have

‖T ‖∗ ≤
∑

p:λp 6=0

λp =

r̃∑
p=1

λp =

r̃∑
p=1

‖up‖2‖vp‖2‖wp‖2 ≤
1

3

r̃∑
p=1

[
‖up‖32 + ‖vp‖32 + ‖wp‖32

]
,

which is the optimal value of (3.18). Therefore, the optimal value of (3.18) is equal to ‖T ‖∗.

Proposition 3.3.1 implies that when an upper bound on r is known, we can solve the nonlinear (and non-convex)

program (3.18) to compute the tensor nuclear norm (and obtain the corresponding decomposition). Numerical simu-

lations suggest that the nonlinear program (3.18), when solved using the ADMM approach [96], has superior perfor-

mance. Although in theory only local optima can be obtained for the nonlinear programming formulation (3.18), in

practice for tensors with random factors, our experiments show that the decomposition can almost always be recovered

by the ADMM implementation of (3.18).

Remark 3.3.1. Proposition 3.3.1 can be generalized to compute the nuclear norm of an arbitrary-sized tensor, including

the matrix – a 2nd-order tensor. Basically, for a general dth-order tensor T =
∑r̃
p=1 u

(1)
p ⊗ · · · ⊗ u

(d)
p , the nuclear

norm ‖T ‖∗ is given by the optimum value of the following program

minimize
{u(1)
p ,··· ,u(d)

p }r̃p=1

r̃∑
p=1

1

d

(
‖u(1)

p ‖d2 + ‖u(2)
p ‖d2 + · · ·+ ‖u(d)

p ‖d2
)

subject to T =

r̃∑
p=1

u(1)
p ⊗ u(2)

p ⊗ · · · ⊗ u(d)
p (3.19)
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3.3.2 The Lasserre Hierarchy

As a special moment problem, the optimization problem (3.3) can be approximated increasingly tightly by the

semidefinite programs in the Lasserre relaxation hierarchy [94, 95]. The Lasserre hierarchy proposes that instead

of optimizing problem (3.3) with respect to the measure µ, we can equivalently optimize the (infinite-dimensional)

moment sequence corresponding to µ:

m = [mα] =

∫
K
ξαµ(d ξ).

Here the combined variable ξ = [u> v> w>]> ∈ R3n, the multi-integer indexα = (α1, . . . , α3n), and the monomial

ξα = ξα1
1 ξα2

2 · · · ξα3n
3n . To get a finite-dimensional relaxation with a relaxation order of d, we truncate the infinite-

dimensional moment sequence m to a finite-dimensional vector m2d that includes moments up to order 2d, i.e., to

retain moments mα with |α| = ∑3n
i=1 αi ≤ 2d. Three sets of linear matrix inequalities should be satisfied for a vector

m2d to be the 2dth-order truncation of a moment sequence on K:

• First, since the moment matrix here is related with some positive measure µ, i.e.,

M2d(m2d) :=

∫
K


1
ξ1
...
ξd3n




1
ξ1
...
ξd3n


>

dµ,

it is positive semidefinite. The notation suggests M2d(m2d) is a (linear) function of the truncated moment

vector m2d.

• Second, since the tensor entries are third order moments of the measure, elements of m2d corresponding to these

moments are known when d ≥ 2, giving rise to the second set of linear equations.

• Third, the fact that µ is supported on K leads to the last set of linear constraints.

Combined with the fact that the objective function µ(K) =
∫
K 1dµ = m2d(1), the final relaxation is a semidefinite

program. We refer the reader to [95, Section 7] and [72, Section 5.2] for more discussions. Apparently, increasing the

relaxation order d yields tighter approximations to the original optimization (3.3). Tang and Shah in [72] showed that

for symmetric tensor decomposition, in the undercomplete case and under a soft-orthogonality condition, the smallest

semidefinite program in the relaxation hierarchy is tight. Remarkably, Nie in [95] provided detailed convergence

analysis of using the Lasserre hierarchy for computing tensor nuclear norms of both symmetric and nonsymmetric

tensors over both real and complex fields.
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3.4 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 relies on the construction of a dual polynomial that satisfies the Boundedness and In-

terpolation Property (3.11). The constructed dual polynomial is also essential to the development of tensor completion

and denoising using the atomic norm approach.

3.4.1 Outline of the Proof

First of all, we apply the minimum-energy strategy to construct a candidate dual polynomial q. To show the

constructed dual polynomial satisfies the BIP (3.11), we partition K into the far region (analyzed by Lemma 3.4.4)

and the near region. For ease of analyzing the near region, we use an angular parameterization to convert it to the

angular near region, which is covered by the vertex region (analyzed by Lemma 3.4.6) and band region (analyzed by

Lemma 3.4.7). The proof of Theorem 3.1.1 is completed by combining the far and near regions. We summarize this

in Figure 3.1.

limit without noise [27], as well as achieving near minimax denoising performance [32]. Continuous frequency
estimation using the atomic norm is also an instance of measure estimation from (trigonometric) moments.

5 Proof of Theorem 1

The proof of Theorem 1 relies on the construction of a dual polynomial that satisfies the Boundedness and
Interpolation Property (11). The constructed dual polynomial is also essential to the development of tensor
completion and denoising using the atomic norm approach.

5.1 The Proof Idea

First of all, we apply the minimum-energy strategy to construct a candidate dual polynomial q. To show the
constructed dual polynomial satisfies the BIP (11), we partition K into the far region (analyzed by Lemma
4) and the near region. For ease of analyzing the near region, we use a angular transform to convert it
to the angular near region, which is covered by the vertex region (analyzed by Lemma 6) and band region
(analyzed by Lemma 7). The proof of Theorem 1 is completed by combining the far and near regions. We
summarize the proof idea of Theorem 1 in Figure 1.

Divide K into
Far and Near

Regions

Far-Region
Control by
Lemma 4

Near-Region
Control by
Angular

Transform

Vertex-Region
Control by
Lemma 6

Band-Region
Control by
Lemma 7

Figure 1: The proof idea of Theorem 1.

5.2 Minimal-Energy Construction of Pre-certificate

Since the BIP (11) (especially for the Boundedness property (11b)) is hard to enforce directly, we start from
a candidate dual certificate or pre-certificate Q in the subdifferntial set ∂‖T‖∗ defined by (16):

〈Q,u?p ⊗ v?p ⊗w?
p〉 = 1, for p ∈ [r]

〈Q,u⊗ v ⊗w〉 ≤ 1, for(u,v,w) ∈ K

which essentially characterizes the optimal solution set of following optimization

maximize
(u,v,w)∈K

〈Q,u⊗ v ⊗w〉 (20)

Then by Karush-Kuhn-Tucker (KKT) conditions for the constrained optimization, we can further relax (16)
to a set of linear constraints.

11

Figure 3.1: An outline of the proof of Theorem 3.1.1.

3.4.2 Minimal-Energy Construction of Pre-certificate

Since the BIP in (3.11) (especially the Boundedness property (3.11b)) is hard to enforce directly, we start from a

candidate dual certificate or pre-certificate Q in the subdifferntial set ∂‖T ‖∗ defined by (3.16):

〈Q,u?p ⊗ v?p ⊗w?
p〉 = 1, for p ∈ [r]

〈Q,u⊗ v ⊗w〉 ≤ 1, for(u,v,w) ∈ K

which essentially characterizes the optimal solution set of following optimization
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maximize
(u,v,w)∈K

〈Q,u⊗ v ⊗w〉 (3.20)

Then applying the Karush-Kuhn-Tucker (KKT) conditions to the constrained optimization (3.20), we can further relax

the subdifferential conditions (3.16) to a set of linear constraints.

Lemma 3.4.1. The following conditions are necessary for (3.16):∑
j,k

Qijkv
?
p(j)w

?
p(k) = u?p(i),∀i ∈ [n],∀p ∈ [r];

∑
i,k

Qijku
?
p(i)w

?
p(k) = v?p(j),∀i ∈ [n],∀p ∈ [r];

∑
i,j

Qijku
?
p(i)v

?
p(j) = w?

p(k),∀i ∈ [n],∀p ∈ [r]

or in tensor notation

Q×2v
?
p×3w

?
p = u?p,∀p ∈ [r];

Q×1u
?
p×3w

?
p = v?p,∀p ∈ [r];

Q×1u
?
p×2v

?
p = w?

p,∀p ∈ [r]

(3.21)

where {×k} are the k-mode tensor-vector product [76] whose definitions are apparent from context.

The proof of Lemma 3.4.1 is given in Appendix B.1.

Apparently, the subdifferntial conditions (3.16) is necessary for the BIP (3.11), but generally not sufficient, by

comparing the second line of (3.16) and the Boundedness Property (3.11b). Indeed, as we argued before, any Q

satisfying the BIP is an interior point of the subdifferential ∂‖ · ‖∗(T ). To satisfy the Boundedness Property (3.11b),

we further minimize the energy ‖Q‖2F =
∑
ijkQ

2
ijk in the hope that this will push q(u,v,w) towards zero such that

Q is an interior point of ∂‖ · ‖∗(T ). Thus, we propose solving the following minimum-energy problem to obtain a

pre-certificate:

minimize
Q

1

2
‖Q‖2F subject to (3.21) (3.22)

Lemma 3.4.2 (Explicit form of the pre-certificate). The solution of the least-norm problem ( 3.22) has the form

(normal equation)

Q =

r∑
p=1

(α?p ⊗ v?p ⊗w?
p + u?p ⊗ β?p ⊗w?

p + u?p ⊗ v?p ⊗ γ?p) (3.23)

with the unknown coefficients {α?p,β?p,γ?p}rp=1 being chosen such that Q in (3.23) satisfies (3.21). So we get an

explicit form of a pre-certificate
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q(u,v,w) = 〈Q,u⊗ v ⊗w〉

=

r∑
p=1

[〈α?p,u〉〈v?p,v〉〈w?
p,w〉+ 〈u?p,u〉〈β?p,v〉〈w?

p,w〉+ 〈u?p,u〉〈v?p,v〉〈γ?p,w〉]. (3.24)

The proof of Lemma 3.4.2 is given in Appendix B.2.

To obtain some intuition of what these dual-polynomial coefficients {α?p,β?p,γ?p}rp=1 would look like, let us as-

sume {u?p}rp=1, {v?p}rp=1, {w?
p}rp=1 are almost orthogonal and plug the explicit form of Q (3.23) into the first equation

in (3.21)

α?p + u?p〈β?p,v?p〉+ u?p〈γ?p,w?
p〉 ≈ u?p. (3.25)

Then multiplying u?>p on both sides gives

〈α?p,u?p〉+ 〈β?p,v?p〉+ 〈γ?p,w?
p〉 ≈ 1. (3.26)

Finally combining (3.25) and (3.26) together with the symmetry property of (3.23), we get these coefficients {α?p,β?p,γ?p}rp=1

are located approximately at {u?p/3,v?p/3,w?
p/3}rp=1. The accurate description of this phenomenon is given by the

following lemma with the proof listed in Appendix B.3.

Lemma 3.4.3 (Control the dual polynomial coefficients). Under Assumptions II and III together with r = o(n2/κ(log n)2),

the following estimates are valid for sufficiently large n:

∥∥∥∥A− 1

3
U

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥B− 1

3
V

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥C− 1

3
W

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
where

A =
[
α?1, · · · ,α?r

]
,U =

[
u?1, · · · ,u?r

]
;

B =
[
β?1, · · · ,β?r

]
,V =

[
v?1, · · · ,v?r

]
;

C =
[
γ?1, · · · ,γ?r

]
,W =

[
w?

1, · · · ,w?
r

]
and the norm ‖ · ‖ is the matrix spectral norm.

3.4.3 Far Region

For a parameter δ ∈ (0, 1), the far region is defined by
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F(δ) :=

r⋂
p=1

{(u,v,w) ∈ K : |〈u,u?p〉| ≤ δ or |〈v,v?p〉| ≤ δ or |〈w,w?
p〉| ≤ δ}, (3.27)

which consists of points (u,v,w) in K that are far away (in the angular sense) from

S̄? = {(±u?p,±v?p,±w?
p) : p = 1, . . . , r} (3.28)

in at least one coordinate of (u,v,w). For n = 3 and r = 2, the far region projected onto the unit sphere {u : ‖u‖2 =

1} is shown in Figure 3.2.

Figure 3.2: Projection of the far region in the u coordinate. The blue band represents the region {u : |〈u,u?1〉| ≤ δ}
that is far away from u?1, while the green region {u : |〈u,u?2〉| ≤ δ} is the far-region associated with u?2. The far
region is their intersection

⋂2
p=1{u : |〈u,u?p〉| ≤ δ}, consisting of the two black diamonds.

Far-Region Bound. Instead of bounding the dual polynomial q directly, we will bound its absolute value |q|. To

obtain some intuition of how to bound it, we rewrite the explicit form (3.24) as follows

q(u,v,w)

=

r∑
p=1

[
〈α?p −

1

3
u?p,u〉〈v?p,v〉〈w?

p,w〉+ 〈u?p,u〉〈β?p −
1

3
v?p,v〉〈w?

p,w〉+ 〈u?p,u〉〈v?p,v〉〈γ?p −
1

3
w?
p,w〉

]
(3.29)

+

r∑
p=1

〈u?p,u〉〈v?p,v〉〈w?
p,w〉. (3.30)

The main idea is first using the closeness of {α?p,β?p,γ?p}rp=1 and {u?p/3,v?p/3,w?
p/3}rp=1 to bound (3.29) and then

using angular-distance between F(δ) and (u?p,v
?
p,w

?
p),∀p to bound (3.30).

The accurate argument is made by the following lemma with the proof given in Appendix B.4.
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Lemma 3.4.4 (Far-region bound). Under Assumptions I, II, III, if r � n1.25 and r ≤ n
24δc2 for δ ∈ (0, 1

24 ], then for

sufficiently large n, we have |q(u,v,w)| < 1 in F(δ).

3.4.4 Near Region

For the union of the far and near regions to cover the entire region K, we define the near region as

N (δ) :=K \ F(δ) =

r⋃
p=1

{(u,v,w) ∈ K : |〈u?p,u〉| ≥ δ, |〈v?p,v〉| ≥ δ, |〈w?
p,w〉| ≥ δ} (3.31)

using De Morgan’s Law. One can also treat the whole near region as a union of all individual ones

N (δ) =

r⋃
p=1

Np(δ)

with each individual near region defined by

Np(δ) := {(u,v,w) ∈ K : |〈u?p,u〉| ≥ δ, |〈v?p,v〉| ≥ δ, |〈w?
p,w〉| ≥ δ} (3.32)

which is composed of all the points that is closed to at least one point in S̄? in all coordinate of (u,v,w). For n = 3,

r = 2, we plot the near region N1(δ) projected onto the sphere {u : ‖u‖2 = 1} in Figure 3.3.

Figure 3.3: The two yellow spherical caps form the near region N1(δ) around the point (u?1,v
?
1,w

?
1) projected onto

the u coordinates. N2(δ), which is not shown here, consists of another two spherical caps. The union ofN1(δ),N2(δ)
and the far region F(d) shown in Figure 3.2 will cover the entire sphere {u : ‖u‖ = 1}.

In order to show the dual polynomial satisfying the BIP in the entire near region N (δ), we use the “Divide-and-

conquer" idea to bound the dual polynomial in each individual near regionNp(δ) for p ∈ [r]. The main technique used

to control each individual near region is applying angular parameterization to each individual near region.
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3.4.5 Angular Parameterization

Angular Parametrization of Near Region. As the domain K is essentially a direct product of spheres, we re-

parameterize each individual near regionNp(δ) in the angular sense. Without loss of generality, let us consider p = 1.

Pick (x,y, z) ∈ K such that x ⊥ u?1,y ⊥ v?1, z ⊥ w?
1 and consider the parameterized points

(u(θ1),v(θ2),w(θ3)) ∈ K

with

u(θ1) = u?1 cos(θ1) + x sin(θ1),

v(θ2) = v?1 cos(θ2) + y sin(θ2),

w(θ3) = w?
1 cos(θ3) + z sin(θ3).

(3.33)

When θ1 ranges from 0 to π, u(θ1) traces out a 2D semi-circle that starts at u?1, passes through x, and finally reaches

−u?1; while for a fixed θ1 ∈ [0, π], the set
⋃

x⊥u?1
{u(θ1)} parameterizes all the points on Sn−1 having an angle of

θ1 with u?1. The same properties hold for v(θ2) and w(θ3). This parametrization projected onto the u coordinate is

shown in Figure 3.4.

Figure 3.4: Parameterization of points on the unit sphere for u.

In fact, using this angular parametrization, the individual near region N1(δ) in (3.32) can be expressed as

N1(δ) =
⋃

(x,y,z):x⊥u?1 ,y⊥v?1 ,z⊥w?
1

{(u(θ1),v(θ2),w(θ3)) : | cos(θi)| ≥ δ, θi ∈ [0, π], i = 1, 2, 3}. (3.34)

Proposition 3.4.1 (Angular near region). For any δ ∈ (0, 1), the near regionN1(δ) is contained in the following set

N1(δ) ⊂
⋃

(x,y,z):x⊥u?1 ,y⊥v?1 ,z⊥w?
1

{(u(θ1),v(θ2),w(θ3)) : (θ1, θ2, θ3) ∈ N(δ)} (3.35)
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with the angular near region N(δ) defined by

N(δ) :=
{

(θ1, θ2, θ3) : θi ∈
[
0,
π

2
− δ
]
∪
[π

2
+ δ, π

]
, i = 1, 2, 3

}
. (3.36)

Proof. Since the function | cos(θ)| is symmetric at π
2 on the interval [0, π] and is decreasing on [0, π/2], we know

that {θ : | cos(θ)| ≥ δ} ∩ [0, π] = [0, arccos(δ)] ∪ [π − arccos(δ), π]. Note that arccos(δ) = π
2 − arcsin(δ) and

δ < arcsin(δ), so we get {θ : | cos(θ)| ≥ δ}∩ [0, π] ⊂ [0, π2 −δ]∪ [π2 +δ, π]. The inclusion (3.35) follows from (3.34)

immediately.

The angular near region N(δ) contains total eight cubes with side length π
2 − δ, located at the eight corners of the

cube [0, π] × [0, π] × [0, π]. Moreover, one can see that the smaller the parameter δ is, the larger the angular near

region N(δ) will be. In particular, when δ approaches to zero, the angular near region N(δ) becomes the whole cube

N(0) = [0, π]× [0, π]× [0, π]. The angular near region N(δ) is plotted in Figure 3.5.

(0,0,0) 

(𝜋,𝜋,π) 

(𝜋, 0,0) 

(0,𝜋,𝜋) 

(𝜋,𝜋, 0) 

(0,0,𝜋) 

Figure 3.5: The eight gray cubes of side-length π/2− δ at the corners form the angular near region N(δ).

Angular Parametrization of Dual Polynomial. Evaluating the dual polynomial q(u,v,w) at (u(θ1),v(θ2),w(θ3))

in (3.33), we get the angular dual polynomial F (θ1, θ2, θ3) := q(u(θ1),v(θ2),w(θ3)) as

F (θ1, θ2, θ3) =q(u?1,v
?
1,w

?
1) cos(θ1) cos(θ2) cos(θ3)

+ q(u?1,v
?
1, z) cos(θ1) cos(θ2) sin(θ3)

+ q(u?1,y,w
?
1) cos(θ1) sin(θ2) cos(θ3)

+ q(x,v?1,w
?
1) sin(θ1) cos(θ2) cos(θ3)

+ q(u?1,y, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x,v?1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x,y,w?
1) sin(θ1) sin(θ2) cos(θ3)

+ q(x,y, z) sin(θ1) sin(θ2) sin(θ3).
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Among these 8 terms, the first term is cos(θ1) cos(θ2) cos(θ3) since q(u?1,v
?
1,w

?
1) = 1. The next three terms involving

one sine function are zero as, for example,

q(u?1,v
?
1, z) = Q×1u

?
1×2v

?
1×3z = w?

1×3z = w?
1
>z = 0,

where we have used Q×1u
?
1×2v

?
1 = w?

1 and the third equality of (3.21). Hence, we get a more concise form of F :

F (θ1, θ2, θ3) = cos(θ1) cos(θ2) cos(θ3) + q(u?1,y, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x,v?1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x,y,w?
1) sin(θ1) sin(θ2) cos(θ3)

+ q(x,y, z) sin(θ1) sin(θ2) sin(θ3).

(3.37)

By further bounding the other quantities q(u?1,y, z), q(x,v?1, z), q(x,y,w?
1) and q(x,y, z), we get the following

lemma to uniformly upper-bound F (θ1, θ2, θ3) with the proof given in Appendix B.5.

Lemma 3.4.5 (Uniform upper bound of F ). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ), then

for sufficiently large n, we have

|F (θ1, θ2, θ3)| ≤ | cos(θ1) cos(θ2) cos(θ3)|+ | sin(θ1) sin(θ2) sin(θ3)|+ 4

3
τ(log n)n−rc . (3.38)

3.4.6 Near-Region Bound

Angular Boundedness and Interpolation Property. By Proposition 3.4.1, a sufficient condition for the BIP (3.11) to

hold in the individual near regionN1(δ), is the following Angular Boundedness and Interpolation Property (Angular-

BIP):

F (θ1, θ2, θ3) = 1 in S? (Angular Interpolation) (3.39a)
F (θ1, θ2, θ3) < 1 in N(δ) \ S? (Angular Bounedness) (3.39b)

with S? := {(0, 0, 0), (0, π, π), (π, 0, π), (π, π, 0)} such that u(θ1) ⊗ v(θ2) ⊗ w(θ3) = u?1 ⊗ v?1 ⊗ w?
1 for any

(θ1, θ2, θ3) ∈ S?.

Similar as before, the Angular Interpolation property (3.39a) is a consequence of the construction process. In the

rest of the chapter, we will focus on showing the Angular Boundedness property (3.39b). Specifically, we will control

the angular dual polynomial F in both the vertex region and band region and then show their union covers the angular

near region N(δ).

Vertex Region. The vertex region, denoted by Nv(δv), is defined as the union of the eight small cubes all with side

length δv in 8 corners of the cube [0, π]3. We plot the vertex regionNv(δv) in Figure 3.6. Comparing with the definition

of the angular near region N(·), the vertex region is also an angular near region but with a different parameter:
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Nv(δv) = N(
π

2
− δv). (3.40)

Without loss of generality, we can always assume the vertex region Nv(δv) is included in the angular near region N(δ);

otherwise, we only need to show the Angular-BIP holds in Nv(δv). This assumption together with (3.40) implies

δv ≤
π

2
− δ. (3.41)

Note that π/2− δ is the side length of the corner-cubes in N(δ).

Vertex-Region Bound. To control the angular dual polynomial F in the vertex region Nv(δv), we further classify the

eight small cubes in Nv(δv) into two groups depending on if their vertices are in S? or not.

(0,0,0) 

(𝜋, 𝜋, π) 

(𝜋, 0,0) 

(0, 𝜋, 𝜋) 

(𝜋, 𝜋, 0) 

(0,0, 𝜋) 

Figure 3.6: The eight colored cubes of size δv×δv×δv form the vertex region Nv(δv): the red ones are corresponding
to the vertexes in S? while the blue ones are corresponding to other vertexes in the cube. Note that these colored
corner-cubes are possibly much smaller than those gray ones in Figure 3.5, whose side length is π/2− δ.

Lemma 3.4.6 (Vertex-region bound). Under Assumptions I, II, III, if r � n1.25, then for any ξi ∈
(
−
√

2−1
3 ,

√
2−1
3

)
,

we have

F (θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) ≤ 1 (3.42)

for (θ1, θ2, θ3) ∈ {(0, 0, 0), (0, π, π), (π, 0, π), (π, π, 0)} and

F (θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) < 0 (3.43)

for (θ1, θ2, θ3) ∈ {(π, π, π), (π, 0, 0), (0, π, 0), (0, 0, π)}. Here, equality in (3.42) holds only if ξ1 = ξ2 = ξ3 = 0.

The proof of Lemma 3.4.6 is in Appendix B.6.
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Remark 3.4.1. Lemma 3.4.6 proves the Angular-BIP (3.39) holds in the vertex region Nv(δv) with δv =
√

2−1
3 :

F (θ1, θ2, θ3) = 1 in S?

F (θ1, θ2, θ3) < 1 in Nv(δv) \ S?

Band Region. The band region is introduced to cover the remaining region N(δ) \ Nv(δv). Invoking the definitions

of the angular near region (3.36) and the vertex region (3.40):

N(δ) =
{

(θ1, θ2, θ3) : θi ∈
[
0,
π

2
− δ
]
∪
[π

2
+ δ, π

]}
Nv(δv) = {(θ1, θ2, θ3) : θi ∈ [0, δv] ∪ [π − δv, π]}

we have

N(δ) \ Nv(δv) =
{

(θ1, θ2, θ3) : θi ∈
(
δv,

π

2
− δ
)
∪
(π

2
+ δ, π − δv

)}
∩ N(δ), (3.44)

which is nonempty since δv ≤ π/2−δ by the assumption (3.41). We plot the remaining regionN(δ)\Nv(δv) projected

onto the (θ1, θ2)-coordinates in Figure 3.7.

0 

𝜋 

𝜃1 

𝜃2 

𝜋 𝛿𝑣 0.5𝜋 − 𝛿 𝜋 − 𝛿𝑣 0.5𝜋 + 𝛿 

Figure 3.7: The remaining region N(δ) \ Nv(δv) projected onto the (θ1, θ2)-coordinates.

To let the band region cover N(δ) \ Nv(δv), we define it as

Nb(δb) :=
{

(θ1, θ2, θ3) : θi ∈
(
δb,

π

2
− δb

)
∪
(π

2
+ δb, π − δb

)
, i = 1, 2, 3

}
. (3.45)

We plot the band region Nb(δb) projected onto the (θ1, θ2)-coordinates in Figure 3.8.

Remark 3.4.2. From (3.44) and (3.45), we have Nb(δb) covers N(δ) \ Nv(δv) if δb ≤ min{δv, δ}, or equivalently,
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0 

𝜋 

𝜃1 

𝜃2 

𝜋 𝛿𝑏 0.5𝜋 − 𝛿𝑏 𝜋 − 𝛿𝑏 0.5𝜋 + 𝛿𝑏 

Figure 3.8: The band region Nb(δb) projected onto the (θ1, θ2)-coordinates. Clearly, when δb ≤ min{δv, δ}, the band
region Nb(δb) covers the remaining region N(δ) \ Nv(δv), as plotted in Figure 3.7.

N(δ) ⊂ Nb(δb) ∪ Nv(δv), if δb ≤ min{δv, δ}. (3.46)

Band-Region Bound. We start with the uniform upper-bound in Lemma 3.4.5:

|F (θ1, θ2, θ3)| ≤| cos(θ1) cos(θ2) cos(θ3)|+ | sin(θ1) sin(θ2) sin(θ3)|+ 4

3
τ(log n)n−rc

≤1

3
(| cos(θ1)|3 + | cos(θ2)|3 + | cos(θ3)|3) +

1

3
(| sin(θ1)|3 + | sin(θ2)|3 + | sin(θ3)|3) +

4

3
τ(log n)n−rc

≤1

3
(| cos(θi)|3 + | sin(θi)|3) +

2

3
+

4

3
τ(log n)n−rc , ∀i ∈ {1, 2, 3} (3.47)

where the first inequality follows from (3.38) in Lemma 3.4.5 (under Assumptions I-III and r ≤ n1.25−1.5rc with

rc ∈ (0, 1
6 )), the second inequality follows from the inequality of arithmetic and geometric means, and the last one is

a consequence of | sin(θ)|3 + | cos(θ)|3 ≤ 1. So, |F (θ1, θ2, θ3)| < 1 in Nb(δb) if

| cos(θi)|3 + | sin(θi)|3 < 1− 4τ(log n)n−rc (3.48)

for some i ∈ {1, 2, 3}. The final result is summarized in the following lemma, with the proof listed in Appendix B.7.

Lemma 3.4.7 (Band-region bound). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ), then for

sufficiently large n, we have |F (θ1, θ2, θ3)| < 1 in Nb(δb) for δb =
√

80τ(logn)
3 n−0.5rc .

Combine the Vertex and Band Regions. Finally the Angular-BIP (3.39) follows from Lemma 3.4.6 and Lemma 3.4.7

if the union of the vertex region Nv(δv) and the band region Nb(δb) covers the angular near region N(δ):
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N(δ) ⊂ Nv(δv) ∪ Nb(δb).

From (3.46), this happens when

δb ≤ min{δ, δv},

which is equivalent to

δb ≤ δ, (3.49)

since

δb =

√
80τ(log n)

3
n−0.5rc �

√
2− 1

3
= δv.

Then by Proposition 3.4.1, q satisfies the BIP in N1(δ). Similar results apply to all individual near region Np(δ),

for p ∈ [r]. Therefore we claim the BIP holds in the whole near region N (δ) =
⋃r
p=1Np(δ).

Lemma 3.4.8 (Near-region bound). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ), then for

sufficiently large n, the dual polynomial q satisfies the BIP in N (δ) for any δ ≥ δb.

3.4.7 Combine the Far and Near Regions

Combining Lemma 3.4.4 (for far region) and Lemma 3.4.8 (for near region), we conclude that the BIP holds in the

whole domain K if Assumptions I, II, III are satisfied and

r ≤ n

24δc2
for δ ∈

[
δb,

1

24

]
, (3.50)

r ≤ n1.25−1.5rc for rc ∈
(

0,
1

6

)
. (3.51)

Then letting δ = δb (to maximize r) and rc = 1
8 , the requirements on r ( (3.50) and (3.51)) are reduced to the desired

bound (3.7):

r ≤ n17/16

32c2
√

15τ(log n)
.

The proof of Theorem 3.1.1 is completed.

�

3.5 Numerical Experiments

In this section, some numerical results are presented to test the performance of the proposed computational meth-

ods. In the first experiment, we examine the phase transition curves of the rate of success for three algorithms:
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i) ADMM implementation of (3.18) with “Good Initialization" (ADMM-G), ii) ADMM with random initialization

(ADMM-R) and iii) the Lasserre hierarchy relaxation of order d = 2 (SOS-2). ADMM with “Good Initialization"

uses the output of the power method developed in [71] as initialization.

The phase transition curves are plotted in Figure 3.9. In preparing this figure, the r tensor factors {(u?p,v?p,w?
p)}rp=1

were generated following i.i.d. Gaussian distribution, and then each u?p,v
?
p,w

?
p was normalized to have a unit norm.

We set the coefficients λ?p = (1+ε2
p)/2, where εp is chosen from the standard normal distribution, to ensure a minimal

coefficient of at least 1/2. With the generated ground-truth factors {(u?p,v?p,w?
p)}rp=1 and coefficients {λp}rp=1, we

generated the tensor T =
∑r
p=1 λ

?
pu

?
p ⊗ v?p ⊗w?

p.

To test our theory, we varied the dimension n and factor-number r. For each fixed (r, n) pair, 20 instances of such

tensor were generated. We then ran the three algorithms for each instance and declared success if i) the recovered

truncated moment vector is within 10−3 distance of the true moment vector for the the Lasserre hierarchy relaxation

method, and ii) the recovered tensor factors are within 10−3 distance to the true tensor factors. We used the moment

vector criteria for the Lasserre hierarchy method because one cannot identify more than n tensor factors for the d = 2

relaxation. Also, considering the high computational complexity of the Lasserre hierarchy method when n is large,

we only set n range from 2 to 8. The rate of success for each algorithm is the percentage of successful instances.

From Figure 3.9, we observe that the Lasserre hierarchy relaxation with d = 2 is unable to identify more than n

factors. The ADMM method works for r much larger than n. In addition, random initialization does not degrade the

performance compared with “Good Initialization".

3.6 Conclusion

By explicitly constructing a dual certificate, we derive conditions for a tensor decomposition to achieve the tensor

nuclear norm. This implies that the infinite dimensional measure optimization, which defines the tensor nuclear norm,

is able to recover the decomposition under an incoherent condition and two other mild conditions. Computational

methods based on low-rank factorization and the Lasserre hierarchy relaxation are used to solve the measure optimiza-

tion. Numerical experiments show that the nonlinear programming approach has superior performance. Future work

will analyze the observed good performance of the nonlinear programming formulation.
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Figure 3.9: Rate of success for tensor decomposition using ADMM-G, ADMM-R and SOS-2.
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CHAPTER 4

THE NONCONVEX GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION

This work4 considers two popular minimization problems: (i) the minimization of a general convex function

f(X) with the domain being positive semi-definite matrices; (ii) the minimization of a general convex function f(X)

regularized by the matrix nuclear norm ‖X‖∗ with the domain being general matrices. Despite their optimal statistical

performance in the literature, these two optimization problems have a high computational complexity even when

solved using tailored fast convex solvers. To develop faster and more scalable algorithms, we follow the proposal

of Burer and Monteiro to factor the low-rank variable X = UU> (for semi-definite matrices) or X = UV> (for

general matrices) and also replace the nuclear norm ‖X‖∗ with (‖U‖2F + ‖V‖2F )/2. In spite of the non-convexity of

the resulting factored formulations, we prove that each critical point either corresponds to the global optimum of the

original convex problems or is a strict saddle where the Hessian matrix has a strictly negative eigenvalue. Such a nice

geometric structure of the factored formulations allows many local search algorithms to find a global optimizer even

with random initializations.

4.1 Introduction

Nonconvex reformulations of convex optimization problems have received a surge of renewed interest for effi-

ciency and scalability reasons [4, 97–112]. Compared with the convex formulations, the non-convex ones typically

involve many fewer variables, allowing them to scale to scenarios with millions of variables. Besides, simple algo-

rithms [97,113,114] applied to the non-convex formulations have surprisingly good performance in practice. However,

a complete understanding of this phenomenon, particularly the geometrical structures of these non-convex optimiza-

tion problems, is still an active research area. Unlike the simple geometry of convex optimization problems where local

minimizers are also global ones, the landscapes of general non-convex functions can become extremely complicated.

Fortunately, for a range of convex optimization problems, particularly for matrix completion and sensing problems,

the corresponding non-convex reformulations have nice geometric structures that allow local-search algorithms to

converge to global optimality [93, 97, 100, 101, 104, 113, 114] .

We extend this line of investigation by working with a general convex function f(X) and considering the following

two popular optimization problems:

For symmetric case: minimize
X∈Rn×n

f(X) subject to X � 0 (P0)

For nonsymmetric case: minimize
X∈Rn×m

f(X) + λ‖X‖∗ where λ > 0 (P1)

4This is a joint work with Zhihui Zhu and Gongguo Tang [6].
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For these two problems, even fast first-order methods, such as the projected gradient descent algorithm [115], require

performing an expensive eigenvalue decomposition or singular value decomposition in each iteration. These expen-

sive operations form the major computational bottleneck and prevent them from scaling to scenarios with millions

of variables, a typical situation in a diverse range of applications, including quantum state tomography [116], user

preferences prediction [117], and pairwise distances estimation in sensor localization [118].

4.1.1 Our Approach: Burer-Monteiro Style Parameterization

As we have seen, the extremely large dimension of the optimization variable X and the accordingly expensive

eigenvalue or singular value decompositions on X form the major computational bottleneck of the convex optimization

algorithms. An immediate question might be “Is there a way to directly reduce the dimension of the optimization

variable X and meanwhile avoid performing the expensive eigenvalue or singular value decompositions?"

This question can be answered when the original optimization problems (P0)- (P1) admit a low-rank solution X?

with rank(X?) = r? � min{n,m}. Then we can follow the proposal of Burer and Monteiro [119] to parameterize

the low-rank variable as X = UU> for (P0) or X = UV> for (P1), where U ∈ Rn×r and V ∈ Rm×r with

r ≥ r?. Moreover, since ‖X‖∗ = minimizeX=UV>(‖U‖2F + ‖V‖2F )/2, we obtain the following non-convex re-

parameterizations of (P0)- (P1):

For symmetric case: minimize
U∈Rn×r

g(U) = f(UU>) (F0)

For nonsymmetric case: minimize
U∈Rn×r,V ∈Rm×r

g(U,V) = f(UV>) +
λ

2

(
‖U‖2F + ‖V‖2F

)
(F1)

Since r � {p, q}, the resulting factored problems (F0)- (F1) involve many fewer variables. Moreover, because the

positive semi-definite constraint is removed from (P0) and the nuclear norm ‖X‖∗ in (P1) is replaced by (‖U‖2F +

‖V‖2F )/2, there is no need to perform an eigenvalue (or a singular value) decomposition in solving the factored

problems.

The past two years have seen renewed interest in the Burer-Monteiro factorization for solving low-rank matrix

optimization problems [100–104, 120]. With technical innovations in analyzing the non-convex landscape of the

factored objective function, several recent works have shown that with an exact parameterization (i.e., r = r?) the

resulting factored reformulation has no spurious local minima or degenerate saddle points [93, 100, 101, 104]. An

important implication is that local-search algorithms such as gradient descent and its variants can converge to the

global optima with even random initialization [97, 113, 114].

We generalize this line of work by assuming a general objective function f(X) in (P0)- (P1), not necessarily

coming from a matrix inverse problem. This generality allows us to view the resulting factored problems (F0)- (F1)

as a way to solve the original convex optimization problems to the global optimum, rather than a new modeling
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method. This perspective, also taken by Burer and Monteiro in their original work [119], frees us from rederiving

the statistical performances of the resulting factored optimization problems. Instead, the statistical performances of

the resulting factored optimization problems inherit from that of the original convex optimization problems, whose

statistical performance can be analyzed using a suite of powerful convex analysis techniques, which have accumu-

lated from several decades of research. For example, the original convex optimization problems (P0)- (P1) have

information-theoretically optimal sampling complexity [121], achieve minimax denoising rate [122] and satisfy tight

oracle inequalities [123]. Therefore, the statistical performances of the factored optimization problems (F0)- (F1)

share the same theoretical bounds as those of the original convex optimization problems (P0)- (P1), as long as we can

show that the two problems are equivalent.

In spite of their optimal statistical performance [121–124], the original convex optimization problems cannot be

scaled to solve the practical problems that originally motivate their development even with specialized first-order

algorithms. This was realized since the advent of this field where the low-rank factorization method was proposed as

an alternative to convex solvers [119]. When coupled with stochastic gradient descent, low-rank factorization leads to

state-of-the-art performance in practical matrix recovery problems [93,100–102,104]. Therefore, our general analysis

technique also sheds light on the connection between the geometries of the original convex programs and their non-

convex reformulations.

Although the Burer-Monteiro parameterization tremendously reduces the number of optimization variables from

n2 to nr (or nm to (n + m)r) when r is very small, the intrinsic bi-linearity makes the factored objective functions

non-convex and introduces additional critical points that are not global optima of the factored optimization problems.

One of our main purposes is to show that these additional critical points will not introduce spurious local minima.

More precisely, we want to figure out what properties of the convex function f are required for the factored objective

functions g to have no spurious local minima.

4.1.2 Enlightening Examples

To gain some intuition about the properties of f such that the factored objective function g has no spurious local

minima (which is one of the main goals considered in this work), let us consider the following two examples: Weighted

principal component analysis (weighted PCA) and the matrix sensing problem.

4.1.2.1 Weighted PCA

Consider the symmetric weighted PCA problem in which the lifted objective function is

f(X) =
1

2
‖W � (X−X?)‖2F ,

where � is the Hadamard product, X? is the global optimum we want to recover and W is the known weighting

matrix (which is assumed to have no zero entries for simplicity). After applying the Burer-Monteiro parameterization
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to f(X), we obtain the factored objective function

g(U) =
1

2
‖W � (UU> −X?)‖2F .

To investigate the conditions under which the bi-linearity φ(U) = UU> will (not) introduce additional local minima

to the factored optimization problems, consider a simple (but enlightening) two-dimensional example where W =√1 + a 1

1
√

1 + a

 for some a ≥ 0,X? =

1 1

1 1

 , and U =

x
y

 for unknowns x, y. Then the factored objective

function becomes

g(U) =
1 + a

2

(
x2 − 1

)2
+

1 + a

2

(
y2 − 1

)2
+ (xy − 1)2. (4.1)

In this particular setting, we will see that the value of a in the weighting matrix is the deciding factor for the occurrence

of spurious local minima.

Claim 4.1.1. The factored objective function g(U) in (4.1) has no spurious local minima when a ∈ [0, 2); while for

a > 2, spurious local minima will appear.

Proof. First of all, we compute the gradient∇g(U) and Hessian∇2g(U):

∇g(U) = 2

[
(a+ 1)

(
x2 − 1

)
x+ y(xy − 1)

(a+ 1)
(
y2 − 1

)
y + x(xy − 1)

]
,

∇2g(U) = 2

[
y2 +

(
3x2 − 1

)
(a+ 1) 2xy − 1

2xy − 1 x2 +
(
3y2 − 1

)
(a+ 1)

]
.

Now we collect all the critical points by solving∇g(U) = 0 and list the Hessian of g at these points as follows5

¬ U1 = (0, 0),∇2g(U1) = −2

a+ 1 1

1 a+ 1

 ;

­ U2 = (1, 1),∇2g(U2) = 2

2a+ 3 1

1 2a+ 3

 ;

® U3 = (
√

a
a+2 ,−

√
a
a+2 ), ∇2g(U3) =

4a+ 8
a+2 − 6 8

a+2 − 6

8
a+2 − 6 4a+ 8

a+2 − 6

 ;

¯ U4 = (

√√
a2−4+a
a√
2

,−
√

2

a

√√
a2−4+a
a

),∇2g(U4) =

a+ 3
√
a2 − 4 + 2 + 2

√
a2−4
a − 2(a+2)

a

− 2(a+2)
a a− 3

√
a2 − 4 + 2− 2

√
a2−4
a

 .

5Note that if U is a critical point, so is −U, since∇g(−U) = −∇g(U). Hence we only list one part of these critical points.
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Note that the critical point U4 exists only for a ≥ 2. By checking the signs of the two eigenvalues (denoted by

λ1 and λ2) of these Hessians, we can further classify these critical points as a local minimum, a local maximum, or a

saddle point6:

¬ λ1 = −2(a + 2), λ2 = −2a. So, U1 is a local maximum for a > 0 and a strict saddle for a = 0 (see

Definition 4.1.3).

­ λ1 = 4(a+ 1) > 0, λ2 = 4(a+ 2) > 0. So, U2 is a local minimum (also a global minimum as g(U2) = 0).

® λ1 = 4(a−2)(a+1)
a+2


< 0, a ∈ [0, 2)

> 0, a > 2

, λ2 = 4a > 0. So, U3 is


a saddle point, a ∈ [0, 2)

a spurious local minimum, a > 2

¯ From the determinant, we have λ1 ·λ2 = − 8(a−2)(a+1)(a+2)
a < 0 for a > 2. So, U4 is a saddle point for a > 2.

In this example, the value of a controls the dynamic range of the weights as maxW 2
ij/minW 2

ij = 1+a. Therefore,

Claim 4.1.1 can be interpreted as a relationship between the spurious local minima and the dynamic range: if the

dynamic range maxW 2
ij/minW 2

ij is smaller than 3, there will be no spurious local minima; while if the dynamic

range is larger than 3, spurious local minima will appear. We also plot the landscapes of the factored objective

function g(U) in (4.1) with different dynamic ranges in Figure 4.1.

(a) Small dynamic range (b) Large dynamic range

Figure 4.1: Factored function landscapes corresponding to different dynamic ranges of the weights W: (a) a small
dynamic range with maxW 2

ij/minW 2
ij = 1 and (b) a large dynamic range with maxW 2

ij/minW 2
ij > 3.

As we have seen, the dynamic range of the weighting matrix serves as a determinant factor for the appearance of

the spurious local minima for g(U) in (4.1). To extend the above observations to general objective functions, we now

6This classification of the critical points using the Hessian information is known as the second derivative test, which says a critical point is a local
maximum if the Hessian is negative definite, a local minimum is the Hessian is positive definite, and a saddle point if the Hessian matrix has both
positive and negative eigenvalues.
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interpret this condition (on the dynamic range of the weighting matrix) by relating it with the condition number of the

Hessian matrix∇2f(X). This can be seen from the following directional-curvature form for f(X)

[∇2f(X)](D,D) = ‖W �D‖2F ,

where [∇2f(X)](D,D) is the directional curvature of f(X) along the matrix D of the same dimension as X, de-

fined by
∑
i,j,l,k

∂2f(X)
∂Xij∂Xlk

DijDlk. This implies that the condition number λmax(∇2f(X))/λmin(∇2f(X)) is upper-

bounded by this dynamic range:

min
ij
|Wij |2 · ‖D‖2F ≤ [∇2f(X)](D,D) ≤ max

ij
|Wij |2 · ‖D‖2F ⇐⇒ λmax(∇2f(X))

λmin(∇2f(X))
≤

maxW 2
ij

minW 2
ij

(4.2)

Therefore, we conjecture that the condition number of the general convex function f(X) would be a deciding factor of

the behavior of the landscape of the factored objective function and a large condition number is very likely to introduce

spurious local minima to the factored problem.

4.1.2.2 Matrix Sensing

The above conjecture can be further verified by the matrix sensing problem where the goal is to recover the low

rank PSD matrix X? ∈ Rn×n from the linear measurement y = A(X?) with A : Rn×n → Rm being a linear

measurement operator. Consider the factored objective function g(U) = f(UU>) with U ∈ Rn×r. In [104,125], the

authors showed that the non-convex parametrization UU> will not introduce spurious local minima to the factored

objective function, provided the linear measurement operator A satisfies the following restricted isometry property

(RIP).

Definition 4.1.1 (Restricted isometry property). A linear operator A : Rn×n → Rm satisfies the r-RIP with constant

δr if

(1− δr)‖D‖2F ≤ ‖A(D)‖22 ≤ (1 + δr)‖D‖2F (4.3)

holds for all n× n matrices D with rank(D) ≤ r.

Note that the required condition (4.3) essentially says that the condition number of Hessian matrix∇2f(X) should

be small at least in the directions of the low-rank matrices D, since the directional curvature form of f(X) is computed

as [∇2f(X)](D,D) = ‖A(D)‖2F .

Inspiration. From these two examples, we see that as long as the Hessian matrix of the original convex function f(X)

has a small (restricted) condition number, the resulting factored objective function has a landscape such that all local

minima correspond to the globally optimal solution. Therefore, we believe that such a restricted well-conditionedness

property might be the key factor bring us a benign factored landscape, i.e.,
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α‖D‖2F ≤ [∇2f(X)](D,D) ≤ β‖D‖2F with some small β/α,

which says that the landscape of f(X) in the lifted space is bowl-shaped, at least in the directions of low-rank matrices.

4.1.3 Our Results

Before presenting the main results, we list a few necessary definitions.

Definition 4.1.2 (Critical points). For a continuous function f : Rn → R, we say x ∈ Rn is a critical point of

function f , if the gradient vanishes, i.e.,∇f(x) = 0.

Definition 4.1.3 (Strict saddles; or ridable saddles [97]). For a twice differentiable function f , a critical point x is

a strict saddle if the Hessian matrix∇2f(x) has at least one strictly negative eigenvalue.

Definition 4.1.4 (Strict saddle property [100]). A twice differentiable function satisfies strict saddle property if each

critical point either corresponds to the local minima or is a strict saddle.

Heuristically, the strict saddle property describes a geometric structure of the landscape: if a critical point is not

a local minimum, then it is a strict saddle, which implies that the Hessian matrix at this point has a strictly negative

eigenvalue. Hence, we can continue to decrease the function value at this point along the negative-curvature direction.

This nice geometric structure ensures that many local-search algorithms, such as noisy gradient descent [114], vanilla

gradient descent with random initialization [113] and the trust region method [97], can escape from all the saddle points

along the directions associated with the Hessian’s negative eigenvalues, and hence converge to a local minimum.

Theorem 4.1.1 (Local convergence for strict saddle property [97, 113, 114, 126, 127]). The strict saddle property7

allows many local-search algorithms to escape all the saddle points and converge to a local minimum.

Our primary interest is to understand how the original convex landscapes are transformed by the factored parame-

terization X = UU> or X = UV>, particularly how the original global optimum is mapped to the factored space,

how other types of critical points are introduced, and what are their properties. To answer these questions and conclude

from the previous two examples, we require that the function f(X) in (P0)- (P1) be restricted well-conditioned8:
7To be precise, Lee et al. [127] showed that for any function that has a Lipschitz continuous gradient and obeys the strict saddle property, first-
order methods with a random initialization almost always escape all the saddle points and converge to a local minimum. The Lipschitz-gradient
assumption is commonly adopted for analyzing the convergence of local-search algorithms, and we will discuss this issue after Theorem 4.3.1.
To obtain explicit convergence rate, other properties (like the gradient at the points that are away from the critical points is not small) about the
objective functions may be required [97, 114, 126, 128]. In this work, similar to [100], we mostly focus on the properties of the critical points, and
we omit the details about the convergence rate. However, we should note that, by utilizing the similar approach in [93], it is possible to extend the
strict saddle property so that we can obtain explicit convergence rate for certain algorithms [97, 114, 126] when applied for solving the factored
low-rank problems.

8Note that the constant 1.5 for the dynamic range β
α

in (C) is not optimized and it is possible to slightly relax this constraint with more sophisticated
analysis. However, the example of the weighted PCA in (4.1) implies that the room for improving this constant is rather limited. In particular,
Claim 4.1.1 and (4.2) indicate that when β

α
> 3, the spurious local minima will occur for the weighted PCA in (4.1). Thus, as a sufficient condition

for any general objective function to have no spurious local minima, a universal bound on the condition number should be at least no larger than 3,
i.e., β

α
≤ 3. Also aside from the lack of spurious local minima, as stated in Theorem 4.1.2, the strict saddle property is the other one that needs to

be guaranteed.

60



α‖D‖2F ≤ [∇2f(X)](D,D) ≤ β‖D‖2F with β/α ≤ 1.5 whenever rank(X) ≤ 2r and rank(D) ≤ 4r. (C)

We show that as long as the function f(X) in the original convex programs satisfies the restricted well-conditioned

assumption (C), each critical point of the factored programs either corresponds to the low-rank globally optimal solu-

tion of the original convex programs or is a strict saddle point where the Hessian matrix ∇2g has a strictly negative

eigenvalue. This nice geometric structure coupled with the powerful algorithmic tools provided in Theorem 4.1.1 thus

allows simple iterative algorithms to solve the factored programs to a global optimum.

Theorem 4.1.2 (Informal statement of our results). Suppose the objective function f(X) satisfies the restricted

well-conditioned assumption (C). Assume X? is an optimal solution of (P0) or (P1) with rank(X?) = r?. Set r ≥ r?

for the factored variables U and V. Then any critical point U (or (U,V)) of the factored objective function g in (F0)-

(F1) either corresponds to the global optimum X? such that X? = UU> for (P0) (or X? = UV> for (P1)) or is a

strict saddle point (which includes a local maximum) of g.

First note that our result covers both over-parameterization where r > r? and exact parameterization where r =

r?, while most existing results in low-rank matrix optimization problems [100, 101, 104] mainly consider the exact-

parameterization case, i.e., r = r?, due to the hardness of fulfilling the gap between the metric in the factored space

and the one in the lifted space for the over-parameterization case. The geometric property established in the theorem

ensures that many iterative algorithms [97, 113, 114] converge to a square-root factor (or a factorization) of X?, even

with random initialization. Therefore, we can recover the rank-r? global minimizer X? of (P0)- (P1) by running

local-search algorithms on the factored function g(U) (or g(U,V)) if we know an upper bound on the rank r?. For

problems with additional linear constraints, such as those studied in [119], one can combine the original objective

function with a least-squares term that penalizes the deviation from the linear constraints. As long as the penalization

parameter is large enough, the solution is equivalent to that of the constrained minimization problems and hence is

also covered by our result.

4.1.4 Stylized Applications

Our main result only relies on the restricted well-conditionedness of f(X). Therefore, in addition to low-rank

matrix recovery problems [93, 100–102, 104], it is also applicable to many other low-rank matrix optimization prob-

lems with non-quadratic objective functions, including 1-bit matrix recovery, robust PCA [101], and low-rank matrix

recovery with non-Gaussian noise [129]. For ease of exposition, we list the following stylized applications regarding

the PSD matrices. But we note that the results listed below also hold for the cases where X are general nonsymmetric

matrices.
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4.1.4.1 Weighted PCA

We already know that in the two-dimensional case, the landscape for the factored weighted PCA problem is closely

related with the dynamic range of the weighting matrix. Now we exploit Theorem 4.1.2 to derive the result for the

high-dimensional case. Consider the symmetric weighted PCA problem where the goal is to recover the ground-truth

X? from a pointwisely-weighted observation Y = W �X?. Here W ∈ Rn×n is the known weighting matrix and

the desired solution X? � 0 is of rank r?. A natural approach is to minimize the following squared `2 loss:

minimize
U∈Rn×r

1

2
‖W � (UU> −X?)‖2F . (4.4)

Unlike the low-rank approximation problem where W is the all-ones matrix, in general there is no analytic solutions

for the weighted PCA problem (4.4) [130] and directly solving this traditional `2 loss (4.4) is known to be NP-

hard [131]. We now apply Theorem 4.1.2 to the weighted PCA problem and show the objective function in (4.4)

has nice geometric structures. Towards that end, define f(X) = 1
2‖W � (X − X?)‖2F and compute its directional

curvature as

[∇2f(X)](D,D) = ‖W �D‖2F .

Since β/α is a restricted condition number (conditioning on directions of low-rank matrices), which must be no larger

than the standard condition number λmax(∇2f(X))/λmin(∇2f(X)). Thus, together with (4.2), we have

β

α
≤ λmax(∇2f(X))

λmin(∇2f(X))
≤

maxW 2
ij

minW 2
ij

.

Now we apply Theorem 4.1.2 to characterize the geometry of the factored problem of (4.4).

Corollary 4.1.1. Suppose the weighting matrix W has a small dynamic range
maxW 2

ij

minW 2
ij
≤ 1.5. Then the objective

function of (4.4) with r ≥ r? satisfies the strict saddle property and has no spurious local minima.

4.1.4.2 Matrix Sensing

We now consider the matrix sensing problem which is presented before in Section 4.1.2. To apply Theorem 4.1.2,

we first compare the RIP (4.3) with our restricted well-conditionedness (C), which is copied below

α‖D‖2F ≤ [∇2f(X)](D,D) ≤ β‖D‖2F with β/α ≤ 1.5 whenever rank(X) ≤ 2r and rank(D) ≤ 4r.

Clearly, the restricted well-conditionedness (C) would hold if the linear measurement operator A satisfies the 4r-RIP

with a constant δr such that

1 + δ4r
1− δ4r

≤ 1.5 ⇐⇒ δ4r ∈
[
0,

1

5

]
.
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Now we can apply Theorem 4.1.2 to characterize the geometry of the following matrix sensing problem after the

factored parameterization:

minimize
U∈Rn×r

1

2
‖y −A(UU>)‖22. (4.5)

Corollary 4.1.2. Suppose the linear map A satisfies the 4r-RIP (4.3) with δ4r ∈ [0, 1/5]. Then the objective function

of (4.5) with r ≥ r? satisfies the strict saddle property and has no spurious local minima.

4.1.4.3 1-bit Matrix Completion

1-bit matrix completion, as its name indicates, is the inverse problem of completing a low-rank matrix from a set

of 1-bit quantized measurements

Yij = bit(X?
ij) for (i, j) ∈ Ω.

Here, X? ∈ Rn×n is the low-rank PSD matrix of rank r?, Ω is a subset of the indices [n]× [n], and bit(·) is the 1-bit

quantifier which outputs 0 or 1 in a probabilistic manner:

bit(x) =

{
1, with probability σ(x),

0, with probability 1− σ(x).

One typical choice for σ(x) is the sigmoid function σ(x) = ex

1+ex . To recover X?, the authors of [132] propose to

minimizing the negative log-likelihood function

minimize
X�0

f(X) := −
∑

(i,j)∈Ω

[
Yij log(σ(Xij)) + (1− Yij) log(1− σ(Xij))

]
(4.6)

and show that if ‖X?‖∗ ≤ cn
√
r?, maxij |X?

ij | ≤ c for some small constant c, and Ω follows certain random binomial

model, solving the minimization of the negative log-likelihood function with some nuclear-norm constraint would be

very likely to produce a satisfying approximation to X? [132, Theorem 1].

However, when X? is extremely high-dimensional (which is the typical case in practice), it is not efficient to deal

with the nuclear norm constraint and hence we propose to minimize the factored formulation of (4.6)

minimize
U∈Rn×r

g(U) := −
∑

(i,j)∈Ω

[
Yij log(σ((UU>)ij)) + (1− Yij) log(1− σ((UU>)ij))

]
. (4.7)

In order to utilize Theorem 4.1.2 to understand the landscape of the factored objective function (4.7), we then check

the following directional Hessian quadratic from of f(X)

[∇2f(X)](D,D) =
∑

(ij)∈Ω

σ′(Xij)D
2
ij .
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For simplicity, consider the case where Ω = [n]× [n], i.e., observe full quantized measurements. This will not increase

the acquisition cost too much, since each measurement is of 1 bit. Under this assumption, we have

minσ′(Xij)‖D‖2F ≤ [∇2f(X)](D,D) ≤ maxσ′(Xij)‖D‖2F ⇐⇒ β

α
≤ maxσ′(Xij)

minσ′(Xij)

Lemma 4.1.1. Let Ω = [n] × [n]. Assume ‖X‖∞ := max |Xi,j | is bounded by 1.3169. Then the negative log-

likelihood function (4.6) f(X) satisfies the restricted well-conditioned property.

Proof. First of all, we claim σ(x) is an even, positive function and decreasing when x ≥ 0. This is because the

sigmoid function σ(x) is odd, σ′(x) = σ(x)(1−σ(x)) > 0 by σ(x) ∈ (0, 1), and σ′′(x) = − e
x(ex−1)

(ex+1)3 < 0 for x ≥ 0.

Therefore, for any |Xij | ≤ 1.3169, we have maxσ′(Xij)
minσ′(Xij)

= maxσ′(0)
minσ′(1.3169) ≤ 1.49995 ≤ 1.5.

We now use Theorem 4.1.2 to characterize the landscape of the factored formulation (4.7) in the set BU := {U ∈

Rn×r : ‖UU>‖∞ ≤ 1.3169.}

Corollary 4.1.3. Set r ≥ r? in (4.7). Then the objective function (4.7) satisfies the strict saddle property and has no

spurious local minima in BU.

We remark that such a constraint on ‖X‖∞ is also required in the seminal work [132], while by using the Burer-

Monteiro parameterization, our result removes the time-consuming nuclear norm constraint.

4.1.4.4 Robust PCA

For the symmetric variant of robust PCA, the observed matrix Y = X?+S with S being sparse and X? being PSD.

Traditionally, we recover X? by minimizing ||Y−X||1 =
∑
ij |Yij −Xij | subject to a PSD constraint. However, this

formulation does not directly fit into our framework due to the non-smoothness of the `1 norm. An alternative approach

is to minimize
∑
ij ha(Yij −Xij), where ha(.) is chosen to be a convex smooth approximation to the absolute value

function. A possible choice is ha(x) = a log((exp(x/a) + exp(−x/a))/2), which is shown to be strictly convex and

smooth in [99, Lemma A.1].

4.1.4.5 Low-rank Matrix Recovery with Non-Gaussian Noise

Consider the PCA problem where the underlying noise is non-Gaussian:

Y = X? + Z,

i.e., the noise matrix Z ∈ Rn×n may not follow the Gaussian distributions. Here, X? ∈ Rn×n is a PSD matrix of

rank r?. It is known that when the noise is from normal distribution, the according maximum likelihood estimator

(MLE) is given by the minimizer of a squared loss function minimizeX�0
1
2‖Y − X‖2F . However, in practice, the

noise is often from other distributions [133], such as Poisson, Bernoulli, Laplacian, and Cauchy, just to name a few.
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In these cases, the resulting MLE, obtained by minimizing the negative log-likelihood function, is not the square loss

one. Such a noise-adaptive estimator is more effective than square-loss minimization. To have a strongly convex and

smooth objective function, the noise distribution should be log-strongly-concave, e.g., the Subbotin densities [129,

Example 2.13], the Weibull density fβ(x) = βxβ−1 exp(−xβ) for β ≥ 2 [129, Example 2.14], and the Chernoff’s

density [134, Conjecture 3.1]. Once the restricted well-conditioned assumption (C) is satisfied, we can then apply

Theorem 4.1.2 to characterize the landscape of the factored formulation. Similar results apply to matrix sensing and

weighted PCA when the underlying noise is non-Gaussian.

4.1.5 Prior Arts and Inspirations

Prior Arts in Non-convex Optimization Problems. The past few years have seen a surge of interest in non-convex

reformulations of convex optimization problems for efficiency and scalability reasons. However, fully understanding

this phenomenon, mainly the landscapes of these non-convex reformulations could be hard. Even certifying the local

optimality of a point might be an NP-hard problem [135]. The existence of spurious local minima that are not global

optima is a common issue [136, 137]. Also, degenerate saddle points or those surrounded by plateaus of small cur-

vature could also prevent local-search algorithms from converging quickly to local optima [138]. Fortunately, for a

range of convex optimization problems, particularly those involving low-rank matrices, the corresponding non-convex

reformulations have nice geometric structures that allow local-search algorithms to converge to global optimality. Ex-

amples include low-rank matrix factorization, completion and sensing [93, 100, 101, 104], tensor decomposition and

completion [114, 139], dictionary learning [99], phase retrieval [98], and many more. Based on whether smart initial-

izations are needed, these previous works can be roughly classified into two categories. In one case, the algorithms

require a problem-dependent initialization plus local refinement. A good initialization can lead to global convergence

if the initial iterate lies in the attraction basin of the global optima [103,139–141]. For low-rank matrix recovery prob-

lems, such initializations can be obtained using spectral methods [103, 140]; for other problems, it is more difficult

to find an initial point located in the attraction basin [139]. The second category of works attempt to understand the

empirical success of simple algorithms such as gradient descent [113], which converge to global optimality even with

random initialization [93,100,101,104,113,114]. This is achieved by analyzing the objective function’s landscape and

showing that they have no spurious local minima and no degenerate saddle points. Most of the works in the second

category are for specific matrix sensing problems with quadratic objective functions. Our work expands this line of

geometry-based convergence analysis by considering low-rank matrix optimization problems with general objective

functions.

Burer-Monteiro Reformulation for PSD Matrices. In [103], the authors also considered low-rank and PSD matrix

optimization problems with general objective functions. They characterized the local landscape around the global
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optima, and hence their algorithms require proper initializations for global convergence. We instead characterize the

global landscape by categorizing all critical points into global optima and strict saddles. This guarantees that several

local-search algorithms with random initialization will converge to the global optima. Another closely related work

is low-rank and PSD matrix recovery from linear observations by minimizing the factored quadratic objective func-

tion [125]. Low-rank matrix recovery from linear measurements is a particular case of our general objective function

framework. Furthermore, by relating the first order optimality condition of the factored problem with the global opti-

mality of the original convex program, our work provides a more transparent relationship between geometries of these

two problems and dramatically simplifies the theoretical argument. More recently, the authors of [142] showed that

for general SDPs with linear objective functions and linear constraints, the factored problems have no spurious local

minimizers. In addition to showing non-existence of spurious local minimizers for general objective functions, we

also quantify the curvature around the saddle points, and our result covers both over and exact parameterizations.

Burer-Monteiro Reformulation for General Matrices. The most related work is nonsymmetric matrix sensing from

linear observations, which minimizes the factored quadratic objective function [106]. The ambiguity in the factored

parameterization

UV> = (UR)
(
VR−1>

)>
for all nonsingular R

tends to make the factored quadratic objective function badly-conditioned, especially when the matrix R or its inverse

is close to being singular. To overcome this problem, the regularizer

ΘE(U,V) = ‖U>U−V>V‖2F (4.8)

is proposed to ensure that U and V have almost equal energy [8, 102, 106]. In particular, with the regularizer in (4.8),

it was shown in [8,106] that g̃(U,V) = f(UV>) +µΘE(U,V) with a properly chosen µ > 0 has similar geometric

result as the one provided in Theorem 4.1.1 for (P1), i.e., g̃(U,V) also obeys the strict saddle property. Compared

with [8, 102, 106], our result shows that it is not necessary to introduce the extra regularization (4.8) if we solve (P1)

with the factorization approach. Indeed, the optimization form ‖X‖∗ = minX=UV>(‖U‖2F +‖V‖2F )/2 of the nuclear

norm implicitly requires U and V to have equal energy. On the other hand, we stress that our interest is to analyze the

non-convex geometry of the convex problem (P1) which as we explained before, has a very nice statistical performance

such as it achieves minimax denoising rate [122]. Our geometrical result implies that instead of using convex solvers

to solve (P1), one can turn to apply local-search algorithms to solve its factored problem (F1) efficiently. In this sense,

as a reformulation of the convex program (P1), the non-convex optimization problem (F1) inherits all the statistical

performance bounds for (P1). Cabral et al. [143] worked on a similar problem and showed all global optima of (F1)

corresponds to the solution of the convex program (P1). The work [144] applied the factorization approach to a more
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broad class of problems. When specialized to matrix inverse problems, their results show that any local minimizer U

and V with zero columns is a global minimum for the over-parameterization case, i.e., r > rank(X?). However, there

are no results discussing the existence of spurious local minima or the degenerate saddles in these previous works. We

extend these works and further prove that as long as the loss function f(X) is restricted well-conditioned, all local

minima are global minima and there are no degenerate saddles with no requirement on the dimension of the variables.

We finally note that compared with [144], our result (Theorem 4.1.2) does not depend on the existence of zero columns

at the critical points and hence can provide guarantees for many local-search algorithms.

4.1.6 Notations

Denote [n] as the collection of all positive integers up to n. The symbols I and 0 are reserved for the identity

matrix and zero matrix/vector, respectively. A subscript is used to indicate its dimension when this is not clear from

context. We call a matrix PSD, denoted by X � 0, if it is symmetric and all its eigenvalues are nonnegative. The

notation X � Y means X − Y � 0, i.e., X − Y is PSD. The set of r × r orthogonal matrices is denoted by

Or = {R ∈ Rr×r : RR> = Ir}. Matrix norms, such as the spectral, nuclear, and Frobenius norms, are denoted

respectively by ‖ · ‖, ‖ · ‖∗ and ‖ · ‖F .

The gradient of a scalar function f(Z) with a matrix variable Z ∈ Rm×n is an m× n matrix, whose (i, j)th entry

is [∇f(Z)]i,j = ∂f(Z)
∂Zij

for i ∈ [m], j ∈ [n]. Alternatively, we can view the gradient as a linear form [∇f(Z)](G) =

〈∇f(Z),G〉 =
∑
i,j

∂f(Z)
∂Zij

Gij for any G ∈ Rm×n. The Hessian of f(Z) can be viewed as a 4th order tensor

of dimension m × n × m × n, whose (i, j, k, l)th entry is [∇2f(Z)]i,j,k,l = ∂2f(Z)
∂Zij∂Zk,l

for i, k ∈ [m], j, l ∈ [n].

Similar to the linear form representation of the gradient, we can view the Hessian as a bilinear form defined via

[∇2f(Z)](G,H) =
∑
i,j,k,l

∂2f(Z)
∂Zij∂Zkl

GijHkl for any G,H ∈ Rm×n. Yet another way to represent the Hessian is as

an mn ×mn matrix [∇2f(Z)]i,j = ∂2f(Z)
∂zi∂zj

for i, j ∈ [mn], where zi is the ith entry of the vectorization of Z. We

will use these representations interchangeably whenever the specific form can be inferred from context. For example,

in the restricted well-conditionedness assumption (C), the Hessian is apparently viewed as an n2 × n2 matrix and the

identity I is of dimension n2 × n2.

For a matrix-valued function φ : Rp×q → Rm×n, it is notationally easier to represent its gradient (or Jacobian) and

Hessian as multi-linear operators. For example, the gradient, as a linear operator from Rp×q to Rm×n, is defined via

[∇[φ(U)](G)]ij =
∑
k∈[p],l∈[q]

∂[φ(U)]ij
∂Ukl

Gkl for i ∈ [m], j ∈ [n] and G ∈ Rp×q; the Hessian, as a bilinear operator

from Rp×q × Rp×q to Rm×n, is defined via [∇2[φ(U)](G,H)]ij =
∑
k1,k2∈[p],l1,l2∈[q]

∂2[φ(U)]ij
∂Uk1l1

∂Uk2l2
Gk1l1Hk2l2 for

i ∈ [m], j ∈ [n] and G,H ∈ Rp×q . Using this notation, the Hessian of the scalar function f(Z) of the previous

paragraph, which is also the gradient of ∇f(Z) : Rm×n → Rm×n, can be viewed as a linear operator from Rm×m to

Rm×n denoted by [∇2f(Z)](G) and satisfies 〈[∇2f(Z)](G)],H〉 = [∇2f(Z)](G,H) for G,H ∈ Rm×n.
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4.2 Problem Formulation

This work considers two problems: (i) the minimization of a general convex function f(X) with the domain being

positive semi-definite matrices; (ii) the minimization of a general convex function f(X) regularized by the matrix

nuclear norm ‖X‖∗ with the domain being general matrices. Let X? be an optimal solution of (P0) or (P1) of rank

r?. To develop faster and scalable algorithms, we apply Burer-Monteiro style parameterization [119] to the low-rank

optimization variable X in (P0)- (P1):

For symmetric case: X = φ(U) := UU>

For nonsymmetric case: X = ψ(U,V) := UV>

where U ∈ Rn×r and V ∈ Rm×r with r ≥ r?. With the optimization variable X being parameterized, the convex

programs are transformed into the factored problems (F0)- (F1):

For symmetric case: minimize
U∈Rn×r

g(U) = f(φ(U))

For nonsymmetric case: minimize
U∈Rn×r,V ∈Rm×r

g(U,V) = f(ψ(U,V)) +
λ

2

(
‖U‖2F + ‖V‖2F

)
Inspired by the lifting technique in constructing SDP relaxations, we refer to the variable X as the lifted variable, and

the variables U,V as the factored variables. Similar naming conventions apply to the optimization problems, their

domains, and objective functions.

4.2.1 Consequences of the Restricted Well-conditionedness Assumption

First the restricted well-conditionedness assumption reduces to (4.3) when the objective function is quadratic.

Moreover, the restricted well-conditioned assumption (C) is similar to (4.3) in that the operator 2
β+α [∇2f(X)] pre-

serves geometric structure for low-rank matrices:

Proposition 4.2.1. Let f(X) satisfy the restricted well-conditionedness assumption (C). Then

∣∣∣∣ 2

β + α
[∇2f(X)](G,H)− 〈G,H〉

∣∣∣∣ ≤ β − α
β + α

‖G‖F ‖H‖F ≤
1

5
‖G‖F ‖H‖F (4.9)

for any matrices X,G,H of rank at most 2r.

Proof. We extend the argument in [78] to a general function f(X). If either G or H is zero, (4.9) holds since both

sides are 0. For nonzero G and H, we can assume ‖G‖F = ‖H‖F = 1 without loss of generality9. Then the

assumption (C) implies

9Otherwise, we can divide both sides of the equation (4.9) by ‖G‖F ‖H‖F and use the homogeneity to get an equivalent version of Proposition 4.2.1
with G = G/‖G‖F and H = H/‖H‖F , i.e., ‖G‖F = ‖H‖F = 1.
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α ‖G−H‖2F ≤ [∇2f(X)](G−H,G−H) ≤ β ‖G−H‖2F ,
α ‖G + H‖2F ≤ [∇2f(X)](G + H,G + H) ≤ β ‖G + H‖2F .

Thus we have

∣∣2 [∇2f(X)
]

(G,H)− (β + α) 〈G,H〉
∣∣ ≤ β − α

2

(
‖G‖2F + ‖H‖2F

)
︸ ︷︷ ︸

=2

= β − α = (β − α) ‖G‖F ‖H‖F︸ ︷︷ ︸
=1

.

We complete the proof by dividing both sides by β + α:

∣∣∣∣ 2

β + α
[∇2f(X)](G,H)− 〈G,H〉

∣∣∣∣ ≤ β − α
β + α

‖G‖F ‖H‖F ≤
β/α− 1

β/α+ 1
‖G‖F ‖H‖F ≤

1

5
‖G‖F ‖H‖F ,

where in the last inequality we use the assumption that β/α ≤ 1.5.

Another immediate consequence of this assumption is that if the original convex program (P0) has an optimal

solution X? with rank(X?) ≤ r, then there is no other optimum of (P0) of rank less than or equal to r:

Proposition 4.2.2. Suppose the function f(X) satisfies the restricted well-conditionedness (C). Let X? be an optimum

of (P0) with rank(X?) ≤ r. Then X? is the unique global optimum of (P0) of rank at most r.

Proof. For the sake of a contradiction, suppose there exists another optimum X of (P0) with rank(X) ≤ r and

X 6= X?. We begin with the second order Taylor expansion, which reads

f(X) = f(X?) + 〈∇f(X?),X−X?〉+
1

2
[∇2f(tX? + (1− t)X)](X−X?,X−X?),

for some t ∈ [0, 1]. The KKT conditions for the convex optimization problem (P0) states that ∇f(X?) � 0 and

∇f(X?)X? = 0, implying that the second term in the above Taylor expansion

〈∇f(X?),X−X?〉 = 〈∇f(X?),X〉 ≥ 0,

since X is feasible and hence PSD. Further, since rank(tX? + (1− t)X) ≤ rank(X) + rank(X?) ≤ 2r and similarly

rank(X−X?) ≤ 2r < 4r, then from the restricted well-conditionedness assumption (C) we have

[∇2f(X̃)](X−X?,X−X?) ≥ α‖X−X?‖2F .

Combining all, we obtain a contradiction when X 6= X?:

f(X) ≥ f(X?) +
1

2
α‖X−X?‖2F ≥ f(X) +

1

2
α‖X−X?‖2F > f(X).
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where the second inequality follows from the optimality of X? and the third inequality holds for any X 6= X?.

At a high-level, the proof essentially depends on the restricted strongly convexity of the objective function of

the convex program (P0), which is guaranteed by the restricted well-conditionedness assumption (C) on f(X). The

similar argument holds for (P1) by noting that the sum of a (restricted) strongly convex function and a standard convex

function is still (restricted) strongly convex. However, showing this requires a slightly more complicated argument due

to the non-smoothness of ‖X‖∗ around those nonsingular matrices. Mainly, we need to use the concept of subgradient.

Proposition 4.2.3. Suppose the function f(X) satisfies the restricted well-conditionedness (C). Let X? be a global

optimum of (P1) with rank(X?) ≤ r. Then X? is the unique global optimum of (P1) of rank at most r.

Proof. For the sake of contradiction, suppose that there exists another optimum X of (P1) with rank(X) ≤ r and

X 6= X?. We begin with the second order Taylor expansion of f(X), which reads

f(X) = f(X?) + 〈∇f(X?),X−X?〉+
1

2
[∇2f(tX? + (1− t)X)](X−X?,X−X?)

for some t ∈ [0, 1]. From the convexity of ‖X‖∗, for any D ∈ ∂‖X?‖∗, we also have

‖X‖∗ ≥ ‖X?‖∗ + 〈D,X−X?〉.

Combining both, we obtain

f(X) + λ‖X‖∗
¬
≥ f(X?) + λ‖X?‖∗ + 〈∇f(X?) + λD,X−X?〉+

1

2
[∇2f(tX? + (1− t)X)](X−X?,X−X?)

­
≥ f(X?) + λ‖X?‖∗ +

1

2
[∇2f(tX? + (1− t)X)](X−X?,X−X?)

®
≥ f(X?) + λ‖X?‖∗ +

1

2
α‖X−X?‖2F

¯
= f(X) + λ‖X‖∗ +

1

2
α‖X−X?‖2F

°
> f(X) + λ‖X‖∗,

where ¬ holds for any D ∈ ∂‖X?‖∗. For ­, we use fact that ∂f1 + ∂f2 = ∂(f1 + f2) for any convex functions

f1, f2, to obtain that ∇f(X?) + λ∂‖X?‖∗ = ∂(f(X?) + λ‖X?‖∗), which includes 0 since X? is a global optimum

of (P1). Therefore, ­ follows by choosing D ∈ ∂‖X?‖∗ such that ∇f(X?) + λD = 0. ® uses the restricted

well-conditionedness assumption (C) as rank(tX? + (1 − t)X) ≤ 2r and rank(X −X?) ≤ 4r. ¯ comes from the

assumption that both X and X? are global optimal solutions of (P1). ° uses the assumption that X 6= X?.
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4.3 Understanding the Factored Landscapes for PSD Matrices

In the convex program (P0), we minimize a convex function f(X) over the PSD cone. Let X? be an optimal

solution of (P0) of rank r?. We re-parameterize the low-rank PSD variable X as

X = φ(U) = UU>

where U ∈ Rn×r with r ≥ r? is a rectangular, matrix square root of X. After this parametrization, the convex

program is transformed into the factored problem (F0) whose objective function is g(U) = f(φ(U)).

4.3.1 Transforming the Landscape for PSD Matrices

Our primary interest is to understand how the landscape of the lifted objective function f(X) is transformed by the

factored parameterization φ(U) = UU>, particularly how its global optimum is mapped to the factored space, how

other types of critical points are introduced, and what their properties are.

We show that if the function f(X) is restricted well-conditioned, then each critical point of the factored objective

function g(U) in (F0) either corresponds to the low-rank global solution of the original convex program (P0) or is

a strict saddle where the Hessian ∇2g(U) has a strictly negative eigenvalue. This implies that the factored objective

function g(U) satisfies the strict saddle property.

Theorem 4.3.1 (Transforming the landscape for PSD matrices). Suppose the function f(X) in (P0) is twice

continuously differentiable and is restricted well-conditioned (C). Assume X? is an optimal solution of (P0) with

rank(X?) = r?. Set r ≥ r? in (F0). Let U be any critical point of g(U) satisfying ∇g(U) = 0. Then U either

corresponds to a square-root factor of X?, i.e.,

X? = UU>;

or is a strict saddle of the factored problem (F0). More precisely, let U? ∈ Rn×r such that X? = U?U?> and set

D = U−U?R with R = arg minR:R∈Or ‖U−U?R‖2F , then the curvature of∇2g(U) along D is strictly negative:

[∇2g(U)](D,D) ≤



−0.24αmin
{
ρ(U)2, ρ(X?)

}
‖D‖2F when r > r?;

−0.19αρ(X?)‖D‖2F when r = r?;

−0.24αρ(X?)‖D‖2F when U = 0

with ρ(·) denoting the smallest nonzero singular value of its argument. This further implies
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λmin(∇2g(U)) ≤



−0.24αmin
{
ρ(U)2, ρ(X?)

}
when r > r?;

−0.19αρ(X?) when r = r?;

−0.24αρ(X?) when U = 0.

Several remarks follow. First, the matrix D is the direction from the saddle point U to its closest globally optimal

factor U?R of the same dimension as U. Second, our result covers both over-parameterization where r > r? and exact

parameterization where r = r?. Third, we can recover the rank-r? global minimizer X? of (P0) by running local-

search algorithms on the factored function g(U) if we know an upper bound on the rank r?. In particular, to apply the

results in [127] where the first-order algorithms are proved to escape all the strict saddles, aside from the strict saddle

property, one needs g(U) to have a Lipschitz continuous gradient, i.e., ‖∇g(U) − ∇g(V)‖F ≤ Lc‖U − V‖F or

‖∇2g(U)‖ ≤ Lc for some positive constant Lc (also known as the Lipschitz constant). As indicated by the expression

of∇2g(U) in (4.14), it is possible that one can not find such a constant Lc for the whole space. Similar to [126] which

considers the low-rank matrix factorization problem, suppose the local-search algorithm starts at U0 and sequentially

decreases the objective value (which is true as long as the algorithm obeys certain sufficient decrease property [145]).

Then it is adequate to focus on the sublevel set of g

Levf (U0) = {U : g(U) ≤ g(U0)} , (4.10)

and show that g has a Lipschitz gradient on Levf (U0). This is formally established in Proposition 4.3.1, whose proof

is given in Appendix C.1.

Proposition 4.3.1. Under the same setting as in Theorem 4.3.1, for any initial point U0, g(U) on Levf (U0) defined

in (4.10) has a Lipschitz continuous gradient with the Lipschitz constant

Lc =

√√√√√2β

√
2

α
(f(U0U>0 )− f(X?)) + 2‖∇f(X?)‖F + 4β

‖U?‖F +

√
2
α (f(U0U>0 )− f(X?))

2(
√

2− 1)ρ(U?)

2

,

where ρ(·) denotes the smallest nonzero singular value of its argument.

4.3.2 Metrics in the Lifted and Factored Spaces

Before continuing this geometry-based argument, it is essential to have a good understanding of the domain of

the factored problem and establish a metric for this domain. Since for any U, φ(U) = φ(UR) where R ∈ Or,

the domain of the factored objective function g(U) is stratified into equivalence classes and can be viewed as a

quotient manifold [146]. The matrices in each of these equivalence classes differ by an orthogonal transformation (not
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necessarily unique when the rank of U is less than r). One implication is that, when working in the factored space, we

should consider all factorizations of X? :

A? = {U? ∈ Rn×r : φ(U?) = X?}.

A second implication is that when considering the distance between two points U1 and U2, one should use the distance

between their corresponding equivalence classes:

dist(U1,U2) = min
R1∈Or,R2∈Or

‖U1R1 −U2R2‖F = min
R∈Or

‖U1 −U2R‖F . (4.11)

Under this notation, dist(U,U?) = minR∈Or ‖U −U?R‖F represents the distance between the class containing a

critical point U ∈ Rn×r and the optimal factor class A?. The second minimization problem in the definition (4.11) is

known as the orthogonal Procrustes problem, where the global optimum R is characterized by the following lemma:

Lemma 4.3.1. [147] An optimal solution for the orthogonal Procrustes problem:

R = arg min
R̃∈Or

‖U1 −U2R̃‖2F = arg max
R̃∈Or

〈U1,U2R̃〉

For any two matrices U1,U2 ∈ Rn×r, the following lemma relates the distance ‖U1U
>
1 −U2U

>
2 ‖F in the lifted

space to the distance dist(U1,U2) in the factored space. The proof is deferred to Appendix C.2.

Lemma 4.3.2. Assume that U1,U2 ∈ Rn×r. Then

‖U1U
>
1 −U2U

>
2 ‖F ≥ min {ρ(U1), ρ(U2)} dist(U1,U2).

In particular, when one matrix is of full rank, we have a similar but tighter result to relate these two distances.

Lemma 4.3.3. [102, Lemma 5.4] Assume that U1,U2 ∈ Rn×r and rank(U1) = r. Then

‖U1U
>
1 −U2U

>
2 ‖F ≥ 2(

√
2− 1)ρ(U1) dist(U1,U2).

4.3.3 Proof Idea: Connecting the Optimality Conditions

The proof is inspired by connecting the optimality conditions for the two programs (P0) and (F0). First of all,

as the critical points of the convex optimization problem (P0), they are global optima and are characterized by the

necessary and sufficient KKT condition [115]

∇f(X?) � 0,∇f(X?)X? = 0,X? � 0. (4.12)

The factored optimization problem (F0) is unconstrained, with the critical points being specified by the zero gradient

condition

∇g(U) = 2∇f(φ(U))U = 0. (4.13)
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To classify the critical points of (F0), we compute the Hessian quadratic form [∇2g(U)](D,D) as

[∇2g(U)](D,D) = 2〈∇f(φ(U)),DD>〉+ [∇2f(φ(U))](DU> + UD>,DU> + UD>). (4.14)

Roughly speaking, the Hessian quadratic form has two terms – the first term involves the gradient of f(X) and the

Hessian of φ(U), while the second term involves the Hessian of f(X) and the gradient of φ(U). Since φ(U + D) =

φ(U) + UD> + DU> + DD>, the gradient of φ is the linear operator [∇φ(U)](D) = UD> + DU> and the

Hessian bilinear operator applies as 1
2 [∇2φ(U)](D,D) = DD>. Note in (4.14) the second quadratic form is always

nonnegative since ∇2f � 0 due to the convexity of f .

For any critical point U of g(U), the corresponding lifted variable X := UU> is PSD and satisfies∇f(X)X = 0.

On one hand, if X further satisfies ∇f(X) � 0, then in view of the KKT conditions (4.12) and noting rank(X) =

rank(U) ≤ r, we must have X = X?, the global optimum of (P0). On the other hand, if X 6= X?, implying

∇f(X) � 0 due to the necessity of (4.12), then additional critical points can be introduced into the factored space.

Fortunately, ∇f(X) � 0 also implies that the first quadratic form in (4.14) might be negative for a properly chosen

direction D. To sum up, the critical points of g(U) can be classified into two categories: the global optima in the

optimal factor set A? with ∇f(UU>) � 0 and those with ∇f(UU>) � 0. For the latter case, by choosing a proper

direction D, we will argue that the Hessian quadratic form (4.14) has a strictly negative eigenvalue, and hence moving

in the direction of D in a short distance will decrease the value of g(U), implying that they are strict saddles and are

not local minima.

We argue that a good choice of D is the direction from the current U to its closest point in the optimal factor set

A?. Formally, D = U −U?R where R = arg minR:R∈Or ‖U −U?R‖F is the optimal rotation for the orthogonal

Procrustes problem. As illustrated in Figure 4.2 where we have two global solutions U? and −U? and U is closer to

−U?, the direction from U to −U? has more negative curvature compared to the direction from U to U?.

Plugging this choice of D into the first term of (4.14), we simplify it as

〈∇f(UU>),DD>〉 = 〈∇f(UU>),U?U?> −U?RU> −U(U?R)> + UU>〉
= 〈∇f(UU>),U?U?>〉
= 〈∇f(UU>),U?U?> −UU>〉, (4.15)

where both the second line and last line follow from the critical point property ∇f(UU>)U = 0. To gain some

intuition on why (4.15) is negative while the second term in (4.14) remains small, we consider a simple example: the

matrix PCA problem.

Matrix PCA Problem. Consider the PCA problem for symmetric PSD matrices
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Figure 4.2: The matrix D = U −U?R is the direction from the critical point U to its nearest optimal factor U?R,
whose norm ‖U −U?R‖F defines the distance dist(U,U?). Here, U is closer to −U? than U? and the direction
from U to −U? has more negative curvature compared to the direction from U to U?.

minimize
X∈Rn×n

fPCA(X) :=
1

2
‖X−X?‖2F subject to X � 0, (4.16)

where X? is a symmetric PSD matrix of rank r?. Trivially, the optimal solution is X = X?. Now consider the factored

problem

minimize
U∈Rn×r

g(U) := fPCA(UU>) =
1

2
‖UU> −U?U?>‖2F ,

where U? ∈ Rn×r satisfies φ(U?) = X?. Our goal is to show that any critical point U such that X := UU> 6= X?

is a strict saddle.

Controlling the first term. Since ∇fPCA(X) = X − X?, by (4.15), the first term of [∇2g(U)](D,D) in (4.14)

becomes

2〈∇fPCA(X),DD>〉 = 2〈∇fPCA(X),X? −X〉 = 2〈X−X?,X? −X〉 = −2‖X−X?‖2F , (4.17)

which is strictly negative when X 6= X?.

Controlling the second term. We show that the second term [∇2f(φ(U))](DU>+UD>,DU>+UD>) vanishes

by showing that DU> = 0 (hence UD> = 0). For this purpose, let X? = Q diag(λ)Q> =
∑r?

i=1 λiqiq
>
i be the

eigenvalue decomposition of X?, where Q =

[
q1 · · · qr?

]
∈ Rn×r? has orthonormal columns and λ ∈ Rr? is

composed of positive entries. Similarly, let φ(U) = V diag(µ)V> =
∑r′

i=1 µiviv
>
i be the eigenvalue decomposition

of φ(U), where r′ = rank(U). The critical point U satisfies −∇g(U) = 2(X? − φ(U))U = 0, implying that
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0 =

(
X? −

r′∑
i=1

µiviv
>
i

)
vj = X?vj − µjvj , j = 1, . . . , r′.

This means (µj ,vj) forms an eigenvalue-eigenvector pair of X? for each j = 1, . . . , r′. Consequently,

µj = λij and vj = qij , j = 1, . . . , r′.

Hence φ(U) =
∑r′

j=1 λijqijq
>
ij

=
∑r?

j=1 λjsjqjq
>
j . Here sj is equal to either 0 or 1 indicating which of the

eigenvalue-eigenvector pair (λj ,qj) appears in the decomposition of φ(U). Without loss of generality, we can choose

U? = Q

[
diag(

√
λ) 0

]
. Then U = Q

[
diag(

√
λ� s) 0

]
V> for some orthonormal matrix V ∈ Rr×r and

s =

[
s1 · · · sr?

]
, where the symbol � means pointwise multiplication. By the Procrustes Lemma in [147], we

obtain R = V>. Plugging these into DU> = UU> −U?RU> gives DU> = 0.

Combining the two. Hence [∇2g(U)](D,D) is simply determined by its first term

[∇2g(U)](D,D) = −2‖UU> −U?U?>‖2F
≤ −2 min

{
ρ(U)2, ρ(U?)2

}
‖D‖2F

= −2 min {ρ(φ(U)), ρ(X?)} ‖D‖2F
= −2ρ(X?)‖D‖2F ,

where the second line follows from Lemma 4.3.2 and the last line follows from the fact that all the eigenvalues of

UU> come from those of X?. Finally, we obtain the desired strict saddle property of g(U):

λmin(∇2g(U)) ≤ −2ρ(X?).

This simple example is ideal in several ways, particularly the gradient∇f(φ(U)) = φ(U)−φ(U?), which directly

establishes the negativity of the first term in (4.14); and by choosing D = U−U?R and using DU> = 0, the second

term vanishes. Neither of these simplifications hold for general objective functions f(X). However, the example does

suggest that the direction D = U−U?R is a good choice to show [∇2g(U)](D,D) ≤ −τ‖D‖2F for some τ > 0. For

a formal proof, we will also use the direction D = U −U?R to show that those critical points U not corresponding

to X? have a negative directional curvature for the general factored objective function g(U).

4.3.4 A Formal Proof of Theorem 4.3.1

Proof Outline. We present a formal proof of Theorem 4.3.1 in this section. The main argument involves showing

each critical point U of g(U) either corresponds to the optimal solution X? or its Hessian matrix ∇2g(U) has at

least one strictly negative eigenvalue. Inspired by the discussions in Section 4.3.3, we will use the direction D =
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U −U?R and show that the Hessian ∇2g(U) has a strictly negative directional curvature in the direction of D, i.e.,

[∇2g(U)](D,D) ≤ −τ‖D‖2F , for some τ > 0.

Supporting Lemmas. We first list two lemmas. The first lemma separates ‖(U−Z)U>‖2F into two terms: ‖UU>−

ZZ>‖2F and ‖(UU> − ZZ>)QQ>‖2F with QQ> being the projection matrix onto Range(U). It is crucial for the

first term ‖UU> − ZZ>‖2F to have a small coefficient. In the second lemma, we will further control the second term

as a consequence of U being a critical point. The proof of Lemma 4.3.4 is given in Section C.3.

Lemma 4.3.4. Let U and Z be any two matrices in Rn×r such that U>Z = Z>U is PSD. Assume that Q is an

orthogonal matrix whose columns span Range(U). Then

∥∥(U− Z)U>
∥∥2

F
≤ 1

8

∥∥UU> − ZZ>
∥∥2

F
+

(
3 +

1

2
√

2− 2

)∥∥(UU> − ZZ>)QQ>
∥∥2

F
.

We remark that Lemma 4.3.4 is a strengthened version of [125, Lemma 4.4]. While the result there requires: (i) U

to be a critical point of the factored objective function g(U); (ii) Z to be an optimal factor in A? that is closest to U,

i.e., Z = U?R with U? ∈ A? and R = arg minR:RR>=Ir ‖W−W?R‖F . Lemma 4.3.4 removes these assumptions

and requires only U>Z = Z>U being PSD.

Next, we control the distance between UU> and the global solution X? when U is a critical point of the factored

objective function g(U), i.e., ∇g(U) = 0. The proof, given in Section C.4, relies on writing ∇f(X) = ∇f(X?) +∫ 1

0
[∇2f(tX + (1− t)X?)](X−X?)dt and applying Proposition 4.2.1.

Lemma 4.3.5 (Upper Bound on ‖(UU>−U?U?>)QQ>‖2F ). Suppose the objective function f(X) in (P0) is twice

continuously differentiable and satisfies the restricted well-conditionedness assumption (C). Further, let U be any

critical point of (F0) and Q be the orthonormal basis spanning Range(U). Then

∥∥(UU> −U?U?>)QQ>
∥∥
F
≤ β − α
β + α

∥∥UU> −U?U?>∥∥
F
.

Proof of Theorem 4.3.1. Along the same lines as in the matrix PCA example, it suffices to find a direction D to

produce a strictly negative curvature for each critical point U not corresponding to X?. We choose D = U −U?R

where R = arg minR:RR>=Ir ‖W −W?R‖F . Then
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[∇2g(U)](D,D)

=2〈∇f(X),DD>〉+ [∇2f(X)](DU> + UD>,DU> + UD>) By Eq. (4.14)

=2〈∇f(X),X? −X〉+ [∇2f(X)](DU> + UD>,DU> + UD>) By Eq. (4.13)

≤ 2〈∇f(X)−∇f(X?),X? −X〉︸ ︷︷ ︸
Π1

+ [∇2f(X)](DU> + UD>,DU> + UD>)︸ ︷︷ ︸
Π2

By Eq. (4.12)

In the following, we will bound Π1 and Π2, respectively.

Bounding Π1.

Π1 = −2〈∇f(X?)−∇f(X),X? −X〉 ¬
= −2

〈∫ 1

0

[∇2f(tX + (1− t)X?)](X? −X)dt,X? −X

〉
= −2

∫ 1

0

[
∇2f(tX + (1− t)X?)

]
(X? −X,X? −X)dt

­
≤ −2α‖X? −X‖2F ,

where ¬ follows from the Taylor’s Theorem for vector-valued functions [148, Eq. (2.5) in Theorem 2.1], and ­

follows from the restricted strong convexity assumption (C) since the PSD matrix tX + (1− t)X? has rank of at most

2r and rank(X? −X) ≤ 4r.

Bounding Π2.

Π2 = [∇2f(X)](DU> + UD>,DU> + UD>)

≤ β‖DU> + UD>‖2F By (C)

≤ 4β‖DU>‖2F

≤ 4β

[
1

8
‖X−X?‖2F +

(
3 +

1

2
√

2− 2

)
‖(X−X?)QQ>‖2F

]
. By Lemma 4.3.4

≤ 4β

[
1

8
+

(
3 +

1

2
√

2− 2

)
(β − α)2

(β + α)2

]
‖X−X?‖2F By Lemma 4.3.5

≤ 1.76α‖X? −X‖2F . By β/α ≤ 1.5

Combining the two. Hence,

Π1 + Π2 ≤ −0.24α‖X? −X‖2F .

Then, we relate the lifted distance ‖X? −X‖2F with the factored distance ‖U −U?R‖2F using Lemma 4.3.2 when

r > r?, and Lemma 4.3.3 when r = r?, respectively:
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When r > r?: [∇2g(U)](D,D) ≤ −0.24αmin
{
ρ(U)2, ρ(U?)2

}
‖D‖2F By Lemma 4.3.2

= −0.24αmin
{
ρ(U)2, ρ(X?)

}
‖D‖2F ;

When r = r?: [∇2g(U)](D,D) ≤ −0.19αρ(U?)2‖D‖2F By Lemma 4.3.3

= −0.19αρ(X?)‖D‖2F .

For the special case where U = 0, we have

[∇2g(U)](D,D) ≤ −0.24α‖0−X?‖2F
= −0.24α‖U?U?>‖2F
≤ −0.24αρ(U?)2‖U?‖2F
= −0.24αρ(X?)‖D‖2F ,

where the last second line follows from

‖U?U?>‖2F =
∑
i

σ4
i (U?) =

∑
i:σi(U?) 6=0

σ4
i (U?) ≥ min

i:σi(U?)6=0
σ2
i (U?)

 ∑
j:σj(U?)6=0

σ2
j (U?)

 = ρ2(U?)‖U?‖2F ,

and the last line follows from D = 0 −U?R = −U?R when U = 0. Here σi(·) denotes the i-th largest singular

value of its argument.

4.4 Understanding the Factored Landscapes for General Non-square Matrices

In this section, we will study the second convex program (P1): the minimization of a general convex function f(X)

regularized by the matrix nuclear norm ‖X‖∗ with the domain being general matrices. Since the matrix nuclear norm

‖X‖∗ appears in the objective function, the standard convex solvers or even faster tailored ones require performing

singular value decomposition in each iteration, which severely limits the efficiency and scalability of the convex

program. Motivated by this, we will instead solve its Burer-Monteiro re-parameterized counterpart.

4.4.1 Burer-Monteiro Reformulation of the Nuclear Norm Regularization

Recall the second problem is the nuclear norm regularization (P1):

minimize
X∈Rn×m

f(X) + λ‖X‖∗ (P1)

This convex program has an equivalent SDP formulation [65, page 8]:

minimize
X∈Rn×m,Φ∈Rn×n,Ψ∈Rm×m

f(X) +
λ

2
(tr(Φ) + tr(Ψ)) subject to

[
Φ X

X> Ψ

]
� 0. (4.18)

When the PSD constraint is implicitly enforced as the following equality constraint
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[
Φ X

X> Ψ

]
=

[
U
V

] [
U
V

]>
⇒ X = UV>,Φ = UU>,Ψ = VV>, (4.19)

we obtain the Burer-Monteiro factored reformulation (F1):

minimize
U∈Rn×r,V∈Rm×r

g(U,V) = f(UV>) +
λ

2
(‖U‖2F + ‖V‖2F ). (F1)

The factored formulation (F1) can potentially solve the computational issue of (P1) in two major respects: (i) avoiding

expensive SVDs by replacing the nuclear norm ‖X‖∗ with the squared term (‖U‖2F + ‖V‖2F )/2; (ii) a substantial

reduction in the number of the optimization variables from nm to (n+m)r.

4.4.2 Transforming the Landscape for General Non-square Matrices

Our primary interest is to understand how the landscape of the lifted objective function f(X) + λ‖X‖∗ is trans-

formed by the factored parameterization ψ(U,V) = UV>. The main contribution of this part is establishing that

under the restricted well-conditionedness of the convex loss function f(X), the factored formulation (F1) has no

spurious local minima and satisfies the strict saddle property.

Theorem 4.4.1 (Transforming the landscape for general non-square matrices). Suppose the function f(X) satis-

fies the restricted well-conditioned property (C). Assume that X? of rank r? is an optimal solution of (P1) where λ > 0.

Set r ≥ r? in the factored program (F1). Let (U,V) be any critical point of g(U,V) satisfying∇g(U,V) = 0. Then

(U,V) either corresponds to a factorization of X?, i.e.,

X? = UV>;

or is a strict saddle of the factored problem:

λmin(∇2g(U,V)) ≤



−0.12αmin
{

0.5ρ2(W), ρ(X?)
}

when r > r?;

−0.099αρ(X?) when r = r?;

−0.12αρ(X?) when W = 0,

where W :=

[
U> V>

]>
and ρ(W) is the smallest nonzero singular value of W.

Theorem 4.4.1 ensures that many local-search algorithms10 when applied for solving the factored program (F1),

can escape from all the saddle points and converge to a global solution that corresponds to X?. Several remarks follow.

10The Lipschitz gradient of g at any its sublevel set can be obtained with similar approach for Proposition 4.3.1.
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The Non-triviality of Extending the PSD Case to the Nonsymmetric Case. Although the generalization from

the PSD case might not seem technically challenging at first sight, we must overcome several technical difficulties to

prove this main theorem. We make a few other technical contributions in the process. In fact, the non-triviality of

extending to the nonsymmetric case is also highlighted in [102, 104, 106]. The major technique difficulty to complete

such an extension is the ambiguity issue existed in the nonsymmetric case: UV> = (tU)(1/tV)> for any nonzero

t. This tends to make the factored quadratic objective function badly-conditioned, especially when t is very large

or small. To prevent this from happening, a popular strategy utilized to adapt the result for the symmetric case to

the non-symmetric case is to introduce an additional balancing regularization to ensure that U and V have equal

energy [102, 104, 106]. Sometimes these additional regularizations are quite complicated (see Eq. (13)-(15) in [140]).

Instead, we find for nuclear norm regularized problems, the critical points are automatically balanced even without

these additional complex balancing regularizations (see Section 4.4.4 for details). In addition, by connecting the

optimality conditions of the convex program (P1) and the factored program (F1), we dramatically simplify the proof

argument, making the relationship between the original convex problem and the factored program more transparent.

Proof Sketch of Theorem 4.4.1. We try to understand how the parameterization X = ψ(U,V) transforms the

geometric structures of the convex objective function f(X) by categorizing the critical points of the non-convex

factored function g(U,V). In particular, we will illustrate how the globally optimal solution of the convex program

is transformed in the domain of g(U,V). Furthermore, we will explore the properties of the additional critical points

introduced by the parameterization and find a way of utilizing these properties to prove the strict saddle property. For

those purposes, the optimality conditions for the two programs (P1) and (F1) will be compared.

4.4.3 Optimality Condition for the Convex Program

As an unconstrained convex optimization, all critical points of (P1) are global optima and are characterized by the

necessary and sufficient KKT condition [115]:

∇f(X?) ∈ −λ∂‖X?‖∗, (4.20)

where ∂‖X?‖∗ denotes the subdifferential (the set of subgradient) of the nuclear norm ‖X‖∗ evaluated at X?. The

subdifferential of the matrix nuclear norm is defined by

∂‖X‖∗ = {D ∈ Rn×m : ‖Y‖∗ ≥ ‖X‖∗ + 〈Y −X,D〉, all Y ∈ Rn×m}.

We have a more explicit characterization of the subdifferential of the nuclear norm using the singular value decompo-

sition. More specifically, suppose X = PΣQ> is the (compact) singular value decomposition of X ∈ Rn×m with

P ∈ Rn×r,Q ∈ Rm×r and Σ being an r × r diagonal matrix. Then the subdifferential of the matrix nuclear norm at
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X is given by [65, Equation (2.9)]

∂‖X‖∗ = {PQ> + E : P>E = 0,EQ = 0, ‖E‖ ≤ 1}.

Combining this representation of the subdifferential and the KKT condition (4.20) yields an equivalent expression for

the optimality condition

∇f(X?)Q? = −λP?,

∇f(X?)>P? = −λQ?,

‖∇f(X?)‖ ≤ λ,
(4.21)

where we assume the compact SVD of X? is given by

X? = P?Σ?Q?> with P? ∈ Rn×r? ,Q? ∈ Rm×r? ,Σ? ∈ Rr?×r? .

Since r ≥ r? in the factored problem (F1), to match the dimensions, we define the optimal factors U? ∈ Rn×r,

V? ∈ Rm×r for any R ∈ Or as

U? = P?[
√

Σ? 0r?×(r−r?)]R,

V? = Q?[
√

Σ? 0r?×(r−r?)]R.
(4.22)

Consequently, with the optimal factors U?,V? defined in (4.22), we can rewrite the optimal condition (4.21) as

∇f(X?)V? = −λU?,

∇f(X?)>U? = −λV?,

‖∇f(X?)‖ ≤ λ.
(4.23)

Stacking U?,V? as W? =

U?

