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Abstract

Signal processing techniques for multiple-antenna transmission can exploit the spatial di-

mension of the wireless channel to serve multiple users simultaneously, achieving high spec-

tral efficiencies. Realizing such gains; however, is strongly dependent on the availability

of highly accurate and up-to-date Channel State Information at the Transmitter (CSIT).

This stems from the necessity to deal with multiuser interference through preprocessing; as

receivers cannot coordinate in general. In wireless systems, CSIT is subject to uncertainty

due to estimation and quantization errors, delays and mismatches. This thesis proposes

optimized preprocessing techniques for broadcasting scenarios where a multi-antenna trans-

mitter communicates with single-antenna receivers under CSIT uncertainties.

First, we consider a scenario where the transmitter communicates an independent mes-

sage to each receiver. The most popular preprocessing techniques in this setup are based on

linear precoding (or beamforming). Despite their near-optimum rate performances when

highly accurate CSIT is available, we show that such techniques exhibit severe losses un-

der CSIT uncertainties, even when optimally designed. We depart from this conventional

approach and adopt an unorthodox transmission strategy based on Rate-Splitting (RS),

which relies on broadcasting a common data stream on top of the private data streams

precoded using partial CSIT. We propose an average Weighted Minimum Mean Square

Error (WMMSE) algorithm to maximize the ergodic sum-rate performance.

While the ergodic sum-rate measure captures the long-term overall performance, it is not

well suited for delay-limited or fairness based transmissions. Hence, we generalize the RS

strategy to formulate the problem of achieving robust max-min fairness over one random

fading state under a bounded CSIT uncertainty model. We derive new performance limits

in terms of the symmetric-DoF under heterogeneous CSIT qualities across users to identify

the RS gains. Then, a robust WMMSE algorithm based on the cutting-set method is

proposed to solve the semi-infinite optimization problem. This framework is extended to

address the problem of power minimization under Quality of Service (QoS) constraints.

Finally, we consider the problem of achieving max-min fairness in a multigroup multicas-

ting scenario, where each message is intended to a group of users. We assume perfect CSIT

in this setup, where the presence of multiple users in each group is thought of as a source

of (finite) uncertainty. The DoF performance of conventional beamforming techniques are

derived from which their limitations are identified. The RS strategy is then extended to

this scenario, where we show that significant DoF gains can be achieved. The RS precoder

optimization problem in this setup is then solved using the WMMSE approach.
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1. Introduction

Wireless communication has become an integral part of our daily life. The emergence of

mobile broadband has enabled a plethora of applications touching every aspect of modern

society. Conversely, the development of new applications fuels an ever growing demand

for ubiquitous high-quality connectivity. Meeting such demand requires the continuous

development of highly efficient and robust systems.

Multiple-Input-Multiple-Output (MIMO) technology has been at the heart of modern

advancements in the physical layer of wireless systems. MIMO has developed beyond

the classical point-to-point channel, and nowadays includes multiuser setups where spatial

dimensions are exploited to serve several receivers simultaneously. High multiplexing gains

are realized in multiuser setups with far less restrictions on the scattering environment

compared to the point-to-point channel [1]. However, this comes with a price of higher

restrictions imposed on the quality of the Channel State Information (CSI) required at the

tranmsitter, specifically in the downlink mode. This stems from the necessity to deal with

multiuser interference through preprocessing, as the receivers are generally decentralized

and cannot cooperate. The ability to provide highly accurate and up-to-date CSI at the

Transmitter (CSIT) is questionable. Therefore, considerable effort has been devoted to

characterize and improve the performance in the presence of CSIT uncertainties.

1.1. Background and Motivation

Consider a Multiuser Multiple-Input-Single-Output (MU-MISO) system operating in down-

link, where a Base Station (BS) equipped with multiple antennas communicates with K

single-antenna receivers. This system is illustrated in Figure 1.1. The signal received by

the kth user is expressed by

yk = hH
k x+ nk (1.1)

where hk denotes the vector channel, x is the transmitted signal, and nk is received noise.

A typical transmission scenario is one where the BS wishes to communicate independent

data to each user. It is also typical to construct the transmitted signal as a superposition

of the K users’ data signals such that

x = x1 + x2 + . . .+ xK (1.2)

where xk denotes the signal intended to the kth user. Due to the broadcast nature of

14



BS

User 1

User K

CSIT

acquisition

CSIT

acquisition

h1

hK

Figure 1.1.: MU-MISO system with K users operating in downlink. The acquisition of
CSIT is typically done through quantized feedback or uplink training.

the wireless channel, each user receives a linear transformation of the transmitted signal

with all its components. The undesired parts of the received signal is known as multiuser

interference. Such interference can have a detrimental effect on the performance of the

wireless system by limiting each receiver’s ability to recover its desired signal.

One way to eliminate interference is to place each user’s signal in the null space of all

other users’ channels. In particular, we have

xk ∈ null
(
[h1, . . . ,hk−1,hk+1, . . . ,hK ]H

)
(1.3)

which is known as the Zero Forcing (ZF) strategy. In this case, no user sees the signal of

another user, and the received signal reduces to

yk = hH
k xk + nk. (1.4)

By eliminating multiuser interference, each user is said to achieve a full Degree of Freedom

(DoF), i.e. a DoF of 1. A DoF in this context can be understood as a an interference-free

signal dimension, entirely reserved for the user throughout the transmission. Hence, the

total DoF (sum-DoF) of the channel in this case is K.

One implicit condition required to achieve interference-free transmission is that the num-

ber of antennas should be at least equal to K. This is usually guaranteed by scheduling

the right number of users in each transmission period1. Another condition is that the BS

should know the CSI, characterized in this case by the channel matrix given by

H , [h1, . . . ,hK ]. (1.5)

Typically, the BS acquires such information through feedback links in Frequency Division

1Another condition is that the channel matrix, comprising channel vectors of all users, should be well
conditioned. This is assumed to be satisfied in multiuser scenarios.

15



Duplex (FDD) systems or uplink training pilots in Time Division Duplex (TDD) systems.

Assuming that H is perfectly known by the BS is somehow optimistic, as both methods

are subject to errors. Moreover, wireless/mobile channels are subject to fading and are

expected to change. Hence, even if the acquired CSI is of high quality, unless it was

updated on a regular basis, it may be partially or fully outdated.

1.1.1. No CSIT

The essential value of CSIT is in the directions of h1, . . . ,hK . This enables the BS to place

the signal of each user in the null space of all others as shown in (1.3). Assuming the

extreme case of no CSIT2, the BS loses such ability. In this case, the BS should resort to

an alternative method of multiuser interference management.

One method is to transmit each of the signals x1, . . . ,xK in an orthogonal slot (time or

frequencey). This can be achieved using Time Division Multiple Access (TDMA), where

each signal gets the entire channel to itself for a fraction of the transmission period. The

received signal is still expressed by (1.4), as multiuser interference is eliminated. However,

each user gets only a fraction of this interference-free transmission. By allocating time

equally amongst users, a DoF of 1/K per user is achieved. The sum-DoF in this case is 1.

1.1.2. Partial CSIT

The absence of CSIT has a detrimental effect on the achievable DoF. However, this assump-

tion is overly pessimistic, particularly in modern wireless communication systems where a

form of CSIT acquisition is carried out as illustrated in Figure 1.1. The CSIT acquired by

the BS, also known as the channel estimate, for the kth user can be expressed by

ĥk = hk − h̃k (1.6)

where h̃k denotes the channel estimation error. To evaluate the influence of CSIT uncer-

tainty on the DoF, it is customary to look at the CSIT scaling laws with the Signal to Noise

Ratio (SNR). Let Pt be the transmit SNR3. The CSIT error scales with SNR such that

∥h̃k∥2 = O
(
P−α
t

)
, for some scaling factor α ∈ [0, 1]. This factor characterizes the quality

of the CSIT as explained in the following discussion.

Consider the same ZF design in (1.3), except that now the BS uses imperfect CSIT as

xk ∈ null

([
ĥ1, . . . , ĥk−1, ĥk+1, . . . , ĥK

]H)
. (1.7)

2The BS may know the channel gains, i.e. ∥h1∥, . . . , ∥hK∥, but not the directions.
3Assuming a normalized noise variance, this corresponds to the transmission power at the BS.
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This yields a received signal given by

yk =

O(Pt)︷ ︸︸ ︷
hH
k xk +

O(P 1−α
t )︷ ︸︸ ︷

h̃H
k

∑
i ̸=k

xi+

O(P 0
t )︷︸︸︷

nk (1.8)

which bears residual multiuser interference, resulting from the imperfect interference nulling.

Note that the SNR scalings of different received signal components are shown in (1.8). To

explain such scalings, consider the noise component. This clearly does not scale with SNR,

as the effects of noise can be eliminated by making Pt sufficiently large. The residual in-

terference on the other hand scales as O(P 1−α
t ), which follows from the CSIT error scaling.

Such scaling is what causes the loss in DoF.

It is clear from (1.8) that the Signal to Interference plus Noise Ratio (SINR) scales as

O(Pα
t ). Hence, it follows that the data rate achieved by the kth user can be expressed by

α log2(Pt) +O(1). (1.9)

The pre-log factor in (1.9) is in fact the achievable DoF4. The residual multiuser interference

in (1.8) occupies a fraction 1−α of the signal space, leaving the remaining α for the useful

signal. Hence, ZF achieves a fraction α of the full DoF, i.e. αK, under partial CSIT.

Note that α = 1 is considered perfect in the DoF sense, as the residual interference would

scale as O(P 0
t ). This is similar to the noise scaling, and can be eliminated by increasing

Pt. On the other hand, α = 0 corresponds to no CSIT in the DoF sense, as simultaneous

interference-free multiuser transmission is not possible.

1.1.3. A Rate-Splitting Approach

Recall that from the BS’s point of view, the channel in (1.6) is a superposition of a known

component and an unknown component. Hence, blindly applying a scheme based on the

known component only is in fact not the best strategy. Instead, a better suited strategy is

one that bridges transmission with perfect CSIT (based on ZF) and transmission with no

CSIT (e.g. TDMA). To achieve this, the transmitted signal is divided (or split) into two

corresponding parts: one to exploit the known component of the channel, while the other

is adapted to the unknown component. This transmission strategy is known in literature

as Rate-Splitting (RS) [2, 3], or signal space partitioning [4].

Let us first assume, without loss of generality, that this splitting is performed on the

signal of user-1. The corresponding transmitted signal of user-1 writes as

x1 + xc (1.10)

where the notation x1 is retained for one of the parts for ease of the following analysis. The

4Also known as the multiplexing gain in the MIMO literature.
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signals given by x1, . . . ,xK are meant to exploit the known part of the channel, and hence

they are designed according to (1.7). On the other hand, xc is broadcasted in an isotropic

manner (with no preferred direction), resembling transmission with no CSIT. Now, let us

allocate the average powers such that5

E
{
∥x1∥2

}
= E

{
∥x2∥2

}
= . . . = E

{
∥xK∥2

}
=
Pα
t

K
and E

{
∥x̃1∥2

}
= Pt − Pα

t . (1.11)

From this power allocation, it follows that the signal received by the kth user writes as

yk =

O(Pt)︷ ︸︸ ︷
hH
k xc+

O(Pα
t )︷ ︸︸ ︷

hH
k xk +

O(P 0
t )︷ ︸︸ ︷

h̃H
k

∑
i̸=k

xi+

O(P 0
t )︷︸︸︷

nk . (1.12)

First, it can be seen that xc is received by all users with a SINR that scales as O
(
P 1−α
t

)
.

Hence, it can be decoded by all users achieving a DoF of 1− α. Note that while xc is not

required by all users, decoding it allows them to remove it from the received signal, and

then decode their own signals under reduced interference. After removing xc, it can be

seen that xk is received with a SINR scaling as O
(
Pα
t

)
, achieving a DoF of α.

By virtue of the power allocation in (1.11), the signal space is divided into two partitions:

one where transmission with no CSIT is carried out, and another where ZF is performed

using partial CSIT without leaking significant interference. Hence, an additional DoF of

1−α is achieved through xc, while retaining the Kα achieved through ZF. Note that in the

above example, the DoF of 1 − α achieved with no CSIT is given entirely to user-1. This

DoF can be further divided amongst users in a manner suitable for its no CSIT nature, e.g.

TDMA. The sum-DoF is always given by 1 + (K − 1)α.

1.1.4. Design and Optimization

The RS strategy described above provides a general guideline to a communication scheme

suited for transmission with partial CSIT, with some insight into the signal design and

power allocation in the high SNR regime. However, this is far from enough to achieve an

optimized performance over the range of finite SNRs. As we can see from (1.9), while the

DoF describes the rate scaling for high SNRs, it does not say much (if anything at all)

about the actual achievable rates for specific finite (or low) SNR values.

To highlight the importance of signal optimization, consider x1, . . . ,xK in (1.12) designed

using the ZF strategy in (1.7). While such strategy achieves the aspired DoF, it is known

to be suboptimal at finite SNRs. An optimized design on the other hand strikes a delicate

balance between interference nulling and maximizing the desired signal power [5]. Moreover,

xc was designed with no CSIT knowledge at all, as such knowledge does not provide DoF

gains in this case. However, since xc is decoded by all users, partial CSIT can still be

leveraged to enhance the performance at finite SNRs through a multicast-like design [6].

5Note that the powers in (1.11) satisfy a total power constraint of Pt.
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The signal optimization at finite SNRs requires a comprehensive CSIT uncertainty model,

as the SNR scaling laws are not sufficient to formulate such design problem. For example,

CSIT uncertainty with known statistical properties can be used to formulate the problem in

terms of average-based or outage-based performance metrics. Moreover, the objective of the

design should be clearly identified, based on the considered scenario and application. The

objective may be to maximize the sum-rate performance, where very little regard is given

to the individual rates achieved by users. Another objective is maximizing the minimum

rate amongst users to achieve fairness, where more attention is paid to individual rates.

This may highly influence the manner in which resources are allocated, signals are divided

and signal space partitions are accessed by different users.

This thesis proposes RS-based signal designs for a number MU-MISO scenarios. The

different scenarios share certain features, making RS applicable to all of them. However,

underlying assumptions and design objectives differ from one scenario to the other, yielding

optimization problems with distinct structures and challenges.

1.2. Outline and Contributions

Preprocessing techniques based on linear precoding are adopted throughout this thesis.

Hence, the transmitted signal model in (1.2) is expressed by

x = pcsc +

K∑
k=1

pksk. (1.13)

This reduces the signal optimization problem to designing the precoding vectors in (1.13)

such that a certain objective function is maximized, subject to some constraints, and under

a well-defined CSIT uncertainty model. Such robust6 precoder optimization, in the light of

the RS transmission strategy, is the main theme of this thesis.

A summary of each chapter, highlighting the main contributions, is given as follows.

• Chapter 2: Preliminaries lays the foundations for this thesis by describing the

signal and channel models, the main assumptions regarding CSIT uncertainty, in ad-

dition to introducing important concepts and definitions used throughout this thesis.

• Chapter 3: Sum-Rate Maximization considers a transmission that takes place

over a long sequence of fading states. The objective is to design an adaptive precoding

scheme that updates the precoders based on the available CSIT to maximize the

ergodic sum-rate performance subject to a transmission power constraint. This is

achieved by solving a conditional average rate optimization problem for each incoming

CSIT state. To solve the stochastic optimization problem at hand, we propose an

6This comes from the uncertainty in the model due to partial CSIT. The notion of robustness will be
discussed in detail in the following chapters.
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algorithm based on the Weights Minimum Mean Square Error (WMMSE) approach

[7, 8] coupled with means of Sample Average Approximation (SAA) [9].

• Chapter 4: Fairness and Quality of Service considers transmission over one

random fading state under a bounded CSIT uncertainity model. We consider the

classical robust design problem (in the worst-case sense) of achieving max-min fairness

in the light of the new RS strategy. First, we derive new performance limits to identify

the benefits of employing RS to achieve fairness amongst users with heterogeneous

CSIT qualities. Such gains are characterized in terms of the symmetric-DoF. Then we

develop a robust WMMSE algorithm based on the cutting-set method [10] to solve the

semi-infinite optimization problem. Finally, the framework is extended to the problem

of power minimization under worst-case Quality of Service (QoS) constraints.

• Chapter 5: Multigroup Multicasting departs from the unicast transmission sce-

nario considered in two previous chapters Alternatively, we consider a multigroup

multicast transmission, where each signal is intended to a group of users. Perfect

CSIT is assumed in this chapter, and we consider the problem of achieving max-min

fairness amongst groups. A resemblance to the MU-MISO setups considered in pre-

vious chapters is observed by viewing each group of users as a receiver, and each

user in a group as a channel state in a finite uncertainty region. First, we show that

conventional beamforming designs suffer from inter-group interference that limits the

performance, particularly when the number of transmitting antennas is insufficient.

Then, we formulate the RS multigroup multicasting problem, and we derive perfor-

mance limits that demonstrate the superiority of this strategy. Finally, the design

problem is solved using the WMMSE approach.

• Chapter 6: Conclusion provides the concluding remarks of the thesis and suggests

a number of future research directions.

The schemes and algorithms proposed in the three core chapters, i.e. Chapter 3, Chapter

4 and Chapter 5, are evaluated and analysed through simulations under various parameters.

For the sake of readability and to avoid interruptions, lengthy proofs of the main results

are relegated to the appendices. However, important ideas in the proofs, discussions and

insights drawn from such results are mentioned in the chapters.

1.3. Publications

The work in this thesis has resulted in a number of papers, that have been published,

accepted or submitter for publication, or are still under preparation.

20



To be submitted

• H. Joudeh and B. Clerckx, ”Multigroup Multicast Beamforming in Overloaded Sys-

tems: A Rate-Splitting Approach,” (working title) to be submitted.

Peer-reviewed journals and magazines

• H. Joudeh and B. Clerckx, ”Robust Transmission in Downlink Multiuser MISO

Systems: A Rate-Splitting Approach,” submitted to IEEE Transactions on Signal

Processing, (accepted with minor corrections).

• H. Joudeh and B. Clerckx, ”Sum-rate maximization for linearly precoded downlink

multiuser MISO systems with partial CSIT: A Rate-Splitting Approach,” submitted

to IEEE Transactions on Communications, (major corrections).

• B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, ”Rate Splitting for MIMO

Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution,” IEEE

Communication Magazine, special issue on LTE Evolution, 2016.

Peer-reviewed conferences

• H. Joudeh and B. Clerckx, ”A Rate-Splitting Strategy for Max-Min Fair Multi-

group Multicasting,” IEEE International workshop on Signal Processing advances in

Wireless Communications (SPAWC), 2016.

• H. Joudeh and B. Clerckx, ”A Rate-Splitting Approach To Robust Multiuser MISO

Transmission,” IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), 2016.

• H. Joudeh and B. Clerckx, ”Sum rate maximization for MU-MISO with partial

CSIT using joint multicasting and broadcasting,” IEEE International Conference on

Communications (ICC), 2015.

• H. Joudeh and B. Clerckx, ”Achieving max-min fairness for MU-MISO with partial

CSIT: A multicast assisted transmission,” IEEE International Conference on Com-

munications (ICC), 2015.

1.4. Notations

The following notations are used throughout the thesis. Boldface uppercase denote matrices

(e.g. A), boldface lowercase denote vectors (e.g. a), and standard letters denote scalars

(e.g. a). The identity matrix is denoted by I, where the dimensions should be clear

from the context. ei is the ith column of matrix I with the appropriate dimension. The

superscrips (·)T , (·)H and (·)† denote the transpose, conjugate-transpose (Hermitian), and
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pseudo-inverse operators, respectively. tr(·) denotes the trace operator. A ≽ 0 means

that the symmetric matrix A is positive semidefinite. diag(a) is a diagonal matrix, with

diagonal entries given by the elements of a. On the other hand, diag(A) is a vector with

entries given by the diagonal elements of A. The Euclidian norm is denoted by ∥ · ∥. The
expectation with respect to a random variable X is denoted by EX{·}. Finally, we define

the function (x)+ , max{x, 0}.
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2. Preliminaries

This chapter lays the foundations for this thesis by: describing the system model and

main assumptions, and introducing important terminology and definitions. This thesis

focuses on setups where a single transmitter equipped with multiple antennas communicates

with multiple single-antenna receivers under Additive White Gaussian Noise (AWGN). In

information theoretic terms, such setups are known as Gaussian Multiple-Input-Single-

Output (MISO) Broadcast Channels (BCs), or MISO-BCs for short. We start by describing

a general signal model for the MISO-BC, while specifying particular classes of MISO-BCs

which are relevant to this work. This is followed by describing the main channel fading and

CSIT assumptions. The conditions under which reliable communication can take place are

then reviewd. Moreover, we introduce the linear precoded signal model adopted throughout

this thesis. Finally, we look at the influence of imperfect CSIT and introduce the RS scheme.

2.1. MISO Broadcast Channels

A BC models the downlink of a wireless system consisting of one transmitter (or informa-

tion source) and multiple uncoordinated receivers1. The terminology reflects the fact that

communication takes place over a shared broadcast medium. While the usage of the term

broadcasting in common language is almost restricted to transmitting common information

to all receivers, e.g. radio or TV broadcasting, the information theoretic terminology is in

fact much more general [11, 12]. Indeed, a BC may refer to a system where the transmit-

ter communicates independent messages to the receivers, or a mixture of independent and

common messages [12], just to name a few.

A BC where the transmitter and (possibly) the receivers are equipped with multiple

antennas is known as a MIMO-BC. This thesis focuses on the special case where each re-

ceiver is equipped with only one antenna, known as the MISO-BC2. This setup has received

considerable attention in both academia and industry, as MIMO gains are realized using

(multiple) simple and power efficient receiving devices with limited processing capabili-

ties [1]. Next, the general input-output relationship is described.

1The transmitter and receiver are occasionally referred to as a Base Station (BS) and a user respectively.
2This is referred to as a MIMO-BC in some works, where the multiple outputs correspond to receivers.
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2.1.1. Signal Model

Consider a general MISO-BC comprising a transmitter equipped with Nt > 1 antennas and

K single antenna receivers. Due to the frequent use of the user index set, it is denoted by

K , {1, . . . ,K} in the following. For a transmission occurring over a sequence of T discrete

uses of a narrow-band channel, the complex baseband signal at the kth receiver in the tth

channel use, where k ∈ K and t ∈ {1, . . . , T}, is expressed by

yk(t) = hH
k (t)x(t) + nk(t) (2.1)

where hk(t) ∈ CNt is the channel vector between the transmitter and the kth receiver,

x(t) ∈ CNt is the input (transmitted) signal and nk(t) ∼ CN (0, σ2n,k) is the AWGN. Without

loss of generality, it is assumed that σ2n,1, . . . , σ
2
n,K = σ2n, and any variation in noise powers

among users is absorbed into the channel gains. We assume that σ2n > 0 and remains fixed

over the entire SNR range. Hence, SNR→∞ is equivalent to Pt →∞.

The input signal is subject to an average power constraint per channel use given by

Ex

{
∥x(t)∥2

}
≤ Pt (2.2)

where the expectation is taken over the distribution of x(t). While it is common to consider

Pt a given parameter in power-constrained transmission, it may correspond to a variable in

performance-constrained transmission. Unless stated otherwise, power-constrained trans-

mission is assumed where Pt is a given parameter.

The sequence of channel inputs over the transmission period writes as
{
x(t)

}T

t=1
, and is

commonly referred to as a codeword. The signal model in (2.1) is general as it does not

specify the number of information messages encoded into the transmitted signal, and the

set of receivers each message is intended to, which define various classes of the MISO-BC.

Moreover, assumptions regarding the employed encoding/decoding strategy and the fading

process that describes the variation of the channel during the transmission, are also left

open. Such assumptions are made explicit and described in detail when necessary.

2.1.2. Different Classes

The most common class of BCs is that with private messages, where the transmitter commu-

nicates independent information to each receiver. This is generally referred to in literature

as a BC with no further specification. Such terminology is also adopted in this thesis where

a MISO-BC with no specification is used to refer to the MISO-BC with private messages.

This class is the main focus of the remainder of this chapter, and the two following chapters.

Another class of BCs is that where a common message is added on top of the private

messages. This common message is intended to, and decoded by, all users in the system.

This class is usually called a BC with a common message. This channel plays a role in

establishing the RS concept as we see later in this chapter.
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2.2. Fading and Channel State Information

The matrix with columns constituting the K channel vectors is denoted by

H(t) ,
[
h1(t), . . . ,hK(t)

]
(2.3)

which is referred to as the (instantaneous) channel state. We assume a block-fading model

where H(t) remains fixed over Tb channel uses, and varies from one block to another

according to some distribution. Let H[b] be the channel state in the bth block such that

H(t) = H[b], ∀t ∈
{
(b− 1)Tb + 1, . . . , bTb

}
. (2.4)

The transmitter obtains an estimate of the channel state in each block, typically through

uplink training in TDD systems [13, 14] or quantized feedback in FDD systems [15]. De-

noting the instantaneous CSIT by Ĥ(t) ,
[
ĥ1(t), . . . , ĥK(t)

]
and the estimate obtained in

the bth block by Ĥ[b] , we have

Ĥ(t) = Ĥ[b], ∀t ∈
{
(b− 1)Tb + 1, . . . , bTb

}
. (2.5)

The joint channel state
{
H[b], Ĥ[b]

}
is assumed to evolve according to some known ergodic

stationary process with a joint probability density f
H,Ĥ

(
H, Ĥ

)
[16]. This fading process,

which ticks at the block rate, is expressed by

{
H[1], Ĥ[1] | t = 1, . . . , Tb

}︸ ︷︷ ︸
block 1

,
{
H[2], Ĥ[2] | t = Tb + 1, . . . , 2Tb

}︸ ︷︷ ︸
block 2

,

. . . ,
{
H[b], Ĥ[b] | t = (b− 1)Tb + 1, . . . , bTb

}︸ ︷︷ ︸
block b

, . . .

