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Abstract

In recent years, inertial sensors have undergone major developments. The quality
of their measurements has improved while their cost has decreased, leading to an
increase in availability. They can be found in stand-alone sensor units, so-called
inertial measurement units, but are nowadays also present in for instance any
modern smartphone, in Wii controllers and in virtual reality headsets.

The term inertial sensor refers to the combination of accelerometers and gy-
roscopes. These measure the external specific force and the angular velocity, re-
spectively. Integration of their measurements provides information about the
sensor’s position and orientation. However, the position and orientation estimates
obtained by simple integration suffer from drift and are therefore only accurate
on a short time scale. In order to improve these estimates, we combine the inertial
sensors with additional sensors and models. To combine these different sources
of information, also called sensor fusion, we make use of probabilistic models to
take the uncertainty of the different sources of information into account. The first
contribution of this thesis is a tutorial paper that describes the signal processing
foundations underlying position and orientation estimation using inertial sensors.

In a second contribution, we use data from multiple inertial sensors placed on
the human body to estimate the body’s pose. A biomechanical model encodes the
knowledge about how the different body segments are connected to each other.
We also show how the structure inherent to this problem can be exploited. This
opens up for processing long data sets and for solving the problem in a distributed
manner.

Inertial sensors can also be combined with time of arrival measurements from
an ultrawideband (uwb) system. We focus both on calibration of the uwb setup
and on sensor fusion of the inertial and uwbmeasurements. The uwbmeasure-
ments are modeled by a tailored heavy-tailed asymmetric distribution. This distri-
bution naturally handles the possibility of measurement delays due to multipath
and non-line-of-sight conditions while not allowing for the possibility of measure-
ments arriving early, i.e. traveling faster than the speed of light.

Finally, inertial sensors can be combined with magnetometers. We derive an
algorithm that can calibrate a magnetometer for the presence of metallic objects
attached to the sensor. Furthermore, the presence of metallic objects in the envi-
ronment can be exploited by using them as a source of position information. We
present a method to build maps of the indoor magnetic field and experimentally
show that if a map of the magnetic field is available, accurate position estimates
can be obtained by combining inertial and magnetometer measurements.
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Populärvetenskaplig sammanfattning

När regissören Seth MacFarlane animerade teddybjörnen Ted i den storsäljande
filmen med samma namn, lånade han ut inte bara sin röst utan också sin kropp till
Ted. Genom att montera en mängd sensorer på kroppen, kan man lagra rörelse-
mönster digitalt, och sedan spela upp dem i exempelvis en animerad teddybjörn.
Tekniken har använts inte bara i en stor mängd filmer, utan också av spelindustrin
för att utveckla verklighetstrogna avatarer, i medicinsk rehabilitering, och för att
analysera och optimera rörelsemönster inom elit-idrott.

Denna avhandling behandlar en rad forskningsproblem kring denna typ av
sensorer, av exakt samma modell som användes i filmen Ted. Sensorerna som
används är en kombination av så kallade tröghetssensorer (eng. inertial sensors)
sammansatta i små enheter. Varje enhet mäter acceleration inklusive tyngdac-
celerationen med accelerometer och rotationshastigheter med gyroskop. Dessa
sensorer kan tillsammans ge information om enhetens orientering och position.
Här används även andra sensortyper och annan information, såsom matematiska
modeller. Eftersom dessa modeller är en förenkling av verkligheten och sensor-
mätningar aldrig är exakta, vill vi kombinera olika informationskällor, och ange
hur mycket vi kan lita på varje källa. Detta kallas sensorfusion och kan göras med
probabilistiska modeller som kan representera osäkerhet.

En sådan modell som används för att skatta kroppens rörelser är en biomeka-
nisk modell som beskriver kroppens olika delar och hur dessa kan röra sig. I vår
modell är dessa kroppsdelar sammankopplade. Vi antar alltså att personen inte
förlorar kroppsdelar under experimenten. Denna typ av information kan använ-
das för att animera teddybjörnen Ted eller för att skapa avatarer i dataspel. Om
vi även vill att de ska interagera, till exempel hålla hand, behöver vi veta var de
är. För att åstadkomma detta kan vi lägga till positionsmätningar.

En typ av sensor som ofta kombineras med tröghetssensorer är magnetomet-
rar. Dessa mäter magnetfältet och man kan likna den vid en kompass som till-
handahåller information om sensorns orientering. I denna avhandling används
magnetometern även för att bestämma sensorns position. Magnetometern mäter
om det finns magnetiskt material i till exempel möbler eller i byggnaden. Denna
information kan man använda för att avgöra var i byggnaden sensorn befinner
sig.

Utvecklingen av tröghetssensorer har gått snabbt de senaste åren. Kvaliteten
på mätningarna har ökat samtidigt som kostnaden har minskat, vilket har lett till
en ökad tillgänglighet. Idag finns de exempelvis i mobiltelefoner, handkontroller
till Wii tv-spel och i virtual reality headsets. Allt detta öppnar upp möjligheter för
flera spännande tillämpningar inom detta intressanta forskningsområde. Denna
avhandling visar att bra information om orientering och position kan fås genom
att kombinera olika sorters mätningar och modeller. Kanske kan det leda till att
vi kan animera teddybjörnar i våra egna vardagsrum om några år!
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Notation

Abbreviations

Abbreviation Meaning

bfgs Broyden-Fletcher-Goldfarb-Shanno
ekf Extended Kalman filter
gp Gaussian process
gps Global positioning system
imu Inertial measurement unit
kf Kalman filter
ls Least squares
map Maximum a posteriori
mekf Multiplicative extended Kalman filter
mems Micro-machined electromechanical system
mhe Moving horizon estimation
ml Maximum likelihood
nlos Non-line-of-sight
nls Nonlinear least squares
pdf Probability density function
pdr Pedestrian dead-reckoning
pf Particle filter

pf-map Maximum a posteriori estimate for the particle filter
rms Root mean square
rmse Root mean square error
rts Rauch-Tung-Striebel
rbpf Rao-Blackwellized particle filter

rbpf-map Maximum a posteriori estimate for the Rao-
Blackwellized particle filter

slam Simultaneous localization and mapping
sqp Sequential quadratic programming
toa Time of arrival
tdoa Time difference of arrival
uwb Ultrawideband
vr Virtual reality
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xviii Notation

Symbols and operators

Notation Meaning

xt Vector x at time t
x1:N Vector x from time t = 1 to t = N
x̂ Estimate of x
xu Vector x expressed in the u-frame
Ruv Rotation matrix from the v-frame to the u-frame
� Quaternion multiplication
qL Left quaternion multiplication of the quaternion q
qR Right quaternion multiplication of the quaternion q
qv Vector part of the quaternion q
R Set of real numbers

SO(3) Special orthogonal group in three dimensions
detA Determinant of the matrix A
TrA Trace of the matrix A
AT Transpose of the matrix A
× Cross product

[a×] Cross product matrix of the vector a
⊗ Kronecker product
A−1 Inverse of the matrix A
A† Pseudo-inverse of the matrix A

N (µ, σ2) Gaussian distribution with mean µ and covariance σ2

Cauchy(µ, γ) Cauchy distribution with location parameter µ and
scale parameter γ

U (a, b) Uniform distribution on the interval [a, b]
GP (µ, k) Gaussian process with mean µ and covariance func-

tion k
p( · ) Probability density function

p (a | b) Conditional probability of a given b
p (a, b) Joint probability of a and b
∼ Is distributed according to
E Expected value

cov Covariance
In Identity matrix of size n × n

0m×n Zero matrix of size m × n
, Defined as
∅ Empty set
∈ Is a member of

A ⊆ B A is a subset of or is included in B
arg max Maximizing argument
arg min Minimizing argument
‖a‖2 Two-norm of the vector a
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1
Introduction

In this thesis, we consider the problem of estimating position and orientation
using inertial sensors. In Section 1.1, we give some example applications and in-
troduce what inertial sensors are and what their measurements look like. We will
also discuss why inertial sensors typically need to be combined with additional
sensors or models to obtain accurate position and orientation information. Exam-
ples of additional sensors and models used in this thesis are given in Section 1.2.
In Sections 1.3 and 1.4, we will introduce the contributions of the thesis and give
an outline of the rest of the thesis.

1.1 Background

Sensors can be used to provide information about the position and orientation of
a person or an object. For instance, it is possible to place sensors on a human body
to see how the person moves. This information can be useful for rehabilitation or
for improving sports performance. An example can be seen in Figure 1.1a where
Olympic and world champion speed skating Ireen Wüst wears sensors on her
body that give information about her posture while ice skating. One can imagine
that she can use this information to analyze which angles her knees and hips
should have to skate as fast as possible and if her posture changes when she gets
more tired. It is also possible to use the information about how a person moves
for motion capture in movies and games, as illustrated in Figure 1.1b, where the
actor Seth MacFarlane wears sensors on his body that measure his movements
to animate the bear Ted. Sensors can also be placed in or on objects, for example
cars, to provide information about their position and orientation as illustrated in
Figure 1.1c. This information is for instance useful for self-driving cars. There is
a wide range of other examples that one can think of, such as using sensors to

3
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(a) Left: Olympic and world champion speed skating
Ireen Wüst wearing sensors on her body. Right: graph-
ical representation of the estimated orientation and
position of her body segments.

(b) Actor Seth MacFarlane wearing sensors
on his body to capture his motion and ani-
mate the bear Ted.

(c) Sensors can be used to provide informa-
tion about the position of the cars in a chal-
lenge on cooperative and autonomous driv-
ing.

Figure 1.1: Example applications of using sensors to obtain information
about the position and orientation of cars and of the various body segments
of a person. Courtesy of Xsens Technologies.
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(a) Gyroscope measurements yω,t in the
x- (blue), y- (green) and z-axis (red) of the
sensor.
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(b) Accelerometer measurements ya,t in
the x- (blue), y- (green) and z-axis (red) of
the sensor.

Figure 1.2: Inertial measurements collected with a smartphone.

obtain information about the position and orientation of robots, unmanned areal
vehicles, trains and people.

The sensors placed on the people and in the cars in Figure 1.1 are inertial sen-
sors. The term inertial sensor is used to refer to the combination of accelerometers
and gyroscopes. A gyroscope measures the rate of change of the orientation of the
sensor, called the angular velocity. The gyroscopes that we consider have three
axes, implying that they measure the angular velocity in three directions. This is
illustrated in Figure 1.2a, which shows gyroscope measurements collected with a
Sony Xperia Z5 Compact smartphone using the app described in Hendeby et al.
(2014). For the first 10 seconds, the smartphone was lying stationary on a table.
Afterwards, the gyroscope was rotated back and forth around its x-, y- and z-axis.
An accelerometer measures both the earth’s gravity and the acceleration of the
sensor. The accelerometers that we consider also have three axes as illustrated in
Figure 1.2b. During the first 10 seconds, the smartphone was again lying station-
ary on a table. The accelerometer measurements can be seen to be around zero
in the x- and y- axis, while the z-axis measures a value of around 10 m/s2 which
is due to the earth’s gravity. When rotating the smartphone, the accelerometer
measures the gravity in different axes. After around 37 seconds, the smartphone
was shaken, resulting in a significant acceleration that is measured in addition to
the earth’s gravity.

Over recent years, inertial sensors have undergone major developments. They
have become smaller, lighter and cheaper while providing more accurate measure-
ments. Because of this, they are nowadays available in a large number of devices
such as smartphones, Wii controllers and virtual reality (vr) headsets, as shown
in Figure 1.3. They are also present in dedicated devices called inertial measure-
ment units (imus). The sensor devices placed on the persons and in the cars in
Figure 1.1 are imus.

Gyroscopes can be used to provide information about the orientation of the
sensor, by adding up the changes in orientation over time. This process is called
integration of the signal. Accelerometers can be used to provide information both
about the position and about the orientation of the sensor. If the sensor is not
accelerated, the accelerometer measurements can be used to provide information
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(a) Left bottom: an Xsens mtx imu
(Xsens Technologies B.V., 2016). Left top:
a Trivisio Colibri Wireless imu (Trivisio
Prototyping GmbH, 2016). Right: a Sam-
sung Galaxy S4 mini smartphone.

(b) A Samsung gear vr.1 (c) A Wii controller containing
an accelerometer and a Motion-
Plus expansion device containing a
gyroscope.2

Figure 1.3: Examples of devices containing inertial sensors.

1 ‘Samsung Gear vr’ available at flic.kr/photos/pestoverde/15247458515 under cc by
2.0 (http://creativecommons.org/licenses/by/2.0).

2 ‘WiiMote with MotionPlus’ by Asmodai available at https://commons.wikimedia.org/
wiki/File:WiiMote_with_MotionPlus.JPG under cc by sa (https://creativecommons.
org/licenses/by-sa/3.0/).

flic.kr/photos/pestoverde/15247458515
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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Figure 1.4: Schematic illustration of dead-reckoning, where accelerometer
and gyroscope measurements are integrated to position and orientation.

about the orientation of the sensor, because they measure the direction of the
earth’s gravity with respect to the axes of the sensor. If the sensor is accelerated,
the measurements provide information about the change in velocity, which in turn
provides information about the change in position. Hence, to obtain position infor-
mation from the acceleration of the sensor, the signal needs to be integrated twice.
To be able to distinguish between the acceleration of the sensor and the earth’s
gravity, the orientation needs to be known so that the gravity component can be
subtracted from the measurements. Because of this, when using inertial sensors,
the estimation of the sensor’s position is inextricably linked to the estimation of
its orientation. The process of integrating the inertial sensor measurements to
obtain position and orientation information is often called dead-reckoning. This
process is summarized in Figure 1.4.

In practice, the position and orientation estimates obtained using dead-reck-
oning are only accurate for a short time. The reason is that the gyroscope and ac-
celerometer measurements are both biased and noisy, as illustrated in Figure 1.5,
where we zoom in on the first 10 seconds of the data shown in Figure 1.2. Because
of this, the integration steps from angular velocity to rotation and from accelera-
tion to position introduce integration drift. The integration drift in orientation for
simulated gyroscope data is illustrated in Figure 1.6. This simulated data has the
same bias as the gyroscope measurements in Figure 1.5a, and the same spread in
the noise. Because of the constant bias, the orientation error grows linearly with
time. The different lines in Figure 1.6 represent the orientation error for differ-
ent realizations of this noise. The variation in the orientation error for different
noise realizations increases over time. The integration drift is more severe for po-
sition, which relies both on double integration of the acceleration and on accurate
orientation estimates to subtract the earth’s gravity.

Because the process of dead-reckoning only gives accurate position and orien-
tation information on a short time scale, inertial sensors are typically combined
with additional sensors or additional models. In this thesis, we consider two sepa-
rate problems related to position and orientation estimation using inertial sensors.
The first is concerned only with orientation estimation. The three-dimensional
orientation can be described in terms of the roll, pitch and yaw or heading angles.
The combination of the roll and pitch angles is often also called inclination. In a
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(a) Gyroscope measurements yω,t in the
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(b) Accelerometer measurements ya,t
in the x- (blue), y- (green) and z-axis
(red) of the sensor.
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Figure 1.5: The first 10 seconds of the gyroscope and accelerometer measure-
ments shown in Figure 1.2, during which the smartphone is lying stationary
on a table (a,b) and the histograms of one of the axes of the gyroscope and of
the accelerometer (c,d).
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Figure 1.6: Integration of simulated one-dimensional gyroscope measure-
ments to orientation for 50 different noise realizations having the same char-
acteristics as in Figure 1.5a.
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second problem, we consider the combined estimation of position and orientation,
which is often also called pose estimation. In this case, we are interested both in
the three-dimensional orientation and in the three-dimensional position.

1.2 Additional sensors and models

In this section, we will discuss a number of additional sensors and additional
models that are used in this thesis to complement the inertial sensors.

1.2.1 Magnetometers

A magnetometer measures the strength and the direction of the magnetic field.
The magnetic field consists of contributions both from the local earth magnetic
field and from the field due to the presence of magnetic material. The magnitude
and the direction of the earth magnetic field depend on the location on the earth.
The horizontal component points to the earth magnetic north. The properties of
the earth magnetic field are accurately known from geophysical studies, see e.g.
National Centers for Environmental Information (2016).

In combination with inertial sensors, magnetometers typically serve the pur-
pose of a compass and are used to provide information about the sensor’s heading.
This relies on the assumption that the magnetic field is at least locally constant
and that it points in the direction of a local magnetic north. There are two rea-
sons why this assumption is frequently violated in practice. Firstly, the sensor
can be mounted such that it is rigidly attached to magnetic material. This is for
instance the case when the magnetometer is integrated in a smartphone or when
it is placed in a car. Secondly, objects containing magnetic material can be present
in the vicinity of the sensor, specifically in indoor environments. For instance,
there is typically a large amount of magnetic material present in the structures of
buildings and in the furniture present in the building.

If the magnetic material is rigidly attached to the sensor, the magnetometer can
be calibrated for the presence of this material. Afterwards, the measurements can
be used for heading estimation as if the material was not present. The presence
of magnetic material in the vicinity of the sensor, however, can not be calibrated
for and is typically considered an undesired disturbance. An alternative view is
that the presence of magnetic material in indoor environments can be exploited
by using it as a source of position information, see e.g. Angermann et al. (2012);
Frassl et al. (2013); Solin et al. (2016). This can be done by building a map of
the magnetic field. Both information about the strength and about the direction
of the field can be included in the map. An example of an indoor magnetic field
map is shown in Figure 1.7a. It is built from data collected using the mobile
robot shown in Figure 1.7b. After the map has been constructed, magnetometer
measurements can be compared to it in order to obtain information about possible
sensor locations, see e.g. Solin et al. (2016) and Paper G.
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(a) Map of the magnitude of the indoor magnetic
field.

(b) Mobile robot.

Figure 1.7: Left: Magnitude of an indoor magnetic field estimated using the
method presented in Paper F. Right: Mobile robot that was used to collect
data.

1.2.2 Ultrawideband

Time of arrival (toa) measurements from an ultrawideband (uwb) system can
be used to provide information about the position of the sensor. Uwb is a radio
technology which uses a very large frequency band. An example of a uwb sys-
tem consisting of a number of stationary uwb receivers and a number of small,
mobile transmitters is depicted in Figure 1.8a. Each uwb transmitter sends out a
uwb pulse as illustrated in Figure 1.8b. The pulse travels with the speed of light
towards the receivers, which each measure when the pulse arrives. Combining
the measurements from different receivers, it is possible to obtain an estimate of
the position of the transmitter. Note that the time when the pulses arrive needs to
be measured with very high accuracy. For instance, if the transmitter is 10 meters
away from the receiver, it will take the pulse only approximately 33 nanoseconds
to reach the receiver.

1.2.3 Biomechanical models

In the examples shown in Figures 1.1a and 1.1b, multiple imus are placed on the
human body to estimate its movements. More specifically, the imus are placed
on a large number of body segments and the position and the orientation of each
body segment is estimated. This is schematically illustrated in Figure 1.9a. The
two body segments can be thought of as the upper and the lower leg, each having
an imu attached to it. The sensors are attached as rigidly as possible to the body
segments. This is illustrated in Figure 1.9b, which shows a suit containing 17
imus. The suit is meant to be a tight fit such that the sensors move as little as
possible with respect to the body. For this application, knowledge about how the
human body can move is available to complement the inertial measurements. For
instance, the different body segments are known to be connected to each other.
This can be captured in biomechanical models.
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(a) Hardware used in a uwb setup.
More specifically, a uwb receiver
and a small, battery-powered uwb
transmitter. Courtesy of Xsens
Technologies.

uwb transmitter

uwb receiver

uwb pulse

(b) A uwb setup consisting of a number of sta-
tionary receivers obtaining toa measurements
of signal pulses originating from a mobile trans-
mitter.

Figure 1.8: Illustration of the toa measurements and the hardware used in
a uwb setup.

(a) Schematic illustration of two connected
body segments (purple and green), each
with a sensor (orange) attached to it.

(b) Suit containing 17 imus
placed on the human body.
Courtesy of Xsens Tech-
nologies.

Figure 1.9: Illustration of using imus placed on the human body to estimate
its movements.

1.3 Main contributions

In this thesis, inertial sensors are combined with additional sensors and addi-
tional models for position and orientation estimation. Examples of sensors and
models that can be used for this were discussed in Section 1.2. The choice of these
examples was highly inspired by the contributions of this thesis. In short, these
contributions are:
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• A tutorial paper describing the signal processing foundations, i.e. the algo-
rithms and models, underlying position and orientation estimation using
inertial sensors [Paper A].

• An approach to estimate the pose of the human body using inertial sensors
placed on the body, as illustrated in Figure 1.9 [Paper B]. We also present a
method that allows us to solve this problem for large data sets. The same
approach can be used to distribute the computations needed to solve the
problem over the sensors on the body [Paper C].

• An approach to combine inertial measurements with toa measurements
from a uwb system for indoor positioning. We provide solutions to the
pose estimation problem using inertial and uwb measurements, and to the
calibration of the uwb setup shown in Figure 1.8 [Paper D].

• We have developed a magnetometer calibration algorithm which uses in-
ertial sensors to calibrate the magnetometer for the presence of magnetic
disturbances attached to the sensor. It also calibrates for magnetometer sen-
sor errors and for misalignment between the magnetometer and the inertial
sensor axes [Paper E].

• An approach to build maps of the indoor magnetic field, taking into account
the well-known physical properties of the magnetic field [Paper F]. An ex-
ample of a magnetic field map obtained using this method is illustrated in
Figure 1.7. We also show that the magnetic field can be used as a source of
position information for an experiment where we generate a known mag-
netic field [Paper G].

1.4 Outline

The thesis consists of two parts. In Part II, seven papers are presented. The con-
tributions of these papers were discussed in Section 1.3. Below we provide a sum-
mary of each paper in Part II together with a discussion of the background and
of the author’s contributions. A background to these papers is provided in Part I.
In this introductory chapter, we have briefly introduced the problem at hand, the
sensors and models involved and the contributions of the thesis. To combine these
different sources of information, also called sensor fusion, we make use of proba-
bilistic models to take into account each source of information and its accuracy.
In Chapters 2 and 3 we discuss the subjects of probabilistic models and inference
using these models. Having introduced these topics we revisit the contributions
of the thesis in Chapter 4 and discuss them in more technical detail, followed by
a discussion of some directions for future work.

Paper A: Using inertial sensors for position and orientation
estimation

Paper A is an edited version of
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M. Kok, J. D. Hol, and T. B. Schön. Using inertial sensors for position
and orientation estimation. Technical Report LiTH-ISY-R-3093, De-
partment of Electrical Engineering, Linköping University, Linköping,
Sweden, December 2016a.

Summary: In recent years, micro-machined electromechanical system (mems)
inertial sensors (3D accelerometers and 3D gyroscopes) have become widely avail-
able due to their small size and low cost. Inertial sensor measurements are ob-
tained at high sampling rates and can be integrated to obtain position and orien-
tation (pose) estimates. These pose estimates are accurate on a short time scale,
but suffer from integration drift over longer time scales. To overcome this issue,
inertial sensors are typically combined with additional sensors and models. In
this tutorial we focus on the signal processing aspects of pose estimation using
inertial sensors, discussing different modeling choices and a selected number of
important algorithms. These algorithms are meant to provide the reader with a
starting point to implement their own pose estimation algorithm. The algorithms
include optimization-based smoothing and filtering as well as computationally
cheaper extended Kalman filter implementations.

Background and contributions: A couple of years ago, Prof. Thomas Schön
came up with the idea of writing a tutorial paper on pose estimation using inertial
sensors. Towards the end of the PhD of the author of this thesis, the plans for
writing this paper became more concrete since it is a nice way of rounding up
the work we have done together in the past years. The paper has been written
together with Dr. Jeroen Hol.

Paper B: An optimization-based approach to motion capture
using inertial sensors

Paper B is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. An optimization-based approach to
human body motion capture using inertial sensors. In Proceedings of
the 19th World Congress of the International Federation of Automatic
Control, pages 79–85, Cape Town, South Africa, August 2014.

Summary: In inertial human motion capture, a multitude of body segments
are equipped with inertial measurement units, consisting of 3D accelerometers,
3D gyroscopes and 3D magnetometers. Relative position and orientation esti-
mates can be obtained using the inertial data together with a biomechanical model.
In this work we present an optimization-based solution to magnetometer-free in-
ertial motion capture. It allows for natural inclusion of biomechanical constraints,
for handling of nonlinearities and for using all data in obtaining an estimate. As
a proof-of-concept we apply our algorithm to a lower body configuration, illus-
trating that the estimates are drift-free and match the joint angles from an optical
reference system.

Background and contributions: The co-authors Dr. Jeroen Hol and Prof.
Thomas Schön came up with the idea of solving the human body motion capture
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problem as an optimization problem. The implementation of the optimization
algorithm has been done using a framework developed by Xsens Technologies.
With this framework, it is possible to define the optimization problem at a high
level. The author of this thesis has been involved in developing and implementing
the algorithm, in the data collection and has written a major part of the paper.

Paper C: A scalable and distributed solution to the inertial motion
capture problem

Paper C is an edited version of

M. Kok, S. Khoshfetrat Pakazad, T. B. Schön, A. Hansson, and J. D.
Hol. A scalable and distributed solution to the inertial motion cap-
ture problem. In Proceedings of the 19th International Conference
on Information Fusion, pages 1348–1355, Heidelberg, Germany, July
2016b.

Summary: In inertial motion capture, a multitude of body segments are
equipped with inertial sensors, consisting of 3D accelerometers and 3D gyro-
scopes. Using an optimization-based approach to solve the motion capture prob-
lem allows for natural inclusion of biomechanical constraints and for modeling
the connection of the body segments at the joint locations. The computational
complexity of solving this problem grows both with the length of the data set
and with the number of sensors and body segments considered. In this work, we
present a scalable and distributed solution to this problem using tailored message
passing, capable of exploiting the structure that is inherent in the problem. As a
proof-of-concept we apply our algorithm to data from a lower body configuration.

Background and contributions: This work solves the inertial motion capture
problem from Paper B using the message passing algorithm developed by Khosh-
fetrat Pakazad et al. (2016). After the author of this thesis presented the inertial
motion capture problem during an internal group meeting, Dr. Sina Khoshfetrat
Pakazad suggested that the structure of the motion capture problem can be ex-
ploited using the message passing algorithm. The implementation and the writing
of the paper has been done together with Dr. Sina Khoshfetrat Pakazad.

Paper D: Indoor positioning using ultrawideband and inertial
measurements

Paper D is an edited version of

M. Kok, J. D. Hol, and T. B. Schön. Indoor positioning using ultra-
wideband and inertial measurements. IEEE Transactions on Vehicular
Technology, 64(4):1293–1303, 2015b.

Summary: In this work we present an approach to combine measurements
from inertial sensors (accelerometers and gyroscopes) with time of arrival mea-
surements from an ultrawideband system for indoor positioning. Our algorithm
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uses a tightly-coupled sensor fusion approach, where we formulate the problem
as a maximum a posteriori problem that is solved using an optimization approach.
It is shown to lead to accurate 6D position and orientation estimates when com-
pared to reference data from an independent optical tracking system. To be able
to obtain position information from the ultrawideband measurements, it is im-
perative that accurate estimates of the ultrawideband receivers’ positions and
their clock offsets are available. Hence, we also present an easy-to-use algorithm
to calibrate the ultrawideband system using a maximum likelihood formulation.
Throughout this work, the ultrawideband measurements are modeled by a tai-
lored heavy-tailed asymmetric distribution to account for measurement outliers.
The heavy-tailed asymmetric distribution works well on experimental data, as
shown by analyzing the position estimates obtained using the ultrawideband
measurements via a novel multilateration approach.

Background and contributions: The co-authors of this paper, Dr. Jeroen Hol
and Prof. Thomas Schön, have been working on the subject of indoor position-
ing using ultrawideband and inertial measurements, resulting in Hol et al. (2009,
2010) and in the results presented in Hol (2011). The author of this thesis has sub-
stantially extended and adapted the previously presented algorithms for sensor
fusion, calibration and multilateration. The paper has been written together with
Dr. Jeroen Hol.

Paper E: Magnetometer calibration using inertial sensors

Paper E is an edited version of

M. Kok and T. B. Schön. Magnetometer calibration using inertial sen-
sors. IEEE Sensors Journal, 16(14):5679 – 5689, 2016.

Earlier versions of this work were presented in:

M. Kok and T. B. Schön. Maximum likelihood calibration of a mag-
netometer using inertial sensors. In Proceedings of the 19th World
Congress of the International Federation of Automatic Control, pages
92–97, Cape Town, South Africa, August 2014,

M. Kok, J. D. Hol, T. B. Schön, F. Gustafsson, and H. Luinge. Cali-
bration of a magnetometer in combination with inertial sensors. In
Proceedings of the 15th International Conference on Information Fu-
sion, pages 787–793, Singapore, July 2012.

Summary: In this work we present a practical algorithm for calibrating a
magnetometer for the presence of magnetic disturbances and for magnetometer
sensor errors. To allow for combining the magnetometer measurements with in-
ertial measurements for orientation estimation, the algorithm also corrects for
misalignment between the magnetometer and the inertial sensor axes. The cali-
bration algorithm is formulated as the solution to a maximum likelihood problem
and the computations are performed offline. The algorithm is shown to give good



16 1 Introduction

results using data from two different commercially available sensor units. Us-
ing the calibrated magnetometer measurements in combination with the inertial
sensors to determine the sensor’s orientation is shown to lead to significantly
improved heading estimates.

Background and contributions: Before the author of this thesis started her
work as a PhD student at Linköping University, she worked at Xsens Technologies.
During this time she studied the topic of magnetometer calibration. Hence, the
magnetometer calibration problem provided a good starting point for research
during her PhD. A first paper on this subject has therefore been co-authored by
Dr. Jeroen Hol and Dr. Henk Luinge from Xsens Technologies. Later work has
mainly been done in cooperation with Prof. Thomas Schön. Dr. Henk Luinge and
Laurens Slot from Xsens Technologies and Dr. Gustaf Hendeby from Linköping
University have been so kind as to help in collecting the data sets presented in the
paper. The author of this thesis has implemented the calibration algorithm and
has written a major part of the paper.

Paper F: Modeling and interpolation of the ambient magnetic field
by Gaussian Processes

Paper F is an edited version of

A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. Modeling
and interpolation of the ambient magnetic field by Gaussian processes.
ArXiv e-prints, September 2015. arXiv:1509.04634.

Summary: Anomalies in the ambient magnetic field can be used as features
in indoor positioning and navigation. By using Maxwell’s equations, we derive
and present a Bayesian non-parametric probabilistic modeling approach for in-
terpolation and extrapolation of the magnetic field. We model the magnetic field
components jointly by imposing a Gaussian process (gp) prior on the latent scalar
potential of the magnetic field. By rewriting the gp model in terms of a Hilbert
space representation, we circumvent the computational pitfalls associated with
gp modeling and provide a computationally efficient and physically justified
modeling tool for the ambient magnetic field. The model allows for sequential
updating of the estimate and time-dependent changes in the magnetic field. The
model is shown to work well in practice in different applications: we demonstrate
mapping of the magnetic field both with an inexpensive Raspberry Pi powered
robot and on foot using a standard smartphone.

Background and contributions: This paper has largely been written during
the author’s PreDoc visit to the Bayesian Methodology Group at Aalto University
in January – March 2015. It combines the approaches from Wahlström et al. (2013)
and Solin and Särkkä (2014) and builds on the common interest of the authors in
localization using magnetic fields as a source of position information. The map
of the indoor magnetic field obtained using the method presented in this paper,
has been used in Solin et al. (2016) for localization. In the future we hope to
find time to combine these ideas into a working simultaneous localization and
mapping (slam) solution. The work on implementation and writing of the paper
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has been split more or less equally between Dr. Arno Solin and the author of this
thesis.

Paper G: MEMS-based inertial navigation based on a magnetic
field map

Paper G is an edited version of

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based
inertial navigation based on a magnetic field map. In Proceedings
of the 38th International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 6466–6470, Vancouver, Canada, May 2013.

Summary: This paper presents an approach for 6D pose estimation where mems
inertial measurements are complemented with magnetometer measurements as-
suming that a model (map) of the magnetic field is known. The resulting esti-
mation problem is solved using a Rao-Blackwellized particle filter. In our exper-
imental study the magnetic field is generated by a magnetic coil giving rise to a
magnetic field that we can model using analytical expressions. The experimental
results show that accurate position estimates can be obtained in the vicinity of
the coil, where the magnetic field is strong.

Background and contributions: The idea of looking into pose estimation
using magnetometers as a source of position information was started through dis-
cussions with Dr. Slawomir Grzonka during the cadics “Learning World Models”
workshop in 2010 in Linköping. The experiments used in the paper were per-
formed while the author of this thesis was working at Xsens Technologies. During
this time, a first implementation of the pose estimation algorithm was made, us-
ing an extended Kalman filter. During the author’s time at Linköping University,
the work has been extended with an implementation using a Rao-Blackwellized
particle filter. The author of this thesis wrote a major part of this paper. This paper
was the start of our work towards slam using magnetic measurements.

Publications of related interest, but not included in this thesis

F. Olsson, M. Kok, K. Halvorsen, and T. B. Schön. Accelerometer cal-
ibration using sensor fusion with a gyroscope. In Proceedings of the
IEEE Workshop on Statistical Signal Processing, pages 660–664, Palma
de Mallorca, Spain, June 2016.

M. Kok, J. Dahlin, T. B. Schön, and A. Wills. Newton-based maximum
likelihood estimation in nonlinear state space models. In Proceedings
of the 17th IFAC Symposium on System Identification, pages 398–403,
Beijing, China, October 2015a.

A. Svensson, T. B. Schön, and M. Kok. Nonlinear state space smoothing
using the conditional particle filter. In Proceedings of the 17th IFAC
Symposium on System Identification, pages 975–980, Beijing, China,
October 2015.
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A. J. Isaksson, J. Sjöberg, D. Törnqvist, L. Ljung, and M. Kok. Using
horizon estimation and nonlinear optimization for grey-box identifi-
cation. Journal of Process Control, 30:69–79, June 2015.

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger.
Real-time video based lighting using GPU raytracing. In Proceedings
of the 2014 European Signal Processing Conference (EUSIPCO), pages
1627–1631, Lisbon, Portugal, September 2014.

M. Kok. Probabilistic modeling for positioning applications using
inertial sensors. Licentiate’s thesis no. 1656, Linköping University,
Linköping, Sweden, June 2014.

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling mag-
netic fields using Gaussian processes. In Proceedings of the 38th In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3522 – 3526, Vancouver, Canada, May 2013.



2
Probabilistic models

As discussed in Chapter 1, our interest lies in position and orientation estimation
using inertial sensors. For general estimation problems, two key questions need
to be answered to set up a description of the problem:

What are we interested in? And which information is available?

For the inertial motion capture problem illustrated in Figure 1.9 for instance, we
are interested in estimating the relative position and orientation of each of the
body segments. The information that is available are the inertial measurements
from each of the 17 imus. Furthermore, knowledge is available from biomechan-
ical models. For instance, the body segments are known to be connected to each
other.

Our answers to these two key questions will guide us when we model the
relation between the quantities that we are interested in and the information that
is available. It is important to realize that models are simplifications of reality,
which implies that they are never completely true. Since our sensors are not per-
fect (see Figure 1.5) and since our models are not perfect descriptions of reality,
we typically want to combine multiple sources of information. This is illustrated
in Example 2.1.

Example 2.1: Estimating orientation using inertial measurements
As described in Chapter 1, the gyroscope measures the angular velocity of the sen-
sor and integration of the measurements provides information about the sensor’s
orientation. Modeling the accelerometer measurements as measuring only the
gravity, its measurements can be used to estimate the inclination of the sensor. In
practice, however, the measurements are biased and contain noise, as illustrated
in Figure 1.5. We simulate noisy accelerometer and gyroscope measurements, as-
suming that the sensor is lying still. Note that compared to the data in Figure 1.5,

19
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Figure 2.1: Estimated inclination using integration of simulated gyroscope
measurements (a), by using accelerometer measurements, assuming that the
sensor is stationary (b) and by combining the measurements (c). The roll is
depicted in black, the pitch in grey.

we have assumed that the measurements do not contain any bias. Furthermore,
the noise levels are chosen slightly differently for illustrational purposes.

The inclination estimates obtained by integration of the gyroscope data are
shown in Figure 2.1a. Instead of staying around 0◦, they drift over time. The
inclination estimated from the simulated accelerometer measurements is shown
in Figure 2.1b. As can be seen, the orientation estimates are centered around 0◦.
However, they are quite noisy. We would like to combine the accelerometer and
gyroscope measurements to estimate the inclination such that our estimates look
as smooth as the ones using the gyroscope data but at the same time do not exhibit
any integration drift. An example of our desired outcome is shown in Figure 2.1c.

To effectively combine multiple sources of information, it is beneficial to take
the uncertainty of the different sources into account. For instance, to obtain Fig-
ure 2.1c, we explicitly made use of the knowledge of the noise levels of the (sim-
ulated) measurements. This is an important reason for why we are interested in
using probabilistic models.

We express our models in terms of mathematical relations. For this, we denote
all the quantities that we are interested in the states xt or the parameters θ. The
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Figure 2.2: A number of probability density functions.

subscript t on x implies that we assume that x changes over time and has value xt
at time t. We model the states to be in discrete time from time t = 1 to t = N . The
set of states at all time steps is denoted x1:N . In Example 2.1, the state xt consists
of the inclination of the sensor. The parameters θ do not have a subscript t. With
this we explicitly indicate that they are constant. We will encounter examples of
parameters θ in Chapter 3. We denote the measurements at time t by yt and the set
of all measurements from t = 1, . . . , N by y1:N . In Example 2.1, the measurements
yt consist of both the gyroscope and the accelerometer measurements.

To take the uncertainty of the states x1:N and the measurements y1:N into
account, we represent both the states and the measurements as random variables
distributed according to some probability distribution. Examples of probability
distributions that we encounter throughout this thesis are given in Figure 2.2. The
Gaussian distribution shown in Figure 2.2a has a mean of zero and a covariance
of one. This implies that the variable is most likely to have a value around 0. In
fact, there is a 68% chance that the random variable is between −1 and +1 and a
99.7% chance that it is within −3 and +3. A general Gaussian distribution with
mean µ and covariance Σ is denoted N (µ,Σ).

For the Gaussian distribution in Figure 2.2a, the probability of the variable
to have a value smaller than −3 or larger than +3 is very small. The Cauchy
distribution shown in Figure 2.2b on the other hand, assigns a larger probability
to values deviating more from zero. A distribution that models the probability of
large positive values to be higher than the probability of large negative values is
shown in Figure 2.2c.

2.1 Models for position and orientation estimation

In this section we discuss a number of probabilistic models to illustrate the types
of models that we use for position and orientation estimation in the papers in
Part II. We start with an example of a dynamic model in Example 2.2. Dynamic
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models are used to describe the relation between the state xt+1 and xt as

xt+1 | xt ∼ p(xt+1 | xt), (2.1)

where p( · ) denotes a probability density function. The dynamic model describes
the conditional distribution of the state xt+1 given the state xt .

Example 2.2: Dynamic model
For almost all applications, we have some knowledge about the dynamics. For
instance, when estimating the position of a person, it is very unlikely, if not im-
possible, for the person to be in Linköping, Sweden at a specific time instance,
and in Amsterdam, the Netherlands half an hour later. In other words, condi-
tioned on the fact that we know that the person is in Linköping at time t, we
know something about where the person can be at time t + 1.

Since inertial sensors measure the acceleration and the angular velocity of the
sensor, they can be used to provide information about the change in position and
orientation from time t to time t + 1. This can be used in a dynamic model. The
inertial measurements are both noisy and biased as illustrated in Figure 1.5. Com-
paring the histograms in Figures 1.5c and 1.5d to the distributions in Figure 2.2,
it can be seen that the inertial sensor measurement noise is quite Gaussian with
a non-zero mean value (bias) and a covariance that is significantly smaller than
one. The presence of Gaussian noise and of a sensor bias can be represented by
the probabilistic dynamic model (2.1).

The model discussed in Example 2.2 is used in Papers A – E and Paper G. In
some applications, additional knowledge is available about the relation between
different parts of the state vector xt . This can explicitly be modeled in terms of
the conditional distribution

xa
t | xb

t ∼ p(xa
t | xb

t ), (2.2)

where xa
t and xb

t are subsets of the states xt . Two examples related to Papers B
and C are discussed in Examples 2.3 and 2.4.

Example 2.3: Sensors placed on body segments
To estimate the pose of the human body, sensors can be placed on different body
segments, as discussed in Section 1.2.3. It is not possible to place the sensors
directly on the bone. Instead, they are placed on the skin and because of the
presence of soft tissue, they will move slightly with respect to the bone. It is
difficult to model this movement exactly. Instead, we assume that the position
and orientation of the sensors on the body segments are constant up to some
Gaussian noise.
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Example 2.4: Connection of body segments at joints
When sensors are placed on a human body, it is possible to make use of the knowl-
edge that the body segments are connected to each other at the joints. This assump-
tion is actually exactly true. Hence, we would like to model this as a deterministic
constraint instead of using a probability distribution.

Finally, we can model the knowledge provided by the sensor measurements
about the states. This can be represented as

yt | xt ∼ p(yt | xt), (2.3)

i.e. in terms of the conditional distribution of the measurements yt given the
state xt . Examples 2.5 and 2.6 discuss the inclusion of uwb and magnetometer
measurements. Uwb measurements are used in Paper D, while magnetometers
are used in Papers E – G.

Example 2.5: Ultrawideband measurements
In Section 1.2.2, we discussed the use of toa measurements from a uwb sys-
tem in combination with inertial sensors. In practice, a small number of pulses
sent by the transmitter to the receivers can be delayed. This can be because the
pulse did not take the shortest path to the receiver, but instead traveled via for
instance the floor or a wall in the building. This is called multipath. It can also
be because the pulse had to travel through some material other than air to reach
the receiver. This is called non-line-of-sight (nlos) and causes a delayed pulse
since the speed of light in material is lower than the speed of light in air. The pres-
ence of a small number of delayed measurements can be modeled by assuming
that the toa measurements yt given the state xt are distributed according to an
asymmetric distribution such as the one shown in Figure 2.2c. This distribution
allows for measurements to be delayed while not allowing for the possibility of
measurements arriving earlier, i.e. traveling faster than the speed of light.

Example 2.6: Magnetometer measurements
Magnetometers measure the local magnetic field. This field consists of contribu-
tions both from the local earth magnetic field and from the magnetic field due to
magnetic material such as metallic structures of buildings and furniture. Because
of this, especially in indoor environments, it can vary significantly over different
locations in the building. Let us define a function f (pn

t ) that gives the magnetic
field at each position pn

t . The magnetometer measurements ym,t can then be mod-
eled as

ym,t = Rbn
t f (pn

t ) + em,t , (2.4)

where em,t is Gaussian measurement noise. The rotation matrix Rbn
t rotates the

magnetic field from the coordinate frame in which the sensor is localized to the
coordinate frame in which the sensor obtains its measurements. Note that we
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use slightly different notation here compared to (2.3). A subscript m is added
to the measurements yt to explicitly indicate that we consider magnetometer
measurements. Furthermore, the state xt in this case consists of both the position
of the sensor pn

t and the orientation Rbn
t .

When the magnetic field is used for heading information, it is typically as-
sumed that the magnetic field is constant, i.e. that f (pn

t ) is a constant three-
dimensional vector. Because of this, local variations of the magnetic field are con-
sidered undesired disturbances. On the other hand, it is also possible to make use
of the changes in the magnetic field to provide position and orientation informa-
tion. For this we would like to know the function f (pn

t ). In practice, it is typically
hard to obtain f (pn

t ) because a large number of magnetic field sources contribute
to the magnetic field, severely complicating the modeling process. However, it is
possible to estimate the function f (pn

t ) by learning a map of the magnetic field.
This can be done by collecting training data, which can be used to predict the
magnetic field at previously unknown locations.

The models discussed in Examples 2.2 – 2.6 can be combined and used for po-
sition and orientation estimation, which is the topic of Section 3.2. In Section 2.2
we will first discuss a method to build maps of the magnetic field.

2.2 Maps of the magnetic field

In Example 2.6, we introduced the problem of building maps of the magnetic
field. An example of a map of the magnetic field is shown in Figure 1.7. The map
is obtained by interpolation and extrapolation of magnetic field measurements
at different locations, collected by a small robot. Hence, based on a number of
measurements, so-called training data, we learn the local magnetic field. This
allows us to predict the magnetic field in previously unobserved locations. In
Paper F, we build these maps by assuming that the magnetic field can be modeled
as a Gaussian process (gp). Gps are defined by Rasmussen and Williams (2006)
as:

Definition 2.7. “A gp is a collection of random variables, any finite number of
which have a joint Gaussian distribution.”

Consider the slightly more general notation as compared to Example 2.6 and
model the measurements yt as

yt = f (xt) + et ,

f (x) ∼ GP (µ(x), k(x, x′)) ,
(2.5)

where et ∼ N (0, σ2
n ) and GP (µ(x), k(x, x′)) denotes a gp with mean µ(x) and

covariance k(x, x′). Hence, the magnetic field at different locations xt is jointly
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Gaussian distributed as



f (x1)
...

f (xN )



∼ N (µ, K), (2.6a)

with

µ =




µ(x1)
...

µ(xN )



, K =




K(x1, x1) · · · K(x1, xN )
...

. . .
...

K(xN , x1) · · · K(xN , xN )



. (2.6b)

Using gps, it is possible to incorporate prior information about the physical prop-
erties of the magnetic field. This is illustrated in Example 2.8.

Example 2.8: Encoding prior knowledge
The choice of covariance function k(x, x′) can encode prior knowledge about the
function f (x). Two well-known covariance functions are the squared exponential
covariance function k

SE
(x, x′) and the exponential covariance function k

E
(x, x′),

defined as

k
SE

(x, x′) = σ2
f exp

(
− ‖x−x′‖222`2

)
, (2.7a)

k
E

(x, x′) = σ2
f exp

(
− ‖x−x′‖2`

)
. (2.7b)

They model the mutual dependence of f (x) on f (x′) in terms of the hyperparam-
eters σf and `. Figures 2.3a – 2.3c show samples drawn from a gp prior using
a squared exponential covariance function with different hyperparameters. As
can be seen, the parameter σf determines the magnitude and the parameter ` the
length scale. The hyperparameters σ and ` therefore influence the shapes of the
functions. They can be learned from data. As shown in Figure 2.3d, the choice
of covariance function can incorporate prior knowledge for instance about the
smoothness of the function.

In Example 2.8, we assumed that x and y are one-dimensional. For the case
of modeling the magnetic field, however, the magnetometer measurements ym,t
and the position pn

t are both three-dimensional vectors. This opens up for addi-
tional modeling choices, for instance on how these three components are related.
Physical knowledge of magnetic fields is available through Maxwell’s equations,
see also Griffiths (1999); Jackson (1999). We incorporate this into the gp prior in
Wahlström et al. (2013) and in Paper F.

2.3 Visualizing the resulting model structures

In this chapter, we have introduced models for two different estimation problems.
The first is estimation of position and orientation, for which we have discussed
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Figure 2.3: Samples from two different gp priors for a number of different
hyperparameters.

several models in Section 2.1. The second is estimation of the magnetic field using
gps discussed in Section 2.2. In this section we discuss the structure of these two
resulting models and visualize them in terms of their corresponding graphical
models (Bishop, 2006).

Combining (2.1) and (2.3), the structure of our model for position and orienta-
tion estimation is graphically illustrated in Figure 2.4. The state xt+1 can be seen
to depend on xt and result in measurements yt+1. Note that xt+1 is conditionally
independent of x1:t−1 given the state xt . This implies that if the sensor’s current
position, velocity and acceleration are known, it is possible to predict the position
and velocity at the next time instance. It is not necessary to know where the sensor
has been or how fast it has traveled before arriving in this state. This property of
the model is called the Markov property. The algorithms used to compute posi-
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x1 x2 xN−1 xN
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Figure 2.4: Structure of pose estimation problem where xt+1 depends on xt
according to (2.1) and results in measurements yt+1 according to (2.3).
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Figure 2.5: Structure of the gp model where noisy measurements yt of the
magnetic field f (xt) at locations xt are available.

tion and orientation estimates which will be introduced in Chapter 3 rely on this
property.

In the gp model (2.5), noisy measurements yt of the magnetic field f (xt) at
different locations xt are available. Having a closer look at the covariance matrix
in (2.6), it can be seen that the magnetic field at each location xt depends on the
magnetic field at all other locations, i.e. that all components K(x, x′) are non-zero.
This is graphically illustrated in Figure 2.5. The fact that f (x1:N ) are all connected
to each other, results in a high computational complexity to build a map of the
magnetic field if N is large. Because of this, approaches that use gp models to
learn function values f (x) often approximate the model in Figure 2.5, see e.g.
Quiñonero-Candela and Rasmussen (2005) for an early survey and Chapter 4 of
Bijl (2016) for a more recent overview. The simplest approximation would be to
simply discard some of the measurements. An alternative approach is used in
Paper F.





3
Inference

In Chapter 2, we focused on modeling the quantities that we are interested in and
the information that is available. In this chapter, we will focus on the question:

How can we use the available models and measurements to infer knowledge
about the quantities we are interested in?

We will use the models on the forms introduced in Chapter 2 to obtain infor-
mation about the sensor’s position and orientation and about the magnetic field.
More formally, our aim is to infer information about the states x1:N and the pa-
rameters θ using the available models and the measurements y1:N . For this, we
make extensive use of the basic relations of probabilities, (see e.g. Gut (1995);
Bishop (2006)),

p(a) =
∫
p(a, b)db, (3.1a)

p(a, b) = p(a | b)p(b). (3.1b)

where p(a | b) denotes the conditional probability of a given b and p(a, b) denotes
the joint probability of a and b.

3.1 Building maps of the magnetic field

Given a data set with measurements y = {yt}Nt=1 at locations x = {xt}Nt=1, it is
possible to infer knowledge about the magnetic field f (x∗) at some new location x∗
using gp regression. In the remainder, we will use the short-hand notation f∗ to
denote f (x∗). Using the fact that y and f∗ are jointly Gaussian as

p(f∗, y | x, x∗) = N
((
y
f∗

)
;
(
0
0

)
,

(
K(x, x) + σ2

n K(x, x∗)
K(x∗, x) K(x∗, x∗)

))
, (3.2)

29
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Figure 3.1: Illustration of gp regression where the mean is represented by a
black line and the grey area represents the uncertainty.

the conditional distribution p(f∗ | x, y, x∗) can be computed. For Gaussian distri-
butions, this conditional distribution can be computed exactly using (3.1b), see
e.g. Schön and Lindsten (2011). It results in the Gaussian distribution

p(f∗ | x, y, x∗) = N (E [f∗] , cov [f∗]), (3.3)

with

E [f∗] = K(x∗, x)
(
K(x, x) + σ2

nIN
)−1

y, (3.4a)

cov [f∗] = K(x∗, x∗) − K(x∗, x)
(
K(x, x) + σ2

nIN
)−1

K(x, x∗). (3.4b)

An example ofgp regression can be found in Figure 3.1. Before any measurements
are observed, the mean of the gp prior is zero and the uncertainty is the same
for each position x as illustrated in Figure 3.1a. Observing a measurement yt at
position xt provides knowledge about the function value f (xt). This is illustrated
in Figures 3.1b and 3.1c. Note that for illustrational purposes we assume that
the measurements are noiseless, i.e. σn = 0. Since the function values f (x) at
the different locations x depend on each other, the measurements also provide
information about the function values at surrounding locations.

3.2 Estimating position and orientation

In this section, we are concerned with infering knowledge about the states x1:N
(containing the position and orientation) from the measurements y1:N . This can
be expressed in terms of the joint smoothing distribution

p(x1:N | y1:N ). (3.5)
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In the pose estimation problem, we are typically interested in obtaining point
estimates, denoted by x̂1:N . One way of obtaining these is by solving

x̂1:N = arg max
x1:N

p(x1:N | y1:N )

= arg max
x1:N

p(x1:N ,y1:N )
p(y1:N )

= arg max
x1:N

p(x1:N , y1:N ), (3.6)

where arg max denotes the maximizing argument. The first equality sign in (3.6)
follows from (3.1) and the second from the fact that p(y1:N ) in the denominator
does not depend on x1:N . The estimate x̂1:N is called the maximum a posteriori
(map) estimate. Hence, themap estimate x̂1:N is the pose for which the probability
of the states given the measurements is maximized.

In (3.6) we assume that all measurements y1:N are used to obtain the posterior
distribution of x1:N . Although it makes sense to use all available information
to obtain the best estimates, a downside of smoothing is that one needs to wait
until all measurements are collected before the pose can be computed. Because of
this, in many applications, we are also interested in filtering, where the aim is to
compute the filtering distribution

p(xt | y1:t). (3.7)

The map estimate can in this case be computed as

x̂t = arg max
xt

p(xt | y1:t). (3.8)

Using the relations (3.1) in combination with the Markov property discussed in
Section 2.3, the full probabilistic model p(x1:N , y1:N ) in (3.6) can be decomposed
as

p(x1:N , y1:N ) = p(x1)

︸︷︷︸
Prior

N∏

t=2

p(xt | xt−1)

︸            ︷︷            ︸
Dynamics

N∏

t=1

p(yt | xt)
︸         ︷︷         ︸
Measurements

. (3.9a)

Here, p(x1) is a prior distribution over x1. The dynamics is modeled in terms
of p(xt+1 | xt). The distribution p(yt | xt) models the information given by the
measurements about the state. Note that we have encountered explicit examples
of these kinds of models in Chapter 2. Similarly, the filtering distribution can be
decomposed as

p(xt | y1:t) =

Measurements︷    ︸︸    ︷
p(yt | xt)

Prediction︷         ︸︸         ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
, (3.9b)



32 3 Inference

where

p(xt | y1:t−1) =
∫
p(xt | xt−1)
︸       ︷︷       ︸

Dynamics

p(xt−1 | y1:t−1)
︸            ︷︷            ︸

Filtering distribution

dxt−1.

If our models in Section 2.1 would be linear and Gaussian, closed form expressions
for the map estimates of the position and orientation of the sensor could be ob-
tained. For filtering, this results in the well-known Kalman filter (Kalman, 1960).
For smoothing, this results in the linear smoothing equations, see e.g. Särkkä
(2013). Estimation of position and orientation, however, is inherently a nonlinear
problem due to the nonlinear nature of orientations. In Examples 3.1 – 3.3 we
give a number of examples illustrating how themap estimates (3.6) and (3.8) can
be obtained for this nonlinear case. The choice of which algorithm to use is highly
application-dependent. It depends on the properties of the problem, as well as on
the computational resources and the desired accuracy.

Example 3.1: Optimization-based smoothing and filtering
The smoothing and filtering problems can be solved using an optimization-based
approach (Nocedal and Wright, 2006; Boyd and Vandenberghe, 2004). In this
approach, the solutions x̂1:N to (3.6) or x̂t to (3.8) can be found by studying the
shape of the smoothing or filtering distributions as a function of the states x1:N
or xt . This can be characterized in terms of their slope and curvature. If nx is
the size of the state vector xt , the filtering problem solves N problems of size nx.
The smoothing problem instead solves one problem of size nxN . For example, for
orientation estimation the size of xt is 3. Estimating a smoothing solution of the
pose of the lower body for 37 seconds as in Paper B, the state vector has 40 284
elements instead. The framework of optimization naturally allows for including
equality and inequality constraints.

Example 3.2: Extended Kalman filters
An alternative approach to solving the filtering problem (3.8) is to use an ex-
tended Kalman filter (ekf) (Särkkä, 2013; Gustafsson, 2012). Ekfs make a linear
approximation of the nonlinear models and use the relations (3.1) to approxi-
mate the filtering distribution. They are computationally less expensive than the
optimization-based methods from Example 3.1. However, they can not straight-
forwardly include equality and inequality constraints.

Example 3.3: Particle filters
Particle filters (pfs) approximate the distribution (3.7) using a number of sam-
ples and their associated weights. For an introduction to particle filtering, see
e.g. Doucet and Johansen (2011). Pfs are specifically useful in cases when the
models are severely nonlinear and a Gaussian assumption on the state xt is a poor
description. An example when this is the case is localization of the robot in the
map in Figure 1.7.
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Figure 3.2: Example calibration results with an ellipsoid of magnetometer
data before calibration (red) and a sphere of data after calibration (blue).

3.3 Estimating calibration parameters

In Section 3.2, we focused on estimating x1:N from the measurements y1:N . We
did not consider the presence of unknown parameters θ. Parameter estimation is
typically of concern when calibrating the sensors. One approach to estimate con-
stant parameters θ is to straightforwardly include them as additional unknowns
in the smoothing optimization problem (3.6), resulting in map estimates of the
parameters. They can also be included as slowly time-varying parameters in the
filtering problem (3.8).