V?

 and defining

Ξ(X) :=

[
λI ∇f(X)

∇f(X)> λI

]
for all X (4.24)

yield a more concise form of the optimality condition:

Ξ(X?)W? = 0,

‖∇f(X?)‖ ≤ λ. (4.25)
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4.4.4 Characterizing the Critical Points of the Factored Program

To begin with, the gradient of g(U,V) can be computed and rearranged as

∇g(U,V) =

[
∇Ug(U,V)
∇Vg(U,V)

]
=

[
∇f(UV>)V + λU
∇f(UV>)>U + λV

]
=

[
λI ∇f(UV>)

∇f(UV>)> λI

] [
U
V

]
= Ξ(UV>)

[
U
V

]
,

(4.26)

where the last equality follows from the definition (4.24) of Ξ(·). Therefore, all critical points of g(U,V) can be

characterized by the following set

X :=

{
(U,V) : Ξ(UV>)

[
U
V

]
= 0

}
.

We will see that any critical point (U,V) ∈ X forms an balanced pair, which is defined as follows:

Definition 4.4.1 (Balanced pairs). We call (U,V) is a balanced pair if the Gram matrices of U and V are the same:

U>U−V>V = 0. All the balanced pairs form the balanced set, denoted by E :=
{

(U,V) : U>U−V>V = 0
}
.

By Definition 4.4.1, to show that each critical point forms an balanced pair, we rely on the following fact:

W =

[
U
V

]
,Ŵ =

[
U
−V

]
with (U,V) ∈ E ⇔ Ŵ>W = W>Ŵ = U>U−V>V = 0. (4.27)

Now we are ready to relate the critical points and balanced pairs, the proof of which is given in Appendix C.5.

Proposition 4.4.1. Any critical point (U,V) ∈ X forms a balanced pair in E .

4.4.4.1 The Properties of the Balanced Set

In this part, we introduce some important properties of the balanced set E . These properties basically compare

the on-diagonal-block energy and the off-diagonal-block energy for a certain block matrix. Hence, it is necessary to

introduce two operators defined on block matrices:

Pon

([
A11 A12

A21 A22

])
:=

[
A11 0
0 A22

]
,

Poff

([
A11 A12

A21 A22

])
:=

[
0 A12

A21 0

]
,

(4.28)

for any matrices A11 ∈ Rn×n,A12 ∈ Rn×m,A21 ∈ Rm×n,A22 ∈ Rm×m.
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According to the definitions of Pon and Poff in (4.28), when Pon and Poff are acting on the product of two block

matrices W1W
>
2 ,

Pon(W1W
>
2 ) = Pon

([
U1U

>
2 U1V

>
2

V1U
>
2 V1V

>
2

])
=

[
U1U

>
2 0

0 V1V
>
2

]
=

W1W
>
2 + Ŵ1Ŵ

>
2

2
,

Poff(W1W
>
2 ) = Pon

([
U1U

>
2 U1V

>
2

V1U
>
2 V1V

>
2

])
=

[
0 V1V

>
2

V1U
>
2 0

]
=

W1W
>
2 − Ŵ1Ŵ

>
2

2
.

(4.29)

Here, to simplify the notations, for any U1,U2 ∈ Rn×r and V1,V2 ∈ Rm×r, we define

W1 =

[
U1

V1

]
, Ŵ1 =

[
U1

−V1

]
, W2 =

[
U2

V2

]
, Ŵ2 =

[
U2

−V2

]
.

Now, we are ready to present the properties regarding the set E in Lemma 4.4.1 and Lemma 4.4.2, whose proofs

are given in Appendix C.6 and Appendix C.7, respectively.

Lemma 4.4.1. Let W =

[
U> V>

]>
with (U,V) ∈ E . Then for every D =

[
D>U D>V

]>
of proper dimension,

we have

‖Pon(DW>)‖2F = ‖Poff(DW>)‖2F .

Lemma 4.4.2. Let W1 =

[
U>1 V>1

]>
, W2 =

[
U>2 V>2

]>
with (U1,V1), (U2,V2) ∈ E . Then

‖Pon(W1W
>
1 −W2W

>
2 )‖2F ≤ ‖Poff(W1W

>
1 −W2W

>
2 )‖2F .

4.4.5 Proof Idea: Connecting the Optimality Conditions

First observe that each (U?,V?) in (4.22) is a global optimum for the factored program (we prove this in Ap-

pendix C.8):

Proposition 4.4.2. Any (U?,V?) in (4.22) is a global optimum of the factored program (F1):

g(U?,V?) ≤ g(U,V), for all U ∈ Rn×r,V ∈ Rm×r.

However, due to non-convexity, only characterizing the global optima is not enough for the factored program

to achieve the global convergence by many local-search algorithms. One should also eliminate the possibility of

the existence of spurious local minima or degenerate saddles. For this purpose, we focus on the critical point set

X and observe that any critical point (U,V) ∈ X of the factored problem satisfies the first part of the optimality

condition (4.25):

Ξ(X)W = 0

by constructing W = [U> V>]> and X = UV>. If the critical point (U,V) additionally satisfies ‖∇f(UV>)‖ ≤

λ, then it corresponds to the global optimum X? = UV>.
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Therefore, it remains to study the additional critical points (which are introduced by the parameterization X =

ψ(U,V)) that violate ‖∇f(UV>)‖ ≤ λ. In fact, we intend to show the following: for any critical point (U,V),

if X? 6= UV>, we can find a direction D, in which the Hessian ∇2g(U,V) has a strictly negative curvature

[∇2g(U,V)](D,D) < −τ‖D‖2F for some τ > 0. Hence, every critical point (U,V) either corresponds to the

global optimum X?, or is a strict saddle point.

To gain more intuition, we take a closer look at the directional curvature of g(U,V) in some direction D =

[D>U D>V]>:

[∇2g(U,V)](D,D) = 〈Ξ(X),DD>〉+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V), (4.30)

where the second term is always nonnegative by the convexity of f . The sign of the first term 〈Ξ(X),DD>〉 depends

on the positive semi-definiteness of Ξ(X), which is related to the boundedness condition ‖∇f(X)‖ ≤ λ through the

Schur complement theorem [115, A.5.5]:

Ξ(X) � 0

⇐⇒ λI− 1

λ
∇f(X)>∇f(X) � 0

⇐⇒ ‖∇f(X)‖ ≤ λ.

Equivalently, whenever ‖∇f(X)‖ > λ, we have Ξ(X) � 0. Therefore, for those non-globally optimal critical points

(U,V), it is possible to find a direction D such that the first term 〈Ξ(X),DD>〉 is strictly negative. Inspired by

the weighted PCA example, we choose D as the direction from the critical point W =

[
U> V>

]>
to the nearest

globally optimal factor W?R with W? =

[
U?> V?>

]>
, i.e.,

D = W −W?R,

where R = arg minR:RR>=Ir ‖W −W?R‖F . We will see that with this particular D, the first term of (4.30) will

be strictly negative while the second term retains small.

4.4.6 A Formal Proof of Theorem 4.4.1

The main argument involves choosing D as the direction from W =

[
U> V>

]>
to its nearest optimal factor:

D = W −W?R with R = arg minR:RR>=Ir ‖W −W?R‖F , and showing that the Hessian ∇2g(U,V) has a

strictly negative curvature in the direction of D whenever W 6= W?. To that end, we first introduce the follow-

ing lemma (with its proof in Appendix C.9) connecting the distance ‖UV> − X?‖F and the distance ‖(WW> −

W?W?>)QQ>‖F (where QQ> is an orthogonal projector onto the Span(W)).

Lemma 4.4.3. Suppose the function f(X) in (P1) is restricted well-conditioned (C). Let W =

[
U> V>

]>
with

(U,V) ∈ X , W? =

[
U?> V?>

]>
correspond to the global optimum of (P1) and QQ> be the orthogonal
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projector onto Range(W). Then

‖(WW> −W?W?>)QQ>‖F ≤ 2
β − α
β + α

‖UV> −X?‖F .

Proof of Theorem 4.4.1. Let D = W −W?R with R = arg minR:RR>=Ir ‖W −W?R‖F . Then

[∇2g(U,V)](D,D)

= 〈Ξ(X),DD>〉+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

¬
= 〈Ξ(X),W?W?> −WW>〉+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

­
≤
〈
Ξ(X)− Ξ(X?),W?W?> −WW>〉+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

=

〈[
λI ∇f(X)

∇f(X)> λI

]
−
[

λI ∇f(X?)
∇f(X?)> λI

]
,W?W?>−WW>

〉
+ [∇2f(X)](DUV>+ UD>V,DUV>+ UD>V)

®
=

〈[
0 ∗
∗> 0

]
,W?W?> −WW>

〉
+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

= −2

∫ 1

0

[∇2f(X? + t(X−X?))](X−X?,X−X?)dt+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

where ¬ follows from∇g(U,V) = Ξ(X)W = 0 and (4.26). For ­, we note that 〈Ξ(X?),W?W?>−WW>〉 ≤ 0

since Ξ(X?)W? = 0 in (4.25) and Ξ(X?) � 0 by the optimality condition. In ®, we use

∗ = (

∫ 1

0

[∇2f(X? + t(X−X?))](X−X?)dt)

for convenience and then ® follows from the Taylor’s Theorem for vector-valued functions [148, Eq. (2.5) in Theorem

2.1]:

∇f(X)−∇f(X?) =

∫ 1

0

[∇2f(X? + t(X−X?))](X−X?)dt.

Now, we continue the argument:

[∇2g(U,V)](D,D)

≤ −2

∫ 1

0

[∇2f(X? + t(X−X?))](X−X?,X−X?)dt+ [∇2f(X)](DUV> + UD>V,DUV> + UD>V)

¯
≤ −2α‖X? −X‖2F + β‖DUV> + UD>V‖2F ,
°
≤ −0.5α‖WW> −W?W?>‖2F + 2β(‖DUV>‖2F + ‖UD>V‖2F )

±
= −0.5α‖WW> −W?W?>‖2F + β‖DW>‖2F
²
≤
[
−0.5α+ β/8 + 4.208β

(
β − α
β + α

)2
]
‖WW> −W?W?>‖2F

³
≤ −0.06α‖WW> −W?W?>‖2F
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´
≤



−0.06αmin
{
ρ2(W), ρ2(W?)

}
‖D‖2F , By Lemma 4. 3. 2 when r > r?

−0.0495αρ2(W?)‖D‖2F , By Lemma 4. 3. 3 when r = r?

−0.06αρ2(W?)‖D‖2F , When W = 0

where ¯ uses the restricted well-conditionedness (C) since rank(X? + t(X−X?)) ≤ 2r, rank(X−X?) ≤ 4r and

rank(DUV> + UD>V) ≤ 4r. ° comes from Lemma 4.4.2 and the fact ‖A + B‖2F ≤ 2(‖A‖2F + ‖B‖2F ). ± follows

from Lemma 4.4.1. ² first uses Lemma 4.3.4 to bound ‖DW>‖2F = ‖(W −W?R)W>‖2F since W>W? � 0 and

then uses Lemma 4.4.3 to further bound ‖(W?−W)QQ>‖2F . ³ holds when β/α ≤ 1.5. ´ uses the similar argument

as in the proof of Theorem 4.3.1 to relate the lifted distance and factored distance. Particularly, three possible cases

are considered: (i) r > r?; (ii) r = r?; (iii) W = 0. We apply Lemma 4.3.2 to Case (i) and Lemma 4.3.3 to Case (ii).

For the third case that W = 0, we obtain from ³ that

[∇2g(U,V)](D,D) ≤ −0.06α‖W?W?>‖2F ≤ −0.06αρ(W?)2‖W?‖2F = −0.06αρ(W?)2‖D‖2F ,

where the last equality follows from D = 0−W?R = −W?R because W = 0.

The final result follows from the the definition of U?,V? in (4.22):

W? =

P?
√

Σ?R

Q?
√

Σ?R

 =

P?/
√

2

Q?/
√

2

(√2Σ?
)

R,

which implies σ`(W?) =
√

2σ`(X?).

4.5 Conclusion

In this work, we considered two popular minimization problems: the minimization of a general convex function

f(X) with the domain being positive semi-definite matrices; the minimization of a general convex function f(X)

regularized by the matrix nuclear norm ‖X‖∗ with the domain being general matrices. To improve the computational

efficiency, we applied the Burer-Monteiro re-parameterization and showed that, as long as the convex function f(X) is

(restricted) well-conditioned, the resulting factored problems have the following properties: each critical point either

corresponds to a global optimum of the original convex programs, or is a strict saddle where the Hessian matrix has a

strictly negative eigenvalue. Such a benign landscape then allows many iterative optimization methods to escape from

all the saddle points and converge to a global optimum with even random initializations.

87



CHAPTER 5

GLOBAL OPTIMALITY IN LOW-RANK MATRIX OPTIMIZATION

This work11 considers the minimization of a general objective function f(X) over the set of rectangular n × m

matrices that have rank at most r. To reduce the computational burden, we factorize the variable X into a product of

two smaller matrices and optimize over these two matrices instead of X. Despite the resulting nonconvexity, recent

studies in matrix completion and sensing have shown that the factored problem has no spurious local minima and

obeys the so-called strict saddle property (the function has a directional negative curvature at all critical points but

local minima). We analyze the global geometry for a general and yet well-conditioned objective function f(X) whose

restricted strong convexity and restricted strong smoothness constants are comparable. In particular, we show that the

reformulated objective function has no spurious local minima and obeys the strict saddle property. These geometric

properties imply that a number of iterative optimization algorithms (such as gradient descent) can provably solve the

factored problem with global convergence.

5.1 Introduction

Consider the minimization of a general objective function f(X) over all low-rank n×m matrices:

minimize
X∈Rn×m

f(X)

subject to rank(X) ≤ r,
(5.1)

where the objective function f : Rn×m → R is smooth. Low-rank matrix optimizations of the form (5.1) appear

in a wide variety of applications, including quantum tomography [149, 150], collaborative filtering [117, 151], sensor

localization [118], low-rank matrix recovery from compressive measurements [65, 152], and matrix completion [153,

154]. Due to the rank constraint, however, low-rank matrix optimizations of the form (5.1) are highly nonconvex

and computationally NP-hard in general [155] even if f itself is convex. In order to deal with the rank constraint

and to find a low-rank solution, the nuclear norm is widely used in matrix inverse problems [65, 156] arising in

machine learning [157], signal processing [124], and control [158]. Although nuclear norm minimization enjoys

strong statistical guarantees [153], its computational complexity is very high (as most algorithms require performing

an expensive singular value decomposition (SVD) in each iteration), prohibiting it from scaling to practical problems.

To relieve the computational bottleneck and provide an alternative way of dealing with the rank constraint, recent

studies propose to factorize the variable into the Burer-Monteiro type decomposition [119, 159] with X = UV>, and

optimize over the n × r and m × r matrices U and V. With this parameterization of X, we can recast (5.1) into the

11This is a joint work with Zhihui Zhu, Gongguo Tang and Michael B. Wakin [8].
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following program:

minimize
U∈Rn×r,V∈Rm×r

h(U,V) := f(UV>). (5.2)

The bilinear nature of the parameterization renders the objective function of (5.2) nonconvex even when f(X) is a con-

vex function. Hence, the objective function in (5.2) can potentially have spurious local minima (i.e., local minimizers

that are not global minimizers) or “bad” saddle points that prevent a number of iterative algorithms from converging

to the global solution. By analyzing the landscape of nonconvex functions, several recent works have shown that the

factored objective function h(U,V) in certain matrix inverse problems has no spurious local minima [100, 106, 125].

We generalize this line of work by focusing on a general objective function f(X) in the optimization (5.1), not

necessarily a quadratic loss function coming from a matrix inverse problem. By focusing on a general objective func-

tion, we attempt to provide a unifying framework for low-rank matrix optimizations with the factorization approach.

We provide a geometric analysis for the factored program (5.2) and show that, under certain conditions on f(X),

all critical points of the objective function h(U,V) are well-behaved. Our characterization of the geometry of the

objective function ensures that a number of iterative optimization algorithms converge to a global minimum.

5.1.1 Summary of Results

The purpose of this work is to analyze the geometry of the factored problem h(U,V) in (5.2). In particular, we at-

tempt to understand the behavior of all of the critical points of the objective function in the reformulated problem (5.2).

Before presenting our main results, we lay out the necessary assumptions on the objective function f(X). As is

known, without any assumptions on the problem, even minimizing traditional quadratic objective functions is chal-

lenging. For this purpose, we focus on the model where f(X) is (2r, 4r)-restricted strongly convex and smooth, i.e.,

for any n×m matrices X,G with rank(X) ≤ 2r and rank(G) ≤ 4r, the Hessian of f(X) satisfies

α ‖G‖2F ≤ [∇2f(X)](G,G) ≤ β ‖G‖2F (5.3)

for some positive α and β. A similar assumption is also utilized in [109, Conditions 5.3 and 5.4]. With this assumption

on f(X), we summarize our main results in the following informal theorem.

Theorem 5.1.1. (informal) Suppose the function f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness

condition (5.3) and has a critical point X? ∈ Rn×m with rank(X?) = r? ≤ r. Then the factored objective function

h(U,V) (with an additional regularizer, see Theorem 5.3.1) in (5.2) has no spurious local minima and obeys the strict

saddle property (see Definition 5.2.3 in Section 5.2).

Remark 5.1.1. As guaranteed by Proposition 5.3.1 (in Section 5.3), the (2r, 4r)-restricted strong convexity and

smoothness property (5.3) ensures that X? is the unique global minimum of (5.1). Theorem 5.1.1 then implies
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that we can recover the rank-r? global minimizer X? of (5.1) by many iterative algorithms (such as the trust re-

gion method [160] and stochastic gradient descent [114]) even from a random initialization. This is because 1) as

guaranteed by Theorem 5.2.1, the strict saddle property ensures local search algorithms converge to a local minimum,

and 2) there are no spurious local minima.

Remark 5.1.2. Since our main result only requires the (2r, 4r)-restricted strong convexity and smoothness prop-

erty (5.3), aside from low-rank matrix recovery [156], it can also be applied to many other low-rank matrix opti-

mization problems [161] which do not necessarily involve quadratic loss functions. Typical examples include robust

PCA [162, 163], 1-bit matrix completion [132, 164] and Poisson principal component analysis (PCA) [165].

Remark 5.1.3. Similar results on positive semi-definite (PSD) matrix optimization problems (but without the rank

constraint) with generic objective functions were obtained in [6]. We note that one cannot directly apply the results

in [6] to the optimization (5.1) when the matrices under consideration are nonsymmetric or rectangular, even if we

ignore the rank constraint. One could attempt to convert minimizing f(X) over general n×mmatrices into minimizing

q(Z) over the cone of PSD matrices of size (m+ n)× (m+ n), where X and X> form the upper right and lower left

blocks of Z. The problem with this transformation, however, is that q(Z) will no longer satisfy the same properties as

f(X), in particular the restricted strong convexity and smoothness condition (5.3) which is a key assumption utilized

in [6]. For this reason, one cannot apply the results for the PSD optimization in [6] directly to our problem. In terms

of the proof techniques, although the generalization from the PSD case might not seem technically challenging at first

sight, quite a few technical difficulties had to be overcome to develop the theory for the general case in this work. In

fact, the non-triviality of extending to the nonsymmetric case is also highlighted in [102, 106].

5.1.2 Related Works

Compared with the original program (5.1), the factored form (5.2) typically involves many fewer variables (or

variables with much smaller size) and can be efficiently solved by simple but powerful methods (such as gradient

descent [113, 114], the trust region method [97], and alternating methods [166]) for large-scale settings, though it is

nonconvex. In recent years, tremendous effort has been devoted to analyzing nonconvex optimizations by exploiting

the geometry of the corresponding objective functions. These works can be separated into two types based on whether

the geometry is analysed locally or globally. One type of work analyzes the behavior of the objective function in a

small neighborhood containing the global optimum and requires a good initialization that is close enough to a global

minimum. Problems such as phase retrieval [167], matrix sensing [102], and semi-definite optimization [103] have

been studied.

Another type of work attempts to analyze the landscape of the objective function and show that it obeys the strict

saddle property. If this particular property holds, then simple algorithms such as gradient descent and the trust re-

gion method are guaranteed to converge to a local minimum from a random initialization [113, 114, 168] rather than
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requiring a good guess. We approach low-rank matrix optimization with general objective functions (5.1) via a sim-

ilar geometric characterization. Similar geometric results are known for a number of problems including complete

dictionary learning [168], phase retrieval [160], orthogonal tensor decomposition [114], and matrix inverse prob-

lems [6, 100, 125]. Empirical evidence also supports using the factorization approach for estimating a low-rank PSD

matrix from a set of rank-one measurements corrupted by arbitrary outliers [120] and for recovering a dynamically

evolving low-rank matrix from incomplete observations [102, 169].

Our work is most closely related to certain recent works in low-rank matrix optimization. Bhojanapalli et al. [125]

showed that the low-rank, PSD matrix sensing problem has no spurious local minima and obeys the strict saddle

property. Similar results were exploited for PSD matrix completion [100], PSD matrix factorization [104] and low-

rank, PSD matrix optimization problems with generic objective functions [6]. Our work extends this line of analysis

to general low-rank matrix (not necessary PSD or even square) optimization problems. Another closely related work

considers the low-rank, non-square matrix sensing problem and matrix completion with the factorization approach [93,

101, 106]. We note that our general objective function framework includes the low-rank matrix sensing problem as

a special case (see Section 5.3.3). Furthermore, our result covers both over-parameterization where r > r? and

exact parameterization where r = r?. Wang et al. [109] also considered the factored low-rank matrix minimization

problem with a general objective function which satisfies the restricted strong convexity and smoothness condition.

Their algorithms require good initializations for global convergence since they characterized only the local landscapes

around the global optima. By categorizing the behavior of all the critical points, our work differs from [109] in that

we instead characterize the global landscape of the factored objective function.

This chapter continues in Section 5.2 with formal definitions for strict saddles and the strict saddle property. We

present the main results and their implications in matrix sensing, weighted low-rank approximation, and 1-bit matrix

completion in Section 5.3. The proof of our main results is given in Section 5.4. We conclude the chapter in Section 5.6.

5.2 Preliminaries

5.2.1 Notation

To begin, we first briefly introduce some notation used throughout the chapter. The symbols I and 0 respectively

represent the identity matrix and zero matrix with appropriate sizes. The set of r × r orthonormal matrices is denoted

by Or := {R ∈ Rr×r : R>R = I}. If a function h(U,V) has two arguments, U ∈ Rn×r and V ∈ Rm×r,

we occasionally use the notation h(W) when we put these two arguments into a new one as W =

U

V

. For a

scalar function f(Z) with a matrix variable Z ∈ Rn×m, its gradient is an n × m matrix whose (i, j)-th entry is

[∇f(Z)]ij = ∂f(Z)
∂Zij

for all i ∈ [n], j ∈ [m]. Here [n] = {1, 2, . . . , n} for any n ∈ N and Zij is the (i, j)-th entry of

the matrix Z. The Hessian of f(Z) can be viewed as an nm × nm matrix [∇2f(Z)]ij = ∂2f(Z)
∂zi∂zj

for all i, j ∈ [nm],

91



where zi is the i-th entry of the vectorization of Z. An alternative way to represent the Hessian is by a bilinear form

defined via [∇2f(Z)](A,B) =
∑
i,j,k,l

∂2f(Z)
∂Zij∂Zkl

AijBkl for any A,B ∈ Rn×m. The bilinear form for the Hessian is

widely utilized through the chapter.

5.2.2 Strict Saddle Property

Suppose h : Rn → R is a twice continuously differentiable objective function. We begin with the notion of strict

saddles and the strict saddle property.

Definition 5.2.1 (Critical points). We say x a critical point if the gradient at x vanishes, i.e., ∇h(x) = 0.

Definition 5.2.2 (Strict saddles). A critical point x is a strict saddle if the Hessian matrix evaluated at this point has

a strictly negative eigenvalue, i.e., λmin(∇2h(x)) < 0.

Definition 5.2.3 (Strict saddle property [114]). A twice differentiable function satisfies the strict saddle property if

each critical point either corresponds to a local minimum or is a strict saddle.

Intuitively, the strict saddle property requires a function to have a directional negative curvature at all critical points

but local minima. This property allows a number of iterative algorithms such as noisy gradient descent [114] and the

trust region method [170] to further decrease the function value at all the strict saddles and thus converge to a local

minimum.

Theorem 5.2.1. [97, 113, 114] (informal) For a twice continuously differentiable objective function satisfying the

strict saddle property, a number of iterative optimization algorithms (such as gradient descent and the the trust region

method) can find a local minimum.

5.3 Problem Formulation and Main Results

5.3.1 Problem Formulation

This work considers the problem (5.1) of minimizing a general function f(X) (over the set of low-rank matrices)

which is assumed to have a low-rank critical point X? with rank(X?) = r? ≤ r such that ∇f(X?) = 0. Because

of the restricted strong convexity and smoothness condition (5.3), the following result establishes that if f(X) has a

critical point X? with rank(X?) ≤ r, then it is the unique global minimum of (5.1).

Proposition 5.3.1. Suppose f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness condition (5.3)

with positive α and β. Assume X? is a critical point of f(X) with rank(X?) = r? ≤ r. Then X? is the global

minimum of (5.1), i.e.,

f(X?) ≤ f(X), ∀X ∈ Rn×m, rank(X) ≤ r

and the equality holds only at X = X?.
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Proof of Proposition 5.3.1. First note that if X? is a critical point of f(X), then

∇f(X?) = 0.

Now for any X ∈ Rn×m with rank(X) ≤ r, the second order Taylor expansion gives

f(X) =f(X?) + 〈∇f(X?),X−X?〉+
1

2
[∇2f(X̃)](X−X?,X−X?),

where X̃ = tX? + (1− t)X for some t ∈ [0, 1]. This Taylor expansion together with∇f(X?) = 0 and (5.3) (both X̃

and X′ −X? have rank at most 2r) gives

f(X)− f(X?) =
1

2
[∇2f(X̃)](X−X?,X−X?)

≥ α

2
‖X−X?‖2F .

With this, in the sequel, we use X? to denote the global minimum of (5.1) (i.e., the low-rank critical point of

f(X)), unless stated otherwise. We note that the assumption of the existence of a low-rank critical point X? is very

mild and holds in many matrix inverse problems [65, 153], where the unknown matrix to be recovered is a critical

point of f . We factorize the variable X = UV> with U ∈ Rn×r,V ∈ Rm×r and transform (5.1) into its factored

counterpart (5.2). Throughout the chapter, X, W and Ŵ are matrices depending on U and V:

W =

[
U
V

]
, Ŵ =

[
U
−V

]
, X = UV>.

Although the new variable W has much smaller size than X when r � min{n,m}, the objective function in the

factored problem (5.2) may have a much more complicated landscape due to the bilinear form about U and V. The

reformulated objective function h(U,V) could introduce spurious local minima or degenerate saddle points even

when f(X) is convex. Our goal is to guarantee that this does not happen.

Let X? = QU?Σ?Q>V? denote an SVD of X?, where QU? ∈ Rn×r and QV? ∈ Rm×r are orthonormal matrices

of appropriate sizes, and Σ? ∈ Rr×r is a diagonal matrix with non-negative diagonal (but with some zeros on the

diagonal if r > r? = rank(X?)). We denote

U? = QU?Σ?1/2
, V? = QV?Σ?1/2

,

where X? = U?V?> forms a balanced factorization of X? since U? and V? have the same singular values. Through-

out the chapter, we utilize the following two ways to stack U? and V? together:

W? =

[
U?

V?

]
, Ŵ? =

[
U?

−V?

]
.
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Before moving on, we note that for any solution (U,V) to (5.2), (UΨ,VΦ) is also a solution to (5.2) for any

Ψ,Φ ∈ Rr×r such that UΨΦ>V> = UV>. In order to address this ambiguity (i.e., to reduce the search space of

W for (5.2)), we utilize the trick in [102, 106, 109] by introducing a regularizer

g(U,V) =
µ

4

∥∥U>U−V>V
∥∥2

F
(5.4)

and solving the following problem

minimize
U∈Rn×r,V∈Rm×r

ρ(U,V) := f(UV>) + g(U,V), (5.5)

where µ > 0 controls the weight for the term
∥∥U>U−V>V

∥∥2

F
, which will be discussed soon.

We remark that W? is still a global minimizer of the factored problem (5.5) since f(X) achieves its global min-

imum over the low-rank set of matrices at X? and g(W) also achieves its global minimum at W?. The regularizer

g(W) is applied to force the difference between the two Gram matrices of U and V to be as small as possible. The

global minimum of g(W) is 0, which is achieved when U and V have the same Gram matrices, i.e., when W belongs

to

E :=

{
W =

[
U
V

]
: U>U−V>V = 0

}
. (5.6)

Informally, we can view (5.5) as finding a point from E that also minimizes f(UV>). This is formally established in

Theorem 5.3.1.

5.3.2 Main Results

Our main argument is that, under certain conditions on f(X), the objective function ρ(W) has no spurious local

minima and satisfies the strict saddle property. This is equivalent to categorizing all the critical points into two types:

1) the global minima which correspond to the global solution of the original convex problem (5.1) and 2) strict saddles

such that the Hessian matrix ∇2ρ(W) evaluated at these points has a strictly negative eigenvalue. We formally

establish this in the following theorem, whose proof is given in the next section.

Theorem 5.3.1. For any µ > 0, each critical point W =

U

V

 of ρ(W) defined in (5.5) satisfies

U>U−V>V = 0. (5.7)

Furthermore, suppose that the function f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness con-

dition (5.3) with positive constants α and β satisfying β
α ≤ 1.5 and that the function f(X) has a critical point

X? ∈ Rn×m with rank(X?) = r? ≤ r. Set µ ≤ α
16 for the factored problem (5.5). Then ρ(W) has no spurious local
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minima, i.e., any local minimum of ρ(W) is a global minimum corresponding to the global solution of the original

problem (5.1): UV> = X?. In addition, ρ(W) obeys the strict saddle property that any critical point not being a

local minimum is a strict saddle with

λmin

(
∇2 (ρ(W))

)
≤

 −0.08ασr(X
?), r = r?

−0.05α ·min
{
σ2
rc(W), 2σr?(X?)

}
, r > r?

−0.1ασr?(X?), rc = 0,
(5.8)

where rc ≤ r is the rank of W, λmin(·) represents the smallest eigenvalue, and σ`(·) denotes the `-th largest singular

value.

Remark 5.3.1. Equation (5.7) shows that any critical point W belongs to E for the objective function in the factored

problem (5.5) with any positive µ. This demonstrates the reason for adding the regularizer g(U,V). Thus, any iterative

optimization algorithm converging to some critical point of ρ(W) results in a solution within E . Furthermore, the strict

saddle property along with the lack of spurious local minima ensures that a number of iterative optimization algorithms

find the global minimum.

Remark 5.3.2. For any critical point W ∈ R(n+m)×r that is not a local minimum, the right hand side of (5.8) is strictly

negative, implying that W is a strict saddle. We also note that Theorem 5.3.1 not only covers exact parameterization

where r = r?, but also includes the over-parameterization case where r > r?.

Remark 5.3.3. The constants appearing in Theorem 5.3.1 are not optimized. We use µ ≤ 1
16α simply to include

µ = 1
16 which is utilized for the matrix sensing problem in [102]. If the ratio between the restricted strong convexity

and smoothness constants β
α ≤ 1.4, then we can show that ρ(W) has no spurious local minima and obeys the strict

saddle property for any µ ≤ 1
4α (where µ = 1

4 is utilized for the matrix sensing problem in [106]). In all cases, a

smaller µ yields a more negative constant in (5.8); see Section 5.4 for more discussion on this. This implies that when

the restricted strong convexity constant α is not provided a priori, one can always choose a small µ to ensure the strict

saddle property holds, and hence guarantee the global convergence of many iterative optimization algorithms.

The constant 1.5 for the dynamic range β
α in Theorem 5.3.1 is also not optimized and it is possible to slightly

relax this constraint with more sophisticated analysis. However, the following example involving weighted symmetric

matrix factorization implies that the room for improving this constant is rather limited. Let

Ω =

[√
1 + a 1
1

√
1 + a

]
for some a ≥ 0,

X? =

[
1 1
1 1

]
, and U =

[
x
y

]
.
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Now consider the following weighted low-rank matrix factorization:

h(U) =
1

2
‖Ω� (UU> −X?)‖2F =

1 + a

2

(
x2 − 1

)2
+

1 + a

2

(
y2 − 1

)2
+ (xy − 1)2, (5.9)

whose gradient∇h(U) and Hessian∇2h(U) are given by:

∇h(U) = 2

[
(a+ 1)

(
x2 − 1

)
x+ y(xy − 1)

(a+ 1)
(
y2 − 1

)
y + x(xy − 1)

]
,

and

∇2h(U) = 2

[
y2 +

(
3x2 − 1

)
(a+ 1) 2xy − 1

2xy − 1 x2 +
(
3y2 − 1

)
(a+ 1)

]
.

Then,

U =

 √ a
a+2

−
√

a
a+2


is a critical point with

∇2h(U) =

[
4a+ 8

a+2 − 6 8
a+2 − 6

8
a+2 − 6 4a+ 8

a+2 − 6

]
,

which has eigenvalues

λ1 =
4(a− 2)(a+ 1)

a+ 2

{
< 0, a ∈ [0, 2),

> 0, a > 2,

and λ2 = 4a > 0. We conclude that this U is a strict saddle point when a < 2 and a spurious local minimum

when a > 2. This weighted symmetric matrix factorization problem (5.9) satisfies the restricted strong convexity

and smoothness condition (5.3) with constants α = ‖Ω‖2min = 1 and β = ‖Ω‖2max = 1 + a (where ‖Ω‖min and

‖Ω‖max represent the smallest and largest entries in Ω; see Section 5.3.3). Thus, we have a counter example which

demonstrates the existence of spurious local minima when β
α > 3.

Remark 5.3.4. We finally remark that although Theorem 5.3.1 requires the additional regularizer (5.4), empirical

evidence (see experiments in Section 5.5) shows we can get rid of this regularizer for many iterative algorithms with

random initialization.

We prove Theorem 5.3.1 in Section 5.4. Before proceeding, we present two stylized applications of Theorem 5.3.1

in matrix sensing and weighted low-rank approximation.

5.3.3 Stylized Applications

5.3.3.1 Matrix Sensing

We first consider the implication of Theorem 5.3.1 in the matrix sensing problem where
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f(X) =
1

2
‖A (X−X?)‖22 .

Here A : Rn×m → Rp is a known measurement operator satisfying the following restricted isometry property.

Definition 5.3.1. (Restricted Isometry Property (RIP) [65]) The map A : Rn×m → Rp satisfies the r-RIP with

constant δr if

(1− δr) ‖X‖2F ≤ ‖A(X)‖2 ≤ (1 + δr) ‖X‖2F (5.10)

holds for any n×m matrix X with rank(X) ≤ r.

Note that, in this case, the gradient of f(X) at X? is

∇f(X?) = A∗A(X? −X?) = 0,

which implies that X? is a critical point of f(X). The Hessian quadrature form∇2f(X)[Y,Y] for any n×mmatrices

X and Y is given by

∇2f(X)[Y,Y] = ‖A(Y)‖2 .

If A satisfies the 4r-restricted isometry property with constant δ4r, then f(X) satisfies the (2r, 4r)-restricted strong

convexity and smoothness condition (5.3) with constants α = 1− δ4r and β = 1− δ4r since

(1− δ4r) ‖Y‖2F ≤ ‖A(Y)‖2 ≤ (1 + δ4r) ‖Y‖2F

for any rank-4r matrix Y. Now, applying Theorem 5.3.1, we can characterize the geometry for the following matrix

sensing problem with the factorization approach:

minimize
U∈Rn×r,V∈Rn×r

1

2

∥∥A(UV> −X?)
∥∥2

2
+ g(U,V), (5.11)

where g(U,V) is the added regularizer defined in (5.4).

Corollary 5.3.1. Suppose A satisfies the 4r-RIP with constant δ4r ≤ 1
5 , and set µ ≤ 1−δ4r

16 . Then the objective

function in (5.11) has no spurious local minima and satisfies the strict saddle property.

This result follows directly from Theorem 5.3.1 by noting that β
α = 1+δ4r

1−δ4r ≤ 1.5 if δ4r ≤ 1
5 . We remark that

Park et al. [106, Theorem 4.3] provided a similar geometric result for (5.11). Compared to their result which requires

δ4r ≤ 1
100 , our result has a much weaker requirement on the RIP of the measurement operator.

5.3.3.2 Weighted Low-Rank Matrix Factorization

We now consider the implication of Theorem 5.3.1 in the weighted matrix factorization problem [130], where
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f(X) :=
1

2
‖Ω ◦ (X−X?)‖2F .

Here Ω is an n×m weight matrix consisting of positive elements and ◦ denotes the point-wise product between two

matrices. In this case, the gradient of f(X) at X? is

∇f(X?) = Ω ◦Ω ◦ (X? −X?) = 0,

which implies that X? is a critical point of f(X). The Hessian quadrature form∇2f(X)[Y,Y] for any n×mmatrices

X and Y is given by

∇2f(X)[Y,Y] = ‖Ω ◦Y‖2F .

Thus f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness condition (5.3) with constants α =

‖Ω‖2min and β = ‖Ω‖2max since

‖Ω‖2min ‖Y‖
2
F ≤ ‖Ω ◦Y‖2F ≤ ‖Ω‖

2
max ‖Y‖

2
F ,

where ‖Ω‖min and ‖Ω‖max represent the smallest and largest entries in Ω, respectively. Now we consider the follow-

ing weighted matrix factorization problem:

minimize
U∈Rn×r,V∈Rn×r

1

2

∥∥Ω ◦ (UV> −X?)
∥∥2

F
+ g(U,V), (5.12)

where g(U,V) is the added regularizer defined in (5.4). For an arbitrary weight matrix Ω, it is proven that the weighted

low-rank factorization can be NP-hard [131] and has spurious local minima. When the elements in the weight matrix

Ω are concentrated, it is expected that (5.12) can be efficiently solved by a number of iterative optimization algorithms

as it is close to an (unweighted) matrix factorization problem (where Ω is a matrix of ones) which obeys the strict

saddle property [104]. The following result characterizes the geometric structure in the objection function of (5.12) by

directly applying Theorem 5.3.1.

Corollary 5.3.2. Suppose Ω satisfies ‖Ω‖
2
max

‖Ω‖2min
≤ 1.5. Set µ ≤ ‖Ω‖2min

16 . Then the objective function in (5.12) has no

spurious local minima and satisfies the strict saddle property.

5.3.3.3 1-bit Matrix Completion

Finally, we consider the problem of completing a low-rank matrix from a subset of 1-bit measurements [132].

Given X� ∈ Rn×m, a subset of indices Ω ⊂ [m]× [n], and a differentiable function q : R→ [0, 1], we observe

Yi,j =

{
+1 with probability q(X�i,j),
−1 with probability 1− q(X�i,j),

(5.13)
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for all (i, j) ∈ Ω. Typical choices for q include the logistic regression model where q(x) = ex

1+ex and the probit

regression model where q(x) = 1 − Φ(−x/σ) = Φ(x/σ). Here Φ is the cumulative distribution function (CDF) of

a mean-zero Gaussian distribution with variance σ2. In [132], the authors attempt to recover X� from the incomplete

nonlinear measurements {Yij}(i,j)∈Ω by minimizing the negative log-likelihood function

FΩ,Y(X) := −
∑

(i,j)∈Ω

(
1(Yi,j=1) log(q(Xi,j)) + 1(Yi,j=−1) log(1− q(Xi,j))

)
which results in a maximum likelihood (ML) estimate.

We note that FΩ,Y is a convex function for both the logistic model and the probit model. The following result

also establishes that FΩ,Y satisfies the restricted strong convexity and smoothness condition if we observe full 1-bit

measurements, i.e., Ω = [n]× [m].

Lemma 5.3.1. Suppose Ω = [n]× [m]. Let

αq,γ = min
|x|≤γ

min

(
(q′(x))2 − q(x)q′′(x)

q2(x)
,

(q′(x))2 + (1− q(x))q′′(x)

(1− q(x))2

)
and

βq,γ = max
|x|≤γ

max

(
(q′(x))2 − q(x)q′′(x)

q2(x)
,

(q′(x))2 + (1− q(x))q′′(x)

(1− q(x))2

)
.

Then FΩ,Y satisfies the restricted strong convexity and smoothness condition:

αq,γ‖G‖2F ≤ [∇2FΩ,Y(X)](G,G) ≤ βq,γ‖G‖2F

for any G ∈ Rn×m and ‖X‖∞ ≤ γ.

The proof of Lemma 5.3.1 is given in Appendix D.1. Now we consider the logistic regression model where

q(x) = ex

1+ex .

Corollary 5.3.3. Suppose Ω = [n] × [m] and γ ≤ 1.3. Consider the logistic regression model where q(x) = ex

1+ex .

Then FΩ,Y satisfies the restricted strong convexity and smoothness condition with

βq,γ
αq,γ

≤ 1.5.

Proof of Corollary 5.3.3. Applying Lemma 5.3.1 with direct calculation gives

αq,γ = q′(γ) =
eγ

(1 + eγ)2
,

βq,γ = q′(0) =
e0

(1 + e0)2
=

1

4
,
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where q′(x) = ex

(1+ex)2 . Now if we restrict ‖X‖∞ ≤ 1.3, we have

βq,γ
αq,γ

= 4
e1.3

(1 + e1.3)2
≤ 1.5.

Under the assumption that X� is low-rank, a nuclear norm constraint is utilized in [132] to force a low-rank

solution. Corollary 5.3.3 implies that we can apply matrix factorization for 1-bit matrix recovery given that the

elements of X are bounded. For the setting where Ω is only a subset of [n] × [m], [171] considered the 1-bit

matrix completion problem with the rank constraint and established a stronger statistical recovery guarantee than that

in [132]. Empirical evidence (see [171] and Section 5.5.3) supports that matrix factorization also works for 1-bit

matrix completion.

5.4 Proof of Theorem 5.3.1

In this section, we provide a formal proof of Theorem 5.3.1. The main argument involves showing that each critical

point of ρ(W) either corresponds to the global solution of (5.1) or is a strict saddle whose Hessian ∇2ρ(W) has a

strictly negative eigenvalue. Specifically, we show that W is a strict saddle by arguing that the Hessian ∇2ρ(W) has

a strictly negative curvature along ∆ := W −W?R, i.e., [∇2ρ(W)](∆,∆) ≤ −τ‖∆‖2F for some τ > 0. Here R

is an r × r orthonormal matrix such that the distance between W and W? rotated through R is as small as possible.

5.4.1 Supporting Results

We first present some useful results. The (2r, 4r)-restricted strong convexity and smoothness assumption (5.3)

implies the following isometry property, whose proof is given in Appendix D.2.

Proposition 5.4.1. Suppose the function f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness con-

dition (5.3) with positive α and β. Then for any n×m matrices Z,G,H of rank at most 2r, we have

∣∣∣∣ 2

α+ β
[∇2f(Z)](G,H)− 〈G,H〉

∣∣∣∣ ≤ β − α
β + α

‖G‖F ‖H‖F .

The following result provides an upper bound on the energy of the difference WW> −W?W?> when projected

onto the column space of W. Its proof is given in Appendix D.3.

Lemma 5.4.1. Suppose f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness condition (5.3). For

any critical point W of (5.5), let PW ∈ R(m+n)×(m+n) be the orthogonal projector onto the column space of W.

Then ∥∥(WW> −W?W?>)PW

∥∥
F
≤ 2

β − α
β + α

‖X−X?‖F .
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We remark that Lemma 5.4.1 is a variant of [106, Lemma 3.2]. While the result there requires the 4r-RIP condition

of the objective function, our result depends on the (2r, 4r)-restricted strong convexity and smoothness condition. Our

result is also slightly tighter than [106, Lemma 3.2].

In addition, for any matrices C,D ∈ Rn×r, the following result relates the distance between CC> and DD> to

the distance between C and D.

Lemma 5.4.2. For any matrices C,D ∈ Rn×r with ranks r1 and r2, respectively, let R = arg minR′∈Or ‖C −

DR′‖F . Then

‖CC> −DD>‖2F /‖C−DR‖2F ≥ max
{

2(
√

2− 1)σ2
r(D),min

{
σ2
r1(C), σ2

r2(D)
}}

.

If C = 0, then we have

∥∥CC> −DD>
∥∥2

F
≥ σ2

r2(D) ‖C−DR‖2F .

We present one more useful result in the following Lemma.

Lemma 5.4.3. [6, Lemma 5] For any matrices C,D ∈ Rn×r, let PC be the orthogonal projector onto the range of

C. Let R = arg minR′∈Or ‖C−DR′‖F . Then

‖C (C−DR)
> ‖2F ≤

1

8
‖CC> −DD>‖2F + (3 +

1

2(
√

2− 1)
)‖(CC> −DD>)PC‖2F .

Finally, we provide the gradient and Hessian expressions for ρ(W). The gradient of ρ(W) is given by

∇Uρ(U,V) = ∇f(X)V + µU(U>U−V>V),

∇Vρ(U,V) = ∇f(X)>U− µV(U>U−V>V).

Standard computations give the the Hessian quadrature form [∇2ρ(W)](∆,∆) for any ∆ =

∆U

∆V

 where ∆U ∈

Rn×r,∆V ∈ Rm×r:

[∇2ρ(W)](∆,∆) = [∇2f(X)](∆UV> + U∆>V,∆UV> + U∆>V)

+ 2〈∇f(X),∆U∆>V〉+ [∇2g(W)](∆,∆),

where

[∇2g(W)](∆,∆) = µ〈Ŵ>W, ∆̂
>

∆〉+ µ〈Ŵ∆̂
>
,∆W>〉+ µ〈ŴŴ>,∆∆>〉.
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5.4.2 The Formal Proof

Proof of Theorem 5.3.1. Any critical point W of ρ(W) satisfies∇ρ(W) = 0, i.e.,

∇f(X)V + µU
(
U>U−V>V

)
= 0, (5.14)

∇f(X)>U− µV
(
U>U−V>V

)
= 0. (5.15)

By (5.15), we obtain

U>∇f(X) = µ
(
U>U−V>V

)
V>.

Multiplying (5.14) by U> and plugging in the expression for U>∇f(X) from the above equation V> gives

(U>U−V>V)V>V + U>U(U>U−V>V) = 0,

which further implies

U>UU>U = V>VV>V.

Note that U>U and V>V are the principal square roots (i.e., PSD square roots) of U>UU>U and V>VV>V,

respectively. Utilizing the result that a PSD matrix has a unique principal square root [172], we obtain

U>U = V>V. (5.16)

Thus, we can simplify (5.14) and (5.15) by

∇Uρ(U,V) = ∇f(X)V = 0, (5.17)

∇Vρ(U,V) = ∇f(X)>U = 0. (5.18)

Now we turn to prove the strict saddle property and that there are no spurious local minima.

First, note that as guaranteed by Proposition 5.3.1, X? is the unique n ×m matrix with rank at most r. Also the

gradient of f(X) vanishes at X? since (5.1) is an unconstraint optimization problem. Denote the set of critical points

of ρ(W) by

C :=
{

W ∈ R(n+m)×r : ∇ρ(W) = 0
}
.

We separate C into two subsets:

C1 : = C ∩
{

W ∈ R(n+m)×r : UV> = X?
}
,

C2 : = C ∩
{

W ∈ R(n+m)×r : UV> 6= X?
}
,
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satisfying C = C1 ∪ C2. Since any critical point W satisfies (5.16), g(W) achieves its global minimum at W. Also

f(X) achieves its global minimum at X?. We conclude that W is the globally optimal solution of ρ for any W ∈ C1.

If we show that any W ∈ C2 is a strict saddle, then we prove that there are no spurious local minima as well as the

strict saddle property. Thus, the remaining part is to show that C2 is the set of strict saddles.

To show that C2 is the set of strict saddles, it is sufficient to find a direction ∆ along which the Hessian has a

strictly negative curvature for each of these points. We construct ∆ = W −W?R, the difference from W to its

nearest global factor W?, where

R = arg min
R′∈Or

‖W −W?R′‖F .

Such ∆ satisfies ∆ 6= 0 since X 6= X? implying WW> 6= W?W?>. Then we evaluate the Hessian bilinear form

along the direction ∆:

[∇2ρ(W)](∆,∆) = 2 〈∇f(X),∆U∆>V〉︸ ︷︷ ︸
Π1

+ [∇2f(X)](∆UV> + U∆>V,∆UV> + U∆>V)︸ ︷︷ ︸
Π2

+µ 〈Ŵ∆̂
>
,∆W>〉︸ ︷︷ ︸

Π3

+µ 〈ŴŴ>,∆∆>〉︸ ︷︷ ︸
Π4

.
(5.19)

The following result (which is proved in Appendix D.5) states that Π1 is strictly negative, while the remaining terms

are relatively small, though they may be nonnegative:

Π1 ≤ −α ‖X−X?‖2F , Π2 ≤ β‖W∆>‖2F ,
Π3 ≤ ‖W∆>‖2F , Π4 ≤ 2 ‖X−X?‖2F .

(5.20)

Now, substituting (5.20) into (5.19) gives

[∇2ρ(W)](∆,∆) = 2Π1 + Π2 + µΠ3 + µΠ4

≤ −2α‖X−X?‖2F + (β + µ) · ‖W∆>‖2F + 2µ ‖X−X?‖2F
(i)

≤ (−2α+ 2µ) ‖X−X?‖2F + (β + µ)(
1

2
+ (12 +

2√
2− 1

)(
β − α
β + α

)2) ‖X−X?‖2F
(ii)

≤ −0.2α ‖X−X?‖2F ,

(5.21)

where (i) utilizes Lemmas 5.4.1 and 5.4.3, (ii) utilizes the following inequality (which is proved in Appendix D.6)

∥∥WW> −W?W?
∥∥2

F
≤ 4 ‖X−X?‖2F , (5.22)

and (ii) holds because β
α ≤ 1.5 and µ ≤ 1

16α. Thus, if X 6= X?,
[
∇2ρ(X)

]
(∆,∆) is always negative. This implies

that W is a strict saddle.

To complete the proof, we utilize Lemma 5.4.2 to further bound the last term in (5.21):
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[∇2ρ(W)](∆,∆) ≤ −0.05α‖WW> −W?W?>‖2F

≤ −0.05α‖∆‖2F

 2(
√

2− 1)σ2
r(W?), r = r?,

min
{
σ2
rc(W), σ2

r?(W?)
}
, r > r?,

σ2
r?(W?), rc = 0,

where rc is the rank of W, the fist inequality utilizes (5.22), and the second inequality follows from Lemma 5.4.2. We

complete the proof of Theorem 5.3.1 by noting that σ2
` (W?) = 2σ`(X

?) for all ` ∈ {1, . . . , r?} since

W? =

[
QU?Σ?1/2

QV?Σ?1/2

]
=

[
QU?/

√
2

QV?/
√

2

](√
2Σ?1/2

)
I

is an SVD of W?, where we recall that X? = QU?Σ?Q>V? is an SVD of X?.

Remark 5.4.1. From (5.21), we observe that a smaller µ yields a more negative bound on
[
∇2ρ(X)

]
(∆,∆). This

can be explained intuitively as follows. First note that any critical point W satisfies (5.16) provided µ > 0, no matter

how large or small µ is. The Hessian information about g(W) is represented by the terms Π3 and Π4. We have

Π3 + Π4 =
〈
Ŵ∆̂

>
,∆W>

〉
+
〈
ŴŴ>,∆∆>

〉
=
〈
Ŵ>∆,∆>Ŵ

〉
+
〈
Ŵ>∆,Ŵ>∆

〉
=
〈
Ŵ>∆,Ŵ>∆ + ∆>Ŵ

〉
≥ 0,

where the last line holds since for any r × r matrix A,

〈
A,A + A>

〉
=

1

2

〈
A + A>,A + A>

〉
+

1

2

〈
A−A>,A + A>

〉
=

1

2

∥∥A + A>
∥∥2

F
≥ 0.

Thus the Hessian of ρ evaluated at any critical point W is a PSD matrix12 instead of having a negative eigenvalue. In

low-rank, PSD matrix optimization problems, the corresponding objective function (without any regularizer such as

g(W)) is proved to have the strict saddle property [6,125]. Therefore, h(W) is also expected to have the strict saddle

property, and so is ρ(W) when µ is small, i.e., the Hessian of g(W) has little influence on the Hessian of ρ(W) when

µ is small. Our results also indicate that when the restricted strict convexity constant α is not provided a priori, we can

always choose a small µ to ensure the strict saddle property of ρ(W) is met, and hence we are guaranteed the global

convergence of a number of local search algorithms applied to (5.5).

12This can also be observed since any critical point W is a global minimum point of ρ(W), which directly indicates that∇2ρ(W) � 0.
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5.5 Experiments

In this section, we present a set of experiments on matrix sensing, matrix completion, and 1-bit matrix completion

to demonstrate the performance of iterative algorithms for low-rank matrix optimization. Unless noted otherwise,

we denote the matrix factorization approach by NVX and use the minFunc package13 to perform the local search

algorithms for the factored problem.

5.5.1 Matrix Sensing

We first present some experiments to illustrate the performance of local search algorithms for the matrix sensing

problem with the factorization approach (5.11). In these experiments, we set n = 50,m = 50 and vary the rank r from

1 to 19. We generate a rank-r n×m random matrix X? by setting X? = ŨṼ> where Ũ and Ṽ are respectively n× r

and m × r matrixes of normally distributed random numbers. We then obtain p random measurements y = A(X?)

with

yi = 〈X?,Yi〉 ,

where the entries of each n×mmatrix Yi are independent and identically distributed (i.i.d.) normal random variables

with zero mean and variance 1
p for i ∈ {1, 2, . . . p}. For each pair of r and the number of measurements, 10 Monte

Carlo trials are carried out and for each trial, and we claim matrix recovery to be successful if the relative reconstruction

error satisfies

‖X? − X̂‖F
‖X?‖F

≤ 10−4,

where we denote by X̂ the reconstructed matrix. Figure 5.1 displays the phase transition for factorized gradient descent

starting from a random initialization, the singular value projection (SVP) method proposed in [173] which requires a

SVD in each iteration, and the convex approach which solves

minimize
X

‖X‖∗
subject to y = A(X).

(5.23)

We see that there are only negligible differences between the different approaches for matrix sensing; these approaches

also have very similar performance guarantees when the Gaussian sensing operatorA satisfies the RIP [156]. We note

that with or without the regularizer g as defined in (5.4), local search algorithms have similar performance with random

initialization. Hence, throughout all of the experiments, we simply discard the regularizer g, but we stress that identical

performance is observed if we have this regularizer g.

13Software available at
https://www.cs.ubc.ca/∼schmidtm/Software/minFunc.html
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The previous experiments suppose that r is known for SVP and the matrix factorization approach. We note,

however, that our result in Theorem 5.3.1 also covers the over-parameterization case where r > r?. To illustrate

the possible influence of over-parameterization, we generate a rank-r? random matrix X? ∈ Rn×m with r? = 4 and

n = m = 50 and obtain p = 4Rn random measurements (so that the measurement operatorA satisfies the RIP of rank

R), where R = 7. We then solve the matrix factorization problem14 with r = 4, 5, 6, 7 and display the corresponding

convergence results in Figure 5.2. As can been seen, the matrix factorization approach converges to the target matrix

X? in both the exact-parameterization and over-parameterization cases. However, we also observe that it converges

slower in the over-parameterization case (i.e., r > r?) than in the exact-parameterization case (i.e., r = r?).
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Figure 5.1: Rate of success for matrix sensing by (a) solving the factorized problem (5.11) with gradient descent; (b)
SVP [173]; (c) solving the convex problem (5.23).

14To avoid tuning the parameters (such as step-size) for different r, we use the minFunc package with the default setting, which solves the factored
problem by the “LBFGS" algorithm [174].
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Figure 5.2: The performance in terms of (a) objective value and (b) the relative Frobenius norm of the error versus the
iteration k for the matrix factorization approach solving matrix sensing with r? = 4, n = m = 50, p = 4Rn,R = 7
and r varying from r? to R.

5.5.2 Matrix Completion

We compare the performance of the matrix factorization approach with SVP [173], the convex approach, and

singular value thresholding15 (SVT) [175] for matrix completion where we want to recover a low-rank matrix X?

from incomplete measurements {X?
ij}(i,j)∈Ω, where Ω ⊂ [n] × [m]. Let PΩ denote the projection onto the index set

Ω. The convex approach (denoted by CVX) attempts to use the nuclear norm as a convex relaxation of the rankness

and solves

minimize
X

‖X‖∗
subject to PΩ(X) = PΩ(X?).

(5.24)

To make the recovery of X? well-posed, we require X? to be incoherent such that the information in X is not con-

centrated in a small number of entries [153]. A matrix X ∈ Rn×m with singular value decomposition X = LΣQ> is

u-incoherent if [173, Definition 2.1]

max
ij
|Lij | ≤

√
u

n
, max

ij
|Qij | ≤

√
u

m
.

Though PΩ does not satisfy the r-RIP (5.10) for all low-rank matrices X, it satisfies the RIP when restricted to

low-rank incoherent matrices.

Theorem 5.5.1. [173, Theorem 4.2] Without loss of generality, assume n ≥ m. There exists a constant C ≥ 0 such

that for Ω ∈ [n] × [m] chosen according to the Bernouli model with density greater than Cu2r2 log n/δ2m, with

probability at least 1− e−n logn, the RIP holds for all µ-incoherent matrices X of rank at most r.

15Software available at http://svt.stanford.edu/
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Thus, if local search algorithms (such as gradient descent) start with a random initialization and the iterates remain

incoherent, then Theorem 5.3.1 guarantees the global convergence of the matrix factorization approach with these al-

gorithms. We note that this hypothesis is also required for SVP [173]. Though we can add a regularizer for incoherence

as in [100], empirical evidence supports this hypothesis that the iterates in gradient descent are incoherent.

In the first set of experiments, we set n = m = 100 and vary the rank r from 1 to 30. Similar to the setup for matrix

sensing in Section 5.5.1, we generate a rank-r random matrix and randomly obtain p entries, i.e., |Ω| = p. Figure 5.3

displays the phase transition for gradient descent with a random initialization, SVP [173], singular value thresholding

(SVT) [175], and the convex approach. As can been seen, the matrix factorization approach has similar phase transition

to SVP, and is slightly better than SVT and the convex approach in terms of the number of measurements needed for

successful recovery.

In the second set of experiments, we set r = 5 and p = 3r(2n − r) (3 times the number of degrees of freedom

within a rank-r n × n matrix), and vary n from 40 to 5120. We compare the time needed for the four approaches

in Figure 5.4; our matrix factorization approach is much faster than the other methods. The time savings for the matrix

factorization approach comes from avoiding performing the SVD, which is needed both for SVT and SVP in each

iteration. We also observe that convex approach has the highest computational complexity and is not scalable (which

is the reason that we only present its time for n up to 640).

5.5.3 1-bit Matrix Completion

In the last set of experiments, we compare the performance of the matrix factorization approach with the convex

approach16 in [132] for 1-bit matrix completion. We first note that to make the recovery problem well-posed, a

constraint on ‖X‖∞ (the entry-wise maximum of the matrix X) is applied in [132] to require that the matrix is not

too “spiky”. Instead of using the constraint on ‖X‖∞, we add a smooth regularizer ‖X‖2F and turn to minimize the

following objective function

fΩ,Y(X) = FΩ,Y(X) +
η

2
‖X‖2F ,

which is also a convex function over X and satisfies a similar restricted strong convexity and smoothness condition

to FΩ,Y in Lemma 5.3.1. In the case where we only observe part of the entries, then in light of Theorem 5.5.1,

the corresponding objective function is expected to satisfy the strong convexity and smoothness condition for all

incoherent matrices. Thus, we factorize X into UV> and solve the following optimization problem over the n × r

and m× r matrices U and V:

minimize
U,V

ρΩ,Y(U,V) = fΩ,Y(UV>). (5.25)

16Software available at http://mdav.ece.gatech.edu/software/

108



r

p

 

 

0 10 20

0

2000

4000

6000

8000

0

1

(a)
r

p

 

 

0 10 20

0

2000

4000

6000

8000

0

1

(b)

r

p

 

 

0 10 20

0

2000

4000

6000

8000

0

1

(c)
r

p

 

 

0 10 20

0

2000

4000

6000

8000

0

1

(d)

Figure 5.3: Rate of success for matrix sensing by (a) the matrix factorization approach with gradient descent; (b)
SVP [173]; (c) solving the convex problem (5.24); (d) SVT [173].
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Figure 5.4: Average computation time needed for different algorithms solving matrix completion.

To evaluate the performance of this factorization approach on 1-bit matrix completion, we generate n× r matrices

U� and V� with entries drawn i.i.d. from a uniform distribution on [− 1
2 ,

1
2 ] and construct a random n× n matrix X�

with rank r. Similar to the setup in [132], the matrix is then scaled so that ‖X�‖ = 1. We obtain 1-bit observations
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{Yi,j}(i,j)∈Ω by adding Gaussian noise of variance σ2 and recording the sign of the resulting value (5.13), where the

subset of indices Ω is chosen at random with E |Ω| = p. We compare the performance of the factorization approach

and the convex approach [132] over a range of different values of n, p, r or σ. Figure 5.5(a)-(d) show the normalized

squared Frobenius norm of the error ‖X̂−X�‖
‖X�‖2F

(where X̂ denotes the reconstructed matrix) and average the results over

10 draws of Monte Carlo trials. We observe that matrix factorization approach has slightly better performance than

the convex approach for 1-bit matrix completion [132]. Note that this phenomenon (the factorization approach having

better performance) is also observed in [171]. We repeat these experiments but obtaining 1-bit observations with the

logistic regression model where g(x) = ex

1+ex for (5.13) and display the results in Figure 5.6.
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Figure 5.5: The performance in terms of the relative Frobenius norm of the error for the matrix factorization approach
(denoted by NVX) and the convex approach in [132] (denoted by CVX) for solving the 1-bit matrix completion with
probit regression model and (a) varying n and σ = 0.3, r = 7, p = 0.5n2; (b) varying p and σ = 0.3, n = 200, r = 7;
(c) varying r and σ = 0.3, n = 200, p = 0.25n2; (d) varying σ and n = 200, r = 4, p = 0.25n2. The results are
plotted in the log scale.
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Figure 5.6: The performance in terms of the relative Frobenius norm of the error for the matrix factorization approach
(denoted by NVX) and the convex approach in [132] (denoted by CVX) for solving the 1-bit matrix completion with
logistic regression model and (a) varying n and r = 2, p = 0.5n2; (b) varying p and n = 200, r = 2. The results are
plotted in the log scale.

5.6 Conclusion

This work considers low-rank matrix optimization on general (nonsymmetric and rectangular) matrices with gen-

eral objective functions. By focusing on general objective functions, we provide a unifying framework for low-rank

matrix optimizations with the factorization approach. Although the resulting optimization problem is not convex, we

show that the reformulated objection function has a simple landscape: there are no spurious local minima and any

critical point not being a local minimum is a strict saddle such that the Hessian evaluated at this point has a strictly

negative eigenvalue. These properties guarantee that a number of iterative optimization algorithms (such as gradient

descent and the trust region method) will converge to the global optimum from a random initialization.
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CHAPTER 6

THE GLOBAL OPTIMIZATION GEOMETRY OF LOW-RANK MATRIX OPTIMIZATION

This work considers general rank-constrained optimization problems that minimize a general objective function

f(X) over the set of rectangular n×mmatrices that have rank at most r. To tackle the rank constraint and also to reduce

the computational burden, we factorize X into UV> where U and V are n× r and m× r matrices, respectively, and

then optimize over the small matrices U and V. We characterize the global optimization geometry of the nonconvex

factored problem and show that the corresponding objective function satisfies the robust strict saddle property as long

as the original objective function f satisfies restricted strong convexity and smoothness properties, ensuring global

convergence of many local search algorithms (such as noisy gradient descent) in polynomial time for solving the

factored problem. We also provide a comprehensive analysis for the optimization geometry of a matrix factorization

problem where we aim to find n× r and m× r matrices U and V such that UV> approximates a given matrix X?.

Aside from the robust strict saddle property, we show that the objective function of the matrix factorization problem

has no spurious local minima and obeys the strict saddle property not only for the exact-parameterization case where

rank(X?) = r, but also for the over-parameterization case where rank(X?) < r and the under-parameterization case

where rank(X?) > r. These geometric properties imply that a number of iterative optimization algorithms (such as

gradient descent) converge to a global solution with random initialization.

6.1 Introduction

Low-rank matrices arise in a wide variety of applications throughout science and engineering, ranging from quan-

tum tomography [149], signal processing [176], machine learning [151,169], and so on; see [124] for a comprehensive

review. In all of these settings, we often encounter the following rank-constrained optimization problem:

minimize
X∈Rn×m

f(X),

subject to rank(X) ≤ r,
(6.1)

where the objective function f : Rn×m → R is smooth.

Whether the objective function f is convex or nonconvex, the rank constraint renders low-rank matrix optimiza-

tions of the form (6.1) highly nonconvex and computationally NP-hard in general [155]. Significant efforts have been

devoted to transforming (6.1) into a convex problem by replacing the rank constraint with one involving the nuclear

norm. This strategy has been widely utilized in matrix inverse problems [65] arising in signal processing [124], ma-

chine learning [157], and control [155]. With convex analysis techniques, nuclear norm minimization has been proved

to provide optimal performance in recovering low-rank matrices [177]. However, in spite of the optimal performance,
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solving nuclear norm minimization is very computationally expensive even with specialized first-order algorithms.

For example, the singular value thresholding algorithm [175] requires performing an expensive singular value decom-

position (SVD) in each iteration, making it computationally prohibitive in large-scale settings. This prevents nuclear

norm minimization from scaling to practical problems.

To relieve the computational bottleneck, recent studies propose to factorize the variable into X = UV>, and

optimize over the n × r and m × r matrices U and V rather than the n ×m matrix X. The rank constraint in (6.1)

then is automatically satisfied through the factorization. This strategy is usually referred to as the Burer-Monteiro type

decomposition after the authors in [119,159]. Plugging this parameterization of X in (6.1), we can recast the program

into the following one:

minimize
U∈Rn×r,V∈Rm×r

h(U,V) := f(UV>). (6.2)

The bilinear nature of the parameterization renders the objective function of (6.2) nonconvex. Hence, it can potentially

have spurious local minima (i.e., local minimizers that are not global minimizers) or even saddle points. With technical

innovations in analyzing the landscape of nonconvex functions, however, several recent works have shown that the

factored objective function h(U,V) in certain matrix inverse problems has no spurious local minima [100, 106, 125].

6.1.1 Summary of Results and Outline

In this work, we provide a comprehensive geometric analysis for solving general low-rank optimizations of the

form (6.1) using the factorization approach (6.2). Our work actually rests on the recent works [97, 114, 126, 178,

179] ensuring a number of iterative optimization methods (such as gradient descent) converge to a local minimum

with random initialization provided the problem satisfies the so-called strict saddle property (see Definition 6.2.3 in

Section 6.2). If the objective function further obeys the robust strict saddle property [114] (see Definition 6.2.4 in

Section 6.2) or belongs to the class of so-called X functions [97], the recent works [97, 114] show that many local

search algorithms can converge to a local minimum in polynomial time. The implications of this line of work have

had a tremendous impact on a number of nonconvex problems in applied mathematics, signal processing, and machine

learning.

We begin this chapter in Section 6.2 with the notions of strict saddle, strict saddle property, and robust strict saddle

property. Considering that many invariant functions are not strongly convex (or even convex) in any neighborhood

around a local minimum point, we then provide a revised robust strict saddle property17 requiring a regularity condition

(see Definition 6.2.8 in Section 6.2) rather than strong convexity near the local minimum points (which is one of the

17A similar notion of a revised robust strict saddle property has also been utilized in [126], which shows that noisy gradient descent converges to a
local minimum in a number iterations that depends only poly-logarithmically on the dimension. In a nutshell, [126] has a different focus than this
work: the focus in [126] is on providing convergence analysis of a noisy gradient descent algorithm with a robust strict saddle property, while in
the present work, we establish a robust strict saddle property for the nonsymmetric matrix factorization and more general low-rank optimization
(including matrix sensing) problems with the factorization approach.
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requirements for the strict saddle property). The stochastic gradient descent algorithm is guaranteed to converge to a

local minimum point in polynomial time for problems satisfying the revised robust strict saddle property [114, 126].

In Section 6.3, we consider the geometric analysis for solving general low-rank optimizations of the form (6.1)

using the factorization approach (6.2). Provided the objective function f satisfies certain restricted strong convexity

and smoothness conditions, we show that the low-rank optimization problem with the factorization (6.2) (with an

additional regularizer—see Section 6.3 for the details) obeys the revised robust strict saddle property. In Section 6.3.3,

we consider a stylized application in matrix sensing where the measurement operator satisfies the restricted isometry

property (RIP) [65]. In the case of Gaussian measurements, as guaranteed by this robust strict saddle property, a

number of iterative optimizations can find the unknown matrix X? of rank r in polynomial time with high probability

when the number of measurements exceeds a constant times (n+m)r2.

Our main approach for analyzing the optimization geometry of (6.2) is based on the geometric analysis for the

following non-square low-rank matrix factorization problem: given X? ∈ Rn×m,

minimize
U∈Rn×r,Vm×r

∥∥UV> −X?
∥∥2

F
. (6.3)

In particular, we show the optimization geometry for the low-rank matrix factorization problem (6.3) is preserved

for the general low-rank optimization (6.2) under certain restricted strong convexity and smoothness conditions on f .

Thus, in Appendix E.1, we provide a comprehensive geometric analysis for (6.3), which can be viewed as an important

foundation of many popular matrix factorization problems such as the matrix sensing problem and matrix completion.

We show that the low-rank matrix factorization problem (6.3) (with an additional regularizer) has no spurious local

minima and obeys the strict saddle property—that is the objective function in (6.3) has a directional negative curvature

at all critical points but local minima—not only for the exact-parameterization case where rank(X?) = r, but also for

the over-parameterization case where rank(X?) < r and the under-parameterization case where rank(X?) > r. The

strict saddle property and lack of spurious local minima ensure that a number of local search algorithms applied to

the matrix factorization problem (6.3) converge to global optima which correspond to the best rank-r approximation

to X?. Further, we completely analyze the low-rank matrix factorization problem (6.3) for the exact-parameterization

case and show that it obeys the revised robust strict saddle property.

6.1.2 Relation to Existing Work

Unlike the objective functions of convex optimizations that have simple landscapes, such as where all local min-

imizers are global ones, the objective functions of general nonconvex programs have much more complicated land-

scapes. In recent years, by exploiting the underlying optimization geometry, a surge of progress has been made

in providing theoretical justifications for matrix factorization problems such as (6.2) using a number of previously

heuristic algorithms (such as alternating minimization, gradient descent, and the trust region method). Typical ex-
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amples include phase retrieval [98, 180, 181], blind deconvolution [182, 183], dictionary learning [184, 185], phase

synchronization [186] and matrix sensing and completion [100–102, 109, 140, 166, 187].

These iterative algorithms can be sorted into two categories based on whether a good initialization is required.

One set of algorithms consist of two steps: initialization and local refinement. Provided the function satisfies a

regularity condition or similar properties, a good guess lying in the attraction basin of the global optimum can lead to

global convergence of the following iterative step. We can obtain such initializations by spectral methods for phase

retrieval [180], phase synchronization [186] and low-rank matrix recovery problems [102, 103, 108, 109]. As we have

mentioned, a regularity condition is also adopted in the revised robust strict saddle property.

Another category of works attempt to analyze the landscape of the objective functions in a larger space rather than

the regions near the global optima. We can further separate these approaches into two types based on whether they

involve the strict saddle property or the robust strict saddle property. The strict saddle property and lack of spurious

local minima are proved for low-rank, positive semidefinite (PSD) matrix recovery [125] and completion [100], PSD

matrix optimization problems with generic objective functions [6], low-rank non-square matrix estimation from linear

observations [106], low-rank nonsquare optimization problems with generic objective functions [8] and generic nuclear

norm reggularized problems [92]. The strict saddle property along with the lack of spurious local minima ensures a

number of iterative algorithms such as gradient descent [114] and the trust region method [170] converge to the global

minimum with random initialization [114, 178, 185].

A few other works which are closely related to our work attempt to study the global geometry by characterizing the

landscapes of the objective functions in the whole space rather than the regions near the global optima or all the critical

points. As we discussed before, a number of local search algorithms are guaranteed to find a local optimum (which is

also the global optimum if there are no spurious local minima) because of this robust strict saddle property. In [114],

the authors proved that tensor decompostion problems satisfy this robust strict saddle property. Sun et al. [98] studied

the global geometry of the phase retrieval problem. The very recent work in [104] analyzed the global geometry for

PSD low-rank matrix factorization of the form (6.3) and the related matrix sensing problem when the rank is exactly

parameterized (i.e., r = rank(X?)). The factorization approach for matrix inverse problems with quadratic loss

functions is considered in [101]. We extend this line by considering general rank-constrained optimization problems

including a set of matrix inverse problems.

Finally, we remark that our work is also closely related to the recent works in low-rank matrix factorization of

the form (6.3) and its variants [8, 100–102, 104, 106, 109, 125, 140]. As we discussed before, most of these works

except [101, 104] (but including [106] which also focuses on nonsymmetric matrix sensing) only characterize the

geometry either near the global optima or all the critical points. Instead, we characterize the global geometry for

general (rather than PSD) low-rank matrix factorization and sensing. Because the analysis is different, the proof

strategy in the present work is also very different than that of [8, 106]. The results for PSD matrix sensing in [104]
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build heavily on the concentration properties of Gaussian measurements, while our results for matrix sensing depend

on the RIP of the measurement operator and thus can be applied to other matrix sensing problems whose measurement

operator is not necessarily from a Gaussian measurement ensemble. Also, [101] considers matrix inverse problems

with quadratic loss functions and its proof strategy is very different than that in the present work: the proof in [101]

is specified to quadratic loss functions, while we consider the rank-constrained optimization problem with general

objective functions in (6.1) and our proof utilizes the fact that the gradient and Hessian of the low-rank matrix sensing

are respectively very close to those in low-rank matrix factorization. Furthermore, in terms of the matrix factorization,

we show that the objective function in (6.3) obeys the strict saddle property and has no spurious local minima not

only for exact-parameterization (r = rank(X?)), but also for over-parameterization (r > rank(X?)) and under-

parameterization (r < rank(X?)). Local (rather than global) geometry results for exact-parameterization and under-

parameterization are also covered in [8]. As noted above, the work in [101, 104] for low-rank matrix factorization

only focuses on exact-parameterization (r = rank(X?)). The under-parameterization implies that we can find the best

rank-r approximation to X? by many efficient iterative optimization algorithms such as gradient descent.

6.1.3 Notation

Before proceeding, we first briefly introduce some notation used throughout the chapter. The symbols I and 0

respectively represent the identity and zero matrices with appropriate sizes. Also In is used to denote the n × n

identity matrix. The set of r × r orthonormal matrices is denoted by Or := {R ∈ Rr×r : R>R = I}. For any

natural number n, we let [n] or 1 : n denote the set {1, 2, ..., n}. We use |Ω| denote the cardinality (i.e., the number

of elements) of a set Ω. MATLAB notations are adopted for matrix indexing; that is, for the n × m matrix A, its

(i, j)-th element is denoted by A[i, j], its i-th row (or column) is denoted by A[i, :] (or A[:, i]), and A[Ω1,Ω2] refers

to a |Ω1| × |Ω2| submatrix obtained by taking the elements in rows Ω1 of columns Ω2 of matrix A. Here Ω1 ⊂ [n]

and Ω2 ⊂ [n]. We use a & b (or a . b) to represent that there is a constant so that a ≥ Const · b (or a ≤ Const · b).

If a function h(U,V) has two arguments, U ∈ Rn×r and V ∈ Rm×r, we occasionally use the notation h(W)

when we put these two arguments into a new one as W =

U

V

. For a scalar function f(Z) with a matrix variable

Z ∈ Rn×m, its gradient is an n×mmatrix whose (i, j)-th entry is [∇f(Z)][i, j] = ∂f(Z)
∂Z[i,j] for all i ∈ {1, 2, . . . , n}, j ∈

{1, 2, . . . ,m}. The Hessian of f(Z) can be viewed as an nm × nm matrix [∇2f(Z)][i, j] = ∂2f(Z)
∂z[i]∂z[j] for all i, j ∈

{1, . . . , nm}, where z[i] is the i-th entry of the vectorization of Z. An alternative way to represent the Hessian is by

a bilinear form defined via [∇2f(Z)](A,B) =
∑
i,j,k,l

∂2f(Z)
∂Z[i,j]∂Z[k,`]A[i, j]B[k, `] for any A,B ∈ Rn×m. These two

notations will be used interchangeably whenever the specific form can be inferred from context.
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6.2 Preliminaries

In this section, we provide a number of important definitions in optimization and group theory. To begin, suppose

h(x) : Rn → R is twice differentiable.

Definition 6.2.1 (Critical points). A point x is a critical point of h(x) if ∇h(x) = 0.

Definition 6.2.2 (Strict saddles; or ridable saddles in [185]). A critical point x is a strict saddle if the Hessian matrix

evaluated at this point has a strictly negative eigenvalue, i.e., λmin(∇2h(x)) < 0.

Definition 6.2.3 (Strict saddle property [114]). A twice differentiable function satisfies the strict saddle property if

each critical point either corresponds to a local minimum or is a strict saddle.

Intuitively, the strict saddle property requires a function to have a directional negative curvature at all of the critical

points but local minima. This property allows a number of iterative algorithms such as noisy gradient descent [114]

and the trust region method [170] to further decrease the function value at all the strict saddles and thus converge to a

local minimum.

In [114], the authors proposed a noisy gradient descent algorithm for the optimization of functions satisfying the

robust strict saddle property.

Definition 6.2.4 (Robust strict saddle property [114]). Givenα, γ, ε, δ, a twice differentiable h(x) satisfies the (α, γ, ε, δ)-

robust strict saddle property if for every point x at least one of the following applies:

1. There exists a local minimum point x? such that ‖x? − x‖ ≤ δ, and the function h(x′) restricted to a 2δ

neighborhood of x? (i.e., ‖x? − x′‖ ≤ 2δ) is α-strongly convex;

2. λmin

(
∇2h(x)

)
≤ −γ;

3. ‖∇h(x)‖ ≥ ε.

In words, the above robust strict saddle property says that for any point whose gradient is small, then either the

Hessian matrix evaluated at this point has a strictly negative eigenvalue, or it is close to a local minimum point. Thus

the robust strict saddle property not only requires that the function obeys the strict saddle property, but also that it is

well-behaved (i.e., strongly convex) near the local minima and has large gradient at the points far way to the critical

points.

Intuitively, when the gradient is large, the function value will decrease in one step by gradient descent; when the

point is close to a saddle point, the noise introduced in the noisy gradient descent could help the algorithm escape the

saddle point and the function value will also decrease; when the point is close to a local minimum point, the algorithm

then converges to a local minimum. Ge et al. [114] rigorously showed that the noisy gradient descent algorithm
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(see [114, Algorithm 1]) outputs a local minimum in a polynomial number of steps if the function h(x) satisfies the

robust strict saddle property.

It is proved in [114] that tensor decompostion problems satisfy this robust strict saddle property. However, requir-

ing the local strong convexity prohibits the potential extension of the analysis in [114] for the noisy gradient descent

algorithm to many other problems, for which it is not possible to be strongly convex in any neighborhood around

the local minimum points. Typical examples include the matrix factorization problems due to the rotational degrees

of freedom for any critical point. This motivates us to weaken the local strong convexity assumption relying on the

approach used by [102, 180] and to provide the following revised robust strict saddle property for such problems. To

that end, we list some necessary definitions related to groups and invariance of a function under the group action.

Definition 6.2.5 (Definition 7.1 [188])). A (closed) binary operation, ◦, is a law of composition that produces an

element of a set from two elements of the same set. More precisely, let G be a set and a1, a2 ∈ G be arbitrary elements.

Then (a1, a2)→ a1 ◦ a2 ∈ G.

Definition 6.2.6 (Definition 7.2 [188])). A group is a set G together with a (closed) binary operation ◦ such that for

any elements a, a1, a2, a3 ∈ G the following properties hold:

• Associative property: a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3.

• There exists an identity element e ∈ G such that e ◦ a = a ◦ e = a.

• There is an element a−1 ∈ G such that a−1 ◦ a = a ◦ a−1 = e.

With this definition, it is common to denote a group just by G without saying the binary operation ◦ when it is clear

from the context.

Definition 6.2.7. Given a function h(x) : Rn → R and a group G of operators on Rn, we say h is invariant under the

group action (or under an element a of the group) if

h(a(x)) = h(x)

for all x ∈ Rn and a ∈ G.

Suppose the group action also preserves the energy of x, i.e., ‖a(x)‖ = ‖x‖ for all a ∈ G. Since for any x ∈ Rn,

h(a(x)) = h(x) for all a ∈ G, it is straightforward to stratify the domain of h(x) into equivalent classes. The vectors

in each of these equivalent classes differ by a group action. One implication is that when considering the distance of

two points x1 and x2, it would be helpful to use the distance between their corresponding classes:

dist(x1,x2) : = min
a1∈G,a2∈G

‖a1(x1)− a2(x2)‖

= min
a∈G
‖x1 − a(x2)‖,

(6.4)
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where the second equality follows because ‖a1(x1)−a2(x2)‖ = ‖a1(x1−a−1
1 ◦a2(x2))‖ = ‖x1−a−1

1 ◦a2(x2)‖ and

a−1
1 ◦a2 ∈ G. Another implication is that the function h(x) cannot possibly be strongly convex (or even convex) in any

neighborhood around its local minimum points because of the existence of the equivalent classes. Before presenting

the revised robust strict saddle property for invariant functions, we list two examples to illuminate these concepts.

Example 1. As one example, consider the phase retrieval problem of recovering an n-dimensional complex vector

x? from
{
yi =

∣∣bH
i x?

∣∣ , i = 1, . . . , p
}

, the magnitude of its projection onto a collection of known complex vectors

b1,b2, . . . ,bp [98, 180]. The unknown x? can be estimated by solving the following natural least-squares formula-

tion [98, 180]

minimize
x∈Cn

h(x) =
1

2p

p∑
i=1

(
y2
i −

∣∣bH
i x
∣∣2)2

,

where we note that here the domain of x is Cn. For this case, we denote the corresponding

G = {ejθ : θ ∈ [0, 1)}

and the group action as a(x) = ejθx, where a = ejθ is an element in G. It is clear that h(a(x)) = h(x) for all a ∈ G.

Due to this invariance of h(x), it is impossible to recover the global phase factor of the unknown x? and the function

h(x) is not strongly convex in any neighborhood of x?.

Example 2. As another example, we revisit the general factored low-rank optimization problem (6.2):

minimize
U∈Rn×r,V∈Rm×r

h(U,V) = f(UV>).

We recast the two variables U,V into W as W =

U

V

. For this example, we denote the corresponding G = Or

and the group action on W as a(W) =

UR

VR

 where a = R ∈ G. We have that h(a(W)) = h(W) for all a ∈ G

since UR(VR)> = UV> for any R ∈ Or. Because of this invariance, in general h(W) is not strongly convex

in any neighborhood around its local minimum points even though f(X) is a strongly convex function; see [104] for

the symmetric low-rank factorization problem and Theorem E.1.1 in Appendix E.1 for the nonsymmetric low-rank

factorization problem.

In the examples illustrated above, due to the invariance, the function is not strongly convex (or even convex) in any

neighborhood around its local minimum point and thus it is prohibitive to apply the standard approach in optimization

to show the convergence in a small neighborhood around the local minimum point. To overcome this issue, Candès et

al. [180] utilized the so-called regularity condition as a sufficient condition for local convergence of gradient descent
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applied for the phase retrieval problem. This approach has also been applied for the matrix sensing problem [102] and

semi-definite optimization [103].

Definition 6.2.8 (Regularity condition [102,180]). Suppose h(x) : Rn → R is invariant under the group action of the

given group G. Let x? ∈ Rn be a local minimum point of h(x). Define the set B(δ,x?) as

B(δ,x?) := {x ∈ Rn : dist(x,x?) ≤ δ} ,

where the distance dist(x,x?) is defined in (6.4). Then we say the function h(x) satisfies the (α, β, δ)-regularity

condition if for all x ∈ B(δ,x?), we have

〈∇h(x),x− a(x?)〉 ≥ α dist(x,x?)2 + β‖∇h(x)‖2, (6.5)

where a = arg mina′∈G ‖x− a′(x?)‖.

We remark that (α, β) in the regularity condition (6.2.8) must satisfy αβ ≤ 1
4 since by applying Cauchy-Schwarz

〈∇h(x),x− a(x?)〉 ≤ ‖∇h(x)‖ dist(x,x?)

and the inequality of arithmetic and geometric means

α dist2(x,x?) + β‖∇h(x)‖2 ≥ 2
√
αβ dist(x,x?)‖∇h(x)‖2.

Lemma 6.2.1. [102, 180] If the function h(x) restricted to a δ neighborhood of x? satisfies the (α, β, δ)-regularity

condition, then as long as gradient descent starts from a point x0 ∈ B(δ,x?), the gradient descent update

xt+1 = xt − ν∇h(xt)

with step size 0 < ν ≤ 2β obeys xt ∈ B(δ,x?) and

dist2(xt,x
?) ≤ (1− 2να)

t
dist2(x0,x

?)

for all t ≥ 0.

The proof is given in [180]. To keep the chapter self-contained, we also provide the proof of Lemma 6.2.1 in

Appendix E.2. We remark that the decreasing rate 1− 2να ∈ [0, 1) since we choose ν ≤ 2β and αβ ≤ 1
4 .

Now we establish the following revised robust strict saddle property for invariant functions by replacing the strong

convexity condition in Definition 6.2.4 with the regularity condition.

Definition 6.2.9 (Revised robust strict saddle property for invariant functions). Given a twice differentiable h(x) :

Rn → R and a group G, suppose h(x) is invariant under the group action and the energy of x is also preserved under

the group action, i.e., h(a(x)) = h(x) and ‖a(x)‖2 = ‖x‖2 for all a ∈ G. Given α, β, γ, ε, δ, h(x) satisfies the

(α, β, γ, ε, δ)-robust strict saddle property if for any point x at least one of the following applies:
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1. There exists a local minimum point x? such that dist(x,x?) ≤ δ, and the function h(x′) restricted to 2δ a neigh-

borhood of x? (i.e., dist(x′,x?) ≤ 2δ) satisfies the (α, β, 2δ)-regularity condition defined in Definition 6.2.8;

2. λmin

(
∇2h(x)

)
≤ −γ;

3. ‖∇h(x)‖ ≥ ε.

Compared with Definition 6.2.4, the revised robust strict saddle property requires the local descent condition

instead of strict convexity in a small neighborhood around any local minimum point. With the convergence guarantee

in Lemma 6.2.1, the convergence analysis of the stochastic gradient descent algorithm in [114] for the robust strict

saddle functions can also be applied for the revised robust strict saddle functions defined in Definition 6.2.9 with the

same convergence rate.18 We omit the details here and refer the reader to [126] for more details on this. In the rest of

the chapter, the robust strict saddle property refers to the one in Definition 6.2.9.

6.3 Low-rank Matrix Optimization with the factorization approach

In this section, we consider the minimization of general rank-constrained optimization problems of the form (6.1)

using the factorization approach (6.2) (which we repeat as follows):

minimize
U∈Rn×r,V∈Rm×r

h(U,V) = f(UV>),

where the rank constraint in (6.1) is automatically satisfied by the factorization approach. With necessary assumptions

on f in Section 6.3.1, we provide geometric analysis of the factored problem in Section 6.3.2. We then present a

stylized application in matrix sensing in Section 6.3.3.

6.3.1 Assumptions And Regularizer

Before presenting our main results, we lay out the necessary assumptions on the objective function f(X). As is

known, without any assumptions on the problem, even minimizing traditional quadratic objective functions is chal-

lenging. For this reason, we focus on problems satisfying the following two assumptions.

Assumption 6.3.1. f(X) has a critical point X? ∈ Rn×m which has rank r.

Assumption 6.3.2. f(X) is (2r, 4r)-restricted strongly convex and smooth, i.e., for any n ×m matrices X,D with

rank(X) ≤ 2r and rank(D) ≤ 4r, the Hessian of f(X) satisfies

a ‖D‖2F ≤ [∇2f(X)](D,D) ≤ b ‖D‖2F (6.6)

for some positive a and b.

18As mentioned previously, a similar notion of a revised robust strict saddle property has also recently been utilized in [126].
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Assumption 6.3.1 is equivalent to the existence of a rank r X? such that ∇f(X?) = 0, which is very mild

and holds in many matrix inverse problems including matrix sensing [65], matrix completion [177] and 1-bit matrix

completion [132], where the unknown matrix to be recovered is a critical point of f .

Assumption 6.3.2 is also utilized in [109, Conditions 5.3 and 5.4] and [8], where weighted low-rank matrix factor-

ization and a set of matrix inverse problems are proved to satisfy the (2r, 4r)-restricted strong convexity and smooth-

ness condition (6.6). We discuss matrix sensing as a typical example satisfying this assumption in Section 6.3.3.

Combining Assumption 6.3.1 and Assumption 6.3.2, we have that X? is the unique global minimum of (6.1).

Proposition 6.3.1. Suppose f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness condition (6.6)

with positive a and b. Assume X? is a critical point of f(X) with rank(X?) = r. Then X? is the global minimum

of (6.1), i.e.,

f(X?) ≤ f(X), ∀X ∈ Rn×m, rank(X) ≤ r

and the equality holds only at X = X?.

The proof of Proposition 6.3.1 is given in Appendix E.3. We note that Proposition 6.3.1 guarantees that X?

is the unique global minimum of (6.1) and it is expected that solving the factorized problem (6.9) also gives X?.

Proposition 6.3.1 differs from [8] in that it only requires X? as a critical point, while [8] needs X? as a global

minimum of f .

Before presenting the main result, we note that if f satisfies (6.6) with positive a and b and we rescale f as

f ′ = 2
a+bf , then f ′ satisfies

2a

a+ b
‖D‖2F ≤ [∇2f ′(X)](D,D) ≤ 2b

a+ b
‖D‖2F .

It is clear that f and f ′ have the same optimization geometry (despite the scaling difference). Let a′ = 2a
a+b = 1 − c

and b′ = 2a
a+b = 1 + c with c = b−a

a+b . We have 0 < a′ ≤ 1 ≤ b′ and a′ + b′ = 2. Thus, throughout the chapter and

without the generality, we assume

a = 1− c, b = 1 + c, c ∈ [0, 1). (6.7)

Now let X? = ΦΣΨ> =
∑r
i=1 σiφiψ

>
i be a reduced SVD of X?, where Σ is a diagonal matrix with σ1 ≥ · · · ≥

σr along its diagonal. Denote

U? = ΦΣ1/2R,V? = ΨΣ1/2R (6.8)

for any R ∈ Or. We first introduce the following ways to stack U and V together that are widely used through the

chapter:

122



W =

[
U
V

]
, Ŵ =

[
U
−V

]
,W? =

[
U?

V?

]
, Ŵ? =

[
U?

−V?

]
.

Before moving on, we note that for any solution (U,V) to (6.2), (UR1,VR2) is also a solution to (6.2) for any

R1,R2 ∈ Rr×r such that UR1R
>
2 V> = UV>. As an extreme example, R1 = cI and R2 = 1

c I where c can be

arbitrarily large. In order to address this ambiguity (i.e., to reduce the search space of W for (6.3)), we utilize the trick

in [8, 102, 106, 109] by introducing a regularizer ρ and turn to solve the following problem

minimize
U∈Rn×r,V∈Rm×r

G(W) := h(W) + ρ(W), (6.9)

where

ρ(W) :=
µ

4

∥∥U>U−V>V
∥∥2

F
.

We remark that W? is still a global minimizer of the factored problem (E.1) since both the first term and ρ(W) achieve

their global minimum at W?. The regularizer ρ(W) is applied to force the difference between the Gram matrices of

U and V as small as possible. The global minimum of ρ(W) is 0, which is achieved when U and V have the same

Gram matrices, i.e., when W belongs to

E :=

{
W =

[
U
V

]
: U>U−V>V = 0

}
. (6.10)

Informally, we can view (6.9) as finding a point from E that also minimizes the first term in (6.9). This is rigorously

established in the following result which reveals that any critical point W of g(W) belongs to E (that is U and V are

balanced factors of their product UV>) for any µ > 0.

Lemma 6.3.1. [8, Theorem 3] Suppose G(W) is defined as in (6.9) with µ > 0. Then any critical point W of G(W)

belongs to E , i.e.,

∇G(W) = 0 ⇒ U>U = V>V. (6.11)

For completeness, we include the proof of Lemma 6.3.1 in Appendix E.4.

6.3.2 Global Geometry For General Low-Rank Optimization

We now characterize the global optimization geometry of the factored problem (6.9). As explained in Section 6.2

that G(W) is invariant under the matrices R ∈ Or, we first recall the discussions in Section 6.2 about the revised

robust strict saddle property for the invariant functions. To that end, we follow the notion of the distance between
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equivalent classes for invariant functions defined in (6.4) and define the distance between W1 and W2 as follows

dist(W1,W2) : = min
R1∈Or,R2∈Or

‖W1R1 −W2R2‖F
= min

R∈Or
‖W1 −W2R‖F .

(6.12)

For convenience, we also denote the best rotation matrix R so that ‖W1 −W2R‖F achieves its minimum by

R(W1,W2), i.e.,

R(W1,W2) := arg min
R′∈Or

‖W1 −W2R
′‖F , (6.13)

which is also known as the orthogonal Procrustes problem [147]. The solution to the above minimization problem is

characterized by the following lemma.

Lemma 6.3.2. [147] Let W>
2 W1 = LSP> be an SVD of W>

2 W1. An optimal solution for the orthogonal Pro-

crustes problem (6.13) is given by

R(W1,W2) = LP>.

Moreover, we have

W>
1 W2R(W1,W2) = (W2R(W1,W2))

>
W1

= PSP> � 0.

To ease the notation, we drop W1 and W2 in R(W1,W2) and rewrite R instead of R(W1,W2) when they (W1

and W2) are clear from the context. Now we are well equipped to present the robust strict saddle property for G(W)

in the following result.

Theorem 6.3.1. Define the following regions

R1 : =
{

W : dist(W,W?) ≤ σ1/2
r (X?)

}
,

R2 : =

{
W : σr(W) ≤

√
1

2
σ1/2
r (X?), ‖WW>‖F ≤

20

19
‖W?W?>‖F

}
,

R′3 : =

{
W : dist(W,W?) > σ1/2

r (X?), ‖W‖ ≤ 20

19
‖W?‖, σr(W) >

√
1

2
σ1/2
r (X?), ‖WW>‖F ≤

20

19
‖W?W?>‖F

}
,
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R′′3 : =

{
W : ‖W‖ > 20

19
‖W?‖ =

20

19

√
2‖X?‖1/2, ‖WW>‖F ≤

10

9
‖W?W?>‖F

}
,

R′′′3 : =

{
W : ‖WW>‖F >

10

9
‖W?W?>‖F =

20

9
‖X?‖F

}
.

Let G(W) be defined as in (6.9) with µ = 1
2 . Suppose f(X) has a critical point X? ∈ Rn×m of rank r and satisfies

the (2r, 4r)-restricted strong convexity and smoothness condition (6.6) with positive constants a = 1 − c, b = 1 + c

and

c .
σ

3/2
r (X?)

‖X?‖F ‖X?‖1/2 . (6.14)

Then G(W) has the following robust strict saddle property:

1. For any W ∈ R1, G(W) satisfies the local regularity condition:

〈∇G(W),W −W?〉 &σr(X?) dist2(W,W?) +
1

‖X?‖ ‖∇G(W)‖2F , (6.15)

where dist(W,W?) and R are defined in (6.12) and (6.13), respectively.

2. For any W ∈ R2, G(W) has a directional negative curvature, i.e.,

λmin

(
∇2G(W)

)
. −σr(X?). (6.16)

3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , G(W) has large gradient descent:

‖∇G(W)‖F & σ3/2
r (X?), ∀W ∈ R′3; (6.17)

‖∇G(W)‖F & ‖W‖3, ∀W ∈ R′′3 ; (6.18)

‖∇G(W)‖F & σr(X?)
(
‖WW>‖F

)1/2
, ∀W ∈ R′′′3 . (6.19)

The proof of this result is given in Appendix E.12. The main proof strategy is to utilize Assumption 6.3.1 and

Assumption 6.3.2 about the function f to control the deviation between the gradient (and the Hessian) of the general

low-rank optimization (6.9) and the counterpart of the matrix factorization problem so that the landscape of the general

low-rank optimization (6.9) has a similar geometry property. To that end, in Appendix E.1, we provide a comprehen-

sive geometric analysis for the matrix factorization problem (6.3). The reason for choosing µ = 1
2 is also discussed in

Appendix E.1.6. We note that the results in Appendix E.1 are also of independent interest, as we show that the objective

function in (6.3) obeys the strict saddle property and has no spurious local minima not only for exact-parameterization
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(r = rank(X?)), but also for over-parameterization (r > rank(X?)) and under-parameterization (r < rank(X?)).

Several remarks follow.

Remark 6.3.1. Note that

R1 ∪R2 ∪R′3 ⊇
{

W : ‖W‖ ≤ 20

19
‖W?‖F , ‖WW>‖F ≤

10

9
‖W?W?>‖F

}
,

which further implies

R1 ∪R2 ∪R′3 ∪R′′3 ⊇ {W : ‖WW>‖F ≤
10

9
‖W?W?>‖F }.

Thus, we conclude that R1 ∪ R2 ∪ R′3 ∪ R′′3 ∪ R′′′3 = R(n+m)×r. Now the convergence analysis of the stochastic

gradient descent algorithm in [114, 126] for the robust strict saddle functions also holds for G(W).

Remark 6.3.2. The constants involved in Theorem 6.3.1 can be found in Appendix E.12 through the proof. Theo-

rem 6.3.1 states that the objective function for the general low-rank optimization (6.9) also satisfies the robust strict

saddle property when (6.14) holds. The requirement for c in (6.14) can be weakened to ensure the properties of g(W)

are preserved for G(W) in some regions. For example, the local regularity condition (6.15) holds when

c ≤ 1

50

which is independent of X?. With the analysis of the global geometric structure in G(W), Theorem 6.3.1 ensures

that many local search algorithms can converge to X? (which is the the global minimum of (6.1) as guaranteed by

Proposition 6.3.1) with random initialization. In particular, stochastic gradient descent when applied to the matrix

sensing problem (6.22) is guaranteed to find the global minimum X? in polynomial time.

Remark 6.3.3. Local (rather than global) geometry results for the general low-rank optimization (6.9) are also covered

in [8], which only characterizes the geometry at all the critical points. Instead, Theorem 6.3.1 characterizes the

global geometry for general low-rank optimization (6.9). Because the analysis is different, the proof strategy for

Theorem 6.3.1 is also very different than that of [8]. Since [8] only considers local geometry, the result in [8] requires

c ≤ 0.2, which is slightly less restrictive than the one in (6.14).

Remark 6.3.4. To explain the necessity of the requirement on the constants a and b in (6.14), we utilize the symmetric

weighted PCA problem (so that we can visualize the landscape of the factored problem in Figure 6.1) as an example

where the objective function is

f(X) =
1

2
‖Ω� (X−X?)‖2F , (6.20)

where Ω ∈ Rn×n contains positive entries. The Hessian quadratic form for f(X) is given by [∇2f(X)](D,D) =

‖Ω�D‖2F for any D ∈ Rn×n. Thus, we have
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min
ij
|Ω[i, j]|2 ≤ [∇2f(X)](D,D)

‖D‖2F
≤ max

ij
|Ω[i, j]|2.

Comparing with (6.6), we see that f satisfies the restricted strong convexity and smoothness conditions with the

constants a = minij |Ω[i, j]|2 and b = maxij |Ω[i, j]|2. In this case, we also note that if each entry Wij is nonzero

(i.e., minij |Ω[i, j]|2 > 0), the function f(X) is strongly convex, rather than only restrictively strongly convex,

implying that (6.20) has a unique optimal solution X?. By applying the factorization approach, we get the factored

objective function

h(U) =
1

2
‖Ω� (UU> −X?)‖2F . (6.21)

To illustrate the necessity of the requirement on the constants a and b as in (6.14) so that the factored problem (6.21)

has no spurious local minima and obeys the robust strict saddle property, we set X? =

1 1

1 1

 which is a rank-1

matrix and can be factorized as X? = U?U?> with U? =

1

1

. We then plot the landscapes of the factored objective

function h(U) with Ω =

1 1

1 1

 and

8 1

1 8

 in Figure 6.1. We observe from Figure 6.1 that as long as the elements

in Ω have a small dynamic range (which corresponds to a small b/a), h(U) has no spurious local minima, but if the

elements in Ω have a large dynamic range (which corresponds to a large b/a), spurious local minima can appear in

h(U).

(a) (b)

Figure 6.1: Landscapes of h(U) in (6.21) with X? =

[
1 1
1 1

]
and (a) Ω =

[
1 1
1 1

]
; (b) Ω =

[
8 1
1 8

]
.
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Remark 6.3.5. The global geometry of low-rank matrix recovery but with analysis customized to linear measurements

and quadratic loss functions is also covered in [101, 104]. Since Theorem 6.3.1 only requires the (2r, 4r)-restricted

strong convexity and smoothness property (6.6), aside from low-rank matrix recovery [189], it can also be applied to

many other low-rank matrix optimization problems [161] which do not necessarily involve quadratic loss functions.

Typical examples include 1-bit matrix completion [132, 164] and Poisson principal component analysis (PCA) [165].

We refer to [8] for more discussion on this issue. In next section, we consider a stylized application of Theorem 6.3.1

in matrix sensing and compare it with the result in [104].

6.3.3 Stylized Application: Matrix Sensing

In this section, we extend the previous geometric analysis to the matrix sensing problem

minimize
U∈Rn×r,V∈Rm×r

G(W) :=
1

2

∥∥A (UV> −X?
)∥∥2

2
+ ρ(W), (6.22)

whereA : Rn×m → Rp is a known linear measurement operator and X? is the unknown rank r matrix to be recovered.

In this case, we have

f(X) =
1

2
‖A (X−X?)‖22 .

The derivative of f(X) at X? is

∇f(X?) = A∗A(X? −X?) = 0,

which implies that f(X) satisfies Assumption 6.3.1. The Hessian quadrature form ∇2f(X)[D,D] for any n × m

matrices X and D is given by

∇2f(X)[D,D] = ‖A(D)‖2 .

The following matrix Restricted Isometry Property (RIP) serves as a way to link the low-rank matrix factorization

problem (E.1) with the matrix sensing problem (6.22) and certifies f(X) satisfying Assumption 6.3.2.

Definition 6.3.1 (Restricted Isometry Property (RIP) [65, 190]). The map A : Rn×m → Rp satisfies the r-RIP with

constant δr if19

(1− δr) ‖D‖2F ≤ ‖A(D)‖2 ≤ (1 + δr) ‖D‖2F (6.23)

holds for any n×m matrix D with rank(D) ≤ r.