The transmission period is taken as an integer multiple of the block period, i.e. T = BTb

where B ∈ N. Under such assumptions, two different transmission scenarios are considered

in this thesis:

1. Non-ergodic transmission: restricted to T = Tb (or B = 1), where the transmis-

sion is carried out over one random joint channel state.

2. Ergodic transmission: T ≫ Tb (or B ≫ 1), where the transmission takes place

over a long sequence of blocks spanning almost all possible joint channel states.

For non-ergodic transmission, the channel state appears invariant throughout the entire

transmission. This may be interpreted as a delay-limited transmission. However, Tb is as-

sumed to be large enough such that the information-theoretic limits for reliable communi-

cation are approached [16,17]. On the other hand, ergodic transmission may be interpreted

as delay-unlimited transmission. This is carried out to exploit some long-term properties

of the channel as seen in Chapter 3.
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Before proceeding, it should be highlighted that perfect CSIR is assumed throughout the

thesis, i.e. each receiver is able to estimate and track its channel with very high accuracy.

This is a common and well justified assumption as highly accurate CSIR can be obtained

through downlink training at a small overhead cost [16,17].

2.2.1. CSIT Uncertainity

The transmitter has perfect instantaneous CSI when Ĥ(t) = H(t) for all t ∈ {1, . . . , T}.
This is generally not possible as the channel estimate is subject to uncertainties arising

from estimation errors in TDD [13,14], quantization errors in FDD [15] and staleness due

to delays [18]. To model the CSIT uncertainty, the channel state is expressed by

H(t) = Ĥ(t) + H̃(t) (2.6)

where H̃(t) ,
[
h̃1(t), . . . , h̃K(t)

]
denotes the CSIT error not known to the transmitter3.

The CSIT uncertainty is characterized by the conditional density f
H|Ĥ

(
H | Ĥ

)
, which takes

non-zero values over the (possibly unbounded) set H
(
Ĥ
)
known as the uncertainty region.

This consists of all possible H that the channel state may take given a certain estimate

Ĥ. It is easy to see that H
(
Ĥ[b]

)
reduces to H[b] under perfect CSIT. For brevity, the

uncertainty region is denoted by H, where the dependency on
(
Ĥ
)
is implicit.

2.2.2. CSIT Scaling with SNR

It is well established that CSIT uncertainties hinder the performance of the MISO-BC, as

it may be impossible to eliminate or reduce the multiuser interference as seen in Section

1.1.2. This phenomenon was studies in [19] for errors arising from quantization and limited

feedback. It was shown that maintaining the full DoF of the MISO-BC requires improving

the CSIT quality with the SNR level through increasing the number of feedback bits. This

idea of scaling quality was later adopted in a large number of works on the MISO-BC with

partial and imperfect CSIT, for example see [2–4,18,20] and references therein.

Taking each user separately, the marginal density of the kth channel conditioned on its

estimate writes as f
hk|ĥk

(
hk | ĥk

)
. Assuming that the mean of the conditional distribution

is given by the estimate, i.e. E
H|Ĥ{H | Ĥ} = Ĥ, we have

E
hk|ĥk
{hkh

H
k | ĥk} = ĥkĥ

H
k +Re,k (2.7)

where Re,k is the kth user’s CSIT error covariance matrix. The CSIT scaling is expressed

by allowing the maximum entry of diag (Re,k) to scale as O(P−αk
t ) for some constant

αk ∈ [0,∞). Equivalently, we have

σ2e,k , E
h̃k|ĥk

{
∥h̃k∥2

}
= tr(Re,k) = O(P−αk

t ). (2.8)

3The CSIT and CSIT error are occasionally referred to as the estimate and the estimation error respectively.
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The constant αk , limPt→∞−
log(σ2

e,k)

log(Pt)
is known as the CSIT quality scaling factor (or

exponent), which quantifies the CSIT quality as SNR grows large. For example, αk → ∞
corresponds to perfect CSIT, as σ2e,k → 0 for any SNR. The opposite extreme of αk = 0

represents a fixed quality w.r.t SNR, e.g. a constant number of quantization (and hence

feedback) bits in FDD systems [19]. A finite non-zero αk corresponds to CSIT quality that

improves with increased SNR, e.g. by increasing the number of feedback bits.

Assumption 2.1. Without loss of generality, an ascending order of CSIT quality factors

is assumed throughout the thesis, i.e.

α1 ≤ α2 ≤ . . . ≤ αK . (2.9)

Moreover, the scaling factors are truncated such that αk ∈ [0, 1], which is customary in

DoF analysis as αk = 1 corresponds to perfect CSIT in the DoF sense [2, 20]. This follows

from the fact that such quality is sufficient to reduce multiuser interference to the level

of noise as seen in Section 1.1.2. It is also worth highlighting that αk assumes various

practical interpretations in addition to the limited feedback interpretation in [3, 19]. For

example, it may also correspond to the Doppler process in delayed/outdated CSIT, where

αk is inversely proportional to the normalized Doppler frequency [2, 18].

2.3. Coding and Performance Limits

The transmitter encodes information messages it wishes to send to the receivers into a

sequence of channel inputs
{
x(t)

}T

t=1
, broadcasted over T channel uses. The input sequence

is commonly referred to as a codeword. At the other end of the channel, each receiver decodes

the message(s) intended to it from the received sequence
{
yk(t)

}T

t=1
.

Consider a MISO-BC where the transmitter communicates private messages to the re-

ceivers as shown in Figure 2.1. The messages intended to receivers 1, . . . ,K are denoted

by W1, . . . ,WK , which are uniformly distributed over the message sets W1, . . . ,WK , re-

spectively. The corresponding rate of the kth user in bits per channel use is given by

rk = log2(|Wk|)
T , from which a rate tuple consisting of all rates writes as [r1, . . . , rK ]. A code

of rate [r1, . . . , rK ] and length T , also known as a
(
2Tr1 , . . . , 2TrK , T

)
code, consists of:

1. K message sets W1, . . . ,WK .

2. A sequence of encoding functions
{
ϕ(t)

}T

t=1
, where ϕ(t) maps any CSIT and message

tuple [W1, . . . ,WK ] into the input signal x(t).

3. K decoding functions ψ1, . . . , ψK , such that ψk maps received sequences
{
yk(t)

}T

t=1

into the decoded message Ŵk ∈ Wk.

The set of 2T
∑K

k=1 rk codewords associated with such code is denoted by XT , and is referred

to as a codebook. Codes are subject to some input constraint, e.g. the average power
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ŴK

Figure 2.1.: K-user Broadcast Channel with private messages.

constraint in (2.2) which the codebook should comply with. The constraint could also be

a certain codeword structure, as seen later with linear precoding.

The performance of a code is characterized by the decoding error probability, where a

decoding error occurs when Ŵk ̸= Wk at any of the K receivers. Under a prescribed set

of constraints, the rate tuple [r1, . . . , rK ] is deemed achievable if there exists a sequence

of
(
2Tr1 , . . . , 2TrK , T

)
codes such that every receiver is able to decode its message with an

error probability that can be made arbitrarily small by making T sufficiently large, while

satisfying the constraints. The coding strategy and achievable rates are highly dependent on

the fading process and the accuracy of CSIT. For example, it is known that the availability

of instantaneous CSIT in the MISO-BC allows for codes that eliminate (or reduce) multiuser

interference such that higher rates can be achieved.

2.3.1. Capacity

The capacity region of the MISO-BC under a power constraint is defined as the closure of the

set of all achievable rate tuples [r1, . . . , rK ] such that the power constraint is not violated.

This is denoted by C(Pt) for a power constraint Pt. The significance of such region is that it

characterizes the optimum tradeoff between the rates that can be simultaneously achieved

by different receivers. The capacity region is influenced by the type of transmission. For

example, C(Pt) is a function of the instantaneous channel state in the non-ergodic case,

while it normally depends on the long-term properties in ergodic transmission [1]. Moreover,

C(Pt) is also highly influenced by the availability of CSIT and its accuracy [20–22]. Under

perfect CSIT, the capacity region of the MISO-BC is achieved by a non-linear coding

strategy known as Dirty Paper Coding (DPC) [23]. Under imperfect CSIT, the capacity

region is unknown in general.

Several meaningful scalar performance measures can be derived from the capacity region.

One popular example is the sum-capacity defined as

Csum , max
[r1,...,rK ]∈C

K∑
k=1

rk (2.10)

which corresponds to the maximum achievable sum-rate. While operating at the sum-

capacity guarantees the optimum system throughput, it does not guarantee any form of
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fairness amongst users. For instance, a receiver with a poor channel condition may be left

to starve while receivers with better channel conditions are allocated all resources for the

sake of the overall throughput. Another performance measure that accounts for fairness

amongst users is the Max-Min Fair (MMF)-capacity defined as

CMMF , max
[r1,...,r2]∈C

min
k∈K

rk. (2.11)

This is also known as the symmetric-capacity [17], as the symmetric rate tuple given by

[CMMF, . . . , CMMF] is optimum in the MMF sense. The measures in (2.10) and (2.11), or

suboptimal versions of them that do not necessarily satisfy the maximization operators,

are the main design objectives considered in this thesis.

2.3.2. Degrees of Freedom

The characterization of the MISO-BC’s capacity region under imperfect CSIT in still an

open problem. A tractable alternative is the DoF region, a first order approximation of the

capacity region in the high SNR regime. As opposed to the capacity region, considerable

progress has been made towards characterizing achievable and optimum DoF regions of the

MISO-BC under a variety of imperfect CSIT scenarios [2, 24–27].

To better understand the DoF concept, let us introduce the notion of a coding scheme.

A coding scheme of length T can be thought of as a family of
(
2Tr1(Pt), . . . , 2TrK(Pt), T

)
codes, with one code for each SNR level [28]. The associated sequences of rate tuples and

codebooks are denoted by
{
[r1(Pt), . . . , rK(Pt)]

}
Pt

and
{
XT (Pt)

}
Pt

respectively. A coding

scheme is also associated with a DoF tuple [d1, . . . , dK ], where dk is defined as

dk , lim
Pt→∞

rk(Pt)

log2(Pt)
. (2.12)

This metric, also known as the multiplexing gain, is independent of the actual transmit

power (or SNR) and captures the rate’s asymptotic slope with respect to log2(Pt).

Similar to the capacity region, a DoF region is defined as the closure of the set of all

achievable DoF tuples [24]. This is expressed by

D ,
{
[d1, . . . , dK ] | dk ≥ 0 and ∃

[
r1(Pt), . . . , rK(Pt)

]
∈ C(Pt)

such that dk , lim
Pt→∞

rk(Pt)

log2(Pt)
∀k ∈ K

}
. (2.13)

It is clear that each achievable DoF tuple is associated with at least one sequence of achiev-

able rate tuples, and D is associated with the sequence
{
C(Pt)

}
Pt
.

Now consider the interference-free transmission of only one data stream to a single user.

The maximum achievable rate of this transmission is given by the capacity of a point-to-

point MISO channel [29], which scales with Pt as log2(Pt) + O(1). Hence, the maximum
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DoF achieved by any user in the MISO-BC is upper-bounded by 1. It follows that the DoF

can be interpreted as a fraction of an interference-free data stream that can be reliably

communicated per channel use. The DoF region characterizes optimum tradeoff between

fractions that are simultaneously assessable by the K receivers.

Similar to the scalar measures derived from the capacity region, one can derive scalar

measures from the DoF region. The most common measure is the sum-DoF given by

dsum , max
[d1,...,dK ]∈D

K∑
k=1

dk. (2.14)

A less common one is the MMF-DoF, also known as the symmetric-DoF, defined as

dMMF , max
[d1,...,dK ]∈D

min
k∈K

dk. (2.15)

The following result characterizes such measures under perfect CSIT. An implicit assump-

tion is that the channel is generic, i.e. channel vectors have entries bounded away from

zero and infinity and are drawn from continuous distributions, and hence they are linearly

independent almost surely.

Lemma 2.1. For the MISO-BC with Nt ≥ K under perfect CSIT, we have

dsum = K and dMMF = 1.

The sum-DoF result is a very well known one frequently reported in literature [1,21]. The

MMF-DoF follows directly, as achieving the sum-DoF result implies that the DoF tuple

[d1, . . . , dK ] = [1, . . . , 1] is achievable. Lemma 2.1 tell us that multiuser interference can be

completely dealt with by the coding scheme under perfect CSIT.

2.4. Linear Precoding

DPC is merely a theoretical concept, and its practical implementations is deemed highly

complicated [30, 31]. Linear precoding, also known as Beamforming (BF), is a suboptimal

strategy that has emerged as the most attractive alternative. In BF, each message is first

encoded independently into a data stream. Each stream is then mapped to the Nt transmit

antennas through a vector of BF weights, known as the precoding vector. This structure

makes the problems of designing MISO-BC codes more tractable and less complex. We

start be considering linear precoding for non-ergodic transmission, then the concept is

generalized to ergodic transmission. Moreover, perfect CSIT is assumed in the following

discussion. This is relaxed in the next section.
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2.4.1. The Non-Ergodic Regime (Fixed Channel)

The message intended to the kth user is encoded into a stream of data symbols such that

Wk 7→
{
sk(t)

}T

t=1
, where sk(t) ∈ C denotes an encoded data symbol in the tth channel

use. Since the channel is invariant, it is sufficient to focus on an arbitrary channel use by

dropping (t) in the following discussion. Let sp , [s1, . . . , sK ]T be the K data symbols in

an arbitrary channel use, the linearly precoded channel input signal is constructed as

x = Ppsp =
K∑
k=1

pksk. (2.16)

where Pp = [p1, . . . ,pK ] is the precoding matrix, and pk ∈ CNt is the kth user’s precoding

vector consisting of Nt BF weights. The precoding matrix is assumed to remain fixed

throughout the transmission. Assume that each of the independent data streams has a

normalized average power. It follows that Esp

{
sps

H
p

}
= I, and the power constraint reduces

to a constraint on the precoding matrix such that

Ex

{
xHx

}
= tr

(
PpP

H
p

)
=

K∑
k=1

∥pk∥2 ≤ Pt. (2.17)

The kth received signal in (2.1) now has a special structure, described as

yk =

desired signal︷ ︸︸ ︷
hH
k pksk +

interference︷ ︸︸ ︷
hH
k

∑
i̸=k

pisi+nk (2.18)

from which the average received signal power is expressed by

Tk , E
{
|yk|2

}
=

Sk︷ ︸︸ ︷
|hH

k pk|2+

Ik︷ ︸︸ ︷∑
i̸=k

|hH
k pi|2 + σ2n (2.19)

where Sk and Ik denote the desired power and interference plus noise power respectively.

It follows that the SINR is given by

γk , Sk
Ik

=

∣∣hH
k pk

∣∣2∑
i ̸=k

∣∣hH
k pi

∣∣2 + σ2n
. (2.20)

For a given precoding matrix, each receiver can view its channel as an equivalent scalar

channel with a power gain
∣∣hH

k pk

∣∣2 and additive noise of some distribution with variance∑
i ̸=k

∣∣hH
k pi

∣∣2 + σ2n. Under Gaussian coding, the interference plus noise is seen as AWGN,

and the kth user’s achievable rate writes as

Rk = log2(1 + γk). (2.21)
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It follows that for a given precoding matrix, the rate tuple [R1, . . . , RK ] is achievable using

scalar point-to-point AWGN codes. Hence, the problem of designing a MISO-BC code

reduces to designing the precoding matrix Pp that achieves such rates.

In some analysis, it is helpful to emphasise the structure of Pp. Hence, each precoding

vector is expressed as pk =
√
qkp̂k, where p̂k is a unit vector that denotes the BF direction,

and qk = ∥pk∥2 is the power allocated to the kth data stream. The power allocation vector

is given by q , [q1, . . . , qK ]T , while the matrix of BF directions writes as P̂p ,
[
p̂1, . . . , p̂K

]
.

It follows that the power constraint in (2.17) reduces to

K∑
k=1

qk ≤ Pt. (2.22)

The precoder design, which includes adjusting the BF directions and the power allocation,

is highly dependent on the considered design objective. For example, Pp that yields the

sum-rate maximizing rate tuple is generally different to the one that achievers a MMF

performance amongst streams. This is discussed in more detail throughout the thesis. For

now, we look at a simple and popular design of precoders.

2.4.2. Zero Forcing Beamforming

Zero Forcing (ZF)-BF vectors are those that satisfy the zero-interference condition ex-

pressed by hH
k pi = 0 for all i, k ∈ K and i ̸= k. This is achieved by placing each BF vector

in the null-space of all receivers it is not intended to, i.e. pk ∈ null
(
H̄H

k

)
, where

H̄k ,
[
h1, . . . ,hk−1,hk+1, . . . ,hK

]
(2.23)

is the matrix consisting of all columns in H except for hk. Such design is feasible given that:

1) the transmitter knows H (perfect CSIT), 2) Nt ≥ K, and 3) H has full column-rank,

which is guaranteed almost surely when the channel vectors are generic. It was shown

in [32] that under the sum power constraints in (2.17), the optimum ZF-BF solution is

based on the pseudo-inverse regardless of the performance measure to be maximized. In

particular, the solution is given by

PZF
p (H,q) =

(
HH

)†
B diag(

√
q1, . . . ,

√
qK) (2.24)

where
(
HH

)† , H
(
HHH

)−1
is the pseudo-inverse of HH , and B is a diagonal matrix given

by diag
(√

1/b1, . . . ,
√

1/bK
)
, with b1, . . . , bK being the diagonal entries of

(
(HH)†

)H
(HH)†.

In words, the optimum P̂p is always given by the pseudo-inverse (with normalized columns),

while the optimum q is determined by the design objective. The power allocation is easily

computed due to the absence of inter-stream interference. For example, q that maximizes

the sum-rate is obtained by the water-filling solution [32]. It should be noted that while the

solution in (2.24) is optimum under zero-interference constraints, it is generally suboptimal
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when such constraints are relaxed [5], making ZF-BF a suboptimal precoding strategy.

2.4.3. Degrees of Freedom

One of the virtues of linear precoding is that it achieves the optimum DoF of the MISO-BC

under prefect CSIT. DoF analysis in linearly precoded systems is facilitated by introducing

the notion of a precoding scheme, defined as a family a precoding matrices with one pre-

coding matrix for each SNR level. This is denoted by
{
Pp(Pt)

}
Pt
, where Pp(Pt) complies

with the power constraint in (2.17). Since Gaussian coding is assumed for data streams,

the precoding scheme alongside its sequence of achievable rate tuples carries the necessary

information about its corresponding coding scheme.

The optimality of linear precoding in a DoF sense can be easily shown using ZF-BF.

Consider the design in (2.24) with equal power allocation, i.e. q1, . . . , qK = Pt/K. The

kth rate is given by Rk = log2

(
1 + Pt

Kbkσ2
n

)
. It can be easily seen that such rate scales as

log2(Pt) +O(1), and the DoF tuple [d1, . . . , dK ] = [1, . . . , 1] is achievable. Hence, all users

can receive interference free streams simultaneously. On important point to highlight here

is that while this ZF-BF is DoF-optimum, it is not rate optimum in general as the DoF is

a first order approximation that only captures the rate growth.

2.4.4. The Ergodic Regime (Fading Channel)

When transmission is carried out over B blocks, a precoder can be thought of as a se-

quence of precoding matrices
{
Pp[b]

}B

b=1
, with one for each block. A given precoder is as-

sociated with a sequence of achievable rate tuples given by
{[
R1[b], . . . , RK [b]

]}B

b=1
, where[

R1[b], . . . , RK [b]
]
is achieved using Pp[b] in the bth block as described for a fixed channel.

Achievable rates over the entire transmission period are given by the ensemble averages [17],

for example the kth user achieves

1

B

B∑
b=1

Rk[b]. (2.25)

As seen from ZF-BF, eliminating multiuser interference relies on instantaneous CSIT.

Hence, designs used in non-ergodic transmission can be reused for ergodic transmission

under perfect CSIT in an adaptive manner. In particular, Pp[b], and (possibly) the code

rates of the encoded streams, are adjusted from one block to another.

For sufficiently large B such that all fading states are experienced, the precoder can be

written as
{
Pp(H)

}
H
, with one precoding matrix for each H. This is associated with{

[R1(H), . . . , RK(H)]
}
H
, where [R1(H), . . . , RK(H)] is achieved using Pp(H). Moreover,

the achievable rate in (2.25) converges almost surely to the ER given by

RE
k , EH

{
Rk(H)

}
. (2.26)

The corresponding ER tuple is denoted by
[
RE

1 , . . . , R
E
K

]
, achieved almost surely over a long

sequence of blocks using a variable-rate adaptive-coding strategy, where coding is performed

34



independently for each block in the manner described for non-ergodic transmission. Inter-

estingly, the same ergodic performance is achieved using a fixed-rate adaptive-precoding

strategy. In particular, encoding is carried out at fixed rates that correspond to the ERs,

while the adaptive component is restricted to the precoding matrix. The kth receiver sees

the precoder as part of an equivalent scalar channel with instantaneous SINR given by

γk
(
H[b]

)
, which varies from one block to another. Hence, RE

k is achievable using a fixed

code of length T = BTb given that B is sufficiently large [16, 17]. This strategy is favored

in this work for reasons that will become clear in Chapter 3.

The nature of the transmission allows for the long-term power constraint given by

1

B

B∑
b=1

tr
(
Pp

(
H[b]

)
Pp

(
H[b]

)H)
≤ Pt (2.27)

When B is sufficiently large, this is equivalent to

EH

{
tr
(
Pp(H)Pp(H)H

)}
≤ Pt (2.28)

taken over the distribution of Pp(H), seen as a random variable which typically depends

on H under perfect CSIT. The long-term constraint in (2.27) makes it possible to carry

out inter-block (temporal or frequency) power allocation, in addition to the inter-stream

(spatial) power allocation within each block. However, this couples all precoding matrices

across various fading states, making design problems highly complicated. It is common to

replace the long-term constraint with its short-term counterpart given in (2.17), where the

BS should satisfy the power constraint for each fading state (or block) [18,33,34]. By doing

so, the inter-block power allocation disappears and problems become more tractable.

Assumption 2.2. A short-term precoder power constraint is assumed in this thesis.

Finally, a precoding scheme that scales with SNR is given by
{
Pp(H, Pt)

}
H,Pt

, with one

precoding matrix for each possible fading state and power level. It can be seen that an

adaptive ZF-BF scheme achieves the full DoF in a fading MISO-BC under perfect CSIT.

2.5. Fundamentals of Rate-Splitting

In this section, we look at the concept of RS in the MISO-BC with partial CSIT. We start

by examining the influence of CSIT imperfection on the ZF-BF scheme.

2.5.1. Influence of Imperfect CSIT

As seen in Section 1.1.2, imperfect CSIT can damage the achievable DoF in the MISO-BC.

The analysis in Section 1.1.2 is revisited in the context of linear precoding, and different

CSIT qualities across users. Consider a ZF-BF scheme with uniform power allocation
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designed using partial CSIT such that

Pp

(
Ĥ
)
= PZF

p

(
Ĥ, [Pt/K, . . . , Pt/K]

)
(2.29)

This is a special case of the ZF strategy seen in (1.7) realized through linear precoding.

The signal received by the kth user in this case writes as

yk =

O(Pt)︷ ︸︸ ︷
hH
k pksk +

O(P
1−αk
t )︷ ︸︸ ︷∑

i̸=k

h̃H
k pisi+

O(P 0
t )︷︸︸︷

nk (2.30)

with the power scalings of different components highlighted. The imperfect ZF-BF yields

residual interference scaling as Ik = O(P 1−αk
t ). It follows that the SINR of the kth users

scales as γk = O(Pαk
t ), from which the achievable DoF is given by dk = αk. Hence, the

achievable DoF tuple is given by [α1, . . . , αK ] from which the sum-DoF writes as

K∑
k=1

dk =

K∑
k=1

αk. (2.31)

The loss in DoF compared to the prefect CSIT is observed by recalling Lemma 2.1 and

the fact that αk ∈ [0, 1]. It can be seen that the DoF achieved by a given user depends on

the corresponding CSIT quality. This is due to the fact that having a better estimate of a

given user’s channel enables better interference nulling in that direction.

Now, consider modifying the power allocation in (2.29) such that

Pp

(
Ĥ
)
= PZF

p

(
Ĥ, [Pα

t /K, . . . , P
α
t /K]

)
(2.32)

where α = maxk αk = αK . It can be seen that the total power used in (2.32) is given by

Pα
t ≤ Pt, where equality holds for α = 1. The received signal in this case writes as

yk =

O(Pα
t )︷ ︸︸ ︷

hH
k pk +

O(P
α−αk
t )︷ ︸︸ ︷∑

i ̸=k

h̃H
k pi+

O(P 0
t )︷︸︸︷

nk . (2.33)

The SINR still scales as γk = O(Pαk
t ), and dk = αk is achieved. It can be seen that the

sum-DoF in (2.31) is maintained using a potentially lower power scaling. In particular, the

transmitted power scaling is such that the interference received by the user with the highest

CSIT quality is at the same level of noise. In the special case where α1 = . . . = αK = α,

the residual interference is received at the level of noise by all users as seen in (1.12).
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Decoder

[
Ŵ0, Ŵ1

]

[
Ŵ0, ŴK

]

Figure 2.2.: K-user Broadcast Channel with a common message.

2.5.2. Broadcast Channel with a Common Message

Consider the BC with a common message shown in Figure 2.2. This class of BCs plays a

vital role in constructing the RS scheme. A code for such channel is described as:

1. K + 1 message sets Wc,W1, . . . ,WK .

2. A sequence of encoding functions
{
ϕ(t)

}T

t=1
, where ϕ(t) maps any CSIT and message

tuple [W0,W1, . . . ,WK ] into the input signal x(t).

3. K decoding functions ψ1, . . . , ψK , such that ψk maps received sequences
{
yk(t)

}T

t=1

into a pair of decoded messages [Ŵ0, Ŵk] ∈ W0 ×Wk.