An alternative way of estimating the parameters θ is to solve the maximum
likelihood (ml) problem defined as

θ̂ = arg max
θ∈Θ

L(θ; y1:N ), (3.10)

where L(θ; y1:N ) is refered to as the likelihood function, see e.g. Ljung (1999).
It is defined as L(θ; y1:N ) , pθ(Y1:N = y1:N ), where Y1:N are random variables
and y1:N are particular realizations of these variables. Hence, L(θ; y1:N ) is a deter-
ministic function of a deterministic unknown parameter vector θ. Here, θ is an
nθ-dimensional vector which can be limited to a subset Θ of Rnθ . An example of
a calibration problem that we encounter in this thesis is calibration of a magne-
tometer for the presence of magnetic material attached to the sensor, as illustrated
in Example 3.4.

Example 3.4: Magnetometer calibration
In Example 2.6, we discussed the use of magnetometers to provide heading in-
formation. In that case, the magnetic field at the different locations is assumed to
be constant. We will denote this constant magnetic field as mn. Furthermore, we
extend the measurement model (2.4) with calibration parameters D and o as

ym,t = DRbn
t m

n + o + em,t , (3.11)

where D ∈ R3×3 and o ∈ R3. If the sensor would be properly calibrated, rotation of
the sensor would lead to a sphere of magnetometer data. When magnetic material
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is rigidly attached to the sensor, the magnetometer data obtained by rotating the
sensor lies on an ellipsoid instead. An example based on experimental data is
shown in Figure 3.2. Estimating D and o can be interpreted as fitting the red
ellipsoid of data to a sphere. Magnetometer calibration is the topic of Paper E.



4
Conclusions and future work

In Chapters 1 – 3 of Part I of this thesis, a background was given to the seven
papers that will be presented in Part II. In Chapter 1, an introduction to the
sensors and models that we use was given and the contributions of the papers
were summarized. Chapter 2 focused on describing the concept of a probabilistic
model, illustrated with a few examples of models used in Part II. In Chapter 3, we
subsequently discussed how to infer knowledge from these models and the sensor
measurements. In the present chapter, we revisit the contributions of this thesis
and summarize them in more technical detail. We also discuss possible directions
for future work.

4.1 Position and orientation estimation using inertial
sensors

Contributions The tutorial in Paper A describes the topic of position and orien-
tation estimation using inertial sensors. Different modeling choices for the dynam-
ics, the measurements and the priors are presented. We introduce smoothing and
filtering algorithms solved as optimization problems as well as computationally
attractive ekf implementations. The estimates from the different algorithms are
compared. Furthermore, some general characteristics are discussed both for the
problem of orientation estimation and for the problem of combined position and
orientation estimation. Finally, the topic of sensor calibration is discussed and
illustrated in terms of the estimation of an unknown gyroscope bias.

Future work In Paper A we discuss four different algorithms for pose estimation.
An interesting direction for future work would be to consider also other popular
algorithms such as the complementary filter, see e.g. Mahony et al. (2008); Bald-
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win et al. (2007), and the filter presented by Madgwick et al. (2011). Furthermore,
it would be interesting to have a closer look at using spherical distributions to
represent the orientation. These distributions explicitly model the orientation to
lie on a manifold. In recent years, a number of approaches have been proposed to
estimate the orientation using these kinds of distributions. For instance, in Kurz
et al. (2013); Gilitschenski et al. (2016); Glover and Kaelbling (2013), algorithms
are presented to estimate orientation by using Bingham distributions.

4.2 Inertial sensor motion capture

Contributions Paper B presents an approach for inertial sensor motion capture
to estimate the pose of the human body. We assume that the sensors are more
or less rigidly attached to the body and that the body segments are connected to
each other. Solving the problem as a smoothing optimization problem allows us
to straightforwardly incorporate the connection between the body segments as
equality constraints into the problem. The algorithm is applied to experimental
data with promising results.

As discussed in Example 3.1, the number of states in the smoothing formula-
tion of the motion capture problem is large. It grows both with time and with the
number of sensors and body segments that are considered. However, as illustrated
in Figure 2.4, the states xt+1 in the motion capture problem are conditionally in-
dependent of the states x1:t−1 given the states xt . This structure can be exploited
using a technique called message passing as presented in Paper C. This allows for
solving the smoothing problem for large data sets. A similar structure can be seen
in the human body where the left foot is connected to the left lower leg (and not
to any other body segments), the left lower leg is connected to the left upper leg,
and so forth. Using this structure, message passing can also be used to solve the
problem in a distributed manner using the sensors on the body.

Future work The topic of inertial sensor motion capture is an interesting and
large field of study in itself. Because of this, there are many interesting directions
of future work for Papers B and C, a few of which will be highlighted here. First of
all, Paper B only presents a proof-of-concept, showing that inertial sensor motion
capture can indeed be solved using an optimization approach. The algorithm is
applied to data from a lower-body configuration with promising results. However,
an extensive analysis of the quality of the estimates has not been performed and
is an important direction for future work. We also see clear possibilities for future
work in the following directions:

• Relative pose estimation without using magnetometers Solving the iner-
tial motion capture problem using an optimization-based approach allows
us to straightforwardly incorporate equality constraints to model the con-
nections of the different body segments. By incorporating these constraints,
the sensors’ relative position and orientation become observable as long as
the subject is not standing completely still (Hol, 2011). Because of this, it is
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not necessary to make use of magnetometer data to provide heading infor-
mation. The use of magnetometers is known to be problematic specifically
in motion capture applications because the magnetic field at the different
sensor locations is typically different, see e.g. Ligorio and Sabatini (2016);
Seel et al. (2014); El-Gohary and McNames (2015) and the references in
Paper B. The claim in Hol (2011) that the relative position and orientation
become observable if the subject is not completely standing still, is mainly
based on experimental results and on physical insight. It would be an inter-
esting direction for future work to undertake a more rigorous observability
study and to derive the necessary and sufficient conditions under which the
relative pose is indeed observable.

• Estimating calibration parameters In Paper B, we assume that the posi-
tion and orientation of the sensors on the body segments are known from
pre-calibration. It would be an interesting direction of future work to add
these calibration parameters as unknowns in the optimization approach.
We expect that these parameters will only be identifiable under “sufficient”
motion of the body. It would be interesting to derive conditions under which
the calibration parameters can be identified from the available data and to
study the quality of the parameter estimates as a function of the motion of
the body.

• Online pose estimation The algorithm derived in Paper B obtains smooth-
ing estimates of the pose. To allow for online estimation, it would be inter-
esting to consider filtering or sliding window approaches. A first step in
this direction has been taken in the master thesis project by Lorenz (2016).
To run the filtering or sliding window approach in real-time, an efficient
implementation is necessary. It would be interesting to see if the message
passing algorithm presented in Paper C will be useful for this.

• Activity recognition In Paper B we have focused on pose estimation using
inertial sensors placed on the human body. A separate but related topic is
that of activity recognition using sensors placed on the human body, see
e.g. Bulling et al. (2014); Hardegger et al. (2016); Reiss et al. (2010). This
field focuses on recognizing the activities that the subject performs. It would
be interesting to combine the motion capture approach from Paper B with
activity recognition.

A number of these directions of future work have already been addressed in Taetz
et al. (2016) and Miezal et al. (2016). In Miezal et al. (2016), an optimization-based
solution to the inertial motion capture problem is presented that is inspired by
the approach in Paper B. A sliding window approach is used to allow for online
estimation. The approach is compared to two different ekf -based approaches,
particularly in terms of performance in the presence of calibration errors and de-
pendence on magnetometer usage. The optimization-based approach was shown
to result in more accurate pose estimates than the ekf approaches. In Taetz et al.
(2016), an optimization-based approach using a sliding window of data was used
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to estimate both the human body pose and the calibration parameters, i.e. the po-
sition and orientation of the sensors on the body segments. To this end, additional
biomechanical models were included in the optimization approach.

4.3 Combining UWB with inertial sensors

Contributions Paper D presents our approach to combine inertial measurements
with toa measurements from a uwb system for indoor positioning. We consider
both pose estimation using inertial and uwb measurements, and calibration of
the uwb setup as shown in Figure 1.8. By using the asymmetric distribution
illustrated in Figure 2.2c, we explicitly model the possibility of delayed measure-
ments due to multipath or nlos while not allowing for measurements arriving
earlier, i.e. traveling faster than the speed of light. It is experimentally shown that
taking the possibility of delayed measurements into account leads to significantly
improved position estimates.

Future work In Paper D we use a tailored asymmetric heavy-tailed distribu-
tion to model the possibility of delayed measurements. Related studies have also
modeled this presence of delayed measurements using skew-t distributions (Nur-
minen et al., 2015; Müller et al., 2016) and Gaussian mixture models (Müller
et al., 2014). It would be an interesting topic for future work to study how these
approaches compare to each other. Another interesting direction of future work
is to combine measurements from multiple uwb transmitters and multiple imus
for human body motion capture. This would be a combination of the work pre-
sented in Paper B and that presented in Paper D and would allow us to estimate
the absolute pose of the human body.

4.4 Magnetometer calibration

Contributions Paper E presents a magnetometer calibration algorithm which
uses inertial sensors to calibrate the magnetometer for the presence of magnetic
disturbances attached to the sensor. The algorithm also calibrates for magne-
tometer sensor errors and for misalignment between the magnetometer and the
inertial sensor axes. The calibration algorithm is based on an ml formulation
and is shown to give good results using data from two different commercially
available imus. Using the calibrated magnetometer measurements in combina-
tion with the inertial sensors to determine the sensor’s orientation is shown to
lead to significantly improved heading estimates.

Future work In Paper E we show that our magnetometer calibration algorithm
leads to significantly improved heading estimates based on measurements from
two different commercially available imus. An interesting line of future work is
to apply the magnetometer calibration algorithm to inertial and magnetometer
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measurements from a smartphone. Smartphones typically use their own mag-
netometer calibration algorithm, thereby complicating the testing of other cali-
bration algorithms. However, as of Android api level 18 (Jelly Bean mr2), it is
possible to log uncalibrated magnetometer data. Hence, it is be possible to apply
our calibration algorithm to measurements from a smartphone.

The calibration algorithm is formulated as a batch, offline, method. It would
be interesting to extend it to an online approach. Using this approach, it might be
possible to automatically recalibrate the sensor once it enters a different magnetic
environment.

4.5 Mapping and localization using magnetic fields

Contributions Paper F presents an approach to build maps of the indoor mag-
netic field. Physical knowledge is incorporated by modeling the magnetic field
as the gradient of a scalar potential. The magnetic field map is built using gp re-
gression. Since the magnetometers typically sample at 50 or 100 Hz, the amount
of data that can be used for building the map of the magnetic field grows quickly
over time. As illustrated in Figure 2.5, the gp model assumes that the magnetic
field at each location depends on the magnetic field at all other locations. Be-
cause of this, gp regression becomes intractable for large amounts of data. To
circumvent this issue, we use a computationally efficient implementation using
the approach introduced in Solin and Särkkä (2014). Using this approach in com-
bination with the sequential approach introduced in Särkkä et al. (2013) allows
for online updating of the magnetic field estimate. It also opens up the possibility
to focus on the spatio-temporal problem in which the magnetic field can change
over time, for instance due to furniture being moved around.

In Paper G we use the magnetic field as a source of position information. We
make use of a magnetic coil which generates a magnetic field that we can model us-
ing analytical expressions. Combining magnetometer and inertial measurements,
it is possible to estimate the pose of the sensor. Based on experimental results
we show that accurate pose estimates can be obtained in the vicinity of the coil,
where the magnetic field is strong.

Future work In Paper F we discussed a method to build maps of the magnetic
field. Paper G focused on localization in a known map. A natural direction of
future work is to consider the problem of simultaneous localization and mapping
(slam). A first step in this direction has been set by Solin et al. (2016), where a
smartphone is localized in a map which is built using the approach presented in
Paper F. Using such a slam approach, it would be very interesting to analyze
what localization accuracy we can achieve. Furthermore, it would be interesting
to analyze if this accuracy varies significantly over different buildings because of
differences in the amount of magnetic material that is present.
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4.6 Concluding remarks

In general, these are interesting times to work with inertial sensors. The quality
of their measurements has improved while their cost has decreased, leading to an
increase in availability. The fact that they have become so widely available opens
up for many exciting possibilities. For instance, a lab for master students has
been developed at Linköping University in which students implement their own
orientation estimation algorithm using data from a smartphone (Hendeby et al.,
2014). Other sensors have also undergone significant developments. For instance,
very small devices have been developed which can both act as uwb receiver and
transmitter (DecaWave, 2016; BeSpoon, 2016). Most experiments in this thesis
have been done with standalone imus. In Paper A, however, some experiments
have been included using measurements collected with a smartphone. It will be
very interesting to see how the measurements from smartphones and from small
uwb devices can be used and what the quality of the resulting estimates will be.
It will also be interesting to see what new and exciting applications for position
and orientation estimation using inertial sensors will open up in the future.
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Abstract

In recent years, micro-machined electromechanical system (mems) in-
ertial sensors (3D accelerometers and 3D gyroscopes) have become
widely available due to their small size and low cost. Inertial sensor
measurements are obtained at high sampling rates and can be inte-
grated to obtain position and orientation information. These estimates
are accurate on a short time scale, but suffer from integration drift over
longer time scales. To overcome this issue, inertial sensors are typically
combined with additional sensors and models. In this tutorial we fo-
cus on the signal processing aspects of position and orientation estima-
tion using inertial sensors, discussing different modeling choices and
a selected number of important algorithms. The algorithms include
optimization-based smoothing and filtering as well as computation-
ally cheaper extended Kalman filter implementations.

1 Introduction

In this section, we introduce the problem of position and orientation estimation
using inertial sensors. The combined estimation of both position and orientation
is sometimes called pose estimation. We will start by providing a brief background
and motivation in Section 1.1 by explaining what inertial sensors are, how they
can be used for pose estimation and give a few concrete examples of relevant
application areas. This will give the basis for the problem of pose estimation
using inertial sensors discussed in Section 1.2. Finally, in Section 1.3 we will give
an overview of the contents and an outline of the rest of this tutorial.
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1.1 Background and motivation

The term inertial sensor is used to denote the combination of a three-axis ac-
celerometer and a three-axis gyroscope. Devices containing these sensors are com-
monly referred to as inertial measurement units (imus), but inertial sensors are
nowadays also present in any modern smartphone, and in devices such as Wii
controllers and virtual reality (vr) headsets, as shown in Figure 1.

A gyroscope measures the sensor’s angular velocity, i.e. the rate of change of
the sensor’s orientation. An accelerometer measures the external specific force
acting on the sensor. The specific force consists of both the sensor’s acceleration
and the earth’s gravity. Nowadays, many gyroscopes and accelerometers are based
on micro-machined electromechanical system (mems) technology. Mems com-
ponents are small, light, inexpensive, have low power consumption and short
start-up times. Their accuracy has significantly increased over the years.

There is a large and ever-growing number of application areas for inertial
sensors, see e.g. Barbour and Schmidt (2001); Hol (2011); Perlmutter and Robin
(2012); Xsens Technologies B.V. (2016). Generally speaking, inertial sensors can
be used to provide information about the pose of any object that they are rigidly
attached to. It is also possible to combine multiple inertial sensors to obtain in-
formation about the pose of separate connected objects. A major application area
is to use inertial sensors to track human motion. Several illustrations of this are
shown in Figure 2. As can be seen, the application areas are as diverse as robotics,
biomechanical analysis and motion capture for the movie and gaming industries.
In fact, the use of inertial sensors for pose estimation is now common practice
in for instance robotics and human motion tracking, see e.g. Luinge and Veltink
(2005); Harle (2013); Raibert et al. (2008). For example, a recent survey (Adler
et al., 2015) shows that 28% of the contributions to the ieee International Con-
ference on Indoor Positioning and Indoor Navigation (ipin) make use of inertial
sensors. Inertial sensors are also frequently used for pose estimation of cars, boats,
trains and aerial vehicles, see e.g. Skog and Händel (2009); Chao et al. (2010).
Examples of this are shown in Figure 3.

There exists a large amount of literature on the use of inertial sensors for pose
estimation. The reason for this is not only the large number of application areas.
Important reasons are also that the pose estimation problem is nonlinear and
that different parametrizations of the orientation need to be considered (Grisetti
et al., 2010a; Kurz et al., 2013), each with its own specific properties. Interestingly,
approximative and relatively simple pose estimation algorithms work quite well
in practice. However, careful modeling and a careful choice of algorithms do
improve the accuracy of the estimates.

In this tutorial we focus on the signal processing aspects of pose estimation
using inertial sensors, discussing different modeling choices and a number of im-
portant algorithms. These algorithms will provide the reader with a starting point
to implement their own pose estimation algorithm. The algorithms will include
a relatively simple and computationally cheap implementation of an extended
Kalman filter and a more complex algorithm for obtaining smoothed pose esti-
mates by post-processing the data.
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(a) Left bottom: an Xsens mtx imu
(Xsens Technologies B.V., 2016). Left top:
a Trivisio Colibri Wireless imu (Trivisio
Prototyping GmbH, 2016). Right: a Sam-
sung Galaxy S4 mini smartphone.

(b) A Samsung gear vr.1 (c) A Wii controller containing
an accelerometer and a Motion-
Plus expansion device containing a
gyroscope.2

Figure 1: Examples of devices containing inertial sensors.

1 ‘Samsung Gear vr’ available at flic.kr/photos/pestoverde/15247458515 under cc by
2.0 (http://creativecommons.org/licenses/by/2.0).

2 ‘WiiMote with MotionPlus’ by Asmodai available at https://commons.wikimedia.org/
wiki/File:WiiMote_with_MotionPlus.JPG under cc by sa (https://creativecommons.
org/licenses/by-sa/3.0/).

flic.kr/photos/pestoverde/15247458515
http://creativecommons.org/licenses/by/2.0
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://commons.wikimedia.org/wiki/File:WiiMote_with_MotionPlus.JPG
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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(a) Back pain therapy using seri-
ous gaming. Imus are placed on the
chest-bone and on the pelvis to es-
timate the movement of the upper
body and pelvis. This movement is
used to control a robot in the game
and promotes movements to reduce
back pain.

(b) Actor Seth MacFarlane wearing 17 imus
to capture his motion and animate the bear
Ted. The imus are placed on different body
segments and provide information about the
relative position and orientation of each of
these segments.

Figure 2: Examples illustrating the use of multiple imus placed on the human
body to estimate its pose. Courtesy of Xsens Technologies.

(a) Inertial sensors are used in combination
with the global positioning system (gps) to
estimate the position of the cars in a chal-
lenge on cooperative and autonomous driv-
ing.

(b) Due to their small size and
low weight, imus can be used to
estimate the orientation for con-
trol of an unmanned helicopter.

Figure 3: Examples illustrating the use of a single imu placed on a moving
object to estimate its pose. Courtesy of Xsens Technologies.
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Figure 4: Schematic illustration of dead-reckoning, where the accelerome-
ter measurements (external specific force) and the gyroscope measurements
(angular velocity) are integrated to position and orientation.

1.2 Using inertial sensors for pose estimation

Imus are frequently used for navigation purposes where the position and the
orientation of a device is of interest. Integration of the gyroscope measurements
provides information about the orientation of the sensor. After subtraction of the
earth’s gravity, double integration of the accelerometer measurements provides
information about the sensor position. To be able to subtract the earth’s gravity,
the orientation of the sensor needs to be known. Hence, estimation of the sensor’s
position and orientation are inherently linked when it comes to inertial sensors.
The process of integrating the inertial sensors to obtain pose estimates, often
called dead-reckoning, is summarized in Figure 4.

If the initial pose would be known, and if perfect models for the inertial sen-
sor measurements would exist, the process illustrated in Figure 4 would lead to
perfect pose estimates. In practice, however, the inertial measurements are noisy
and biased as will be discussed in more detail in Section 2.4. Because of this, the
integration steps from angular velocity to rotation and acceleration to position
introduce integration drift. This is illustrated in Example 1.

Example 1: Integration drift
Let us assume that we have a sensor which measures a non-zero, constant bias.
The integrated measurements will grow linearly with time, while the double in-
tegration will grow quadratically with time. If the sensor instead measured a
zero-mean white noise signal, the expected value of the integrated measurements
would be zero, but the variance would grow with time. This is illustrated in Fig-
ure 5 for the integration of a signal yt = et with et ∼ N (0, 1). Hence, integration
drift is both due to integration of a constant bias and due to integration of noise.

To illustrate integration drift using experimental data, a stationary data set is
collected with a Sony Xperia Z5 Compact smartphone using the app described in
Hendeby et al. (2014). The smartphone contains accelerometers and gyroscopes
produced by Invensense (InvenSense, 2016). We integrate the inertial measure-
ments to obtain position and orientation estimates. Since the smartphone is kept
stationary during the data collection, we expect the position and orientation to
remain the same. However, the orientation estimates drift a few degrees over 10 s
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Figure 5: Integration of a white noise signal yt ∼ N (0, 1) for 50 noise realiza-
tions.

as shown in Figure 6a. Note that the integration drift is not the same for all axes.
This is mainly due to a different sensor bias in the different axes. This will be
studied further in Example 4, where the same data set is used to study the sensor
characteristics. As shown in Figure 6b, the position drifts several meters over 10 s.
The reason for this is two-fold. First, the accelerometer measurements need to be
integrated twice. Second, the orientation estimates need to be used to subtract
the gravity and any errors in this will lead to leakage of gravity into the other
components.

From the example above, it can be concluded that errors in the measurements
have a large impact on the quality of the estimated position and orientation using
inertial sensors only. This is specifically the case for position, which relies both
on double integration of the acceleration and on accurate orientation estimates
to subtract the earth’s gravity. Because of this, inertial sensors need to be sup-
plemented with other sensors or other models to lead to accurate position and
orientation estimates. Inertial sensors provide pose estimates at high sampling
rates which are accurate on a short time scale but drift over longer time scales.
Because of this, they are very suitable for being used in combination with sensors
with a lower sampling rate but with information that does not drift over time. For
pose estimation, they are often combined with sensors such as gps (Kaplan and
Hegarty, 1996; Titterton and Weston, 1997; Hol, 2011), ultrawideband (uwb) (Kok
et al., 2015; Sczyslo et al., 2008; Pittet et al., 2008; Corrales et al., 2008; De Angelis
et al., 2010) and vision (Corke et al., 2007; Hol et al., 2007; Li and Mourikis, 2013;
Martinelli, 2012). For orientation estimation, they are often used in combination
with magnetometers (Sabatini, 2006; Roetenberg et al., 2005). The reason for this
is that the accelerometer can provide information about the vertical direction by
measuring the direction of the gravity. The angle of deviation from the vertical is
called the inclination. However, it can not provide information about the orienta-
tion around the vertical, which is also called heading or yaw. The heading can be
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(a) Integrated orientation for the position in x- (blue), y- (green) and
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(b) Integrated position for rotation around the x-axis (blue), the y-axis
(green) and the z-axis (red).

Figure 6: Position and orientation estimates based on dead-reckoning of the
inertial sensors only. The data is collected with a Sony Xperia Z5 Compact
smartphone that is lying stationary on a table.

measured using a magnetometer, which measures the direction of the magnetic
field, pointing to the local magnetic north.

This tutorial aims at giving an introduction on how to use inertial sensors
for position and orientation estimation, but also on how to combine them with
additional information. These additional sensors are not the focus of this paper
but simple models will be used for magnetometers and sensors providing position
information to illustrate the combined use of these sensors.

1.3 Tutorial content and its outline

To obtain accurate position and orientation estimates using inertial sensors in
combination with additional measurements or models, a number of important
things need to be considered. First, the quantities measured by the inertial sensors
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need to be accurately described and the sources of error need to be characterized.
This is the topic of Section 2. Note that throughout the tutorial, we will focus on
mems inertial sensors and consider both data from standalone imus and from
smartphones. This implies that we do not focus on for instance mechanical or
optical gyroscopes and on mechanical or solid-state accelerometers (Titterton and
Weston, 1997). These sensors can have characteristics that are quite different from
the mems inertial sensors considered here.

Based on the analysis of the sensors in Section 2 and on additional analysis
of the application at hand, models can be constructed. This is the topic of Sec-
tion 3, where we will also discuss different parametrizations of orientation. This
will highlight the challenges in parametrizing and estimating orientations and
show that the orientation estimation problem is inherently nonlinear. Further-
more, we will present two models that can be used for position and orientation
estimation. The first is a model for pose estimation using inertial measurements in
combination with position measurements. The second is a model for orientation
estimation, using inertial and magnetometer measurements.

In Section 4, different algorithms for position and orientation estimation will
be introduced. The general structure of the algorithms will be discussed, after
which explicit algorithms for orientation estimation using inertial and magne-
tometer measurements are given. We will also discuss how the algorithms can be
extended to pose estimation when position measurements are available. Some gen-
eral characteristics of the two estimation problems will be given and the quality
of the estimates from the different algorithms will be analyzed. Which algorithm
is most suitable for which application depends strongly on the computational
power that is available, the accuracy that is required and the characteristics of the
problem at hand.

In Section 4, we assume that the sensors are properly calibrated. However,
calibration of the sensors is important for instance to estimate the inertial sensor
biases. Furthermore, calibration is specifically of concern when combining inertial
data with other sensors. In these cases, it is important that the inertial sensor axes
and the axes of the additional sensors are aligned. Sensor calibration is the topic
of Section 5. As an illustrative example, we will consider the estimation of an
unknown gyroscope bias. We will end this tutorial with some concluding remarks
in Section 6.

2 Inertial sensors

To combine inertial measurements with additional sensors and models for posi-
tion and orientation estimation, it is important to accurately describe the quanti-
ties measured by the inertial sensors as well as to characterize the typical sensor
errors. This will be the topic of this section. It will serve as a basis for the proba-
bilistic models discussed in Section 3.

As discussed in Section 1, accelerometers and gyroscopes measure specific
force and angular velocity, respectively. In Sections 2.2 and 2.3, we will discuss
the quantities that are measured by the gyroscope and accelerometer in more
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detail. To enable a discussion about this, in Section 2.1 a number of coordinate
frames and the transformations between them will be discussed. We assume that
we have 3D accelerometers and 3D gyroscopes, i.e. that the sensors have three sen-
sitive axes along which these physical quantities are measured. They are measured
in terms of an output voltage. Based on a factory pre-calibration, these signals
are converted to a physical measurement inside the sensor. Even though the sen-
sors are typically calibrated in the factory, (possibly time-varying) errors can still
remain. In Section 2.4, the most commonly present sensor errors are discussed.

2.1 Coordinate frames

In order to discuss the quantities measured by the accelerometer and gyroscope
in more detail, a number of coordinate frames need to be introduced:

The body frame b is the coordinate frame of the moving imu . Its origin is located
in the center of the accelerometer triad and it is aligned to the casing. All
the inertial measurements are resolved in this frame.

The navigation frame n is a local geographic frame in which we want to navi-
gate. In other words, we are interested in the position and orientation of
the b-frame with respect to this frame. For most applications it is defined
stationary with respect to the earth. However, in cases when the sensor is
expected to move over large distances, it is customary to move and rotate the
n-frame along the surface of the earth. The first definition is used through-
out this tutorial, unless mentioned explicitly.

The inertial frame i is a stationary frame. The imu measures linear acceleration
and angular velocity with respect to this frame. Its origin is located at the
center of the earth and its axes are aligned with respect to the stars.

The earth frame e coincides with the i-frame, but rotates with the earth. That
is, it has its origin at the center of the earth and axes which are fixed with
respect to the earth.

These coordinate frames are illustrated in Figure 7. We use a superscript to in-
dicate in which coordinate frame a vector is expressed. Vectors can be rotated
from one coordinate frame to another using a rotation matrix. We use a double
superscript to indicate from which coordinate frame to which coordinate frame
the rotation is defined. An illustration is given in Example 2.

Example 2: Rotation of vectors to different coordinate frames
Consider a vector x expressed in the body frame b. We denote this vector xb.
The rotation matrix Rnb rotates a vector from the body frame b to the navigation
frame n. Conversely, the rotation from navigation frame n to body frame b is
denoted Rbn = (Rnb)T. Hence, the vector x expressed in the body frame (xb) and
expressed in the navigation frame (xn) are related according to

xn = Rnbxb, xb = (Rnb)Txn = Rbnxn. (1)
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Figure 7: An illustration of the coordinate frames: the n-frame at a certain
location on the earth, the e-frame rotating with the earth and the i-frame.

2.2 Angular velocity

The gyroscope measures the angular velocity of the body frame with respect to the
inertial frame, expressed in the body frame (Titterton and Weston, 1997), denoted
by ωb

ib. This angular velocity can be expressed as

ωb
ib = Rbn

(
ωn

ie + ωn
en

)
+ ωb

nb, (2)

where Rbn is the rotation matrix from the navigation frame to the body frame.
The earth rate, i.e. the angular velocity of the earth frame with respect to the
inertial frame is denoted by ωie. The earth rotates around its z-axis in 23.9345
hours with respect to the stars (National Aeronautics and Space Administatration,
2016). Hence, the earth rate is approximately 7.29 · 10−5 rad/s.

In case the navigation frame is not defined stationary with respect to the earth,
the angular velocity ωen, i.e. the transport rate is non-zero. The angular velocity
required for navigation purposes – in which we are interested when determining
the orientation of the body frame with respect to the navigation frame – is denoted
by ωnb.

2.3 Specific force

The accelerometer measures the specific force f as expressed in the body frame (Tit-
terton and Weston, 1997). This can be expressed as

f b = Rbn(an
ii − gn), (3)

where g denotes the gravity vector and an
ii denotes the linear acceleration of the

sensor expressed in the navigation frame, which is

an
ii = RneReiai

ii. (4)

The subscripts are used to indicate in which frame the differentiation is performed.
For navigation purposes, we are interested in the position of the sensor in the
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navigation frame pn and its derivatives as performed in the navigation frame

d
dt p

n
∣∣∣
n

= vn
n ,

d
dt v

n
∣∣∣
n

= an
nn. (5)

A relation between aii and ann can be derived by using the relation between two
rotating coordinate frames. Given a vector x in a coordinate frame u,

d
dt x

u
∣∣∣
u

= d
dtR

uvxv
∣∣∣
u

= Ruv d
dt x

v
∣∣∣
v

+ ωu
uv × xu, (6)

where ωu
uv is the angular velocity of the v-frame with respect to the u-frame,

expressed in the u-frame. For a derivation of this relation in the context of inertial
navigation, see e.g. Hol (2011); Titterton and Weston (1997) or any textbook on
dynamics, see e.g. Marion and Thornton (1995); Meriam and Kraige (1998) for a
general introduction. Using the fact that

pi = Riepe, (7)

the velocity vi and acceleration aii can be expressed as

vi
i = d

dt p
i
∣∣∣
i

= d
dtR

iepe
∣∣∣
i

= Rie d
dt p

e
∣∣∣
e

+ ωi
ie × pi

= vi
e + ωi

ie × pi, (8a)

ai
ii = d

dt v
i
i

∣∣∣
i

= d
dt v

i
e

∣∣∣
i
+ d

dtω
i
ie × pi

∣∣∣
i

= ai
ee + 2ωi

ie × vi
e + ωi

ie × ωi
ie × pi, (8b)

where we have made use of (5), (6) and the fact that the angular velocity of the
earth is constant, i.e. d

dtω
i
ie = 0. Using the relation between the earth and naviga-

tion frames,

pe = Renpn + ne
en, (9)

where nen is the distance from the origin of the earth coordinate frame the origin
of the navigation coordinate frame, expressions similar to (8) can be derived. Note
that in general it can not be assumed that d

dtωen = 0. Inserting the obtained ex-
pressions into (8), it is possible to derive the relation between aii and ann. Instead
of deriving these relations, we will assume that the navigation frame is a frame
which is fixed to the earth frame and hence Ren and ne

en are constant and

ve
e = d

dt p
e
∣∣∣
e

= d
dtR

enpn
∣∣∣
e

= Ren d
dt p

n
∣∣∣
n

= ve
n, (10a)

ae
ee = d

dt v
e
e

∣∣∣
e

= d
dt v

e
n

∣∣∣
n

= ae
nn. (10b)

This is a reasonable assumption as long as the sensor does not travel over signif-
icant distances of the earth and it will be one of the modeling assumptions that
we will use in this tutorial. More on the modeling choices will be discussed in
Section 3.

Inserting (10) into (8) and rotating the result, it is possible to express an
ii in

terms of an
nn as

an
ii = an

nn + 2ωn
ie × vn

n + ωn
ie × ωn

ie × pn, (11)
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where ann is the acceleration required for navigation purposes. The termωn
ie×ωn

ie×
pn is known as the centrifugal acceleration and 2ωn

ie × vn
n is known as the Coriolis

acceleration. The centrifugal acceleration is typically absorbed in the (local) grav-
ity vector. In Example 3, we illustrate the magnitude of both the centrifugal and
Coriolis acceleration.

Example 3: Magnitude of centrifugal and Coriolis acceleration
The centrifugal acceleration depends on the location on the earth. It is possible to
get a feeling for its magnitude by considering the property of the cross product
stating that

‖ωn
ie × ωn

ie × pn‖2 ≤ ‖ωn
ie‖2‖ωn

ie‖2‖pn‖2. (12)

Since the magnitude of ωie is approximately 7.29 · 10−5 rad/s and the average
radius of the earth is 6371 km (National Aeronautics and Space Administatra-
tion, 2016), the magnitude of the centrifugal acceleration is less than or equal to
3.39 · 10−2 m/s2.

The Coriolis acceleration depends on the speed of the sensor. Let us consider
a person walking at a speed of 5 km/h. In that case the magnitude of the Coriolis
acceleration is approximately 2.03 · 10−4 m/s2. For a car traveling at 120 km/h,
the magnitude of the Coriolis acceleration is instead 4.86 · 10−3 m/s2.

2.4 Sensor errors

As discussed in Sections 2.2 and 2.3, the gyroscope measures the angular velocity
ωb

ib and the accelerometer measures the specific force f b. However, as already
briefly mentioned in Section 1.2, there are several reasons for why this is not
exactly the case. Two of these reasons are a slowly time-varying sensor bias and the
presence of measurement noise. The sensor errors in the inertial measurements
are illustrated in Example 4 using experimental data.

Example 4: Inertial sensor measurements and their errors
In Figures 8 – 10, gyroscope and accelerometer measurements are displayed for
around 55 min of stationary data collected with a Sony Xperia Z5 Compact smart-
phone. Part of this data set was used in Example 1 to illustrate integration drift.
Since the smartphone is stationary, the gyroscope is expected to only measure the
earth’s angular velocity. However, as can be seen in Figure 8a, the gyroscope mea-
surements are corrupted by noise. As shown in Figure 9, this noise can be seen to
be quite Gaussian. Furthermore, the measurements can be seen to be biased.

During the stationary period, we would expect the accelerometer to measure
the gravity, the centrifugal acceleration and the Coriolis acceleration. Note that
again the measurements are corrupted by noise, which can be seen to be quite
Gaussian in Figure 10. The x- and y-components of the accelerometer measure-
ments are not zero-mean. This can be due to the fact that the table on which the
smartphone lies is not completely flat, implying that part of the gravity vector is
measured in these components. It can also reflect a sensor bias. The z-component
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(a) Gyroscope measurements yω,t which
we expect to consist only of the earth’s an-
gular velocity.
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(b) Accelerometer measurements ya,t
which we expect to consist of the gravity
vector, the centrifugal acceleration and
the Coriolis acceleration.

Figure 8: Inertial measurements for 55 min of stationary data. As can be
seen, the measurements are corrupted by noise and have a bias.

is actually larger than expected which indicates the presence of an accelerometer
bias at least in this axis.

Note that from the above discussion it can be concluded that it is more straight-
forward to determine the gyroscope bias than it is to determine the accelerometer
bias. To be able to estimate the gyroscope bias, it is sufficient to leave the sensor
stationary. However, for the accelerometer, the sensor needs to be rotated and its
measurements need to be compared to the gravity vector. The gyroscope in the
smartphone is actually automatically recalibrated during stationary time periods.
What we displayed here is the data that has not been corrected for this (so-called
uncalibrated data).

The reason why the gyroscope is calibrated during stationary periods, is be-
cause its bias is slowly time-varying. For instance, estimating the gyroscope bias
based on the first minute of the data set (approximately 6 000 samples), the bias

was
(
35.67 56.22 0.30

)T
· 10−4 rad/s. The gyroscope bias estimated using the

last minute of data was instead
(
37.01 53.17 −1.57

)T
· 10−4 rad/s.

The performance of imus is often specified in terms of their so-called Allan
variance (IEEE, 2009; El-Sheimy et al., 2008; Allan, 1966). The Allan variance
gives information about the sensor errors for stationary conditions, i.e. in a stable
climate without exciting the system. It studies the effect of averaging measure-
ments for different cluster times Tc. Typically, the Allan standard deviation σA(Tc)
is plotted against the cluster time Tc as illustrated in Figure 11. This figure shows
the characteristic behavior for the Allan variance for inertial sensors. To study
it more in detail, we will discuss two components of the Allan variance that are
typically of concern for inertial sensors: the white noise and the so-called bias
instability.

Assume, like in Example 1, that we have a white noise signal with standard
deviation σ . A longer averaging time would for this signal lead to values closer
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Figure 9: Histogram (blue) of the gyroscope measurements for 55 min of
data from a stationary sensor and a Gaussian fit (red) to the data. As can be
seen, the measurement noise looks quite Gaussian.
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Figure 10: Histogram (blue) of the accelerometer measurements for 55 min
of data from a stationary sensor and a Gaussian fit (red) to the data. As can be
seen, the measurement noise looks quite Gaussian. Note the different scales
on the horizontal axis.

to zero. The contribution to the Allan standard deviation from the white noise
component is given by σA(Tc) = σ√

n
where n is the number of samples averaged

over. This corresponds to a line with slope −1/2 in a log–log plot. For instance in
the gyroscope Allan deviation in Figure 11, the lines can be seen to have a slope of
−1/2 until around 10−20 s, which indicates that the white noise is the dominating
source of error for these short integration times.

A constant bias does not have any effect on the Allan variance diagram. How-
ever, in case the bias changes, longer averaging times will no longer be beneficial.
Hence, the Allan variance diagrams in Figure 11 show a deviation from the slope
−1/2 for longer averaging times.

The Allan variance is a useful tool to study and compare the noise charac-
teristics of inertial sensors. However, it only considers stationary conditions. In
dynamic conditions, a large number of other error sources potentially come into
play, see e.g. Titterton and Weston (1997); Woodman (2007). These are for instance
related to the fact that the sensors sample at discrete times. Hence, to capture
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Figure 11: Left: Allan deviation for two gyroscopes. Right: Allan deviation
for two accelerometers. Reproduced with permission from Vydhyanathan
et al. (2015).

high-frequency signals, high sampling frequencies are desired (Savage, 1998a,b).
Furthermore, large dynamics can lead to erroneous or saturated measurements.
Other errors that are not included are for instance changes in the sensitivity of
the axes due to changes in temperature. Therefore, we should never rely just on
the Allan variance when deciding which sensor to use in a particular application.

3 Probabilistic models

Pose estimation is about estimating the position and orientation of the body
frame b in the navigation frame n. This problem is illustrated in Figure 12, where
the position and orientation of the body changes from time t1 to time t2. In this
section, we will introduce the concept of probabilistic models and discuss differ-
ent modeling choices for using inertial sensors for pose estimation.

The subject of probabilistic modeling is introduced in Section 3.1. Most com-
plexity in pose estimation lies in the nonlinear nature of the orientation and the
fact that orientation can be parametrized in different ways. How to parametrize
the orientation is a crucial modeling choice in any pose estimation algorithm.
Because of this, we will discuss different parametrizations for the orientation in
Section 3.2 and in Section 3.3 we will discuss how these different parametrizations
can be used in probabilistic modeling.

Our probabilistic models consist of three main components. First, in Sec-
tion 3.4, we introduce models describing the knowledge about the pose that can
be inferred from the measurements. Second, in Section 3.5, we model how the
sensor pose changes over time. Finally, in Section 3.6, models of the initial pose
are introduced.

The section will conclude with a discussion on the resulting probabilistic mod-
els in Section 3.7. Here, the models that will be used in the position and orientation
estimation algorithms in Section 4 will also be introduced.
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t1
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n

b

Figure 12: An illustration of the pose estimation problem. We want to express
the position and orientation of the moving body frame b at times t1 and t2
with respect to the navigation frame n.

3.1 Introduction

Probabilistic models constitute the foundation of the estimation algorithms in
Section 4. In this section we will introduce the concept of probabilistic modeling
and the notation that is used in building our models. Models are used to describe
the information about the dynamics and the available measurements. These mod-
els are subsequently used in combination with the measurements to infer some
knowledge. The knowledge that we are interested in is the pose of the sensor and
we use information about the sensor dynamics and the available measurements
(amongst others, inertial measurements). A simplified case where probabilistic
modeling is used to estimate the position of a sensor is given in Example 5.

Example 5: Probabilistic modeling
Let us estimate the 2D position pt of a sensor at time t from two position mea-
surements

y1
t =

(
0 0

)T
, y2

t =
(
2 0

)T
.

A straightforward suggestion for an estimate of the position would be p̂t =
(
1 0

)T
.

Let us now assume that we know the accuracy of the sensors and represent this
in terms of the following probabilistic models

y1
t = pt + e1

t , e1
t ∼ N (0, 0.25 I2),

y2
t = pt + e2

t , e2
t ∼ N (0, I2),

where I2 denotes a 2 × 2 identity matrix. Based on this, it is sensible to trust the
measurement from the first sensor more than the measurement from the second
sensor. A reasonable position estimate would instead be

pt ∼ N
((

0.4
0

)
, 0.2 I2

)
.
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Now consider the case where we are also interested in estimating the position
pt+1. Knowledge that the sensor is worn by a human or placed in a car, would
give us information about how far the sensor can travel from time t to time t + 1.
If the sensor would be placed in for instance a train, the motion would even
be constrained to be along the tracks. Incorporating this information about the
dynamics of the sensor will improve the estimate of pt+1.

We split the knowledge that we want to infer into the unknown time-varying
states xt for t = 1, . . . , N , or equivalently x1:N , and the unknown constant param-
eters θ. We denote the measurements by yk for k = 1, . . . , K . The times k at which
these measurements are obtained do not necessarily correspond with the times t
at which the states are defined. It is also not necessary for all sensors to sample at
the same frequency. As discussed in Section 2.4, the inertial sensors are typically
sampled at fairly high rates to capture high-frequency dynamics. In stand-alone,
wired imus, all sensors typically have the same, constant sampling frequency.
Specifically in the case of wireless sensors and smartphones, however, the sam-
pling frequencies can vary both over sensors and over time. In the remainder, we
assume that the times t at which the states are defined coincide with the times k at
which the gyroscopes sample. Hence, we denote the gyroscope measurements yω,t
with t = 1, . . . N . For notational convenience, we will also use the subscript t for
the measurements from other sensors. Note that these are not required to actually
sample at each time t for t = 1, . . . N . For instance, magnetometers in smartphones
often sample either at equal or half the sampling frequencies of the inertial sen-
sors, while position aiding sensors like for instance gps or uwb typically sample
at much lower sampling frequencies.

Our aim is now to infer information about the states x1:N and the parameters θ
using the measurements y1:N and the probabilistic models. This can be expressed
in terms of a conditional probability distribution

p(x1:N , θ | y1:N ), (13)

where p(a | b) denotes the conditional probability of a given b. In the pose esti-
mation problem, we are interested in obtaining point estimates which we denote
x̂1:N and θ̂. It is typically also highly relevant to know how certain we are about
these estimates. This is often expressed in terms of a covariance. When the distri-
bution (13) is Gaussian, the distribution is completely described in terms of its
mean and covariance.

In (13) we assume that all measurements y1:N are used to obtain the posterior
distribution of x1:N , θ. This is referred to as smoothing. Although it makes sense to
use all available information to obtain the best estimates, a downside of smoothing
is that we need to wait until all measurements are collected before the pose can
be computed. Because of this, in many applications, we are also interested in
filtering. In filtering we estimate xt using all measurements up to and including
time t. One way of dealing with constant parameters in filtering is to treat them
as slowly time-varying. In this case, they can be considered to be included in the
time-varying states xt . The filtering problem can be expressed in terms of the
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Figure 13: An illustration of the structure of the pose estimation problem.

conditional probability distribution

p(xt | y1:t). (14)

We have now introduced smoothing, where the states x1:N are estimated simulta-
neously, and filtering, where at each time instance the state xt is estimated. There
is a large range of intermediate methods, where a batch of states xt−L1:t+L2

, with
L1 and L2 being positive integers, is estimated using the measurements y1:t . This
is related to fixed-lag smoothing and moving horizon estimation (Johansen, 2011;
Rao et al., 2001).

The topic of how to estimate the conditional probability distributions for po-
sition and orientation estimation will be introduced in Section 4. We will now
instead take a closer look at the distributions and their different components.
A fundamental assumption here is that we assume that our models possess the
Markov property, implying that all information up to the current time t is con-
tained in the state xt . This is illustrated in Figure 13 in terms of a probabilistic
graphical model (Bishop, 2006). The state xt+1 can be seen to depend on xt and
to result in the measurements yt+1. It is conditionally independent of x1:t−1 given
the state xt . Using Bayes’ rule and the Markov property, the conditional distribu-
tions (13) and (14) can be decomposed as

p(x1:N , θ | y1:N ) ∝ p(θ)p(x1)
N∏

t=2

p(xt | xt−1, θ)
N∏

t=1

p(yt | xt , θ), (15a)

p(xt | y1:t) ∝ p(yt | xt)p(xt | y1:t−1). (15b)

The predictive distribution p(xt | y1:t−1) can be computed by marginalizing out
the previous state xt−1 as

p(xt | y1:t−1) =
∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1. (16)

In (15), p(θ) and p(x1) are prior distributions over θ and x1, respectively. The
dynamics are modeled in terms of p(xt+1 | xt , θ) and p(xt+1 | xt). The distributions
p(yt | xt , θ) and p(yt | xt) model the information given by the measurements about
the state and the parameters.

The dynamics of the state can be modeled in terms of a nonlinear function
ft( · ) as

xt+1 = ft(xt , wt). (17)
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The uncertainty of the dynamic model is modeled in terms of wt , which is often
referred to as the process noise. The model (17) provides information about the
distribution p(xt+1 | xt). More explicitly, if wt is Gaussian additive noise with
wt ∼ N (0, Q), then

p(xt+1 | xt) ∼ N (xt+1; ft(xt), Q), (18)

where we use the notation N (xt+1; ft(xt), Q) to explain that the random variable
xt+1 is normal distributed with mean ft(xt) and covariance Q.

The information given by the measurements about the state xt can be modeled
as

yt = ht(xt , et), (19)

where ht( · ) is a possibly nonlinear function and et is the measurement noise. The
measurement model (19) provides information about the distribution p(yt | xt).
The combination of (17), (19) and a model of the prior p(x1) is referred to as a
state space model (Kailath, 1980) and it is widely used in a large number of fields.

3.2 Parametrizing orientation

Rotating a vector in R
3 changes the direction of the vector while retaining its

length. The group of rotations in R
3 is the special orthogonal group SO(3). In

this section we introduce four different ways of parametrizing orientations. Note
that these describe the same quantity and can hence be used interchangeably. The
different parametrizations can be converted to one another, see also Appendix A.
There are differences in for instance the number of parameters used in the repre-
sentation, the singularities and the uniqueness.

Rotation matrices

We encountered rotation matrices already in Section 2. Rotation matrices R ∈ R3×3

have the following properties

RRT = RTR = I3, detR = 1. (20)

The properties (20) provide an interpretation of the name special orthogonal
group SO(3). All orthogonal matrices of dimension 3× 3 have the property RRT =
RTR = I3 and are part of the orthogonal group O(3). The notion special in SO(3)
specifies that only matrices with detR = 1 are considered rotations.

Consider two coordinate frames denoted u and v. As was illustrated in Ex-
ample 2, a vector x expressed in the u-frame can be rotated to the v-frame as

xu = Ruvxv, (21a)

and conversely we have

xv = (Ruv)T xu = Rvuxu. (21b)

A rotation matrix is a unique description of the orientation. It has 9 components
which depend on each other through (20).
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Figure 14: Left: clockwise rotation α of the vector x to the vector x? . Right:
counterclockwise rotation α of the coordinate frame v to the coordinate
frame u.

Rotation vector

As described by Leonhard Euler in Euler (1776), a rotation around a point is al-
ways equivalent to a single rotation around some axis through this point, see
Palais et al. (2009) for a number of proofs. This is generally referred to as Euler’s
rotation theorem. Hence, it is possible to express the rotation between two coor-
dinate frames in terms of an angle α and a unit axis n around which the rotation
takes place. In this section, we will derive a relation between the representation
α, n and the rotation matrix parametrization from the previous section. Instead
of directly considering the rotation of a coordinate frame, we start by considering
the rotation of a vector. Note that a counterclockwise rotation of the coordinate
frame is equivalent to a clockwise rotation of a vector, see Example 6.

Example 6: Rotation of a coordinate frame and rotation of a vector
Consider the 2D example in Figure 14, where on the left, a vector x is rotated
clockwise by an angle α to x? . This is equivalent to (on the right) rotating the
coordinate frame v counterclockwise by an angle α. Note that xv

? = xu.

In Figure 15, a vector x is rotated an angle α around the unit axis n. We denote
the rotated vector by x? . Suppose that x as expressed in the coordinate frame v is
known (and denoted xv) and that we want to express xv

? in terms of xv, α and n.
It can first be recognized that the vector x can be decomposed into a component
parallel to the axis n, denoted x‖, and a component orthogonal to it, denoted x⊥
as

xv = xv
‖ + xv⊥. (22a)

Based on geometric reasoning we can conclude that

xv
‖ = (xv · nv) nv, (22b)

where · denotes the inner product. Similarly, xv
? can be decomposed as

xv
? = (xv

?)‖ + (xv
?)⊥ , (23a)
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Figure 15: Clockwise rotation of a vector x by an angle α around the unit
axis n. The rotated vector is denoted by x? . The vector x is decomposed in
a component x‖ that is parallel to the axis n, and a component x⊥ that is
orthogonal to it.

where

(xv
?)‖ = xv

‖ , (23b)

(xv
?)⊥ = xv⊥ cosα + (xv × nv) sinα. (23c)

Hence, xv
? can be expressed in terms of xv as

xv
? = (xv · nv)nv + (xv − (xv · nv)nv) cosα + (xv × nv) sinα

= xv cosα + nv(xv · nv)(1 − cosα) − (nv × xv) sinα. (24)

Denoting the rotated coordinate frame the u-frame and using the equivalence
between xv

? and xu as shown in Example 6, this implies that

xu = xv cosα + nv(xv · nv)(1 − cosα) − (nv × xv) sinα. (25)

This equation is commonly referred to as the rotation formula or Euler’s formula
(Shuster, 1993). Note that the combination of n and α, or equivalently η = nα, is
denoted as the rotation vector or the axis-angle parameterization.

To show the equivalence between (25) and the rotation matrix parametriza-
tion, we will rewrite (25). Here, we make use of the fact that a cross product can
equivalently be written as a matrix vector product. Given vectors u and v we have,

u × v = [u×]v = −[v×]u, [u×] ,




0 −u3 u2
u3 0 −u1
−u2 u1 0


 , (26)

where u1, u2, u3 denote the three components of the vector u. Furthermore, given
vectors u, v and w, multiple cross products can be expanded in terms of the inner
product as

u × (v × w) = v(w · u) − w(u · v). (27)
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Using these relations, (25) can be rewritten as

xu = xv cosα + nv(xv · nv)(1 − cosα) − (nv × xv) sinα

= xv cosα + (nv × (nv × xv) + xv)(1 − cosα) − (nv × xv) sinα

=
(
I3 − sinα[nv×] + (1 − cosα)[nv×]2

)
xv. (28)

Comparing (28) and (21a), it can be seen that a rotation matrix can be para-
metrized in terms of α, n as

Ruv(nv, α) = I3 − sinα[nv×] + (1 − cosα)[nv×]2. (29)

Note that equivalently, Ruv(nv, α) can also be written as

Ruv(nv, α) = exp (−α[nv×]) , (30)

since

exp (−α[nv×]) =
∞∑

k=0

1
k! (−α[nv×])k

= I3 − α[nv×] + 1
2!α

2[nv×]2 + 1
3!α

3[nv×] − 1
4!α

4[nv×]2 − . . .
= I3 −

(
α − 1

3!α
3 + . . .

)
[nv×] +

(
1
2!α

2 − 1
4!α

4 + . . .
)

[nv×]2

= I3 − sinα[nv×] + (1 − cosα)[nv×]2. (31)

The rotation vector introduced in this section parametrizes the orientation in only
three parameters. However, it is not a unique parametrization since adding 2π
to any angle α results in the same orientation. As shown in (29) and (30), the
rotation matrix can straightforwardly be expressed in terms of the axis-angle
representation.

Euler angles

Rotation can also be defined as a consecutive rotation around three axes in terms
of so-called Euler angles. We use the convention (z, y, x) which first rotates an
angle ψ around the z-axis, subsequently an angle θ around the y-axis and finally
an angle φ around the x-axis. These angles are illustrated in Figure 16. Assuming
that the v-frame is rotated by (ψ, θ, φ) with respect to the u-frame as illustrated
in this figure, the rotation matrix Ruv is given by

Ruv = Ruv(e1, φ)Ruv(e2, θ)Ruv(e3, ψ)

=



1 0 0
0 cosφ sinφ
0 − sinφ cosφ






cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ







cosψ sinψ 0
− sinψ cosψ 0

0 0 1




=




cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


 , (32)
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Figure 16: Definition of Euler angles as used in this work with left: rotation ψ
around the z-axis, middle: rotation θ around the y-axis and right: rotation φ
around the x-axis.

where we make use of the notation introduced in (29) and the following definition
of the unit vectors

e1 =
(
1 0 0

)T
, e2 =

(
0 1 0

)T
, e3 =

(
0 0 1

)T
. (33)

The ψ, θ, φ angles are also often referred to as yaw (or heading), pitch and roll,
respectively. Furthermore, roll and pitch together are often referred to as inclina-
tion.

Similar to the rotation vector, Euler angles parametrize orientation as a three-
dimensional vector. Euler angle representations are not unique descriptions of a
rotation for two reasons. As can be seen from (32), for instance the rotation (0, 0, 0)
is equal to (0, 0, 2π). This is called wrapping. Furthermore, setting θ = π

2 in (32),
leads to

Ruv =




0 0 −1
sinφ cosψ − cosφ sinψ sinφ sinψ + cosφ cosψ 0
cosφ cosψ + sinφ sinψ cosφ sinψ − sinφ cosψ 0




=




0 0 −1
sin(φ − ψ) cos(φ − ψ) 0
cos(φ − ψ) − sin(φ − ψ) 0


 . (34)

Hence, only the rotation φ − ψ can be observed. Because of this, for example
the rotations (π2 ,

π
2 , 0), (0, π2 ,−π2 ), (π, π2 ,

π
2 ) are all three equivalent. This is called

gimbal lock (Diebel, 2006).

Unit quaternions

A commonly used parametrization of orientation is that of unit quaternions. Qua-
ternions were first introduced by Hamilton (1844) and are widely used in orienta-
tion estimation algorithms, see e.g. Kuipers (1999); Hol (2011). A unit quaternion
use a 4-dimensional representation of the orientation according to

q =
(
q0 q1 q2 q3

)T
=

(
q0
qv

)
, q ∈ R4, ‖q‖2 = 1. (35)
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A unit quaternion is not a unique description of an orientation. The reason for this
is that if q represents a certain orientation, then −q describes the same orientation.

A rotation can be defined using unit quaternions as

x̄u = quv � x̄v � (quv)c , (36)

where · c denotes the quaternion conjugate, defined as

qc =
(
q0 −qTv

)T
, (37)

and x̄v denotes the quaternion representation of xv as

x̄v =
(
0 (xv)T

)T
. (38)

Note that (38) is typically not a unit quaternion. The notation � denotes the
quaternion multiplication given by

p � q =
(

p0q0 − pv · qv
p0qv + q0pv + pv × qv

)
= pLq = qRp, (39)

where

pL ,

(
p0 −pTv
pv p0I3 + [pv×]

)
, qR ,

(
q0 −qTv
qv q0I3 − [qv×]

)
. (40)

Using (37) – (40), (36) can be written as

x̄u = (quv)L (qvu)R x̄v

=
(
q0 −qTv
qv q0I3 + [qv×]

) (
q0 qTv
−qv q0I3 + [qv×]

) (
0
xv

)

=
(

1 01×3
03×1 qvq

T
v + q2

0I3 + 2q0[qv×] + [qv×]2

) (
0
xv

)
. (41)

Comparing (41) to (29), it can be recognized that if we choose

quv(nv, α) =
(

cos α2−nv sin α
2

)
, (42)

the two rotation formulations are equivalent since

x̄u =
(

1 01×3
03×1 I3 − 2 cos α2 sin α

2 [nv×] + 2 sin2 α
2 [nv×]2

) (
0
xv

)

=
(

1 01×3
03×1 I3 − sinα[nv×] + (1 − cosα) [nv×]2

) (
0
xv

)
. (43)

Here, we made use of standard trigonometric relations and the fact that since
‖nv‖2 = 1, nv (nv)T = I3 + [nv×]2. Hence, it can be concluded that quv can be
expressed in terms of α and nv as in (42).
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Equivalently, quv(nv, α) can also be written as

quv(nv, α) = exp(−α2 n̄v) =
∞∑

k=0

1
k!