19By abuse of notation, we adopt the conventional notation δr for the RIP constant. The subscript r can be used to distinguish the RIP constant δr
from δ which is used as a small constant in Section 6.2.
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IfA satisfies the 4r-restricted isometry property with constant δ4r, then f(X) satisfies the (2r, 4r)-restricted strong

convexity and smoothness condition (6.6) with constants a = 1− δ4r and b = 1 + δ4r since

(1− δ4r) ‖D‖2F ≤ ∇2f(X)[D,D] = ‖A(D)‖2

≤ (1 + δ4r) ‖D‖2F
(6.24)

for any rank-4r matrix D. Comparing (6.24) with (6.6), we note that the RIP is stronger than the restricted strong

convexity and smoothness property (6.6) as the RIP gives that (6.24) holds for all n×m matrices X, while Assump-

tion 6.3.2 only requires that (6.6) holds for all rank-2r matrices.

Now, applying Theorem 6.3.1, we obtain a similar geometric guarantee to Theorem 6.3.1 for the matrix sensing

problem (6.22) when A satisfies the RIP.

Corollary 6.3.1. Let R1,R2,R′3,R′′3 ,R′′′3 be the regions as defined in Theorem E.11.1. Let G(W) be defined as

in (6.22) with µ = 1
2 and A satisfying the 4r-RIP with

δ4r .
σ

3/2
r (X?)

‖X?‖F ‖X?‖1/2 . (6.25)

Then G(W) has the following robust strict saddle property:

1. For any W ∈ R1, G(W) satisfies the local regularity condition:

〈∇G(W),W −W?〉 &σr(X?) dist2(W,W?) +
1

‖X?‖ ‖∇G(W)‖2F , (6.26)

where dist(W,W?) and R are defined in (6.12) and (6.13), respectively.

2. For any W ∈ R2, G(W) has a directional negative curvature, i.e.,

λmin

(
∇2G(W)

)
. −σr(X?).

3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , G(W) has large gradient descent:

‖∇G(W)‖F & σ3/2
r (X?), ∀W ∈ R′3;

‖∇G(W)‖F & ‖W‖3, ∀W ∈ R′′3 ;

‖∇G(W)‖F &
∥∥WW>∥∥3/2

F
, ∀W ∈ R′′′3 .

Remark 6.3.6. The constants involved in Corollary 6.3.1 are the same as those in Theorem 6.3.1 and can be found in

Appendix E.12 through the proof. Similarly, the requirement for δ4r in (6.25) can be weakened to ensure the properties

of g(W) are preserved for G(W) in some regions. For example, the local regularity condition (6.26) holds when
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δ4r ≤
1

50

which is independent of X?. Note that Tu et al. [102, Section 5.4, (5.15)] provided a similar regularity condition.

However, the result there requires δ6r ≤ 1
25 and dist(W,W?) ≤ 1

2
√

2
σr(X

?) which defines a smaller region than

R1. Based on this local regularity condition, Tu et al. [102] showed that gradient descent with a good initialization

(which is close enough to W?) converges to the unknown matrix W? (and hence X?). With the analysis of the global

geometric structure in G(W), Corollary 6.3.1 ensures that many local search algorithms can find the unknown matrix

X? in polynomial time.

Remark 6.3.7. A Gaussian A will have the RIP with high probability when the number of measurements p is compa-

rable to the number of degrees of freedom in an n×m matrix with rank r. By Gaussian A we mean the `-th element

in y = A(X), y`, is given by

y` = 〈X,A`〉 =

n∑
i=1

m∑
j=1

X[i, j]A`[i, j],

where the entries of each n×m matrix A` are independent and identically distributed normal random variables with

zero mean and variance 1
p . Specifically, a Gaussian A satisfies (6.23) with high probability when [65, 124, 189]

p & r(n+m)
1

δ2
r

.

Now utilizing the inequality ‖X?‖F ≤
√
r‖X?‖ for (6.14), we conclude that in the case of Gaussian measurements,

the robust strict saddle property is preserved for the matrix sensing problem with high probability when the number of

measurements exceeds a constant times (n + m)r2κ(X?)3 where κ(X?) = σ1(X?)
σr(X?) . This further implies that, when

applying the stochastic gradient descent algorithm to the matrix sensing problem (6.22) with Gaussian measurements,

we are guaranteed to find the unknown matrix X? in polynomial time with high probability when

p & (n+m)r2κ(X?)3. (6.27)

When X? is an n×n PSD matrix, Li et al. [104] showed that the corresponding matrix sensing problem with Gaussian

measurements has similar global geometry to the low-rank PSD matrix factorization problem when the number of

measurements

p & nr2σ
4
1(X?)

σ2
r(X?)

. (6.28)

Comparing (6.27) with (6.28), we find both results for the number of measurements needed depend similarly on the

rank r, but slightly differently on the spectrum of X?. We finally remark that the sampling complexity in (6.27)

is O((n + m)r2), which is slightly larger than the information theoretically optimal bound O((n + m)r) for matrix
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sensing. This is because Corollary 6.3.1 is a direct consequence of Theorem 6.3.1 in which we directly characterize

the landscapes of the objective functions in the whole space by combining the results for matrix factorization in

Appendix E.1 and the restricted strong convexity and smoothness condition. We believe this mismatch is an artifact

of our proof strategy and could be mitigated by a different approach, like utilizing the properties of quadratic loss

functions [101]. If one desires only to characterize the geometry for critical points, then O((n+m)r) measurements

are enough to ensure the strict saddle property and lack of spurious local minima for matrix sensing [8, 106].
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CHAPTER 7

THE GEOMETRY OF EQUALITY-CONSTRAINED GLOBAL CONSENSUS PROBLEMS

A variety of unconstrained nonconvex optimization problems have been shown to have benign geometric land-

scapes that satisfy the strict saddle property and have no spurious local minima. In this work20, we present a general

result relating the geometry of an unconstrained centralized problem to its equality-constrained distributed extension.

It follows that many global consensus problems inherit the benign geometry of their original centralized counterpart.

Taking advantage of this fact, we demonstrate the favorable performance of the Gradient ADMM algorithm on a

distributed low-rank matrix approximation problem.

7.1 Introduction

With an abundance of data, the scale of machine learning problems continues to grow. Consequently, nonconvex

optimization problems have received growing attention as alternatives to convex approaches for solving machine

learning problems [124, 191–193]. Algorithms for solving nonconvex problems can offer reduced memory usage and

computational complexity compared to their convex counterparts, see, e.g. [119, 194]. However, the potential for

undesirable features in the nonconvex landscape (spurious local minima [135–137], degenerate saddle points [137,

195], etc.) raises questions about these algorithms’ convergence to optimal points.

Recent research has shown, though, that many machine learning problems—including a variety of low-rank matrix

optimization problems—actually have a benign nonconvex landscape in which there are no spurious local minima and

all saddle points are strict (non-degenerate) saddles at which the Hessian has at least one negative eigenvalue [6,8,93,

100,101,104,125,191–193,196]. For such problems a variety of iterative algorithms—such as gradient descent with a

random initialization—can exploit negative curvature directions to escape from strict saddle points and thus provably

converge to a global minimizer [127].

To date, however, most of the results establishing benign geometric landscapes have been limited to unconstrained

nonconvex problems [6, 8, 92, 93, 100, 101, 104, 125, 196]. Meanwhile, constraints can be important to consider,

particularly when the size of a machine learning problem demands that computations or storage be distributed across

some network [197, 198]. One way to ensure consensus among optimization variables in a distributed problem is via

equality constraints across the network nodes. As one transitions from a centralized problem to a distributed one, a

question arises of whether the distributed problem inherits the benign geometry of the centralized problem. Since there

is a general lack of geometric analysis for constrained nonconvex problems, this question is essentially open.

20This is a joint work with Zhihui Zhu, Gongguo Tang and Michael B. Wakin [9].
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In Section 7.2, we present a general result relating the geometry of a centralized problem to its distributed exten-

sion. This result establishes one-to-one correspondences of the first-order critical points, second-order critical points,

and strict saddle points between the two problems. This is in spite of the fact that critical points have a distinctly dif-

ferent definition (in terms of the Lagrangian) for constrained optimization problems. In Section 7.3, we highlight one

application of this theorem, in establishing an equivalence between geometric landscapes for broad classes of central-

ized problems and their distributed formulations as global consensus problems. We show that under certain conditions,

every second-order critical point of the distributed problem corresponds to a global minimizer of the centralized prob-

lem. In Section 7.4, we discuss algorithmic aspects for solving equality-constrained distributed optimization problems.

The recent GADMM algorithm [199] can be guaranteed under certain conditions to converge to a second-order criti-

cal point of an equality-constrained distributed optimization problem. Our theory establishes conditions under which

this point will correspond to a global minimizer of the original centralized optimization problem. This guarantee is

stronger than what appear in the literature for distributed gradient descent (DGD), a popular alternative algorithm for

solving consensus problems. Existing DGD results show convergence either to stationary points (which are global

if the problem is convex) [200–202], or to an arbitrarily small neighborhood of a second-order critical point with an

appropriately small stepsize [203]. As a case study, in Section 7.5, we illustrate the performance of GADMM on a

distributed low-rank matrix approximation in factored form.

7.2 Relating Unconstrained Geometry to Constrained Geometry

We present a general theorem that establishes an equivalence between the landscape of two types of optimization

problems: one that is unconstrained, and one that involves additional variables but is constrained to an affine subspace,

along which it has a certain equivalence to the first problem.

Theorem 7.2.1. Consider two problems:

• Problem UC (unconstrained centralized):

min
x
c(x)

• Problem ECD (equality-constrained distributed):

min
x,y

d(x,y) subject to Ax + By = b

where d(x,y) satisfies d(x,y) = c(x) when Ax + By = b, and B is a square and invertible matrix.

Then x is a [first-order/second-order/strict saddle] critical point of Problem UC iff (x,B−1(b−Ax)) is a [first-

order/second-order/strict saddle] point of Problem ECD.

This theorem has applications outside of distributed optimization, but we adopt the terminology “centralized” and

“distributed” in the theorem above because the latter problem involves additional optimization variables beyond those
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in the first, and we focus on applications in distributed optimization in this work. Now we prove Theorem 7.2.1 in the

follows where the precise notions of [first-order/second-order/strict saddle] point are defined for both Problem UC and

Problem ECD. Critical points of Problem ECD are defined in terms of the Lagrangian function for d(x,y).

Proof. The first-order critical points x of Problem UC are those that satisfy

∇xc(x) = 0. (7.1)

The second-order critical points of Problem UC additionally satisfy

∇2
xc(x) � 0, (7.2)

and a first-order critical point is a strict saddle if it does not satisfy (7.2).

The critical points (x,y) of Problem ECD are defined through the Lagrangian function L(x,y,λ) = d(x,y) −

λ>(Ax+By−b). The first-order critical points (x,y) of Problem ECD are those that satisfy the first-order optimality

condition: Ax + By = b and there exists λ such that

∇[
x; y

]L(x,y,λ) = 0. (7.3)

The second-order critical points of Problem ECD additionally satisfy the second-order optimality condition:

[∇2[
x; y

]L(x,y,λ)](v,v) ≥ 0 ∀v ∈ T , (7.4)

where

T = {v =
[
vx; vy

]
: Avx + Bvy = 0} =

[
Rn

−B−1A(Rn)

]
(7.5)

is the tangent plane of the constraint set F = {Ax + By = b}, where we have used the nonsingularity of B. A

first-order critical point is a strict saddle if it does not satisfy (7.4).

For convenience, define

h(x,y) := d(x,y)− c(x), (7.6)

and note that h(x,y) = 0 for all (x,y) ∈ F . Note that h(x,y) has zero directional derivative and zero Hessian

curvature along the tangent plane of F . That is

∇[
x; y

]h(x,y)>v = 0 and [∇2[
x; y

]h(x,y)](v,v) = 0 (7.7)

for any (x,y) ∈ F and v ∈ T .

For any x, let y = B−1(b − Ax) and note that (x,y) ∈ F . Moreover, (7.3) holds iff
[
∇xc(x); 0

]
⊥ T

(due to (7.7)), which holds iff (7.1) holds (due to (7.5)). Similarly, we have that (7.4) holds iff [∇2[
x; y

]c(x)](v,v) ≥

0 ∀v ∈ T (due to (7.6) and (7.7)), which holds iff (7.2) holds (due to (7.5)). This completes the proof of the three types

of equivalence between a critical point x of Problem UC and a critical point (x,B−1(b−Ax)) of Problem ECD.

134



7.3 Geometry of Global Consensus

Consider any unconstrained centralized optimization problem of the form

minimize
w,{zj}

 J∑
j=1

fj(w, zj)

+ g(w), (7.8)

where first term in the objective function decouples into a sum of objectives fj . One can distribute this problem across

a network of J+1 nodes in a “star topology”,21 where J agents are connected to a central node. The resulting problem

is known as a global consensus problem (see [199, (3)]) and can be posed as follows22:

minimize
w,{zj},{wj}

 J∑
j=1

fj(w
j , zj)

+ g(w) s.t. wj = w ∀j. (7.9)

Here, w is the optimization variable at the central node, and wj and zj are the optimization variables at node j.

Unfortunately, relatively little is currently known about the geometric landscape of equality-constrained machine

learning problems in the form of (7.9): Do they have spurious local minima? Do they satisfy the strict saddle property,

or could they have degenerate saddle points?

However, insight into the geometry of problem (7.9) can be gained by applying Theorem 7.2.1. Problem (7.8) can

be expressed in the form of Problem UC by taking23 x = [w; z] with z = [z1; · · · ; zJ ] and c(x) =
∑J
j=1 fj(w, zj) +

g(w), while problem (7.9) can be expressed in the form of Problem ECD by taking x = [w; z], y = [w1; · · · ; wJ ],

d(x,y) =
∑J
j=1 fj(w

j , zj) + g(w),

A =

−I 0 · · · 0
... 0

. . . 0
−I 0 · · · 0

 , B =

I · · · 0

0
. . . 0

0 · · · I

 , b =

0
...
0

 . (7.10)

We note that B (the identity matrix) is square and invertible. Under the constraint that Ax + By = b, which requires

all wj = w, we see that d(x,y) = c(x). By applying Theorem 7.2.1, we obtain the following result.

Corollary 7.3.1. [w; z] is a [first-order/second-order/strict saddle] critical point of problem (7.8) iff ([w; z], [w; · · · ; w])

is a [first-order/second-order/strict saddle] point of problem (7.9). Moreover, if problem (7.8) satisfies the strict sad-

dle property and has no spurious local minima, then for every second-order critical point ([w; z], [w; · · · ; w]) of

problem (7.9), [w; z] is a global minimizer of problem (7.8).

Corollary 7.3.1 allows one to borrow centralized geometric analysis for problem (7.8) to understand the landscape

of the equality-constrained distributed problem (7.9).

21We remark that our results can also be applied to other network topologies, such as the series topology where wj = wj+1, ∀j and wJ = w.
22Strictly speaking, our problem (7.9) is more general than [199, (3)] as (7.9) involves local variables {zj} which are not constrained to be equal.
23To simplify notation, we use [p;q] to represent [p> q>]>.
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7.4 Gradient ADMM (GADMM) Algorithm

We briefly discuss algorithmic aspects for solving equality-constrained distributed optimization problems. The

recent Gradient ADMM (GADMM) algorithm [199] can be guaranteed under certain conditions to converge to a

second-order critical point of an equality-constrained distributed optimization problem. Corollary 7.3.1 establishes

conditions under which this point will correspond to a global minimizer of the original centralized optimization prob-

lem.

As outlined in [199, (38)], GADMM is intended for problems that can be expressed as24

minimize
x,y

f(x) + g(y) subject to Ax + By = b. (7.11)

The global consensus problem (7.9) is of this form; to see this, let x = [w1; · · · ; wJ ; z], y = w, f(x) =
∑J
j=1 fj(w

j , zj),

g(y) = g(w),

A =

−I · · · 0 0 · · · 0

0
. . . 0 0

. . . 0
0 · · · −I 0 · · · 0

 , B =

I
...
I

 , b =

0
...
0

 . (7.12)

In [199, Section 3.1], it is shown how GADMM can be applied to the global consensus problem (7.9), with the

resulting iterations

wj(k + 1) = wj(k)− 1

β

(
∇fj(wj(k), zj(k))

+ λj(k) + ρ(wj(k)−w(k))
)
,

zj(k + 1) = zj(k)− 1

β
∇fj(wj(k), zj(k)),

w(k + 1) = w(k)− 1

β

(
∇g(wk)

−
J∑
j=1

(λj(k) + ρ(wj(k + 1)−w(k)
)
,

λj(k + 1) = λj(k) + ρ(wj(k)−w(k)).

(7.13)

These iterations require communication only between the central node and each of the nodes 1, 2, . . . , J . We

note that this is the reason that we utilize (7.12) instead of (7.10) when applying GADMM for solving (7.9) since

the resulting algorithm (7.13) is more suitable for distributed implementation. On the other hand, the form (7.10) is

mainly utilized for analyzing the landscape of (7.9) by invoking Theorem 7.2.1.

For the global consensus problem, under assumptions B1–B5 in [199], with the proper selection of parameters β

and ρ, and with random initialization of w(0), {wj(0)}, {zj(0)}, and {λj(0)} it is shown [199, Theorem 3.1] that

with probability one, GADMM will converge to a second-order critical point of (7.9). According to Corollary 7.3.1,

24The notations f and g are interchanged with respect to what appears in [199, (38)].
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when problem (7.8) satisfies the strict saddle property and has no spurious local minima, this second-order critical

point of (7.9) corresponds to a global minimizer of problem (7.8).

7.5 Application to Distributed Low-Rank Matrix Approximation

We now discuss our results in the context of distributed low-rank matrix approximation. Consider first the proto-

typical problem of finding, for a given a data matrix Y ∈ Rn×m, a low-rank approximation by solving

minimize
X∈Rn×m

‖X−Y‖2F + µ‖X‖∗. (7.14)

Here, the nuclear norm penalty promotes low-rank structure in the approximation X. Problem (7.14) is an uncon-

strained convex optimization problem in the matrix variable X. It is natural to consider solving problem (7.14) in

factored form, where we replace the optimization variable X with UV>, where U ∈ Rn×r and V ∈ Rm×r are tall

matrices, and r is a parameter that must be set in advance (typically on the order of the rank r′ expected of the optimal

solution to (7.14)). Under this reparameterization, (7.14) becomes

minimize
U∈Rn×r,V∈Rm×r

‖UV> −Y‖2F + µ‖UV>‖∗. (7.15)

One can solve this problem using local search algorithms such as gradient descent. Such algorithms do not require

expensive SVDs, nor do they require explicit storage of the matrix X.

Unfortunately, problem (7.15) is nonconvex in the optimization variables (U,V). We have studied [6] the geo-

metric landscape of problem (7.15) with a minor modification to the objective function:

minimize
U,V

‖UV> −Y‖2F +
µ

2

(
‖U‖2F + ‖V‖2F

)
. (7.16)

Despite the change of the objective function, the global minimizers remain unchanged. That is, any (U,V) that

minimize (7.16) are also a global minimizer of (7.15).

We have shown [6] that every critical point of problem (7.16) is either a global minimum or a strict saddle point.

This implies that local search algorithms such as gradient descent can be applied to problem (7.16) and will converge

to a global minimum of (7.16). As previously noted, this then coincides with a global minimum of the original

objective function, (7.15). This favorable geometry of problem (7.16) holds under the condition that there exists a

global minimizer of (7.14) having rank r′ and that r ≥ r′.

One can generalize the unconstrained centralized problem (7.16) to an equality-constrained distributed problem

similar to the global consensus problems outlined in Section 7.3. Suppose the columns of the data matrix Y are dis-

tributed among J nodes/sensors. Without loss of generality, partition the columns of Y as Y =

[
Y1 Y2 · · · YJ

]
where for j ∈ {1, 2, . . . , J}, matrix Yj (which is stored at node j) has size n×mj , and where m =

∑J
j=1mj . Par-
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titioning V similarly as V =

[
V>1 V>2 · · · V>J

]>
, where Vj has size mj × r, we can write ‖UV> −Y‖2F =∑J

j=1 ‖UV>j −Yj‖2F . We use this fact to plug in for the term ‖UV> −Y‖2F which appears in (7.16).

Suppose we introduce in problem (7.16) the optimization variables U1, . . . ,UJ ∈ Rn×r (all the same size as

U) and add an equality constraint to enforce consensus among these variables. We obtain the equality-constrained

optimization problem

minimize
U,{Vj},{UJ}

 J∑
j=1

‖UjV>j −Yj‖2F +
µ

2
‖Vj‖2F


+
µ

2
‖U‖2F subject to Uj = U, ∀ j,

(7.17)

which has the form of global consensus problem appearing in (7.9) by taking w = vec(U), zj = vec(Vj), wj =

vec(Uj), and defining fj(wj , zj), g(w) in the natural resulting way. By applying Corollary 7.3.1, we obtain the

following result.

Corollary 7.5.1. xUC = [vec(U); vec(V1); · · · ; vec(VJ)] is a [first-order/second-order/strict saddle] critical point

of problem (7.16) iff xECD = (xUC , [vec(U); · · · ; vec(U)]) is a [first-order/second-order/strict saddle] critical point

of problem (7.17). Moreover, under the condition that there exists a global minimizer of (7.14) having rank r′ and that

r ≥ r′, for every second-order critical point xECD of problem (7.17), xUC is a global minimizer of problem (7.16).
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Figure 7.1: Solving (7.17) by using GADMM (7.13).

We apply GADMM to solve (7.17). [199, Theorem 3.1] shows that, under suitable conditions, GADMM is

guaranteed to converge to a second-order critical point of (7.17). Although we do not confirm those conditions for

the matrix factorization problem (7.17), we use numerical simulations to illustrate the ability of GADMM to reach
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solutions that correspond to global minimizers of the centralized problem (7.16).

To set up the experiments, we first generate the rank-r ground truth matrix Y# = [Y#
1 · · · Y#

J ] ∈ Rn×Jm

(m =
∑J
j=1mj) where r = 2, n = 50, J = 10, mj = 20 ∀j by multiplying two standard Gaussian matrices (i.e.,

each entry i.i.d. from N (0, 1)) of size n × r and r ×m, respectively. Then adding a noise matrix N ∈ Rn×m with

each entry i.i.d. drawn from N (0, σ2
Z) with σZ = 0.1, we get the noisy observation Y = Y# + N. In this case, the

signal-to-noise ratio can be computed as SNR = 10 log10

(
E
[
‖Y#‖2F

]
/E
[
‖N‖2F

])
= 10 log10( r

σ2
Z

) = 23 dB .

To estimate the ground truth, we then solve (7.17) with µ = 1 by using GADMM (7.13) with ρ = 10, β =

1000 and a random initialization. To verify our main results (cf. Corollary 7.5.1), we plot the optimality distance∑J
j=1 ‖UjV>j −U?V?

j‖2F and consensus error
∑J
j=1 ‖Uj −U‖2F as a function of the number of iterations, where

(U?, [V?
1 · · · V?

J ]) is a global minimizer of problem (7.16). Figure 7.1 shows that the GADMM achieves both global

optimum and exact consensus.
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CHAPTER 8

GLOBAL OPTIMALITY IN DISTRIBUTED LOW-RANK MATRIX FACTORIZATION

We study the convergence of a variant of distributed gradient descent (DGD) on a distributed low-rank matrix ap-

proximation problem wherein some optimization variables are used for consensus (as in classical DGD) and some opti-

mization variables appear only locally at a single node in the network. We term the resulting algorithm DGD+LOCAL.

Using algorithmic connections to gradient descent and geometric connections to the well-behaved landscape of the

centralized low-rank matrix approximation problem, we identify sufficient conditions where DGD+LOCAL is guar-

anteed to converge with exact consensus to a global minimizer of the original centralized problem. For the distributed

low-rank matrix approximation problem, these guarantees are stronger—in terms of consensus and optimality—than

what appear in the literature for classical DGD and more general problems.

8.1 Introduction

A promising line of recent literature has examined the nonconvex objective functions that arise when certain matrix

optimization problems are solved in factored form, that is, when a low-rank optimization variable X is replaced by a

product of two thin matrices UV> and the optimization proceeds jointly over U and V [6,8,93,101,140,192,204]. In

many cases, a study of the geometric landscape of these objective functions reveals that—despite their nonconvexity—

they possess a certain favorable geometry. In particular, many of the resulting objective functions (i) satisfy the strict

saddle property [97, 114], where every critical point is either a local minimum or is a strict saddle point, at which the

Hessian matrix has at least one negative eigenvalue, and (ii) have no spurious local minima (every local minimum

corresponds to a global minimum).

One such problem—which is both of fundamental importance and representative of structures that arise in many

other machine learning problems [205]—is the low-rank matrix approximation problem, where given a data matrix Y

the objective is to minimize ‖UV> − Y‖2F . As we explain in Theorem 8.3.1, building on recent analysis in [206]

and [93], this problem satisfies the strict saddle property and has no spurious local minima.

In parallel with the recent focus on the favorable geometry of certain nonconvex landscapes, it has been shown that

a number of local search algorithms have the capability to avoid strict saddle points and converge to a local minimizer

for problems that satisfy the strict saddle property [113, 126, 127, 207]. As stated in [127] and as we summarize in

Theorems 8.2.2 and 8.2.4, gradient descent when started from a random initialization is one such algorithm. For

problems such as low-rank matrix approximation that have no spurious local minima, converging to a local minimizer

means converging to a global minimizer.
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To date, the geometric and algorithmic research described above has largely focused on centralized optimization,

where all computations happen at one “central” node that has full access, for example, to the data matrix Y.

In this work, we study the impact of distributing the factored optimization problem, such as would be necessary if

the data matrix Y in low-rank matrix approximation were partitioned into submatrices Y =

[
Y1 Y2 · · · YJ

]
,

each of which was available at only one node in a network. By similarly partitioning the matrix V, one can partition

the objective function

‖UV> −Y‖2F =

J∑
j=1

‖UV>j −Yj‖2F . (8.1)

As we discuss, one can attempt to minimize the resulting objective, in which the matrix U appears in every term

of the summation, using techniques similar to classical distributed algorithms such as distributed gradient descent

(DGD) [208]. These algorithms, however, involve creating local copies U1,U2, . . . ,UJ of the optimization variable

U and iteratively sharing updates of these variables with the aim of converging to a consensus where (exactly or

approximately) U1 = U2 = · · · = UJ .

In this work we study a straightforward extension of DGD for solving such problems. This extension, which we

term DGD+LOCAL, resembles classical DGD in that each node j has a local copy Uj of the optimization variable U

as described above. Additionally, however, each node has a local block Vj of the partitioned optimization variable V,

and this block exists only locally at node j without any consensus or sharing among other nodes.

We present a geometric framework for analyzing the convergence of DGD+LOCAL in such problems. Our frame-

work relies on a straightforward conversion which reveals (for example in the low-rank matrix approximation problem)

that DGD+LOCAL as described above is equivalent to running conventional gradient descent on the objective function

J∑
j=1

(
‖UjV>j −Yj‖2F +

J∑
i=1

wji‖Uj −Ui‖2F

)
, (8.2)

where wji are weights inherited from the DGD+LOCAL iterations. This objective function (8.2) differs from the

original objective function (8.1) in two respects: it contains more optimization variables, and it includes a quadratic

regularizer to encourage consensus. Although the geometry of (8.1) is understood to be well-behaved, new questions

arise about the geometry of (8.2): Does it contain new critical points (local minima that are not global, saddle points

that are not strict)? And on the consensus subspace, where U1 = U2 = · · · = UJ , how do the critical points of (8.2)

relate to the critical points of (8.1)? We answer these questions and build on the algorithmic results for gradient

descent to identify in Theorem 8.3.2 sufficient conditions where DGD+LOCAL is guaranteed to converge to a point

that (i) is exactly on the consensus subspace, and (ii) coincides with a global minimizer of problem (8.1). Under

these conditions, the distributed low-rank matrix approximation problem is shown to enjoy the same geometric and

algorithmic guarantees as its well-behaved centralized counterpart.
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For the distributed low-rank matrix approximation problem, these guarantees are stronger than what appear in the

literature for classical DGD and more general problems. In particular, we show exact convergence to the consensus

subspace with a fixed DGD+LOCAL stepsize, which in more general works is accomplished only with diminishing

DGD stepsizes for convex [200, 201] and nonconvex [202] problems or by otherwise modifying DGD as in the EX-

TRA algorithm [209]. Moreover, we show convergence to a global minimizer of the original centralized nonconvex

problem. Until recently, existing DGD results either considered convex problems [200, 201] or showed convergence

to stationary points of nonconvex problems [202]. Very recently, it was also shown [203] that with an appropriately

small stepsize, DGD can converge to an arbitrarily small neighborhood of a second-order critical point for general

nonconvex problems with additional technical assumptions. Our work differs from [203] in our use of DGD+LOCAL

(rather than DGD) and our focus on one specific problem where we can establish stronger guarantees of exact global

optimality and exact consensus without requiring an arbitrarily small (or diminishing) stepsize.

Our main results on distributed low-rank matrix factorization are presented in Section 8.3. These results build

on several more general algorithmic and geometric results that we first establish in Section 8.2. The results from

Section 8.2 may have broader applicability, and the geometric and algorithmic discussions in Section 8.2 may have

independent interest from one another.

8.2 General Analysis of DGD+LOCAL

Consider a centralized minimization problem that can be written in the form

minimize
x,y

f(x,y) =

J∑
j=1

fj(x,yj), (8.3)

where y =

[
y>1 · · · y>J

]>
. Here x is the common variable in all of the objective functions {fj}j∈[J] and yj is the

variable only corresponding to fj .

The standard DGD algorithm [208] is stated for problems of the form

minimize
x

f(x) =

J∑
j=1

fj(x),

and for such problems it involves updates of the form

xj(k + 1) =

J∑
i=1

(
w̃jix

i(k)
)
− µ∇xfj(x

j(k)),

where {w̃ji} are a set of symmetric nonnegative weights, and w̃ji is positive if and only if nodes i and j are neighbors

in the network or i = j. Throughout this chapter, we will make the common assumption [210] that
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J∑
i=1

w̃ji = 1 for all j ∈ [J ]. (8.4)

A very natural extension of DGD to problems of the form (8.3)—which involve local copies of the shared variable

x and local partitions of the variable y—is to perform the updates

xj(k + 1) =

J∑
i=1

(
w̃jix

i(k)
)
− µ∇xfj(x

j(k),yj(k)),

yj(k + 1) = yj(k)− µ∇yfj(x
j(k),yj(k)). (8.5)

Because we are interested in solving problems of the form (8.3), we refer to (8.5) as DGD+LOCAL throughout this

chapter. We note that DGD+LOCAL is not equivalent to algorithm would obtain by applying classical DGD to reach

consensus over the concatenated variables x and y as this would require each node to maintain a local copy of the

entire vector y. For the same reason, DGD+LOCAL is not equivalent to the blocked variable problem described

in [211].

8.2.1 Relation to Gradient Descent

Note that we can rewrite the first equation in (8.5) as

xj(k + 1) = (

J∑
i=1

w̃ji)x
j(k)− µ

∇xfj(x
j(k),yj(k)) +

∑
i 6=j

w̃ji
µ

(xj(k)− xi(k))


= xj(k)− µ

∇xfj(x
j(k),yj(k)) +

∑
i 6=j

w̃ji
µ

(xj(k)− xi(k))

 .

In the second line, we have used the assumption (8.4). Thus, by defining {wji} such that

wji = wij =

{
w̃ji
4µ , i 6= j,

0, i = j,
(8.6)

we see that DGD+LOCAL (8.5) is equivalent to applying standard gradient descent (with stepsize µ) to the problem

minimize
z

g(z) =

J∑
j=1

(
fj(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)
, (8.7)

where z = (x1, . . . ,xJ ,y1, . . . ,yJ) and W = {wji} is a J × J connectivity matrix with nonnegative entries defined

in (8.6) and zeros on the diagonal.
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8.2.2 Algorithmic Analysis

We are interested in understanding the convergence of the gradient descent algorithm when it is applied to minimiz-

ing g(z) in (8.7); as we have argued in Section 8.2.1, this is equivalent to running the DGD+LOCAL algorithm (8.5)

to minimize the objective function f(x,y) in (8.3).

Under certain conditions, we can guarantee that gradient descent will converge to a second-order critical point of

the objective function g(z) in (8.7). The proof relies on certain properties of the functions fj comprising (8.3). We

first describe these properties before providing the convergence result.

8.2.2.1 Objective Function Properties and Convergence of Gradient Descent

The first property concerns the assumption that each fj comprising (8.3) has Lipschitz gradient. In this case we

can also argue that g in (8.7) has Lipschitz gradient.

Proposition 8.2.1. Let f(x,y) =
∑J
j=1 fj(x,yj) be an objective function as in (8.3) and let g(z) be as in (8.7) with

z = (x1, . . . ,xJ ,y1, . . . ,yJ). Suppose that each fj has Lipschitz gradient, i.e., ∇fj is Lipschitz continuous with

constant Lj > 0. Then ∇g is Lipschitz continuous with constant

Lg = L+
2ω

µ
,

where L := maxj Lj , ω :=
∑J
i 6=j w̃ji, and w̃ji and µ are the DGD+LOCAL weights and stepsize as in (8.5).

Proposition 8.2.1 is proved in Appendix F.1.

The second property concerns the following Łojasiewicz inequality, which arises in the convergence analysis of

gradient descent.

Definition 8.2.1. [212] Assume that h : Rn → R is continuously differentiable. Then h is said to satisfy the

Łojasiewicz inequality, if for any critical point x of h(x), there exist δ > 0, θ ∈ [0, 1), C1 > 0 such that

|h(x)− h(x)|θ ≤ C1‖∇h(x)‖, ∀ x ∈ B(x, δ).

Here θ is often referred to as the KL exponent.

This Łojasiewicz inequality (or a more general Kurdyka-Łojasiewicz (KL) inequality for the general nonsmooth

problems) characterizes the local geometric properties of the objective function around its critical points and has

proved useful for convergence analysis [212, 213]. The Łojasiewicz inequality (or KL inequality) is very general and

holds for most problems in engineering. For example, every analytic function satisfies this Łojasiewicz inequality, but

each function may have different Łojasiewicz exponent θ which determines the convergence rate; see [212, 213] for

the details on this.
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A general result for convergence of gradient descent to first-order critical point for a function satisfying the Ło-

jasiewicz inequality is as follows.25

Theorem 8.2.1. [212] Suppose infRn h > −∞ and h satisfies the Łojasiewicz inequality. Also assume ∇h is

Lipschitz continuous with constant L > 0. Let {x(k)} be the sequence generated by gradient descent x(k + 1) =

x(k)− µ∇h(x(k)) with µ < 1
L . Then if the sequence {x(k)} is bounded, it converges to a critical point of h.

The following result further characterizes the convergence behavior of gradient descent to a second-order critical

point.

Theorem 8.2.2. [113] Suppose h is a twice-continuously differentiable function and ∇h is Lipschitz continuous

with constant L > 0. Let {x(k)} be the sequence generated by gradient descent x(k + 1) = x(k) − µ∇h(x(k))

with µ < 1
L . Suppose x(0) is chosen randomly from a probability distribution supported on a set S having positive

measure. Then the sequence {x(k)} almost surely avoids strict saddles, where the Hessian has at least one negative

eigenvalue.

Theorems 8.2.1 and 8.2.2 apply for functions h that globally satisfy the Łojasiewicz and Lipschitz gradient condi-

tions. In some problems, however, one or both of these properties may be satisfied only locally. Nevertheless, under

an assumption of bounded iterations—as is already made in Theorem 8.2.1—it is possible to extend the first- and

second-order convergence results to such functions. For example, one can extend Theorem 8.2.1 as follows by noting

that the original derivation in [212] used the Łojasiewicz property only locally around limit points of the sequence

{x(k)}.

Theorem 8.2.3. [212] Suppose infRn h > −∞. For ρ > 0, let Bρ denote the open ball of radius ρ:

Bρ := {x : ‖x‖2 < ρ},

and suppose h satisfies the Łojasiewicz inequality at all points x ∈ Bρ. Also assume ∇h is Lipschitz continuous with

constant L > 0. Let {x(k)} be the sequence generated by gradient descent x(k + 1) = x(k) − µ∇h(x(k)) with

µ < 1
L . Suppose {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ. Then the sequence {x(k)} converges to a

critical point of h.

The following result establishes second-order convergence for a function with a locally Lipschitz gradient.

Theorem 8.2.4. Let ρ > 0, and consider an objective function h where:

1. infRn h > −∞,

2. h satisfies the Łojasiewicz inequality within Bρ,

25The result in [212] is stated for the proximal method, but the result can be extended to gradient descent as long as µ < 1
L

.
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3. h is twice-continuously differentiable, and

4. |h (x)| ≤ L0, ‖∇h (x)‖ ≤ L1, and
∥∥∇2h(x)

∥∥
2
≤ L2 for all x ∈ B2ρ.

Suppose the gradient descent stepsize

µ <
1

L2 + 4L1

ρ + (4+2π)L0

ρ2

. (8.8)

Suppose x(0) is chosen randomly from a probability distribution supported on a set S ⊆ Bρ with S having positive

measure, and suppose that under such random initialization, there is a positive probability that the sequence {x(k)}

remains bounded in Bρ and all limit points of {x(k)} are in Bρ.

Then conditioned on observing that {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ, gradient descent

converges to a critical point of h, and the probability that this critical point is a strict saddle point is zero.

Theorem 8.2.4 is proved in Appendix F.2.

8.2.2.2 Convergence Analysis of DGD+LOCAL

As described in the following theorem, under certain conditions, we can guarantee that the DGD+LOCAL algo-

rithm (8.5) (which is equivalent to gradient descent applied to minimizing g(z) in (8.7)) will converge to a second-order

critical point of the objective function g(z).

Theorem 8.2.5. Let f(x,y) =
∑J
j=1 fj(x,yj) be an objective function as in (8.3) and let g(z) be as in (8.7) with

z = (x1, . . . ,xJ ,y1, . . . ,yJ). Suppose each fj satisfies infRn fj > −∞, is twice continuously-differentiable, and

has Lipschitz gradient, i.e., ∇fj is Lipschitz continuous with constant Lj > 0. Suppose g satisfies the Łojasiewicz

inequality. Let L := maxj Lj , and let w̃ji and µ be the DGD+LOCAL weights and stepsize as in (8.5).

Assume ω := maxj
∑
i 6=j w̃ji <

1
2 . Let {z(k)} be the sequence generated by the DGD+LOCAL algorithm in (8.5)

with

µ <
1− 2ω

L
(8.9)

and with random initialization from a probability distribution supported on a set S having positive measure. Then if

the sequence {z(k)} is bounded, it almost surely converges to a second-order critical point of the objective function

in (8.7).

Proof. Recall that running the DGD+LOCAL algorithm (8.5) to minimize the objective function f(x,y) in (8.3)

is equivalent to running gradient descent on g(z) in (8.7). The proof is completed by invoking Theorem 8.2.1 and

Theorem 8.2.2 with h replaced by g. From Proposition 8.2.1, we have that ∇g is Lipschitz continuous with constant
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Lg = L+ 2ω
µ , and so choosing µ to satisfy (8.9) ensures that µ < 1

Lg
as required in Theorem 8.2.1 and Theorem 8.2.2.

Remark 8.2.1. The requirement that the DGD+LOCAL stepsize µ = O( 1
L ) also appears in the convergence analysis

of DGD in [202, 214].

Remark 8.2.2. The function g is guaranteed to satisfy the Łojasiewicz inequality, for example, if every fj is semi-

algebraic, because this will imply that g is semi-algebraic, and every semi-algebraic function satisfies the Łojasiewicz

inequality.

Remark 8.2.3. In order to satisfy (8.9), it must hold that ω < 1
2 . In the case where the DGD+LOCAL weight matrix

W̃ is symmetric and doubly stochastic (i.e., W̃ has nonnegative entries and each of its rows and columns sums to

1), this condition is equivalent to requiring that each diagonal element of W̃ is larger than 1
2 . Given any symmetric

and doubly stochastic matrix W̃, one can design a new weight matrix (W̃ + I)/2 that satisfies this requirement. This

strategy is also mentioned at the end of [214, Section 2.1].

We also have the following DGD+LOCAL convergence result when the functions fj have only a locally Lipschitz

gradient.

Theorem 8.2.6. Let f(x,y) =
∑J
j=1 fj(x,yj) be an objective function as in (8.3) and let g(z) be as in (8.7) with

z = (x1, . . . ,xJ ,y1, . . . ,yJ). Let ρ > 0 and suppose each fj satisfies

1. infRn fj > −∞,

2. fj is twice-continuously differentiable, and

3. |fj (x,yj)| ≤ L0,j , ‖∇fj (x,yj)‖ ≤ L1,j , and
∥∥∇2fj(x,y)

∥∥
2
≤ L2,j for all (x,yj) ∈ B2ρ.

Suppose also that g satisfies the Łojasiewicz inequality withinBρ. Let w̃ji and µ be the DGD+LOCAL weights and

stepsize as in (8.5). Assume ω := maxj
∑
i 6=j w̃ji <

1
2 . Let {z(k)} be the sequence generated by the DGD+LOCAL

algorithm in (8.5) with

µ <
1− 2ω

maxj L2,j +
4L1,j

ρ +
(4+2π)L0,j

ρ2

. (8.10)

Suppose z(0) is chosen randomly from a probability distribution supported on a set S ⊆ Bρ with S having positive

measure, and suppose that under such random initialization, there is a positive probability that the sequence {z(k)}

remains bounded in Bρ and all limit points of {z(k)} are in Bρ.

Then conditioned on observing that {z(k)} ⊆ Bρ and all limit points of {z(k)} are in Bρ, DGD+LOCAL con-

verges to a critical point of the objective function in (8.7), and the probability that this critical point is a strict saddle

point is zero.
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Proof. Recall that running the DGD+LOCAL algorithm (8.5) to minimize the objective function f(x,y) in (8.3) is

equivalent to running gradient descent on g(z) in (8.7). Similar to the approach taken in proving Theorem 8.2.4, to

deal with the local Lipschitz condition, the proof involves constructing a function g̃ such that g̃(z) = g(z) for all

z ∈ Bρ but where g̃ has a globally Lipschitz gradient.

To do this, recall the window function w defined in Appendix F.2. Now, recall that

g(z) =

J∑
j=1

(
fj(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)
and define

g̃ (z) =

J∑
j=1

(
f̃j(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)
, (8.11)

where

f̃j(x
j ,yj) = fj(x

j ,yj)w(
[
(xj)> y>j

]>
).

Since f̃j(xj ,yj) = fj(x
j ,yj) for (xj ,yj) ∈ Bρ, we have that g̃ (z) = g(z) for all z ∈ Bρ.

We have the following properties for g̃:

• Since g = g̃ in Bρ, g̃ satisfies the Łojasiewicz inequality in Bρ.

• Since fj ∈ C2 for all j and w ∈ C2, g̃ ∈ C2.

• Since infRn fj > −∞ for all j and infRn w > −∞, infRn g̃ > −∞.

• To globally bound the Lipschitz constant of the gradient of g̃, note that

∥∥∥∇2f̃j

∥∥∥ =
∥∥∥w · ∇2fj +∇fj · (∇w)

>
+∇w · (∇fj)> + fj · ∇2w

∥∥∥
≤ |w|

∥∥∇2fj
∥∥+ 2 ‖∇w‖ ‖∇fj‖+ |fj |

∥∥∇2w
∥∥

≤ L2,j +
4L1,j

ρ
+

(4 + 2π)L0,j

ρ2
for all (xj ,yj).

Therefore, given the form of g̃ in (8.11), we can conclude from Proposition 8.2.1 that globally,∇g̃ is Lipschitz

continuous with constant

Lg̃ =

(
max
j
L2,j +

4L1,j

ρ
+

(4 + 2π)L0,j

ρ2

)
+

2ω

µ
.

Now consider the gradient descent algorithm with stepsize µ satisfying (8.10). Define

Tg = {z(0) ∈ Bρ : all {z(k)} ⊆ Bρ and all limit points of {z(k)} are in Bρ
when gradient descent is run on g starting at z(0)}

148



and

Tg̃ = {z(0) ∈ Bρ : all {z(k)} ⊆ Bρ and all limit points of {z(k)} are in Bρ
when gradient descent is run on g̃ starting at z(0)}.

Similarly, define

Σg = {z(0) ∈ Bρ : {z(k)} converges to a strict saddle when gradient descent is run on g starting at z(0)}

and

Σg̃ = {z(0) ∈ Bρ : {z(k)} converges to a strict saddle when gradient descent is run on g̃ starting at z(0)}.

Using the above properties, we see that Theorem 8.2.2 can be applied to g̃, and so we conclude that Σg̃ has measure

zero.

Now, after running gradient descent on g from a random initialization as in the theorem statement, condition on

observing that {z(k)} ⊆ Bρ and all limit points of {z(k)} are in Bρ, i.e., that z(0) ∈ Tg . Because {z(k)} ⊆ Bρ

and all limit points of {z(k)} are in Bρ, and because {z(k)} matches the sequence that would be obtained by running

gradient descent on g̃, we can apply Theorem 8.2.3 to conclude that {z(k)} converges to a critical point of g̃, and since

this critical point belongs to Bρ and g̃ = g inside Bρ, we conclude that this is also a critical point of g.

Finally, using the definition of conditional probability, we have

P (z(0) ∈ Σg|z(0) ∈ Tg) =
P (z(0) ∈ Σg ∩ Tg)
P (z(0) ∈ Tg)

=
P (z(0) ∈ Σg̃ ∩ Tg̃)
P (z(0) ∈ Tg)

,

where the second equality follows from the fact that g̃ = g inside Bρ: if a sequence of iterations stays bounded inside

Bρ and converges to a strict saddle when gradient descent is run on g, the same will hold when gradient descent is run

on g̃, and vice versa. Since Σg̃ has zero measure and because z(0) is chosen randomly from a probability distribution

supported on a set S ⊆ Bρ with S having positive measure, P (z(0) ∈ Σg̃ ∩ Tg̃) = 0. Also, by assumption,

P (z(0) ∈ Tg) > 0. Therefore, P (z(0) ∈ Σg|z(0) ∈ Tg) = 0
nonzero = 0.

8.2.3 Geometric Analysis

Section 8.2.2 establishes that, under certain conditions, DGD+LOCAL will converge to a second-order critical

point of the objective function g(z) in (8.7).

In this section, we are interested in studying the geometric landscape of the distributed objective function in (8.7)

and comparing it to the geometric landscape of the original centralized objective function in (8.3). In particular, we
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would like to understand how the critical points of g(z) in (8.7)) are related to the critical points of f(x,y) in (8.3).

These problems differ in two important respects:

• The objective function in (8.7) involves more optimization variables than that in (8.3). Thus, the optimization

takes place in a higher-dimensional space and there is the potential for new features to be introduced into the

geometric landscape.

• The objective function in (8.7) involves a quadratic regularization term that will promote consensus among the

variables x1, . . . ,xJ . This term is absent from (8.3). However, along the consensus subspace where x1 = · · · =

xJ , this regularizer will be zero and the objective functions will coincide.

Despite these differences, we characterize below some ways in which the geometric landscapes of the two prob-

lems may be viewed as equivalent. These results may have independent interest from the specific DGD+LOCAL

convergence analysis in Section 8.2.2.

Our first result establishes that if the sub-objective functions fj satisfy certain properties, the formulation (8.7)

does not introduce any new global minima outside of the consensus subspace.

Proposition 8.2.2. Let f(x,y) =
∑J
j=1 fj(x,yj) be as in (8.3). Suppose the topology defined by W is connected.

Also suppose there exist x? (which is independent of j) and y?j , j ∈ [J ] such that

(x?,y?j ) ∈ arg min
x,yj

fj(x,yj), ∀ j ∈ [J ]. (8.12)

Then g(z) defined in (8.7) satisfies

min
z
g(z) = min

x,y
f(x,y),

and g(z) achieves its global minimum only for z with x1 = · · · = xJ .

Proposition 8.2.2 is proved in Appendix F.3. We note that the assumption in Proposition 8.2.2 is fairly strong, and

while there are problems where it can hold, there are also many problems where it will not hold.

Proposition 8.2.2 establishes that, in certain cases, there will exist no global minimizers of the distributed objective

function g(z) that fall outside of the consensus subspace. (Moreover, and also importantly, there will exist a global

minimizer on the consensus subspace.) Also relevant is the question of whether there may exist any other types of

critical points (such as local minima or saddle points) outside of the consensus subspace. Under certain conditions,

the following proposition ensures that the answer is no.

Proposition 8.2.3. Let f(x,y) be as in (8.3) and g(z) be as in (8.7) with z = (x1, . . . ,xJ ,y1, . . . ,yJ). Suppose the

matrix W is connected and symmetric. Also suppose the gradient of fj satisfies the following symmetric property:
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〈∇xfj(x,yj),x〉 = 〈∇yjfj(x,yj),yj〉 (8.13)

for all j ∈ [J ]. Then, any critical point of g must satisfy x1 = · · · = xJ .

Proposition 8.2.3 is proved in Appendix F.4.

Finally, we can also make a statement about the behavior of critical points that do fall on the consensus subspace.

Theorem 8.2.7. Let Cf denote the set of critical points of (8.3):

Cf := {x,y : ∇f(x,y) = 0} ,

and let Cg denote the set of critical points of (8.7):

Cg :=

{
z : ∇g(z) = 0

}
.

Then, for any z = (x1, . . . ,xJ ,y) ∈ Cg with x1 = · · · = xJ = x, we have (x,y) ∈ Cf . Furthermore, if (x,y) is a

strict saddle of f , then z = (x, . . . ,x,y) is also a strict saddle of g.

The proof of Theorem 8.2.7 is in Appendix F.5.

8.3 Analysis of Distributed Matrix Factorization

We now consider the prototypical low-rank matrix approximation in factored form, where given a data matrix

Y ∈ Rn×m, we seek to solve

minimize
U∈Rn×r,V∈Rm×r

‖UV> −Y‖2F . (8.14)

Here U ∈ Rn×r and V ∈ Rm×r are tall matrices, and r is chosen in advance to allow for a suitable approximation of

Y. In some of our results below, we will assume that the data matrix Y has rank at most r.

One can solve problem (8.14) using local search algorithms such as gradient descent. Such algorithms do not

require expensive SVDs, and the storage complexity for U and V scales with (n + m)r, which is smaller than nm

as for Y. Unfortunately, problem (8.14) is nonconvex in the optimization variables (U,V). Thus, the question arises

of whether local search algorithms such as gradient descent actually converge to a global minimizer of (8.14). Using

geometric analysis of the critical points of problem (8.14), however, it is possible to prove convergence to a global

minimizer.

In Appendix F.6, building on analysis in [206], we prove the following result about the favorable geometry of the

nonconvex problem (8.14).
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Theorem 8.3.1. For any data matrix Y, every critical point (i.e., every point where the gradient is zero) of prob-

lem (8.14) is either a global minimum or a strict saddle point, where the Hessian has at least one negative eigenvalue.

Such favorable geometry has been used in the literature to show that local search algorithms (particularly gradient

descent with random initialization [113]) will converge to a global minimum of the objective function.

8.3.1 Distributed Problem Formulation

We are interested in generalizing the matrix approximation problem from centralized to distributed scenarios. To be

specific, suppose the columns of the data matrix Y are distributed among J nodes/sensors. Without loss of generality,

partition the columns of Y as

Y =
[
Y1 Y2 · · · YJ

]
,

where for j ∈ {1, 2, . . . , J}, matrix Yj (which is stored at node j) has size n × mj , and where m =
∑J
j=1mj .

Partitioning V similarly as

V =
[
V>1 · · · V>J

]>
, (8.15)

where Vj has size mj × r, we obtain the following optimization problem

minimize
U,V1,...,VJ

J∑
j=1

‖UV>j −Yj‖2F , (8.16)

which is exactly equivalent to (8.14). Problem (8.16), in turn, can be written in the form of problem (8.3) by taking

x = vec(U), yj = vec(Vj), and fj(x,yj) = ‖UV>j −Yj‖2F . (8.17)

Consequently, we can use the analysis from Section 8.2 to study the performance of DGD+LOCAL (8.5) when applied

to problem (8.16).

For convenience, we note that in this context the DGD+LOCAL iterations (8.5) take the form

Uj(k + 1) =

J∑
i=1

(
w̃jiU

i(k)
)
− 2µ(Uj(k)V>j (k)−Yj)Vj(k),

Vj(k + 1) = Vj(k)− 2µ(Uj(k)V>j (k)−Yj)
>Uj(k), (8.18)

152



and the corresponding gradient descent objective function (8.7) takes the form

minimize
z

g(z) =

J∑
j=1

(
‖UjV>j −Yj‖2F +

J∑
i=1

wji‖Uj −Ui‖2F

)
, (8.19)

where U1, . . . ,UJ ∈ Rn×r are local copies of the optimization variable U; V1, . . . ,VJ are a partition of V as

in (8.15); and the weights {wji} are determined by {w̃ji} and µ as in (8.6).

Problems (8.16) and (8.19) (as special cases of problems (8.3) and (8.7), respectively) satisfy many of the assump-

tions required for the geometric and algorithmic analysis in Section 8.2. We use these facts in proving our main result

for the convergence of DGD+LOCAL on the matrix factorization problem.

Theorem 8.3.2. Suppose rank(Y) ≤ r. Suppose DGD+LOCAL (8.18) is used to solve problem (8.16), with weights

{w̃ji} and stepsize

µ <
1− 2ω

maxj (276 + 64π)ρ2 + 34‖Yj‖F + (8+4π)
ρ2 ‖Yj‖2F

(8.20)

for some ρ > 0 and where ω := maxj
∑
i 6=j w̃ji <

1
2 . Suppose the J × J connectivity matrix W = {wji} (with wji

defined in (8.6)) is connected and symmetric. Let {z(k)} be the sequence generated by the DGD+LOCAL algorithm.

Suppose z(0) is chosen randomly from a probability distribution supported on a set S ⊆ Bρ with S having positive

measure, and suppose that under such random initialization, there is a positive probability that the sequence {z(k)}

remains bounded in Bρ and all limit points of {z(k)} are in Bρ.

Then conditioned on observing that {z(k)} ⊆ Bρ and all limit points of {z(k)} are in Bρ, DGD+LOCAL almost

surely converges to a solution z? = (U1?, . . . ,UJ?,V?
1, . . . ,V

?
J) with the following properties:

• Consensus: U1? = · · · = UJ? = U?.

• Global optimality: (U?,V?) is a global minimizer of (8.14), where V? denotes the concatenation of V?
1, . . . ,V

?
J

as in (8.15).

Proof. We begin by arguing that DGD+LOCAL converges almost surely (when z(0) is chosen randomly inside Bρ)

to a second-order critical point of (8.19). To do this, our goal is to invoke Theorem 8.2.6. We note that each fj

defined in (8.17) satisfies infU,Vj
fj > −∞ and is twice-continuously differentiable. Also, since the functions fj

are semi-algebraic, g satisfies the Łojasiewicz inequality globally. The functions fj do not have globally Lipschitz

gradient. However, we can find quantities L0,j , L1,j , L2,j such that |fj (x,yj)| ≤ L0,j , ‖∇fj (x,yj)‖ ≤ L1,j , and∥∥∇2fj(x,y)
∥∥

2
≤ L2,j for all (x,yj) ∈ B2ρ. For L0,j :
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|fj (x,yj)| = ‖UV>j −Yj‖2F
≤ (‖UV>j ‖F + ‖Yj‖F )2

≤ (‖U‖F ‖Vj‖F + ‖Yj‖F )2

≤ (4ρ2 + ‖Yj‖F )2

≤ 32ρ4 + 2‖Yj‖2F .

For L1,j :

‖∇fj (x,yj)‖ =

∥∥∥∥[∇U‖UV>j −Yj‖2F
∇Vj‖UV>j −Yj‖2F

]∥∥∥∥
F

=

∥∥∥∥[2(UV>j −Yj)Vj

2(UV>j −Yj)
>U

]∥∥∥∥
F

≤ 2
(
‖UV>j Vj‖F + ‖YjVj‖F + ‖VjU

>U‖F + ‖Y>j U‖F
)

≤ 2
(
8ρ3 + 2ρ‖Yj‖F + 8ρ3 + 2ρ‖Yj‖F

)
= 32ρ3 + 8ρ‖Yj‖F .

For L2,j , we can bound the Lipschitz constant of∇fj in B2ρ as follows. Denote D =

DU

DVj

. Then

1

2
‖∇2fj(U,Vj)‖ =

1

2
max
‖D‖F=1

[∇2fj(U,Vj)](D,D)

= max
‖D‖F=1

‖DUV>j + UD>Vj
‖2F + 2〈UV>j ,DUD>Vj

〉 − 2〈Yj ,DUD>Vj
〉

≤ max
‖D‖F=1

5

2
(‖Vj‖2F + ‖U‖2F )(‖DU‖2F + ‖DVj

‖2F ) + ‖Yj‖F (‖DU‖2F + ‖DVj
‖2F )

≤ max
‖D‖F=1

(10ρ2 + ‖Yj‖F )(‖DU‖2F + ‖DVj
‖2F ) = 10ρ2 + ‖Yj‖F ,

where the last inequality holds because ‖U‖2F + ‖Vj‖2F ≤ 4ρ2. Therefore we can bound the Lipschitz constant of

∇fj as Lj ≤ 20ρ2 + 2‖Yj‖F for all (U,Vj) such that ‖U‖2F + ‖Vj‖2F ≤ 4ρ2. Now,

L2,j +
4L1,j

ρ
+

(4 + 2π)L0,j

ρ2
= 20ρ2 + 2‖Yj‖F +

4

ρ
(32ρ3 + 8ρ‖Yj‖F ) +

(4 + 2π)

ρ2
(32ρ4 + 2‖Yj‖2F )

= 20ρ2 + 2‖Yj‖F + 128ρ2 + 32‖Yj‖F + (128 + 64π)ρ2 +
(8 + 4π)

ρ2
‖Yj‖2F

= (276 + 64π)ρ2 + 34‖Yj‖F +
(8 + 4π)

ρ2
‖Yj‖2F .

Thus, choosing µ to satisfy (8.20) ensures that (8.10) is met.

From Theorem 8.2.6, we then conclude that conditioned on observing that {z(k)} ⊆ Bρ and all limit points of

{z(k)} are in Bρ, DGD+LOCAL converges to a critical point of the objective function in (8.19), and the probability

that this critical point is a strict saddle point is zero. We refer to this point as z?.
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Next, note that the assumption of Proposition 8.2.2 is satisfied if Y has rank at most r. In particular, there exist

Ũ, Ṽ such that ŨṼ> = Y and so we may take x? = vec(Ũ) and y?j = vec(Ṽj) to achieve fj(x?,y?j ) = 0, which is

the smallest possible value for each fj . Proposition 8.2.2 thus guarantees that (8.19) has at least one critical point that

is not a strict saddle (and in fact that it is a global minimizer that falls on the consensus subspace).

Next, note that the symmetric property required for Proposition 8.2.3 is satisfied. To see this, observe that

∇U‖UV>j −Yj‖2F = 2(UV>j −Yj)Vj

and

∇Vj‖UV>j −Yj‖2F = 2(UV>j −Yj)
>U.

Thus,

〈∇U‖UV>j −Yj‖2F ,U〉 = 2 · tr(U>(UV>j −Yj)Vj) = 2 · tr(V>j (UV>j −Yj)
>U) = 〈∇Vj‖UV>j −Yj‖2F ,Vj〉.

Proposition 8.2.3 thus guarantees that (8.19) has no critical points outside of the consensus subspace. Since we have

argued that DGD+LOCAL converges to a second-order critical point z? of (8.19), it follows that z? must be on the

consensus subspace; that is, z? = (U1?, . . . ,UJ?,V?
1, . . . ,V

?
J) with U1? = · · · = UJ? = U?.

Next, Theorem 8.2.7 guarantees that z? (in which U1? = · · · = UJ? = U?) corresponds to a critical point

(U?,V?) of the centralized problem (8.16), which is exactly equivalent to problem (8.14). Here, V? is the concate-

nation of V?
1, . . . ,V

?
J as in (8.15). Theorem 8.3.1 tells us that problem (8.14) has two types of critical points: global

minimizers and strict saddles. If (U?,V?) were a strict saddle point of (8.14), Theorem 8.2.7 tells us that z? must then

be a strict saddle of (8.19). However, z? is almost surely a second-order critical point of (8.19), where the Hessian has

no negative eigenvalues. It follows that (U?,V?) must almost surely be a global minimizer of problem (8.14).
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CHAPTER 9

ALTERNATING MINIMIZATIONS CONVERGE TO SECOND-ORDER OPTIMAL SOLUTIONS

This work26 studies the second-order convergence for both standard alternating minimization and proximal alter-

nating minimization. We show that under mild assumptions on the (nonconvex) objective function, both algorithms

avoid strict saddles almost surely from random initialization. Together with known first-order convergence results,

this implies both algorithms converge to a second-order stationary point. This solves an open problem for the second-

order convergence of alternating minimization algorithms that have been widely used in practice to solve large-scale

nonconvex problems due to their simple implementation, fast convergence, and superb empirical performance.

9.1 Introduction

We consider the following optimization problem over two sets of variables:

minimize
x∈Rn,y∈Rm

f(x,y), (9.1)

where f : Rn × Rm → R is a proper continuous (nonconvex) function and the partition of variables into x and

y blocks typically reflect natural structures within the problem. One approach to solve (9.1) is by concatenating x

and y as a single variable z = (x,y) and then directly applying standard iterative algorithms like gradient descent

(or its variants) for f(z). Recent progress in nonconvex optimization has provided solid theoretical guarantees for

gradient-type algorithms in solving nonconvex problems. In particular, the seminal work [113] shows that gradient

descent with random initialization almost surely avoids strict saddles27 and converges to a second-order critical point.

This together with recent results in landscape analysis guarantees that gradient descent can find a global minimum for

many popular nonconvex optimization problems, including low-rank matrix recovery [101], matrix completion [100],

phase retrieval [215], and deep neural network [216], all of which enjoy a nice landscape that all second-order critical

points are global minima.

An alternative approach to solve (9.1) is based on alternating minimization (cf. Algorithm 1, also known as the non-

linear Gauss-Seidel method or the block coordinate descent method) which sequentially optimizes over one variable

in each time while keeps the other variable fixed. Compared with gradient-type algorithms, alternating minimization

has several advantages: (i) it is easy to implement as there is no need to tune the optimization parameters such as step

sizes, (ii) it converges very fast in practice, and (iii) the subproblem is usually easy to solve, e.g., there may exist

a closed-form solution. Therefore, alternating minimization has been widely used in many engineering problems.

26This is a joint work with Zhihui Zhu and Gongguo Tang [10].
27A critical point is a strict saddle if the Hessian at this point has a negative eigenvalue.
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Examples include matrix factorization [217, 218], tensor decomposition [75, 219], and the Expectation Maximization

(EM) Algorithm [220].

Algorithm 1 Standard Alternating Minimization

1: Initialization: x0.
2: For k = 1, 2, . . . , recursively generate (xk,yk) by

yk = arg min
y∈Rm

f(xk−1,y)

xk = arg min
x∈Rn

f(x,yk)
(9.2)

Algorithm 2 Proximal Alternating Minimization

1: Input: β > Lf .
2: Initialization: (x0,y0).
3: For k = 1, 2, . . . , recursively generate (xk,yk) by

yk = arg min
x

f(xk−1,y) +
β

2
‖y − yk−1‖22

xk = arg min
y

f(x,yk) +
β

2
‖x− xk−1‖22

(9.3)

However, the empirical performance of alternating minimization is not sufficiently substantiated by solid con-

vergence guarantees. In fact, although the idea of alternatingly updating the variables is quite straightforward, the

convergence properties for alternating minimization are far more complicated. In particular, alternating minimization

may not converge to first-order critical points of the problem [221]. If the function f is strongly bi-convex and satisfies

the Kurdyka-Lojasiewicz (KL) property, then Algorithm 1 converges to a critical point of f [222]. The KL property

is satisfied by a wide class of nonconvex (and even nonsmooth) functions, including all semi-algebraic functions and

sub-analytic functions [223]. To relax the bi-convexity condition, Attouch et al. [223] utilized a proximal method when

updating each variable and proved the corresponding proximal alternating minimization (cf. Algorithm 2) converges

to a critical point of f as long as f satisfied the KL property. We summarize these results as follows.

Assumption 9.1.1. f satisfies the KL property and ∇f is Lipschitz continuous on any bounded subset of domain

Rn × Rm.

Theorem 9.1.1 (First-order Convergence, [222, 223]). Under Assumption 9.1.1, let (x0,y0) be any initialization and

(xk,yk) be the sequence generated by Algorithm 1 (if f is further bi-convex) or by Algorithm 2. If the sequence

(xk,yk) is bounded, then it converges to a critical point of f .

Convergence to a critical point of the objective function alone is not sufficient to explain the successful practical

performance of alternating minimization for a considerable body of machine learning problems mentioned above,
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which have critical points that are not local minima. Showing the second-order convergence of the alternating mini-

mization methods remains open. The main contribution of this work is closing this gap between the power of alter-

nating minimization in solving nonconvex problems and its second-order convergence. More precisely, we study the

second-order convergence of alternating minimizations by answering the following question:

Question: Does (proximal) alternating minimization with a random initialization converge to second-order

stationary points with probability one?

We answer this question affirmatively for real analytic functions and establish the following main results on the

second-order convergence of Algorithm 1 and Algorithm 2:

Theorem 9.1.2 (Second-order convergence). Under Assumption 9.1.1, let (x0,y0) be a random initialization and

(xk,yk) be the sequence generated by Algorithm 1 (if f is further analytic and bi-convex with full-rank cross Hessian

at strict saddles) or by Algorithm 2 (if f is further bi-smooth). If the sequence (xk,yk) is bounded28, then it converges

to a second-order stationary point of f almost surely.

If additionally, the objective function of the problem satisfies the strict saddle property (i.e., a critical point is either

a strict saddle or a local minimum), then Theorem 9.1.2 implies that alternating minimization algorithms with random

initialization converge to local minima with probability one. Moreover, many popular machine learning and signal

processing problems [98,100,101,224] have no spurious local minimum and thus alternating minimization algorithms

converges to a global minimum, partially explaining the good empirical performance of alternating minimization

methods in achieving global optimality for these problems.

9.2 Preliminary

Definition 9.2.1. Let f be a twice continuously differentiable function and∇ be the gradient operator. Then we say

1. x is a stationary point (a.k.a. critical point) of f , if∇f(x) = 0;

2. x is a second-order stationary point of f , if it is a critical point and∇2f(x) is positive semi-definite;

3. x is a strict saddle of f , if it is a critical point and∇2f(x) has at least one negative eigenvalue.

Definition 9.2.2 (Unstable Fixed Point). For a mapping g : Ω→ Ω, the set of unstable fixed points is defined as

Ag = {x : g(x) = x,max
i
|λi(Dg(x))| > 1},

where D denotes the Jacobian operator.
28The boundedness assumption is automaitcally satisfied if f is coercive, since then the level set Levf (x0,y0) := {(x,y) : f(x,y) ≤
f(x0,y0)} is bounded for any initialization (x0,y0) by the coercivity and the nature of (proximal) alternating minimization algorithm en-
sures that each iterations (x,y) lying in the level set Levf (x0,y0) [222, 223].
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Theorem 9.2.1 (Theorem 2, [127]). Let g be a C1 mapping from Ω to Ω and det(Dg(x)) 6= 0 for all x ∈ Ω. Then the

set of initial points that converge to unstable fixed points has measure zero, µ({x0 : lim
k→∞

gk(x0) ∈ Ag}) = 0. Here

µ(·) denotes the Lebesgue measure.

Theorem 9.2.1 is instrumental in establishing second-order convergence guarantees for many first-order algorithms

in [127]. However, the condition that det(Dg(x)) 6= 0 for all x ∈ Ω is a strongly global property of the Jacobian matrix

that is difficult to satisfy and is challenging to verify theoretically. The rest of this section focuses on relaxing this

global assumption in Theorem 9.2.1 to a local one so that it can be applied to a larger class of mappings. More precisely,

we will replace the global non-singularity condition on the whole domain by a local non-singularity condition around

the critical points. This is achieved by refining the arguments used to show Theorem 2 in [127] and the main technical

tools are the Zero-Property Theorem and the Maximum Rank Theorem.

Theorem 9.2.2 (Zero-Property Theorem, Theorem 3, [225]). Let a mapping g : Ω → Ω is continuous and almost

everywhere differentiable. Then g satisfies the zero-property (i.e., preimage of any zero-measure set has measure zero)

if and only if rank(Dg(x)) = dim(Ω) for almost all x ∈ Ω.

Theorem 9.2.3 (Maximum Rank Theorem, Proposition B.4, [226]). Suppose g : Ω → Ω is an analytic mapping.

Dg(x) achieves the maximum rank almost everywhere in Ω. Here the maximum rank is defined as maxx∈Ω rank(Dg(x)).

Note the analytic assumption of Theorem 9.2.3 is stronger than infinite differentiability, but still covers a fairly

large class of functions, including all elementary functions, most special functions, as well as their combinations and

compositions. The Maximum Rank Theorem states that the Jacobian matrix of any analytic mapping almost always

achieves the maximum rank. Then as long as the Jacobian matrix is of full-rank at some specific point, the mapping

would satisfy the zero-property, which is indicated by Theorem 9.2.2. Now we present the main technical theorem.

Theorem 9.2.4. Let g be an analytic mapping from Ω to Ω. Then the set of initial points that converge to nondegenerate

unstable fixed points has measure zero.

The proof is adapted from Theorem 2 in [127] and therefore the most important ingredient is the Stable Manifold

Theorem Theorem III.7 [227].

Theorem 9.2.5 (Stable Manifold Theorem, Theorem III.7, [227]). Let x? be a fixed point for a Cr local diffeomor-

phism g : U → E, where U is a neighborhood of x? in the Banach space E. Suppose that E = Es⊕Eu, where Es is

the span of the eigenvectors of Dg(x?) corresponding to eigenvalues of magnitude smaller than or equal to 1, and Eu

is the span of the eigenvectors of Dg(x?) corresponding to eigenvalues of magnitude larger than 1. Then there exists

a Cr embedded disk W cs
loc that is tangent to Es at x? called the local stable center manifold. Moreover, there exists a

neighborhood Bx? of x?, such that g(W cs
loc) ∩Bx? ⊂W cs

loc and
⋂∞
k=0 g

−k(Bx?) ⊂W cs
loc.
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Proof of Theorem 9.2.4. First, for any unstable fixed point x? ∈ Ag , if it is also non-degenerate, i.e., the Jacobian

matrix Dg(x?) is non-singular, then Dg(x) is nonsingular in some neighborhood U of x?. This shows g : U → g(U)

is a local diffeomorphism. Then by Stable Manifold Theorem 9.2.5, for any x? ∈ Ag , there is an associated open

neighborhood Bx? and thus the union
⋃

x?∈Ag Bx? forms an open cover for Ag . Clearly Ag ⊂ Rn, and since Rn is

known to be second-countable (cf. Theorem 10 in [228]), we can extract a countable subcover
⋃∞
i=1Bx?i

for Ag . Let

W = {x0 ∈ Ω : limk g
k(x0) ∈ Ag}. Because

⋃∞
i=1Bx?i

forms a countable subcover of Ag , x? ∈ Bx?i
for some i,

i.e., limt→∞ gt(x0) ∈ Bx?i
. That is to say, gt(x0) ∈ Bx?i

for all t ≥ N for some sufficiently large N , or equivalently,

gt(x0) ∈
∞⋂
k=0

g−k(Bx?i
) =: Si for all t ≥ N.

By Stable Manifold Theorem 9.2.5, we have Si ⊂ W cs
loc with W cs

loc of co-dimension at least one (since x? ∈ Ag).

Therefore, Si has measure zero. Since gN (x0) ∈ Si with an unknown non-negative integer N and x0 is an arbitrary

element in W , we must have

W ⊂
∞⋃
i=1

∞⋃
N=0

g−N (Si).

Now we show g−N (Si) has measure zero for any non-negative numbers N and i. Then the proof follows from

that any countable union of zero-measure sets has measure zero. Since g is analytic and x? is nondegenerate, i.e.,

rank(Dg(x?)) = n, which must be the maximum rank of the Jacobian Dg(x) in Ω. Then Theorem 9.2.3 implies that

the Jacobian Dg(x) achieves the maximum rank n for almost all x ∈ Ω. Further because g is analytic (and hence

continuous and almost everywhere differentiable), we can use the Zero-Property Theorem 9.2.2 to get g−N (Si) has

measure zero for all N ≥ 0. Finally note that the above argument is independent of choice of i.

9.3 Second-order Convergence of Algorithm 1

For this case when f is strongly bi-convex, we will apply Theorem 9.2.4 to show that Algorithm 1 will not converge

to a strict saddle point. Then combining this with the first-order convergence result Theorem 9.1.1, we can get the

second-order convergence of Algorithm 1. We first provide some additional assumptions that are used to prove the

avoiding-saddle property of Algorithm 1 in solving problem (9.1).

Assumption 9.3.1. f is a strongly bi-convex29 analytic function.

Assumption 9.3.2. ∇2
xyf(x?,y?) has full row rank for all strict saddles (x?,y?).

Theorem 9.3.1 (Avoiding Strict Saddles). Suppose f satisfies Assumptions 9.3.1 and 9.3.2. Then solving (9.1) using

Algorithm 1 with random initialization will not converge to a strict saddle of f almost surely.

Therefore, together with the first-order convergence Theorem 9.1.1 and noting that any analytic function satisfies

Assumption 9.1.1, we have the second-order convergence property of Algorithm 1.
29∇2

yf(x,y) � 0 and∇2
xf(x,y) � 0 in the whole domain.
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Corollary 9.3.1. Suppose f satisfies Assumptions 9.3.1 and 9.3.2 and the sequence (xk,yk) generated by Algorithm 1

is bounded. Then solving (9.1) using Algorithm 1 with random initialization will converge to a second-order stationary

point of f almost surely.

9.3.1 The Mapping Function of Algorithm 1

First note that Algorithm 1 is well defined under the strong bi-convexity condition in Assumption 9.3.1, since each

subproblem minimizes a strongly convex function and thus has a unique optimal solution.

Proposition 9.3.1. Under Assumption 9.3.1, the following two mappings are well-defined in the whole domain:

φ(x) := arg min
y∈Rm

f(x,y),

ψ(y) := arg min
x∈Rn

f(x,y).
(9.4)

Proposition 9.3.1 immediately implies Algorithm 1 is well-defined. That is, each subproblem in the k-th iteration

has a unique minimizer:

yk+1 = φ(xk),

xk+1 = ψ(yk+1).

By defining the composition g = ψ ◦ φ from Rn to Rn, we can view the alternating minimization process (9.2) as

iteratively performing the following mapping:

xk = g(xk−1) = gk(x0) for k = 1, 2, . . . (9.5)

By the first-order convergence of Algorithm 1, the iterative process (9.5) is continuing until reaching a fixed point x?

of the mapping g

x? = g(x?). (9.6)

In view of (9.4), this is equivalent to

y? = arg min
y

f(x?,y?),

x? = arg min
x

f(x?,y?)

with y? := φ(x?). Then together with the strong bi-convexity and the sufficient differentiability (by analytic property)

of f , we immediately have that there is a one-to-one correspondence between the fixed points of g and the first-order

critical points of f .

Lemma 9.3.1. A point x? is a fixed point of g if and only if
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∇f(x?,y?) = 0 (9.7)

where we have defined y? = φ(x?) and∇f(x,y) = [∇xf(x,y)> ∇yf(x,y)>]>. For simplifying notations, we will

also often informally write∇f(x,y) = (∇xf(x,y),∇yf(x,y)).

9.3.2 Proof of Theorem 9.3.1

To use Theorem 9.2.4, we need to show that 1) the mapping g is analytic; 2) all strict saddles of f correspond to

unstable fixed points of g; 3) the Jacobian matrix at any strict saddle is full rank. Without loss of generality, we also

assume n ≤ m. This assumption can always be satisfied since otherwise, we can exchange the coordinates of f . We

will see this assumption helps to show the non-degenerate property at unstable fixed points of g.

(1) Showing analytic mapping. Towards that end, we derive the closed-form expression of the Jacobian Dg which

will also be useful for the remaining proof. To begin, we present an immediate consequence of Proposition 9.3.1.

Proposition 9.3.2. There exist two well-defined and unique mappings φ : Rn → Rm and ψ : Rm → Rn such that

∇yf(x,φ(x)) = 0, ∀x ∈ Rn,
∇xf(ψ(y),y) = 0, ∀y ∈ Rm. (9.8)

Then we use the Analytic Implicit Function Theorem 9.3.2.

Theorem 9.3.2 (Analytic Implicit Function Theorem, [229], p.34). Let the function h(x,y) : Rn × Rm → Rm be

analytic. Assume h(a,b) = 0m for some point (a,b) ∈ Rn × Rm. If the partial Jacobian Dyh(a,b) is invertible,

then there exists an open set U of Rn containing a such that there exists a unique analytic function φ : U → Rm such

that

φ(a) = b

and

h(x,φ(x)) = 0m for all x ∈ U.

Moreover, the Jacobian of φ in U is given by

Dφ(x) = −Dyh(x,φ(x))−1Dxh(x,φ(x)).

We now prove g is analytic.

Lemma 9.3.2. The mapping g is analytic and its Jacobian Dg(x) for all x ∈ Rn is given by

Dg(x) =∇2
xf(g(x),φ(x))−1∇2

xyf(g(x),φ(x))×
∇2

yf(x,φ(x))−1∇2
yxf(x,φ(x))

(9.9)
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Proof of Lemma 9.3.2. From Corollary 9.3.2, we know there have been two well-defined and unique mappings already

that satisfies (9.8):

∇yf(x,φ(x)) = 0, ∀x ∈ Rn
∇xf(ψ(y),y) = 0, ∀y ∈ Rm.

Now denote hy = ∇yf and hx = ∇xf , which are both analytic as f is analytic. Then the above equations read that

hy(x,φ(x)) = 0, ∀x ∈ Rn
hx(ψ(y),y) = 0, ∀y ∈ Rm. (9.10)

Further note that both Dyhy = ∇2
yf and Dxhx = ∇2

xf are both nonsingular by assumption of strong bi-convexity.

Then we can apply Analytic Implicit Function Theorem 9.3.2 to (9.10) to get that φ and ψ are the unique analytic

mappings satisfying (9.10). Further, using Analytic Implicit Function Theorem 9.3.2, we can compute their Jacobians

as

Dφ(x) = −∇2
yf(x,φ(x))−1∇2

xyf(x,φ(x));

Dψ(y) = −∇2
xf(ψ(y),y)−1∇2

yxf(ψ(y),y).

Therefore, g = ψ ◦φ is analytic, as it is a composition of two analytic mappings ψ and φ. Also, the Jacobian Dg

is given by the chain rule as follows

Dg(x) =Dψ(φ(x))Dφ(x)

=∇2
xf(g(x),φ(x))−1∇2

xyf(g(x),φ(x))×
∇2

yf(x,φ(x))−1∇2
yxf(x,φ(x)).

(2) Showing unstable fixed point. First of all, by (9.8), for any strict saddle (x?,y?) of f , x? = g(x?), i.e., x? is a

fixed point of g. It remains to show that the maximal magnitude of the eigenvalues of Dg(x?) is greater than 1. Using

the fixed point equation x? = g(x?), we first simplify the Jacobian expression (9.9) as

Dg(x?) =∇2
xf(x?,y?)−1∇2

xyf(x?,y?)×
∇2

yf(x?,y?)−1∇2
yxf(x?,y?). (9.11)

Define a new matrix

Γ := ∇2
xf(x?,y?)1/2Dg(x?)∇2

xf(x?,y?)−1/2

that is similar to Dg(x?). Hence by matrix similarity, they have the same eigenvalues. Plugging Dg(x?) into Γ, we

have
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Γ =(∇2
xf(x?,y?)−

1
2∇2

xyf(x?,y?)∇2
yf(x?,y?)−

1
2 )

× (∇2
xf(x?,y?)−

1
2∇2

xyf(x?,y?)∇2
yf(x?,y?)−

1
2 )>

=LL>,

where L := ∇2
xf(x?,y?)−

1
2∇2

xyf(x?,y?)∇2
yf(x?,y?)−

1
2 . Therefore, it suffices to show Γ = LL> has at least an

eigenvalue of magnitude greater than 1, since this can imply Dg(x?) has at least an eigenvalue of magnitude greater

than 1. Note that Γ = LL> has at least an eigenvalue of magnitude greater than 1 if and only if the spectral norm of

‖L‖ > 1.

Now we prove ‖L‖ > 1 via contradiction. For the sake of contradiction, suppose ‖L‖ ≤ 1. With some standard

matrix operations, we can represent Hessian∇2f(x?,y?) (which is known to have a negative eigenvalue since (x?,y?)

is a strict saddle of f ) as

∇2f(x?,y?)

=

[
∇2

xf(x?,y?) ∇2
xyf(x?,y?)

∇2
yxf(x?,y?) ∇2

yf(x?,y?)

]
=

[
∇2

xf(x?,y?)1/2

∇2
yf(x?,y?)1/2

] [
In L
L> Im

]
[
∇2

xf(x?,y?)1/2

∇2
yf(x?,y?)1/2

]

Then we observe that

 In L

L> Im

 is semi-positive definite:

[
x
y

]> [
In L
L> Im

] [
x
y

]
= ‖x‖22 + ‖y‖22 + 2x>Ly

≥ ‖x‖22 + ‖y‖22 − 2‖x‖2‖L‖‖y‖2
≥ ‖x‖22 + ‖y‖22 − 2‖x‖2‖y‖2 ≥ 0,

which holds for all x ∈ Rn,y ∈ Rm. Consequently,∇2f(x?,y?) is semi-positive definite, leading to a contradiction.

Therefore, we have proved that for any strict saddle (x?,y?), x? is an unstable fixed point of the mapping g.

(3) Showing non-degenerate property. First recall that the Jacobian matrix Dg(x?) at any strict saddles point x? is

given by (9.11). Due to the strict positive-definiteness of∇2
xf(x?,y?) and ∇2

yf(x?,y?), we know Dg(x?) is similar

to a semi-positive definite matrix:

Dg(x?) = ∇2
xf(x?,y?)1/2LL>∇2

xf(x?,y?)−1/2

with L = ∇2
xf(x?,y?)−1/2∇2

xyf(x?,y?)∇2
yf(x?,y?)−1/2 living in Rn×m. Thus the non-degenerateness immedi-

ately follows from Assumption 9.3.2 and the assumption n ≤ m.

164



Combining all, we complete the proof of Theorem 9.3.1.

9.3.3 Stylized Application of Algorithm 1

We use a simple example to illustrate our result.

Example 9.3.1 (Best Rank-1 Matrix PCA). Consider the problem of computing the best rank-1 approximation of a

given matrix A ∈ Rn×m with rank(A) = n:

f(x,y) =
1

2
‖A− xy>‖2F +

λ

2
(‖x‖22 + ‖y‖22), (9.12)

which is an analytic, strongly bi-convex function (cf. Assumption 9.3.1). Note that there are efficient closed-form

solutions when using standard alternating minimization Algorithm 1 to solve (9.12): given any initialization x0 ∈ Rn,

the alternating minimization Algorithm 1 recursively generates the following sequence: for k = 0, 1, 2, . . .

yk+1 := φ(xk) =
A>xk

λ+ ‖xk‖22
;

xk+1 := ψ(yk+1) =
Ayk+1

λ+ ‖yk+1‖22
.

To apply Corollary 9.3.1, one still needs to verify the full-rankness of ∇2
xyf(x?,y?) at any strict saddle (x?,y?)

of f , where y? = φ(x?). Direct computations give that

∇2
xyf(x?,y?) = 2x?φ(x?)> −A =

(
2

x?x?>

λ+ ‖x?‖22
− I

)
A

Clearly, when x? = 0, we have ∇2
xyf(x?,y?) = −A and the full-rankness assumption automatically holds and for

x? 6= 0, rank(∇2
xyf(x?,y?)) = rank(A) provided λ 6= ‖x?‖22. Therefore:

Corollary 9.3.2. Solving the best rank-1 approximation (9.12) for any nonsingular matrix A, using Alternating Min-

imization Algorithm 1 with random initialization, is guaranteed to converge to a second-order stationary point, pro-

vided λ 6= ‖x?‖22.

9.4 Second-order Convergence of Algorithm 2

We begin with the following bi-smoothness assumption.

Assumption 9.4.1. f ∈ C2 is Lf bi-smooth in the domain, i.e., max{‖∇2
xf(x,y)‖, ‖∇2

yf(x,y)‖} ≤ Lf in the

domain.30

In the case where f(x,y) is Lf bi-smooth, we note that Algorithm 2 requires even minor assumptions for it to

avoid the strict saddle points.
30Any globally smooth function f with ‖∇2f(x,y)‖ ≤ Lf satisfies Assumption 9.4.1.
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Theorem 9.4.1 (Avoiding Strict Saddles). Suppose f satisfies Assumption 9.4.1. Choose β > Lf in Algorithm 2.

Then solving (9.1) using Algorithm 2 with random initialization will not converge to a strict saddle of f almost surely.

Therefore, together with the first-order convergence Theorem 9.1.1, we have the second-order convergence prop-

erty of Algorithm 2.

Corollary 9.4.1. Suppose f satisfies Assumptions 9.1.1 and 9.4.1 and the sequence (xk,yk) generated by Algorithm 2

is bounded. Choose β > Lf in Algorithm 2. Then solving (9.1) using Algorithm 2 with random initialization will return

a second-order stationary point of f for almost sure.

9.4.1 The Mapping Function of Algorithm 2

First from (9.3), we know under the assumptions of β > Lf and the Lf bi-smoothness of f , then each subproblem

in any iteration of Algorithm 2 is well-defined, since the objective function of each subproblem is strongly convex.

Proposition 9.4.1. Under Assumption 9.4.1, choose β > Lf . Then the following two mappings are analytic and

well-defined for any (x,y):

pβ(x,y) := arg min
y′∈Rm

f(x,y′) +
β

2
‖y′ − y‖22,

qβ(x,y) := arg min
x′∈Rn

f(x′,y) +
β

2
‖x′ − x‖22.

(9.13)

With (9.13), each iteration of Algorithm 2 is equivalent to

yk = pβ(xk−1,yk−1),

xk = qβ(xk−1,yk).
(9.14)

We define a mapping gβ : Rn × Rm → Rn × Rm such that

gβ(x,y) = (qβ(x,pβ(x,y)),pβ(x,y)) , (9.15)

with which we can rewrite (9.14) as

(xk,yk) = (qβ(xk−1,pβ(xk−1,yk−1)),pβ(xk−1,yk−1))

= gβ(xk−1,yk−1).

With the implicit function theorem, the following result establishes the expression of the Jacobian matrix for gβ .

Lemma 9.4.1. For any (x,y), denote (x̃, ỹ) = gβ(x,y), and assume max{‖∇2
xf(x̃, ỹ)‖, ‖∇2

yf(x̃, ỹ)‖} ≤ Lf . Set

β > Lf in Algorithm 2. Then the mapping function gβ is continuous at a neighborhood of (x,y) and the Jacobian

Dgβ is nonsingular at (x,y) and is given by
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Dgβ(x,y) =

[
∇2

xf(x̃, ỹ) + βIn ∇2
xyf(x̃, ỹ)

0 ∇2
yf(x, ỹ) + βIm

]−1

[
βIn 0

−∇2
yxf(x, ỹ) βIm

]
(9.16)

Proof. Since ỹ = pβ(x,y), x̃ = qβ(x, ỹ), both x̃ and ỹ can be viewed as functions of (x,y). Note that (x,y) and

(x̃, ỹ) satisfy the first-order optimality condition of (9.14):

∇yf(x, ỹ) + β(ỹ − y) = 0,

∇xf(x̃, ỹ) + β(x̃− x) = 0.
(9.17)

We now compute the expression of the Jacobian matrix:

Dgβ(x,y) =

[
∂x̃(x,y)
∂x

∂x̃(x,y)
∂y

∂ỹ(x,y)
∂x

∂ỹ(x,y)
∂y

]
.

To obtain the expressions for these partial derivatives ∂x̃(x,y)
∂x , ∂x̃(x,y)

∂y , ∂ỹ(x,y)
∂x , ∂ỹ(x,y)

∂y , we apply the implicit function

theorem to the first-order optimality condition of (9.17) and obtain

(∇2
yf(x, ỹ) + βIm)

∂ỹ(x,y)

∂x
= −∇2

yxf(x, ỹ),

(∇2
yf(x, ỹ) + βIm)

∂ỹ(x,y)

∂y
= βIm,

(∇2
xf(x̃, ỹ) + βIn)

∂x̃(x,y)

∂x
+∇2

xyf(x̃, ỹ)
∂ỹ(x,y)

∂x
= βIn,

(∇2
xf(x̃, ỹ) + βIn)

∂x̃(x,y)

∂y
+∇2

xyf(x̃, ỹ)
∂ỹ(x,y)

∂y
= 0,

which can be rearranged into matrix multiplications as[
∇2

xf(x̃, ỹ) + βIn ∇2
xyf(x̃, ỹ)

0 ∇2
yf(x, ỹ) + βIm

][∂x̃(x,y)
∂x

∂x̃(x,y)
∂y

∂ỹ(x,y)
∂x

∂ỹ(x,y)
∂y

]

=

[
βIn 0

−∇2
yxf(x, ỹ) βIm

]
⇐⇒ Γ1Dgβ(x,y) = Γ2

We now show that the matrix Γ1 is nonsingular. Towards that end, suppose there exists

 u

v

 such that Γ1

u

v

 =

0

0

, which is equivalent to

[
(∇2

xf(x̃, ỹ) + βIn)u
(∇2

yf(x, ỹ) + βIm)v

]
=

[
−∇2

xyf(x̃, ỹ)v
0

]
⇐⇒

[
(∇2

xf(x̃, ỹ) + βIn)u
v

]
=

[
0
0

]
⇐⇒

[
u
v

]
=

[
0
0

]
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where we have used the strict positive-definiteness of ∇2
xf(x̃, ỹ) + βIn and ∇2

yf(x̃, ỹ) + βIm by the assumption.

Thus, the matrix Γ1 is nonsingular. Therefore, by the implicit function theorem, Dgβ(x,y) is a continuous function

at some neighborhood of x,y. With similar argument, we obtain that the matrix Γ2 is also nonsingular. Therefore, we

have Dgβ(x,y) = Γ−1
1 Γ2 is nonsingular at x,y.

9.4.2 Proof of Theorem 9.4.1

We will use Theorem 9.2.1 (a.k.a. Theorem 2 in [127]) to prove Theorem 9.4.1. Therefore, we need to show

1. gβ is a C1 mapping;

2. det(Dgβ) 6= 0 in the whole domain;

3. Any strict saddle of f is an unstable fixed point of gβ .

Showing (1). Because its Jacobian Dgβ is continuous in the whole domain by Lemma 9.4.1 and Assumption 9.4.1.

Showing (2). Because the Jacobian Dgβ is nonsingular in the whole domain by Lemma 9.4.1 and Assumption 9.4.1..

Showing (3). We now show that every strict saddle point (x?,y?) is an unstable fixed point of the mapping. First

of all, we show (x?,y?) is a fixed point of gβ . Since a strict saddle point must be a critical point, here we show

every critical point of f is a fixed point of gβ . Towards that end, first note that any critical point (x,y) satisfies

∇f(x,y) = (∇xf(x,y),∇yf(x,y)) = (0,0), which implies the first optimality condition (9.17). Then noting that

Proposition 9.4.1 which states that the mapping gβ is well-defined in the whole domain, we conclude that (x,y) =

gβ(x,y), i.e., (x,y) is a fixed point of gβ .

Now we show that the maximum magnitude of eigenvalues of Dgβ(x?,y?) is great than 1 at any strict saddle

(x?,y?).

Lemma 9.4.2. Let (x?,y?) be any strict saddle of f with max{∇2
xf(x?,y?),∇2

yf(x?,y?)} ≤ Lf . Set β > Lf in

Algorithm 2. Then λmax (Dgβ(x?,y?)) > 1, where λmax denotes the largest eigenvalue.

Proof. To simplify notations, denote[
F11 F12

F21 F22

]
:=

[
∇2

xf(x?,y?) ∇2
xyf(x?,y?)

∇2
yxf(x?,y?) ∇2

yf(x?,y?)

]
.

Then plugging (x̃, ỹ) = (x,y) = (x?,y?) to (9.16), we can compute the Jacobian matrix Dgβ at (x?,y?) as

Dgβ(x?,y?) =

[
F11 + βIn F12

0 F22 + βIm

]−1 [
βIn 0
−F21 βIm

]
= I−

[
F11 + βIn F12

0 F22 + βIm

]−1 [
F11 F12

F21 F22

]
︸ ︷︷ ︸

Φ
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Therefore, to show that Dgβ(x?,y?) has an eigenvalue larger than 1, it suffices to show Φ has a negative eigenvalue.

We prove this by showing the event that det(Φ + µI) = 0 for some µ > 0, where det(·) denotes the determinant of a

matrix. Then with some algebra on the properties of determinant, we have det(Φ + µI) = 0 is equivalent to

det

([
(1 + µ)F11 + µβI (1 + µ)F12

F21 (1 + µ)F22 + µβI

])
= 0

⇐⇒ det

([
(1 + µ)F11 + µβI

√
1 + µF12√

1 + µF21 (1 + µ)F22 + µβI

])
= 0

where the second line has used the property that det(AB) = det(A) det(B) and the matrix similarity transform.

Thus, the whole proof now reduces to show that

J(µ) :=

[
(1 + µ)F11 + µβI

√
1 + µF12√

1 + µF21 (1 + µ)F22 + µβI

]
has a zero eigenvalue for some µ > 0. Note that J(µ) is a symmetric matrix (with real eigenvalues) and is a continuous

matrix function of µ. Then by Theorem 5.1 in [230], all the eigenvalues of J(µ) (including the minimum eigenvalue

λmin(J(µ))) are continuous functions of µ. We will show the real continuous function λmin(J(µ)) equals zero for

some µ > 0. Towards that end, we observe that

J(0) =

[
F11 F12

F21 F22

]
= ∇2f(x?,y?),

lim
µ→∞

J(µ)

µ
=

[
F11 + βI

F22 + βI

]
� 0.

First, since (x?,y?) is a strict saddle of f(x,y), by definition of strict saddle, we have λmin(J(0)) < 0. Second, since

β > Lf ≥ max{‖∇2
xf(x?,y?)‖, ‖∇2

yf(x?,y?)‖} by the assumption, we have both F11 + βI and F22 + βIm are

positive definite and hence λmin(J(N)) > 0 for some sufficiently large N . Finally, since λmin(J(µ)) is a continuous

real-valued function of X, we claim that there must exist a µ > 0 such that λmin(J(µ)) = 0.

9.4.3 Stylized Applications of Algorithm 2

We now apply the proximal alternating minimization Algorithm 2 for a popular large-scale matrix optimization

problem by the Burer-Monteiro Factorization (BMF) approach [119, 159]: given minimizeM q(M), BMF factorizes

M as XY>, and minimizes f(X,Y) := q(XY>). It has been shown in [100, 101, 106, 125] that when the original

problem q satisfies certain RIP, then any second-order stationary point of f corresponds to a global minimum of

q. Therefore, in this sense, the second-order convergence of the proximal alternating algorithm will imply the global

optimality convergence. We will focus on two most important matrix problems: matrix sensing and matrix completion.

Example 9.4.1 (Matrix Sensing). For simplicity, we consider a regularized matrix sensing problem with the objective

function qA(M) = ‖A(M)−y‖22 +λ‖M‖∗ where y are the observations andA : Rn×m → Rp is the linear sensing
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operator which can be always assumed to have a bounded spectral norm ‖A‖ ≤ L. The BMF method then solves

minimize
X,Y

‖A(XY>)− y‖22 +
λ

2
(‖X‖2F + ‖Y‖2F ) (9.18)

Denote f(X,Y) as the objective function of (9.18). Note that in this case, Assumption 9.4.1 is not satisfied since we

can not find a universal constant Lf to bound ‖∇2f(X,Y)‖ for all X,mY . However, we note that

Lemma 9.4.3. gβ is a forward-invariant mapping on any level set Ω := Levf (U,V) for any U,V, i.e., g(Ω) ⊆ Ω.

Proof. In one way, for any (X,Y) ∈ Ω, we have f(X,V) ≤ f(U,V) by definition of Ω. In another way, letting

(X̃, Ỹ) = gβ(X,V), we have f(X̃, Ỹ) ≤ f(X,V) by the sufficient decrease property of Algorithm 2 (cf. [223]).

Therefore, (X̃, Ỹ) ∈ Ω.

Then following the same analysis of [228, Theorem 3], to apply Theorem 9.2.1, it suffices to show:

Proposition 9.4.2. Choosing β > Lf (Ω) for some constant Lf (Ω) depending on Ω
.
= Levf (U,V), we have: (i)

det(Dgβ) 6= 0 on Ω, and (ii) all strict saddles of f in Ω are unstable fixed points of gβ . Then by Theorem 10.4.2,

the set of all initialization points in Ω that will let gβ converge to strict saddles is of zero Lebesgue measure. Thus

together with the first-order convergence (cf. Theorem 9.1.1), Algorithm 2 from random initialization in Ω almost

surely converges to a second-order stationary solution of f .

Proof. With Theorem 10.4.2 and that gβ is forward-invariant in Ω, to prove Proposition 9.4.2, it suffices to show the

terms (i) and (ii). To show these two, we first prove a local Lipschitz-gradient condition for f : ‖∇2f(X,Y)‖ ≤ Lf (Ω)

for all (X,Y) ∈ Ω. By definition of Ω, (X,Y) ∈ Ω gives that

f(X,Y) ≤ f(U,V)
¬

=⇒
{
‖A(XY>)− y‖22 ≤ f(U,V),
λ
2 ‖X‖2F + ‖Y‖2F ≤ f(U,V).

Now deonote D
.
= (DX ,DY ), Λ

.
= λ‖D‖2F , and compute

[∇2f(X,Y)](D,D)

=2‖A(XD>Y +DXY>)‖22+4〈A(DXD>Y ),A(XY>)−y〉+Λ

≤
(

4L2(‖X‖2F +‖Y‖2F ) + 4L‖A(XY>)− y‖2 + λ
)
‖D‖2F .

Together with the definition of spectral norm, this implies

‖∇2f(X,Y)‖ = maximize
D

[∇2f(XY)](D,D)/‖D‖2F
≤ 4L2(‖X‖2F + ‖Y‖2F ) + 4L‖A(XY>)− y‖2 + λ

≤ 8L2f(U,V)/λ+ 4L
√
f(U,V) + λ

.
= Lf (Ω),
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where the second inequality follows from ¬. Now given the local Lipschitz condition in Ω and the forward-invariant

property g(Ω) ⊆ Ω, (i) and (ii) immediately follow from Lemma 9.4.1 and Lemma 9.4.2, respectively.

Example 9.4.2 (Matrix Completion). Consider the matrix completion problem which minimizes qΩ(M) = ‖M −

M?‖2Ω + λ‖M‖∗ with M? as the ground-truth, Ω as the binary mask matrix, and ‖M‖Ω := ‖Ω �M‖F . Then the

BMF solves

minimize
X,Y

‖XY> −M?‖2Ω +
λ

2
(‖X‖2F + ‖Y‖2F ). (9.19)

We remark that the same results of Example 9.4.1 (cf. Proposition 9.4.2) can also be applied for the BMF matrix

completion (9.19), since sensing problem qA(M) reduces to completion propblem qΩ(M) when choosing the linear

sampling operator is a binary sampling operator A(M) := Ω�M and the observations are y := Ω�M?.
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CHAPTER 10

PROVABLE BREGMAN-DIVERGENCE BASED METHODS FOR NONCONVEX AND NON-LIPSCHITZ

PROBLEMS

The (global) Lipschitz smoothness condition is crucial in establishing the convergence theory for most optimization

methods. Unfortunately, most machine learning and signal processing problems are not Lipschitz smooth. This

motivates us to generalize the concept of Lipschitz smoothness condition to the relative smoothness condition, which

is satisfied by any finite-order polynomial objective function. Further, this work develops new Bregman-divergence

based algorithms that are guaranteed to converge to a second-order stationary point for any relatively smooth problem.

In addition, the proposed optimization methods cover both the proximal alternating minimization and the proximal

alternating linearized minimization when we specialize the Bregman divergence to the Euclidian distance. Therefore,

this work not only develops guaranteed optimization methods for non-Lipschitz smooth problems but also solves an

open problem of showing the second-order convergence guarantees for these alternating minimization methods.

10.1 Introduction

Consider minimizing a twice continuously differentiable function

minimize
x∈Rn

f(x), (10.1)

which can be solved by numerous off-the-shelf algorithms, such as first-order methods like vanilla gradient descent

(a.k.a. steepest descent), perturbed/stochastic gradient descent, proximal linearized minimization, and nonlinear con-

jugate gradient method, [113,114,126,127,148,212,231], or second-order methods like the Newton-CG algorithm or

proximal quasi-Newton methods [207, 232, 233]. However, all these optimization algorithms require that the gradient

of the objective function f(x) should be smooth. In particular, most of the theoretical guarantees for these algorithms

require the objective function f(x) to satisfy the global Lipschitz gradient condition (a.k.a. second-order Lipschitz

condition), that is, there exists a Lipschitz constant Lf > 0 such that

LfI±∇2f(x) � 0 (10.2)

for all x ∈ Rn. An immediate consequence of (10.2) is the decent lemma

|f(x)− f(y)− 〈∇f(y),x− y〉| ≤ Lf
2
‖x− y‖22, for all x,y ∈ Rn. (10.3)
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This decent lemma is central to analyzing the convergence of many iterative algorithms since it guarantees a sufficient

decrease of the function value after each iteration. For example, for standard gradient descent with stepsize η,

x`+1 = g(x`) :=x` − η∇f(x`), (10.4)

plugging (10.4) into (10.3) yields the following sufficient decrease property:

f(x`)− f(x`+1) ≥
(

1

η
− Lf

2

)
‖x` − x`+1‖22. (10.5)

This sufficient decrease property is a key condition used in the analysis of most (first-order) iterative algorithms to

guarantee first-order convergence, i.e., convergence to a first-order stationary point31.

However, in many applications, e.g., matrix completion [100], phase retrieval [98], matrix sensing [101], and

dictionary learning [99], a second-order stationary point is desirable as it is also a global minimum. Although second-

order methods like the trust-region algorithm and cubic regularization [170, 234] are guaranteed to converge to a

second-order stationary point, their computational complexity is in general much higher than first-order methods.