In a MISO-BC with linear precoding, the K + 1 messages are first encoded into symbol

streams as Wc 7→
{
sc(t)

}T

t=1
and Wk 7→

{
sk(t)

}T

t=1
for all k ∈ K. This is followed by linear

precoding, where the precoding matrix is given by P = [pc,p1, . . . ,pK ], with pc ∈ CNt as

the common stream’s precoding vector. The transmitted signal is expressed by

x = Ps = pcsc +

K∑
k=1

pksk (2.34)

where s , [sc, s1, . . . , sK ]T consists of the K +1 data symbols. This transmission is clearly

a superposition of multicast beamforming [6] and the unicast beamforming in (2.16). In

an ergodic scenario, a sequence of precoding matrices is denoted by
{
P(H)

}
H
, with one

precoding matrix for each fading state. The short-term power constraint writes as

tr
(
PPH

)
≤ Pt (2.35)

The signal received by the kth user in a given channel use is expressed as

yk =

common signal︷ ︸︸ ︷
hH
k pcsc +

desired private signal︷ ︸︸ ︷
hH
k pksk +

interference︷ ︸︸ ︷
hH
k

∑
i̸=k

pisi + nk (2.36)
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from which the average received power is given by

Tc,k , E
{
|yk|2

}
=

Sc,k︷ ︸︸ ︷
|hH

k pc|2+

Sk︷ ︸︸ ︷
|hH

k pk|2+

Ik︷ ︸︸ ︷∑
i̸=k

|hH
k pi|2 + σ2n︸ ︷︷ ︸

Ic,k=Tk

(2.37)

where Sc,k and Ic,k are the common stream’s desired signal power and the interference plus

noise power respectively. Recall that the common message is intended to, and decoded by,

all receivers. Hence, Successive Interference Cancellation (SIC) can be used to remove he

common signal from the received signals to enhance the decodability of the private messages.

This is followed by decoding the private message in the presence of the remaining interfering

signals and noise. After SIC, Sk and Ik denote the private stream’s desired signal power

and the interference plus noise power respectively.

Next, we look at the achievable rates and DoF in an ergodic setting. The same results ap-

ply to non-ergodic transmission by considering the instantaneous rates. The instantaneous

SINR of the common stream at the kth receiver is given by

γc,k , Sc,k
Ic,k

=

∣∣hH
k pc

∣∣2∑K
i=1

∣∣hH
k pi

∣∣2 + σ2n
(2.38)

from which the instantaneous rate of the common message from the kth user’s point of

view writes as

Rc,k = log2(1 + γc,k). (2.39)

In an ergodic setting, transmitting Wc at a rate of RE
c,k , EH{Rc,k} guarantees that it is

decodable by the kth user. To guarantee that Wc is successfully decoded by all users, it

should be transmitted at the common ER given by

RE
c , min

j

{
EH{Rc,k}

}K

j=1
. (2.40)

On the other hand, as SIC is employed, the private instantaneous SINRs and rates are

given by (2.20) and (2.21) respectively, while the ERs are given by (2.26).

It is clear that an ER tuple for such setup consists of K + 1 rates and writes as[
RE

c , R
E
1 , . . . , R

E
K

]
. Similarly, a DoF tuple is denoted by [dc, d1, . . . , dK ], where dc denotes

the DoF of the common message. An achievable DoF tuple is given next.

Lemma 2.2. For the MISO-BC with a common message under linear precoding and scaling

CSIT, the DoF tuple given by [dc, d1, . . . , dK ] = [1− αK , α1, . . . , αK ] is achievable.

This result is given for K = 2 and equal CSIT qualities in [2, Lemma 2]. The extension to

arbitrary K and CSIT qualities is straightforward. The achievability scheme is described as

follows. For given Ĥ and Pt, the private precoders are given by (2.32). On the other hand,

the common precoder is generated randomly with power qc = Pt−Pα
t . The achievable DoF
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follows by observing the power scaling of different received signal components given by

yk =

O(Pt)︷ ︸︸ ︷
hH
k pc+

O(Pα
t )︷ ︸︸ ︷

hH
k pk +

O(P
α−αk
t )︷ ︸︸ ︷∑

i̸=k

h̃H
k pi+

O(P 0
t )︷︸︸︷

nk . (2.41)

We have γc,k = O(P 1−α
t ) and γk = O(Pαk

t ), from which the DoF in Lemma (2.2) follows.

2.5.3. Rate-Splitting

From Lemma 2.2, the MISO-BC with a common message achieves a sum-DoF of

dc +
K∑
k=1

dK = 1 +
K−1∑
k=1

αk. (2.42)

By comparing this to the sum-DoF in (2.31), it can be seen that the incorporation of the

common message achieves a DoF gain of 1 − αK . This follows from the fact that the

maximum DoF achieved through ZF-BF is maintained using a fraction of the total power

as seen in (2.32), while the rest of the power is utilized to achieve extra DoF through the

common message. This gives rise to the following question: could this gain be utilized in a

MISO-BC with only private messages? This is answered in the affirmative through the RS

strategy as seen in Section 1.1.3. This is revisited here in the context of a linear precoding

and different CSIT qualities across users. RS transmission is formulated as follows.

Assume that the message of the Kth user is split into two parts, a common part WK0

and a private part WK1. The common part is encoded into a common data stream such

that WK0 7→
{
sc(t)

}T

t=1
, while the private part alongside other messages are encoded into

private streams such that W1,W2, . . . ,WK1 7→
{
s1(t)

}T

t=1
,
{
s2(t)

}T

t=1
, . . . ,

{
sK(t)

}T

t=1
. The

resulting K + 1 data streams are precoded and transmitted as shown in (2.34).

Each receiver decodes WK0, removes the corresponding part from the received signal

using SIC, before decoding its private stream. It follows from Lemma 2.2 that the common

stream achieves a DoF of 1− αK and private streams achieve α1, . . . , αK . Note that while

the common stream is decoded by all users in the RS scheme, it is only indented to user-K,

in contrast to the MISO-BC with a common message. Hence, the RS scheme achieves the

DoF tuple [α1, . . . , αK−1, 1], from which the sum-Dof is given by (2.42). Note that when

all users experience the same CSIT quality, the sum-DoF becomes 1 + (K − 1)α.

While the splitting was restricted to the Kth user here, it may be extended to other

users. This is required particularly when the objective is to achieve fairness. In this case,

different users share the benefits of the common message as seen in Chapter 4.
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2.6. Conclusion

This chapter provided the main background necessary for the remainder of this thesis. A

general MISO-BC signal model was described, which will be used in the following chapters.

The main assumptions regarding the CSIT uncertainty and the coding and preprocess-

ing strategy were given. We also introduced the performance limits and measures used

throughout this thesis. Finally, the RS strategy was revisited and its sum-DoF gain over

conventional ZF-BF transmission was highlighted.
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3. Sum-Rate Maximization

RS was shown to boost the sum-DoF of the MISO-BC under CSIT errors that decay with

increased SNR. Such gains were demonstrated assuming a simple design of precoders where

ZF-BF was used for the private streams. However, ZF-BF is known to be suboptimal,

particularly for finite SNRs. Moreover, simple non-optimized precoders are usually used

for the common stream in DoF-motivated designs and analysis.

In this chapter, the RS strategy is married with precoder design and optimization tech-

niques to achieve a maximized Ergodic Sum-Rate (ESR) performance over the entire range

of SNRs. Precoders are designed using partial CSIT by solving a stochastic rate optimiza-

tion problem using two robust algorithms based on the Weighted Minimum Mean Square

Error (WMMSE) approach. The first algorithm uses a conservative approximation to tackle

the stochastic nature of the problem, while the second algorithm employs means of Sample

Average Approximation (SAA). Before going into details, we start by formulating the ESR

maximization problem. This is followed by an investigation of the general performance

limits of the formulated problems through DoF analysis.

3.1. The Precoder Optimization Problem

In this chapter, we consider a MU-MISO system operating in downlink with the signal

model described in (2.1). The BS wishes to communicate one private message to each

user, i.e. a standard MISO-BC. It is assumed that the number of users scheduled during a

transmission period may not exceed the number of transmit antennas, i.e. K ≤ Nt.

We saw in Chapter 2 that linear precoding is an efficient coding strategy for MU-MISO

transmission. One popular choice of linear precoders is ZF-BF, shown in Section 2.4.2.

While ZF-BF is optimum in the DoF sense under perfect CSIT, it is generally a suboptimal

precoding strategy [5]. Optimum precoders are ones that strike a delicate balance between

nulling multiuser interference and maximizing the desired signal power at each receiver.

For a fixed channel H and under perfect CSIT, the precoding matrix that maximizes the

Sum-Rate (SR) under a power constraint Pt is obtained by solving

max
Pp

K∑
k=1

Rk

s.t. tr
(
PpP

H
p

)
≤ Pt.

(3.1)

This optimization problem is non-convex and known to be very challenging to solve in its
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current form. In fact, it was shown to be NP-hard in [35]. The optimum solution can

be obtained using a branch-reduce-and-bound algorithm [36], with a huge computational

complexity that grows exponentially with K. Alternatively, a number of polynomial time

methods that obtain suboptimal solutions have been proposed in [7, 37–39].

The WMMSE algorithm proposed in [7] is arguably the most popular method due to its

efficiency and effectiveness. First, the domain of the original problem in (3.1) is extended

by introducing new optimization variables, namely receive filters and MSE weights. Then,

the extended WMSE problem is solved using an Alternating Optimization (AO) algorithm,

also known as the Block Coordinate Descent (BCD) method [40]. The convergence of

the algorithm to a stationary solution of the original SR problem in (3.1) was rigorously

established in [8]. This method is widely used throughout this thesis.

3.1.1. The Ergodic Regime

For ergodic transmission under perfect CSIT, the short-term power constraint in Assump-

tion 2.2 decouples
{
Pp(H)

}
H

across fading states. The problem writes as

EH

 max
tr
(
Pp(H)Pp(H)H

)
≤Pt

K∑
k=1

Rk(H)

 . (3.2)

The optimum solution can be obtained by solving a sequence of problem (3.1), where Pp is

optimized separately for each H. In a transmission taking place over a sequence of blocks

with
{
H[b]

}B

b=1
, Pp[b] is updated in each block according to H[b]. This adaptation of the

precoding matrix is enabled by the availability of the instantaneous CSIT in each block.

3.1.2. Robustness Under Imperfect CSIT

Now what if the BS has imperfect CSIT as described in Section 2.2.1? A naive approach

would be to solve the problem assuming that H = Ĥ, i.e. perfect CSIT. This design is

not only unable to cope with the resulting multiuser interference, it is also unaware of it.

In addition, this may lead to an overestimation of the instantaneous and ergodic rates by

the BS, yielding transmission at undecodable rates. A robust approach on the other hand

employs the available CSIT knowledge to:

1. Design an informed precoding scheme that enhances the instantaneous channel con-

dition experienced by the receivers.

2. Perform transmission at reliable rates and hence guarantee decodability.

The two points are related, as the characterization of the reliable transmission rates enables

us to formulate, and ultimately solve, the robust precoder design problem.

In the non-ergodic regime, H and Ĥ do not change, i.e. transmission is carried out

over one joint fading state
{
H, Ĥ

}
. The BS has no access to the exact instantaneous
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rates experienced by the receivers given in (2.21). Hence, the BS may only guarantee

reliable communication with a certain outage derived from the CSIT statistics [41, 42].

Precoders would be designed such that the rate of communication is maximized without

exceeding a given outage probability [43]. If the uncertainty region is bounded, zero-

outage communication can be guaranteed [44, 45]. On the other hand, if the transmission

is delay-unlimited, the ergodic nature of the fading process and knowledge of its long-term

properties can be exploited to guarantee communication at reliable rates as we see in what

follows. The question that arises is, how can we utilize the imperfect instantaneous CSIT

to maximize the long-term (ergodic) performance?

3.1.3. Average Sum-Rate Problem

To answer the previous question, let us define an adaptive precoder under imperfect CSIT.

This is given by
{
Pp(Ĥ)

}
Ĥ

with one precoding matrix for each channel state estimate,

as the precoder is adapted by the BS. In a transmission taking place over a sequence of

blocks with joint channel states
{
H[b], Ĥ[b]

}B

b=1
, Pp[b] is updated in each block according

to Ĥ[b]. The instantaneous rates achieved in each block however depend on H as seen from

(2.21). There is also an implicit dependency of the rates on Ĥ now, which follows from the

dependency on Pp(Ĥ). While the BS is unable to predict the instantaneous rates, it has

access to the Average Rates (ARs) defined as follows.

Definition 3.1. For a given channel estimate Ĥ and precoding matrix Pp(Ĥ), the kth

user’s AR is defined as

R̄k , E
H|Ĥ

{
Rk

(
H
)
| Ĥ

}
. (3.3)

The AR in (3.3) and the ER in (2.26) should not be confused: while the latter describes

the long-term performance over all fading states and precoding matrices, the former is a

short-term (instantaneous) measure that captures the expected performance over the CSIT

uncertainty given an estimate and precoding matrix.

It turns out that the ERs can be characterized by averaging the ARs over the variation

in Ĥ. In particular, the ER experienced by the kth user is expressed by

E{H,Ĥ}

{
Rk

(
H, Ĥ

)}
= E

Ĥ

{
E
H|Ĥ

{
Rk

(
H, Ĥ

)
| Ĥ

}}
= E

Ĥ

{
R̄k

(
Ĥ
)}

(3.4)

which follows from the law of total expectation. Hence, the ESR maximization problem

under imperfect instantaneous CSIT writes as

E
Ĥ

 max
tr
(
Pp(Ĥ)Pp(Ĥ)H

)
≤Pt

K∑
k=1

R̄k

(
Ĥ
) (3.5)

where for each channel estimate, the precoders are optimized such that the Average SR

(ASR) is maximized. For a class of information theoretic channels under imperfect CSIT

with a Markov property, the ergodic capacity is formulated following the same philosophy,
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while replacing the ASR with the average mutual-information and maximizing over the

input distribution rather than the precoding matrix [16].

By focusing on one channel state estimate, the ASR optimization problem writes as

R(Pt) :


max
Pp

∑K
k=1 R̄k

s.t. tr
(
PpP

H
p

)
≤ Pt

(3.6)

where the dependency of R̄k and Pp on a particular Ĥ is removed from the notation for

brevity. The maximized ESR given by E
Ĥ
{R(Pt)}, which also corresponds to (3.5), is

achievable using the fixed-rate/adaptive-precoding strategy described in Section 2.4.4. In

particular, the encoding is carried out at the fixed ERs given by E
Ĥ
{R̄1}, . . . ,EĤ

{R̄K},
which only depend on the CSIT statistics. On the other hand, precoders are optimized and

adapted in each block according to the instantaneous CSIT.

Remark 3.1. Under perfect CSIT, the AR in (3.3) reduces to the instantaneous rate in

(2.21). It follows the ASR problem in (3.6) reduces to the SR problem in (3.1), and the

ESR problem in (3.5) reduces to the one in (3.2).

In [46,47], the authors considered a fading model where Ĥ remains fixed over all channel

states, representing a Line-of-Sight (LoS) component. In such scenario, the ASR problem

in (3.6) and the ESR problem in (3.5) are equivalent. The model considered here is more

general as it allows for a changing Ĥ. On the other hand, [48] considered a fast-fading

model where Ĥ is completely suppressed. In this case, which is another special case of the

general fading model considered here, the ASR and ESR problems also coincide.

3.1.4. The Rate-Splitting Problem Formulation

Now we turn to ESR maximization for the RS strategy described in Section 2.5.3. First,

we denote a RS precoder with imperfect CSIT as
{
P(Ĥ)

}
Ĥ

with one precoding matrix for

each channel state estimate. We start with defining the common ARs.

Definition 3.2. For a given channel estimate Ĥ and precoding matrix Pp(Ĥ), the kth

user’s common AR is defined as

R̄c,k , E
H|Ĥ

{
Rc,k

(
H
)
| Ĥ

}
. (3.7)

As in (3.4), the kth user’s common ER is characterized by averaging the corresponding

common AR over the variation in Ĥ such that

E{H,Ĥ}

{
Rc,k

(
H, Ĥ

)}
= E

Ĥ

{
R̄c,k

(
Ĥ
)}

(3.8)

It follows that transmitting the common message at the ER given in (3.8) guarantees its

decodability by the kth user. To guarantee decodability by all users, the common message
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should be transmitted at the common ER given by: minj∈K EĤ

{
R̄c,j

(
Ĥ
)}

. It follows that

the RS ESR problem is formulated as

max
tr
(
P(Ĥ)P(Ĥ)H

)
≤Pt,∀Ĥ

min
j∈K

E
Ĥ

{
R̄c,j

(
Ĥ
)}

+
K∑
k=1

E
Ĥ

{
R̄k

(
Ĥ
)}

(3.9)

Comparing the NoRS problem in (3.5) to its RS counterpart in (3.9), it can be seen that

the latter poses an extra challenge. In particular, the fact that the pointwise minimum

of the common ERs is outside the expectation couples the precoder design across fading

states, making it no longer possible to carry out the optimization separately for each Ĥ.

To eliminate this coupling, we employ the following lower-bound

min
j∈K

{
E
Ĥ

{
R̄c,j

(
Ĥ
)}}

≥ E
Ĥ

{
min
j∈K

R̄c,j

(
Ĥ
)}

(3.10)

where the inequality is from the fact that moving the minimization inside the expectation

does not increase the value. Now we can write the following ESR lower-bound problem

E
Ĥ

 max
tr
(
Pp(Ĥ)Pp(Ĥ)H

)
≤Pt

min
j∈K

R̄c,j

(
Ĥ
)
+

K∑
k=1

R̄k

(
Ĥ
) . (3.11)

Now ASRmaximization can be carried out separately for each Ĥ by considering the problem

inside the expectation in (3.11) expressed by

RRS(Pt) :


max
R̄c,P

R̄c +
∑K

k=1 R̄k

s.t. R̄c,k ≥ R̄c, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(3.12)

where the dependency on Ĥ is omitted for brevity. The pointwise minimization of the

common ARs is replaced with the set of inequalities involving the common AR auxiliary

variable denoted by R̄c. It is easy to see that at optimality, we have R̄c = minj
{
R̄c,j

}K

j=1
.

The ESR given in (3.11), also denoted by E
Ĥ
{RRS(Pt)}, is achievable using the fixed-

rate/adaptive-precoding strategy. The achievability of the private ER is similar to the

previous subsection, while the common ER is achievable from (3.10).

3.2. Performance Limits

After formulating the NoRS and RS instantaneous ASR problems in the previous section,

the next two questions that come to mind are:

1. How does the instantaneous CSIT quality influence the long-term performances given

by E
Ĥ
{R(Pt)} and EĤ

{RRS(Pt)}?
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2. How do the NoRS and RS performances compare?

Such questions can be partially answered through DoF analysis. Before we proceed, we

recall that the CSIT uncertainty model is as described in Section 2.2.1. Moreover, we

assume throughout this chapter that the CSIT qualities are equal across users, i.e. α1 =

α2 = . . . = αK = α. While this assumption is made to simplify the analysis, it is not

necessary for the design algorithms proposed later in the chapter.

3.2.1. DoF Analysis

The DoFs for the optimized NoRS and RS strategies are defined as

d∗ , lim
Pt→∞

E
Ĥ
{R(Pt)}

log2(Pt)
and d∗RS , lim

Pt→∞

E
Ĥ
{RRS(Pt)}
log2(Pt)

. (3.13)

As highlighted before, the DoF is roughly interpreted as the total number of interference-

free streams that can be simultaneously supported in a single channel use. The significance

of the DoF in such setups comes from the detrimental effects multiuser interference may

have, and the fundamental role of the CSIT in dealing with such effects.

Insight into the DoFs of the optimized NoRS and RS schemes can be gained from the

discussion in Section 2.5. In particular, the ZF-BF based precoding schemes there are

feasible for the problems at hand. Hence, the DoFs in (2.31) and (2.42) should be achievable

by the optimized schemes. This indeed plays a role in the proof of the next result. First,

we make the following assumption.

Assumption 3.1. We assume that the channel estimate Ĥ is of full column rank with

probability one. Moreover, for any given estimate, we assume isotropically distributed CSIT

error vectors, i.e. we have Re,k =
σ2
e,k

Nt
I for all k ∈ K.

Note that these assumptions are made for the proof of the next result, and they are not

necessary for the optimization in the following sections.

Theorem 3.1. The DoF achieved by optimally solving the NoRS problem is given by

d∗ , lim
Pt→∞

E
Ĥ
{R(Pt)}

log2(Pt)
= max {1,Kα} (3.14)

while the DoF of an optimally designed RS scheme is given by

d∗RS , lim
Pt→∞

E
Ĥ
{RRS(Pt)}
log2(Pt)

= 1 + (K − 1)α. (3.15)

Results of this nature, which characterize the optimum DoF performance of a given

transmission strategy, appear in each of the three core chapters in this thesis. Such results

are obtained through two steps: converse and achievability. Take the NoRS result in (3.14)

for example. The converse shows that for any feasible precoding schemes, the sum-DoF for
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the NoRS strategy is upper-bounded by the one given in (3.14). The achievability on the

other hand shows that this upper-bound is in fact attainable through a feasible precoding

scheme. The full proof is relegated to Appendix A.1.

3.2.2. Insight

When α = 1, the maximum attainable DoF is achieved, i.e. K. Although CSIT may still be

erroneous, it is sufficient to design private precoders that reduce the multiuser interference

to the level of additive noise. However, this is not possible when α drops below 1, as

private streams start leaking substantial interference. The NoRS scheme exhibits loss in

DoF until α = 1/K. As α drops below 1/K, the CSIT quality is not good enough to

support multiuser transmission, and it is preferred from a DoF perspective to switch to

single-user transmission by allocating all power to one stream, hence achieving a DoF of 1.

In naive designs as the one seen in Section 2.5.1, the DoF reduces to zero for α = 0. For

such designs, gains from switching to single-user transmission are not realized due to the

fixed and uniform power allocation across users [18,19].

Now looking at RS, as soon as α drops below 1, a DoF-optimum design carefully allocates

powers to the private streams such that multiuser interference is always received at the

level of additive noise. This is achieved by scaling down private powers to O(Pα
t ), hence

maintaining a DoF of Kα. The rest of the power, which scales as O(Pt), is allocated to

the common stream which is broadcasted to all users. This achieves a DoF gain of 1− α,
as interference from private messages is treated as noise. It should be noted that the RS

DoF is strictly greater than the NoRS DoF for all α ∈ (0, 1).

The RS DoF in (3.15) is inline with the results in [2, 3, 25] (also in Section 2.5.3). Al-

though optimizing the precoders does not improve the achievable DoF, simulation results

presented later in this chapter show that the optimized scheme is superior from a rate

performance perspective. It is worth highlighting that the converse result reported in [20]

proves the optimality of the DoF in (3.15) for the real Gaussian MISO-BC with scaling

CSIT uncertainty where one of the users has perfect CSIT. In case this can be extended to

complex channels, (3.15) follows by combining with the achievability in Section 2.5.3.

We conclude this section by highlighting that in addition to the high SNR gains man-

ifested through the DoF in Theorem 3.1, RRS(Pt) ≥ R(Pt) is guaranteed over the entire

range of SNRs. This is seen by noting that solving (3.6) is equivalent to solving (3.12) over

a subset of its domain characterized by restricting ∥pc∥2 to zero. In the following, we focus

on solving the RS design problem, i.e. solving the ASR problem in (3.12).

3.3. The WMMSE Approach

This approach reformulates SR problems into equivalent, and more tractable, WMMSE

problems [7, 8], which differ from their classical MMSE counterparts [49,50] as:

1. Weights are introduced and considered as optimization variables.
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2. The cost function is augmented to incorporate the logarithms of the weights.

A Rate-WMMSE relationship is built upon these two features, enabling the formulation of

the equivalent problem. Next, equalization and MSE estimation are introduced into the

signal model, paving the way for the WMMSE approach.

3.3.1. MSEs and MMSE Receivers

At the kth receiver, let ŝc,k = gc,kyk be an estimate of the common symbol sc,k obtained

by applying the scalar equalizer gc,k. Given that the common message is transmitted at an

adequate rate and successfully decoded by all receivers, an estimate of sk is obtained after

removing the common stream from the received signal such that ŝk = gk(yk − hH
k pcsc,k),

where gk is the corresponding equalizer. At the output of the kth receiver, the common

and private MSEs are defined as:

εc,k , E

{
|ŝc,k − sc|2

}
(3.16a)

εk , E

{
|ŝk − sk|2

}
(3.16b)

where the expectations are taken over the distributions of the input signals and noise. By

substituting the expressions of the received signals in (2.36) and (2.18) into (3.16a) and

(3.16b) respectively, the MSEs are expressed by:

εc,k = |gc,k|2Tc,k − 2ℜ
{
gc,kh

H
k pc

}
+ 1 (3.17a)

εk = |gk|2Tk − 2ℜ
{
gkh

H
k pk

}
+ 1 (3.17b)

where Tc,k and Tk are defined in (2.37). Optimizing the MSEs over their respective equal-

izers yields the MMSEs given by

εMMSE
c,k , min

gc,k
εc,k = T−1

c,k Ic,k (3.18a)

εMMSE
k , min

gk
εk = T−1

k Ik. (3.18b)

The corresponding optimum equalizers are the well known MMSE equalizers given by

gMMSE
c,k = pH

c hkT
−1
c,k and gMMSE

k = pH
k hkT

−1
k . (3.19)

It turns out that MMSE estimation is closely related to the achievable rates. In particular,

it can be easily seen that the MMSEs and the SINRs are related such that

γc,k =
(
1/εMMSE

c,k

)
− 1 and γk =

(
1/εMMSE

k

)
− 1 (3.20)
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from which the instantaneous achievable rates are expressed by

Rc,k = − log2(ε
MMSE
c,k ) and Rk = − log2(ε

MMSE
k ). (3.21)

3.3.2. Rate-WMMSE Relationship

Now, we are ready to introduce the augmented WMSEs from which the Rate-WMMSE

relationship is derived.