(
−α2 n̄v

)k
, (44)

where

(n̄v)0 =
(
1 0 0 0

)T
, (45a)

(n̄v)1 =
(
0 (nv)T

)T
, (45b)

(n̄v)2 = n̄v � n̄v =
(
−‖nv‖22 03×1

)T
=

(
−1 03×1

)T
, (45c)

(n̄v)3 =
(
0 − (nv)T

)T
, (45d)

This leads to

quv(nv, α) = exp(−α2 n̄v) =
∞∑

k=0

1
k!

(
−α2 n̄v

)k

=




1 − 1
2!
α2

4 + 1
4!
α4

16 − . . .
−α2 nv + 1

3!
α3

8 n
v − 1

5!
α5

32 n
v + . . .




=
(

cos α2−nv sin α
2

)
. (46)

Note the similarity to (30) and (31). The reason for why both rotation matrices
and unit quaternions can be described in terms of an exponential of a rotation
vector will be discussed in Section 3.3.

3.3 Probabilistic orientation modeling

The four parametrizations of orientation discussed in Section 3.2 can be used in-
terchangeably. However, the choice of which parametrization to use as states xt
in the filtering and smoothing problems introduced in Section 3.1 has significant
impact on the workings of the algorithm. An important reason for this is that
estimation algorithms typically assume that the unknown states and parameters
are represented in Euclidean space. For instance, they assume that the subtrac-
tion of two orientations gives information about the difference in orientation and
that the addition of two orientations is again a valid orientation. For the four
parametrizations discussed in Section 3.2, this is generally not true. For instance,
due to wrapping and gimbal lock, subtraction of Euler angles and rotation vec-
tors can result in large numbers even in cases when the rotations are similar.
Also, addition and subtraction of unit quaternions and rotation matrices do not
in general lead to a valid rotation. The equality constraints on the norm of unit
quaternions and on the determinant and the orthogonality of rotation matrices
are typically hard to include in the estimation algorithms. In this section, we will
discuss a method to represent orientation in estimation algorithms that deals with
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the issues described above. It is frequently used in the algorithms that will be de-
scribed in Section 4. We will also discuss some alternative methods to parametrize
orientation for estimation purposes.

Linearization

As mentioned in Section 3.2, the group of rotations in three dimensions is the
special orthogonal group SO(3). More specifically, SO(3) is a so-called matrix Lie
group. For a discussion on the properties of matrix Lie groups and on the reasons
why SO(3) is indeed such a group we refer the reader to e.g. Barfoot (2016). Since
rotations are a matrix Lie group, there exists an exponential map from a corre-
sponding Lie algebra. Using this property, it is possible to represent orientations
on SO(3) using unit quaternions or rotation matrices, while orientation deviations
are represented using rotation vectors on R

3, see e.g. Bloesch et al. (2016). Hence,
we encode an orientation qnb

t in terms of a linearization point parametrized either
as a unit quaternion q̃nb

t or as a rotation matrix R̃nb
t and an orientation deviation

using a rotation vector ηt . Assuming that the orientation deviation is expressed
in the body frame b,3

qnb
t = q̃nb

t � exp
(
η̄b
t

2

)
, Rnb

t = R̃nb
t exp

(
[ηb
t ×]

)
, (47)

where analogously to (46) and (31),

exp(η̄) =
(

cos ‖η‖2
η
‖η‖2 sin ‖η‖2

)
, (48a)

exp([η×]) = I3 + sin (‖η‖2)
[
η
‖η‖2×

]
+ (1 − cos (‖η‖2))

[
η
‖η‖2×

]2
. (48b)

For notational convenience, in the remainder we will use the mappings

q = expq(η), expq : R3 → {q ∈ R4 : ‖q‖2 = 1}, (49a)

R = expR(η), expR : R3 → {R ∈ R3×3 : RRT = I3, detR = 1}, (49b)

which allow us to rewrite (47) as

qnb
t = q̃nb

t � expq

(
ηb
t

2

)
, Rnb

t = R̃nb
t expR

(
ηb
t

)
. (50)

The reverse mappings are defined as

logq(q) = arccos q0
sin arccos q0

qv = arccos q0
‖qv‖2 qv , logq : {q ∈ R4 : ‖q‖2 = 1} → R

3, (51a)

logR(R) =



(logR)32
(logR)13
(logR)21


 , logR : R3 → {R ∈ R3×3 : RRT = I3, detR = 1}, (51b)

3A similar derivation can be done by assuming an orientation deviation in the navigation frame n.



3 Probabilistic models 77

where logR is the standard matrix logarithm. Since we typically assume that ηb
t

is small, we will frequently make use of the following approximations

expq(η) ≈
(
1
η

)
, logq(q) ≈ qv , (52a)

expR(η) ≈ I3 + [η×], logR(R) ≈
(
R32 R13 R21

)T
. (52b)

The idea briefly outlined in this section is closely related to approaches used
to estimate orientation in robotics, see e.g. Grisetti et al. (2010a,b); Bloesch et al.
(2016); Barfoot (2016); Forster et al. (2016). It is also related to the so-called
multiplicative extended Kalman filter (mekf) frequently used in aeronautics, see
e.g. Markley (2003); Crassidis et al. (2007).

Alternative methods

An alternative method to estimate orientation assumes that the states representing
the orientation lie on a manifold. This can be done by modeling the orientation
and its uncertainty using a spherical distribution which naturally restricts the ori-
entation estimates and their uncertainties to be in SO(3). In recent years, a number
of approaches have been proposed to estimate the orientation using these kinds
of distributions. For instance, in Kurz et al. (2013); Gilitschenski et al. (2016);
Glover and Kaelbling (2013) algorithms are presented to estimate orientation by
modeling it using a Bingham distribution.

The difficulties caused by directly using one of the four orientation parametri-
zations introduced in Section 3.2 in orientation estimation algorithms is widely
recognized. Nevertheless, a large number of approaches directly uses these pa-
rametrizations in estimation algorithms. For instance, it is common practice to
use unit quaternions in estimation algorithms and to normalize the resulting
quaternions each time they loose their normalization, see e.g. Sabatini (2006);
Marins et al. (2001); Madgwick et al. (2011). Different approaches to handle the
normalization of the quaternions in these algorithms are discussed in Julier and
LaViola Jr. (2007).

3.4 Measurement models

In the past two sections, we have focused on how orientations can be parametrized.
In this section, we will go back to the probabilistic models for the position and
orientation estimation problems introduced in Section 3.1 and provide different
measurement models p(yt | xt , θ).

Gyroscope measurement models

As discussed in Section 2.2, the gyroscope measures the angular velocity ωb
ib at

each time instance t. However, as shown in Section 2.4, its measurements are
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corrupted by a slowly time-varying bias δω,t and noise eω,t . Hence, the gyroscope
measurement model is given by

yω,t = ωb
ib,t + δb

ω,t + eb
ω,t . (53)

As was shown in Figure 9, the gyroscope measurement noise is typically quite
Gaussian. Because of this, it is typically assumed that eb

ω,t ∼ N (0,Σω). If the
sensor is properly calibrated, the measurements in the three gyroscope axes are
independent. In that case, it can be assumed that

Σω =




σ2
ω,x 0 0
0 σ2

ω,y 0
0 0 σ2

ω,z


 . (54)

The gyroscope bias δb
ω,t is slowly time-varying, as discussed in Section 2.4.

There are two conceptually different ways to treat this slowly time-varying bias.
One is to treat the bias as a constant parameter, assuming that it typically changes
over a longer time period than the time of the experiment. The bias can then
either be pre-calibrated in a separate experiment, or it can be considered to be
part of the unknown parameters θ as introduced in Section 3.1. Alternatively, it
can be assumed to be slowly time-varying. This can be justified either by longer
experiment times or by shorter bias stability. In the latter case, δb

ω,t can instead
be considered as part of the state vector xt and can for instance be modeled as a
random walk

δb
ω,t+1 = δb

ω,t + eb
δω ,t

, (55)

where eb
δω ,t
∼ N (0,Σδω ,t) represents how constant the gyroscope bias actually is.

Modeling the sensor noise and bias is related to the sensor properties. However,
there are also modeling choices related to the experiments that can be made. As
described in Section 2.2, the angular velocity ωb

ib can be expressed as

ωb
ib,t = Rbn

t

(
ωn

ie,t + ωn
en,t

)
+ ωb

nb,t . (56)

If the sensor does not travel over significant distances as compared to the size of
the earth – which is often the case for the applications discussed in Section 1 –
the navigation frame n can safely be assumed to be stationary. In that case, the
transport rate ωn

en,t is zero. Although the earth rotation ωie as expressed in the
body frame b is not constant, its magnitude as compared to the magnitude of
the actual measurements is fairly small (see Section 2.2 and the experimental
data presented in Example 4). Assuming that the earth rotation is negligible and
the navigation frame is stationary leads to the following simplified measurement
model

yω,t = ωb
nb,t + δb

ω,t + eb
ω,t . (57)
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Accelerometer measurement models

The accelerometer measures the specific force f b
t at each time instance t, see

also Section 2.3. As shown in Section 2.4, the accelerometer measurements are
typically assumed to be corrupted by a bias δa,t and noise ea,t as

ya,t = f b
t + δb

a,t + eb
a,t . (58)

The accelerometer noise is typically quite Gaussian as was shown in Figure 10
and can hence be modeled as eb

a,t ∼ N (0,Σa). For a properly calibrated sensor, the
covariance matrix Σa can often be assumed to be diagonal.

The accelerometer bias δb
a,t is slowly time-varying. Similar to the gyroscope

bias, the accelerometer bias can either be modeled as a constant parameter, or as
part of the time-varying state, for instance using a random walk model as in (55).

As introduced in Section 2.3, the specific force measured by the accelerometer
is given by

f b = Rbn(an
ii − gn). (59)

Assuming that the navigation frame is fixed to the earth frame, we derived a
relation for an

ii as

an
ii = an

nn + 2ωn
ie × vn

n + ωn
ie × ωn

ie × pn. (60)

The centrifugal acceleration ωn
ie × ωn

ie × pn is typically absorbed in the local grav-
ity vector. The magnitude of the Coriolis acceleration is small compared to the
magnitude of the accelerometer measurements (see Example 3 and the experi-
mental data presented in Example 4). Neglecting this term leads to the following
simplified measurement model

ya,t = Rbn
t (an

nn − gn) + δb
a,t + eb

a,t . (61)

Since the accelerometer measures both the local gravity vector and the linear
acceleration of the sensor, it provides information both about the change in po-
sition and about the inclination of the sensor. For orientation estimation, only
the information about the inclination is of concern. Hence, a model for the linear
acceleration needs to be made to express the relation between the inclination and
the measurements. To model this, it can be recognized that in practice, most ac-
celerometer measurements are dominated by the gravity vector, as illustrated in
Example 7.

Example 7: Magnitude of a sensor’s linear acceleration
Let us consider a 1D example where a sensor has an initial velocity v1 = 0 m/s
and accelerates with an

nn = 9.82 m/s2. After 4.51 s, the sensor will have traveled
100 m. This is about twice as fast as the world record currently held by Usain Bolt.
In fact, humans can reach fairly high accelerations but can only accelerate for a
short time. Naturally, cars can accelerate to higher velocities than humans. The
sensor in this example has reached a final velocity of 160 km/h. Even in the case
of a car it is therefore unlikely that it can have an acceleration this high for a long
time.
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Since the accelerometer measurements are typically dominated by the gravity
vector, a commonly used model assumes the linear acceleration to be approxi-
mately zero

ya,t = −Rbn
t g

n + δb
a,t + eb

a,t . (62)

Naturally, the model (62) is almost never completely true. However, it can often
be used as a sufficiently good approximation of reality. Note that the noise term
eb

a,t in this case does not only represent the measurement noise, but also the model
uncertainty. The model (62) can for instance be used in combination with outlier
rejection where measurements that clearly violate the assumption that the linear
acceleration is zero are disregarded. It is also possible to adapt the noise covari-
ance matrix Σa, depending on the sensor’s acceleration (Foxlin, 1996; Rehbinder
and Hu, 2004). Furthermore, it is possible to model the acceleration based on
physical reasoning (Luinge, 2002).

Modeling additional information

In this section we will discuss models for the measurements we use to complement
the inertial sensor measurements. For orientation estimation we use magnetome-
ters, while for pose estimation we use position measurements.

Magnetometer models Magnetometers measure the local magnetic field, con-
sisting of both the earth magnetic field and the magnetic field due to the presence
of magnetic material. The (local) earth magnetic field is denoted mn and it is illus-
trated in Figure 17. Its horizontal component points towards the earth’s magnetic
north pole. The ratio between the horizontal and vertical component depends on
the location on the earth and can be expressed in terms of the so-called dip an-
gle δ. The dip angle and the magnitude of the earth magnetic field are accurately
known from geophysical studies, see e.g. National Centers for Environmental
Information (2016).

Assuming that the sensor does not travel over significant distances as com-
pared to the size of the earth, the local earth magnetic field can safely be modeled
as being constant. In case no magnetic material is present in the vicinity of the
sensor, orientation information can be deduced from the magnetometer. More
specifically, magnetometers are typically used to complement accelerometers to
provide information about the sensor heading, i.e. about the orientation around
the gravity vector which can not be determined from the accelerometer measure-
ments. Magnetometers provide information about the heading in all locations
on the earth except on the magnetic poles, where the local magnetic field mn is
vertical. Orientation can be estimated based on the direction of the magnetic field.
The magnitude of the field is irrelevant. Because of this, without loss of generality
we model the earth magnetic field as

mn =
(
cos δ 0 sin δ

)T
, (63)
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(a)

mn

δ

(b)

Figure 17: (a) Schematic of the earth magnetic field lines (green) around
the earth (blue).4 (b) Schematic of a part of the earth where the local earth
magnetic field mn makes an angle δ with the horizontal plane. This angle is
called the dip angle.

i.e. we assume that ‖mn‖2 = 1. Assuming that the magnetometer only measures
the local magnetic field, its measurements ym,t can be modeled as

ym,t = Rbn
t m

n + em,t , (64)

where em,t ∼ N (0,Σm). The noise em,t represents the magnetometer measurement
noise as well as the model uncertainty.

In practice, the actual magnetic field can differ significantly from the earth
magnetic field. In indoor environments, for instance, presence of magnetic mate-
rial in the structure of buildings and in furniture influences the magnetic field
that is measured by the magnetometer. Furthermore, the magnetic field is affected
in applications where the magnetometer is mounted in e.g. a vehicle, train or on
a robot. In case the magnetic material is rigidly attached to the sensor, the mag-
netometer can be calibrated for its presence (Kok and Schön, 2016; Vasconcelos
et al., 2011; Renaudin et al., 2010; Salehi et al., 2012). The presence of magnetic
material in the vicinity of the sensor that can not be calibrated for is of major con-
cern for practical applications. Because of this, there is a vast amount of literature
on the topic, see e.g. Callmer (2013); Ligorio and Sabatini (2016); Roetenberg et al.
(2005).

Note that when using magnetometers for orientation estimation, the presence
of magnetic material is typically considered to be an undesired disturbance. How-
ever, the presence of magnetic material can also be considered to be a property
which can be exploited. This is done in approaches which use the magnetic field
as a source of position information (Solin et al., 2015; Haverinen and Kemppainen,
2009; Robertson et al., 2013).

Position information Position information can be obtained from for instance gps
oruwb measurements. In this tutorial, we will consider a very basic measurement
model where the sensors directly measure the position as

yp,t = pn
t + ep,t , (65)

4Adapted version of ‘Dipolar magnetic field’ by Cyril Langlois available at http://texample.
net under cc by 2.5 (http://creativecommons.org/licenses/by/2.5).

http://texample.net
http://texample.net
http://creativecommons.org/licenses/by/2.5
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with ep,t ∼ N (0,Σp). Many sensors do not measure the position directly. Their
measurements can, however, be pre-processed to obtain position estimates and
their corresponding covariances (Gustafsson and Gunnarsson, 2005). For exam-
ple, time of arrival measurements can be pre-processed using multilateration tech-
niques. Measurements of this type often contain a significant amount of outliers.
The reason is that the signals can be delayed due to multipath or non-line-of-sight
(nlos) conditions. Possible solutions deal with this by doing outlier rejection, by
using robust algorithms, see e.g. Zoubir et al. (2012), or by modeling the noise
distribution as a non-Gaussian distribution, see e.g. Kok et al. (2015); Gustafsson
and Gunnarsson (2005); Nurminen et al. (2015).

3.5 Choosing the state and modeling its dynamics

The fundamental continuous-time relations that form the basis of our dynamic
models are the fact that the position pn, velocity vn

n and acceleration an
nn are re-

lated as

vn
n = dpn

dt

∣∣∣∣
n
, an

nn = dvn

dt

∣∣∣
n
, (66)

and that the orientation and angular velocity ωb
nb,t are related as

dqnb

dt = qnb � 1
2 ω̄

b
nb,

dRnb

dt = Rnb[ωb
nb×], (67)

depending on orientation parametrization. For a derivation of (67), see e.g. Hol
(2011). Using an Euler discretization of (66), the dynamics of the position and
velocity can be expressed in terms of the acceleration as

pn
t+1 = pn

t + T vn
n,t + T 2

2 a
n
nn,t , (68a)

vn
n,t+1 = vn

n,t + T an
nn,t , (68b)

where T is the time between two samples. Similarly, the dynamics of the orienta-
tion can be expressed in terms of unit quaternions or rotation matrices as

qnb
t+1 = qnb

t � expq

(
T
2ω

b
nb,t

)
, (69a)

Rnb
t+1 = Rnb

t expR

(
T ωb

nb,t

)
. (69b)

Dynamic models describe how the state changes over time. For the problem of
position and orientation estimation using inertial sensors, there are two commonly
used modeling alternatives for the dynamics (Gustafsson, 2012). In the first, we
choose the state vector xt to consists of

xt =
(
(pn
t )T

(
vn

n,t

)T (
an

nn,t

)T (
qnb
t

)T (
ωb

nb,t

)T)T
. (70)

The change in position, velocity and orientation states can then be described in
terms of the velocity, acceleration and angular velocity states, respectively. The
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dynamics of the acceleration and the angular velocity can be described in terms
of a motion model. Examples of motion models that can be used are a constant
acceleration model, which assumes that the dynamics of the acceleration can be
described as

an
nn,t+1 = an

nn,t + wa,t , (71)

with wa,t ∼ N (0,Σw,a), and a constant angular velocity model, which describes
the dynamics of the angular velocity as

ωb
nb,t+1 = ωb

nb,t + wω,t , (72)

with wω,t ∼ N (0,Σw,ω). The process noise terms wa,t and wω,t model the assump-
tions on how constant the acceleration and angular velocity actually are.

Alternatively, the state vector xt can be chosen as

xt =
(
(pn
t )T

(
vn

n,t

)T (
qnb
t

)T)T
. (73)

To describe the dynamics of the states, the inertial measurements can then be
used as an input to the dynamic equation (17). Hence, the change in position,
velocity and orientation is modeled directly in terms of the inertial measurements.
In this case, expressions for an

nn,t and ωb
nb,t in (68) and (69) are obtained from the

accelerometer measurement model and the gyroscope measurement model, see
Section 3.4. The process noise can explicitly be modeled in terms of the accelerom-
eter measurement noise ea,t and the gyroscope measurement noise eω,t .

The benefit of using a motion model for the state dynamics is that knowledge
about the motion of the sensor can be included in this model. However, it comes
at the expense of having a larger state vector. The benefit of using the inertial
measurements as an input to the dynamics is that the process noise has the in-
tuitive interpretation of representing the inertial measurement noise. Hence, the
latter approach is often used for applications where it is difficult to obtain sensible
motion models.

3.6 Models for the prior

Looking back at Section 3.1, to solve the smoothing and filtering problems (15a)
and (15b), we have now discussed different models for the dynamics p(xt | xt−1, θ)
in Section 3.5 and for the measurements p(yt | xt , θ) in Section 3.4. The remaining
distributions to be defined are the priors p(x1) and p(θ), which is the topic of this
section.

In many cases, there is fairly little prior information available about the pa-
rameters θ. However, it is often possible to indicate what are reasonable val-
ues for the parameters. For example, it is reasonable to assume that the gyro-
scope bias is fairly small but can be both positive and negative. For instance, for
the data presented in Example 4, the average bias over the entire data set was(
35.67 54.13 −1.07

)T
· 10−4 rad/s. If we would assume that in 68% of the cases,
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the bias is within the bounds −σδω ≤ δb
ω,t ≤ σδω with σδω = 5 · 10−3, a reasonable

prior would be

δb
ω,t ∼ N (0, σ2

δω
I3). (74)

For the prior p(x1), it is typically possible to get a reasonable estimate from
data. For the position and velocity, this can be modeled as

pn
1 = p̆n

1 + ep,i, ep,i ∼ N (0, σ2
p,iI3), (75a)

vn
1 = v̆n

1 + ev,i, ev,i ∼ N (0, σ2
v,iI3). (75b)

Here, the estimate p̆n
1 can for instance be determined based on the first position

measurement. In that case, the uncertainty σp,i can also be chosen equal to the
uncertainty of the position measurements. In case no additional information is
available, the estimates p̆n

1 and v̆n
1 can be set to zero with an appropriate standard

deviation instead.
A commonly used method to determine the initial orientation is to use the

first accelerometer and magnetometer samples. This method is based on the fact
that given two (or more) linearly independent vectors in two coordinate frames,
the rotation between the two coordinate frames can be determined. The implicit
assumption is that the accelerometer only measures the gravity vector and the
magnetometer only measures the local magnetic field. Hence, the four vectors
are given by the measurements ya,t and ym,t , the local gravity vector gn and the
local magnetic field mn. These vectors are linearly independent except when the
measurements are obtained on the magnetic north or south poles where the dip
angle is δ = 0 and the magnetic field does not contain any heading information.

The accelerometer provides information about the sensor’s inclination. Head-
ing information is provided by the magnetometer. However, at all locations except
on the equator, the magnetometer also provides information about the inclination
due to its non-zero vertical component, see (63). In practice, the accelerometer
typically provides more accurate inclination information. Hence, we choose to
use the magnetometer only to provide heading information by projecting the
magnetic field and the magnetometer measurement on the horizontal plane. Fur-
thermore, we normalize the vectors. Because of this, an adapted model uses the
four normalized vectors

ĝn =
(
0 0 1

)T
, ĝb = ya,1

‖ya,1‖2 , (76a)

m̂n =
(
1 0 0

)T
, m̂b = ĝb ×

(
ym,1
‖ym,1‖2 × ĝ

b
)
. (76b)

A number of algorithms are available to estimate the orientation from these vec-
tors. Well-known examples are the triad algorithm, the quest algorithm, see
e.g. Shuster and Oh (1981), and the method presented in Horn (1987). For our
problem at hand, these methods give equivalent results, even though they use
slightly different solution strategies. Generally speaking, they solve the problem
of determining the rotation qnb from

arg min
qnb

‖ ¯̂gn − qnb � ¯̂gb � qbn‖22 + ‖ ¯̂mn − qnb � ¯̂mb � qbn‖22. (77)
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Recall from (36) that qnb � x̄b � qbn is the rotation of the vector xb to the n-frame.
The optimization problem (77) therefore determines the orientation qnb that min-
imizes the distance between the normalized magnetic field and gravity vectors
measured in the first sample and the normalized magnetic field and gravity vec-
tors in the navigation frame. These four vectors were defined in (76).

Defining

A = −
(

¯̂gn
)L ( ¯̂gb

)R −
(

¯̂mn
)L ( ¯̂mb

)R
, (78)

where the left and right quaternion multiplications are defined in (40), (77) can
equivalently be written as

q̆nb
1 = arg min

qnb

(
qnb

)T
Aqnb. (79)

For a derivation, see Hol (2011). The solution to this problem is given by the eigen-
vector corresponding to the largest eigenvalue. Note that although these methods
can be used to compute the orientation from any two linearly independent vectors
in two coordinate frames, we only use it to compute a prior on the orientation.

Based on the estimate q̆nb
1 from (79), we can model the orientation at time t = 1

in terms of an orientation deviation

qnb
1 = q̆nb

1 � expq

( eη,i
2

)
, eη,i ∼ N (0,Ση,i), (80a)

or in terms of a quaternion as

qnb
1 = q̆nb

1 + eq,i, eq,i ∼ N (0,Σq,i). (80b)

Explicit formulations for the covariance of the orientation estimates from the
triad and quest algorithms are discussed by Shuster (2006). In practice, how-
ever, the accuracy of the estimates from (79) highly depends on the validity of
the model assumptions, i.e. on whether the sensor is indeed far from magnetic
material and whether the linear acceleration is indeed zero. Because this has such
a significant influence on the quality of the estimates, we choose Ση,i and Σq,i
somewhat conservatively. Modeling that in 68% of the cases the orientation error
is less than 20◦,

Ση,i = σ2
η,iI3, ση,i = 20

180π = 0.35, (81a)

Σq,i = 1
4

(
q̆nb

1

)L d expq(eη,i)
deη,i

Ση,i

(
d expq(eη,i)

deη,i

)T (
q̆bn

1

)L
, (81b)

where we use the fact that (qL)T = (qc)T. Note that the covariance Σq,i is defined
in terms of the covariance Ση,i to allow for explicit comparison between different
algorithms in Section 4.

3.7 Resulting probabilistic models

The information from the previous sections can now be combined into one model
which will be used in the algorithms in subsequent sections. In this section, we
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describe our modeling choices for the pose estimation problem and for the orien-
tation estimation problem.

We assume that the sensor does not travel over significant distances as com-
pared to the size of the earth and hence keep the navigation frame n fixed with
respect to the earth frame e. Furthermore, we assume that the magnitude of the
earth rotation and of the Coriolis acceleration are negligible. Our gyroscope and
accelerometer models are hence given by

ya,t = Rbn
t (an

nn − gn) + δb
a,t + eb

a,t , (82a)

yω,t = ωb
nb,t + δb

ω,t + eb
ω,t . (82b)

In the remainder, for notational convenience we drop the subscripts n which
indicate in which frame the differentiation is performed, see Section 2.3, and use
the shorthand notation an for an

nn. Furthermore, we will denote ωb
nb simply by ω

and omit the superscript b on the noise terms ea,t and eω,t and the bias terms δa,t
and δω,t . We assume that the inertial measurement noise is given by

ea,t ∼ N (0, σ2
a I3), eω,t ∼ N (0, σ2

ω I3), (83)

i.e. we assume that the three sensor axes are independent and have the same noise
levels.

Pose estimation

For pose estimation, we model the accelerometer and gyroscope measurements
as inputs to the dynamics. Hence, the state vector consists of the position pn

t , the
velocity vn

t and a parametrization of the orientation. We use the inertial measure-
ments in combination with position measurements to estimate the pose.

Using the accelerometer measurement model (82a) in (68), the dynamics of
the position and velocity is given by

pn
t+1 = pn

t + T vn
t + T 2

2

(
Rnb
t ya,t + gn − δa,t + ea,t

)
, (84a)

vn
t+1 = vn

t + T
(
Rnb
t ya,t + gn − δa,t + ea,t

)
, (84b)

where without loss of generality, we switch the sign on the noise. Note that the
noise term ea,t should be rotated to the navigation frame n by multiplying it with
the rotation matrix Rnb

t . However, because of the assumption (83), the rotation
matrix can be omitted without loss of generality. The dynamics of the orientation
parametrized using quaternions is given by

qnb
t+1 = qnb

t � expq

(
T
2 (yω,t − δω,t − eω,t)

)
. (85)

Equivalent dynamic models can be obtained for the other parametrizations.
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The position measurements are modeled as in (65). In summary, this leads to
the following state space model for pose estimation




pn
t+1
vn
t+1
qnb
t+1


 =




pn
t + T vn

t + T 2

2

(
Rnb
t ya,t + gn − δa,t + ep,a,t

)

vn
t + T

(
Rnb
t ya,t + gn − δa,t + ev,a,t

)

qnb
t � expq

(
T
2 (yω,t − δω,t − eω,t)

)



, (86a)

yp,t = pn
t + ep,t , (86b)

where

ep,a,t ∼ N (0,Σa), ev,a,t ∼ N (0,Σa), (86c)

ep,t ∼ N (0,Σp), eω,t ∼ N (0,Σω), (86d)

with Σa = σ2
a I3 and Σω = σ2

ω I3. Note that we model the process noise on the
position and velocity states in terms of the accelerometer noise. However, we do
not enforce these to have the same noise realization. Hence, we use the notation
ep,a,t and ev,a,t for the two process noise terms. The covariance of both is equal to
the covariance of the accelerometer noise. The initial position is assumed to be
given by the first position measurement as

pn
1 = yp,1 + ep,1, ep,1 ∼ N (0,Σp,i), (86e)

while the initial velocity is assumed to be approximately zero as

vn
1 = ev,i, ev,i ∼ N (0,Σv,i). (86f)

The orientation at time t = 1 is given by the quest algorithm described in Sec-
tion 3.6, parametrized in terms of quaternions or rotation vectors as

qnb
1 = q̆nb

1 � expq

( eη,i
2

)
, eη,i ∼ N (0,Ση,i), (86g)

qnb
1 = q̆nb

1 + eq,i, eq,i ∼ N (0,Σq,i), (86h)

where the initial orientation uncertainty is given in terms of a standard deviation
of 20◦.

In Section 4 we assume that the inertial measurement are properly calibrated.
Hence, we assume that their biases δb

a,t and δb
ω,t are zero. Calibration is the topic of

Section 5 where we will also introduce possible extensions of the state space model
in which the bias terms are included either as states or as unknown parameters.

Orientation estimation

For orientation estimation, the state vector only consists of a parametrization of
the orientation. We use the inertial sensors in combination with the magnetometer
measurements to estimate the orientation. The magnetometer measurements are
modeled as in (64). Instead of using the accelerometer measurements model (82a),



88 Paper A Using inertial sensors for position and orientation estimation

we use the model (62) where it is assumed that the linear acceleration is approxi-
mately zero. This leads to the following state space model for orientation estima-
tion,

qnb
t+1 = qnb

t � expq

(
T
2 (yω,t − δω − eω,t)

)
, (87a)

ya,t = −Rbn
t g

n + ea,t , (87b)

ym,t = Rbn
t m

n + em,t , (87c)

where (87a) describes the dynamics while (87b) and (87c) describe the measure-
ment models and

eω,t ∼ N (0,Σω), ea,t ∼ N (0,Σa), em,t ∼ N (0,Σm), (87d)

with Σω = σ2
ω I3 and Σa = σ2

a I3. The initial orientation is given by the quest
algorithm described in Section 3.6 and is modeled as in (86g) or (86h). Also for
orientation estimation, in Section 4 we assume that the inertial measurements are
properly calibrated. Hence, we assume that the bias δb

ω,t is zero.

4 Estimating position and orientation

In this section we will focus on position and orientation estimation using the
models (86) and (87) derived in Section 3. In Section 4.1, we will first describe
a method to solve the smoothing problem (15a). Subsequently, in Sections 4.2
and 4.3, we will derive different methods for solving the filtering problem (15b).
In each section, after a general introduction of the estimation method, we will
illustrate the method by explicitly deriving algorithms to estimate the orienta-
tion using the state space model (87). The orientation estimation problem also
illustrates the most important parts of the pose estimation problem, since most
complexities lie in the parametrization of the orientation and in the nonlinear
nature of the orientation. In Section 4.4, we show some characteristics of the dif-
ferent algorithms for the orientation estimation problem. In Section 4.5, we will
discuss how the algorithms for orientation estimation can be extended to also
estimate the position. Throughout this section, we assume that the sensors are
calibrated, i.e. we assume that we do not have any unknown parameters θ in our
models. Because of this, the models that we use are the most basic models that
can be used for position and orientation estimation using inertial sensors.

4.1 Smoothing in an optimization framework

Perhaps the most intuitive way to solve the smoothing problem is by posing it
as an optimization problem, where a maximum a posteriori (map) estimate is
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obtained as

x̂1:N = arg max
x1:N

p(x1:N | y1:N )

= arg max
x1:N

p(x1)
N∏

t=2

p(xt | xt−1)p(yt | xt). (88)

Here, we use the notation in terms of probability distributions as introduced in
Section 3.1 and model the measurements and the state dynamics as described
in Sections 3.4 and 3.5, respectively. Furthermore, we assume that a prior on the
initial state is obtained using the measurements at t = 1 as described in Section 3.6.
Because of this, the measurement model p(y1 | x1) from (15a) is explicitly omitted
in (88). Note that in practice, we typically minimize − log p(x1:N | y1:N ) instead of
maximizing p(x1:N | y1:N ) itself, resulting in the optimization problem

x̂1:N = arg min
x1:N

− log p(x1) −
N∑

t=2

log p(xt | xt−1) −
N∑

t=2

log p(yt | xt). (89)

There are various ways to solve problems of this kind, for instance particle
smoothers (Lindsten and Schön, 2013), an extended Rauch-Tung-Striebel (rts)
smoother (Särkkä, 2013) and optimization methods, see e.g. Nocedal and Wright
(2006); Mattingley and Boyd (2010). The latter approach is closely related to
iterated Kalman smoothers (Bell, 1994; Jazwinski, 1970). We will solve the prob-
lem using an optimization method. Compared to extended rts smoothers, op-
timization methods allow for more flexibility in the models that are being used.
For instance, additional information outside of the standard state space model
can straightforwardly be included. Optimization approaches are typically com-
putationally heavier than extended rts smoothers but less heavy than particle
smoothers. The latter are capable of capturing the whole distribution, which is
a clear advantage when the distributions are multi-modal. Optimization instead
gives a point estimate and an associated measure of uncertainty. This is typically
sufficient for the pose estimation problem using inertial sensors.

Gauss-Newton optimization

To obtain a smoothing estimate of the position and orientation using optimization,
we first recognize that based on our models (86) and (87), all probability distri-
butions in (89) are Gaussian. Let us therefore consider a slightly more general
problem where the objective function consists of the product of the probability
functions p(ei(x1:N )), i = 1, . . . , M. Hence, the optimization problem can be writ-
ten as

x̂1:N = arg min
x1:N

−
M∑

i=1

log p (ei(x1:N )) . (90)

The probability distribution of ei(x) is given by

p (ei(x1:N )) = 1√
(2π)ne detΣi

exp
(
−1

2 e
T
i (x1:N )Σ−1

i ei(x1:N )
)
. (91)
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Omitting the terms independent of x1:N , the optimization problem (90) reduces
to

x̂1:N = arg min
x1:N

1
2

M∑

i=1

‖ei(x1:N )‖2
Σ−1
i
, (92)

with ‖ei(x1:N )‖2
Σ−1
i

= eTi (x1:N )Σ−1
i ei(x1:N ). The function that is being minimized in

optimization problems, is often referred to as the objective function.
The solution to (92) can be found by studying the shape of the objective func-

tion as a function of x1:N . This can be characterized in terms of the gradient G(x1:N )
and Hessian H(x1:N ), which provide information about the slope and curvature of
the function, respectively. Defining

eTi (x1:N )Σ−1
i ei(x1:N ) = εTi εi , εi = Σ

−1/2
i ei(x1:N ),

and the stacked variables

ε =
(
εT1 · · · εTM

)T
,

the gradient and the Hessian are given by

G(x1:N ) =
M∑

i=1

εTi
dεi

dx1:N
= J (x1:N )ε, (93a)

H(x1:N ) =
M∑

i=1

(
dεi

dx1:N

)T dεi
dx1:N

+ εTi
d2εi

dx2
1:N

= J (x1:N )J T(x1:N ) +
M∑

i=1

εTi
d2εi

dx2
1:N
. (93b)

Note that for notational convenience, we have omitted the explicit dependance
of ε on x1:N . In (93), we introduced the notation J (x1:N ), which is the Jacobian of
the vector ε with respect to x1:N as

J (x1:N ) =




dε1
dx1

. . . dεM
dx1

...
...

dε1
dxN

. . . dεM
dxN



. (94)

Instead of computing the true Hessian (93b), we compute an approximation of it
(Nocedal and Wright, 2006), given by

Ĥ(x1:N ) = J (x1:N )J T(x1:N ). (95)

This has the benefit of not having to compute second derivatives, at the same
time as it guarantees that the Hessian is positive semidefinite. The downside of
using (95) is that it introduces an approximation.
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





Figure 18: An illustration of the sparsity pattern that is present in the smooth-
ing problem.

The gradient and the (approximate) Hessian can be used to find the minimum
of the objective function. For our models (86) and (87), in which the functions
ei(x1:N ) are nonlinear, an estimate x̂1:N can iteratively be computed as

x̂
(k+1)
1:N = x̂

(k)
1:N − β(k)

(
Ĥ(x̂(k)

1:N )
)−1
G(x̂(k)

1:N ), (96)

where k denotes the iteration number. The step length β(k) is computed for in-
stance using a backtracking line search (Nocedal and Wright, 2006; Boyd and

Vandenberghe, 2004). The search direction is computed as
(
Ĥ(x̂(k)

1:N )
)−1
G(x̂(k)

1:N ).

Note that an initial point x̂(0)
1:N needs to be chosen close enough to the desired

minimum to ensure convergence to this minimum.
In case the functions ei(x1:N ) would be linear, the problem (92) would be a least

squares (ls) problem for which the update (96) directly leads to the minimum
of the objective function, irrespective of the initial point. In our case where the
functions ei(x1:N ) are nonlinear due to the nonlinear nature of the orientation, the
problem (92) is instead a nonlinear least squares (nls) problem. Each iteration
in (96) can be interpreted as solving a ls problems around a linearization point.
The linearization point is updated after each iteration, bringing it closer to the
minimum of the objective function. Computing an estimate x̂1:N by iterating (96)
until convergence, making use of the approximate Hessian from (95), is called
Gauss-Newton optimization.

Note that since the inertial sensors sample at high sampling rates, the length
of the vector x1:N quickly becomes fairly large. For instance, for inertial sensors
sampling at 100 Hz for 10 s, N = 1 000 and the size of the (approximate) Hessian
Ĥ(x) is 1 000nx × 1 000nx, where nx is the length of the vector xt . However, as
can be seen in (89), the components of the objective function only depend on the
current and next time steps xt and xt+1. Hence, the structure of the Hessian (95)
is of the form given in Figure 18. There exist efficient algorithms to compute
search directions for problems with this sparsity pattern, which can be exploited
using sparse matrix packages, see e.g. Davis (2006), or by using tools like dynamic
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programming and message passing (Bertsekas, 1995; Golub and van Loan, 2013;
Saad, 2003).

Smoothing estimates of the orientation using optimization

In this section, we will illustrate the use of Gauss-Newton optimization to obtain
smoothing estimates of the orientation. As discussed in the previous section, the
crucial part is to identify the objective function and its Jacobian. From this, the
gradient and approximate Hessian can be computed using (93a) and (95), which
can be used to iteratively update the estimates using (96).

Combining the general formulation of the smoothing problem (89) and using
the model for orientation estimation (87), the orientation smoothing problem is
given by

x̂1:N = arg min
x1:N

‖eη,i‖2Σ−1
η,i

︸   ︷︷   ︸
Prior

+
N∑

t=2

‖eω,t‖2Σ−1
ω

︸         ︷︷         ︸
Dynamics

+
N∑

t=2

(
‖ea,t‖2Σ−1

a
+ ‖em,t‖2Σ−1

m

)

︸                           ︷︷                           ︸
Measurement models

, (97)

with

eη,i = 2 logq
(
q̆bn

1 � qnb
1

)
, eη,i ∼ N (0,Ση,i), (98a)

eω,t = 2
T logq

(
qbn
t � qnb

t+1

)
− yω,t , eω,t ∼ N (0,Σω), (98b)

ea,t = ya,t + Rbn
t g

n, ea,t ∼ N (0,Σa), (98c)

em,t = ym,t − Rbn
t m

n, em,t ∼ N (0,Σm). (98d)

Convex equality constraints can straightforwardly be incorporated in opti-
mization problems. However, using N norm equality constraints to preserve the
unit norm of the quaternions, severely complicates the optimization problem
since these norm constraints are non-convex. Instead, we encode an orientation in
terms of a linearization point parametrized as a unit quaternion q̃nb

t and an orien-
tation deviation parametrized as a rotation vector ηb

t as discussed in Section 3.3.
Hence, we model the orientation as

qnb
t = q̃nb

t � expq

(
ηb
t

2

)
. (99)

At each Gauss-Newton iteration (96), we estimate the state vector ηb
1:N . Before

starting the next iteration, the linearization points q̃nb
1:N are updated and the state

vector ηb
1:N is reset to zero.
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Using the notation introduced in Section 3.3, the objective function (97) can
be expressed in terms of the orientation deviation ηb

t by rewriting (98) as

eη,i = 2 logq

(
q̆bn

1 � q̃nb
1 � expq( η

b
1

2 )
)
, (100a)

eω,t = 2
T logq

(
(expq( η

b
t

2 ))c � q̃bn
t � q̃nb

t+1 � expq( η
b
t+1
2 )

)
− yω,t , (100b)

ea,t = ya,t +
(
expR(ηb

t )
)T
R̃bn
t g

n, (100c)

em,t = ym,t −
(
expR(ηb

t )
)T
R̃bn
t m

n. (100d)

Here, R̃bn
t is the rotation matrix representation of the linearization point q̃bn

t . This
leads to the following derivatives

deη,i
dηb

1
=

d logq(q)
dq

(
q̆bn

1 � q̃nb
1

)L d expq(ηb
1 )

dηb
1

, (101a)

deω,t
dηb

t+1
= 1

T
d logq(q)

dq

(
q̃bn
t � q̃nb

t+1

)L d expq(ηb
t+1)

dηb
t+1

, (101b)

deω,t
dηb

t
= 1

T
d logq(q)

dq

(
q̃bn
t � q̃nb

t+1

)R d(expq(ηb
t ))c

d expq(ηb
t )

d expq(ηb
t )

dηb
t

, (101c)

dea,t
dηb

t
≈ [R̃bn

t g
n×], (101d)

dem,t
dηb

t
≈ −[R̃bn

t m
n×], (101e)

where, using (52) and the definition of the quaternion conjugate (37),

d logq(q)
dq ≈

(
01×3
I3

)T
,

d(expq(η))c

d exp η =
(

1 01×3
03×1 −I3

)
,

d expq η
dη ≈

(
01×3
I3

)
. (102)

Using the approximate derivatives (101), the gradient and approximate Hessian
can be computed for the Gauss-Newton iterations. The resulting solution is sum-
marized in Algorithm 1. One of the inputs to the algorithm is an initial estimate

of the orientation q̃nb,(0)
1:N , which will aid the convergence to the desired minimum.

There are (at least) two ways to obtain good initial estimates q̃nb,(0)
1:N . First, they can

be obtained by direct integration of the gyroscope measurements. As discussed
in Section 1.2, these estimates will suffer from integration drift. However, they
still form a good initial estimate for the optimization problem. Second, one of the
other, computationally cheaper estimation algorithms that will be discussed in the
remainder of this section can be used to obtain initial estimates of the orientation.

Computing the uncertainty

As discussed in Section 3.1, we are not only interested in obtaining point estimates
of the position and orientation, but also in estimating their uncertainty. In our
case of Gaussian noise, this is characterized by the covariance. As shown in e.g.



94 Paper A Using inertial sensors for position and orientation estimation

Algorithm 1 Smoothing estimates of the orientation using optimization

Inputs: An initial estimate of the orientation q̃
nb,(0)
1:N , inertial data

{
ya,t , yω,t

}N
t=1

, magne-

tometer data
{
ym,t

}N
t=1

and covariance matrices Σω, Σa and Σm.

Outputs: An estimate of the orientation q̂nb
1:N and optionally its covariance cov(η̂b

1:N ).

1. Set η̂
b,(0)
t = 03×1 for t = 1, . . . , N , set k = 0 and compute q̆nb

1 and Ση,i as described in
Section 3.6.

2. while termination condition is not satisfied do

(a) Compute the gradient (93a) and the approximate Hessian (95) of the orienta-
tion smoothing problem (97) using the expressions for the different parts of
the cost function and their Jacobians (100) and (101).

(b) Apply the update (96) to obtain η̂
b,(k+1)
1:N .

(c) Update the linearization point as

q̃
nb,(k+1)
t = q̃

nb,(k)
t � expq

(
η̂

b,(k+1)
t

2

)
, (103)

and set η̂
b,(k+1)
t = 03×1 for t = 1, . . . , N .

(d) Set k = k + 1.

end while

3. Set q̂nb
1:N = q̃

nb,(k)
1:N .

4. Optionally compute

cov(η̂b
1:N ) =

(
J (η̂b

1:N )J T(η̂b
1:N )

)−1
. (104)

Ljung (1999); Verhaegen and Verdult (2007), if our position and orientation esti-
mation problems would be ls problems, the covariance of the estimates would
be given by the inverse of the Hessian of the objective function (93b). Instead, we
solve an nls problem, for which a number of ls problems are solved around
linearization points closer and closer to the minimum of the objective function.
Hence, when the algorithm has converged, the problem can locally well be de-
scribed by the quadratic approximation around its resulting linearization point.
We can therefore approximate the covariance of our estimates as

cov (x̂1:N ) =
(
J (x̂1:N )J T(x̂1:N )

)−1
. (105)

An intuition behind this expression is that the accuracy of the estimates is related
to the sensitivity of the objective function with respect to the states. The covari-
ance of the estimate will play a crucial role in the filtering approaches discussed
in Sections 4.2 and 4.3.
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The matrix J (x̂1:N )J T(x̂1:N ) quickly becomes fairly large due to the high sam-
pling rates of the inertial sensors. Hence, computing its inverse can be computa-
tionally costly. We are, however, typically only interested in a subset of the inverse.
For instance, we are often only interested in diagonal or block diagonal elements
representing cov(xt). It is therefore not necessary to explicitly form the complete
inverse, which makes the computation tractable also for larger problem sizes.

4.2 Filtering estimation in an optimization framework

One of the benefits of using a smoothing formulation is that all measurements
y1:N are used to get the best estimates of the states x1:N . However, both the com-
putational cost and the memory requirements grow with the length of the data
set. Furthermore, it is a post-processing solution in which we have to wait until
all data is available. Alternatively, the filtering problem can be formulated as

x̂t+1 = arg min
xt+1

− log p(xt+1 | y1:t+1)

= arg min
xt+1

− log p(yt+1 | xt+1) − log p(xt+1 | y1:t). (106)

Note that without loss of generality, we have shifted our time indices as compared
to the notation in Section 3.1. The prior p(xt+1 | y1:t) is obtained by marginalizing
out the previous state xt as

p(xt+1 | y1:t) =
∫
p(xt+1, xt | y1:t)dxt =

∫
p(xt+1 | xt)p(xt | y1:t)dxt . (107)

In this section we will derive an algorithm to obtain filtering estimates of the
orientation using optimization. Similar to Algorithm 1, we will iteratively com-
pute estimates using Gauss-Newton optimization. However, instead of optimizing
over the whole data set at once, we run an optimization algorithm for each time
instance t.

Let us assume that the probability distributions are Gaussian and given by

p(xt+1 | xt) ∼ N (xt+1; f (xt), Q), p(xt | y1:t) ∼ N (xt ; x̂t , Pt|t). (108)

The integral in (107) can then be approximated according to

p(xt+1 | y1:t) ≈ N
(
xt+1; f (x̂t), FtPt|tFTt + GtQG

T
t

)
, (109)

with Ft = ∂f (xt)
∂xt

and Gt = ∂f (xt)
∂wt

, where wt is the process noise defined in (17).
For the orientation estimation problem, using (99) in combination with (87a),

we can express ηb
t+1 in terms of ηb

t as

ηb
t+1 = f (ηb

t , yω,t , eω,t)

= 2 logq

(
q̃bn
t+1 � q̃nb

t � expq( η
b
t

2 ) � expq

(
T
2 (yω,t + eω,t)

))
. (110)
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To simplify notation, we choose the linearization point q̃nb,(0)
t+1 at iteration k = 0 as

q̃
nb,(0)
t+1 = q̂nb

t � expq

(
T
2 yω,t

)
, (111)

where q̂nb
t is the orientation estimate from the previous time step. Around this

updated linearization point, the distribution p(ηt+1 | y1:t) can be written as

p(ηb
t+1 | y1:t) ≈ N

(
ηb
t+1; 0, FtPt|tFTt + GtQG

T
t

)
, (112)

with Q = Σω and

Ft = ∂f (ηb
t ,yω,t ,eω,t)
∂ηb

t

∣∣∣∣∣
ηb
t =0

eω,t=0

= 2 ∂
∂ηb

t
logq

(
expq(− T2 yω,t) � expq( η

b
t

2 ) � expq( T2 yω,t)
)∣∣∣∣∣
ηb
t =0

= expR(−T yω,t), (113a)

Gt = ∂f (ηb
t ,yω,t ,eω,t)
∂eω,t

∣∣∣∣∣
ηb
t =0

eω,t=0

= 2 ∂
∂eω,t

logq
(
expq(− T2 yω,t) � expq

(
T
2 (yω,t + eω,t)

))∣∣∣∣
eω,t=0

≈ T I3. (113b)

Note that in (113) we assume that ηb
t = 0 since similar to the approach in Algo-

rithm 1, the linearization point is updated after each iteration of the optimization
algorithm.

The covariance Pt|t can be approximated as the inverse of the Hessian of the
objective function from the previous time step, see also Section 4.1. We make use

of the shorthand notation P (0)
t+1|t = FtPt|tFTt + GtQGT

t and define

ef,t = −2 logq
(
q̃bn
t � q̃nb

t−1 � expq( T2 yω,t−1)
)
,

def,t
dηb

t
= I3. (114)

Note that ef,t is equal to zero for iteration k = 0 but can be non-zero for subsequent
iterations. Using this notation, the filtering problem (106) results in the following
optimization problem

x̂t = arg min
xt

− log p(xt | y1:t)

= arg min
xt

‖ef,t‖P −1
t|t−1︸    ︷︷    ︸

Dynamics and
knowledge about xt−1

+ ‖ea,t‖Σ−1
a

+ ‖em,t‖Σ−1
m

︸                   ︷︷                   ︸
Measurement models

. (115)

Note the similarity of this optimization problem to the smoothing formulation
in (97). The term ‖ef,t‖P −1

t|t−1
takes into account both the knowledge about the pre-

vious state xt and the dynamics. Furthermore, due to the fact that P −1
t|t−1 is time-

varying, the uncertainty and cross-correlation of the states at the previous time
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instance is taken into consideration. Including this term is similar to the inclusion
of an arrival cost in moving horizon estimation approaches (Rao et al., 2003).

After each Gauss-Newton iteration, we need to recompute the linearization
point and compute the covariance around this updated linearization point as

q̃
nb,(k+1)
t = q̃

nb,(k)
t � expq

(
η̂

b,(k+1)
t

2

)
, P

(k+1)
t|t−1 = J

(k)
t P

(k)
t|t−1

(
J

(k)
t

)T
, (116)

where J (k)
t = expR(−ηb,(k+1)

t ), which can be derived similarly to the derivation of Ft
in (113a). The process of estimating orientation using filtering is summarized in
Algorithm 2.

4.3 Extended Kalman filtering

Instead of using optimization for position and orientation estimation, it is also
possible to use extended Kalman filtering. Extended Kalman filters (ekfs) com-
pute filtering estimates in terms of the conditional probability distribution (14).
Hence, the approach is similar to the one discussed in Section 4.2. In fact, ex-
tended Kalman filtering can be interpreted as Gauss-Newton optimization of the
filtering problem using only one iteration (96) with a step length of one, see e.g.
Skoglund et al. (2015). In this section we first introduce how an ekf can be used
to compute state estimates in a general nonlinear state space model. Subsequently,
we illustrate the use of ekfs for position and orientation estimation by focusing
on the orientation estimation problem. Two different implementations will be
discussed. First, we introduce an ekf implementation that uses unit quaternions
as states. Subsequently, we discuss an ekf which parametrizes the orientation
in terms of an orientation deviation from a linearization point, similar to the
approach used in Sections 4.1 and 4.2.

An ekf makes use of a nonlinear state space model. Assuming that the mea-
surement noise is additive and that both the process and the measurement noise
are zero-mean Gaussian with constant covariance, the state space model is given
by

xt+1 = ft(xt , ut , wt), (120a)

yt = ht(xt) + et , (120b)

with wt ∼ N (0, Q) and et ∼ N (0, R).
The state is estimated recursively by performing a time update and a measure-

ment update. The time update uses the model (120a) to “predict” the state to the
next time step according to

x̂t+1|t = ft(x̂t|t , ut), (121a)

Pt+1|t = FtPt|tFTt + GtQG
T
t , (121b)

with

Ft = ∂ft(xt ,ut ,wt)
∂xt

∣∣∣∣
xt=x̂t|t
wt=0 , Gt = ∂ft(xt ,ut ,wt)

∂vt

∣∣∣∣
xt=x̂t|t
wt=0 . (122)
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Algorithm 2 Filtering estimates of the orientation using optimization

Inputs: Inertial data
{
ya,t , yω,t

}N
t=1

, magnetometer data
{
ym,t

}N
t=1

and covariance matrices
Σω, Σa and Σm.
Outputs: An estimate of the orientation q̂nb

t and its covariance Pt|t for t = 1, . . . N

1. Compute q̆nb
1 and Σi as described in Section 3.6 and set q̂nb

1 = q̆nb
1 and P1|1 = Ση,i.

2. for t = 2, . . . N do

(a) Set η̂
b,(0)
t = 03×1, set k = 0, choose the linearization point q̃

nb,(0)
t as

q̃
nb,(0)
t = q̂nb

t−1 � expq

(
T
2 yω,t−1

)
, (117a)

and compute P
(0)
t|t−1 as

P
(0)
t|t−1 = FtPt−1|t−1F

T
t−1 + Gt−1ΣωG

T
t−1, (117b)

with Ft−1 = expR(−T yω,t−1) and Gt = T I3.

(b) while termination condition is not satisfied do

i. Compute the gradient (93a) and the approximate Hessian (95) of the fil-
tering problem (115) using the expressions for the different parts of the
cost function and their Jacobians (114), (100c), (100d), (101d) and (101e).

ii. Apply the update (96) to obtain η̂
b,(k+1)
t .

iii. Update the linearization point and the covariance Pt|t−1 as

q̃
nb,(k+1)
t = q̃

nb,(k)
t � expq

(
η̂

b,(k+1)
t

2

)
, (118a)

P
(k+1)
t|t−1 = J

(k)
t−1P

(k)
t|t−1(J

(k)
t−1)T, (118b)

with J
(k)
t = expR

(
−ηb,(k+1)

t

)
, and set η̂

b,(k+1)
t = 03×1.

iv. Set k = k + 1.

end while

(c) Set q̂nb
t = q̃

nb,(k)
t and compute Pt|t as

Pt|t =
(
J (η̂b

t )J T(η̂b
t )

)−1
. (119)
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Here, the matrix P denotes the state covariance. The double subscripts on x̂t+1|t
and Pt+1|t denote the state estimate and the state covariance at time t + 1 given
measurements up to time t. Similarly, x̂t|t and Pt|t denote the state estimate and
the state covariance at time t given measurements up to time t.

The measurement update makes use of the measurement model (120b) in
combination with the measurements yt to update the “predicted” state estimate
as

x̂t|t = x̂t|t−1 + Ktεt , (123a)

Pt|t = Pt|t−1 − KtStKT
t , (123b)

with

εt , yt − ŷt|t−1, St , HtPt|t−1H
T
t + R, Kt , Pt|t−1H

T
t S
−1
t , (124)

and

ŷt|t−1 = h(x̂t|t−1), Ht = ∂ht(xt)
∂xt

∣∣∣∣
xt=x̂t|t−1

. (125)

Note that in (123) we have shifted our notation one time step compared to the
notation in (121) to avoid cluttering the notation. The ekf iteratively performs a
time update and a measurement update to estimate the state and its covariance.