Fortunately, recent work has shown that first-order methods using random initialization or with periodically injected

noise can also efficiently avoid strict saddles and converge to a second-order stationary point. In particular, the recent

seminal work [113, 127] proves that gradient descent with random initialization almost surely converges to a second-

order stationary solution through the so-called Stable Manifold Theorem [227], which suggests that if we view gradient

descent in (10.4) as a dynamic system and the iterative mapping function g(·) has a nonsingular Jacobian matrix in the

whole domain, then each strict saddle point is unstable and thus the set of initial points that converge to such points

has measure zero. The Jacobian matrix of g for the gradient descent algorithm (10.4) is

Dg(x) = I− η∇2f(x). (10.6)

If f satisfies the global Lipschitz gradient condition (10.2), then Dg(x) � (1 − ηLf )I, which implies that one can

always set a sufficiently small stepsize η < 1/Lf so that Dg(x) is positive definite (hence nonsingular) in the whole

domain. Thus, the global Lipschitz gradient condition is also crucial to [113, 127].

Unfortunately, the objective functions in many machine learning problems—such as low-rank matrix recovery [100,

101], tensor factorization problem [114,235], neural networks training [55,236]—do not admit a global Lipschitz gra-

dient constant Lf . This is because for the objective function f to satisfy the global Lipschitz gradient condition (10.2)

with constant Lf , all eigenvalues of its Hessian matrix must be upper bounded by Lf in the whole domain (see (10.2)).

For that to happen, the objective function should grow at most quadratically. Yet, for matrix factorization and many

31We say x a (first-order) stationary point if ∇f(x) = 0. We say x a second-order stationary point if it is a first-order stationary point and the
Hessian at this point is positive semi-definite (PSD).
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other important problems in practice, the objective functions are higher-order (typically greater than second-order)

polynomials, and their Hessian matrices have at least first-order-polynomial entries and thus unbounded eigenvalues

over the whole domain. This motivates us to develop new efficient algorithms with the convergence guarantees not re-

quiring the global Lipschitz gradient condition. Therefore, the proposed algorithms can naturally solve these machine

learning problems with convergence guarantees.

10.2 Main Results

10.2.1 Beyond Lipschitz Via Bregman Optimizations

Very recently, [237] addressed this longstanding issue through the Bregman distance paradigm, proving that Breg-

man gradient descent converges to a stationary point of the objective function that is not required to have a globally

Lipschitz gradient. Main ingredients of the Bregman distance paradigm are introduced as follows.

Definition 10.2.1 (Bregman Distance). Given a twice continuously differentiable convex function h : Rn → R, the

Bregman distance between any x and y is defined as

Dh(x,y) = h(x)− h(y)− 〈∇h(y),x− y〉. (10.7)

For any convex function h, we have Dh(x,y) ≥ 0 for all x,y ∈ Rn and h is called a Bregman distance kernel.

When the Bregman distance kernel is half the squared `2 norm h(x) = 1
2‖x‖22, the corresponding Bregman

distance reduces to Dh(x,y) = 1
2‖x− y‖22, which is the classical squared Euclidean distance.

Definition 10.2.2 (Adaptive Lipschitz Gradient Condition). A twice continuously differentiable function f , conve-

niently denoted as f ∈ C2, satisfies the Lf -adaptive Lipschitz gradient condition for some Bregman distance kernel

h ∈ C2 if

Lf∇2h(x)±∇2f(x) � 0 for all x ∈ Rn. (10.8)

It is worth noting that when h(x) = 1
2‖x‖22, the adaptive Lipschitz gradient condition (10.8) reduces to LfI ±

∇2f(x) � 0, which is the classical global Lipschitz gradient condition.

When an objective function f satisfies the Lf adaptive Lipschitz gradient condition, a generalized descent lemma

|f(x)− f(y)− 〈∇f(y),x− y〉| ≤ LfDh(x,y) for all x,y ∈ Rn (10.9)

follows immediately from (10.8). Just as the sufficient descent lemma (10.3) has played a crucial role in deriving first-

order convergence theory, this generalized descent lemma (10.9) can be used to obtain the sufficient decrease property

of certain Bregman distance-based algorithms (which we define in Section 10.2.3) without the global Lipschitz gradi-

ent condition. For example, we establish the following results.
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Lemma 10.2.1 (Sufficient Decrease Under Adaptive Lipschitz Gradient Condition). Supposef ∈ C2 is globally lower-

bounded and satisfies the Lf -adaptive Lipschitz gradient condition for some Bregman distance kernel h ∈ C2, which

is assumed to be σ-strongly convex and super-coercive32. Then the updating formula (10.18) for Bregman gradi-

ent descent (Algorithm 5) and (10.20) for Bregman proximal minimization (Algorithm 5) are both well-defined and

respectively satisfy:

Algorithm 3 : f(x`−1)− f(x`) ≥
(

1

η
− Lf

)
σ

2
‖x` − x`−1‖22 (10.10)

Algorithm 5 : f(x`−1)− f(x`) ≥ σ

2η
‖x` − x`−1‖22. (10.11)

The proof of Lemma 10.2.1 is in Section G.2. It is worth noting that Bregman gradient descent (Algorithm 3)

reduces to standard gradient descent and Bregman proximal minimization (Algorithm 5) reduces to standard proximal

minimization when we choose the Bregman distance Dh(x,x`−1) as the classical squared Euclidean distance 1
2‖x−

x`−1‖22.

10.2.2 Extension to Bregman Alternating Minimizations

Similar results (e.g., Lemma 10.2.2) can be established for Bregman alternating minimizations that solve

minimize
x∈Rn,y∈Rm

f(x,y). (10.12)

We achieve this by extending the Bregman distance (in Definition 10.2.1) and the adaptive Lipschitz gradient condition

(in Definition 10.2.2) into the following double-block versions.

Definition 10.2.3 (Bi-Bregman Distance). Given a twice continuously differentiable bi-convex function h(x,y)33 from

Rn × Rm to R, define the first and second Bregman distances respectively as

D1
h(x1,x2; y) =h(x1,y)− h(x2,y)− 〈∇xh(x2,y),x1 − x2〉, (10.13)

D2
h(y1,y2; x) =h(x,y1)− h(x,y2)− 〈∇yh(x,y2),y1 − y2〉 (10.14)

for any x,x1,x2 ∈ Rn and y,y1,y2 ∈ Rm. By the bi-convexity of h, we have both D1
h(x1,x2; y) ≥ 0 and

D2
h(y1,y2; x) ≥ 0 for any x,x1,x2 and y,y1,y2 and h is called a bi-Bregman distance kernel.

Definition 10.2.4 (Bi-Adaptive Lipschitz Gradient Condition). f(x,y) ∈ C2 satisfies the (L1, L2)-bi-adaptive Lips-

chitz gradient condition for a bi-Bregman distance kernel h(x,y) ∈ C2 if

L1∇2
xxh(x,y)±∇2

xxf(x,y) � 0 and L2∇2
yyh(x,y)±∇2

yyf(x,y) � 0, ∀(x,y) ∈ Rn × Rm (10.15)

32We say h is super-coercive if and only if lim‖x‖→∞ h(x)/‖x‖2 =∞ for all x.
33We say h(x,y) is bi-convex if h(x,y) is convex in x for any fixed y and convex in y for any fixed x.
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Lemma 10.2.2 (Sufficient Decrease Under Bi-Adaptive Lipschitz Gradient Condition). Supposef(x,y) ∈ C2 is glob-

ally lower-bounded and satisfies the (L1, L2)-bi-adaptive Lipschitz gradient condition for some bi-Bregman distance

kernel h(x,y) ∈ C2, which is assumed to be σ-strongly bi-convex34 and bi-super-coercive35. Then the updating for-

mula (10.19) for Bregman alternating gradient descent (Algorithm 4) and (10.21) for Bregman proximal alternating

minimization (Algorithm 6) are both well-defined and respectively satisfy36:

Algorithm 4 : f(x`−1,y`−1)− f(x`,y`) ≥
(

1

η
− Lf

)
σ

2
‖(x`,y`)− (x`−1,y`−1)‖22 (10.16)

Algorithm 6 : f(x`−1,y`−1)− f(x`,y`) ≥ σ

2η
‖(x`,y`)− (x`−1,y`−1)‖22 (10.17)

The proof of Lemma 10.2.2 follows by noting that f(x`−1,y`−1)− f(x`,y`) = f(x`−1,y`−1)− f(x`,y`−1) +

f(x`,y`−1)− f(x`,y`) and then recursively applying Lemma 10.2.1 for either fixed y = y`−1 or fixed x = x`.

Note that when the bi-Bregman distance is set as the classical squared Euclidean distance, Bregman alternating

gradient descent Algorithm 4 and Bregman proximal alternating minimization Algorithm 6 reduce to proximal alter-

nating linearized minimization [213] and proximal alternating minimization [222, 223], respectively. As a result, our

main theory can be applied to remove the requirement of a globally Lipschitz gradient in deriving first-order conver-

gence results for both proximal alternating linearized minimization and proximal alternating minimization. Following

the seminal work [113, 127] and using the Stable Manifold Theorem [227], this work also solves an open problem

by establishing the second-order convergence of these alternating minimization algorithms. Further, our second-order

convergence theories do not require the global Lipschitz gradient condition.

10.2.3 Algorithms

This work will focus on the following four algorithms and derive their second-order convergence theories. Except

for Algorithm 3 (cf. [237]), all Algorithms 4- 6 are newly developed and analyzed.

Algorithm 3 Bregman Gradient Descent

1: Input: A Bregman kernel h with Lf∇2h(x)±∇2f(x) � 0 in the whole domain; Set η ∈ (0, 1
Lf

).
2: Initialization: x0

3: Recursion: Iteratively generate a sequence {x`}`∈N via

x` = arg min
x
〈∇f(x`−1),x− x`−1〉+

1

η
Dh(x,x`−1) (10.18)

34We say h(x,y) is σ-strongly bi-convex if h(x,y) is σ-strongly convex in x for any fixed y and is σ-strongly convex in y for any fixed x.
35We say h(x,y) is bi-super-coercive if lim‖x‖→∞ h(x,y)/‖x‖2 =∞ and lim‖y‖→∞ h(x,y)/‖y‖2 =∞ for all x,y.
36We will often use (a,b) := [a> b>]>.

176



Algorithm 4 Bregman Alternating Gradient Descent

1: Input: A bi-Bregman kernel h(x,y) with both L1∇2
xxh(x,y) ± ∇2

xxf(x,y) � 0 and L2∇2
yyh(x,y) ±

∇2
yyf(x,y) � 0 in the entire domain; Set η ∈ (0,min( 1

L1
, 1
L2

)).
2: Initialization: (x0,y0)
3: Recursion: Iteratively generate a sequence {x`,y`}`∈N via

x` = arg min
x
〈∇xf(x`−1,y`−1),x− x`−1〉+

1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y
〈∇yf(x`,y`−1),y − y`−1〉+

1

η
D2
h(y,y`−1; x`)

(10.19)

Algorithm 5 Bregman Proximal Minimization

1: Input: A Bregman kernel h with Lf∇2h(x)±∇2f(x) � 0 in the whole domain; Set η ∈ (0, 1
Lf

).
2: Initialization: x0

3: Recursion: Iteratively generate a sequence {x`}`∈N via

x` = arg min
x

f(x) +
1

η
Dh(x,x`−1) (10.20)

Algorithm 6 Bregman Proximal Alternating Minimization

1: Input: A bi-Bregman kernel h(x,y) with both L1∇2
xxh(x,y) ± ∇2

xxf(x,y) � 0 and L2∇2
yyh(x,y) ±

∇2
yyf(x,y) � 0 in the entire domain; Set η ∈ (0,min( 1

L1
, 1
L2

)).
2: Initialization: (x0,y0)
3: Recursion: Iteratively generate a sequence {x`,y`}`∈N via

x` = arg min
x

f(x,y`−1) +
1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y

f(x`,y) +
1

η
D2
h(y,y`−1; x`)

(10.21)

10.2.4 Main Contributions

Building on the simple and elegant Bregman distance paradigm in [237], we extend their first-order convergence

analysis of Bregman gradient descent (Algorithm 3) to a second-order convergence guarantee. In addition, we develop

and prove the second-order convergence for Bregman proximal minimization (Algorithm 5), which is a variant of the

standard proximal minimization algorithm [212] with the `2-distance proximal term replaced by the Bregman-distance

proximal term.

Furthermore, we generalize the above paradigms to develop new alternating minimization algorithms, including

both Bregman alternating gradient descent (Algorithm 4) and Bregman proximal alternating minimization (Algo-

rithm 6). Remarkably, these algorithms are extensions of the standard proximal alternating linearized method [213]

and proximal alternating minimization algorithm [222]. It is worth noting 1) that the global Lipschitz gradient con-

dition is required in deriving the second-order convergence of gradient descent and proximal minimization in the
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literature [113, 127] and 2) that the second-order convergence of the proximal alternating minimization algorithm is

also an open problem [213, 222]. Therefore, this work also complements those works by establishing second-order

convergence for proximal alternating minimization [213, 222] when the Bregman distance reduces to the standard

Euclidean distance.

In summary, the contributions of this work are mainly in the following two respects.

• First, we develop both gradient-type and proximal-type algorithms through the Bregman distance paradigm to

solve the minimization problems

minimize
x

f(x) and minimize
x,y

f(x,y).

Further, all the proposed algorithms are proved to converge to a second-order stationary point of the objective

function f without requiring f to have a globally Lipschitz gradient.

• Second, this is the first work to establish second-order convergence results for alternating-minimization type al-

gorithms, as showing the second-order convergence of alternating-minimization type algorithms for nonconvex

objective functions is still an open problem. To see this, note that the proximal alternating linearized mini-

mization [213] is a special case of the Bregman alternating gradient descent (cf. Algorithm 4) and that proximal

alternating minimization [222] is a particular case of Bregman proximal alternating minimization (Algorithm 6),

when we choose the (bi)-Bregman distance as the classical squared Euclidean distance.

We build our main results upon the following assumptions on f and the Bregman kernel h.

Assumption 10.2.1. h ∈ C2 is (bi-)super-coercive and σ-strongly (bi-)convex.

Assumption 10.2.2. f ∈ C2 is a lower-bounded KL function.

Assumption 10.2.3. f satisfies the (bi-)adaptive Lipschitz gradient condition with h.

Assumption 10.2.4. The generated sequence {x`}`∈N (or {(x`,y`)}`∈N) lives in any bounded set B.

Now we are ready to present the main result, which is proved in Section G.4.

Theorem 10.2.1 (Main Results). Under Assumptions 10.2.1– 10.2.4, Algorithms 3 and 5 converge almost surely to a

second-order stationary point of f(x) in (10.1) from random initialization, and Algorithms 4 and 6 converge almost

surely to a second-order stationary point of f(x,y) in (10.12) from random initialization.

Remark 10.2.1. Assumption 10.2.2 on f is universal and mild, since KL functions [212] are ubiquitous and include

any polynomial function, any `p norm (p > 0 and rational), the `0 norm, and indicator functions of any semi-algebraic

set (see Section 10.4.1 for a detailed discussion). Additionally, the lower-bounded assumption of the objective function

is also common in practice, as otherwise the minimization problem would be ill-posed.
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Remark 10.2.2. The bounded-sequence assumption (see Assumption 10.2.4) is quite mild since any coercive objective

function f satisfies this assumption. It is known that [238, Prop. 11.11] for any coercive function f , its level set

Levf (a) := {x : f(x) ≤ a} is bounded for all a ∈ R. Now by Lemmas 10.2.1 and 10.2.2, all Algorithms 3– 6 can

ensure a sufficient decrease of f , implying that all iterations {x`}`∈N or {(x`,y`)}`∈N live in the level set Levf (f(x0))

(or Levf (f(x0,y0))), which is bounded.

Remark 10.2.3. Finally, if the objective function f further satisfies the strict saddle property [99,114] (i.e., all second-

order stationary points are local minimizers), then Theorem 10.2.1 implies that Algorithms 3– 6 almost surely converge

to a local minimum from random initialization. Remarkably, many popular (nonconvex) machine learning and signal

processing problems [98–101] have no spurious local minima and thus Algorithms 3– 6 converge to a global minimum,

implying that global optimality will be achieved when solving these problems.

10.3 Stylized Applications

10.3.1 Polynomial Objective Functions

Many problems of interest involve objective functions that are multi-variate polynomials of certain degrees.

Lemma 10.3.1. Suppose f(x) (or f(x,y)) is any coercive and lower-bounded dth-degree (or (d1, d2)th-degree)37

polynomial function with d, d1, d2 ≥ 2. Set the Bregman (or bi-Bregman) distance kernel h to be

h(x) =
α

d
‖x‖d2 +

σ

2
‖x‖22 + 1 or h(x,y) = (

α

d1
‖x‖d1

2 +
σ

2
‖x‖22 + 1)(

α

d2
‖y‖d2

2 +
σ

2
‖y‖22 + 1) (10.22)

for any α, σ > 0. Then (f(x), h(x)) (or (f(x,y), h(x,y))) satisfies Assumptions 10.2.1– 10.2.4.

Lemma 10.3.1 is proved in Section G.3.1. Now together with Theorem 10.2.1, we obtain that the proposed Breg-

man algorithms can be used to minimize any lower-bounded finite-degree polynomial.

Corollary 10.3.1. Suppose f(x) (or f(x,y)) is any coercive and lower-bounded dth-order (or (d1, d2)th-order)

polynomial function with d, d1, d2 ≥ 2. Set the Bregman (or bi-Bregman) distance kernel h according to (10.22). Then

Algorithms 3 and 5 converge almost surely to a second-order stationary point of f(x) in (10.1) or f(w) := f(x,y)

in (10.12) when w := (x,y) from random initialization, and Algorithms 4 and 6 converge almost surely to a second-

order stationary point of f(x,y) in (10.12) from random initialization.

Recall that the theory for most traditional first-order (or even second-order) and alternating minimization algo-

rithms cannot accommodate high-degree (larger than 2) polynomial objective functions, which sets demanding restric-

tions on the applications and consequently excludes most interesting practical applications for objective functions in-

37We say f(x) is a dth-degree polynomial if the highest order of x among all monomials of f(x) is d, and f(x,y) is a (d1, d2)th-degree
polynomial if the highest order of x among all monomials of f is d1 and the highest order of y among all monomials of f is d2, where the order
of x of the monomial xk1

1 xk2
2 · · ·x

kn
n φ(y) for any polynomial function φ(y) is defined as

∑n
j=1 kj and we define that for y in a similar way.

Note we can view f(w) := f(x,y) as a (d1 + d2)th-degree polynomial of w := (x,y).
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volving matrix factorizations, which generally involve fourth-degree polynomial objective functions. Corollary 10.3.1

solves this problem by stating that the proposed Algorithms 3– 6 can be applied to any lower-bounded polynomial

objective function with provable second-order convergence.

10.3.2 Objective Functions with Polynomial-order Hessian Spectral Norm

Our convergence theory also extends to non-polynomial objective functions as long as the spectral norms of their

Hessians have a polynomial growth rate. This is established in Lemma 10.3.2 (which is proved in Section G.3.2) and

Corollary 10.3.2.

Lemma 10.3.2. Suppose f ∈ C2 has bounded (partial, resp.) Hessian spectral norms ‖∇2f(x)‖ ≤ C1 + C2‖x‖d−2
2

(‖∇2
xxf(x,y)‖ ≤ (C1+C2‖x‖d1−2

2 )(C3+C4‖y‖d2
2 ) and ‖∇2

yyf(x,y)‖ ≤ (C5+C6‖x‖d1
2 )(C7+C8‖y‖d2−2

2 ), resp.)

with d, d1, d2 ≥ 2 and positive constants C1 to C8. Set h according to (10.22). Then (f(x), h(x)) ((f(x,y), h(x,y)),

resp.) satisfies the adaptive (bi-adaptive, resp.) Lipschitz gradient condition.

Corollary 10.3.2. Suppose f ∈ C2 is any coercive and lower-bounded KL function with its Hessian (or partial

Hessian) spectral norms upper bounded by a polynomial as in Lemma 10.3.2. Set h according to (10.22). Then Algo-

rithms 3 and 5 converge almost surely to a second-order stationary point of f(x) in (10.1) from random initialization,

and Algorithms 4 and 6 converge almost surely to a second-order stationary point of f(x,y) in (10.12) from random

initialization.

10.3.3 Burer-Monteiro Factorization Method for Low-rank Matrix Recovery

A popular approach to large-scale matrix optimization problems is the so-called Burer-Monteiro factorization

method [119, 159]: Given a rank-constrained matrix optimization problem38

minimize
X∈Sn+ or X∈Rn×m

q(X) subject to rank(X) ≤ r, (10.23)

the Burer-Monteiro factorization method first parameterizes X = UU> (for symmetric case) or X = UV> (for

nonsymmetric case) and then focuses on the new (nonconvex) problem

minimize
U∈Rn×r

f(U) := q(UU>) or minimize
U∈Rn×r,V∈Rm×r

f(U,V) := q(UV>) (10.24)

When the new objective function f is any lower-bounded polynomial or any lower bounded KL function with the Hes-

sian spectral norms upper bounded by a polynomial (which is true in most matrix recovery problems of interest), then

the second-order convergence results of Algorithms 3- 6 directly follow from Corollary 10.3.1 and Corollary 10.3.2.

More interestingly, when the original objective function q(X) in (10.23) further satisfies (2r, δ)-RIP39 with δ ≤ 1
20 ,

38We denote Sn+ as the set of all n× n positive semidefinite symmetric matrices.
39We say a function q(X) satisfies the (2r, δ)-RIP for some δ ∈ (0, 1) and positive integer r if for any matrices X,M with rank(X) ≤ 2r and
rank(M) ≤ 4r, we have (1− δ) ‖M‖2F ≤ [∇2q(X)](M,M) ≤ (1 + δ) ‖M‖2F .
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then despite the non-convexity of the new formulated problems (10.24), all second-order stationary points of f(U)

(or f(U,V)) correspond to a global minimum of q(X) (cf. [6, 101]). Therefore, we immediately have the following

global optimality theory when using the proposed Algorithms 3- 6 to solve (10.24).

Corollary 10.3.3. Assume q(X) satisfies (2r, 1
20 )-RIP. Suppose either (i) f is any lower-bounded finite-degree poly-

nomial; or (ii) f ∈ C2 is any coercive and lower-bounded KL function with its (partial) Hessian spectral norms upper

bounded by any finite-degree polynomials. Set the (bi-)Bregman distance kernel h according to (10.22). Then ap-

plying Algorithms 3 and 5 to minimizeU f(U) in (10.24) or applying Algorithms 4 and 6 to minimizeU,V f(U,V)

in (10.24), we can solve (10.23) to global optimality almost surely from random initialization.

10.4 Convergence Analysis

In this section, we first review the main ingredients of the convergence analysis and then use them to prove second-

order convergence for Bregman gradient descent Algorithm 3 and Bregman proximal minimization Algorithm 5. Due

to the similarity in the proofs of Algorithm 3 and Algorithm 4 (and the proofs of Algorithm 5 and Algorithm 6), we

collect the convergence analysis of other Bregman algorithms in Section G.4.

10.4.1 Main Ingredients of First-order Convergence for KL functions

The Kerdyka-Lojasiewicz (KL) property is a characterization of the geometry of an objective function around its

critical points, essentially saying that the function landscape is not relatively flat compared with the gradient norm

around each critical point. The KL property plays a crucial role in establishing the first-order convergence (a.k.a.

sequence convergence) for a number of descent type algorithms (see, e.g., [212, 213, 223, 237, 239]). A function

satisfying the KL property is a KL function. KL functions are common in that any proper lower semi-continuous

function is a KL function if it is also analytic or semi-algebraic [213, Theorem 5.1]. Therefore, KL functions include

but are limited to any polynomial function, any `p norm (p > 0 and rational), the `0 norm, and indicator functions of

any semi-algebraic set. For more discussions and examples, see [212, 213, 223, 239] and their references.

The general framework in [212, 213, 223, 237, 239] uses the KL property to establish the first-order convergence

for general descent type algorithms. For this work, we restrict our attention only to twice continuously differentiable

functions, which have continuous gradient everywhere in the domain. There are two key ingredients of this framework

given in the following definition.

Definition 10.4.1 (Definition 4.1, [237]). Let f : Rn → R be a continuous function. A sequence {x`}`∈N is called a

gradient-like descent sequence for f if the following two conditions hold:

(C1) Sufficient decrease property: f(x`)− f(x`+1) ≥ ρ1

∥∥x`+1 − x`
∥∥2

2
, ∀ ` ∈ N for some ρ1 > 0;

(C2) Bounded gradient property:
∥∥∇f(x`+1)

∥∥
2
≤ ρ2

∥∥x`+1 − x`
∥∥

2
, ∀ ` ∈ N for some ρ2 > 0.
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We note that when {x`}k∈N is generated by gradient descent with constant stepsize η and the gradient ∇f is

globally Lf -Lipschitz, then (C1) immediately follows from (10.5) with ρ1 = 1/η − Lf/2. It is trivial to using

conditions (C1) and (C2) to show that lim`→∞ ‖∇f(x`)‖2 = 0. However, this is not enough to guarantee the

convergence of {x`}`∈N itself to a unique critical point, due to the possibility of x` jumping between critical points.

This is where the KL property comes to play a role, ensuring a well-behaved geometry of f around each critical point

so that such pathological cases will never happen [212, 223].

Theorem 10.4.1 (Theorem 6.2, [237]). Let f : Rn → R be a continuous function satisfying the KL property. Let

{x`}`∈N be a bounded gradient-like descent sequence for f . Then the sequence {x`}`∈N converges to a critical point

of f .

10.4.2 Main Ingredients of Second-order Convergence Using Random Initialization

Definition 10.4.2. Let f be a twice continuously differentiable function and∇ be the gradient operator. Then

1. x is a first-order stationary point (a.k.a. critical point) of f if the gradient∇f(x) = 0;

2. x is a second-order stationary point of f if it is a critical point and∇2f(x) is positive semi-definite;

3. x is a strict saddle of f if it is a critical point where the Hessian∇2f(x) has a negative eigenvalue.

One of the most popular arguments for showing that certain iterative algorithms can almost surely avoid strict

saddle points is provided by the seminal work [113, 127], which interprets these algorithms (e.g., gradient descent

and proximal minimization) as dynamic systems for which the strict saddle points are unstable fixed points (see

Definition 10.4.3) and uses the well-known stable manifold theorem [227] to argue that these will be avoided with

high probability.

Definition 10.4.3 (Unstable Fixed Points). Let g be a C1 mapping from X to X . Then the associated set of unstable

fixed points is defined as Ag = {x : g(x) = x,maxi |λi(Dg(x))| > 1}.

Theorem 10.4.2 (Theorem 2, [127]). Let g be C1 mapping and det(Dg(x)) 6= 0 in the entire domain. Then the set

of initial points that converge to unstable fixed points has zero measure, µ({x0 : lim
`→∞

g`(x0) ∈ Ag}) = 0. Here µ(·)

counts the Lebesgue measure for a given set.

Combining this result with the first-order convergence established in Theorem 10.4.1 ensures the desired second-

order convergence.

10.4.3 Convergence Analysis of Bregman Gradient Descent

10.4.3.1 First-order Convergence of Algorithm 3

Theorem 10.4.3. Under Assumptions 10.2.1– 10.2.4, Algorithm 3 must converge to a critical point of f in (10.1).
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Proof. First, it is clear that Algorithm 3 is well-defined in view of Lemma 10.2.1. Then in view of Theorem 10.4.1

and the assumption that f is KL function, it is sufficient to prove that {x`}`∈N is a gradient-like descent sequence for

f (see Definition 10.4.1), i.e., to show:

(C1) Sufficient decrease property: f(x`)− f(x`+1) ≥ ρ1

∥∥x`+1 − x`
∥∥2

2
, ∀ ` ∈ N for some ρ1 > 0;

(C2) Bounded gradient property:
∥∥∇f(x`+1)

∥∥
2
≤ ρ2

∥∥x`+1 − x`
∥∥

2
, ∀ ` ∈ N for some ρ2 > 0.

Condition (C1) follows from (10.10) in Lemma 10.2.1. Condition (C2) holds because by the optimality condition

∇f(x`) + (∇h(x`+1)−∇h(x`))/η = 0, (10.25)

we have

‖∇f(x`)‖2 =
1

η
‖∇h(x`+1)−∇h(x`)‖2 ≤

ρh(B)

η
‖x`+1 − x`‖2,

where the inequality follows from Assumption 10.2.4, h ∈ C2, and the fact any function in C2 admits a locally

Lipschitz gradient on any bounded set.40 Therefore, by continuing this argument, we claim that f has a locally ρf (B)-

Lipschitz gradient on B, and we have ‖∇f(x`+1)‖2 ≤
(
ρh(B)
η + ρf (B)

)
‖x`+1 − x`‖2.

10.4.3.2 Second-order Convergence of Algorithm 3

Theorem 10.4.4. Under Assumptions 10.2.1– 10.2.4, Algorithm 3 with random initialization almost surely converges

to a second-order stationary point of f in (10.1).

Proof. To show the second-order convergence from the first-order convergence, it suffices to show that Algorithm 3

avoids strict saddles. We define (10.18) as x` = g(x`−1) and compute the Jacobian Dg. By the definition of g, we get

Dg(x`) = ∂x`+1/∂x`. Then we apply the implicit function theorem to the optimality condition (10.25) and in view

of the nonsingularity of∇2h, we obtain that Dg is continuous and given by

Dg(x`) =
[
∇2h(x`+1)

]−1
(∇2h(x`)− η∇2f(x`)).

Since the above analysis holds for all x` ∈ Rn, this further implies that Dg(x) is continuous and given by

Dg(x) = [∇2h(g(x))]−1(∇2h(x)− η∇2f(x)). (10.26)

To show the avoidance of strict saddles, by Theorem 10.4.2, it suffices to show the following conditions:

Showing g is a C1 mapping. This follows from the continuity of Dg in (10.26).

Showing det(Dg) 6= 0 in the whole domain. By the positive definiteness of∇2h and ∇2h± η∇2f ,
40To see this, for any h ∈ C2 and a bounded set B, the Hessian spectral norm ‖∇2h‖ (which is a continuous function) must have a maximum
ρh(B) on the closure of B. This maximum ρh(B) can be used as a local Lipschitz gradient constant for h on B.
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det(Dg(x)) = det([∇2h(g(x))]−1) det(∇2h(x)− η∇2f(x)) > 0.

Showing any strict saddle of f lies inAg . For any strict saddle x?, we have x`+1 = x` = x? satisfies the optimality

condition (10.25), so x? is a fixed point, i.e., g(x?) = x?. Plugging g(x?) = x? into (10.26):

Dg(x?) =[∇2h(x?)]−1(∇2h(x?)− η∇2f(x?))

∼[∇2h(x?)]−
1
2 (∇2h(x?)− η∇2f(x?))[∇2h(x?)]−

1
2

=I− η[∇2h(x?)]−
1
2∇2f(x?)[∇2h(x?)]−

1
2 := I− ηΦ

with “∼" denotes the matrix similarity. Therefore, Dg(x?) has an eigenvalue strictly greater than 1 since Φ has a

negative eigenvalue. This is because Φ is congruent to∇2f(x?), which has a negative eigenvalue.

10.4.4 Convergence Analysis of Bregman Proximal Minimization

10.4.4.1 First-order Convergence of Algorithm 5

Theorem 10.4.5. Under Assumptions 10.2.1– 10.2.4, Algorithm 5 must converge to a critical point of f in (10.1).

Proof. First of all, Algorithm 5 is well-defined in view of Lemma 10.2.1. Then, by Theorem 10.4.1 and the as-

sumption that f is a KL function, it is sufficient to prove that {x`}`∈N is a gradient-like descent sequence for f (see

Definition 10.4.1), i.e., to show:

(C1) Sufficient decrease property: f(x`)− f(x`+1) ≥ ρ1

∥∥x`+1 − x`
∥∥2

2
, ∀ ` ∈ N for some ρ1 > 0;

(C2) Bounded gradient property:
∥∥∇f(x`+1)

∥∥
2
≤ ρ2

∥∥x`+1 − x`
∥∥

2
, ∀ ` ∈ N for some ρ2 > 0.

Condition (C1) follows from (10.11) in Lemma 10.2.1. Condition (C2) holds because by the optimality condition

∇f(x`+1) + (∇h(x`+1)−∇h(x`))/η = 0, (10.27)

we have ‖∇f(x`+1)‖2 = 1
η‖∇h(x`+1) − ∇h(x`)‖2 ≤ ρh(B)

η ‖x`+1 − x`‖2, where the inequality follows from

Assumption 10.2.4, h ∈ C2, and Footnote 40.

10.4.4.2 Second-order Convergence of Algorithm 5

Theorem 10.4.6. Under Assumptions 10.2.1– 10.2.4, Algorithm 5 with random initialization almost surely converges

to a second-order stationary point of f in (10.1).

Proof. To show the second-order convergence, we define (10.20) as x` = g(x`−1) and compute the Jacobian matrix

Dg. By the definition of g, we have Dg(x`) = ∂x`+1/∂x`. Now we apply the implicit function theorem to (10.27)

and in view of the nonsingularity of∇2h+ η∇2f , we obtain that Dg is continuous and given by
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Dg(x`) =
(
∇2h(x`+1) + η∇2f(x`+1)

)−1∇2h(x`).

Noting that the above argument holds for any x` ∈ Rn, we therefore have that Dg(x) is continuous and given by

Dg(x) =
(
∇2h(g(x)) + η∇2f(g(x))

)−1∇2h(x). (10.28)

By Theorem 10.4.2, to show the mapping g can almost surely avoid the strict saddles, it suffices to show the

following conditions:

Showing g is a C1 mapping. This immediately follows from the continuity of Dg in (10.28).

Showing det(Dg) 6= 0 in the whole domain. Due to the positive definiteness of∇2h and ∇2h± η∇2f ,

det(Dg(x)) = det
([
∇2h(g(x)) + η∇2f(g(x))

]−1
)

det
(
∇2h(x)

)
> 0.

Showing any strict saddle of f lies in Ag . First for any strict saddle x?, we have x`+1 = x` = x? satisfies the

optimality condition (10.27), indicating x? is a fixed point, i.e., g(x?) = x?. Now plugging g(x?) = x? to (10.28),

we have

Dg(x?) =
[
∇2h(x?) + η∇2f(x?)

]−1∇2h(x?)

∼[∇2h(x?) + η∇2f(x?)]−1/2(∇2h(x?))[∇2h(x?) + η∇2f(x?)]−1/2

=I− η[∇2h(x?) + η∇2f(x?)]−1/2∇2f(x?)[∇2h(x?) + η∇2f(x?)]−1/2 := I− ηΦ

where “∼" denotes matrix-similarity. Clearly, we know Dg(x?) has an eigenvalue strictly greater than 1 since

∇2f(x?) has a negative eigenvalue and is congruent to Φ.

Combining the above three and Theorem 10.4.2, we show that Algorithm 5 can almost surely avoid strict saddles.

Finally, combining this with the first-order convergence, we obtain the second-order convergence of Algorithm 5.

10.5 Conclusion

This work has developed and analyzed four Bregman-type algorithms: Bregman gradient descent, Bregman alter-

nating gradient descent, Bregman proximal minimization, and Bregman proximal alternating minimization. Remark-

ably, all four algorithms are guaranteed to converge to a second-order stationary point of f where the objective function

f is not required to have a globally Lipschitz gradient. Therefore, our result not only improves upon [113, 127] by

circumventing the global Lipschitz gradient condition, but also complements [213, 222] by providing second-order

convergence for proximal alternating minimization when the Bregman distance reduces to the standard Euclidean dis-

tance. Finally, we provide the closed-form updating formula for Bregman (alternating) gradient descent and illustrate

the theories using numerical experiments on low-rank matrix factorization in Section G.1.
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CHAPTER 11

GENERAL TENSOR RECOVERY VIA ALTERNATING MINIMIZATION

This work studies the problem of retrieving a low-rank tensor under a general linear observation model, including

both tensor sensing and tensor completion models. Inspired by the superiority of the matrix nuclear norm in low-rank

matrix recovery, we will focus on using tensor nuclear norm to regularize the inverse problem of tensor recovery.

Unlike the traditional ways of using approximating values of the tensor nuclear norm due to the NP-hardness of

computing the tensor nuclear norm, we use the Burer-Monteiro optimization form of the tensor nuclear norm, and

we show this form is tight for any randomly generated tensors. Furthermore, we provide an alternating minimization

algorithm to solve the tensor nuclear norm regularized problem, as well as the rigorous mathematical analysis of its

global convergence. Our experiments show potential applications of our algorithm and the advantage of our method

in term of accuracy and robustness over heuristic approaches.

11.1 Introduction

Tensors can naturally represent massive multi-dimensional data structures arising in many practical applications,

which consist of collaborative filtering [53], 3D image processing [52], radar signal processing [54], nonlinear net-

works design [55, 56] and psychometrics [57]. Tensor methods are the foundations of a lot of machine learning

algorithms, including independent component analysis (ICA) [58,59], latent graphical model learning [60], dictionary

learning [61], and Gaussian mixture recovery [62].

Despite the utility of tensors in many applications, its widespread adoption in practice has been slow mainly due to

two aspects. The first reason is due to the inherent computational intractability when large-size tensors are involved in

the algorithms, which is pretty common cases met by modern data applications. The second is due to the lack of simple

concepts and available mathematical tools to exploit the inherent low-rankness of the tensor data. Unlike the low-rank

matrix recovery based upon the concept of nuclear norm minimization (powered by the singular value decomposition

tool SVD) that has earned plenty of attention in the past ten years [64,65,83], however, in low-rank tensor recovery, we

are prevented from applying the same nuclear norm regularized idea (cf. [240]) to work on low-rank tensor recovery,

which is

minimize
T ∈Rn1×n2×n3

‖y −A(T )‖)2
2 + λ‖T ‖∗ (11.1)

where ‖ · ‖∗ denotes the tensor nuclear norm and T ∈ Rn1×n1×n3 is the target tensor that we want to recover

from the measurement vector y ∈ Rm obtained by a general sampling operator A : Rn1×n2×n3 → Rm. This

is mainly owing to the facts that even computing the tensor nuclear norm is an NP-hard problem [66], and there
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is a lack of analysis tools for tensor problems. Therefore, the mainstream tensor completion procedures are based

upon multiple forms of matricization and utilization of matrix completion to the flattened tensor [52, 84, 85]. As a

consequence, when unfolding a three-dimensional tensor into a two-dimensional matrix, the resulting matrix input

to the alternating minimization method is typically massive. Further, without tensor nuclear norm as a regularizer,

traditional minimization approaches do not yield optimal bounds on the number of measurements required for tensor

completion, which is in sharp contrast to the scenario where optimal sample complexity and optimal minimax bound

are achieved when using matrix nuclear norm regularizer in low-rank matrix recovery.

To address the above issues, we then get inspirations from the prior work using Burer-Monteiro factorization [91]

idea in dealing with matrix nuclear norm regularized problem [92]. Their idea is in two folds. First, they factor data

matrix X into two smaller rectangular matrices X = UV>. Second, they replace the matrix nuclear norm ‖X‖∗ as an

nonconvex equivalent form (‖U‖2F + ‖V‖2F )/2, so that faster and more scalable algorithms can be developed under

the new objective function with (U,V) as the new variables.

In this work, we focus on applying the same Burer-Monteiro factorization idea to low-rank tensor optimization

problems for efficiency and scalability purposes. The underlying idea is that for a low-rank tensor, we can always

factorize it as the tensor product of three “tall" factor matrices (like what [92] did), which typically have much fewer

variables than the original full tensor. Further, we derive a new Burer-Monteiro factorization form of the tensor nuclear

norm (cf. Proposition 11.3.1), so that we can incorporate the tensor nuclear norm regularizer into the new factored

objective function.

Main Results.

• A straightforward idea of using tensor nuclear norm to do low-rank tensor completion and recovery has been

prevented from due to the NP-hardness of computing the tensor nuclear norm [66] and the lack of analysis tools

for tensor problems. One main contribution of this work is providing an auxiliary function for the tensor nuclear

norm, which is a tight optimization form of the tensor nuclear norm, since we prove that the proposed auxiliary

function has the same global optimum as the tensor nuclear norm under the over-parameterization settings(cf.

Proposition 11.3.1).

• Another result of this work is developing an alternating-minimization algorithm for solving a general tensor

recovery problem, covering both tensor completion and tensor regression. Remarkably, we provide closed-form

solutions for each subproblem in the alternating minimization so that an efficient implementation of the algo-

rithm is available. Further, based on the Kurdyka-Łojasiewicz (KL) property (cf. [212, 241]) of the objective

function, a rigorous mathematical analysis is provided to guarantee the proposed alternating minimization to

globally converge to a stationary point of the axillary tensor nuclear norm regularized problem, with at least a
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sub-linear rate of convergence.

• Finally, this work uses the Burer-Monteiro factorization idea to perform the tensor recovery problem. This

Burer-Monteiro factorization regime has several favorable properties in performing the massive data operation.

In one aspect, it largely reduces the problem dimensions mainly when the involved tensor is large. This is a

pretty standard case met in practical applications. In another aspect, using Burer-Monteiro factorization helps

to explicitly enforce an upper bound of the tensor rank, so that the recovered tensor is always of low rank.

11.2 General Observation Model

In this work, we focus on third-order nonsymmetric tensors that can be factorized into a linear combination of unit-

norm, rank-1 tensors of the form u ◦ v ◦w, with the (i, j, k)th entry being uivjwk. Assume we have a 3-dimensional

data T ? ∈ Rn1×n2×n3 , which admits a low-rank tensor structure, i.e.,

T ? =

r∑
p=1

λ?pu
?
p ◦ v?p ◦w?

p (11.2)

where r � min{n1, n2, n3} and ◦ denotes the tensor/outer product. We assume the coefficients {λ?p} are always

positive, since the sign of any negative coefficient λ?p can be absorbed into the factors by noting that −u?p ◦v?p ◦w?
p =

(−u?p) ◦ (−v?p) ◦ (−w?
p). Further we the tensor factors {u?p,v?p,w?

p} are locating on the spheres ‖u?p‖2 = ‖v?p‖2 =

‖w?
p‖2 = 1, since otherwise we can always absorb the lengths of the factors into the coefficients by redefining

λ?p = λ?p‖u?p‖2‖v?p‖2‖w?
p‖2.

This work considers a general linear operator A(·) : Rn1×n2×n3 → Rm, which is defined by

A(T ) =
{
〈Ap,T 〉

}m
p=1

for any T ∈ Rn1×n2×n3 (11.3)

with m predetermined tensors in Rn1×n2×n3 : {Ap}p∈[m].

One equivalent matrix representation of (11.3) is given by

A(T ) = A vec(T ),

where A ∈ Rm×n1n2n3 with its pth row being A(p, :) = vec(Ap)
>. The adjoint operator A∗(·) : Rm → Rn1×n2×n3

of A(·) is given by

A∗(a) =

m∑
p=1

apAp for any a = (a1, · · · , am).

Under this definition, we have vec(A∗(a)) = A>a.
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The linear operator A in (11.3) therefore covers almost all linear observation models, including tensor sensing and

tensor completion models:

Example 11.2.1 (Tensor Sensing/Regression). When we observe a small number of linear projections of the ground

truth onto some random Gaussian tensors, this linear observation model (11.3) includes the Gaussian observation

model when {Ap}p∈[m] are Gaussian random tensors.

Example 11.2.2 (Tensor Completion). This linear observation model (11.3) also covers the missing data case if we

let {Ap}p∈[m] be a subset of cardinality m from the canonical basis in Rn1×n2×n3 , i.e., {ei ◦ ej ◦ ek}ijk.

11.3 Tensor Nuclear Norm

For any tensor T , its nuclear norm is defined as [68, Eq. (2.7)].

‖T ‖∗ = inf
‖up‖2=‖vp‖2=‖wp‖2=1

{∑
p

λp : T =
∑
p

λpup ◦ vp ◦wp, λp > 0

}
(11.4)

Therefore, the tensor nuclear norm is the minimal `1 norm of its expansion coefficients among all valid expansions

in terms of unit-norm, rank-1 tensors. The way of defining the tensor nuclear norm is precisely the same as that of

defining the matrix nuclear norm. It is known in the literature [4] that the tensor nuclear norm has the identifiability

to recover the tensor factors given full measurements of the tensor data. Further, solving tensor nuclear norm is a

guarantee to recover the ground-truth tensor factors even in over-complete settings where the number of tensor factors

is much larger than the dimension of the tensors [4, Theorem 1.1, Corollary 1.1]. Besides, we expect that tensor nuclear

norm, as a particular form of the atomic norm, will achieve the information theoretical limit for tensor completion as

the `1 norm does for compressive sensing, matrix nuclear norm for matrix completion [83], and total variation norm

for line spectral estimation with missing data [16].

11.3.1 Burer-Monteiro Optimization Form of Tensor Nuclear Norm

A straightforward approach of applying tensor nuclear norm to low-rank tensor completion and recovery has been

limited given that 1) computing the tensor nuclear norm is NP-hard [66]; 2) and unlike matrix problems where a bunch

of mathematical tools are available such as eigenvalue decomposition, singular value decomposition, etc., while there

is a lack of analysis tools for tensor problems. One main contribution of this work, we provide a new optimization

form of tensor nuclear norm based on Burer-Monteiro factorization idea.

Proposition 11.3.1. Suppose the decomposition that achieves the tensor nuclear norm ‖T ‖∗ involves r terms and

r̃ ≥ r, then ‖T ‖∗ is equal to the optimal value of the following optimization:
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minimize
{(up,vp,wp)}r̃p=1

1

6

r̃∑
p=1

[
(‖up‖22 + ‖vp‖22‖wp‖22) + (‖vp‖22 + ‖up‖22‖wp‖22) + (‖wp‖22 + ‖up‖22‖vp‖22)

]

subject to T =

r̃∑
p=1

up ◦ vp ◦wp (11.5)

Proof. Suppose the tensor nuclear norm ‖T ‖∗ (see (11.4) for the definition) is achieved by the following decomposi-

tion

T =

r∑
p=1

λ?pu
?
p ◦ v?p ◦w?

p.

Clearly, when

λ =

√
3
√

2
(√

9λ?2p + 12 + 3λ?p

)2/3

− 2 3
√

3

3
√

6 6

√√
9λ?2p + 12 + 3λ?p

,

we can obtain that {λu?p, λv?p, λw?
p)}r̃p=1 forms a feasible solution to (11.5) with r̃ = r. When r̃ > r, we can zero-

pad the remaining rank-one factors {(up,vp,wp)}r̃p=r+1. The objective function value at this feasible solution is∑r̃
p=1 λ

?
p = ‖T ‖∗. This shows that the optimal value of (11.5) is less than or equal to the tensor nuclear norm ‖T ‖∗.

To show the other direction, suppose an optimal solution of (11.5) is {(up,vp,wp)}r̃p=1. Define

ap = ‖up‖2, bp = ‖vp‖2, cp = ‖wp‖2, λp = apbpcp.

For p such that λp 6= 0, define

ûp = up/ap, v̂p = vp/bp, ŵp = wp/cp.

Then clearly

T =
∑

p:λp 6=0

up ◦ vp ◦wp =

r̃∑
p=1

λpûp ◦ v̂p ◦ ŵp.

Furthermore, by definition (11.5) of tensor nuclear norm, we have ‖T ‖∗ ≤
∑r̃
p=1 λp, and therefore
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‖T ‖∗ ≤
1

3

r̃∑
p=1

apbpcp +
1

3

∑
p

apbpcp +
1

3

r̃∑
p=1

apbpcp

≤ 1

3

r̃∑
p=1

(a2
p/2 + b2pc

2
p/2) +

1

3

∑
p

(b2p/2 + a2
pc

2
p/2) +

1

3

∑
p

(c2p/2 + b2pa
2
p/2)

=
1

6

r̃∑
p=1

[
(‖up‖22 + ‖vp‖22‖wp‖22) + (‖vp‖22 + ‖up‖22‖wp‖22) + (‖wp‖22 + ‖up‖22‖vp‖22)

]
= optimal value of (11.5).

Combining these two directions, we prove that the optimal value of (11.5) is equal to the tensor nuclear norm ‖T ‖∗.

11.4 Alternating Minimization

Similar to using matrix nuclear norm in regularizing matrix inverse problems, the nuclear tensor norm can be used

to regularize tensor inverse problems. Assume we observe an unknown low-rank groundtruth tensor T ? through the

linear observation/measurement model y = A(T ?), we would like to retrieve the groundtruth tensor T ? from the

observation y. For instance, when A samples the individual entries of T ?, we are looking at a tensor completion

problem. We propose recovering the low-rank groundtruth tensor T ? by solving a tensor nuclear norm regularized

least squares Equation (11.1) (cf. [240]). However several difficulties exist in implementing the above method has

mentioned in the introduction: 1) Computing the tensor nuclear norm is NP-hard in the worst case; 2) Computational

burden is unavoidable when the size of the optimization problem n1n2n3 is super large.

Therefore, to release the computational burden and bypass the NP-hardness of computing the tensor nuclear norm,

we apply the Burer-Monteiro parameterization on the tensor variable T and the nonconvex reformulation of the tensor

nuclear norm eq. (11.5). The resulting program is

minimize
{(up,vp,wp)}r̃p=1

‖y −A(

r̃∑
p=1

up ◦ vp ◦wp)‖22 + λ

r̃∑
p=1

[
(‖up‖22 + ‖vp‖22‖wp‖22) + (‖vp‖22 + ‖up‖22‖wp‖22)

+ (‖wp‖22 + ‖up‖22‖vp‖22)

]
(11.6)

Matrix Form. To simplify notations, we denote U := [u1 · · · ur̃], V := [v1 · · · vr̃], W := [w1 · · · wr̃] and

reload ◦ (when applied to matrices of same columns) as

U ◦V ◦W :=
∑
i=1

U(:, i) ◦V(:, i) ◦W(:, i).

Then the nonconvex formulation (11.6) of the tensor nuclear norm can be rewritten as
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minimize
U∈Rn1×r̃,V∈Rn2×r̃,W∈Rn3×r̃

‖y −A(U ◦V ◦W)‖22

+ λ

[
(‖U‖2F + tr(V>V �W>W)) + (‖V‖2F + tr(U>U�W>W)) + (‖W‖2F + tr(U>U�V>V))

]
(11.7)

For convenience, we shall denote the objective function of eq. (11.7) as f(U,V,W).

Lemma 11.4.1 (Coordinative strong convexity). The closed form Hessians∇2
Uf(·),∇2

Vf(·),∇2
Wf(·) is given by

∇2
Uf(U,V,W) = 2λIn1 ⊗ diag(1r + diag(V>k−1Vk−1 + W>

k−1Wk−1))

+ 2[(Wk−1 ~Vk−1)⊗ In1 ]>A>A[(Wk−1 ~Vk−1)⊗ In1 ];

∇2
Vf(U,V,W) = 2λIn2

⊗ diag(1r + diag(U>k Uk + W>
k−1Wk−1))

+ 2[(Wk−1 ~Uk)⊗ In2
]>A>[2,1,3]A[2,1,3][(Wk−1 ~Uk)⊗ In2

];

∇2
Wf(U,V,W) = 2λIn3 ⊗ diag(1r + diag(U>k Uk + V>k Vk))

+ 2[(Uk ~Vk)⊗ In3
]>A>[3,2,1]A[3,2,1][(Uk ~Vk)⊗ In3

];

As a consequence, f(U,V,W) is 2λ-strongly convex with respect to each coordinate (U,V,W) while the other two

are fixed. f(U,V,W) is 2λ-strongly convex with respect to each coordinate (U,V,W) while the other two are fixed.

The coordinate strong convexity of the function f(U,V,W) motivates us to solve eq. (11.7) using alternating

minimization Algorithm 7.

Algorithm 7 AltMinλ

1: Initialization: k = 1, λ, and V0 ∈ Rn2×r,W0 ∈ Rn3×r.
2: while stop criterion not meet do
3: Uk = arg minU∈Rn1×r f(U,Vk−1,Wk−1);
4: Vk = arg minV∈Rn2×r f(Uk,V,Wk−1);
5: Wk = arg minW∈Rn3×r f(Uk,Vk,W);
6: k = k + 1.
7: end while
8: Output: factorization (Uλ,Vλ,Wλ).

Lemma 11.4.2. The iterates sequence {(Uk,Vk,Wk)} in Algorithm 7 satisfy the following vanishing gradient equa-

tions by the first-order optimality condition:

∇Uf(Uk,Vk−1,Wk−1) = 0,

∇V f(Uk,Vk,Wk−1) = 0,

∇W f(Uk,Vk,Wk) = 0, ∀k ≥ 1. (11.8)

By explicitly solving eq. (11.8), we obtain the closed form expressions for (Uk,Vk,Wk) in Algorithm 7.
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Lemma 11.4.3 (Close-form solutions of Algorithm 7). The closed form solution exists for each sub-optimization

problem in Algorithm 7:

vec(Uk) =(λIn1
⊗ diag(1r + diag(V>k−1Vk−1 + W>

k−1Wk−1))

+ [(Wk−1 ~Vk−1)⊗ In1
]>A>A[(Wk−1 ~Vk−1)⊗ In1

])−1[(Wk−1 ~Vk−1)⊗ In1
]>A>y;

vec(Vk) =(λIn2
⊗ diag(1r + diag(W>

k−1Wk−1 + U>k Uk))

+ [(Wk−1 ~Uk)⊗ In2
]>A>[2,1,3]A[2,1,3][(Wk−1 ~Uk)⊗ In2

])−1[(Wk−1 ~Uk)⊗ In2
]>A>[2,1,3]y;

vec(Wk) =(λIn3
⊗ diag(1r + diag(V>k Vk + U>k−1Uk−1))

+ [(Uk−1 ~Vk)⊗ In4
]>A>[3,2,1]A[3,2,1][(Uk−1 ~Vk)⊗ In4

])−1[(Uk−1 ~Vk)⊗ In3
]>A>[3,2,1]y

where ⊗ denotes the Kronecker product, ~ denotes the Khatri-Rao product, and we define for any T ∈ Rn1×n2×n3

and any ordered permutation (i1, i2, i3) of {1, 2, 3}, let T [i1,i2,i3] be such that

T [i1,i2,i3](i, j, k) = T ((i, j, k)i1 , (i, j, k)i2 , (i, j, k)i3).

In particular, here, A[i1,i2,i3] denotes the respective matrix representation with its pth row as vec
(
Ap[i1,i2,i3]

)>
.

Remark.

• When λ > 0, each closed form solution is well-defined by noting that the matrix to be inverted is positive

definite with minimum eigenvalue at least λ.

• By definition of Uk,Vk,Wk from Algorithm 7 and their accessible closed forms from Lemma 11.4.3, we can

guarantee that Algorithm 7 generates a decreasing sequence of function values {f(Uk,Vk,Wk)}k∈N such that

f(Uk−1,Vk−1,Wk−1) ≥ f(Uk,Vk,Wk) for any k ≥ 1.

11.4.1 Boundedness of Variables Uk,Vk,Wk

Definition 11.4.1 (Coercive function). A function f : Rn → R is coercive if f(x)→∞ as ‖x‖2 →∞.

Definition 11.4.2 (λ-Strong Coercive function). A function f : Rn → R is λ-strongly coercive if we can decompose

f as a sum of nonnegative function g and a λ-scaled squared norm λ‖x‖22, that is, f(x) = g(x) + λ‖x‖22.

Lemma 11.4.4. Given a λ-strong coercive function f and a sequence {xk}k≥0, if their composition gives a decreasing

sequence {f(xk)}k≥0, then the sequence {xk}k≥0 is upper bounded by ‖xk‖22 ≤ f(x0)
λ ∀k.

Proof. From the decreasing property of f(xk), we have f(x0) ≥ f(x1) ≥ f(xk) for all k. By the λ-strong coercive-

ness of f , we obtain that f(xk) ≥ λ‖xk‖22. And the proof is completed as λ > 0.

An immediate result from Lemma 11.4.4 is that the iterates sequence {(Uk,Vk,Wk)}k∈N generated by Algo-

rithm 7 is bounded.
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Corollary 11.4.1. The sequences {(Uk,Vk,Wk)}k∈N generated by Algorithm 7 is bounded such that for all k:

‖Uk‖2F + ‖Vk‖2F + ‖Wk‖2F ≤ B2 (11.9)

with B2 := f(U0,V0,W0)
λ . Furthermore, each coordinate of the sequence {(Uk,Vk,Wk)}k∈N is bounded by B:

‖Uk‖F ≤ B, ‖Vk‖F ≤ B, ‖Wk‖F ≤ B, for all k.

11.4.2 Lipschitz Continuity of Gradient∇f along Solution Path

In this part, we will use the boundedness of {(Uk,Vk,Wk)}k≥0 to show that the objective function f in (11.7)

is Lipschitz smooth along the solution path {(Uk,Vk,Wk)}k≥0. In precise, we will bound the Lipschitz constant of

its gradient∇f along the solution path, which is equivalent to bound the spectral norm of its Hessian∇2f .

The following lemma shows that our objective in (11.7) is C1 smooth on any bounded subset.

Lemma 11.4.5 (Lipchitz continuity). The objective function f(U,V,W) has Lipschitz continuous gradient with the

Lipschitz constant as

Lg := 15‖A‖22B4 + 6‖A‖2‖y‖2B + λ(1 + 3B2)

in any bounded `2-norm ball {(U,V) : ‖U‖2F + ‖V‖2F ≤ B} for the `2 norm ball B(0, B) of radius B (11.9).

Proof. We first compute the spectral norm of the Hessian is through its quadratic form: let D :=

[
D>U D>V D>W

]>
with DU ∈ Rn1×r, DV ∈ Rn2×r, DW ∈ Rn3×r, then the Hessian directional quadratic form of f along D is given

by

[∇2f(U,V,W)](D,D)

=2〈A∗(A(U ◦V ◦W)− y),DU ◦DV ◦W + DU ◦V ◦DW + U ◦DV ◦DW 〉 (Π1)
+ 〈A∗A(DU ◦V ◦W + U ◦DV ◦W + U ◦V ◦DW ),DU ◦V ◦W + U ◦DV ◦W + U ◦V ◦DW 〉 (Π2)

+ λ(‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F ) (Π3)

+ λ tr(D>UDU � (V>V + W>W) + D>V DV � (U>U + W>W) + D>WDW � (U>U + V>V)) (Π4)

+ 4λ tr(U>DU �V>DV + U>DU �W>DW + V>DV �W>DW ) (Π5)

Since the spectral norm of the Hessian ∇2f(U,V,W) is given by the maximum of the Hessian quadratic form

[∇2f(U,V,W)](D,D) for all normalized D, we then upper bound this Hessian quadratic form [∇2f(U,V,W)](D,D)

by controlling Π1 to Π5 through Lemma 11.4.6.

Lemma 11.4.6. For any matrices X,W,Y,Z that have the same number of columns, we can easily verify that the

following holds:

1. ‖X ◦Y ◦ Z‖F ≤ ‖X‖F ‖Y‖F ‖Z‖F

2. tr(X>X�Y>Y) ≤ ‖X‖2F ‖Y‖2F
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3. tr(X>Y �W>Z) ≤ 1
4 (‖X‖2F + ‖W‖2F )(‖Y‖2F + ‖Z‖2F )

Bounding Π1.

Π1 ≤2‖A‖2
(
‖A‖2B3 + ‖y‖2

)
(‖W‖F ‖DU‖F ‖DV ‖F + ‖V‖F ‖DU‖F ‖DW ‖F + ‖U‖F ‖DV ‖F ‖DW ‖F )

≤2‖A‖2
(
‖A‖2B3 + ‖y‖2

)
(3B‖D‖2F )

=6
(
‖A‖22B4 + ‖A‖2‖y‖2B

)
‖D‖2F

Bounding Π2.

Π2 ≤‖A‖22
[
‖DU ◦V ◦W‖F + ‖U ◦DV ◦W‖F + ‖U ◦V ◦DW ‖F

]2 ≤ 9‖A‖22B4‖D‖2F

Bounding Π3.

Π3 = λ(‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F ) ≤ λ‖D‖2F

Bounding Π4.

Π4 ≤ λ(‖U‖2F + ‖V‖2F + ‖W‖2F )(‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F ) ≤ λB2‖D‖2F

Bounding Π5.

Π5 ≤4λ

[
1

4
(‖U‖2F + ‖V‖2F )(‖DU‖2F + ‖DV ‖2F )

+
1

4
(‖U‖2F + ‖W‖2F )(‖DU‖2F + ‖DW ‖2F )

+
1

4
(‖V‖2F + ‖W‖2F )(‖DV ‖2F + ‖DW ‖2F )

]
≤2λ(‖U‖2F + ‖V‖2F + ‖W‖2F )(‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F )

≤2λB2‖D‖2F

Combining the bounds from Π1 to Π5, we now can control the Lipschitz-continuity constant of the gradient

function ∇f(U,V,W) within the following ball:

B(0, B) := {(U,V,W) : ‖U‖2F + ‖V‖2F + ‖W‖2F ≤ B2}.

Note that all the iterations {(Uk,Vk,Wk)}k∈N are living in this ball B(0, B) by Corollary 11.4.1, this Lipschitz-

continuity constant also holds for∇f evaluated along the solution path.
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11.4.3 Sufficient Decrease Property

Lemma 11.4.7 (Sufficient decrease property). Let the sequence {(Uk,Vk,Wk)}k∈N be generated by Algorithm 7.

Then we have

f(Uk−1,Vk−1,Wk−1)− f(Uk,Vk,Wk) ≥ λ(‖Uk −Uk−1‖2F + ‖Vk −Vk−1‖2F + ‖Wk −Wk−1‖2F )

Proof. First recall the definitions of {(Uk,Vk,Wk)}k∈N in Algorithm 7:

Uk = arg min
U

f(U,Vk−1,Wk−1);

Vk = arg min
V

f(Uk,V,Wk−1);

Wk = arg min
W

f(Uk,Vk,W)

and the vanishing gradient equations in Lemma 11.4.2:

∇Uf(Uk,Vk−1,Wk−1) = 0,

∇Vf(Uk,Vk,Wk−1) = 0,

∇Wf(Uk,Vk,Wk) = 0.

Now using the Taylor expansion, we expand f from (Uk,Vk−1,Wk−1) to (Uk−1,Vk−1,Wk−1) and denote DU :=

Uk−1 −Uk and U(t) := tUk−1 + (1− t)Uk. Then we have

f(Uk−1,Vk−1,Wk−1) =f(Uk,Vk−1,Wk−1) + 〈∇Uf(Uk,Vk−1,Wk−1),DU 〉

+
1

2

∫ 1

0

[
∇2
Uf(U(t),Vk−1,Wk−1)

]
(DU ,DU ) d t

Then in view of the diminishing gradient condition

∇Uf(Uk,Vk−1,Wk−1) = 0

and applying the λ-coordinate strong convexity of f by Lemma 11.4.1, we can further obtain that

f(Uk−1,Vk−1,Wk−1) ≥ f(Uk,Vk−1,Wk−1) + λ‖Uk−1 −Uk‖2F

Using similar argument we can deduce that

f(Uk,Vk−1,Wk−1) ≥ f(Uk,Vk,Wk−1) + λ‖Vk−1 −Vk‖2F
f(Uk,Vk,Wk−1) ≥ f(Uk,Vk,Wk) + λ‖Wk−1 −Wk‖2F

The proof then can be completed by noting that:
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f(Uk−1,Vk−1,Wk−1)− f(Uk,Vk,Wk−1)

=f(Uk−1,Vk−1,Wk−1)− f(Uk,Vk−1,Wk−1

+ f(Uk,Vk−1,Wk−1 − f(Uk,Vk,Wk−1)

+ f(Uk,Vk,Wk−1)− f(Uk,Vk,Wk−1).

11.5 Convergence of Algorithm 7

Theorem 11.5.1 (Subsequence convergence). Let the iterates sequence {(Uk,Vk,Wk)}k∈N be generated by Algo-

rithm 7, the following holds

1. The sequence of the function values {f(Uk,Vk,Wk)}k∈N is non-increasing and it is convergent to some finite

value limk→∞ f(Uk,Vk,Wk) = f for some unique f ≥ 0.

2. The iterates sequence {(Uk,Vk,Wk)}k∈N is regular, i.e., the difference between iterates sequence is conver-

gent, i.e.

lim
k→∞

‖Uk+1 −Uk‖F = 0,

lim
k→∞

‖Vk+1 −Vk‖F = 0,

lim
k→∞

‖Wk+1 −Wk‖F = 0.

3. Denote L(U0,V0,W0) as the set of all limit points of those convergent subsequences of {(Uk,Vk,Wk)}k∈N
(which depends on the initialization (U0,V0,W0)). Then all limit points have the same function value

f(U,V,W) = f, ∀(U,V,W) ∈ L(U0,V0,W0).

4. The gradient at each iterate is bounded: for all k ≥ 1,

‖∇f(Uk,Vk,Wk)‖F ≤
√

2Lg‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F . (11.10)

This implies that each (U,V,W) ∈ L(U0,V0,W0) is a critical point of f , i.e. ∇f(U,V,W) = 0. Further,

L(U0,V0,W0) is a nonempty, compact and connect set, satisfying

lim
k→∞

dist((Uk,Vk,Wk),L(U0,V0,W0)) = 0.

Proof. Now we prove Theorem 11.5.1.

1. The first part is because the sequence of the function values {f(Uk,Vk,Wk)}k∈N is non-increasing by Lemma 11.4.7

and lower-bounded, and hence convergent.
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2. To prove the second part, we denote

∆2
k := ‖Uk+1 −Uk‖2F + ‖Vk+1 −Vk‖2F + ‖Wk+1 −Wk‖2F

and recursively use sufficient decreasing property Lemma 11.4.7:

f(U0,V0,W0)− f(UN ,VN ,WN ) ≥ λ
N∑
k=0

∆2
k,

which then implies that (using f ≥ 0)

N∑
k=0

∆2
k ≤

f(U0,V0,W0)

λ
, ∀N ∈ N.

Therefore, we identify that the sequence {∑N
k=0 ∆2

k}N∈N is upper bounded and non-decreasing, hence conver-

gent. We are therefore guaranteed that limk→∞∆2
k = 0. By definition of ∆2

k, we finally get that limk→∞ ‖Uk+1−

Uk‖F = 0, limk→∞ ‖Vk+1 −Vk‖F = 0, limk→∞ ‖Wk+1 −Wk‖F = 0.

3. For the third part, by the boundedness of the sequence {(Uk,Vk,Wk)}k∈N, we extract an arbitrary convergent

subsequence {(Ukm ,Vkm ,Wkm)}m∈N with the limit (U,V,W). Then take the limit on subsequence:

lim
m→∞

f(Ukm ,Vkm ,Wkm) = f(U,V,W),

where we have used the continuity of the objective function f . The proof of this part is completed by noting that

the function-value sequence {f(Uk,Vk,Wk)}k∈N is convergent and hence all its subsequence must be also

convergent and converge to the same limiting point.

4. For this part, we first show that

lim
k→∞

∇f(Uk,Vk,Wk) = lim
k→∞

∇Uf(Uk,Vk,Wk)
∇Vf(Uk,Vk,Wk)
∇Wf(Uk,Vk,Wk)


vanishes. Towards that, we use the first-order optimality condition (11.8) to get that for k ≥ 1,

∇Uf(Uk,Vk−1,Wk−1) = 0;

∇Vf(Uk,Vk,Wk−1) = 0;

∇Wf(Uk,Vk,Wk) = 0.

This together with the Lipschitz-continuity of gradient∇f Lemma 11.4.5 implies that

‖∇Uf(Uk,Vk,Wk)‖F = ‖∇Uf(Uk,Vk,Wk)−∇Uf(Uk,Vk−1,Wk−1)‖F
≤ Lg‖(Uk,Vk,Wk)− (Uk,Vk−1,Wk−1)‖F ;

and
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‖∇Vf(Uk,Vk,Wk)‖F = ‖∇Vf(Uk,Vk,Wk)−∇Vf(Uk,Vk,Wk−1)‖F
≤ Lg‖(Uk,Vk,Wk)− (Uk,Vk,Wk−1)‖F .

Combining the above two and denote Dk := (Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1), we obtain that

‖∇f(Uk,Vk,Wk)‖F ≤
√

2Lg‖Dk‖F .

Then let k go to infinity, we get ‖∇f(Uk,Vk,Wk)‖F converge 0 by Part (ii) of Theorem 11.5.1. Now, we

extract a convergent subsequence {(Ukm ,Vkm ,Wkm)}m∈N with limit (U,V,W) and use the continuity of

∇f (hence ‖∇f‖F ) to get

lim
m→∞

‖∇f(Ukm ,Vkm ,Wkm)‖F = ‖∇f(U,V,W)‖F .

Hence any limit point (U,V,W) ∈ L(U0,V0,W0) is a critical point of f . The remaining proof in this part

follows from a similar argument as in [213, Lemma 5(iii)] by identifying that {f(Ukm ,Vkm ,Wkm)}m∈N is

bounded (Lemma 11.4.4) and regular (Part (ii) of Theorem 11.5.1).

Finally, combining with the Kurdyka-Łojasiewicz property [212,213,239,241] for characterization of the geometry

of objective function around its critical points, we can obtain a stronger convergence result than Theorem 11.5.1. We

put the proof in Section H.1 in the supplement.

Theorem 11.5.2 (Sequence convergence). The iterates sequence {(Uk,Vk,Wk)}k∈N generated by Algorithm 7 is

convergent to its unique limit point (U,V,W), which is a critical point of the objective function f (11.7). Moreover,

the convergence rate of {(Uk,Vk,Wk)}k∈N is at least sub-linear.

Remark.

• Theorem 11.5.2 is much stronger than Theorem 11.5.1, since we are not guaranteed that the iterates {(Uk,Vk,Wk)}k∈N
generated by Algorithm 7 would converge to a limit point only by Theorem 11.5.1. Theorem 11.5.2 fulfills this

gap by directly showing the iterates {(Uk,Vk,Wk)}k∈N generated by Algorithm 7 converge to a critical point,

and as an consequence, the set of limit point L(U0,V0,W0) becomes a singleton.

• The main part of the proof is based on the Kurdyka-Łojasiewicz property [212,213,239,241] for characterization

of the geometry of objective function (including its constraints) around its critical points, which plays a key role

in our sequel analysis.
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11.6 Extension to Constrained Minimization

Recall Algorithm 8 aims to solve the “factored" tensor nuclear norm regularized minimization problem (11.7),

where the regularization parameter λ should be chosen with respect to the observation noise level. However, in the

noise-free observation regime, as long as λ is positive, we remark that the estimator (Uλ,Vλ,Wλ) returned by

Algorithm 8 is always biased, due to the non-negativity of the regularization term. In practical applications, this is fine

due to the inevitable observation noise in the real data. For theoretical purpose, it is of ultimate interest to study the

constrained minimization

minimize
U,V,W

[
(‖U‖2F + tr(V>V �W>W)) + (‖V‖2F + tr(U>U�W>W)) + (‖W‖2F + tr(U>U�V>V))

]
subject to y = A(U ◦V ◦W) (11.11)

Therefore, it is necessary to extend Algorithm 8 to solve the constrained optimization (11.11).

Algorithm 8 AltMinC

1: Initialization: λ, β ∈ (0, 1), k = 0, and (U0,V0,W0).
2: while stop criterion not meet do
3: (Uk+1,Vk+1,Wk+1) = AlgMinλ(Uk,Vk,Wk)
4: k = k + 1.
5: λ = βλ.
6: end while
7: Output: factorization (Uk,Vk,Wk).

Remark. By Theorem 11.5.2, we have shown the global sequence convergence of Algorithm 7 for any initializa-

tion (U0,V0,W0). Note that we can view Algorithm 8 as a sequence of Algorithm 7 with a series of decreasing λ,

then a direct consequence of Theorem 11.5.2 gives the convergence of Algorithm 8.

11.7 Experiments on Synthetic and Image Data

In this section, we conduct experiments on both synthetic data and real data to illustrate the performance of our

proposed algorithms and compare it to other state-of-the-art ones, e.g., LRTC [242], HaLRTC [243], and FaL-

RTC [243], concerning both synthetic tensor recovery and real image estimation performance.

11.7.1 Experiments on Synthetic Data

In this subsection, we mainly test Algorithm 7 on synthetic data. Particularly, we first generate a rank-3 ground-true

tensor T ? ∈ R40×20×10(i.e., n1 = 40, n2 = 20, n3 = 10, r = 3) by T ? = U? ◦V? ◦W? with U? ∈ Rn1×r,V? ∈

Rn2×r,W? ∈ Rn3×r being three random matrices. However, we are only allowed to observe a small partial of T ?,

with the observed positions denoted by Ω. That is, we only have the knowledge of Y ∈ R40×20×10 with its most
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entries being zero: Yi,j,k =


T ?
i,j,k (i, j, k) ∈ Ω

0 (i, j, k) /∈ Ω

, which is a tensor completion problem. Here we are particularly

interested in the situation that m� n1n2n3 with m denoting the cardinality of Ω. Theoretically, using tensor nuclear

norm ‖T ‖∗
Note that the low-rank tensor completion problem is covered by our general linear model eq. (11.3) (c.f. Exam-

ple 11.2.2). Therefore, we can apply the proposed Algorithm 7: AltMinλ to recover T ?. We remark that traditionally

the parameter λ in AltMinλ in Algorithm 7 is set to as the noise level. When the observation is noise-free, we can set

λ as a very small constant41. Now we apply the proposed Algorithm 7 for different values of λ and several state-of-

the-art tensor completion algorithms (e.g., LRTC [242], HaLRTC [243], and FaLRTC [243] to recover the tensor

T ?. Moreover, to test the robustness of these algorithms, we will apply them under two different data-missing ratios

m
n1n2n3

and we record their relative error ‖T̂ (k)− T ?‖F /‖T ?‖F with T̂ (k) denoting the recovered tensor for a cer-

tain algorithm after kth iterations. Figure 11.1 shows the proposed Algorithm 7 (even for different λ) achieves better

recovery performance than other algorithms in both low- and large-missing ratios, implying both the superiority and

robustness of Algorithm 7 in recovering missing data.

11.7.2 Experiments on Real Image

Given any original color image (a tensor), say T ? ∈ Rn1×n2×n3 (note for a color image n3 = 3), assume we have

only access to a smaller number of random distributed positions of the original color image T ?, i.e., we have access to

the Y satisfying YΩ = T ?
Ω and YΩc = 0 where Ωc denoting the complement set of Ω. We assume the total number

of observations m� n1n2n3.

Note since in the situation of real-data images the rank of T ? is unknown (and NP-hard to compute), we therefore

can pick an appropriate r for Algorithm 7 to recover the ground-truth color image T ?. Remarkably, due to the Burer-

Monteiro factorization structure embedded in Algorithm 7, we calm that the rank of the recovered color image by

Algorithm 7 with a specific r, denoted as T̂ r, is alway satisfying rank(T̂ r) ≤ r. That is, the proposed Algorithm 7

can guarantee the low-rankness of the recovered tensors from the true definition of tensor rank, which is what those

state-of-the-art algorithms (that tries to promote the low-rankness of recovered tensors only using matrix nuclear

norms (c.f. [242–244])). To well display the recovery performance, we also record the relative recovery error as a

function of the iteration number k: ‖T̂ (k)−T ?‖F
‖T ?‖F with T̂ (k) denoting the recovered tensor by those different tensor

completion algorithms after kth iterations. The main algorithms that we will compare with are several powerful state-

of-the-art algorithms in using tensor completion for color image recovery, e.g., LRTC [242], HaLRTC [243], and

FaLRTC [243]. All the parameters of these algorithms are set up according to their suggested values [242, 243]. The

comparison results are summarized in Figure 11.2, from which we can see that

41Even we can just set λ = 0 so that Algorithm 7 reduces to the traditional alternating least squares [76].
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Figure 11.1: Performing Algorithm 7, LRTC, HaLRTC, and FaLRTC to recover T ? for two different missing-data
ratio and recording their relative recovery errors ‖T̂ (k) − T ?‖F /‖T ?‖F versus iteration, where T̂ (k) denotes the
recovered tensor by certain algorithm after k-th iteration. (a) missing-data ratio=70% and (b) missing-data ratio=80%.

• Algorithm 7 converges much faster, as it requires much fewer iterations for Algorithm 7 to converge; This is in

sharp contrast to other algorithms, which instead need several thousands of iterations to converge.

• Algorithm 7 converges to a “better" solution compared with other algorithms by comparing their relative recov-

ery errors.
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Figure 11.2: Compare Algorithm 7 with LRTC, HaLRTC, and FaLRTC in missing image recovery in term of the
relative recovery errors versus iteration. (Left) Test on the House image; (Right) Test on the Tomato image. Here
we denote the recovered image by Algorithm 7 by T̂ r with r indicating the input rank of the algorithm. Both show
that the proposed Algorithm 7 converges with fewer iterations and to a better solution in term of the relative recovery
errors.
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CHAPTER 12

SPHERICAL CLUSTERING VIA ALTERNATING MINIMIZATION

Principal Component Analysis (PCA) is one of the most important methods to handle high dimensional data.

However, most of the studies on PCA aim to minimize the loss after projection, which usually measure the Euclidean

distance, though in some fields, angle distance is known to be more important and critical for analysis. In this work42,

we propose a method by adding constraints on factors to unify the Euclidean distance and angle distance. However,

due to the nonconvexity of the objective and constraints, the optimized solution is not easy to obtain. We propose an

alternating linearized minimization method to solve it with provable convergence rate and guarantee. Experiments on

synthetic data and real-world datasets have validated the effectiveness of our method and demonstrated its advantages

over state-of-art clustering methods.

12.1 Introduction

In many real-world applications such as text categorization and face recognition, the dimensions of data are usually

very high. Dealing with high-dimensional data is computationally expensive while noise or outliers in the data can

increase dramatically as the dimension increases. Dimension reduction is one of the most important and effective

methods to handle high dimensional data [245–247]. Among the dimension reduction methods, Principal Component

Analysis (PCA) is one of the most widely used methods due to its simplicity and effectiveness.

PCA is a statistical procedure that uses an orthogonal transformation to convert a set of correlated variables into

a set of linearly uncorrelated principal directions. Usually the number of principal directions is less than or equal to

the number of original variables. This transformation is defined in such a way that the first principal direction has the

largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding

direction has the highest variance under the constraint that it is orthogonal to the preceding directions. The resulting

vectors are an uncorrelated orthogonal basis set.

When data points lie in a low-dimensional manifold and the manifold is linear or nearly-linear, the low-dimensional

structure of data can be effectively captured by a linear subspace spanned by the principal PCA directions.

More specifically, let X = [x1 · · · xn] ∈ Rm×n be n data points inm-dimensional space while U = [u1 · · · ur] ∈

Rm×r contains the principal directions and V = [v1 . . . vn] ∈ Rr×n contains the principal components (data projects

along the principal directions). Generally speaking, there can be two formulations for PCA:

• Covariance-based approach, which computes the covariance matrix C =
∑n
i=1(xi − x̄)(xi − x̄)> = XX>.

Here we assume the data are already centered, i.e., x̄ = 0, and we drop the factor 1
n−1 which does not affect U.

42This is a joint work with Kai Liu, Hua Wang and Gongguo Tang [12].
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The principal directions are obtained as:

maximize
U>U=I

tr(U>XX>U). (12.1)

• Matrix low-rank approximation-based approach. Let X ≈ UV, we solve:

minimize
U>U=I

‖X−UV‖2F =
∑
i,j

[Xij − (UV)ij ]
2. (12.2)

Taking the derivative w.r.t. V and setting it to zero, we have V = X>U, and Eq. (12.2) reduces to Eq. (12.1).

Therefore, the solutions to these two approaches are identical. In this work, we mainly focus on the second formulation.

12.2 Motivation

In Eq. (12.2), the objective function measures the gap between original data X and approximation after projec-

tion UV, which is based on squared Euclidean distance measurements and treat each feature as equally important.

However, in the real world, there are some given datasets which are preprocessed to be normalized and different fea-

tures may have various significance. Thus distance-based measurement method may yield poor results. On the other

side, similarity-based measurement methods such as angle distance have been proved to be more efficient in some

applications, including information retrieval [248], signal processing [249], metric learning [250], etc.. Though one

can calculate the similarity after projection, still this appears to be more or less awkward and inefficient. Thus, de-

riving some methods which can directly measure angle distance from PCA is vitally important. However, to our best

knowledge, it has not been studied yet.

θ1

θ2

d1

d2
C1

C2

C3

Figure 12.1: Larger angles (θ2 > θ1) in the sphere will have larger Euclidean distance, and vice versa, which unifies
the cosine similarity and Euclidean distance simultaneously.

Motivated by the above observations and a previous work [251], in this work we propose a spherical-PCA model

which can unify the Euclidean distance and angle distance. By noticing that larger angle in the sphere in Figure 12.1
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also has larger Euclidean distance, we can add the normalization constraint to the component matrix, where the norm

of each column in V is 1 to guarantee the spherical distribution of components:

minimize
U∈Rm×r,V∈Rr×n

‖X−UV‖2F =
∑
i,j

[Xij − (UV)ij ]
2 s.t. U ∈ U, V ∈ V (12.3)

where we define:

U := {U : U>U = I},
V := {V : ‖vj‖ = 1 ∀j}, (12.4)

where ‖ · ‖ denotes `2 norm for vectors and denotes the spectral norm for matrices. Suppose the component is

spherically distributed, then the Euclidean distance between vi and vj is:

‖vi − vj‖2 = ‖vi‖2 + ‖vj‖2 − 2〈vi,vj〉

= ‖vi‖2 + ‖vj‖2 − 2
〈vi,vj〉
‖vi‖‖vj‖

= 2− 2 cos(θ), θ ∈ [0, π]

(12.5)

which is equivalent to angle distance that bigger angle θ will result in larger Euclidean distance, and vice versa.

Remark 12.2.1. In traditional PCA, without the normalization constraint on each column of v, the optimized solution

to Eq. (12.2) can barely satisfy the spherical distribution. Since r is usually less thanm, PCA will lose some component

more or less, thus xi 6= Uvi and usually ‖xi‖ 6= ‖Uvi‖ (they may be equal, but it barely happens) . We have

‖xi‖2 = 1 for normalized data and if ‖vi‖2 = 1 then ‖Uvi‖2 = tr(v>i U>Uvi) = tr(v>i vi) = ‖vi‖2 = 1, which

leads a contradiction, thus the constraint on V is necessary to guarantee our motivation.

12.3 Formulation And Algorithm

12.3.1 Objective Function with Proximal Term

We first denote:

h(U,V) = ‖X−UV‖2F =
n∑
j=1

‖xj −Uvj‖2 s.t. U ∈ U,V ∈ V (12.6)

By noting the nonconvexity of Eq. (12.3), where no closed solution exists, we propose an alternating minimization

method to get the optimized solution as: given kth iterate of V varaible V(k) = [v1(k) · · · vn(k)],

U(k + 1) = arg min
U∈U

‖X−UV(k)‖2F ;

vj(k + 1) = arg min
‖v‖=1

‖xj −U(k + 1)v‖22, ∀j
(12.7)

Note that when the constraints U ∈ U,V ∈ V, the problem (12.6) is known as the nonconvex matrix factorization

problems, which have been well-studied [6, 8]. This work focus on develop efficient and provable algorithm to deal

with (12.6) with the constraints U ∈ U,V ∈ V. Note that the proximal algorithm recently has been successfully

applied to a wide variety of situations: convex optimization, nonmonotone operators [252, 253] with various appli-

cations to nonconvex programming. It was first introduced by Rockafellar [254] as an approximation regularization
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method in convex optimization and in the study of variational inequalities associated to maximal monotone operators.

Considering the fact that the objective function in Eq. (12.3) is nonconvex w.r.t. U and V, and the constraint on

U and V are also nonconvex, we consider adding proximal term and optimize the solution as: with the alternating

linearized minimization solutions becomes:

U(k + 1) = arg min
U∈U

〈U−U(k),∇Uh(U(k),V(k))〉+
µ

2
‖U−U(k)‖2F ;

vj(k + 1) = arg min
‖v‖=1

〈v − vj(k),∇vjh(U(k + 1),V(k))〉+
λ

2
‖v − vj(k)‖2, ∀j

(12.8)

Remark 12.3.1. We add the proximal term to make the new updating solution will not be too far from the previous

step to avoid drastic changes. One can see that when the proximal term regularization parameters µ, λ are sufficiently

large, they will dominate the objective function. Moreover, we can take the linearized minimization as to minimize

the objective with Taylor expansion by making use of first order (linear) information.

12.3.2 Proposed Algorithm

Given the alternating minimization objective in Eq. (12.8), now we turn to provide detailed (closed) updating

algorithm.

We first derive the solution for U and before that we give a useful lemma that is similar to [255, Theorem 1]

and [256, Theorem 1]:

Lemma 12.3.1. maximizeU>U=I tr(U>M) is given by U = AB>, where [A,Σ,B] = svd(M).

Proof. On one hand, we have:

tr(U>M) = tr(U>AΣB>) = tr(PΣ), (12.9)

where P = B>U>A is an orthogonal matrix since

PP> = (B>U>A)(B>U>A)> = I.

Thus every element including the diagonal of P is no larger than 1. Then we have:

tr(PΣ) ≤ tr(Σ) (12.10)

On the other hand, when U = AB>, we have

tr(U>M) = tr(BA>AΣB>) = Σ.

Thus U = AB> is the optimized solution to maximize the objective.

Accordingly, we have:

U(k + 1) = arg min
U>U=I

〈U−U(k),∇Uh(U(k),V(k))〉+
µ

2
‖U−U(k)‖2F

= arg max
U>U=I

〈U,M(k)〉 = YZ>
(12.11)
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Algorithm 9 Alternating Linearized Minimization for Problem Eq. (12.6)

Input: data X ∈ Rm×n, rank of factors r, regularization parameters λ, µ, number of iterations K
Initialization: U(0) ∈ Rm×r,V(0) ∈ Rr×n
for k = 1, . . . ,K

Optimize U(k) via Eq. (12.11)
Optimize V(k) via Eq. (12.12) for j = 1, . . . , n

end
Output: U(K) and V(K)

where M(k) := 2(X−U(k)V(k))V(k)> + µU(k) and Y,Z is obtained from [Y,Σ,Z] = svd(M(k)).

Then we compute V(k + 1):

vj(k + 1) = arg min
‖v‖=1

〈v − vj(k),∇vjh(U(k + 1),V(k))〉+
λ

2
‖v − vj(k)‖2

= arg max
‖v‖=1

〈v,q〉

=
q

‖q‖ , for j = 1, . . . , n,

(12.12)

where q := 2U(k + 1)>xj + (λ− 2)vj(k).

12.4 Convergence Analysis

In the following case, we let U and V be as defined in Eq. (12.4), and show the convergence of our proposed

algorithm in the last section.

To begin with, we first show that h(U,V) has Lipschitz continuous gradient at U ∈ U,V ∈ V, which will be very

useful for the following convergence analysis.

Proposition 12.4.1. h(U,V) has Lipschitz continuous gradient at U ∈ U,V ∈ V, where U and V are defined in Eq.

(12.4). That is, there exists a constant Lc such that

‖∇h(U,V)−∇h(U′,V′)‖F ≤ Lc‖(U,V)− (U′,V′)‖F (12.13)

for all U,U′ ∈ U and V,V′ ∈ V. Here Lc > 0 is referred to as the Lipschitz constant.

Proof of Proposition 12.4.1. It is equivalent to show ‖∇2h(U,V)‖ ≤ Lc for all U ∈ U,V ∈ V. Standard computa-

tions give the Hessian quadrature form [∇2h(U,V)](∆,∆) for any ∆ =

∆U

∆>V

 ∈ R(n+m)×r (where ∆U ∈ Rm×r

and ∆V ∈ Rr×n) as

[∇2h(U,V)](∆,∆) = ‖∆UV + U∆V‖2F + 2 〈UV −X,∆U∆V〉 (12.14)
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which gives:

‖∇2h(U,V)‖ = maximize
‖∆‖F=1

∣∣[∇2h(U,V)](∆,∆)
∣∣

≤ maximize
‖∆‖F=1

‖∆UV + U∆V‖2F + 2 |〈UV −X,∆U∆V〉|

≤ 2(‖U‖2F + ‖V‖2F + ‖U‖F ‖V‖F + ‖X‖F ) := Lc,

(12.15)

where the inequality follows from |〈A,B〉| ≤ ‖A‖F ‖B‖F and ‖CD‖F ≤ ‖C‖F ‖D‖F . Due to the constraints on U

and V, we have ‖U‖2F = tr(U>U) = tr(I) = r, ‖V‖2F =
∑n
j=1 ‖vj‖2 = n.

To analyse the convergence, we rewrite Eq. (12.6) as

minimize
U,V

f(U,V) = h(U,V) + δU(U) + δV(V), (12.16)

where

δU(U) =

{
0, U ∈ U
∞, U /∈ U

is the indicator function of the set U and therefore nonsmooth, so is δV(V).

The following result establishes that the subsequence convergence property of the proposed algorithm, i.e., the

sequence generated by Algorithm 9 is bounded and any of its limit point is a critical point of Eq. (12.16).

Theorem 12.4.1 (Subsequence convergence). Let {W(k)}k≥0 = {(U(k),V(k))}k≥0 be the sequence generated by

Algorithm 9 with constant step size λ, µ > Lc. Then the sequence {W(k)}k≥0 is bounded and obeys the following

properties:

(P1): Sufficient decrease:

f(W(k − 1))− f(W(k)) ≥ min(λ, µ)− Lc
2

‖W(k)−W(k − 1)‖2F , (12.17)

which implies that

lim
k→∞

‖W(k − 1)−W(k)‖F = 0. (12.18)

(P2): The sequence {f(W(k))}k≥0 is convergent.

(P3): For any convergent subsequence {W(k′)}, its limit point W? is a critical point of f and

lim
k′→∞

f(W(k′)) = lim
k→∞

f(W(k)) = f(W?). (12.19)

Proof of Theorem 12.4.1. Before proving Theorem 12.4.1, we give out some necessary definition.

Definition 12.4.1. [257] Let f : Rd → (−∞,∞] be a proper and lower semi-continuous function, whose domain is

defined as
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dom f := {u ∈ Rn : f(u) <∞} .

The (Fréchet) subdifferential ∂f of f at u is defined by

∂f(u) =

{
z ∈ Rd : lim

v→u
inf

f(v)− f(u)− 〈z,v − u〉
‖u− v‖ ≥ 0

}
for any u ∈ domh and ∂f(u) = ∅ if u /∈ dom f .

We say u is a limiting critical point, or simply a critical point of f if

0 ∈ ∂f(u).

We now turn to prove Theorem 12.4.1.

• Showing (P1): First note that for all k, according to our alternating minimization method, we always have

δU(U(k)) = δV(V(k)) = 0 and thus f(W(k)) = h(W(k)).

Since h(U,V) has Lipschitz continuous gradient at U ∈ U,V ∈ V with Lipschitz gradient Lc and λ > Lc, we

define hLc(U,U
′,V) as proximal regularization of h(U,V) linearized at U′,V:

h(U′,V) + 〈∇Uh(U′,V),U−U′〉+
Lc
2
‖U−U′‖2F ,

By the definition of Lipschitz continuous gradient and Taylor expansion, we have

h(U,V) ≤ hLc(U,U′,V). (12.20)

Also by the definition of proximal map, we get:

U(k) = arg min
U

δU(U) +
µ

2
‖U−U(k − 1)‖2F + 〈∇Uh(U(k − 1),V(k − 1)),U−U(k − 1)〉 (12.21)

and hence we take U(k) = U, which implies that

δU(U(k)) +
µ

2
‖U(k)−U(k − 1)‖2F + 〈∇Uh(U(k − 1),V(k − 1)),U(k)−U(k − 1)〉 ≤ δU(U(k − 1))

(12.22)
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Combining Eq. (12.20) and Eq. (12.22), we have:

h(U(k),V(k − 1)) + δU(U(k))

≤ h(U(k − 1),V(k − 1)) + 〈∇Uh(U(k − 1),V(k − 1)),U(k)−U(k − 1)〉+
Lc
2
‖U(k)−U(k − 1)‖2F

+ δU(U(k))

≤ h(U(k − 1),V(k − 1)) +
Lc
2
‖U(k)−U(k − 1)‖2F + δU(U(k − 1))− µ

2
‖U(k)−U(k − 1)‖2F

= h(U(k − 1),V(k − 1)) + δU(U(k − 1))− µ− Lc
2
‖U(k)−U(k − 1)‖2F ,

(12.23)

Similarly, we have

h(U(k),V(k))− h(U(k),V(k − 1)) + δV(V(k))− δV(V(k − 1)) ≤ −λ− Lc
2
‖V(k)−V(k − 1)‖2F

(12.24)

which together with the above equation gives Eq. (12.17). Now repeating Eq. (12.17) for all k will give

(min(λ, µ)− Lc)
∞∑
k=1

‖W(k)−W(k − 1)‖2F ≤ f(W(0)), (12.25)

which gives Eq. (12.18).

Remark 12.4.1. In our proposed algorithm, since in every update, our solution is closed while satisfying the

constraints, thus in fact δU and δV are 0, and∞ is never achieved.

• Showing (P2): It follows from Eq. (16) that {f(W(k))}k≥0 is a decreasing sequence. Due to the fact that f is

lower bounded as f(W(k)) ≥ 0 for all k, we conclude that {f(W(k))}k≥0 is convergent.

• Showing (P3): Since U(k′) ∈ U,V(k′) ∈ V for all k′ and both of the sets U and V are closed, we have

U? ∈ U,V? ∈ V. Since h is continuous, we have

lim
k′→∞

f(W(k′)) = lim
k′→∞

h(U(k′),V(k′)) + δU(U(k′)) + δV(V(k′)) = f(W?)

which together with the fact that {f(W(k))}k≥0 is convergent gives Eq. (12.18).

To show W? is a critical point, we first consider Eq. (12.21) and the optimality condition yields:

∇Uh(U(k − 1),V(k − 1)) + µ(U(k)−U(k − 1)) + ∂δU(U(k)) = 0. (12.26)

Similarly, we have

∇Vh(U(k),V(k − 1)) + λ(V(k)−V(k − 1)) + ∂δV(V(k)) = 0. (12.27)

Now, define
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Ak := ∇Uh(U(k),Vk) + ∂δU(U(k)),

Bk := ∇Vh(U(k),V(k)) + ∂δV(V(k)).

Thus, we have

Ak ∈ ∂Uf(U(k),V(k)),Bk ∈ ∂Vf(U(k),V(k)). (12.28)

It follows from the above that

lim
k→∞

‖Ak‖F ≤ lim
k→∞

‖∇Uh(U(k),V(k))−∇Uh(U(k − 1),V(k − 1))‖F + µ‖U(k)−U(k − 1)‖F
≤ lim
k→∞

(Lc + µ)‖W(k)−W(k − 1)‖F = 0.

(12.29)

Similarly, we have:

lim
k→∞

‖Bk‖F ≤ lim
k→∞

(Lc + λ)‖W(k)−W(k − 1)‖F = 0. (12.30)

Then we have:

dist(0, ∂f(W(k))) ≤ (2Lc + µ+ λ)‖W(k)−W(k − 1)‖F (12.31)

Owing to the closedness properties of ∂f(W(k′)), we finally obtain

0 ∈ ∂f(W?).

Thus, W? is a critical point of f .

Theorem 12.4.2 (Sequence convergence). The sequence {W(k)}k≥0 generated by Algorithm 9 with a constant step

size λ, µ > Lc is global-sequence convergence.

Proof of Theorem 12.4.2. Before proving Theorem 12.4.2, we give out another important definition.

Definition 12.4.2 (Kurdyka-Lojasiewicz (KL) property). [258] We say a proper semi-continuous function h(u)

satisfies Kurdyka-Lojasiewicz (KL) property, if u is a critical point of h(u), then there exist δ > 0, θ ∈ [0, 1), C1 > 0

such that

|h(u)− h(u)|θ ≤ C1 dist(0, ∂h(u)), ∀ u ∈ B(u, δ)

We mention that the above KL property (also known as KL inequality) states the regularity of h(u) around its

critical point u and the KL inequality trivially holds at non-critical point. There are a very large set of functions
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satisfying the KL inequality including any semi-algebraic functions [257]. Clearly, the objective function f is semi-

algebraic as both h, δU and δV are semi-algebraic.

Lemma 12.4.1 (Uniform KL property). There exist δ0 > 0, θKL ∈ [0, 1), CKL > 0 such that for all W s.t.

dist(W,C(W(0))) ≤ δ0:

∣∣f(W)− f
∣∣θKL ≤ CKL dist(0, ∂f(W)) (12.32)

with f denoting the limiting function value defined in (P2) of Theorem 12.4.1.

Proof. First we recognize the union
⋃
iB(W?

i , δi) forms an open cover of C(W(0)) with W?
i representing all points

in C(W(0)) and δi to be chosen so that the the following KL property of f at W?
i ∈ C(W(0)) holds:

∣∣f(W)− f
∣∣θi ≤ Ci dist(0, ∂f(W)) ∀W ∈ B(W?

i , δi)

where we have used all f(W?
i ) = f by assertion (P3) of Theorem 12.4.1. Then due to the compactness of the set

C(W(0)), it has a finite subcover
⋃p
i=1B(W?

ki
, δki) for some positive integer p. Now combining all, we have for all

W ∈ ⋃pi=1B(W?
ki
, δki),

∣∣f(W)− f
∣∣θKL ≤ CKL dist(0, ∂f(W)) (12.33)

with θKL = maxpi=1{θki} and CKL = maxpi=1{Cki}. Finally, since
⋃p
i=1B(W?

ki
, δki) is an open cover of

C(W(0)), there exists a sufficiently small number δ0 so that

{(W) : dist(W,C(W(0))) ≤ δ0} ⊂
p⋃
i=1

B(W?
i , δki).

Therefore, eq. (12.33) holds whenever dist(W,C(W(0))) ≤ δ0.

We now turn to prove Theorem 12.4.2.

According to Definition 12.4.2, there exists a sufficiently large k0 satisfying:

[f(W(k))− f(W?)]θ ≤ C2 dist(0, ∂f(W(k))), ∀k ≥ k0. (12.34)

In the subsequent analysis, we restrict to k ≥ k0. Construct a concave function x1−θ for some θ ∈ [0, 1) with domain

x > 0. Obviously, by the concavity, we have

x1−θ
2 − x1−θ

1 ≥ (1− θ)x−θ2 (x2 − x1),∀x1 > 0, x2 > 0

Replacing x1 by f(Wk+1)− f(W?) and x2 by f(Wk)− f(W?) and using the sufficient decrease property, we have
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[f(W(k))− f(W?)]1−θ − [f(W(k + 1))− f(W?)]1−θ

≥ (1− θ)f(W(k))− f(W(k + 1))

[f(W(k))− f(W?)]θ

≥ λ(1− θ)
2C2

‖W(k)−W(k + 1)‖2F
dist(0, ∂f(W(k)))

,

≥ λ(1− θ)
2C2C3

‖W(k)−W(k + 1)‖2F
‖W(k)−W(k − 1)‖F

= κ(
‖W(k)−W(k + 1)‖2F
‖W(k)−W(k − 1)‖F

+ ‖W(k)−W(k − 1)‖F )− κ‖W(k)−W(k − 1)‖F

≥ κ (2‖W(k)−W(k + 1)‖F − ‖W(k)−W(k − 1)‖F )

And accordingly, we have:

2‖W(k)−W(k + 1)‖F − ‖W(k)−W(k − 1)‖F ≤ β
(
[f(W(k))− f(W?)]1−θ − [f(W(k + 1))− f(W?)]1−θ

)
(12.35)

with C3 := 2Lc + µ+ λ, κ := λ(1−θ)
2C2C3

, β :=
(
λ(1−θ)
2C2C3

)−1

.

Summing the above inequalities up from some k̃ > k0 to infinity yields

∞∑
k=k̃

‖W(k)−W(k + 1)‖F ≤ ‖W(k̃)−W(k̃ − 1)‖F + β[f(W(k̃))− f(W?)]1−θ (12.36)

implying

∞∑
k=k̃

‖W(k)−W(k + 1)‖F <∞.

Following some standard arguments one can see that

lim sup
t→∞,t1,t2≥t

‖W(t1)−W(t2)‖F = 0

which implies that the sequence {W(k)} is Cauchy, and hence convergent. Hence, the limit point set C(W(0)) is

singleton W?.

Theorem 12.4.3 (Convergence Rate). The convergence rate is at least sub-linear.

Towards that end, we first know from the above argument that {W(k)} converges to some point W?, i.e.,

limk→∞W(k) = W?. Then using Equation (12.36) and the triangle inequality, we obtain

‖W(k̃)−W?‖F ≤
∞∑
k=k̃

‖W(k)−W(k + 1)‖F

≤ ‖W(k̃)−W(k̃ − 1)‖F + β[f(W(k̃))− f(W?)]1−θ

(12.37)
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which indicates the convergence rate of W(k̃) → W? is at least as fast as the rate that ‖W(k̃) −W(k̃ − 1)‖F +

β[f(W(k̃))−f(W?)]1−θ converges to 0. In particular, the second term β[f(W(k̃))−f(W?)]1−θ can be controlled:

β[f(W(k̃))− f(W?)]θ ≤ βC2 dist(0, ∂f(W(k̃)))

≤ βC2(2B0 + λ+ ‖X‖F )︸ ︷︷ ︸
:=α

‖W(k̃)−W(k̃ − 1)‖F (12.38)

Plugging (12.38) back to (12.37), we then have

∞∑
k=k̃

‖W(k)−W(k + 1)‖F ≤ ‖W(k̃)−W(k̃ − 1)‖F + α‖W(k̃)−W(k̃ − 1)‖
1−θ
θ

F .

We divide the following analysis into two cases based on the value of the KL exponent θ.

• Case I: If θ = 0, we set Q := {k ∈ N : W(k+ 1) 6= W(k)} and take k in Q. When k is sufficiently large, then

we have:

‖W(k + 1)−W(k)‖2F := C4 > 0 (12.39)

On the other hand,

f(W(k + 1))− f(W(k)) ≥ min(λ, µ)− Lc
2

‖W(k + 1)−W(k)‖2F

=
min(λ, µ)− Lc

2
C4

(12.40)

Since f(W(k)) is known to be converged to 0, Eq. (12.40) implies that Q is finite and sequence W(k) converges

in a finite number of steps.

• Case II: θ ∈ (0, 1
2 ]. This case means 1−θ

θ ≥ 1. We define Pk̃ =
∑∞
i=k̃ ‖Wi+1 −Wi‖F ,

Pk̃ ≤ Pk̃−1 − Pk̃ + α
[
Pk̃−1 − Pk̃

] 1−θ
θ

. (12.41)

Since Pk̃−1 − Pk̃ → 0, there exists a positive integer k1 such that Pk̃−1 − Pk̃ < 1, ∀ k̃ ≥ k1. Thus,

Pk̃ ≤ (1 + α) (Pk̃−1 − Pk̃), ∀ k̃ ≥ max{k0, k1},

which implies that

Pk̃ ≤ ρ · Pk̃−1, ∀ k̃ ≥ max{k0, k1}, (12.42)

where ρ = 1+α
2+α ∈ (0, 1). This together with (12.37) gives the linear convergence rate

‖W(k)−W?‖F ≤ O(ρk−k), ∀ k ≥ k. (12.43)

where k = max{k0, k1}.

• Case III: θ ∈ (1/2, 1). This case means 1−θ
θ ≤ 1. Based on the former results, we have
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Pk̃ ≤ (1 + α)
[
Pk̃−1 − Pk̃

] 1−θ
θ

, ∀ k̃ ≥ max{k0, k1}.