Definition 3.3. For given εc,k and εk, and the auxiliary positive weights denoted by uc,k

and uk, the augmented WMSEs are defined as

ξc,k , uc,kεc,k − log2(uc,k) (3.22a)

ξk , ukεk − log2(uk). (3.22b)

In the following, the augmented WMSEs in (3.22) are simply referred to as the WMSEs,

where ”augmented” is dropped for brevity. The Rate-WMMSE relationship is established

by optimizing the equalizers and weights in (3.22). This is shown as follows.

Lemma 3.1. The Rate-WMMSE relationship is given by

ξMMSE
c,k , min

uc,k,gc,k
ξc,k = 1−Rc,k (3.23a)

ξMMSE
k , min

uk,gk
ξk = 1−Rk (3.23b)

where ξMMSE
c,k and ξMMSE

k denote the optimized WMSEs, i.e. the WMMSEs.

This is a well known result expressed either implicitly or explicitly in the WMMSE

literature [7, 8, 51]. The structure of the optimum solution is highlighted through the

following proof, as it is important for the development of the WMMSE algorithm.

Proof. From
∂ξc,k
∂gc,k

= 0 and ∂ξk
∂gk

= 0, the optimum equalizers are given by the MMSE

equalizers in (3.19), i.e. gMMSE
c,k and gMMSE

k . Substituting this back into (3.22) yields

ξc,k
(
gMMSE
c,k

)
= uc,kε

MMSE
c,k − log2(uc,k) (3.24a)

ξk
(
gMMSE
k

)
= ukε

MMSE
k − log2(uk). (3.24b)

Now, from
∂ξc,k(g

MMSE
c,k )

∂uc,k
= 0 and

∂ξk(g
MMSE
k )

∂uk
= 0, we obtain the optimum MMSE weights:

uMMSE
c,k =

(
εMMSE
c,k

)−1
and uMMSE

k =
(
εMMSE
k

)−1
(3.25)

where a scaling factor of
(
ln(2)

)−1
has been omitted as it has no effect on the solution.

Substituting this back into (3.24) yields the relationship in (3.23).
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The rational behind employing the Rate-WMMSE relationship is explained in the fol-

lowing. Let us start with an observation on the variable-wise convexity of the WMSEs.

Remark 3.2. While the WMSEs in (3.22) are not convex in their joint set of variables,

they are convex in each variable while fixing the other two. For example, ξc,k is convex in

one of the variables P, gc,k and uc,k, while fixing the other two variables. This can be easily

confirmed by checking (3.22) and (3.17).

This property is exploited to solve a wide range of non-convex rate optimization problems.

To give a better idea, consider the following optimization problem

max
P∈P

UR

(
Rc,1, . . . , Rc,K , R1, . . . , RK

)
(3.26)

where UR is a utility function of the rates and P ∈ P is usually a power constraint, from

which a convex precoder feasible set P is characterized. We assume that UR is concave and

non-decreasing in each of its arguments. Now, consider the problem formulated as

max
g,u,P∈P

UW

(
ξc,1, . . . , ξc,K , ξ1, . . . , ξK

)
(3.27)

where g , {gc,k, gk | k ∈ K} and u , {uc,k, uk | k ∈ K} are the sets of equalizers and

weights respectively, and the objective function in (3.27) is defined as

UW

(
ξc,1, . . . , ξc,K , ξ1, . . . , ξK

)
, UR

(
1− ξc,1, . . . , 1− ξc,K , 1− ξ1, . . . , 1− ξK

)
. (3.28)

The next result builds upon Lemma 3.1 and establishes the equivalence between rate and

WMSE problems.

Proposition 3.1. The rate problem in (3.26) and the WMSE problem in (3.27) are equiv-

alent in the sense that their global optimum solutions coincide.

Proof. Since UR is non-decreasing in its arguments, then UW is non-increasing in its argu-

ments. Combining this with (3.23), it follows that

UW

(
ξc,1, . . . , ξc,K , ξ1, . . . , ξK

)
≤ UW

(
ξMMSE
c,1 , . . . , ξMMSE

c,K , ξMMSE
1 , . . . , ξMMSE

K

)
(3.29)

which holds for all P ∈ P. The rate problem in (3.26) is equivalent to maximizing the

right-hand side in (3.29). This maximization in turn is an upper-bound on the WMSE

problem in (3.27). Since this upper-bound is attainable through a feasible solution, i.e. the

MMSE solution in Lemma (3.1), then it is optimum for the WMSE problem in (3.27).

The variable-wise convexity highlighted in Remark 3.2 is inherited by the WMSE problem

in (3.27), enabling a solution through AO as we see next.
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3.3.3. Alternating Optimization Algorithm

Since UR is concave in each of its arguments, then UW is concave in each of the blocks

P, g and u, while fixing the other two. This follows from Remark 3.2 and the vector

composition rules of concave functions [52]. This block-wise concavity can be exploited to

obtain a solution using AO, where each block is updated by solving a convex optimization

problem. Moreover, at least two of the blocks, namely g and u, have close-form solutions

given by the MMSE formulations. This procedure is summarized in Algorithm 3.1.

Algorithm 3.1 WMMSE Alternating Optimization.

1: Initialize: n← 0, U
[n]
W ← 0, P

2: repeat
3: n← n+ 1, P[n−1] ← P
4: g← gMMSE

(
P[n−1]

)
5: u← uMMSE

(
P[n−1]

)
6: P← argmaxP∈P U

[n]
W

7: until
∣∣∣U [n]

W − U
[n−1]
W

∣∣∣ < ϵR

The precoding matrix obtained in the previous (or n−1th) iteration is denoted by P[n−1].

On the other hand, gMMSE
(
P[n−1]

)
and uMMSE

(
P[n−1]

)
are the optimum equalizers and

weights updated using P[n−1]. Plugging gMMSE
(
P[n−1]

)
and uMMSE

(
P[n−1]

)
into UW yields

U
[n]
W , which is explicitly expressed as

U
[n]
W = UW

(
ξMMSE
c,1

(
P[n−1]

)
, . . . , ξMMSE

c,K

(
P[n−1]

)
, ξMMSE

1

(
P[n−1]

)
, . . . , ξMMSE

K

(
P[n−1]

))
where ξMMSE

c,k

(
P[n−1]

)
and ξMMSE

k

(
P[n−1]

)
are obtained by substituting P[n−1] into (3.23).

The precoder optimization in Step 6 varies depending on the utility function. For instance,

P is simply obtained in closed-form, subject to an efficient bisection search, for the sum-

rate utility in [8]. On the other hand, a utility with a max-min fair component yields a

problem with convex quadratic constraints with no known closed-form solution [51].

The convergence of Algorithm 3.1 is guaranteed through the following result.

Proposition 3.2. Given that UR is bounded above, then Algorithm 3.1 monotonically in-

creases UR until convergence.

Proof. Recall that UW is non-increasing in each of its arguments. It follows that for a

given iteration n, steps 4 and 5 increase (or do not decrease) UW by minimizing each of

its arguments for given P. Moreover, step 6 further increases UW by optimizing P. As

a direct result, the sequence
{
U

[n]
W

}∞
n=1

is monotonically increasing (or non decreasing) in

each iteration. Since UR and UW are bounded above, then convergence is guaranteed.

The condition that UR is bounded above in usually satisfied. In particular, P is usually

a compact set, as it is characterized by a power constraint on P. Moreover, assuming
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that channel gains are finite and σ2n > 0, then SINRs are finite and the rate functions

are continuous on P. It follows that UR is continuous on P, as it is continuous in its rate

arguments (due to concavity). As a result, UR is bounded and attains its maximum on P.
Since the optimization problems of interest are usually non-convex, the convergence to a

global optimum cannot be guaranteed in general. A stronger convergence result would be

to show that the limit point of the iterates generated by Algorithm 3.1 is in fact a stationary

point (i.e. satisfies the KKT conditions) of the WMSE problem in (3.27), and ultimately

the rate problem in (3.26). This has been established for smooth sum utility functions

in [8], and non-smooth max-min fair utility functions in [51]. It was later shown that the

WMMSE algorithm belongs to a class of inexact BCDs, known as Successive Upper-bound

Minimization (SUM), and more general analysis and proofs were established in [53, 54].

The KKT optimality of limit points obtained by the WMMSE procedures used throughout

this thesis can be established based on [53,54].

3.3.4. AWMSE Formulation

Motivated by the rather nice properties of WMSE problems, we propose an Average WMSE

(AWMSE) formulation of the RS ASR problem in (3.12). Taking the expectation of the

WMSEs in (3.22), we start by defining the AWMSEs as

ξ̄c,k , E
H|Ĥ

{
ξc,k | Ĥ

}
and ξ̄k , E

H|Ĥ

{
ξk | Ĥ

}
. (3.30)

from which an average version of the Rate-WMMSE relationship in Lemma 3.1, namely

the AR-AWMMSE relationship, is defined as

ξ̄MMSE
c,k , E

H|Ĥ

{
min

uc,k,gc,k
ξc,k | Ĥ

}
= 1− R̄c,k (3.31a)

ξ̄MMSE
k , E

H|Ĥ

{
min
uk,gk

ξk | Ĥ
}

= 1− R̄k. (3.31b)

Note that the expectations in (3.31) are taken outside the minimizations to account for the

dependencies of the optimum equalizers and weights on H. It is important to keep these

dependencies in mind when WMSE formulation are used under imperfect CSIT. As we see

in this chapter and the next chapter, such dependencies are usually overlooked yielding

more tractable, yet conservative, formulations.

The Average Weighted Sum MSE (AWSMSE) problem that corresponds to the ASR

problem in (3.12) is formulated as

ARS(Pt) :


min

ξ̄c,P,u,g
ξ̄c +

∑K
k=1 ξ̄k

s.t. ξ̄c,k ≤ ξ̄c, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(3.32)
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where ξ̄c is an auxiliary variable representing the common AWMSE. This is a stochastic

optimization problem, where g and u are random optimization variables corresponding to

the H-dependent equalizers and weights, respectively. In particular, single realizations of

such random variables are given by g(H) and u(H) respectively, where the dependencies

on H are highlighted. The equivalence and block-wise convexity properties discussed in the

previous subsection hold between (3.12) and (3.32) such that

ARS(Pt) = K + 1−RRS(Pt) (3.33)

where ξ̄c = 1− R̄c holds at optimality. This follows from Proposition 3.1 by extending the

set of achievable rates to include all realizations of H given Ĥ, and taking the expectations

as part of the concave utility function. Next, we look at approximate methods from which

deterministic counterparts of (3.32) are obtained and solved.

3.4. Conservative Approximation

In this section, problem (3.32) is approximated by relaxing the dependencies of the equal-

izers and weights on the channel state H. As a result, closed form expressions of the

expectations are obtained. In particular, the conservative AWMSEs are given by

ξ̂c,k , E
H|Ĥ

{
ξc,k | Ĥ, ĝc,k, ûc,k

}
= ûc,k

(
|ĝc,k|2T̄c,k−2ℜ

{
ĝc,kĥ

H
k pc

}
+1

)
−log2(ûc,k) (3.34a)

ξ̂k , E
H|Ĥ

{
ξk | Ĥ, ĝk, ûk

}
= ûk

(
|ĝk|2T̄k − 2ℜ

{
ĝkĥ

H
k pk

}
+ 1

)
− log2(ûk) (3.34b)

where (ĝc,k, ĝk) and (ûc,k, ûk) denote the relaxed equalizers and weights respectively, and

T̄c,k , E
H|Ĥ

{
Tc,k | Ĥ

}
= pH

c

(
ĥkĥ

H
k +Re,k

)
pc + T̄k (3.35a)

T̄k , E
H|Ĥ

{
Tk | Ĥ

}
=

K∑
i=1

pH
i

(
ĥkĥ

H
k +Re,k

)
pi + σ2n. (3.35b)

Following the same approach in the proof of Lemma 3.1, the optimum relaxed equalizers

are derived from (3.34) as:

ĝMMSE
c,k = pH

c ĥkT̄
−1
c,k and ĝMMSE

k = pH
k ĥkT̄

−1
k . (3.36)

Plugging them back into (3.34), the optimum relaxed weights are obtained as:

ûMMSE
c,k =

(
ε̂MMSE
c,k

)−1
and ûMMSE

k =
(
ε̂MMSE
k

)−1
(3.37)

where

ε̂MMSE
c,k , 1− T̄−1

c,k |ĥ
H
k pc|2 and ε̂MMSE

k , 1− T̄−1
k |ĥ

H
k pk|2. (3.38)
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It is clear that the optimum relaxed equalizers and weights in (3.36) and (3.37) are functions

of Ĥ rather than H. Incorporating this approximation into the AR-AWMMSE relationship

in (3.31), the expectations are taken inside the minimizations such that

ξ̂MMSE
c,k , min

ûc,k,ĝc,k
E
H|Ĥ

{
ξc,k | Ĥ

}
= 1− R̂c,k (3.39a)

ξ̂MMSE
k , min

ûk,ĝk
E
H|Ĥ

{
ξk | Ĥ

}
= 1− R̂k. (3.39b)

This is referred to as the conservative AR-AWMMSE relationship, where the conservative

ARs are given by

R̂c,k , − log2(ε̂
MMSE
c,k ) and R̂k , − log2(ε̂

MMSE
k ). (3.40)

Next, these approximations are leveraged to formulate a deterministic AWSMSE problem,

which can be solved using the AO principle in Algorithm 3.1. Moreover, we prove that the

resulting performance is in fact conservative.

3.4.1. Conservative AWSMSE Problem

By employing (3.34), a conservative version of the AWSMSE problem is formulated as

ÂRS(Pt) :


min

ξ̂c,P,û,ĝ
ξ̂c +

∑K
k=1 ξ̂k

s.t. ξ̂c,k ≤ ξ̂c, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(3.41)

where û ,
{
ûc,k, ûk | k ∈ K

}
and ĝ ,

{
ĝc,k, ĝk | k ∈ K

}
. So far, approximations and

formulations have been described as conservative without explaining why. This is shown as

follows. It is evident that (3.41) is a restricted version of the AWSMSE problem in (3.32),

where the domains of g and u in (3.32) are restricted such that g(H) = ĝ and u(H) = û

remain unchanged across all realization of H given Ĥ. Hence by definition, solving (3.41)

yields an upper-bound on ARS(Pt). Equivalently, we obtain a lower-bound on RRS(Pt)

denoted by R̂RS(Pt) = K + 1 − ÂRS(Pt). It follows that solving a sequence of problem

(3.41) over all Ĥ yields an ESR give by

E
Ĥ

{
R̂RS(Pt)

}
, 1 +K − E

Ĥ

{
ÂRS(Pt)

}
≤ E

Ĥ

{
RRS(Pt)

}
(3.42)

which is clearly upper-bounded by the ESR obtained by a sequence of (3.32).

Since streams are independently decoded by different users, an achievable ESR is not suf-

ficient to guarantee reliable communication, as achievable rates for each individual stream

must be prescribed as well. We show that any sequence of feasible solutions for (3.41)
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yields achievable ERs. For any given precoding matrix P, we can write the inequalities

ξ̂c,k ≥ ξ̂MMSE
c,k ≥ ξ̄MMSE

c,k and ξ̂k ≥ ξ̂MMSE
k ≥ ξ̄MMSE

k (3.43)

which follow from (3.31), (3.39) and the fact that moving the expectation inside the mini-

mization does not decrease the value. As a direct results, we have

R̂c,k ≤ R̄c,k and R̂k ≤ R̄k. (3.44)

Combining this with (3.4) and (3.10), it follows that reliable communication is guerenteed

at the ERs given by E
Ĥ

{
minj R̂c,j

}
for the common message and E

Ĥ

{
R̂k

}
for the kth

private message, for any feasible sequence of P.

3.4.2. Alternating Optimization

The problem in (3.41) can be solved using the AO principle in Algorithm 3.1. In the nth

iteration, (ĝ, û) are updated by plugging P[n−1] into equations (3.36) and (3.37). On the

other hand, P is updated by solving the problem

Â[n]
RS(Pt) :


min
ξ̄c,P

ξ̄c +
∑K

k=1

(
ûk|ĝk|2T̄k − ûk2ℜ

{
ĝkĥ

H
k pk

}
+ ûk − log2(ûk)

)
s.t. ûc,k|ĝc,k|2T̄c,k − 2ûc,kℜ

{
ĝc,kĥ

H
k pc

}
+ ûc,k − log2(ûc,k) ≤ ξ̂c, ∀k ∈ K

∥pc∥2 +
∑K

k=1 ∥pk∥2 ≤ Pt.

(3.45)

The above problem is a convex Quadratically Constrained Quadratic Program (QCQP),

which is confirmed by checking equations (3.34) and (3.35). Such problem can be solved

efficiently to global optimality using interior-point methods [52].

The AO procedure is guaranteed to converge by Proposition 3.2. The optimality of the

limit point achieved by AO is not of much interest in the conservative case. One reason is

that the best achievable performance is upper-bounded by R̂RS(Pt), which is shown to be

a loose lower-bound of RRS(Pt), at least in the high SNR regime.

3.4.3. Limitations

Although the conservative AWMMSE approach appears in literature [46,47], its limitations

have not been fully identified. The primary limitation is that the ARs predicted by the

BS through solving (3.41) are loose lower-bounds on the actual ARs. Hence, transmitting

at the ESR given by E
Ĥ

{
R̂RS(Pt)

}
causes some performance losses, shown later in the

simulation result. Here, the looseness of the conservative ARs is shown analytically. For

the sake of analysis, we assume isotropic CSIT errors as in Assumption 3.1.

The conservative ARs in (3.40) can be expressed by

R̂c,k , log2
(
1 + γ̂c,k

)
and R̂k , log2

(
1 + γ̂k

)
. (3.46)
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where

γ̂c,k , |pH
c ĥk|2

Îc,k + Ĩc,k
and γ̂k , |p

H
k ĥk|2

Îk + Ĩk
(3.47)

with

Îc,k ,
K∑
i=1

|pH
i ĥk|2 + σ2e,k∥pi∥2 + σ2n and Îk ,

∑
i̸=k

|pH
i ĥk|2 + σ2e,k∥pi∥2 + σ2n (3.48)

and

Ĩc,k = σ2e,k∥pc∥2 and Ĩk = σ2e,k∥pk∥2. (3.49)

This follows directly from (3.38) and (3.40). By observing (3.47), it can be seen that

the useful signal power components in γ̂c,k and γ̂k only consist of parts incorporating the

channel estimate, while the parts of the desired signal power incorporating the CSIT errors,

namely Ĩc,k and Ĩk, appear as interference. This is explained as follows: by removing

the dependencies of equalizers (and weights) on the actual channel, the robust rates (as

guaranteed by the BS) are optimized while ignoring the availability of perfect CSIR, and

hence treating parts of the desired signal which incorporate h̃k as noise. This yields the

self-interference terms given in (3.49).

Assume a power scaling scaling as: qc = O
(
P ac
t

)
and qk = O

(
P ak
t

)
, where ac, ak ∈ [0, 1]

are power scaling factors. It follows that the self-interference terms scale as Ĩc,k = O
(
P ac−α
t

)
and Ĩk = O

(
P ak−α
t

)
. This is detrimental to the ARs as perceived by the BS. For example,

a fixed CSIT quality with α = 0 yields Ĩc,k and Ĩk that scale as O
(
P ac
t

)
and O

(
P ak
t

)
respectively. This results in saturating SINRs in (3.47) for Pt → ∞, as interference scales

similar to the desired signal power. The influence of this is seen in Section 3.6.

3.5. Sample Average Approximation

The limitations of the conservative approach shown in the previous section motivate the

development of a method that can achieve the performance predicted from the DoF analysis.

In this section, we propose a non-conservative AWMSE formulation based on SAA [9]. We

start by defining the main building blocks of this method.

For a given estimate Ĥ and index set M , {1, . . . ,M}, we define a sample of M i.i.d

realizations of H drawn from the conditional distribution with density f
H|Ĥ

(
H | Ĥ

)
as

H(M) ,
{
H(m) = Ĥ+ H̃(m) | Ĥ, m ∈M

}
. (3.50)

This is used to approximate the ARs through their Sample Average Functions (SAFs)

defined as:

R̄
(M)
c,k , 1

M

M∑
m=1

R
(m)
c,k and R̄

(M)
k , 1

M

M∑
m=1

R
(m)
k (3.51)

57



where

R
(m)
c,k , Rc,k

(
H(m)

)
and R

(m)
k , Rk(H

(m)
)

(3.52)

are instantaneous rates associated with the mth realization. It should be noted that P is

fixed over the M realizations, which follows from the definition of the ARs. This leads to

the SAA of the ASR problem in (3.12) formulated as

R(M)
RS (Pt) :


max
R̄c,P

R̄c +
∑K

k=1 R̄
(M)
k

s.t. R̄
(M)
c,k ≥ R̄c, ∀k ∈ K

tr
(
PPH

)
≤ Pt.

(3.53)

Before we proceed, we make the following finite SNR/SINR assumption.

Assumption 3.2. In the following, it is assumed that SNR <∞, i.e. σ2n > 0 and Pt <∞,

and that entries of channel state realizations are bounded. Hence, γc,k, γk <∞.

It follows that all achievable rates are bounded for any Pt and all channel realizations.

Therefore, from the strong Law of Large Numbers (LLN), we have

lim
M→∞

R̄
(M)
c,k (P) = R̄c,k(P) and lim

M→∞
R̄

(M)
k (P) = R̄k(P), a.s. ∀P ∈ P (3.54)

where the dependency of the rates on a given P is highlighted, a.s. denotes almost surely,

and P ,
{
P | tr

(
PPH

)
≤ Pt

}
is the feasible set of precoders. (3.54) suggests that the

solution of problem (3.53) converges to its counterpart of problem (3.12) as M → ∞. We

show that this is indeed the case.

First, note that the feasible set P is compact and the instantaneous rate functions are

bounded and continuously differentiable inP. Hence, the convergence in (3.54) is uniform in

P ∈ P. The ARs are also continuously differentiable with gradients given by ∇PR̄c,k(P) =

E
H|Ĥ

{
∇PRc,k(P) | Ĥ

}
and ∇PR̄k(P) = E

H|Ĥ
{
∇PRk(P) | Ĥ

}
, which follows from the

bounded convergence theorem [55]. Next, we observe that the objective functions of (3.12)

and (3.53) can be equivalently reformulated by incorporating the common rates as

R̄s , min
j

{
R̄c,j

}K

j=1
+

k∑
k=1

R̄k and R̄(M)
s , min

j

{
R̄

(M)
c,j

}K

j=1
+

k∑
k=1

R̄
(M)
k (3.55)

where R̄s and R̄
(M)
s are the equivalent ASRs. From (3.54), (3.55) and the continuity of the

pointwise minimization, we have

lim
M→∞

R̄(M)
s (P) = R̄s(P), a.s. ∀P ∈ P. (3.56)

From the continuity of the ARs, we observe that R̄s is continuous in P although not nec-

essarily differentiable at all points due to the embedded pointwise minimization. Hence, it

can be shown that the convergence in (3.56) is also uniform. Combining these observations
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with [9, Theorem 5.3], it is concluded that the set of global optimum solutions of the SAA

problem in (3.53) converges to that of the stochastic problem in (3.12) a.s. as M → ∞.

Extending this result to the set of points that satisfy the first-order optimality conditions

(i.e. KKT points) for non-convex non-smooth problems can be found in [56, Section 4.3].

Now, we turn to solving the sampled problem in (3.53) using the WMMSE approach.

3.5.1. Sampled AWSMSE Problem

To formulate a sampled version of problem (3.32), the AWMSEs in (3.30) are first approx-

imated by their SAFs expressed as

ξ̄
(M)
c,k , 1

M

M∑
m=1

ξ
(m)
c,k and ξ̄

(M)
k , 1

M

M∑
m=1

ξ
(m)
k (3.57)

where ξ
(m)
c,k , ξc,k

(
h
(m)
k , g

(m)
c,k , u

(m)
c,k

)
and ξ

(m)
k , ξk

(
h
(m)
k , g

(m)
k , u

(m)
k

)
. All variables with

superscript (m) are associated with the mth realization in H(M). It is clear that the

sampling in (3.57) includes the equalizers and weights to capture their dependencies on

H(M), where g
(m)
c,k , gc,k

(
h
(m)
k

)
, g

(m)
k , gk

(
h
(m)
k

)
, u

(m)
c,k , uc,k

(
h
(m)
k

)
and u

(m)
k , uk

(
h
(m)
k

)
.

For compactness, we define the set of sampled equalizers as: G ,
{
gc,k,gk | k ∈ K

}
,

where gc,k ,
{
g
(m)
c,k | m ∈ M

}
and gk ,

{
g
(m)
k | m ∈ M

}
. In a similar manner, we define:

U ,
{
uc,k,uk | k ∈ K

}
, where uc,k ,

{
u
(m)
c,k | m ∈ M

}
and uk ,

{
u
(m)
k | m ∈ M

}
. The

same approach used to prove (3.23) is employed to demonstrate the following relationship

ξ̄
MMSE(M)
c,k , min

uc,k,gc,k

ξ̄
(M)
c,k = 1− R̄(M)

c,k (3.58a)

ξ̄
MMSE(M)
k , min

uk,gk

ξ̄
(M)
k = 1− R̄(M)

k (3.58b)

where optimality conditions are checked separately for each conditional channel realization.

The sets of optimum MMSE equalizers associated with (3.58) are denoted by gMMSE
c,k ,{

g
MMSE(m)
c,k | m ∈ M

}
and gMMSE

k ,
{
g
MMSE(m)
k | m ∈ M

}
. In the same manner,

the sets of optimum MMSE weights are given by uMMSE
c,k ,

{
u
MMSE(m)
c,k | m ∈ M

}
and

uMMSE
k ,

{
u
MMSE(m)
k | m ∈ M

}
. For the K users, the MMSE solution is composed as

GMMSE ,
{
gMMSE
c,k ,gMMSE

k | k ∈ K
}
and UMMSE ,

{
uMMSE
c,k ,uMMSE

k | k ∈ K
}
.