Estimating orientation using quaternions as states

In this section, we will illustrate the use of an ekf to compute filtering estimates
of the orientation. As discussed in the previous section, the crucial part is to
compute the matrices Ft , Gt and Ht to perform the ekf time and measurement
updates. Using the state space model (87) and using unit quaternions as states in
the ekf , the dynamic model is given by

qnb
t+1 = ft(q

nb
t , yω,t , eω,t) = qnb

t � expq

(
T
2 (yω,t − eω,t)

)

=
(
expq

(
T
2 (yω,t − eω,t)

))R
qnb
t =

(
qnb
t

)L
expq

(
T
2 (yω,t − eω,t)

)
. (126)

The following derivatives of the dynamic model (126) can be obtained

Ft = ∂ft(q
nb
t ,yω,t ,eω,t)
∂qnb

t

∣∣∣∣∣
qnb
t =q̂nb

t|t
eω,t=0 =

(
expq( T2 yω,t)

)R
, (127a)

Gt = ∂ft(q
nb
t ,yω,t ,eω,t)
∂eω,t

∣∣∣∣∣
qnb
t =q̂nb

t|t
eω,t=0

= ∂
∂eω,t

(
qnb
t

)L
expq( T2 (yω,t − eω,t))

∣∣∣∣∣
qnb
t =q̂nb

t|t
eω,t=0

= − T2
(
q̂nb
t|t

)L d expq(eω,t)
deω,t

. (127b)
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In the measurement update of the ekf , the state is updated using the ac-
celerometer and magnetometer measurements. Using the measurement models

ya,t = −Rbn
t g

n + ea,t , ym,t = Rbn
t m

n + em,t , (128)

the matrix Ht in (125) is given by

Ht = ∂
∂qnb

t

(
Rbn
t g

n

Rbn
t m

n

)∣∣∣∣∣∣
qnb
t =q̂nb

t|t−1

=




− ∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

gn

∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

mn



. (129)

The derivative can be computed from the definition of the relation between and
the rotation matrix and the quaternion representation given in (170).

Note that the quaternion obtained from the measurement update (123) is no
longer normalized. We denote this unnormalized quaternion and its covariance
by q̃nb

t|t and P̃t|t , respectively. The ·̃ instead of the ·̂ is meant to explicitly indi-
cate that the quaternion still needs to be updated. This is done by an additional
renormalization step as compared to a standard ekf implementation. A possible
interpretation of the renormalization is as an additional measurement update
without measurement noise. Hence, we adjust both the quaternion and its covari-
ance as

q̂nb
t|t =

q̃nb
t|t

‖q̃nb
t|t ‖2

, Pt|t = Jt P̃t|tJTt , (130a)

with

Jt = 1
‖q̃nb
t|t ‖32

q̃nb
t|t

(
q̃nb
t|t

)T
. (130b)

Here, qT is the standard vector transpose. The resulting ekf is summarized in
Algorithm 3.

Estimating orientation using orientation deviations as states

An alternative ekf implementation parametrizes the orientation in terms of
an orientation deviation around a linearization point. The linearization point is
parametrized in terms of quaternions or rotation matrices and denoted q̃nb

t or
equivalently R̃nb

t . The orientation deviation ηb
t is the state vector in the ekf . This

ekf implementation is sometimes referred to as a multiplicative ekf (Crassidis
et al., 2007; Markley, 2003). One of its advantages is that its implementation is
computationally attractive since it only uses a 3-dimensional state compared to
the 4-dimensional state in Algorithm 3.

In the time update, we use the dynamic model to directly update the lineariza-
tion point as

q̃nb
t+1 = q̃nb

t � expq

(
T
2 yω,t

)
. (134)
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Algorithm 3 Orientation estimation using an EKF with quaternion states

Inputs: Inertial data
{
ya,t , yω,t

}N
t=1

, magnetometer data
{
ym,t

}N
t=1

and covariance matrices
Σω, Σa and Σm.
Outputs: An estimate of the orientation q̂nb

t|t and its covariance Pt|t for t = 1, . . . N .

1. Compute q̆nb
1 and Σi as described in Section 3.6 and set q̂nb

1|1 = q̆nb
1 and P1|1 = Σq,i.

2. For t = 2, . . . , N do

(a) Time update

q̂nb
t|t−1 = q̂nb

t−1|t−1 � expq

(
T
2 yω,t−1

)
, (131a)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 + Gt−1QG

T
t−1, (131b)

with Ft−1 =
(
expq( T2 yω,t−1)

)R
, Gt = − T2

(
q̂nb
t−1|t−1

)L d expq(eω,t−1)
deω,t−1

and Q = Σω.

(b) Measurement update

q̃nb
t|t = q̂nb

t|t−1 + Ktεt , (132a)

P̃t|t = Pt|t−1 − KtStKT
t , (132b)

with εt , Kt and St defined in (124) and

yt =
(
ya,t
ym,t

)
, ŷt|t−1 =



−R̂bn

t|t−1g
n

R̂bn
t|t−1m

n


 ,

Ht =




− ∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

gn

∂Rbn
t|t−1

∂qnb
t|t−1

∣∣∣∣∣∣
qnb
t|t−1=q̂nb

t|t−1

mn




, R =
(
Σa 0
0 Σm

)
.

(c) Renormalize the quaternion and its covariance as

q̂nb
t|t =

q̃nb
t|t

‖q̃nb
t|t ‖2

, Pt|t = Jt P̃t|t JTt , (133)

with Jt = 1
‖q̃nb
t|t ‖32

q̃nb
t|t

(
q̃nb
t|t

)T
.

end for
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The dynamic equation is therefore given by

ηb
t+1 = ft

(
ηb
t , yω,t , eω,t

)

= 2 log
(
q̃bn
t+1 � q̃nb

t � expq( η
b
t

2 ) � expq

(
T
2 (yω,t − eω,t)

))

= 2 log
(
expq(− T2 yω,t) � expq( η

b
t

2 ) � expq

(
T
2 (yω,t − eω,t)

))
, (135)

where the last equality is based on the update of the linearization point. From (135),
the following derivatives can be obtained

Ft = ∂ft(η
b
t ,yω,t ,eω,t)
∂ηb

t

∣∣∣∣∣
ηb
t =0

eω,t=0

= 2 ∂
∂ηb

t
log

(
expq(− T2 yω,t) � expq( η

b
t

2 ) � expq( T2 yω,t)
)∣∣∣∣∣
ηb
t =0

= expR(−T yω,t), (136a)

Gt = ∂ft(η
b
t ,yω,t ,eω,t)
∂eω,t

∣∣∣∣∣
ηb
t =0

eω,t=0

= 2 ∂
∂eω,t

log
(
expq(− T2 yω,t) � expq( T2 (yω,t + eω,t))

)∣∣∣∣
eω,t=0

≈ T I3. (136b)

In the measurement update of the ekf , the state ηb
t is updated using the ac-

celerometer and magnetometer measurements. The accelerometer measurement
equation can be written in terms of the state ηb

t as

ya,t = −Rbn
t g

n + ea,t = −
(
exp([ηb

t ×])
)T
R̃bn
t g

n + ea,t

≈ −
(
I3 − [ηb

t ×]
)
R̃bn
t g

n + ea,t = −R̃bn
t g

n − [R̃bn
t g

n×]ηb
t + ea,t . (137)

Equivalently, the magnetometer measurement equation can be written in terms
of the state ηb

t as

ym,t = Rbn
t m

n + em,t =
(
exp([ηb

t ×])
)T
R̃bn
t m

n + em,t

≈
(
I3 − [ηb

t ×]
)
R̃bn
t m

n + em,t = R̃bn
t m

n + [R̃bn
t m

n×]ηb
t + em,t . (138)

From these equations, the derivatives Ht as defined in (125) can straightforwardly
be computed.

After the measurement update, the orientation deviation η̂b
t is non-zero. Hence,

as an additional step in the ekf , we update the linearization point and reset the
state. In our algorithm, we consider the relinearization as the “measurement up-
date” for the linearization point, i.e. the relinearization updates the linearization
point q̃nb

t|t−1 to q̃nb
t|t as

q̃nb
t|t = q̃nb

t|t−1 � expq

(
η̂b
t

2

)
. (139)
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The covariance around the updated linearization point can be computed as

Pt|t = Jt P̃t|tJTt , Jt = expR(−η̂b
t ). (140)

The resulting ekf is summarized in Algorithm 4. Note the similarities between
this algorithm and Algorithm 2.

Algorithm 4 Orientation estimation using an EKF with orientation deviation states

Inputs: Inertial data
{
ya,t , yω,t

}N
t=1

, magnetometer data
{
ym,t

}N
t=1

and covariance matrices
Σω, Σa and Σm.
Outputs: An estimate of the orientation q̃nb

t|t and the covariance Pt|t for t = 1, . . . N .

1. Compute q̆nb
1 and Σi as described in Section 3.6 and set q̃nb

1|1 = q̆nb
1 and P1|1 = Ση,i.

2. For t = 2, . . . , N do

(a) Time update

q̃nb
t|t−1 = q̃nb

t−1|t−1 � expq

(
T
2 yω,t−1

)
, (141a)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 + GQGT, (141b)

with Ft−1 = expR(−T yω,t−1), G = T I3 and Q = Σω.

(b) Measurement update

η̂b
t = Ktεt , (142a)

P̃t|t = Pt|t−1 − KtStKT
t , (142b)

with εt , Kt and St defined in (124) and

yt =
(
ya,t
ym,t

)
, ŷt|t−1 =



−R̃bn

t|t−1g
n

R̃bn
t|t−1m

n


 ,

Ht =



−[R̃bn

t|t−1g
n×]

[R̃bn
t|t−1m

n×]


 , R =

(
Σa 0
0 Σm

)
.

(c) Relinearize

q̃nb
t|t = q̃nb

t|t−1 � expq

(
η̂b
t

2

)
, Pt|t = Jt P̃t|t JTt , (143)

with Jt = expR(−η̂b
t ).

end for

4.4 Evaluation based on experimental and simulated data

In this section, we apply the algorithms described in Sections 4.1 – 4.3 to both
simulated and experimental data. Some general characteristics of the orientation
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Optical marker imu

Figure 19: Experimental setup where an imu is used to collected inertial
and magnetometer measurements. Optical markers are tracked using multi-
ple cameras, leading to accurate reference position and orientation estimates.
Note that the experimental setup also contains additional imus and smart-
phones. The data from these sensors is not considered in this work.

estimation algorithms will be illustrated and the quality of the different algo-
rithms will be analyzed. The simulated data allows for controlled analysis of the
workings of the algorithms. Furthermore, it allows us to compare the different
algorithms using Monte Carlo simulations. The experimental data shows the ap-
plicability to real-world scenarios. We will start by introducing the data sets.

Experimental data is collected using the setup shown in Figure 19, where data
is collected using multiple mobile imus and smartphones. The algorithms pre-
sented in this section can be applied to measurements from any of these devices.
However, we focus our analysis on the data from the Trivisio Colibri Wireless imu
(Trivisio Prototyping GmbH, 2016). In Figure 20, the inertial and magnetometer
measurements from this imu are displayed for around 100 s during which the
sensor is rotated around all three axes. The experiments are performed in a lab
equipped with multiple cameras (Vicon, 2016), able to track the optical markers
shown in Figure 19. This provides accurate reference position and orientation
information, against which we can compare our estimates.5

In Figure 21, simulated inertial and magnetometer measurements are dis-
played. The data represents a sensor that is kept stationary for 100 samples,
after which it is rotated around all three axes. The sensor is assumed to be ro-
tated around the origin of the accelerometer triad. Hence, during the entire data
set, the accelerometer is assumed to only measure the gravity vector. The mag-
nitude of the simulated gravity vector is 9.82 m/s2. The magnitude of the sim-
ulated local magnetic field is equal to one. Its direction is approximately equal
to that in Linköping, Sweden, where a dip angle of 71◦ leads to a magnetic field

5For comparison, the optical and imu data need to be time-synchronized and aligned. We synchro-
nize the data by correlating the norms of the gyroscope measurements and of the angular velocity
estimated by the optical system. Alignment is done using the orientation estimates in combination
with Theorem 4.2 from Hol (2011).
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Figure 20: Measurements from an accelerometer (ya,t , top), a gyroscope (yω,t ,
middle) and a magnetometer (ym,t , bottom) for 100 s of data collected with
the imu shown in Figure 19.
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Figure 21: Simulated measurements from an accelerometer (ya,t , top), a gy-
roscope (yω,t , middle) and a magnetometer (ym,t , bottom).
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mn =
(
0.33 0 −0.95

)T
. The simulated noise levels are

ea,t ∼ N (0, σ2
a I3), σa = 1 · 10−1,

eω,t ∼ N (0, σ2
ω I3), σω = 1 · 10−2,

em,t ∼ N (0, σ2
m I3), σm = 1 · 10−1.

Note that we deliberately chose the noise levels to be fairly high, to clearly illus-
trate the workings of the different algorithms.

Although our algorithms parametrize the orientation as quaternions, it is typ-
ically more intuitive to visualize the orientation estimates in Euler angles. Hence,
we visualize our results in terms of roll, pitch and heading (yaw) angles. Both
for the experimental data and for the simulated data, we are able to compare our
estimates q̂nb

t to reference orientations denoted qnb
ref,t . To represent the orientation

error, we compute a difference quaternion ∆qt as

∆qt = q̂nb
t �

(
qnb

ref,t

)c
, (144)

which can be converted to Euler angles for visualization. Note that using this
definition, the orientation errors in Euler angles can be interpreted as the errors
in roll, pitch and heading.

General characteristics

In this section, we will discuss some general characteristics of the orientation esti-
mation problem and illustrate them in three different examples. Our goal is not to
compare the different estimation algorithms, but to illustrate some characteristics
common to all of them.

In Example 8 we focus on the accuracy of the orientation estimates that can
be obtained if the state space model (87) is completely true. We illustrate that it
is typically easier to obtain accurate roll and pitch estimates than it is to obtain
accurate heading estimates.

Example 8: Orientation estimation using inertial and magnetometer data
The orientation errors from the smoothing optimization approach in Algorithm 1
using simulated inertial and magnetometer measurements as illustrated in Fig-
ure 21 are depicted in Figure 22. For comparison we also show the orientation
errors from dead-reckoning the gyroscope measurements (see also Section 1.2).

Although the accelerometer and magnetometer measurement noises are of
equal magnitude, the heading angle is estimated with less accuracy than the roll
and pitch angles. The reason for this is twofold. First, the signal to noise ratio for
the magnetometer is worse than that of the accelerometer, since the magnetometer
signal has a magnitude of 1 while the accelerometer signal has a magnitude of
9.82 m/s2. Second, only the horizontal component of the local magnetic field
vector provides heading information. This component is fairly small due to the
large dip angle (71◦) in Linköping, Sweden.
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Figure 22: Orientation errors in roll (blue), pitch (green) and heading (red)
using simulated measurements for (top) Algorithm 1 using inertial and mag-
netometer measurements and (bottom) dead-reckoning of the gyroscope mea-
surements.

The accelerometer provides inclination information, while the magnetometer
provides heading information, see Section 3.4. In case only inertial measurements
and no magnetometer measurements are available, the heading can only be esti-
mated using the gyroscope measurements. As discussed in Section 1.2, the head-
ing estimates will then drift due to the integration of the gyroscope measurements.
This is illustrated in Example 9.

Example 9: Orientation estimation using only inertial measurements
The orientation errors from the smoothing optimization approach in Algorithm 1
using simulated inertial measurements as presented in Figure 21 can be found in
Figure 23. The roll and pitch angles can be seen to be accurate, while the heading
angle drifts. Again, we also show the orientation errors from dead-reckoning the
gyroscope measurements for comparison. The drift in the heading angle can be
seen to be similar to the drift from dead-reckoning of the gyroscope measure-
ments.
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Figure 23: Orientation errors in roll (blue), pitch (green) and heading (red)
using simulated measurements for (top) Algorithm 1 using inertial measure-
ments only and (bottom) dead-reckoning of the gyroscope measurements.

The two examples above assume that our state space model (87) is an accurate
description of the measurements. In practice, however, this is not always the case,
for instance due to the presence of magnetic material in the vicinity of the sensor.
In Example 10 we illustrate that if the state space model does not accurately
describe the data, it is not possible to obtain accurate orientation estimates.

Example 10: Orientation estimation in the presence of magnetic material
We simulate 400 samples of stationary data. Between samples 150 and 250, we
simulate the presence of a magnetic material, causing a change in the magnetic

field of
(
0.1 0.3 0.5

)T
. In Figure 24, we show the adapted magnetometer data

and the orientation estimates using the smoothing optimization approach from
Section 4.1. As can be seen, the orientation estimates show significant errors when
the magnetic material is present.
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Figure 24: Top: Simulated magnetometer measurements ym,t for 400 samples
of stationary data. Between samples 150 and 250 we simulate the presence
of a magnetic material in the vicinity of the sensor. Bottom: Orientation es-
timates in roll (blue), pitch (green) and heading (red) using the simulated
inertial and magnetometer measurements.

Representing uncertainty

So far, we have discussed the quality of the orientation estimates in three differ-
ent examples. However, we did not discuss the uncertainty of the estimates. We
will now discuss how these uncertainties can be displayed and interpreted and
highlight some difficulties with this.

Both the optimization and the ekf approaches discussed in Sections 4.1 – 4.3
compute the uncertainty of the estimates in terms of a covariance matrix. Let us
use the more general notation cov(η̂b

t ) for the covariance of the orientation devi-
ation states η̂b

t , t = 1, . . . , N computed in Algorithms 1, 2 and 4, and cov(q̂nb
t ) for

the covariance of the quaternion states q̂nb
t , t = 1, . . . , N computed in Algorithm 3.

If the states would be in normal, Euclidean space, the square root of the diagonal
of these matrices would represent the standard deviation σ of the estimates in the
different directions. These could then be visualized by for instance plotting 3σ
confidence bounds around the estimates.

One could imagine that an equivalent way of visualizing the orientation devi-
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ation uncertainties, would be to compute the 3σ bounds in terms of orientation
deviations in each of the three directions as

(
∆ηb

i,t

)
+3σ

= +3
√(

cov(η̂b
t

)
ii
, i = 1, . . . , 3, (145a)

(
∆ηb

i,t

)
−3σ

= −3
√(

cov(η̂b
t

)
ii
, i = 1, . . . , 3, (145b)

after which the bounds can be parametrized in terms of quaternions as

(
qnb
t

)
+3σ

= q̂nb
t � expq

(
∆ηb

t

)
+3σ

, (146a)
(
qnb
t

)
−3σ

= q̂nb
t � expq

(
∆ηb

t

)
−3σ

. (146b)

The resulting estimates and bounds are visualized in terms of Euler angles in
Figure 25 for simulated data similar to the data presented in Figure 21. As can be
seen, the bounds are difficult to interpret due to the wrapping of the Euler angles.

As argued in Forster et al. (2016), it is more intuitive to directly represent the
uncertainty in terms of orientation deviations. Instead of using the covariance
estimate cov(ηb

t ) directly from our algorithms, we believe that it is more intuitive
to represent this covariance in the navigation frame as

cov(η̂n
t ) = R̂nb

t cov(η̂b
t )R̂bn

t . (147)

The covariance cov(η̂n
t ) can be interpreted as the uncertainty in the roll, pitch and

heading angles as illustrated in Example 11.

Example 11: Orientation estimation using only inertial measurements
(continued)

Since the accelerometer provides only inclination information, in the case of Ex-
ample 9 where magnetometer measurements are unavailable, we expect only the
roll and pitch angles to be estimated with small uncertainty. In fact, we expect
the uncertainty of the heading at t = 1 to be equal to the uncertainty of the initial
Σi from Section 3.6 and to steadily grow over time, depending on the amount of
gyroscope noise. In Figure 26, we plot the standard deviation σ of the orientation
estimates computed using the smoothing algorithm from Section 4.1 as the square
root of the diagonal elements of cov(η̂n

t ). As can be seen, the standard deviation
of the yaw angle at t = 1 is indeed 20◦ as modeled in Section 3.6. The increase in
the uncertainty in the yaw angle exactly matches the increase of the uncertainty
due to dead-reckoning.

From Example 11 it can be concluded that cov(η̂n
t ) seems to be an intuitive

measure of the uncertainty of the orientation estimates. Using (147), the covari-
ances cov(η̂b

t ) computed by Algorithms 1, 2 and 4 can be converted to this measure.
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Figure 25: Orientation estimates (solid) and 3σ bounds (dashed) in roll (blue),
pitch (green) and heading (red) using inertial and magnetometer measure-
ments.
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Figure 26: Standard deviation σ in degrees of the orientation estimates in
roll (blue), pitch (green) and heading (red) using only inertial measurements.

The covariance cov(q̂nb
t ) computed by Algorithm 3 relates to these covariances as

cov(q̂nb
t ) = cov(q̃nb

t � expq( η̂
b
t

2 ))

= 1
4

(
q̃nb
t

)L d expq(η̂b
t )

dη̂b
t

cov(η̂b
t )

(
d expq(η̂b

t )

dη̂b
t

)T (
q̃bn
t

)L
, (148a)

cov(η̂b
t ) = cov(2 logq(q̃bn

t � q̂nb
t ))

= 4
d logq(q)

dq

(
q̃bn
t

)L
cov(q̂nb

t )
(
q̃nb
t

)L (d logq(q)
dq

)T
, (148b)

where we make use of the fact that (qL)T = (qc)L. The relations (147) and (148)
allow us to compare the orientation estimates and covariances from the different
algorithms in more detail in Example 12.

Example 12: Orientation estimation using only inertial measurements
(continued)

As discussed in Example 11, using only inertial measurements and no magne-
tometer measurements, we can only expect to be able to accurately estimate the
inclination. The uncertainty of the heading estimates grows over time. We will
now analyze the behavior of the different algorithms in more detail for this spe-
cific example. In Table 1, we show the root mean square error (rmse) values over
100 Monte Carlo simulations for Algorithms 1 – 4. In Figure 27, we also represent
the orientation estimates from the four algorithms for one of these realizations.
As can be seen from both Table 1 and Figure 27, as expected, the smoothing al-
gorithm outperforms the other algorithms. However, more surprisingly, the ekf
with quaternion states has much larger errors in the heading angle. In Figure 28,
we also show the standard deviations of the estimates from all algorithms. As can
be seen, the ekf with quaternion states over-estimates its confidence in the esti-
mates of the heading direction. This can most likely be attributed to linearization
issues.
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Table 1: Mean rmse values over 100 Monte Carlo simulations estimating
orientation using only inertial measurements.

Rmse Roll [◦] Pitch [◦] Heading [◦]

Smoothing optimization (Alg. 1) 0.39 0.39 7.50
Filtering optimization (Alg. 2) 0.46 0.46 7.50
Ekf quaternions (Alg. 3) 0.46 0.46 18.41
Ekf orientation deviation (Alg. 4) 0.46 0.46 7.50
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(a) Algorithm 1.
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(d) Algorithm 4.

Figure 27: Orientation estimates of Algorithms 1 – 4 in roll (blue), pitch
(green) and heading (red) using only inertial measurements.
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(a) Algorithm 1.
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(d) Algorithm 4.

Figure 28: Standard deviation σ in degrees of the orientation estimates of
Algorithms 1 – 4 in roll (blue), pitch (green) and heading (red) using only
inertial measurements.

From Example 12, it can be concluded that not properly estimating the co-
variance can have negative effects on the quality of the estimates. It can also be
concluded from this section that covariances can best be represented in terms of
cov(η̂n

t ) but that they are difficult to visualize in Euler angles. Because of that, in
the remainder of this section, we will typically plot the uncertainty in a separate
plot as in Figure 28.

Comparing the different algorithms

We use the experimental data presented in Figure 20 to assess the quality of
the estimates from the different algorithms. The rmse values as compared to
the optical reference system for the different methods described in this section
are summarized in Table 2. As can be seen, the three filtering solutions perform
similarly while the smoothing solution outperforms them. As an illustration of the
estimates, the orientation estimates as obtained using the smoothing algorithm
and the orientations from the optical reference system are shown in Figure 29.
Since it is difficult to draw quantitative conclusions based on only one data set,
we will also study the accuracy of the different methods using simulated data.

We run 100 Monte Carlo simulations where the simulated data illustrated in
Figure 21 is generated with different noise realizations. Table 3 shows the mean
rmse for the four estimation algorithms. The smoothing approach can be seen to
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Figure 29: Red: Orientation from the optical reference system. Blue: Orien-
tation estimates obtained using Algorithm 1 for the experimental data from
Figure 20.
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Table 2: Rmse of the orientation estimates obtained using Algorithms 1 – 4
and the experimental data presented in Figure 20.

Rmse Roll [◦] Pitch [◦] Heading [◦]

Smoothing optimization (Alg. 1) 1.24 1.16 1.65
Filtering optimization (Alg. 2) 1.34 1.12 2.05
Ekf quaternions (Alg. 3) 1.34 1.12 2.05
Ekf orientation deviation (Alg. 4) 1.34 1.12 2.05

Table 3: Mean rmse of the orientation estimates from 100 Monte Carlo
simulations using Algorithms 1 – 4.

Rmse Roll [◦] Pitch [◦] Heading [◦]

Smoothing optimization (Alg. 1) 0.39 0.39 2.35
Filtering optimization (Alg. 2) 0.45 0.45 3.52
Ekf quaternions (Alg. 3) 0.45 0.45 3.54
Ekf orientation deviation (Alg. 4) 0.45 0.45 3.52

outperform the filtering approaches. The estimates and their covariances for one
of the noise realizations are shown in Figures 30 and 31, respectively. The filtering
approaches estimate the standard deviation of the orientation errors at t = 1 to be
equal to 20◦. After this, they can be seen to converge to around 3.15◦ degrees for
the heading angle and 0.46◦ for roll and pitch angles. The smoothing algorithm
estimates an uncertainty in the heading angle of around 3.17◦ for the first and
last sample, while converging to a standard deviation of 2.25◦ for the middle of
the data set. For the roll and pitch angles, the initial and final uncertainties are
estimated to be around 0.73◦, converging to 0.39◦ for the middle of the data set.
Note that these values correspond fairly well with the rmse values in Table 3.

For the Monte Carlo simulations described above, the three filtering algorithms
perform similarly. However, differences can be seen when an update of the filter
needs to correct the orientation estimates significantly. Examples for when this
happens are when the initial orientation is not accurately known or when magne-
tometer measurements are not available for a longer period of time. In these cases,
the uncertainty of the state is large and large corrections to the state estimates are
needed when measurements become available. To analyze this case in more detail,
we assume that the estimate of the initial orientation q̆nb

1 is normal distributed
around the true initial orientation with a standard deviation of 20◦. Hence, we
do not use the first accelerometer and magnetometer data for initialization. Note
that the standard deviation of 20◦ is equal to the uncertainty on the initial state
assumed by the algorithms. The results for 100 Monte Carlo simulations are sum-
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(a) Algorithm 1.
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(d) Algorithm 4.

Figure 30: Orientation errors of Algorithms 1 – 4 in roll (blue), pitch (green)
and heading (red) using simulated inertial and magnetometer measurements.

Table 4: Mean rmse of the orientation estimates from 100 Monte Carlo
simulations. The estimate of the initial orientation is assumed to be normal
distributed around the true initial orientation with a standard deviation of
20◦.

Rmse Roll [◦] Pitch [◦] Heading [◦]

Smoothing optimization (Alg. 1) 0.39 0.39 2.21
Filtering optimization (Alg. 2) 1.02 0.94 3.52
Ekf quaternions (Alg. 3) 1.03 0.96 4.29
Ekf orientation deviation (Alg. 4) 1.03 0.96 3.53
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Figure 31: Standard deviation σ in degrees of the orientation estimates of
Algorithms 1 – 4 in roll (blue), pitch (green) and heading (red) using simu-
lated inertial and magnetometer measurements. Note the different scale on
the vertical axis of (a) as compared to (b) – (d).

marized in Table 4. As can be seen, specifically the ekf with quaternion states
performs worse than Algorithm 2 and Algorithm 4 for this data.

Which algorithm should be used is highly application-specific. However, in
general it can be concluded that all four algorithms actually produce fairly good
orientation estimates, assuming that the models from Section 3.7 are indeed valid.
The smoothing algorithm performs better than the filtering approaches but is also
the most computationally expensive. The ekf with quaternion states suffers from
linearization issues when large orientation corrections need to be made or when
magnetometer data is unavailable.

4.5 Extending to pose estimation

In Section 4.4, we have evaluated the workings of Algorithms 1 – 4 for orientation
estimation. The estimation methods presented in Sections 4.1 – 4.3 can also be
used to estimate the sensor’s pose using the state space model (86). The pose
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estimation problem can be written as a smoothing optimization problem as

x̂1:N = arg min
x1:N

‖ep,i‖2Σ−1
p,i

+ ‖ev,i‖2Σ−1
v,i

+ ‖eη,i‖2Σ−1
η,i

︸                                 ︷︷                                 ︸
Prior

+

N∑

t=2

‖eω,t‖2Σ−1
ω

+ ‖ea,p,t‖2Σ−1
a,p

+ ‖ea,v,t‖2Σ−1
a,v

︸                                           ︷︷                                           ︸
Dynamics

+
N∑

t=2

‖ep,t‖2Σ−1
p

︸         ︷︷         ︸
Measurement model

, (149)

with xt =
(
pTt vTt (ηb

t )T
)T

and

ep,i = pn
1 − yp,1, ep,i ∼ N (0,Σp,i), (150a)

ev,i = v1, ev,i ∼ N (0,Σv,i), (150b)

eη,i = 2 logq
(
q̆bn

1 � qnb
1

)
, ei ∼ N (0,Ση,i), (150c)

ep,a,t = 2
T 2

(
pn
t+1 − pn

t − T vn
t

)
− Rnb

t ya,t − gn, ep,a,t ∼ N (0,Σa), (150d)

ev,a,t = 1
T

(
vn
t+1 − vn

t

)
− Rnb

t ya,t − gn, ev,a,t ∼ N (0,Σa), (150e)

eω,t = 2
T logq

(
qbn
t � qnb

t+1

)
− yω,t , eω,t ∼ N (0,Σω), (150f)

ep,t = yp,t − pn
t , ep,t ∼ N (0,Σp). (150g)

In this section, we will discuss some details about the workings of the pose esti-
mation algorithm using this model. We will not go through a complete derivation
of the four algorithms. However, the adaptations that are needed to use Algo-
rithms 1 – 4 for pose estimation can be found in Appendix B.

An important observation is that ea,p,t and ea,v,t in (150d) and (150e) depend
on the orientation Rnb

t . Because of this, the position, velocity and orientation states
are coupled. The position measurements therefore do not only provide informa-
tion about the position and velocity, but also about the orientation of the sensor.
This is the reason why it is no longer essential to include magnetometer data
and to assume that the acceleration is approximately zero. However, the accuracy
of the orientation estimates depends on the movements of the sensor. This will
be illustrated below. For this, we simulate 400 samples of inertial and position
measurements for a non-rotating sensor with noise levels

ea,t ∼ N (0, σ2
a I3), σa = 1 · 10−1,

eω,t ∼ N (0, σ2
ω I3), σω = 1 · 10−2,

ep,t ∼ N (0, σ2
p I3), σp = 1 · 10−2.

We consider four different cases for the movement of the sensor. First, we simulate
data assuming that the sensor is stationary. For this case, the position measure-
ments provide information about the inclination of the sensor but not about the
heading. This is illustrated in Example 13.
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(b) Constant acceleration.
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∼ N (0, 0.5).
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(d) Acceleration
(
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∼ N (0, 5).

Figure 32: Orientation errors of the roll (blue), pitch (green) and heading
(red) using simulated inertial and magnetometer measurements.

Example 13: Pose estimation for a stationary sensor
We estimate the pose of a stationary sensor using simulated data and a smoothing
algorithm that solves (149) as described in Section 4.1. The orientation error for a
specific noise realization is depicted in Figure 32a. The inclination errors can be
seen to be small, while the heading estimates drift.

Next, in Example 14, we consider the case of the sensor having a constant linear
acceleration. For this case, a drift in the orientation estimates can be seen in the
direction that is orthogonal to the direction of the accelerometer measurements.

Example 14: Pose estimation for a sensor with constant
linear acceleration

We estimate the pose of a sensor with an acceleration of 1 m/s2 in the y-direction
using simulated data and obtain smoothing estimates by solving (149). The ori-
entation error for a specific noise realization is depicted in Figure 32b. Again, a
drift can be seen in the orientation estimates. This drift is no longer only in the
heading direction, but also a small drift in the roll can be observed.

Finally, in Example 15 we consider the case of time-varying linear acceleration.
Based on simulated data, we show that accurate heading estimates can be obtained
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Table 5: Mean rmse of the position and orientation estimates from 100
Monte Carlo simulations. Considered are a stationary sensor, a sensor with
constant acceleration and two cases of time-varying accelerations with differ-
ent magnitudes.

Rmse Roll [◦] Pitch [◦] Heading [◦] Position [cm]

Stationary 0.40 0.40 13.27 0.97
Constant acceleration 1.25 0.47 11.59 0.97
Acceleration

0.41 0.41 2.53 0.97(
ya,t

)
y ∼ N (0, 0.5)

Acceleration
0.46 0.39 0.88 0.97(

ya,t
)
y ∼ N (0, 5)

for this case. Furthermore, we show that the larger the acceleration, the more
accurate the heading estimates will be.

Example 15: Pose estimation for a sensor with time-varying
linear acceleration

We estimate the pose of a sensor with an acceleration in the y-direction of
(
ya,t

)
y ∼

N (0, 0.5) m/s2 using simulated data and obtain smoothing estimates by solv-
ing (149). The orientation error for a specific noise realization is depicted in
Figure 32c. Furthermore, we simulate data with

(
ya,t

)
y ∼ N (0, 5) m/s2. The orien-

tation errors based on this data can be found in Figure 32d. As can be seen, for
these cases, it is possible obtain reliable heading estimates using the state space
model (86). The larger the acceleration, the more accurate the heading estimates.

In general, it can be concluded that it is possible to estimate orientation from
position measurements in the state space model (86). Furthermore, except in the
cases of constant or zero acceleration, it is also possible to obtain drift-free orien-
tation estimates. The heading accuracy depends on the amount of acceleration.
This is summarized in Table 5 where the mean rmse of the state estimates over
100 Monte Carlo simulations is shown. Four cases are considered, inspired by
Examples 13 – 15.

5 Calibration

In Section 4, we assumed that the sensors were properly calibrated. In practice,
however, there are often calibration parameters to be taken into account. Exam-
ples of calibration parameters are the inertial sensor biases discussed in Section 2.
Furthermore, calibration is specifically of concern when combining the inertial
data with other sensors. In these cases, it is important that the inertial sensor axes
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and the axes of the additional sensors are aligned. Examples include using inertial
sensors in combination with magnetometers (Kok and Schön, 2016; Salehi et al.,
2012; Bonnet et al., 2009) and with cameras (Hol et al., 2010; Lobo and Dias, 2007;
Mirzaei and Roumeliotis, 2008).

In this section we will introduce several useful calibration methods. In Sec-
tion 5.1 we explain how calibration parameters can be included as unknowns in
the smoothing and filtering algorithms from Section 4. This results in map esti-
mates of the parameters. In Section 5.2 we instead focus on obtaining maximum
likelihood (ml) estimates of the parameters. In Section 5.3, the workings of the
calibration algorithms are illustrated by considering the gyroscope bias to be un-
known in the orientation estimation problem. Finally, in Section 5.4, we discuss
the topic of identifiability. Parameters are said to be identifiable if they can be
estimated from the available data.

5.1 Maximum a posteriori calibration

As discussed in Section 3.1, unknown parameters θ can be estimated in the
smoothing problem (13) as

{
x̂t , θ̂

}
= arg max

xt ,θ
p(xt , θ | y1:t), (151)

with

p(x1:N , θ | y1:N ) ∝ p(θ)p(x1)
N∏

t=1

p(xt | xt−1, θ)p(yt | xt , θ). (152)

Recall that a discussion on the choice of the prior of the parameters p(θ) and the
states p(x1) can be found in Section 3.6.

Within the filtering context we typically model the parameters as slowly time-
varying states. These can be estimated by solving

{
x̂t , θ̂t

}
= arg max

xt ,θt

p(xt , θt | y1:t), (153)

where

p(xt , θt | y1:t) ∝ p(yt | xt , θt)p(xt , θt | y1:t−1), (154a)

and

p(xt , θt | y1:t−1) =
"

p(xt , θt | xt−1, θt−1)p(xt−1, θt−1 | y1:t−1)dxt−1dθt−1. (154b)

Note that compared to Section 3.1, in (154) we do not consider the parameters to
be part of xt but instead represent them explicitly. A prior p(θ1) on the parameters
at t = 1 has to be included as well as a dynamic model of the parameters.
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Both the formulations (151) and (153) compute map estimates of the param-
eters. The algorithms presented in Section 4 can straightforwardly be extended
to also estimate these unknown parameters θ or θ1:N . This is illustrated in Ex-
ample 16 for the case of orientation estimation in the presence of an unknown
gyroscope bias.

Example 16: Map estimates of the gyroscope bias
It is possible to estimate an unknown gyroscope bias in the state space model (87).
For this, the dynamic model (87a) in the smoothing problem described in Sec-
tion 4.1 is assumed to include a constant gyroscope bias δω as

qnb
t+1 = qnb

t � expq

(
T
2
(
yω,t − δω − eω,t

))
. (155a)

In the filtering algorithms in Sections 4.2 and 4.3, the dynamic model is instead
assumed to include a slowly time-varying gyroscope bias δω,t as

qnb
t+1 = qnb

t � expq

(
T
2
(
yω,t − δω,t − eω,t

))
, (155b)

where the dynamics of the gyroscope bias can be described as a random walk (see
also Section 3.5)

δω,t+1 = δω,t + eδω ,t , eδω ,t ∼ N (0,Σδω,t ). (155c)

The smoothing algorithm presented in Section 4.1 can be extended to also esti-
mate δω. Furthermore, the filtering algorithms presented in Sections 4.2 and 4.3
can be extended to estimate δω,t for t = 1, . . . , N . Only minor changes to the algo-
rithms presented in these sections are needed. These mainly concern including
derivatives with respect to the additional unknowns δω or δω,t . Explicit expres-
sions for these can be found in Appendix C.

5.2 Maximum likelihood calibration

Alternatively, it is possible to obtain ml estimates of the parameters θ as

θ̂ml = arg max
θ∈Θ

L(θ; y1:N ). (156)

Here, Θ ⊆ R
nθ and L(θ; y1:N ) is referred to as the likelihood function. It is defined

as L(θ; y1:N ) , pθ(Y1:N = y1:N ), where Y1:N are random variables and y1:N are a
particular realization of Y1:N . Using conditional probabilities and the fact that the
logarithm is a monotonic function we have the following equivalent formulation
of (156),

θ̂ml = arg min
θ∈Θ

−
N∑

t=1

log pθ(Yt = yt | Y1:t−1 = y1:t−1), (157)
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where we use the convention that y1:0 , ∅. The ml estimator (157) enjoys well-
understood theoretical properties including strong consistency, asymptotic nor-
mality, and asymptotic efficiency (Ljung, 1999).

Due to the nonlinear nature of the orientation parametrization, our estimation
problems are nonlinear, implying that there is no closed form solution available
for the one step ahead predictor pθ(Yt = yt | Y1:t−1 = y1:t−1) in (157). However,
similar to the filtering approaches from Section 4, it is possible to approximate
the one step ahead predictor according to

pθ(Yt = yt | Y1:t−1 = y1:t−1) ≈ N
(
yt ; ŷt|t−1(θ), St(θ)

)
, (158)

where ŷt|t−1(θ) and St(θ) are defined in (124) and (125), respectively. Inserting
(158) into (157) and neglecting all constants not depending on θ results in the
following optimization problem,

θ̂ = arg min
θ∈Θ

1
2

N∑

t=1

‖yt − ŷt|t−1(θ)‖2
S−1
t (θ)

+ log det St(θ). (159)

Unlike the optimization problems discussed so far, it it not straightforward
to obtain an analytical expression of the gradient of (159). This is because it is
defined recursively through the filtering update equations. In Åström (1980) and
Segal and Weinstein (1989), different approaches to derive analytical expressions
for objective functions of the same type as (159) are provided. They, however,
consider the case of a linear model. Some methods for obtaining ml estimates
of parameters in nonlinear models are explained in the tutorial by Schön et al.
(2015).

Instead of deriving analytical expressions for the gradient of (159), it is also
possible to compute a numerical approximation of the gradient. Numerical gra-
dients can be used in a number of different optimization algorithms, such as the
Broyden-Fletcher-Goldfarb-Shanno (bfgs) method, see e.g. Nocedal and Wright
(2006). Similar to the Gauss-Newton method, in the bfgs method, the parameters
are iteratively updated until convergence. However, instead of using the Hessian
approximation (95), bfgs iteratively estimates the Hessian using information
from previous iterations. Hence, solving (159) using bfgs with numerical gradi-
ents, requires running at least nθ + 1 filtering algorithms for each iteration. These
are required to evaluate the objective function and to compute the numerical
gradients. More evaluations can be necessary to compute a step length, see also
Section 4.1.

Example 17: Ml estimates of the gyroscope bias
To obtain ml estimates of the gyroscope bias, we run the ekf with orientation
deviation states from Algorithm 4 to obtain ŷt|t−1(δω) and St(δω) for a given value
of δω. This allows us to evaluate the objective function in (159). To compute δ̂ω,
the optimization problem (159) is solved iteratively using bfgs .
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Table 6: Mean rmse of the orientation estimates from 100 Monte Carlo
simulations in the presence of a gyroscope bias that is being estimated.

Rmse Roll [◦] Pitch [◦] Heading [◦]

Smoothing optimization 0.39 0.39 2.29
Ekf orientation deviation 0.46 0.46 4.20

5.3 Orientation estimation with an unknown gyroscope bias

We estimate the gyroscope bias in simulated data as described in Section 4.4 and
illustrated in Figure 21. Compared to the data presented in Section 4.4, however, a
constant gyroscope bias to be estimated is added. Using Monte Carlo simulations
of this data, we illustrate a few specific features of the different ways to estimate
the bias.

First, we focus on obtainingmap estimates of the bias using the smoothing and
filtering approaches as described in Section 5.1. We simulate the measurement
noise as described in Section 4.4 and simulate the gyroscope bias as

δω ∼ N (0, σ2
δω
I3), σδω = 5 · 10−2. (160)

Note that σδω is a factor 10 larger than the value discussed in Section 3.6 to
clearly illustrate the effect of the presence of a gyroscope bias. The priors p(θ) and
p(θ1) in the smoothing and filtering algorithms are set equal to the distribution
in (160). The covariance of the random walk model (155c) is set as Σδω,t = σ2

δω,t
I3

with σδω ,t = 1 · 10−10. This small value ensures that after convergence, the bias
estimate is quite constant. The resulting mean rmses of the orientation over 100
Monte Carlo simulations are summarized in Table 6. Since the filtering algorithms
typically have similar characteristics as discussed in Section 4.4, we only consider
the ekf with orientation deviation states here. Comparing these results to the
ones presented in Table 3, the rmses of the smoothing optimization algorithm
are almost the same as when there was no gyroscope bias present. However, the
filtering results are worse. This is because the bias needs some time to be properly
estimated. This is illustrated in Figure 33 where the gyroscope bias estimates and
their uncertainties are shown for the filtering algorithm.

A major difference between the map and the ml approaches, is that the map
takes into account a prior on the gyroscope bias. We analyze the effect of this
prior using 500 Monte Carlo simulations, simulating the gyroscope bias to be

δω =
(
0.05 0.01 −0.04

)T
rad/s. We study the estimated gyroscope biases using

ml estimation, and using map estimation by including the gyroscope bias as
an unknown in the smoothing algorithm. The smoothing algorithm assumes two
different priors on the gyroscope bias δω ∼ N (0, σ2

δω
I3). In the first case, the prior

on the gyroscope bias can well describe the data (σδω = 0.05). In the other case,
the prior is too tight (σδω = 1 · 10−3). The mean and standard deviations for the
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Figure 33: Filtering estimates of the gyroscope bias and their uncertainties
with the x-, y- and z-components in blue, green and red, respectively. Note
that the estimates for only the first 100 samples are shown, to focus on the
period in which the estimates converge.

gyroscope bias estimates are summarized in Table 7. As can be seen, when the
prior is chosen appropriately, the ml and map estimates are comparable. If the
prior is too tight, the map estimates can be seen to be biased towards zero.

Table 7: Mean and standard deviation of the gyroscope estimates over 500
Monte Carlo simulations with (0.05 0.01 − 0.04)T rad/s. Considered are the
cases of ml estimation and map estimation by including the gyroscope bias
as an unknown in a smoothing algorithm with a prior on the gyroscope bias
of δω ∼ N (0, σ2

δω
I3).

Rmse Mean δ̂ω ( · 102) Standard deviation δ̂ω ( · 104)

x y z x y z

Ml 5.0 1.0 -4.0 5.1 5.3 6.4
Map σδω = 0.05 5.0 1.0 -4.0 5.1 5.3 6.4
Map σδω = 1 · 10−3 3.9 0.8 -2.8 4.1 4.0 4.7

5.4 Identifiability

Parameters are said to be identifiable if it is possible to determine a unique pa-
rameter value from the data and if this value is equal to the true value (Ljung,
1999). The concept of identifiability is closely related to the concept of observ-
ability which is concerned with the question of if the time-varying states can
be determined from the available data (Kailath, 1980). The states discussed in
Section 4 are typically observable. Identifiability, however, becomes of concern
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Figure 34: Filtering estimates of the gyroscope bias and their uncertainties
with the x-, y- and z-components in blue, green and red, respectively. The
estimates are obtained using an ekf and inertial (but no magnetometer)
measurements. As can be seen, the estimates of the gyroscope bias in the
x- and y-axes converge quickly while the estimates of the gyroscope bias in
the z-axis only start to converge after 100 samples, when the sensor starts to
rotate around the x-axis.

when estimating calibration parameters. Specifically, in many applications, cer-
tain parameters are not identifiable when the sensor is completely stationary and
sufficient excitation in terms of change in position and orientation is needed to
make the parameters identifiable. This is illustrated in Example 18 for the case of
identifiability of the gyroscope bias.

Example 18: Identifiability of the gyroscope bias
We consider the example of orientation estimation using only inertial measure-
ments in the presence of a gyroscope bias. We simulate data as described in Sec-
tion 4.4. The filtering estimates of the gyroscope bias and their uncertainties from
an ekf with orientation deviation states is shown in Figure 34. Using only in-
ertial measurements, the gyroscope bias of the sensor’s z-axis is not identifiable
when the sensor is placed horizontally. However, when the sensor is rotated, the
accelerometer provides information that aids the estimation and the bias can be
seen to converge. Note the difference with Figure 33, where only the first 100 sam-
ples were displayed and the bias estimates in the z-axis converged significantly
faster due to the inclusion of magnetometer measurements.

6 Concluding remarks

The goal of this tutorial was not to give a complete overview of all algorithms
that can be used for position and orientation estimation. Instead, our aim was
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to give a pedagogical introduction to the topic of position and orientation esti-
mation using inertial sensors. By integrating the inertial sensor measurements
(so-called dead-reckoning), it is possible to obtain information about the position
and orientation of the sensor. However, errors in the measurements will accu-
mulate and the estimates will drift. Because of this, to obtain accurate position
and orientation estimates using inertial measurements, it is necessary to use addi-
tional sensors and/or additional models. In this tutorial, we have considered two
separate estimation problems. The first is orientation estimation using inertial
and magnetometer measurements, assuming that the acceleration of the sensor
is approximately zero. Including magnetometer measurements removes the drift
in the heading direction (as illustrated in Example 9), while assuming that the
acceleration is approximately zero removes the drift in the inclination. The sec-
ond estimation problem that we have considered is pose estimation using inertial
and position measurements. Using inertial measurements, the position and ori-
entation estimates are coupled and the position measurements therefore provide
information also about the orientation.

A number of algorithms for position and orientation estimation have been
introduced in Section 4. These include smoothing and filtering approaches solved
as an optimization problem or via extended Kalman filtering, using either unit
quaternion or orientation deviations from a linearization point as states. The fil-
tering approaches use the data up to a certain time t to estimate the position
and orientation at this time t. Smoothing instead makes use of all data from time
t = 1, . . . , N . In general, using all data to obtain the estimates will naturally lead
to better estimates. The filtering approaches can be seen to be quite uncertain
about their estimates for the first samples and require some time to “converge”
to accurate estimates. This is even more pronounced in the presence of calibra-
tion parameters as discussed in Section 5. Although smoothing algorithms give
better estimates, practical applications might not allow for computing smoothing
estimates because of computational limitations or real-time requirements. For
the examples discussed in this paper, the optimization-based filtering algorithm
and the ekf with orientation deviation states perform very similarly. The ekf
with quaternion states, however, was able to handle wrong initial orientations
less well as shown in Table 4. Furthermore, it underestimated the uncertainty in
the heading direction in the absence of magnetometer measurements, see also
Example 12.

Some benefits of the optimization-based approaches which have not directly
been considered in this work, are that they can easily include models outside of
the standard state space model. An example where we make use of this is our
work on inertial sensor motion capture (Kok et al., 2014). Here, multiple imus are
placed on different body segments of the human body. We assume that the body
segments are attached to each other by including a number of equality constraints
in the estimation problem. Including these constraints in an optimization frame-
work is straightforward. Furthermore, optimization-based approaches allow for
natural inclusion of non-Gaussian noise. In Kok et al. (2015) we combine inertial
measurements with time of arrival measurements from a uwb system. To allow
for delayed measurements due to multipath and non-line-of-sight, we model the
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time of arrival measurements using a tailored heavy-tailed asymmetric distribu-
tion. This distribution can straightforwardly be used when solving the estimation
problem using an optimization-based approach.

Apart from the differences between the estimation algorithms discussed in
this tutorial, it can also be concluded that the position and orientation estimation
problems using inertial sensors are actually quite forgiving. Any of the algorithms
discussed in this tutorial can give reasonably good estimates with fairly little ef-
fort. However, careful modeling is important since the quality of the estimates of
the estimation algorithms highly depends on the validity of the models, see for
instance Example 10. In recent years, inertial sensors have undergone major de-
velopments. The quality of their measurements has improved while their cost has
decreased, leading to an increase in availability. Furthermore, the computational
resources are steadily increasing. Because of these reasons, we believe that inertial
sensors can be used for even more diverse applications in the future.
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Appendix

A Orientation parametrizations

In Section A.1 of this appendix, we will summarize some important results on
quaternion algebra that we make frequent use of throughout this tutorial. In
Section A.2, we summarize some results on how to convert between the different
orientation parametrizations.

A.1 Quaternion algebra

A quaternion is a 4-dimensional vector q,

q =
(
q0 qTv

)T
=

(
q0 q1 q2 q3

)T
. (161)

http://www.ida.liu.se/divisions/aiics/aiicssite/index.en.shtml
http://www.ida.liu.se/divisions/aiics/aiicssite/index.en.shtml
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A special case is a unit quaternion, which has the property that ‖q‖2 = 1. We use
unit quaternions as a parametrization of orientations. An example of a quaternion
that is not a unit quaternion and that we frequently encounter in this tutorial is the
quaternion representation of a vector. For a vector v, its quaternion representation
is given by

v̄ =
(
0
v

)
. (162)

The rotation of a vector v by a unit quaternion q can be written as

q � v̄ � qc. (163)

Here, the quaternion multiplication � of two quaternions p and q is defined as

p � q =
(

p0q0 − pv · qv
p0qv + q0pv + pv × qv

)
. (164)

This can alternatively be defined in terms of the left and right multiplication
matrices

p � q = pLq = qRp, (165)

with

pL ,

(
p0 −pTv
pv p0I3 + [pv×]

)
, qR ,

(
q0 −qTv
qv q0I3 − [qv×]

)
, (166)

where [qv×] denotes the cross product matrix

[qv×] =




0 −q3 q2
q3 0 −q1
−q2 q1 0


 . (167)

The quaternion conjugate is given by

qc =
(
q0
−qv

)
. (168)

Hence, the rotation of the vector v is given by

q � v̄ � qc = qL (qc)R v̄

=
(
q0 −qTv
qv q0I3 + [qv×]

) (
q0 −qTv
qv q0I3 − [qv×]

) (
0
v

)

=
(

1 01×3
03×1 qvq

T
v + q2

0I3 + 2q0[qv×] + [qv×]2

) (
0
v

)
. (169)
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A.2 Conversions between different parametrizations

A quaternion q can be converted into a rotation matrix R as

R = qvq
T
v + q2

0I3 + 2q0[qv×] + [qv×]2

=




2q2
0 + 2q2

1 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 + 2q2
2 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 + 2q2

3 − 1


 . (170)

Note the similarity with (169), where the rotation of the vector v can equivalently
be expressed as Rv. Conversely, a rotation matrix

R =



R11 R12 R13
R21 R22 R23
R31 R32 R33


 , (171)

can be converted into a quaternion as

q0 =
√

1+TrR
2 , qv = 1

4q0



R32 − R23
R13 − R31
R21 − R12


 . (172)

Note that a practical implementation needs to take care of the fact that the con-
version (172) only leads to sensible results if 1 + TrR > 0 and q0 , 0. To resolve
this issue, the conversion is typically performed in different ways depending on
the trace of the matrix R and its diagonal values, see e.g. Baker (2016).

A rotation vector η can be expressed in terms of a unit quaternion q via the
quaternion exponential as

q = expq η =
(

cos ‖η‖2
η
‖η‖2 sin ‖η‖2

)
. (173)

Note that any practical implementation needs to take care of the fact that this

equation is singular at η = 0, in which case expq η =
(
1 0 0 0

)T
. The inverse

operation is executed by the quaternion logarithm,

η = logq q = arccos q0
sin arccos q0

qv = arccos q0
‖qv‖2 qv . (174)

Note that this equation is singular at qv = 0. In this case, log q should return 03×1.
The rotation vector η can also be converted into a rotation matrix as

R = expR η = exp ([η×]) , η = logR R =



(logR)32
(logR)13
(logR)21


 , (175)

where logR is the matrix logarithm and logR and expR are the mappings intro-
duced in (49) and (51).
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A rotation in terms of Euler angles can be expressed as a rotation matrix R as

R =



1 0 0
0 cosφ sinφ
0 − sinφ cosφ






cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ







cosψ sinψ 0
− sinψ cosψ 0

0 0 1




=




cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ


 . (176)

The rotation matrix R can be converted into Euler angles as

ψ = tan−1
(
R12
R11

)
= tan−1

(
2q1q2−2q0q3
2q2

0+2q2
1−1

)
, (177a)

φ = − sin−1 (R13) = sin−1 (2q1q3 + 2q0q2) , (177b)

θ = tan−1
(
R23
R33

)
= tan−1

(
2q2q3−2q0q1
2q2

0+2q2
3−1

)
. (177c)

Using the relations presented in this section, it is possible to convert the para-
metrizations discussed in Section 3.2 into each other.

B Pose estimation

In this appendix, we will introduce the necessary components to extend Algo-
rithms 1 – 4 to pose estimation algorithms using the state space model (86).

B.1 Smoothing in an optimization framework

In Section 4.5, we presented the smoothing optimization problem for pose estima-
tion. To adapt Algorithm 1, the derivatives (101a) – (101c) in combination with
the following derivatives are needed

dep,i
dpn

1
= I3,

dev,i
dvn

1
= I3,

dep,t
dpn

t
= −I3, (178a)

dep,a,t
dpn

t+1
= 2

T 2 I3,
dep,a,t
dpn

t
= − 2

T 2 I3,
dep,a,t
dvn

t
= − 1

T I3,
dep,a,t

dηb
t

= R̃bn
t [ya,t×], (178b)

dev,a,t
dvn

t+1
= 1

T I3,
dev,a,t
dvn

t
= − 1

T I3,
dev,a,t

dηb
t

= R̃bn
t [ya,t×]. (178c)

B.2 Filtering in an optimization framework

To obtain position, velocity and orientation estimates in a filtering framework, the
optimization problem (115) is adapted to

x̂t = arg min
xt

− log p(xt | y1:t) = arg min
xt

‖ef,t‖P −1
t|t−1

+ ‖ep,t‖Σ−1
p
, (179)

where ‖ep,t‖Σ−1
p

is the position measurement model also used in the smoothing
optimization problem presented in Section 4.5. Furthermore, ef,t is extended
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from (114) to be

ef,t =




pn
t − pn

t−1 − T vn
t−1 − T 2

2

(
Rnb
t ya,t−1 + gn

)

vn
t − vn

t−1 − T
(
Rnb
t ya,t−1 + gn

)

−2 logq
(
q̃bn
t � q̃nb

t−1 � expq

(
T
2 (yω,t−1)

))



,

def,t
dηb

t
= I9. (180)

The covariance matrix P −1
t|t−1 is again defined as P (0)

t+1|t = FtPt|tFTt + GtQGT
t with

Ft =



I3 T I3 − T 2

2 R̃
nb
t [ya,t×]

0 I3 −T R̃nb
t [ya,t×]

0 0 expR
(−T yω,t

)


 , Gt =

(I6 0
0 T I3

)
, (181a)

Q =



Σa 0 0
0 Σa 0
0 0 Σω


 . (181b)

Similar to the update of the linearization point in (117a), we also update the
estimates of the position and velocity before starting the optimization algorithm,
such that ef,t is equal to zero for iteration k = 0.