We now run into the same situation as in [259]. Hence following a similar argument gives

P
1−2θ
1−θ

k̃
− P

1−2θ
1−θ

k̃−1
≥ ζ, ∀ k ≥ k

for some ζ > 0. Then repeating and summing up the above inequality from k = max{k0, k1} to any k > k, we

can conclude

Pk̃ ≤
[
P

1−2θ
1−θ

k̃−1
+ ζ(k̃ − k)

]− 1−θ
2θ−1

= O
(

(k̃ − k)−
1−θ
2θ−1

)
.

Finally, the following sublinear convergence holds

‖W(k)−W?‖F ≤ O
(

(k − k)−
1−θ
2θ−1

)
, ∀ k > k. (12.44)

We end this proof by commenting that both linear and sublinear convergence rate are closely related to the KL

exponent θ at the critical point W?.

12.5 Experiments

In this section, we are going to apply our proposed spherical PCA to both synthetic data and real-world datasets to

test the performance of our proposed method. The experiment on synthetic data will be introduced first followed by

experiments on real-world datasets.

12.5.1 Synthetic Data Experiment

We first generate 200 data points, half of which is distributed within the region between X = Z and Z axis

(denoted as blue dots in the top part of Figure 12.2), while another group is generated within the region between

Y = Z and Z axis (denoted as the red dots). These two clusters of data are generated through different angles. Thus

when we do clustering, it should be angle distance rather than Euclidean distance to determine the clustering result.

For our method, we learn a projection matrix U ∈ R3×2 and plot the component matrix V ∈ R2×200 as the bottom

part illustrates. We see that, Euclidean distance-based method (such as K-means) will yield poor clustering result

(middle part), while spherical-PCA will obtain good clustering result.

Also, we show the convergence of {W(k)}k≥0 = {(U(k),V(k))}k≥0 generated by our method. As Figure 12.3

shows, after short iterations, the generated sequences will be stable, which is in accordance with the convergence

proof. It also illustrates the objective with update. We see that it converges fast with a sublinear rate, which validates

our convergence rate analysis.
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Figure 12.2: Left: two groups of data generated from two angles. Middle: clustering result with distance -based
method K-means. Right: clustering result with our method. Blue and red represent different clusters.
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Figure 12.3: Left: ‖U(k + 1)−U(k)‖F with updates. Center: ‖V(k + 1)−V(k)‖F with updates. Both converge
to 0 after several iterations. Right: Objective converges at sub-linear rate. All validate our analysis.

Table 12.1: Clustering performance of different algorithms on 20-newsgroup dataset

Methods K-means MUA PCA R1-PCA K-SVD Spherical PCA

#Groups Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

5 0.651 0.621 0.674 0.614 0.703 0.628 0.745 0.647 0.789 0.673 0.838 0.695
10 0.487 0.316 0.478 0.320 0.502 0.383 0.535 0.398 0.527 0.394 0.588 0.401
15 0.398 0.307 0.387 0.301 0.412 0.319 0.423 0.320 0.461 0.377 0.486 0.385
20 0.315 0.242 0.314 0.221 0.362 0.248 0.394 0.260 0.412 0.280 0.431 0.294

Table 12.2: Clustering performance of different algorithms on four UCI datasets

Methods K-means MUA PCA R1-PCA K-SVD Spherical PCA

Data (#class) Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

glass (6) 0.687 0.566 0.692 0.574 0.732 0.608 0.769 0.626 0.801 0.648 0.788 0.635
diabetes (2) 0.775 0.632 0.788 0.654 0.761 0.613 0.808 0.631 0.827 0.672 0.832 0.680
mfeat (10) 0.365 0.223 0.358 0.211 0.371 0.225 0.431 0.342 0.412 0.328 0.425 0.330
isolet (26) 0.267 0.198 0.253 0.181 0.262 0.182 0.324 0.201 0.357 0.246 0.373 0.250
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12.5.2 Real-world Datasets Experiment

It is known that in information retrieval, similarities or dissimilarities (proximities) between objects are more

critical than Euclidean distance. In this subsection, we will test our proposed method on the widely-used 20-newsgroup

dataset for clustering. We have different newsgroups such as: comp.graphics, rec.motorcycles, rec.sport.baseball,

sci.space, talk.politics.mideast, etc.. 200 documents are randomly sampled from each newsgroup. The word-document

matrix X is constructed with 500 words selected according to the mutual information between words and documents.

Tf.idf term weighting is used before normalization. Clustering accuracy are computed using the known class labels.

Results will be compared including clustering accuracy (Acc.) and Normalized Mutual Information (NMI) [260].

Different clustering algorithms will be compared including:

1. R1-PCA, which proposes a rotational invariant `1-norm PCA, where a robust covariance matrix will soften the

effects of outliers [261];

2. K-SVD, which is an iterative method that alternates between sparse coding of the examples based on the current

dictionary and a process of updating the dictionary atoms to better fit the data [262];

3. PCA, i.e. the vanilla PCA method in Eq. (12.2) without the constraint on V, which will be Euclidean distance-

based by default;

4. NMF Matrix Factorization proposed by [263–266] where U and V are obtained by Multiplicative Updating

Algorithm with nonnegative constraint

5. K-means [267].

We vary the number of clusters from 5 to 10, 15 and 20. In each newsgroup, 200 documents are randomly sampled,

and we repeat for 10 times by taking the average and report the clustering result as Table 12.1 demonstrates.

We see that our proposed method Spherical PCA can always achieve both higher clustering accuracy and normal-

ized mutual information in text analysis.

We also compare our method with other methods on UCI datasets including: glass, diabetes, mfeat and isolet.

Table 12.2 illustrates the results. We see that though our method doesn’t show the absolute advantage as on text, still

the result is considerably good.

All the experiments indicate that our method can achieve good performance on both text and non-text datasets,

showing its potential for broader application.

12.6 Conclusion

In this work, we study spherical PCA where the direction matrix is orthonormal and the component vectors are

assumed to lie in the unitary sphere. The benefit is obvious that it can make the angle distance equivalent to Euclidean
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distance. Due to the nonconvexity of objective function and constraints on the factors which are difficult to tackle,

we propose an alternating linearized minimization method to derive the solution, which is proved to be sequence

convergent. Moreover, we analyze the convergence rate which is validated by our experiments. The results on real-

world datasets and synthetic data illustrate the superiority of our method.
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APPENDIX A

APPENDICES FOR CHAPTER 2

A.1 Jackson Kernel

For any integer M > 0, the Jackson kernel, also known as the squared Fejér kernel, is defined by [16, Eq. (IV.2)]

or [13, Eq. (2.3) with M = fc/2 + 1]

K(f) =

[
sin(πMf)

M sin(πf)

]4

. (A.1)

The Jackson kernel shows up in the construction of dual polynomials that satisfy the Boundedness and Interpolation

properties. The choice of the Jackson kernel is due to its nice properties as easily seen from its graph: it attains

one at the peak, and quickly decrease to zero. Candès and Fernandez-Granda showed in [13] that as long as the

frequencies composing a signal satisfy certain separation condition, then a dual polynomial can be constructed as a

linear combination of shifted copies of the Jackson kernel and its first-order derivative to certify that the decomposition

achieves the signal’s atomic norm.

We use K ′(f),K ′′(f),K ′′′(f) to denote respectively the first, second, and third order derivatives of the Jackson

kernel and more generally K(`)(f) the `th order derivative. We will frequently use the second order derivative of the

Jackson kernel evaluated at zero K ′′(0), whose value is [16, Above Eq. (IV.5)]

K ′′(0) = −4π2(M2 − 1)

3
= −π

2(n2 − 4)

3
.

Here we used the convention that n = 2M. Then its absolute value |K ′′(0)| (denoted by τ ) falls into the interval

|K ′′(0)| ∈
[(

π2

3
− 4π2

3(130)2

)
n2,

(
π2

3

)
n2

]
, for n ≥ 130.

For ease of exposition, we give an explicit lower bound on |K ′′(0)| (which is valid for any n ≥ 130):

τ := |K ′′(0)| ≥
(
π2

3
− 4π2

3(130)2

)
n2 ≥ 3.289n2, for n ≥ 130. (A.2)

At a high-level, the purpose of introducing τ = |K ′′(0)| is to normalize the second order derivative of the Jackson

kernel to 1 at f = 0.

A.1.1 Decomposing the Jackson Kernel

The Jackson kernel admits the following decomposition [16]
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K(f2 − f1) =

[
sin(πM(f2 − f1))

M sin(π(f2 − f1))

]4

= a(f1)HZa(f2) =
1

M

2M∑
j=−2M

gM (j)e−i2πj(f2−f1),

where M = n/2 and Z is an n× n diagonal matrix whose diagonal entries are given by [Z]`` = gM (`)
M with

gM (`) =
1

M

min(`+M,M)∑
k=max(`−M,−M)

(
1−

∣∣∣∣ kM
∣∣∣∣)(1−

∣∣∣∣`− kM

∣∣∣∣) ≥ 0, ` = −2M, . . . , 2M, (A.3)

the convolution of two discrete triangle functions scaled by 1/M . The weighting function gM (`) attains its peak at

zero and

gM (0) =
1

M

M∑
k=−M

(
1−

∣∣∣∣ kM
∣∣∣∣)2

=
2

3
+

2

M2

¬
≤ 2

3
+

2

652
≤ 0.667,

where ¬ holds for M ≥ 65 (or n ≥ 130) by noting that 2/M2 is a decreasing function of M . Using the definition of

Z, we bound ‖Z‖∞,∞ as

‖Z‖∞,∞ = max
−2M≤j≤2M

gM (j)

M
=
gM (0)

M
≤ 0.667

M
, for n ≥ 130. (A.4)

A.1.2 Decomposing the Jackson Kernel Matrices

We frequently use matrices formed by sampling the Jackson kernel and its derivatives at appropriate frequencies.

Given a finite set of frequencies T = {f`}k`=1 (or its vector form f ∈ Rk), we define

D0(f) : = [K(fm − fn)]1≤n≤k,1≤m≤k = A(f)HZA(f);

D1(f) : = [K ′(fm − fn)]1≤n≤k,1≤m≤k = A(f)HZA′(f) = −A′(f)
H

ZA(f);

D2(f) : = [K ′′(fm − fn)]1≤n≤k,1≤m≤k = −A′(f)
H

ZA′(f) = A′′(f)
H

ZA(f) = A(f)HZA′′(f),

(A.5)

where

A(f) := [a(f1), . . . ,a(fk)], A′(f) := i2π diag(n)A(f), A′′(f) := (i2π diag(n))2A(f)

with n = [−n,−n+1, . . . , 0, . . . , n−1, n]T . More generally, the kernel matrix D`(f) := [K(`)(fm−fn)]1≤n≤k,1≤m≤k

satisfies the factorization

D`(f) = (−1)jA(j)(f)HZA(`−j)(f), for j ≤ `, (A.6)

where A(`)(f) represents the `th order derivative of the matrix A(f):

A(`)(f) = (i2π diag(n))`A(f).
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Similarly, we define the cross kernel matrices with respect to the frequency pair (f1, f2) or ({f1
` }, {f2

` }) as

D`(f
1, f2) = [K(`)(f2

m − f1
n)]1≤n≤k,1≤m≤k, for ` = 0, 1, 2.

We can also express D`(f
1, f2) in factorization forms

D`(f
1, f2) = (−1)jA(j)(f1)HZA(`−j)(f2), for j ≤ `. (A.7)

A.1.3 Bounding the Jackson Kernel

The following lemma provides a set of bounds on the `th derivative of the Jackson kernel for ` ∈ {0, 1, 2, 3, 4}.

Lemma A.1.1 (Bounds on |K(`)|). For ` ∈ {0, 1, 2, 3, 4}, letK(`) be the `th derivative ofK (K = K(0)). Define s(f)

as a symmetric and periodic function with period 1 and s(f) = 1
Mf(3−4f2) for f ∈ (0, 1/2]. Then for f ∈ (0, 1/2],

we have

|K(0)(f)| ≤ B0(f) := s4(f),

|K(1)(f)| ≤ B1(f) := 2πMs4(f)

(
3
√

3

8
+ 2s(f)

)
,

|K(2)(f)| ≤ B2(f) := (2πM)2s4(f)

(
1 +

3
√

3

2
s(f) + 5s2(f)

)
,

|K(3)(f)| ≤ B3(f) := (2πM)3s4(f)

(
c1 + 6s(f) +

45
√

3

8
s2(f) + 15s3(f)

)
,

|K(4)(f)| ≤ B4(f) := (2πM)4s4(f)

(
5

2
+ c2s(f) + 30s2(f) +

45
√

3

2
s3(f) +

105

2
s4(f)

)
,

where

c1 =
1

2

(
sin

(
2 tan−1

(√
1

5

(√
129 + 12

)))
− 2 sin

(
4 tan−1

(√
1

5

(√
129 + 12

))))
,

c2 = −4 sin

(
2 tan−1

(√
1

5

(√
129 + 12

)))(
4 cos

(
2 tan−1

(√
1

5

(√
129 + 12

)))
− 1

)
.

Furthermore, B`(f) is decreasing in f on (0, 1/2] and B`(Ω− f) +B`(Ω + f) is increasing in f for any positive Ω

such that Ω > f and Ω + f ≤ 1/2.

Proof. We need the following elementary bound on the sine function for f ∈ [0, 1
2 ]:

sin(πf) ≥ f(3− 4f2). (A.8)

Clearly, a consequence is 1
M | sin(πf)| ≤ s(f), f ∈ [− 1

2 ,
1
2 ]\{0}. We use this fact together with explicit expressions for

K(`)(f) to develop upper bounds.
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When ` = 0,

|K(f)| =
∣∣∣∣ sin(πMf)

M sin(πf)

∣∣∣∣4 ≤ s4(f).

When ` = 1,

K(1)(f) =
2πM

(M sin(πf))4

1

M

(
−2 cot(πf) sin4(πfM) + 2 sin3(πfM) cos(πfM)M

)
implying

|K(1)(f)| ≤ 2πMs4(f)

(
3
√

3

8
+ 2s(f)

)
,

since maxf |2 cos(πfM) sin(πfM)3| ≤ 3
√

3
8 .

When ` = 2,

K(2)(f) =
(2πM)2

(M sin(πf))4

1

M2
×(

(2 cos(2πf) + 3) csc2(πf) sin4(πfM)− 8 cot(πf) sin3(πfM) cos(πfM)M + sin2(πfM)(2 cos(2πfM) + 1)M2

)
implying

|K(2)(f)| ≤ (2πM)2s4(f)

(
1 +

3
√

3

2
s(f) + 5s2(f)

)
,

where we used maxf |8 sin3(πfM) cos(πfM)| = 3
√

3
2 and maxf | sin2(πfM)(2 cos(2πfM) + 1)| = 1.

When ` = 3,

K(3)(f) =
(2πM)3

(M sin(πf))4

1

M3
×
(
− (4 cos(2πf) + 11) cot(πf) csc2(πf) sin4(πfM)

+ 6(2 cos(2πf) + 3) csc2(πf) sin3(πfM) cos(πfM)M

− 6 cot(πf) sin2(πfM)(2 cos(2πfM) + 1) sin(4πfM)M2 − 1

2
sin(2πfM)M3

)
implying

|K(3)(f)| ≤ (2πM)3s4(f)

(
c1 + 6s(f) +

45
√

3

8
s2(f) + 15s3(f)

)
,

by recognizing the following upper bounds:

maxf∈[0,1/2] |(4 cos(2πf) + 11) cos(πf)| = 15, maxf |6 sin2(πfM)(2 cos(2πfM) + 1)| = 6,

maxf∈[0,1/2] |6(2 cos(2πf) + 3)| = 30 , maxf | sin(4πfM)− (1/2) sin(2πfM)| = c1,

maxf | sin3(πfM) cos(πfM)| = 3
√

3/16.

When ` = 4,
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K(4)(f) =
(2πM)4

(M sin(πf))4

1

M4
×
(

1

2
(49 cos(2πf) + 4 cos(4πf) + 52) csc4(πf) sin4(πfM)

− 8(4 cos(2πf) + 11) cot(πf) csc2(πf) sin3(πfM) cos(πfM)M

+ 6(2 cos(2πf) + 3) csc2(πf) sin2(πfM)(2 cos(2πfM) + 1)M2

− 4 cot(πf) sin(2πfM)(4 cos(2πfM)− 1)M3

+ (2 cos(4πfM)− 1

2
cos(2πfM))M4

)
implying

|K(4)(f)| ≤ (2πM)4s4(f)

(
5

2
+ c2s(f) + 30s2(f) +

45
√

3

2
s3(f) +

105

2
s4(f)

)
,

which follows from the following upper bounds:

maxf∈[0,1/2]
1
2 (49 cos(2πf) + 4 cos(4πf) + 52) = 105/2, maxf | sin2(πfM)(2 cos(2πfM) + 1)| = 1,

maxf∈[0,1/2] |8(4 cos(2πf) + 11) cos(πf)| = 120, maxf |4 sin(2πfM)(4 cos(2πfM)− 1)| = c2,

maxf | sin3(πfM) cos(πfM)| = 3
√

3/16, maxf |2 cos(4πfM)− 1/2 cos(2πfM)| = 5/2,
maxf∈[0,1/2] |6(2 cos(2πf) + 3)| = 30.

Finally, s(f) is nonnegative and is decreasing in (0, 1/2] since s′(f) is negative on (0, 1/2). Therefore, the kth

power sk(f) is decreasing in (0, 1/2]), which further implies that B`(f), ` = 0, 1, 2, 3, 4 is decreasing in (0, 1/2]. In

addition, since s(f) is convex in (0, 1/2], sk(f) is also convex as a consequence of the composition rule of convex

and monotonic functions. Combining the convex and decreasing property of sk(f) on (0, 1/2] and then applying

arguments similar to those in [13, Lemma 2.6], we conclude that B`(Ω − f) + B`(Ω + f) is increasing in f for any

positive Ω such that Ω > f and Ω + f ≤ 1/2.

A.1.4 Bounding the Sums of the Jackson Kernel

Without loss of generality, we assume 0 ∈ T and develop bounds on
∑
fi∈T\{0} |K(`)(f − fi)|, ` ∈ {0, 1, 2, 3, 4}

when f lives in a neighborhood around 0. It is easy to verify the following lemma based on the properties of

|K(`)(f)|, ` = 0, 1, 2, 3, 4 in Lemma A.1.1. The proof parallels that of [13, Lemma 2.7] and is omitted here.

Lemma A.1.2. Suppose 0 ∈ T and f+ is the smallest positive frequency in T . Let ∆ := ∆(T ) ≥ ∆min and f ∈ [0, f̄ ]

where f̄ ≤ f+/2. Then for ` ∈ {0, 1, 2, 3, 4},

∑
fi∈T\{0}

|K(`)(f − fi)| ≤ F`(∆, f) :=F+
` (∆, f) + F−` (∆, f) ≤ F`(∆min, f̄)

with

242



F+
` (∆, f) = max

{
max

∆≤ξ≤3∆min

|K(`)(f − ξ)|, B`(3∆min − f)

}
+

b 1
2∆min

c∑
j=2

B`(j∆min − f),

F−` (∆, f) = max

{
max

∆≤ξ≤3∆min

|K(`)(ξ)|, B`(3∆min)

}
+

b 1
2∆min

c∑
j=2

B`(j∆min + f).

F`(∆, f) is decreasing in ∆. When ∆ is fixed as ∆min, F`(∆min, f) is increasing in f .

The following lemma provides bounds on
∑
fi∈T |K(`)(f − fi)| for ` ∈ {0, 1, 2, 3, 4} and is a direct consequence

of the decreasing property of B`(·).

Lemma A.1.3. Suppose 0 ∈ T , f+ is the smallest positive frequency in T and f ∈ [f, f+ − f̄ ]. Then for ` ∈

{0, 1, 2, 3, 4},

∑
fi∈T
|K(`)(f − fi)| ≤W`(f, f̄) :=

b 1
2∆min

c∑
j=0

B`(j∆min + f) +

b 1
2∆min

c∑
j=0

B`(j∆min + f̄).

A.1.5 Numerical Bounds on the Jackson Kernel Sums

Suppose 0 ∈ T . Then by Lemma A.1.2 we can bound
∑
fj∈T\{0} |K(`)(f − fj)| for f ∈ [0, f̄ ] as:

∑
fj∈T\{0}

|K(`)(f − fj)| ≤ F`(∆min, f̄).

We list the values of F`(∆min, f̄) for different f̄ in Table A.1.

We can use Lemma A.1.3 to bound
∑
fj∈T |K(`)(f − fj)| for f ∈ [f, f+ − f̄ ] as

∑
fj∈T

|K(`)(f − fj)| ≤W`(f, f̄).

We list the values of W`(f, f̄) for different f, f̄ in Table A.2.

Finally, we list several numerical upper bounds on |K(`)(f)| and K ′′(f) over different intervals in Table A.3,

which directly follow from [13, equations (2.21)-(2.24)] and numerical computations.

A.1.6 Controlling the Jackson Kernel Matrices

In this section, we derive several consequences of the joint frequency-coefficient vector θ = (f ,u,v) living in the

neighborhood N ? of the true joint frequency-coefficient vector θ? = (f?,u?,v?). Recall that N ? contains all θ that

is close to θ? in the `∞̂ norm:
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Table A.1: Numerical upper bounds on F`(2.5/n, f).

f F0(2.5/n, f) F1(2.5/n, f) F2(2.5/n, f) F3(2.5/n, f) F4(2.5/n, f)

0 0.00755 0.01236n 0.05610n2 0.28687n3 1.48634n4

0.002/n 0.00755 0.01236n 0.05610n2 0.28687n3 1.48634n4

0.24/n 0.00757 0.01241n 0.05637n2 0.28838n3 1.67097n4

0.2404/n 0.00757 0.01241n 0.05637n2 0.28838n3 1.67100n4

0.75/n 0.00772 0.01450n 0.12639n2 1.07987n3 6.57069n4

0.7504/n 0.00772 0.01454n 0.12675n2 1.08211n3 6.57595n4

Table A.2: Numerical upper bounds on W`(f1, f2).

f1 f2 W0(f1, f2) W1(f1, f2) W2(f1, f2)

0.7496/n 1.25/n 0.71059 5.2265n 48.0330n2

0.75/n 1.25/n 0.70859 5.2084n 47.8388n2

Table A.3: Numerical upper bounds on |K(`)(f)| and K ′′(f).

f |K(f)| |K ′(f)| |K ′′(f)| |K ′′′(f)| |K ′′′′(f)| K ′′(f)

[0, 0.002/n] 1 0.00658n 3.290n2 0.0649394n3

[0, 0.24/n] 1 0.789569n 3.290n2 7.79273n3 −2.35084n2

[0, 0.2404/n] 1 0.790885n 3.290n2 7.80572n3 29.2227n4

[0.2396/n, 0.7504/n] 0.90951 2.46872n 3.290n2

N ? = {θ : ‖θ − θ?‖∞̂ ≤ X?γ0/
√

2}. (A.9)

Recall that the weighted `∞ norm ‖ · ‖∞̂ is defined by ‖(f ,u,v)‖∞̂ := ‖(Sf ,u,v)‖∞ with S :=
√
τ diag(|c?|).

We remark that all the results in this section still hold for the bigger neighborhood N̂ defined by replacing X? with

X̂ = X? + 35.2. Indeed, for the results to hold, the key requirement on θ is ‖f − f?‖∞ ≤ 0.002/n. This condition

holds for both regions because as we will show later

‖f − f?‖∞ ≤


0.4X?γ for θ ∈ N ?,

0.4X̂γ for θ ∈ N̂ .

Invoking the SNR condition (2.10), we conclude that the two upper bounds are much smaller than 0.002/n in both

cases.
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Our first set of results bound the distances between the parameters in θ? and θ: for each j = 1, . . . , k

|cj − c?j |
|c?j |

¬
≤ X?γ,

|cj |
|c?j |

­
≤ 1 +X?γ,∣∣∣(|cj |/|c?j |)2 − 1
∣∣∣ ®
≤ X?γ(2 +X?γ),

|fj − f?j |
¯
≤ X?γ/

√
2τ

°
≤ 0.4X?γ/n.

(A.10)

For ¬ to hold, first note ‖u− u?‖∞ ≤ X?γ0/
√

2 and ‖v − v?‖∞ ≤ X?γ0/
√

2 by (A.9). Also note

‖c− c?‖2∞ = max
`

[(u` − u?` )2 + (v` − v?` )2]

≤ max
`

(u` − u?` )2 + max
`

(v` − v?` )2

= ‖u− u?‖2∞ + ‖v − v?‖2∞ ≤ 2(X?γ0/
√

2)2 = (X?γ0)2.

Finally ¬ follows since maxj |cj − c?j |/|c?j | ≤ ‖c − c?‖∞/c?min and γ = γ0/c
?
min. After we show ¬, ­ follows

from |cj |/|c?j | = |cj − c?j + c?j |/|c?j | and the triangle inequality. ® follows from |(|cj |/|c?j |)2 − 1| = |(|cj |/|c?j | +

1)(|cj |/|c?j | − 1)|. ¯ follows from the definition of the `∞̂ norm:

‖S(f − f?)‖∞ ≤ X?γ0/
√

2

=⇒‖√τ diag(|c?|)(f − f?)‖∞ ≤ X?γ0/
√

2

=⇒|fj − f?j | ≤ X?γ0/|c?j |/
√

2τ , ∀j
=⇒|fj − f?j | ≤ X?γ0/c

?
min/
√

2τ = X?γ/
√

2τ , ∀j.

Finally ° holds due to the fact that τ ≥ 3.289n2 for n ≥ 130 by (A.2) and hence

1/
√

2τ ≤ 1/
√

2(3.289)/n ≤ 0.3899/n ≤ 0.4/n.

Next, we present the second class of results that quantify the well-conditionedness of the Jackson kernel matrices

D`(f), ` = 0, 1, 2. Such results are instrumental to dual certificate construction [13]. Since the minimal separation

∆(T ) is a key quantity affecting the well-conditionedness, we first show that those frequencies Tλ := {fλ` } and

T̂ := {f̂`} in Lemma 2.4.1 and Lemma 2.4.2 satisfy a separation condition, provided T ? = {f?` } satisfy a slightly

stronger separation condition. The proof is given in Appendix A.11.

Lemma A.1.4. Let the separation condition (2.9) and the SNR condition (2.10) hold. Then both the frequencies

Tλ = {fλ` } returned by the first fixed point map (2.19) and the frequencies T̂ = {f̂`} generated by the second

fixed point map (2.21) have minimal separations at least 2.5/n. Furthermore, the intermediate frequencies defined by

T̃ = {f̃`}k`=1 with each f̃` ∈ [f?` , f
λ
` ] or [fλ` , f

?
` ] and the second intermediate frequencies T̃λ := {f̃`}k`=1 with each
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f̃` ∈ [fλ` , f̂`] or [f̂`, f
λ
` ] also have minimal separations at least 2.5/n:

min{∆(Tλ),∆(T̃ ),∆(T̂ ),∆(T̃λ)} ≥ 2.5/n.

Now we are ready to provide numerical bounds related to the well-conditionedness of the Jackson kernel matrices

D`(f), ` = 0, 1, 2:

‖I−D0(f)‖∞,∞
¬
≤ F0(2.5/n, 0)

¯
≤ 0.00755,∥∥D1(f)/

√
τ
∥∥
∞,∞

­
≤ F1(2.5/n, 0)/

√
τ

°
≤ 0.01236n/

√
τ ≤ 0.00682,

‖I− (−D2(f)/τ)‖∞,∞
®
≤ F2(2.5/n, 0)/τ

±
≤ 0.05610n2/τ ≤ 0.0171,

(A.11)

where ¬, ­ and ® follow because the diagonal entries of these kernel matrices are given by [D0(f , f)]`,` = K(0) = 1,

[D1(f , f)]`,` = K ′(0) = 0 and [D2(f , f)]`,` = K ′′(0) = −τ [16, Section IV.A]. Hence, it suffices to compute∑
fi∈T\{ζ} |K(`)(ζ−fi)| for ζ ∈ T which can be bounded by F`(2.5/n, 0) according to Lemma A.1.2 since ∆(T ) ≥

2.5/n by Lemma A.1.4. The inequalities ¯, ° and ± follow from the upper bounds on F`(2.5/n, 0) in Table A.1 and

the fact that τ ≥ 3.289n2 for n ≥ 130 by (A.2).

To control the `∞,∞ distance between two kernel matrices, say D0(f) and D0(f , f?), we apply the mean value

theorem and Lemma A.1.2:

‖D0(f)−D0(f , f?)‖∞,∞ ¬
= ‖D0(f1, f)−D0(f1, f

?)‖1
≤
∑
`

|K(f` − f1)−K(f?` − f1)|

­
=
∑
`

|K ′(f̃` − f1)(f` − f?` )|

≤ (|K ′(f̃1 − f1)|+
∑
` 6=1

|K ′(f̃` − f1)|)‖f − f?‖∞

®
≤ (F1 (2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′(f)|)‖f − f?‖∞

¯
≤ (0.01236n+ 0.00658n)(0.4X?γ/n) = 0.00758X?γ,

(A.12)

where ¬ follows since by rearranging indices if necessary, we can assume without loss of generality that the maximum

absolute row sum of D0(f)−D0(f , f?) happens at the first row; ­ holds because we applied the mean value theorem

for some f̃` between f` and f?` ; ® follows from the monotonic property of F`(2.5/n, f) in Lemma A.1.2 by taking

into account that ∆(T̃ ) ≥ 2.5/n (by Lemma A.1.4) and ‖f̃ − f‖∞ ≤ ‖f?− f‖∞ ≤ 0.4X?γ/n ≤ 0.002/n. ¯ follows

from the upper bounds on F1(2.5/n, 0.002/n) in Table A.1 and maxf∈[0,0.002/n] |K ′(f)| in Table A.3.

Applying the similar arguments as the step ®, we can get a more general result as follows

Lemma A.1.5. Let an arbitrary cluster of points T := {fj} satisfy the separation condition of ∆(T ) ≥ 2.5/n.

Assume f ≤ |f − fr| ≤ f̄ for an arbitrary fr ∈ T . Then,
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∑
j

|K(`)(fj − f)| ≤ F`(2.5/n, f̄) + max
f∈[f,f̄ ]

|K(`)(f)|. (A.13)

To control ‖D`(f , f
?) − D`(f)‖∞,∞ in a similar manner for ` = 1, 2, we note that ‖θ − θ?‖∞̂ ≤ X?γ0/

√
2

and both T and T̃ are well-separated: ∆(T ) ≥ 2.5/n and ∆(T̃ ) ≥ 2.5/n with T̃ composed of certain “middle"

frequencies f̃` ∈ [f`, f
?
` ] or [f?` , f`]. Then using Lemma A.1.5, we upperbound ‖D`(f , f

?)−D`(f)‖∞,∞ as follows

1√
τ
‖D1(f , f?)−D1(f)‖∞,∞

¬
≤1/
√
τ (F2(2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′′(f)|)‖f − f?‖∞

­
≤(1/

√
3.289n2)(0.05610n2 + 3.290n2)(0.4X?γ/n) ≤ 0.73802X?γ,

(A.14)

where ¬ follows by Lemma A.1.5 and ­ follows from the fact that τ ≥ 3.289n2 for n ≥ 130 in (A.2) and by

combining the upper bound on F2(2.5/n, 0.002/n) in Table A.1 and the upper bound on maxf∈[0,0.002/n] |K ′′(f)|

in Table A.3. Similarly, following from Lemma A.1.5 and the mean value theorem, by combining the upper bound on

F3(2.5/n, 0.002/n) in Table A.1 and the upper bound on maxf∈[0,0.002/n] |K(3)(f)| in Table A.3, we have

1

τ
‖D2(f , f?)−D2(f)‖∞,∞ ≤

1

τ
(F3(2.5/n, 0.002/n) + max

f∈[0,0.002/n]
|K ′′′(f)|)‖f − f?‖∞

≤(1/3.289n2)(0.28687n3 + 0.0649394n3)(0.4X?γ/n) = 0.04279X?γ.

(A.15)

To control ‖D`(f
?)−D`(f)‖∞,∞, we rewrite D`(f

?)−D`(f) as

D`(f
?)−D`(f) = D`(f

?)−D`(f
?, f) + D`(f

?, f)−D`(f).

Then, the desired results follow from the triangle inequality of the `∞,∞ norm:

‖D0(f?)−D0(f)‖∞,∞ ≤ ‖D0(f?)−D0(f?, f)‖∞,∞ + ‖D0(f?, f)−D0(f)‖∞,∞
¬
≤ 2(0.00758X?γ) = 0.01516X?γ,

(A.16)

where ¬ follows from (A.12) and an exchange of the roles of f and f?;

1√
τ
‖D1(f?)−D1(f)‖∞,∞ ≤

1√
τ
‖D1(f?)−D1(f?, f)‖∞,∞ +

1√
τ
‖D1(f?, f)−D1(f)‖∞,∞

¬
≤ 2(0.73802X?γ) = 1.47604X?γ,

(A.17)

where ¬ follows from (A.14);

1

τ
‖D2(f?)−D2(f)‖∞,∞ ≤

1

τ
‖D2(f?)−D2(f?, f)‖∞,∞ +

1

τ
‖D2(f?, f)−D2(f)‖∞,∞

¬
≤2(0.04279X?γ) = 0.08558X?γ,

(A.18)

where ¬ follows from (A.15).
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Then following from Eq. (A.10), (A.14)- (A.15) and (A.16)- (A.18), and together with the sub-multiplicative

property of the `∞,∞ norm, we have

∥∥∥∥ 1√
τ

diag(1./|c?|)[D1(f , f?)c? −D1(f)c]

∥∥∥∥
∞
≤ 1√

τ
‖D1(f , f?)−D1(f)‖∞,∞‖1./c?‖∞‖c?‖∞

+
1√
τ
‖D1(f)‖∞,∞‖1./c?‖∞‖c− c?‖∞

≤(0.73802X?γ)B? + (0.01236)B?(X?γ) = 0.75038B?X?γ,
(A.19)

where the last but one line follows from ‖1./c?‖∞ ≤ 1/c?min and γ = γ0/c
?
min. Here and throughout the rest of the

paper, we use 1./x, 1./|x|, y./x, |y|./|x|, x � y and 1
x , 1
|x| ,

y
x , |y||x| in the sense of pointwise arithmetic operations,

here x,y stand for any vectors of the same length.

We apply similar arguments to develop the following bound

∥∥∥∥1

τ
diag(1./|c?|)[D2(f , f?)c? −D2(f)c]

∥∥∥∥
∞
≤1

τ
‖D2(f , f?)−D2(f)‖∞,∞‖1./c?‖∞‖c?‖∞

+
1

τ
‖D2(f)‖∞,∞‖1./c?‖∞‖c− c?‖∞

≤(0.08558X?γ)B? + (1.05610)B?(X?γ) ≤ 1.14168B?X?γ.
(A.20)

A.2 Bounding the Dual Atomic Norm of Gaussian Noise

In this section, we develop an upper bound on the dual atomic norm of the weighted Gaussian noise Zw ∼

N (0, σ2Z2) for the positive definite diagonal matrix Z with [Z]`,` = gM (`)
M . First following [22, C.4 with N ≥

4π(2n+ 1)], we get

sup
f∈T

∣∣a(f)HZw
∣∣ ≤ 2 max

m=0,...,N−1
|Sm|, (A.21)

where {Sm}N−1
m=0 are N equispaced samples of the continuous function a(f)HZw defined on T = [0, 1]:

Sm : = a(
m

N
)HZw =

n∑
`=−n

gM (`)

M
w`e
−i2π`mN .

Since {w`} are i.i.d. Gaussian variables with mean zero and variance σ2, we have that each Sm is a Gaussian variable

with mean zero and variance given by Var(Sm) :=
∑n
`=−n

(
gM (`)
M

)2

σ2. The main idea next is first to compute an

upper bound (denoted by Π) on the variance Var(Sm) and then apply the Gaussian upper deviation inequality [268, Eq.

(7.8)]

P
[
|Sm| ≥ t

√
Π
]
≤ e−t2/2 (A.22)
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to get a high-probability upper bound on |Sm|. To evaluate Π, it is instructive to first note

gM (`) =
1

M

min(`+M,M)∑
k=max(`−M,−M)

(
1−

∣∣∣∣ kM
∣∣∣∣)(1−

∣∣∣∣`− kM

∣∣∣∣) ,
with ` = −2M, . . . , 2M, which is the convolution of two triangle functions:

gM (`) =
1

M
TriM (`) ∗ TriM (`), ` = −2M, . . . , 2M. (A.23)

Here the triangle function is defined by TriM (`) := 1− |`|M , ` = −M, . . . ,M and ∗ represents the convolution operator.

Apparently Var(Sm) is the squared `2 norm of the vector gM := [gM (−2M), . . . , gM (2M)]T scaled by σ2/M2.

Since by Eq. (A.23), gM is the convolution of two (the same) triangular vectors hM := [TriM (−M), . . . ,TriM (M)]

and then scaled by 1/M , we obtain an upper bound on Var(Sm) by applying Young’s inequality ‖f ∗g‖r ≤ ‖f‖p‖g‖q
where r−1 = p−1 + q−1 − 1 and setting r = 2, p = 2, q = 1:

Var(Sm) =

n∑
`=−n

(
gM (`)

M

)2

σ2=
σ2

M2
‖gM‖22=

σ2

M4
‖hM ∗ hM‖22≤

σ2

M4
‖hM‖21‖hM‖22. (A.24)

Therefore, to bound Var(Sm), it remains to bound ‖hM‖21 and ‖hM‖22 :

‖hM‖21 =

(
M∑

`=−M

(
1− |`|

M

))2

= M2 and ‖hM‖22 =

M∑
`=−M

(
1− |`|

M

)2

=
2M

3
+

1

3M
. (A.25)

Then plug (A.25) into (A.24), we obtain an upper bound on Var(Sm) as

Var(Sm) ≤ σ2

M4
M2

(
2M

3
+

1

3M

)
= σ2

(
2

3M
+

1

M3

)
¬
= σ2

(
4

3n
+

8

n3

)
­
≤ 1.334σ2/n, for n ≥ 130,

(A.26)

where ¬ follows from n = 2M and ­ follows since 8/n2 is a decreasing sequence of n implying the maximal happens

at n = 130. Thus we can choose Π = 1.334σ2/n. Plugging Π = 1.334σ2/n into the Gaussian tail bound (A.22), we

get

P
[
|Sm| ≥ t

√
1.334σ/

√
n
]
≤ e−t2/2 (A.27)

for all m = 0, . . . , N − 1.

Applying the union bound yields

P

[
sup
f∈T

∣∣a(f)Hw
∣∣ ≥ 2t

√
1.334σ/

√
n

]
≤ P

[
max

m=0...N−1
|Sm| ≥ t

√
1.334σ/

√
n

]
≤ Ne−t2/2, (A.28)

where the first inequality follows from (A.21). Setting t =
√

8 log n in the above gives
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P

sup
f∈T

∣∣a(f)Hw
∣∣ ≥ 4

√
2
√

1.334︸ ︷︷ ︸
≤6.534

√
log n/nσ

 ≤ 8π(2n+ 1)

n4
≤ 1

n2
, (A.29)

where the last inequality holds for n ≥ 130. Therefore, we obtain that

P

[
sup
f∈T

∣∣a(f)Hw
∣∣ ≤ 6.534

√
log n/nσ

]
≥ 1− 1

n2
, for n ≥ 130. (A.30)

To bound supf∈T
∣∣a′(f)HZw

∣∣ and supf∈T
∣∣a′′(f)HZw

∣∣, a natural approach is to exploit the relations between

a(f) and its derivatives a′(f), a′′(f):

a′(f) = (i2π diag(n)))a(f) and a′′(f) = (i2π diag(n))2a(f).

Similarly, define S′m and S′′m as the mth equispaced sample of a′(f)HZw and a′′(f)HZw, respectively:

S′m = a′(m/N)HZw = a(m/N)H(−i2π diag(n))Zw,

S′′m = a′′(m/N)HZw = a(m/N)H(−i2π diag(n))2Zw.

Hence S′m ∼ N (0,Var(S′m)) and S′′m ∼ N (0,Var(S′′m)) with

Var(S′m) =

n∑
`=−n

(2π`gM (`)/M)
2
σ2) ≤ (2πn)2

(
n∑

`=−n
(gM (`)/M)

2
σ2

)
¬
≤ (2πn)21.334σ2/n,

Var(S′′m) =

n∑
`=−n

(
(2π`)2gM (`)/M

)2
σ2) ≤ (2πn)4

(
n∑

`=−n
(gM (`)/M)

2
σ2

)
­
≤ (2πn)41.334σ2/n,

where ¬ and ­ follow from (A.26). Applying the Gaussian deviation inequality to S′m, S
′′
m yields

P
[
|S′m| ≥ t2π

√
1.334

√
nσ
]
≤ 2e−t

2/2 and P
[
|S′′m| ≥ t4π2

√
1.334n

√
nσ
]
≤ 2e−t

2/2.

Then applying the same arguments as (A.28), we get for n ≥ 130,

P

sup
f∈T

∣∣a′(f)Hw
∣∣ ≤ 8

√
2π
√

1.334︸ ︷︷ ︸
≤41.052

√
n log nσ

 ≥ 1− 1

n2
,

P

sup
f∈T

∣∣a′′(f)Hw
∣∣ ≤ 16

√
2π2
√

1.334︸ ︷︷ ︸
≤257.94

n
√
n log nσ

 ≥ 1− 1

n2
.

(A.31)

Finally, we invoke that

A(f) = [a(f1), . . . ,a(fk)], A′(f) = [a′(f1), . . . ,a′(fk)], A′′(f) = [a′′(f1), . . . ,a′′(fk)],
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and recognize that supf∈T
∣∣a(`)(f)Hw

∣∣ is an upper bound on ‖A(`)(f)HZw‖∞ to get

‖A(`)(f)HZw‖∞= max
f∈{fj}

|a(`)(f)HZw|≤ sup
f∈T
|a(`)(f)HZw|.

Together with (A.30), (A.31) and the definition γ0 = σ
√

logn
n , we obtain that the following inequalities hold for

n ≥ 130 with probability at least 1− 1
n2 :

‖A(f)HZw‖∞ ≤ sup
f∈T

∣∣a(f)Hw
∣∣ ≤ 6.534γ0,

‖A′(f)HZw‖∞ ≤ sup
f∈T

∣∣a′(f)Hw
∣∣ ≤ 41.052nγ0,

‖A′′(f)HZw‖∞ ≤ sup
f∈T

∣∣a′′(f)Hw
∣∣ ≤ 257.94n2γ0.

(A.32)

As a consequence, we claim that the following inequalities hold for n ≥ 130 with probability at least 1− 1
n2 :

‖ diag(1./|c?|)A′(f)HZw‖∞/
√
τ

¬
≤ ‖diag(1./|c?|)‖∞,∞‖A(f)HZw‖∞/

√
τ

≤ 1√
3.289n2

1

c?min

(41.052nγ0) ≤ 22.64γ, (A.33)

‖ diag(c./|c?|2)A′′(f)HZw‖∞/τ
­
≤ ‖diag(c./|c?|)‖∞,∞‖diag(1./|c?|)‖∞,∞‖A′′(f)HZw‖∞/τ

≤ 1

3.289n2
(1 +X?γ)

1

c?min

(257.94n2γ0) ≤ 78.43(1 +X?γ)γ, (A.34)

where ¬ follows from that ‖Ax‖∞ ≤ ‖A‖∞,∞‖x‖∞ by the definition of the `∞,∞ norm and the fact τ ≥ 3.289n2

for n ≥ 130 by (A.2). ­ follows from the sub-multiplicative property of the `∞,∞ norm that

‖ABx‖∞ ≤ ‖A‖∞,∞‖B‖∞,∞‖x‖∞

and ‖diag(c./|c?|)‖∞,∞ = max` |c`|/|c?` | ≤ (1+X?γ) which follows from the assumption ‖θ−θ?‖∞̂ ≤ X?γ0/
√

2

and the derived results (A.10).

A.3 Gradient and Hessian for the Nonconvex Program (2.15)

Recall that the objective function G of the program (2.15) is

G(f , c) =
1

2
‖A(f)c− y‖2Z + λ‖c‖1.

We denote c = u + iv for u ∈ Rk and v ∈ Rk.

A.3.1 Gradient

Let the operators R{·} and I{·} take respectively the real and imaginary parts of a complex number or vector. The

gradient of G(f , c) with respect to θ := (f ,u,v) ∈ R3k is defined by
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∇G(θ) =

∂G/∂f
∂G/∂u
∂G/∂v

 ¬
=

∂G/∂f
2R{∂G/∂c̄}
2I{∂G/∂c̄}

 ­
=

R{(A′(f) diag(c))HZ(A(f)c− y)
}

R
{
A(f)HZ(A(f)c− y) + λc./|c|

}
I
{
A(f)HZ(A(f)c− y) + λc./|c|

}


®
=

R{diag(c)H(−D1(f)c + D1(f , f?)c? −A′(f)HZw)
}

R
{
D0(f)c−D0(f , f?)c? −A(f)HZw + λc./|c|

}
I
{
D0(f)c−D0(f , f?)c? −A(f)HZw + λc./|c|

}
 , (A.35)

where ¬ holds for G ∈ R. ­ follows from diag(df)c = diag(c)df and d|c| = c̄dc+cdc̄
2|c| . ® follows from the kernel

matrix factorization formulas (A.6)- (A.7) and by taking into account that y = x? + w = A(f?)c? + w.

A.3.2 Hessian

The symmetric Hessian matrix∇2G(θ) is given by

∇2G(θ) =

 ∂2G
∂fT ∂f

∂2G
∂fT ∂u

∂2G
∂fT ∂v

∂2G
∂uT ∂f

∂2G
∂uT ∂u

∂2G
∂uT ∂v

∂2G
∂vT ∂f

∂2G
∂vT ∂u

∂2G
∂vT ∂v

 :=

Hff Hfu Hfv

Huf Huu Huv

Hvf Hvu Hvv


with


Hff

Hfu

Hfv

Huu

Hvv

Huv


¬
=


R{(A′(f)Λ)HZA′(f)Λ + diag((A′′(f)Λ)HZ(A(f)c− y))}
R{(A′(f)Λ)HZA(f) + diag(A′(f)HZ(A(f)c− y))}
I{−(A′(f)Λ)HZA(f) + diag(A′(f)HZ(A(f)c− y))}
A(f)HZA(f) + λ diag(v2 � |c|.−3)
A(f)HZA(f) + λ diag(u2 � |c|.−3)
−λ diag(u� v � |c|.−3)



­
=


R{−ΛHD2(f)Λ− diag(ΛHA′′(f)HZw)− diag(ΛH(D2(f , f?)c? −D2(f)c))}
R{−ΛHD1(f)− diag(A′(f)HZw) + diag(D1(f , f?)c?)− diag(D1(f)c)}
I{ΛHD1(f)− diag(A′(f)HZw) + diag(D1(f , f?)c?)− diag(D1(f)c)}
D0(f) + λ diag(v2 � |c|.−3)
D0(f) + λ diag(u2 � |c|.−3)
−λ diag(u� v � |c|.−3)

 , (A.36)

where we denoted Λ := diag(c) to simplify notation. ¬ follows from direct computation and ­ follows from the

matrix decomposition formulas (A.6)- (A.7) and by taking into account that y = x? + w = A(f?)c? + w.

Remarkably, if we replace the noisy signal y in the objective function of the nonconvex program (2.15) with the

noise-free signal x? to get

Gλ(f , c) =
1

2
‖A(f)c− x?‖2Z + λ‖c‖1,

then its gradient and Hessian matrix can be obtained from those of G(f , c) by setting the noise w to zero.
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A.4 Proof of Lemma 2.4.1

Lemma A.4.1 (Lemma 2.4.1). Let the first fixed point map be the weighted gradient map of the nonconvex pro-

gram (2.15) with the noisy signal y replaced by the noise-free signal x?:

Θλ(θ) := θ −W?∇
(

1

2
‖A(f)c− x?‖2Z + λ‖c‖1

)
, (2.19)

where the gradient ∇ is taken with respect to the parameter θ = (f ,u,v). Let the regularization parameter λ vary

in [0, 0.646X?γ0]. Define a neighborhood N ? :=
{
θ : ‖θ − θ?‖∞̂ ≤ X?γ0/

√
2
}

. Suppose that the separation

condition (2.9) and the SNR condition (2.10) hold. Then the map Θλ has a unique fixed point θλ ∈ N ? satisfying

Θλ(θλ) = θλ. Furthermore, according to the implicit function theorem, θλ is a continuously differentiable function

of λ whose derivative is given by

d

dλ
θλ = −(∇2Gλ(θλ))−1 ∂

∂λ
∇Gλ(θλ). (2.20)

Finally, when λ turns to zero, the fixed point θλ converges to θ?, i.e., limλ→0 θ
λ = θ?, and therefore limλ→0 xλ = x?.

Proof. The underlying fixed point map is

Θλ(θ) = θ −W?∇Gλ(θ),

where Gλ is defined as the objective function of the nonconvex program (2.15) with the noisy signal y replaced by the

noise-free signal x?:

Gλ(θ) =
1

2
‖A(f)c− x?‖2Z + λ‖c‖1.

By Theorem 2.4.1, to show the existence and uniqueness of a point θλ ∈ N ? such that Θλ(θλ) = θλ, the key is to

show that Θλ satisfies the non-escaping condition and the contraction condition:

(i) Θλ(N ?) ⊂ N ?;

(ii) There exists ρ ∈ (0, 1) such that ‖Θλ(v)−Θλ(w)‖∞̂ ≤ ρ‖v −w‖∞̂ for any v,w ∈ N ?.

A.4.1 Showing the Contraction Property

For v,w ∈ N ?, we have

‖Θλ(v)−Θλ(w)‖∞̂ ¬
=

∥∥∥∥∫ 1

0

[∇Θλ(tv + (1− t)w)](v −w)dt

∥∥∥∥
∞̂

­
≤ maximize

θ∈N?
‖∇Θλ(θ)‖∞̂,∞̂‖v −w‖∞̂,

where ¬ follows from the integral form of the mean value theorem for vector-valued functions (see [148, Eq. (A.57)]);

­ follows from the sub-multiplicative property of ‖ · ‖∞̂,∞̂ and the fact that tv + (1− t)w ∈ N ? for t ∈ [0, 1]. Thus,
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it suffices to show

maximize
θ∈N?

‖∇Θλ(θ)‖∞̂,∞̂ < 1,

where the matrix `∞̂,∞̂ norm is defined by (following from the definition of the `∞̂ norm)

‖A‖∞̂,∞̂ =

∥∥∥∥∥∥
A11 A12 A13

A21 A22 A23

A31 A32 A33

∥∥∥∥∥∥
∞̂,∞̂

:=

∥∥∥∥∥∥
SA11S

−1 SA12 SA13

A21S
−1 A22 A23

A31S
−1 A32 A33

∥∥∥∥∥∥
∞,∞

,

with S =
√
τ diag(|c?|). Together with

W? =

S−2

Ik
Ik

 ,
we therefore obtain that

‖W?A‖∞̂,∞̂ =

∥∥∥∥∥∥
S−1A11S

−1 S−1A12 S−1A13

A21S
−1 A22 A23

A31S
−1 A32 A33

∥∥∥∥∥∥
∞,∞

= ‖W? 1
2 AW? 1

2 ‖∞,∞ := ‖Υ(A)‖∞,∞, (A.37)

where the linear operator Υ(·) := W? 1
2 (·)W? 1

2 . The Jacobian of the fixed point map Θλ is given by

∇Θλ(θ) = I−W?∇2Gλ(θ), (A.38)

where the symmetric Hessian matrix∇2Gλ(θ) can be obtained from∇2G(θ) by setting the noise w to zero:

∇2Gλ(θ) =

Hff Hfu Hfv

Huf Huu Huv

Hvf Hvu Hvv

 .
Due to the symmetric structure of the Hessian matrix, it suffices to know the expressions for the following block

matrices (see Eq. (A.36)):

Hff = R{−ΛHD2(f)Λ− diag(ΛH(D2(f , f?)c? −D2(f)c))}; Huu = D0(f) + λ diag(v � v./
∣∣c∣∣3);

Hfu = R{−ΛHD1(f) + diag(D1(f , f?)c?)− diag(D1(f)c)}; Hvv = D0(f) + λ diag(u� u./
∣∣c∣∣3);

Hfv = I{ΛHD1(f) + diag(D1(f , f?)c?)− diag(D1(f)c)}; Huv = −λ diag(u� v./
∣∣c∣∣3),

where Λ = diag(c).

Next we compute the weighed `∞̂,∞̂ norm of the Jacobian of the fixed point map Θλ:

‖∇Θλ(θ)‖∞̂,∞̂ ¬
= ‖W?∇2Gλ(θ)− I‖∞̂,∞̂ ­

= ‖Υ(∇2Gλ(θ)−W?−1)‖∞,∞ ®
= ‖Υ(∇2Gλ(θ))− I‖∞,∞,
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where ¬ follows from (A.38), ­ follows from (A.37) by noting that W?∇2Gλ(θ) − I = W?(∇2Gλ(θ) −W?−1)

and ® from the linearity of Υ(·) and Υ(W?−1) = W? 1
2 W?−1W? 1

2 = I. Direct computation gives

Υ(∇2Gλ(θ))−I=


−1
τ R{ΦHD2(f)Φ}−I −1√

τ
R{Φ}D1(f) −1√

τ
I{Φ}D1(f)

1√
τ
D1(f)R{Φ} D0(f)− I

1√
τ
D1(f)I{Φ} D0(f)− I

+

diag(dff ) diag(dfu) diag(dfv)
diag(dfu) diag(duu) diag(duv)
diag(dfv) diag(duv) diag(dvv)


where Φ := diag(c./|c?|) and

dff = −R{diag(c./|c?|2)H [D2(f , f?)c? −D2(f)c]/τ}; duu = λ diag(u� u./
∣∣c∣∣3);

dfu = R{diag(1./|c?|)[D1(f , f?)c? −D1(f)c]/
√
τ}; duv = λ diag(u� v./

∣∣c∣∣3);

dfv = I{diag(1./|c?|)[D1(f , f?)c? −D1(f)c]/
√
τ}; dvv = λ diag(v � v./

∣∣c∣∣3).

Clearly,

‖Υ(∇2Gλ(θ))− I‖∞,∞ = max
{

Πλ
1 ,Π

λ
2 ,Π

λ
3

}
with Πλ

1 ,Π
λ
2 ,Π

λ
3 being the first, second and third absolute row sums of Υ(∇2Gλ(θ))− I, respectively.

Bounding Πλ
1 .

Πλ
1 ≤

∥∥−R{diag(c./|c?|)HD2(f)/τ diag(c./|c?|)} − I
∥∥
∞ + 2

∥∥−R{diag(c./|c?|)}D1(f)/
√
τ
∥∥
∞

+ 2
∥∥diag(1./|c?|)[D1(fλ, f?)c? −D1(f)c]/

√
τ
∥∥
∞ +

∥∥diag(c./|c?|2)[D2(fλ, f?)c? −D2(f)c]/τ
∥∥
∞

¬
≤(0.05610 + 2.12X?γ) + 2(1 +X?γ)(0.01236) + 2(0.75038B?X?γ) + 1.14168B?X?γ

≤0.08561, (A.39)

where ¬ follows from Eq. (A.11), (A.19), (A.20) and the following bound

∥∥−R{diag(c./|c?|)HD2(f)/τ diag(c./|c?|)} − I
∥∥
∞ ≤max

i

∣∣∣∣ |ci|2|c?i |2
− 1

∣∣∣∣+ 0.05610 max
i,j

|ci||cj |
|c?i ||c?j |

≤X?γ(2 +X?γ) + 0.05610(1 +X?γ)2

≤1.05610(X?γ)2 + 2.113X?γ + 0.05610

≤0.05610 + 2.12X?γ.

(A.40)

Bounding Πλ
2 and Πλ

3 .

Note Πλ
2 and Πλ

3 are of the same form. Thus we can bound them together:

max{Πλ
2 ,Π

λ
3} ≤‖D1(f)R{diag(c./|c?|)}‖∞ /

√
τ + ‖diag(1./|c?|)[D1(f , f?)c? −D1(f)c]‖∞ /

√
τ

+ ‖D0(f)− I‖∞ + 2‖λ diag(u� v./
∣∣c∣∣3)‖∞

¬
≤(1 +X?γ)(0.01236) + (0.75038B?X?γ) + (0.00755) + 2(0.646X?γ)

<Πλ
1 (since B?X?γ ≤ 10−3),
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where ¬ follows from Eq. (A.11), (A.19)- (A.20) and λ ≤ 0.646X?γ0. Therefore,

maximize
θ∈N?

∥∥Υ(∇2Gλ(θ))− I
∥∥
∞,∞ ≤ 0.08561 < 1, (A.41)

implying the contraction property of Θλ(θ).

A.4.2 Showing the Non-escaping Property

By the definition of the neighborhood N ?, it suffices to bound the distance between Θλ(θ) and θ?:

‖Θλ(θ)− θ?‖∞̂
¬
≤‖Θλ(θ)−Θλ(θ?)‖∞̂ + ‖Θλ(θ?)− θ?‖∞̂
­
=‖
∫ 1

0

[∇θΘλ((1− t)θ? + tθ)](θ − θ?) d t‖∞̂ + ‖Θλ(θ?)− θ?‖∞̂
®
≤maximize

z∈N?
‖∇θΘλ(z)‖∞̂,∞̂‖θ − θ?‖∞̂ + ‖W?∇Gλ(θ?)‖∞̂

¯
≤(0.08561)(X?γ0/

√
2) + λ

°
≤ X?γ0/

√
2,

where ¬ follows from the triangle inequality, ­ follows from the integral form of the mean value theorem for vector-

valued functions (see [148, Eq. (A.57)]), ® follows from sub-multiplicative property of ‖ · ‖∞̂,∞̂ and the fact that

(1− t)θ? + tθ) ∈ N ? for t ∈ [0, 1], ¯ follows from

‖W?∇Gλ(θ?)‖∞̂ =

∥∥∥∥∥∥
 0
R{λc?./

∣∣c?∣∣}
I{λc?./

∣∣c?∣∣}
∥∥∥∥∥∥
∞̂

≤ λ,

and ° holds for λ ≤ 0.646X?γ0 since (0.08561)(X?γ0/
√

2) + 0.646X?γ0 ≤ 0.9992X?γ0/
√

2.

In sum, Θλ satisfies both the contraction and the non-escaping properties in N ?. Therefore, by the contraction

mapping theorem, the map Θλ has a unique fixed point θλ ∈ N ? satisfying Θλ(θλ) = θλ.

We continue to show that θλ is a differentiable function of λ. Define a function F : R3k×R 7→ R3k as F (θ, λ) =

∇Gλ(θ) and recognize F (θ, λ) is continuously differentiable since it has a continuous Jacobian given by

∂F (θ, λ) =

[
∂
∂θF (θ, λ) ∂

∂λF (θ, λ)

]
=

∇2Gλ(θ)


0

R{c./|c|}

I{c./|c|}


 ,

with ∂
∂θF (θ, λ) nonsingular in N ? by (A.41). Then according to the implicit function theorem (see [269, Proposition

A.25]), there is a continuously differentiable function g(·) such that F (g(λ), λ) = ∇Gλ(g(λ)) = 0 and

d

dλ
g(λ) = −(

∂

∂θ
F (g(λ), λ))−1 ∂

∂λ
F (g(λ), λ) = −(∇2Gλ(g(λ)))−1 ∂

∂λ
∇Gλ(g(λ)). (A.42)
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Since ∇Gλ(g(λ)) = 0 is equivalent to Θλ(g(λ)) = g(λ), we conclude that θλ = g(λ) due to the uniqueness of the

fixed point of Θλ. Therefore, θλ is a differentiable function of λ and

d

dλ
θλ = −(∇2Gλ(θλ))−1 ∂

∂λ
∇Gλ(θλ). (A.43)

Finally, let limλ→0 θ
λ = θ0. Taking limit as λ goes to 0 in the equation ∇Gλ(θλ) = 0 yields ∇G0(θ0) = 0 due

to the continuity of ∇Gλ(θ) in λ and θ and the continuity of θλ. Since ∇G0(θ?) = 0 by direct computation and the

solution is unique in N ?, we conclude that limλ→0 θ
λ = θ0 = θ?.

A.5 Proof of Lemma 2.4.2

Lemma A.5.1 (Lemma 2.4.2). Let the second fixed point map be the weighted gradient map of the nonconvex pro-

gram (2.15):

Θ(θ) = θ −W?∇
(

1

2
‖A(f)c− y‖2Z + λ‖c‖1

)
(2.21)

and the region N λ :=
{
θ : ‖θ − θλ‖∞̂ ≤ 35.2γ0/

√
2
}

. Set the regularization parameter λ as 0.646X?γ0 in (2.21).

Suppose that the separation condition (2.9) and the SNR condition (2.10) hold. Then with probability at least 1− 1
n2 ,

Θ(θ) has a unique fixed point θ̂ living in N λ.

Proof. The main idea is again to apply the contraction mapping theorem 2.4.1 to the fixed point map:

Θ(θ) = θ −W?∇G(θ),

where G is the objective function of (2.15):

G(θ) =
1

2
‖A(f)c− y‖2Z + λ‖c‖1

with λ = 0.646X?γ0. By Theorem 2.4.1, showing the existence of a unique point θ̂ ∈ N λ such that Θ(θ̂) = θ̂ can

be reduced to showing that Θ satisfies both the non-escaping property and the contraction properties:

(i) Θ(N λ) ⊂ N λ;

(ii) There exists ρ ∈ (0, 1) such that ‖Θ(v)−Θ(w)‖∞̂ ≤ ρ‖v −w‖∞̂ for any v,w ∈ N λ.

A.5.1 Showing the Contraction Property

Recall thatN ? is a neighborhood centered at θ? andN λ is a neighborhood centered at θλ defined respectively via
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N ? =

{
θ : ‖θ − θ?‖∞̂ ≤

X?

√
2
γ0

}
and N λ =

{
θ : ‖θ − θλ‖∞̂ ≤

35.2√
2
γ0

}
.

Keep in mind that θλ is the unique point inN ? that satisfies∇Gλ(θλ) = 0. To show the contraction of Θ inN λ, our

strategy is to show Θ is contractive in a larger set N̂ that contains N λ:

N̂ =

{
θ : ‖θ − θ?‖∞̂ ≤

X? + 35.2√
2

γ0 :=
X̂√

2
γ0

}
.

Recognize that N̂ is a neighborhood centered at θ? but with a radius 35.2γ0/
√

2 larger than that of N ?. Such a

choice is made for the purpose of showing the closeness between the final fixed point solution θ̂ and θ?. We remark

that the quantity 35.2γ0/
√

2 corresponds to the dual atomic norm of the weighted Gaussian noise. Adding such a

noise norm term to the radius of the original neighborhood N ? ensures that the region N̂ is large enough for Θ(θ)

to be non-escaping. This is reasonable because the second fixed point map (2.21) involves an additive Gaussian noise

and we have shown that the first fixed point map (2.19) (the one constructed in the noise-free setting) satisfies the

non-escaping property in N ?.

Next, we apply arguments similar to those of showing the contraction of Θλ inN ?. In particular, we first compute

the expression of Υ(∇2G(θ))− I:

Υ(∇2G(θ))− I =


−1
τ R{ΦHD2(f)Φ} − I −1√

τ
R{Φ}D1(f) −1√

τ
I{Φ}D1(f)

1√
τ
D1(f)R{Φ} D0(f)− I 0

1√
τ
D1(f)I{Φ} 0 D0(f)− I

+

diag(d̂ff ) diag(d̂fu) diag(d̂fv)

diag(d̂fu) diag(d̂uu) diag(d̂uv)

diag(d̂fv) diag(d̂uv) diag(d̂vv)


with Φ = diag(c./|c?|) and

d̂ff = −R{diag(c./|c?|2)H [A′′(f)HZw + D2(f , f?)c? −D2(f)c]/τ}; d̂uu = λ diag(u� u./
∣∣c∣∣3);

d̂fu = R{diag(1./|c?|)[−A′(f)HZw + D1(f , f?)c? −D1(f)c]/
√
τ}; d̂uv = λ diag(u� v./

∣∣c∣∣3);

d̂fv = I{diag(1./|c?|)[−A′(f)HZw + D1(f , f?)c? −D1(f)c]/
√
τ}; d̂vv = λ diag(v � v./

∣∣c∣∣3).

Comparing the expressions for [Υ(∇2Gλ(θ)) − I] and [Υ(∇2G(θ)) − I] shows that the latter differs in have

additional noise terms in the first row and the first column blocks. We have shown that the first absolute row sum

Πλ
1 of [Υ(∇2Gλ(θ)) − I] dominates the other row sums. Having additional noise terms will only increase the final

bounds due to the application of the triangle inequality. Therefore, the first absolute row sum (denoted by Π̂1) of

[Υ(∇2G(θ))− I] also dominates and hence achieves the `∞,∞ norm. Direct computation gives

Π̂1 ≤ Πλ
1 + 2‖ diag(1./|c?|)A′(f)HZw‖∞/

√
τ + ‖ diag(c./|c?|2)A′′(f)HZw‖∞/τ

¬
≤ 0.08561 + 2(22.64γ) + 78.43(1 + X̂γ)γ

­
≤ 0.08563,
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where ¬ follows from Πλ
1 ≤ 0.08561 and Eq. (A.32)- (A.34), ­ follows from X̂ = X? + 35.2 and the SNR

condition (2.10) that X?B?γ ≤ 10−3 and B?/X? ≤ 10−4 hence 2(22.64γ) + 78.43(1 + X̂γ)γ ≤ 0.00002. Hence,

maximize
θ∈N̂

‖∇Θ(θ)‖∞̂,∞̂ ≤ 0.08563 < 1. (A.44)

This implies the contraction of Θ in N λ, since

maximize
θ∈Nλ

‖∇Θ(θ)‖∞̂,∞̂ ≤ maximize
θ∈N̂

‖∇Θ(θ)‖∞̂,∞̂.

A.5.2 Showing the Non-escaping Property

‖Θ(θ)− θλ‖∞̂ =‖(Θ(θ)−Θ(θλ)) + (Θ(θλ)− θλ)‖∞̂
¬
≤‖∇Θ(θ̃)T (θ − θλ)‖∞̂ + ‖W?∇G(θλ)‖∞̂
≤max

θ̃∈N̂
‖∇Θ(θ̃)‖∞̂,∞̂‖θ − θλ‖∞̂ + ‖W?∇G(θλ)‖∞̂

­
≤(0.08563)

(
35.2γ0/

√
2
)

+ 22.7γ0

≤35.117γ0/
√

2 < 35.2γ0/
√

2,

where ¬ follows from the mean value theorem for some θ̃ on the line segment joining θ and θλ and ­ follows

from (A.44) and (A.45). Eq. (A.45) is given as follows

∥∥∥W?∇G(θλ)
∥∥∥
∞̂

=

∥∥∥∥∥∥W?

R{−diag(cλ)H(A′(fλ)HZw + D1(fλ, f?)c? −D1(fλ)cλ)}
R{−A(fλ)HZw −D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
I{−A(fλ)HZ(λw −D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
∥∥∥∥∥∥
∞̂

¬
=

∥∥∥∥∥∥
R{−diag(cλ./|c?|)HA′(fλ)HZw}/√τ
R{−A(fλ)HZw}
I{−A(fλ)HZw}

∥∥∥∥∥∥
∞

­
≤

∥∥∥∥∥∥
41.052n/

√
τ(1 +X?γ)γ0

6.534γ0

6.534γ0

∥∥∥∥∥∥
∞

≤ 22.7γ0,

(A.45)

where ¬ holds since∇Gλ(θ) vanishes at θλ:

∇Gλ(θλ) =

R{− diag(cλ)H(D1(fλ, f?)c? −D1(fλ)cλ)}
R{−D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
I{−D0(fλ, f?)c? + D0(fλ)cλ + λcλ./

∣∣cλ∣∣}
 = 0.

­ holds with probability at least 1− 1
n2 by (A.32)- (A.34).

Hence both the contraction and the non-escaping properties are satisfied by Θ in N λ. Then by the contraction

mapping theorem, we conclude the proof of Lemma 2.4.2.
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A.6 Proof of Lemma 2.4.3

Lemma A.6.1 (Lemma 2.4.3). The dual polynomial Q?(f) satisfies both the Interpolation and Boundedness proper-

ties with respect to the coefficients {c?`} and the frequencies {f?` }. In addition, Q?(f) satisfies first

Q?R(f) ≥ 0.887594, Q?R
′′(f) ≤ −2.24483n2,

|Q?I(f)| ≤ 0.0183836, |Q?′′I (f)| ≤ 0.113197n2,
|Q?′(f)| ≤ 0.821039n, |Q?′′(f)| ≤ 3.40320n2,

and

Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| ≤ −1.316313n2 < 0

for f ∈ N , implying |Q?(f)|′′ < 0 in N , and second,

|Q?(f)| ≤ 0.927615, f ∈M,

|Q?(f)| ≤ 0.734123, f ∈ F .

Here the subscripts R and I denote respectively the real and imaginary parts of Q?(f). Thus q? is a valid dual

certificate to certify the atomic decomposition x? =
∑k
`=1 c

?
`a(f?` ) such that ‖x?‖A =

∑k
`=1 |c?` |.

Proof. To show that q? is a valid dual certificate, it is instructive to first relate q? to the derivative of xλ with respect

to λ (where we treat xλ as a function of λ):

q? = lim
λ→0

qλ = lim
λ→0

x? − xλ

λ
= − d

dλ
xλ
∣∣
λ=0

, (A.46)

where we used the fact that limλ→0 xλ = limλ→0 A(fλ)cλ = A(f?)c? = x? by Lemma 2.4.1. Since xλ =

A(fλ)cλ =
∑
` c
λ
` a(fλ` ), we compute the derivative d

dλxλ using the chain rule as:

d

dλ
xλ =

∑
`

(
d

dλ
uλ` + i

d

dλ
vλ`

)
a(fλ` ) +

∑
`

cλ`

(
dfλ`
dλ

a′(fλ` )

)
=
[
A′(fλ) diag(cλ) A(fλ) iA(fλ)

] d

dλ
θλ,

(A.47)

where A′(f) =

[
a′(f1) · · · a′(fk)

]
. Therefore, using Eq. (A.46) and (A.47) we obtain:

q? = − lim
λ→0

[
A′(fλ) diag(cλ) A(fλ) iA(fλ)

] d

dλ
θλ

= − [A′(f?) diag(c?) A(f?) iA(f?)] lim
λ→0

d

dλ
θλ

= [A′(f?) diag(c?) A(f?) iA(f?)] (∇2G0(θ?))−1 ∂

∂λ
∇G0(θ?), (A.48)
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where in the second line we again used the fact that limλ→0 θ
λ = θ? by Lemma 2.4.1, and in the last line we used the

expression for dθλ/dλ given in (2.20).

We next compute ∂
∂λ∇G0(θ?) explicitly. Let K(`)(·) denote the `-order derivative of the Jackson kernel K(·) (see

Appendix A.1 for more details). Recall that D`(f
1, f2) := [K(`)(f2

m − f1
n)]1≤n≤k,1≤m≤k and D`(f) := D`(f , f)

are matrices formed by sampling the Jackson kernel and its derivatives. Then we have the following expression for

∇Gλ(θ) (see Appendix A.3 for more details)

∇Gλ(θ) =

R{diag(c)(D1(f , f?)c? −D1(f)c)}
R{−D0(f , f?)c? + D0(f)c + λc./

∣∣c∣∣}
I{−D0(f , f?)c? + D0(f)c + λc./

∣∣c∣∣}
 . (A.49)

Therefore, the partial derivative of (A.49) with respect to λ is the expanded complex sign vector:

∂

∂λ
∇Gλ(θλ) =

 0
R{sign(cλ)}
I{sign(cλ)}

 :=

 0
sλR
sλI

 =⇒ ∂

∂λ
∇G0(θ?) =

 0
R{sign(c?)}
I{sign(c?)}

 :=

 0
s?R
s?I

 . (A.50)

Here sλ = cλ./|cλ|, s? = c?./|c?| and the subscript R and I indicate the real and imaginary parts respectively.

Combining Eq. (A.48) and (A.50), we get

q? = [A′(f?) A(f?) iA(f?)]

diag(c?)
I

I

 (∇2G0(θ?))−1

 0
s?R
s?I


︸ ︷︷ ︸

:=[βT αTR αTI ]T

, (A.51)

where we have defined the coefficient vectors αR,αI and β in (A.51). These coefficient vectors satisfy

∇2G0(θ?)

diag(c?)−1β
αR
αI

 =

 0
s?R
s?I

 . (A.52)

By denoting α = αR + iαI and α = [α1, . . . , αk]T , β = [β1, . . . , βk]T , we obtain an explicit form for the dual

polynomial Q?(f):

Q?(f) = a(f)HZq? =

k∑
`=1

α`K(f?` − f) +

k∑
`=1

β`K
′(f?` − f). (A.53)

To show that q? certifies the atomic decomposition x? =
∑k
`=1 c

?
`a(f?` ), we need to establish that

1. Q?(f) satisfies Q?(f?` ) = sign(c?` ), ` = 1, . . . , k (Interpolation);

2. |Q?(f)| < 1,∀f /∈ T ? (Boundedness).
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A.6.1 Showing the Interpolation Property

The Interpolation property follows from the construction process and is also easy to verify directly by noting

∇2G0(θ?) =

−R{diag(c?)HD2(f?) diag(c?)} R{−diag(c?)HD1(f?)} I{diag(c?)HD1(f?)}
−R{D1(f?)

H
diag(c?)} D0(f?) 0

−I{D1(f?)
H

diag(c?)} 0 D0(f?)

 .
Indeed, the Interpolation property is a result of (A.52): since D1(f?) ∈ Rk×k and D1(f?)T = −D1(f?) (see Ap-

pendix A.1), the last two row blocks in (A.52) read

[
D1(f?)R{diag(c?)} D0(f?) 0
D1(f?)I{diag(c?)} 0 D0(f?)

]diag(c?)−1β
αR
αI

 =

[
s?R
s?I

]
⇐⇒ D1(f?)(R{diag(c?)}+ iI{diag(c?)}) diag(c?)−1β + D0(f?)(αR + iαI) = R{sign(c?)}+ iI{sign(c?)}
⇐⇒ D1(f?)β + D0(f?)α = sign(c?)

⇐⇒ Q?(f?` ) = sign(c?` ), ` = 1, . . . , k. (A.54)

Furthermore, the first row block of (A.52) is equivalent to

− R{diag(c?)HD2(f?) diag(c?)} diag(c?)−1β + R{−diag(c?)HD1(f?)}αR + I{diag(c?)HD1(f?)}αI = 0

⇐⇒ R{diag(c?)H (D2(f?)β + D1(f?)α)} = 0

⇐⇒ R{c?H` Q?(f`)
′} = 0, ` = 1, . . . , k. (A.55)

A.6.2 Showing the Boundedness Property

It remains to show that Q?(f) satisfies the Boundedness property, for which we follow the arguments of [13]. We

start with estimating the coefficient vectors α and β by rewriting (A.51) as

diag(c?)
I

I

Φ
(
Φ∇2G0(θ?)Φ

)−1
Φ

 0
s?R
s?I

 =

 βαR
αI

 , (A.56)

where Φ = diag
([

diag
(

1
|c?|

)
, I, I

])
. Denoting Φ := diag(s?), we further simplify (A.56) as

−R{ΦHD2(f?)Φ} R{−ΦHD1(f?)} I{ΦHD1(f?)}
−R{D1(f?)

H
Φ} D0(f?) 0

−I{D1(f?)
H

Φ} 0 D0(f?)

Φ−1β
αR
αI

 =

 0
s?R
s?I

 . (A.57)

Denote

D̃2 = −R{diag(s?)HD2(f?) diag(s?)};
D̃1 = diag(s?)HD1(f?);

β̃ = diag(s?)−1β.
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The last two row blocks of (A.57) give

αR = D0(f?)
−1

[s?R + R{D1(f?)
H

diag(s?)}β̃];

αI = D0(f?)
−1

[s?I + I{D1(f?)
H

diag(s?)}β̃]

implying

α = D0(f?)
−1

[s? + D1(f?)
H

diag(s?)β̃] (A.58)

= D0(f?)
−1

[s? + D1(f?)
H
β]

= s? − (I−D0(f?)
−1

)s? + D0(f?)
−1

D1(f?)
H
β.

Without loss of generality, we assume eT1 s? = 1. Then

α1 = 1−
[
(I−D0(f?)

−1
)s? −D0(f?)

−1
D1(f?)

H
β
]

1
, (A.59)

where [·]1 stands for the first entry of a vector. The first row block of (A.57) leads to

D̃2β̃ = R{D̃1αR} − I{D̃1αI} = R{D̃1(αR + iαI)} = R{D̃1α}.

Combining this with (A.58), we get

D̃2β̃ = R{D̃1D0(f?)
−1

[s? + D?H
1 β]}

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D?H

1 β

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D?H

1 diag(s?)β̃

= R{D̃1D0(f?)
−1

s?}+ R{D̃1D0(f?)
−1}D̃H

1 β̃.

This implies

(D̃2 − R{D̃1D0(f?)
−1}D̃H

1 )β̃ = R{D̃1D0(f?)
−1

s?}. (A.60)

A.6.2.1 Bounding ‖β̃‖∞

First invoke (A.11) to get

‖D0(f?)
−1‖∞,∞ ≤

1

1− 0.00755
,

{‖D1(f?)‖∞,∞, ‖D̃1‖∞,∞}/
√
τ ≤ 0.01236n/

√
τ ≤ 0.00682,

‖I− D̃2/τ‖∞,∞ ≤ 0.0171.

(A.61)
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These inequalities (A.61) immediately lead to

‖τI− D̃2 + R{D̃1D0(f?)
−1}D̃H

1 ‖∞,∞
¬
≤τ
(
‖I− D̃2/τ‖∞,∞ + ‖D̃1/

√
τ‖2∞,∞‖D0(f?)

−1‖∞,∞
)

­
≤τ
(
0.0171 + 0.006822/(1− 0.00755)

)
≤ 0.01715τ<τ,

(A.62)

where ¬ follows from the triangle inequality and the sub-multiplicative property of `∞,∞ norm and ­ follows

from (A.61). This implies that D̃2 − R{D̃1D0(f?)
−1}D̃H

1 is nonsingular and well-conditioned. In particular,

‖(D̃2 − R{D̃1D0(f?)
−1}D̃H

1 )−1‖∞,∞
¬
≤ 1

τ(1− 0.01715)
≤ 1.0175

τ
,

where ¬ follows from (A.62). Then from (A.60), we have∥∥∥β̃∥∥∥
∞
≤‖(D̃2 − R{D̃1D0(f?)

−1}D̃H
1 )−1‖∞,∞‖R{D̃1D0(f?)

−1
s?}‖∞

¬
≤‖(D̃2 − R{D̃1D0(f?)

−1}D̃H
1 )−1‖∞,∞‖D̃1‖∞,∞‖D0(f?)

−1‖∞,∞‖s?‖∞
­
≤1.0175

τ

0.00682
√
τ

1− 0.00755
≤ 0.00700√

τ
,

(A.63)

where ¬ follows from sub-multiplicative property of the operator norm ‖ · ‖∞,∞, and ­ follows from Eq. (A.61) and

‖s?‖∞ = 1. This indicates that

‖β‖∞ ≤ ‖diag(s?)‖∞,∞ ‖β̃‖∞ ≤ 0.00700/
√
τ ≤ 0.00386/n := β∞, (A.64)

where the last inequality follows because τ ≥ 3.289n2 for n ≥ 130 by (A.2).

A.6.2.2 Bounding ‖α‖∞ and R{α1} and |I{α1}|

From (A.58), we have

‖α‖∞
¬
≤‖D0(f?)

−1‖∞,∞‖s?‖∞ + ‖D0(f?)
−1‖∞,∞‖D1(f?)‖∞,∞‖β‖∞

­
≤ 1

1− 0.00755
+

0.00682
√
τ

1− 0.00755

0.00700√
τ

≤1.00766 := α∞,

(A.65)

where ¬ follows from the triangle inequality and the fact that ‖ABx‖∞ ≤ ‖A‖∞,∞‖B‖∞,∞‖x‖∞. ­ holds since

‖s?‖∞ = 1.

Second, recognizing that α1 = 1− [(I−D0(f?)
−1

)s?−D0(f?)
−1

D1(f?)
H
β]1 by Eq. (A.59), we have R{α1} =

1− [R{(I−D0(f?)
−1

)s? −D0(f?)
−1

D1(f?)
H
β}]1. We further get an upper bound as follows
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∣∣[R{(I−D0(f?)
−1

)s? −D0(f?)
−1

D1(f?)
H
β
}]

1

∣∣
¬
≤‖(I−D0(f?)

−1
)s? −D0(f?)

−1
D1(f?)

H
β‖∞

­
≤‖D0(f?)

−1‖∞,∞‖I−D0(f?)‖∞,∞‖s?‖∞ + ‖D0(f?)
−1‖∞,∞‖D1(f?)‖∞,∞‖β‖∞

≤ 0.00755

1− 0.00755
+

0.00682
√
τ

1− 0.00755

0.00700√
τ

≤0.00766,

where ¬ follows from the real part of the first entry of a vector is no larger than the infinity norm of this vector and

­ follows from the triangle inequality and the sub-multiplicative property of infinity operator norm that ‖ABx‖∞ ≤

‖A‖∞,∞‖B‖∞,∞‖x‖∞. The last inequality follows from Eq. (A.61) and (A.64). Combining the above arguments

yields

R{α1} ≥1− 0.00766 and |I{α1}| ≤ 0.00766. (A.66)

We are ready to show the Boundedness property following the simplifications used in [13]. In particular, fix an

arbitrary point f?0 ∈ T ? as the reference point and let f?−1 be the first frequency in T ? that lies on the left of f?0 while

f?1 be the first frequency in T ? that lies on the right. Here “left” and “right” are directions on the complex circle T. We

remark that the analysis depends only on the relative locations of {f?` }. Hence, to simplify the arguments, we assume

that the reference point f?0 is at 0 by shifting the frequencies if necessary. Then we divide the region between f?0 = 0

and f?1 /2 into three parts: Near Region N := [0, 0.24/n], Middle Region M := [0.24/n, 0.75/n] and Far Region

F := [0.75/n, f?1 /2]. Also their symmetric counterparts: −N := [−0.24/n, 0], −M := [−0.75/n,−0.24/n], and

−F := [f?−1/2,−0.75/n]. We first show that the dual polynomial has strictly negative curvature |Q?(f)|′′ < 0 in

N = [0, 0.24/n] and |Q?(f)| < 1 in M ∪ F = [0.24/n, f?1 /2], implying |Q?(f)| < 1 in N ∪ M ∪ F\{f?0 }

by exploiting |Q?(f?0 )| = 1 and |Q?(f?0 )|′ = 0. Then using the same symmetric arguments in [13], we claim that

|Q?(f)| < 1 in (−N )∪ (−M)∪ (−F)\{f?0 }. Combining these two results with the fact that the reference point f?0 is

chosen arbitrarily from T ? (and shifted to 0), we establish that the Boundedness property of Q?(f) holds in the entire

T\T ?.

A.6.2.3 Controlling Q?(f) in Near Region

For f ∈ N , the second-order Taylor expansion of |Q?(f)| at f?0 = 0 states

|Q?(f)| = |Q?(f?0 )|+ (f − f?0 )|Q?(f?0 )|′ + 1

2
(f − f?0 )2|Q?(ξ)|′′

= 1 + (f − f?0 )|Q?(f?0 )|′ + 1

2
(f − f?0 )2|Q?(ξ)|′′ for some ξ ∈ N , (A.67)

with the second line following from the Interpolation property. We argue that
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|Q?(f?0 )|′ =
Q?R(f?0 )Q?R(f?0 )′ +Q?I(f

?
0 )Q?I(f

?
0 )′

|Q?(f?0 )| =
R{c?0}Q?R(f?0 )′ + I{c?0}Q?I(f?0 )′

|c?0||Q?(f?0 )| =
R{c?H0 Q?(f?0 )′}
|c?0||Q?(f?0 )| = 0.

The last equality is due to (A.55). Together with (A.67), to bound |Q?(f)| strictly below 1, we only need to show the

concavity of |Q?(f)| in Near Region (i.e., |Q?(f)|′′ < 0 for f ∈ N ). Since

|Q?(f)|′′ = − (Q?R(f)Q?R(f)′ +Q?I(f)Q?I(f)′)2

|Q?(f)|3 +
Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′|

|Q?(f)| ,

we only need to show that

Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| < 0.

Recall the expression for Q?(f) given in Eq. (A.53)

Q?(f) =
∑
f?` ∈T?

α`K(f?` − f) +
∑
f?` ∈T?

β`K
′(f?` − f).

To bound the real part of Q?(f) in N = [0, 0.24/n], we observe

Q?R(f) ≥ R{α1K(f)} − α∞
∑

f?` ∈T?\{0}
|K(f − f?` )| − β∞|K ′(f)| − β∞

∑
f?` ∈T?\{0}

|K ′(f − f?` )|

≥ R{α1}min
f∈N

K(f)− α∞F0(2.5/n, f)− β∞(max
f∈N
|K ′(f)|+ F1(2.5/n, f))

≥ (1− 0.00766)(0.905252)− (1.00766)0.00757− (0.00386/n)(0.789569n+ 0.01241n)

≥ 0.887594,

where the first inequality follows from an application of the triangle inequality, and the second is from Lemma A.1.2.

The third inequality follows from evaluating F0(2.5/n, f) and F1(2.5/n, f) at f = 0.24/n, the numerical bounds

in Table A.1 and Table A.3 of Appendix A.1.5 and Eq. (A.64), (A.65), (A.66), as well as minf∈N K(f) ≥ 0.905252.

This last bound follows from [13, Eq. (2.20), set fc = n− 2] that K(f) ≥ 1− π2

6 (n− 2)(n+ 2)f2. Hence

min
f∈N

K(f) ≥ min
f∈N

1− π2

6
(n− 2)(n+ 2)f2 ≥ 1− π2

6
(n− 2)(n+ 2)(0.24/n)2 ≥ 0.905252.

Similarly, combining Eq. (A.64), (A.65), (A.66), the upper bounds on F`(2.5/n, 0.24/n) in Table A.1 and the

upper bounds for maxf∈N |K(`)(f)| and maxf∈N K ′′(f) in Table A.3, we get

Q?R
′′(f) ≤R{α1}max

f∈N
K ′′(f) + α∞F2(2.5/n, 0.24/n) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(1− 0.00766)(−2.35084n2) + (1.00766)(0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤− 2.24483n2;
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|Q?I(f)| ≤|I{α1}|max
f∈N

K(f) + α∞F0(2.5/n, 0.24/n) + β∞(max
f∈N
|K ′(f)|+ F1(2.5/n, 0.24/n))

≤(0.00766)× 1 + (1.00766)0.00757 + (0.00386/n)(0.789569n+ 0.01241n)

≤0.0183836;

|Q?I ′′(f)| ≤|I{α1}|max
f∈N
|K ′′(f)|+ α∞F2(2.5/n, 0.24/n) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(0.00766)(3.290n2) + (1.00766)(0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤0.113197n2;

|Q?′(f)| ≤α∞(max
f∈N
|K ′(f)|+ F1(2.5/n, 0.24/n)) + β∞(max

f∈N
|K ′′(f)|+ F2(2.5/n, 0.24/n))

≤(1.00766)(0.789569n+ 0.01241n) + (0.00386/n)(3.290n2 + 0.05637n2)

≤0.821039n;

|Q?′′(f)| ≤α∞(max
f∈N
|K ′′(f)|+ F2(2.5/n, 0.24/n)) + β∞(max

f∈N
|K ′′′(f)|+ F3(2.5/n, 0.24/n))

≤(1.00766)(3.290n2 + 0.05637n2) + (0.00386/n)(7.79273n3 + 0.28838n3)

≤3.40320n2.

Combining the lower bound on Q?R(f) and the upper bounds on Q?R(f)′′, |Q?(f)′|, |Q?I(f)| and |Q?I(f)′′|, we arrive

at

|Q?(f)|′′ = Q?R(f)Q?R(f)′′ + |Q?(f)′|2 + |Q?I(f)||Q?I(f)′′| ≤ −1.316313n2 < 0 in N .

A.6.2.4 Bounding |Q?(f)| in Middle Region

For upperbounding |Q?(f)| for f ∈M = [0.24/n, 0.75/n], we firstly apply the triangle inequality

|Q?(f)| = |
∑
f?` ∈T?

α`K(f?` − f) +
∑
f?` ∈T?

β`K
′(f?` − f)|

≤ ‖α‖∞
(
|K(f)|+

∑
f?` ∈T?\{0}

|K(f − f?` )|
)

+ ‖β‖∞
(
|K ′(f)|+

∑
f?` ∈T?\{0}

|K ′(f − f?` )|
)

≤ α∞|K(f)|+ β∞|K ′(f)|+ α∞F0(2.5/n, f) + β∞F1(2.5/n, f), (A.68)

where the last inequality is from Lemma A.1.2. We then follow [13, Eq. (2.29)] to upperbound the first two terms in

the last line

|K(f)| ≤ 1− π2(n2 − 4)f2

6
+
π4n4f4

72
and |K ′(f)| ≤ π2(n2 − 4)f

3
, for f ∈ [−1/2, 1/2].

The rest of argument consists of defining
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L1(f) = α∞
(

1− 1

6
π2(n2 − 4)f2 +

1

72
π4n4f4

)
+ β∞

1

3
π2(n2 − 4)f ;

L2(f) = α∞F0(2.5/n, f) + β∞F1(2.5/n, f)

with the derivative of L1(f) given by

L′1(f) = −α∞
(
π2(n2 − 4)f

3
− π4n4f3

18

)
+ β∞

π2(n2 − 4)

3
< 0, for f ∈M,

implying that L1(f) is decreasing. Also, L2(f) is increasing in M by Lemma A.1.2. Hence, by the monotonic

property, we have

|Q?(f)| ≤L1(0.24/n) + L2(0.75/n) ≤ 0.919779 + 0.007836 = 0.927615 < 1.

Bounding |Q?(f)| in Far Region.

Recall that f?0 = 0 is the reference point. To simplify notation, we re-index the frequencies such that . . . ≤ f?−1 <

f?0 = 0 < f?1 < . . .. For f ∈ F = [0.75/n, f?1 /2] = [0.75/n, f?1 − f?1 /2], by Lemma A.1.3, we have

∑
j

|K(`)(f − f?j )| ≤W`(0.75/n, f?1 /2)
¬
=
∑
j≥0

B`(j(2.5/n) + 0.75/n) +
∑
j≥0

B`(j(2.5/n) + f?1 /2)

­
≤
∑
j≥0

B`(j(2.5/n) + 0.75/n) +
∑
j≥0

B`(j(2.5/n) + 1.25/n)

®
= W`(0.75/n, 1.25/n), (A.69)

where ¬ follow from the definition ofW (f, f̄) in Lemma A.1.3, ­ follows f?1 /2 = (f?1 −f?0 )/2 ≥ ∆min/2 = 1.25/n

and decreasing property of B`(·), and ® follows from the definition of W (f, f̄).

Finally, applying (A.69), (A.64) and (A.65) to (A.53), we arrive at

|Q?(f)| ≤α∞
∑
`

|K(f − f?` )|+ β∞
∑
`

|K ′(f − f?` )|

≤1.00766W0(0.75/n, 1.25/n) + (0.00386/n)W1(0.75/n, 1.25/n)

≤1.00766(0.70859) + (0.00386/n)(5.2084n)

=0.734123.

This concludes the proof of Lemma 2.4.3.

A.7 Proof of Lemma 2.4.4

Lemma A.7.1 (Lemma 2.4.4). Under the settings of Lemma 2.4.1, let Qλ(f) and Q?(f) be the dual polynomials

corresponding to θλ and θ?, respectively. Then the distances between Qλ(f) and Q?(f) and their various derivatives
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are uniformly bounded:

|Q?(f)−Qλ(f)| ≤ 28.7343X?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 39.3557X?B?γ, f ∈M,

|Q?′(f)−Qλ′(f)| ≤ 44.4648nX?B?γ, f ∈ N , |Q?(f)−Qλ(f)| ≤ 66.1596X?B?γ, f ∈ F ,
|Q?′′(f)−Qλ′′(f)| ≤ 140.808n2X?B?γ, f ∈ N .

Proof. We exploit the closeness of θ? and θλ (see Lemma 2.4.1) to bound the pointwise distance between Q?(f) and

Qλ(f). Note

Qλ(f)−Q?(f) = a(f)HZ(qλ − q?) = a(f)HZ

(
x? − xλ

λ
+

d

dλ
xλ
∣∣
λ=0

)
=

1

λ

∫ λ

0

a(f)HZ

(
d

dt
x? − d

dt
xt
)

dt,

which implies that

|Qλ(f)−Q?(f)| ≤ max
0≤t≤λ

∣∣∣∣a(f)HZ(
d

dt
x? − a(f)HZ(

d

dt
xt
∣∣∣∣ . (A.70)

We can also obtain similar bounds on the pointwise distances between derivatives of Qλ(f) and Q?(f).

Recall from Eq. (A.47), (2.20), and (A.50) that

d

dλ
xλ = −[A′(fλ) diag(cλ) A(fλ) iA(fλ)](∇2Gλ(θλ))−1ρλ, (A.71)

d

dλ
x? = −[A′(f?) diag(c?) A(f?) iA(f?)](∇2G0(θ?))−1ρ?, (A.72)

where ρ? =

[
0T R{sign(c?)}T I{sign(c?)}T

]T
and ρλ =

[
0T R{sign(cλ)}T I{sign(cλ)}T

]T
.

Multiplying both sides of Eq. (A.71) and (A.72) by −a(f)HZ( and then inserting W? 1
2 W?− 1

2 (which equals I)

into the spaces before and after (∇2G0(θ?))−1 (and (∇2Gλ(θ?))−1) yield

− a(f)HZ(
d

dλ
xλ = νλ(f)Ξλρλ,

− a(f)HZ(
d

dλ
x? = ν?(f)Ξ?ρ?.

Here

νλ(f) := [D1(f, fλ) diag(cλ)S−1 D0(f, fλ) iD0(f, fλ)],

ν?(f) := [D1(f, f?) diag(c?)S−1 D0(f, f?) iD0(f, f?)],
(A.73)

with D`(f, f
λ) a row vector defined by D`(f, f

λ) := [K`(f
λ
1 − f), . . . ,K`(f

λ
k − f)], and

Ξλ := Υ(∇2Gλ(θλ))−1,

Ξ? := Υ(∇2G0(θ?))−1,
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where Υ(·) := W? 1
2 (·)W? 1

2 is a linear operator that normalizes the Hessian matrix so that it is close to the identity.

As a consequence, we bound the integrand of (A.70) as follows

|ν?(f)Ξ?ρ? − νλ(f)Ξλρλ|
≤|ν?(f)Ξ?(ρ? − ρλ)|+ |ν?(f)(Ξ? − Ξλ)ρλ|+ |(ν?(f)− νλ(f))Ξλρλ|
≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖∞ + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞,

(A.74)

where the first line follows from the triangle inequality and the second line follows from Hölder’s inequality and the

sub-multiplicative property of the `∞,∞ norm. We next develop upper bounds on ‖ν?(f)‖1, ‖ν?(f) − νλ(f)‖1,

‖Ξ?‖∞,∞, ‖Ξ? − Ξλ‖∞,∞, ‖Ξλ‖∞,∞, ‖ρ? − ρλ‖1 and ‖ρλ‖∞.

Bounding ‖Ξ?‖∞,∞ and ‖Ξλ‖∞,∞ and ‖Ξ? − Ξλ‖∞,∞.

We note that both Ξ?−1 = Υ(∇2G0(θ?))) and Ξλ
−1

= Υ(∇2Gλ(θλ))) are close to the identity matrix. More

precisely, we have

‖I− Ξ?−1‖∞ ¬
= ‖I−Υ(∇2G0(θ?))‖∞,∞
­
≤ [‖I− diag (c?./|c?|)H (−D2(f?)/τ) diag (c?./|c?|) ‖∞,∞ + 2‖ diag(c?./|c?|)D1(f?)/

√
τ‖∞,∞]

∨ (‖ diag(c?./|c?|)D1(f?)/
√
τ‖∞,∞ + ‖I−D0(f?)‖∞,∞)

®
≤ ‖I− (−D2(f?)/τ)‖∞,∞ + 2‖D1(f?)/

√
τ‖∞,∞

¯
≤ 0.0171 + 2× 0.00682

≤ 0.03074,

where a ∨ b := max(a, b). ¬ follows from definition of Ξ? and ­ follows from applying the triangle inequal-

ity to the expression of [I − Υ(∇2G0(θ?))]. ® follows since the infinity norm of any sign vector is 1, bounding

‖diag(c?./|c?|) D1(f?)/
√
τ‖∞,∞ is equivalent to bound ‖D1(f?)/

√
τ‖∞,∞. Finally, ¯ follows from Eq. (A.11).

This leads to

‖Ξ?‖∞,∞ ≤
1

1− ‖I− Ξ?−1‖∞,∞
≤ 1

1− 0.03074
≤ 1.03172. (A.75)

According to (A.41), we have

‖I− Ξλ
−1‖∞,∞ = ‖I −Υ(∇2Gλ(θλ))‖∞,∞ ≤ 0.08561,

yielding

‖Ξλ‖∞,∞ ≤
1

1− ‖I− Ξλ
−1‖∞,∞

≤ 1

1− 0.08561
≤ 1.09363. (A.76)

Next, note
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‖Ξ?−1 − Ξλ
−1‖∞,∞ =‖Υ(∇2G0(θ?))−Υ(∇2Gλ(θλ))‖∞,∞ ≤ max{Π1,Π2,Π3},

where Π1,Π2,Π3 denote the first, second and third absolute row block sums of [Υ(∇2G0(θ?))−Υ(∇2Gλ(θλ))]. We

first bound Π1 as follows

Π1 =‖ diag(c./|c?|)HD2(f) diag(c./|c?|)− diag(c?./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ
+ 2

∥∥diag(c./|c?|)HD1(f)− diag(c?./|c?|)HD1(f?)
∥∥
∞,∞ /

√
τ

+ 2 ‖diag (1./|c?|) [D1(f , f?)c? −D1(f)c]‖∞ /
√
τ

+ ‖ diag(c./|c?|2)H [D2(f , f?)c? −D2(f)c]‖∞/τ
¬
≤[2.19778X?γ + 1.14168(X?γ)2] + 2[1.48286X?γ + 1.47604(X?γ)2] + 2(0.75038)X?B?γ + 1.14168X?B?γ

≤7.81004X?B?γ (by B?X?γ ≤ 10−3), (A.77)

where ¬ follows from combining Eq. (A.19)- (A.20) and (A.78)- (A.79), where (A.78)- (A.79) are given by

‖diag(c./|c?|)HD2(f) diag(c./|c?|)− diag(c?./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ
≤‖diag(c./|c?|)HD2(f) diag((c− c?)./|c?|)‖∞,∞/τ

+ ‖ diag(c./|c?|)H(D2(f)−D2(f?)) diag(c?./|c?|)‖∞,∞/τ
+ ‖ diag((c− c?)./|c?|)HD2(f?) diag(c?./|c?|)‖∞,∞/τ

≤(1 +X?γ)(1.05610)(X?γ) + (1 +X?γ)(0.08558X?γ) + (X?γ)(1.05610) (by (A.18) and (A.11))

≤2.19778X?γ + 1.14168(X?γ)2 (A.78)

and

∥∥∥diag (c./|c?|)H D1(f)− diag (c?./|c?|)H D1(f?)
∥∥∥
∞,∞

/
√
τ

≤
∥∥∥diag (c./|c?|)H (D1(f)−D1(f?))

∥∥∥
∞,∞

/
√
τ +

∥∥∥diag ((c− c?)./|c?|)H D1(f?)
∥∥∥
∞,∞

/
√
τ

≤(1 +X?γ)(1.47604X?γ) + (X?γ)(0.00682) (by Eq. (A.17) and (A.11))

≤1.48286X?γ + 1.47604(X?γ)2. (A.79)

We next bound Π2 and Π3:

{Π2,Π3}
¬
≤‖D1(f) diag (c./|c?|)−D1(f?) diag (c?./|c?|)‖∞,∞ /

√
τ

+ ‖D0(f)−D0(f?)‖∞,∞ + ‖ diag(1./|c?|)[D1(f , f?)c? −D1(f)c]‖∞/
√
τ

+ λ‖u� u./|c|3 − u? � u?./|c?|3‖∞ + λ‖u� v./|c|3 − u? � v?./|c?|3‖∞
­
≤[1.48286X?γ + 1.47604(X?γ)2] + 0.01516X?γ + 0.75038X?B?γ + 2(0.646X?γ)(5.00701)X?γ

≤2.25636X?Bγ

<Π1 (by B?X?γ ≤ 10−3),
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where ¬ follows from the triangle inequality and ­ follows by combining Eq. (A.79), (A.16), (A.19), and (A.80). To

show (A.80), we assume the norm ‖u� u./|c|3 − u? � u?./|c?|3‖∞ is achieved by the `th entry and proceed as∣∣∣∣ u2
`

|c`|3
− u?`

2

|c?` |3
∣∣∣∣ ¬
≤
∣∣∣∣ c2`|c`|3 − c?`

2

|c?` |3
∣∣∣∣

­
≤|c

2
` − c?` 2|
|c?` |3

+ |c`|2
∣∣∣∣ 1

|c`|3
− 1

|c?` |3
∣∣∣∣

®
≤X

?γ

c?min

(
(2 +X?γ) +

(X?γ)2 + 3(X?γ) + 3

1−X?γ

)
≤ X?γ

c?min

(5.00701),

(A.80)

where ¬ follows from |R{a}| ≤ |a| for all a ∈ C and ­ follows from the triangle inequality. ® follows from

Eq. (A.81) and (A.82) given below:

|c2` − c?` 2|
|c?` |3

≤ 1

|c?` |
|c` − c?` |
|c?` |

|c` + c?` |
|c?` |

≤ X?γ(2 +X?γ)

c?min

(A.81)

and

|c`|2
∣∣∣∣ 1

|c`|3
− 1

|c?` |3
∣∣∣∣ = |c`|2

∣∣∣∣ 1

|c`|
− 1

|c?` |

∣∣∣∣ ( 1

|c`|2
+

1

|c?` |2
+

1

|c?` ||c`|

)
≤|c` − c

?
` |

|c`||c?` |

(
1 +
|c`|2
|c?` |2

+
|c`|
|c?` |

)
≤ 1

|c`|
X?γ

(
1 +
|c`|2
|c?` |2

+
|c`|
|c?` |

)
≤ 1

c?min(1−X?γ)
X?γ

(
1 +
|c`|2
|c?` |2

+
|c`|
|c?` |

)
≤X

?γ

c?min

(X?γ)2 + 3(X?γ) + 3

1−X?γ
(A.82)

where the first line follows from |a3 − b3| = |(a − b)(a2 + ab + b2)| = |a − b|(a2 + ab + b2) for any positive a, b.