The sampled AWSMSE problem which is equivalent to (3.53) is given by

A(M)
RS (Pt) :


min

ξ̄c,P,U,G
ξ̄c +

∑K
k=1 ξ̄

(M)
k

s.t. ξ̄
(M)
c,k ≤ ξ̄c, ∀k ∈ K

tr
(
PPH

)
≤ Pt.

(3.59)

The equivalence between (3.59) and (3.53) follows directly from Proposition 3.1. Now the

goal is to solve problem (3.59). Since this problem is deterministic, AO can be directly
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applied as we see next.

3.5.2. Algorithm, Convergence and Optimality

In nth iteration of the AO algorithm, the equalizers and weights are updated such that

(G,U) =
(
GMMSE(P[n−1]),UMMSE(P[n−1])

)
, where the dependencies on P[n−1] are high-

lighted, and the MMSE solution is obtained for each realization using (3.19) and (3.25).

To facilitate the formulation of the precoder optimization problem in the following step,

we introduce the SAFs listed as: t̄c,k, t̄k, Ψ̄c,k, Ψ̄k, f̄c,k, f̄k, ūc,k, ūk, ῡc,k and ῡk, which

are obtained using the updated (G,U). In particular, ūc,k and ūk are calculated by taking

the ensemble averages over the M realizations of u
(m)
c,k and u

(m)
k , respectively. The rest are

calculated in a similar manner by averaging over their corresponding realizations given by:

t
(m)
c,k = u

(m)
c,k

∣∣∣g(m)
c,k

∣∣∣2 and t
(m)
k = u

(m)
k

∣∣∣g(m)
k

∣∣∣2
Ψ

(m)
c,k = t

(m)
c,k h

(m)
k h

(m)
k

H
and Ψ

(m)
k = t

(m)
k h

(m)
k h

(m)
k

H

f
(m)
c,k = u

(m)
c,k h

(m)
k g

(m)
c,k

H
and f

(m)
k = u

(m)
k h

(m)
k g

(m)
k

H

υ
(m)
c,k = log2

(
u
(m)
c,k

)
and υ

(m)
k = log2

(
u
(m)
k

)
.

(3.60)

Following the previous step, the problem of updating P is formulated by plugging

(G,U) =
(
GMMSE(P[n−1]),UMMSE(P[n−1])

)
into (3.59). This yields the following problem

AMMSE[n]
RS

(
Pt,G,U

)
:



min
ξ̄c,P

ξ̄c +
∑K

k=1

(∑K
i=1 p

H
i Ψ̄kpi + σ2nt̄k − 2ℜ

{
f̄Hk pk

}
+ ūk − ῡk

)
s.t. pH

c Ψ̄c,kpc +
∑K

i=1 p
H
i Ψ̄c,kpi + σ2nt̄c,k − 2ℜ

{
f̄Hc,kpc

}
+ūc,k − ῡc,k ≤ ξ̄c, ∀k ∈ K

∥pc∥2 +
∑K

k=1 ∥pk∥2 ≤ Pt.

(3.61)

The AWMSEs expressions in (3.61) are obtained by substituting the SAFs obtained from

(3.60) into (3.57). This is carried out while considering the updated equalizers and weights

from the previous step, embedded into the realizations in (3.60). Similar to problem (3.45),

problem (3.61) is also a convex QCQP which can be solved using interior-point methods.

The steps to the described procedure are summarized in Algorithm 3.2.

It turns out that since Algorithm (3.2) does not employ conservative approximations,

conclusions about the optimality of the solution with respect to the original ASR problem

in (3.12) can be made as we see next.

Proposition 3.3. For a given H(M), the iterates generated by Algorithm 3.2 converge to

the set of KKT points of the corresponding sampled ASR problem in (3.53).

Proof. The AO procedure described above is an instance of the Successive Convex Ap-

proximation (SCA) method in [54, Section 2.1]. In particular, solving (3.61) is equivalent
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Algorithm 3.2 Alternating Optimization

1: Initialize: n← 0, AMMSE[n]
RS ← 0, P

2: repeat
3: n← n+ 1, P[n−1] ← P
4: G← GMMSE(P[n−1]), U← UMMSE(P[n−1])

5: update
{
Ψ̄c,k, Ψ̄k, F̄c,k, F̄k, t̄c,k, t̄k, ūc,k, ūk, ῡc,k, ῡk

}K

k=1

6: P← argAMMSE[n]
RS

7: until
∣∣∣AMMSE[n]

RS −AMMSE[n−1]
RS

∣∣∣ < ϵR

to solving a convex approximation of (3.53) around P[n−1], obtained from the previous

iteration. Moreover, (3.61) satisfies the conditions in [54, Assumption 1]. Hence, it follows

from [54, Theorem 1] that any limit point of the AO procedure is a KKT point of problem

(3.53). Now, since the iterates lie in a compact set, characterized by tr
(
PPH

)
≤ Pt, then

the convergence to the set of KKT points is guaranteed (see [53, Corollary 1]).

As mentioned in Section 3.3.3, it is not possible to guarantee the global optimality of the

solution as the problem in non-convex. Moreover, different initializations of P may lead to

different limit points. This is examined through simulations in the following section where

it is shown that appropriate initialization yields good convergence and rate performances.

3.6. Numerical Results and Analysis

In this section, the proposed algorithms are evaluated through simulations. First, we

present the simulation parameters before discussing various results.

3.6.1. Simulation Parameters

We consider a system with K = Nt users, where K is varied and highlighted throughout

the section. The channel H has i.i.d. complex Gaussian entries with unit variance, i.e.

drawn from CN (0, 1). The noise variance is fixed as σ2n = 1, from which the long-term

SNR is given as Pt. Entries of H̃ are also i.i.d complex Gaussian drawn from CN
(
0, σ2e

)
,

where σ2e = N−1
t σ2e,k, ∀k ∈ K. The error variance is given as σ2e = βP−α

t , where β ≥ 0 and

α ∈ [0, 1] are varied to represent different CSIT accuracies and SNR scalings. It follows

that the channel estimate Ĥ = H− H̃ also has entries with distribution CN
(
0, 1− σ2e

)
.

The channel realization H should not be confused with a conditional realization H(m).

While the former represents the actual fading state experienced by the users and unknown

to the BS, the latter is part of a sample H(M) available at the BS and used to calculate

the SAFs. The size of the sample is set to M = 1000 throughout the simulations, unless

otherwise stated. For a given estimate Ĥ, the mth conditional realization is obtained as

H(m) = Ĥ+ H̃(m), where H̃(m) is drawn from the error distribution.
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Figure 3.1.: ASR convergence of Algorithm 3.2 using four different initializations of P for
one randomly generated channel estimate. Other parameters are given by:
K,Nt = 2, σ2e = P−0.6

t , and 5, 20 and 35 dB SNRs.

Remark 3.3. All convex optimization problems requiring interior-point methods throughout

this thesis are solved using the CVX toolbox [57].

3.6.2. Convergence

First, we examine the convergence of Algorithm 3.2 under four different initializations of

P. Recalling from Section 2.4.1, precoding vectors can be expressed in terms of power

allocation and beamforming direction as pc =
√
qcp̂c and pk =

√
qkp̂k.

The first initialization is denoted by ZF-e, in which ZF-BF over Ĥ is used for private

precoders such that

Pp = PZF
p

(
Ĥ, [Pα

t /K, . . . , P
α
t /K]

)
(3.62)

while the common precoder has qc = Pt − Pα
t and p̂c = e1. The second initialization,

labeled as ZF-SVD, is a modification of ZF-e, where p̂c is slightly optimized by choosing it

as the dominant left singular vector of Ĥ. The third and fourth initializations, labeled as

MRC-e and MRC-SVD respectively, maintain the same common precoders as ZF-e and ZF-

SVD respectively. However, Maximum Ratio Combining (MRC) given by p̂k = ĥk/∥ĥk∥
for all k ∈ K, is employed instead of ZF-BF.

The ASR convergence for σ2e = P−0.6
t and SNRs 5, 20 and 35 dB is shown in Figure 3.1.

It is evident that the algorithm converges to a limit point regardless of the initialization.

However, the speed of convergence is influenced by the initial state, which may also influence

the limit point as the problem is non-convex. The initialization effect becomes more visible
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Figure 3.2.: Comparison between the ESRs of NoRS and RS transmission schemes obtained
by averaging over 100 random channels. K,Nt = 2 and σ2e = P−0.6

t .

as SNR grows large. For example, initializing the common precoder using SVD enhances

the convergence at high SNRs. In the following results, MRC-SVD is adopted as it provides

good overall performance over various channel realizations and a wide range of SNRs.

3.6.3. Ergodic Sum-Rate Performance

Here we evaluate the achievable ESRs obtained by averaging the ASRs over 100 channel

realizations. For each channel realization, Algorithm 3.2 is used to obtain the RS ASR. For

NoRS, a modification of Algorithm 3.2 is used where the common precoder and common

rates are switched off .

RS vs. NoRS

The performance of the optimized RS scheme (RS-Opt) is compared to the optimized NoRS

scheme (NoRS-Opt). ZF-BF withWater-Filling (WF), where power allocation is carried out

assuming that the estimate Ĥ is perfect, is considered as a baseline for NoRS transmission.

This scheme is termed as NoRS-ZF. On the other hand, we consider a modified version

of the ZF-SVD initialization in the previous subsection as a baseline for RS transmission.

In particular, the power splitting between the common message and the private messages

is maintained, while WF is used to allocate the power among the private messages. This

scheme is termed RS-ZF-SVD.

The 2-user ESRs obtained using the different optimization schemes for σ2e = P−0.6
t and

P−0.9
t are shown in Figure 3.2 and Figure 3.3, respectively. Comparing RS-Opt and NoRS-
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Figure 3.3.: Comparison between the ESRs of NoRS and RS transmission schemes obtained
by averaging over 100 random channels. K,Nt = 2 and σ2e = P−0.9
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Figure 3.4.: Comparison between the ESRs of NoRS and RS transmission schemes obtained
by averaging over 100 random channels. K,Nt = 2 and σ2e = 0.063.
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Opt, the two schemes perform similarly at low SNRs. In particular, both reduce to single-

user transmission by switching off the weaker user. As SNR grows, multiuser transmission

starts to take over. However, reducing multiuser interference to the level of noise (or

eliminating it) is not possible due to imperfect CSIT. Therefore, the overall performance

does not necessarily benefit from additional power inaccurately directed towards a given

user, as it may cause more damage by interfering with other users. At this stage, RS-Opt

starts to part from NoRS-Opt by switching on the common message. The contribution

of the common message primarily manifests at high SNRs, where the gap between RS-

Opt and NoRS-Opt exceeds 4 dB for α = 0.6. For α = 0.9, which is almost perfect

from a DoF perspective, RS is not as instrumental as it is for α = 0.6. However, rate

gains can still be observed at high SNRs. Regarding the baseline schemes, their inferiority

compared to optimized schemes is evident over the entire SNR range. In the low SNR

regime, baselines fall behind due to the strict application of ZF-BF, which is not ideal

in this case. However, the RS-ZF-SVD scheme slightly compensates for this through the

common message. However, it fails to match the optimized transmission in RS-Opt and

NoRS-Opt. In the high SNR regime, each baseline scheme achieves the same DoF (slope

of the curve) as its optimized counterpart with a rate gap, which is particularly noticeable

for α = 0.6.

The performance under CSIT errors that do not scale with SNR (α = 0) is shown in

Figure 3.4, where σ2e =
(
10

20
10

)−0.6
= 0.063, which corresponds to the CSIT quality obtained

at 20 dB SNR w.r.t Figure 3.2. First, it can be seen that the rate of NoRS-ZF saturates.

This is due to the naive employment of Ĥ to design the ZF-BF vectors and allocate power

as if it was a perfect estimate. At high SNRs, residual interference dominates and caps the

performance. RS-ZF-SVD employs the DoF-motivated power splitting (i.e. qc = Pt and

qk = 0) and hence reduces to multicast transmission (sending only the common message)

maintaining a DoF of 1. On the other hand, NoRS-Opt and RS-Opt schemes achieve

significantly better performances compared to their corresponding baselines, over the entire

range of SNRs. Moreover, although RS-Opt is not expected to achieve DoF gains over

NoRS-Opt as Pt → ∞, the former still manages to deliver superior rate performance at

medium and high SNRs.

Increased Number of Users

Theorem 3.1 implies that the relative DoF gain achieved by RS over NoRS decreases as K

increases. Figure 3.5 shows the ESRs achieved by NoRS-Opt and RS-Opt for K = 2, 4,

6 and 8 users, assuming α = 0.6. Figure 3.5 also shows the NoRS-Opt performance for a

CSIT error exponent given as: α2 =
1+(K−1)α

K . This corresponds to a conventional system

that achieves the same sum DoF as the RS system, but at the cost of higher CSIT quality

requirements since α2 > α, ∀α ∈ (0, 1). It is evident that the two perform closely, which

highlights another benefit of RS, i.e. relaxed CSIT requirements compared to NoRS.
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Figure 3.6.: The effect of changing the sample size M on the rate performance of the RS
SAA algorithm for K,Nt = 2, σ2e = P−α

t , and α = 0.1, 0.3, 0.6 and 0.9.

SAA Sample Size

Next, we look at the influence of changing the sample sizeM on the SAA algorithm. The 2-

user ESRs achieved by solving Algorithm 3.2 forM = 1, 10, 100 and 1000 are given in Figure

3.6. Different scaling CSIT qualities are considered where σ2e = P−α
t , and α = 0.1, 0.3, 0.6
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and 0.9. Using a sample of one realization significantly degrades the performance, as the

resulting design lacks statistical knowledge of the CSIT uncertainty. On the other hand,

the SAA algorithm performs very well with a sample size as small as M = 10 under the

specified settings. Higher sample sizes of M = 100 and 1000 perform almost identically.

Note that the achievable ESRs in this part are obtained by numerically evaluating the

ERs, as taking the expectations of the sampled ASR objective functions for low Ms is not

reflective of the achievable performance.

Conservative Algorithm

In this part, we look at the performance of the conservative design in Section ref. For

the Gaussian CSIT error described earlier in this section, we have Re,k = σ2eI, ∀k ∈ K.
The conservative ESR is obtained by averaging the conservative ASRs obtained by solving

(3.41). The ESRs predicted by the BS using the SAA approach and the conservative

approach are given in Figure 3.7 for K = 2 and σ2e = P−α
t , with α = 0.1, 0.3, 0.6 and 0.9.

The SAA scheme achieves significant gains over the conservative scheme, which increase

with decreased CSIT qualities. This is explained by the discussion in Section 3.4.3. In

particular, self-interference terms become dominant and the ASR lower-bound becomes

looser. This effect is extremely detrimental for low CSIT qualities, as the achievable ESRs

are highly undermined by the BS.

67



       
 

 

 

 

 

 

 

ER User-1

E
R

U
s
e
r
-2

0

2

4

6

8

10

12

0 2 4 6 8 10 12

NoRS
RS

SNR 20 dB

SNR 30 dB

Figure 3.8.: Two-user ER regions for σ2e = P−0.6
t , and SNR = 20 and 30 dB.

3.6.4. Ergodic Rate Region

In the final part, we investigate the NoRS and RS achievable ER regions in a two-user

scenario. ER regions are obtained by solving Weighted ESR (WESR) problems, where

different boundary points are realized by varying the weights. For NoRS, this is achieved

by incorporating the weights into the ASR problem in (3.6). For a fixed pair of weights,

the problem is solved for several channel realizations. A boundary point of the ER region

is obtained by averaging the resulting AR realizations for a given pair of weights. For the

RS problem, applying the weights directly to (3.12) results in a region with the common

message allocated to one user the entire time. A second region is obtained by allocating the

common message to the other user, and the full region is given by the convex-hull enclosing

the two regions by time-sharing of the extremity points.

Alternatively, all boundary points for the RS region can be obtained by assuming that

R̄c is shared between users such that C̄k is the kth user’s portion of the common AR with∑K
k=1 C̄k = R̄c. The WASR problem is formulated as

RWRS(Pt) :



max
P,{C̄k}Kk=1

∑K
k=1wk(R̄k + C̄k)

s.t. R̄c,k ≥
∑K

j=1 C̄j , ∀k ∈ K

C̄k ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(3.63)
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where the weights {wk | k ∈ K} are fixed parameters. (3.63) is solved by formulating

its equivalent AWSMSE problem, and modifying Algorithm 3.2 accordingly. To obtain the

two-user regions shown in Figure 3.8, the corresponding problems are solved for 43 different

pairs of weights. The first weight is fixed as w1 = 1, and the second weight changes as

w2 ∈ {10−3, 10−1, 10−0.95, . . . , 100.95, 10, 103}. What is meaningful for each pair is the ratio

between the weights rather than their absolute levels [7]. Each point on the ER region is

characterized by the tuple E
Ĥ

{
(R̄1, R̄2)

}
for NoRS, and E

Ĥ

{
(R̄1 + C̄1, R̄2 + C̄2)

}
for RS,

where each pair of ARs is obtained from solving the corresponding WASR problem.

The ER regions shown in Figure 3.8 are obtained for SNRs: 20 and 30 dB, and σ2e =

P−0.6
t . As expected, the gap between RS and NoRS grows with SNR. The performance

for 30 dB SNR is particularly interesting, as it is evident that RS enlarges the whole ER

region significantly. For example, while guaranteeing an ER of 10 bps/Hz for user-1, an ER

of almost 4 bps/Hz can be achieved by user-2. On the other hand, guaranteeing the same

user-1 ER using NoRS restricts the ER of user-2 to just over 1.5 bps/Hz. This observation

is of special interest for designs exploiting different points of the rate regions, e.g. max-min

fairness and QoS constrained designs as seen in the following chapter.

3.7. Summary and Conclusion

In this chapter, ESR maximization in MU-MISO systems with partial CSIT was achieved

by optimizing the linear precoding scheme of the RS transmission strategy. The precoding

scheme is optimized such that a conditional ASR metric is maximized based on the available

channel estimate. This was shown to be optimum in the ergodic sense, where the transmis-

sion spans a large number of channel states. The stochastic ASR problem was solved using

the conservative WMMSE approach in [46,47]. The limitation of this approach were iden-

tified and analyses. Then, an alternative non-conservative WMMSE algorithm based on

the SAA method was proposed. The effectiveness of the proposed algorithm and the ben-

efits of adopting the RS strategy were demonstrated through simulations, where the gains

anticipated by the DoF analysis were achieved, in addition to an optimized performance

across the entire range of SNRs. Finally, the two-user ER region was numerically obtained

by solving a sequence of WASR problems. RS proved to enlarge the entire achievable ER

region, drawing attention to the potentials of employing RS in other scenarios.

69





4. Fairness and Quality of Service

After seeing the benefits of combining the RS strategy with precoder optimization tech-

niques, we extend this to a different scenario in this chapter. In particular, we consider a

MU-MISO system with bounded CSIT uncertainty. This allows for non-ergodic transmis-

sion with a guaranteed worst-case performance (zero-outage). However, instead of targeting

the overall system performance through sum-rate maximization, we consider the problem

of achieving max-min fairness amongst users. Moreover, we consider the inverse problem

of satisfying minimum Quality of Service (QoS) constraints.

The same design methodology used in the previous chapter is revisited here. In particular,

we propose two WMMSE-based robust designs: a conservative design that ignores perfect

CSIR, and a non-conservative design that samples the uncertainty region. However, due to

the different nature of the CSIT uncertainty and worst-case performance considered here,

the optimization algorithms developed in the previous chapter cannot be reused. Next, the

problems considered in this chapter are introduced.

4.1. Introduction

While maximizing the sum-rate guarantees the best overall performance, it does not account

for fairness amongst users. This may be less of an issue under symmetric ergodic fading

where all users would eventually experience all fading states over the long transmission

period, hence achieving symmetric performances. However, if long-term channel gains

and CSIT qualities vary amongst users, then we may end up with an asymmetric long-

term performance. This problem is even more pronounced when considering non-ergodic

transmission under one joint channel state. Such channel state is drawn randomly and may

favour one user over the others, yielding an unfair performance.

In this chapter, we depart from some of the main features of the previous chapter,

namely: ergodic transmission and sum-rate maximization under a transmit power con-

straint. Instead, we consider non-ergodic transmission under one random joint channel

state. Moreover, we consider rather different design objectivs, namely

• Maximizing the minimum rate among users subject to a total power constraint.

• Transmit power minimization subject to prescribed rate constraints.

The former is known in literature as the MMF problem or the rate-balancing problem,

while the latter is known as the QoS problem or the power problem. The two problems
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are known to be very closely related. For example, there is an inverse relation between the

two when all users request the same rate in the second problem. Hence, we focus on the

former throughout this chapter. Once the RS design is well established, it is extended to

the QoS problem in Section 4.8.

4.2. Achieving Max-Min Fairness

Under a fixed channel state and in the presence of perfect CSIT, the problem of designing

a linear precoder to achieve max-min fairness is given by

max
R,Pp

R

s.t. Rk ≥ R, ∀k ∈ K

tr
(
PpP

H
p

)
≤ Pt

(4.1)

where R is a slack variables representing the minimum rate amongst users. It can be

checked that at least one of the rate constraints is satisfied with equality at optimality.

Problem (4.1) assumes an equivalent formulation in terms of the SINRs or MMSEs,

which follows from the one-to-one monotonic relationship between Rk, γk, and εk, observed

from equations (2.21) and (3.21). Such formulations are much more tractable, leading to

optimum solutions by means of conic programming [58, 59], or iterative and alternating

optimization methods that exploit the downlink-uplink duality [60–62]. However, such

tractability and optimality does not normally hold under imperfect CSIT formulations.

4.2.1. Bounded CSIT Errors

Before we proceed to introduce the robust version of the MMF problem in (4.1), we in-

troduce the bounded uncertainty model adopted in this chapter. We recall that the kth

user’s channel vector writes as the sum of the channel estimate and an error vector such

that hk = ĥk + h̃k. It is assumed that h̃k is confined within an origin-centered ball with

radius δk. Hence, the kth user’s CSIT uncertainty region is expressed by

Hk ,
{
hk | hk = ĥk + h̃k, ∥h̃k∥ ≤ δk

}
. (4.2)

As far as the BS is aware, the actual channel vector hk experienced by the receiver could

be any value in Hk, which is centered around the estimate ĥk.

It follows that the uncertainty region of the channel state H given an estimated Ĥ

is defined as H , H1 × H2 × . . . × HK . This uncertainty model is highly relevant in

limited feedback systems, where each receiver estimates its channel vector through downlink

training and then sends back a quantized version to the BS [15, 18, 19, 63]. The resulting

quantization errors fall within a bounded region which may either be a closed ball, or is

fully contained within one. It should also be highlighted that such bounded error model is
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also applied to control the outage probability under unbounded CSIT errors [64–66].

4.2.2. Robustness in the Worst-Case Sense

In this chapter, we consider non-ergodic transmission over one random joint fading state,

i.e. fixed
{
H, Ĥ

}
. As seen in the previous chapter, CSIT uncertainty prohibits the BS from

considering the instantaneous rates as design metrics, or even guarantee reliable communi-

cation at such rates. Moreover, the average approach employed in the previous chapter is

not applicable under non-ergodic transmission, as the instantaneous rates experienced by

the receivers may be lower than the instantaneous ARs in (3.3) and (3.7)1. Alternatively,

the bounded nature of CSIT uncertainty is exploited to redefine robustness in the worst-case

sense [67]. In particular, for a given estimate Ĥ known to the BS, reliable communication

is guaranteed under zero-outage probability with resect to CSIT uncertainty.

For given precoder P and channel estimate Ĥ, let Rc,k(hk) and Rk(hk) be the kth user’s

achievable rates2 under hk ∈ Hk, where Hk is centered at ĥk. Since the rate functions

are continuous and Hk is compact, then rates defined over such uncertainty regions are

bounded and attain their extreme values. Therefore, from the BS’s point of view, Rc,k(hk)

and Rk(hk) are confined within bounded uncertainty regions, and reliable communication

is guaranteed at the worst-case rates defined as follows.

Definition 4.1. The kth user’s worst-case achievable rates are defined as

R̄c,k , min
hk∈Hk

Rc,k(hk) and R̄k , min
hk∈Hk

Rk(hk). (4.3)

It follows that transmitting the common message at the common rate given by

R̄c , min
l
{R̄c,l}Kl=1 (4.4)

guarantees that it is successfully decoded by all users.

Remark 4.1. We use R̄c, R̄c,k and R̄k to denote worst-case rates in this chapter. These

should not be confused with the ARs in Chapter 3, defined using the same notation.

4.2.3. Robust Max-Min Fairness

By employing Definition 4.1, the robust version of the MMF problem in (4.1) is given by

R(Pt) :


max
R̄,Pp

R̄

s.t. R̄k ≥ R̄, ∀k ∈ K

tr
(
PpP

H
p

)
≤ Pt

(4.5)

1We recall that this approach can be used to guarantee reliable communication in the ergodic setting where
each receiver experiences a long-term average of ARs as explained Chapter 3.

2While common rates are not used until the next section, we include their worst-case definition here.

73



where R̄ is the minimum rate slack variable. Problem (4.5) is a semi-infinite program

[68,69], with a finite number of optimization variables and an infinite number of constraints.

This is shown by writing the set of rate constraints in (4.5) as

Rk(hk) ≥ R̄, ∀hk ∈ Hk, k ∈ K. (4.6)

In contrast to (4.1) where the minimum rate across users is maximized, the robust problem

in (4.5) seeks to maximize the minimum worst-case rate, which is taken as the minimum

across infinite sets of rates defined over the continuous uncertainty regions.