B.3 EKF with quaternion states

Following the notation in Section 4.3, the following matrices are needed for im-
plementing the ekf for pose estimation with quaternion states

Ft =




I3 T I3
T 2

2
∂Rnb

t|t
∂qnb

t|t

∣∣∣∣∣
qnb
t|t =q̂nb

t|t
ya,t

0 I3 T
∂Rnb

t|t
∂qnb

t|t

∣∣∣∣∣
qnb
t|t =q̂nb

t|t
ya,t

0 0
(
expq( T2 yω,t)

)R




, Gt =



I6 0

0 − T2
(
q̂nb
t|t

)L d expq(eω,t)
deω,t


 ,

(182a)

Q =



Σa 0 0
0 Σa 0
0 0 Σω


 , H = I3, R = Σp. (182b)

B.4 EKF with orientation deviation states

In the time update of the pose estimation algorithm with orientation deviation
states, the linearization point is again directly updated as in (134). The position
and velocity states are updated according to the dynamic model (86a). Further-
more, the matrices Q, H and R from (182b) are needed for implementing the ekf
for pose estimation in combination with the matrices Ft and Gt from (181a).
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C Gyroscope bias estimation

In this appendix, we will introduce the necessary components to extend Algo-
rithms 1 – 4 to estimate an unknown gyroscope bias. Note that the measurement
models are independent of the gyroscope bias. The dynamic models and time
update equations are adapted as described below.

C.1 Smoothing in an optimization framework

To include a gyroscope bias in Algorithm 1, a prior on the bias is included, leading
to an additional term in the objective function as

eδω = δω, eδω ∼ N (0,Σδω ). (183)

The derivatives in (101) are complemented with

deω,t
dδω

= I3,
deδω
dδω

= I3. (184)

C.2 Filtering in an optimization framework

To include estimation of an unknown gyroscope bias in Algorithm 2, (110) is
extended to include a random walk for the gyroscope bias. The matrices Ft , Gt
and Q in (112) then become

Ft =
(
expR

(
−T (yω,t − δ̂ω,t|t)

)
−T I3

0 I3

)
, (185a)

G =
(
T I3 0

0 I3

)
, Q =

(
Σω 0
0 Σδω

)
. (185b)

Note that a prior on the gyroscope bias at t = 1 needs to be included and that the
relinearization of the covariance in (116) needs to be adjusted to the size of the
covariance matrix. Because of this, the matrix Jt in (116) is extended to

Jt =



expR

(
η

b,(k+1)
t

)
0

0 I3


 . (186)

C.3 EKF with quaternion states

To include estimation of an unknown gyroscope bias in Algorithm 3, the matrices
for the time update of the ekf need to be adapted to

Ft =



(
expq( T2 (yω,t − δ̂ω,t|t))

)R − T2
(
q̂nb
t|t

)L d expq(δω,t)
dδω,t

03×4 I3


 , (187a)

Q =
(
Σω 0
0 Σδω

)
, Gt =



− T2

(
q̂nb
t|t

)L d expq(eω,t)
deω,t

0
0 I3


 . (187b)
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Note that also for this algorithm a prior on the gyroscope bias needs to be included.
Furthermore, the renormalization of the covariance in (130) needs to be adjusted
to the size of the covariance matrix in a similar manner as in (186).

C.4 EKF with orientation deviation states

To include estimation of an unknown gyroscope bias in Algorithm 4, the update
of the linearization point in the time update takes the estimate of the gyroscope
bias into account as

q̃nb
t+1 = q̃nb

t � expq

(
T
2 (yω,t − δ̂ω,t|t)

)
. (188)

The matrices Ft ,Gt andQ for the time update are adapted to the expressions given
in (185). A prior on the gyroscope bias needs to be included and the relinearization
of the covariance in (140) needs to be adapted according to (186).
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Abstract

In inertial human motion capture, a multitude of body segments are
equipped with inertial measurement units, consisting of 3D accelerom-
eters, 3D gyroscopes and 3D magnetometers. Relative position and
orientation estimates can be obtained using the inertial data together
with a biomechanical model. In this work we present an optimization-
based solution to magnetometer-free inertial motion capture. It al-
lows for natural inclusion of biomechanical constraints, for handling
of nonlinearities and for using all data in obtaining an estimate. As
a proof-of-concept we apply our algorithm to a lower body configura-
tion, illustrating that the estimates are drift-free and match the joint
angles from an optical reference system.

1 Introduction

Human body motion capture is used for many applications such as character an-
imation, sports and biomechanical analysis (Xsens Technologies B.V., 2013). It
focuses on simultaneously estimating the relative position and orientation of the
different body segments (expressed in terms of the joint angles) and estimating
the absolute position of the body. Motion capture is often performed using either
vision-based technologies (Moeslund et al., 2006) or using inertial sensors. The
main advantage of using inertial sensors over vision-based technologies is that
they are not restricted in space and do not require line of sight visibility (Welch
and Foxlin, 2002). In inertial human body motion capture, the human body is
equipped with inertial measurement units (imus), consisting of 3D accelerom-
eters, 3D gyroscopes and 3D magnetometers as shown in Figure 1. Each body
segment’s position and orientation (pose) can be estimated by integrating the
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Figure 1: Examples of inertial motion capture. Upper left: olympic and world
champion speed skating Ireen Wüst wearing an inertial motion capture suit
with 17 inertial sensors. Upper right: graphical representation of the esti-
mated orientation and position of the body segments. Lower left and right:
experiment showing that line of sight visibility is not necessary for inertial
motion capture.

gyroscope data and double integrating the accelerometer data in time and com-
bining these integrated estimates with a biomechanical model. Inertial sensors are
successfully used for full body motion capture in many applications (Xsens Tech-
nologies B.V., 2013; Roetenberg et al., 2013; Kang et al., 2011; Yun and Bachmann,
2006).

Inertial sensors inherently suffer from integration drift. When using inertial
sensors for orientation estimation they are therefore generally combined with mag-
netometers. Magnetometer measurements, however, are known to cause problems
in motion capture applications since the magnetic field measured at the different
sensor locations is typically different (Luinge et al., 2007; Cooper et al., 2009;
Favre et al., 2008). Including information from biomechanical constraints, i.e. in-
formation about the body segments being rigidly connected, can eliminate the
need of using magnetometer measurements. Incorporating these constraints, the



2 Problem formulation 149

sensor’s relative position and orientation become observable as long as the sub-
ject is not standing completely still (Hol, 2011). Estimating joint angles using a
pair of inertial sensors, where each sensor estimates its own orientation using
an extended Kalman filter (ekf) (Yuan and Chen, 2013) is therefore computa-
tionally cheap, but valuable information from biomechanical constraints is lost.
Existing approaches therefore include the biomechanical constraints like for in-
stance in Luinge et al. (2007) where an ekf is run using only the accelerometer
and gyroscope measurements and a least-squares filter is added to incorporate
the biomechanical constraints.

To allow for natural inclusion of biomechanical constraints, we introduce a
new optimization-based approach for inertial motion capture. Compared to filter-
ing approaches, optimization-based approaches are computationally expensive.
Recent developments in both computational power and in available algorithms
have, however, opened up possibilities for solving large-scale problems efficiently
and even in real-time (Mattingley and Boyd, 2010). Using an optimization formu-
lation of the problem, a smoothing estimate can be obtained and nonlinearities
can be handled. It also opens up possibilities for simultaneously estimating cali-
bration parameters and for incorporating non-Gaussian noise.

The paper is organized as follows. After introducing the problem formulation
in Section 2, in Section 3 we will introduce the biomechanical model, discussing
the relevant coordinate frames, variables and biomechanical constraints. In Sec-
tion 4 we will subsequently introduce the dynamic and sensor models. In Section 6
we will discuss experimental results, focusing on a subproblem, namely a lower
body configuration consisting of 7 sensors, assuming a known calibration and
not including any position aiding. These experiments are intended to serve as a
proof-of-concept. A more in-depth analysis including a comparison with other
methods is planned for future work.

Note that using inertial sensors and biomechanical constraints only, the abso-
lute position is not observable, i.e. any translation of the body’s position estimates
will lead to an equally valid solution of the estimation problem. For example in
the case of the speed skater in Figure 1, the estimated pose of the speed skater
will resemble the “true” motion, but the exact location on the ice rink is not ob-
servable. This unobservability typically results in a drift of the body’s absolute
position over time. Because of this, it is not possible to compare our position esti-
mates with those of the optical reference system and for now we focus on analysis
of the joint angles. To estimate absolute position it is necessary to include e.g. gps,
ultra-wideband (Hol, 2011) or zero velocity updates when the foot is at stand still
(Callmer, 2013; Woodman, 2010) and this is planned for future work.

2 Problem formulation

The use of inertial sensors for human body motion capture requires inertial sen-
sors to be placed on different body segments. The knowledge about the placement
of the sensors on the body segments and the body segments’ connections to each
other by joints can be incorporated using a biomechanical model.
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The problem of estimating the relative position and orientation of each body
segment is formulated as a constrained estimation problem. Given N measure-
ments y1:N = {y1, . . . , yN }, a point estimate of the variables z can be obtained as
a constrained maximum a posteriori (map) estimate, maximizing the posterior
density function

max
z

p(z | y1:N )

s.t. ce(z) = 0,
(1)

where ce(z) represents the equality constraints. In our problem, z consists of both
static parameters θ and time-varying variables x1:N . Using this together with the
Markov property of the time-varying variables and the fact that the logarithm is
a monotonic function, we can rewrite (1) as

min
z={x1:N ,θ}

− log p(x1 | y1) − log p(θ)
︸                          ︷︷                          ︸

initialization

−
N∑

t=2

log p(xt | xt−1, θ)

︸                       ︷︷                       ︸
dynamic model

−
N∑

t=1

log p(yt | xt , θ)

︸                    ︷︷                    ︸
biomechanical/sensor model

s.t. cbio(z) = 0. (2)

Obtaining the map estimate thus amounts to solving a constrained optimization
problem where the constraints cbio(z) originate from a biomechanical model. The
cost function consists of different parts related to the initialization of the variables,
a dynamic model for the time-varying states and a biomechanical and sensor
model. More details about the variables, the different parts of the cost function
and the constraints are provided in Sections 3 and 4.

The optimization problem (2) is solved using an infeasible start Gauss-Newton
method (Boyd and Vandenberghe, 2004). The number of variables in the problem
will become large already for short experiments and a small number of segments.
The problem (2) can, however, still be solved efficiently due to its inherent sparse-
ness.

3 Biomechanical model

A biomechanical model represents the human body as consisting of body seg-
ments connected by joints. In the example application in Figure 1 the body is
modeled as consisting of 23 segments, whereas Figure 2 illustrates two of these
body segments. These can be thought of as the upper and lower leg, each with a
sensor attached to it. The main purpose of Figure 2 is to introduce the different
coordinate frames, variables and calibration parameters. These definitions can
straightforwardly be extended to any sensor and any body segment. The relevant
coordinate frames are:
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Figure 2: Connection of two segments and definition of the variables and
coordinate frames.

The local coordinate frame L aligned with the local gravity vector, with the z-
axis pointing up. The horizontal directions are defined according to any
convenient choice of local coordinates.

The body segment coordinate frame Bj fixed to the bone in body segment Bj .
Its origin can be anywhere along the bone, but it is usually in the center of
rotation of a joint.

The sensor coordinate frame Si of the moving imu Si . Its origin is located in the
center of the accelerometer triad and its axes are aligned to the casing. All
measurements of the imu are resolved in this frame.

In setting up the optimization problem (2), the first step is to define the set
of sensors S , the set of body segments B and the set of joints J in the problem.
Each inertial sensor needs to be mounted on the body, and sensor Si is assumed to

be placed on body segment BSi . The distance r
BSi
Si

and orientation qBSi Si of sensor
Si with respect to body segment BSi are without loss of generality assumed to be
known from calibration.

Our knowledge of the human body can be used to identify which body seg-
ments are connected by which joints, i.e. the set BJk needs to be determined for
each joint Jk . To express the location of the joint in the body frames of the con-

nected body segments, the distances r
Bj
k from the body frame Bj to joint k, need
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to be defined for all joints Jk ∈ J and all Bj ∈ BJ,k . We assume without loss of
generality that they are known from calibration. Generally, all joints are assumed
to be ball-and-socket joints, but we incorporate additional knowledge about a
subset of the joints, denoted by H, which we assume to be hinge joints.

For reasons that will be discussed in Section 4, we define the set of time steps
in the optimization as T rather than explicitly summing over all time steps t =
1 . . . N as in (2). The variables in the optimization problem are then given by

• the position pL
Si ,t

and velocity vL
Si ,t

of sensor Si in the local frame L, ∀ Si ∈ S
and ∀ t ∈ T ,

• the orientation qLSi
t of sensor Si with respect to the local frame L, ∀ Si ∈ S

and ∀ t ∈ T ,

• the position pL
Bj ,t

of body segment Bj in the local frame L, ∀ Bj ∈ B and
∀ t ∈ T ,

• the orientation q
LBj
t of body segment Bj with respect to the local frame L,

∀ Bj ∈ B and ∀ t ∈ T ,

• the gyroscope bias bω,Si of sensor Si , ∀ Si ∈ S ,

• the mean acceleration state of one of the sensors Si ∈ S , ∀ t ∈ T .

Defining the number of sensors as NS and the number of body segments as NB,
the number of variables in the optimization problem is z ∈ R

(9NS+6NB+3)N+3NS .
When we solve the optimization problem, we encode the rotation states using a
three-dimensional state vector (Crassidis et al., 2007; Grisetti et al., 2010; Hol,
2011). Throughout the paper, we typically interchangeably make use of the unit
quaternion qLS and the rotation matrix RLS as representations of the orientation.
The quaternion conjugate, representing the inverse rotation will be represented
by (qLS)c = qSL. Similarly for the rotation matrix, (RLS)T = RSL.

More details about the gyroscope bias variables and the reason for the inclu-
sion of the mean acceleration state will be given in Section 4.2.

Based on the biomechanical model it is possible to derive relations between
the different variables. We will categorize them in three classes.

Joints between the body segments. The constraints cbio(z) in the optimization
problem (2) enforce the body segments to be connected at the joint locations
at all times,

cbio(z) = pL
Bm,t

+ RLBm
t rBm

k − pL
Bn,t
− RLBn

t rBn
k , Bn, Bm ∈ BJk , (3)

which is included for all Jk ∈ J and t ∈ T . This leads to NJ constraints at
each time step t in the optimization problem (2), where NJ is the number of
joints.

Placement of the sensors on the body segments. The position and orientation of
sensor Si can be expressed in terms of its position and orientation on body
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segment BSi . Ideally, this can be incorporated using equality constraints
in (2). However, it is physically impossible to place the sensor directly on
the bone. Hence, it has to be placed on the soft tissue and the sensor will
inevitably move slightly with respect to the bone. We therefore model the
position and orientation of sensor Si on body segment BSi as

pL
Si ,t

= pL
BSi ,t

+ R
LBSi
t

(
r

BSi
Si

+ e
BSi
p,t

)
, (4a)

qLSi
t = q

LBSi
t qBSi Si exp

(
1
2 e

Si
q,t

)
, (4b)

where we assume e
BSi
p,t ∼ N (0,Σp) and eSi

q,t ∼ N (0,Σq).

Rotational freedom of the joints. For some joints, it is known that their rotation
is (mainly) limited to one or two axes. An example of this is the knee which
is a hinge joint, although it can in practice flex a little around the other axes
too. Minimizing

eJk ,t =
[
nT1
nT3

] (
RLBm
t

)T
RLBn
t n2, Bn, Bm ∈ BJk , (5)

where n1, n2 and n3 denote the different axis directions and eJk ,t ∼ N (0,Σk),
will minimize the rotation around any but the n2-axis. This cost function
can be included at any time t for any joint k that is a hinge joint, i.e. ∀ Jk ∈
H,∀ t ∈ T . Note that inclusion of this knowledge is optional in the algo-
rithm.

4 Dynamic and sensor models

The sensor’s position, velocity and orientation at each time instance can be related
by a dynamic model in which the accelerometer and gyroscope measurements are
used as inputs (Gustafsson, 2012; Hol, 2011). In this work we choose a slightly
different approach to reduce the number of variables in the optimization prob-
lem (2). To achieve high update rates using a relatively small number of variables,
we use an approach similar to the one discussed by Savage (1998a,b). Hence, strap-
down inertial integration, in which the accelerometer and gyroscope signals are
integrated, is run at high update rates. This leads to accelerometer measurements
∆p and ∆v representing a difference in position and velocity and gyroscope mea-
surements ∆q representing a difference in orientation. These are integrated for Ts

T
times, where Ts is the sampling time of the inertial sensors and T is the sampling
time used in the optimization problem (2).

4.1 Dynamic model

The position, velocity and orientation of each sensor Si are related from time t to
time t + T using the accelerometer measurements ∆pSi

t ,∆v
Si
t and the gyroscope
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measurements ∆qSi
t . The position and velocity states at each time step are modeled

according to

pL
Si ,t+T

=pL
Si ,t

+ T vL
Si ,t

+ RLSi
t

(
∆pSi

t + wSi
p,t

)
+ T 2

2 g
L, (6a)

vL
Si ,t+T

=vL
Si ,t

+ RLSi
t

(
∆vSi

t + wSi
v,t

)
+ T gL, (6b)

where ∆pSi
t and ∆vSi

t denote the inputs based on the accelerometer measurements.
The noise terms are modeled as wp,t ∼ N (0, Qp) and wv,t ∼ N (0, Qv). The earth
gravity is denoted by gL. The orientation states are modeled as

qLSi
t+T =qLSi

t ∆qSi
t exp

(
1
2w

Si
q,t

)
, (6c)

where ∆qSi
t denotes the gyroscope measurements, corrected for the estimated

gyroscope bias, and wSi
q,t ∼ N (0, Qq).

Since (6) models the states in terms of their value at the previous time step,
the state at the first time instance needs to be treated separately. The orientation
qLSi

1 of each sensor Si is estimated using the first accelerometer and magnetometer
sample of that sensor. Note that this is the only place in the algorithm where mag-
netometer measurements are used. The variables qLSi

1 are then initialized around
this estimated orientation with additive noise eSi

q1
∼ N (0,Σq1

). The position pL
Si ,1

of one of the sensors is without loss of generality initialized around zero with
additive noise ep1

∼ N (0,Σp1
). This defines the origin of the local coordinate

frame L.

4.2 Sensor model

The gyroscope measurements are affected by a slowly time-varying sensor bias.
For relatively short experiments, the sensor biases of all sensors Si ∈ S can be
assumed to be constant. Hence, we include only one three-dimensional variable
for each sensor to represent the gyroscope bias. This variable bω,Si is modeled as
bω,Si ∼ N (0,Σbω ).

As described in Section 1, we do not include position aiding in our problem,
resulting in only relative position and orientation observability. A problem that
can be encountered for this case is that of so-called gravity leakage. Because the
subject’s absolute inclination is unobservable, the gravity vector risks being mis-
interpreted as an acceleration. In the case of stationary measurements, when the
accelerometer only measures the gravity vector, the accelerometer measurements
can be used as a source of absolute inclination information. In case of motion,
the accelerometer measurements will measure an additional acceleration. It can,
however, still be assumed that the mean acceleration over a certain time period is
zero (Luinge, 2002). We therefore assume that one sensor follows this acceleration
model for all t ∈ T , up to some noise ea ∼ N (0,Σa).
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5 Resulting algorithm

The biomechical model from Section 3 and the dynamic and sensor models from
Section 4 can be combined and used to describe the probability density functions
in (2). Eliminating all constant terms from the optimization, this results in a
constrained weighted least-squares problem. This problem is given by

min
z

∑

t∈T

∑

Si∈S

(
‖eSi

p,t‖2Σ−1
p

+ ‖eBSi
q,t ‖2Σ−1

q
︸                   ︷︷                   ︸

placement sensors on body (4)

+ ‖wSi
p,t‖2Q−1

p
+ ‖wSi

v,t‖2Q−1
v

+ ‖wSi
q,t‖2Q−1

q
︸                                     ︷︷                                     ︸

dynamic model (6)

)

+
∑

Si∈S
‖bω,Si ‖2Σ−1

bω

︸            ︷︷            ︸
gyroscope bias

+ ‖
∑

t∈T

∑

Jk∈H
eJk ,t‖2Σ−1

k

︸                ︷︷                ︸
hinge (5)

+ ‖ep1
‖2
Σ−1

p1
+

∑

Si∈S
‖eSi

q1
‖2
Σ−1

q1

︸                        ︷︷                        ︸
initialization

+ ‖
∑

t∈T
ea,t‖2Σ−1

a
,

︸          ︷︷          ︸
acceleration model

s.t. cbio(z) = pL
Bm,t

+ RLBm
t rBm

k − pL
Bn,t
− RLBn

t rBn
k ,

Bn, Bm ∈ BJk∀ Jk ∈ J ,∀ t ∈ T ,

(7)

where the constraints are based on (3).
The complete algorithm is summarized in Algorithm 1. Note that in our cur-

rent implementation the optimization is performed over the entire data set and
the computations are therefore done offline. We plan to extend the approach to
a moving horizon approach (Rao et al., 2001) to enable processing of longer data
sets and to allow for online estimation.

The covariance matrices in (7) representing the sensor covariances are deter-
mined using Allan variance analysis (El-Sheimy et al., 2008). The covariance ma-
trices related to the placement of the sensors on the body, the hinge constraint and
the acceleration model, do not represent any physical quantities and are chosen
more or less ad hoc. Experiments have shown that the solution of the optimization
problem is not very sensitive to the tuning of these values.

The optimization (7) is started using an initial estimate of the variables z0.
All variables are initialized at zero except for the orientations at the first time
step, which are initialized around their estimated orientation, as described in
Section 4.2. This is an infeasible solution, justifying the need for an infeasible
start optimization algorithm.

6 Experiments

We validated our approach with experiments using anmvnAwinda system (Xsens
Technologies B.V., 2013) which is a wireless inertial motion capture system with
17 sensors attached to different body segments as shown in Figure 3. An optical
motion capture system has been used as a source of reference data. Since our
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Algorithm 1 Inertial human motion capture

1. Define the set of sensors S , the set of body segments B and the set of joints J . Mount
the inertial sensors on the body and

(a) define for each sensor Si ∈ S on which body segment BSi ∈ B it is placed.

Calibrate the system to obtain the position r
BSi
Si

and orientation qBSi Si of each
sensor Si ∈ S on body segment BSi ∈ B,

(b) define the set of body segments BJk connected to each joint k for all Jk ∈ J . Cal-

ibrate the system to obtain the distances r
Bj
k of each body segment coordinate

frames Bj ∈ BJk to the different joints k,

(c) define the subset H of joints that are restricted in their rotations and can be
regarded as a hinge joint.

2. Perform an experiment collecting inertial measurements ∆pSi
t ,∆v

Si
t and ∆q

Si
t and a

magnetometer measurement at t = 1, ySi
m,1.

3. Postprocess the data

(a) Initialize z0 and set l = 0.

(b) Determine the values of the cost functions and the constraints in (2), their
Jacobians and the approximate Hessian of the cost function. Determine a step
direction using an infeasible start Gauss-Newton algorithm and update zl →
zl+1.

(c) Set l := l + 1 and iterate from 3(b) until the algorithm is converged and the
solution zl+1 is feasible.

focus is on the legs, one leg has been equipped with optical markers, providing
reference position and orientation of the foot sensor, lower leg sensor, upper leg
sensor and – not visible in the figure – the pelvis sensor.

Inertial data has been collected at 30 Hz. The sensors, however, run the strap-
down integration algorithm discussed in Section 4 internally at 600 Hz to capture
the high bandwidth of the measurement signals during impact, for instance dur-
ing foot impact on the ground. To speed up the computations, the optimization
algorithm itself has been run at a frequency of 10 Hz.

The optimization problem typically converges in a few iterations. To solve the
problem for an experiment of 10 seconds takes about 5 minutes on an amd X4
2.8 GHz processor for a first inefficient Matlab implementation of the algorithm.
Initial tests with a C-implementation, however, show that speed improvements of
up to 500 times are easily obtained. Taking into account that at the moment we
postprocess the whole data set while for a real-time application a moving horizon
can be used, we think that a real-time implementation of the algorithm is indeed
quite possible.

The collected inertial data has been postprocessed used in the optimization
problem (2) for a lower body configuration consisting of a set S of 7 sensors
placed on 7 body segments B: both feet, both lower legs, both upper legs and
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Figure 3: Experimental setup where the human body is equipped with in-
ertial sensors on different body segments. Optical markers for the reference
system have been placed on the right foot sensor, right lower and upper leg
sensors and – not visible in the figure – the pelvis.

the pelvis. The position of each sensor Si ∈ S on the body segment r
BSi
Si

has been

manually measured. The orientations of the sensors on the body segments qBSi Si

for all Si ∈ S have been determined by standing still in a pre-determined pose as
described by Roetenberg et al. (2013). The 7 body segments are connected by 6
joints J of which the two knee joints are assumed to be hinge joints. Calibrating

for the distances r
Bj
k amounts to defining the distances between the different joint

centers which is again done by manual measuring. We acknowledge that this is
an inaccurate calibration method and as future work we therefore plan to extend
the algorithm to automatically estimate these calibration parameters.

Figure 4 visualizes the pose of the lower body of a walking subject estimated us-
ing Algorithm 1 for parts of an experiment. Note that our experimental setup does
allow for accurate absolute position estimates. The location of the different steps
has therefore been corrected for one joint location using the position estimates
from the optical reference system. The steps are taken from a short experiment
and the optimization is run at 30 Hz for plotting purposes.

To compare our relative orientation results to those of the optical reference
system, we focus on the estimated joint angle of the right knee during an exper-
iment of around 37 seconds. Joint angles are defined as the angle between two
connected body segments at the joint center. For the knee joint, the bending of the
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Figure 4: Estimated pose of the lower body at different times during a step
of the left leg (left) and the right leg (right). The view is chosen such that we
view the subject from the right, and the right leg is depicted in blue, the left
leg in green and the connection between the hips in red.

knee during walking is referred to as flexion/extension. The rotation around the
other two axes (abduction/adduction and internal/external rotation) are generally
quite small for this joint. Because it is not possible to observe the joint center and
sensors/markers are generally placed on the soft tissue instead of on the bone,
computation of joint angles depends on a model of the joint locations in the body.
Theoretically, it is possible to estimate the joint angle from the orientation results
of the sensor if the exact location of the sensors with respect to the joints is known,
i.e. in case of a perfect calibration, and if the sensors would be rigidly attached to
the bone. In practice this is clearly not possible. However, since both the inertial
sensors and the optical reference markers are placed on the same location on the
body segments as shown in Figure 3, it is still possible to compare the angles to
assess the quality of our estimates.

To be able to compare our joint angle estimates to those of the reference sys-
tem, a coordinate frame alignment between the sensor coordinate frame and the
coordinate frame of the optical markers needs to be performed. This has been
done as described by Hol (2011). Note that due to limited excitation of the upper
leg sensor, it was not possibly to do this alignment based on the sensor signals.
Instead, the alignment has been performed based on the joint angle estimates.
The joint angle estimates from our algorithm can be seen to match the joint angles
from the optical reference system. A more quantitative analysis can be performed
when the calibration parameters are properly estimated and position aiding is
included. Note that due to the limited size of the measurement volume of the
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optical reference system, the movements are quite restricted and at some time
instances in the experiment the optical reference data is not present.

From our optimization algorithm it is also possible to estimate the joint an-
gles from the angles of the body segments. These are included in red in Figure 5.
There is no validation for the angles obtained in this way, but the estimated ab-
duction/adduction and internal/external rotation are considerably closer to zero,
as we would expect from our knowledge that these rotations are quite small.

7 Conclusions and future work

An optimization approach to inertial human body motion capture has been de-
veloped, capable of estimating the relative position and orientation of the body
segments. Experimental results show that the algorithm works well, quickly con-
verging to a feasible solution and resulting in drift-free joint angle estimates which
match the joint angles from an optical reference system.

We plan to extend the approach to also estimate the calibration parameters
and to include position aiding in the form of zero velocity updates at stand still
and ultra-wideband position aiding (Hol et al., 2009). This will also allow a more
quantitative analysis of the results. Future work also includes adding more body
segments, modeling of non-Gaussian noise where appropriate and implementing
a moving horizon estimation version of the algorithm.
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Figure 5: Knee joint angles for the right knee for an experiment consisting
of 23 steps. The optical reference data is plotted in blue, the joint angle esti-
mated from the sensor’s orientations, using our algorithm is plotted in green,
the joint angle from the body segment orientations is plotted in red. Best
viewed in color.
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Abstract

In inertial motion capture, a multitude of body segments are equipped
with inertial sensors, consisting of 3D accelerometers and 3D gyro-
scopes. Using an optimization-based approach to solve the motion
capture problem allows for natural inclusion of biomechanical con-
straints and for modeling the connection of the body segments at the
joint locations. The computational complexity of solving this problem
grows both with the length of the data set and with the number of sen-
sors and body segments considered. In this work, we present a scalable
and distributed solution to this problem using tailored message pass-
ing, capable of exploiting the structure that is inherent in the problem.
As a proof-of-concept we apply our algorithm to data from a lower
body configuration.

1 Introduction

Inertial motion capture focuses on estimating the relative position and orien-
tation (pose) of different human body segments. To this end, inertial sensors
(3D accelerometers and 3D gyroscopes) are placed on different body segments
as shown in Figure 1. Each body segment’s pose can be estimated by integrating
the gyroscope data and double integrating the accelerometer data in time and
combining these integrated estimates with a biomechanical model. Inertial sen-
sors are successfully used for full body motion capture in many applications such
as character animation, sports and biomechanical analysis (Xsens Technologies B.
V., 2016; Roetenberg et al., 2013; Kang et al., 2011; Yun and Bachmann, 2006).
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In Kok et al. (2014), an optimization-based solution to the inertial motion cap-
ture problem was presented. It post-processes the data to obtain a smoothing esti-
mate of the body’s relative pose. The problem is solved using sequential quadratic
programming (sqp) (Nocedal and Wright, 2006). The method was shown to result
in drift-free and accurate pose estimates. Using an optimization-based approach
allows for natural inclusion of biomechanical constraints and for modeling the
connection between the body segment at the joint locations. Furthermore, it nat-
urally handles nonlinearities and opens up the possibility for incorporating non-
Gaussian noise and for simultaneous estimation of calibration parameters.

Figure 1: Example of inertial motion capture. Left: olympic and world cham-
pion speed skating Ireen Wüst wearing an inertial motion capture suit with
17 inertial sensors. Right: graphical representation of the estimated position
and orientation of the body segments.

For applications which require real-time pose estimates, approximate solu-
tions to the full smoothing problem need to be considered, for instance using fil-
tering or moving horizon estimation (mhe) (Rao et al., 2001). In these approaches,
data up to a current time point is used to estimate the current pose. However, in
case real-time estimates are not required, all available data can be used to obtain
a smoothing estimate. Compared to filtering and mhe, obtaining a smoothing
estimate is computationally more expensive and can be challenging both due
to the computational complexity of solving the problem and due to storage re-
quirements for constructing the problem. This is specifically of concern when
processing long data sets.

In this paper we solve the same problem as in Kok et al. (2014). Again we use
sqp, but at each iteration we compute the search directions using the message
passing algorithm presented in Khoshfetrat Pakazad et al. (2016). This allows us
to efficiently make use of the structure inherent in the problem. We exploit this
structure in two different ways:
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1. We reorder the problem based on time. This allows us to solve the problem
by solving a large number of small problems which enables us to process
long data sets.

2. We reorder the problem based on sensors and body segments. This leads to
less computational benefits – the number of sensors and body segments is
typically much smaller than the number of time steps considered – but it
allows for solving the problem in a distributed manner. It also relaxes the
need for a centralized unit and streaming of data to it.

Using message passing for computing the search directions for the time-ordered
problem has close connections to serial dynamic programming (Bertsekas, 1995).
This is due to the chain-like coupling structure in the problem. In fact, using
serial dynamic programming, the search directions can be computed by sweeping
through the available data forward and backwards, similar to the approach used
for Rauch-Tung-Striebel (rts) smoothing (Rauch et al., 1965). Using message pass-
ing, we compute the search directions by simultaneously starting from the first
and final time steps and sweeping towards the middle of the data set and back.
This allows us to speed up the search direction computation by a factor of two.
Notice that unlike existing scalable algorithms for solving big data problems that
rely on first-order methods, see e.g. Cevher et al. (2014), the proposed algorithm
solely relies on second-order methods. Consequently, this algorithm enjoys a far
superior superlinear convergence rate (Wright, 1997), in comparison to at best
linear convergence of other algorithms.

If we only consider the lower body for the sensor-ordered problem, the chain-
like coupling structure will also be present in the problem. Instead of running
through time, this chain runs from one foot through both legs to the other foot.
Consequently, it enjoys the same similarities to serial dynamic programming as
discussed above. For the full body, the coupling structure will not be chain-like.
It will, however, have an inherent tree structure. Hence, we can still use mes-
sage passing for computing the search directions. In this paper, we focus on the
lower body to simplify both the notation and the biomechanical modeling. The
presented material can, however, straightforwardly be extended to the full body
problem.

The paper is organized as follows. In Section 2 we introduce the inertial motion
capture problem for which the models are subsequently introduced in Section 3.
In Section 4, we reorder the problem in the two ways described above. These two
equivalent formulations of the original problem enjoy a special structure which
allows us to use message passing to compute the search directions. The message
passing algorithm will be introduced in Section 5. The resulting algorithm that
can be used to solve the reordered problems is subsequently discussed in Section 6.
In Section 7, we will discuss experimental results where the algorithm is applied
to data from inertial sensors placed on the lower body.



168 Paper C A scalable and distributed solution to the inertial motion capture problem

Table 1: Notation to refer to the variables and the constraints in our problem,
introduced in Sections 2 and 3.3, respectively.

Symbol Definition Explanation

xSi xSi = {xSi
1 , . . . , x

Si
NT
} Time-varying variables pertain-

ing to sensor Si
xBi xBi = {xBi

1 , . . . , x
Bi
NT
} Time-varying variables pertain-

ing to body segment Bi
xi xi = {xBi , xSi } Time-varying variables pertain-

ing to sensor Si and body seg-
ment Bi

xt xt = {xS1
t , . . . , x

SNS
t , x

B1
t , . . . , x

BNS
t } Time-varying variables pertain-

ing to time t
x x= {x1, . . . , xNT } All time-varying variables
θ θ = {θS1 , . . . , θNS } Static parameters

ci (xi , xi+1) ci (xi , xi+1) = {ci1(xi1, x
i+1
1 ), . . . , ciNT (xiNT , x

i+1
NT

)} Biomechanical constraints for
joint i at time t = 1, . . . , NT

ct(xt) ct(xt) = {c1t (x1
t , x

2
t ), . . . , cNS−1

t (xNS−1
t , x

NS
t )} Biomechanical constraints at

time t
c(x) c(x) = {ct(x1), . . . , ct(xNT )} All biomechanical constraints

2 Problem formulation

The problem of estimating the relative pose of each body segment is formulated
as a constrained estimation problem. Given NT measurements y = {y1, . . . , yNT },
a point estimate of the static parameters θ and the time-varying variables x =
{x1, . . . , xNT } can be obtained as a constrained maximum a posteriori (map) esti-
mate,

maximize
x,θ

p(x, θ | y)

subj. to c(x) = 0,
(1)

where c(x) represents the equality constraints. In this work we consider NS sen-
sors placed on NS body segments, where sensor Si is placed on body segment
Bi . The time-varying variables x consist of variables both related to sensors (e.g.
the pose of the sensor) and to body segments (the pose of the body segment), i.e.

xt = {xS1
t , . . . , x

SNS
t , xB1

t , . . . , x
BNS
t }. To refer to the time-varying variables for sen-

sor Si , we use the notation xSi = {xSi
1 , . . . , x

Si
NT
}, while xBi = {xBi

1 , . . . , x
Bi
NT
} denotes

time-varying variables for body segment Bi . The set of time-varying variables
pertaining to sensor Si and segment Bi is denoted xi = {xBi , xSi }. The static param-
eters are given by θ = {θS1 , . . . , θSNS }. This notation will be used throughout this
work and is summarized in Table 1.
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Using the Markov property of the time-varying variables and the fact that the
logarithm is a monotonic function, we can rewrite (1) as

minimize
x,θ

−
NT∑

t=2

NS∑

i=1

log p(xSi
t | xSi

t−1, θ
Si , y

Si
t )

︸                                      ︷︷                                      ︸
dynamics of the state x

Si
t

−
NT∑

t=1

NS∑

i=1

log p(xBi
t | xSi

t )

︸                         ︷︷                         ︸
placement of sensor Si on body segment Bi

−
NS∑

i=1

log p(xSi
1 | y

Si
1 ) −

NS∑

i=1

log p(θSi )

︸                                          ︷︷                                          ︸
prior

subj. to c(x) = 0.

(2)

The constraints c(x) represent the connection between the body segments at the
joint locations. The cost function consists of terms related to a dynamic model for
the time-varying states xSi

t , a model regarding the placement of the sensors on the
body segments and a prior on the initial states xSi

1 and the constant parameters
θSi for i = 1, . . . , NS .

3 Model

To estimate the relative pose of the lower body, we assume that 7 sensors are placed
on different body segments. For notational simplicity, we assume that sensor Si
is attached to body segment Bi . The body segments are connected at the joint
locations. Figure 2 illustrates two body segments, which can be thought of as the
upper leg (B3) and the lower leg (B2). A sensor is attached to each body segment
and the body segments are connected at the joint J2 (the knee). Estimating the
relative pose of the body amounts to estimating the position and orientation of the
sensors and the body segments using the sensor measurements and the informa-
tion that the body segments are connected. The variables considered optimization
problem (2) are given by:

• The time-varying variables xSi
t , consisting of the 3D position, velocity and

orientation of sensor Si at time t. Furthermore, for one of the sensors Si , the
variables xSi

t also include variables to estimate its mean acceleration at time
t.

• The time-varying variables xBi
t consisting of the 3D position and orientation

of body segment Bi at time t.

• The constant variables θSi consisting of the gyroscope bias bSi
ω ∈ R3 of sensor

Si .

Hence, the variables in the optimization problem are x ∈ R
(15NS+3)NT and

θ ∈ R
3NS , where it is assumed that the orientation variables are encoded using

a three-dimensional vector, see e.g. Crassidis et al. (2007); Grisetti et al. (2010);
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J2

S3

S2

B2

B3

Figure 2: Connection of two body segments with a sensor attached to each of
them.

Hol (2011). In the remainder of this section, we discuss the structure of the cost
functions and of the constraints in (2). This structure will be exploited in our
message passing algorithm. For an alternative and more explicit formulation of
the problem, we refer to Kok et al. (2014).

3.1 Dynamics of the state xSi
t

The dynamics in (2) expresses the position, velocity and orientation of each sensor
Si in terms of their values at the time instance t − 1 and in terms of the constant
variables θSi . The change in position, velocity and orientation of sensor Si is mod-
eled in terms of the acceleration and angular velocity measured by sensor Si . The
mean acceleration is modeled in terms of xSi

t−1, θSi and the accelerometer measure-
ments. For more details on the acceleration model we refer to Kok et al. (2014).
The dynamics of the state xSi

t can hence be expressed as in (2).

3.2 Placement of the sensors on the body segments

As shown in Figure 2, sensor Si is assumed to be attached to the body segment
Bi . We assume that the relative position and orientation of the sensors on the
body segments is known from calibration. At each time instance, the position
and orientation of sensor Si can therefore be expressed in terms of the position
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Table 2: Summary of the body segments, sensors and joints used in the model.

Body segment Sensor Joint Connecting body segments

B1: Right foot S1 J1: Right ankle B1 ⇔ B2
B2: Right lower leg S2 J2: Right knee B2 ⇔ B3
B3: Right upper leg S3 J3: Right hip B3 ⇔ B4
B4: Pelvis S4 J4: Left hip B4 ⇔ B5
B5: Left upper leg S5 J5: Left knee B5 ⇔ B6
B6: Left lower leg S6 J6: Left ankle B6 ⇔ B7
B7: Left foot S7

and orientation of the body segment Bi . Ideally, this can be incorporated using
equality constraints in (2). However, it is physically impossible to place the sensor
directly on the bone. Hence, it has to be placed on the soft tissue and the sensor
will inevitably move slightly with respect to the bone. To allow for small random
movements of the sensor, we incorporate the knowledge about the placement of
the sensors on the body segments in the cost function.

3.3 Biomechanical constraints

The constraints c(x) in the optimization problem (2) enforce the body segments
to be connected at the joint locations at all times. Hence, for joint Ji , they model
the position and the orientation of body segment Bi in terms of the position and
the orientation of body segment Bi+1 for i = 1, . . . , NS − 1. Here, the ordering of
the indices of the joints and the body segments is assumed to be as in Table 2.
Note that we assume that the length of the body segments is known either from
calibration or from a biomechanical model.

Each joint Ji results in a constraint cit ∈ R
3 at time t. The set of constraints

at time t is given by ct(xt) = {c1
t (x1

t , x
2
t ), . . . , cNS−1

t (xNS−1
t , x

NS
t )} and the set of con-

straints for joint Ji is given by ci(xi , xi+1) = {ci1(xi1, x
i+1
1 ), . . . , ciNT (xiNT , x

i+1
NT

)}. The
complete set of biomechanical constraints is given by c(x) = {ct(x1), . . . , ct(xNT )}.
This notation is summarized in Table 1. Note that we explicitly indicate which
states are involved in the constraints using the ordering of body segments and
joints in Table 2.

4 Problem reformulation enabling structure
exploitation

In this section we focus on reordering the problem (2) in two different ways. In
Section 4.1, we reorder the problem based on the time indices t = 1, . . . , NT . In
Section 4.2, we reorder the problem based on sensor and body segment indices
i = 1, . . . , NS . The inertial motion capture problem can be solved iteratively using
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sqp, where at each iteration k we solve a quadratic approximation of (2). Hence,
in each of the sections below, we also introduce an explicit formulation of the
quadratic approximation that needs to be solved, where the reordering will allow
us to exploit the structure inherent in the problem.

4.1 Reordering based on time

The objective function in (2) can be reordered based on time resulting in

minimize
x,θ

−
NS∑

i=1

(
log p(xBi

1 | x
Si
1 ) + log p(xSi

1 | y
Si
1 ) + 1

NT
log p(θSi )

)

−
NT∑

t=2

NS∑

i=1

(
log p(xSi

t | xSi
t−1, θ

Si ) + log p(xBi
t | xSi

t ) + 1
NT

log p(θSi )
)

subj. to c(x) = 0.

(3)

Let f1(x1, θ) and ft(xt , xt−1, θ) for t = 2, . . . , NT correspond to different terms in
the cost function of (3). We can then rewrite (3) more compactly as

minimize
x,θ

f1(x1, θ) +
NT∑

t=2

ft(xt , xt−1, θ)

subj. to ct(xt) = 0, t = 1, . . . , NT ,

(4)

where we use the notation ct(xt) to denote the biomechanical constraints at time t
as introduced in Table 1. It is beneficial to equivalently reformulate this problem
as

minimize
x,θ̄

f1(x1, θ̄1) +
NT∑

t=2

ft(xt , xt−1, θ̄t)

subj. to ct(xt) = 0, t = 1, . . . , NT ,

θ̄t = θ̄t+1, t = 1, . . . , NT − 1,

(5)

where θ̄ = {θ̄1, . . . , θ̄NT }. This formulation models the constant variables θ in
terms of time-varying variables θ̄t . Inclusion of the additional equality constraints
in (5) ensures that θ̄t will be equal for all t and makes the formulations (4) and (5)
equivalent.

The reordered problem (5) enjoys a desirable structure that can be exploited.
It can be solved iteratively using sqp, where at each iteration k we solve the
quadratic approximation

minimize
∆x,∆θ̄

1
2

[
∆x
∆θ̄

]T
H(x(k), θ̄(k))

[
∆x
∆θ̄

]
+

(
Jf (x(k), θ̄(k))

)T [
∆x
∆θ̄

]

subj. to ct(x
(k)
t ) +

(
Jct (x

(k)
t )

)T
∆xt = 0, t = 1, . . . , NT ,

∆θ̄t − ∆θ̄t+1 = 0, t = 1, . . . , NT − 1,

(6)
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to compute a step,
[
∆xT ∆θ̄T

]T
. This step will be used to update the estimates

of the variables x and θ̄. The Jacobians of the objective function and of the con-
straints are given by

Jf (x, θ̄) = ∇x,θ̄f1(x1, θ̄1) +
NT∑

t=2

∇x,θ̄ft(xt , xt−1, θ̄t), (7a)

Jct (xt) = ∇xt ct(xt). (7b)

For the Hessian of the objective function we use a Gauss-Newton approximation
as

H(x, θ̄) ≈ ∇x,θ̄f1(x1, θ1)∇x,θ̄f1(x1, θ̄1)T

+
NT∑

t=2

∇x,θ̄ft(xt , xt−1, θ̄t)∇x,θ̄ft(xt , xt−1, θ̄t)
T. (8)

If we choose the ordering of variables as (∆x1,∆θ̄1,∆x2,∆θ̄2, . . . ,∆xNT ,∆θ̄NT ), the
Hessian H(x, θ̄) takes a special form as illustrated in Figure 3. In this case it is
possible to find matrices Ht and ht and write the problem in (6) equivalently as

minimize
∆x,∆θ̄

NT −1∑

t=1




1
2




∆xt
∆θ̄t
∆xt+1
∆θ̄t+1




T

Ht




∆xt
∆θ̄t
∆xt+1
∆θ̄t+1




+




∆xt
∆θ̄t
∆xt+1
∆θ̄t+1




T

ht




subj. to ct(x
(k)
t ) +

(
Jct (x

(k)
t )

)T
∆xt = 0, t = 1, . . . , NT ,

∆θ̄t − ∆θ̄t+1 = 0, t = 1, . . . , NT − 1.

(9)

This time-ordered equivalent formulation of the problem (2) enjoys a special struc-
ture which allows us solve it efficiently using message passing. Before introducing
this approach, we will first reorder the problem (2) in a second way, based on
sensors and body segments.

4.2 Reordering based on sensors and body segments

The problem (2) can also be rearranged or reordered based on sensors and body
segments. Here, we group the terms in the cost function related to sensor Si and
body segment Bi for i = 1, . . . , NS , resulting in

minimize
x,θ

−
NS∑

i=1


 log p(xSi

1 | y
Si
1 ) +

NT∑

t=2

log p(xSi
t | xSi

t−1, θ
Si )

+
NT∑

t=1

log p(xBi
t | xSi

t ) + log p(θSi )




subj. to c(x) = 0.

(10)
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Figure 3: Form of the Hessian H(x, θ̄) for the quadratic approximation (6)
with the time-ordered variables as described in Section 4.1. The blue blocks
indicate the non-zero terms in the Hessian. For clarity, we indicate which
variables are associated with which blocks.

Letting each term in the cost function be denoted by g i(xi , θSi ), we can write (10)
compactly as

minimize
x,θ

NS∑

i=1

g i(xi , θSi )

subj. to ci(xi , xi+1) = 0, i = 1, . . . , NS − 1,

(11)

where the constraints are grouped per joint. Note again that xi and ci(xi , xi+1) are
defined in Table 1.

Analogously to the development in Section 4.1, solving the problem in (11)
using sqp amounts to solving

minimize
∆x,∆θ

1
2

[
∆x
∆θ

]T
H̄(x(k), θ(k))

[
∆x
∆θ

]
+

(
Jg (x(k), θ(k))

)T [
∆x
∆θ̄

]

subj. to ci (xi,(k), xi+1,(k))

+
(
Jci (x

i,(k), xi+1,(k))
)T [

∆xi

∆xi+1

]
= 0,

i = 1, . . . , NS − 1,

(12)

at each iteration, where

Jg (x(k), θ(k)) =
NS∑

i=1

∇x,θg i(xi , θSi ), (13a)

Jci (x
i , xi+1) = ∇xi ,xi+1ci(xi , xi+1). (13b)
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The Hessian of the objective function of this problem is again based on a Gauss-
Newton approximation,

H̄(x, θ) ≈
NS∑

i=1

∇x,θg i(xi , θSi )∇x,θg i(xi , θSi )T. (14)

If we choose the ordering of variables as (x1, θS1 , x2, θS2 , . . . , xNS , θSNS ), the Hes-
sian becomes block-diagonal with each block corresponding to sensor Si and body
segment Bi . This then enables us to write the problem in (12) as

minimize
∆x,∆θ

NS−1∑

i=1




1
2




∆xi

∆θSi

∆xi+1

∆θSi+1




T

H̄ i




∆xi

∆θSi

∆xi+1

∆θSi+1




+




∆xi

∆θSi

∆xi+1

∆θSi+1




T

h̄i




subj. to ci (xi,(k), xi+1,(k))

+
(
Jci (x

i,(k), xi+1,(k))
)T [

∆xi

∆xi+1

]
= 0,

i = 1, . . . , NS − 1,

(15)

through consistent choices of matrices H̄ i and vectors h̄i . The problem formula-
tion (15) again enjoys a special structure which allows us to solve it efficiently
using message passing. Next we briefly review this approach.

5 Tree structure in coupled problems and message
passing

Consider the following coupled optimization problem

minimize
z

f1(z) + f2(z) + · · · + fNC (z), (16)

where z ∈ R
nz and fa : R

nz → R for a = 1, . . . , NC . This problem can be seen
as a combination of NC subproblems, each of which is defined by a term in the
cost function and depends only on a few elements of z. Note that fa can include
indicator functions on constraints. Hence, the problem formulations of the inertial
motion capture problem (5), (9) for the time ordering and (11), (15) for the sensor
and body segment ordering, are of the form (16).

Let us denote the ordered set of indices of z that each subproblem a depends
on by Ca. We can then equivalently rewrite (16) as

minimize
z

f̄1
(
z
C1

)
+ · · · + f̄NC (z

NC
), (17)

where z
Ca

is a |Ca|-dimensional vector that contains the elements of z indexed by
Ca, with |Ca| denoting the number of elements in the set Ca. Also the functions
f̄a : R

|Ca | → R are lower dimensional descriptions of fas such that fa(z) = f̄a(zCa )
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for all z and a = 1, . . . , NC . It is possible to describe the coupling structure of the
problem graphically using undirected graphs. Particularly, let us define the spar-
sity graph of the problem as a graph Gs(Vs, Es) with the vertex set Vs = {1, . . . , nz}
and (a, b) ∈ Es if and only if variables za and zb appear in the same subproblem.
Let us assume that each Ca for a = 1, . . . , NC , be a clique of this graph, where a
clique is a maximal subset of Vs that induces a complete subgraph on Gs. This in
turn means that no clique is contained in another clique (Blair and Peyton, 1994).
Assume furthermore that there exists a tree defined on CGs such that for every
Ca, Cb ∈ CGs where a , b, Ca ∩ Cb is contained in all the cliques in the path con-
necting the two cliques in the tree. This property is called the clique intersection
property (Blair and Peyton, 1994). Graphs with this property have an inherent
tree structure and can be represented using a clique tree.

Let us assume that the sparsity graph of the problem (17) has an inherent tree
structure. The problem can then be solved distributedly using a message passing
algorithm that utilizes the clique tree as its computational graph. This means that
the nodes Vc = {1, . . . , NC} act as computational agents that communicate or col-
laborate with their neighbors defined by the edge set Ec. The message-passing al-
gorithm solves (17) by performing an upward-downward pass through the clique
tree, see e.g., Khoshfetrat Pakazad et al. (2016); Koller and Friedman (2009) and
references therein. The upward pass starts from the agents at the leaves of the tree,
i.e., all agents a ∈ leaves(T ), where every such agent computes and communicates
the message

mapar(a)

(
z
Aapar(a)

)
= min
z
Ca\Aapar(a)

{
f̄a

(
z
Ca

)}
, (18)

to its parent, denoted by par(a). Here Aab = Ca ∩ Cb is the so-called separator
set of agents a and b. Then every agent a that has received all messages from its
children, computes and communicates the message

mapar(a)

(
z
Aapar(a)

)
= min
z
Ca\Aapar(a)


f̄a

(
z
Ca

)
+

∑

b∈ch(a)

mba
(
z
Aba

)

, (19)

with ch(a) denoting the children of agent a, to its parent. This procedure is con-
tinued until we reach the agent, r, at the root. At this point, agent r computes its
corresponding optimal solution by solving

z∗
Cr

= arg min
z
Cr


f̄r

(
z
Cr

)
+

∑

b∈ch(r)

mbr

(
z
Abr

)

, (20)

and initiates the downward pass by communicating this solution to its children.
During the downward pass each agent a having received the optimal solution(
z∗
Apar(a)a

)par(a)
from its parent computes its corresponding optimal solution as

z∗
Ca

= arg min
z
Ca

f̄a
(
z
Ca

)
+

∑

b∈ch(a)

mba
(
z
Aba

)
+

1
2

∥∥∥∥∥∥zApar(a)a
−
(
z∗
Apar(a)a

)par(a)
∥∥∥∥∥∥

2
, (21)
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Algorithm 1 Distributed Optimization Using Message Passing

1: Given a sparsity graph Gs of an optimization problem
2: extract its cliques and a clique tree over the cliques;
3: assign each subproblem to one and only one of the agents.
4: Set agents = {1, . . . , NC } \ r and elim = {}.
5: Perform the upward pass as
6: while |agents| , 0 do
7: for i ∈ agents do
8: if ch(a) ⊆ elim then
9: This agent computes the message in (19) and communicates it to agent

par(a).
10: elim = elim ∪ {a}.
11: end if
12: end for
13: agents = agents \ elim.
14: end while
15: Set agents = {1, . . . , NC } and elim = {}.
16: Perform the downward pass as
17: while |agents| , 0 do
18: for a ∈ agents do
19: if par(a) ⊆ elim then
20: This agent computes optimal solution as in (21) and communicates it to

agents ch(a).
21: elim = elim ∪ {a}.
22: end if
23: end for
24: agents = agents \ elim.
25: end while
26: By the end of the downward pass all agents have computed their optimal solutions

and the algorithm is terminated.

and communicates this solution to its children. Once the downward pass is ac-
complished, all agents have computed their respective optimal solution and the
algorithm is terminated. We have summarized this scheme in Algorithm 1.

Remark 1. Notice that within the upward pass all agents that have received
messages from their children can compute their messages simultaneously and in
parallel. This also holds for the downward pass, as all agents that have received
the optimal solution from their parents can compute their respective optimal
solution in parallel.

6 Scalable and distributed solutions using message
passing

We will now rewrite the problem reorderings (9) and (15) such that Algorithm 1
can be used to solve the problem. Let us first reconsider the problem in (9). We
can rewrite this problem compactly as
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Figure 4: Clique tree corresponding to the sparsity graph of problem (9).

minimize
∆x,∆θ̄

NT −1∑

t=1

f̄t(∆xt ,∆xt+1,∆θ̄t ,∆θ̄t+1) (22a)

subj. to

ct(x
(k)
t ) +

(
Jct (x

(k)
t )

)T
∆xt = 0

∆θ̄t − ∆θ̄t+1 = 0


, t = 1, . . . , r − 1, (22b)

ct(x
(k)
t ) +

(
Jct (x

(k)
t )

)T
∆xt = 0

∆θ̄t − ∆θ̄t+1 = 0

ct(x
(k)
t+1) +

(
Jct+1 (x

(k)
t+1)

)T
∆xt+1 = 0



, t = r, (22c)

ct(x
(k)
t+1) +

(
Jct+1 (x

(k)
t+1)

)T
∆xt+1 = 0

∆θ̄t − ∆θ̄t+1 = 0


, t = r + 1, . . . , NT − 1, (22d)

where r = bNT /2c. The sparsity graph of this problem has an inherent tree struc-
ture, with NT − 1 cliques. Each clique Ca consists of the variables ∆xa, ∆θ̄a, ∆xa+1
and ∆θ̄a+1. The clique tree for this problem is illustrated in Figure 4. Conse-
quently, we can use Algorithm 1 for solving this problem. During the upward
pass, each agent a sends a message as in (18) and (19) to its parent as a function of
the variables it shares with its parents. Hence, if a < r (the agent is on the left side
of agent r in Figure 4) the message to its parents is a function of ∆xa+1 and ∆θ̄a+1.
Equivalently, if a > r (the agent is on the right side of agent r in Figure 4) the
message to its parents is a function of ∆xa and ∆θ̄a. As a result, each agent except
agent r has to factorize a matrix of size |xa| + |θ̄a| plus the number of constraints,
which is equal to 6NS − 3, as can be seen in (22). The root agent instead has to
factorize a matrix of size 2|xa| + 2|θ̄a| + 9NS − 6. The computational complexity of
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Algorithm 2 Inertial Motion Capture

1: Place the sensors on the body, calibrate the system and collect inertial measurements.
2: Initialize x and θ or θ̄ and set k = 0.
3: while the algorithm has not converged and the solution is not feasible do
4: Formulate the quadratic approximation (22) using the time reordering or (15) using

the sensor / segment reordering.