The second line holds since | 1
|c`| −

1
|c?` |
| = ||c`|−|c?` ||

|c`||c?` |
≤ |c`−c

?
` |

|c`||c?` |
by the triangle inequality. The third line follows from

|c` − c?` |/|c?` | ≤ X?γ by (A.10). For the fourth line to hold, note that by (A.10), |ci−c
?
i |

|c?i |
≤ X?γ, which implies that

|ci| ≥ |c?i |− |ci− c?i | ≥ (1−X?γ|)c?min|. The last line follows from |c`|/|c?` | ≤ (1 +X?γ). Finally, we get the bound

‖Ξ?−1 − Ξλ
−1‖∞,∞ = Π1 ≤ 7.81004X?B?γ

implying

‖Ξ? − Ξλ‖∞,∞ ≤‖Ξ?‖∞,∞‖Ξ?−1 − Ξλ
−1‖∞,∞‖Ξλ‖∞,∞

≤(1.03172)(1.09363)(7.81004X?B?γ) = 8.81222X?B?γ.
(A.83)

Bounding ‖ρ? − ρλ‖∞ and ‖ρλ‖∞.

First recognize that ‖ρλ‖∞ = 1 since ρλ contains either signs or zeros. Assume the `∞ norm of (ρ?−ρλ) is achieved
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by | sign(cλ` )− sign(c?` )|, then applying triangle inequalities gives

‖ρ? − ρλ‖∞ =

∣∣∣∣ cλ`|cλ` | − c?`
|c?` |

∣∣∣∣ =

∣∣∣∣ cλ`|cλ` | − cλ`
|c?` |

+
cλ`
|c?` |
− c?`
|c?` |

∣∣∣∣ ≤∣∣∣∣ cλ`|cλ` | − cλ`
|c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

=|cλ` |
∣∣∣∣ 1

|cλ` |
− 1

|c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

=
∣∣cλ` ∣∣ ∣∣∣∣ |cλ` | − |c?` ||cλ` ||c?` |

∣∣∣∣+
|c?` − cλ` |
|c?` |

≤2
|c?` − cλ` |
|c?` |

≤ 2X?γ.

(A.84)

Bounding ν?(f),ν?(f)
′
,ν?(f)

′′ and (ν?(f)− νλ(f)), (ν?(f)− νλ(f))′, (ν?(f)− νλ(f))′′.

Applying the triangle inequality and the sub-multiplicative property of the norm to (A.74) and (A.73), we get

‖ν?(f)− νλ(f)‖1
≤‖[D1(f, fλ)−D1(f, f?)]T diag(cλ)S−1 −D1(f, fλ)TΦ‖1 + 2‖D0(f, fλ)−D0(f, f?)‖1
≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1,1 + ‖D1(f, fλ)‖1‖Φ‖1,1 + 2‖D0(f, fλ)−D0(f, f?)‖1;

‖ν?(f)‖1
≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ ‖D1(f, f?)‖1‖ diag(c?)S−1‖1,1 + 2‖D0(f, f?)‖1,

(A.85)

where Φ := diag(c?)S−1 − diag(cλ)S−1 and D`(f, f) := [K(`)(f1 − f), . . . ,K(`)(fk − f)]. Similar bounds also

apply to various derivatives of ν?(f) and νλ(f), which we need in order to bound the distances between derivatives

of Q?(f) and Qλ(f). Using (A.10) and τ ≥ 3.289n2, we have∥∥(diag(cλ)− diag(c?))S−1
∥∥

1,1
≤(max

i
|cλi − c?i |/|c?i |)/

√
τ ≤ X?γ/

√
τ ≤ 0.552X?γ/n;∥∥diag(cλ)S−1

∥∥
1,1
≤(1 +Xγ)/

√
τ ≤ 0.552/n,

(A.86)

which we need to continue the bounds in (A.85).

Since f may lie in different regions: Near Region, Middle Region, and Far Region, we next organize our analysis

into three parts based on what region f is located in.

A.7.1 Near Region Analysis

We start with controlling ‖D`(f, f
λ)−D`(f, f

?)‖1 and |D`(f, f
?)‖1 for ` = 0, 1, 2, 3 in Near Region. When ` = 0,

we have

‖D0(f, fλ)−D0(f, f?)‖1 =
∑
`

|K(fλ` − f)−K(f?` − f)|
¬
≤
∑
`

|K ′(f̃` − f)|‖fλ − f?‖∞

­
≤
(
F1(2.5/n, 0.2404/n) + max

f∈N̂
|K ′(f)|

)
‖fλ − f?‖∞

®
≤ (0.01241n+ 0.790885n)(0.4X?γ/n)

≤ 0.321318X?γ, (A.87)
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where ¬ is due to the mean value theorem with f̃` located between f?` and fλ` . ­ follows from Lemma A.1.5. To see

this, first note that ∆({f̃`}) ≥ 2.5/n by Lemma A.1.4. Second, f ∈ N = [0, 0.24/n] implies that

0 ≤ |f − f̃0| ≤|f − f?0 |+ |f?0 − f̃0| ≤ 0.24/n+ 0.4(10−3)/n = 0.2404/n.

We also used the definition N̂ = [0, 0.2404/n] in ­. ® follows from the upper bound on F1(2.5/n, 0.2404/n)

in Table A.1, the upper bound on maxf∈N̂ |K ′(f)| in Table A.3, as well as the upper bound on ‖fλ − f?‖∞ in

Lemma 2.4.1.

Applying arguments similar to those for (A.87), we can control ‖D`(f, f
λ)−D`(f, f

?)‖1 as

‖D`(f, f
λ)−D`(f, f

?)‖1 ≤(F`+1(2.5/n, 0.2404/n) + max
f∈N̂
|K(`+1)(f)|)‖fλ − f?‖∞. (A.88)

We specialize the above inequality to ` = 1, 2, 3 using the upper bounds on F`(2.5/n, 0.2404/n) in Table A.1 and

those on maxf∈N̂ |K(`)(f)| in Table A.3 to obtain

‖D1(f, fλ)−D1(f, f?)‖1 ≤(F2(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′(f)|)‖fλ − f?‖∞

≤(0.05637n2 + 3.290n2)(0.4X?γ/n) = 1.338548nX?γ; (A.89)

‖D2(f, fλ)−D2(f, f?)‖1 ≤(F3(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′(f)|)‖fλ − f?‖∞

≤(0.28838n3 + 7.80572n3)(0.4X?γ/n) = 3.23764n2X?γ; (A.90)

‖D3(f, fλ)−D3(f, f?)‖1 ≤(F4(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′′(f)|)‖fλ − f?‖∞

≤(1.671n4 + 29.2227n4)(0.4X?γ/n) = 12.3575n3X?γ. (A.91)

Furthermore, we can use similar arguments and Lemma A.1.5 to control ‖D`(f, f)‖1 for f ∈ N :

‖D`(f, f
?)‖1 ≤ F`(2.5/n, 0.2404/n) + max

f∈N̂
|K(`)(f)|, (A.92)

which specializes to

‖D0(f, f?)‖1 ≤F0(2.5/n, 0.2404/n) + max
f∈N̂
|K(f)| ≤ 0.00757 + 1 = 1.00757; (A.93)

‖D1(f, f?)‖1 ≤F1(2.5/n, 0.2404/n) + max
f∈N̂
|K ′(f)| ≤ 0.01241n+ 0.790885n = 0.803295n; (A.94)

‖D2(f, f?)‖1 ≤F2(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′(f)| ≤ 0.05637n2 + 3.290n2 = 3.34637n2; (A.95)

‖D3(f, f?)‖1 ≤F3(2.5/n, 0.2404/n) + max
f∈N̂
|K ′′′(f)| ≤ 0.28838n3 + 7.80572n3 = 8.0941n3. (A.96)
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With these preparations, we are ready to control ‖ν?(f)(`) − νλ(f)(`)‖1 and ‖ν?(f)(`)‖1 for ` = 0, 1, 2 in Near

Region. Generalizing (A.85) to the `th derivative of ν?(f) and νλ(f) to get

‖ν?(f)
(`) − νλ(f)

(`)‖1 ≤‖D`+1(f, fλ)−D`+1(f, f?)‖1‖ diag(cλ)S−1‖1
+‖D`+1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D`(f, f

λ)−D`(f, f
?)‖1;

‖ν?(f)
(`)‖1 ≤‖D`+1(f, f?) diag(c?)S−1‖1 + 2‖D`(f, f

?)‖1.
(A.97)

Plugging Eq. (A.87), (A.89), (A.94) and (A.86) into (A.97), we obtain

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D0(f, fλ)−D0(f, f?)‖1

≤1.338548nX?γ
0.552

n
+ (0.803295n)

0.552X?γ

n
+ 2(0.321318X?γ) ≤ 1.82494X?γ.

(A.98)

Plugging Eq. (A.89)- (A.90), (A.95) and (A.86) into (A.97), we obtain

‖ν?(f)
′ − νλ(f)

′‖1 ≤‖D2(f, fλ)−D2(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D2(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D1(f, fλ)−D1(f, f?)‖1

≤3.23764n2X?γ
0.552

n
+ (3.34637n2)

0.552X?γ

n
+ 2(1.338548nX?γ)

≤6.31147nX?γ.

(A.99)

Plugging Eq. (A.90)- (A.91), (A.96) and (A.86) into (A.97), we obtain

‖ν?(f)
′′ − νλ(f)

′′‖1 ≤‖D3(f, fλ)−D3(f, f?)‖1‖ diag(cλ)S−1‖1
+ ‖D3(f, fλ)‖1‖diag(c?)S−1 − diag(cλ)S−1‖1 + 2‖D2(f, fλ)−D2(f, f?)‖1

≤12.3575n3X?γ
0.552

n
+ (8.0941n3)

0.552X?γ

n
+ 2(3.23764n2X?γ)

≤17.7646n2X?γ.

(A.100)

Similarly, plugging Eq. (A.93)- (A.94) and (A.86) into (A.97), we have

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (0.803295n)
0.552

n
+ 2(1.00757) ≤ 2.45856. (A.101)

Plugging Eq. (A.94)- (A.95) and (A.86) into (A.97), we obtain

‖ν?(f)
′‖1 ≤ ‖D2(f, f?) diag(c?)S−1‖1 + 2‖D1(f, f?)‖1 ≤ (3.34637n2)

0.552

n
+ 2(0.803295n) ≤ 3.4538n.

(A.102)

Finally, plugging Eq. (A.95)- (A.96) and (A.86) into (A.97), we arrive at
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‖ν?(f)
′′‖1 ≤ ‖D3(f, f?) diag(c?)S−1‖1 + 2‖D2(f, f?)‖1 ≤ (8.0941n3)

0.552

n
+ 2(3.34637n2) ≤ 11.1607n2.

(A.103)

We are now ready to control the pointwise distance between Q?(`)(f) and Qλ(`)
(f) using

|Q?(`)(f)−Qλ(`)
(f)| ≤ |νλ(f)

(`)
Ξλρλ − ν?(f)

(`)
Ξ?ρ?|, ` = 0, 1, 2. (A.104)

Plugging Eq. (A.98)- (A.99), (A.75)- (A.83) and (A.84) to (A.104) with ` = 0, we obtain for f ∈ N

|Q?(f)−Qλ(f)|
≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(2.45856)(1.03172)(2X?γ) + (2.45856)(8.81222X?B?γ) + (1.82494X?γ)(1.09363) ≤ 28.7343X?B?γ.

Plugging Eq. (A.100)- (A.101), (A.75)- (A.83) and (A.84) to (A.104) with ` = 1, we obtain for f ∈ N

|Q?(f)′ −Qλ(f)′|
≤‖ν?(f)

′‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)
′‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)

′ − νλ(f)
′‖1‖Ξλ‖∞,∞‖ρλ‖∞

≤(3.4538n)(1.03172)(2X?γ) + (3.4538n)(8.81222X?B?γ) + (6.31147nX?γ)(1.09363) ≤ 44.4648nX?B?γ.

Finally, plugging Eq. (A.102)- (A.103), (A.75)- (A.83) and (A.84) to (A.104) with ` = 2, we get for f ∈ N

|Q?(f)′′ −Qλ(f)′′|
≤‖ν?(f)

′′‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)
′′‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞ + ‖ν?(f)

′′ − νλ(f)
′′‖1‖Ξλ‖∞,∞‖ρλ‖∞

≤(11.1607n2)(1.03172)(2X?γ) + (11.1607n2)(8.81222X?B?γ) + (17.7646n2X?γ)(1.09363) ≤ 140.808n2X?B?γ.

A.7.2 Middle Region Analysis

We continue with bounding the pointwise distance betweenQ?(f) andQλ(f) in Middle RegionM = [0.24/n, 0.75/n].

We start with controlling ‖D`(f, f
λ) − D`(f, f

?)‖1 and |D`(f, f
?)‖1 for ` = 0, 1. First note when f ∈ M =

[0.24/n, 0.75/n], we have

(a) |f − f̃0| ≤|f − f?0 |+ |f?0 − f̃0| ≤ 0.75/n+ 0.0004/n = 0.7504/n,

(b) |f − f̃0| ≥|f − f?0 | − |f?0 − f̃0| ≥ 0.24/n− 0.0004/n = 0.2396/n.

Denote M̂ = [0.2396/n, 0.7504/n]. We combine the upper bounds on F`(2.5/n, 0.7504/n) in Table A.1 and the

upper bounds on maxf∈M̂ |K(`)(f)| in Table A.3 to get

‖D0(f, fλ)−D0(f, f?)‖1 ≤(F1(2.5/n, 0.7504/n) + max
f∈M̂

|K ′(f)|)‖fλ − f?‖∞

≤(0.01454n+ 2.46872n)(0.4X?γ/n) = 0.993304X?γ;
(A.105)
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‖D1(f, fλ)−D1(f, f?)‖1 ≤(F2(2.5/n, 0.7504/n) + max
f∈M̂

|K ′′(f)|)‖fλ − f?‖∞

≤(0.12675n2 + 3.290n2)(0.4X?γ/n) = 1.36670nX?γ.
(A.106)

In a similar manner, we use Lemma A.1.5 to control ‖D`(f, f)‖1 as follows

‖D0(f, f)‖1 ≤ F0(2.5/n, 0.7504/n) + max
f∈M̂

|K(f))| ≤ 0.00772 + 0.90951 = 0.91723; (A.107)

‖D1(f, f)‖1 ≤ F1(2.5/n, 0.7504/n) + max
f∈M̂

|K ′(f))| ≤ 0.01454n+ 2.46872n = 2.48326n. (A.108)

To control ‖ν?(f) − νλ(f)‖1 and ‖ν?(f)‖1 in the Middle Region, we plug Eq. (A.105)- (A.108) into (A.97) to

get

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1 + ‖D1(f, fλ)‖1‖diag(c?)S−1 − diag(cλ)S−1‖1
+ 2‖D0(f, fλ)−D0(f, f?)‖1

≤1.36670nX?γ
0.552

n
+ (2.48326n)

0.552X?γ

n
+ 2(0.993304X?γ) ≤ 4.11179X?γ; (A.109)

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (2.48326n)
0.552

n
+ 2(0.91723) ≤ 3.20522.

(A.110)

Finally, we control |Q?(f) − Qλ(f)| in Middle Region by plugging Eq. (A.109)- (A.110), (A.75)- (A.83) and

(A.84) to (A.104) with ` = 0 to get

|Q?(f)−Qλ(f)| ≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞
+ ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞

≤(3.20522)(1.03172)(2X?γ) + (3.20522)(8.81222X?B?γ) + (4.11179X?γ)1.09363

≤39.3557X?B?γ, f ∈M.

A.7.3 Far Region Analysis

Lastly, we bound the pointwise distance between Q?(f) and Qλ(f) in Far Region F = [0.75/n, f?1 /2]. Again,

we start with controlling ‖D`(f, f
λ) − D`(f, f

?)‖1 and |D`(f, f
?)‖1 for ` = 0, 1. First note when f ∈ F =

[0.75/n, f?1 /2], we have

(a) f − f̃0 ≥ f − f?0 − |f?0 − f̃0| ≥ 0.75/n− 0.0004/n = 0.74996/n,

(b) f̃1 − f ≥ −|f̃1 − f?1 |+ f?1 − f ≥ −0.0004n+ f?1 /2 ≥ −0.0004/n+ (2.5009/n)/2 ≥ 1.25/n.

Further note that {f̃`} satisfies the separation condition that ∆({f̃`}) ≥ 2.5/n. Then, following from Lemma A.1.3

and the upper bounds on W`(0.74996/n, 1.25/n) in Table A.2, we have
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‖D0(f, fλ)−D0(f, f?)‖1 ≤‖D1(f̃ , f)‖1‖fλ − f?‖∞
≤W1(0.74996/n, 1.25/n)‖fλ − f?‖∞ ≤ 5.2265n(0.4X?γ/n) = 2.0906X?γ; (A.111)

‖D1(f, fλ)−D1(f, f?)‖1 ≤W2(0.74996/n, 1.25/n)‖fλ − f?‖∞ ≤ 48.033n2(0.4X?γ/n) = 19.2132nX?γ.
(A.112)

Similarly, we can use Lemma A.1.3 to control ‖D`(f, f)‖1 for ` = 0, 1 and f ∈ F :

‖D0(f, f?)‖1 ≤W0(0.74996/n, 1.25/n) ≤ 0.71059;

‖D1(f, f?)‖1 ≤W1(0.74996/n, 1.25/n) ≤ 5.2265n.
(A.113)

Directly plugging Eq. (A.111)- (A.113) into (A.97), we arrive at

‖ν?(f)− νλ(f)‖1 ≤‖D1(f, fλ)−D1(f, f?)‖1‖ diag(cλ)S−1‖1 + ‖D1(f, fλ)‖1‖ diag(c?)S−1 − diag(cλ)S−1‖1
+ 2‖D0(f, fλ)−D0(f, f?)‖1

≤19.2132nX?γ
0.552

n
+ (5.2265n)

0.552X?γ

n
+ 2(2.0906X?γ) ≤ 17.6720X?γ; (A.114)

‖ν?(f)‖1 ≤‖D1(f, f?) diag(c?)S−1‖1 + 2‖D0(f, f?)‖1 ≤ (5.2265n)
0.552

n
+ 2(0.71059) ≤ 4.30621.

(A.115)

As a final step, we control |Q?(f) − Qλ(f)| in Far Region by plugging Eq. (A.114)- (A.115) and (A.75)- (A.84)

to (A.104) to get

|Q?(f)−Qλ(f)| ≤‖ν?(f)‖1‖Ξ?‖∞,∞‖ρ? − ρλ‖1 + ‖ν?(f)‖1‖Ξ? − Ξλ‖∞,∞‖ρλ‖∞
+ ‖ν?(f)− νλ(f)‖1‖Ξλ‖∞,∞‖ρλ‖∞
≤(4.30621)(1.03172)(2X?γ) + (4.30621)(8.81222X?B?γ) + (17.6720X?γ)(1.09363)

≤66.1596X?B?γ, f ∈ F .

This concludes the proof of Lemma 2.4.4.

A.8 Proof of Lemma 2.4.5

Lemma A.8.1 (Lemma 2.4.5). Under the settings of Lemma 2.4.2, let Q̂ and Qλ be the dual polynomials corre-

sponding to θ̂ and θλ, respectively. Then the pointwise distances between Qλ(f) and Q̂(f) and their derivatives are

bounded:

|Q̂(f)−Qλ(f)| ≤ 82.5975B?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 114.323B?/X?, f ∈M,

|Q̂(f)′ −Qλ′(f)| ≤ 180.283nB?/X?, f ∈ N , |Q̂(f)−Qλ(f)| ≤ 162.903B?/X?, f ∈ F ,
|Q̂(f)′′ −Qλ′′(f)| ≤ 758.404n2B?/X?, f ∈ N .

Proof. The expressions qλ = x?−xλ

λ and q̂ = y−x̂
λ lead to
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q̂− qλ =
(y − x̂)− (x? − xλ)

λ
=

w

λ
+

xλ − x̂

λ
,

implying

|Qλ(f)− Q̂(f)| ≤ |a(f)HZw|
λ︸ ︷︷ ︸

Π1(f)

+
|a(f)HZ(xλ − x̂)|

λ︸ ︷︷ ︸
Π2(f)

.
(A.116)

This separates the distance betweenQλ(f) and Q̂(f) into two parts: one is Π1(f) associated with the dual atomic norm

of the Gaussian noise w whose upper bounds were developed in Appendix A.2; the other is Π2(f) corresponding to the

dual atomic norm of xλ−x̂. The latter quantity can be bounded by similar arguments as controlling |a(f)HZ(xλ − x̂)|

in Lemma 2.4.4.

Bounding Π1(f).

Combining Eq. (A.32)- (A.34), we can upperbound Π1(f),Π(f)′ and Π1(f)′′ with high probability (at least 1−1/n2)

for all f ∈ T:

Π1(f) ≤ 6.534γ0/λ ≤ 10.115/X?;

Π1(f)′ ≤ 41.052nγ0/λ ≤ 63.458n/X?;

Π1(f)′′ ≤ 257.94n2γ0/λ ≤ 399.288n2/X?,

(A.117)

where we used λ = 0.646X?γ0.

Bounding Π2(f).

Π2(f) =
1

λ
|D0(f, fλ)cλ −D0(f, f̂)ĉ|

≤ 1

λ
‖D0(f, fλ)−D0(f, f̂)‖1‖cλ‖∞ +

1

λ
‖D0(f, f̂)‖1‖ĉ− cλ‖∞

¬
≤ 1

λ
‖D1(f, f̃)‖1‖fλ − f̂‖∞‖cλ‖∞ +

1

λ
‖D0(f, f̂)‖1‖ĉ− cλ‖∞

­
≤ cλmax

0.646X?γ0

(
0.4(35.2)γ

n
‖D1(f, f̃)‖1 + 35.2γ‖D0(f, f̂)‖1

)
®
≤ B?(1 +X?γ)

0.646X?

(
14.08

n
‖D1(f, f̃)‖1 + 35.2‖D0(f, f̂)‖1

)
,

where ¬ follows from the mean value theorem. For ­ to hold, first note that λ = 0.646X?γ0 and θ̂ ∈ Nλ by

Lemma 2.4.2. Then, we can upperbound ‖ĉ− cλ‖∞ as

‖ĉ− cλ‖∞ =
|ĉj − cλj |
|cλj |

|cλj |≤(35.2γ)cλmax,

where the equality follows by assuming the `∞ norm is achieved by the jth row and the inequality follows by changing

X? to 35.2 in (A.10) and defining cλmax := maxj |cλj |. ® follows from γ0 = γc?min and
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cλmax

c?min

= B?
|cλj |
c?max

≤ B?
|cλj |
|c?j |
≤ B?(1 +X?γ).

As a consequence, to control Π2(f), it reduces to bounding ‖D`(f, f̃)‖1 and ‖D`(f, f̂)‖1. For this purpose, we

first note that {∆(T̃ ),∆(T̂ )} ≥ 2.5/n by Lemma A.1.4. Second, by

‖f̃ − f?‖∞
¬
≤ ‖f̂ − f?‖∞

­
≤ 0.4(X? + 35.2)γ

®
≤ 0.0004/n+ 1.408× 10−6/n = 0.000401408/n,

where ¬ follows from the length of subinterval is no larger than the whole one. ­ follows from Eq. (A.10) and ®

follows from the SNR condition (2.10). Thus, we can follow the same arguments that lead to Eq. (A.93)- (A.94)

for Near Region, Eq. (A.107)- (A.108) for Middle Region, and Eq. (A.113) for Far Region to develop bounds on

‖D`(f, f̂)‖1.

To have a concrete idea, we first show how to control ‖D`(f, f̂)‖1 since the upper bounds for ‖D`(f, f̃)‖1 then

follows by ‖f̃ − f?‖∞ ≤ ‖f̂ − f?‖∞. First, consider f ∈ N . Then we have

0 ≤ |f̂0 − f | ≤|f̂0 − f?0 |+ |f?0 − f | ≤ 0.000401408/n+ 0.24/n ≤ 0.240401408/n.

With some abuse of notation, we denote N̂ := [0, 0.240401408/n]. Second, consider f ∈M. Then we have

(a) |f − f̂0| ≤|f − f?0 |+ |f?0 − f̂0| ≤ 0.75/n+ 0.000401408/n = 0.750401408/n;

(b) |f − f̂0| ≥|f − f?0 | − |f?0 − f̂0| ≥ 0.24/n− 0.000401408/n. = 0.239598592/n.

Denote M̂ = [0.2396/n, 0.7504/n]. At last, we consider f ∈ F = [0.75/n, f?1 /2]:

(a) f − f̂0 ≥f − f?0 − |f?0 − f̂0| ≥ 0.75/n− 0.000401408/n = 0.749598592/n;

(b) f̂1 − f ≥− |f̂1 − f?1 |+ f?1 − f ≥ −0.000401408/n+ f?1 /2 ≥ −0.000401408/n+ (2.5009/n)/2 ≥ 1.25/n.

Hence we can define F̂ := [0.749598592/n, 1.25/n]. Furthermore, we remark that those numerical upper bounds

in Table A.1- Table A.3 do not change when evaluated for the newly defined intervals N̂ , M̂ and F̂ .

Finally, by directly plugging the upper bounds of ‖D`(f, f)‖∞ in (A.93)- (A.94) for Near Region, (A.107)- (A.108)

for Middle Region, and equation (A.113) for Far Region, it follows that

Π2(f) ≤B
?

X?


1.001
0.646 ( 14.08

n (0.803295n) + 35.2(1.00757)) ≤ 72.4825B
?

X? , f ∈ N ;
1.001
0.646 ( 14.08

n (2.48326n) + 35.2(0.91723)) ≤ 104.208B
?

X? , f ∈M;
1.001
0.646 ( 14.08

n (5.2265n) + 35.2(0.71059)) ≤ 152.788B
?

X? , f ∈ F .
(A.118)

Similarly, from (A.94)- (A.96), we have an upper bound on Π2(f)′ and Π2(f)′′ as follows
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Π2(f)′ ≤B
?(1 +X?γ)

0.646X?

(
14.08

n
‖D2(f, f̃)‖1 + 35.2‖D1(f, f̂)‖1

)
≤B

?

X?

1.001

0.646

(
14.08

n
(3.34637n2) + 35.2(0.803295n)

)
≤ 116.825n

B?

X?
, f ∈ N ; (A.119)

Π2(f)′′ ≤B
?(1 +X?γ)

0.646X?

(
14.08

n
‖D3(f, f̃)‖1 + 35.2‖D2(f, f̂)‖1

)
≤B

?

X?

1.001

0.646

(
14.08

n
(8.0941n3) + 35.2(3.34637n2)

)
≤ 359.116n2B

?

X?
, f ∈ N . (A.120)

Combining (A.117)- (A.120) for Π1(f) and Π2(f), we can control |Q̂(`)(f)−Qλ(`)
(f)| in Near region f ∈ N as

follows

|Q̂(f)−Qλ(f)| ≤ (10.115 + 72.4825)B?/X? = 82.5975B?/X?, f ∈ N ;

|Q̂(f)′ −Qλ′(f)| ≤ (63.458n+ 116.825n)B?/X? = 180.283nB?/X?, f ∈ N ;

|Q̂(f)′′ −Qλ′′(f)| ≤ (399.288n2 + 359.116n2)B?/X? = 758.404n2B?/X?, f ∈ N .

For the case of Middle Region and Far Region, we can upperbound them as:

|Q̂(f)−Qλ(f)| ≤ (10.115 + 104.208)B?/X? = 114.323B?/X?, f ∈M;

|Q̂(f)−Qλ(f)| ≤ (10.115 + 152.788)B?/X? = 162.903B?/X?, f ∈ F .

This completes the proof of Lemma 2.4.5.

A.9 Proof of Proposition 2.4.1

Proposition A.9.1 (Proposition 2.4.1). Let the decomposition x̂ =
∑k̂
`=1 ĉ`a(f̂`) with distinct frequencies T̂ =

{f̂`} ⊂ T and nonzero coefficients {ĉ`} and set q̂ = (y − x̂)/λ. Suppose the corresponding dual polynomial Q̂(f) =

a(f)HZq̂ satisfies the following Bounded Interpolation Property (BIP):

Q̂(f̂`) = sign(ĉ`), ` = 1, . . . , k̂ (Interpolation);

|Q̂(f)| < 1,∀f /∈ T̂ (Boundedness);

then x̂ and q̂ are the unique primal-dual optimal solutions to (2.8) and (2.16), that is, x̂ = xglob and q̂ = qglob. Here

the operation sign(c) := c/|c| for a nonzero complex number and applies entry-wise to a vector.

Proof. The uniqueness follows from the strongly convex quadratic term in (2.8). We next show the primal optimality

of x̂ and the dual optimality of q̂ by establishing strong duality. First, q̂ is feasible to the dual program (2.16) because

of the BIP property. Second, we have the following chain of inequalities:
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value of (2. 16) =
1

2
‖y‖2Z −

1

2
‖y − λq̂‖2Z

=
1

2
‖λq̂‖2Z + λR{x̂HZq̂}

=
1

2
‖y − x̂‖2Z + λ‖ĉ‖1

≥ 1

2
‖y − x̂‖2Z + λ‖x̂‖A = value of (2. 8),

where the second line follows by plugging y = x̂ + λq̂; the third line holds due to the Interpolation property; and

the last line holds since ‖x̂‖A ≤ ‖ĉ‖1 by (2.7). Since the weak duality theorem ensures that the other direction of

the inequality always holds, we obtain strong duality. As a consequence, x̂ and q̂ achieve primal optimality and dual

optimality, respectively. This means x̂ = xglob, q̂ = qglob due to uniqueness of the solutions.

A.10 Proof of Corollary 2.2.1

Corollary A.10.1 (Corollary 2.2.1). Under the same setup as in Theorem 2.2.1, with probability at least 1 − 1
n2 , the

frequencies and coefficients estimated by the atomic norm regularized minimization (2.8) constitute a global optimum

of the `1-regularized nonlinear least-squares program (2.15).

Proof. Denote by F (x) the objective functions for (2.8) and G(f , c) for (2.15). Assume (fnon, cnon) is a global

optimum for (2.15) with xnon = A(fnon)cnon, and xglob = A(fglob)cglob is the global optimum of (2.8). Then

F (xglob) ≤ F (xnon) ≤ G(fnon, cnon) ≤ G(fglob, cglob), (A.121)

where the first inequality uses the optimality of xglob to (2.8); the second inequality follows from ‖xnon‖A ≤ ‖cnon
` ‖1

by (2.7); and the last inequality follows from the optimality of (fnon, cnon) to (2.15). On the other hand, recog-

nize that ‖xglob‖A = ‖cglob
` ‖1 since {fglob

` } satisfies the separation condition (revealed by Lemma A.1.4 in Ap-

pendix A.1). This leads to G(fglob, cglob) = F (xglob). Therefore, all inequalities in (A.121) become equalities and

hence G(fnon, cnon) = G(fglob, cglob). This implies the global optimality of (fglob, cglob) for the nonconvex pro-

gram (2.15).

A.11 Proof of Lemma A.1.4

Lemma A.11.1 (Lemma A.1.4). Let the separation condition (2.9) and the SNR condition (2.10) hold. Then both the

frequencies Tλ = {fλ` } returned by the first fixed point map (2.19) and the frequencies T̂ = {f̂`} generated by the

second fixed point map (2.21) have minimal separations at least 2.5/n. Furthermore, the intermediate frequencies

defined by T̃ = {f̃`}k`=1 with each f̃` ∈ [f?` , f
λ
` ] or [fλ` , f

?
` ] and the second intermediate frequencies T̃λ := {f̃`}k`=1

with each f̃` ∈ [fλ` , f̂`] or [f̂`, f
λ
` ] also have minimal separations at least 2.5/n:
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min{∆(Tλ),∆(T̃ ),∆(T̂ ),∆(T̃λ)} ≥ 2.5/n.

Proof. First of all, from Lemma 2.4.1, we have θλ ∈ N ?, implying ‖fλ − f?‖∞ ≤ 0.4X?B?γ/n by Eq. (A.10)

and by Lemma 2.4.2, we obtain that θ̂ ∈ N λ, which implies ‖f̂ − fλ‖∞ ≤ 0.4(35.2)B?γ/n by Eq. (A.10). More

precisely, we bound ∆(Tλ) as

∆(Tλ)
¬
= min

i 6=j
|fλi − fλj |

= min
i 6=j
|fλi − f?i + f?i − f?j + f?j − fλj |

­
≥ min

i 6=j
|f?i − f?j | −max

i
|fλi − f?i | −max

j
|fλj − f?j |

®
≥ ∆(T ?)− 0.8X?B?γ/n

¯
≥ 2.5009/n− 0.0008/n = 2.5001/n > 2.5/n,

where ¬ follows from the definition of the separation distance and ­ follows from the triangle inequality. ® follows

from that θλ is the fixed point solution of the contraction map (2.19). Thus, θλ ∈ N ? following from the non-escaping

property by the contraction mapping theorem. This further implies that ‖fλ − f?‖∞ ≤ 0.4X?B?γ/n by (A.10).

Finally, ¯ follows from that T ? satisfies the separation condition (2.9): ∆(T ?) ≥ 2.5009/n.

For bounding ∆(T̃ ), first identify that−maxi |f̃i−f?i | ≥ −maxi |fλi −f?i |, since the inner point f̃i is included in

the interval [f?i , f
λ
i ] and hence the length of the [f̃i, f

?
i ] is less than the entire interval [f?i , f

λ
i ]. Then we immediately

arrive at ∆(T̃ ) > 2.5/n.

For ∆(T̂ ), we have

∆(T̂ ) = min
i 6=j
|f̂i − f̂j |

= min
i 6=j
|f̂i − fλi + fλi − fλj + fλj − f̂j |

¬
≥ min

i 6=j
|fλi − fλj | −max

i
|f̂i − fλi | −max

j
|f̂j − fλj |

­
≥ ∆(Tλ)− 2‖f̂ − fλ‖∞
­
≥ ∆(Tλ)− 2(14.08)B?γ/n,

where ¬ follows from the triangle inequality and ­ follows from the definition of ‖f̂ − fλ‖∞. ® follows from that

‖f̂ − fλ‖∞ ≤ 0.4(35.2)B?γ/n = 14.08B?γ/n by (A.10). Finally following from the SNR condition (2.10) and

∆(Tλ) ≥ 2.5001/n, we then have ∆(T̂ ) ≥ 2.5001/n− 2(14.08)× 10−7/n > 2.5/n.

∆(T̃λ) ≥ 2.5/n holds by the same strategy as ∆(T̃ ) > 2.5/n.
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APPENDIX B

APPENDICES FOR CHAPTER 3

B.1 Proof of Lemma 3.4.1

Lemma B.1.1 (Lemma 3.4.1). The following conditions are necessary for (3.16):∑
j,k

Qijkv
?
p(j)w

?
p(k) = u?p(i),∀i ∈ [n],∀p ∈ [r];

∑
i,k

Qijku
?
p(i)w

?
p(k) = v?p(j),∀i ∈ [n],∀p ∈ [r];

∑
i,j

Qijku
?
p(i)v

?
p(j) = w?

p(k),∀i ∈ [n],∀p ∈ [r]

or in tensor notation

Q×2v
?
p×3w

?
p = u?p,∀p ∈ [r];

Q×1u
?
p×3w

?
p = v?p,∀p ∈ [r];

Q×1u
?
p×2v

?
p = w?

p,∀p ∈ [r]

(3.21)

where {×k} are the k-mode tensor-vector product [270] whose definitions are apparent from context.

Proof. From the KKT conditions of the constrained optimization (3.20), we have the partial derivatives of its La-

grangian

L(u,v,w, a, b, c) =q(u,v,w)− a(‖u‖22 − 1)− b(‖v‖22 − 1)− c(‖w‖22 − 1)

at u = u?p, v = v?p, and w = w?
p, p = 1, . . . , r, must vanish. Therefore,

∂L(u?p,v
?
p,w

?
p, a, b, c)

∂u
=
∂q(u?p,v

?
p,w

?
p)

∂u
− 2au?p = 0,

∂L(u?p,v
?
p,w

?
p, a, b, c)

∂v
=
∂q(u?p,v

?
p,w

?
p)

∂v
− 2bv?p = 0,

∂L(u?p,v
?
p,w

?
p, a, b, c)

∂w
=
∂q(u?p,v

?
p,w

?
p)

∂w
− 2cw?

p = 0.

(B.1)

Hence, 2a = 〈∂q(u
?
p,v

?
p,w

?
p)

∂u ,u?p〉, 2b = 〈∂q(u
?
p,v

?
p,w

?
p)

∂v ,v?p〉, and 2c = 〈∂q(u
?
p,v

?
p,w

?
p)

∂u ,w?
p〉. Note that q satisfies the

Interpolation condition and ∂q(u,v,w)
∂u(i) =

∑
j,kQijkv(j)w(k), we have that

2a =
∑
i,j,k

Qijku
?
p(i)v

?
p(j)w

?
p(k) = q(u?p,v

?
p,w

?
p) = 1.

That is a = 1/2. With similar arguments, one can show that b = c = 1/2. The conclusion of this lemma follows

from (B.1).
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B.2 Proof of Lemma 3.4.2

Lemma B.2.1 (Lemma 3.4.2). The solution of the least-norm problem (3.22) has the form (normal equation)

Q =

r∑
p=1

(α?p ⊗ v?p ⊗w?
p + u?p ⊗ β?p ⊗w?

p + u?p ⊗ v?p ⊗ γ?p) (3.23)

with the unknown coefficients {α?p,β?p,γ?p}rp=1 being chosen such that Q in (3.23) satisfies (3.21). So we get an

explicit form of a pre-certificate

q(u,v,w) = 〈Q,u⊗ v ⊗w〉

=

r∑
p=1

[〈α?p,u〉〈v?p,v〉〈w?
p,w〉+ 〈u?p,u〉〈β?p,v〉〈w?

p,w〉+ 〈u?p,u〉〈v?p,v〉〈γ?p,w〉]. (3.24)

Proof. First, the Lagrangian form of (3.22) is

L(Q, {α?p,β?p,γ?p}rp=1) =
1

2
‖Q‖2F −

r∑
p=1

(
Q×1α

?
p×2v

?
p×3w

?
p + Q×1u

?
p×2β

?
p×3w

?
p + Q×1u

?
p×2v

?
p×3γ

?
p

)
=

1

2
‖Q‖2F −

〈
Q,

r∑
p=1

α?p ⊗ v?p ⊗w?
p + u?p ⊗ β?p ⊗w?

p + u?p ⊗ v?p ⊗ γ?p

〉

with the Lagrangian multipliers {α?p,β?p,γ?p}rp=1 to be chosen such that Q satisfies (3.21). Then, by the KKT neces-

sary conditions, the solution of the least-norm problem (3.22) should satisfy

0 =
∂L(Q, {α?p,β?p,γ?p}rp=1)

∂Q

=Q−
r∑
p=1

(
α?p ⊗ v?p ⊗w?

p + u?p ⊗ β?p ⊗w?
p + u?p ⊗ v?p ⊗ γ?p

)
.

B.3 Proof of Lemma 3.4.3

Lemma B.3.1 (Lemma 3.4.3). Under Assumptions II and III together with r = o(n2/κ(log n)2), the following esti-

mates are valid for sufficiently large n:

∥∥∥∥A− 1

3
U

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥B− 1

3
V

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
;∥∥∥∥C− 1

3
W

∥∥∥∥ ≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
where
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A =
[
α?1, · · · ,α?r

]
,U =

[
u?1, · · · ,u?r

]
;

B =
[
β?1, · · · ,β?r

]
,V =

[
v?1, · · · ,v?r

]
;

C =
[
γ?1, · · · ,γ?r

]
,W =

[
w?

1, · · · ,w?
r

]
and the norm ‖ · ‖ is the matrix spectral norm.

Proof. We need to find coefficient vectors {α?p,β?p,γ?p}rp=1 so that the tensor

Q =

r∑
p=1

(
α?p ⊗ v?p ⊗w?

p + u?p ⊗ β?p ⊗w?
p + u?p ⊗ v?p ⊗ γ?p

)
satisfies (3.21):

Q×2v
?
p×3w

?
p = u?p, ∀p ∈ [r],

Q×1u
?
p×3w

?
p = v?p, ∀p ∈ [r],

Q×1u
?
p×2v

?
p = w?

p, ∀p ∈ [r]. (B.2)

An iteration scheme. We adopt the following iterative scheme to find such {α?p,β?p,γ?p}rp=1:

αt+1
q = αtq − ρ

(
Qt

1×2v
?
p×3w

?
q − u?q

)
, q ∈ [r],

βt+1
q = βtq − ρ

(
Qt

2×1u
?
p×3w

?
q − v?q

)
, q ∈ [r],

γt+1
q = γtq − ρ

(
Qt

3×1u
?
p×2v

?
q −w?

q

)
, q ∈ [r], (B.3)

initialized by α0
q = 1

3u?q , β0
q = 1

3v?q , and γ0
q = 1

3w?
q with q ∈ [r]. Here the parameter ρ is a step size to be chosen

later and the tensors

Qt
1 :=

r∑
p=1

(
αtp ⊗ v?p ⊗w?

p + u?p ⊗ β?p ⊗w?
p + u?p ⊗ v?p ⊗ γ?p

)
,

Qt
2 :=

r∑
p=1

(
αtp ⊗ v?p ⊗w?

p + u?p ⊗ βtp ⊗w?
p + u?p ⊗ v?p ⊗ γ?p

)
,

Qt
3 :=

r∑
p=1

(
αtp ⊗ v?p ⊗w?

p + u?p ⊗ βtp ⊗w?
p + u?p ⊗ v?p ⊗ γtp

)
. (B.4)

Note that the above iterative scheme is for theoretical analysis only as we used {α?p,β?p,γ?p}rp=1 in the definitions of

Qt
1,Q

t
2 and Qt

3.

Convergence of the iteration scheme. We next establish the convergence of the iterations (B.3). Plugging the tensor

eigenvalue equations (B.2) into (B.3) followed by subtracting the true solutions from both sides yields for q ∈ [r]
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αt+1
q −α?q =αtq −α?q − ρ[Qt

1 −Q]×2v
?
q×3w

?
q ,

βt+1
q − β?q =βtq − β?q − ρ[Qt

2 −Q]×1u
?
q×3w

?
q ,

γt+1
q − γ?q =γtq − γ?q − ρ[Qt

3 −Q]×1u
?
q×2v

?
q . (B.5)

Then plugging the definitions of Qt
1,Q

t
2,Q

t
3 (B.4) into (B.5) and using the following matrix notations

At :=
[
αt1, · · · ,αtr

]
,A :=

[
α?1, · · · ,α?r

]
,

Bt :=
[
αt1, · · · ,αtr

]
,B :=

[
α?1, · · · ,α?r

]
,

Ct :=
[
γt1, · · · ,γtr

]
, C :=

[
γ?1, · · · ,γ?r

]
,

we have

At+1 −A =(At −A)(I− ρ
[
(V>V)� (W>W)

]
),

Bt+1 −B =(Bt −B)
(
I− ρ[(U>U)� (W>W)]

)
− ρV

[
((At −A)>U)� (W>W)

]
,

Ct+1 −C =(Ct −C)(I− ρ[(U>U)� (V>V)])− ρW
{

[((At −A)>U)� (V>V)] + [(U>U)� ((Bt −B)>V)]
}
.

(B.6)

Denoting eta = ‖At −A‖, etb = ‖Bt −B‖, etc = ‖Ct −C‖ and

ρ̃ := ρmin

λmin((V>V)� (W>W))
λmin((U>U)� (W>W))
λmin((U>U)� (V>V))

 ,

it follows from (B.6) that

et+1
a ≤ (1− ρ̃)eta,

et+1
b ≤ ρ‖U‖‖V‖‖W‖2eta + (1− ρ̃)etb,

et+1
c ≤ ρ‖U‖2‖V‖‖W‖eta + ρ‖U‖2‖V‖‖W‖etb + (1− ρ̃)etc, (B.7)

where we have used triangle inequality and properties of spectral norms such as ‖P �Q‖ ≤ ‖P‖‖Q‖ 43. Convert-

ing (B.7) into matrix form gives

et+1
a

et+1
b

et+1
c

 ≤
 1− ρ̃ 0 0
ρ‖U‖‖V‖‖W‖2 1− ρ̃ 0
ρ‖U‖‖W‖‖V‖2 ρ‖U‖2‖V‖‖W‖ 1− ρ̃

etaetb
etc

 ,
where the lower triangular system matrix share the same value

43Hadamard product P�Q is a principal submatrix of P⊗Q, whose singular values are the products of the individual singular values of P and
Q.
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η = 1− ρ̃

∈
[
1− ρ

(
1 +

κ(log n)
√
r

n

)
, 1− ρ

(
1− κ(log n)

√
r

n

)]
(B.8)

⊂ (0, 1)

where (B.8) follows from applying Weyl’s inequality to (3.6) in Assumption III and the last line holds for any ρ ∈(
0, (1 + κ(logn)

√
r

n )−1
)

.

Conclusion. The error sequence (eta, e
t
b, e

t
c) is convergent to (0, 0, 0) geometrically with a rate η ∈ (0, 1). Thus,

lim
t→∞

(At,Bt,Ct) = (A,B,C).

Convergence of the consecutive differences {‖At −At−1‖}, {‖Bt − Bt−1‖}, {‖Ct − Ct−1‖}. Subtracting the

following two consecutive iterations for {At} in (B.6):

At+1 −A = (At −A)(I− ρ
[
(V>V)� (W>W)

]
)

At −A = (At−1 −A)(I− ρ
[
(V>V)� (W>W)

]
)

yields

At+1 −At = (At −At−1)(I− ρ
[
(V>V)� (W>W)

]
).

Similar manipulations applied to {Bt} and {Ct} lead to

Bt+1 −Bt =(Bt −Bt−1)(I− ρ
[
(U>U)� (W>W)

]
)− ρV

[
((At −At−1)>U)� (W>W)

]
,

Ct+1 −Ct =(Ct −Ct−1)(I− ρ
[
(U>U)� (V>V)

]
)

− ρW
{[

((At −At−1)>U)� (V>V)
]

+
[
(U>U)� ((Bt −Bt−1)>V)

]}
Defining êta = ‖At−At−1‖, êtb = ‖Bt−Bt−1‖, êtc = ‖Ct−Ct−1‖, we can get the same form as (B.7) and therefore

claim that (êta, ê
t
b, ê

t
c) converge to (0, 0, 0) geometrically with the same rate η ∈ (0, 1) in (B.8).

Bounding the accumulative errors. The geometric convergence of {‖Ct −Ct−1‖} implies

‖Ct −Ct−1‖ ≤ ηt−1‖C1 −C0‖

which together with the triangle inequality gives

‖Ct −C0‖ ≤
t−1∑
s=0

‖Cs+1 −Cs‖ ≤
t−1∑
s=0

ηs‖C1 −C0‖ ≤ 1

1− η ‖C
1 −C0‖.

Letting T go to infinity on the left-hand side gives
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‖C−C0‖ ≤ 1

1− η ‖C
1 −C0‖. (B.9)

We next bound ‖C1 −C0‖. From (B.3), we have

γ1
q − γ0

q = ρ(Q0
3×1u

?
q×2v

?
q −w?

q) = ρ

(
r∑
p=1

〈u?p,u?q〉〈v?p,v?q〉w?
p −w?

q

)

implying

C1 −C0 = ρW((U>U)� (V>V)− I).

Then from Assumptions II and III, we have

‖C1 −C0‖ ≤ ρ‖W‖‖(U>U)� (V>V)− I‖ ≤ ρ
(

1 + c

√
r

n

)
κ(log n)

√
r

n
. (B.10)

Combine ALL. Finally, combining (B.8), (B.9) and (B.10) and using C0 = 1
3W, we have

∥∥∥∥C− 1

3
W

∥∥∥∥ ≤ 1 + c
√

r
n

1− κ(logn)
√
r

n

κ(log n)
√
r

n

≤2

(
1 + c

√
r

n

)
κ(log n)

√
r

n

=2κ(log n)

(√
r

n
+ c

r

n1.5

)
where the second line follows from the assumption r = o(n2/κ(log n)2) which implies 1 − κ(logn)

√
r

n ≥ 1
2 for a

sufficiently large n. Similar arguments and bounds apply to ‖A− 1
3U‖ and ‖B− 1

3V‖.

B.4 Proof of Lemma 3.4.4

Lemma B.4.1 (Lemma 3.4.4). Under Assumptions I, II, III, if r � n1.25 and r ≤ n
24δc2 for δ ∈ (0, 1

24 ], then for

sufficiently large n, we have |q(u,v,w)| < 1 in F(δ).

Proof. The following lemma is required in the proof of Lemma3.4.4. Let us first admit Lemma B.4.2 to prove

Lemma3.4.4. Since q is the sum of two parts given in (3.29) and (3.30), to bound |q|, we will control these parts

separately.

Lemma B.4.2. Under Assumptions I and II, if r ≤ n1.25−1.5rc with rc ∈ (0, 1/6), then for any integer p ≥ 3,
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‖U>‖2→p ≤ 1 +
1

p
τ(log n)n−rc

The same bounds hold for V and W. Here, we define ‖H‖2→p := sup{‖Hx‖p : x ∈ Sn−1}.

Proof of Lemma B.4.2. See Section B.4.1.

Bound absolute value of (3.29).

r∑
p=1

|〈α?p −
1

3
u?p,u〉〈v?p,v〉〈w?

p,w〉| ≤

√√√√ r∑
p=1

〈α?p −
1

3
u?p,u〉2

√√√√ r∑
p=1

〈v?p,v〉2〈w?
p,w〉2

≤

√√√√ r∑
p=1

〈α?p −
1

3
u?p,u〉2 4

√√√√ r∑
p=1

〈v?p,v〉4 4

√√√√ r∑
p=1

〈w?
p,w〉4

= ‖(A− 1

3
U)>u‖2‖V>v‖4‖W>w‖4

≤ ‖A− 1

3
U‖‖V>‖2→4‖W>‖2→4

≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
(1 + o(1))

= o(1),

where the last second line follows from Lemma3.4.3 and LemmaB.4.2 when r � n1.25 (by letting rc in “r �

n1.25−rc" approach to zero). The last line holds for r � n1.5

κ(logn) .

Similar bounds hold for the other two terms in (3.29).

Bound the absolute value of (3.30). First of all, for any (u,v,w) ∈ F(δ), there exists a division of [r] =

Ωu ∪ Ωv ∪ Ωw such that

|〈u?p,u〉| ≤ δ, ∀p ∈ Ωu,

|〈v?p,v〉| ≤ δ, ∀p ∈ Ωv,

|〈w?
p,u〉| ≤ δ, ∀p ∈ Ωw.

(B.11)

We will denote by UΩu the submatrix of U forming from those columns of U with indexes in Ωu. Similarly, we can

define VΩv and WΩw . With these preparation, we have that
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r∑
p=1

|〈u?p,u〉〈v?p,v〉〈w?
pw〉| =

∑
p∈Ωu∪Ωv∪Ωw

|〈u?p,u〉〈v?p,v〉〈w?
pw〉|

≤ δ(‖VΩu‖‖WΩu‖+ ‖UΩv‖‖WΩv‖+ ‖UΩw‖‖VΩw‖)

≤ 3δ

(
1 + c

√
r

n

)2

≤ 12δmax{1, c2r/n}

≤ 1

2
,

where the first inequality follows from (B.11) and
∑
p∈Ωu

|〈v?p,v〉〈w?
p,w〉| ≤ ‖VΩu‖‖WΩu‖, etc. The second

inequality uses the fact that the spectral norm of any submatrix is smaller than the original one and Assumption II. The

last inequality holds when δ ≤ 1
24 and and r ≤ n/(24δc2).

Combine ALL. Under Assumptions I, II, III, if r � n1.25 and r ≤ n
24δc2 for δ ∈ (0, 1

24 ], we have |q| ≤ o(1) + 1
2 < 1

in F(δ) for sufficiently large n.

B.4.1 Proof of Lemma B.4.2

The proof refines the one for Lemma 4 of [71]. We only prove it for U since the same arguments apply to W and

V. We start with a general integer p ≥ 3.

‖U>‖2→p = sup
x∈Sn−1

‖U>x‖p := ‖U>x?‖p (B.12)

where we define x? ∈ Sn−1 to be the optimal solution of supx∈Sn−1 ‖U>x‖pp. Further note that

‖U>x?‖pp = ‖U>S x?‖pp + ‖U>Scx?‖pp (B.13)

where S denotes the indices of the largest (in absolute value) L entries of U>x? and US denotes the column submatrix

of U indexed by S. Similar notations apply to its complement set Sc = [r] \ S.

Bound the first term.

‖U>S x?‖pp ≤ ‖U>S x?‖22 ≤ ‖USU>S ‖ ≤ 1 +
∑

i∈S\{j}
|〈ui,uj〉| ≤ 1 + (L− 1)

τ(log n)√
n

. (B.14)

Note this upper-bound is independent of p. Here, the first inequality is because |u?>i x?| ≤ ‖u?i ‖2‖x?‖2 = 1 and the

last second inequality follows from Gershgorin’s circle theorem. Finally the last inequality is from Assumption I and

L being the cardinality of the set S.
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Bound the second term. First note that

min
i∈S
|u>i x?|2 ≤ 1

L

∑
i∈S
|u>i x?|2 ≤ 1

L
‖USU>S ‖‖x?‖22 ≤

1

L
(1 + o(1)) ≤ 2

L

for sufficiently large n. The last second inequality follows from (B.14) and an additional assumption on L

(L− 1)
τ(log n)√

n
= o(1). (B.15)

We conclude that

max
i∈Sc
|u>i x?|2 ≤ min

i∈S
|u>i x?|2 ≤ 2

L
,

since S consists of the indices of the L largest (in absolute value) elements of U>x?. As a consequence, we have

‖U>Scx?‖pp =
∑
i/∈S
|u>i x?|p ≤

(
max
i/∈S
|u>i x?|p−2

)∑
i/∈S
|u>i x|2 =

(
max
i/∈S
|u>i x?|p−2

)
‖U>Scx?‖22

≤
(

2

L

) p
2−1(

1 + c

√
r

n

)2

(B.16)

where the last inequality follows from the fact that ‖U>Scx?‖22 ≤ ‖USc‖2 ≤ ‖U‖2 ≤ (1 + c
√

r
n )2 by Assumption II.

Furthermore, since (1 + c
√

r
n )2 ≤ 4 max{1, c2 rn}, c2 rn ≤ c2n0.25−1.5rc from the condition of r ≤ n1.25−1.5rc , and

1 � c2n0.25−1.5rc for rc ∈ (0, 1/6), we have (1 + c
√

r
n )2 ≤ 4c2n0.25−1.5rc for rc ∈ (0, 1/6). So from (B.16), we

get

‖U>Scx?‖pp ≤ 4

(
2

L

) p
2−1

c2n0.25−1.5rc . (B.17)

From (B.13), (B.14), and (B.17), we have

‖U>x?‖pp ≤ 1 + (L− 1)
τ(log n)√

n
+ 4

(
2

L

) p
2−1

c2n0.25−1.5rc .

By choosing

L =

⌈
1

2
n0.5−rc

⌉
⇒
{
L ≤ 1

2n
0.5−rc + 1

L ≥ 1
2n

0.5−rc

which satisfies the condition (B.15), we have that

‖U>x?‖pp ≤ 1 +
1

2
τ(log n)n−rc + 4

p
2 c2n( 3

4−
p
4 )+( p2− 5

2 )rc .

Then from the assumptions p ≥ 3 and rc ∈ (0, 1
6 ), we get
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(
3

4
− p

4

)
+

(
p

2
− 5

2

)
rc ≤

(
3

4
− p

4

)
6rc +

(
p

2
− 5

2

)
rc = (2− p)rc ≤ −rc. (B.18)

So, we have

‖U>x?‖pp ≤ 1 +

(
1

2
τ(log n) + 4

p
2 c2
)
n−rc .

Since 4
p
2 c2 � 1

2τ(log n) and (1 + t)1/p ≤ 1 + 1
p t for all t ≥ 0, then

‖U>x?‖p ≤ 1 +
1

p
τ(log n)n−rc

holds for any p ≥ 3. This completes the proof since ‖U>‖2→p = ‖U>x?‖p by (B.12).

B.5 Proof of Lemma 3.4.5

Lemma B.5.1 (Lemma 3.4.5). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ), then for sufficiently

large n, we have

|F (θ1, θ2, θ3)| ≤ | cos(θ1) cos(θ2) cos(θ3)|+ | sin(θ1) sin(θ2) sin(θ3)|+ 4

3
τ(log n)n−rc . (3.38)

Proof. We start by the angular dual polynomial (3.37)

q(u(θ1),v(θ2),w(θ3)) = cos(θ1) cos(θ2) cos(θ3) + q(u?1,y, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x,v?1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x,y,w?
1) sin(θ1) sin(θ2) cos(θ3)

+ q(x,y, z) sin(θ1) sin(θ2) sin(θ3).

To bound q, we only need to bound the coefficients q(u?1,y, z), q(x,v?1, z), q(x,y,w?
1), and q(x,y, z).

We first show that q(u?1,y, z), q(x,v?1, z), and q(x,y,w?
1) are close to zero. To see this, we examine

q(x,y,w?
1) =

r∑
p=1

[〈α?p,x〉〈v?p,y〉〈w?
p,w

?
1〉+ 〈u?p,x〉〈β?p,y〉〈w?

p,w
?
1〉

+ 〈u?p,x〉〈v?p,y〉〈γ?p,w?
1〉]

=x>[A diag(W>w?
1)V> + U diag(W>w?

1)B> + U diag(C>w?
1)V>]y

=x>
(

A diag(W>w?
1)V> − 1

3
u?1v?1 + U diag(W>w?

1)B> − 1

3
u?1v?1 + U diag(C>w?

1)V> − 1

3
u?1v?1

)
y,

since x ⊥ u?1,y ⊥ v?1. This implies
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|q(x,y,w?
1)| ≤

∥∥∥∥A diag(W>w?
1)V> − 1

3
u?1v?1

∥∥∥∥+

∥∥∥∥U diag(W>w?
1)B> − 1

3
u?1v?1

∥∥∥∥
+

∣∣∣∣x>(U diag(C>w?
1)V> − 1

3
u?1v?1

)
y

∣∣∣∣ .
We first bound

∥∥A diag(W>w?
1)V> − 1

3u?1v?1
∥∥.

∥∥∥∥A diag(W>w?
1)V> − 1

3
u?1v?>1

∥∥∥∥ ≤∥∥∥∥A diag(W>w?
1)V> − 1

3
U diag(W>w?

1)V>
∥∥∥∥ (B.19)

+

∥∥∥∥1

3
U diag(W>w?

1)V> − 1

3
u?1v?>1

∥∥∥∥
≤
∥∥∥∥A− 1

3
U

∥∥∥∥ ‖ diag(W>w?
1)‖‖V‖+

1

3
‖U‖‖diag(W>w?

1 − e1)‖V>‖

≤2κ(log n)

(√
r

n
+ c

r

n1.5

)(
1 + c

√
r

n

)
+
τ(log n)

3
√
n

(
1 + c

√
r

n

)2

=

[
2κ(log n)

√
r

n
+
τ(log n)

3
√
n

](
1 + c

√
r

n

)2

,

where the third inequality first uses the facts ‖diag(W>w?
1)‖ = 1 and ‖ diag(W>w?

1 − e1)‖ = maxp 6=1 |〈w?
p,w

?
1〉|

and then follows from Assumptions I and II and Lemma3.4.3.

Similarly,

∥∥∥∥U diag(W>w?
1)B> − 1

3
u?1v?1

∥∥∥∥ ≤ [2κ(log n)

√
r

n
+
τ(log n)

3
√
n

](
1 + c

√
r

n

)2

.

The similar arguments also apply to bounding |x>(U diag(C>w?
1)V> − 1

3u?1v?1)y|. Note that

x>
(

U? diag(C>w?
1)V> − 1

3
u?1v?>1

)
y =x>(U diag((C−W/3)>w?

1)V>)y +
1

3
x>(U diag(W>w?

1 − e1)V>)y

and the first term can be rewritten as

x>(U diag((C−W/3)>w?
1)V>)y =

r∑
i=1

x>
(
(ci −wi/3)>w?

1uiv
>
i

)
y

=

r∑
i=1

(x>ui)(v
>
i y)(ci −wi/3)>w?

1)

= x>
r∑
i=1

(
ui(v

>
i y)(ci −wi/3)>

)
w?

1

= x>
(
U diag(V>y)(C−W/3)>

)
w?

1,

and so
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∣∣∣∣x>(U? diag(C>w?
1)V> − 1

3
u?1v?>1

)
y

∣∣∣∣ ≤‖U‖‖diag(V>y)‖‖C−W/3‖+
1

3
‖U‖‖diag(W>w?

1 − e1)‖V>‖.

Finally, we obtain

|q(x,y,w?
1)| ≤

[
6κ(log n)

√
r

n
+
τ(log n)√

n

](
1 + c

√
r

n

)2

=O

(
κ(log n)

√
r

n
,
τ(log n)√

n
,
κ(log n)r1.5

n2
,
τ(log n)r

n1.5

)
=O

(
κ(log n)

n3/8+ 3
4 rc

,
τ(log n)

n5/8− 3
4 rc

,
κ(log n)

n1/8+ 9
4 rc

,
τ(log n)

n
1
4 +1.5rc

)
=O(κ(log n)n−3rc , τ(log n)n−3rc) = o(n−2rc)

with the notation O(f(n), g(n)) := max{O(f(n)), O(g(n))}. The the last second line holds if r ≤ n1.25−1.5rc and

the last line follows from the assumption rc ∈ (0, 1/6).

The same bound holds for |q(x,v?1, z)| and |q(u?1,y, z)|.

The coefficient of the last term of (3.37) is q(x,y, z) and its absolute value is bounded by the tensor spectral norm

of Q, and should be close to constant as Q is close to
∑r
p=1 u?p⊗v?p⊗w?

p, the spectral norm of which is 1+O(n−rc)

by the following lemma.

Lemma B.5.2. Under Assumptions I and II, and if r ≤ n1.25−1.5rc with rc ∈ (0, 1/6),

∥∥∥∥∥
r∑
p=1

u?p ⊗ v?p ⊗w?
p

∥∥∥∥∥ ≤ 1 +
5

4
τ(log n)n−rc .

Proof of LemmaB.5.2.∥∥∥∥ r∑
p=1

u?p ⊗ v?p ⊗w?
p

∥∥∥∥ = sup
(a,b,c)∈K

〈U>a, (V>b)� (W>c)〉

≤ sup
(a,b,c)∈K

‖U>a‖3‖(V>b)� (W>c)‖3/2

≤ sup
(a,b,c)∈K

‖U>a‖3‖V>b‖3‖W>v‖3

≤‖U>‖2→3‖V>‖2→3‖W>‖2→3

≤
(

1 +
1

3
τ(log n)n−rc

)3

=1 + τ(log n)n−rc +
1

3
τ(log n)2n−rc +

1

9
τ(log n)3n−3rc

≤1 +
5

4
τ(log n)n−rc ,

where the first inequality follows from Hölder’s inequality and the second inequality follows from Cauchy’s inequality.

The fourth inequality follows from LemmaB.4.2 when r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ). The last inequality holds
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since 1
3τ(log n)2n−rc + 1

9τ(log n)3n−3rc � 1
4n
−rc .

It remains to bound the difference between Q and
∑r
p=1 u?p ⊗ v?p ⊗w?

p:

∥∥∥∥Q− r∑
p=1

u?p ⊗ v?p ⊗w?
p

∥∥∥∥ ≤∥∥∥∥ r∑
p=1

(α?p −
1

3
u?p)⊗ v?p ⊗w?

p

∥∥∥∥︸ ︷︷ ︸
Π1

+

∥∥∥∥ r∑
p=1

u?p ⊗ (β?p −
1

3
v?p)⊗w?

p

∥∥∥∥︸ ︷︷ ︸
Π2

+

∥∥∥∥ r∑
p=1

u?p ⊗ v?p ⊗ (γ?p −
1

3
w?
p)

∥∥∥∥︸ ︷︷ ︸
Π3

.

First we bound Π1:

Π1 = sup
(a,b,c)∈K

〈(A− 1

3
U)>a, (V>b)� (W>c)〉

≤ sup
(a,b,c)∈K

‖(A− 1

3
U)>x‖2‖(V>b)� (W>c)‖2

≤ sup
(a,b,c)∈K

‖(A− 1

3
U)>x‖2‖(V>b)‖4‖(W>c)‖4

≤ ‖A− 1

3
U‖‖V>‖2→4‖W>‖2→4

≤ 2κ(log n)

(√
r

n
+ c

r

n1.5

)
(1 + o(1)) ≤ 8κ(log n) max

{√
r

n
, c

r

n1.5

}
≤ 8κ(log n)n−3rc = o(n−2rc)

where the first and second inequalities follows from Cauchy’s inequality and the fourth inequality follows from

Lemma3.4.3 and LemmaB.4.2 when r � n1.25. The last inequality follows by plugging r ≤ n1.25−1.5rc with

rc ∈ (0, 1
6 ).

The same bound also holds for Π2 and Π3.

Combine ALL. If r ≤ n1.25−1.5rc with rc ∈ (0, 1/6), we have

|q(u?1,y, z)| = o(n−2rc),

|q(x,v?1, z)| = o(n−2rc),

|q(x,y,w?
1)| = o(n−2rc),

|q(x,y, z)| ≤ 1 +
5

4
τ(log n)n−rc + o(n−2rc), (B.20)

which together with (3.37) gives

|q(u(θ1),v(θ2),w(θ3))|

≤| cos(θ1) cos(θ2) cos(θ3)|+ | sin(θ1) sin(θ2) sin(θ3)|+ 5

4
τ(log n)n−rc + o(n−2rc)

≤| cos(θ1) cos(θ2) cos(θ3)|+ | sin(θ1) sin(θ2) sin(θ3)|+ 4

3
τ(log n)n−rc
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where the last inequality follows from o(n−2rc)� 1
12τ(log n)n−rc .

B.6 Proof of Lemma 3.4.6

Lemma B.6.1 (Lemma 3.4.6). Under Assumptions I, II, III, if r � n1.25, then for any ξi ∈
(
−
√

2−1
3 ,

√
2−1
3

)
, we

have

F (θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) ≤ 1 (3.42)

for (θ1, θ2, θ3) ∈ {(0, 0, 0), (0, π, π), (π, 0, π), (π, π, 0)} and

F (θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) < 0 (3.43)

for (θ1, θ2, θ3) ∈ {(π, π, π), (π, 0, 0), (0, π, 0), (0, 0, π)}. Here, equality in (3.42) holds only if ξ1 = ξ2 = ξ3 = 0.

Proof. Recall that

F (θ1, θ2, θ3) = cos(θ1) cos(θ2) cos(θ3) + q(u?1,y, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x,v?1, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x,y,w?
1) sin(θ1) sin(θ2) cos(θ3)

+ q(x,y, z) sin(θ1) sin(θ2) sin(θ3).

(B.21)

The points of special interest are the eight vertices of the cube [0, π]× [0, π]× [0, π], i.e.,

{(θ1, θ2, θ3) : θi ∈ {0, π}, i = 1, 2, 3}

which we classify into two sets:

• The first set of vertices involve an even number of π: (0, 0, 0), (0, π, π), (π, 0, π), (π, π, 0);

• The second set of vertices involve an odd number of π: (π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π).

Controlling the first vertex set. For the first set of points, we only show that

F (θ1 + ξ1, θ2 + ξ2, θ3 + ξ3) ≤ 1, ∀ξi ∈
(
−
√

2− 1

3
,

√
2− 1

3

)⋃(
π

2
−
√

2− 1

3
,
π

2
+

√
2− 1

3

)
holds for (θ1, θ2, θ3) = (0, 0, 0). The same arguments apply to the other cases (π, 0, π), (0, π, π), (π, π, 0) since (B.21)

implies

F (ξ1, ξ2, ξ3) = F (ξ1, π + ξ2, π + ξ3) = F (π + ξ1, ξ2, π + ξ3) = F (π + ξ1, π + ξ2, ξ3)

for all ξ1, ξ2 ξ3 ∈ R.
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Let us apply the first-order Taylor expansion to F (θ1, θ2, θ3) over some smaller cube [−θ0, θ0] × [−θ0, θ0] ×

[−θ0, θ0] with θ0 ∈ (0, π/2) to be determined later,

F (θ1, θ2, θ3) =F (0, 0, 0) + θ>∇F (ξ1, ξ2, ξ3)

≥1− ‖θ‖1 sup
|ξ1|,|ξ2|,|ξ3|≤θ0

‖∇F (ξ1, ξ2, ξ3)‖∞,

where θ =

[
θ1 θ2 θ3

]>
. Since

∂

∂θ1
F (ξ1, ξ2, ξ3) = − sin(ξ1) cos(ξ2) cos(ξ3)− q(u?1,y, z) sin(ξ1) sin(ξ2) sin(ξ3)

+ q(x,v?1, z) cos(ξ1) cos(ξ2) sin(ξ3)

+ q(x,y,w?
1) cos(ξ1) sin(ξ2) cos(ξ3)

+ q(x,y, z) cos(ξ1) sin(ξ2) sin(ξ3),

we have

∣∣∣∣ ∂∂θ1
F (ξ1, ξ2, ξ3)

∣∣∣∣ ≤| sin(θ0)|+ o(1)(| sin(θ0)|3 + 2| sin(θ0)|) + (1 + o(1))| sin(θ0)|2

≤| sin(θ0)|+ | sin(θ0)|2 + o(1)

≤3| sin(θ0)| (B.22)

where the first inequality follows from (B.20), and so

|q(u?1,y, z)| = o(1), |q(x,v?1, z)| = o(1), |q(x,y,w?
1)| = o(1), |q(x,y, z)| = 1 + o(1) (B.23)

under Assumptions I-III and r � n1.25 (by letting rc in “r � n1.25−rc" approach to zero). The inequality (B.22)

uses the facts that | sin(θ0)|2 ≤ | sin(θ0)| and o(1) ≤ | sin(θ0)| for sufficiently large n. The same bound holds for∣∣ ∂
∂θ2

F (ξ1, ξ2, ξ3)
∣∣ and

∣∣ ∂
∂θ3

F (ξ1, ξ2, ξ3)
∣∣. We therefore have

F (θ1, θ2, θ3) ≥ 1− 3‖θ‖1| sin(θ0)| ≥ 1− 9θ2
0. (B.24)

Let us compute the second-order Taylor expansion of F (θ1, θ2, θ3):

F (θ1, θ2, θ3) = F (0, 0, 0) + θ>∇F (0, 0, 0) +
1

2
θ>∇2F (ξ1, ξ2, ξ3)θ

where (ξ1, ξ2, ξ3) ∈ [−θ0, θ0]3. As a consequence of the construction process of the dual polynomial, we have

F (0, 0, 0) = 1 and ∇F (0, 0, 0) = 0, implying

F (θ1, θ2, θ3) = 1 +
1

2
θ>∇2F (ξ1, ξ2, ξ3)θ.
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Therefore, as long as we can find θ0 such that the Hessian matrix ∇2F is negative definite over the region [−θ0, θ0]3,

then F (θ1, θ2, θ3) ≤ 1 for any (θ1, θ2, θ3) ∈ [−θ0, θ0]3 with equality holds only if (θ1, θ2, θ3) = (0, 0, 0).

We next estimate the Hessian matrix∇2F (ξ1, ξ2, ξ3). Direct computation gives

∇2F (ξ1, ξ2, ξ3) =

−F (ξ1, ξ2, ξ3) ∗ ∗
∗ −F (ξ1, ξ2, ξ3) ∗
∗ ∗ −F (ξ1, ξ2, ξ3)


whose off-diagonal elements are nonsymmetric partial derivatives of F , for example,

∂2

∂θ1∂θ2
F (θ1, θ2, θ3) = sin(θ1) sin(θ2) cos(θ3)− q(u?1,y, z) sin(θ1) cos(θ2) sin(θ3)

+ q(x,y,w?
1) cos(θ1) cos(θ2) cos(θ3)

− q(x,v?1, z) cos(θ1) sin(θ2) sin(θ3)

+ q(x,y, z) cos(θ1) cos(θ2) sin(θ3),

which implies by (B.23) that

∣∣∣∣ ∂2

∂θ1∂θ2
F (θ1, θ2, θ3)

∣∣∣∣ ≤| sin(θ0)|2 + o(1)(1 + 2| sin(θ0)|2) + (1 + o(1))| sin(θ0)|

≤| sin(θ0)|+ | sin(θ0)|2 + o(1)

≤3| sin(θ0)|.

The same bound holds for other mixed partial derivatives
∣∣ ∂2

∂θi∂θj
F (θ1, θ2, θ3)

∣∣ with i, j = 1, 2, 3 and i 6= j.

To make∇2F (ξ1, ξ2, ξ3) negative definite, by Gershgorin’s circle theorem and the bound (B.24), we only need

−F (ξ1, ξ2, ξ3) + 6| sin(θ0)| ≤ −1 + 9θ2
0 + 6θ0 < 0

which holds for θ0 ∈ (−
√

2−1
3 ,

√
2−1
3 ), including (−

√
2+1
3 ,

√
2−1
3 ). This completes the first part of the proof.

Controlling the second vertex set. Similarly as before, we first show

F (π + ξ1, π + ξ2, π + ξ3) < 0, ∀|ξi| <
√

2− 1

3
.

It follows from the intermediate result (B.24):

F (ξ1, ξ2, ξ3) ≥ 1− 9θ2
0 > 0, ∀|ξi| ≤ θ0

by recognizing that F (π + ξ1, π + ξ2, π + ξ3) = −F (ξ1, ξ2, ξ3),∀ξ1, ξ2, ξ3 and choosing θ0 = (
√

2− 1)/3. Finally,

we claim the same conclusion applies to the remaining three cases since

F (π + ξ1, π + ξ2, π + ξ3) = F (π + ξ1, ξ2, ξ3) = F (ξ1, π + ξ2, ξ3) = F (ξ1, ξ2, π + ξ3)
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for all ξ1, ξ2, ξ3 ∈ R.

B.7 Proof of Lemma 3.4.7

Lemma B.7.1 (Lemma 3.4.7). Under Assumptions I, II, III, if r ≤ n1.25−1.5rc with rc ∈ (0, 1
6 ), then for sufficiently

large n, we have |F (θ1, θ2, θ3)| < 1 in Nb(δb) for δb =
√

80τ(logn)
3 n−0.5rc .

Proof. First, solve for θ such that

| cos(θ)3|+ | sin(θ)|3 < 1− 4τ(log n)n−rc . (B.25)

To this end, we define f(θ) := | cos(θ)3| + | sin(θ)|3 for θ ∈ [0, π]. It can be verified directly that f is symmetric

around π
2 on [0, π], symmetric around π

4 on [0, π2 ], and strictly decreasing on [0, π4 ]. Since 1−4τ(log n)n−rc ∈ (0, 1),

there exists a unique $ ∈ (0, π4 ) such that f($) = 1 − 4τ(log n)n−rc ∈ (0, 1). Thus the inequality (B.25) holds on

($, π2 −$) ∪ (π2 +$,π −$).

To have an approximation of $, we need the following lemma.

Lemma B.7.2. Let f and g be any two real functions with g being strictly decreasing in some interval (α, β) and

satisfying g(x) ≥ f(x),∀x ∈ (α, β). Suppose both equations f(x) = b and g(x) = b admit one root in [α, β],

denoted by xf and xg respectively. Then xg ≥ xf .

Proof of Lemma B.7.2. Since g(x) > g(xf ) ≥ f(xf ) = b for any x ∈ [α, xf ), g(xg) = b could only happen within

[xf , β].

We now recognize that

f(θ) ≤ 1− 3

20
θ2, for θ ∈ [0, π/4] (B.26)

and g(θ) := 1− 3
20θ

2 is strictly deceasing [0, π/4]. Clearly,

δb :=

√
80τ(log n)

3
n−0.5rc

is the root of g(θ) = 1 − 4τ(log n)n−rc over the interval [0, π4 ]. By Lemma B.7.2, δb ≥ $. Therefore, (B.25) holds

on (δb,
π
2 − δb) ∪ (π2 + δb, π − δb). By (3.47), we obtain

F (θ1, θ2, θ3) < 1 for (θ1, θ2, θ3) ∈ Nb(δb).
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B.7.1 Proof of Eq. (B.26)

Showing (B.26) is equivalent to showing

sin3(x) + cos3(x) ≤ 1− 3

20
x2, ∀x ∈ [0, π/4] (B.27)

since sin(x), cos(x) > 0 for x ∈ [0, π/4]. Before moving on, we need the following lemma to prove (B.27).

Lemma B.7.3. The following inequality

(32n−1 − 3)

4 · (2n− 1)!
x2n−1 +

(32n + 3)

4 · (2n)!
x2n − (32n+1 − 3)

4 · (2n+ 1)!
x2n+1 − (32n+2 + 3)

4 · (2n+ 2)!
x2n+2 ≥ 0 (B.28)

holds for all x ∈ [0, π/4] and n ≥ 2,

Proof of Lemma B.7.3. Let p equal the expression on the left side of Equation (B.28). A simplification on p yields

p(x) = q1(x)
x2n−1

4(2n− 1)!
+ q2(x)

x2n+2

4(2n)!
,

where q1(x) = (32n−1 − 3)− 32n+1 − 3

2n(2n+ 1)
x2 and q2(x) = (32n + 3)− 32n+2 + 3

(2n+ 1)(2n+ 2)
x2.

As functions of x, q1 and q2 have roots at

±
√

2n(2n+ 1)(32n−1 − 3)

32n+1 − 3
and ±

√
(2n+ 1)(2n+ 2)(32n + 3)

32n+2 + 3
,

respectively, provided n ≥ 1. Since 10(32n−1 − 3) ≥ 32n+1 − 3 and 9(32n + 3) > (32n+2 + 3) for all n ≥ 2, it

follows that the positive root of q1 satisfies√
2n(2n+ 1)(32n−1 − 3)

32n+1 − 3
≥
√

2n(2n+ 1)

10
>
√

2 >
π

4
, for n ≥ 2,

and the positive root of q2 satisfies√
(2n+ 1)(2n+ 2)(32n + 3)

32n+2 + 3
>

√
(2n+ 1)(2n+ 2)

9
>

√
10

3
>
π

4
, for n ≥ 2.

Therefore both q1 and q2 are positive on [0, π/4] for all n ≥ 2, and Equation (B.28) holds.

B.7.1.1 The Proof

Lemma B.7.4. The following statement

sin3(x) + cos3(x) ≤ 1− 3

20
x2

holds for all x ∈ [0, π4 ].

Proof. Recall that sin3(x) = 1
4 (3 sin(x)− sin(3x)) and cos3(x) = 1

4 (3 cos(x) + cos(3x)), and therefore
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sin3(x) = x3 +

∞∑
n=5

(−1)n
32n−1 − 3

4(2n− 1)!
x2n−1,

and

cos3(x) = 1− 3

2
x2 +

7

8
x4 +

∞∑
n=3

(−1)n
32n + 3

4(2n)!
x2n.

Thus

sin3(x) + cos3(x) ≤ 1− 3

2
x2 + x3 +

7

8
x4,

for all x ∈ [0, π/4] since by Lemma B.7.3

∞∑
n=3

(−1)n
32n−1 − 3

4(2n− 1)!
x2n−1 +

∞∑
n=3

(−1)n
32n + 3

4(2n)!
x2n

=−
∞∑

n=3, n odd

(
32n−1 − 3

4(2n− 1)!
x2n−1 +

32n + 3

4(2n)!
x2n − 32n+1 − 3

4(2n+ 1)!
x2n+1 − 32n+2

4(2n+ 2)!
x2n+2

)
≤ 0.

Finally, note that

1− 3

2
x2 + x3 +

7

8
x4 = 1− 3

20
x2 + x2h(x),

with

h(x) = −27

20
+ x+

7

8
x2

being negative in [0, π/4]. So the proof is complete.
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APPENDIX C

APPENDICES FOR CHAPTER 4

C.1 Proof of Proposition 4.3.1

Proposition C.1.1 (Proposition 4.3.1). Under the same setting as in Theorem 4.3.1, for any initial point U0, g(U) on

Levf (U0) defined in (4.10) has a Lipschitz continuous gradient with the Lipschitz constant

Lc =

√√√√√2β

√
2

α
(f(U0U>0 )− f(X?)) + 2‖∇f(X?)‖F + 4β

‖U?‖F +

√
2
α (f(U0U>0 )− f(X?))

2(
√

2− 1)ρ(U?)

2

,

where ρ(·) denotes the smallest nonzero singular value of its argument.

Proof. To that end, we first show that for any U ∈ Levf (U0), ‖U‖F is upper-bounded. Let X = UU> and consider

the following second-order Taylor expansion of f(X)

f(X) = f(X?) + 〈∇f(X?),X−X?〉+
1

2

∫ 1

0

[∇2f(tX? + (1− t)X)](X−X?,X−X?)dt

≥ f(X?) +
1

2

∫ 1

0

[∇2f(tX? + (1− t)X)](X−X?,X−X?)dt

≥ f(X?) +
α

2
‖X−X?‖2F ,

which implies that

‖UU> −X?‖2F ≤
2

α
(f(UU>)− f(X?)) ≤ 2

α
(f(U0U

>
0 )− f(X?)) (C.1)

with the second inequality following from the assumption U ∈ Levf (U0). Thus, we have

‖U‖F ≤ ‖U?‖F + dist(U,U?) ≤ ‖U?‖F +
‖UU> −X?‖F
2(
√

2− 1)ρ(U?)
≤ ‖U?‖F +

√
2
α (f(U0U>0 )− f(X?))

2(
√

2− 1)ρ(U?)
. (C.2)

Now we are ready to show the Lipschitz gradient for g at Levf (U0):
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‖∇2g(U)‖2 = max
‖D‖F=1

∣∣[∇2g(U)](D,D)
∣∣

= max
‖D‖F=1

∣∣2〈∇f(UU>),DD>〉+ [∇2f(UU>)](DU> + UD>,DU> + UD>)
∣∣

≤ 2 max
‖D‖F=1

∣∣〈∇f(UU>),DD>〉
∣∣+ max
‖D‖F=1

∣∣[∇2f(UU>)](DU> + UD>,DU> + UD>)
∣∣

≤ 2 max
‖D‖F=1

∣∣〈∇f(UU>)−∇f(X?),DD>〉
∣∣+ 2‖∇f(X?)‖F + β‖DU> + UD>‖2F

≤ 2β‖UU> −X?‖F + 2‖∇f(X?)‖F + 4β‖U‖2F

≤ 2β

√
2

α
(f(U0U>0 )− f(X?)) + 2‖∇f(X?)‖F + 4β

‖U?‖F +

√
2
α (f(U0U>0 )− f(X?))

2(
√

2− 1)ρ(U?)

2

:= L2
c .

Here, the last second line follows from (C.1) and (C.2). This concludes the proof of Proposition 4.3.1.

C.2 Proof of Lemma 4.3.2

Lemma C.2.1 (Lemma 4.3.2). Assume that U1,U2 ∈ Rn×r. Then

‖U1U
>
1 −U2U

>
2 ‖F ≥ min {ρ(U1), ρ(U2)} dist(U1,U2).

Proof. Let X1 = U1U
>
1 , X2 = U2U

>
2 and their full eigenvalue decompositions be

X1 =

n∑
j=1

λjpjp
>
j , X2 =

n∑
j=1

ηjqjq
>
j

where {λj} and {ηj} are the eigenvalues in decreasing order. Since rank(U1) = r1 and rank(U2) = r2, we have

λj = 0 for j > r1 and ηj = 0 for j > r2. We compute ‖X1 −X2‖2F as follows

‖X1 −X2‖2F = ‖X1‖2F + ‖X2‖2F − 2〈X1,X2〉

=

n∑
i=1

λ2
i +

n∑
j=1

η2
j −

n∑
i=1

n∑
j=1

2λiηj〈pi,qj〉2

¬
=

n∑
i=1

λ2
i

n∑
j=1

〈pi,qj〉2 +

n∑
j=1

η2
j

n∑
i=1

〈pi,qj〉2 −
n∑
i=1

n∑
j=1

2λiηj〈pi,qj〉2

­
=

n∑
i=1

n∑
j=1

(λi − ηj)2〈pi,qj〉2

=

n∑
i=1

n∑
j=1

(√
λi −

√
ηj

)2 (√
λi +

√
ηj

)2

〈pi,qj〉2

®
≥ min

{√
λr1 ,
√
ηr2

}2 n∑
i=1

n∑
j=1

(√
λi −

√
ηj

)2

〈pi,qj〉2

¯
= min {λr1 , ηr2}

∥∥∥√X1 −
√

X2

∥∥∥2

F
,
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where ¬ uses the fact
∑n
j=1〈pi,qj〉2 = ‖pi‖22 = 1 with {qj} being an orthonormal basis and similarly

∑n
i=1〈pi,qj〉2

= ‖qj‖22 = 1. ­ is by firstly an exchange of the summations, secondly the fact that λj = 0 for j > r1 and ηj = 0 for

j > r2, and thirdly completing squares. ® is because {λj} and {ηj} are sorted in decreasing order. ¯ follows from ­

and that {
√
λj} and {√ηj} are eigenvalues of

√
X1 and

√
X2, the matrix square root of X1 and X2, respectively.

Finally, we can conclude the proof as long as we can show the following inequality:

∥∥∥√X1 −
√

X2

∥∥∥2

F
≥ min

R:RR>=Ir
‖U1 −U2R‖2F . (C.3)

By expanding ‖ · ‖2F in (C.3) and noting that 〈√X1,
√

X1〉 = tr(X1) = tr(U1U
>
1 ) and 〈√X2,

√
X2〉 = tr(X2) =

tr(U2U
>
2 ), (C.3) reduces to

〈
√

X1,
√

X2〉 ≤ max
R:RR>=Ir

〈U1,U2R〉. (C.4)

To show (C.4), we write the SVDs of U1,U2 respectively as U1 = P1Σ1Q
>
1 and U2 = P2Σ2Q

>
2 with P1,P2 ∈

Rn×r, Σ1,Σ2 ∈ Rr×r and Q1,Q2 ∈ Rr×r. Then we have
√

X1 = P1Σ1P
>
1 ,
√

X2 = P2Σ2P
>
2 .

On one hand,

RHS of (C. 4) = max
R:RR>=Ir

〈
P1Σ1Q

>
1 ,P2Σ2Q

>
2 R
〉

= max
R:RR>=Ir

〈
P1Σ1,P2Σ2,Q

>
2 RQ1

〉
= max

R:RR>=Ir
〈P1Σ1,P2Σ2R〉 By R← Q>2 RQ1

= ‖(P2Σ2)>P1Σ1‖∗. By Lemma 4.3.1

On the other hand,

LHS of C. 4 = 〈P1Σ1P
>
1 ,P2Σ2P

>
2 〉

= 〈(P2Σ2)>P1Σ1,P
>
2 P1〉

≤ ‖(P2Σ2)>P1Σ1‖∗‖P>2 P1‖ By Hölder’s Inequality

≤ ‖(P2Σ2)>P1Σ1‖∗. Since ‖P>2 P1‖ ≤ ‖P2‖‖P1‖ ≤ 1

This proves (C.4) and hence completes the proof of Lemma 4.3.2.

C.3 Proof of Lemma 4.3.4

Lemma C.3.1 (Lemma 4.3.4). Let U and Z be any two matrices in Rn×r such that U>Z = Z>U is PSD. Assume

that Q is an orthogonal matrix whose columns span Range(U). Then

∥∥(U− Z)U>
∥∥2

F
≤ 1

8

∥∥UU> − ZZ>
∥∥2

F
+

(
3 +

1

2
√

2− 2

)∥∥(UU> − ZZ>)QQ>
∥∥2

F
.
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The proof relies on the following lemma.

Lemma C.3.2. [125, Lemma E.1] Let U and Z be any two matrices in Rn×r such that U>Z = Z>U is PSD. Then∥∥(U− Z) U>
∥∥2

F
≤ 1

2
√

2− 2

∥∥UU> − ZZ>
∥∥2

F
.

Proof of Lemma 4.3.4. Define two orthogonal projectors

Q = QQ> and Q⊥ = Q⊥Q>⊥,

so Q is the orthogonal projector onto Range(U) and Q⊥ is the orthogonal projector onto the orthogonal complement

of Range(U). Then

‖(U− Z)U>‖2F
¬
= ‖(U−QZ)U>‖2F + ‖Q⊥U>‖2F
­
= ‖(U−QZ)U>‖2F + 〈Z>Q⊥Z,U>U〉
®
≤ 1

2
√

2− 2
‖UU> − (QZ)(QZ)>‖2F + 〈Z>Q⊥Z,U>U− Z>QZ〉+ 〈Z>Q⊥Z,Z>QZ〉

¯
≤ 1

2
√

2− 2
‖UU> −QZZ>‖2F + 〈Z>Q⊥Z,U>U− Z>QZ〉+ 〈Z>Q⊥Z,Z>QZ〉

°
≤ 1

2
√

2− 2
‖UU> −QZZ>‖2F +

1

8
‖Z>Q⊥Z‖2F + 2‖U>U− Z>QZ‖2F + 〈Z>Q⊥Z,Z>QZ〉,

(C.5)

where ¬ is by expressing (U − Z)U> as the sum of two orthogonal factors (U − QZ)U> and −Q⊥ZU>. ­ is

because ‖Q⊥ZU>‖2F = 〈Q⊥ZU>,Q⊥ZU>〉 = 〈Q⊥ZU>,ZU>〉 = 〈Z>Q⊥Z,U>U〉. ® uses Lemma C.3.2

by noting that U>QZ = (QU)>Z = U>Z � 0 satisfying the assumptions of Lemma C.3.2. ¯ uses the fact that

‖UU>−(QZ)(QZ)>‖2F = ‖UU>−QZZ>Q‖2F ≤ ‖UU>−QZZ>Q‖2F +‖QZZ>Q⊥‖2F = ‖UU>−QZZ>Q−

QZZ>Q⊥‖2F = ‖UU> −QZZ>‖2F . ° uses the following basic inequality that

1

8
‖A‖2F + 2‖B‖2F ≥ 2

√
2

8
‖A‖2F ‖B‖2F = ‖A‖F ‖B‖F ≥ 〈A,B〉,

where A = Z>Q⊥Z and B = U>U− Z>QZ.

The Remaining Steps. The remaining steps involve showing the following bounds:

‖Z>Q⊥Z‖2F ≤ ‖UU> − ZZ>‖2F , (C.6)

〈Z>Q⊥Z,Z>QZ〉 ≤ ‖UU> −QZZ>‖2F , (C.7)

‖U>U− Z>QZ‖2F ≤ ‖UU> −QZZ>‖2F . (C.8)

This is because when plugging these bounds (C.6)- (C.8) into (C.5), we can obtain the desired result:

‖(U− Z)U>‖2F ≤
1

8
‖UU> − ZZ>‖2F +

(
3 +

1

2
√

2− 2

)
‖(UU> − ZZ>)QQ>‖2F .

Showing (C.6).
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‖Z>Q⊥Z‖2F = 〈ZZ>Q⊥,Q⊥ZZ>〉
¬
= 〈Q⊥ZZ>Q⊥,Q⊥ZZ>Q⊥〉
= ‖Q⊥ZZ>Q⊥‖2F
­
= ‖Q⊥(ZZ> −UU>)Q⊥‖2F
®
≤ ‖ZZ> −UU>‖2F ,

where ¬ follows from the idempotence property that Q⊥ = Q⊥Q⊥. ­ follows from Q⊥U = 0. ® follows from the

nonexpansiveness of projection operator: ‖Q⊥(ZZ>−UU>)Q⊥‖F ≤ ‖(ZZ>−UU>)Q⊥‖F ≤ ‖ZZ>−UU>‖F .

Showing Eq. (C.7). The argument here is pretty similar to that for (C.6):

〈Z>Q⊥Z,Z>QZ〉 = 〈QZZ>,ZZ>Q⊥〉
= 〈QZZ>Q⊥,QZZ>Q⊥〉
= ‖QZZ>Q⊥‖2F
¬
= ‖Q(ZZ> −UU>)Q⊥‖2F
­
≤ ‖QZZ> −UU>‖2F ,

where ¬ is by Q⊥U = 0. ­ uses the nonexpansiveness of projection operator and QUU> = UU>.

Showing Eq. (C.8). First by expanding ‖ · ‖2F using inner products, (C.8) is equivalent to the following inequality

‖U>U‖2F + ‖U>U− Z>QZ‖2F − 2〈U>U,Z>QZ〉 ≤ ‖UU>‖2F + ‖QZZ>‖2F − 2〈UU>,QZZ>〉. (C.9)

First of all, we recognize that

‖U>U‖2F =
∑
i

σi(U)2 = ‖UU>‖2F ;

‖Z>QZ‖2F = 〈Z>QZ,Z>QZ〉 = 〈QZZ>,ZZ>Q〉 = 〈QZZ>Q,QZZ>Q〉 = ‖QZZ>Q‖2F ≤ ‖ZZ>Q‖2F ,

where we use the idempotence and nonexpansiveness property of the projection matrixQ in the second line. Plugging

these to (C.9), we find (C.9) reduces to

〈U>U,Z>QZ〉 ≥ 〈UU>,QZZ>〉 = 〈UU>,ZZ>〉 = ‖U>Z‖2F . (C.10)

To show (C.10), let QΣP> be the SVD of U with Σ ∈ Rr′×r′ and P ∈ Rr×r′ where r′ is rank of U. Then

U>U = PΣ2P>, Q = UPΣ-1 and Q = QQ> = UPΣ−2P>U>. (C.11)
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Now

LHS of (C.10) = 〈U>U,Z>QZ〉
¬
= 〈PΣ2P>,Z>UPΣ−2P>U>Z〉
­
= 〈Σ2,P>(U>Z)PΣ−2P>(U>Z)P〉
®
= 〈Σ2,GΣ−2G〉
= ‖ΣGΣ-1‖2F
¯
≥ ‖G‖2F
°
= ‖U>Z‖2F ,

where ¬ is by (C.11) and ­ uses the assumption that Z>U = U>Z � 0. In ®, we define G := P>(U>Z)P. ° is

because ‖G‖2F = ‖P>(U>Z)P‖2F = ‖U>Z‖2F due to the rotational invariance of ‖ · ‖F . ¯ is because

‖ΣGΣ-1‖2F =
∑
i,j

σ2
i

σ2
j

G2
ij

=
∑
i=j

G2
ii +

∑
i>j

(
σ2
i

σ2
j

+
σ2
j

σ2
i

)
G2
ij

≥
∑
i=j

G2
ii +

∑
i>j

2

(
σi
σj

)(
σj
σi

)
G2
ij

=
∑
i,j

G2
ij

= ‖G‖2F ,

where the second line follows from the symmetric property of G since G = P>(U>Z)P � 0 and U>Z � 0.

C.4 Proof of Lemma 4.3.5

Lemma C.4.1 (Lemma 4.3.5). Suppose the objective function f(X) in (P0) is twice continuously differentiable and

satisfies the restricted well-conditionedness assumption (C). Further, let U be any critical point of (F0) and Q be the

orthonormal basis spanning Range(U). Then

∥∥(UU> −U?U?>)QQ>
∥∥
F
≤ β − α
β + α

∥∥UU> −U?U?>∥∥
F
.

Proof. Let X = UU> and X? = U?U?>. We start with the critical point condition∇f(X)U = 0 which implies

∇f(X)UU† = ∇f(X)QQ> = 0,

where † denotes the pseudoinverse. Then for all Z ∈ Rn×n, we have

⇒ 〈∇f(X),ZQQ>〉 = 0
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¬⇒ 〈∇f(X?) +

∫ 1

0

[∇2f(tX + (1− t)X?)](X−X?)dt,ZQQ>〉 = 0

⇒ 〈∇f(X?),ZQQ>〉+

[∫ 1

0

∇2f(tX + (1− t)X?)dt

]
(X−X?,ZQQ>) = 0

­⇒
∣∣∣∣− 2

β + α
〈∇f(X?),ZQQ>〉 − 〈X−X?,ZQQ>〉

∣∣∣∣ ≤ β − α
β + α

‖X−X?‖F ‖ZQQ>‖F

⇒
∣∣∣∣ 2

β + α
〈∇f(X?),ZQQ>〉+ 〈X−X?,ZQQ>〉

∣∣∣∣ ≤ β − α
β + α

‖X−X?‖F ‖ZQQ>‖F

®⇒
∣∣∣∣ 2

β + α
〈∇f(X?), (X−X?)QQ>〉+ ‖(X−X?)QQ>‖2F

∣∣∣∣ ≤ β − α
β + α

‖X−X?‖F ‖(X−X?)QQ>‖F

¯⇒ 2

β + α
〈∇f(X?), (X−X?)QQ>〉+ ‖(X−X?)QQ>‖2F ≤

β − α
β + α

‖X−X?‖F ‖(X−X?)QQ>‖F

⇒ ‖(X−X?)QQ>‖F ≤ δ‖X−X?‖F ,

where ¬ uses the Taylor’s Theorem for vector-valued functions [148, Eq. (2.5) in Theorem 2.1]. ­ uses Proposi-

tion 4.2.1 by noting that the PSD matrix [tX? + (1− t)X] has rank at most 2r for all t ∈ [0, 1] and rank(X−X?) ≤

4r, rank(ZQQ>) ≤ 4r. ® is by choosing Z = X −X?. ¯ follows from 〈∇f(X?), (X−X?)QQ>〉 ≥ 0 since

〈∇f(X?), (X−X?)QQ>〉 (i)
= 〈∇f(X?),X−X?QQ>〉 (ii)

= 〈∇f(X?),X〉
(iii)
≥ 0,

where (i) follows from XQQ> = UU>QQ> = UU> since QQ> is the orthogonal projector onto Range(U). (ii)

uses the fact that

∇f(X?)X? = 0 = X?∇f(X?),

and (iii) is because∇f(X?) � 0,X � 0. �

C.5 Proof of Proposition 4.4.1

Proposition C.5.1 (Proposition 4.4.1). Any critical point (U,V) ∈ X forms a balanced pair in E .

For any critical point (U,V), we have

∇g(U,V) = Ξ(UV>)W = 0,

where W =

[
U> V>

]>
. Further denote Ŵ =

[
U> −V>

]>
. Then
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¬⇒Ŵ>∇g(U,V) +∇g(U,V)>Ŵ = 0

­⇒Ŵ>Ξ(UV>)W + W>Ξ(UV>)Ŵ = 0

®⇒[U> −V>]

[
λI ∇f(UV>)

∇f(UV>)> λI

] [
U
V

]
+ [U> V>]

[
λI ∇f(UV>)

∇f(UV>)> λI

] [
U
−V

]
= 0

¯⇒λ
(
2U>U− 2V>V

)
+ U>

(
∇f(UV>)−∇f(UV>)

)
V︸ ︷︷ ︸

=0

+ V>
(
∇f(UV>)> −∇f(UV>)>

)
U︸ ︷︷ ︸

=0

= 0

⇒2λ(U>U−V>V) = 0

°⇒U>U−V>V = 0,

where ¬ follows from ∇g(U,V) = 0 and ­ follows from ∇g(U,V) = Ξ(UV>)W . ® follows by plugging the

definitions of W,Ŵ and Ξ(·) into the second line. ¯ follows from direct computations. ° holds since λ > 0.

C.6 Proof of Lemma 4.4.1

Lemma C.6.1 (Lemma 4.4.1). Let W =

[
U> V>

]>
with (U,V) ∈ E . Then for every D =

[
D>U D>V

]>
of

proper dimension, we have

‖Pon(DW>)‖2F = ‖Poff(DW>)‖2F .

First recall

W =

U

V

 , Ŵ =

 U

−V

 , D =

DU

DV

 , D̂ =

 DU

−DV

 .
By performing the following change of variables

W1 ← D, Ŵ1 ← D̂, W2 ←W, Ŵ2 ← Ŵ

in (4.29), we have

‖Pon(DW>)‖2F =
1

4
‖DW> + D̂Ŵ>‖2F =

1

4
〈DW> + D̂Ŵ>,DW> + D̂Ŵ>〉;

‖Poff(DW>)‖2F =
1

4
‖DW> − D̂Ŵ>‖2F =

1

4
〈DW> − D̂Ŵ>,DW> − D̂Ŵ>〉.

Then it implies that

‖Pon(DW>)‖2F − ‖Poff(DW>)‖2F =
1

4
〈DW> + D̂Ŵ>,DW> + D̂Ŵ>〉 − 1

4
〈DW> − D̂Ŵ>,DW> − D̂Ŵ>〉

= 〈DW>, D̂Ŵ>〉 = 〈D̂>D,Ŵ>W〉 = 0,

since Ŵ>W = 0 from (4.27). �
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C.7 Proof of Lemma 4.4.2

Lemma C.7.1 (Lemma 4.4.2). Let W1 =

[
U>1 V>1

]>
, W2 =

[
U>2 V>2

]>
with (U1,V1), (U2,V2) ∈ E . Then

‖Pon(W1W
>
1 −W2W

>
2 )‖2F ≤ ‖Poff(W1W

>
1 −W2W

>
2 )‖2F .

Proof. To begin with, we define Ŵ1 =

 U1

−V1

, Ŵ2 =

 U2

−V2

. Then

‖Pon(W1W
>
1 −W2W

>
2 )‖2F − ‖Poff(W1W

>
1 −W2W

>
2 )‖2F

¬
= ‖Pon(W1W

>
1 )− Pon(W2W

>
2 )‖2F − ‖Poff(W1W

>
1 )− Poff(W2W

>
2 )‖2F

­
=

∥∥∥∥∥W1W
>
1 + Ŵ1Ŵ

>
1

2
− W2W

>
2 + Ŵ2Ŵ

>
2

2

∥∥∥∥∥
2

F

−
∥∥∥∥∥W1W

>
1 − Ŵ1Ŵ

>
1

2
− W2W

>
2 − Ŵ2Ŵ

>
2

2

∥∥∥∥∥
2

F

=

∥∥∥∥∥W1W
>
1 −W2W

>
2

2
+

Ŵ1Ŵ
>
1 − Ŵ2Ŵ

>
2

2

∥∥∥∥∥
2

F

−
∥∥∥∥∥W1W

>
1 −W2W

>
2

2
− Ŵ1Ŵ

>
1 − Ŵ2Ŵ

>
2

2

∥∥∥∥∥
2

F

®
= 〈W1W

>
1 −W2W

>
2 ,Ŵ1Ŵ

>
1 − Ŵ2Ŵ

>
2 〉

= 〈W1W
>
1 ,Ŵ1Ŵ

>
1 〉+ 〈W2W

>
2 ,Ŵ2Ŵ

>
2 〉 − 〈W1W

>
1 ,Ŵ2Ŵ

>
2 〉 − 〈Ŵ1Ŵ

>
1 ,W2W

>
2 〉

¯
= −〈W1W

>
1 ,Ŵ2Ŵ

>
2 〉 − 〈Ŵ1Ŵ

>
1 ,W2W

>
2 〉

°
≤ 0,

where ¬ is due to the linearity of Pon and Poff . ­ follows from (4.29). ® is by expanding ‖ · ‖2F . ¯ comes from

(4.27) that

Ŵ>
i Wi = W>

i Ŵi = 0, for i = 1, 2.