As in (4.1), problem (4.5) also assumes equivalent SINR and MMSE formulations. How-

ever, unlike the perfect CSIT case, different formulations here generally lead to different

solutions. This can be regarded to the fact that the nice properties that allow solving

problem in (4.1) to global optimality do not generally hold under the CSIT uncertainties

in (4.5). Therefore, different approximations are usually employed for each formulation to

obtain suboptimal solutions as seen in [70–76]. Such approximations vary in the degree

of conservatism and computational complexity. One of the approximations, based on the

S-lemma [77] and Semidefinite Relaxation (SDR) [78], was shown to solve the problem

optimally under certain conditions which have been partially identified in [73,79].

All existing works consider the conventional NoRS transmission exhibited in the for-

mulation of problem (4.5). Optimum max-min fair designs ultimately achieve balanced

rates, as the contrary implies that power is not allocated across users in the fairest man-

ner. Achieving symmetric rates requires a simultaneous increase in users’ powers as Pt

increases. Under CSIT errors that do not decay with increased SNR, e.g. fixed number of

feedback bits, this is known to limit the rate performance [19]. In particular, rates saturate

at high SNRs where multiuser interference becomes dominant, and cannot be completely

dealt with due to CSIT imperfection. While robust designs enhance the performance by

tweaking the precoder design and transmit at reliable rates, the inherent interference can-

not be eliminated, and rates still saturate as observed in [74]. However, such limitation can

be transcended through RS as demonstrated in the remainder of this chapter.

4.3. Achieving Max-Min Fairness through Rate-Splitting

Here, we formulate a robust MMF optimization problem based on RS. The RS strategy is

first generalized such that all users can (potentially) benefit from the common message.

The sum-DoF gains achieved through RS as shown in Section 2.5.3 are indifferent to

which user’s message is being split. This observation holds for sum-rate maximization in

Chapter 3. In particular, the RS sum-rate question is posed as whether splitting is required

or not, and in case the answer is in the affirmative, how much of the total information should

be relayed by the common message, regardless of which user message(s) is split.

Under a MMF design, allocating the entire common message to one user could be an

unfair strategy. However, the fact that the common message is decoded by all users could
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be exploited by sharing the rate of such message. This is shown next.

4.3.1. A Generalized Rate-Splitting Strategy

We recall that the BS wishes to communicate K independent messages W1, . . . ,WK to re-

ceivers 1, . . . ,K respectively. The RS scheme is extended such that the message of each user

is split into a common part and a private part, i.e. Wk = {Wk0,Wk1} with Wk0 and Wk1

denoting the common and private parts, respectively. A super message (known as the com-

mon message) is composed by packing the common parts such that Wc = {W10, . . . ,WK0}.
The resulting K + 1 messages are encoded into independent data streams such that

Wc,W11, . . . ,WK1 7→
{
sc(t)

}T

t=1
,
{
s1(t)

}T

t=1
, . . . ,

{
sK(t)

}T

t=1
(4.7)

which are precoded and transmitted as described in the previous chapters. Decoding at

each receiver is carried out as described before. The difference here is that the common

message would (potentially) have a portion intended to each receiver.

The fraction of the common message allocated to the kth user is given by |Wk0|/|Wc|,
where |W | denotes the length of a message W . Hence, as guaranteed by the BS, the kth

user gets a portion of the worst-case common rate defined as

C̄k , |Wk0|
|Wc|

R̄c. (4.8)

This can be thought of as the rate at which Wk0 is communicated. An obvious condition is∑K
k=1 C̄k = R̄c, as the sum of all portions cannot exceed the rate of the common message.

Therefore, the kth user’s worst-case total achievable rate is given as R̄k+C̄k, corresponding

to the rate at which the original message Wk is communicated.

In the light of the generalized RS strategy, robust max-min fairness is achieved by solving

RRS(Pt) :



max
R̄t,c̄,P

R̄t

s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K

R̄c,k ≥
∑K

l=1 C̄l, ∀k ∈ K

C̄k ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(4.9)

where R̄t is a slack variable corresponding to the minimum user rate, and c̄ , [C̄1, . . . , C̄K ]T .

The constraint C̄k ≥ 0 guarantees non-negative portions, R̄c,k ≥
∑K

l=1 C̄l guarantees the

decodability of the common message, and R̄k + C̄k ≥ R̄t guarantees fairness across users.

The fact that each user’s rate consists of two parts is clearly reflected in the formulation.

It is evident that solving (4.5) is equivalent to solving (4.9) over a restricted domain

characterized by setting c̄ = 0, which in turn forces ∥pc∥2 to zero at optimality. As a result,
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we can write RRS(Pt) ≥ R(Pt). While this tells us that at optimality, RS cannot perform

worse than NoRS, it does not answer the following question: how much improvement does

RS bring to the performance? if any at all. Analytically, we answer this question (in part)

through DoF analysis in the following section.

4.4. Performance Limits

In this section, we explore the performance limits of the conventional (NoRS) design ob-

tained by solving (4.5) and the RS design obtained by solving (4.9). The performance

is characterized in terms of the DoF. In particular, we derive the MMF-DoF achieved by

optimally designed NoRS and RS schemes in the presence of CSIT uncertainty that scales

with SNR. We start by highlighting the CSIT scaling laws.

4.4.1. CSIT Scaling

Incorporating the concept of CSIT scaling in Section 2.2.2 into the bounded error model

yields uncertainty regions that shrink with increased SNR. In particular, we write

δ2k = O(P−αk
t ) (4.10)

where αk ∈ [0, 1] is the kth user’s scaling factor defined as αk , limPt→∞−
log(δ2k)

log(Pt)
. Note

that (4.10) follows from the scaling of the average in (2.8), which implies that the maximum

∥h̃k∥2 in that average must scale as O(P−αk
t ).

The scaling law in (4.10) is explained as follows. Assume that we have a limited feedback

system with a scaling number of feedback bits [19]. As SNR increases, the resolution

of channel quantization is increased by using larger codebooks, resulting in more densely

packed quantized channels (or channel estimates). Equivalently, quantization errors become

smaller, and CSIT uncertainty regions shrink with increased SNR as captured by (4.10).

One difference compared to the previous chapter is that we emphasise the case where

CSIT qualities may vary across users and α1, . . . , αK are not equal in general. This may

correspond to different receiver capabilities or uplink channel qualities. We recall the

ascending order of qualities in Assumption 2.1, i.e. α1 ≤ α2 ≤ . . . ≤ αK .

4.4.2. DoF Analysis

To facilitate analytic derivations of the DoF, we start with the following assumptions re-

garding the channel state and its estimate.

Assumption 4.1. We assume that:

1. Entries of the channel state H (i.e. the fading coefficients) have absolute values

bounded away from zero and infinity, to avoid degenerate situation.

2. The channel estimate matrix Ĥ ,
[
ĥ1, . . . , ĥK

]
is of full column rank.
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The first assumption is not considered as a major restriction even when entries are drawn

from unbounded distributions. In particular, omitted neighborhoods can be reduced to an

arbitrary small probability measure with a vanishing impact on the DoF [20]. The second

assumption can be guaranteed in a feedback system by prohibiting the scheduling of users

with similar (or linearly dependent) quantized channel vectors in the same time-frequency

slot. However, it should be noted that while this is required for the proof of the following

result, is not necessary for the optimization solutions in the following sections, as problems

(4.9) and (4.5) can still be solved under linearly dependent channel estimates.

Theorem 4.1. For the NoRS problem in (4.5), the optimum MMF-DoF is given by

d̄∗ , lim
Pt→∞

R(Pt)

log(Pt)
=
α1 + α2

2
(4.11)

while the RS problem in (4.9) yields an optimum MMF-DoF of

d̄∗RS , lim
Pt→∞

RRS(Pt)

log(Pt)
= min

J∈{2,...,K}

1 +
∑J−1

k=1 αk

J
. (4.12)

Similar to Theorem 3.1, the results are obtained through two steps. First, we show that

the max-min DoFs are upper-bounded by (4.11) and (4.12), then we show that the upper-

bounds are achievable via feasible precoding schemes. However, the proof is more involved

in this case due to the considered MMF-DoF and the variation in CSIT qualities across

users. The full proof is relegated to Appendix B.1.

It should be noted that while the sum-DoF of the MISO-BC with imperfect CSIT has

received considerable attention in literature, the MMF-DoF (also known as the symmetric-

DoF [27,80]) has been less treated in general. Hence, while the sum-DoF result in Theorem

3.1 is known, the MMF-DoF in Theorem 4.1 does not appear in prior work.

4.4.3. Insight

In the following, we take a closer look at Theorem 4.1 to gain some insight into the influence

of CSIT uncertainty on the MMF performance, and the role of RS. To facilitate the analysis,

we define the worst-case DoF achieved by a given precoding scheme as:

d̄c , lim
Pt→∞

R̄c(Pt)

log2(Pt)
and d̄k , lim

Pt→∞

R̄k(Pt)

log2(Pt)
(4.13)

where dependencies on the power level are highlighted in (4.13). The portion of d̄c allocated

to the kth user is given by c̄k , limPt→∞
C̄k(Pt)
log2(Pt)

, where
∑K

k=1 c̄k = d̄c. In the following,

the worst-case DoF is simply referred to as the DoF for brevity. All definitions extend to

the NoRS case where the common part is discarded.
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The optimum MMF-DoF is given by

d̄∗ = max{
Pp(Pt)

}
Pt

min
k∈K

d̄k and d̄∗RS = max{
P(Pt)

}
Pt

min
k∈K

c̄k + d̄k (4.14)

where maximization is over the precoding scheme, which maps each power level to a pre-

coding matrix. Before we proceed, we should highlight that the MMF-DoF maximization

problems in (4.14) do not assume unique solutions in general. In particular, there exists

infinitely many precoding schemes that are optimum in a DoF sense. The set of DoF-

optimum solutions contains the rate-optimum precoding scheme, obtained by solving a

sequence of problem (4.5) for NoRS or problem (4.9) for RS, as rate optimality implies

DoF optimality. However, the converse does not hold in general, e.g. the ZF-BF strategy

is rate-suboptimal in general yet DoF-optimum under perfect CSIT as seen in Section 2.4.

This was observed in the achievability of the result in Theorem 3.1, and appears in the

proof of Theorem 4.1, where it is shown that the optimum DoF performance is achieved

via suboptimal precoders in the rate sense.

NoRS MMF-DoF

It can be seen from (4.11) that the NoRS optimum MMF-DoF is determined by the worst

two CSIT scaling factors. This is explained as follows.

First, consider switching off all receivers except for user-1 and user-2. It can be shown

that a simultaneous and proportional increase in powers allocated to the two users combined

with a proper design of precoders achieves d̄1 = α1 and d̄2 = α2. While this is rigorously

shown in Lemma B.2 in Appendix B, it can be intuitively observed by using ZF-BF, which

results in residual interference experience by user-1 and user-2 that scales as O(P 1−α1
t ) and

O(P 1−α2
t ) respectively. By compromising user-2’s DoF through power control, i.e. reducing

the corresponding power scaling, the interference experienced by user-1 is reduced. It can

be shown that the fairest DoF achieved through power control is given by α1+α2
2 .

Now, moving back to the K-user case by introducing users (with possibly better CSIT

qualities) does not improve the MMF-DoF. In particular, even if the new users can achieve

higher DoF (ultimately 1), the MMF-DoF is limited by that of user-1 and user-2, i.e. α1+α2
2 .

Hence, the best they could do is achieve an equal (or higher) DoF without influencing d̄1

and d̄2, which can be shown to be possible given their better CSIT qualities.

RS MMF-DoF

Considering the same 2-user scenario under RS, it can be shown that allocating powers

that scale as O
(
Pα1
t

)
to both private streams, and a common power that scales as O

(
Pt

)
,

achieves the DoF given by: d̄1, d̄2 = α1 and d̄c = 1 − α1. The main idea is similar to the

sum-DoF achievability scheme in Section 2.5 while assuming that α = α1, and more details

are given in Lemma B.2. Splitting d̄c evenly, each user achieves a total DoF of 1+α1
2 . It is
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evident that this is strictly greater than α1+α2
2 achieved with NoRS given that α2 < 1.

Increasing K may decrease this max-min DoF, as d̄c may be divided among a larger set

of users. This is reflected in (4.12) through the minimization over subsets of users, which

is further explained in the full proof in Appendix B. Observe that d̄∗RS > d̄∗ holds for all

α1, . . . , αK ∈ [0, 1), i.e. RS provides a strict DoF improvement over NoRS.

It can be seen that the existence of two or more users with αk = 0 yields d̄∗ = 0. This

explains the saturating MMF rate performance observed in [74]. On the contrary, d̄∗RS

is lower-bounded by d̄∗RS ≥ 1/K regardless of the CSIT scaling, and hence achieves an

ever-growing MMF rate.

4.5. Conservative Approach

Having demonstrated the MMF-DoF gain of employing RS, we turn to designing a robust

precoding scheme that can realize such high SNR gains, yet perform well over the entire

range of SNRs. We start by invoking the Rate-WMMSE relationship in Lemma 3.1. This

time, we define a worst-case version of this relationship given by

R̄c,k = 1− max
hk∈Hk

min
uc,k,gc,k

ξc,k
(
hk, gc,k, uc,k

)
(4.15a)

R̄k = 1− max
hk∈Hk

min
uk,gk

ξk
(
hk, gk, uk

)
. (4.15b)

It is evident that the optimum equalizers and weights in (4.15) depend on the channel state

hk, as we have previously seen. Hence, a WMSE formulation of problem (4.9) would yield

a problem with infinitely many variables and constraints.

The techniques used in the previous chapter cannot be applied to the case here, as the

nature of the error is different and the problem in (4.12) is semi-infinite. However, the

same philosophy in general can be employed. In particular, we can use a conservative

approximation which relies on relaxing the dependencies of the equalizers and weights on

the actual fading state as we see in this section. Moreover, we develop a non-conservative

method based on sampling the uncertainty region in the following section.

4.5.1. Conservative Worst-Case Approximation

The conservative approximation is carried out by swapping the order of the maximization

(worst-case channel) and minimization (optimization) in (4.15) such that

R̂c,k = 1− min
ûc,k,ĝc,k

max
hk∈Hk

ξc,k
(
hk, ĝc,k, ûc,k

)
(4.16a)

R̂k = 1− min
ûk,ĝk

max
hk∈Hk

ξk
(
hk, ĝk, ûk

)
(4.16b)

where (ĝc,k, ĝk) and (ûc,k, ûk) denote the abstracted equalizers and weights. As we see

later, the optimum equalizers and weights in (4.16) depend only on ĥk, in reminiscence

79



to the conservative approximation in Section (3.4). Taking (4.16a) for example, the same

equalizer-weight pair (ûc,k, ĝc,k) is employed for all hk ∈ Hk, hence loosing its dependency

on the actual realizations of the channel.

It can be seen that for any given precoder P, we have the following relationship

R̂c,k ≤ R̄c,k and R̂k ≤ R̄k. (4.17)

This follows from the fact that maxxminy f(x, y) ≤ miny maxx f(x, y) for any function

f(x, y), which is shown in [45, footnote 1]. Applying this to (4.16) and (4.15), the rela-

tionship in (4.17) is obtained. Hence, by employing such approximation, we arrive at a

conservative WMSE formulation given by

R̂RS(Pt) :



max
R̂t,ĉ,P,ĝ,û

R̂t

s.t. 1− ξk
(
hk, ĝk, ûk

)
+ Ĉk ≥ R̂t, ∀hk ∈ Hk, k ∈ K

1− ξc,k
(
hk, ĝc,k, ûc,k

)
≥

∑K
l=1 Ĉl,∀hk ∈ Hk, k ∈ K

Ĉk ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(4.18)

where ĝ , {ĝc,k, ĝk | k ∈ K} and û , {ûc,k, ûk | k ∈ K}. The conservatism of (4.18) follows

from (4.17), as the worst-case rates that this problem yields are always upper-bounded by

the actual achievable worst-case rates.

Problem (4.18) is semi-infinite with infinitely many WMSE constraint. Fortunately,

(4.18) has an equivalent formulation with a finite number of constraints. Such formulation

is obtained using the following result.

Lemma 4.1. The infinite set of constraints given by

1− ξc,k
(
hk, ĝc,k, ûc,k

)
≥

K∑
l=1

Ĉl, ∀hk ∈ Hk (4.19)

are equivalently expressed by

ûc,k
(
τc,k + |ĝc,k|2σ2n

)
− log2(ûc,k) ≤ 1− R̂c (4.20a) τc,k − λc,k ψH

c,k 0T

ψc,k I −δkPH ĝHc,k
0 −δkĝc,kP λc,kI

 ≽ 0 (4.20b)

where ψH
c,k , ĝc,kĥ

H
k P− eT1 . Similarly, the constraint given by

1− ξk
(
hk, ĝk, ûk

)
+ Ĉk ≥ R̂t, ∀hk ∈ Hk (4.21)
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is equivalently expressed by the finite constraints given by

ûk
(
τk + |ĝk|2σ2n

)
− log2(ûk) ≤ 1 + Ĉk − R̂t (4.22a) τk − λk ψH

k 0T

ψk I −δkPH
p ĝ

H
k

0 −δkĝkPp λkI

 ≽ 0 (4.22b)

where ψH
k , ĝkĥ

H
k Pp − eTk .

This is a known transformation which has been used in the robust MMSE optimization

literature, e.g. [44, 45, 71, 72] just to name a few. The idea of the transformation is first to

write the MSEs embedded in (4.19) and (4.21) as

εc,k
(
hk, ĝc,k

)
=∥ ĝc,khH

k P− eT1 ∥2 +|ĝc,k|2σ2n (4.23)

εk
(
hk, ĝk

)
=∥ ĝkhH

k Pp − eTk ∥2 +|ĝk|2σ2n. (4.24)

This is followed by applying the Schur Complement [81] to obtain Linear Matrix Inequality

(LMI) forms. Finally, the result in [82, Proposition 2], which is based on the S-lemma, is

used. More details are found in the related literature.

4.5.2. Alternating Optimization Algorithm

By substituting (4.20) and (4.22) into (4.18), we arrive at a deterministic WMSE formula-

tion which can be solving using the AO principle in Section 3.3.3.

First, ĝ is optimized by solving the problems:

min
ĝc,k

max
hk∈Hk

εc,k
(
hk, ĝc,k

)
and min

ĝk
max
hk∈Hk

εk
(
hk, ĝk

)
(4.25)

for all k ∈ K. Note that updating ĝ reduces to minimizing the worst-case MSEs, as weights

are fixed in this step. Invoking the transformation in Lemma 4.1, the problems in (4.25)

are rewritten as

min
ĝc,k

τc,k + |ĝc,k|2σ2n s.t. (4.20b) and min
ĝk

τk + |ĝk|2σ2n s.t. (4.20b). (4.26)

The problems in (4.26) have convex quadratic objective functions and semidefinite con-

straints, and can be posed as Semidefinite Programs (SDPs) by applying the Schur Com-

plement to |ĝc,k|2 and |ĝk|2. Such problems can be solved efficiently using interior-point

methods [52]. The resulting conservative MMSEs are denoted by ε̂MMSE
k and ε̂MMSE

c,k .

Next, the weights are updated as ûk = 1/ε̂MMSE
k and ûc,k = 1/ε̂MMSE

c,k . The optimality of

this step follows by checking the first order optimality conditions of (4.16).
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Finally, (R̂t, ĉ,P) are updated by solving the problem given by

R̂MMSE
RS (Pt, ĝ, û) :



max
R̂t,ĉ,P

R̂t

s.t. (4.22) and (4.22b), ∀k ∈ K

(4.20) and (4.20b), ∀k ∈ K

Ĉk ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(4.27)

formulated by fixing the equalizers and weights, obtained from the previous step, in problem

(4.18). Problem (4.27) is also a SDP, which can be solved using interior-point methods.

This procedure is repeated in an iterative manner as described in Algorithm 4.1.

Algorithm 4.1 is guaranteed to converge since the objective function of (4.18) is bounded

above for a given power constraint, and increases monotonically at each iteration. The

relationship in (4.17) guarantees that the solution obtained from Algorithm 4.1 is feasible

for the original problem, i.e. (4.9). However, global optimality (w.r.t the conservative

problem) cannot be guaranteed due to non-convexity.

Algorithm 4.1 Conservative WMMSE Alternating Optimization

1: Initialize: n← 0, R̂
[n]
t ← 0, P

2: repeat
3: n← n+ 1
4:

(
ĝc,k, ĝk

)
←

(
arg ε̂MMSE

c,k , arg ε̂MMSE
k

)
, ∀k ∈ K

5:
(
ûc,k, ûk

)
←

(
1/ε̂MMSE

c,k , 1/ε̂MMSE
k

)
, ∀k ∈ K

6:
(
R̂

[n]
t , ĉ,P

)
← arg R̂MMSE

RS (Pt, ĝ, û)

7: until
∣∣R̂[n]

t − R̂
[n−1]
t

∣∣ < ϵR

4.5.3. Limitations

Similar to the conservative approach in Section 3.4, the one here also comes with limitations.

In general, the cause of such limitation is the same in both cases: relaxing the dependencies

of the equalizers and weights on perfect CSI. As in Section 3.4, this leads to an ignorant

optimization of precoders, that completely ignores the presence of perfect CSIR.

It is well understood that the worst-case approach adopted in this chapter does not give

any consideration to the statistical distribution of the CSIT errors. However, to facilitate

the calculation of upper-bounds on the conservative worst-case rates in (4.16), let us assume

that h̃k is drawn from an arbitrary distribution defined over an origin-centered ball with

radius δk. For such distribution, let us compare the conservative worst-case Rate-WMMSE

relationship in (4.16) with the conservative AR-AWMMSE in (3.40). We observe that

conservative ARs in (3.40) are in fact upper-bounds on the conservative worst-case rates in

(4.16). This follows from the fact that minimizing the AWMSE in (3.40) is upper-bounded
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by the minimization of the maximum WMSE in (4.16). Hence, the limitations derived for

the conservative approach in Section 3.4.3 apply here.

For example, non-scaling CSIT uncertainty yields self-interference that scales as the de-

sired signal component. This explains the saturating performance in [45], which contradicts

the DoF result there. This is also observed in the simulation results presented later in this

chapter, where the conservative RS performance saturates, contradicting Theorem 4.1.

4.6. The Cutting-Set Method

In this section, we propose an algorithm that avoids conservative approximations by di-

rectly optimizing the worst-case achievable rates. This algorithm employs an iterative

sampling-based procedure, known as the cutting-set method [10], which switches between

two steps in each iteration: 1) optimization and 2) pessimization (worst-case analysis). In

the optimization step, a sampled version of the semi-infinite problem (with a finite number

of constraints) is solved over finite subsets of the uncertainty regions. In the pessimiza-

tion step, worst-case analysis is carried out where channels that violate the constraints are

determined and appended to the uncertainty subsets.

It was shown in [10] that the cutting-set algorithm converges to the global optimum

solution of the original semi-infinite problem given that in each iteration, both the opti-

mization and pessimization steps are globally solved3. To guarantee the tractability of the

optimization step, the authors in [10] assume the convexity of the problem. A common

approach when applying the cutting-set method to non-convex problems is to convexify

the problem through conservative approximations, for example see [70, 83–85]. However,

pessimization in these works is inexact, i.e. also approximated, and hence convergence to

a feasible solution of the conservative problems is not even guaranteed according to [10].

To avoid conservative approximations, and hence a conservative performance, we directly

apply the cutting-set method to the non-convex problem in (4.9). We show that as long as

a KKT solution of the non-convex problem in (4.28) is obtained in each optimization step,

the cutting-set algorithm converges to the set of KKT solutions of the original problem.

Moreover, we guarantee such convergence through exact pessimization.

4.6.1. Cutting-Set Algorithm

For the ith iteration, let Hk ,
{
h
(1)
k , . . . ,h

(ik)
k

}
and Hc,k ,

{
h
(1)
c,k, . . . ,h

(ic,k)
c,k

}
be the kth

user’s discretized channel uncertainty regions for the private rate and the common rate

3Certain conditions regarding the constraint functions and feasible set should also be satisfied. This is
clarified in the proof of Proposition 4.1.
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respectively. The corresponding sampled version of problem (4.9) writes as

R(i)
RS(Pt) :



max
R̄t,c̄,P

R̄t

s.t. Rk

(
h
(j)
k

)
+C̄k ≥ R̄t, ∀j ∈ I

(i)
k , k ∈ K

Rc,k

(
h
(jc)
c,k

)
≥

∑K
l=1 C̄l, ∀jc ∈ I

(i)
c,k, k ∈ K

C̄k ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt

(4.28)

where I(i)k , {1, . . . , ik} and I
(i)
c,k , {1, . . . , ic,k} are index sets. Note that |I(i)k |, |I

(i)
c,k| ≤ i,

as a maximum of one channel vector per set is added in each iteration.

Although Rk and Rc,k are functions of the same channel vector (hk), the corresponding

uncertainty region is sampled twice. This is due to the fact that the private and common

messages are independently decoded, and hence worst-case constraints should be satisfied

for each individually. This will become clearer when we discuss the pessimization step.

The optimization step involves solving the discretized problem in (4.28) yielding the

point
(
R̄

(i)
t , c̄(i),P(i)

)
. Pessimization is then carried out to update the sampled uncertainty

regions, by determining the channel vectors under which the rate constraints are most

violated. The worst-case channels corresponding to the kth user’s rates are obtained as

h∗
k = arg min

hk∈Hk

R
(i)
k (hk) and h∗

c,k = arg min
hc,k∈Hk

R
(i)
c,k(hc,k) (4.29)

where R
(i)
k and R

(i)
c,k denote the rates when P(i) is employed. The rate constraints in (4.28)

are examined under the worst-case channels from (4.29). For example, if we have

R
(i)
k

(
h∗
k

)
+ C̄

(i)
k < R̄

(i)
t (4.30)

then h∗
k is appended to Hk. In a similar manner, if we have

R
(i)
c,k

(
h∗
c,k

)
<

K∑
l=1

C̄
(i)
l (4.31)

then h∗
c,k is appended to Hc,k.