5: Use Algorithm 1 to solve the problem formulated in Step 4 and to obtain a step[
∆xT ∆θ̄T

]T
for the time ordered problem or a step

[
∆xT ∆θT

]T
for the sen-

sor / segment ordered problem.
6: Update x := x + ∆x, θ := θ + ∆θ or θ̄ := θ̄ + ∆θ̄.
7: Set k := k + 1 and check for convergence and feasibility.
8: end while

Algorithm 1 is dominated by the upward pass since the downward pass does not
require a matrix factorization. For details on this, we refer to Khoshfetrat Pakazad
et al. (2016). Hence, the computational complexity and storage requirements for
the resulting algorithm grow linearly with NT . The reduction in the memory
requirements follows from the fact that using Algorithm 1 we have relaxed the
need for even forming the problem in (9). The resulting algorithm to solve the
problem (22) is summarized in Algorithm 2.

The problem in (15) is also a coupled problem but with NS − 1 subproblems.
The clique tree for this problem has the same structure as for (15), where the
only differences are in the number of cliques which in this case is NS − 1 and that
r = bNS /2c. Each clique Ca consists of the variables ∆xa, ∆θSa , ∆xa+1 and ∆θSa+1 .
Hence, we can solve the problem in (15) distributedly using Algorithm 1. This
can be achieved using a network of computational agents, that can be installed on
the body and that collaborate based on the clique tree.

Remark 2. Note that in (22) we have adopted a particular grouping of the con-
straints. This is to ensure that each of the subproblems is well-posed in terms of
their local variables. This was not necessary for the problem in (15).

Remark 3. The reason that the clique trees for both problems in (22) and (15)
have the same structure is due to the fact that we have focused on the motion
capture problem for the lower body. For solving the full body problem we can use
the same approach as presented in this paper, since the inherent tree structure
will still be present in the problem. However, the clique tree for the corresponding
problem will be more complicated than a chain and will correspond to the body
formation.

7 Results and discussion

We consider experimental data from a subject walking around for approximately
37 seconds wearing inertial sensors as shown in Figure 5. We focus on estimating
the pose of the lower body using data from 7 sensors attached to the different
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body segments as described in Section 3. The estimated joint angles from this
problem have previously been presented in Kok et al. (2014). In this work, we
solve the same optimization problem but reorder the problem to efficiently make
use of its structure. Hence, the estimates obtained using Algorithm 2 are equal to
the ones presented in Kok et al. (2014).

The optimization problem is solved at 10 Hz with NT = 373, leading to a
total number of 40284 time-varying variables x and 21 constant variables θ and
6714 constraints.1 Notice that if the inherent sparsity of the problem would not
be exploited, the computational complexity of solving the sqp for the smoothing
problem (6) or (12) would grow cubically with the number of sensors and body
segments NS and with the number of time steps NT . The storage requirements
for forming this problem would grow quadratically with NT and NS .

To solve the problem in a more scalable manner, we have reordered the vari-
ables based on time and formed the problem as in (22), which allows us to solve
the problem using Algorithm 2. For each iteration k in Algorithm 2, we then form
NT − 1 subproblems. Computing the messages in the upward pass requires each
agent except the root agent to factorize a matrix of size 168 since |xt | + |θ̄t | = 129
and 39 constraints are involved in the subproblem. The root agent needs to in-
stead factorize a matrix of size 315 since 2|xt | + 2|θ̄| = 258 and 57 constraints are
involved in this subproblem instead. Using message passing to solve the problem,
it is no longer required to form and store the large problem of size 46998. Instead,
it is only required to store one of these subproblems.

We have also solved the problem by reordering the variables based on sensors
and segments. The computational benefits of this reordering are much less signifi-
cant – the problem is split up in 6 subproblems. However, the approach no longer
requires collecting all data at a centralized unit, which can be communication in-
tensive, and hence can potentially hamper our ability to have a seamless solution
for the motion capture problem. Instead, it allows for decentralized computation
of the solution, where the computational power on the sensors can be used to
compute solutions to the subproblems.

8 Conclusions and future work

In this work, we have introduced a method to exploit the structure inherent in
the inertial motion capture problem. The method allows for a scalable solution
where small subproblems for each time step are formed and hence longer data
sets can be processed. The approach is successfully applied to experimental data
to estimate the pose of the lower body. It also opens up for the possibility of
distributedly solving the problem by making use of the computational resources
of each of the sensors. The structure that we exploit in this work is not unique to
the motion capture problem. We believe that the message passing algorithm can
be applied to a large number of other problems appearing in signal processing and

1Note that the inertial sensors themselves are sampled at a much higher rate but strapdown inte-
gration (Savage, 1998a,b) is used to capture the high frequency signals, allowing for a lower update
frequency of the optimization problem.
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Figure 5: Experimental setup where the human body is equipped with iner-
tial sensors (orange boxes) on different body segments. High-accuracy refer-
ence measurements were obtained using an optical tracking system to vali-
date the estimated joint angles. To this end, triangles with optical markers
were placed on a number of sensors.

estimation, e.g., in large-scale signal processing and estimation application. This
is because these problems commonly enjoy desirable sparsity structures arising
from physical and / or dynamic properties in the problem, as we saw for the
inertial motion capture problem in this work.
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Abstract

In this work we present an approach to combine measurements from
inertial sensors (accelerometers and gyroscopes) with time of arrival
measurements from an ultrawideband system for indoor positioning.
Our algorithm uses a tightly-coupled sensor fusion approach, where
we formulate the problem as a maximum a posteriori problem that is
solved using an optimization approach. It is shown to lead to accurate
6D position and orientation estimates when compared to reference
data from an independent optical tracking system. To be able to ob-
tain position information from the ultrawideband measurements, it
is imperative that accurate estimates of the ultrawideband receivers’
positions and their clock offsets are available. Hence, we also present
an easy-to-use algorithm to calibrate the ultrawideband system using
a maximum likelihood formulation. Throughout this work, the ultra-
wideband measurements are modeled by a tailored heavy-tailed asym-
metric distribution to account for measurement outliers. The heavy-
tailed asymmetric distribution works well on experimental data, as
shown by analyzing the position estimates obtained using the ultra-
wideband measurements via a novel multilateration approach.

1 Introduction

Ultra-wideband (uwb) is a relatively new and promising radio technology with ap-
plications in for example radar, communication and localization. Uwb technology
typically makes use of impulse radio with very short pulses. These are typically in
the order of 1 ns, opening up for high spatial resolution. This characteristic makes
uwb very suitable for localization purposes. It has successfully been applied in

187
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Figure 1: Example application showing a subject with 17 inertial sensors
placed on the body and 3 uwb transmitters placed on the head and on both
feet. The pose estimates are visualized by the “skeleton” overlayed in the
images. As shown (right), the solution remains valid even in non-line-of-sight
conditions.

a wide variety of localization applications, such as industrial (Ubisense, 2014),
health-care (Time Domain, 2014; Gezici et al., 2005) and motion capture (Xsens
Technologies B.V., 2014). Uwb positioning accuracy is reported to be in the or-
der of decimeters (Time Domain, 2014; Ubisense, 2014). Although uwb systems
do not necessarily require line-of-sight visibility (Bellusci et al., 2011), the uwb
measurements do suffer from multipath and non-line-of-sight (nlos) conditions,
resulting in measurement outliers.

Inertial sensors consist of accelerometers and gyroscopes measuring the accel-
eration and angular velocity of the sensor. The inertial sensor measurements need
to be integrated to obtain position and orientation estimates. These position and
orientation estimates are accurate on a short time scale, but suffer from integra-
tion drift. Inertial sensors have successfully been used to estimate 6D position and
orientation (pose) in combination with systems providing position information
such as gps and uwb, see e.g. Hol (2011) and the references therein.

In this work we present an indoor positioning approach using inertial sensors
and time of arrival (toa) measurements from an uwb system. We use a setup
where a number of uwb receivers are placed in an indoor environment. Our focus
is on combining information from an uwb transmitter and an inertial measure-
ment unit (imu) to estimate the 6D pose of the imu. The imu and the transmitter
are assumed to be rigidly attached to each other. Our approach can be extended
to for example estimate the 6D pose of a human body where a subject wearing
multiple imus and multiple uwb transmitters walks through the uwb measure-
ment volume, as shown in Figure 1. This work builds on Hol et al. (2009); Hol
(2011), where an extended Kalman filter (ekf) was used in combining the inertial
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and uwb measurements to estimate the 6D pose of the sensor. Outlier rejection
was used to remove uwbmeasurements affected by multipath and nlos. In this
work we instead solve the problem using an optimization-based approach simi-
lar to the approach used in Kok et al. (2014). Using this approach, it is possible
to assume more general measurement distributions. Hence, we model the uwb
measurements using a heavy-tailed asymmetric distribution which is specifically
tailored for this particular application. This distribution naturally handles the
possibility of measurement delays due to multipath and nlos while not allowing
for the possibility of measurements arriving earlier, i.e. traveling faster than the
speed of light. We will show that accurate position and orientation estimates are
obtained by comparing our results to those obtained from an independent optical
reference system.

To be able to obtain position information from the uwb measurements, the
positions of the receivers must be known and the receiver clocks have to be syn-
chronized. To avoid the typically labor-intensive and time-consuming process of
manually surveying the receiver positions, we present an easy-to-use calibration
method that automates this process. Our previous solution presented in Hol et al.
(2010) assumed “clean” measurements, i.e. it was assumed that no outliers were
present. In this work, we will instead solve the calibration problem modeling the
uwb measurements using the heavy-tailed asymmetric distribution mentioned
earlier to naturally handle the measurement outliers.

To experimentally validate the uwbmodel using the heavy-tailed asymmetric
distribution, we will use the uwb measurements in a novel multilateration ap-
proach to determine the position of a mobile transmitter. Here, we assume that
the uwb system has previously been calibrated using our calibration algorithm.
We will show that the position estimates obtained using the heavy-tailed asym-
metric distribution are considerably better than the ones obtained using either a
Gaussian distribution or a heavy-tailed symmetric Cauchy distribution.

In Section 2, we provide more background to our work by relating it to previ-
ous work in the area. In Section 3 we clearly formulate the problem. The sensors
and their corresponding measurement models are introduced in Section 4. The
uwb calibration problem is subsequently solved in Section 5. The solution to
the sensor fusion problem, where we also make use of the inertial measurements
can be found in Section 6. The experimental results and the conclusions are then
provided in Section 7 and Section 8, respectively.

2 Related work

In this work we make use of toa measurements from an uwb system. Our
uwb setup consists of a network of synchronized and stationary (rigidly fixed,
mounted) receivers, all acquiring very precise toameasurements of signals origi-
nating from a mobile transmitter. The low-cost transmitters in our setup have an
inaccurate clock and can hence not provide accurate information concerning the
time of transmission. For a general introduction to uwb technology and its use in
positioning applications, see e.g. Gezici et al. (2005); Sahinoglu et al. (2008).
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The process of determining the transmitter position from toameasurements
is referred to as trilateration or, more accurately, multilateration. It is a well-
studied topic and many algorithms have been reported in the literature, see e.g.
Chan and Ho (1994); Gezici et al. (2005); Sayed et al. (2005); Sahinoglu et al.
(2008). A common multilateration technique is to eliminate the time of trans-
mission by constructing time difference of arrival (tdoa) measurements from
pairs of toameasurements. The resulting set of hyperbolic equations can then be
solved for position (Gustafsson, 2012). The drawback of this approach is that the
constructed tdoameasurements are no longer independently distributed which
complicates the calculations. In this work we use a well-known equivalent ap-
proach where we instead model the time of transmission as an unknown quantity.

Ideally, the uwb signal travels directly from the transmitter to the different
receivers. In that case, the toameasurements are directly related to the distance
traveled. In case the signal encounters a medium which delays or reflects the sig-
nal, however, the time of flight is prolonged and the pulse will be delayed. This
can result in large estimation errors when assuming that the uwbmeasurements
are Gaussian distributed, as will be illustrated in Section 7.1. The problem of how
to robustly deal with outliers in the measurements has received a lot of attention,
see e.g. Zoubir et al. (2012) for a good survey containing relevant entry-points
into the literature on this topic commonly referred to as robust statistics. A com-
mon approach is to model the outliers in terms of the probability of nlos and
introduce a delay represented by a heavy-tailed positive-mean probability den-
sity function (pdf) such as a shifted Gaussian or an exponential, see e.g. Alsindi
et al. (2009); Gustafsson and Gunnarsson (2005). Based on Alsindi et al. (2009),
the localization approach presented in Prorok and Martinoli (2014) builds spatial
models representing the probability of nlos in a certain area. In our approach
we do not specifically model the probability of the number of outliers. Instead,
we model the uwbmeasurements using a specifically tailored asymmetric heavy-
tailed noise distribution. By estimating the width of this distribution, the algo-
rithm can automatically adapt the width to the specific measurement data. The
use of this distribution can straightforwardly be incorporated in any maximum
likelihood (ml) or maximum a posteriori (map) estimation algorithm, without
including any additional parameters.

Uwb approaches typically assume that the receiver positions are known and
that their clocks are synchronized, explaining why there are relatively few uwb
calibration algorithms available in the literature, see e.g. Hol (2011); Hol et al.
(2009). However, ideas for uwb calibration can be obtained from the wide range
of literature on sensor localization, see for instance Patwari et al. (2005). The chal-
lenge again comes down to the possibility of measurement errors due to nlos
and/or multipath, resulting in a reduced quality of the calibration results. Hence,
we assume a tailored asymmetric heavy-tailed distribution in our calibration al-
gorithm to represent these errors.

When combining inertial measurements with uwb measurements, a tightly-
coupled or a loosely-coupled approach can be used. In a loosely-coupled approach,
the uwbmeasurements are used to obtain position estimates using a multilatera-
tion approach. These position estimates are subsequently used as artificial posi-
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uwb transmitter

uwb receiver

uwb pulse

Figure 2: The uwb setup consists of a number of stationary receivers acquir-
ing toameasurements of signal pulses originating from a mobile transmitter.

tion measurements in the sensor fusion approach, see e.g. Sczyslo et al. (2008); Pit-
tet et al. (2008); Corrales et al. (2008). A tightly-coupled approach instead makes
direct use of each individual toameasurement, see for instance De Angelis et al.
(2010); Hol et al. (2009). An advantage of a tightly-coupled approach is that it does
not suffer from the loss of information that typically arises from pre-processing of
the uwbmeasurements that has to be performed in a loosely-coupled approach.
This is mainly due to approximations of statistical distributions, but in extreme
cases measurements are also ignored, for instance when there are not enough
toa measurements for multilateration. By instead making direct use of the sen-
sor measurements, we can make maximal use of the available information. The
advantage of a tightly-coupled approach is experimentally shown for the case of
uwbmeasurements in for instance Zwirello et al. (2013).

One way to solve the sensor fusion problem is then to use an ekf. To allow for
the presence of delayed measurements, approaches based on outlier rejection (Hol,
2011; Hol et al., 2009) and robust ekf formulations (Hammes et al., 2009) have
previously been used. In this work we will instead formulate a tightly-coupled
approach by formulating and solving an optimization problem. This also straight-
forwardly opens up for exploiting non-Gaussian distributions and for estimating
additional parameters.

3 Problem formulation

To determine an imu’s 6D position and orientation, its measurements are com-
bined with those originating from an uwb transmitter that is rigidly attached
to the sensor. The uwb transmitter sends pulses to a number of stationary uwb
receivers as illustrated in Figure 2. The receivers measure the times of arrival
of the pulses at their different locations. Provided that the receiver positions are
known and that their clocks are synchronized, the position of the transmitter can
be inferred from these measurements. Although the receivers are synchronized
to a central clock, they each have a small, constant clock offset due to for instance
differences in cable lengths. The receiver positions and clock offsets are computed
using our calibration algorithm.
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Let us denote the model parameters estimated by the calibration algorithm
by θ. The calibration algorithm computes an ml estimate θ̂ml. For a setup with
m = 1, . . . , M receivers and l = 1, . . . , L transmitters, the uwb measurements are
denoted yu,mlk for k = 1, . . . , K uwb pulses. Note that the absolute receiver posi-
tions and clock offsets are neither observable, nor relevant. We are interested in
estimating the receivers’ relative positions and clock offsets. Hence, an arbitrary
choice of an uwb coordinate frame and a reference clock offset are used as con-
straints in theml problem. The problem of calibrating the uwb setup is therefore
formulated as a constrained ml problem according to

max
θ∈Θ

K∏

k=1

L∏

l=1

M∏

m=1

pθ(yu,mlk),

s.t. Aθ = b,

(1)

where pθ(y) denotes the pdf of y parametrized by θ. The matrix A and the vector
b are used to describe the linear constraints on the parameter vector θ, due to
the choice of the coordinate frame and the reference clock offset. The calibration
problem (1) is solved in Section 5 where we also provide the resulting calibration
algorithm. In that section, the constraints in (1) are also defined more explicitly.

When the uwb system has been calibrated, the uwb measurements can be
combined with inertial measurements to determine the 6D pose of the sensor.
Hence, we estimate the state vector x1:N which contains the position of the sensor,
its orientation and additional information. Denoting the accelerometer measure-
ments by ya,t for t = 1, . . . , N , the gyroscope measurements by yω,t and the uwb
measurements by yu,mk for k = 1, . . . , K pulses and m = 1, . . . , M receivers, the
state is computed by solving the following map problem,

max
x1:N

p(x1:N |
{
ya,t , yω,t

}N
t=1 , {

{
yu,mk

}M
m=1}Kk=1). (2)

Here, p(x1:N | y1:N ) denotes the conditional pdf of the state vector x1:N given the
measurements y1:N . The subscript k used for the uwb measurements indicates
that the uwbmeasurements do not necessarily have the same sampling frequency
as the inertial measurements. The solution to the sensor fusion problem (2) is
provided in Section 6, together with the resulting algorithm.

4 Sensor models

Our uwb system consists of a network of stationary receivers which can track a
large number of small, battery-powered inexpensive transmitters (Time Domain,
2014). A transmitter and a receiver are shown in Figure 3a. In our sensor fusion
approach, we combine uwbmeasurements with inertial measurements. The imu
is shown in Figure 3b.

In this section we will introduce our sensor models, starting with the uwbmea-
surement model in Section 4.1. Subsequently, the inertial measurement models
will be introduced in Section 4.2.
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(a) Hardware used in an uwb setup.
More specifically, an uwb receiver and
a small, battery-powered uwb trans-
mitter.

(b) An imu containing a 3-axis ac-
celerometer and a 3-axis gyroscope.

Figure 3: Hardware used to collect uwb and inertial measurements.

4.1 Modeling the ultrawideband measurements

For the uwb setup with m = 1, . . . , M receivers and l = 1, . . . , L transmitters, the
toa measurement yu,mlk of receiver m, originating from transmitter l and pulse
k, is modeled as

yu,mlk = τlk + 1
c ‖rn

m − tnlk‖2 + ∆τm + eu,mlk . (3)

Here, c denotes the speed of light, τlk is the time of transmission of pulse k from
transmitter l, tnlk is the position of transmitter l at the time of transmitting the
kth pulse, rn

m is the position of the mth receiver and ∆τm is its clock-offset. The
superscript n denotes the navigation frame. It is a local coordinate frame that is
aligned with the earth’s gravity and with the axes of the frame defined during the
uwb calibration, as already discussed in Section 3.

Due to nlos conditions and/or multipath we expect a small number of mea-
surements to be delayed. Hence, it does not make sense to model eu,mlk using a
Gaussian distribution. In Hol (2011), a new multilateration approach was pre-
sented, where the possibility of delayed measurements was modeled by including
a positive parameter δu,mk explicitly representing the delay of pulse k to receiver
m in the measurement equation (3). The parameters δu,mk were assumed to have
an exponential prior. Hence, Hol (2011) models the delay of each pulse to each re-
ceiver as a parameter to be estimated. This was shown to lead to accurate position
estimates, but it also introduced M additional model parameters for each pulse k.

In this work, we omit the parameters δu,mk and instead model the possibility
of delays in terms of the distribution of the noise eu,mlk . We assume an asymmetric
distribution where a heavy-tailed Cauchy distribution allows for measurement
delays while a Gaussian distribution excludes the physically unreasonable possi-
bility of pulses traveling faster than the speed of light as

eu,mlk ∼
{

(2 − α)N (0, σ2) for eu,mlk < 0 (4a)

αCauchy(0, γ) for eu,mlk ≥ 0. (4b)
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The presence of the constants α and 2 − α is motivated by the fact that the
proposed asymmetric pdf needs to integrate to one and hence

0∫

−∞
(2 − α) 1√

2πσ2
exp

(
− e

2
u,mlk
2σ2

)
d eu,mlk+

∞∫

0

α 1
πγ




1

1+
e2

u,mlk
γ2




d eu,mlk = 1
2 (2 − α) + 1

2α = 1, (5)

where we have made use of the fact that the Gaussian and Cauchy pdfs integrate to
one and are symmetric. Imposing the constraint that the distribution is continuous
at eu,mlk = 0 allows us to express α in terms of σ and γ according to

α
πγ = 2−α√

2πσ2
⇔ α = 2πγ√

2πσ2+πγ
. (6)

The proposed asymmetric pdf and its corresponding negative log-likelihood,
given by

− log p
(
eu,mlk

)
=

{ LG for eu,mlk < 0, (7a)

LC for eu,mlk ≥ 0, (7b)

LG ,
e2

u,mlk
2σ2 + 1

2 log σ2 + 1
2 log 2π − log (2 − α) ,

LC , log
(
1 +

e2
u,mlk
γ2

)
+ 1

2 log γ2 + logπ − logα,

are both depicted in Figure 4 in red. For comparison, the Gaussian and Cauchy
pdfs are also depicted, in blue and green, respectively.

From the experimental results in Section 7.1 it will be shown that exploiting
the asymmetry of the actual noise distribution is especially helpful in the presence
of a large number of outliers.

4.2 Modeling the inertial measurements

An imu containing a 3-axis accelerometer and a 3-axis gyroscope was shown in
Figure 3b. The inertial measurements are resolved in the body frame b. Its origin
lies in the center of the accelerometer triad and its axes are aligned with the casing.
The gyroscope measures the sensor’s angular velocity ωt . Its measurements yω,t
are modeled as

yω,t = ωt + δω + eω,t , (8)

where δω denotes the gyroscope bias and eω,t ∼ N (0,Σω). We assume Σω =
σ2
ω I3 where I3 denotes the 3 × 3 identity matrix. The accelerometer measures the

external specific force f b
t exerted on the sensor. It consists of the sensor’s linear



5 Ultrawideband calibration 195

−2 0 2
0

0.1

0.2

0.3

0.4

eu,mlk

P
ro
ba

bi
li
ty

d
en

si
ty

fu
nc

ti
on

−2 0 2
1

2

3

4

5

eu,mlk

N
eg
at
iv
e
lo
g-
li
ke

li
ho

od
Figure 4: pdf (top) and negative log-likelihood (bottom) of a N (0, 1) dis-
tribution (blue, dashed), a Cauchy(0, 1) distribution (green, dotted) and the
asymmetric distribution (4) asssuming σ = γ = 1 and α according to (6)
(red).

acceleration an
t and the gravity vector gn, both resolved in the navigation frame n.

The accelerometer measurements ya,t are modeled as

ya,t = f b
t + δa + ea,t = Rbn

t (an
t − gn) + δa + ea,t , (9)

where δa denotes the accelerometer bias and ea,t ∼ N (0,Σa). We assume Σa =
σ2

a I3. The rotation matrix Rbn
t represents the rotation from the navigation frame

n to the body frame b at time t.
Both the gyroscope and the accelerometer biases δω and δa are slowly time-

varying, but we will treat them as constants motivated by the short experimental
times used in this work. For longer experiments, δω and δa can be assumed to be
time-varying instead.

The inertial measurements provide information about the position and orien-
tation of the sensor. Integration of the angular velocity measured by the gyroscope
leads to information about the sensor’s change in orientation. Subtracting gravity
from the specific force measured by the accelerometer and double integrating the
resulting signal leads to information about the sensor’s change in position. The
process of estimating position and orientation from the inertial measurements is
schematically illustrated in Figure 5.

5 Ultrawideband calibration

In this section, we will derive a calibration algorithm to determine the positions
{rn
m}Mm=1 and the clock offsets {∆τm}Mm=1 of the receivers using the ml formula-

tion (1). The algorithm makes use of data obtained by moving a single transmitter
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∫
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angular
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Figure 5: Schematic illustration of the process of determining position and
orientation from inertial measurements, assuming a known initial position,
velocity and orientation.

through the measurement volume. The data collected in this way is denoted D1.
Since we do not place the transmitter at known positions, but instead move it
around freely, the calibration algorithm aims at simultaneously localizing both
the moving transmitter and the receivers. The transmission times of the differ-
ent pulses {τn

k }Kk=1 are also considered unknown. Note that we have omitted the
subscript l since we consider the case of using a single transmitter.

The uwb measurements are modeled according to (3), where the noise eu,mk
is assumed to be distributed according to the asymmetric distribution (4). The
parameters σ and γ are considered unknown and to be estimated, i.e. the algo-
rithm tunes itself and does not rely on a priori knowledge about the accuracy of
the uwbmeasurements. The resulting parameter vector is

θ =
(
{tnk , τk}Kk=1, {rn

m,∆τm}Mm=1, σ , γ
)
. (10)

To make use of the measurement model (4) within our calibration problem (1),
we need the following relationship

pθ(yu,mk) = peu,mk (yu,mk − τk − 1
c ‖rn

m − tnk ‖2 − ∆τm), (11)

where θ is defined in (10).
The calibration problem is non-convex and hence needs proper initialization.

In Sections 5.1 and 5.2, we introduce a two-step procedure to compute such an ini-
tial estimate. In a first step, we obtain an initial estimate of the receiver positions
{rn
m,0}Mm=1 and their clock offsets {∆τm,0}Mm=1 using a second data set D2 for which

the transmitter positions are known. In a second step, initial estimates of the
transmitter positions {tnk,0}Kk=1 and the transmission times {τk,0}Kk=1 are obtained
by assuming that the receiver positions and clock offsets are known. This is done
using a novel multilateration approach in which the uwb measurements are as-
sumed to be distributed according to the asymmetric heavy-tailed distribution (4)
with unknown σ and γ . In Section 5.3 we will then introduce the resulting cali-
bration algorithm which is used to compute an ml estimate of all the unknown
parameters θ defined in (10).
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5.1 Initial estimate: step I

As a first step of the initial estimation, a second data set, denoted D2, is used to
determine the positions and the clock offsets of the receivers. This data is col-
lected by placing a number of uwb transmitters at known locations. To avoid
manual measuring of the positions of the transmitters, they are rigidly attached
to the receivers. Hence, the relative position of each transmitter with respect to
the corresponding receiver is approximately known and constant. This relative
distance is denoted dn

rt. As discussed in Section 3, an arbitrary choice of the refer-
ence clock offset and the uwb coordinate frame needs to be used as a constraint
to the calibration problem. Hence, the optimization problem can be written as

θ̂1 = arg min
θ1

−
M∑

m=1

L∑

l=1

K∑

k=1

log pθ1
(yu,mlk), (12a)

s.t. A

(
vec (rn

1:M )
∆τ1:M

)
= b, (12b)

rn
m − tnm = dn

rt, m = 1, . . . , M, (12c)

where the uwbmeasurements yu,mlk are modeled according to (3). Since it is not
necessary to walk through the measurement volume during the collection of this
data, the measurements in the data set D2 can typically be assumed to have little
problems with outliers. Hence, eu,mlk in (3) can fairly accurately be modeled using
a Gaussian pdf. Note that this is the only instance in this work where we assume
that the uwbmeasurements are distributed according to a Gaussian. By assuming
that the standard deviation of this Gaussian is the same for all m, l and k, we have
reduced (12) to a constrained least-squares problem. The parameter vector θ1 is
given by

θ1 =
(
{rn
m,∆τm}Mm=1, {tnl,D2

, {τn
lk,D2
}Kk=1}Ll=1

)
. (13)

The subscript D2 on the (stationary) transmitter positions tnl and the transmis-
sion times τn

lk is added to stress that these parameters are only relevant for the
dataset D2.

The constraints (12b) are defined as

A ,




01×3M 1 01×(M−1)
I3 03×(3M−3)

0(M+3)×M
02×3 e2 02×(3M−6)

01×6 e3 01×(3M−9)

01×9
. . . 01×(3M−12)




b ,
(

1 0 0 h1 0 h2 h3:M

)T
(14)

where e2 =
(
02×1 I2

)
and e3 =

(
0 0 1

)T
. The first row in the matrix A is used

to define the reference clock offset. Note that the choice of which receiver to use
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for this is arbitrary. The remaining rows are used to define the uwb coordinate
frame. The first receiver is used to define the origin. The second receiver is used
to define the x-axis. The height of each receiver m = 1, . . . , M is constrained to be
equal to its measured height hm. This ensures that the uwb coordinate frame is
gravity-aligned which is beneficial for our sensor fusion approach in Section 6.

The constraint (12c) is used to incorporate the knowledge of the location of the
transmitters with respect to the receivers. Note that we assume that each receiver
has a transmitter attached to it, i.e. we have M constraints (12c).

The problem (12) is again a non-convex optimization problem and therefore
requires a reasonably good starting point. Hence, we start the solver for (12) in a
user-specified initial receiver configuration, a noisy, rotated and scaled estimate
of the set of receiver positions.

5.2 Initial estimate: step II - multilateration

As a second step of the initialization, an initial estimate of the transmitter posi-
tions {tnk,0}Kk=1 and the transmission times {τk,0}Kk=1 is determined for the calibra-
tion data set D1 in which a transmitter is moved around in the uwbmeasurement
volume. This problem is solved using a novel multilateration approach, which can
also be used stand-alone as will be done in Section 7.1. We model the uwb mea-
surements using the asymmetric heavy-tailed distribution (4). To avoid ad hoc
assumptions on σ and γ , we treat them as parameters in an ml problem where
we estimate the parameters θ2 with

θ2 =
(
{tnk , τk}Kk=1, σ , γ

)
. (15)

Using the fact that the logarithm is a monotonic function, the resulting optimiza-
tion problem is given by

θ̂2 = arg min
θ2

−
N∑

k=1

M∑

m=1

log pθ2
(yu,mk), (16)

where the the uwbmeasurements are modeled as (3) and their noise eu,mk is given
by the asymmetric noise distribution (4). Hence, instead of solving N individual
multilateration problems, we solve one optimization problem to determine the
transmitter positions, the transmission times as well as the parameters σ and γ .

The multilateration problem formulated in (16) can be solved1 using stan-
dard Gauss-Newton solvers (Boyd and Vandenberghe, 2004; Nocedal and Wright,
2006) where the negative log-likelihood, its gradient and approximate Hessian
are evaluated at the current iterate. Evaluating (3), the sign of eu,mk for each pulse
k = 1, . . . , N and each receiver m = 1, . . . , M can be used to determine whether the
Gaussian or Cauchy negative log-likelihood in (7) should be used.

1As for any nonlinear optimization problem, good initial estimates help for convergence. Hence,
we first estimate a part of the parameter vector (15), choosing σ = γ = 1. The resulting parameters are
then used to determine a first estimate of σ and γ . Finally, the obtained parameter values are used as
initial values for the final optimization.
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5.3 Resulting calibration algorithm

The resulting calibration algorithm uses the data set D1 in which a transmitter
is moved around in the measurement volume. To obtain an ml estimate of the
parameter vector (10), the following constrained optimization problem is solved

θ̂ml = arg min
θ

−
M∑

m=1

K∑

k=1

log pθ(yu,mk), (17a)

s.t. A

(
vec (rn

1:M )
∆τ1:M

)
= b, (17b)

where we make use of the uwbmeasurement model (3) and the asymmetric noise
distribution (4). The constraints (17b) have already been defined in (14). The
problem can be solved using standard constrained Gauss-Newton solvers (Boyd
and Vandenberghe, 2004; Nocedal and Wright, 2006). The calibration algorithm
is summarized in Algorithm 1.

Algorithm 1 Ultrawideband calibration

1: Construct a setup consisting of M stationary receivers.
2: Place M transmitters in close proximity to the receiver antennas and collect a

data set D2.
3: Solve (12) using the data set D2 to obtain {rn

m,0,∆τm,0}Mm=1. The optimization
is initialized using a noisy, scaled and rotated estimate of the set of receiver
positions provided by the user.

4: Collect a data set D1 by moving a single transmitter throughout the measure-
ment volume.

5: Solve the multilateration problem (16) using the data set D1 with the calibra-
tion values of Step 3 to obtain

(
{tnk,0, τk,0}Kk=1, σ0, γ0

)
.

6: Solve (17) for D1. The optimization is started in

θ0 =
(
{tnk,0, τk,0}Kk=1, {rn

m,0,∆τm,0}Mm=1, σ0, γ0

)
,

using the results from Steps 3 and 5.

6 Sensor fusion

In this section we describe our approach to combine uwb measurements with
inertial measurements to estimate the 6D pose of the sensor. It is based on tightly-
coupled sensor fusion of theuwb and the inertial sensors. We formulate the sensor
fusion problem as a map problem (2), estimating the state vector

x1:N =
{{
pn
t , v

n
t , q

nb
t

}N
t=1

, {τk}Kk=1 δa, δω, σa, σω, σ , γ
}
, (18)

where pn
t and vn

t denote the sensor position and velocity at time t, respectively.
Both of these are expressed in the navigation frame n. The sensor orientation is
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denoted qnb
t . Note that we encode the orientation state using a three-dimensional

state vector around a linearization point represented by a unit quaternion (Kok,
2014; Crassidis et al., 2007; Grisetti et al., 2010; Hol, 2011). The uwb system typ-
ically obtains measurements at a lower frequency than the inertial measurement
frequency. Hence, we use a subscript k to denote the uwb measurements while
using a subscript t to denote the inertial measurements. The state x1:N is modeled
for each time t.

In our approach, we make use of a dynamic model where the inertial measure-
ments can be thought of as inputs. Hence, we model the position, the velocity and
the orientation of the imu in terms of the sensor acceleration and angular velocity
as

pn
t+1 = pn

t + T vn
t + T 2

2 a
n
t

= pn
t + T vn

t + T 2

2 R
nb
t

(
ya,t − δa − ea,t

)
+ T 2

2 g
n, (19a)

vn
t+1 = vn

t + T an
t

= vn
t + T Rnb

t
(
ya,t − δa − ea,t

)
+ T gn, (19b)

qnb
t+1 = qnb

t � exp( T2ωt), (19c)

where T denotes the imu sampling interval. The acceleration an
t is obtained

from (9). The orientation qnb
t is modeled in terms of the angular velocity ωt ob-

tained from (8). In (19c), � denotes the quaternion product and exp denotes the
vector exponential

exp( T2ωt) =
(
cos ‖ T2ωt‖2 ωT

t
‖ωt‖2 sin ‖ T2ωt‖2

)T
. (20)

For more details on quaternion algebra, see e.g. Hol (2011); Kuipers (1999). Note
that we interchangeably make use of the unit quaternion qnb and the rotation
matrix Rnb as representations of the orientation. Furthermore, we use the notation
Rbn = (Rnb)T for the inverse rotation.

In the measurement model, the uwb measurements, modeled as in (3), are
used to update the state. For this, the imu and the uwb transmitter are assumed
to be rigidly attached to each other. The position of the transmitter with respect
to the imu is assumed to be known.

The state is computed using the following map problem

x̂map1:N = arg min
x1:N

−
N∑

t=1

log p
(
xt+1 | xt , ya,t , yω,t

) −
K∑

k=1

M∑

m=1

log p
(
yu,mk | xt(k)

)
, (21)

where the first term denotes the dynamic model described by (19). The second
term denotes the measurement model, using the uwb measurement model (3),
the asymmetric heavy-tailed distribution (4) and the relative position of the trans-
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mitter with respect to the imu. The problem (21) can be solved2 using a standard
Gauss-Newton algorithm, see e.g. Boyd and Vandenberghe (2004); Nocedal and
Wright (2006). Since the sensor fusion problem is nonlinear, parts of the problem
are solved first to provide good initial estimates. The resulting pose estimation
approach is summarized in Algorithm 2.

Algorithm 2 Pose estimation

1: Collect inertial data and uwb data.
2: Initialize the quaternions as identity and all other parts of x1:N in (18) as zero.
3: Solve the state estimation problem (21) to obtain x̂map1:N .

7 Experimental results

In our experiments, we use an uwb setup consisting of 10 receivers deployed in a
room with a size of approximately 8 × 6 × 2.5 m. A test-subject walks around the
measurement volume along a circular path for approximately 24 s. An imu and
an uwb transmitter have been attached to his foot. The uwb measurements are
significantly affected by the nlos conditions and multipath since the transmitter
is quite close to the ground and since the body frequently blocks the direct path
to the receivers. Optical markers have also been placed on the body to provide
reference data. These optical markers are tracked by a camera system (Vicon,
2014). This industry-standard system has an accuracy that is an order of mag-
nitude larger than the accuracy expected from our uwb system. Hence (using
multiple markers), the camera system can provide both ground truth position
and orientation estimates.

In Section 7.1 we will use the uwb data from the transmitter on the subject’s
foot to experimentally validate the proposed asymmetric distribution (4). We will
show that using this distribution in the multilateration approach described in
Section 5.2, considerably better position estimates are obtained than when the
same approach would be used assuming Gaussian or Cauchy distributed noise. In
Section 7.2 we will present our calibration results. In Section 7.3 we will present
our sensor fusion results.

7.1 Experimental validation of the asymmetric noise distribution

In this section we will use the multilateration approach introduced in Section 5.2
while assuming that the system has previously been calibrated. We will use three
different assumptions on the noise used in (16), namely

1. the asymmetric noise distribution (4) with parameters θA =
(
{tnk , τk}Kk=1, σ , γ

)
,

2Also for the sensor fusion problem, good initial estimates help for convergence. Hence, we first
estimate only a part of the state vector (18), choosing the parameters related to the noise characteristics
as a fixed value. We also use a Gaussian prior for the sensor biases. The resulting parameters are then
used to determine a first estimate of σa, σω , σ and γ . Finally, the obtained estimates are used as initial
values for the final optimization (21).
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Table 1: Rmse for the position using the multilateration approach introduced
in Section 5.2 as compared to data from an optical reference system assum-
ing the noise to be distributed according to the asymmetric distribution (4),
according to a Cauchy distribution and according to a Gaussian distribution.

x [cm] y [cm] z [cm]

Asymmetric distribution (4) 5.9 7.2 12.2

Cauchy distribution 22.0* 9.2* 19.1*

Gaussian distribution 53.4* 75.9* 176.9*

* One measurement has been discarded in computing
these rmse values. These measurements arise around
11 s for the Cauchy distribution and around 22 s for the
Gaussian distribution and deviate from the reference
positions by more than 100 m.

2. a Cauchy distribution with parameters θC =
(
{tnk , τk}Kk=1, γ

)
,

3. a Gaussian distribution with parameters θG =
(
{tnk , τk}Kk=1, σ

)
.

The resulting position estimates are shown in Figure 6. The dashed lines are the
position estimates from the optical reference system. As can be seen, the position
estimates are best for the asymmetric distribution and worst for the Gaussian
distribution. This is also summarized in Table 1 in terms of the root mean square
error (rmse) for the position. In Figure 7 the residuals including their estimated
pdfs are plotted for all three cases. As can be seen, the Gaussian is clearly not
a good fit due to the large number of outliers. Although the estimated Cauchy
distribution seems to describe the residuals reasonably well, this model allows
for physically unreasonable negative residuals, i.e. pulses traveling faster than
the speed of light. Hence, also from these histograms it can be concluded that the
asymmetric noise distribution (4) offers the best model for the experimental data.
Note that these results are highly dependent on the number of outliers in the
uwb data. On “cleaner” uwb data, the difference in position accuracy between
the different distributions would of course be less.

7.2 Calibration

Algorithm 1 has been used to compute an estimate of the positions and clock
offsets of the receivers in the uwb setup. The estimated trajectory of the trans-
mitter and the ml estimates of the receiver positions are depicted in Figure 8.
The smoothness of the estimated transmitter trajectory suggests that good mul-
tilateration results are obtained and hence gives confidence also in the resulting
calibration results. Figure 9 shows a histogram of the residuals from the calibra-
tion algorithm. As can be seen, the estimated pdf (shown in red) fits the data
reasonably well. Furthermore, the calibration has been used in the sensor fusion
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Figure 6: Position estimates from the multilateration approach (16) using
the measurements from the transmitter on the foot. The estimated positions
using the asymmetric heavy-tailed noise distribution (4) are depicted in (a).
The different colors denote the different directions with x in blue, y in green
and z in red. The estimated positions using a Cauchy and a Gaussian noise
distribution are depicted in (b) and (c), respectively. Data from an optical
reference system is included as dashed lines in each plot for comparison.
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Figure 7: Residuals from the multilateration approach including their esti-
mated pdfs using (a) the asymmetric distribution (4), a symmetric Cauchy
distribution (b) and a symmetric Gaussian distribution (c). The residuals out-
side of the scope of the figures have been collected in the outermost bins.
Note the different scales on the x-axes and the fact that the left plot is not
centered around 0 to emphasize the asymmetric nature of this distribution.
The quantities in the measurement equation (3) are all expressed in meters
resulting in residuals in meters.
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Figure 8: Calibration results of the uwb setup. The estimated transmitter
positions are depicted in blue. The receivers in our uwb setup are either
placed close to the ground or close to the ceiling. The positions of the receivers
close to the ceiling are depicted in bright red and the positions of the receivers
close to the ground are depicted in light red.

algorithm with good results (as will be discussed in the subsequent section), which
indirectly validates the quality of the calibration.

The results described in this section have been obtained using an inefficient
implementation of Algorithm 1 in Matlab. However, efficient implementation
should be possible due to the sparsity inherent in the problem and the typical
problem dimensions of less than 2 500 parameters (this corresponds to collecting
calibration data D1 for one minute at 10 Hz). The sparsity pattern of the matrix
that needs inversion in the constrained Gauss-Newton algorithm, consisting of
the approximate Hessian and the gradients of the constraints (see e.g. Boyd and
Vandenberghe (2004)), is shown in Figure 10. Note that since our calibration
problem is nonlinear, this matrix inversion needs to be performed several times.

7.3 Pose estimation

To evaluate the proposed pose estimation solution (Algorithm 2), it has been used
to track the motion of an imu and an uwb transmitter placed on the foot of
a test-subject walking in an indoor environment, using the experiment already
introduced in Section 7.1. The imu provides 120 Hz inertial measurements. The
uwb pulses are transmitted at 10 Hz.

Figure 11 shows an overview of the position estimated using Algorithm 2.
The positions of the uwb receivers are shown in red. The circular path is clearly
recognizable. It only occupies a small part of the measurement volume of the
uwb tracking system so that a performance comparison with an optical reference
system is possible.
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Figure 9: Residuals from the calibration algorithm and the estimated pdf.
Note that the residuals outside of the scope of the figure have been collected
in the outermost bins and that the plot is not centered around 0 to emphasize
the asymmetric nature of the distribution. The quantities in the measurement
equation (3) are all expressed in meters resulting in residuals in meters.

Figure 10: The sparsity pattern of the matrix that needs inversion in the
constrained Gauss-Newton algorithm, consisting of the approximate Hessian
and the gradients of the constraints. The block-diagonal part is due to the
independency of the different uwb pulses. The arrow-point is due to the
model dependency of each pulse on the receiver positions and their clock
offsets (see (3)). Only 5.7% of the matrix elements is non-zero.
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Figure 11: Top view of the experiment where the subject walked along a
circular path. The estimated trajectory pn

1:N of the imu on the subject’s foot is
shown in blue. The positions of the receivers close to the ceiling are depicted
in bright red. The positions of the receivers close to the floor are depicted in
light red.

Table 2: rmse for the position and orientation estimates from Algorithm 2
as compared to data from the optical reference system.

x y z

position [cm] 3.0 3.0 2.3

orientation [◦] 0.37 0.44 0.69

Figures 12 and 13 show the estimated position and orientation as compared
to those from the optical reference system. It can be concluded that our solution
is capable of producing a drift-free and accurate pose estimate at a high output
frequency. In fact, the comparison shows 3 cm rmse for position and less than 1◦
rmse for orientation, see Table 2.

As for the uwb calibration algorithm, our implementation has not been opti-
mized in terms of computational speed. However, the sensor fusion problem is
inherently sparse due to the Markov property of the state and can hence be solved
efficiently.
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Figure 12: Position of the imu pn
1:N on the subject’s foot. The estimates from

Algorithm 2 are depicted in blue. The estimates from the optical reference
system are depicted in thick red.
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Figure 13: Orientation of the imu qnb
1:N on the subject’s foot expressed using

Euler angles (roll, pitch, yaw). The estimates from Algorithm 2 are depicted
in blue. The estimates from the optical reference system are depicted in thick
red.
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8 Conclusions and future work

We have presented a sensor fusion approach to combine inertial measurements
with toa measurements from an uwb system for 6D pose estimation. The ap-
proach is experimentally shown to result in accurate position and orientation
estimates when compared to data from an independent optical reference system.
To be able to use the uwbmeasurements in the sensor fusion approach, the uwb
setup has to be calibrated, i.e. the receiver positions and their clocks offsets have
to be computed. We have solved the uwb calibration problem using a novel ap-
proach, taking into account the possibility of delayed uwb measurements due
to nlos and/or multipath. Throughout this work, we have used an asymmetric
heavy-tailed distribution to model the outliers in the uwb measurements. This
model is shown to lead to accurate position estimates even from challenging data
containing a fairly large amount of outliers in a new multilateration approach.

An interesting direction for future work is to combine the sensor fusion al-
gorithm introduced in this work with the motion capture approach in Kok et al.
(2014). This would open up for the possibility of combining information from
multiple imus and multiple uwb transmitters to determine the pose of multiple
body segments or even the entire human body or any other objects with multiple
connected parts.
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Abstract

In this work we present a practical algorithm for calibrating a mag-
netometer for the presence of magnetic disturbances and for magne-
tometer sensor errors. To allow for combining the magnetometer mea-
surements with inertial measurements for orientation estimation, the
algorithm also corrects for misalignment between the magnetometer
and the inertial sensor axes. The calibration algorithm is formulated as
the solution to a maximum likelihood problem and the computations
are performed offline. The algorithm is shown to give good results us-
ing data from two different commercially available sensor units. Using
the calibrated magnetometer measurements in combination with the
inertial sensors to determine the sensor’s orientation is shown to lead
to significantly improved heading estimates.

1 Introduction

Nowadays, magnetometers and inertial sensors (gyroscopes and accelerometers)
are widely available, for instance in dedicated sensor units and in smartphones.
Magnetometers measure the local magnetic field. When no magnetic disturbances
are present, the magnetometer measures a constant local magnetic field vector.
This vector points to the local magnetic north and can hence be used for heading
estimation. Gyroscopes measure the angular velocity of the sensor. Integration of
the gyroscope measurements gives information about the change in orientation.
However, it does not provide absolute orientation estimates. Furthermore, the
orientation estimates suffer from integration drift. Accelerometers measure the
sensor’s acceleration in combination with the earth’s gravity. In the case of small
or zero acceleration, the measurements are dominated by the gravity component.
Hence, they can be used to estimate the inclination of the sensor.

Inertial sensors and magnetometers have successfully been used to obtain ac-
curate 3D orientation estimates for a wide range of applications. For this, however,
it is imperative that the sensors are properly calibrated and that the sensor axes

217
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Figure 1: Example calibration results with an ellipsoid of magnetometer data
before calibration (red) and a unit sphere of data after calibration (blue).

are aligned. Calibration is specifically of concern for the magnetometer, which
needs recalibration whenever it is placed in a (magnetically) different environ-
ment. When the magnetic disturbance is a result of the mounting of the magne-
tometer onto a magnetic object, the magnetometer can be calibrated to compensate
for the presence of this disturbance. This is the focus of this work.

Our main contribution is a practical magnetometer calibration algorithm that
is designed to improve orientation estimates when combining calibrated mag-
netometer data with inertial data. The word practical refers to the fact that the
calibration does not require specialized additional equipment and can therefore
be performed by any user. More specifically, this means that the orientation of the
sensor is not assumed to be known. Instead, the calibration problem is formulated
as an orientation estimation problem in the presence of unknown parameters
and is posed as a maximum likelihood (ml) problem. The algorithm calibrates
the magnetometer for the presence of magnetic disturbances, for magnetometer
sensor errors and for misalignment between the magnetometer and the inertial
sensor axes. Using the calibrated magnetometer measurements to estimate the
sensor’s orientation is experimentally shown to lead to significantly improved
heading estimates. We aggregate and extend the work from Kok and Schön (2014)
and Kok et al. (2012) with improvements on the implementation of the algorithm.
Furthermore, we include a more complete description and analysis, more experi-
mental results and a simulation study illustrating the heading accuracy that can
be obtained with a properly calibrated sensor.

To perform the calibration, the sensor needs to be rotated in all possible orien-
tations. A perfectly calibrated magnetometer would in that case measure rotated
versions of the local magnetic field vector. Hence, the magnetometer data would
lie on a sphere. In practice, however, the magnetometer will often measure an
ellipsoid of data instead. The calibration maps the ellipsoid of data to a sphere
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as illustrated in Figure 1. The alignment of the inertial and magnetometer sensor
axes determines the orientation of the sphere. Since we are interested in improv-
ing the heading estimates, the actual magnitude of the local magnetic field is of
no concern. Hence, we assume without loss of generality that the norm is equal
to 1, i.e. the sphere in Figure 1 is a unit sphere.

2 Related work

Traditional magnetometer calibration approaches assume that a reference sensor
is available which is able to provide accurate heading information. A well-known
example of this is compass swinging (Bowditch, 2002). To allow for any user
to perform the calibration, however, a large number of approaches have been
developed that remove the need for a source of orientation information. One
class of these magnetometer calibration algorithms focuses on minimizing the
difference between the magnitude of the measured magnetic field and that of
the local magnetic field, see e.g. Alonso and Shuster (2002). This approach is
also referred to as scalar checking (Lerner, 1978). Another class formulates the
calibration problem as an ellipsoid fitting problem, i.e. as the problem of mapping
an ellipsoid of data to a sphere, see e.g. Vasconcelos et al. (2011); Renaudin et al.
(2010); Gebre-Egziabher et al. (2006). The benefit of using this formulation, is
that there is a vast literature on solving ellipsoid fitting problems, see e.g. Gander
et al. (1994); Markovsky et al. (2004). Outside of these two classes, a large number
of other calibration approaches is also available, for instance Wu and Shi (2015),
where different formulations of the calibration problem in terms of anml problem
are considered.

The benefit of the approaches discussed above is that they can be used with
data from a magnetometer only. Our interest, however, lies in calibrating a mag-
netometer for improved heading estimation in combination with inertial sensors.
Alignment of the sensor axes of the inertial sensors and the magnetometer is in
this case crucial. This alignment can be seen as determining the orientation of the
blue sphere of calibrated magnetometer data in Figure 1. Algorithms that only
use magnetometer data can map the red ellipsoid of data to a sphere, but without
additional information, the rotation of this sphere remains unknown.

A number of recent approaches include a second step in the calibration algo-
rithm to determine the misalignment between different sensor axes (Vasconcelos
et al., 2011; Li and Li, 2012; Salehi et al., 2012; Bonnet et al., 2009). A common
choice to align the magnetometer and inertial sensor axes, is to use accelerom-
eter measurements from periods of fairly small accelerations (Li and Li, 2012;
Salehi et al., 2012). The downside of this approach is that a threshold for using
accelerometer measurements needs to be determined. Furthermore, data from the
gyroscope is hereby omitted. In Troni and Whitcomb (2013) on the other hand,
the problem is reformulated in terms of the change in orientation, allowing for
direct use of the gyroscope data.

In our algorithm we instead formulate the magnetometer calibration problem
as a problem of estimating the sensor’s orientation in the presence of unknown
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(calibration) parameters. This formulation naturally follows from the fact that
the problem of orientation estimation and that of magnetometer calibration are
inherently connected: If the magnetometer is properly calibrated, good orientation
estimates can be obtained. Reversely, if the orientation of the sensor is known
accurately, the rotation of the sphere in Figure 1 can accurately be determined,
resulting in a good magnetometer calibration. In this formulation, data from the
accelerometer and the gyroscope is used to aid the magnetometer calibration.

Our formulation of the calibration problem requires solving a non-convex
optimization problem to obtain ml estimates of the calibration parameters. To
obtain good initial values of the parameters, an ellipsoid fitting problem and a
misalignment estimation problem are solved. Solving the calibration problem as
a two-step procedure is similar to the approaches in Li and Li (2012); Salehi et al.
(2012). We analyze the quality of the initial estimates and of the ml estimates in
terms of their heading accuracy, both for experimental and simulated data. Based
on this analysis, we show that significant heading accuracy improvements can be
obtained by using the ml estimates of the parameters.

3 Problem formulation

Our magnetometer calibration algorithm is formulated as a problem of deter-
mining the sensor’s orientation in the presence of unknown model parameters
θ. It can hence be considered to be a grey-box system identification problem. A
nonlinear state space model on the following form is used

xt+1 = ft(xt , ωt , eω,t , θ), (1a)

yt =
(
ya,t
ym,t

)
=

(
ha,t(xt)
hm,t(xt , θ)

)
+ et(θ), (1b)

where the state xt represents the sensor’s orientation at time t. We use the change
in orientation, i.e. the angular velocity ωt , as an input to the dynamic model ft( · ).
The angular velocity is measured by the gyroscope. However, the measurements
yω,t are corrupted by a constant bias δω and Gaussian i.i.d. measurement noise
with zero mean and covariance Σω, i.e. eω,t ∼ N (03×1,Σω).

The measurement models ha,t( · ) and hm,t( · ) in (1b) describe the accelerometer
measurements ya,t and the magnetometer measurements ym,t , respectively. The
accelerometer measurement model assumes that the acceleration of the sensor is
small compared to the earth gravity. Since the magnetometer is not assumed to
be properly calibrated, the magnetometer measurement model hm,t( · ) depends
on the parameter vector θ. The exact details of the magnetometer measurement
model will be introduced in Section 4. The accelerometer and magnetometer mea-
surements are corrupted by Gaussian i.i.d. measurement noise

et =
(
ea,t
em,t

)
∼ N

(
06×1,

(
Σa 03×3

03×3 Σm

))
. (2)



4 Magnetometer measurement model 221

The calibration problem is formulated as an ml problem. Hence, the parame-
ters θ in (1) are found by maximizing the likelihood function pθ(y1:N ),

θ̂ml = arg max
θ∈Θ

pθ(y1:N ), (3)

where y1:N = {y1, . . . , yN } and Θ ⊆ R
nθ . Using conditional probabilities and the

fact that the logarithm is a monotonic function we have the following equivalent
formulation of (3),

θ̂ml = arg min
θ∈Θ

−
N∑

t=1

log pθ(yt | y1:t−1), (4)

where we use the convention that y1:0 , ∅. The ml estimator (4) enjoys well-
understood theoretical properties including strong consistency, asymptotic nor-
mality, and asymptotic efficiency (Ljung, 1999).

The state space model (1) is nonlinear, implying that there is no closed form
solution available for the one step ahead predictor pθ(yt | y1:t−1) in (4). This can
systematically be handled using sequential Monte Carlo methods (e.g. particle
filters and particle smoothers), see e.g. Schön et al. (2011); Lindsten and Schön
(2013). However, for the magnetometer calibration problem it is sufficient to make
use of a more pragmatic approach; we simply approximate the one step ahead
predictor using an extended Kalman filter (ekf). The result is

pθ(yt | y1:t−1) ≈ N
(
yt ; ŷt|t−1(θ), St(θ)

)
, (5)

where the mean value ŷt|t−1(θ) and the covariance St(θ) are obtained from the
ekf (Gustafsson, 2012). Inserting (5) into (4) and neglecting all constants not
depending on θ results in the following optimization problem,

min
θ∈Θ

1
2

N∑

t=1

‖yt − ŷt|t−1(θ)‖2
S−1
t (θ)

+ log det St(θ), (6)

which we can solve for the unknown parameters θ. The problem (6) is non-convex,
implying that a good initial value for θ is required.