° uses the fact that

W1W
>
1 � 0, Ŵ1Ŵ

>
1 � 0, W2W

>
2 � 0, Ŵ2Ŵ

>
2 � 0.

C.8 Proof of Proposition 4.4.2

Proposition C.8.1 (Proposition 4.4.2). Any (U?,V?) in (4.22) is a global optimum of the factored program (F1):

g(U?,V?) ≤ g(U,V), for all U ∈ Rn×r,V ∈ Rm×r.

Proof. From (4.22), we have

311



1

2

(
‖U?‖2F + ‖V?‖2F

) ¬
=

1

2

(∥∥∥P?[
√

Σ? 0r?×(r−r?)]R
∥∥∥2

F
+
∥∥∥Q?[

√
Σ? 0r?×(r−r?)]R

∥∥∥2

F

)
­
=

1

2

(∥∥∥√Σ?
∥∥∥2

F
+
∥∥∥√Σ?

∥∥∥2

F

)
=
∥∥∥√Σ?

∥∥∥2

F

®
= ‖X?‖∗,

where ¬ uses the definitions of U? and V? in (4.22). ­ uses the rotational invariance of ‖ · ‖F . ® is because

‖
√

Σ?‖2F =
∑
j σk(X?) = ‖X?‖∗.

Therefore,

f(U?V?>) + λ(‖U?‖2F + ‖V ?‖2F )/2
¬
= f(X?) + λ‖X?‖∗
≤ f(X) + λ‖X‖∗
­
= f(UV>) + λ‖UV>‖∗
®
≤ f(UV>) + λ(‖U‖2F + ‖V‖2F )/2,

where ¬ comes from the optimality of X? for (P1). ­ is by choosing X = UV>. ® is because ‖UV>‖∗ ≤

(‖U‖2F + ‖V‖2F )/2 by the optimization formulation of the matrix nuclear norm [65, Lemma 5.1] that

‖X‖∗ = min
X=UV>

1

2
(‖U‖2F + ‖V‖2F ).

C.9 Proof of Lemma 4.4.3

Lemma C.9.1 (Lemma 4.4.3). Suppose the function f(X) in (P1) is restricted well-conditioned (C). Let W =[
U> V>

]>
with (U,V) ∈ X , W? =

[
U?> V?>

]>
correspond to the global optimum of (P1) and QQ> be

the orthogonal projector onto Range(W). Then

‖(WW> −W?W?>)QQ>‖F ≤ 2
β − α
β + α

‖UV> −X?‖F .

Proof. Let Z =

ZU

ZV

 with arbitrary ZU ∈ Rn×r and ZV ∈ Rm×r. Then

⇒ 〈Ξ(X)W,Z〉 = 〈0,Z〉 = 0

⇒
〈
Ξ(X)− Ξ(X?) + Ξ(X?),ZW>〉 = 0

⇒
〈[

λI ∇f(X)
∇f(X)> λI

]
−
[

λI ∇f(X?)
∇f(X?)> λI

]
+ Ξ(X?),ZW>

〉
= 0

312



⇒
〈[

0 ∇f(X)−∇f(X?)
∇f(X)> −∇f(X?)> 0

]
+ Ξ(X?),ZW>

〉
= 0

⇒
〈[

0
∫ 1

0
[∇2f(X? + t(X−X?))](X−X?)dt

∗ 0

]
+ Ξ(X?),ZW>

〉
= 0

⇒
〈[

0
∫ 1

0
[∇2f(X? + t(X−X?))](X−X?)dt

∗ 0

]
,

[
ZUU> ZUV>

ZVU> ZVV>

]〉
+
〈
Ξ(X?),ZW>〉 = 0

⇒
∫ 1

0

[∇2f(X? + t(X−X?))](X−X?,ZUV> + UZ>V)dt+
〈
Ξ(X?),ZW>〉 = 0,

where the fifth line follows from the Taylor’s Theorem for vector-valued functions [148, Eq. (2.5) in Theorem

2.1] and for convenience ∗ =
(∫ 1

0
[∇2f(X? + t(X−X?))](X−X?)dt

)>
in the fifth and sixth lines. Then, from

Proposition 4.2.1 and Eq. (4.29), we have

∣∣∣∣ 2

β + α

〈
Ξ(X?),ZW>〉︸ ︷︷ ︸

Π1(Z)

+ 〈Poff(WW> −W?W?>),ZW>〉︸ ︷︷ ︸
Π2(Z)

∣∣∣∣ ≤ β − α
β + α

‖X−X?‖F ‖Poff(ZW>)‖F︸ ︷︷ ︸
Π3(Z)

.

(C.12)

The Remaining Steps. The remaining steps are choosing Z = (WW>−W?W?>)W>† and showing the following

Π1(Z) ≥ 0, (C.13)

Π2(Z) ≥ 1

2
‖(WW> −W?W?>)QQ>‖2F , (C.14)

Π3(Z) ≤ ‖(WW> −W?W?>)QQ>‖F . (C.15)

Then plugging (C.13)- (C.15) into (C.12) yields the desired result:

1

2

∥∥(WW> −W?W?>)QQ>
∥∥2

F
≤ β − α
β + α

‖X−X?‖F
∥∥(WW> −W?W?>)QQ>

∥∥
F
,

or equivalently, ∥∥(WW> −W?W?>)QQ>
∥∥
F
≤ 2

β − α
β + α

‖X−X?‖F .

Showing (C.13). Choosing Z = (WW> −W?W?>)W>† and noting that QQ> = WTW>†, we have ZW> =

(WW> −W?W?>)W>†W> = (WW> −W?W?>)QQ>. Then

Π1(Z) = 〈Ξ(X?), (WW> −W?W?>)QQ>〉 = 〈Ξ(X?),WW>〉 ≥ 0,

where the second equality holds since WW>QQ> = WW> and Ξ(X?)W? = 0 by (4.25). The inequality is due

to Ξ(X?) � 0.

Showing (C.14). First recognize that Poff(WW> −W?W?>) = 1
2 (WW> −W?W?> − ŴŴ> + Ŵ?Ŵ?>).

Then
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Π2(Z) = 〈Poff(WW> −W?W?>),ZW>〉

=
1

2

〈
WW> −W?W?>, (WW> −W?W?>)QQ>

〉
− 1

2

〈
ŴŴ> − Ŵ?Ŵ?>, (WW> −W?W?>)QQ>

〉
.

Therefore, (C.14) follows from

〈
ŴŴ> − Ŵ?Ŵ?>, (WW> −W?W?>)QQ>

〉
=
〈
ŴŴ>,−W?W?>

〉
+
〈
−Ŵ?Ŵ?>,WW>

〉
≤ 0,

where the first equality uses (4.27) and the inequality is because

ŴŴ> � 0, W?W?> � 0, Ŵ?Ŵ?> � 0, WW> � 0.

Showing (C.15). Plugging Z = (WW> −W?W?>)W>† gives

Π3(Z) = ‖Poff((WW> −W?W?>)QQ>)‖F ,

which is obviously no larger than ‖(WW> −W?W?>)QQ>‖F by the definition of the operation Poff .
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APPENDIX D

APPENDICES FOR CHAPTER 5

D.1 Proof of Lemma 5.3.1

Lemma D.1.1 (Lemma 5.3.1). Suppose Ω = [n]× [m]. Let

αq,γ = min
|x|≤γ

min

(
(q′(x))2 − q(x)q′′(x)

q2(x)
,

(q′(x))2 + (1− q(x))q′′(x)

(1− q(x))2

)
and

βq,γ = max
|x|≤γ

max

(
(q′(x))2 − q(x)q′′(x)

q2(x)
,

(q′(x))2 + (1− q(x))q′′(x)

(1− q(x))2

)
.

Then FΩ,Y satisfies the restricted strong convexity and smoothness condition:

αq,γ‖G‖2F ≤ [∇2FΩ,Y(X)](G,G) ≤ βq,γ‖G‖2F

for any G ∈ Rn×m and ‖X‖∞ ≤ γ.

Proof of Lemma 5.3.1. We compute the partial derivative of FΩ,Y in terms of Xi,j as

∂FΩ,Y

∂Xi,j
= −1(Yi,j=1)

q′(Xi,j)

q(Xi,j)
+ 1(Yi,j=−1)

q′(Xi,j)

1− q(Xi,j)
,

which implies

∂2FΩ,Y

∂Xi,j∂Xi,j
=1(Yi,j=1)

(q′(Xi,j))
2 − q(Xi,j)q

′′(Xi,j)

q2(Xi,j)
+ 1(Yi,j=−1)

(q′(Xi,j))
2 + (1− q(Xi,j))q

′′(Xi,j)

(1− q(Xi,j))2

and

∂2FΩ,Y

∂Xi,j∂Xk,`
= 0

for all (k, `) 6= (i, j). Thus, the bilinear form for the Hessian of∇2FΩ,Y(X) can be computed as

[∇2FΩ,Y(X)](G,G) =
∑
i

∑
j

∂2FΩ,Y

∂Xi,j∂Xi,j
G2
i,j

for any G ∈ Rn×m. Now since by assumption ‖X‖∞ ≤ γ, we have

αq,γ‖G‖2F ≤ [∇2FΩ,Y(X)](G,G) ≤ βq,γ‖G‖2F .
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D.2 Proof of Proposition 5.4.1

Proposition D.2.1 (Proposition 5.4.1). Suppose the function f(X) satisfies the (2r, 4r)-restricted strong convexity

and smoothness condition (5.3) with positive α and β. Then for any n ×m matrices Z,G,H of rank at most 2r, we

have

∣∣∣∣ 2

α+ β
[∇2f(Z)](G,H)− 〈G,H〉

∣∣∣∣ ≤ β − α
β + α

‖G‖F ‖H‖F .

Proof of Proposition 5.4.1. This proof follows similar steps to the proof of [78, Lemma 2.1]. First note that the bilinear

form [∇2f(Z)](G,H) =
∑
i,j,k,l

∂2f(Z)
∂Zij∂Zkl

GijHkl implies [∇2f(Z)](G,H) is invariant under all scalings for both

G and H, i.e.,

[∇2f(Z)](aG, bH) = ab[∇2f(Z)](G,H)

for any a, b ∈ R. If either G or H is zero, (5.3) holds since both sides are 0.

Now suppose both G or H are nonzero. By the scaling invariance property of both sides in (5.3), we assume

‖G‖F = ‖H‖F = 1 without loss of generality. Note that the (2r, 4r)-restricted strong convexity and smoothness

condition (5.3) implies

α ‖G±H‖2F ≤ [∇2f(X)](G±H,G±H) ≤ β ‖G±H‖2F .

Thus we have

−β − α
2

(
‖G‖2F + ‖H‖2F

)
≤ 2

[
∇2f(Z)

]
(G,H)− (α+ β) 〈G,H〉

≤ β − α
2

(
‖G‖2F + ‖H‖2F

)
,

which further implies

∣∣2 [∇2f(Z)
]

(G,H)− (α+ β) 〈G,H〉
∣∣ ≤ β − α = (β − α) ‖G‖F ‖H‖F .

D.3 Proof of Lemma 5.4.1

Lemma D.3.1 (Lemma 5.4.1). Suppose f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness condi-

tion (5.3). For any critical point W of (5.5), let PW ∈ R(m+n)×(m+n) be the orthogonal projector onto the column

space of W. Then ∥∥(WW> −W?W?>)PW

∥∥
F
≤ 2

β − α
β + α

‖X−X?‖F .
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Proof of Lemma 5.4.1. First recall the notation X = UV>, X? = U?V?, and

W =

[
U
V

]
, Ŵ =

[
U
−V

]
,W? =

[
U?

V?

]
, Ŵ? =

[
U?

−V?

]
.

It follows from (5.17) and (5.18) that any critical point W satisfies[
0 ∇f(X)

∇f(X)> 0

]
W = 0,

which gives

0 = 〈
[

0 ∇f(X)
∇f(X)> 0

]
,ZW>〉

= 〈
[

0 ∇f(X)−∇f(X?)
∇f(X)> −∇f(X?)> 0

]
,ZW>〉

= 〈∇f(X)−∇f(X?)− α+ β

2
(X−X?),ZUV> + UZ>V〉︸ ︷︷ ︸

k1

+
α+ β

2

〈
X−X?,ZUV> + UZ>V

〉︸ ︷︷ ︸
k2

(D.1)

for any Z =

ZU

ZV

 ∈ R(n+m)×r. Here the second line utilizes the fact ∇f(X?) = 0. We bound k1 by first using

integral form of the mean value theorem for∇f(X):

k1 =

∫ 1

0

[
∇2f(tX + (1− t)X?)

]
(X−X?,ZUV> + UZ>V)dt− α+ β

2

〈
X−X?,ZUV> + UZ>V

〉
.

Noting that all the three matrices tX + (1− t)X?, X−X? and ZUV> + UZ>V have rank at most 2r, it follows from

Proposition 5.4.1 that

|k1| ≤
β − α

2
‖X−X?‖F

∥∥ZUV> + UZ>V
∥∥
F
,

which when plugged into (D.1) gives

α+ β

2
k2 = −k1

≤ β − α
2
‖X−X?‖F

∥∥ZUV> + UZ>V
∥∥
F
.

(D.2)

Now let Z = (WW> −W?W?>)WT †, which gives ZW> = (WW> −W?W?>)PW. Here † denotes the

pseudoinverse of a matrix and PW is the orthogonal projector onto the range of W. Utilizing the fact Ŵ>W = 0

317



from (5.7), we further connect the left hand side of (D.2) with
∥∥(WW> −W?W?>)PW

∥∥2

F
by

α+ β

2
k2 =

α+ β

2
k2 +

α+ β

4
〈ŴŴ>,ZW>〉

=
α+ β

4

〈
WW> −W?W?>,

(
WW> −W?W?>)PW

〉
+
α+ β

4

〈
Ŵ?Ŵ?>,

(
WW> −W?W?>)PW

〉
≥α+ β

4

〈
WW> −W?W?>,

(
WW> −W?W?>)PW

〉
=
α+ β

4

∥∥(WW> −W?W?>)PW

∥∥2

F
,

(D.3)

where the inequality follows because〈
Ŵ?Ŵ?>,W?W?>PW

〉
= 0 (since Ŵ?>Ŵ? = 0)

and 〈
Ŵ?Ŵ?>,WW>PW

〉
=
〈
Ŵ?Ŵ?>,WW>

〉
≥ 0.

On the other hand, we give an upper bound on the right hand side of (D.2):

‖X−X?‖F
∥∥ZUV> + UZ>V

∥∥
F
≤ ‖X−X?‖F

√
2 ‖ZUV>‖2F + 2

∥∥UZ>V
∥∥2

F

≤ ‖X−X?‖F
∥∥(WW> −W?W?>)PW

∥∥
F
,

where the last line follows because
∥∥ZUV>

∥∥2

F
+
∥∥ZVU>

∥∥2

F
=
∥∥ZUU>

∥∥2

F
+
∥∥ZVV>

∥∥2

F
(since U>U = V>V),

implying 2
∥∥ZUV>

∥∥2

F
+ 2

∥∥UZ>V
∥∥2

F
=
∥∥ZW>∥∥2

F
. This together with (D.2) and (D.3) completes the proof.

D.4 Proof of Lemma 5.4.2

Lemma D.4.1 (Lemma 5.4.2). For any matrices C,D ∈ Rn×r with ranks r1 and r2, respectively, let R = arg minR′∈Or ‖C−

DR′‖F . Then

‖CC> −DD>‖2F /‖C−DR‖2F ≥ max
{

2(
√

2− 1)σ2
r(D),min

{
σ2
r1(C), σ2

r2(D)
}}

.

If C = 0, then we have

∥∥CC> −DD>
∥∥2

F
≥ σ2

r2(D) ‖C−DR‖2F .

Proof of Lemma 5.4.2. When C 6= 0, the proof follows directly from the following results.

Lemma D.4.2. [6, Lemma 3] For any matrices C,D ∈ Rn×r with rank r1 and r2, respectively, let R = arg minR̃∈Or ‖C−

DR‖F . Then
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∥∥CC> −DD>
∥∥
F
≥ min {σr1(C), σr2(D)} · ‖C−DR‖F .

Lemma D.4.3. [102, Lemma 5.4] For any matrices C,D ∈ Rn×r with rank(D) = r, let R = arg minR̃∈Or ‖C−

DR‖F . Then

∥∥CC> −DD>
∥∥2

F
≥ 2(
√

2− 1)σ2
r(D) ‖C−DR‖2F .

If C = 0, then we have

∥∥CC> −DD>
∥∥2

F
=
∥∥DD>

∥∥2

F
=

r2∑
i=1

σ4
i (D) ≥ σ2

r2(D)

r2∑
i=1

σ2
i (D) = σ2

r2(D) ‖C−DR‖2F .

D.5 Proof of Eq. (5.20)

Proof of Eq. (5.20). We prove the upper bounds for the four terms as follows.

Bounding term Π1. Utilizing the fact that ∆U = U−U?R and ∆V = V −V?R, we have

Π1 =
〈
∇f(X),∆U∆>V

〉
=
〈
∇f(X), (U−U?R)(V −V?R)>

〉
=
〈
∇f(X),X + X? −U?R>VT −UR>V?>

〉
(i)
= −〈∇f(X),X−X?〉
(ii)
= −〈∇f(X)−∇f(X?),X−X?〉
(iii)

≤ −α ‖X−X?‖2F ,

where (i) follows from (5.17) and (5.18), (ii) utilizes ∇f(X?) = 0, and (iii) follows by using the (2r, 4r)-restricted

strict convexity property (5.3):

〈∇f(X)−∇f(X?),X−X?〉 =

∫ 1

0

[
∇2f(tX + (1− t)X?)

]
(X−X?,X−X?) dt

≥
∫ 1

0

α 〈X−X?,X−X?〉 dt

= α ‖X−X?‖2F ,

where the first line follows from the integral form of the mean value theorem for vector-valued functions, and the

second line uses the fact that both tX+ (1− t)X? and X−X? have rank at most 2r, and the (2r, 4r)-restricted strong

convexity of the Hessian∇2f(·).
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Bounding term Π2. By the smoothness condition (5.3), we have

Π2 =
[
∇2f(X)

] (
∆UV> + U∆>V,∆UV> + U∆>V

)
≤ β

∥∥∥∆UV> + U∆>V

∥∥∥2

F

≤ 2β

(∥∥∆UV>
∥∥2

F
+
∥∥∥U∆>V

∥∥∥2

F

)
= β

∥∥∥W∆>
∥∥∥2

F
,

where the last line holds because
∥∥DU>

∥∥2

F
=
∥∥DV>

∥∥2

F
for any D ∈ Rp×r with arbitrary p ≥ 1 since any critical

point W satisfies U>U = V>V.

Bounding term Π3.

Π3 = 〈U∆>U,∆UU>〉+ 〈V∆>V,∆VV>〉 − 2〈U∆>V,∆UV>〉

≤
∥∥∥U∆>U

∥∥∥2

F
+
∥∥∥V∆>V

∥∥∥2

F
+
∥∥∥U∆>V

∥∥∥2

F
+
∥∥∥V∆>U

∥∥∥2

F

=
∥∥∥W∆>

∥∥∥2

F
.

Bounding term Π4.

Π4 =
〈
ŴŴ>, (W −W?R) (W −W?R)

>
〉

(i)
= −

〈
ŴŴ>,WW> −W?W?>

〉
(ii)

≤ −
〈
ŴŴ>,WW> −W?W?>

〉
+
〈
Ŵ?Ŵ?>,WW> −W?W?>

〉
= −

〈
ŴŴ> − Ŵ?Ŵ?>,WW> −W?W?>

〉
≤ 2 ‖X−X?‖2F ,

where (i) holds because Ŵ>W = 0, and (ii) follows because Ŵ?>W? = 0 and 〈Ŵ?Ŵ?>,WW>〉 ≥ 0.

D.6 Proof of Eq. (5.22)

Proof of Eq. (5.22). To show (5.22), expanding the left hand side of (5.22), it is equivalent to show∥∥UU> −U?U?>∥∥2

F
+
∥∥VV> −V?V?>∥∥2

F
≤ 2 ‖X−X?‖2F .

Expanding both sides of the above equation and utilizing the fact U>U = V>V and U?>U? = V?>V?, the

remaining step is to show

tr
(
UU>U?U?>)+

(
VV>V?V?>) ≥ 2 tr

(
UV>V?U?>) .

Thus, we obtain (5.22) by noting that the above equation is equivalent to tr
((

U?>U−V?>V
)2) ≥ 0.

320



APPENDIX E

APPENDICES FOR CHAPTER 6

E.1 The optimization geometry of low-rank matrix factorization

In this appendix, we consider the low-rank matrix factorization problem

minimize
U∈Rn×r,V∈Rm×r

g(W) :=
1

2

∥∥UV> −X?
∥∥2

F
+ ρ(W) (E.1)

where ρ(W) is the regularizer used in (6.9) and repeated here:

ρ(W) =
µ

4

∥∥U>U−V>V
∥∥2

F
.

We provide a comprehensive geometric analysis for the matrix factorization problem (E.1). In particular, we show that

the objective function in (E.1) obeys the strict saddle property and has no spurious local minima not only for exact-

parameterization (r = rank(X?)), but also for over-parameterization (r > rank(X?)) and under-parameterization

(r < rank(X?)). For the exact-parameterization case, we further show that the objective function satisfies the robust

strict saddle property, ensuring global convergence of many local search algorithms in polynomial time. As we believe

these results are also of independent interest and to make it easy to follow, we only present the main results in this

appendix and defer the proofs to other appendices.

E.1.1 Relationship to PSD low-rank matrix factorization

Similar to (6.8), let X? = ΦΣΨ> =
∑r
i=1 σiφiψ

>
i be a reduced SVD of X?, where Σ is a diagonal matrix with

σ1 ≥ · · · ≥ σr along its diagonal, and denote U? = ΦΣ1/2R,V? = ΨΣ1/2R for any R ∈ Or. The following result

to some degree characterizes the relationship between the nonsymmetric low-rank matrix factorization problem (E.1)

and the following PSD low-rank matrix factorization problem [104]:

minimize
U∈Rn×r

∥∥UU> −M
∥∥2

F
(E.2)

where M ∈ Rn×n is a rank-r PSD matrix.

Lemma E.1.1. Suppose g(W) is defined as in (E.1) with µ > 0. Then we have

g(W) ≥ min{µ
4
,

1

8
}
∥∥WW> −W?W?>∥∥2

F
.

In particular, if we choose µ = 1
2 , then we have

g(W) =
1

8

∥∥WW> −W?W?>∥∥2

F
+

1

4

∥∥U>U? −V>V?
∥∥2

F
.
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The proof of Lemma E.1.1 is given in Appendix E.5. Informally, Lemma E.1.1 indicates that minimizing g(W)

also results in minimizing
∥∥WW> −W?W?>∥∥2

F
(which is the same form as the objective function in (E.2)) and

hence the distance between W and W? (though W? is unavailable at priori). The global geometry for the PSD

low-rank matrix factorization problem (E.2) is recently analyzed by Li et al. in [104].

E.1.2 Characterization of critical points

We first provide the gradient and Hessian expression for g(W). The gradient of g(W) is given by

∇Ug(U,V) = (UV> −X?)V + µU(U>U−V>V),

∇Vg(U,V) = (UV> −X?)>U− µV(U>U−V>V),

which can be rewritten as

∇g(W) =

[
(UV> −X?)V

(UV> −X?)>U

]
+ µŴŴ>W.

Standard computations give the Hessian quadrature form [∇2g(W)](∆,∆) for any ∆ =

∆U

∆V

 ∈ R(n+m)×r

(where ∆U ∈ Rn×r and ∆V ∈ Rm×r) as

[∇2g(W)](∆,∆) =
∥∥∥∆UV> + U∆>V

∥∥∥2

F
+ 2

〈
UV> −X?,∆U∆>V

〉
+ [∇2ρ(W)](∆,∆), (E.3)

where

[∇2ρ(W)](∆,∆) = µ
〈
Ŵ>W, ∆̂

>
∆
〉

+ µ
〈
Ŵ∆̂

>
,∆W>

〉
+ µ

〈
ŴŴ>,∆∆>

〉
. (E.4)

By Lemma 6.3.1, we can simplify the equations for critical points as follows

∇Uρ(U,V) = UU>U−X?V = 0, (E.5)

∇Vρ(U,V) = VV>V −X?>U = 0. (E.6)

Now suppose W is a critical point of g(W). We can apply the Gram-Schmidt process to orthonormalize the

columns of U such that Ũ = UR, where Ũ is orthogonal and R ∈ Or =
{
R ∈ Rr×r,R>R = I

}
.44 Also let

Ṽ = VR. Since U>U = V>V, we have Ũ>Ũ = Ṽ>Ṽ. Thus Ṽ is also orthogonal. Noting that UV> = ŨṼ>,

we conclude that g(W) = g(W̃) and W̃ is also a critical point of g(W) since ∇Ũg(W̃) = ∇Ug(W)R = 0 and

∇Ṽg(W̃) = ∇Vg(W)R = 0. Also for any ∆ ∈ R(n+m)×r, we have [∇2g(W)](∆,∆) = [∇2g(W̃)](∆R,∆R),

44Another way to find R is via the SVD. Let U = LΣR> be a reduced SVD of U, where L is an n × r orthonormal matrix, Σ is an r × r
diagonal matrix with non-negative diagonals, and R ∈ Or . Then Ũ = UR = LΣ is orthogonal, but has possible zero columns.

322



indicating that W and W̃ have the same Hessian information. Thus, without loss of generality, we assume U and V

are orthogonal, but possibly include zero columns. With this, we use ui and vi to denote the i-th columns of U and

V, respectively. It follows from∇g(W) = 0 that

‖ui‖2ui = X?vi,

‖vi‖2vi = X?>ui,

which indicates that

(ui,vi) ∈
{

(
√
λ1p1,

√
λ1q1), . . . , (

√
λrpr,

√
λrqr), (0,0)

}
.

Now we identify all the critical points of g(W) in the following lemma, which is formally proved with an algebraic

approach in Appendix E.6.

Lemma E.1.2. Let X? = ΦΣΨ> =
∑r
i=1 σiφiψ

>
i be a reduced SVD of X? and g(W) be defined as in (E.1) with

µ > 0. Any W =

U

V

 is a critical point of g(W) if and only if W ∈ C with

C :=

{
W =

[
U
V

]
:U = ΦΛ1/2R,V = ΨΛ1/2R,R ∈ Or,Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
. (E.7)

Intuitively, (E.7) means that a critical point W of g(W) is one such that UV> is a rank-` approximation to X?

with ` ≤ r and U and V are equal factors of this rank-` approximation. Let λ1, λ2, . . . , λr denote the diagonals of

Λ. Unlike Σ, we note that these diagonals λ1, λ2, . . . , λr are not necessarily placed in decreasing or increasing order.

Actually, this equation (Σ−Λ)Σ = 0 is equivalent to

λi ∈ {σi, 0}

for all i ∈ {1, 2, . . . , r}. Further, we introduce the set of optimal solutions:

X :=

{
W =

[
U
V

]
: U = ΦΣ1/2R,V = ΨΣ1/2R,R ∈ Or

}
. (E.8)

It is clear that the set X containing all the optimal solutions, the set C containing all the critical points and the set E

containing all the points with balanced factors have the nesting relationship: X ⊂ C ⊂ E . Before moving to the next

section, we provide one more result regarding W ∈ E . The proof of the following result is given in Appendix E.7.

Lemma E.1.3. For any ∆ =

∆U

∆V

 ∈ R(n+m)×r and W ∈ E where E is defined in (6.10), we have

323



‖∆UU>‖2F + ‖∆VV>‖2F = ‖∆UV>‖2F + ‖∆VU>‖2F , (E.9)

and

∇2ρ(W) � 0. (E.10)

E.1.3 Strict saddle property

Lemma E.1.3 implies that the Hessian of ρ(W) evaluated at any critical point W is PSD, i.e., ∇2ρ(W) � 0 for

all W ∈ C. Despite this fact, the following result establishes the strict saddle property for g(W).

Theorem E.1.1. Let g(W) be defined as in (E.1) with µ > 0 and rank(X?) = r. Let W =

U

V

 be any critical

point satisfying∇g(W) = 0, i.e., W ∈ C. Any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −1

2

∥∥WW> −W?W?>∥∥ ≤ −σr(X?). (E.11)

Furthermore, g(W) is not strongly convex at any global minimum point W ∈ X .

The proof of Theorem E.1.1 is given in Appendix E.8. We note that this strict saddle property is also covered in [8,

Theorem 3], but with much looser bounds (in particular, directly applying [8, Theorem 3] gives λmin(∇2g(W)) ≤

−0.1σr(X
?) rather than λmin(∇2g(W)) ≤ −σr(X?) in (E.11)). Theorem E.1.1 actually implies that g(W) has

no spurious local minima (since all local minima belong to X ) and obeys the strict saddle property. With the strict

saddle property and lack of spurious local minima for g(W), the recent results [178,179] ensure that gradient descent

converges to a global minimizer almost surely with random initialization. We also note that Theorem E.1.1 states that

g(W) is not strongly convex at any global minimum point W ∈ X because of the invariance property of g(W). This

is the reason we introduce the distance in (6.12) and also the robust strict saddle property in Definition 6.2.9.

E.1.4 Extension to over-parameterized case: rank(X?) < r

In this section, we briefly discuss the over-parameterized scenario where the low-rank matrix X? has rank smaller

than r. Similar to Theorem E.1.1, the following result shows that the strict saddle property also holds in this case.

Theorem E.1.2. Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ ≤ r, and let g(W) be defined

as in (E.1) with µ > 0. Any W =

U

V

 is a critical point of g(W) if and only if W ∈ C with

C :=

{
W =

[
U
V

]
:U = ΦΛ1/2R,V = ΨΛ1/2R,RR> = Ir′ ,Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
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Further, all the local minima (which are also global) belong to the following set

X =

{
W =

[
U
V

]
:U = ΦΣ1/2R,V = ΨΣ1/2R,RR> = Ir′

}
Finally, any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −1

2

∥∥WW> −W?W?>∥∥ ≤ −σr′(X?).

The proof of Theorem E.1.2 is given in Appendix E.9. We note that this strict saddle property is also covered in [8,

Theorem 3], but with much looser bounds (in particular, directly applying [8, Theorem 3] gives λmin(∇2g(W)) ≤

−0.1σr′(X
?) rather than λmin(∇2g(W)) ≤ −σr′(X?) in Theorem E.1.2).

E.1.5 Extension to under-parameterized case: rank(X?) > r

We further discuss the under-parameterized case where rank(X?) > r. In this case, (6.3) is also known as the

low-rank approximation problem as the product UV> forms a rank-r approximation to X?. Similar to Theorem E.1.1,

the following result shows that the strict saddle property also holds for g(W) in this scenario.

Theorem E.1.3. Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ > r and σr(X

?) >

σr+1(X?).45 Also let g(W) be defined as in (E.1) with µ > 0. Any W =

U

V

 is a critical point of g(W) if

and only if W ∈ C with

C :=

{
W =

[
U
V

]
: U = Φ[:,Ω]Λ1/2R,V = Ψ[:,Ω]Λ1/2R,

Λ = Σ[Ω,Ω],RR> = I`,Ω ⊂ {1, 2, . . . , r′}, |Ω| = ` ≤ r
}

where we recall that Φ[:,Ω] is a submatrix of Φ obtained by keeping the columns indexed by Ω and Σ[Ω,Ω] is an

`× ` matrix obtained by taking the elements of Σ in rows and columns indexed by Ω.

Further, all local minima belong to the following set

X =

{
W =

[
U
V

]
: Λ = Σ[1 : r, 1 : r],R ∈ Or,U = Φ[:, 1 : r]Λ1/2R,V = Ψ[:, 1 : r]Λ1/2R

}
.

Finally, any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −(σr(X
?)− σr+1(X?)).

45If σr1 = · · · = σr = · · · = σr2 with r1 ≤ r ≤ r2, then the optimal rank-r approximation to X? is not unique. For this case, the optimal
solution set X for the factorized problem needs to be changed correspondingly, but the main arguments still hold.
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The proof of Theorem E.1.3 is given in Appendix E.10. It follows from Eckart-Young-Mirsky theorem [271] that

for any W ∈ X , UV> is the best rank-r approximation to X?. Thus, this strict saddle property ensures that the local

search algorithms applied to the factored problem (E.1) converge to global optimum which corresponds to the best

rank-r approximation to X?.

E.1.6 Robust strict saddle property

We now consider the revised robust strict saddle property defined in Definition 6.2.9 for the low-rank matrix

factorization problem (E.1). As guaranteed by Theorem E.1.1, g(W) satisfies the strict saddle property for any µ > 0.

However, too small a µ would make analyzing the robust strict saddle property difficult. To see this, we denote

f(W) =
1

2

∥∥UV> −X?
∥∥2

F

for convenience. Thus we can rewrite g(W) as the sum of f(W) and ρ(W). Note that for any W =

U

V

 ∈ C
where C is the set of critical points defined in (E.7), W̃ =

 UM

VM−1

 is a critical point of f(W) for any invertible

M ∈ Rr×r. This further implies that the gradient at W̃ reduces to

∇g(W̃) = ∇ρ(W̃),

which could be very small if µ is very small since ρ(W) = µ
4

∥∥U>U−V>V
∥∥2

F
. On the other hand, W̃ could be far

away from any point in X for some M that is not well-conditioned. Therefore, we choose a proper µ controlling the

importance of the regularization term such that for any W that is not close to the critical points X , g(W) has large

gradient. Motivated by Lemma E.1.1, we choose µ = 1
2 .

The following result establishes the robust strict saddle property for g(W).

Theorem E.1.4 (Theorem E.11.1). Let R1,R2,R′3,R′′3 ,R′′′3 be the regions as defined in Theorem 6.3.1. Let g(W)

be defined as in (E.1) with µ = 1
2 . Then g(W) has the following robust strict saddle property:

1. For any W ∈ R1, g(W) satisfies local regularity condition:

〈∇g(W),W −W?R〉 ≥ 1

32
σr(X

?) dist2(W,W?) +
1

48‖X?‖ ‖∇g(W)‖2F , (E.12)

where dist(W,W?) and R are defined in (6.12) and (6.13), respectively.

2. For any W ∈ R2, g(W) has a directional negative curvature:

λmin

(
∇2g(W)

)
≤ −1

4
σr(X

?). (E.13)
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3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , g(W) has large gradient descent:

‖∇g(W)‖F ≥
1

10
σ3/2
r (X?), ∀W ∈ R′3; (E.14)

‖∇g(W)‖F >
39

800
‖W‖3, ∀W ∈ R′′3 ; (E.15)

〈∇g(W),W〉 > 1

20

∥∥WW>∥∥2

F
, ∀W ∈ R′′′3 . (E.16)

The proof is given in Appendix E.11.

Remark E.1.1. Recall that all the strict saddles of g(W) are actually rank deficient (see Theorem E.1.1). Thus the

region R2 attempts to characterize all the neighbors of the saddle saddles by including all rank deficient points.

Actually, (E.13) holds not only for W ∈ R2, but for all W such that σr(W) ≤
√

1
2σ

1/2
r (X?). The reason we add

another constraint controlling the term ‖W?W?>‖F is to ensure this negative curvature property in the regionR2 also

holds for the matrix sensing problem discussed in next section. This is the same reason we add two more constraints

‖W‖ ≤ 20
19‖W?‖F and ‖WW>‖F ≤ 10

9 ‖W?W?>‖F for the regionR′3.

E.2 Proof of Lemma 6.2.1

Lemma E.2.1 (Lemma 6.2.1). [102, 180] If the function h(x) restricted to a δ neighborhood of x? satisfies the

(α, β, δ)-regularity condition, then as long as gradient descent starts from a point x0 ∈ B(δ,x?), the gradient descent

update

xt+1 = xt − ν∇h(xt)

with step size 0 < ν ≤ 2β obeys xt ∈ B(δ,x?) and

dist2(xt,x
?) ≤ (1− 2να)

t
dist2(x0,x

?)

for all t ≥ 0.

Proof. Denote ax,x? = arg mina′∈G ‖x − a′(x?)‖. Utilizing the definition of distance in (6.4), the regularity condi-

tion (6.5) and the assumption that µ ≤ 2β, we have

dist2(xt+1,x
?) =

∥∥xt+1 − axt+1,x?(x?)
∥∥2

≤ ‖xt − ν∇h(xt)− axt,x?(x?)‖2

= ‖xt − axt,x?(x?)‖2 + ν2 ‖∇h(xt)‖2 − 2ν 〈xt − axt,x?(x?),∇h(xt)〉
≤ (1− 2να) dist2(xt,x

?)− ν(2β − ν) ‖∇h(xt)‖2

≤ (1− 2να) dist2(xt,x
?)
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where the fourth line uses the regularity condition (6.5) and the last line holds because ν ≤ 2β. Thus we conclude

xt ∈ B(δ) for all t ∈ N if x0 ∈ B(δ) by noting that 0 ≤ 1− 2να < 1 since αβ ≤ 1
4 and ν ≤ 2β.

E.3 Proof of Proposition 6.3.1

Proposition E.3.1 (Proposition 6.3.1). Suppose f(X) satisfies the (2r, 4r)-restricted strong convexity and smoothness

condition (6.6) with positive a and b. Assume X? is a critical point of f(X) with rank(X?) = r. Then X? is the

global minimum of (6.1), i.e.,

f(X?) ≤ f(X), ∀X ∈ Rn×m, rank(X) ≤ r

and the equality holds only at X = X?.

Proof. First note that if X? is a critical point of f , then

∇f(X?) = 0.

Now for any X ∈ Rn×m with rank(X) ≤ r, the second order Taylor expansion gives

f(X) =f(X?) + 〈∇f(X?),X−X?〉+
1

2
[∇2f(X̃)](X−X?,X−X?)

=f(X?) +
1

2
[∇2f(X̃)](X−X?,X−X?)

where X̃ = tX? + (1− t)X for some t ∈ [0, 1]. This Taylor expansion together with (6.6) (both X̃ and X′−X? have

rank at most 2r) gives

f(X)− f(X?) ≥ a‖X−X?‖2F .

E.4 Proof of Lemma 6.3.1

Lemma E.4.1 (Lemma 6.3.1). Suppose G(W) is defined as in (6.9) with µ > 0. Then any critical point W of G(W)

belongs to E , i.e.,

∇G(W) = 0 ⇒ U>U = V>V. (6.11)

Proof. Any critical point (see Definition 6.2.1) W =

U

V

 satisfies∇G(W) = 0, i.e.,

∇f(UV>)V + µU
(
U>U−V>V

)
= 0, (E.17)

(∇f(UV>))>U− µV
(
U>U−V>V

)
= 0. (E.18)
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By (E.18), we obtain

(∇f(UV>))>U = µ
(
U>U−V>V

)
V>.

Multiplying (E.17) by U> and plugging it in the expression for U>∇f(UV>) from the above equation gives

(
U>U−V>V

)
V>V + U>U

(
U>U−V>V

)
= 0,

which further implies

U>UU>U = V>VV>V.

In order to show (6.11), note that U>U and V>V are the principal square roots (i.e., PSD square roots) of U>UU>U

and V>VV>V, respectively. Utilizing the result that a PSD matrix A has a unique PSD matrix B such that Bk = A

for any k ≥ 1 [271, Theorem 7.2.6], we obtain

U>U = V>V

for any critical point W.

E.5 Proof of Lemma E.1.1

Lemma E.5.1 (Lemma E.1.1). Suppose g(W) is defined as in (E.1) with µ > 0. Then we have

g(W) ≥ min{µ
4
,

1

8
}
∥∥WW> −W?W?>∥∥2

F
.

In particular, if we choose µ = 1
2 , then we have

g(W) =
1

8

∥∥WW> −W?W?>∥∥2

F
+

1

4

∥∥U>U? −V>V?
∥∥2

F
.

Proof. We first rewrite the objective function g(W):

g(W) =
1

2

∥∥UV> −U?V?>∥∥2

F
+
µ

4

∥∥U>U−V>V
∥∥2

F

≥ min{µ, 1

2
}
(∥∥UV> −U?V?>∥∥2

F
+

1

4

∥∥U>U−V>V
∥∥2

F

)
= min{µ, 1

2
}
(

1

4

∥∥WW> −W?W?>∥∥2

F
+ g′(W)

)
,

where the second line attains the equality when µ = 1
2 , and g′(W) in the last line is defined as
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g′(W) :=
1

2

∥∥UV> −U?V?>∥∥2

F
− 1

4

∥∥UU> −U?U?>∥∥2

F

− 1

4

∥∥VV> −V?V?>∥∥2

F
+

1

4

∥∥U>U−V>V
∥∥2

F
.

We further show g′(W) is always nonnegative:

g′(W) =
1

2

∥∥UV> −U?V?>∥∥2

F
− 1

4

∥∥UU> −U?U?>∥∥2

F

− 1

4

∥∥VV> −V?V?>∥∥2

F
+

1

4

∥∥U>U−V>V
∥∥2

F
.

=
1

2

∥∥UV> −U?V?>∥∥2

F
+

1

2

∥∥U>U?
∥∥2

F
+

1

2

∥∥V>V?
∥∥2

F

− 1

2
tr
(
U>UV>V

)
− 1

4

∥∥U?U?>∥∥2

F
− 1

4

∥∥V?V?>∥∥2

F

=
1

2

∥∥U>U? −V>V?
∥∥2

F
+

1

2

∥∥U?V?>∥∥2

F

− 1

4

∥∥U?U?>∥∥2

F
− 1

4

∥∥V?V?>∥∥2

F

=
1

2

∥∥U>U? −V>V?
∥∥2

F
≥ 0,

where the last line follows because U?>U? = V?>V?. Thus, we have

g(W) ≥ min{µ
4
,

1

8
}
∥∥WW> −W?W?>∥∥2

F
,

and

g(W) =
1

8

∥∥WW> −W?W?>∥∥2

F
+

1

4

∥∥U>U? −V>V?
∥∥2

F

if µ = 1
2 .

E.6 Proof of Lemma E.1.2

Lemma E.6.1 (Lemma E.1.2). Let X? = ΦΣΨ> =
∑r
i=1 σiφiψ

>
i be a reduced SVD of X? and g(W) be defined

as in (E.1) with µ > 0. Any W =

U

V

 is a critical point of g(W) if and only if W ∈ C with

C :=

{
W =

[
U
V

]
:U = ΦΛ1/2R,V = ΨΛ1/2R,R ∈ Or,Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
. (E.7)

We first repeat that X? = ΦΣΨ> = is a reduced SVD of X?. We separate U into two parts—the projections

onto the column space of Φ and its orthogonal complement—by denoting U = ΦΛ
1/2
1 R1 + E1 with R1 ∈ Or,

E>1 Φ = 0 and Λ1 being a r × r diagonal matrix with non-negative elements along its diagonal. Similarly, denote

V = ΨΛ
1/2
2 R2 + E2, where R2 ∈ Or, E>2 Ψ = 0, Λ2 is a r × r diagonal matrix with non-negative elements along
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its diagonal. Recall that any critical point W =

U

V

 satisfies

∇Uρ(U,V) = UU>U−X?V = 0,

∇Vρ(U,V) = VV>V −X?>U = 0.

Plugging U = ΦΛ
1/2
1 R1 + E1 and V = ΨΛ

1/2
2 R2 + E2 into the above equations gives

ΦΛ
3/2
1 R1 + ΦΛ

1/2
1 R1E

>
1 E1 + E1R

>
1 Λ1R1 + E1E

>
1 E1 −ΦΣΛ

1/2
2 R2 = 0, (E.19)

ΨΛ
3/2
2 R2 + ΨΛ

1/2
2 R2E

>E2 + E2R
>
2 Λ2R2 + E2E

>
2 E2 −ΨΣΛ

1/2
1 R1 = 0. (E.20)

Since E1 is orthogonal to Φ, (E.19) further implies that

ΦΛ
3/2
1 R1 + ΦΛ

1/2
1 R1E

>
1 E1 −ΦΣΛ

1/2
2 R2 = 0, (E.21)

E1R
>
1 Λ1R1 + E1E

>
1 E1 = 0. (E.22)

From (E.22), we have

〈
E1R

>
1 Λ1R1 + E1E

>
1 E1,E1

〉
=
〈
R>1 Λ1R1,E

>
1 E1

〉
+ ‖E1‖2F = 0,

which further implies ‖E1‖2F = 0 by noting that
〈
R>1 Λ1R1,E

>
1 E1

〉
≥ 0 since it is the inner product between two

PSD matrices. Thus E1 = 0. With a similar argument we also have E2 = 0.

With E1 = E2 = 0, (E.21) reduces to

ΦΛ
3/2
1 R1 −ΦΣΛ

1/2
2 R2 = 0.

Since Φ is orthogonal and R1 ∈ Or, the above equation implies that

Λ
3/2
1 = ΣΛ

1/2
2 R2R

>
1 .

Let Ω denote the set of locations of the non-zero diagonals in Λ2, i.e., Λ2[i, i] > 0 for all i ∈ Ω. Then [R>1 ]Ω = [R>2 ]Ω

since otherwise ΣΛ
1/2
2 R2R

>
1 is not a diagonal matrix anymore. Then we have

Λ
3/2
1 = ΣΛ

1/2
2 (E.23)

implying that the set of the locations of non-zero diagonals in Λ1 is identical to Ω. A similar argument applied to (E.20)

gives
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Λ
3/2
2 = ΣΛ

1/2
1 . (E.24)

Noting that (E.23) implies Λ
3/2
1 [i, i] = Σ[i, i]Λ

1/2
2 [i, i] and (E.24) implies Λ

3/2
2 [i, i] = Σ[i, i]Λ

1/2
1 [i, i], for all i ∈ Ω

we have Λ1[i, i] = Λ2[i, i] = Σ[i, i]. For i /∈ Ω, we have Λ1[i, i] = Λ2[i, i] = 0. Thus Λ1 = Λ2. For convenience,

denote Λ = Λ1 = Λ2 with Λ[i, i] = λi.

Finally, we note that U = ΦΛ1/2R1 =
∑
i∈Ω λiφiR1[i, :] and V = ΨΛ1/2R2 =

∑
i∈Ω λiψiR2[i, :] implying

that only [R>1 ]Ω and [R>2 ]Ω play a role in U and V, respectively. Thus one can set R1 = R2 since we already proved

[R>1 ]Ω = [R>2 ]Ω.

E.7 Proof of Lemma E.1.3

Lemma E.7.1 (Lemma E.1.3). For any ∆ =

∆U

∆V

 ∈ R(n+m)×r and W ∈ E where E is defined in (6.10), we have

‖∆UU>‖2F + ‖∆VV>‖2F = ‖∆UV>‖2F + ‖∆VU>‖2F , (E.9)

and

∇2ρ(W) � 0. (E.10)

Proof. Utilizing the result that any point W ∈ E satisfies Ŵ>W = U>U−V>V = 0, we directly obtain

‖∆UU>‖2F + ‖∆VV>‖2F = ‖∆UV>‖2F + ‖∆VU>‖2F

since ‖∆UU>‖2F = tr
(
∆UU>U∆U

)
= tr

(
∆UV>V∆U

)
= ‖∆UV>‖2F (and similarly for the other two terms).

We then rewrite the last two terms in (E.4) as

〈
Ŵ∆̂

>
,∆W>

〉
+
〈
ŴŴ>,∆∆>

〉
=
〈
Ŵ>∆,∆>Ŵ

〉
+
〈
Ŵ>∆,Ŵ>∆

〉
=
〈
Ŵ>∆,Ŵ>∆ + ∆>Ŵ

〉
=

1

2

〈
Ŵ>∆ + ∆>Ŵ,Ŵ>∆ + ∆>Ŵ

〉
+

1

2

〈
Ŵ>∆−∆>Ŵ,Ŵ>∆ + ∆>Ŵ

〉
=

1

2

∥∥∥Ŵ>∆ + ∆>Ŵ
∥∥∥2

F

where the last line holds because
〈
A−A>,A + A>

〉
= 0. Plugging these with the factor Ŵ>W = 0 into the

Hessian quadrature form [∇2ρ(W)](∆,∆) defined in (E.4) gives
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[∇2ρ(W)](∆,∆) ≥ µ

2

∥∥∥Ŵ>∆ + ∆>Ŵ
∥∥∥2

F
≥ 0.

This implies that the Hessian of ρ evaluated at any W ∈ E is PSD, i.e.,∇2ρ(W) � 0.46

E.8 Proof of Theorem E.1.1 (strict saddle property for (E.1))

Theorem E.8.1 (Theorem E.1.1). Let g(W) be defined as in (E.1) with µ > 0 and rank(X?) = r. Let W =

U

V


be any critical point satisfying∇g(W) = 0, i.e., W ∈ C. Any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −1

2

∥∥WW> −W?W?>∥∥ ≤ −σr(X?). (E.11)

Furthermore, g(W) is not strongly convex at any global minimum point W ∈ X .

Proof. We begin the proof of Theorem E.1.1 by characterizing any W ∈ C \ X . For this purpose, let W =

U

V

,

where U = ΦΛ1/2R,V = ΨΛ1/2R,R ∈ Or,Λ is diagonal,Λ ≥ 0, (Σ − Λ)Σ = 0, and rank(Λ) < r. Denote

the corresponding optimal solution W? =

U?

V?

, where U? = ΦΣ1/2R,V? = ΨΣ1/2R. Let

k = arg max
i

σi − λi

denote the location of the first zero diagonal element in Λ. Noting that λi ∈ {σi, 0}, we conclude that

λk = 0, φ>k U = 0, ψ>k V = 0. (E.25)

In words, φk and ψk are orthogonal to U and V, respectively. Let α ∈ Rr be the eigenvector associated with the

smallest eigenvalue of W>W. Such α simultaneously lives in the null spaces of U and V since W is rank deficient

indicating

0 = α>W>Wα = α>U>Uα+α>V>Vα,

which further implies

{
α>U>Uα = 0,
α>V>Vα = 0.

(E.26)

With this property, we construct ∆ by setting ∆U = φkα
> and ∆V = ψkα

>. Now we show that W is a strict saddle

by arguing that g(W) has a strictly negative curvature along the constructed direction ∆, i.e., [∇2g(W)](∆,∆) < 0.
46This can also be observed since any critical point W is a global minimum of ρ(W), which directly indicates that∇2ρ(W) � 0.
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To that end, we compute the five terms in (E.3) as follows

∥∥∥∆UV> + U∆>V

∥∥∥2

F
= 0 (since (E.26)),〈

UV> −X?,∆U∆>V
〉

= λk − σk = −σk (since (E.25)),〈
Ŵ>W, ∆̂

>
∆
〉

= 0 (since Ŵ>W = 0),〈
Ŵ∆̂

>
,∆W>

〉
= tr

(
∆̂
>

W∆TŴ
)

= 0,〈
ŴŴ>,∆∆>

〉
= tr

(
Ŵ>∆∆>Ŵ

)
= 0,

where Ŵ>W = 0 since U>U − V>V = 0, the last two lines utilize ∆̂
>

W = 0 (or Ŵ>∆ = 0) because

∆̂
>

W = αφ>k U−αψ>k V = 0 (see (E.25)). Plugging these terms into (E.3) gives

[∇2g(W)](∆,∆) =
∥∥∥∆UV> + U∆>V

∥∥∥2

F
+ 2

〈
UV> −X?,∆U∆>V

〉
+ µ

〈
Ŵ>W, ∆̂

>
∆
〉

+ µ
〈
Ŵ∆̂

>
,∆W>

〉
+ µ

〈
ŴŴ>,∆∆>

〉
= −2σk.

The proof of the strict saddle property is completed by noting that

‖∆‖2F = ‖∆U‖2F + ‖∆V‖2F =
∥∥φkα>∥∥2

F
+
∥∥ψkα>∥∥2

F
= 2,

which further implies

λmin

(
∇2g(W)

)
≤ [∇2g(W)](∆,∆)

‖∆‖2F
≤ −2σk

2

= −‖Λ−Σ‖ = −1

2

∥∥WW> −W?W?>∥∥ ,
where the first equality holds because

‖Λ−Σ‖ = max
i
σi − λi = σk,

and the second equality follows since

WW> −W?W?> =
1

2
Q (Λ−Σ) Q>,

Q =

[
Φ/
√

2

Ψ/
√

2

]
, Q>Q = I.

We finish the proof of (E.11) by noting that

σk = σk(X?) ≥ σr(X?).
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Now suppose W? ∈ X . Applying (E.10), which states that the Hessian of ρ evaluated at any critical point W is

PSD, we have

[∇2g(W?)][∆,∆] =
∥∥∥∆UV?> + U?∆>V

∥∥∥2

F
+ 2

〈
U?V?> −X?,∆U∆>V

〉
+ [∇2ρ(W?)][∆,∆]

≥
∥∥∥∆UV?> + U?∆>V

∥∥∥2

F
+ 2

〈
U?V?> −X?,∆U∆>V

〉
≥ 0

since U?V?> −X? = 0. We show g is not strongly convex at W? by arguing that λmin(∇2g(W?)) = 0. For this

purpose, we first recall that U? = ΦΣ1/2,V? = ΨΣ1/2, where we assume R = I without loss of generality. Let

{e1, e2, . . . , er} be the standard orthobasis for Rr, i.e., e` is the `-th column of the r × r identity matrix. Construct

∆(i,j) =

∆
(i,j)
U

∆
(i,j)
V

, where

∆
(i,j)
U = U?eje

>
i −U?eie

>
j , ∆

(i,j)
V = V?eje

>
i −U?eie

>
j ,

for any 1 ≤ i < j ≤ r. That is, the `-th columns of the matrices ∆
(i,j)
U and ∆

(i,j)
V are respectively given by

∆
(i,j)
U [:, `] =


σ

1/2
j φj , ` = i,

−σ1/2
i φi, ` = j,

0, otherwise,

,

∆
(i,j)
V [:, `] =


σ

1/2
j ψj , ` = i,

−σ1/2
i ψi, ` = j,

0, otherwise,

for any 1 ≤ i < j ≤ r. We then compute the five terms in (E.3) as follows

∥∥∥∆(i,j)
U V?> + U?(∆

(i,j)
V )>

∥∥∥2

F
=
∥∥∥σ1/2

i σ
1/2
j

(
φjψ

>
i − φiψ>j + φiψ

>
j − φjψ>i

)∥∥∥2

F
= 0,

〈U?V?> −X?,∆
(i,j)
U (∆

(i,j)
V )>〉 = 0 (as U?V?> −X? = 0),

〈Ŵ?>W?, ∆̂
>
(i,j)∆(i,j)〉 = 0 (as Ŵ?>W? = 0),

〈Ŵ?∆̂
>
(i,j),∆(i,j)W

?>〉 = tr(Ŵ?>∆(i,j)W
?>∆̂(i,j)) = 0,

〈Ŵ?Ŵ?>,∆(i,j)∆
>
(i,j)〉 = tr(Ŵ?>∆(i,j)∆

>
(i,j)Ŵ

?) = 0,

where the last two lines hold because

Ŵ?>∆(i,j) = U?>U?(eje
>
i − eie

>
j )−V?>V?(eje

>
i − eie

>
j ) = 0

since U?>U? = V?>V?.
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Thus, we obtain the Hessian evaluated at the optimal solution point W? along the direction ∆(i,j):

[
∇2g(W?)

] (
∆(i,j),∆(i,j)

)
= 0

for all 1 ≤ i < j ≤ r. This proves that g(W) is not strongly convex at a global minimum point W? ∈ X .

E.9 Proof of Theorem E.1.2 (strict saddle property of g(W) when over-parameterized)

Theorem E.9.1 (Theorem E.1.2). Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ ≤ r, and let

g(W) be defined as in (E.1) with µ > 0. Any W =

U

V

 is a critical point of g(W) if and only if W ∈ C with

C :=

{
W =

[
U
V

]
:U = ΦΛ1/2R,V = ΨΛ1/2R,RR> = Ir′ ,Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
Further, all the local minima (which are also global) belong to the following set

X =

{
W =

[
U
V

]
:U = ΦΣ1/2R,V = ΨΣ1/2R,RR> = Ir′

}
Finally, any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −1

2

∥∥WW> −W?W?>∥∥ ≤ −σr′(X?).

Proof. Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ ≤ r. Using an approach similar to that

in Appendix E.6 for proving Lemma E.1.2, we can show that any W =

U

V

 is a critical point of g(W) if and only

if W ∈ C with

C =

{
W =

[
U
V

]
: U = ΦΛ1/2R,V = ΨΛ1/2R,RR> = Ir′ ,Λ is diagonal,Λ ≥ 0, (Σ−Λ)Σ = 0

}
.

Recall that

X =

{
W =

[
U
V

]
:U = ΦΣ1/2R,V = ΨΣ1/2R,RR> = Ir′

}
.

It is clear that X is the set of optimal solutions since for any W ∈ X , g(W) achieves its global minimum, i.e.,

g(W) = 0.

Using an approach similar to that in Appendix E.8 for proving Theorem E.1.1, we can show that any W ∈ C \ X

is a strict saddle satisfying

λmin

(
∇2g(W)

)
≤ −σr′(X?).
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E.10 Proof of Theorem E.1.3 (strict saddle property of g(W) when under-parameterized)

Theorem E.10.1 (Theorem E.1.3). Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ > r and

σr(X
?) > σr+1(X?). Also let g(W) be defined as in (E.1) with µ > 0. Any W =

U

V

 is a critical point of g(W)

if and only if W ∈ C with

C :=

{
W =

[
U
V

]
: U = Φ[:,Ω]Λ1/2R,V = Ψ[:,Ω]Λ1/2R,

Λ = Σ[Ω,Ω],RR> = I`,Ω ⊂ {1, 2, . . . , r′}, |Ω| = ` ≤ r
}

where we recall that Φ[:,Ω] is a submatrix of Φ obtained by keeping the columns indexed by Ω and Σ[Ω,Ω] is an

`× ` matrix obtained by taking the elements of Σ in rows and columns indexed by Ω.

Further, all local minima belong to the following set

X =

{
W =

[
U
V

]
: Λ = Σ[1 : r, 1 : r],R ∈ Or,U = Φ[:, 1 : r]Λ1/2R,V = Ψ[:, 1 : r]Λ1/2R

}
.

Finally, any W ∈ C \ X is a strict saddle of g(W) satisfying

λmin(∇2g(W)) ≤ −(σr(X
?)− σr+1(X?)).

Proof. Let X? = ΦΣΨ> =
∑r′

i=1 σiφiψ
>
i be a reduced SVD of X? with r′ > r and σr(X?) > σr+1(X?). Using

an approach similar to that in Appendix E.6 for proving Lemma E.1.2, we can show that any W =

U

V

 is a critical

point of g(W) if and only if W ∈ C with

C =

{
W =

[
U
V

]
: U = Φ[:,Ω]Λ1/2R,V = Ψ[:,Ω]Λ1/2R,Λ = Σ[Ω,Ω],RR> = I`,Ω ⊂ {1, . . . , r′}, |Ω| = ` ≤ r

}
.

Intuitively, a critical point is one such that UV> is a rank-` approximation to X? with ` ≤ r and U and V are equal

factors of their product UV>.

It follows from the Eckart-Young-Mirsky theorem [271] that the set of optimal solutions is given by

X =

{
W =

[
U
V

]
: U = Φ[:, 1 : r]Λ1/2R,V = Ψ[:, 1 : r]Λ1/2R,Λ = Σ[1 : r, 1 : r],R ∈ Or

}
.

Now we characterize any W ∈ C \ X by letting W =

U

V

, where
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U = Φ[:,Ω]Λ1/2R,V = Ψ[:,Ω]Λ1/2R,

Λ = Σ[Ω,Ω],R ∈ R`×r,RR> = I`,

Ω ⊂ {1, 2, . . . , r′}, |Ω| = ` ≤ r,Ω 6= {1, 2, . . . , r}.

Let α ∈ Rr be the eigenvector associated with the smallest eigenvalue of U>U (or V>V). By the typical

structures in U and V (see the above equation), we have

‖Vα‖2F = ‖Uα‖2F = σ2
r(U)

=

{
σj(X

?), |Ω| = r and j = max Ω
0, |Ω| < r,

(E.27)

where j > r because Ω 6= {1, 2, . . . , r}. Note that there always exists an index

i ∈ {1, 2, . . . , r}, i 6= Ω

since Ω 6= {1, 2, . . . , r} and |Ω| ≤ r. We construct ∆ by setting

∆U = φiα
>, ∆V = ψiα

>.

Since i /∈ Ω, we have

U>∆U = U>φiα
> = 0,

V>∆V = V>ψiα
> = 0.

(E.28)

We compute the five terms in (E.3) as follows

∥∥∥∆UV> + U∆>V

∥∥∥2

F
=
∥∥∆UV>

∥∥2

F
+
∥∥∥U∆>V

∥∥∥2

F
+ 2 tr

(
U>∆UV>∆V

)
= 2σ2

r(U),

〈
UV> −X?,∆U∆>V

〉
=
〈
UV> −X?,φiψ

>
i

〉
= −

〈
X?,φiψ

>
i

〉
= −σi(X?),〈

Ŵ>W, ∆̂
>

∆
〉

= 0 (since Ŵ>W = 0),〈
Ŵ∆̂

>
,∆W>

〉
= tr

(
Ŵ>∆W>∆̂

)
= 0,〈

ŴŴ>,∆∆>
〉

= tr
(
Ŵ>∆∆>Ŵ

)
= 0,

where the last equality in the first line holds because U>∆U = 0 (see (E.28)) and
∥∥∆UV>

∥∥2

F
=
∥∥∥U∆>V

∥∥∥2

F
=

σ2
r(U) (see (E.27)), Ŵ>W = 0 in the third line holds since U>U −V>V = 0, and Ŵ>∆ = 0 in the fourth and

last lines holds because

Ŵ>∆ = U>∆U −V>∆V = 0.

Now plugging these terms into (E.3) yields
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[∇2g(W)](∆,∆) = ‖∆UV> + U∆>V‖2F + 2〈UV> −X?,∆U∆>V〉

+ µ(〈Ŵ>W, ∆̂
>

∆〉+ 〈Ŵ∆̂
>
,∆W>〉+ 〈ŴŴ>,∆∆>〉)

= −2(σi(X
?)− σ2

r(U)).

The proof of the strict saddle property is completed by noting that

‖∆‖2F = ‖∆U‖2F + ‖∆V‖2F = 2,

which further implies

λmin

(
∇2g(W)

)
≤ −2

σi(X
?)− σ2

r(U)

‖∆‖2F
≤ − (σr(X

?)− σr+1(X?)) ,

where the last inequality holds because of (E.27) and because i ≤ r.

E.11 Proof of Theorem E.11.1 (robust strict saddle for g(W))

Theorem E.11.1. Let R1,R2,R′3,R′′3 ,R′′′3 be the regions as defined in Theorem 6.3.1. Let g(W) be defined as

in (E.1) with µ = 1
2 . Then g(W) has the following robust strict saddle property:

1. For any W ∈ R1, g(W) satisfies local regularity condition:

〈∇g(W),W −W?R〉 ≥ 1

32
σr(X

?) dist2(W,W?) +
1

48‖X?‖ ‖∇g(W)‖2F , (E.12)

where dist(W,W?) and R are defined in (6.12) and (6.13), respectively.

2. For any W ∈ R2, g(W) has a directional negative curvature:

λmin

(
∇2g(W)

)
≤ −1

4
σr(X

?). (E.13)

3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , g(W) has large gradient descent:

‖∇g(W)‖F ≥
1

10
σ3/2
r (X?), ∀W ∈ R′3; (E.14)

‖∇g(W)‖F >
39

800
‖W‖3, ∀W ∈ R′′3 ; (E.15)

〈∇g(W),W〉 > 1

20

∥∥WW>∥∥2

F
, ∀W ∈ R′′′3 . (E.16)

Proof. We first establish the following useful results.

Lemma E.11.1. For any two PSD matrices A,B ∈ Rn×n, we have
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σn(A) tr(B) ≤ tr (AB) ≤ ‖A‖ tr(B).

Proof of Lemma E.11.1. Let A = Φ1Λ1Φ
>
1 and B = Φ2Λ2Φ

>
2 be the eigendecompositions of A and B, respec-

tively. Here Λ1 (Λ2) is a diagonal matrix with the eigenvalues of A (B) along its diagonal. We first rewrite tr (AB)

as

tr (AB) = tr
(
Λ1Φ

>
1 Φ2Λ2Φ

>
2 Φ1

)
.

Noting that Λ1 is a diagonal matrix, we have

tr
(
Λ1Φ

>
1 Φ2Λ2Φ

>
2 Φ1

)
≥ min

i
Λ1[i, i] · tr

(
Φ>1 Φ2Λ2Φ

>
2 Φ1

)
= σn(A) tr(B).

The other direction follows similarly.

Corollary E.11.1. For any two matrices A ∈ Rr×r and B ∈ Rn×r, we have

σr(A)‖B‖F ≤ ‖AB‖F ≤ ‖A‖‖B‖F .

We provide one more result before proceeding to prove the main theorem.

Lemma E.11.2. Suppose A,B ∈ Rn×r such that A>B = B>A � 0 is PSD. If ‖A−B‖ ≤
√

2
2 σr(B), we have

〈(
AA> −BB>

)
A,A−B

〉︸ ︷︷ ︸
(ℵ1)

≥ 1

16
(tr((A−B)>(A−B)B>B)︸ ︷︷ ︸

(ℵ2)

+ ‖AA> −BB>‖2F︸ ︷︷ ︸
(ℵ3)

). (E.29)

Proof. Denote E = A−B. We first rewrite the terms (ℵ1), (ℵ2) and (ℵ3) as follows

(ℵ1) = tr

((
E>E

)2
+ 3E>EE>B +

(
E>B

)2
+ E>EB>B

)
,

(ℵ2) = tr
(
E>EB>B

)
,

(ℵ3) = tr

((
E>E

)2
+ 4E>EE>B + 2

(
E>B

)2
+ 2E>EB>B

)
,

where E>B = A>B−B>B = B>E. Now we have
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(ℵ1)− 1

16
(ℵ2)− 1

16
(ℵ3)

= tr

(
15

16

(
E>E

)2
+

11

4
E>EE>B +

7

8

(
E>B

)2
+

13

16
E>EB>B

)

=

∥∥∥∥∥
√

121

56
E>E +

√
7

8
E>B

∥∥∥∥∥
2

F

+ tr

(
13

16
E>EB>B− 137

112
E>EE>E

)
≥ tr

(
13

16
E>Eσ2

r(B)− 137

112
E>E‖E‖2

)
≥ tr

((
13

16
− 137

112

1

2

)
σ2
r(B)E>E

)
≥ 0,

where the third line follows from Lemma E.11.1 and the fourth line holds because by assumption ‖E‖ ≤
√

2
2 σr(B).

Now we turn to prove the main results. Recall that µ = 1
2 throughout the proof.

E.11.1 Regularity condition for the regionR1

It follows from Lemma 6.3.2 that W>W?R = R>W?>W is PSD, where R = arg minR′∈Or ‖W−W?R′‖2F .

We first perform the change of variable W?R → W? to avoid R in the following equations. With this change of

variable we have instead W>W? = W?>W is PSD. We now rewrite the gradient∇g(W) as follows:

∇g(W) =

[
0 UV> −U?V?>

VU> −V?U?> 0

]
W + µŴ(Ŵ>W)

=
1

2

(
WW> −W?W?>)W +

1

2
Ŵ?Ŵ?>W + (µ− 1

2
)ŴŴ>W

=
1

2

(
WW> −W?W?>)W +

1

2
Ŵ?Ŵ?>W.

(E.30)

Plugging this into the left hand side of (E.12) gives

〈∇g(W),W −W?〉 =
1

2

〈(
WW> −W?W?>)W,W −W?

〉
+

1

2

〈
Ŵ?Ŵ?>W,W −W?

〉
=

1

2

〈(
WW> −W?W?>)W,W −W?

〉
+

1

2

〈
Ŵ?Ŵ?>,WW>

〉 (E.31)
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where the last line follows from the fact that W?>Ŵ? = 0. We first show the first term in the right hand side of the

above equation is sufficiently large

〈(
WW> −W?W?>)W,W −W?

〉
≥ 1

16
tr
(
(W −W?)>(W −W?)W?>W?

)
+

1

16

∥∥WW> −W?W?>∥∥2

F

≥ 1

16
σr(W

?>W?) ‖W −W?‖2F

+
1

16

∥∥WW> −W?W?>∥∥2

F

=
1

8
σr(X

?) ‖W −W?‖2F +
1

16

∥∥WW> −W?W?>∥∥2

F
,

(E.32)

where the first inequality follows from Lemma E.11.2 since W>W? = W?>W is PSD and ‖W −W?‖ ≤

σ
1/2
r (X?) =

√
2

2 σr(W
?), the second inequality follows from Lemma E.11.1, and the last line holds because

σr

(
Ŵ?>Ŵ?

)
= σr

(
Û?>Û? + V̂?>V̂?

)
= 2σr (Σ) = 2σr (X?) .

We then show the second term in the right hand side of (E.31) is lower bounded by

〈
Ŵ?Ŵ?>,WW>

〉
=

1

2 ‖X?‖
∥∥∥Ŵ?>Ŵ?

∥∥∥ tr
(
Ŵ?>WW>Ŵ?

)
≥ 1

2 ‖X?‖ tr
(
Ŵ?>Ŵ?Ŵ?>WW>Ŵ?

)
=

1

2 ‖X?‖
∥∥∥Ŵ?Ŵ?>W

∥∥∥2

F

(E.33)

where the first line holds because
∥∥∥Ŵ?>Ŵ?

∥∥∥ =
∥∥∥Û?>Û? + V̂?>V̂?

∥∥∥ = 2 ‖Σ‖ = 2 ‖X?‖, and the inequality

follows from Lemma E.11.1.

On the other hand, we attempt to control the gradient of g(W). To that end, it follows from (E.30) that

‖∇g(W)‖2F =
1

4

∥∥∥(WW> −W?W?>)W + Ŵ?Ŵ?>W
∥∥∥2

F

≤ 12

47

∥∥(WW> −W?W?>)W
∥∥2

F
+ 12

∥∥∥Ŵ?Ŵ?>W
∥∥∥2

F

≤ 12

47
‖W‖2

∥∥WW> −W?W?>∥∥2

F
+ 12

∥∥∥Ŵ?Ŵ?>W
∥∥∥2

F
,

(E.34)

where the first inequality holds since (a+ b)2 ≤ 1+ε
ε a2 + (1 + ε)b2 for any ε > 0.

Combining (E.31)- (E.34), we can conclude the proof of (E.12) as long as we can show the following inequality:

1

8

∥∥WW> −W?W?>∥∥2

F
≥ 1

47

‖W‖2
‖X?‖

∥∥WW> −W?W?>∥∥2

F
.

To that end, we upper bound ‖W‖ as follows:
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‖W‖ ≤ ‖W?‖+ ‖W −W?‖
≤
√

2σ
1/2
1 (X?) + ‖W −W?‖F

≤ (
√

2 + 1)σ
1/2
1 (X?)

since ‖W?‖ =
√

2σ
(1/2)
1 (X?) and dist(W,W?) ≤ σ(1/2)

r (X?). This completes the proof of (E.12).

E.11.2 Negative curvature for the regionR2

To show (E.13), we utilize a strategy similar to that used in Appendix E.8 for proving the strict saddle property of

g(W) by constructing a direction ∆ such that the Hessian evaluated at W along this direction is negative. For this

purpose, denote

Q =

[
Φ/
√

2

Ψ/
√

2

]
, (E.35)

where we recall that Φ and Ψ consist of the left and right singular vectors of X?, respectively. The optimal solution

W? has a compact SVD W? = Q(
√

2Σ1/2)R. For notational convenience, we denote Σ = 2Σ, where Σ is a

diagonal matrix whose diagonal entries in the upper left corner are σ1, . . . , σr.

For any W, we can always divide it into two parts, the projections onto the column spaces of Q and its orthogonal

complement, respectively. Equivalently, we can write

W = QΛ
1/2

R + E, (E.36)

where QΛ
1/2

R is a compact SVD form representing the projection of W onto the column space of Q, and E>Q = 0

(i.e., E is orthogonal to Q). Here R ∈ Or and Λ is a diagonal matrix whose diagonal entries in the upper left corner

are λ1, . . . , λr, but the diagonal entries are not necessarily placed either in decreasing or increasing order. In order to

characterize the neighborhood near all strict saddles C \ X , we consider W such that σr(W) ≤
√

3
8σ

1/2
r (X?). Let

k := arg mini λi denote the location of the smallest diagonal entry in Λ. It is clear that

λk ≤ σ2
r(W) ≤ 3

8
σr(X

?). (E.37)

Let α ∈ Rr be the eigenvector associated with the smallest eigenvalue of W>W.

Recall that µ = 1
2 . We show that the function g(W) at W has directional negative curvature along the direction

∆ = qkα
>. (E.38)

We repeat the Hessian evaluated at W for ∆ as follows
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[∇2g(W)](∆,∆)

=
∥∥∥∆UV> + U∆>V

∥∥∥2

F︸ ︷︷ ︸
Π1

+2
〈
UV>−X?,∆U∆>V

〉
︸ ︷︷ ︸

Π2

+
1

2

〈
∆̂Ŵ>,∆W>

〉
︸ ︷︷ ︸

Π3

+
1

2

〈
Ŵ∆̂

>
,∆W>

〉
︸ ︷︷ ︸

Π4

+
1

2

〈
ŴŴ>,∆∆>

〉
︸ ︷︷ ︸

Π5

The remaining part is to bound the five terms.

Bounding terms Π1, Π3 and Π4. We first rewrite these three terms:

Π1 = ‖∆UV>‖2F + ‖U∆>V‖2F + 2
〈
U∆>V,∆UV>

〉
,

Π3 =
〈
∆̂Ŵ>,∆W>

〉
= ‖∆UU>‖2F + ‖∆VV>‖2F − ‖∆UV>‖2F − ‖∆VU>‖2F ,

Π4 =
〈
U∆>U,∆UU>

〉
+
〈
V∆>V,∆VV>

〉
− 2

〈
U∆>V,∆UV>

〉
≤ ‖∆UU>‖2F + ‖∆VV>‖2F − 2

〈
U∆>V,∆UV>

〉
,

which implies

Π1 +
1

2
Π3 +

1

2
Π4

≤ ‖∆UV>‖2F + ‖U∆>V‖2F + ‖∆UU>‖2F + ‖∆VV>‖2F −
1

2
‖∆UV>‖2F −

1

2
‖∆VU>‖2F +

〈
U∆>V,∆UV>

〉
= ‖W∆>‖2F −

1

2

∥∥∥∆UV> −U∆>V

∥∥∥2

F

≤ ‖W∆>‖2F .
(E.39)

Noting that ∆>∆ = αq>k qkα
> = αα>, we now compute ‖W∆>‖2F as

‖W∆>‖2F = tr
(
W>W∆>∆

)
= tr

(
W>Wαα>

)
= σ2

r(W).

Plugging this into (E.39) gives

Π1 +
1

2
Π3 +

1

2
Π4 ≤ σ2

r(W). (E.40)

Bounding terms Π2 and Π5. To obtain an upper bound for the term Π2, we first rewrite it as follows

Π2 =
〈
UV> −X?,∆U∆>V

〉
=

1

2

〈[
0 UV> −U?V?>

VU> −V?U?> 0

]
,∆∆>

〉
=

1

4

〈
WW> −W?W?>,∆∆>

〉
− 1

4

〈
ŴŴ>∆∆>

〉
+

1

4

〈
Ŵ?Ŵ?>,∆∆>

〉
.
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We then have

2Π2 +
1

2
Π5 =

1

2

〈
WW> −W?W?>,∆∆>

〉
+

1

2

〈
Ŵ?Ŵ?>,∆∆>

〉
. (E.41)

To bound these two terms in the above equation, we note that

∆∆> =

r∑
i=1

α2
iqkq

>
k = qkq

>
k =

1

2

[
φkφ

>
k φkψ

>
k

ψkφ
>
k ψkψ

>
k

]
.

Then we have

〈
Ŵ?Ŵ?>,∆∆>

〉
=

1

2

〈[
ΦΣΦ> −ΦΣΨ>

−ΨΣΦ> ΨΣΨ>

]
,

[
φkφ

>
k φkψ

>
k

ψkφ
>
k ψkψ

>
k

]〉
= 0,

and

〈
WW> −W?W?>,∆∆>

〉
=
〈
QΛQ> − 2QΛ

1/2
RE> + EE> −QΣQ>,qkq

>
k

〉
= λk − σk

where the last utilizes the fact that E>qk = 0 since E is orthogonal to Q.

Plugging these into (E.41) gives

2Π2 +
1

2
Π5 =

1

2
(λk − σk). (E.42)

Merging together. Putting (E.40) and (E.42) together yields

[∇2g(W)](∆,∆) = Π1 +
1

2
Π3 +

1

2
Π4 + 2Π2 +

1

2
Π5

≤ σ2
r(W) +

1

2
(λk − σk)

≤ 1

2
σr(X

?) +
1

2
(
1

2
σr(X

?)− 2σr(X
?))

≤ −1

4
σr(X

?),

where the third line follows because by assumption σr(W) ≤
√

1
2σ

1/2
r (X?), by construction λk ≤ 1

2σr(X
?)

(see (E.37)), and σk ≥ σr = 2σr(X
?). This completes the proof of (E.13).
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E.11.3 Large gradient for the regionR′3 ∪R′′3 ∪R′′′3

In order to show that g(W) has a large gradient in the three regionsR′3∪R′′3 ∪R′′′3 , we first provide a lower bound

for the gradient. By (E.30), we have

‖∇g(W)‖2F =
1

4

∥∥∥(WW> −W?W?>)W + Ŵ?Ŵ?>W
∥∥∥2

F

=
1

4

(∥∥(WW> −W?W?>)W
∥∥2

F
+
∥∥∥Ŵ?Ŵ?>W

∥∥∥2

F

)
+

1

2

〈(
WW> −W?W?>)W,Ŵ?Ŵ?>W

〉
=

1

4

(∥∥(WW> −W?W?>)W
∥∥2

F
+
∥∥∥Ŵ?Ŵ?>W

∥∥∥2

F

)
+

1

2

〈
WW>WW>,Ŵ?Ŵ?>

〉
≥ 1

4

∥∥(WW> −W?W?>)W
∥∥2

F
,

(E.43)

where the third equality follows because W?>Ŵ? = U?>U? −V?>V? = 0 and the last line utilizes the fact that

the inner product between two PSD matrices is nonnegative.

E.11.3.1 Large gradient for the regionR′3

To show ‖∇g(W)‖2F is large for any W ∈ R′3, again, for any W ∈ R(n+m)×r, we utilize (E.36) to write

W = QΛ
1/2

R + E, where Q is defined in (E.35), QΛ
1/2

R is a compact SVD form representing the projection of

W onto the column space of Q, and E>Q = 0 (i.e., E is orthogonal to Q). Plugging this form of W into the last

term of (E.43) gives

∥∥(WW> −W?W?>)W
∥∥2

F
=
∥∥∥QΛ

1/2
(Λ−Σ)R + QΛ

1/2
REE> + ER>ΛR + EE>E

∥∥∥2

F

=
∥∥∥QΛ

1/2
(Λ−Σ)R + QΛ

1/2
REE>

∥∥∥2

F

+
∥∥ER>ΛR + EE>E

∥∥2

F

(E.44)

since Q is orthogonal to E. The remaining part is to show at least one of the two terms is large for any W ∈ R′3 by

considering the following two cases.

Case I: ‖E‖2F ≥ 4
25σr(X

?). As E is large, we bound the second term in (E.44):

∥∥ER>ΛR + EE>E
∥∥2

F
≥ σ2

r

(
R>ΛR + E>E

)
‖E‖2F

= σ4
r (W) ‖E‖2F

≥ (
1

2
)2 4

25
σ3
r(X?) =

1

25
σ3
r(X?),

(E.45)

where the first inequality follows from Corollary E.11.1, the first equality follows from the fact W>W = R>ΛR +

E>E, and the last inequality holds because by assumption that σ2
r(W) ≥ 1

2σr(X
?) and ‖E‖2F ≥ 4

25σr(X
?).
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Case II: ‖E‖2F ≤ 4
25σr(X

?). In this case, we start by bounding the diagonal entries in Λ. First, utilizing Weyl’s

inequality for perturbation of singular values [271, Theorem 3.3.16] gives∣∣∣σr(W)−min
i
λ

1/2

i

∣∣∣ ≤ ‖E‖2,
which implies

min
i
λ

1/2

i ≥ σr(W)− ‖E‖2 ≥
√

1

2
σ1/2
r (X?)− 2

5
σ1/2
r (X?), (E.46)

where we utilize ‖E‖2 ≤ ‖E‖F ≤ 2
5σ

1/2
r (X?). On the other hand,

dist(W,W?) ≤
∥∥∥Q(Λ

1/2 −Σ
1/2

)R + E
∥∥∥
F

≤
∥∥∥Q(Λ

1/2 −Σ
1/2

)R
∥∥∥
F

+ ‖E‖F ,

which together with the assumption that dist(W,W?) ≥ σ1/2
r (X?) gives

∥∥∥Λ1/2 −Σ
1/2
∥∥∥
F
≥ σ1/2

r (X?)− 2

5
σ1/2
r (X?) =

3

5
σ1/2
r (X?).

We now bound the first term in (E.44):

∥∥∥QΛ
1/2

(Λ−Σ)R + QΛ
1/2

REE>
∥∥∥
F
≥ min

i
λ

1/2

i

∥∥(Λ−Σ)R + REE>
∥∥
F

≥ min
i
λ

1/2

i

(∥∥(Λ−Σ)R
∥∥
F
−
∥∥REE>

∥∥
F

)
≥ (

√
1

2
− 2

5
)

((
√

2 +

√
1

2
− 2

5

)
3

5
− 4

25

)
σ3/2
r (X?)

(E.47)

where the third line holds because ‖EE>‖F ≤ ‖E‖2F ≤ 4
25σr(X

?), mini λ
1/2

i ≥
(√

1
2 − 2

5

)
σ

1/2
r (X?) by (E.46),

and

∥∥Λ−Σ
∥∥
F

=

√√√√ r∑
i=1

(
σi − λi

)2

=

√√√√ r∑
i=1

(
σ

1/2
i − λ1/2

i

)2 (
σ

1/2
i + λ

1/2

i

)2

≥
(
σ1/2
r + min

i
λ

1/2

i

)√√√√ r∑
i=1

(
σ

1/2
i − λ1/2

i

)2

=
(
σ1/2
r + min

i
λ

1/2

i

)∥∥∥Λ1/2 −Σ
1/2
∥∥∥
F

≥
(
√

2 +

√
1

2
− 2

5

)
3

5
σr(X

?).
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Combining (E.43) with (E.44), (E.45) and (E.47) gives

‖∇g(W)‖F ≥
1

10
σ3/2
r (X?).

This completes the proof of (E.14).

E.11.3.2 Large gradient for the regionR′′3

By (E.43), we have

‖∇g(W)‖F ≥
1

2

∥∥(WW> −W?W?>)W
∥∥2

F
.

Now (E.15) follows directly from the fact ‖W‖ > 20
19‖W?‖ and the following result.

Lemma E.11.3. For any A,B ∈ Rn×r with ‖A‖ ≥ α‖B‖ and α > 1, we have∥∥(AA> −BB>
)
A
∥∥
F
≥ (1− 1

α2
)‖A‖3.

Proof. Let A = Φ1Λ1R
>
1 and B = Φ2Λ2R

>
2 be the SVDs of A and B, respectively. Then

∥∥(AA> −BB>
)
A
∥∥
F

=
∥∥∥Φ1Λ

3
1 −Φ2Λ

2
2Φ
>
2 Φ1Λ1

∥∥∥
F

≥
∥∥∥Λ3

1 −Φ>1 Φ2Λ
2
2Φ
>
2 Φ1Λ1

∥∥∥
F

≥
∥∥Λ3

1 −Λ2
2Λ1

∥∥
F

≥ (1− 1

α2
)‖A‖3.

E.11.3.3 Large gradient for the regionR′′′3

By (E.30), we have

〈∇g(W),W〉 =

〈
1

2

(
WW> −W?W?>)W +

1

2
Ŵ?Ŵ?>W,W

〉
≥ 1

2

〈(
WW> −W?W?>)W,W

〉
≥ 1

2

(∥∥WW>∥∥2

F
−
∥∥WW>∥∥

F

∥∥W?W?>∥∥
F

)
>

1

20

∥∥WW>∥∥2

F

(E.48)

where the last line holds because ‖W?W?>‖F < 9
10‖WW>‖F .
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E.12 Proof of Theorem 6.3.1 (robust strict saddle for G(W))

Theorem E.12.1 (Theorem 6.3.1). Define the following regions

R1 : =
{

W : dist(W,W?) ≤ σ1/2
r (X?)

}
,

R2 : =

{
W : σr(W) ≤

√
1

2
σ1/2
r (X?), ‖WW>‖F ≤

20

19
‖W?W?>‖F

}
,

R′3 : =

{
W : dist(W,W?)>σ1/2

r (X?), ‖W‖≤ 20

19
‖W?‖, σr(W) >

√
1

2
σ1/2
r (X?), ‖WW>‖F ≤

20

19
‖W?W?>‖F

}
,

R′′3 : =

{
W : ‖W‖ > 20

19
‖W?‖ =

20

19

√
2‖X?‖1/2, ‖WW>‖F ≤

10

9
‖W?W?>‖F

}
,

R′′′3 : =

{
W : ‖WW>‖F >

10

9
‖W?W?>‖F =

20

9
‖X?‖F

}
.

Let G(W) be defined as in (6.9) with µ = 1
2 . Suppose f(X) has a critical point X? ∈ Rn×m of rank r and satisfies

the (2r, 4r)-restricted strong convexity and smoothness condition (6.6) with positive constants a = 1 − c, b = 1 + c

and

c .
σ

3/2
r (X?)

‖X?‖F ‖X?‖1/2 . (6.14)

Then G(W) has the following robust strict saddle property:

1. For any W ∈ R1, G(W) satisfies the local regularity condition:

〈∇G(W),W −W?〉 &σr(X?) dist2(W,W?) +
1

‖X?‖ ‖∇G(W)‖2F , (6.15)

where dist(W,W?) and R are defined in (6.12) and (6.13), respectively.

2. For any W ∈ R2, G(W) has a directional negative curvature, i.e.,

λmin

(
∇2G(W)

)
. −σr(X?). (6.16)

3. For any W ∈ R3 = R′3 ∪R′′3 ∪R′′′3 , G(W) has large gradient descent:

‖∇G(W)‖F & σ3/2
r (X?), ∀W ∈ R′3; (6.17)

‖∇G(W)‖F & ‖W‖3, ∀W ∈ R′′3 ; (6.18)

‖∇G(W)‖F & σr(X?)
(
‖WW>‖F

)1/2
, ∀W ∈ R′′′3 . (6.19)

Proof. Throughout the proofs, we always utilize X = UV> unless stated otherwise. To give a sense that the geometric

result in Theorem E.11.1 for g(W) is also possibly preserved for G(W), we first compute the derivative of G(W) as
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∇G(W) =

[
∇f(UV>)V

(∇f(UV>))>U

]
+ µŴŴ>W. (E.49)

For any ∆ =

∆U

∆V

 ∈ R(n+m)×r, algebraic calculation gives the Hessian quadrature form [∇2G(W)](∆,∆) as

[∇2G(W)](∆,∆) = [∇2f(UV>)](∆UV> + U∆>V,∆UV> + U∆>V)

+ 2〈∇f(UV>),∆U∆>V〉+ [∇2ρ(W)](∆,∆)
(E.50)

where [∇2ρ(W)](∆,∆) is defined in (E.4). Thus, it is expected that G(W), ∇G(W), and ∇2G(W) are close to

their counterparts (i.e., g(W), ∇g(W) and ∇2g(W)) for the matrix factorization problem when f(X) satisfies the

(2r, 4r)-restricted strong convexity and smoothness condition (6.6).

Before moving to the main proofs, we provide several useful results regarding the deviations of the gradient and

Hessian. We start with a useful characterization of the restricted strong convexity and smoothness condition.

Lemma E.12.1. Suppose f satisfies the (2r, 4r)-restricted strong convexity and smoothness condition (6.6) with pos-

itive constants a = 1− c and b = 1 + c, c ∈ [0, 1). Then any n×m matrices C,D,H with rank(C), rank(D) ≤ r

and rank(H) ≤ 2r, we have

|〈∇f (C)−∇f (D)− (C−D),H〉| ≤ c ‖C−D‖F ‖H‖F .

Proof of Lemma E.12.1. We first invoke [8, Proposition 2] which states that under Assumption 6.3.2 for any n ×m

matrices Z,D,H of rank at most 2r, we have

∣∣[∇2f(Z)](D,H)− 〈D,H〉
∣∣ ≤ c ‖D‖F ‖H‖F . (E.51)

Now using integral form of the mean value theorem for∇f , we have

|〈∇f (C)−∇f (D)− (C−D),H〉|

=

∣∣∣∣∫ 1

0

[
∇2f(tC + (1− t)D)

]
(C−D,H)− 〈C−D,H〉dt

∣∣∣∣
≤
∫ 1

0

∣∣[∇2f(tC + (1− t)D)
]

(C−D,H)− 〈C−D,H〉
∣∣ dt

≤
∫ 1

0

c ‖C−D‖F ‖H‖F dt = c ‖C−D‖F ‖H‖F .

where the second inequality follows from (E.51) since tC + (1− t)D, C−D, and H all are rank at most 2r.
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The following result controls the deviation of the gradient between the general low-rank optimization (6.9) and the

matrix factorization problem by utilizing the (2r, 4r)-restricted strong convexity and smoothness condition (6.6).

Lemma E.12.2. Suppose f(X) has a critical point X? ∈ Rn×m of rank r and satisfies the (2r, 4r)-restricted strong

convexity and smoothness condition (6.6) with positive constants a = 1− c and b = 1 + c, c ∈ [0, 1). Then, we have

‖∇G(W)−∇g(W)‖F ≤ c
∥∥WW> −W?W?>∥∥

F
‖W‖ .

Proof of Lemma E.12.2. We bound the deviation directly:

‖∇G(W)−∇g(W)‖F = max
‖∆‖F=1

〈∇G(W)−∇g(W),∆〉

= max
‖∆‖F=1

〈
∇f(X),∆UV>

〉
−
〈
X−X?,∆UV>

〉
+
〈
∇f(X),U∆>V

〉
−
〈
X−X?,U∆>V

〉
= max
‖∆‖F=1

〈
∇f(X)−∇f(X?)− (X−X?),∆UV>

〉
+
〈
∇f(X)−∇f(X?)− (X−X?),U∆>V

〉
≤ max
‖∆‖F=1

c ‖X−X?‖F
(∥∥∆UV>

∥∥
F

+
∥∥∥U∆>V

∥∥∥
F

)
≤ c‖UV> −X?‖F (‖V‖+ ‖U‖)
≤ c‖WW> −W?W?>‖F ‖W‖ ,

where the last equality follows from Assumption 6.3.1 that∇f(X?) = 0 and and the first inequality utilizes Lemma E.12.1.

Similarly, the next result controls the deviation of the Hessian between the matrix sensing problem and the matrix

factorization problem.

Lemma E.12.3. Suppose f(X) has a critical point X? ∈ Rn×m of rank r and satisfies the (2r, 4r)-restricted strong

convexity and smoothness condition (6.6) with positive constants a = 1 − c and b = 1 + c, c ∈ [0, 1). Then, for any

∆ =

∆U

∆V

 ∈ R(n+m)×r the following holds:

∣∣∇2G(W)[∆,∆]−∇2g(W)[∆,∆]
∣∣ ≤ 2c

∥∥UV> −X?
∥∥
F

∥∥∥∆U∆>V

∥∥∥
F

+ c
∥∥∥∆UV> + U∆>V

∥∥∥2

F
.

Proof of Lemma E.12.3. First note that

∇2G(W)[∆,∆]−∇2g(W)[∆,∆]

= 2
〈
∇f(X),∆U∆>V

〉
− 2

〈
X−X?,∆U∆>V

〉
+ [∇2f(X)](∆UV> + U∆>V)−

∥∥∥∆UV> + U∆>V

∥∥∥2

F
.
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Now utilizing Lemma E.12.1 and (6.6), we have

∣∣∇2G(W)[∆,∆]−∇2g(W)[∆,∆]
∣∣ ≤ 2

∣∣∣〈∇f(X)−∇f(X?),∆U∆>V
〉
− 〈X−X?,∆U∆>V〉

∣∣∣
+

∣∣∣∣[∇2f(X)](∆UV> + U∆>V)−
∥∥∥∆UV> + U∆>V

∥∥∥2

F

∣∣∣∣
≤ 2c

∥∥UV> −X?
∥∥
F

∥∥∥∆U∆>V

∥∥∥
F

+ c
∥∥∥∆UV> + U∆>V

∥∥∥2

F
.

We provide one more result before proceeding to prove the main theorem.

Lemma E.12.4. [125, Lemma E.1] Let A and B be two n× r matrices such that A>B = B>A is PSD. Then∥∥(A−B) A>
∥∥2

F
≤ 1

2(
√

2− 1)

∥∥AA> −BB>
∥∥2

F
.

E.12.1 Local descent condition for the regionR1

Similar to what used in Appendix E.11.1, we perform the change of variable W?R → W? to avoid R in the

following equations. With this change of variable we have instead W>W? = W?>W is PSD.

We first control |〈∇G(W)−∇g(W),W −W?〉| as follows:

|〈∇G(W)−∇g(W),W −W?〉| ≤
∣∣〈∇f(X), (U−U?)V>〉 − 〈X−X?, (U−U?)V>〉

∣∣
+
∣∣〈∇f(X),U(V −V?)>〉 − 〈X−X?,U(V −V?)>〉

∣∣
≤ c ‖X−X?‖F

(
‖(U−U?)V>‖F + ‖U(V −V?)>‖F

)
≤ c‖WW> −W?W?>‖F

∥∥W(W −W?)>
∥∥
F

≤ c

2(
√

2− 1)
‖WW> −W?W?>‖2F

where the second inequality utilizes∇f(X?) = 0 and Lemma E.12.1, and the last inequality follows from Lemma E.12.4.

The above result along with (E.31)- (E.32) gives

〈∇G(W),W −W?〉 ≥ 〈∇g(W),W −W?〉 − |〈∇G(W)−∇g(W),W −W?〉|
≥ 〈∇g(W),W −W?〉 − c

2(
√

2− 1)

∥∥WW> −W?W?>∥∥2

F

≥ 1

16
σr(X

?) dist2(W,W?) +
1

32

∥∥WW> −W?W?>∥∥2

F

+
1

4‖X?‖
∥∥∥Ŵ?Ŵ?>W

∥∥∥2

F

− c

2(
√

2− 1)

∥∥WW> −W?W?>∥∥2

F

≥ 1

16
σr(X

?) dist2(W,W?) +
1

160

∥∥WW> −W?W?>∥∥2

F

+
1

4‖X?‖
∥∥∥Ŵ?Ŵ?>W

∥∥∥2

F

(E.52)
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where we utilize c ≤ 1
50 .

On the other hand, we control ‖∇G(W)‖F with Lemma E.12.2 controlling the deviation between ∇G(W) and

∇g(W) as follows:

‖∇G(W)‖2F = ‖∇g(W) +∇G(W)−∇g(W)‖2F
≤ 20

19
‖∇g(W)‖2F + 20 ‖∇g(W)−∇G(W)‖2F

≤ 20

19
‖∇g(W)‖2F + 20c2‖W‖2

∥∥WW> −W?W?>∥∥2

F

=
5

19

∥∥∥(WW> −W?W?>)W + Ŵ?Ŵ?>W
∥∥∥2

F
+ 20c2‖W‖2

∥∥WW> −W?W?>∥∥2

F

≤
(

5

19

100

99
+ 20c2

)∥∥(WW> −W?W?>)W
∥∥2

F
+ 25

∥∥∥Ŵ?Ŵ?>W
∥∥∥2

F

≤ (
5

19

100

99
+ 50c2)(

√
2 + 1)2‖X?‖‖WW> −W?W?>‖2F + 25‖Ŵ?Ŵ?>W‖2F ,

(E.53)

where the first inequality holds since (a + b)2 ≤ 1+ε
ε a2 + (1 + ε)b2 for any ε > 0, and the fourth line follows

from (E.30).

Now combining (E.52)- (E.53) and assuming c ≤ 1
50 gives

〈∇G(W),W −W?〉 ≥ 1

16
σr(X

?) dist2(W,W?) +
1

260‖X?‖‖∇G(W)‖2F .

This completes the proof of (6.15).

E.12.2 Negative curvature for the regionR2

Let ∆ = qkα
> be defined as in (E.38). First note that

∥∥∥∆UV> + U∆>V

∥∥∥2

F
≤ 2

∥∥∆UV>
∥∥2

F
+ 2

∥∥∥U∆>V

∥∥∥2

F

≤ 2
∥∥∥W∆>

∥∥∥2

F
= 2σ2

r(W) ≤ σr(X?),

where the last equality holds because σr(W) ≤
√

1
2σ

1/2
r (X?). Also utilizing the particular structure in ∆ yields∥∥∥∆U∆>V

∥∥∥
F

=
1

2

∥∥∥φkψ>k ∥∥∥
F

=
1

2
.

Due to the assumption 20
19‖W?W?>‖F ≥ ‖WW>‖F , we have

‖UV> −X?‖F ≤
√

2

2
‖WW> −W?W?>‖F

≤
√

2

2
(
20

19
‖W?W?>‖F + ‖W?W?>‖F ) =

39
√

2

19
‖X?‖F .

Now combining the above results with Lemma E.12.3, we have
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∇2G(W)[∆,∆] ≤ ∇2g(W)[∆,∆] +
∣∣∇2G(W)[∆,∆]−∇2g(W)[∆,∆]

∣∣
≤ −1

4
σr(X

?) + 2c
∥∥UV> −X?

∥∥
F

∥∥∥∆U∆>V

∥∥∥
F

+ c
∥∥∥∆UV> + U∆>V

∥∥∥2

F

≤ −1

4
σr(X

?) +
39

19

√
2c‖X?‖F + cσr(X

?)

≤ −1

6
σr(X

?),

where the last line holds when c ≤ σr(X?)
50‖X?‖F . This completes the proof of (6.16).

E.12.3 Large gradient for the regionR′3 ∪R′′3 ∪R′′′3

To show that G(W) has large gradient in these three regions, we mainly utilize Lemma E.12.2 to guarantee that

∇G(W) is close to ∇g(W).

E.12.3.1 Large gradient for the regionR′3

Utilizing Lemma E.12.2, we have

‖∇G(W)‖F
≥ ‖∇g(W)‖F − ‖∇G(W)−∇g(W)‖F
≥ ‖∇g(W)‖F − c

∥∥WW> −W?W?>∥∥
F
‖W‖

≥ ‖∇g(W)‖F − c(
10

9
‖W?W?>‖F + ‖W?W?>‖F ) ‖W‖

≥ 1

10
σ3/2
r (X?)− c19

9
2‖X?‖F

20

19

√
2‖X?‖1/2

≥ 1

27
σ3/2
r (X?),

where the fourth line follows because
∥∥W?W?>∥∥

F
= 2‖X?‖F and ‖W‖ ≤ 20

19

√
2‖X?‖1/2, and the last line holds

if c ≤ 1
100

σ3/2
r (X?)

‖X?‖F ‖X?‖1/2 . This completes the proof of (6.17).

E.12.3.2 Large gradient for the regionR′′3

Utilizing Lemma E.12.2 again, we have
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‖∇G(W)‖F
≥ ‖∇g(W)‖F − c

(∥∥WW>∥∥
F

+
∥∥W?W?>∥∥

F

)
‖W‖

≥ 39

800
‖W‖3 − c

(
10

9

∥∥W?W?>∥∥
F

+
∥∥W?W?>∥∥

F

)
‖W‖

≥ 39

800
‖W‖3 − c19

9
2 ‖X?‖F ‖W‖

≥ 39

800
‖W‖3 − 19

450
‖X?‖ ‖W‖

≥ 1

50
‖W‖3,

where the fourth line holds if c ≤ 1
100

σ3/2
r (X?)

‖X?‖F ‖X?‖1/2 and the last follows from the fact that

‖W‖ > 20

19
‖W?‖ ≥ 20

19

√
2‖X?‖1/2.

This completes the proof of (6.18).

E.12.3.3 Large gradient for the regionR′′′3

To show (6.19), we first control |〈∇G(W)−∇g(W),W〉| as follows:

|〈∇G(W)−∇g(W),W〉|
= 2

∣∣〈∇f(UV>),UV>
〉
−
〈
UV> −X?,UV>

〉∣∣
≤ 2c

∥∥UV> −X?
∥∥
F

∥∥UV>
∥∥
F

≤ 2c
19

20

√
2‖WW>‖F

1

2
‖WW>‖F =

19

20

√
2c‖WW>‖2F ,

where the first inequality utilizes the fact∇f(X?) = 0 and Lemma E.12.1, and the last inequality holds because

∥∥UV> −X?
∥∥
F
≤
√

2

2

∥∥WW> −W?W?>∥∥
F

≤
√

2

2

(
9

10

∥∥WW>∥∥
F

+
∥∥WW>∥∥

F

)
=

19
√

2

20

∥∥WW>∥∥
F

and

‖WW>‖2F = ‖UU>‖2F + ‖VV>‖2F + 2‖UV>‖2F
≥ 4‖UV>‖2F

by noting that

‖UU>‖2F + ‖VV>‖2F − 2‖UV>‖2F = ‖U>U−V>V‖2F ≥ 0.
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Now utilizing (E.48) to provide a lower bound for 〈∇g(W),W〉, we have

|〈∇G(W),W〉|
≥ 〈∇g(W),W〉 − |〈∇G(W)−∇g(W),W〉|

>
1

20
‖WW>‖2F −

19

20

√
2c‖WW>‖2F

≥ 1

45
‖WW>‖2F ,

where the last line holds when c ≤ 1
50 . Thus,

‖∇G(W)‖F ≥
1

‖W‖ |〈∇G(W),W〉| > 1

45
‖WW>‖3/2F ,

where we utilize ‖W‖ ≤
(
‖WW>‖F

)1/2
. This completes the proof of (6.19).
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APPENDIX F

APPENDICES FOR CHAPTER 8

F.1 Proof of Proposition 8.2.1

Proposition F.1.1 (Proposition 8.2.1). Let f(x,y) =
∑J
j=1 fj(x,yj) be an objective function as in (8.3) and let g(z)

be as in (8.7) with z = (x1, . . . ,xJ ,y1, . . . ,yJ). Suppose that each fj has Lipschitz gradient, i.e., ∇fj is Lipschitz

continuous with constant Lj > 0. Then∇g is Lipschitz continuous with constant

Lg = L+
2ω

µ
,

where L := maxj Lj , ω :=
∑J
i 6=j w̃ji, and w̃ji and µ are the DGD+LOCAL weights and stepsize as in (8.5).

Proof. Let L = maxj Lj and

δz = (δx1 , . . . , δxJ , δy1
, . . . , δyJ ).