The cutting-set procedure is summarized in Algorithm 4.2. Defining the rate violations

after the ith pessimization as

V
(i)
k , R̄

(i)
t −R

(i)
k

(
h∗
k

)
− C̄(i)

k and V
(i)
c,k ,

∑
l∈K

C̄
(i)
l −R

(i)
c,k

(
h∗
c,k

)
(4.32)

the stopping criteria in Algorithm 4.2 is specified as a maximum violation, i.e.

max
k

{
max

{
V

(i)
k , V

(i)
c,k

}}
k∈K
≤ ϵV (4.33)
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Algorithm 4.2 Cutting-Set method.

1: Initialize: i←0, ik, ic,k←1 and Hk,Hc,k←
{̂
hk

}
, ∀k∈K

2: repeat
3: i← i+ 1

Optimization:

4:
(
R̄

(i)
t , c̄(i),P(i)

)
← argR(i)(Pt)

Pessimization:
5: For all k ∈ K, do
6: Obtain h∗

k,h
∗
c,k by solving (4.29)

7: if R
(i)
k

(
h∗
k

)
+ C̄

(i)
k <R̄

(i)
t then

8: ik ← ik + 1 and h
(ik)
k ← h∗

k

9: Hk ←
{
Hk,h

(ik)
k

}
10: end if
11: if R

(i)
c,k

(
h∗
k

)
<

∑K
l=1 C̄

(i)
l then

12: ic,k ← ic,k + 1 and h
(ic,k)
c,k ← h∗

c,k

13: Hc,k ←
{
Hc,k,h

(ic,k)
c,k

}
14: end if
15: until stopping criteria is met

where ϵV > 0 is some arbitrary tolerance constant.

Proposition 4.1. Given that the optimization step in Algorithm 4.2 yields a KKT solution

of the corresponding sampled problem in (4.28), and the pessimization step is exact, i.e.

the global minimizers in (4.29) are obtained, then the iterates generated by Algorithm 4.2

converge to the set of KKT solutions of the semi-infinite problem in (4.9).

The proof of Proposition 4.1 is relegated to Appendix B.3. We recall that if the KKT

solution to the optimization step is a global optimum solution, then the iterates converge

to a global optimum solution of problem (4.9) [10, Section 3.1].

In the following, the optimization and pessimization steps are thoroughly addressed. For

ease of notation, the superscript (i) is dropped from the variables where is its understood

that optimization and pessimization are part of a given iteration.
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4.6.2. Optimization

The Rate-WMMSE relationship in Section 3.3.2 is revisited to transform the sampled prob-

lem (4.28) into an equivalent WMSE problem formulated as

R̄(i)
RS(Pt) :



max
R̄t,c̄,P,g,u

R̄t

s.t. 1− ξk
(
h
(j)
k , g

(j)
k , u

(j)
k

)
+ C̄k ≥ R̄t, ∀j ∈ I

(i)
k , k ∈ K

1− ξc,k
(
h
(jc)
c,k , g

(jc)
c,k , u

(jc)
c,k

)
≥

∑K
l=1 C̄l, ∀jc ∈ I

(i)
c,k, k ∈ K

C̄k ≥ 0, ∀k ∈ K

tr
(
PPH

)
≤ Pt.

(4.34)

Note that g , {gc,k,gk | k ∈ K} is the sampled set of equalizers, with gc,k ,
{
g
(jc)
c,k | jc ∈ I

(i)
c,k

}
and gk ,

{
g
(j)
k | j ∈ I

(i)
k

}
, while u , {uc,k,uk | k ∈ K} is the sampled set of weights where

uc,k ,
{
u
(jc)
c,k | jc ∈ I

(i)
c,k

}
and uk ,

{
u
(j)
k | j ∈ I

(i)
k

}
. Contrary to the conservative ap-

proach, the sampling of the equalizers and weights in (4.34) captures their dependencies

on the actual channel, which reflects the availability of perfect CSIR.

The AO principle Section 3.3.3 is yet again employed, here to solve the sampled WMSE

problem in (4.34). In a given iteration, g is first optimized by applying the MMSE solution

in Lemma 3.1 to each equalizer in the sampled set, i.e. g
(jc)
c,k = g

MMSE(jc)
c,k and g

(j)
k =

g
MMSE(j)
k for all k ∈ K. Next, u is optimized in a similar manner using the solution in

Lemma 3.1, i.e. u
(jc)
c,k = u

MMSE(jc)
c,k and u

(j)
k = u

MMSE(j)
k for all k ∈ K. Finally, (R̄t, c̄,P)

are updated by solving problem (4.34) for fixed g and u. The resulting problem is convex

with a linear objective function and quadratic and linear constraints, and can be efficiently

solved using interior-point methods [52]. Following the same argument in Section 4.5.2,

the AO algorithm described here is guaranteed to converge. The KKT optimality of the

generated solution is established in the following result.

Proposition 4.2. The iterates generated by the AO procedure described above converge to

the set of KKT points of the ith sampled rate problem in (4.28).

The proof is similar to the proof of Proposition 3.3, which is based on the work in [54].

Due to non-convexity, the KKT point obtained by the AO algorithm may be suboptimal.

However, the effectiveness of this algorithm is demonstrated through simulation results.

4.6.3. Pessimization

For the outputs of the optimization step, the pessimization step determines whether the

rate constraints are violated under an updated set of worst-case channels. This involves

solving the problems in (4.29), which can be formulated in terms of the MMSEs due to
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their monotonic relationship with the rates. The worst-case MMSEs are defined as

ε̄MMSE
k , max

hk∈Hk

εMMSE
k (hk) (4.35a)

ε̄MMSE
c,k , max

hc,k∈Hk

εMMSE
c,k (hc,k). (4.35b)

The private rate constraint is violated if we have ε̄MMSE
k > 2−(R̄t−C̄k), and the common

rate constraint is violated given that ε̄MMSE
c,k > 2−R̄c .

Solving the problems in (4.35) involves maximizing non-linear fractional functions over

compact convex sets. Such problems can be solved using Dinkelbach’s method [86], where

the fractional program is transformed into a parametric auxiliary problem solved iteratively.

Such transformation is based on the following result.

Lemma 4.2. h∗
k and h∗

c,k are the global maximizers of problems (4.35a) and (4.35b) re-

spectively if and only if they are the global maximizers of the parametric problems

Dk(λk) : max
hk∈Hk

Ik − λkTk and Dc,k(λc,k) : max
hc,k∈Hk

Ic,k − λc,kTc,k (4.36)

respectively, when the parameters are given by

λk = λ∗k , ε̄MMSE
k and λc,k = λ∗c,k , ε̄MMSE

c,k . (4.37)

The above results follow directly from the theorem in [86], where a detailed proof is

given. By substituting (4.37) into (4.36), we observe that

Dk(λ
∗
k) = 0 and Dc,k(λ

∗
c,k) = 0. (4.38)

Therefore, solving the pessimization problems in (4.35) is equivalent to finding the zeros of

the parametric auxiliary problems in (4.36). It turns out that the auxiliary problems have

rather nice properties in this regard. Taking Dk(λk) for example, it is:

1. Continuous and strictly decreasing in λk.

2. Dk(λk)→ −∞ as λk →∞.

3. Dk(λk)→∞ as λk → −∞.

4. Dk(λk) = 0 has a unique solution λ∗k.

The zero solution can be obtained using an iterative algorithm [86].

Note that it is commonly assumed that the fractional program is concave-convex, i.e. with

a concave numerator and a convex denominator, which yields auxiliary problems that are

convex. Nevertheless, it follows from the proof in [86] that this assumption is not necessary

as long as the auxiliary problem can be solved globally for a given parameter. Next,

we describe how to pessimization is carried out through Dinkelbach’s algorithm assuming
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Algorithm 4.3 Pessimization through Dinkelbach’s Algorithm

1: Initialize: λ
(1)
k ← 2−(R̄t−C̄k) and m← 0

2: repeat
3: m← m+ 1
4: obtain Dk

(
λ
(m)
k

)
5: h

(m)
k ← argDk

(
λ
(m)
k

)
6: λ

(m+1)
k ← εMMSE

k

(
h
(m)
k

)
7: until Dk

(
λ
(m)
k

)
≤ ϵD, or m = mmax

8: if m > 1 then
9: h∗

k ← h
(m)
k

10: Output: h∗
k

11: else
12: Output: {}
13: end if

that the problems in (4.36) can be solved to global optimality for any given parameters.

Before we proceed, we reemphasize that pessimization is carried out separately for εMMSE
k

and εMMSE
c,k for all k ∈ K, as the worst-case analysis is independent in each case. In the

following, we describe the pessimization procedure for εMMSE
k . This can be extended to all

other private and common MMSEs.

First, the parameter is initialized as λ
(1)
k = 2−(R̄t−C̄k), and Dk

(
λ
(1)
k

)
is obtained by solving

the corresponding optimization problem. From the properties ofDk

(
·
)
, havingDk

(
λ
(1)
k

)
≤ 0

implies that λ
(1)
k ≥ ε̄

MMSE
k . In this case, the rate constraint is not violated and there is no

need to proceed. Otherwise, the worst-case channel is updated as h
(1)
k = argDk

(
λ
(1)
k

)
, and

the parameter to be used in the next iteration is obtained as λ
(2)
k = εMMSE

k

(
h
(1)
k

)
. This is

repeated until convergence. This procedure is summarized in Algorithm 4.3, where ϵD > 0

determines the accuracy of the solution, and {} corresponds to an empty set, returned if the

rate constraint is not violated. It follows directly from Lemma 4.2 that if the rate constraint

is violated, i.e. pessimization has a non-empty solution, then λ
(m)
k and h

(m)
k converge to

ε̄MMSE
k and h∗

k respectively. For εMMSE
c,k , the parameter is initialized as λ

(1)
c,k = 2−R̄c and the

same steps are followed yielding h∗
c,k if the common rate is violated, and {} otherwise.

Now, it remains to show that the problems in (4.36) can be solved to global optimality.

This is achieved as shown in Appendix B.4.

4.7. Numerical Results and Analysis

In this section, the performance of the proposed algorithms are assessed through simula-

tions. A three-user system with K = Nt = 3 is considered throughout the simulations,

unless stated otherwise. The noise variance is fixed as σ2n = 1. A given channel matrix

H has i.i.d. entries drawn from the distribution CN (0, 1). The corresponding estimate is

obtained as Ĥ = H− H̃, where each error vector is drawn from a uniform distribution over
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Figure 4.1.: Rate performance for K,Nt = 3, and δ1, δ2, δ3 = δ.

the corresponding uncertainty region with δ2k = βkP
−αk
t , where βk is a constant.

We consider the conservative (con) and the cutting-set (cs) methods for both the NoRS

and RS strategies, yielding four different designs: NoRS-con, NoRS-cs, RS-con and RS-cs.

The NoRS-con and NoRS-cs results are obtained from Algorithm 4.1 and Algorithm 4.2

respectively, by discarding the common message. It should be noted that the NoRS-con

design is equivalent to the MSE-based design in [71].

4.7.1. Max-Min Fair Rate Performance

First, we examine the robust max-min rate performance for the four aforementioned de-

signs. The worst-case rates are averaged over 100 realizations of Ĥ, where each estimate is

obtained from an independent realization of H. This is given for non-scaling CSIT error,

scaling CSIT errors, and larger systems for a wide range of SNRs as we see next.

Non-scaling CSIT

Results for non-scaling CSIT errors (i.e. α1, α2, α3 = 0) are shown in Figure 4.1 with

δ1, δ2, δ3 = δ, where δ = 0.05 and 0.15 for Figure 4.1a and Figure 4.1b, respectively.

For a given strategy (NoRS or RS), the cs design outperforms the con design, specifically

in the intermediate and high SNR regimes. This gap grows larger with increased SNR

and CSIT uncertainty, due to the increased influence of self-interference resulting from the

conservative approximation. As expected from Theorem 4.1, NoRS schemes saturate as

SNR grows large (d̄∗ = 0). This trend is also followed by the RS-con design, which at first

glance seems to contradict the result in Theorem 4.1, yet can be explained in the light of

the analysis in Section 4.5.3. On the other hand, the RS-cs design coincides with the result

in (4.12) and achieves an ever growing rate performance. In particular, RS-cs achieves
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Figure 4.2.: Rate performance for K,Nt = 3, δ1 = δ, and δ2, δ3 = δ
√

10P−0.5
t .

MMF-DoFs of 0.31 and 0.33 for δ = 0.05 and 0.15 respectively, obtained by scaling the

high-SNR slopes of the rate curves in Figure 4.1. This is fairly close to the theoretically

anticipated value, i.e. d̄∗RS = 0.333.

In general, RS schemes give significant performance gains over their NoRS counterparts

for the entire SNR range, with rate gains exceeding 20% and 60% for δ = 0.05 and δ = 0.15

respectively at high SNRs.

Scaling CSIT

Results for scaling CSIT errors are given in Figure 4.2. The CSIT quality of user-1 remains

fixed with δ1 = δ, while errors for user-2 and user-3 decay with SNR such that α2, α3 = 0.5

and β2, β3 = 10δ2, yielding δ2, δ3 = δ
√

10P−0.5
t . Therefore, we have δ2, δ3 < δ1 for SNRs

less than 20 dB, δ2, δ3 = δ1 for 20 dB SNR, and δ2, δ3 > δ1 for SNRs greater than 20 dB.

The general observations made for Figure 4.1 still hold, with the cs method providing

improved performance over the con method, and RS schemes outperforming NoRS schemes.

From a DoF perspective, the cs schemes perform almost as predicted in Theorem 4.1.

While the theoretically anticipated MMF-DoFs are given by d̄∗ = 0.25 and d̄∗RS = 0.5.

NoRS-cs achieves DoFs of 0.26 and 0.24, where RS-cs achieves DoFs of 0.53 and 0.47, for

δ = 0.05 and 0.15 respectively. On the other hand, NoRS-con and RS-con fail to achieve

the corresponding DoFs due to self-interference.

Larger Systems

After demonstrating the superiority of the cutting-set method, we examine the RS gains in

larger systems with K,Nt = 4, 6 and 8. The performances of NoRS-cs and RS-cs are given

90



SNR (dB)

R
a
te

(b
p
s/
H
z)

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35

NoRS K = 4
NoRS K = 6
NoRS K = 8
RS K = 4
RS K = 6
RS K = 8

(a) Fixed CSIT (α = 0)

SNR (dB)

R
a
te

(b
p
s/
H
z)

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35

NoRS K = 4
NoRS K = 6
NoRS K = 8
RS K = 4
RS K = 6
RS K = 8

(b) Scaling CSIT (α = 0.5)

Figure 4.3.: Cutting-set rate performance for K,Nt = 4, 6 and 8, fixed CSIT: δ1, . . . , δK =

0.15, and scaling CSIT: δ1, . . . , δK = 0.15
√

10P−0.5
t .

in Figure 4.3a for non-scaling CSIT with δ1, . . . , δK = δ, and Figure 4.3b for scaling CSIT

with δ1, . . . , δK = δ
√

10P−α
t , where δ = 0.15 and α = 0.5.

For a given scheme, the performance generally degrades as the number of users increases.

This can be regarded to the increased MU interference in NoRS, in addition to the fact

that the common message is shared among more users in RS. However, the performance

gains associated with the RS scheme are still significant.

4.7.2. Complexity Comparison

Algorithm 4.1 solves a number of SDPs in each iteration, while in each iterations of Algo-

rithm 4.2, a sequence of problems with quadratic constraints is solved in the optimization

step, and a sequence of SDPs in the pessimization step. Contrary to the algorithms pro-

posed in the previous chapter, the two algorithms here have different structures and seem

to exhibit different running times. This calls for a complexity comparison.

We consider K = Nt for simplicity, hence reducing the complexity scaling orders to one

parameter. In each iteration of Algorithm 4.1, 2K equalizers are updated by solving SDPs

with a worst-case complexity of O(K3.5) each4, while precoders are updated by solving a

SDP with a worst-case complexity of O(K8). On the other hand, each cutting-set iteration

of Algorithm 4.2 consists of an optimization step and a pessimization step, which are

iterative in their own rights. Each optimization-iteration involves updating the precoders by

solving a convex problem with a number of quadratic constraints that grows with the outer

(cutting-set) iteration. For the ith cutting-set iteration, the number of WMSE constraints

4Worse-case computational costs of solving standard problems using interior-point methods are given
according to [87, Lecture 6]. The term that accounts for the solution’s accuracy is omitted, e.g. [71].
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Figure 4.4.: Average run-time of NoRS and RS, conservative and cutting-set methods for
K,Nt = 2, 4, 6 and 8, SNR = 20 dB, and δ1, . . . , δK = δ.

cannot exceed 2iK, and updating the precoders in each inner (optimization) iteration can

be formulated as a Second Order Cone Program (SOCP) with a worst-case complexity of

O(i1.5K7.5). On the other hand, each pessimization-iteration involves solving 2K SDPs

with a cost of O(K6.5) each.

Due to the iterative nature of the two algorithms, in addition to the nested structure

of Algorithm 4.2, a rigorous analytic complexity comparison is not possible. Alternatively,

we evaluate their average running times using MATLAB on a computer equipped with

an Intel Core i7-3770 @3.4GHz processor and 8.00 GB of RAM. Figure 4.4 shows the

average running times (over 100 realizations) of the different schemes versus the number

of users/antennas at 20 dB SNR. For a given method (con or cs), RS has longer running

times than NoRS due to the higher number of variables involved. The con method (NoRS

and RS) is hardly influenced by the level of CSIT uncertainty, exhibiting a slight increase

in running times for larger δ due to the increased involvement of the common message,

which influences the convergence of the AO algorithm. On the other hand, the cs method

(NoRS and RS) is more influenced by the degree of uncertainty, exhibiting a faster increase

in running times with K for higher δ. This appears to be due to the higher number of

pessimization steps required to sample larger uncertainty regions, resulting in an increased

number of cutting-set iterations and a growing complexity of the optimization step.

It should be highlighted that in feedback systems, channel quantization codebooks are

predetermined and known to the BS. Hence, corresponding precoders can be calculated

beforehand, and relatively long running times do not prohibit the real-time application of

such algorithms under limited BS processing capabilities.
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4.8. QoS Problem

In this part, we extend the RS strategy to address the inverse power problem, i.e. min-

imizing the total transmit power under a minimum rate constraint (the QoS problem).

Conventionally, this problem is formulated as

P(R̄) :


min
Pp

tr
(
PpP

H
p

)
s.t. R̄k ≥ R̄, ∀k ∈ K

(4.39)

where R̄ is the worst-case rate that should be guaranteed to all users. While the formulation

in (4.39) assumes the same QoS demand by all users, it can be easily extended to the

scenario where different QoS levels are required.

The RS version of this problem with a minimum rate target R̄t writes as

PRS(R̄t) :



min
c̄,P

tr
(
PPH

)
s.t. R̄k + C̄k ≥ R̄t, ∀k ∈ K

R̄c,k ≥
∑K

l=1 C̄l, ∀k ∈ K

C̄k ≥ 0, ∀k ∈ K.

(4.40)

For the power problem addressed in this section we only consider non-scaling CSIT, i.e.

δ21, . . . , δ
2
K = O(1) and α1, . . . , αK = 0. This is particularly relevant in this scenario where

we assume no BS power constraint, and the CSIT quality is not expected to scale with

the transmit power variation during the optimization procedure as channel estimation and

feedback is carried out prior to the precoder design.

4.8.1. The Feasibility Issue

As we saw in the previous analysis, under non-scaling CSIT quality, the NoRS MMF rates

saturates at high SNRs, where multiuser interference becomes dominant and cannot be

completely dealt with. Conversely, this creates a feasibility issue for the power minimization

problem, since rates beyond the saturation level cannot be achieved. This has been noted

in the related literature [72,74].

We observe that the rate and the power problems are monotonically non-decreasing in

their arguments, and are related such that

R
(
P(R̄)

)
= R̄ and RRS

(
PRS(R̄t)

)
= R̄t (4.41)

This can be shown by contradiction and power scaling [6, 59]. From the monotonicity of

R(Pt) and Theorem 4.1, it follows that under non-scaling CSIT qualities, R
(
Pt

)
converges

to a finite maximum value as Pt →∞. The monotonicity of P(R̄) dictates that this value is
the maximum feasible rate. On the other hand, RRS(Pt) does not converge. Therefore, any
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finite rate is feasible for PRS(R̄t), which is always guaranteed by the cutting-set method.

This can also be explained by noting the QoS multicast problem [6], which is always feasible,

is in fact a subproblem of (4.40). Hence, a proper RS QoS design is expected to eliminate

the feasibility issue arising in NoRS QoS designs.

4.8.2. Numerical Results

The power problems in (4.39) and (4.40) are solved using the conservative and cutting-set

methods described in the previous sections, yielding the four designs: NoRS-con, NoRS-cs,

RS-con and RS-cs. While modifying Algorithm 4.1 and Algorithm 4.2 to address (4.40)

and (4.39) is straightforward, it should be noted that an arbitrary initialization of P may

easily yield an infeasible point which fails to satisfy the rate constraints. In this case, the

AO algorithm fails to produce a feasible solution, making the initialization a crucial step.

Before we proceed to discuss the initialization step, we state the simulation parameters.

The minimum rate constraint is set to 3.3219 bps/Hz, which corresponds to a worst-case

user SINR of 9 dB for the NoRS case [72,74]. The four designs are tested under 100 channel

realizations, for δ1, δ2, δ3 = δ, where δ ∈ {0.01, 0.05, 0.1, 0.15}.

Initialization

Note that the rate optimization problems are easily initialized by picking any precoder that

satisfies tr
(
PPH

)
≤ Pt. This is exploited to obtain a feasible P for the power problems.

First, let us consider RS-con with a rate constraint R̂t. Pt is initialized and the rate

optimization procedure in Algorithm 4.1 is performed until we obtain R̂
(n)
t ≥ R̂t. The

corresponding P is feasible for the power problem since it satisfies the rate constraint. If

R̂
(n)
t converges before satisfying the rate constraint, Pt is increased until a feasible point is

found. A feasible P can be obtained using very few iterations if Pt is adjusted properly.

For RS-cs and NoRS-cs, a similar procedure is followed at the beginning of each opti-

mization step, while noting that some rate constraints may not be feasible for NoRS-cs, and

hence Pt should not be increased indefinitely. NoRS-con boils down to the SDP solution

in [72], which does not require initialization.

Feasibility

Figure 4.5a shows the number of realizations for which the different designs yield a feasible

solution. For the NoRS schemes, the number of feasible channels decreases as the CSIT

uncertainty increases. NoRS-cs outperforms NoRS-con in this regards due to the latter’s

employment of conservative approximations. The RS schemes yield feasible solutions for all

realizations, with an improvement exceeding 100% compared to NoRS schemes at δ = 0.15.
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Figure 4.5.: Power minimization under a QoS constraint of 3.3219 bps/Hz in a system with
K,Nt = 3, σ2n = 1, and δ1, δ2, δ3 = δ.

Transmit Power

Figure 4.5b shows the total transmit powers averaged over realizations which are feasible

for all designs, i.e. the intersection of the three feasible sets for a given δ. It can be seen

that RS schemes are more efficient in terms of total transmit power compared to NoRS

designs. Intuitively, we expect this contrast to increase with δ (by reversing the observations

in Figure 4.1). This holds if infeasible realizations are assigned infinitely large transmit

powers. However, since more realizations are omitted for increased δ, the powers obtained

in Figure 4.5a for a larger δ are in fact averaged over very well conditioned channels.

4.9. Summary and Conclusion

In this chapter, the classical robust optimization problem of achieving max-min fairness

in a MU-MISO system with bounded CSIT errors was addressed through the RS trans-

mission strategy. We proved that the proposed RS strategy outperforms the conventional

NoRS strategy in the high SNR regime through DoF analysis. We proposed two robust

WMMSE-based algorithms to realize such gains: a conservative algorithm based on the

approximations in [45], and a non-conservative algorithm based on the cutting-set method

in [10]. Moreover, the convergence of the cutting-set algorithm to the set of KKT solutions

of the non-convex semi-infinite rate optimization problem was established.

The performances of the proposed algorithms and the gains of RS were demonstrated

through simulations. The approach was also extended to solve the QoS problem. It was

shown that RS eliminates the feasibility issue arising in QoS designs with NoRS. Moreover,

RS reduces the amount of transmission power required to satisfy the QoS constraints.
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5. Multigroup Multicasting

So far, we have considered scenarios where the BS communicates a distinct private message

to each receiver. In this chapter, we depart from this setup and consider the case where

users form groups, with each group requesting the same content, or message. This is known

in literature as multigroup multicasting, as each message is transmitted in a multicasting

manner to its intended group of users. We consider the system under perfect CSIT, as its

performance limits have not been fully identified.

This scenario draws resemblance to the MU-MISO setups with partial CSIT considered

in the previous chapters. In particular, each group here can be thought of as a receiver

in the MU-MISO setup, while each user in a given group resembles a state within a finite

uncertainty region. Such resemblance motivates the application of the RS strategy to

multigroup multicast beamforming.

5.1. Introduction

The broadcast nature of the wireless channel allows all receivers in the range of a BS to

listen to its transmitted signal. This is normally perceived as a curse in typical scenarios

where users demand distinct messages, due to the resulting multiuser interference as we saw

in the previous chapters. However, the misfortunes of some people are indeed advantages

to others. In particular, considering a scenario where all users are interested in the same

message (or content), the broadcast nature of the wireless channel turns into a blessing,

as the signal can be simply transmitted in an isotropic manner. This scenario is known in

literature as physical-layer multicasting, or simply multicasting.