4 Magnetometer measurement model

In the case of perfect calibration, a magnetometer measures the local magnetic
field and its measurements will therefore lie on a sphere with a radius equal to the
local magnetic field. Since we are interested in using the magnetometer measure-
ments to improve the orientation estimates from the state space model (1), the
actual magnitude of the local magnetic field is of no concern. Hence, we assume
without loss of generality that its norm is equal to one. We denote the normalized
local magnetic field by mn. Ideally, the magnetometer measurements then lie on
a sphere with radius equal to one as

hm,t = mb
t = Rbn

t m
n, (7)
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where hm,t is defined in (1b). The explicit dependence on xt and θ has been omit-
ted for notational simplicity. The matrix Rbn

t is the rotation matrix representation
of the orientation at time t. The superscript bn denotes that the rotation is from
the navigation frame n to the body frame b. The body frame b is aligned with the
sensor axes. The navigation frame n is aligned with the earth’s gravity and the
local magnetic field. In case the coordinate frame in which a vector is defined
can be ambiguous, we explicitly indicate in which coordinate frame the vector is
expressed by adding a superscript b or n. Hence, mn denotes the normalized local
magnetic field in the navigation frame n while mb

t denotes the normalized local
magnetic field in the body frame b. The latter is time-dependent and therefore
also has a subscript t. Note that the rotation from navigation frame to body frame
is denoted Rnb

t and Rbn
t = (Rnb

t )T.
In outdoor environments, the local magnetic field is equal to the local earth

magnetic field. Its horizontal component points towards the earth’s magnetic
north pole. The ratio between the horizontal and vertical component depends
on the location on the earth and can be expressed in terms of the dip angle δ. In
indoor environments, the magnetic field can locally be assumed to be constant
and points towards a local magnetic north. This is not necessarily the earth’s
magnetic north pole. Choosing the navigation frame n such that the x-axis is
pointing towards the local magnetic north, mn can be parametrized in terms of
its vertical component mn

z

mn =
(√

1 − (mn
z )2 0 mn

z

)T
, (8a)

or in terms of the dip angle δ

mn =
(
cos δ 0 − sin δ

)T
. (8b)

Note that the two parametrizations do not encode exactly the same knowledge
about the magnetic field; the first component of mn in (8a) is positive by construc-
tion while this is not true for (8b). However, both parametrizations will be used
in the remainder. It will be argued that no information is lost by using (8b) if the
parameter estimates are properly initialized.

The main need for magnetometer calibration arises from the fact that a mag-
netometer needs recalibration each time it is placed in a magnetically different
environment. Specifically, a magnetometer measures a superposition of the local
magnetic field and of the magnetic field due to the presence of magnetic material
in the vicinity of the sensor. In case this magnetic material is rigidly attached to
the magnetometer, it is possible to calibrate the magnetometer measurements for
this. The magnetic material can give rise to both hard and soft iron contributions
to the magnetic field. Hard iron effects are due to permanent magnetization of the
magnetic material and lead to a constant 3 × 1 offset vector ohi. Soft iron effects
are due to magnetization of the material as a result of an external magnetic field
and therefore depend on the orientation of the material with respect to the local
magnetic field. We model this in terms of a 3 × 3 matrix Csi. Hence, the magne-
tometer measurements do not lie on a sphere as in (7), but instead, they lie on a
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translated ellipsoid as

hm,t = CsiR
bn
t m

n + ohi. (9)

As discussed in Section 2, when calibrating the magnetometer to obtain bet-
ter orientation estimates, it is important that the magnetometer and the inertial
sensor axes are aligned. Let us now be more specific about the definition of the
body frame b and define it to be located in the center of the accelerometer triad
and aligned with the accelerometer sensor axes. Furthermore, let us assume that
the accelerometer and gyroscope axes are aligned. Defining the rotation between
the body frame b and the magnetometer sensor frame bm as Rbmb, the model (9)
can be extended to

hm,t = CsiR
bmbRbn

t m
n + ohi. (10)

Finally, the magnetometer calibration can also correct for the presence of sen-
sor errors in the magnetometer. These errors are sensor-specific and can differ for
each individual magnetometer. They can be subdivided into three components,
see e.g. Gebre-Egziabher et al. (2006); Renaudin et al. (2010); Vasconcelos et al.
(2011):

1. Non-orthogonality of the magnetometer axes, represented by a matrix Cno.

2. Presence of a zero bias or null shift, implying that the magnetometer will
measure a non-zero magnetic field even if the magnetic field is zero, defined
by ozb.

3. Difference in sensitivity of the three magnetometer axes, represented by a
diagonal matrix Csc.

We can therefore extend the model (10) to also include the magnetometer sensor
errors as

hm,t = CscCno

(
CsiR

bmbRbn
t m

n + ohi

)
+ ozb. (11)

To obtain a correct calibration, it is fortunately not necessary to identify all
individual contributions of the different components in (11). Instead, they can be
combined into a 3 × 3 distortion matrix D and a 3 × 1 offset vector o where

D = CscCnoCsiR
bmb, (12a)

o = CscCnoohi + ozb. (12b)

The resulting magnetometer measurement model in (1b) can be written as

ym,t = DRbn
t m

n + o + em,t . (13)

In deriving the model we have made two important assumptions:
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Algorithm 1 Magnetometer and inertial calibration

1. Determine an initial parameter estimate D̂0, ô0, m̂n
0 , δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0

using three steps

(a) Initialize δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0.

(b) Obtain an initial D̃0 and ô0 based on ellipsoid fitting (see Section 6.1).

(c) Obtain initial D̂0, ô0 and m̂n
0 by initial determination of the sensor axis

misalignment (see Section 6.2).

2. Set i = 0 and repeat,

(a) Run the ekf using the current estimates D̂i , ôi , m̂
n
i , δ̂ω,i , Σ̂ω,i , Σ̂a,i , Σ̂m,i

to obtain {ŷt|t−1(θ̂i), St(θ̂i)}Nt=1 and evaluate the cost function in (6).

(b) Determine θ̂i+1 using the numerical gradient of the cost function in (6),
its approximate Hessian and a backtracking line search algorithm.

(c) Obtain D̂i+1, ôi+1, m̂n
i+1, δ̂ω,i+1, Σ̂ω,i+1, Σ̂a,i+1, Σ̂m,i+1 from θ̂i+1.

(d) Set i := i + 1 and repeat from Step 2a until convergence.

Assumption 1. The calibration matrix D and offset vector o in (12) are assumed
to be time-independent. This implies that we assume that the magnetic distor-
tions are constant and rigidly attached to the sensor. Also, the inertial and the
magnetometer sensor axes are assumed to be rigidly attached to each other, i.e.
their misalignment is represented by a constant rotation matrix. Additionally, in
our algorithm we will assume that their misalignment can be described by a rota-
tion matrix, i.e. that their axes are not mirrored with respect to each other.

Assumption 2. The local magnetic fieldmn is assumed to be constant. In outdoor
environments, this is typically a physically reasonable assumption. In indoor
environments, however, the local magnetic field can differ in different locations
in the building and care should be taken to fulfill the assumption.

5 Calibration algorithm

In our magnetometer calibration algorithm we solve the optimization problem (6)
to estimate the parameter vector θ. In this section we introduce the resulting
calibration algorithm which is summarized in Algorithm 1. In Section 5.1, we first
discuss our optimization strategy. A crucial part of this optimization strategy is
the evaluation of the cost function. Some details related to this are discussed in
Section 5.2. Finally, in Section 5.3 we introduce the parameter vector θ in more
detail.
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5.1 Optimization algorithm

The optimization problem (6) is solved in Step 2 of Algorithm 1. Standard uncon-
strained minimization techniques are used, which iteratively update the parame-
ter estimates as

θi+1 = θi − αi [H(θi)]
−1 G(θi), (14)

where the step length of the update at iteration i is denoted by αi . The direction of
the parameter update at iteration i is determined by [H(θi)]

−1 G(θi).
Typical choices for the search direction include choosing G(θi) to be the gradi-

ent of the cost function in (6) and H(θi) to be its Hessian. This leads to a Newton
optimization algorithm. However, computing the gradient and Hessian of (6) is
not straightforward. Possible approaches are discussed in Åström (1980); Segal
and Weinstein (1989) for the case of linear models. In the case of nonlinear mod-
els, however, they only lead to approximate gradients, see e.g. Kok et al. (2015);
Kokkala et al. (2015). For this reason we make use of a numerical approximation
of G(θi) instead and use a Broyden-Fletcher-Goldfarb-Shanno (bfgs) method with
damped updating (Nocedal and Wright, 2006) to approximate the Hessian. Hence,
the minimization is performed using a quasi-Newton optimization algorithm. A
backtracking line search is used to find a good step length αi .

Proper initialization of the parameters is crucial since the optimization prob-
lem (6) is non-convex. Step 1 summarizes the three-step process used to obtain
good initial estimates of all parameters.

5.2 Evaluation of the cost function

An important part of the optimization procedure is the evaluation of the cost
function in (6). This requires running an ekf using the state space model (1) to
estimate the orientation of the sensor. This ekf uses the angular velocity ωt as an
input to the dynamic model (1a). An estimate of the angular velocity is obtained
from the gyroscope measurements yω,t which are modeled as

yω,t = ωt + δω + eω,t . (15)

The measurement model (1b) entails the accelerometer measurements and the
magnetometer measurements. The magnetometer measurement model can be
found in (13). The accelerometer measurements ya,t are modeled as

ya,t = Rbn
t (an

t − gn) + ea,t ≈ −Rbn
t g

n + ea,t , (16)

where an
t denotes the sensor’s acceleration in the navigation frame and gn denotes

the earth’s gravity. The rotation matrix Rbn
t has previously been introduced in

Section 4.
The state in the ekf, which represents the sensor orientation, can be parametri-

zed in different ways. In previous work we have used a quaternion representation
as a 4-dimensional state vector (Kok and Schön, 2014). In this work we instead
use an implementation of the ekf, which is sometimes called a multiplicative
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ekf (Markley, 2003; Crassidis et al., 2007; Hol, 2011). Here, a 3-dimensional state
vector represents the orientation deviation from a linearization point. More details
on this implementation can be found in Kok (2014).

The ekf returns the one step ahead predicted measurements {ŷt|t−1(θ)}Nt=1 and
their covariance {St(θ)}Nt=1 which can be used to evaluate (6). The cost function
needs to be evaluated for the current parameter estimates in Step 2a but also needs
to be evaluated once for each component of the parameter vector θ to compute
the numerical gradient. Hence, each iteration i requires running the ekf at least
nθ + 1 times. Note that the actual number of evaluations can be higher since the
backtracking line search algorithm used to determine αi can require a varying
number of additional evaluations. Since nθ = 34, computing the numerical gradi-
ent is computationally rather expensive. However, it is possible to parallelize the
computations.

5.3 The parameter vector θ

As apparent from Section 4, our main interest lies in determining the calibration
matrix D and the offset vector o, which can be used to correct the magnetometer
measurements to obtain more accurate orientation estimates. To solve the calibra-
tion problem, however, we also estimate a number of other parameters.

First, the local magnetic fieldmn introduced in Section 4 is in general scenarios
unknown and needs to be estimated. In outdoor environments, mn is equal to the
local earth magnetic field and is accurately known from geophysical studies, see
e.g. National Centers for Environmental Information (2015). In indoor environ-
ments, however, the local magnetic field can differ quite significantly from the
local earth magnetic field. Because of that, we treat mn as an unknown constant.
Second, the gyroscope measurements that are used to describe the change in ori-
entation of the sensor in (1a) are corrupted by a bias δω. This bias is slowly time
varying but for our relatively short experiments it can be assumed to be constant.
Hence, it is treated as part of the parameter vector θ. Finally, we treat the noise co-
variance matrices Σω, Σa and Σm as unknown. In summary, the parameter vector
θ consists of

D ∈ R3×3, (17a)

o ∈ R3, (17b)

mn ∈ {R3 : ||mn||22 = 1, mn
x > 0, mn

y = 0}, (17c)

δω ∈ R3, (17d)

Σω ∈ {R3×3 : Σω � 0,Σω = ΣT
ω}, (17e)

Σa ∈ {R3×3 : Σa � 0,Σa = ΣT
a }, (17f)

Σm ∈ {R3×3 : Σm � 0,Σm = ΣT
m}, (17g)

where mn
x and mn

y denote the x- and y- component of mn, respectively. The nota-
tion Σ � 0 denotes the assumption that the matrix Σ is positive semi-definite.
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Although (17c) and (17e) – (17g) suggest that constrained optimization is
needed, it is possible to circumvent this via suitable reparametrizations. The co-
variance matrices can be parametrized in terms of their Cholesky factorization,
leading to only 6 parameters for each 3 × 3 covariance matrix. The local magnetic
field can be parametrized using only one parameter as in (8). Note that in our
implementation we prefer to use the representation (8b) for the ml problem (6).
Although this latter parametrization does not account for the constraint mn

x > 0,
this is of no concern due to proper initialization. The procedure to obtain good
initial estimates of all parameters is the topic of the next section.

6 Finding good initial estimates

Since the optimization problem is non-convex, the parameter vector θ introduced
in Section 5 needs proper initialization. An initial estimate θ̂0 is obtained using a
three-step method. As a first step, the gyroscope bias δω and the noise covariances
of the inertial sensors, Σω, Σa, and of the magnetometer, Σm, are initialized. This
is done using a short batch of stationary data. Alternatively, they can be initialized
based on prior sensor knowledge. As a second step, described in Section 6.1, an
ellipsoid fitting problem is solved using the magnetometer data. This maps the
ellipsoid of data to a sphere but can not determine the rotation of the sphere. The
rotation of the sphere is determined in a third step of the initialization procedure.
This step also determines an initial estimate of the normalized local magnetic
field mn.

6.1 Ellipsoid fitting

Using the definition of the normalized local magnetic field mn, we would expect
all calibrated magnetometer measurements to lie on the unit sphere,

‖mn‖22 − 1 = ‖Rbn
t m

n‖22 − 1

= ‖D−1 (
ym,t − o − em,t

) ‖22 − 1 = 0. (18)

In practice, the measurements are corrupted by noise and the equality (18) does
not hold exactly. The ellipsoid fitting problem can therefore be written as

yTm,tAym,t + bTym,t + c ≈ 0, (19)

with

A , D−TD−1, (20a)

b , −2oTD−TD−1, (20b)

c , oTD−TD−1o. (20c)

Assuming that the matrix A is positive definite, this can be recognized as the
definition of an ellipsoid with parameters A, b and c (see e.g. Gander et al. (1994)).
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We can rewrite (19) as a linear relation of the parameters as

Mξ ≈ 0, (21)

with

M =




ym,1 ⊗ ym,1 ym,1 1
ym,2 ⊗ ym,2 ym,2 1

...
...

...
ym,N ⊗ ym,N ym,N 1



, ξ =



vecA
b
c


 , (22)

where ⊗ denotes the Kronecker product and vec denotes the vectorization oper-
ator. This problem has infinitely many solutions and without constraining the
length of the vector ξ, the trivial solution ξ = 0 would be obtained. A possible
approach to solve the ellipsoid fitting problem is to make use of a singular value
decomposition (Gander et al., 1994; Kok et al., 2012). This approach inherently
poses a length constraint on the vector ξ, assuming that its norm is equal to 1.
It does, however, not guarantee positive definiteness of the matrix A. Although
positive definiteness of A is not guaranteed, there are only very few practical sce-
narios in which the estimated matrixAwill not be positive definite. A non-positive
definite matrix A can for instance be obtained in cases of very limited rotation
of the sensor. The problem of allowing a non-positive definite matrix A can be
circumvented by instead solving the ellipsoid fitting problem as a semidefinite
program (Calafiore, 2002; Boyd and Vandenberghe, 2004)

min
A,b,c

1
2‖M



vecA
b
c


 ‖

2
2,

s.t. TrA = 1, A ∈ S3×3
++ ,

(23)

where S3×3
++ denotes the set of 3 × 3 positive definite symmetric matrices. By con-

straining the trace of the matrix A, (23) avoids the trivial solution of ξ = 0. The
problem (23) is a convex optimization problem and therefore has a globally opti-
mal solution and does not require an accurate initial guess of the parameter vec-
tor ξ. The optimization problem can easily be formulated and efficiently solved us-
ing freely available software packages like yalmip (Löfberg, 2004) or cvx (Grant
and Boyd, 2013).

Initial estimates of the calibration matrix D and the offset vector o can be
obtained from the estimated Â, b̂, ĉ as

β =
(

1
4 b̂

TÂ−1b̂ − ĉ
)−1

, (24a)

D̃T
0 D̃0 = βÂ−1, (24b)

ô0 = 1
2 Â
−1b̂, (24c)

where ô0 denotes the initial estimate of the offset vector o. From (24b) it is not
possible to uniquely determine the initial estimate of the calibration matrix D.
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We determine an initial estimate of the calibration matrix D using a Cholesky
decomposition, leading to a lower triangular D̃0. However, any D̃0U whereUUT =
I3 will also fulfill (24b). As discussed in Assumption 1 in Section 4, we assume
that the sensor axes of the inertial sensors and the magnetometers are related by a
rotation, implying that we restrict the matrix U to be a rotation matrix. The initial
estimate D̂0 can therefore be defined in terms of D̃0 as

D̂0 = D̃0RD. (25)

The unknown rotation matrix RD will be determined in Section 6.2.

6.2 Determine misalignment of the inertial and magnetometer
sensor axes

The third step of the initial estimation aims at determining the misalignment
between the inertial and the magnetometer sensor axes. It also determines an
initial estimate of the normalized local magnetic field m̂n

0 . These estimates are
obtained by combining the magnetometer measurements with the inertial sensor
measurements. The approach is based on the fact that the inner product of two
vectors is invariant under rotation. The two vectors considered here are mn and
the vertical vn =

(
0 0 1

)T
. Hence, it is assumed that the inner product of the

vertical vb
t in the body frame b,

vb
t = Rbn

t v
n, (26a)

and the normalized local magnetic field mb
t in the body frame,

mb
t = RT

DD̃
−1
0

(
ym,t − ô0

)
, (26b)

is constant. The matrix RD in (26b) denotes the rotation needed to align the iner-
tial and magnetometer sensor axes. The rotation matrix Rnb

t in (26a) is a rotation
matrix representation of the orientation estimate at time t obtained from an ekf.
This ekf is similar to the one described in Section 5.2. It does not use the mag-
netometer measurements, since they have not properly been calibrated yet and
can therefore not result in accurate heading estimates. However, to determine the
vertical vb

t , only the sensor’s inclination is of concern, which can be determined
using the inertial measurements only.

The inner product between mn and vn is equal to mn
z (see also (8a)). Since

this inner product is invariant under rotation, we can formulate the following
minimization problem

min
RD,m

n
z,0

1
2

N∑

t=1

‖mn
z,0 − (vn)T Rnb

t R
T
DD̃
−1
0

(
ym,t − ô0

) ‖22,

s.t. RD ∈ SO(3). (27)

The rotation matrix RD can be parametrized using an orientation deviation from
a linearization point similar to the approach described in Section 5.2. Hence, (27)
can be solved as an unconstrained optimization problem.
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Figure 2: Left: experimental setup where a calibration experiment is per-
formed outdoors. An Xsens mti-100 imu (orange box) together with a mag-
netic disturbance is placed in an aluminum block. Right: experimental setup
using a Trivisio Colibri Wireless imu (black box). A phone is used as a source
of magnetic disturbance. To avoid saturation of the magnetometer, the phone
is not attached directly to the imu.

Based on these results and (25) we obtain the following initial estimates

D̂0 = D̃0R̂D, (28a)

m̂n
0 =

(√
1 −

(
m̂n
z,0

)2
0 m̂n

z,0

)T
. (28b)

Hence, we have obtained an initial estimate θ̂0 of the entire parameter vector θ
as introduced in Section 5.

7 Experimental results

7.1 Experimental setup

Experiments have been performed using two commercially available inertial mea-
surements units (imus), an Xsens mti-100 (Xsens Technologies B. V., 2016) and a
Trivisio Colibri Wireless imu (Trivisio Prototyping GmbH, 2016). The experimen-
tal setup of both experiments can be found in Figure 2. The experiment with the
Xsens imu was performed outdoors to ensure a homogeneous local magnetic field.
The experiment with the Trivisio imuwas performed indoors. However, the exper-
iment was performed relatively far away from any magnetic materials such that
the local magnetic field is as homogenous as possible. The Xsens imu was placed
in an aluminum block with right angles which can be used to rotate the sensor
90◦ to verify the heading results. For both sensors, inertial and magnetometer
measurements were collected at 100 Hz.

7.2 Calibration results

For calibration, the imu needs to be slowly rotated such that the assumption of
zero acceleration is reasonably valid. This leads to an ellipsoid of magnetometer
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Figure 3: Calibration results from the experiment with the Trivisio imu. The
ellipsoid of magnetometer data (red) lies on a unit sphere after calibration
(blue).

data as depicted in red in Figures 1 and 3. Note that for plotting purposes the
data has been downsampled to 1 Hz. To emphasize the deviation of the norm
from 1, the norm of the magnetometer data is depicted in red in Figure 4 for both
experiments.

For the experiment with the Xsens imu, the following calibration matrix D̂
and offset vector ô are found

D̂ =




0.74 −0.13 0.01
−0.12 0.68 0.01
−0.03 0.43 1.00


 , ô =




1.36
1.22
−0.94


 (29)

using Algorithm 1. Applying the calibration result to the magnetometer data leads
to the unit sphere of data in blue in Figure 1. The norm of the magnetometer data
after calibration can indeed be seen to lie around 1, as depicted in blue in Figure 4.

As a measure of the calibration quality, we analyze the normalized residuals
S−1/2
t (yt − ŷt|t−1) after calibration from the ekf. For each time t, this is a vector

in R
6. In the case of correctly calibrated parameters that sufficiently model the

magnetic disturbances, we expect the stacked normalized residuals {S−1/2
t (yt −

ŷt|t−1)}Nt=1 ∈ R
6N to be normally distributed with zero mean and standard devia-

tion 1. The histogram and a fitted Gaussian distribution can be found in Figure 5a.
The residuals resemble a N (0, 1) distribution except for the large peak around
zero and – not visible in the plot – a small amount of outliers outside of the
plotting interval. This small amount of outliers is due to the fact that there are
a few measurement outliers in the accelerometer data. Large accelerations can
for instance be measured when the setup is accidentally bumped into something
and violate our assumption that the acceleration of the sensor is approximately
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Figure 4: Norm of the magnetic field measurements before (red) and after
(blue) calibration for (top) the experiment with the Xsens imu and for (bot-
tom) the experiment with the Trivisio imu.

zero. We believe that the peak around zero is due to the fact that the algorithm
compensates for the presence of the large residuals.

To analyze if the calibration is also valid for a different (validation) data set
with the same experimental setup, the calibrated parameters have been used on
a second data set. Figures of the ellipsoid of magnetometer data and the sphere
of calibrated magnetometer data are not included since they look very similar to
Figures 1 and 4. The residuals after calibration of this validation data set can be
found in Figure 5b. The fact that these residuals look very similar to the ones for
the original data suggests that the calibration parameters obtained are also valid
for this validation data set.

The Trivisio imu outputs the magnetometer data in microtesla. Since our al-
gorithm scales the calibrated measurements to a unit norm, the obtained D̂ and
offset vector ô from Algorithm 1 are in this case of much larger magnitude,

D̂ =



61.74 0.59 0.09
−1.01 60.74 0.23
−0.39 0.06 60.80


 , ô =



−19.77
−1.68
−6.98


 . (30)

The sphere of calibrated data and its norm can be found in blue in Figures 3 and 4.
Note that for plotting purposes, the magnetometer data before calibration is scaled
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(a) Xsens imu, estimation data
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(b) Xsens imu, validation data

Figure 5: Histogram of the normalized residuals S−1/2
t (yt − ŷt|t−1) from the

ekf after calibration for the estimation data set (left) and for a validation data
set (right) for the experiments performed with the Xsens imu. A Gaussian
distribution (red) is fitted to the data.

such that its mean lies around 1. The obtained D̂ and ô are scaled accordingly to
plot the red ellipsoid in Figure 3. The normalized residuals S−1/2

t (yt − ŷt|t−1) of the
ekf using both the estimation and a validation data set are depicted in Figure 6.
For this data set, the accelerometer data does not contain any outliers and the
residuals resemble a N (0, 1) distribution fairly well.

From these results we can conclude that Algorithm 1 gives good magnetometer
calibration results for experimental data from two different commercially avail-
able imus. A good fit of the ellipsoid of data to a sphere is obtained and the algo-
rithm seems to give good estimates analyzed in terms of its normalized residuals.
Since magnetometer calibration is generally done to obtain improved heading esti-
mates, it is important to also interpret the quality of the calibration in terms of the
resulting heading estimates. In Section 7.3 this will be done based on experimen-
tal results. The heading performance will also be analyzed based on simulations
in Section 8.

7.3 Heading estimation

An important goal of magnetometer calibration is to facilitate good heading esti-
mates. To check the quality of the heading estimates after calibration, the block
in which the Xsens imu was placed (shown in Figure 2) is rotated around all axes.
This block has right angles and it can therefore be placed in 24 orientations that
differ from each other by 90 degrees. The experiment was conducted in Enschede,
the Netherlands. The dip angle δ at this location is approximately 67◦ (National
Centers for Environmental Information, 2015). Hence, we expect the calibrated
magnetometer measurements to resemble rotations of the normalized magnetic

field mn =
(
0.39 0 −0.92

)T
(see also (7) and (8b)). The calibrated magnetome-
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(a) Trivisio imu, estimation data
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(b) Trivisio imu, validation data

Figure 6: Histogram of the normalized residuals S−1/2
t (yt − ŷt|t−1) from the

ekf after calibration for the estimation data set (left) and for a validation data
set (right) for the experiments performed with the Trivisio imu. A Gaussian
distribution (red) is fitted to the data.

ter data from the experiment is shown in Figure 7 and consists of the following
stationary time periods:

z-axis up During the period 0 − 105s, the magnetometer is flat with its z−axis
pointing upwards. Hence, the z-axis (red) of the magnetometer measures
the vertical component of the local magnetic field mn

z . During this period,
the sensor is rotated by 90◦ around the z-axis into 4 different orientations
and subsequently back to its initial orientation. This results in the 5 steps
for measurements in the x- (blue) and y-axis (green) of the magnetometer.

z-axis down A similar rotation sequence is performed with the block upside
down at 110 − 195s, resulting in a similar pattern for measurements in the
x- and y-axis of the magnetometer. During this time period, the z-axis of
the magnetometer measures −mn

z instead.

x-axis up The procedure is repeated with the x-axis of the sensor pointing up-
wards during the period 200 − 255s, rotating around the x-axis into 4 differ-
ent orientations and back to the initial position. This results in the 5 steps
for measurements in the y- and z-axis of the magnetometer.

x-axis down A similar rotation sequence is performed with the x-axis pointing
downwards at 265 − 325 seconds.

y-axis down Placing the sensor with the y-axis downwards and rotating around
the y-axis results in the data at 350 − 430 seconds. The rotation results in
the 5 steps for measurements in the x- and z-axis of the magnetometer.

y-axis up A similar rotation sequence is performed with the y-axis pointing up-
wards at 460 − 520 seconds.
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Figure 7: Calibrated magnetometer data of an experiment rotating the sensor
into 24 different sensor orientations where the blue, green and red lines rep-
resent the data from the x-, y- and z-axis of the magnetometer, respectively.

Since the experimental setup was not placed exactly vertical, it is not possible to
compare the absolute orientations. However, it is possible to compare the differ-
ence in orientation which is known to be 90◦ due to the properties of the block in
which the sensor was placed. To exclude the effect of measurement noise, for each
of the stationary periods in Figure 7, 500 samples of magnetometer and accelerom-
eter data are selected. Their mean values are used to estimate the orientation of
the sensor. Here, the accelerometer data is used to estimate the inclination. The
heading is estimated from the horizontal component of the magnetometer data.
This procedure makes use of the fact that the orientation of the sensor can be
determined from two linearly independent vectors in the navigation frame – the
gravity and the direction of the magnetic north – and in the body frame – the
mean accelerometer and magnetometer data. It is referred to as the triad algo-
rithm (Shuster and Oh, 1981). Table 1 reports the deviation from 90◦ between two
subsequent rotations. Note that the metal object causing the magnetic disturbance
as shown in Figure 2 physically prevents the setup from being properly placed
in all orientations around the y-axis. Rotation around the y-axis with the y-axis
pointing upwards has therefore not been included in Table 1.

Our experiment investigates both the heading errors and the improvement
of the heading estimates over the ones obtained after the initial calibration, i.e.
Step 1 in Algorithm 1. In Table 1 we therefore include both the heading errors
using the initial parameter estimates D̂0 (28a) and ô0 (24c) and the heading errors
usingml parameter estimates D̂ and ô (29) obtained using Algorithm 1. As can be
seen, the deviation from 90◦ is small, indicating that good heading estimates are
obtained after calibration. Also, the heading estimates using the initial parameter
estimates are already fairly good. The mean error is reduced from 1.28◦ for the
initial estimate to 0.76◦ for the ml estimate. The maximum error is reduced from
4.36◦ for the initial estimate to 2.48◦ for the ml estimate. Note that the results
of the ml estimate from Algorithm 1 are slightly better than the results previ-
ously reported by Kok and Schön (2014). This can be attributed to the fact that
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Table 1: Difference in estimated heading between two subsequent rotations
around the sensor axes using calibrated magnetometer data. The values rep-
resent the deviation in degrees from 90◦. Included are both the results using
the ml estimates from Algorithm 1 and the results using initial estimates
from Step 1 in the algorithm.

z-axis x-axis y-axis

z up z down x up x down y down

ml init ml init ml init ml init ml init

0.11 0.36 0.69 1.34 0.22 0.16 0.86 1.01 0.18 1.57
0.22 0.90 2.48 4.36 0.07 0.20 1.57 1.45 0.29 0.76
0.46 1.52 1.53 3.57 0.97 0.94 0.61 0.71 0.20 0.78
0.30 0.94 1.92 2.40 0.29 0.59 1.78 1.70 0.50 0.45

we now use orientation error states instead of the quaternion states in the ekf
(see Section 5.2). This results in slightly better estimates, but also in a smoother
convergence of the optimization problem. The quality of the heading estimates is
studied further in Section 8 based on a simulation study.

8 Simulated heading accuracy

Magnetometer calibration is typically performed to improve the heading esti-
mates. It is, however, difficult to check the heading accuracy experimentally. In Sec-
tion 7.3, for instance, we are limited to doing the heading validation on a different
data set and we have a limited number of available data points. To get more in-
sight into the orientation accuracy that is gained by executing all of Algorithm 1,
compared to just its initialization phase (Step 1 in the algorithm), we engage in a
simulation study. In this study we focus on the root mean square (rms) heading
error for different simulated sensor qualities (in terms of the noise covariances
and the gyroscope bias) and different magnetic field disturbances (in terms of
different values for the calibration matrix D and offset vector o).

In our simulation study, we assume that the local magnetic field is equal to that
in Linköping, Sweden. The calibration matrix D, the offset vector o and the sensor
properties in terms of the gyroscope bias and noise covariances are all sampled
from a uniform distribution. The parameters of the distributions from which
the sensor properties are sampled are chosen as physically reasonable values as
considered from the authors’ experience. The noise covariance matrices Σω, Σa
and Σm are assumed to be diagonal with three different values on the diagonal.
The calibration matrix D is assumed to consist of three parts,

D = DdiagDskewDrot, (31)
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Table 2: Settings used in the Monte Carlo simulation.

Ddiag Dskew Drot o δω

D11, D22, D33 ζ, η, ρ ψ, θ, φ o1, o2, o3 δω,1, δω,2, δω,3
∼ U (0.5, 1.5) ∼ U (−30◦, 30◦) ∼ U (−10◦, 10◦) ∼ U (−1, 1) ∼ U (−1, 1)

Σω Σa Σm

Σω,1,Σω,2,Σω,3 Σa,1,Σa,2,Σa,3 Σm,1,Σm,2,Σm,3
∼ U (10−3, 10−2) ∼ U (10−3, 10−1) ∼ U (10−3, 10−1)

where Ddiag is a diagonal matrix with elements D11, D22, D33 and Drot is a rotation
matrix around the angles ψ, θ, φ. The matrix Dskew models the non-orthogonality
of the magnetometer axes as

Dskew =




1 0 0
sin ζ cos ζ 0
− sin η cos η sin ρ cos η cos ρ


 , (32)

where the angles ζ, η, ρ represent the different non-orthogonality angles. The
exact simulation conditions are summarized in Table 2.

The simulated data consists of 100 samples of stationary data and subse-
quently 300 samples for rotation around all three axes. It is assumed that the
rotation is exactly around the origin of the accelerometer triad, resulting in zero
acceleration during the rotation. The first 100 samples are used to obtain an initial
estimate of the gyroscope bias δ̂ω,0 by computing the mean of the stationary gyro-
scope samples. The covariance matrices Σ̂ω,0, Σ̂a,0 and Σ̂m,0 are initialized based
on the covariance of these first 100 samples. The initial estimate then consists
of these initial estimates δ̂ω,0, Σ̂ω,0, Σ̂a,0, Σ̂m,0 and the initial calibration matrix
D̂0 (28a), the initial offset vector ô0 (24c) and the initial estimate of the local mag-
netic field mn

0 (28b).
To study the heading accuracy, the ekf as described in Section 5.2 is run with

both the initial parameter values θ̂0 and their ml values θ̂ml. The orientation
errors ∆qt , encoded as a unit quaternion are computed using

∆qt = q̂nb
t �

(
qnb

ref,t

)c
, (33)

where � denotes a quaternion multiplication and the superscript c denotes the
quaternion conjugate (see e.g. Hol (2011)). It is computed from the orientation
q̂nb
t estimated by the ekf and the ground truth orientation qnb

ref,t . Computing the
orientation errors in this way is equivalent to subtracting Euler angles in the case
of small angles. However, it avoids subtraction problems due to ambiguities in
the Euler angles representation. To interpret the orientation errors ∆qt , they are



238 Paper E Magnetometer calibration using inertial sensors

1 2
0

5

10

Heading error [deg]

(a) Initial parameter estimate

20 40
0

10

20

30

40

Heading error [deg]

(b)ml parameter estimate

Figure 8: Histogram of the heading rmse using the ml parameter estimate
from Algorithm 1 (left, blue) and the initial parameter estimate from Step 1
in the algorithm (right, red). Note the different scales in the two plots.

converted to Euler angles. We focus our analysis on the heading error, i.e. on the
third component of the Euler angles.

The rms of the heading error is plotted for 150 Monte Carlo simulations in
Figure 8. As can be seen, the heading root mean square error (rmse) using the
estimate of the calibration parameters from Algorithm 1 is consistently small.
The heading rmse based on the initialization phase in Step 1 of the algorithm,
however, has a significantly larger spread. This clearly shows that orientation ac-
curacy can be gained by executing all of Algorithm 1. Note that in all simulations,
analysis of the norm of the calibrated magnetometer measurements as done in
Figure 4 does not indicate that theml estimate is to be preferred over the estimate
from the initialization phase. Hence, analysis of the norm of the calibrated magne-
tometer measurements does not seem to be a sufficient analysis to determine the
quality of the calibration in the case when the calibration is performed to improve
the heading estimates.

9 Conclusions

We have developed a practical algorithm to calibrate a magnetometer using iner-
tial sensors. It calibrates the magnetometer for the presence of magnetic distur-
bances, for magnetometer sensor errors and for misalignment between the inertial
and magnetometer sensor axes. The problem is formulated as anml problem. The
algorithm is shown to perform well on real data collected with two different com-
mercially available inertial measurement units.

In future work the approach can be extended to include gpsmeasurements. In
that case it is not necessary to assume that the acceleration is zero. The algorithm
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can hence be applied to a wider range of problems, like for instance the flight test
example discussed in Kok et al. (2012). The computational cost of the algorithm
would, however, increase, since to facilitate the inclusion of the gpsmeasurements,
the state vector in the ekf needs to be extended.

Another interesting direction for future work would be to investigate ways of
reducing the computational cost of the algorithm. The computational cost of the
initialization steps is very small but actually solving the ml problem in Step 2 of
Algorithm 1 is computationally expensive. The algorithm both needs quite a large
number of iterations and each iteration is fairly expensive due to the computation
of the numerical gradients. Interesting lines of future work would either explore
different optimization methods or different ways to obtain gradient estimates.

Finally, it would be interesting to extend the work to online estimation of
calibration parameters. This would allow for a slowly time-varying magnetic field
and online processing of the data.
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Abstract

Anomalies in the ambient magnetic field can be used as features in
indoor positioning and navigation. By using Maxwell’s equations, we
derive and present a Bayesian non-parametric probabilistic modeling
approach for interpolation and extrapolation of the magnetic field. We
model the magnetic field components jointly by imposing a Gaussian
process (gp) prior on the latent scalar potential of the magnetic field.
By rewriting the gp model in terms of a Hilbert space representation,
we circumvent the computational pitfalls associated with gp model-
ing and provide a computationally efficient and physically justified
modeling tool for the ambient magnetic field. The model allows for se-
quential updating of the estimate and time-dependent changes in the
magnetic field. The model is shown to work well in practice in differ-
ent applications: we demonstrate mapping of the magnetic field both
with an inexpensive Raspberry Pi powered robot and on foot using a
standard smartphone.

1 Introduction

Magnetic material causes anomalies in the ambient magnetic field. In indoor envi-
ronments, large amounts of such magnetic material are present in the structure of

245
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buildings and in furniture. Our focus is on building maps of the indoor magnetic
field these structures are inducing. These maps are constructed by interpolating
three-dimensional magnetic field measurements obtained using magnetometers.
An illustration of a map obtained using our proposed method is available in Fig-
ure 1.

Magnetic maps of indoor environments can be used in indoor positioning and
navigation applications (see, e.g. Solin et al., 2016). In these applications, measure-
ments that are accurate on a short time-scale—but drift on longer time-horizons—
are typically combined with other sources of absolute position information. Such
sources can be data from wheel encoders, inertial sensors together with ultra-
wideband, Wi-Fi, or optical measurement equipment such as cameras (see, e.g.
Woodman, 2010; Hol, 2011). The downside of these sources of absolute position is
that they typically rely on additional infrastructure or require certain conditions
to be fulfilled such as line-of-sight. The advantage of using the magnetic field
for positioning is that it can be measured by a small device, without additional
infrastructure and without line-of-sight requirements. Furthermore, magnetome-
ters are nowadays present in (almost) any inertial measurement unit (imu) or
smartphone. A requirement for localization using the ambient magnetic field as
a source of position information is that accurate maps of the magnetic field can
be constructed within reasonable computational complexity which is the focus of
this work. This can also be regarded as a step towards simultaneous localization
and mapping (slam) using magnetic fields in which localization is done while
building the map (see, e.g. Leonard and Durrant-Whyte, 1991; Durrant-Whyte
and Bailey, 2006).

We interpolate the magnetic field using a Bayesian non-parametric approach
where prior knowledge about the properties of magnetic fields is incorporated
in a Gaussian process (gp) prior. Gps (see, e.g. O’Hagan, 1978; Rasmussen and
Williams, 2006) are powerful tools for Bayesian non-parametric inference and
learning, and they provide a framework for fusing first-principles prior knowl-
edge with quantities of noisy data. This has made them popular tools in signal
processing, machine learning, robotics and control (Cressie, 1993; Cressie and
Wikle, 2011; Deisenroth et al., 2015).

The contributions of this paper are three-fold. First, we model the ambient
magnetic field using a Gaussian process prior in which we incorporate physical
knowledge about the magnetic field. This extends the work by Wahlström et al.
(2013) by presenting an approach where the gp prior is a latent (unobservable)
magnetic potential function. Second, we use a computationally efficient gp im-
plementation that allows us to use the large amounts of data provided by the
magnetometer. To circumvent the well-known computational challenges with
gps (see, e.g. Rasmussen and Williams, 2006), we rewrite the model in terms of a
Hilbert space representation introduced by Solin and Särkkä (2014). We extend
the approach to allow for modeling of the bias caused by the Earth magnetic field.
Third, we use this method in combination with the sequential approach intro-
duced in Särkkä et al. (2013). This allows for online updating of the magnetic
field estimate. It also opens up the possibility to focus on the spatio-temporal
problem in which the magnetic field can change over time, for instance due to
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Figure 1: Interpolated magnetic field of the lobby of a building at the Aalto
University campus.
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furniture being moved around. An extensive evaluation of the proposed method
is done using both simulated and empirical data. The simulation study and a
small-scale experiment illustrate the feasibility and accuracy of the approach and
allow for comparison with other methods. Experiments with a mobile robot and
with a hand-held smartphone show the applicability to real-world scenarios.

This paper is structured as follows. The next section covers a survey of exist-
ing work, which also provides additional motivation for the approach. Section 3
provides a brief background of the properties of magnetic fields relevant to this
work. The Gaussian process regression model is constructed in Section 4, which
is then extended to explicit algorithms for batch and sequential estimation in the
next section. Section 6 covers the experiments. The experimental results and some
additional comments regarding the methodology are discussed at the end of the
paper.

2 Related work

Spatial properties of the magnetic field have been of interest in a large variety of
research domains. For instance, the magnetic field has been extensively studied
in geology (see, e.g. Nabighian et al., 2005) but also in magnetospheric physics,
geophysics, and astrophysics. In all of these domains, interpolation of the mag-
netic field is of interest (see, e.g. Guillen et al., 2008; Calcagno et al., 2008; Mackay
et al., 2006; Bhattacharyya, 1969; Springel, 2010, for examples of magnetic field
interpolation in the respective areas).

In recent years interest has emerged in using the magnetic field as a source of
position information for indoor positioning (Haverinen and Kemppainen, 2009).
Feasibility studies have been conducted, focusing both on the time-varying nature
of the magnetic field and on the amount of spatial variation in the magnetic field.
Li et al. (2012) report experiments showing that the magnetic field in a building
typically shows large spatial variations and small time variations. This is also sup-
ported by the experimental study reported by Angermann et al. (2012) in which
significant anomalies of the ambient magnetic field are reported. These experi-
ments give confidence that the magnetic field provides sufficient information for
localization purposes. However, Li et al. (2012) also report significant temporal
changes in the magnetic field in the vicinity of mobile magnetic structures, in
their case an elevator.

A number of approaches have been reported on building a map of the ambient
magnetic field for indoor localization purposes. Le Grand and Thrun (2012) pro-
pose a method to build a map of the magnetic field by collecting magnetometer
data in a grid and linearly interpolating between these points. This map is subse-
quently used for localization with a particle filter combining magnetometer and
accelerometer measurements from a smartphone. Robertson et al. (2013) present
a slam approach for pedestrian localization using a foot-mounted imu . They use
the magnetic field intensity which they model using spatial binning. Frassl et al.
(2013) discuss the possibility of using more components of the magnetic field (for
instance the full three-dimensional measurement vector) in the slam approach
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instead. Vallivaara et al. (2010, 2011) present a slam approach for robot localiza-
tion. They model the ambient magnetic field using a squared exponential gp prior
for each of the magnetic field components. Wahlström et al. (2013) incorporate
additional physical knowledge by making use of Maxwell’s equations resulting in
the use of curl- and divergence-free gp priors instead.

As can be concluded, there exists a wide range of existing literature when it
comes to modeling the ambient magnetic field. The amount of information that
is used differs between the approaches. For instance, some approaches use full
three-dimensional magnetic field vectors while others only use a one-dimensional
magnetic field intensity. Furthermore, the amount of physical information that
is included differs. In this paper, we build on the approach by Wahlström et al.
(2013) and use the full three-dimensional magnetometer measurements. We in-
clude physical knowledge in terms of the magnetic field potential.

As discussed above, gps have frequently been used in modeling and interpola-
tion of magnetic fields. Gp regression has also successfully been applied to a wide
range of applications (see, e.g. O’Callaghan and Ramos, 2012; Smith et al., 2011).
Furthermore, it has previously been used for slam (see, e.g. Tong et al., 2013;
Ferris et al., 2006; Barkby et al., 2012; Barfoot et al., 2014; Anderson et al., 2015).
One of the challenges in using gps is the computational complexity (see, e.g. Ras-
mussen and Williams, 2006), which scales cubically with the number of training
data points. Considering the high sampling rate of the magnetometer and the fact
that each observation contains three values, a large number of measurements is
typically available for mapping. Because of these computational challenges, the
data in Wahlström et al. (2013) was downsampled.

Attempts to speed up gp inference have spawned a wide range of methods
which aimed at bringing gp regression to data-intensive application fields. These
methods (see Quiñonero-Candela and Rasmussen, 2005, for a review) typically
build upon reducing the rank of the Gram (covariance) matrix and using the ma-
trix inversion lemma to speed up matrix inversion. For stationary covariance func-
tions, the spectral Monte Carlo approximation by Lázaro-Gredilla et al. (2010),
or the Laplace operator eigenbasis based method introduced by Solin and Särkkä
(2014) can be employed. For uniformly spaced observations, fast Fourier trans-
forms can provide computational benefits (Paciorek, 2007; Fritz et al., 2009). As
will be shown later on in this paper, the Laplace operator approach by Solin and
Särkkä (2014) falls natural to modeling of the magnetic field in terms of a mag-
netic field potential.

All approaches on mapping of magnetic fields discussed above assume that
the magnetic field is constant over time. However, as shown by Li et al. (2012)
significant temporal changes in the magnetic field occur in the vicinity of mobile
magnetic structures. For gp models evolving in time, spatio-temporal gp models
(see, e.g. Cressie and Wikle, 2011) can be solved efficiently using Kalman filter-
ing methods (Hartikainen and Särkkä, 2010; Osborne, 2010; Särkkä et al., 2013;
Huber, 2014). In this paper, we will take the approach of Särkkä et al. (2013) to
compose a spatio-temporal gp prior for the model and solve the inference prob-
lem by a sequential Kalman filtering setup. This allows for online estimation of
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Figure 2: A ferromagnetic object deflects the Earth’s magnetic field and in-
troduces distortions in the field.

the magnetic field estimate and can be used to allow for time variations in the
magnetic field.

3 The ambient magnetic field

On a macroscopic scale, magnetic fields are vector fields, meaning that at any
given location, they have a direction and strength (magnitude). These properties
are familiar from everyday life: the force created by permanent magnets attract-
ing and repelling ferromagnetic materials is used in various utensils, and the
compass aligning itself with the direction of the Earth’s magnetic field has proved
invaluable for mankind during the past centuries. The Earth’s magnetic field sets a
background for the ambient magnetic field, but deviations caused by the bedrock
and anomalies induced by man-built structures deflect the Earth’s magnetic field.
This makes the magnetic field vary from point to point, see Figure 2.

We describe the magnetic field with a function H(x), where H : R3 → R
3. For

each point in space x, there will be an associated magnetic field H(x). Such a vector
field can be visualized with field lines, where points in space are associated with
arrows. The principles under which the magnetic field is affected by structures of
buildings are well known and governed by the very basic laws of physics (see, e.g.
Jackson, 1999; Vanderlinde, 2004; Griffiths, 1999).

In this work, we make use of the fact that the magnetic field H is curl-free

∇ ×H = 0 (1)

provided that there is no free current (current in wires for example) in the region
of interest (see Wahlström, 2015, for more details). This assumption is valid in
most indoor environments where the major source for variations in the ambient
field is caused by metallic structures rather than free currents in wires.

One property of curl-free vector fields is that the line integral along a path P
only depends on its starting point A and end point B, and not on the route taken

∫

P

H(x) · dx = ϕ(A) − ϕ(B), (2)
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Ω

Figure 3: Illustration of a vector field with non-zero curl. The vortex point
makes it non-curl-free as the vector field curls around it. However, the subset
Ω excludes the vortex point and the vector field is curl-free in this region.
To this region a scalar potential ϕ can be associated, here illustrated with
shading.

where ϕ : R3 → R. This can be rewritten by interpreting ϕ as a scalar potential

H = −∇ϕ. (3)

Figure 3 illustrates the curl-free property and the scalar potential. Domain Ω is
curl-free and has an associated scalar potential, while the entire domain is not curl-
free due to the vortex point. Note that in a non-curl-free vector field no such scalar
potential exists since a line integral around the swirl is non-zero. For the magnetic
field H, the swirl corresponds to a wire of free current pointing perpendicular to
the plane, which we assume is not included in the region of interest.

The relation (3) is the key equation that we will exploit in our probabilistic
model of the ambient magnetic field. We will choose to model the scalar potential
ϕ instead of the magnetic field H directly. This implicitly imposes the constraints
on the magnetic field that the physics is providing. This model will be explained
in the next section.

4 Modeling the magnetic field using Gaussian
process priors

In this section, we introduce our approach to modeling and interpolation of the
ambient magnetic field. We use a Bayesian non-parametric model in which we
use knowledge about the physical properties of the magnetic field as prior in-
formation. We tackle the problem of interpolating the magnetic field using gp
regression. In Section 4.1 we first give a brief background on gps. After this, we
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introduce the problem of modeling the magnetic field in Section 4.2. A commonly
used gp model of the magnetic field is introduced in Section 4.3. In Section 4.4,
we subsequently introduce our proposed method for modeling the magnetic field
in which we encode the physical properties that were presented in the previous
section.

4.1 Gaussian process regression

In gp regression (Rasmussen and Williams, 2006) the model functions f (x) are
assumed to be realizations from a Gaussian random process prior with a given
covariance function κ(x, x′). Learning amounts to computing the posterior process
at some test inputs x∗ given a set of noisy measurements y1, y2, . . . , yn observed at
x1, x2, . . . , xn, respectively. This model is often written in the form

f (x) ∼ GP (0, κ(x, x′)),
yi = f (xi) + εi ,

(4)

where the observations yi are corrupted by Gaussian noise εi ∼ N(0, σ2
noise), for

i = 1, 2, . . . , n. Because both the prior and the measurement model are Gaussian,
the posterior process will also be Gaussian. Hence, the learning problem amounts
to computing the conditional means and covariances of the process evaluated at
the test inputs.

Prediction of yet unseen process outputs at an input location x∗ amounts to
the following in gp regression: p(f (x∗) | D) = N(f (x∗) | E[f (x∗)],V [f (x∗)]). The
conditional mean and variance can be computed in closed-form as (see Rasmussen
and Williams, 2006, here the conditioning is left out in the notation for brevity)

E[f (x∗)] = kT∗ (K + σ2
noiseIn)−1y,

V [f (x∗)] = κ(x∗, x∗) − kT∗ (K + σ2
noise In)−1k∗,

(5)

where Ki,j = κ(xi , xj ), k∗ is an n-dimensional vector with the ith entry being
κ(x∗, xi), and y is a vector of the n observations. Furthermore, due to Gaussianity,
the marginal likelihood (evidence) of the covariance function and noise parame-
ters can also easily be computed, allowing for Bayesian inference of the parameters
as well (Rasmussen and Williams, 2006).

The choice of a specific covariance function encodes the a priori knowledge
about the underlying process. One of the most commonly used covariance func-
tions, which will also frequently be used in the next sections, is the stationary
and isotropic squared exponential (also known as exponentiated quadratic, radial
basis function, or Gaussian). Following the standard notation from Rasmussen
and Williams (2006) it is parametrized as

κse(x, x
′) = σ2

se exp
(
− ‖x − x′‖2

2 `2
se

)
, (6)

where the hyperparameters σ2
se and `se represent the magnitude scale and the

characteristic length-scale, respectively. These can be learned from data, for in-
stance by maximizing the marginal likelihood.
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Figure 4: A simulated example of the interpolation problem. (a) Training data
has been collected along the route A–D, but the magnetic field between D–E
is unknown. (b) The noisy observations of the magnetic field between A–D,
and gp predictions with 95% credibility intervals. Both the independent gp
modeling approach (with shared hyperparameters) and the scalar potential
based curl-free gp approach are visualized. The simulated ground truth is
shown by the solid lines.
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4.2 Interpolation of magnetic fields

In this work we tackle the problem of interpolating the magnetic field to spatial
locations from where we do not have any measurements. In other words, we will
tackle the problem of predicting the latent (unobservable noise-free) magnetic
field f(x∗) (such that f : R

3 → R
3) at some arbitrary location x∗ given a set of

noise-corrupted measurements D = {(xi , yi)}ni=1 of the magnetic field. Here, the
measurements y correspond to the H-field corrupted by i.i.d. Gaussian noise.

Two important things need to be noted with regard to the interpolation of
the magnetic field. First, note that the measurements of the magnetic field are
vector-valued (contrary to the scalar observations in (4)). This raises the question
of how to deal with the different magnetic field components. They can either
be treated separately as will be done in Section 4.3, or a relation between the
different components can be assumed, as is the case in the method we propose
in Section 4.4. Secondly, note that the function describing the magnetic field is
not zero-mean, contrary to the gp model in (4). Instead, its mean lies around a
local Earth magnetic field. This depends on the location on the Earth but can also
deviate from the Earth’s magnetic field in indoor environments due to magnetic
material in the structure of the building. The unknown mean can be modeled as
an additional part of the covariance function κ(x, x′) (Rasmussen and Williams,
2006).

An illustration of gp regression for magnetic fields is provided in Figure 4,
where noisy readings of a magnetic field have been collected along route A–D
(comprising D), and the magnetic field along route D–E (comprising the predic-
tion locations x∗) needs to be inferred from the measurements. Each component
varies around a local magnetic field due to magnetic material in the vicinity of
the sensor. Different interpolation techniques can be used based on different prior
knowledge that can be incorporated in the gp . Two different interpolation results
are shown: one based on independent modeling of each vector field components
(with shared hyperparameters) and another based on associating the gp prior
with the scalar potential of the (curl-free) vector field. These are based on the
models we will introduce in the coming two sections.

4.3 Separate modeling of the magnetic field components

The most straightforward approach to gp modeling of vector-valued quantities is
to model each of the field components as an independent gp . This approach has
been widely applied in existing literature (see, e.g. Vallivaara et al., 2010, 2011;
Kemppainen et al., 2011; Jung et al., 2015; Viseras Ruiz and Olariu, 2015). For
each of the three magnetic field components d ∈ {1, 2, 3}, this model can be written
as

fd(x) ∼ GP (0, κconst.(x, x
′) + κse(x, x

′)),
yd,i = fd(xi) + εi,d ,

(7)

where the observations yd,i , i = 1, 2, . . . , n, are corrupted by independent Gaussian
noise with variance σ2

noise. The non-zero mean of the magnetic field is handled by
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a constant covariance function

κconst.(x, x
′) = σ2

const., (8)

where σ2
const. is a magnitude scale hyperparameter. The small-scale variation in

the field is modeled by a squared exponential covariance function (6). Hence, the
model (7) encodes the knowledge that the realizations are expected to be smooth
functions in space with a constant shift from zero mean.

The model has four hyperparameters: two magnitude scale parameters (σ2
const.

and σ2
se), a length-scale parameter (`se), and a noise scale parameter (σ2

noise). As-
suming that the components are completely separate, each component has four
hyperparameters to learn. The resulting model is flexible, as it does not encode
any relation between the vector field components. In practice, this might lead to
problems in hyperparameter estimation, with parameter estimates converging to
local optima and magnetic field components behaving very differently with re-
spect to each other. Therefore, the hyperparameters are often fixed to reasonable
values—instead of learned from data.

A more sensible approach for separate, but not completely independent, mod-
eling of the magnetic field measurements, models them as realizations of three
independent gp priors with joint learning of the shared hyperparameters (see
also Kemppainen et al., 2011). Note that for this model, the covariance in the gp
posterior is independent of the outputs y and only depends on the input locations
x (which are shared for all components in y). Hence, calculating the marginal
likelihood only requires inverting a matrix of size n (not 3n). For this model, the
expression for evaluating the log marginal likelihood function for hyperparameter
optimization can be written as

L(θ) = − log p(y | θ,D) =
3
2

log |Kθ + σ2
noise In|

+
1
2

tr
[
y(Kθ + σ2

noise In)−1yT
]

+
3n
2

log(2π), (9)

where y ∈ R3×n and Kθ ∈ Rn×n.
Figure 4b shows the results of predicting the magnetic field behavior along

the route D–E for the gp prior modeling the three magnetic field components
separately but with joint learning of the shared hyperparameters. The colored
patches show the 95% credibility intervals for the prediction with the mean es-
timate visualized by the white line. The simulated ground-truth (solid colored
line) falls within the shown interval, and the model captures the general shape of
the magnetic field variation along the path. The strengths of this model are that
it is flexible and that the assumptions are conservative. The weaknesses on the
other hand are evident: The model does not incorporate physical knowledge of
the magnetic field characteristics. In the next section we will instead explore this
knowledge by modeling the magnetic field as derivative measurements of a scalar
potential.
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4.4 Modeling the magnetic field as the gradient of a scalar
potential

Following our choices in Section 3, we assume that the magnetic field H can be
written as the gradient of a scalar potential ϕ(x) according to (3). Here, ϕ : R3 →
R and x ∈ R3 is the spatial coordinate. We assume ϕ(x) to be a realization of a gp
prior and the magnetic field measurements yi ∈ R3 to be its gradients corrupted
by Gaussian noise. This leads to the following model

ϕ(x) ∼ GP (0, κlin.(x, x
′) + κse(x, x

′)),
yi = −∇ϕ(x)

∣∣∣
x=xi

+ εi ,
(10)

where εi ∼ N(0, σ2
noise I3), for each observation i = 1, 2, . . . , n. Recall that nabla

(∇) is a linear operator, and that Gaussianity is preserved under linear operations.
Thus, we can still derive a closed-form solution for this gp model. For simplifying
the notation in the next sections, we introduce the notation f(x) for the gradient
field evaluated at x.