First, for any z and δz, and using the symmetry of W = {wij}, we have

∇g(z + δz)−∇g(z) =



∇xf1(x1 + δx1 ,y1 + δy1
)−∇xf1(x1,y1) + 4

∑J
i=1 w1i(δx1 − δxi)

...
∇xfJ(xJ + δxJ ,yJ + δyJ )−∇xfJ(xJ ,yJ) + 4

∑J
i=1 wJi(δxJ − δxi)

∇yf1(x1 + δx1 ,y1 + δy1
)−∇yf1(x1,y1)

...
∇yfJ(xJ + δxJ ,yJ + δyJ )−∇yfJ(xJ ,yJ)


Then with some rearrangement, denoting∇fj = ∇[ x

y ]fj and using the triangle inequality, we can obtain

‖∇g(z + δz)−∇g(z)‖2 ≤

∥∥∥∥∥∥∥
 ∇f1(x1 + δx1 ,y1 + δy1)−∇f1(x1,y1)

...
∇fJ(xJ + δxJ ,yJ + δyJ )−∇fJ(xJ ,yJ)


∥∥∥∥∥∥∥

2

+ 4

∥∥∥∥∥∥∥

∑J
i=1 w1i(δx1 − δxi)

...∑J
i=1 wJi(δxJ − δxi)


∥∥∥∥∥∥∥

2

≤

√√√√ J∑
j=1

L2
j

∥∥∥[ δxj

δyj

]∥∥∥2

2
+ 4

√√√√√ J∑
j=1

(
J∑
i=1

wji

)2

‖δxj‖22 + 4

√√√√√ J∑
j=1

∥∥∥∥∥
J∑
i=1

wjiδxi

∥∥∥∥∥
2

2

≤ L‖δz‖F +

(
4 max

j

J∑
i=1

wji

)∥∥[δx1 · · · δx1

]∥∥
F

+ 4

(
max
j

J∑
i=1

wji

)∥∥[δx1 · · · δx1

]∥∥
F
.

where in the last line we use
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√√√√√ J∑
j=1

∥∥∥∥∥∥
J∑
i=j

wjiδxi

∥∥∥∥∥∥
2

2

=
∥∥[δx1 · · · δx1

]
W
∥∥
F

=
∥∥∥W> [δx1 · · · δx1

]>∥∥∥
F

≤ ‖W‖
∥∥[δx1 · · · δx1

]∥∥
F

≤
(

max
j

J∑
i=1

wji

)∥∥[δx1 · · · δx1

]∥∥
F

since ‖W‖ ≤ maxj
∑
i 6=j wji = maxj

∑J
i=1 wji in view of that W is symmetric, wii = 0 and wij ≥ 0 by (8.6).

Finally, using the definition of wji (8.6), we have maxj
∑J
i=1 wji = maxj

∑J
i6=j wji = maxj

∑J
i6=j w̃ji

4µ =: ω
4µ ,

and further by the inequality
∥∥∥∥[δx1 · · · δx1

]∥∥∥∥
F

≤ ‖δZ‖F ,we obtain that∇g is Lipschitz continuous with constant

Lg = L+ 4

(
ω

4µ

)
+ 4

(
ω

4µ

)
= L+

2ω

µ
.

F.2 Proof of Theorem 8.2.4

Theorem F.2.1 (Theorem 8.2.4). Let ρ > 0, and consider an objective function h where:

1. infRn h > −∞,

2. h satisfies the Łojasiewicz inequality within Bρ,

3. h is twice-continuously differentiable, and

4. |h (x)| ≤ L0, ‖∇h (x)‖ ≤ L1, and
∥∥∇2h(x)

∥∥
2
≤ L2 for all x ∈ B2ρ.

Suppose the gradient descent stepsize

µ <
1

L2 + 4L1

ρ + (4+2π)L0

ρ2

. (8.8)

Suppose x(0) is chosen randomly from a probability distribution supported on a set S ⊆ Bρ with S having positive

measure, and suppose that under such random initialization, there is a positive probability that the sequence {x(k)}

remains bounded in Bρ and all limit points of {x(k)} are in Bρ.

Then conditioned on observing that {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ, gradient descent

converges to a critical point of h, and the probability that this critical point is a strict saddle point is zero.

Proof. The proof involves constructing a function h̃ such that h̃(x) = h(x) for all x ∈ Bρ but where h̃ has a globally

Lipschitz gradient.

To do this, first define a window function w : Rn → R,
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w (x) =


1, ‖x‖ ≤ ρ
2− ‖x‖ρ + 1

2π sin
(

2π‖x‖
ρ

)
, ρ < ‖x‖ < 2ρ

0, ‖x‖ ≥ 2ρ,

where ‖·‖ = ‖·‖2. Note also that

∇w (x) =


0, ‖x‖ ≤ ρ
− 2x
ρ‖x‖ sin2

(
π‖x‖
ρ

)
, ρ < ‖x‖ < 2ρ

0, ‖x‖ ≥ 2ρ

and

∇2w (x) =


0, ‖x‖ ≤ ρ
− 2
ρ‖x‖ sin2

(
π‖x‖
ρ

)
I +

(
2

ρ‖x‖3 sin2
(
π‖x‖
ρ

)
− 2π

ρ2‖x‖2 sin
(

2π‖x‖
ρ

))
xx>, ρ < ‖x‖ < 2ρ

0, ‖x‖ ≥ 2ρ

,

where I denotes the n-by-n identity matrix. It is easy to verify that w ∈ C2 and |w (x)| ≤ 1. To bound the gradient

∇w, we have

‖∇w‖ =

∥∥∥∥− 2x

ρ ‖x‖ sin2

(
π ‖x‖
ρ

)∥∥∥∥ ≤ 2

ρ
.

For the Hessian∇2w, we have

∥∥∇2w
∥∥ ≤ ∥∥∥∥ 2

ρ ‖x‖ sin2

(
π ‖x‖
ρ

)
I

∥∥∥∥+

∥∥∥∥∥
(

2

ρ ‖x‖3
sin2

(
π ‖x‖
ρ

)
− 2π

ρ2 ‖x‖2
sin

(
2π ‖x‖
ρ

))
x>x

∥∥∥∥∥ ≤ 4 + 2π

ρ2
.

Now, define

h̃ (x) = h (x)w (x) =


h (x) , ‖x‖ ≤ ρ
h (x)

(
2− ‖x‖ρ + 1

2π sin
(

2π‖x‖
ρ

))
, ρ < ‖x‖ < 2ρ

0, ‖x‖ ≥ 2ρ.

We have the following properties for h̃:

• Since h = h̃ in Bρ, h̃ satisfies the Łojasiewicz inequality in Bρ.

• Since h,w ∈ C2, h̃ ∈ C2.

• Since infRn h > −∞ and infRn w > −∞, infRn h̃ > −∞.

• To globally bound the Lipschitz constant of the gradient of h̃, note that

∥∥∥∇2h̃
∥∥∥ =

∥∥∥w · ∇2h+∇h · (∇w)
>

+∇w · (∇h)
>

+ h · ∇2w
∥∥∥

≤ |w|
∥∥∇2h

∥∥+ 2 ‖∇w‖ ‖∇h‖+ |h|
∥∥∇2w

∥∥
≤ L2 +

4L1

ρ
+

(4 + 2π)L0

ρ2
.
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Now consider the gradient descent algorithm with stepsize µ satisfying (8.8). Define

Th = {x(0) ∈ Bρ : all {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ
when gradient descent is run on h starting at x(0)}

and

Th̃ = {x(0) ∈ Bρ : all {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ

when gradient descent is run on h̃ starting at x(0)}.

Similarly, define

Σh = {x(0) ∈ Bρ : {x(k)} converges to a strict saddle when gradient descent is run on h starting at x(0)}

and

Σh̃ = {x(0) ∈ Bρ : {x(k)} converges to a strict saddle when gradient descent is run on h̃ starting at x(0)}.

Using the above properties, we see that Theorem 8.2.2 can be applied to h̃, and so we conclude that Σh̃ has measure

zero.

Now, after running gradient descent on h from a random initialization as in the theorem statement, condition on

observing that {x(k)} ⊆ Bρ and all limit points of {x(k)} are in Bρ, i.e., that x(0) ∈ Th. Because {x(k)} ⊆ Bρ

and all limit points of {x(k)} are in Bρ, and because {x(k)} matches the sequence that would be obtained by running

gradient descent on h̃, we can apply Theorem 8.2.3 to conclude that {x(k)} converges to a critical point of h̃, and

since this critical point belongs to Bρ and h̃ = h inside Bρ, we conclude that this is also a critical point of h.

Finally, using the definition of conditional probability, we have

P (x(0) ∈ Σh|x(0) ∈ Th) =
P (x(0) ∈ Σh ∩ Th)

P (x(0) ∈ Th)

=
P (x(0) ∈ Σh̃ ∩ Th̃)

P (x(0) ∈ Th)
,

where the second equality follows from the fact that h̃ = h inside Bρ: if a sequence of iterations stays bounded inside

Bρ and converges to a strict saddle when gradient descent is run on h, the same will hold when gradient descent is run

on h̃, and vice versa. Since Σh̃ has zero measure and because x(0) is chosen randomly from a probability distribution

supported on a set S ⊆ Bρ with S having positive measure, P (x(0) ∈ Σh̃ ∩ Th̃) = 0. Also, by assumption,

P (x(0) ∈ Th) > 0. Therefore, P (x(0) ∈ Σh|x(0) ∈ Th) = 0
nonzero = 0.
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F.3 Proof of Proposition 8.2.2

Proposition F.3.1 (Proposition 8.2.2). Let f(x,y) =
∑J
j=1 fj(x,yj) be as in (8.3). Suppose the topology defined by

W is connected. Also suppose there exist x? (which is independent of j) and y?j , j ∈ [J ] such that

(x?,y?j ) ∈ arg min
x,yj

fj(x,yj), ∀ j ∈ [J ]. (8.12)

Then g(z) defined in (8.7) satisfies

min
z
g(z) = min

x,y
f(x,y),

and g(z) achieves its global minimum only for z with x1 = · · · = xJ .

Proof. First note that

min
z
g(z) =

J∑
j=1

(
fj(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)
≥

J∑
j=1

min
xj ,yj

fj(x
j ,yj) =

J∑
j=1

fj(x
?,y?j ) = min

x,y
f(x,y).

(F.1)

On the other hand, we have

min
z
g(z) = min

z

J∑
j=1

(
fj(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)

≤ min
z:x1=···=xJ

J∑
j=1

(
fj(x

j ,yj) +

J∑
i=1

wji‖xj − xi‖22

)

= min
x,y

J∑
j=1

fj(x,yj) = min
x,y

f(x,y).

Thus, we have

min
z
g(z) = min

x,y
f(x,y).

The proof is completed by noting that (F.1) achieves the equality only at z with x1 = · · · = xJ since the topology

defined by W is connected.

F.4 Proof of Proposition 8.2.3

Proposition F.4.1 (Proposition 8.2.3). Let f(x,y) be as in (8.3) and g(z) be as in (8.7) with z = (x1, . . . ,xJ ,y1, . . . ,yJ).

Suppose the matrix W is connected and symmetric. Also suppose the gradient of fj satisfies the following symmetric

property:

〈∇xfj(x,yj),x〉 = 〈∇yjfj(x,yj),yj〉 (8.13)
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for all j ∈ [J ]. Then, any critical point of g must satisfy x1 = · · · = xJ .

Proof. The critical points of the objective function in (8.7) satisfy

∇xjg(z) = ∇xfj(x
j ,yj) +

J∑
i=1

2wji(x
j − xi) = 0, (F.2)

∇yjg(z) = ∇yjfj(x
j ,yj) = 0,∀ j ∈ [J ]. (F.3)

Now taking the inner product of both sides in (F.2) with xj and also the inner product of both sides in (F.3) with

yj and using the property (8.13), we have

J∑
i=1

2wji〈xj ,xj − xi〉 = 0

for all j ∈ [J ]. Using the symmetric property of W, we then have

J∑
j=1

J∑
i=1

wji‖xj − xi‖2 = 0.

Therefore,

xi = xj , if wij 6= 0

for any i, j ∈ [J ]. Since the topology defined by W is connected, we finally have

x1 = · · · = xJ .

F.5 Proof of Theorem 8.2.7

Theorem F.5.1 (Theorem 8.2.7). Let Cf denote the set of critical points of (8.3):

Cf := {x,y : ∇f(x,y) = 0} ,

and let Cg denote the set of critical points of (8.7):

Cg :=

{
z : ∇g(z) = 0

}
.

Then, for any z = (x1, . . . ,xJ ,y) ∈ Cg with x1 = · · · = xJ = x, we have (x,y) ∈ Cf . Furthermore, if (x,y) is a

strict saddle of f , then z = (x, . . . ,x,y) is also a strict saddle of g.

Proof. We rewrite Cf as:
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Cf =

x,y :

J∑
j=1

∇xfj(x,yj) = 0,∇yjfj(x,yj) = 0,∀j ∈ [J ]

 .

The critical points of the objective function in (8.7) satisfy

∇xjg(z) = ∇xfj(x
j ,yj) +

J∑
i=1

2(wij + wji)(x
j − xi) = 0,

∇yjg(z) = ∇yjfj(x
j ,yj) = 0,∀ j ∈ [J ].

With this, we rewrite Cg as

Cg =

{
z : ∇xfj(x

j ,yj) +

J∑
i=1

2(wij + wji)(x
j − xi) = 0,∇yjfj(x

j ,yj) = 0,∀ j ∈ [J ]

}
.

Thus, for any z = (x1, . . . ,xJ ,y) ∈ Cg with x1 = · · · = xJ = x, we have that (x,y) is a critical point of (8.3),

i.e., (x,y) ∈ Cf . In what follows, we check how the Hessian information (especially the smallest eigenvalue of the

Hessian) of (x,y) is transformed to z.

At any point (x,y), the Hessian quadratic form of f for any qx and qy =

[
q>y1

· · · q>yJ

]>
is given by

[∇2f(x,y)](

[
qx

qy

]
,

[
qx

qy

]
) =

J∑
j=1

∇2fj(

[
qx

qyj

]
,

[
qx

qyj

]
).

At any point z, the Hessian quadratic form of g for any q =

[
q>x1 · · · q>xJ q>y1

· · · q>yJ

]
is given by

[∇2g(z)](q,q) =

J∑
j=1

∇2fj(

[
qxj

qyj

]
,

[
qxj

qyj

]
) +

J∑
j=1

2wji‖qxj − qxi‖22.

Now suppose λmin(∇2f(x,y)) < 0 (where λmin denotes the smallest eigenvalue), i.e., there exist qx,qy such

that [∇2f(x,y)](

qx

qy

 ,
qx

qy

) < 0. Choosing qx1 = · · · = qxJ = qx, we have [∇2g(z)](q,q) < 0, i.e.,

λmin(∇2g(z)) < 0.

F.6 Proof of Theorem 8.3.1

Theorem F.6.1 (Theorem 8.3.1). For any data matrix Y, every critical point (i.e., every point where the gradient is

zero) of problem (8.14) is either a global minimum or a strict saddle point, where the Hessian has at least one negative

eigenvalue.

Proof. Denote by h(U,V) = 1
2‖UV> −Y‖2F . Let C denote the set of critical points of h:

C =
{

(U,V) : (UV> −Y)V = 0, (UV> −Y)>U = 0
}
.
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Our goal is to characterize the behavior of all the critical points that are not global minima. In particular, we want to

show that every critical point of h is either a global minimum or a strict saddle. Towards that end, we first recall the

following result concerning the degenerate critical points.

Lemma F.6.1. [206, Theorem 8 with X = I] Any pair (U,V) ∈ C that is degenerate (i.e., rank(UV>) < r) is

either a global minimum of h (i.e., UV> = Yr where Yr is a rank-r approximation of Y) or a strict saddle (i.e.,

λmin(∇2h(U,V)) < 0).

Note that the above result holds for any matrix Y. When rank(Y) ≤ r, then Yr = Y. It follows from

Lemma F.6.1 that the behavior of all degenerate critical points is quite clear. For the remaining non-degenerate criti-

cal points, using the same argument in cite[Theorems 2–4]nvx:zhu2017global, we first establish the following results

concerning the critical points that are also balanced (i.e., U>U = V>V).

Lemma F.6.2. [93, Theorems 2–4] Any pair (U,V) ∈ C satisfying U>U = V>V is either a global minimum of h

or a strict saddle.

The above result also holds for any matrix Y. With this result, we now show that non-degenerate critical points

behave similarly to degenerate ones.

Lemma F.6.3. Any pair (U,V) ∈ C that is non-degenerate (i.e., rank(UV>) = r) is either a global minimum of h

or a strict saddle.

Proof of Lemma F.6.3. Suppose (U,V) is not a global minimum of h. Let UV> = PΣQ> be a reduced SVD of

UV>. Since rank(UV>) = r and both U and V have only r columns, we know rank(U) = rank(V) = r. Denote

by D = (U>U)−1U>PΣ1/2 and G = (V>V)−1V>QΣ1/2. With this, we have

DG> = (U>U)−1U>PΣQ>V(V>V)−1 = I,

and

Ũ = UD = PΣ1/2, Ṽ = VG = QΣ1/2.

The above constructed pair (Ũ, Ṽ) satisfies

ŨṼ> = UV>, Ũ>Ũ = Ṽ>Ṽ.

Since (U,V) ∈ C, we have

∇hU(Ũ, Ṽ) = ∇hU(U,V)D = 0, ∇hV(Ũ, Ṽ) = ∇hV(U,V)G = 0,

which implies that (Ũ, Ṽ) is also a critical point (but not a global minimum since by assumption (U,V) is not a

global minimum) of h. Since (Ũ, Ṽ) is also balanced, it follows from Lemma F.6.2 that there exists ∆̃Ũ and ∆̃Ṽ

such that
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[∇2h(Ũ, Ṽ)](∆̃, ∆̃) < 0.

Now construct ∆U = ∆ŨD−1 and ∆V = ∆̃ṼG−1. Then, we have

[∇2h(U,V)](∆,∆) = ‖∆UV> + U∆>V‖2F + 2〈UV> −Y,∆U∆>V〉
= ‖∆̃ŨṼ> + Ũ∆>

Ṽ
‖2F + 2〈ŨṼ> −Y,∆Ũ∆>

Ṽ
〉

= [∇2h(Ũ, Ṽ)](∆̃, ∆̃) < 0,

which implies that (U,V) is a strict saddle.

Lemma F.6.2 together with Lemma F.6.3 implies that any pair (U,V) ∈ C is either a global minimum of h or a

strict saddle.
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APPENDIX G

APPENDICES FOR CHAPTER 10

G.1 Implementations and Numerical Experiments

G.1.1 Implementations: Closed-form Updating Formula

In this section, we discuss and give closed-form expressions for the iterates of Bregman gradient descent (Algo-

rithm 3) and Bregman alternating gradient descent (Algorithm 4), respectively. Both Bregman proximal minimization

(Algorithm 5) and Bregman proximal alternating minimization (Algorithm 6) are similar to standard (alternating)

proximal minimization in that the existence of closed-form solutions depends on the specific form of the objective

function f . Therefore, in this part we mainly focus on deriving closed-form expressions for Bregman gradient descent

Algorithm 3 and Bregman alternating gradient descent (Algorithm 4), respectively.

For simplicity and generality, let us consider a fourth-degree polynomial objective function f .47 This is because

a fourth-degree polynomial objective function can cover a number of matrix factorization problems, such as matrix

PCA, matrix sensing and matrix completion.

G.1.1.1 Closed-form Updating Formula for Bregman Gradient Decent

By Lemma 10.3.1, to obtain the second-order convergence of Bregman gradient descent for a fourth-degree poly-

nomial objective function, it is sufficient to set the Bregman distance kernel h(x) to be (i.e., using (10.22) with d = 4

and α = σ = 1)

h(x) =
1

4
‖x‖42 +

1

2
‖x‖22 + 1.

Now let us consider the main step (10.18) of Bregman gradient descent (Algorithm 3):

x` = arg min
x

f(x`−1) + 〈∇f(x`−1),x− x`−1〉+
1

η
Dh(x,x`−1).

Theorem G.1.1. Suppose the objective function f(x) is any fourth-degree polynomial. By Lemma 10.3.1, the Bregman

distance kernel h can be set according to (10.22) with d = 4 and α = σ = 1. Then there is a closed-form updating

formula for the main step (10.18) of Bregman gradient descent (Algorithm 3) which is given by

x` = τ(‖z`−1‖22)z`−1 (G.1)

where
47It is not difficult to consider an arbitrary dth- or (d1, d2)th-order of polynomial objective function. The only issue in this case is that there

might be no closed-form updating formular (e.g., Theorem G.1.1) in solving the optimality condition of the updating formula (10.18) in Bregman
gradient descent (Algorithm 3) or (10.19) in Bregman alternating gradient descent (Algorithm 4), but one can nevertheless solve the optimality
condition using line-search algorithms.
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z`−1 := (‖x`−1‖22 + 1)x`−1 − η∇f(x`−1)

and τ(·) is defined in (G.4).

Remark G.1.1. Therefore, we can view Bregman gradient descent (10.18) as standard gradient descent equipped with

an adaptive choice of stepsize (see (G.1)).

Proof of Theorem G.1.1. First of all, the first-order optimality condition of (10.18) is given by letting gradient of the

objective function of (10.18) vanish

η∇f(x`−1)−∇h(x`−1) +∇h(x`) = 0,

which together with the fact∇h(x) = (‖x‖22 + 1)x gives the new optimality condition:

(‖x`‖22 + 1)x` = (‖x`−1‖22 + 1)x`−1 − η∇f(x`−1). (G.2)

Thus, we can conclude that the closed-form update for Bregman gradient descent (Algorithm 3) is

x` = t`−1 · [(‖x`−1‖22 + 1)x`−1 − η∇f(x`−1)] := t`−1z
`−1, (G.3)

where the scalar t` depends on the norm of current iterate

z`−1 := (‖x`−1‖22 + 1)x`−1 − η∇f(x`−1)

and is chosen so that the new optimality condition (G.2) is satisfied when we plug in (G.3). That is,

(‖t`−1z
`−1‖22 + 1)(t`−1z

`−1) = z`−1.

By multiplying z`−1 on both sides, we get that t`−1 should satisfy the following cubic polynomial equation

‖z`−1‖22t3 + t− 1 = 0,

which can be shown to have a unique real solution with a closed-form expression (see Lemma G.1.1). Finally, com-

bining Lemma G.1.1 and (G.3), we get the update step (10.18) in closed-form is

x` = τ(‖z`−1‖22)z`−1,

where z`−1 := (‖x`−1‖22 + 1)x`−1 − η∇f(x`−1) and τ(·) is given in (G.4).

Lemma G.1.1. For any a ≥ 0, the following cubic polynomial

at3 + t− 1 = 0

has a unique real solution depending on a, that is,
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t = τ(a) :=
3
√

2
(
9
√
a+
√

3
√

27a+ 4
)2/3 − 2 3

√
3

62/3 3

√√
3
√
a3(27a+ 4) + 9a2

, (G.4)

where τ(a) is a decreasing function on a > 0 satisfying lim
a→0+

τ(a) = 1 and lim
a→∞

τ(a) = 0.

Proof. Since φ′a(t) = 3at2 + 1 > 0 for any a ≥ 0 and any t ∈ R, φa(t) is a strictly increasing function of t. Then

noting that φa(0) = −1 and φa(1) = a ≥ 0, we can conclude that φa(t) = 0 has a unique real root lying within (0, 1]

in view of the continuity of φa(·). Then by direct computations, this unique real root is given by

t = τ(a) :=
3
√

2
(
9
√
a+
√

3
√

27a+ 4
)2/3 − 2 3

√
3

62/3 3

√√
3
√
a3(27a+ 4) + 9a2

.

The limit property is obtained by directly taking the limit of the function τ(a).

Now we show the decreasing property of the solution τ(a) with respect to a. This can be shown using the implicit

function theorem that the following implicit equation holds

t3 + 3at2t′(a) + t′(a) = 0.

Directly solving this equation, we get

t′(a) = − t3

3at2 + 1
< 0 for any a ≥ 0 and t > 0.

By identifying that

t′(a) =
dτ(a)

da
,

we obtain that τ(a) is actually a decreasing function of a.

G.1.1.2 Closed-form Updating Formula for Bregman alternating Gradient Decent

Now let us consider the case where the objective function f(x,y) is a (4, 4)th polynomial. Recall the main

step (10.19) of Bregman alternating gradient descent (Algorithm 4):

x` = arg min
x
〈∇xf(x`−1,y`−1),x− x`−1〉+

1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y
〈∇yf(x`,y`−1),y − y`−1〉+

1

η
D2
h(y,y`−1; x`).

By recognizing the similar structure in the main step (10.18) of Bregman gradient descent Algorithm 3 and the main

step (10.19) of Bregman alternating gradient descent Algorithm 4, we can easily use Theorem G.1.1 to derive the

closed-form updating formula for the Bregman alternating gradient descent Algorithm 4 where the objective function

f(x,y) is a (4, 4)th polynomial.
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Corollary G.1.1. Suppose the objective function f(x,y) is any (4, 4)th-degree polynomial. By Lemma 10.3.1, the

bi-Bregman distance kernel h(x,y) as

h(x,y) =

(
1

4
‖x‖42 +

1

2
‖x‖22 + 1

)(
1

4
‖y‖42 +

1

2
‖y‖22 + 1

)
.

Then there is a closed-form updating formula for the main step (10.19) of Bregman alternating gradient descent

Algorithm 4 which is given by

x` =τ(‖z`−1
x ‖22)z`−1

x ,

y` =τ(‖z`−1
y ‖22)z`−1

y ,
(G.5)

with

z`−1
x := (‖x`−1‖22 + 1)x`−1 − η

(‖y`−1‖42/4 + ‖y`−1‖22/2 + 1)
∇xf(x`−1,y`−1),

z`−1
y := (‖y`−1‖22 + 1)y`−1 − η

(‖x`‖42/4 + ‖x`‖22/2 + 1)
∇yf(x`,y`−1),

and τ(·) defined in (G.4).

Proof. The proof of Corollary G.1.1 is similar to that of Theorem G.1.1.

When the objective function f(x,y) is a (2, 2)th-degree polynomial, we can further simplify the closed-form

updating formula (G.5) in Corollary G.1.1. We note that the importance of the (2, 2)th-degree polynomial objective

functions comes from that it can also cover a massive number of matrix factorization problems, such as nonsymmetric

matrix PCA, nonsymmetric matrix sensing and nonsymmetric matrix completion.

Theorem G.1.2. Suppose the objective function f(x,y) is any (2, 2)th-degree polynomial. By Lemma 10.3.1, we can

set the bi-Bregman distance kernel h(x,y) as

h(x,y) =

(
1

2
‖x‖22 + 1

)(
1

2
‖y‖22 + 1

)
. (G.6)

Then there is a closed-form updating formula for the main step (10.19) of Bregman alternating gradient descent

Algorithm 4 which is given by

x` =x`−1 − η

‖y`−1‖22/2 + 1
∇xf(x,`−1 ,y`−1),

y` =y`−1 − η

‖x`‖22/2 + 1
∇yf(x`,y`−1).

(G.7)

Remark G.1.2. In view of the closed-form updating formula (G.7), Bregman alternating gradient descent can be

viewed as the standard proximal alternating linearized minimization (a.k.a. alternating gradient descent) equipped

with the ability of adaptively choosing the proximal regularizer parameter.
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Proof of Theorem G.1.2. Recall the main step (10.19) of Bregman alternating gradient descent (Algorithm 4):

x` = arg min
x
〈∇xf(x`−1,y`−1),x− x`−1〉+

1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y
〈∇yf(x`,y`−1),y − y`−1〉+

1

η
D2
h(y,y`−1; x`).

(G.8)

and the first and second Bregman distances are respectively defined as as (see Definition 10.2.3):

D1
h(x,x`−1; y`−1) =h(x,y`−1)− h(x`−1,y`−1)− 〈∇xh(x`−1,y`−1),x− x`−1〉,
D2
h(y,y`−1; x`) =h(x`,y)− h(x`,y`−1)− 〈∇yh(x`,y`−1),y − y`−1〉

(G.9)

Now combining (G.8) and (G.10), we get the optimality conditions that should be satisfied by (x`,y`):

η∇xf(x`−1,y`−1) +∇xh(x`,y`−1)−∇xh(x`−1,y`−1) = 0;

η∇yf(x`,y`) +∇yh(x`,y`)−∇xh(x`,y`−1) = 0;
(G.10)

Finally, we obtain the closed-form updating formula (G.7) by combining the optimality conditions (G.10) and

∇xh(x,y) =

(
1

2
‖y‖22 + 1

)
x,

∇yh(x,y) =

(
1

2
‖x‖22 + 1

)
y.

G.1.2 Numerical Experiments on Low-rank Matrix Factorization

G.1.2.1 Low-rank Matrix Factorization Problem

As we have discussed in Section 10.3.3, the Burer-Monteiro factorization method [119,159] transforms the original

large-scale rank-constrained matrix optimization problem (10.23):

minimize
X∈Sn+ or X∈Rn×m

q(X) subject to rank(X) ≤ r,

into a smaller-scale (nonconvex) problem (10.24):

minimize
U∈Rn×r

f(U) := q(UU>) or minimize
U∈Rn×r,V∈Rm×r

f(U,V) := q(UV>).

From Corollary 10.3.3, when the original objective function q(X) in (10.23) is any lower-bounded dth or (d1, d2)th-

degree polynomial satisfying the (2r, 1
20 )-RIP and we set

h(U) =
α

d
‖U‖dF +

σ

2
‖U‖2F + 1 or h(U,V) =

(
α

d1
‖U‖d1

F +
σ

2
‖U‖2F + 1

)(
α

d2
‖V‖d2

F +
σ

2
‖V‖2F + 1

)
(G.11)

for any α, σ > 0, then applying Algorithms 3 and 5 to minimizeU f(U) in (10.24) or applying Algorithms 4 and 6 to

minimizeU,V f(U,V) in (10.24), we can almost surely solve (10.23) to global optimality from a random initializa-
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tion.

The global optimality results (i.e., Corollary 10.3.3) hold for any lower-bounded finite-degree48 polynomial ob-

jective function q(X) satisfying (2r, 1
20 )-RIP. Now for convenience, let us consider the best rank-r approximation

problem of the optimization form

minimize
X∈Sn+ or X∈Rn×m

1

2
‖X−X?‖2F subject to rank(X) ≤ r. (G.12)

In this case of (G.12), we know that the original objective function q(X) satisfies (2r, δ)-RIP for any positive integer

r and any δ ≥ 0 by recognizing that ∇2q(X) = I. Therefore, the global optimality theory (i.e., Corollary 10.3.3) can

directly apply to this case.

Now recall that the motivation behind the BM factorization comes from the high computational/storage cost of

solving large-scale matrix optimization problems, particularly those involving rank constraints. We therefore are more

interested in the BM formulation of the rank-r approximation problem (which is the matrix factorization problem),

that is

minimize
U∈Rn×r

f(U) :=
1

2
‖UU> −X?‖2F or minimize

U∈Rn×r,V∈Rm×r
1

2
‖UV> −X?‖2F . (G.13)

G.1.2.2 Implementations and Experiments

In (G.13), we identify that f(U) is a fourth-degree polynomial and f(U,V) is a (2, 2)th-degree polynomial.

Therefore, we can use the closed-form updating formulas given in Theorem G.1.1 and Theorem G.1.2 to solve

minimizeU f(U) (for the symmetric case) and minimizeU,V f(U,V) (for the symmetric case), respectively. More

precisely,

• we use the closed-form updating formula (i.e., (G.1) with x` = U` (for the symmetric case) to perform Bregman

gradient descent (Algorithm 3) on the symmetric matrix factorization problem in (G.13), and

• use the closed-form updating formula (G.7) with (x`,y`) = (U`,V`) for the nonsymmetric case to per-

form Bregman alternating gradient descent (Algorithm 4) on the nonsymmetric matrix factorization problem

in (G.13).

• Moreover, to verify the global optimality theory of Algorithms 3 and 4 in solving Burer-Monteiro factorization

problems (G.1.1) (see Corollary 10.3.3), we will plot the optimality distances ‖U`U`>−X?
r‖2F (for symmetric

case) and ‖U`V`> −X?
r‖2F (for nonsymmetric case) as a function of the number of iterations. This is because

all the second-order stationary points of (G.13) correspond to the best rank-r approximation of X?, denoted by

X?
r (cf. [6, 206]).

48Clearly, the finite-degree of the polynomial q(X) directly implies the finite-degree of the polynomial f(U) or f(U,V).
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Now we compare the performances of the standard (alternating) gradient descent and the Bregman (alternating)

gradient descent in solving the symmetric and nonsymmetric matrix factorization problems in (G.13). For setting

up the parameters, we set the dimensions as n = m = 50, rank as r = 2, and for convenience we generate the

ground truth matrix X? with rank(X?) = 5. We define X?
r as the best rank-r approximation of the ground truth X?,

which can be obtained via SVD. In term of the choices of the stepsizes (a.k.a. regularizer parameters) η, we remark

that we manually tune the stepsizes η to achieve the best performances for all the algorithms. In term of standard

(alternating) gradient descent, because by (10.5), to ensure the sufficient decrease property, the stepsize should be less

than 2
Lf

, where Lf is the global Lipschitz gradient constant for the objective function to be minimized. However, for

the matrix factorization problem, there is no global Lipschitz constant. Therefore, tune the stepsize for each different

initialization. In sharp contrast to standard (alternating) gradient descent, Bregman (alternating) gradient descent is not

sensitive to the choice of the “stepsize” η. This is because, as described in Remark G.1.1 and Remark G.1.2, Bregman

(alternating) gradient descent uses a kind of adaptive stepsize according to the current iteration Uk (see (G.1)). To

illustrate of such ability of adaptively-choosing stepsize, we generate two random initialization points: one is close

to the origin and the other is far away from the origin (and hence has large norms). Figure Figure G.1 shows that

when initialized at a point having a large norm, the performance of (alternating) gradient descent degrades drastically,

while Bregman (alternating) gradient descent maintains a stable and favorable performance regardless of the size of

the initialization.

G.1.2.3 More Experiments for Algorithm 6

Finally, we are interested in deriving a closed-form expression of Bregman proximal alternating minimization

(Algorithm 6) for the nonsymmetric matrix factorization problem:

minimize
U∈Rn×r,V∈Rm×r

1

2
‖UV> −X?‖2F . (G.14)

Theorem G.1.3. Suppose f(U,V) is the objective function of (G.14) . Set the bi-Bregman kernel h(U,V) according

to (G.6). Then the closed-form updating formula of Bregman proximal alternating minimization (Algorithm 6) is given

by

U` =

(
η

‖V`−1‖2F /2 + 1
X?V`−1 + U`−1

)(
η

‖V`−1‖2F /2 + 1
V`−1>V`−1 + I

)−1

V` =

(
η

‖U`‖2F /2 + 1
X?>U` + V`−1

)(
η

‖U`‖2F /2 + 1
U`>U` + I

)−1
(G.15)

Proof. The proof directly can be obtained by combining the optimality conditions of the main step (10.21) of Algo-

rithm 6 (with f(U,V) set as (G.14)) and
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Figure G.1: Comparing standard (alternating) gradient descent and Bregman (alternating) gradient descent in solving
symmetric and nonsymmetric matrix factorizations in (G.13). In particular, we set up the symmetric matrix factoriza-
tion experiments as follows. (a): We initialize U0 with each entry drawn from N (0, 1); (b): We initialize U0 with
each entry drawn from N (0, 100). We note that in both cases (a) and (b), we have tuned the stepsizes of both algo-
rithms to achieve optimal performance. We observe that when the current ‖U‖F is large, the convergence of gradient
descent becomes very slow; while Bregman gradient descent is not sensitive to the norm of the current ‖U‖F and still
converges quickly to the global optimum. The same phenomenon happens in non-symmetric matrix factorization. (c):
We initialize U0 and V0 with each entry drawn from N (0, 1); (d): We initialize U0 and V0 with each entry drawn
from N (0, 100). Similar to the symmetric case, we have tuned the stepsize of both algorithms to achieve optimal
performance in both cases. We observe that the performance of (alternating) gradient descent degrades drastically
and even fails (see (d)), while Bregman (alternating) gradient descent maintains a stable and favorable performance
regardless of the size of the initialization.
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∇xh(x,y) =

(
1

2
‖y‖22 + 1

)
x,

∇yh(x,y) =

(
1

2
‖x‖22 + 1

)
y.

Remark G.1.3. Now we can compare the closed-form updating formula (G.15) of Bregma proximal alternating min-

imization with that of standard proximal alternating minimization in solving (G.14), which is given by

U` =
(
ηX?V`−1 + U`−1

) (
ηV`−1>V`−1 + I

)−1

V` =
(
ηX?>U` + V`−1

)(
ηU`>U` + I

)−1
(G.16)

Therefore, we can view the closed-form updating formula (G.15) of Bregman proximal alternating minimization

as that of standard proximal alternating minimization equipped with adaptive stepsize according to the norm of the

current iteration V`−1 or U`.

We will compare the performances of standard proximal alternating minimization and Bregman proximal alternat-

ing minimization in solving the nonsymmetric matrix factorization problem (G.14). For convenience, we set up the

experiments exactly the same as that of the the first experiment (see Figure Figure G.1) except for those closed-form

updating formulas. To verify our convergence theories, we plot the optimality distance ‖U`V`>−X?
r‖2F as a function

of the number of iterations. In the experiments (see Figure Figure G.2), we observe that both standard and Bregman

proximal alternating minimizations achieve amazingly satisfying performance in solving the nonsymmetric matrix

factorization problem (G.14). Further, both algorithms can maintain a stable and favorable performance regardless

of the size of the initialization. In our understanding, this findings can be explained by Equation (10.17) (similar

results hold for standard proximal alternating minimization if we replace the Lf -adaptive-Lipschitz gradient condition

by the standard Lf -Lipschitz gradient condition), which essentially claims that the amount of sufficient decrease is

independent of the (adaptive) Lipschitz constant Lf , hence allowing more flexibility in tuning η.

G.2 Proof of Lemma 10.2.1

Lemma G.2.1 (Lemma 10.2.1). Supposef ∈ C2 is globally lower bounded and satisfies the Lf -adaptive Lipschitz

gradient condition for some Bregman distance kernel h ∈ C2, which is assumed to be σ-strongly convex and super-

coercive. Then the updating formula (10.18) for Bregman gradient descent (Algorithm 5) and (10.20) for Bregman

proximal minimization (Algorithm 5) are both well-defined and respectively satisfy:
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Figure G.2: Comparing standard proximal alternating minimization and Bregman proximal alternating minimization
in solving the nonsymmetric matrix factorization problem (G.14). In particular, we set up experiments as follows. (a):
We initialize U0 and V0 with each entry drawn from N (0, 1); (b): We initialize U0 and V0 with each entry drawn
from N (0, 100). We note that in both cases, we have tuned the proximal regularization parameter η for both standard
and Bregman proximal alternating minimization algorithms to achieve optimal performance. We observe that both
algorithms can maintain a stable and favorable performance regardless of the size of the initialization.

Algorithm 3 : f(x`−1)− f(x`) ≥
(

1

η
− Lf

)
σ

2
‖x` − x`−1‖22 (10.10)

Algorithm 5 : f(x`−1)− f(x`) ≥ σ

2η
‖x` − x`−1‖22. (10.11)

Proof. We first show (10.10). For simplifying notations, denote x+ := x` and x`−1 := x−. For the well-definedness,

it suffices to show the solution of (10.10) exists and is unique. First, since the objective function is continuous (as

f, h ∈ C2), its level set

Levφ(a) := {x : φ(x) ≤ a}

is closed for any a ∈ R, where φ(x) := f(x−)+〈∇f(x−),x−x−〉+ 1
ηDh(x,x−). Second, when h is super-coercive,

we will show the objective function φ(x) is coercive, which would imply the boundedness of the level set Levφ(a).

Then combing the closedness of the level set, we can view (10.10) as a minimization of a continuous function over a

compact level set and hence the solution must exist. The uniqueness follows from the strong convexity of φ because

∇2φ = ∇2h and h is strongly convex. Now, we show φ is coercive.
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φ(x) =f(x−) + 〈∇f(x−),x− x−〉+
1

η
Dh(x,x−)

=f(x−) + 〈∇f(x−),x− x−〉+
1

η
(h(x)− h(x−)− 〈∇h(x−),x− x−〉)

=
h(x)

η
+

〈
∇f(x−)− ∇h(x−)

η
,x

〉
+

(
f(x−)−

〈
∇f(x−),x−

〉
− h(x−)

η
+

〈∇h(x−)

η
,x−

〉)
:=
h(x)

η
+ 〈a,x〉+ b

=‖x‖2
(
h(x)

η‖x‖2
+

〈
a,

x

‖x‖2

〉)
+ b

Therefore, we have

φ(x) ≥ ‖x‖2
(
h(x)

η‖x‖2
− ‖a‖2

)
+ b

Together with that h(x)/‖x‖2 > η‖a‖2 for some large enough ‖x‖2 by the super-coercivity of h, this shows that φ is

coercive.

For the sufficient decrease property of (10.10), using definition of global optimality, we have

f(x−) = f(x−) + 〈∇f(x−),x− x−〉+
1

η
Dh(x,x−)

∣∣∣
x=x−

≥ f(x−) + 〈∇f(x−),x+ − x−〉+
1

η
Dh(x+,x−)

≥ f(x+)− LfDh(x+,x−) +
1

η
Dh(x+,x−)

= f(x+) +

(
1

η
− Lf

)
Dh(x+,x−)

≥ f(x+) +

(
1

η
− Lf

)
σ

2
‖x+ − x−‖22

(G.17)

where the second inequality is by the general descent lemma (10.9) with y = x−,x = x+ and the last inequality

follows from the σ-strong convexity of h.

We now show (10.11). Its well-definedness follows in the same way by showing that the objective function

of (10.11) is coercive (by using the same analysis as (G.17) combined with the lower-boundedness of f ) and strongly

convex (since (f, h) satifies Lf -adaptive Lipschitz gradient condition and η ∈ (0, 1/Lf )). And the sufficient decrease

property follows from the definition of global optimality,

f(x−) = f(x) +
1

η
Dh(x,x−)

∣∣∣
x=x−

≥ f(x+) +
1

η
Dh(x+,x−) ≥ f(x+) +

σ

2η
‖x+ − x−‖22.
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G.3 Proofs in Section of Stylized Applications

In this section, we collect the proofs omitted in the section of Stylized Applications.

G.3.1 Application to Polynomial Objective Functions

Lemma G.3.1 (Lemma 10.3.1). Suppose f(x) (or f(x,y)) is any coercive and lower-bounded dth-order (or (d1, d2)th-

order) polynomial function with d, d1, d2 ≥ 2. Set the Bregman (or bi-Bregman) distance kernel h to be

h(x) =
α

d
‖x‖d2 +

σ

2
‖x‖22 + 1 or h(x,y) = (

α

d1
‖x‖d1

2 +
σ

2
‖x‖22 + 1)(

α

d2
‖y‖d2

2 +
σ

2
‖y‖22 + 1) (G.18)

for any α, σ > 0. Then (f(x), h(x)) (or (f(x,y), h(x,y))) satisfies Assumptions 10.2.1– 10.2.4.

Proof. We classify the proof into two parts according to two different cases of (f, h).

Showing (f(x), h(x)) satisfying Assumptions 10.2.1- 10.2.4. First, any dth-degree polynomial function f(x) can

be represented as

f(x) =

d∑
k=0

〈Ak,x⊗k〉 (G.19)

where⊗ denotes the tensor product operator, x⊗k := x⊗x⊗· · ·⊗x (total k times), and the coefficients of kth-degree

monomials are arranged as Ak ∈ Rn × Rn × · · · × Rn (total k times). For convenience, we denote x⊗0 = 1 and

A0 ∈ R. Further, due to super-symmetric tensors x⊗k (i.e., the (i1, i2, · · · , ik)th entry of x⊗k is invariant respect to

the order the indices i1, i2, . . . , ik), we can assume Ak for k ≥ 2 as super-symmetric tensors since otherwise we can

replace A as its super-symmetric part. For example, when k = 2 (i.e., A2 is a square matrix), the super-symmetric

part for A2 is (A2 +A>2 )/2. Similar definitions can be easily extending to a general natural number k ≥ 2.

Now, we show that polynomial f with the particular Bregman distance kernel h(x) = α
d ‖x‖d2 + β

2 ‖x‖22 + 1

in (10.22) satisfies all Assumptions 10.2.1- 10.2.4.

Showing Assumption 10.2.1. First of all, let us compute the Hessian of h(x):

∇2h(x) =
α

d
d(d− 2)‖x‖d−4

2 xx> +
(α
d
d‖x‖d−2

2 + 2
σ

2

)
In

= α(d− 2)‖x‖d−2
2

x

‖x‖2
x>

‖x‖2
+
(
α‖x‖d−2

2 + σ
)
In (G.20)

Therefore, we have∇2h(x) is well-defined in the whole domain x ∈ Rn for all d ≥ 2, implying that h ∈ C2. Second,

lim
‖x‖2→∞

h(x)

‖x‖2
= lim
‖x‖2→∞

(
α

d
‖x‖d−1

2 +
σ

2
‖x‖2 +

1

‖x‖2

)
≥ lim
‖x‖2→∞

σ

2
‖x‖2 =∞,

implying the super-coercivity of h. Finally, following from (G.20), we can lower bound the Hessian as
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∇2h(x) �
(
α‖x‖d−2

2 + σ
)
In � σIn (G.21)

indicating that h(x) is σ-strong convex. This completes the proof of showing Assumption 10.2.1 holds.

Showing Assumption 10.2.2. First, the lower-boundedness of f follows by the assumption. Second, Since any

polynomial function satisfies the KL property, f is a KL function by Remark 10.2.1. This completes the proof of

showing Assumption 10.2.2 holds.

Showing Assumption 10.2.3. By definition of Lf -adaptive Lipschitz gradient condition, it suffices to show that there

exists a constant Lf such that

Lf∇2h(x)±∇2f(x) � 0 for all x

Towards that end, we first bound the Hessian spectral norm of f . Since f is a dth-degree polynomial function (i.e., in

the form (G.19)), we can compute its Hessian matrix as (using the super-symmetry of Ak)

∇2f(x) =

d∑
k=2

k(k − 1)Ak ×1 x×2 x×3 x · · · ×k−2 x (G.22)

where ×k denotes the kth-mode tensor-vector product [76] for any N th-order tensor A and any vector x ∈ Rn so that

A×k x =

 n∑
j=1

A(i1, · · · , ik−1, j, ik+1, · · · , iN )x(j)


i1,··· ,ik−1,ik+1,··· ,iN

(G.23)

Using the triangle inequality and by definition of tensor spectral norm, we can bound the spectral norm of∇2f(x) as

‖∇2f(x)‖ ≤
d∑
k=2

k(k − 1)‖Ak ×1 x×2 x×3 x · · · ×k−2 x‖

=

d∑
k=2

k(k − 1) max
‖y‖2=1,‖z‖2=1

〈Ak ×1 x×2 x×3 x · · · ×k−2 x,y ⊗ z〉

=

d∑
k=2

k(k − 1) max
‖y‖2=1,‖z‖2=1

Ak ×1 x×2 x×3 x · · · ×k−2 x×k−1 y ×k z

≤
d∑
k=2

k(k − 1)‖Ak‖‖x‖k−2
2

(G.24)

where the second line follows from the definition of matrix spectral norm, the third line follows from the definition of

kth-mode tensor-vector product (G.23), and the fourth line follows from the definition of a general N th-order tensor,

that is,

‖A‖ := max
‖xi‖2=1∀i

A×1 x1 ×2 x2 · · · ×N xN .
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Therefore, by (G.24), we have

‖∇2f(x)‖ ≤
d∑
k=2

k(k − 1)‖Ak‖(1 + ‖x‖d−2
2 ) (G.25)

Meanwhile, from the first line of (G.21), we have

∇2h(x) � (α‖x‖d−2
2 + σ)In (G.26)

Combing (G.25) and (G.26), we finally get that (f(x), h(x)) satisfies Lf -adaptive Lipschitz gradient condition for

any

Lf ≥
d∑
k=2

k(k − 1)‖Ak‖max

{
1

σ
,

1

α

}
.

Showing Assumption 10.2.4. It directly follows from the coercivity assumption of f and Remark 10.2.2.

This completes the proof of showing that (f(x), h(x)) satisfies Assumptions 10.2.1- 10.2.4.

Showing (f(x,y), h(x,y)) satisfying Assumptions 10.2.1- 10.2.4. First, any (d1, d2)th-degree polynomial function

f(x,y) can be represented as

f(x,y) =

d1∑
i=0

d2∑
j=0

〈Ai,j ,x⊗i ⊗ y⊗j〉 (G.27)

where the coefficients of (i, j)th-order monomials are arranged asAi,j ∈
∏i
k=1Rn×

∏j
k=1Rm. For convenience, we

denote x⊗0 = y⊗0 = 1 and A0,0 ∈ R. Further, due to super-symmetric tensors x⊗i and y⊗j , we can always assume

Ai,j for i ≥ 2 or j ≥ 2 as bi-super-symmetric tensors, i.e., those entries Ai,j(k1, · · · , ki, ki+1, · · · , ki+j) have the

same value despite the order of (k1, k2, · · · , kj) and the order of (ki+1, ki+1, · · · , ki+j).

Due to the symmetric structures between h(x,y) and h(y) and by a similar argument as in the proof of showing

(f(x), h(x)) satisfies Assumptions 10.2.1- 10.2.4, it suffices to show that

Part 1 h(x,y) is bi-super-coercive and σ-strongly bi-convex;

Part 2 (f(x,y), h(x,y)) satisfies bi-adaptive Lipschitz gradient condition,

and the remaining parts of Assumptions 10.2.1- 10.2.4 can be directly obtained from the given assumptions on f(x,y)

and h(x,y).

Showing Part 1. First of all, we observe that
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lim
‖x‖2→∞

h(x,y)

‖x‖2
≥ lim
‖x‖2→∞

σ

2
‖x‖2 =∞,

lim
‖y‖2→∞

h(x,y)

‖y‖2
≥ lim
‖x‖2→∞

σ

2
‖y‖2 =∞,

which implies that h(x,y) is bi-super-coercive. It remains to show that h(x,y) is σ-strongly bi-convex. Towards that

end, we compute the partial Hessians of h(x,y). Similar to (G.20), we have

∇2
xxh(x,y) =

(
α

d2
‖y‖d2

2 +
σ

2
‖y‖22 + 1

)(
α(d1 − 2)‖x‖d1−2

2

x

‖x‖2
x>

‖x‖2
+
(
α‖x‖d1−2

2 + σ
)

In

)
(G.28)

∇2
yyh(x,y) =

(
α

d1
‖x‖d1

2 +
σ

2
‖x‖22 + 1

)(
α(d2 − 2)‖y‖d2−2

2

y

‖y‖2
y>

‖y‖2
+
(
α‖y‖d2−2

2 + σ
)

Im

)
(G.29)

This then implies that

∇2
xxh(x,y) � σIn,

∇2
yyh(x,y) � σIm.

Therefore, h(x,y) is σ-strongly bi-convex. This completes the proof of Part 1.

Showing Part 2. We first bound the partial Hessians spectral norms of f(x,y). Similar to (G.24), we bounded

‖∇2
xxf(x,y)‖ as (using the bi-super-symmetry of Ai,j)

‖∇2
xxf(x,y)‖ ≤

d1∑
i=2

d2∑
j=0

i(i− 1)‖Ai,j ×1 x×2 x · · · ×i−2 x×i+1 y · · · ×i+j y‖

≤
d1∑
i=2

d2∑
j=0

i(i− 1)‖Ai,j‖‖x‖i−2
2 ‖y‖j2.

(G.30)

Similarly, we bounded ‖∇2
yyf(x,y)‖ as

‖∇2
yyf(x,y)‖ ≤

d1∑
i=0

d2∑
j=2

j(j − 1)‖Ai,j ×1 x×2 x · · · ×i x×i+1 y · · · ×i+j−2 y‖

≤
d1∑
i=0

d2∑
j=2

j(j − 1)‖Ai,j‖‖x‖i2‖y‖j−2
2 .

(G.31)

Now, similar to (G.25), we obtain from (G.30) and (G.31) that

‖∇2
xxf(x,y)‖ ≤ (1 + ‖x‖d1−2

2 )(1 + ‖y‖d2
2 )

d1∑
i=2

d2∑
j=0

i(i− 1)‖Ai,j‖, (G.32)

‖∇2
yyf(x,y)‖ ≤ (1 + ‖x‖d1

2 )(1 + ‖y‖d2−2
2 )

d1∑
i=0

d2∑
j=2

j(j − 1)‖Ai,j‖ (G.33)

Further, using (G.28) and (G.29), we can further bound
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∇2
xxh(x,y) �

(
α‖x‖d1−2

2 + σ
)( α

d2
‖y‖d2

2 + 1

)
In, (G.34)

∇2
yyh(x,y) �

(
α

d1
‖x‖d1

2 + 1

)(
α‖y‖d2−2

2 + σ
)

Im (G.35)

Then, combining (G.32)- (G.35), we have (f(x,y), h(x,y)) satisfies (L1, L2)-bi-adaptive Lipschitz gradient condi-

tion for any

L1 ≥
1∑d1

i=2

∑d2

j=0 i(i− 1)‖Ai,j‖
max

{
1,

1

σ
,

1

α
,
d2

α

}
=

1∑d1

i=2

∑d2

j=0 i(i− 1)‖Ai,j‖
max

{
1,

1

σ
,
d2

α

}
,

and

L2 ≥
1∑d1

i=0

∑d2

j=2 j(j − 1)‖Ai,j‖
max

{
1,

1

α
,

1

σ
,
d1

α

}
=

1∑d1

i=0

∑d2

j=2 j(j − 1)‖Ai,j‖
max

{
1,

1

σ
,
d1

α

}
.

This completes the argument of showing Part 2,

Combining all the above, we finish the proof of showing that (f(x,y), h(x,y)) satisfies Assumptions 10.2.1-

10.2.4.

G.3.2 Application to Any Objective Functions with a Polynomial-order Hessian Spectral Norm

Lemma G.3.2 (Lemma 10.3.2). Suppose ‖∇2f(x)‖ ≤ C1+C2‖x‖d−2
2 (or ‖∇2

xxf(x,y)‖ ≤ (C1+C2‖x‖d1−2
2 )(C3+

C4‖y‖d2
2 ) and ‖∇2

yyf(x,y)‖ ≤ (C5 +C6‖x‖d1
2 )(C7 +C8‖y‖d2−2

2 )) in the whole domain with d, d1, d2 ≥ 2 for some

positive constants C1 to C8. Set the Bregman (or bi-Bregman) distance kernel h according to (10.22) for any α, σ > 0.

Then (f, h) (or (f(x,y), h(x,y))) satisfies the Lf -adaptive (or (L1, L2)-bi-adaptive) Lipschitz gradient condition for

any Lf ≥ max{C1

σ ,
C2

α } and any L1 ≥ max{C1

σ ,
C2

α , C3,
C4d2

α } and any L2 ≥ max{C5,
C6d1

α , C7

σ ,
C8

σ }.

Proof. We will show the adaptive Lipschitz condition and bi-adaptive Lipschitz condition, respectively.

Showing the adaptive Lipschitz condition. By definition of adaptive Lipschitz condition, it suffices to show that

there is a Lf > 0 such that

Lf∇2h(x)±∇2f(x) � 0

in the whole domain. In one way, by assumption of f(x), we have

‖∇2f(x)‖ ≤ C1 + C2‖x‖d−2
2
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in the whole domain with d ≥ 2 for some positive constants C1, C2. In another way, by direct computations, h(x)

in (10.22) satisfies that

∇2h(x) � (α‖x‖d−2
2 + σ)In for any d ≥ 2,

in the whole domain. Therefore, it is clear to see that

Lf∇2h(x)±∇2f(x) � 0

in the whole domain for any Lf ≥ max{C1

σ ,
C2

α }.

Showing the bi-adaptive Lipschitz condition. By definition of adaptive Lipschitz condition, it suffices to show that

there are L1, L2 > 0 such that

L1∇2
xxh(x,y)±∇2

xxf(x,y) � 0,

L2∇2
yyh(x,y)±∇2

yyf(x,y) � 0.

in the whole domain. In one way, by assumption of f(x,y), we have

‖∇2
xxf(x,y)‖ ≤

(
C1 + C2‖x‖d1−2

2

)(
C3 + C4‖y‖d2

2

)
‖∇2

yyf(x,y)‖ ≤
(
C5 + C6‖x‖d1

2

)(
C7 + C8‖y‖d2−2

2

)
in the whole domain with d1, d2 ≥ 2 for some positive constants C1 to C8. In another way, by direct computations,

h(x,y) in (10.22) satisfies that for any d1, d2 ≥ 2,

∇2
xxh(x,y) �

(
α‖x‖d1−2

2 + σ
)( α

d2
‖y‖d2

2 +
σ

2
‖y‖22 + 1

)
In �

(
α‖x‖d1−2

2 + σ
)( α

d2
‖y‖d2

2 + 1

)
In

∇2
yyh(x,y) �

(
α

d1
‖x‖d1

2 +
σ

2
‖x‖22 + 1

)(
α‖y‖d2−2

2 + σ
)

In �
(
α

d1
‖x‖d1

2 + 1

)(
α‖y‖d2−2

2 + σ
)

In

Therefore, it is clear to see that

L1∇2
xxh(x,y)±∇2

xxf(x,y) � 0,

L2∇2
yyh(x,y)±∇2

yyf(x,y) � 0.

for any L1 and L2 satifying

L1 ≥ max

{
C1

σ
,
C2

α
,C3,

C4d2

α

}
,

L2 ≥ max

{
C5,

C6d1

α
,
C7

σ
,
C8

σ

}
.
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G.4 Analysis of Algorithms 3-6

G.4.1 Convergence Analysis of Algorithm 3

For completeness of the proof, we still collect the convergence analysis of Algorithm 3 here, despite providing it

in the main context.

Algorithm 10 Bregman Gradient Descent

1: Input: A Bregman kernel h with Lf∇2h(x)±∇2f(x) � 0 in the whole domain; Set η ∈ (0, 1
Lf

).

2: Initialization: x0

3: Recursion: Iteratively generate a sequence {x`}`∈N via

x` = g(x`−1) := arg min
x
〈∇f(x`−1),x− x`〉+

1

η
Dh(x,x`−1) (10.18)

G.4.1.1 First-order Convergence of Algorithm 3

Theorem G.4.1. Under Assumptions 10.2.1– 10.2.4, Algorithm 3 with arbitrary initialization converges to a critical

point of f in (10.1).

Proof. First, it is clear that Algorithm 3 is well-defined in view of Lemma 10.2.1. Then in view of Theorem 10.4.1

and the assumption that f is KL function, it is sufficient to prove that {x`}`∈N is a gradient-like descent sequence for

f (see Definition 10.4.1), i.e., to show:

(C1) Sufficient decrease property: f(x`)− f(x`+1) ≥ ρ1

∥∥x`+1 − x`
∥∥2

2
, ∀ ` ∈ N for some ρ1 > 0;

(C2) Bounded gradient property:
∥∥∇f(x`+1)

∥∥
2
≤ ρ2

∥∥x`+1 − x`
∥∥

2
, ∀ ` ∈ N for some ρ2 > 0.

Condition (C1) follows from (10.10) in Lemma 10.2.1. Condition (C2) holds because by the optimality condition

∇f(x`) + (∇h(x`+1)−∇h(x`))/η = 0, (G.36)

we have

‖∇f(x`)‖2 =
1

η
‖∇h(x`+1)−∇h(x`)‖2 ≤

ρh(B)

η
‖x`+1 − x`‖2,

where the inequality follows from Assumption 10.2.4, h ∈ C2, and the fact any function in C2 admits a locally

Lipschitz gradient on any bounded set (see Footnote 40). Therefore, by continuing this argument, we claim that f has

a locally ρf (B)-Lipschitz gradient on B, and we have ‖∇f(x`+1)‖2 ≤
(
ρh(B)
η + ρf (B)

)
‖x`+1 − x`‖2.
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G.4.1.2 Second-order Convergence of Algorithm 3

Theorem G.4.2. Under Assumptions 10.2.1– 10.2.4, Algorithm 3 with random initialization almost surely converges

to a second-order stationary point of f in (10.1).

Proof. To show the second-order convergence from the first-order convergence, it suffices to show that Algorithm 3

avoids strict saddles. We define (10.18) as x` = g(x`−1) and compute the Jacobian Dg. By the definition of g, we get

Dg(x`) = ∂x`+1/∂x`. Then we apply the implicit function theorem to the optimality condition (G.36) and in view

of the nonsingularity of∇2h, we obtain that Dg is continuous and given by

Dg(x`) =
[
∇2h(x`+1)

]−1
(∇2h(x`)− η∇2f(x`)).

Since the above analysis holds for all x` ∈ Rn, this further implies that Dg(x) is continuous and given by

Dg(x) =
[
∇2h(g(x))

]−1 (∇2h(x)− η∇2f(x)
)
. (G.37)

To show the avoidance of strict saddles, by Theorem 10.4.2, it suffices to show the following conditions:

Showing g is a C1 mapping. This follows from the continuity of Dg in (G.37).

Showing det(Dg) 6= 0 in the whole domain. By the positive definiteness of∇2h and ∇2h± η∇2f ,

det(Dg(x)) = det([∇2h(g(x))]−1) det(∇2h(x)− η∇2f(x)) > 0.

Showing any strict saddle of f lies in Ag . First for any strict saddle x?, we have x`+1 = x` = x? satisfies the

optimality condition (G.36), so x? is a fixed point, i.e., g(x?) = x?. Plugging g(x?) = x? into (G.37):

Dg(x?) =[∇2h(x?)]−1(∇2h(x?)− η∇2f(x?))

∼[∇2h(x?)]−
1
2 (∇2h(x?)− η∇2f(x?))[∇2h(x?)]−

1
2

=I− η[∇2h(x?)]−
1
2∇2f(x?)[∇2h(x?)]−

1
2 := I− ηΦ

with “∼" denotes the matrix similarity. Therefore, Dg(x?) has an eigenvalue strictly greater than 1 since Φ has a

negative eigenvalue. This is because Φ is congruent to∇2f(x?), which has a negative eigenvalue.
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G.4.2 Convergence Analysis of Algorithm 4

Algorithm 11 Bregman Alternating Gradient Descent

1: Input: A bi-Bregman kernel h(x,y) with both L1∇2
xxh(x,y) ± ∇2

xxf(x,y) � 0 and L2∇2
yyh(x,y) ±

∇2
yyf(x,y) � 0 in the entire domain; Set η ∈ (0,min( 1

L1
, 1
L2

)).

2: Initialization: (x0,y0)

3: Recursion: Iteratively generate a sequence {x`,y`}`∈N via

x` = arg min
x
〈∇xf(x`−1,y`−1),x− x`−1〉+

1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y
〈∇yf(x`,y`−1),y − y`−1〉+

1

η
D2
h(y,y`−1; x`)

(G.38)

G.4.2.1 First-order Convergence of Algorithm 4

Theorem G.4.3. Under Assumptions 10.2.1– 10.2.4, Algorithm 4 with arbitrary initialization converges to a critical

point of f in (10.12).

Proof. First of all, in view of Lemma 10.2.2, we immediately conclude that Algorithm 4 is well-defined:

Proposition G.4.1. Under Assumptions 10.2.1– 10.2.4, Algorithm 4 is well-defined.

Now, by Theorem 10.4.1 and the assumption that f is KL function, it is sufficient to prove that {(x`,y`)}`∈N is a

gradient-like descent sequence for f (see Definition 10.4.1), i.e., showing:

(C1) Sufficient decrease property;

(C2) Bounded gradient property.

Condition (C1) directly follows from Lemma 10.2.2.

To show Condition (C2), we start with the optimality condition (G.39) for the first-block of Algorithm 4

∇xh(x+,y) = ∇xh(x,y)− η∇xf(x,y), (G.39)

which implies

‖∇xf(x,y)‖2 =
1

η
‖∇xh(x+,y)−∇xh(x,y)‖2

≤ ρh(B)

η
‖x+ − x‖2

≤ ρh(B)

η
‖(x+,y+)− (x,y)‖2

where the second line follows from Assumption 10.2.4, h ∈ C2, and Footnote 40.
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Using a similar analysis for the optimality condition for the second-block of Algorithm 4

∇yh(x+,y+) = ∇yh(x+,y)− η∇yf(x+,y), (G.40)

we can get

‖∇yf(x+,y)‖2 ≤
ρh(B)

η
‖y+ − y‖2

implying

‖∇yf(x,y)‖2 ≤ ‖∇yf(x+,y)‖2 + ‖∇yf(x+,y)−∇yf(x,y)‖2

≤ ρh(B)

η
‖y+ − y‖2 + ρf (B)‖x+ − x‖2

≤
(
ρh(B)

η
+ ρf (B)

)
‖(x+,y+)− (x,y)‖2

where the second line follows from Assumption 10.2.4, f ∈ C2, and Footnote 40.

Combing the above two, we get an equivalent version of the bounded gradient property

‖∇f(x,y)‖2 ≤‖∇xf(x,y‖2 + ‖∇yf(x,y)‖2

≤
(

2ρh(B)

η
+ ρf (B)

)
‖(x+,y+)− (x,y)‖2

Therefore,

‖∇f(x+,y+)‖2 ≤
(

2ρh(B)

η
+ 2ρf (B)

)
‖(x+,y+)− (x,y)‖2.

G.4.2.2 Second-order Convergence of Algorithm 4

Theorem G.4.4. Under Assumptions 10.2.1– 10.2.4, Algorithm 4 with random initialization almost surely converges

to a second-order stationary point of f in Equation (10.12).

Proof. Following from (G.38), we denote

(x+,y) = g1(x,y)

(x,y+) = g2(x,y)
(G.41)

The mappings g1, g2 are well-defined in the whole domain Rn × Rm in view of strong convexity and coercivity of

the objective function in (G.38). Then Algorithm 4 can be viewed as iteratively performing the following composite

mapping for ` = 1, 2, . . .

(x`,y`) = g(x`−1,y`−1) (G.42)
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where the mapping g is defined as the composite mapping of g1, g2:

g := g2 ◦ g1 (G.43)

To compute the Jacobian matrix Dg, we first compute Dg1 and Dg2. Then we will use the chain rule to get Dg.

Now we compute Dg1(x,y) using (x+,y) = g1(x,y). First of all,

Dg1(x,y) =

[
∂x+

∂x>
∂x+

∂y>

0 Im

]
Then by the first-order optimality condition (G.39) of Algorithm 4:

∇xh(x+,y) = ∇xh(x,y)− η∇xf(x,y)

Now apply the Implicit function theorem to (G.39)

∇2
xxh(x+,y)

∂x+

∂x>
= ∇2

xxh(x,y)− η∇2
xxf(x,y)

∇2
xxh(x+,y)

∂x+

∂y>
= ∇2

xyh(x,y)−∇2
xyh(x+,y)− η∇2

xyf(x,y)

which implies (since∇2h1 is positive definite in the whole domain) the following Jacobians are continuous and given

by

∂x+

∂x>
= ∇2

xxh(x+,y)−1
(
∇2

xxh(x,y)− η∇2
xxf(x,y)

)
∂x+

∂y>
= ∇2

xxh(x+,y)−1(∇2
xyh(x,y)−∇2

xyh(x+,y)− η∇2
xyf(x,y))

Therefore, Dg1 is continuous and given by

Dg1(x,y) =

[
∂x+

∂x
∂x+

∂y>

0 Im

]

=

[
∇2

xxh(x+,y)−1 0
0 Im

]
[
∇2

xxh(x,y)− η∇2
xxf(x,y) ∇2

xyh(x,y)−∇2
xyh(x+,y)− η∇2

xyf(x,y)
0 Im

]
(G.44)

Similarly, we have Dg2 is continuous and given by
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Dg2(x,y) =

[
In 0
∂y+

∂x>
∂y+

∂y>

]

=

[
In 0
0 ∇2

yyh(x,y+)−1

]
[

In 0
∇2

yxh(x,y)−∇2
yxh(x,y+)− η∇2

yxf(x,y) ∇2
yyh(x,y)− η∇2

yyf(x,y)

]
(G.45)

Finally, using the chain rule, we get Dg is continuous (since continuity is closed under composite and product

operations) and given by

Dg(x,y) = Dg2(g1(x,y))Dg1(x,y). (G.46)

By Theorem 10.4.2, to show that the mapping g can almost surely avoid the strict saddles, it suffices to show the

following conditions:

1. g is a C1 mapping;

2. det(Dg) 6= 0 in the whole domain;

3. Any strict saddle of f is an unstable fixed point of g.

Showing g is C1 mapping. This follows from the continuity of Dg in (G.46).

Showing det(Dg) 6= 0 in the whole domain. To show det(Dg) 6= 0 in the whole domain, by using the chain rule

Dg = Dg2Dg1

and noting that each Dgk is a squared matrix, it suffices to show both Dg1 and Dg2 are nonsingular in the whole do-

main. Since Dg1 is a block upper-triangular matrix (see (G.44)), it suffices to show both of its diagonal block matrices

are nonsingular. The first diagonal block is ∇2
xxh(x+,y)−1(∇2

xxh(x,y) − η∇2
xxf(x,y)), which is nonsingular in

the whole domain because of h is strongly bi-convex (implying ∇2
xxh is positive definite in the whole domain and

hence nonsingular in the whole domain) and (f, h) satisfies (L1, L2)-bi-adaptive Lipschitz gradient condition (imply-

ing∇2
xxh(x,y)− η∇2

xxf(x,y) is positive definite in the whole domain for any η < 1
L1

and hence nonsingular in the

whole domain). Therefore, we obtain that Dg1 is nonsingular in the whole domain. Using a similar analysis and in

view of (G.45), we can show that Dg2(x,y) is nonsingular in the whole domain. This shows that det(Dg) 6= 0 in the

whole domain.

Showing any strict saddle of f lies in Ag . By definition, we want to show each strict saddle (x?,y?) of f satisfies

1. g(x?,y?) = (x?,y?)
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2. maxi |λi(Dg(x?,y?))| > 1

The first part comes from that (x,y) = (x+,y+) = (x?,y?) satisfies the first-order optimality condition of (G.38):

∇xh(x?,y?) = ∇xh(x?,y?)− η∇xf(x?,y?)

∇yh(x?,y?) = ∇yh(x?,y?)− η∇yf(x?,y?)

which definitely hold since any strict saddle (x?,y?) is also a critical point of f :

(∇xf(x?),∇yf(x?,y?)) = (0,0)

Further, (x?,y?) is the unique point satisfying the above first-order optimality condition by Proposition G.4.1.

Now we show the second part, that is, the maximum eigenvalue of magnitude for Dg(x?,y?) is greater than 1. To

simplify notations, we make the following notations;

[
F11 F12

F21 F22

]
:=

[
∇2

xxf(x?,y?) ∇2
xyf(x?,y?)

∇2
yxf(x?,y?) ∇2

yyf(x?,y?)

]
and

H1 := ∇2
xxh(x?,y?)

H2 := ∇2
yyh(x?,y?).

Now we are ready to compute Dg(x?,y?) by plugging

(x+,y+) = (x,y) = (x?,y?)

to (G.46) and using the above notations:

Dg(x?,y?) =

[
In 0

−ηH−1
2 F21 Im − ηH−1

2 F22

] [
In − ηH−1

1 F11 −ηH−1
1 F12

0 Im

]
=

(
I− η

[
0
∇2h2(y?)−1

] [
F11 F12

F21 F22

])(
I− η

[
H−1

1

0

] [
F11 F12

F21 F22

])
=I− η

[
H−1

1

H−1
2

] [
F11 F12

F21 F22

]
+ η2

[
0 0

H−1
2 F21H

−1
1 0

] [
F11 F12

F21 F22

]
=I−

[
ηH−1

1

−η2H−1
2 F21H

−1
1 ηH−1

2

] [
F11 F12

F21 F22

]
=I−

[ 1
ηH1

F21
1
ηH2

]−1 [
F11 F12

F21 F22

]

=

[ 1
ηH1

F21
1
ηH2

]−1 [ 1
ηH1 − F11 −F12

1
ηH2 − F22

]
This implies

Dg(x?,y?)−1 =

[ 1
ηH1 − F11 −F12

1
ηH2 − F22

]−1 [ 1
ηH1

F21
1
ηH2

]
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Note that to show that Dg(x?,y?) has an eigenvalue with magnitude larger than 1, it suffices to show that the

equation

det(Dg(x?,y?)−1 − µI) = 0

has a solution µ ∈ (0, 1).

Towards that end, note that det(Dg(x?,y?)−1 − µI) = 0 is equivalent to

det

([ 1
ηH1 − F11 −F12

1
ηH2 − F22

]−1 [ 1
ηH1

F21
1
ηH2

]
− µI

)
= 0

⇐⇒ det

([ 1
ηH1

F21
1
ηH2

]
− µ

[ 1
ηH1 − F11 −F12

1
ηH2 − F22

])
= 0

⇐⇒ det

([ 1
η (1− µ)H1 + µF11 µF12

F21
1
η (1− µ)H2 + µF22

])
= 0

⇐⇒ det

([√
µIn

Im

])
det

([ 1
η (1− µ)H1 + µF11

√
µF12√

µF21
1
η (1− µ)H2 + µF22

])
det

([ 1√
µIn

Im

])
= 0

⇐⇒ det

([ 1
η (1− µ)H1 + µF11

√
µF12√

µF21
1
η (1− µ)H2 + µF22

])
= 0

Therefore, we obtain that Dg(x?,y?)−1 has an eigenvalues within (0, 1) is equivalent to the event that

J(µ) :=

[ 1
η (1− µ)H1 + µF11

√
µF12√

µF21
1
η (1− µ)H2 + µF22

]
is a singular matrix for certain µ ∈ (0, 1). Towards that end, we first observe that J(µ) is a real-symmetric and

continuous (with respect to µ) matrix and hence all eigenvalues of J(µ) are real-valued (by the symmetry of J(µ)) and

are continuous functions of µ ( [230, Theorem 5.1]). In particular, the minimum eigenvalue λmin(J(µ)) is real-valued

and continuous function of µ.

Now, we observe that

lim
µ→0+

J(µ) =

[ 1
ηH1

1
ηH2

]
,

J(1) =

[
F11 F12

F21 F22

]
=

[
∇2

11f(x?,y?) ∇2
12f(x?,y?)

∇2
21f(x?,y?) ∇2

22f(x?,y?)

]
= ∇2f(x?,y?)

First, since J(0+) is positive definite (as h1 and h2 are strongly convex), we have

λmin(J(0+)) > 0.

Second, since (x?,y?) is a strict saddle of f , we claim that

λmin(J(1)) < 0.

Finally, since λmin(J(µ)) is a real-valued and continuous function of µ, we get λmin(J(µ)) = 0 for some µ ∈ (0, 1).
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This completes the argument of showing Algorithm 4 can almost surely avoid the strict saddles. Then together

with the first-order convergence Theorem G.4.3, we obtain the second-order convergence of Algorithm 4.

G.4.3 Convergence Analysis of Algorithm 5

Algorithm 12 Bregman Proximal Minimization

1: Input: A Bregman kernel h with Lf∇2h(x)±∇2f(x) � 0 in the whole domain; Set η ∈ (0, 1
Lf

).

2: Initialization: x0

3: Recursion: Iteratively generate a sequence {x`}`∈N via

x`+1 = g(x`) := arg min
x

f(x) +
1

η
Dh(x,x`) (10.20)

G.4.3.1 First-order Convergence of Algorithm 5

Theorem G.4.5. Under Assumptions 10.2.1– 10.2.4, Algorithm 5 with arbitrary initialization converges to a critical

point of f in (10.1).

Proof. First of all, Algorithm 5 is well-defined in view of Lemma 10.2.1. Then, by Theorem 10.4.1 and the as-

sumption that f is a KL function, it is sufficient to prove that {x`}`∈N is a gradient-like descent sequence for f (see

Definition 10.4.1), i.e., to show:

(C1) Sufficient decrease property: f(x`)− f(x`+1) ≥ ρ1

∥∥x`+1 − x`
∥∥2

2
, ∀ ` ∈ N for some ρ1 > 0;

(C2) Bounded gradient property:
∥∥∇f(x`+1)

∥∥
2
≤ ρ2

∥∥x`+1 − x`
∥∥

2
, ∀ ` ∈ N for some ρ2 > 0.

Condition (C1) follows from (10.11) in Lemma 10.2.1. Condition (C2) holds because by the optimality condition

∇f(x`+1) + (∇h(x`+1)−∇h(x`))/η = 0, (G.47)

we have ‖∇f(x`+1)‖2 = 1
η‖∇h(x`+1) − ∇h(x`)‖2 ≤ ρh(B)

η ‖x`+1 − x`‖2, where the inequality follows from

Assumption 10.2.4, h ∈ C2, and Footnote 40.

G.4.3.2 Second-order Convergence of Algorithm 5

Theorem G.4.6. Under Assumptions 10.2.1– 10.2.4, Algorithm 5 with random initialization almost surely converges

to a second-order stationary point of f in (10.1).

Proof. To show the second-order convergence, we define (10.20) as x` = g(x`−1) and compute the Jacobian matrix

Dg. By the definition of g, we have Dg(x`) = ∂x`+1/∂x`. Now we apply the implicit function theorem to (G.47)

and in view of the nonsingularity of∇2h+ η∇2f , we obtain that Dg is continuous and given by
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Dg(x`) =
(
∇2h(x`+1) + η∇2f(x`+1)

)−1∇2h(x`).

Noting that the above argument holds for any x` ∈ Rn, we therefore have that Dg(x) is continuous and given by

Dg(x) =
(
∇2h(g(x)) + η∇2f(g(x))

)−1∇2h(x). (G.48)

By Theorem 10.4.2, to show the mapping g can almost surely avoid the strict saddles, it suffices to show the

following conditions:

Showing g is a C1 mapping. This immediately follows from the continuity of Dg in (G.48).

Showing det(Dg) 6= 0 in the whole domain. Due to the positive definiteness of∇2h and ∇2h± η∇2f ,

det(Dg(x)) = det
([
∇2h(g(x)) + η∇2f(g(x))

]−1
)

det
(
∇2h(x)

)
> 0.

Showing any strict saddle of f lies in Ag . First for any strict saddle x?, we have x`+1 = x` = x? satisfies the

optimality condition (G.47), indicating x? is a fixed point, i.e., g(x?) = x?. Now plugging g(x?) = x? to (G.48), we

have

Dg(x?) =[∇2h(x?) + η∇2f(x?)]−1∇2h(x?)

∼[∇2h(x?) + η∇2f(x?)]−1/2(∇2h(x?))[∇2h(x?) + η∇2f(x?)]−1/2

=I− η[∇2h(x?) + η∇2f(x?)]−1/2∇2f(x?)[∇2h(x?) + η∇2f(x?)]−1/2 := I− ηΦ

where “∼" denotes matrix-similarity. Clearly, we know Dg(x?) has an eigenvalue strictly greater than 1 since

∇2f(x?) has a negative eigenvalue and is congruent to Φ.

Combining the above three and Theorem 10.4.2, we show that Algorithm 5 can almost surely avoid strict saddles.

Finally, combining this with the first-order convergence, we obtain the second-order convergence of Algorithm 5.

G.4.4 Convergence Analysis of Algorithm 6

Algorithm 13 Bregman Proximal Alternating Minimization

1: Input: A bi-Bregman kernel h(x,y) with both L1∇2
xxh(x,y) ± ∇2

xxf(x,y) � 0 and L2∇2
yyh(x,y) ±

∇2
yyf(x,y) � 0 in the entire domain; Set η ∈ (0,min( 1

L1
, 1
L2

)).

2: Initialization: (x0,y0)

3: Recursion: Iteratively generate a sequence {x`,y`}`∈N via

x` = arg min
x

f(x,y`−1) +
1

η
D1
h(x,x`−1; y`−1),

y` = arg min
y

f(x`,y) +
1

η
D2
h(y,y`−1; x`)

(G.49)
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G.4.4.1 First-order Convergence of Algorithm 6

Theorem G.4.7. Under Assumptions 10.2.1– 10.2.4, Algorithm 6 with arbitrary initialization converges to a critical

point of f in in (10.12).

Proof. First of all, as a direct consequence of Lemma 10.2.2, we are guaranteed Algorithm 6 is well defined.

Proposition G.4.2. Under Assumptions 10.2.1– 10.2.4, Algorithm 6 is well-defined.

Now, in view of Theorem 10.4.1 and the assumption that f is KL function, it is sufficient to prove that {(x`,y`)}`∈N
is a gradient-like descent sequence for f (see Definition 10.4.1), i.e., satisfying

(C1) Sufficient decrease property;

(C2) Bounded gradient property.

Condition (C1) directly follows from Lemma 10.2.2.

To show Condition (C2), we start with the optimality condition of the first block of Algorithm 6

∇xh(x+,y) = ∇xh(x,y)− η∇xf(x+,y), (G.50)

and get that

‖∇xf(x+,y)‖2 =
1

η
‖∇xh(x+,y?)−∇xh(x,y)‖2

≤ ρh(B)

η
‖x+ − x‖2

where the second line follows from Assumption 10.2.4, h ∈ C2, and Footnote 40.

Now using the same argument on f ∈ C2, we get f has a locally ρf (B)-Lipschitz gradient on the set B, and

therefore

‖∇xf(x+,y+)‖2 ≤ ‖∇xf(x+,y+)−∇xf(x+,y)‖2 + ‖∇xf(x+,y)‖2

≤ ρf (B)‖y+ − y‖2 +
ρh(B)

η
‖x+ − x‖2

≤
(
ρf (B) +

ρh(B)

η

)
‖(x+,y+)− (x,y)‖2

Using a similar analysis to the optimality condition for the second-block of Algorithm 6

∇yh(x+,y+) = ∇yh(x+,y)− η∇yf(x+,y+),

we can get
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‖∇yf(x+,y+)‖2 ≤
ρh(B)

η
‖y+ − y‖2

Therefore, combining all, we get

‖∇f(x+,y+)‖2 ≤‖∇xf(x+,y+)‖2 + ‖∇yf(x+,y+)‖2

≤
(

2ρh(B)

η
+ ρf (B)

)
‖(x+,y+)− (x,y)‖2

G.4.4.2 Second-order Convergence of Algorithm 6

Theorem G.4.8. Under Assumptions 10.2.1– 10.2.4, Algorithm 6 with random initialization almost surely converges

to a second-order stationary point of f in (10.12).

Proof. Following from (G.49), we denote

(x+,y) = g1(x,y)

(x,y+) = g2(x,y)
(G.51)

The mapping g1, g2 are well-defined in the whole domain Rn × Rm, in view of strong convexity and coercivity of

the objective function in (G.49). Then Algorithm 6 can be viewed as iteratively performing the following composite

mapping for ` = 1, 2, . . .

(x`,y`) = g(x`−1,y`−1) (G.52)

with the mapping g defined as the composite mapping of g1, g2:

g := g2 ◦ g1. (G.53)

To compute the the Jacobian matrix Dg, We first compute Dg1 and Dg2. Then we will use the chain rule to get

Dg.

Now we compute Dg1(x,y) from (x+,y) = g1(x,y). First of all,

Dg1(x,y) =

[
∂x+

∂x>
∂x+

∂y>

0 Im

]
Then recall that the first-order optimality condition (G.50) for the first block of (6) is given by

∇xh(x+,y) = ∇xh(x,y)− η∇xf(x+,y)

Now apply the Implicit function theorem to (G.50)
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(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

) ∂x+

∂x>
= ∇2

xxh(x,y)(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

) ∂x+

∂y>
= ∇2

xyh(x,y)−∇2
xyh(x+,y)− η∇2

xyf(x+,y)

implying (since∇2h1 is positive definite in the whole domain) that the following Jacobians are continuous:

∂x+

∂x>
=
(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

)−1∇2
xxh(x,y)

∂x+

∂y>
=
(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

)−1
(∇2

xyh(x,y)−∇2
xyh(x+,y)− η∇2

xyf(x+,y))

Therefore, Dg1 is continuous and is given by

Dg1(x,y) =

[
∂x+

∂x>
∂x+

∂y>

0 Im

]

=

[(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

)−1

Im

]
[
∇2

xxh(x,y) ∇2
xyh(x,y)−∇2

xyh(x+,y)− η∇2
xyf(x+,y)

0 Im

]
(G.54)

Similarly, we have Dg2 is continuous and given by

Dg2(x,y) =

[
In 0
∂y+

∂x>
∂y+

∂y>

]

=

[
In (

∇2h2(y+) + η∇2
yyf(x,y+)

)−1

]
[

In 0
∇2

yxh(x,y)−∇2
yxh(x,y+)− η∇2

yxf(x,y+) ∇2
yyh(x,y)

]
(G.55)

Finally, combining (G.54) and (G.55), we get the expression of Dg:

Dg(x,y) = Dg2(g1(x,y))Dg1(x,y). (G.56)

Further, since continuity is preserved by product and composite operation, we get Dg is continuous and hence g ∈ C1.

By Theorem 10.4.2, to show that the mapping g can almost surely avoid the strict saddles, it suffices to show the

following conditions:

1. g is C1 mapping;

2. det(Dg) 6= 0 in the whole domain;

3. Any strict saddle of f is an unstable fixed point of g.
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Showing g is C1 mapping. This is because Dg in (G.56) is continuous by the implicit function theorem.

Showing det(Dg) 6= 0 in the whole domain. Because

Dg(x,u) = Dg2(g1(x,y))Dg1(x,y)

with Dg1 and Dg2 being square matrices, it suffices to show the global non-singularity of both Dg1 and Dg2. Since

Dg1 is a block upper-triangular matrix in view of (G.54), it suffices to show both of its diagonal block matrices are

nonsingular. The first diagonal block is
(
∇2

xxh(x+,y) + η∇2
xxf(x+,y)

)−1∇2
xxh(x,y) in (G.54), which is nonsin-

gular in the whole domain because of h is strongly bi-convex (implying∇2
xxh is positive definite in the whole domain

and hence nonsingular in the whole domain) and (f, h) satisfies (L1, L2)-bi-adaptive Lipschitz gradient condition

(implying∇2
xxh(x,y) + η∇2

xxf(x,y) is positive definite in the whole domain for any η < 1
L1

and hence nonsingular

in the whole domain). Therefore, we obtain that Dg1 is nonsingular in the whole domain. Use a similar analysis and

in view of (G.55), and we can show that Dg2(x,y) is nonsingular in the whole domain. This shows that det(Dg) 6= 0

in the whole domain.

Showing any strict saddle of f lies in Ag . First of all, we show that for any strict saddle (x?,y?) of f , we have

g1(x?,y?) = (x?,y?),

g2(x?,y?) = (x?,y?).

Then this implies (x?,y?) is a fixed point the mapping g = g2 ◦ g1, i.e., g(x?,y?) = (x?,y?). Clearly x =

x?,x+ = x?,y = y? satisfies the first-order optimality condition (G.50). Combining the well-definedness of g1 by

Proposition G.4.2, this implies that

g1(x?,y?) = (x?,y?).

The same analysis can be used to show that

g2(x?,y?) = (x?,y?).

This completes the proof of showing (x?,y?) is a fixed point of g.

It remains to show that the Jacobian matrix Dg(x?,y?) has an eigenvalues with magnitude greater than 1. To

simplify notations, we make the following notations;

[
F11 F12

F21 F22

]
:=

[
∇2

xxf(x?,y?) ∇2
xyf(x?,y?)

∇2
yxf(x?,y?) ∇2

yyf(x?,y?)

]
and
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H1 := ∇2
xxh(x?,y?)

H2 := ∇2
yyh(x?,y?).

Now we are ready to compute Dg(x?,y?) by plugging

(x+,y+) = (x,y) = (x?,y?)

to (G.56) and using the above notations:

Dg(x?,y?) =Dg2(x?,y?)Dg1(x?,y?)

=

([
In

(H2 + ηF22)
−1

] [
In 0
−ηF21 H2

])([
(H1 + ηF11)

−1

Im

] [
H1 −ηF12

0 Im

])
=

[
(H1 + ηF11)−1 0

(H1 + ηF11)−1(−ηF21)(H2 + ηF22)−1 (H2 + ηF22)−1H2

] [
H1 −ηF12

Im

]
=

[
(H1 + ηF11)−1 0

(H1 + ηF11)−1(−ηF21)(H2 + ηF22)−1 (H2 + ηF22)−1

] [
In

H2

] [
H1 −ηF12

Im

]
=

[
H1 + ηF11 0
ηF21 H2 + ηF22

]−1 [
H1 −ηF12

H2

]
Second, we transform the problem of showing that Dg(x?,y?) has an eigenvalue of magnitude greater than 1 as

the problem of showing that

det(Dg(x?,y?)− µI) = 0

for some µ of magnitude greater than 1. Using the properties of det(·), we further have

det(Dg(x?,y?)− µI) = 0

⇐⇒ det

([
H1 + ηF11 0
ηF21 H2 + ηF22

]−1 [
H1 −ηF12

H2

]
− µI

)
= 0

⇐⇒ det

([
H1 −ηF12

H2

]
− µ

[
H1 + ηF11 0
ηF21 H2 + ηF22

])
= 0

⇐⇒ det

([
(1− µ)H1 − µηF11 −ηF12

−µηF21 (1− µ)H2 − µηF22

])
= 0

⇐⇒ det

([
(µ− 1)H1 + µηF11 ηF12

µηF21 (µ− 1)H2 + µηF22

])
= 0

⇐⇒ det

([
In √

µIm

] [
(µ− 1)H1 + µηF11

√
µηF12√

µηF21 (µ− 1)H2 + µηF22

] [
In √

µIm

]−1
)

= 0

⇐⇒ det

([
In √

µIm

])
det

([
(µ− 1)H1 + µηF11

√
µηF12√

µηF21 (µ− 1)H2 + µηF22

])
det

([
In √

µIm

]−1
)

= 0

⇐⇒ det

([
(µ− 1)H1 + µηF11

√
µηF12√

µηF21 (µ− 1)H2 + µηF22

])
= 0

Therefore, the problem reduces to showing that
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J(µ) :=

[
(µ− 1)H1 + µηF11

√
µηF12√

µηF21 (µ− 1)H2 + µηF22

]
is a singular matrix for some µ > 1. Note that J(µ) is a symmetric and continuous (with respect to µ) matrix and hence

all the eigenvalues are real-valued (by symmetric structure of J(µ)) and continuous functions of µ (by [230, Theorem

5.1]). In particular, the minimum eigenvalue λmin(J(µ))) is also a real-valued and continuous function of µ.

Now we observe J(µ) in two special cases:

J(1) = η

[
F11 F12

F21 F22

]
= η

[
∇2

xxf(x?,y?) ∇2
xyf(x?,y?)

∇2
yxf(x?,y?) ∇2

yyf(x?,y?)

]
= η∇2f(x?,y?),

lim
µ→∞

J(µ)

µ
=

[
H1 + ηF11

H2 + ηF22

]
First, since (x?,y?) is a strict saddle of f , we have

λmin(J(1)) < 0.

Second, by the assumption that both H1 ± ηF11 and H2 ± ηF22 are positive definite matrices, we have

λmin(J(N)) > 0

for some sufficiently large number N . Finally, since λmin(J(µ))) is a real-valued and continuous function of µ, we

conclude that there must be µ ∈ (1, N) such that λmin(J(µ)) = 0 for some sufficiently large number N > 1.

Therefore, we have shown that Algorithm 6 can almost surely avoid the strict saddles. Combining this with the

first-order convergence Theorem G.4.7, we obtain the second-order convergence of Algorithm 6.
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APPENDIX H

APPENDICES FOR CHAPTER 11

H.1 Proof of Theorem 11.5.2

Definition H.1.1 (KL property). [212, 241] We say a proper semi-continuous function h(u) satisfies Kurdyka-

Łojasiewicz property, if for any limiting critical point u of h(u), there exist δ > 0, θ ∈ [0, 1), C > 0, s.t.

|h(u)− h(u)|θ ≤ C dist(0, ∂h(u)), ∀ u ∈ B(u, δ)

where ∂h(u)) denotes the subdifferential of h at µ. In particular, when h(·) is differentiable, we further have ∂h(u)) =

{∇h(u)} and hence the KL property becomes

|h(u)− h(u)|θ ≤ C‖∇h(u)‖2, ∀ u ∈ B(u, δ)

We mention that the above KL property (also known as KL inequality) states the regularity of h(u) around its

critical point u and the KL inequality trivially holds at non-critical point. There are a very large set of functions

satisfying the KL inequality. In particular [213, Theorem 5.1], any proper lower semi-continuous function satisfies

the KL property once its function graph is a semi-algebraic set, i.e., is a subset of Rn defined by a finite sequence

of polynomial equations. Therefore, a very large set of functions should satisfy the KL inequality, since the semi-

algebraic property functions are sufficiently general, including but never limited to any polynomials, any norm, quasi

norm, `0 norm, smooth manifold, etc. For more discussions and examples, see [213, 239]. Clearly, the objective

function f(U,V,W) is semi-algebraic as it is a polynomial function.

Lemma H.1.1 (Uniform KL property). The objective function in eq. (11.7) satisfies the KL property. Further there

exist δ0 > 0, θKL ∈ [0, 1), CKL > 0 such that as long as dist((U,V,W),L(U0,V0,W0)) ≤ δ0, we have

∣∣f(U,V,W)− f
∣∣θKL ≤ CKL‖∇f(U,V,W)‖F (H.1)

with f being limiting function value defined in Part (i) of Theorem 11.5.1.

Proof. First recognize the union
⋃
i B((Ui,Vi,Wi), δi) forms an open cover of L(U0,V0,W0) with (Ui,Vi,Wi)

representing all points inL(U0,V0,W0) and δi to be chosen so that the the following KL property of f at (Ui,Vi,Wi) ∈

L(U0,V0,W0) holds:

∣∣f(U,V,W)− f
∣∣θi ≤ Ci‖∇f(U,V,W)‖F , ∀(U,V,W) ∈ B((Ui,Vi,Wi), δi)

where we have used all f(Ui,Vi,Wi) = f by Part (iii) of Theorem 11.5.1. Then due to the compactness of the set

L(U0,V0,W0) (from Part (iv) of Theorem 11.5.1), it has a finite subcover, that is,
⋃p
i=1 B((Uki ,Vki ,Wki), δki)
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for some positive integer p. Now combining all, we have for all (U,V,W) ∈ ⋃pi=1 B((Uki ,Vki ,Wki), δki),

∣∣f(U,V,W)− f
∣∣θKL ≤ CKL‖∇f(U,V,W)‖F (H.2)

with θKL = maxpi=1{θki} and CKL = maxpi=1{Cki}. Finally, since
⋃p
i=1 B((Uki ,Vki ,Wki), δki) is an open cover

of L(U0,V0,W0), there exists a sufficiently small number δ0 so that

{(U,V,W) : dist((U,V,W),L(U0,V0,W0)) ≤ δ0} ⊂
p⋃
i=1

B((Uki ,Vki ,Wki), δki).

Therefore, eq. (H.2) holds for any (U,V,W) in the δ0-neighborhood of L(U0,V0,W0).

Proof of Theorem 11.5.2. First of all, in view of that

lim
k→∞

dist((Uk,Vk,Wk),L(U0,V0,W0)) = 0

and the definition of the convergence, there exits a positive integer k0 so that dist((Uk,Vk,Wk),L(U0,V0,W0)) ≤

δ0 for all k ≥ k0. Now using Lemma H.1.1, we have that

∣∣f(Uk,Vk,Wk)− f
∣∣θKL ≤ CKL‖∇f(Uk,Vk,Wk)‖F , ∀k ≥ k0. (H.3)

In the following we will restrict our iterates {(Uk,Vk,Wk)}k∈N to k ≥ k0. The remaining analysis is discussed case

by case.

Case I. f(UN ,VN ,WN ) = f for some finite N > 0. Then by Part (i) of Theorem 11.5.1, we immedi-

ately have f(Uk,Vk,Wk) = f(Uk+1,Vk+1,Wk+1) = f for all k ≥ N . Therefore, by Lemma 11.4.7, we get

that (Uk,Vk,Wk) = (UN ,VN ,WN ),∀k ≥ N , hence the sequence {(Uk,Vk,Wk)}k∈N converges to the point

(UN ,VN ,WN ) in N steps. By knowing that any limit point of {(Uk,Vk,Wk)}k∈N is a critical point of f by Part

(iv) of Theorem 11.5.1, we therefore have that in this case Algorithm 7 converges to a critical point of f in a finite

number of steps.

Case II. (Uk,Vk,Wk) > f for any finite k. The key is to rely on the following inequality (which can be easily

obtained by using Jensen’s inequality to the concave function h(x) = x1−θ for θ ∈ [0, 1) with domain x > 0):

x1−θ
2 − x1−θ

1 ≥ (1− θ)x2 − x1

xθ2
∀x1 > 0, x2 > 0 (H.4)

Setting x2 = f(Uk,Vk,Wk)− f > 0 and x1 = f(Uk+1,Vk+1,Wk+1)− f > 0 in eq. (H.4):

(f(Uk,Vk,Wk)− f)1−θ − (f(Uk+1,Vk+1,Wk+1)− f)1−θ ≥ (1− θ)f(Uk,Vk,Wk)− f(Uk+1,Vk+1,Wk+1)

(f(Uk,Vk,Wk)− f)θ

(H.5)
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In the subsequent argument, we choose θ = θKL in (H.5). From eq. (H.1) and Lemma 11.4.7, we can further lower

bound f(Uk,Vk,Wk)−f(Uk+1,Vk+1,Wk+1) and upper bound (f(Uk,Vk,Wk)−f)θKL to obtain from eq. (H.5)

that (denote Γ1 := 1− θKL,Γ2 := λ(1−θKL)
CKL

):

(f(Uk,Vk,Wk)− f)Γ1 − (f(Uk+1,Vk+1,Wk+1)− f)Γ1

≥ Γ2
‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖2F

‖∇f(Uk,Vk,Wk)‖F

≥ Γ2√
2Lg
‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖2F
‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F

=
Γ2√
2Lg

(‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖2F
‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F

+ ‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F − ‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F
)

=
Γ2√
2Lg

(
2‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖F − ‖(Uk,Vk,Wk)− (Uk−1,Vk−1,Wk−1)‖F

)
Repeating the above inequality and summing up them from k0 to N, we get

(f(Uk0 ,Vk0 ,Wk0)− f)Γ1 − (f(UN+1,VN+1,WN+1)− f)Γ1

≥ Γ2√
2Lg

(
‖(UN+1,VN+1,WN+1)− (UN ,VN ,WN )‖F

− ‖(Uk0
,Vk0

,Wk0
)− (Uk0−1,Vk0−1,Wk0−1)‖F +

N∑
k=k0

(‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖F )

)

Letting N go to infinity and since limN→∞ f(UN+1,VN+1,WN+1) = f by Part (i) of Theorem 11.5.1, we have

lim
N→∞

N∑
k=k0

‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖F

≤ ‖(Uk0
,Vk0

,Wk0
)− (Uk0−1,Vk0−1,Wk0−1)‖F +

Γ2√
2Lg

(f(Uk0
,Vk0

,Wk0
)− f)1−θKL

≤ ‖(Uk0 ,Vk0 ,Wk0)− (Uk0−1,Vk0−1,Wk0−1)‖F

+
Γ2√
2Lg
‖(Uk0 ,Vk0 ,Wk0)− (Uk0−1,Vk0−1,Wk0−1)‖

1−θKL
θKL

F (H.6)

where in the last line we have used eq. (11.10) and eq. (H.1). Now we observe that the last line of eq. (H.6) is finite,

which shows that the sequences {(Uk,Vk,Wk)}k∈N is Cauchy and hence is a convergent sequence. Then using the

same arguments as Case I, we know that the unique limit point of this Cauchy sequence is also a critical point of f .

Convergence rate. We have showed that {(Uk,Vk,Wk)} is convergent to a unique critical point (U,V,W).

In other words, the limit point set L(U0,V0,W0) is a singleton containing this unique critical point (U,V,W).

Now, we are ready to further bound the convergence rate of the process (Uk,Vk,Wk) → (U,V,W). The key is to
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utilizing the finite length inequality eq. (H.6):

∞∑
k=k0

‖(Uk+1,Vk+1,Wk+1)− (Uk,Vk,Wk)‖F ≤ ‖(Uk0
,Vk0

,Wk0
)− (Uk0−1,Vk0−1,Wk0−1)‖F

+ α‖(Uk0 ,Vk0 ,Wk0)− (Uk0−1,Vk0−1,Wk0−1)‖
1−θKL
θKL

F

with α :=
(CKL

√
2Lg)

1
θKL

λ(1−θKL) .

We divide the following discussion into two cases based on the value of the KL exponent θKL.

Case I: θKL ∈ [0, 1
2 ]. Since θKL ∈ [0, 1

2 ], we have 1−θKL
θKL

≥ 1. For simplifying notations, define Pk =∑∞
i=k ‖(Ui+1,Vi+1,Wi+1)− (Ui,Vi,Wi)‖F . From eq. (H.6), we know that

Pk0 ≤ Pk0−1 − Pk0 + α[Pk0−1 − Pk0 ]
1−θKL
θKL (H.7)

Since by Part (ii) of Theorem 11.5.1 Pk−1−Pk → 0 as k →∞, there exists a positive integer k1 such that Pk−1−Pk <

1, for all k ≥ k1. Then combining (H.7) and the fact 1−θKL
θKL

≥ 1, we have

Pk ≤ (1 + α)(Pk−1 − Pk), ∀k ≥ k

with k := max{k0, k1}, which further gives that

Pk ≤
1 + α

2 + α
Pk−1, ∀k ≥ k

Note that 1+α
2+α ∈ ( 1

2 , 0), as α =
(CKL

√
2Lg)

1
θKL

λ(1−θKL) > 0. Therefore, we show a linear convergence rate of {Pk} i.e.

Pk ≤ O(( 1+α
2+α )k−k), ∀k ≥ k. Then using that

‖(Uk,Vk,Wk − (U,V,W)‖F = ‖(Uk,Vk,Wk)− lim
k→∞

(Uk,Vk,Wk)‖F ≤ Pk

by the triangle inequality, we are guaranteed that the convergence rate is linear:

‖(Uk,Vk,Wk)− (U,V,W)‖F ≤ O
((

1 + α

2 + α

)k−k)
, ∀k ≥ k

Case II: θKL ∈ ( 1
2 , 1). In this case, 1−θKL

θKL
≤ 1. Using a similar analysis as in Case I, we can deduce from eq. (H.7)

and the fact 1−θKL
θKL

≤ 1 to obtain that

Pk ≤ (1 + α)[Pk−1 − Pk]
1−θKL
θKL , ∀k ≥ k. (H.8)

Then, using eq. (H.8) and following a similar argument as in [213, Theorem 2], we get that

P
1−2θKL
1−θKL
k − P

1−2θKL
1−θKL
k−1 ≥ ξ, ∀k ≥ k (H.9)
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for some positive ξ, which implies that

P
1−2θKL
1−θKL
k ≥ P

1−2θKL
1−θKL
k − P

1−2θKL
1−θKL
k−1

≥ (k − k)ξ, ∀k ≥ k

implying Pk ≤ [(k − k)ξ]
− 1−θKL

2θKL−1 , ∀k ≥ k. Finally, using the fact that ‖(Uk,Vk,Wk)− (U,V,W)‖F ≤ Pk, we

arrive at a sub-linear convergence rate of {(Uk,Vk,Wk)}.
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