The squared exponential covariance function (6) in (10) allows us to model the
magnetic field anomalies induced by small-scale variations and building struc-
tures. The local Earth’s magnetic field contributes linearly to the scalar potential
as

κlin.(x, x
′) = σ2

lin. xTx, (11)

where σ2
lin. is the magnitude scale hyperparameter. The derivative of this linear

component contributes to the model in a similar way as the constant covariance
function (8) in the previous section.

Our model now has four hyperparameters: two magnitude scale parameters
(σ2

lin. and σ2
se), a length-scale parameter (`se), and a noise scale parameter (σ2

noise).
We learn these parameters from the data, by maximizing the marginal likelihood.

The second set of predictions for the route D–E in Figure 4b shows the inter-
polation outcome from using the above model. In comparison to the independent
gp model, the scalar potential based gp prior provides additional information
to the model by tying the vector field components to each other. This improves
the estimates in terms of accuracy and makes the 95% credibility interval more
narrow.

Incorporating physical knowledge about the magnetic field into a gp prior is
not new. In fact, the assumptions in our model (10) are similar to the assumptions
made by Wahlström et al. (2013) where the magnetic field is modeled as curl-free
using a curl-free kernel (see, e.g. Fuselier, 2007; Baldassarre et al., 2010; Álvarez
et al., 2012). The equivalence of the two models is shown in Wahlström (2015). In
this work, however, the model formulation through the scalar potential is crucial,
as it will enable us to easily extend the model to an approximate form for efficient
gp inference in the next section.
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5 Efficient GP modeling of the magnetic field

Gaussian processes are convenient tools for assigning flexible priors to data—
as we saw in the previous section. However, the main problem with the model
in the previous section is its high computational cost. The approach scales as
O(n3) (recall that each observation is three-dimensional, meaning 3n becomes
large very quickly). This computational complexity renders the approach more
or less useless in practice, when the number of observations becomes large (say
n > 1000).

This is a fundamental restriction associated with the naive formulation of gp
models involving the inversion of the covariance matrix. Using special structure
of the problem and/or approximative methods, this high computational cost can
often be circumvented. In this section we present an approach which both uses
the special differential operator structure and projects the model on a set of basis
functions characteristic to the covariance function. We first present the method
for spatial batch estimation, and then extend it to a temporal dimension as well.

Existing gp methods for mapping and interpolation of the magnetic field have
been considering only batch estimation, where the data is first acquired and then
processed as a batch. In this section, we aim to extend this to an online method,
enabling the gp regression estimate of the magnetic field to be updated when
new data is acquired. We denote such a data set as Dn = {(xi , yi) | i = 1, 2, . . . , n},
and thus Di denotes all the data that has been observed up to time instance ti .

Considering time as part of the data stream enables us to think of three dis-
tinctive setups for estimation of the magnetic field:

• Batch estimation of the magnetic field, where the data is first acquired and
then the field is estimated at once.

• Sequential updating of the field estimate, where we assume all the mea-
surements to be of the same static magnetic field.

• Spatio-temporal estimation of the time-dependent magnetic field, where
we assume the field to change over time.

In the next sections we will present how these scenarios can be combined with
the scalar potential based gp scheme without requiring to repeat the batch com-
putations after each sample.

5.1 Reduced-rank GP modeling

A recent paper by Solin and Särkkä (2014) presents an approach that is based on
a series expansion of stationary covariance functions. The approximation is based
on the following truncated series:

κ(x, x′) ≈
m∑

j=1

S(λj )φj (x)φj (x
′), (12)
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where S( · ) is the spectral density of the covariance function κ( · , · ), φj (x) is the
jth eigenfunction of the negative Laplace operator and λ2

j is the corresponding
eigenvalue. The efficiency of this approach is based on two properties: (i) the
eigenfunctions are independent of the hyperparameters of the covariance func-
tion, and (ii) for many domains the eigenfunctions and eigenvalues can be solved
beforehand in closed-form. Truncating this expansion at degree m� n allows the
gp regression problem to be solved with a O(nm2) and the hyperparameters to be
learned with a O(m3) time complexity. The memory requirements scale as O(nm).

However, what makes this approach even better suited for this problem, is that
the approximation is based on the eigendecomposition of the Laplace operator.
This eigenbasis falls natural to the problem formulation in the previous section,
where the latent potential field is observed through gradients. As for the choice
of covariance structure, the squared exponential covariance function is stationary,
so there is no problem applying this approach for that part of the above problem
formulation. The linear covariance function is not stationary, but as we will see,
that is not a problem in this case.

Our interest lies in modeling the magnetic field in compact subsets of R
3,

allowing us to restrict our interest to domains Ω comprising three-dimensional
cuboids (rectangular boxes) such that x ∈ [−L1, L1]× [−L2, L2]× [−L3, L3] ⊂ R

3 (re-
call that a stationary covariance function is translation invariant). In this domain,
we can solve the eigendecomposition of the Laplace operator subject to Dirichlet
boundary conditions


−∇2φj (x) = λ2

jφj (x), x ∈ Ω,
φj (x) = 0, x ∈ ∂Ω. (13)

The choice of the domain and boundary conditions is arbitrary, but for regression
problems with a stationary covariance function the model reverts back to the prior
outside the region of observed data, so the Dirichlet boundary condition does not
restrict the modeling if Ω is chosen suitably.

This particular choice of domain and boundary conditions yield the following
analytic expression for the basis functions:

φj (x) =
3∏

d=1

1√
Ld

sin
(
πnj,d(xd + Ld)

2Ld

)
, (14)

λ2
j =

3∑

d=1

(
πnj,d
2Ld

)2

, (15)

where the matrix n ∈ R
m×3 consists of an index set of permutations of integers

{1, 2, . . . , m} (i.e. , {(1, 1, 1), (1, 1, 2), . . . , (1, 2, 1), . . . , (2, 1, 1), . . .}) . The basis func-
tions are independent of the hyperparameters, and thus only need to be evaluated
once. Adding the linear covariance function to the gp prior corresponds to insert-
ing a set of three linear basis functions into the model.

The computational benefits come from the approximate eigendecomposition
of the Gram (covariance) matrix, Ki,j = κ(xi , xj ) (see Solin and Särkkä, 2014, for
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derivations and discussion). It can now be written out in terms of the basis func-
tions and spectral densities: K ≈ ΦΛΦT. The basis functions which span the
solution are collected in the matrix Φ ∈ Rn×(3+m), with the following rows

Φ i =
(
xTi , φ1(xi), φ2(xi), . . . , φm(xi)

)
, (16)

for i = 1, 2, . . . , n. Accordingly, we define the corresponding measurement model
matrix projecting the derivative observations onto the basis functions. Analo-
gously, we define the matrix ∇Φ ∈ R3n×(3+m) as the following block-row matrix:

∇Φ i =
(
∇xTi ,∇φ1(xi),∇φ2(xi), . . . ,∇φm(xi)

)
, (17)

for i = 1, 2, . . . , n. Similarly we define Φ ∗ and ∇Φ ∗ as vectors evaluated at the
prediction input location x∗ defined analogously to Equations (16) and (17), re-
spectively. The diagonal matrix Λ is defined by

Λ = diag(σ2
lin., σ

2
lin., σ

2
lin., Sse(λ1), Sse(λ2), . . . , Sse(λm)). (18)

For three-dimensional inputs, the spectral density function of the squared expo-
nential covariance function (6) is given by

Sse(ω) = σ2
se (2π`2

se)
3/2 exp

(
−ω

2`2
se

2

)
, (19)

where the hyperparameters σ2
se and `se characterize the spectrum.

The Laplace operator eigenbasis approximation method can be combined with
the independent gp approach, the independent gps with shared hyperparameters,
and the scalar potential gp approach. In the next sections the presentation will
be specific to the scalar potential model, but a similar setup can be constructed
for the other methods as well.

5.2 Batch estimation

We first tackle the batch estimation problem which provides the approximative
solution to the gp regression problem in Equation (5) for the scalar potential gp .

Following the derivations of Solin and Särkkä (2014), predictions for interpo-
lation and extrapolation of the magnetic field at yet unseen input locations x∗ are
given by:

E[f(x∗)] ≈ ∇Φ ∗([∇Φ ]T∇Φ + σ2
noiseΛ

−1)−1[∇Φ ]Tvec(y),

V [f(x∗)] ≈ σ2
noise ∇Φ ∗([∇Φ ]T∇Φ + σ2

noiseΛ
−1)−1[∇Φ ∗]T,

(20)

where vec( · ) is the vectorization operator which converts a matrix to a column
vector by stacking its columns on top of each other, such that the 3 × n matrix is
converted into a vector of size 3n. The basis functions ∇Φ and ∇Φ ∗ need to be
evaluated by Equation (17), and Λ by (18).
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Algorithm 1 Algorithm for batch estimation of the scalar potential gp magnetic
field with the reduced-rank approach.

Input: D = {(xi , yi)}ni=1, x∗, Ω, m.
Output: E[f(x∗)],V [f(x∗)].

1: Use Eq. (17) to evaluate the basis functions ∇Φ from xis and Ω.
2: Use Eq. (21) to optimize hyperparameters θ = {σ2

lin., σ
2
se, `se, σ

2
noise}.

3: Use Eq. (17) to evaluate the basis functions ∇Φ ∗ from x∗s and Ω.
4: Solve the gp regression problem by Eq. (20).

For this model, the expression for evaluating the log marginal likelihood func-
tion for hyperparameter optimization can be written as

L(θ) =
1
2

log |Kθ + σ2
noise I3n|+

1
2

vec(y)T(Kθ + σ2
noise I3n)−1vec(y) +

3n
2

log(2π), (21)

where the quantities can be approximated by

log |Kθ + σ2
noise I3n| ≈ (3n −m) log σ2

noise

+
m∑

j=1

[Λθ]j,j + log |σ2
noiseΛ

−1
θ + [∇Φ ]T∇Φ |, (22)

vec(y)T(Kθ + σ2
noise I3n)−1vec(y)

≈ 1

σ2
noise

[
vec(y)Tvec(y) − vec(y)T∇Φ (σ2

noiseΛ
−1
θ

+ [∇Φ ]T∇Φ )−1[∇Φ ]Tvec(y)
]
, (23)

where the only remaining dependency on the covariance function hyperparam-
eters are in the diagonal matrix Λ defined through the spectral density in Equa-
tion (18). In a software implementation, Cholesky decompositions can be em-
ployed for numerical stability in the calculation of determinants and matrix in-
verses. For optimizing the hyperparameters, gradient based optimizers can be
employed (see Solin and Särkkä, 2014, for details on deriving the partial deriva-
tives).

Algorithm 1 describes the step-by-step workflow for applying these equations
in practice. The inputs for the method are the data D (spatial points and the
magnetic field readings), the test points x∗ to predict at, the domain boundaries
Ω, and the approximation degree parameter m (controlling the accuracy of the
Hilbert space approximation, see Eq. (12)). The algorithm returns the marginal
mean and variance of the predicted magnetic field at x∗. The scalar potential could
be returned instead by using Equation (16) in step three.
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5.3 Sequential estimation

Many applications require online (sequential) estimates of the magnetic field. The
following formulation provides the same (within numerical precision) solution as
the batch estimation solution (20) in the previous section. The inference scheme
in the previous section is in practice the solution of a linear Gaussian estimation
problem. Sequential solutions for this type of problems have been extensively
studied, and this mathematical formulation is widely known as the Kalman filter.
The connection between Kalman filtering and Gaussian process regression has
recently been studied, for example, in Osborne (2010); Särkkä et al. (2013); Huber
(2014).

Reformulation of a batch problem to a sequential algorithm is discussed (with
examples) in the book Särkkä (2013). Following this formulation (and notation to
large extent) we may write the following recursion: Initialize µ0 = 0 and Σ0 = Λθ
(from the gp prior). For each new observation i = 1, 2, . . . , n update the estimate
according to

Si = ∇Φ iΣi−1[∇Φ i]
T + σ2

noise I3,

Ki = Σi−1[∇Φ i]
TS−1

i ,

µi = µi−1 + Ki(yi − ∇Φ iµi−1),

Σi = Σi−1 −KiSiK
T
i .

(24)

This means that for a test input location x∗ we get predictions for the mean and
the variance of the magnetic field which are given by

E[f(x∗) | Di] ≈ ∇Φ ∗ µi ,
V [f(x∗) | Di] ≈ ∇Φ ∗ Σi [∇Φ ∗]T,

(25)

and conditional on the data observed up to observation i. Writing out the condi-
tioning on D was stripped in the earlier sections for brevity.

Here we do not consider optimization of the hyperparameters θ. The marginal
likelihood can be evaluated through the recursion, but in an online setting we
suggest optimizing the hyperparameters with some initial batch early in the data
collection and then re-optimizing them later on if necessary.

Algorithm 2 presents the scheme of how to apply the equations in practice.
The inputs are virtually the same as for the batch algorithm, but now the hyper-
parameters θ are considered known. The current estimate can be returned after
each iteration loop.

5.4 Spatio-temporal modeling

The sequential model allows for extending the modeling to also track dynamic
changes in the magnetic field without virtually any additional computational
burden. Let the data Dn = {(ti , xi , yi)}ni=1 now also comprise a temporal variable t
which indicates the time when each observation was acquired.
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Algorithm 2 Algorithm for sequential modeling of the scalar potential gp mag-
netic field estimate. Alternative (a) corresponds to the sequential model, and (b)
to the spatio-temporal modeling approach.

Input: Dn, x∗, Ω, m, θ.
Output: Bar.

1: Initialize µ0 = 0 and Σ0 = Λθ from Eq. (18).
2: for i = 1, 2, . . . , n do
3: Evaluate ∇Φ i by Eq. (17) from xi .
4: (a) Perform an update by Eq. (24).

(b) Perform an update by Eqs. (29–30).
5: Evaluate the current prediction at x∗ by Eq. (25).
6: end for

We present the following spatio-temporal model for tracking changes in the
ambient magnetic field. The spatio-temporal gp prior assigned to the scalar po-
tential ϕ(x, t), depending on both location and time, is defined as follows:

ϕ(x, t) ∼ GP (0, κlin.(x, x
′) + κse(x, x

′)κexp(t, t′)), (26)

where the additional covariance function κexp(t, t′) defines the prior assumptions
of the temporal behavior. This covariance function is defined through

κexp(t, t′) = exp
(
− |t − t

′ |
`time

)
, (27)

where `time is a hyperparameter controlling the length-scale of the temporal ef-
fects. In the temporal domain, this model is also known as the Ornstein–Uhlenbeck
process (see, e.g. Rasmussen and Williams, 2006). The assumption encoded into
it is that the phenomenon is continuous but not necessarily differentiable. There-
fore it provides a very flexible means of modeling the changing ambient magnetic
field. Also note that in Equation (26) the temporal effects are only associated with
the anomaly component, the bias being tracked as a static component.

Following the derivations in Hartikainen and Särkkä (2010), we can write
down the dynamic state space model associated with the time evolution of the
spatio-temporal gp prior model (26)

Ai = blkdiag(I3, Im exp(−∆ti /`time)),

Qi = blkdiag(03, Im[1 − exp(−2∆ti /`time)]),
(28)

where ∆ti = ti+1 − ti is the time difference between two consecutive samples and
03 denotes a 3 × 3 zero matrix.

For the time update (Kalman prediction step) we may thus write

µ̃i = Ai−1µi−1,

Σ̃i = Ai−1Σi−1AT
i−1 + Qi−1,

(29)
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and the modified measurement update (Kalman update step)

Si = ∇Φ iΣ̃i[∇Φ i]
T + σ2

noise I3,

Ki = Σ̃i[∇Φ i]
TS−1

i ,

µi = µ̃i + Ki(yi − ∇Φ i µ̃i),

Σi = Σ̃i −KiSiK
T
i .

(30)

Algorithm 2 features the workflow of applying the method (option (b)). In
practice the only additional input is including the temporal length-scale in θ.

6 Experiments

The experiments in this paper are split into four parts. We first demonstrate the
feasibility of the scalar potential approach with simulated data, where comparison
to known ground truth is possible. After this we present a small-scale proof-of-
concept demonstration of the approach.

The final two examples are closer to real-world use cases. The third experiment
is concerned with mapping the magnetic field in a building using a handheld
smartphone. The final experiment uses an inexpensive mobile robot for online
mapping and real-time tracking of the changing magnetic field.

6.1 Simulated experiment

As a first part of our experimental validation of the model, we present a simula-
tion study. This will be used to illustrate our method and to quantify its perfor-
mance through Monte Carlo simulations. In the simulations, we assume that the
magnetic field measurements can indeed be modeled using a scalar potential as
argued in Section 3. Hence, we simulate the magnetometer data from the gp that
models the magnetometer measurements as gradients of a scalar potential field
as discussed in Section 4.4. To reduce the computational complexity, we simulate
the data using the computationally efficient approach described in Section 5.2
with a large number of basis functions (m = 4096). This reduces computational
complexity and is, as shown by Solin and Särkkä (2014), a good approximation of
the true model.

The magnetometer is assumed to move in a three-dimensional volume with
x, y, z ∈ [−0.4, 0.4] such that x = (x, y, z). The training data used for training the
gp is randomly uniformly distributed over this volume. A validation data set is
used to assess the predictive power of the trained gp . This validation data is a
three-dimensional meshgrid over the same volume and consists of nval. = 9261
positions xval. with a true magnetic field ftrue(xval.). The magnetic field is predicted
at these points using the trained gp , leading to ftrain.(xval.), after which the quality
of the gp solution can be assessed in terms of the root mean square error (rmse).

We set the domain Ω in the gp model to L1 = L2 = L3 = 0.5 and simulate using
the following hyperparameters σ2

const. = 0.3, σ2
se = 1, `se = 0.1, and σ2

noise = 0.04
(see Section 5.2 and 4.4 for more details on the notation).
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We compare our proposed method with two other approaches. The first is the
approach by Vallivaara et al. (2010, 2011), where the magnetic field is modeled
using independent gps for all three components. Each gp consists of a constant
and a squared exponential kernel and has its own hyperparameters. The second
approach, considered in Kemppainen et al. (2011), models the magnetic field
similarly but with shared hyperparameters. For details, see also Section 4.3.

In a first set of Monte Carlo simulations, we analyze the performance of the
three different approaches depending on the number of (randomly distributed)
training data points, that is in terms of the sparseness of the magnetometer data
and the amount of interpolation that is needed for prediction. For all three ap-
proaches we use a large number of basis functions (m = 4096). They are hence
expected to approach the performance of the full gp solution. To exclude prob-
lems with local minima in the hyperparameter optimization—which will be the
topic of a second set of simulations—the hyperparameter optimization is started
in the values used for simulating the data. The results from 30 Monte Carlo sim-
ulations are shown in Figure 5a. Naturally, the more data is used for training
the gp , the smaller the rmse becomes. The gp that models the magnetic field
measurements as gradients of a scalar potential field, outperforms the other two
approaches, independent of the amount of training data used. This can be under-
stood from the fact that this approach incorporates most physical knowledge.

In a second set of Monte Carlo simulations, the sensitivity to the initializa-
tion of the hyperparameter optimization is analyzed for the three different meth-
ods. Only one simulated data set is used but the hyperparameter optimization is
started in 30 randomly selected sets of hyperparameters θa

0 for a varying length of
the training data. The hyperparameters are assumed to lie around the estimates
that are obtained using the same optimization strategy as above for 8000 data
points. Hence, these sets of hyperparameters θa

true are known to results in small
rmse values as depicted in Figure 5a. The superscript ‘a’ on θa

true is used to explic-
itly denote that these sets of hyperparameters actually differ between the three
different approaches. For the approach where the magnetic field components are
modeled using independent gps, each component results in a set of hyperparam-
eters θa

true. For simplicity, in this approach, θa
true is chosen to be the mean of these

three sets of hyperparameters.
For each of the three approaches, the initial parameters θ0 are then assumed

to deviate from θa
true by at most 70% as

θ0 = θa
true [1 + 0.7 U(−1, 1)] . (31)

The Monte Carlo simulation results are depicted in Figure 5b. As can be seen, the
approach which models the three magnetic field components using separate gps
suffers most from local minima. Our proposed model using a scalar potential still
outperforms the other two.

6.2 Empirical proof-of-concept data

To illustrate our approach using real data, we have performed an experiment
where a number of sensors have been moved around in a magnetic environment.
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(b) Randomized over initializations.

Figure 5: The average rmse (with standard deviations) from 30 Monte Carlo
simulations as a function of the number of simulated data points used for
training the gp . The constantly lower error for the Hilbert space scalar poten-
tial gp in comparison to the separate gp models and shared hyperparameter
gp model is explained by the additional prior physical knowledge encoded
into the model. In (b), the shared hyperparameter gp shows a slight advan-
tage over the fully independent models.
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Optical marker Xsens imu Magnets

Figure 6: Setup of the experiment: On left the sensor board that was used
for collecting the data. The right side figure shows the magnetic environ-
ment used in the experiment shown from below comprising small magnets
to ensure sufficient excitation of the magnetic field.

The sensor board used is shown in Figure 6. We use the magnetometer data from
an Xsens mti (Xsens Technologies B.V., http://www.xsens.com). Accurate po-
sition and orientation information is obtained using an optical system. These high-
accuracy measurements were provided through the use of the Vicon real-time
tracking system (Vicon Motion Systems Ltd.,uk,http://www.vicon.com) cour-
tesy of the uas Technologies Lab, Artificial Intelligence and Integrated Computer
Systems Division (aiics) at the Department of Computer and Information Science
(ida), Linköping University, Sweden.

We obtain measurements while sliding the sensor board over a configuration
of small tables. To ensure sufficient excitation, magnets have been placed in an
irregular pattern underneath these tables as shown in Figure 6. Two different
data sets have been collected. Both consist of approximately three minutes of
data sampled at 100 Hz. One data set is used for training, while the second is for
validation. The data of both the training and validation data sets are displayed in
Figure 7a. To give an impression of the spatial variation of the magnetic field, the
magnetic field intensity has been visualized through the colors of the data. Note
that the magnetometer is calibrated such that it has a magnitude of one in a local
undisturbed magnetic field.

The magnetometer inside the imu measures the magnetic field at the different
locations. The optical measurements are used for two purposes. First, the positions
from the optical system are used as known locations in the gp approach. This is a
fairly reasonable assumption due to the high accuracy of the measurements of the
optical system. Second, the orientations estimated by the optical system are used
to rotate the magnetometer measurements from the magnetometer sensor frame
to the lab frame. This rotation of the magnetic field measurements is needed for
any of the gp methods discussed in this work. To use the optical and magnetome-
ter data together, they need to be time synchronized. This synchronization is done
in post-processing by correlating the angular velocities measured by the optical
system and by the gyroscope in the imu .

http://www.xsens.com
http://www.vicon.com
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Figure 7: Illustration of the magnetic field data and the results from the gp
approach from Algorithm 1 for the experiment discussed in Section 6.2. In all
figures, the y-axis is −0.5, . . . , 0.5 m. The x-axis is −0.4, . . . , 0.4 m. The units
in the field surface plots are arbitrary due to normalization.
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Figure 8: rmse as a function of the number of basis functions used in Al-
gorithm 1 as compared to a validation data set. The approximative model
approaches the full gp approach.

We run Algorithm 1 for the training data set. The domain Ω in the gp model
is set as L1 = L2 = 0.6 and L3 = 0.1. The actual two-dimensional movement is
performed in a rectangle of 80 cm×100 cm and is hence well within the domain Ω.
The computed scalar potential is shown in Figure 7b. From this, the predicted
magnetic field measurements can be computed which are shown in Figure 7d.
For completeness, the intensity of these predicted magnetic field measurements
are shown in Figure 7c. Although this quantity is only indirectly related to the
outcome of the gp approach, it is frequently used in the remaining sections
because of its easy and intuitive visualization.

By predicting the measurements at the locations of the validation data set, it is
also possible to compute the rmse on the validation data. In Figure 8 we visualize
the rmse as a function of the number of basis functions used in Algorithm 1. We
also compare to the rmse from a fullgp approach, that is using the same gp prior
but without the Hilbert space approximation scheme to speed up the inference.
To allow for comparison with a full gp approach—which suffers from a high
computational complexity for large data sets—the data has been downsampled to
5 Hz. As can be seen, already for around m = 1000 basis functions, the quality of
the estimates from Algorithm 1 approaches that of the full gp approach.

6.3 Mapping the magnetic field in a building

The third experiment was concerned with estimating a map of the magnetic en-
vironment inside a building by only using a smartphone for the data collection.
The mapped venue is located on the Aalto University campus, and a floor plan
sketch is shown in Figure 9. For practical reasons, we limited our interest to the
lobby which is approximately 600 m2 in size.



6 Experiments 269

012345 10 m

A training path
Validation path
Domain boundary

Figure 9: A training (red) and validation (blue) free-walking path that was
used in the experiment. Trajectories were collected by a mobile phone, and
the magnetometer data was corrected for gravitation direction and heading
using the inertial sensors in the device. Walking direction markers are shown
every 10 meters. The domain boundaries for the reduced-rank method are
shown by the dashed line.

For the measurements, we used an Apple iPhone 4 and its built-in 9-dof imu
(3-axis akm ak8975 magnetometer). All sensors were sampled at 50 Hz, and the
data was streamed online to a laptop computer for processing and storing. The
phone was held at waist-height and pointed towards the heading direction.

For reconstructing the walking path and phone orientation, we used a pedes-
trian dead-reckoning (pdr) approach developed at IndoorAtlas (IndoorAtlas Ltd.,
Finland, http://www.indooratlas.com), where only accelerometer and gyro-
scope readings were used—the path reconstruction thus being fully independent
of the magnetometer readings. The alignment to the map and drift correction
were inferred from a set of fixed points along the path during acquisition. Two
sample paths are shown in Figure 9: one of the three training paths with similar
routes and the validation path. The reconstructed paths were visually checked to
match the ‘true’ walking paths.

We covered the walkable area in the lobby with three walking paths follow-
ing the same route in each of them (see Figure 9). The reconstructed paths were

http://www.indooratlas.com
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approximately 242, 253, and 302 meters long, respectively. The number of mag-
netometer data samples acquired along the paths were 9868, 10500, and 12335.
Prior to each acquisition, the phone magnetometer was calibrated by a standard
spherical calibration approach. The combined size of the training data set was
n = 32703. For validation, we collected a walking path passing through the venue
(length 54 m, n = 2340).

We considered a batch interpolation problem of creating a magnetic map of
the lobby. The map was assumed static over time, and we applied Algorithm 1 to
the training data with m = 1024 basis functions. The optimized hyperparameters
were σ2

lin. ≈ 575 (µT)2, σ2
se/`

2
se ≈ 373 (µT)2, `se ≈ 1.87 m, and σ2

noise ≈ 5.53 (µT)2.
The coefficients of the inferred linear (bias) model corresponding to the linear
covariance function was (−1.095, 12.995,−41.119).

Figure 1 shows the interpolated magnetic field magnitude (‖f‖) and the vector
field components. The overall shape of the estimate agreed even when the model
was trained separately with each of the training paths. To most part, the strong
fluctuations in the magnetic field are located near walls or other structures in
the building. The strong magnetic field in the open area in the lower right part
of the floorplan was identified to most likely be due to a large supporting struc-
ture on the lower floor-level. We also used the model for predicting the measure-
ments along the validation part (see Figure 9). The component-wise rmses were
(2.35 µT, 3.05 µT, 2.71 µT) and mean absolute errors (1.72 µT, 2.42 µT, 2.03 µT).
The measurement noise level of the magnetometer is in the magnitude of 1 µT
and the uncertainty in the pdr estimate contributes to the remaining variance.

6.4 Online mapping

Finally, we demonstrate the power of sequential updating and time-dependent
magnetic field estimation. The mapping was performed by a lightweight and inex-
pensive mobile robot equipped with a magnetometer, and the task was to obtain
an estimate of the magnetic environment of an indoor space by re-calculating the
estimate in an online fashion. In the second part of the experiment the magnetic
environment was abruptly changed during the experiment, and the aim was to
catch this phenomenon by spatio-temporal modeling.

We used a robot for collecting the data. The robot was built on a Diddy-
Borg (PiBorg Inc., uk, http://www.piborg.org) robotics board, controlled by
a Raspberry Pi 2 (model B) single-board computer (Raspberry Pi Foundation, uk,
http://www.raspberrypi.org). For this example, we controlled the robot
over Bluetooth with a joystick.

The robot was equipped with a 9-dofmpu-9150 Invensense imu unit that was
sampled at 50 Hz. The data were collected and stored internally on the Raspberry
Pi. For additional validation, a Trivisio Colibri wireless imu (trivisio Prototyp-
ing GmbH, http://www.trivisio.com/), sampled at 100 Hz, and a Google
Nexus 5 smartphone (akm ak8963 3-axis magnetometer), sampled at 50 Hz, were
also mounted on the robot for checking the quality of the Invensense imu data.
To reduce disturbances caused by the robot, the sensors were mounted on an ap-

http://www.piborg.org
http://www.raspberrypi.org
http://www.trivisio.com/
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Optical marker Smartphone

Trivisio imuInvensense imu

DiddyBorg robot board

Figure 10: The robot was built on a DiddyBorg robotics board and controlled
by a Raspberry Pi single-board computer. The three sensors (Invensense,
Trivisio, and smartphone) providing magnetometer readings were mounted
on the top. The reference locations were provided by a Vicon optical tracking
system.

proximately 20 cm thick layer of Styrofoam. During post-processing the data, the
sensor positions and alignments on the robot were corrected for.

High-accuracy location and orientation reference measurements were
provided through the use of the Vicon (Vicon Motion Systems Ltd., uk,
http://www.vicon.com) real-time tracking system courtesy of the uas Tech-
nologies Lab, Artificial Intelligence and Integrated Computer Systems Division
(aiics) at the Department of Computer and Information Science (ida), Linköping
University, Sweden. The location measurements could alternatively be recovered
by odometry and heading information provided by the robot, but the interest in
this experiment was rather to focus on the interpolation of the magnetic field, not
the path estimation.

The task was to map the magnetic field inside a marked region roughly 6 m
× 6 m in size. The size of the region was limited by the field of view of the Vicon
system. The magnetometers were calibrated in the beginning of the measurement
session by rotating the robot around all of its axes. A standard spherical calibra-
tion approach was used. Due to limits in acquisition length of the Vicon system,
we captured the data in parts, each roughly three minutes in length. The mag-
netic environment remained unchanged for the first five data sets (paths shown
in Figures 11c–11g), and later on changes in the field were initiated by bringing
in large metallic toolbox shelves.

In the first part of the experiment, for interpolating the magnetic field we used
the sequential reduced-rank scalar-potential approach presented in Algorithm 2.
We assumed the magnetic environment stationary, and performed sequential up-
dates in an online fashion. For practical reasons the calculations were done off-
line, but the algorithm is fast enough for running in real-time. The rank of the
approximation was fixed to m = 1024.

http://www.vicon.com
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Figure 11: The gp interpolation task the robot was faced with. The final
interpolation outcome of the magnitude field is shown in (a), and the different
vector field components are shown in (b). Snapshots along the temporally
updating field estimate are shown in (c–g) together with the path travelled
since the previous update. The marginal variance (uncertainty) is visualized
by the degree of transparency.

The length-scale, magnitude, and noise variance hyperparameters were
learned from the first two data sets (n = 17980 vector valued observations) by
maximizing with respect to marginal likelihood (see Algorithm 1). The obtained
values were `se ≈ 0.32 m, σ2

se/`
2
se ≈ 287 (µT)2 and σ2

noise ≈ 3.27 (µT)2. The linear
model magnitude scale parameter was fixed to σ2

lin. = 500 (µT)2. The noise model
is not only capturing the sensor measurement noise, but the entire mismatch be-
tween the data and the model. This explains the rather large noise variance. We
also checked, that the hyperparameter estimates remained stable when optimized
using the rest of the data.

Figure 11 shows the results for the static magnetic field experiment. The esti-
mate was updated continuously five times a second, and we show five snapshots
of the evolution of the magnetic field estimate in Figures 11c–11g (vector field
magnitude shown in figures). These snapshots also show the path travelled since
the previous snapshot. The alpha channel acts as a proxy for uncertainty; the
marginal variance of the estimate is giving the degree of transparency. The final



7 Discussion 273

magnitude estimate—after iterating through all the n = 43029 observations—is
shown in Figure 11a together with the vector field components in Figure 11b.

The frontal part of the mapped region shows strong magnetic activity, whereas
the parts further back do not show as strong fields. Inspection of the venue sug-
gested metallic pipelines or structures in the floor to blame (or thank) for these
features. In this particular case most parts of the effect is seen in the x-component.
We repeated the reconstruction with data collected from the Trivisio and smart-
phone sensors, and the results and conclusions remained unchanged. As a supple-
mentary file to this paper, there is a video1 demonstrating the online operation
which has been sped-up 50×.

The last part of the experiment was dedicated to dynamical (time-dependent)
modeling of the magnetic field. We used all the data from the first part of the
experiment to train a sequential model and used that as the starting point for
changing the field (t = 0). During acquisition of data while the robot was driving
around, we brought in two metallic toolbox shelves: first a larger toolbox shelf on
wheels (Figure 12c) and then a smaller box (Figure 12d). We acquired altogether
some 300 s of data (n = 15513) of the changed environment.

For encoding the assumptions of a changing magnetic field, we used Algo-
rithm 2. The additional hyperparameter controlling the temporal scale was fixed
to `time = 1 hour, thus encoding an assumption of slow local changes. This choice
is not restrictive, because the data is very informative about the abrupt changes.

Figure 12a shows the evolution of the magnetic field components for one fixed
location (indicated by a red cross in the figures). The two toolboxes induce clear
changes in the local anomaly field, but the effects are restricted to the immediate
vicinity of the boxes. Thus the spatio-temporal model only gains information
about the changed field, when the robot passes by the location of interest. This
effect is clearly visible around t = 20 s, and later on around t = 70 s and t = 130 s.
After this the estimate stabilizes and only drifts around for the remaining time.
Even though the changes in the field components appear clear in Figure 12a,
they are only around 2 µT and thus only account for a variation of about 2% in
the scale of the entire field visualized in Figure 11b. Inducing more noticeable
changes in the magnetic field would require moving around larger structures
(say an elevator). Yet, even changes this small can be tracked by the modeling
approach.

7 Discussion

In recent years, interest has emerged in mapping of the magnetic field by Gaussian
processes for robot and pedestrian localization. This paper has aimed at present-
ing a new efficient method for mapping, but also at providing a study of best
practices in using gps in this context. Thus, we went through three different ap-
proaches for formulating gp priors for the magnetic field (independent, shared
hyperparameters, and curl-free/scalar potential). These three models differ in

1The supplementary video is available on YouTube: https://www.youtube.com/watch?v=
enlMiUqPVJo

https://www.youtube.com/watch?v=enlMiUqPVJo
https://www.youtube.com/watch?v=enlMiUqPVJo
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Figure 12: (a) Evolution of the magnetic field at one spatial location over a
time-course of 200 seconds. (b–d) The blue metallic toolboxes are brought in
at the beginning of the experiment. The abrupt changes in the field estimate
corresponds to time instances when the robot has passed the toolboxes and
gained information about the changed environment.

the amount of prior knowledge encoded in the model, and the more information
available in the prior, the better the interpolation and extrapolation capabilities
in the model—as long as the data agrees with the assumptions. This was also
demonstrated in Figure 4 and in Section 6.1.

The methods presented in this paper are related to the use of Gaussian random
field priors in inverse problems (Tarantola, 2004; Kaipio and Somersalo, 2005).
This connection has been explored from various points of views (cf. Särkkä,
2011). However, the machine learning (Rasmussen and Williams, 2006) way of
interpreting the gp priors indeed brings something new on the table—we are
explicitly modeling the uncertainty in the field by using a stochastic model, which
has interesting philosophical implications. The formulation of the prior through
a gp covariance function provides both an intuitive and theoretically justified
way of encoding the information.

Combining models from physics with gps has also been studied under the
name Latent force models by Álvarez and Lawrence (2009); Álvarez et al. (2013).
The connection of these models with spatio-temporal Kalman filtering was stud-
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ied, for example, in the work by Hartikainen and Särkkä (2011); Hartikainen et al.
(2012); Särkkä and Hartikainen (2012); Särkkä et al. (2013). However, the Kalman
filtering approach itself dates back to Curtain and Pritchard (1978) in the same
way that gps date back to O’Hagan (1978).

The scalar potential approach is not the only way to build the model. It would
also be possible to include disturbance in the model, which would model the effect
of free currents in the area or its boundaries. Furthermore, more complicated
assumptions of the temporal time-changing behavior of the magnetic field could
be included in the temporal covariance function. For example, various degrees of
smoothness or periodicity could be included in the framework.

This paper has been considering the ‘M’ (mapping) part in slam . The ‘L’
(localization) part based on these maps is presented in Solin et al. (2016). The
online mapping scheme presented in Algorithm 2 opens up for possibilities for
simultaneously building the map and localization within the map. As seen in the
experiments presented both in this work and in Solin et al. (2016), this appears
feasible and provides an interesting direction for further research.

8 Conclusion

Small variations in the magnetic field can be used as inputs in various positioning
and tracking applications. In this paper, we introduced an effective and practi-
cally feasible approach for mapping these anomalies. We encoded prior knowl-
edge from Maxwell’s equations for magnetostatics into a Bayesian non-parametric
probabilistic model for interpolation and extrapolation of the magnetic field.

The magnetic vector field components were modeled jointly by a Gaussian
process model, where the prior was associated directly with a latent scalar poten-
tial function. This ensures the field to be curl-free—a justified assumption in free
spaces. This assumption couples the vector field components and additionally
encodes the assumption of a baseline field with smooth small-scale variations. We
also presented connections to existing formulations for vector-valued Gaussian
process models.

In addition to constructing the model, we also presented a novel and compu-
tationally efficient inference scheme for interpolation and extrapolation using it.
We built upon a Laplace operator eigenbasis approach, which falls natural to the
formulation of the model. The inference scheme ensures a linear computational
complexity with respect to the number of observations of the magnetic field. We
also extended the method to an online approach with sequential updating of the
estimate and time-dependent changes in the magnetic field.

We presented four experiments demonstrating the feasibility and practicality
of the methods. A simulated experiment showed the benefit of including addi-
tional knowledge from physics into the model, and a simple proof-of-concept
example demonstrated the strength of the approximation scheme in solving the
model. Two real-world use cases were also considered: we mapped the magnetic
field in a building on foot using a smartphone, and demonstrated online mapping
using a wheeled robot.
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Abstract

This paper presents an approach for 6D pose estimation where mems
inertial measurements are complemented with magnetometer mea-
surements assuming that a model (map) of the magnetic field is known.
The resulting estimation problem is solved using a Rao-Blackwellized
particle filter. In our experimental study the magnetic field is gener-
ated by a magnetic coil giving rise to a magnetic field that we can
model using analytical expressions. The experimental results show
that accurate position estimates can be obtained in the vicinity of the
coil, where the magnetic field is strong.

1 Introduction

With the reducing cost of accelerometers and gyroscopes (inertial sensors) and
magnetometers, these sensor are becoming increasingly available in day-to-day
life. It is for instance common that these sensors are present in modern smart-
phones. Positioning based on inertial sensors alone suffers greatly from drift
and does not give reliable estimates for any but the highest quality sensors. Be-
cause of this, sensors such as gps and ultra-wideband are often used as an aiding
source (Hol, 2011). While gps solutions only work for outdoor applications, in-
door solutions are often highly dependent on additional infrastructure.

Magnetometers are a reliable source of information due to their high sampling
rates and reliable sensor readings. They measure the superposition of the local
earth magnetic field and the magnetic field induced by magnetic structures in
the vicinity. Magnetometers are widely used as a source of heading information,
relying on the assumption that no magnetic disturbances are present. Especially
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in indoor applications this assumption is often violated due to the presence of
steel in the construction of buildings and objects like radiators, tables and chairs.

This paper presents a method to obtain accurate position and orientation esti-
mates based on inertial and magnetometer data assuming a map of the magnetic
field is known. This enables positioning with widely available sensors, without
requirements on additional infrastructure.

In recent years, the idea of using the presence of magnetic disturbances as a
source of position information has started appearing in the literature. Most in-
terest is from the robot localization perspective where odometry information is
available (Suksakulchai et al., 2000; Navarro and Benet, 2009; Vallivaara et al.,
2011; Georgiou and Dai, 2010). Generally, in these applications localization is
only considered in 2D, and the sensor is assumed to be rotating around only one
axis. To the best of the authors’ knowledge, little work has been done on combin-
ing inertial and magnetometer measurements, for example Vissière et al. (2007);
Dorveaux et al. (2011). This is a more challenging problem compared to using
odometry information, since low grade inertial measurement units (imus) gener-
ally have poor dead-reckoning performance. The approach presented in Vissière
et al. (2007) is not based on magnetic field maps, but uses knowledge about the
physical properties of the magnetic field and its gradient to aid localization using
an extended Kalman filter approach. Other approaches focus on using sensors
in smartphones for localization (Chung et al., 2011; IndoorAtlas, 2012; Gozick
et al., 2011) and consider magnetometer data only or very limited information
from the inertial sensors. The direction of the magnetic field can, however, only
be derived from the magnetic field measurements when the sensor orientation
is known. Not estimating the full orientation therefore poses constraints on the
allowed sensor rotations. In our approach no constraints on the sensor rotations
are required since the full 6D pose is estimated.

To isolate the problem of localization inside a known magnetic field map from
the problem of obtaining the map, this work assumes that the magnetic field map
is known and is generated by a magnetic coil. The reason for using a magnetic
coil is that it is one of the few cases for which the magnetic field can be computed
analytically. In other words, we have a perfect model describing the magnetic field
produced by the magnetic coil. The magnetic field measurements can be described
as a nonlinear function of the sensor position in this map and its orientation with
respect to the map.

2 Models

Before introducing the dynamic and measurement equations, the relevant coor-
dinate frames and the state vector will be introduced. All measurements are as-
sumed to be obtained in the body coordinate frame denoted by b, which is the
coordinate frame of the measurement unit with the origin in the center of the ac-
celerometer triad. The position is tracked in the earth coordinate frame denoted
by e, which is fixed in the world. The magnetic field map is represented in the map
coordinate frame denoted by m whose orientation is assumed to be aligned with
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Figure 1: Magnetometer measurements represented in the earth coordinate
frame. The measurements have been preprocessed by subtracting the earth
magnetic field. The magnitude is indicated by the colors and the direction by
the arrows.

that of the coil. The origin of the earth coordinate frame e is assumed to coincide
with that of the map coordinate frame and with the center of the magnetic coil.

The relevant state vector consists of the sensor’s position pe and velocity ve,
its orientation with respect to the earth frame expressed as a unit quaternion

qeb =
(
q0 q1 q2 q3

)T
and the gyroscope bias bb

ω. In our model we have used
the inertial measurements as inputs to the dynamic equations in order to not
increase the state dimension. For reasons that will become clear after the model
has been provided, we split the state vector into two parts xt =

(
(xn
t )T (xl

t)
T
)T

,
where

xn
t =

(
(pe
t )
T (qeb

t )T
)T
, xl

t =
(
(ve
t )

T (bb
ω)T

)T
. (1)

2.1 Dynamical model

The dynamical equations can be derived by using the inertial measurements as
inputs. A commonly used, slowly time-varying random walk model is used for
the gyroscope bias (Hol, 2011). This leads to the following state update equations
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for the linear and nonlinear states (Hol, 2011; Törnqvist, 2008)
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Here, Ik denotes the identity matrix of size k × k, R(qeb
t ) ∈ SO(3) is the rotation

matrix obtained from the unit quaternion qeb
t and1

S̃(qeb
t ) =




−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0



. (3)

The input vector ut is given by

ut =
(
(yb

a,t)
T (ge)T (yb

ω,t)
T
)T
, (4)

where ge denotes the gravity vector and the accelerometer and the gyroscope
measurements are denoted by yb

a and yb
ω, respectively. The latter are modeled as

yb
a,t = Rbe

t (ae
t − ge) + wb

a,t , (5a)

yb
ω,t = ωb

t + bb
ω + wb

ω,t , (5b)

based on the fact that the accelerometer measures both the gravity vector and the
body’s free acceleration. The noise is modeled as

wb
a ∼ N (0, Qa), Qa = σ2

a I3, (6a)

wb
ω ∼ N (0, Qω), Qω = σ2

ωI3, (6b)

wb
bω
∼ N (0, Qbω ), Qbω = σ2

bω
I3. (6c)

1Note that the propagation of the quaternion state in this way is an approximation, valid only
for high sampling rates. The algorithm does not prevent use of the exact update equation and the
approximation is only used to reduce computational complexity.
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The state noise is assumed to be distributed according to

wt =
(
wn
t
wl
t

)
∼ N (0, Q), (7a)

Q =
(
Qnn Qnl

(Qnl)T Qll

)
=




Qa 0 Qa 0
0 Qω 0 0
QT

a 0 Qa 0
0 0 0 Qbω



. (7b)

Note that the linear and nonlinear state noise is highly correlated since the ac-
celerometer noise acts on both the position and velocity states. This needs to be
taken into account in the implementation.

2.2 Magnetometer measurement model

The magnetometer measurements are modeled as

yb
m,t = h(xn

t ) + eb
m,t , (8)

where eb
m,t ∼ N (0, R) and h(xn

t ) is a function of the position pe
t and orientation qeb

t
states. In practice this will be a superposition of the local earth magnetic field and
all magnetic disturbances present.

As discussed in the introduction, to isolate the problem of positioning inside a
map from the problem of making the map, we chose an experimental setup where
the magnetic field is generated by a magnetic coil. In this case a magnetic field
map is analytically known assuming the coil’s position and orientation are known.
The function h(xn

t ) is given by

h(xn
t ) = R(qbe)RemB(Rmepe

t ). (9)

The function B(Rmepe
t ) gives the magnetic field in the map coordinate frame at

a position pm. The expression for the magnetic field from the coil is given by
(Schepers, 2009)

B(pm) =
µ0NwI

2π

√(√
p2
x + p2

y + a
)2

+ p2
z




pxpz
p2
x+p2

y

[
− K(k) +

a2+p2
x+p2

y+p2
z(√

p2
x+p2

y−a
)2

+p2
z

E(k)
]

pypz
p2
x+p2

y

[
− K(k) +

a2+p2
x+p2

y+p2
z(√

p2
x+p2

y−a
)2

+p2
z

E(k)
]

[
K(k) +

a2−p2
x−p2

y−p2
z(√

p2
x+p2

y−a
)2

+p2
z

E(k)
]




, (10)

where pm =
(
px py pz

)
, µ0 is the magnetic permeability in vacuum, a is the

coil radius, Nw is the number of windings, I is the current through the coil and
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E(k) and K(k) are given by the following elliptic integrals

E(k) =

π/2∫

0

√
1 − k2 sin2 θdθ, (11a)

K(k) =

π/2∫

0

1√
1 − k2 sin2 θ

dθ, (11b)

where

k =

√√√√√√√√ 4a
√
p2
x + p2

y

(
√
p2
x + p2

y + a)2 + p2
z

. (12)

These equations implicitly assume that the origin of the earth coordinate frame
coincides with that of the map coordinate frame. Note that our measurement
model assumes that no background field is present.

2.3 Some additional words about the magnetic field model

The magnetic field of a coil is generally described as a function of the perpendicu-

lar distance pz towards the coil and the radial distance r =
√
p2
x + p2

y towards the
center of the coil (Schepers, 2009; Griffiths, 1999). However, in tracking we are
interested in absolute position rather than just the distance to a source. Parametriz-
ing the magnetic field in terms of a position px, py , pz introduces unobservability.
Assuming the coil is placed horizontally, this results in two horizontal circles,
one above and one below the coil, where the horizontal position is coupled to
the heading as an unobservable manifold. We assume that the sensor can only be
positioned above the coil and therefore have an entire circle of solutions at each
time step. Note that in the more general case where multiple magnetic sources
are present and possibly rotated with respect to each other, the unobservable
manifold will be differently shaped or in some cases non-existent. To make our
dynamic model applicable to any magnetic field map, we have not adapted the
parametrization of our state vector to this specific structure.

3 Computing the estimate

As can be seen from the dynamical and measurement model presented in Sec-
tion 2, the state dynamics is assumed to be linear while the measurement model is
a nonlinear function of the sensor’s position and orientation. A nonlinear filtering
technique is therefore needed to compute a state estimate. A linear substructure
can, however, be recognized, which can be exploited using a Rao-Blackwellized
particle filter (rbpf) in which the state is split into a state xl that enters linearly in
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both the dynamic and measurement model and a state xn that enters non-linearly,
where xl and xn are defined by (1). An rbpf solves the nonlinear filtering problem
by using a Kalman filter (kf) for the linear states and a particle filter (pf) for the
nonlinear states.

The rbpf in this paper has been derived from Törnqvist (2008) and Lindsten
(2011) and is summarized in Algorithm 1. It applies the model structure (2), (8),
the noise assumptions (6) and their correlations given in (7). In (13), x̄it and P̄ it
are computed, which are a stacked version of the nonlinear and linear states
and covariances. Based on these, the nonlinear and linear time update are given
by (14), (15) respectively. Note that in (15) the pseudo-inverse, denoted by †, of
P̄ nn,i
t needs to be taken because this matrix is rank deficient due to the presence

of quaternion states.
Since the measurement model (9) only depends on the nonlinear states, mea-

surement information about the linear states is in our problem only available
through the nonlinear states. Algorithm 1 does therefore not contain an explicit
kfmeasurement update. However, measurement information implicitly present
in the nonlinear states is taken into account in the linear states in (15).

3.1 RBPF-MAP

To compare particle filter estimates to reference data, a point estimate needs to
be computed at each time step. The most commonly used approach for this is to
take the conditional mean estimate. Due to the unobservability in our model (see
Section 2.3), however, all particles on a horizontal circle are equally likely, which
can lead to an uninformative point estimate in center of the circle.

In Driessen and Boers (2008); Saha et al. (2009) a maximum a posteriori es-
timate for the particle filter (pf-map) has been derived, which is argued to give
a better point estimate in multi-modal applications. The pf-map estimate is an
approximation of the map estimate given by

x̂mapt|t = arg max
xit

p(yt |xit)
∑

j

p(xit |xj1:t−1)wjt−1. (16)

Following a similar reasoning, the rbpf-map estimate, can be shown to be

x̂mapt|t = arg max
xn,i
t ,xl,i

t

p(yt |xn,i
t , x

l,i
t )

∑

j

w
j
t−1N (xit ; x̄

j
t|t−1, P̄

j
t|t−1), (17)

where x̄jt|t−1 and P̄
j
t|t−1 can be obtained from (13). Note that since our problem

does not have a kf measurement update, instead of the commonly used double
subscript denoting the time for the linear states, Algorithm 1 only uses a single
subscript.

When implementing this in Step 2 of the Algorithm 1, it needs to be taking
into account that the covariance matrix P̄ jt is rank deficient due to the presence of
quaternion states. Because computation of (17) is computationally heavy, it could
also be considered to use the most probable particle of the posterior. This would
lead to similar results in Section 4.
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Algorithm 1 Rao-Blackwellized particle filter

1. Initialization: For i = 1, . . . , N generate xn,i
0 ∼ pxn

0
, set {xl,i

0 , P
i
0 } = {xl

0, P0},
γ i−1 = 1

N , and set t = 0.

2. Measurement update: For i = 1, . . . , N evaluate the particle impor-
tance weights γ it = 1

ct
γ it−1p(yt |xn,i

0:t , y0:t−1) based on (8) where ct =
∑N
i=1 γ

i
t−1p(yt |xn,i

0:t , y0:t−1).

3. If t > 0, compute the estimate x̂t based on (17).

4. Resampling: If N̂eff = 1∑N
i=1(γ it )2 < 2

3N , resample N particles with replace-

ment from the set {xn,i
t , x

l,i
t }Ni=1 where the probability to take sample i is γ it ,

and reset the weights to γ it = 1
N .

5. Time update: Determine the Gaussian mixture

x̄it+1 = Aitx
i
t + Bitut , (13a)

P̄ it+1 = Al,i
t P

i
t (Al,i

t )T + GitQ(Git)
T, (13b)

where

x̄it =
(
x̄n,i
t

x̄l,i
t

)
, P̄ it =

(
P̄ nn,i
t P̄ nl,i

t

(P̄ nl,i
t )T P̄ ll,i

t

)
,

Al,i
t =

(
Anl,i
t (xn,i

t )
All

)
, Ait =

(
Ann Anl,i

t (xn,i
t )

0 All

)
,

Bit =
(
Bn,i
t (xn,i

t )
Bl,i
t (xn,i

t )

)
, Git =

(
Gn,i
t (xn,i

t ) 0
0 Gl,i

t (xn,i
t )

)
.

The nonlinear states can now sampled according to

xn,i
t+1 ∼ N (x̄n,i

t+1, P̄
nn,i
t+1 ), (14)

and the linear states can be updated according to

xl,i
t+1 = x̄l,i

t+1 + (P̄ nl,i
t+1 )T(P̄ nn,i

t+1 )†(xn,i
t+1 − x̄n,i

t+1), (15a)

P it+1 = P̄ ll,i
t+1 − (P̄ nl,i

t+1 )T(P̄ nn,i
t+1 )†P̄ nl,i

t+1 . (15b)

6. Set t := t + 1 and iterate from Step 2.
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4 Experimental results

4.1 Experimental setup

An experiment has been performed in which the magnetic field is generated by
a magnetic coil where the number of windings Nw is equal to 50, the current I
through the coil is 1 A and the radius a of the coil is 6 cm. Amems imu (Xsensmti)
providing synchronized inertial and magnetometer measurements at a sampling
frequency of 100 Hz is used. A picture of the experimental setup can be found in
Figure 2. Ground truth data is collected from an optical reference system (Vicon
system) and is used for validation of the estimates as well as for determining the
position and orientation Rem of the coil.

Figure 2: The experimental setup consisting of an imu (orange box), a coil
and a power supply. Optical markers are present, used for obtaining ground
truth data, via an optical reference system.

Before the magnetometer measurements can be used in Algorithm 1, they
need to be preprocessed for two reasons. First, the model (9) assumes that the
magnetometer only measures the magnetic field due to a coil. A constant term
representing the local earth magnetic field therefore needs to be determined and
subtracted from all measurements. Second, the imu used outputs magnetometer
measurements in arbitrary units, while the model (9) determines the magnetic
field in Tesla. A constant multiplication on all axes is therefore needed. Both
constants are obtained by determining a best estimate from a part of the data
where the magnetic disturbance is (approximately) zero. The preprocessed data
is illustrated in Figure 1. The circles represent the preprocessed magnetometer
measurements, downsampled to 4 Hz. The color of the circles represents the mag-
nitude of the magnetic field. The magnetic field falls off cubically with distance
which explains why the magnitude of the magnetic field is reduced quickly with
distance from the coil. Each preprocessed measurement also gives rise to a red
arrow indicating the direction of the magnetic field. The length of the arrows
illustrates the magnitude.
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4.2 Results

Using the collected inertial and magnetometer data, Algorithm 1 can be applied
to obtain state estimates. Due to the fact that the magnitude of the magnetic field
falls off cubically with distance, all results in this section are based on data no
further away from the coil’s origin than 40 cm. These have been compared to the
ground truth data from the reference system. This section focuses on analysis of
the position estimates. Due to the unobservability discussed in Section 2.3 we
do not expect exact matches between the rbpf estimates and the ground truth
data. A good comparison of the quality of the estimates, however, are the radial
position and height estimates. The error plots can be found in Figure 3. The rbpf
is initialized around the true estimate using the reference data, but any other
(reasonable) initialization will give comparable results.

As can be seen in Figure 3, very good position estimates are obtained. However,
at approximately 42 s, there is a big peak in both the radial position and the height
errors. This can be explained by the fact that at this time instant, the sensor is
the furthest away from the coil, almost 40 cm. The approach presented in this
work is thus able to obtain high accurate position estimates for longer times, only
when the sensor remains close to the coil. This is a major limitation in using the
magnetic field as a source of position information in the way presented in this
paper. The further away from the magnetic disturbance the less informative the
measurements become. Even though at 40 cm from the coil the signal to noise
ratio is still good, tracking problems occur due to model errors. It is therefore
important to have a good model of the magnetic field (Wahlström et al., 2013).

5 Conclusions and future work

This paper has shown that close to a magnetic distortion generated by a mag-
netic coil, good position and orientation estimates can be obtained from inertial
and magnetometer data only. Ideas for future work include extending the mag-
netometer model to a more realistic measurement model. First trials show that
we can probably deal with including the local earth magnetic field. We also aim
at combining this work with Wahlström et al. (2013) into an approach where si-
multaneous localization and mapping (slam) is possible. Another future line of
research aims at studying the unobservability manifolds from the magnetic field
in different cases.
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Figure 3: Error plots comparing the rbpf position estimates with the ground
truth data from the optical reference system.
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