Although isotropic transmission is simple and sufficient in such scenarios, it was shown

in [6, 88] that the availability of multiple transmit antennas and perfect CSIT can be

employed to achieve nontrivial gains through multicast beamforming. Since all users are

interested in decoding the same message, the power-constrained multicast beamformer is

designed such that the minimum rate (or SINR) amongst all users is maximized. The

problem of finding the optimum beamforming direction is non-convex, and was shown to

be NP-hard in general [6]. However, an upper-bound on the performance can be efficiently

obtained using SDR, i.e. by relaxing a rank-one constraint on the covariance matrix of

the transmitted signal and solving the resulting SDP. This upper-bound coincided with

the information theoretic capacity of the multicast channel [89]. Moreover, beamforming

vectors can be extracted from the (possibly non-rank-one) capacity achieving covariance

matrix using Gaussian randomization, which gives a good approximation [6].
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The work in [6] was later generalized to the case where the BS serves multiple cochannel

multicast groups, also known as multigroup multicasting [90]. In particular, users served by

the BS form multicast groups depending on the content they are interested in, and the BS

transmits a distinct message to each group. It can be seen that single-group multicasting

is a special case of this scenario, i.e. when there is only one group. On the other hand,

multigroup multicasting reduces to standard multiuser transmission with private messages

when each group consists of only one user. Since multigroup multicasting generally involves

multiple distinct messages, the problem of interference returns. The interference in such

setups is discussed and analysed in detail after introducing the system model.

5.2. Multigroup Multicast Beamforming

Here we describe the multigroup multicasting system model. The general MISO-BC signal

model described in Section 2.1.1 applies, where a BS with Nt transmitting antennas com-

municates with K single antenna receivers. However, the K users here are grouped into

the M multicasting groups G1, . . . ,GM , where all users belonging to the same group are

interested in the same message. LetM , {1, . . . ,M} be the group-index set. We assume

that
∪

m∈M Gm = K, and Gm ∩ Gj = ∅, for all m, j ∈ M and m ̸= j. In words, each user

belongs to one and only one multicasting group. Denoting the size of the mth group by

Gm = |Gm|, we assume without loss of generality that group sizes are in an ascending order:

G1 ≤ G2 ≤ . . . ≤ GM . (5.1)

Let W1, . . . ,WM be the messages intended to the groups G1, . . . ,GM respectively. We

consider conventional beamforming transmission. Messages are first encoded into indepen-

dent data streams, where the vector of coded data symbols in a given channel use is given

by sp , [s1, . . . , sM ]T . Data streams are then mapped to the transmit antennas through a

linear precoding matrix Pp , [p1, . . . ,pM ], where the transmit signal is given by

x = Ppsp =
M∑

m=1

pmsm. (5.2)

Note that while the model in Section 2.4.1 had one precoding vector (and one symbol

stream) for each user, here we have one precoding vector for each group. We recall that

under linear precoding, the power constraint writes as
∑M

m=1 ∥pm∥2 ≤ Pt.

The signal received by the kth user is expressed by

yk =

desired signal︷ ︸︸ ︷
hH
k pµ(k)sµ(k)+

interference︷ ︸︸ ︷
hH
k

∑
m̸=µ(k)

pmsm+nk (5.3)
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where µ : K 7→M maps a user-index to the corresponding group-index, i.e.

µ(k) = m such that k ∈ Gm. (5.4)

In the following, µ(k) is referred to as µ for brevity where the argument of the function is

clear from the context. Note that while the interference in (2.18) corresponds to inter-user

interference, the one in (5.3) is inter-group interference.

The kth user’s average receive power writes as

Tk =

Sk︷ ︸︸ ︷
|hH

k pµ|2+

Ik︷ ︸︸ ︷∑
m̸=µ

|hH
k pm|2 + σ2n (5.5)

from which the SINR experienced by the kth user is defined as γk , SkI
−1
k . Under Gaussian

signalling, the kth achievable user-rate is given by Rk = log2(1 + γk). In multigroup

multicasting, users belonging to the same group decode the same data stream. Hence, to

guarantee that all users in the mth group are able to recover Wm successfully, it should be

transmitted at the group-rate defined as

rm , min
i∈Gm

Ri. (5.6)

The main problems considered in the multicasting literature are those of classical mul-

tiuser beamforming, namely the QoS constrained power minimization problem and the

power constrained MMF problem [90–93]. Such multicasting problems were also consid-

ered under various constraints and setups, including: per-antenna power constraints [94],

large-scale arrays [95] and coordinated multicell transmission [96]. The sum-rate maximiza-

tion problem was also considered in [97]. In this chapter, the focus on the MMF problem.

However, the developed schemes can be easily extended to the QoS and sum-rate problems.

Assumption 5.1. In this chapter, we assume perfect CSIT. As a result, non-ergodic trans-

mission is considered as instantaneous rates are well defined and known to the BS.

5.2.1. Achieving Max-Min Fairness

In the light of the conventional multi-stream beamforming model for multigroup multicas-

ting, the MMF problem is formulated as

R(Pt) :


max
Pp

min
m∈M

min
i∈Gm

Ri

s.t.
M∑

m=1

∥pm∥2 ≤ Pt.
(5.7)

The inner minimization in (5.7)’s objective function accounts for the multicast nature

within each group, i.e. to guarantee that each message is successfully decoded by all users
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in the corresponding group. The outer minimization on the other hand accounts for the

fairness across groups.

The above problem was shown to be NP-hard in general [90]. It is common practice to

formulate an equivalent problem in terms of the SINRs1 and solve it approximately. The

method based on SDR and randomization proposed for the single-group multicasting in [6]

was extended to the multigroup scenario in [90]. An alternative solution based on convex

approximation was later proposed in [93], exhibiting marginally improved performances

under certain conditions, and more importantly, lower complexity.

5.3. Performance Limits

While considerable attention has been given to solving the complicated multigroup multi-

casting optimization problems, little has been done regarding the analytic derivation and

characterization of the performance. This can be regarded to the difficulty (or rather im-

possibility) of obtaining closed-form expressions for the optimum performance metrics, as

the original problems can only be solved approximately through numerical methods. Hence,

performance analysis has been carried out through extensive simulations.

In this section, we characterize the performance of (5.7) through DoF analysis. The

relevance of DoF analysis here is explained as follows. We recall that achieving max-min

fairness requires a simultaneous increase in powers allocated to all streams as Pt increases.

In scenarios where the number of transmit antennas Nt is sufficient to place each beam in

the null space of all its unintended groups, we could safely assume that each multicasting

group receives an interference free stream. However, if such condition is violated, it is not

clear what happens. As we see in the following, this can be unveiled through DoF analysis2.

5.3.1. DoF Analysis

Let us start by defining the DoF achieved by a precoding scheme denoted by
{
Pp(Pt)

}
Pt
.

The kth user’s DoF is defined as Dk , limPt→∞
Rk(Pt)
log2(Pt)

. It follows that the mth group-DoF

is given by

dm , lim
Pt→∞

rm(Pt)

log2(Pt)
= min

i∈Gm

Di (5.8)

which is achieved by all users in the group. Hence, the performance of the precoding

scheme is characterized by the tuple [d1, . . . , dM ]. The MMF-DoF achieved by the precoding

scheme is defined as d , minm∈M dm, corresponding to the DoF that can be simultaneously

achieved by all groups. Since each user is equipped with a single antenna, we observe that

d ≤ dm ≤ Di ≤ 1, ∀i ∈ Gm,m ∈M. (5.9)

1We recall that there exists a one-to-one monotonic relationship between Ri and γi.
2We recall that the DoF is roughly interpreted as the number of interference-free streams that can be
simultaneously communicated in a single channel use. Hence, such analysis is highly relevant here.

100



Hence, if d = 1 is achievable, then it is also optimum. Next, we make an assumption

regarding the channel vectors.

Assumption 5.2. The channel vectors h1, . . . ,hK are independently drawn from their

corresponding distributions, assumed to be continuous. Hence, for any Nt × Ksub matrix

in which the Ksub column vectors constitute any subset of the K channel vectors, it holds

with probability one that the rank is min{Nt,Ksub}.

Let us define Hm as the matrix with columns constituting channel vectors of all users

in Gm, and H̄m , [H1, . . . ,Hm−1,Hm+1, . . . ,HM ] as the complementary set of channel

vectors. Moreover, H̄m \Hj denotes the matrix formed by excluding Hj from H̄m, where

j ∈M\m. By Assumption 5.2, the null space dimensions of such matrices can be identified,

which plays a significant role in deriving the DoF results in this chapter.

Now, we identify the condition under which the full DoF of [d1, . . . , dM ] = [1, . . . , 1], and

hence d = 1, is achieved. By Assumption 5.2, it can be seen that

dim
{
null

(
H̄H

m

)}
= max

{
Nt +Gm −K, 0

}
(5.10)

where dim{·} and null{·} correspond to the dimension and the null space respectively. It

follows that that having dim
{
null

(
H̄H

m

)}
≥ 1 requires Nt ≥ Nm where

Nm , 1 +
∑
i̸=m

Gi = 1 +K −Gm. (5.11)

When this condition is satisfied, we can design the mth beamforming vector such that it

does not cause interference to any other group, i.e. pm ∈ null
(
H̄H

m

)
. From (5.1), it follows

that N1 ≥ N2 ≥ . . . ≥ NM . This reflects the fact that larger groups are more demanding

in terms of spatial dimensions required to null interference caused to them. Hence, p1

requires the largest number of transmitting antennas to meet this demand. Therefore, it

follows that having Nt ≥ Nm for all m ∈M is equivalent to

Nt ≥ N1 (5.12)

which is a sufficient condition to fully eliminate inter-group interference.

Lemma 5.1. The condition in (5.12) is necessary and sufficient to achieve interference-free

beamforming to all groups, and hence a full MMF-DoF of d = 1.

The sufficiency follows from the previous discussion. The necessity come from the fact

that if the condition is violated, at least one group will experience inter-group interference,

which in turn limits the achievable DoF. This is shown in more detail in the proof of the

following theorem in Appendix C.1. The question that comes to mind at this point is:

what happens to the MMF-DoF when condition (5.12) is violated? This is answered next.
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Theorem 5.1. The optimum MMF-DoF achieved by solving (5.7) is given by

d∗ , lim
Pt→∞

R(Pt)

log2(Pt)
=


1, Nt ≥ N1

0.5, NM ≤ Nt < N1

0, Nt < NM

(5.13)

Similar to Theorem 3.1 and Theorem 4.1, the above result is shown through two steps:

achievability and converse. The former is discussed in the following, where we also draw

some insights into the result. The latter is relegated to Appendix C.1.

5.3.2. Achievability and Insight

We start by presenting an instrumental observation which is based on Lemma 5.1.

Remark 5.1. Assume that beamforming is carried out over a subset of groupsMms ⊆M
where all remaining groups are switched off, the condition

Nt ≥ 1 +K −
∑

m∈M\Mms

Gm − min
j∈Mms

Gj (5.14)

is necessary and sufficient to achieve interference free beamforming (full DoF).

This follows directly from Lemma 5.1 after excluding all groups inM\Mms.

Returning to the achievability, d = 1 under Nt ≥ N1 follows from the discussion that

precedes Theorem 5.1. We focus on achieving d = 0.5. It is sufficient to show this under

Nt = NM = 1 +G1 +G2 + . . .+GM−1 (5.15)

as further increasing the number of transmitting antennas cannot decrease the DoF. From

(5.15), it is easy to conclude the following:

1. Interference from the Mth stream to all other groups can be nulled.

2. By excluding the largest group (i.e. GM ), interference free transmission amongst the

remaining M − 1 groups is possible.

The first point follows from (5.11). The second point follows by excluding the Mth group

from the system and Remark 5.1. Hence, the precoding vectors can be designed such that

pm ∈

null
(
H̄H

m \HH
M

)
, ∀m ∈M \M

null
(
H̄H

M

)
, m =M

(5.16)
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from which the kth user’s SINR writes as

γk =


|hH

k pµ|2
σ2
n

, ∀k ∈ K \ GM
|hH

k pM |2∑
j ̸=M |hH

k pj |2+σ2
n
, k ∈ GM .

(5.17)

It can be seen that users in groups 1, . . . ,M − 1 see no interference, while users in group

M see interference from all other groups. By setting the power scaling such that

qm = ∥pm∥2 =

O
(
P 0.5
t

)
, ∀m ∈M \M

O
(
Pt

)
, m =M

(5.18)

we have γk = O
(
P 0.5
t

)
for all k ∈ K. Hence, D1, . . . , DK = 0.5 from which the tuple

[d1, . . . , dM ] = [0.5, . . . , 0.5] is achieved, and hence d = 0.5.

The idea of the scheme is to align all interference through beamforming such that it

lies in the signal subspace of the largest group. The power scaling in (5.18) is then used

to partition this signal subspace into two halves, one for interference and the other for

the desired signal. Note that after applying the precoders in (5.16), taking the scalar

precoded channels and only one user in each group, the resulting system can be interpreted

as a partially connected interference channel with no internal conflicts [80,98]. This can be

used to show that the MMF-DoF of 0.5 cannot be exceeded. An alternative way of showing

this upper-bound is given in Appendix C.1.

When Nt < NM , the interference from group M cannot be eliminated anymore. This

creates mutual interference between groups, and the MMF-DoF collapses to zero as we

show in Appendix C.1. We refer to this scenario as an overloaded system. We conclude

this section by reemphasising the impact a collapsing DoF has on the rate performance.

As we saw in the previous chapter, a MMF-DoF of zero implies that the MMF rate stops

growing as SNR grows large, reaching a saturated performance. Although the DoF analysis

is carried out as SNR goes to infinity, its results are highly visible in finite SNR regimes as

we saw previously, and as we show later when we present results from simulations.

5.4. Single-Stream/Multi-Stream Transmission

The saturating performance in overloaded systems can be avoided through single-stream

transmission. In particular, the M messages are packed into one super common message

given byWc = {W1, . . . ,WM}. This is encoded into a single data stream, then broadcasted

in a single-group multicasting manner such that it is decoded by all users in the system.

Since this interference-free transmission achieves a total DoF of 1, each group is guaranteed

a non-saturating rate with a group-DoF of 1/M .

Relying solely on the single-stream strategy may jeopardize (partial) gains achieved

through multi-stream beamforming. In particular, while it may not be possible to guaran-

tee interference-free beamforming to all groups, the number of transmitting antennas may
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still be able to support beamforming to a subset of groups. Ultimately, the objective is

to realize the potential benefits of both single-stream and multi-stream strategies through

one general transmission strategy. In this section, we make progress towards this through

proposing a mixed scheme that combines the two strategies. This scheme paves the way

to, and motivates, the unifying RS scheme proposed in the following section.

5.4.1. The Mixed Scheme

Here, we propose a mixed scheme that applies the multi-stream beamforming of Section 5.2

to a subset of the groups given byMms ⊆M, and the single-stream transmission describe

above to the remaining groups, i.e. Mss =M\Mms.

Messages intended to the groups in Mms are encoded into independent data streams.

On the other hand, messages intended to the groups inMss are first packed into a common

message, which is then encoded into a common data stream3. All data streams are linearly

precoded from which the transmitted signal is given by

x = pcsc +
∑

m∈Mms

pmsm. (5.19)

At each receiver, the common message is decoded first by treating all interference from

multi-stream transmission as noise. Then, if the receiver belongs to one of the groups in

Mms, the common stream is removed using SIC and the designated4 stream is decoded.

The SINR of the common stream at the kth receiver is given by

γc,k =
|hH

k pc|2∑
j∈Mms

|hH
k pj |2 + σ2n

(5.20)

The corresponding achievable rate is given by Rc,k = log2(1 + γc,k), from which the rate

of the common stream is given by Rc = mink∈KRc,k. We recall that the common stream

is decoded by all users in the system, and hence the minimization is taken over K. After

SIC, the SINR of the designated stream at the kth receiver is given by

γk =
|hH

k pµ|2∑
j∈Mms\µ |h

H
k pj |2 + σ2n

, ∀k ∈ K \
∪

m∈Mss

Gm (5.21)

which only applies to users belonging to groups inMms, or equivalently k ∈ K\
∪

m∈Mss
Gm.

The corresponding rate achieved by the user is given by Rk = log2(1 + γk).

Although all users decode the common stream, its rate is only shared by the groups

in Mss. Since the objective is to achieve fairness, the common rate is divided equally

amongst these groups. On the other hand, groups inMms receive their messages through

3Common in the sense that is is decoded by all groups as we see next, but clearly carries information
intended to a subset of them

4This replaces the term private used in the previous chapters.

104



the designated streams. It follows that the group rate is given by

rm =

mini∈Gm Ri, ∀m ∈Mms

Rc/|Mss|, ∀m ∈Mss.
(5.22)

Hence, the corresponding optimization problem is formulated as

Rmix(Pt) :



max
P,Mms,Mss

min
{
Rc/|Mss|, min

m∈Mms

min
i∈Gm

Ri

}
s.t. Mms ⊆M, Mss =M\Mms

Rc,k ≥ Rc, ∀k ∈ K

∥pc∥2 +
∑

m∈Mms
∥pm∥2 ≤ Pt

(5.23)

where the assignment of groups toMms andMss is part of the optimization problem.

5.4.2. DoF Analysis

Analysing the performance obtained by solving (5.23) requires knowledge of the optimum

group assignment, i.e. Mms and Mss. To facilitate such analysis, we derive a simple

assignment strategy and analysis the corresponding MMF-DoF performance. As we see

in the next section, this assignment turns out to be optimum in a DoF sense. Before we

proceed, we recall that designated streams see no interference from the common stream.

Hence their DoF is given by (5.8), while the DoF of the common stream is given by

dc , lim
Pt→∞

Rc(Pt)

log2(Pt)
(5.24)

For a given precoding scheme, the DoF achieved by each group inMss is given by dc/|Mss|.
Note that groups in Mms exploit the multiplexing gain of the channel, while groups in

Mss share a single stream with a bounded DoF, i.e. dc ≤ 1 due to single-antenna receivers.

Therefore, we seek to maximize the number of groups in Mms. Let Mms(Nt) denote

the maximum number of groups for which interference-free multi-stream beamforming is

guaranteed for a given Nt. This is obtained as

Mms(Nt) :

max |Mms|

s.t. Mms ⊆M and (5.14).
(5.25)

In the following, (Nt) is dropped for notational brevity. It turns out that Mms can be
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expressed in terms of Nt, M and G1, . . . , GM as

Mms =



1, 1 ≤ Nt < 1 +G2

2, 1 +G2 ≤ Nt < 1 +G2 +G3

...
...

M − 2, 1 +
∑M−2

j=2 Gj ≤ Nt < 1 +
∑M−1

j=2 Gj

M − 1, 1 +
∑M−1

j=2 Gj ≤ Nt < 1 +
∑M

j=2Gj

M, 1 +
∑M

j=2Gj ≤ Nt

(5.26)

This is shown as follows: when Nt < 1 + G2, it is not possible to perform interference-

free transmission between any pair of groups, i.e. there is no m1,m2 ∈ M such that

pm1 ∈ null
(
HH

m2

)
and pm2 ∈ null

(
HH

m1

)
. Hence, Mms = 1, implying that interference-free

transmission is only achieved by excluding M −1 groups. Nt = 1+G2 however is sufficient

for interference-free transmission among groups 1 and 2, which follows from Remark 5.1.

For larger Nt, we add more groups starting by the least demanding, from which (5.26) is

obtained. It can shown that for any given Nt,Mms in (5.26) cannot be exceeded by packing

larger groups as they are more demanding in terms of spatial dimensions.

Now that Mms is characterized, the simple group assignment strategy is given by

Mms = {1, . . . ,Mms} and Mss = {Mms + 1, . . . ,M}. (5.27)

The MMF-DoF achieved by fixing this assignment strategy is given in the next result.

Proposition 5.1. The mixed scheme achieves the MMF-DoF given by

d∗mix , lim
Pt→∞

Rmix(Pt)

log2(Pt)
≥ 1

1 +M −Mms
(5.28)

Proof. Under the assignment in (5.27), the designated precoders are designed as

pm ∈ null
(
H̄H

m \ [H1+Mms , . . . ,HM ]H
)
, ∀m ∈Mms. (5.29)

That is, interference-free multi-stream transmission is carried out within the groups inMms.

On the other hand, pc is randomly selected from the space spanned by [H1, . . . ,HM ]H .

Now, let us assign powers that scale as qc = O
(
Pt

)
for the common stream, and qm = O

(
Pα
t

)
for designated streams, where α ∈ [0, 1]. It follows from (5.20) that γc,k = O

(
P 1−α
t

)
for all

k ∈ K, and from (5.21) that γk = O
(
Pα
t

)
for all k ∈ K \

∪
m∈Mss

Gm.

From the SINRs, we observe that dc = 1 − α and dm = α for all m ∈ Mms. Now, by

setting α = 1
1+M−Mms

, the DoF in (5.28) is achieved for the designated streams, and hence

all groups in Mms. Moreover, we have dc = 1 − 1
1+M−Mms

= M−Mms
1+M−Mms

. Dividing this

equally amongst the groups served by the common stream, each gets the DoF in (5.28) as

|Mss| =M −Mms, which completes the proof.
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Note that the inequality in (5.28) indicates that the MMF-DoF given by 1
1+M−Mms

is

achievable as shown in the proof, yet not necessarily optimal. Showing that this MMF-DoF

cannot be exceeded by any feasible precoding scheme turns the inequality into an equality

(converse). This is left for the following section when we discuss the RS scheme.

Now, the next question that comes to mind is: how does the MMF-DoF achieved through

the mixed scheme in Proposition 5.1 compare to the one achieved through the conventional

scheme in Theorem 5.1? To gain some insight into the answer, let us consider the case

where Nt = 1 + K − G1 − GM . It follows from (5.13) that d∗ = 0, as Nt < NM . Note

that the same number of antennas can be written as Nt = 1 +
∑M−1

j=2 Gm, from which

we get MRS = M − 1. Hence, it follows from (5.28) that d∗mix ≥ 0.5. It is clear from

this example that the mixed scheme maintains 0.5 under a smaller number of transmitting

antennas. Moreover, since single-stream transmission is a special case of the mixed scheme,

then d∗mix ≥ 1
M > 0 is guaranteed. More on the DoF gains is given in Section 5.5.1.

5.4.3. Limitations

In the next section, we show that the MMF-DoF in (5.28) is optimum for the mixed scheme

in problem (5.23), implying the optimality of the proposed group assignment strategy in

a DoF sense. However, it is not yet clear if such fixed assignment strategy is preferred

over the entire range of SNRs. One way to obtain the optimum solution of (5.23), and

hence the optimum assignment strategy, over the entire range of SNRs is to solve it for all

possible Mms ⊆ M. In the following section, we show that this is not necessary as the

mixed scheme is nothing more than a special case of the RS scheme.

5.5. Rate-Splitting for Multi-Group Multicasting

The generalized RS strategy proposed for MU-MISO in Section 4.3.1 is extended to the

multigroup multicasting scenario in this section. Users in the MU-MISO case are replaced

by groups here, where each group message is split into a common part and a designated

part. For example, Wm = {Wm0,Wm1}, with Wm0 and Wm1 being the common and

designated parts respectively. Common parts are packed into a super common message

Wc , {W10, . . . ,WM0}, and the resulting common and designated messages are encoded

into independent data stream, in a manner similar to (4.7). All streams are then linearly

precoded and transmitted through the antenna array.

Similar to the RS signals seen throughout this thesis, the transmitted signal writes as a

superposition of the precoded common stream and designated streams such that

x = pcsc +

M∑
m=1

pmsm. (5.30)
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The signal received by the kth user is given by

yk =

common signal︷ ︸︸ ︷
hH
k pcsc +

desired designated signal︷ ︸︸ ︷
hH
k pµsµ +

interference︷ ︸︸ ︷
hH
k

∑
m̸=µ

pmsm+nk (5.31)

from which the corresponding average received power writes as

Tc,k =

Sc,k︷ ︸︸ ︷
|hH

k pc|2+

Sk︷ ︸︸ ︷
|hH

k pµ|2+

Ik︷ ︸︸ ︷∑
m̸=µ

|hH
k pm|2 + σ2n︸ ︷︷ ︸

Ic,k=Tk

. (5.32)

By treating all designated signals as noise, the SINR of the common stream at the kth user is

given by γc,k , Sc,kI
−1
c,k , from which the corresponding rate is given by Rc,k = log2(1+γc,k).

The rate of the common message is hence given by Rc = minKRc,k, ensuring its decodability

by all users in the system. After decoding the common message, it is removed from the

received signal through SIC. Hence, the SINR and rate of the designated stream are similar

to the ones given in Section 5.2.

As in Section 4.3.1, the common rate writes as a sum of M portions: Rc =
∑M

m=1Cm,

where Cm is the portion allocated to the mth group, corresponding to the rate at which

Wm0 is transmitted. It follows that the mth group-rate is given by

Cm + min
i∈Gm

Ri (5.33)

consisting of a common rate portion plus a designated rate. The MMF problem for multi-

group multicasting is formulated in terms of RS as follows

RRS(Pt) :



max
c,P

min
m∈M

(
Cm + min

i∈Gm

Ri

)
s.t. Rc,k ≥

∑M
m=1Cm, ∀k ∈ K

Cm ≥ 0, ∀m ∈M

∥pc∥2 +
M∑

m=1

∥pm∥2 ≤ Pt

(5.34)

where c , [C1, . . . , CM ]T . The constraints in (5.34) can be explained as in Section 4.3.1.

The performances of the conventional multicast beamforming problem in (5.7), the mixed

problem in (5.23) and the RS problem in (5.34) are related such that

R(Pt) ≤ Rmix(Pt) ≤ RRS(Pt). (5.35)

The left-hand side inequality in (5.35) follows by noting that solving (5.7) is equivalent

to solving (5.23) under a restricted domain, where Mms = M. On the other hand, the
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right-hand side inequality in (5.35) follows from the fact that solving (5.23) is equivalent to

solving a restricted version of (5.34), through suppressing the common parts of groups in

Mms and the designated parts of groups inMss, i.e. by setting Cm = 0 for all m ∈ Mms,

and ∥pm∥ = 0 for all m ∈ Mss. Next, the relationship between the performances of the

different schemes is characterize through DoF analysis.

5.5.1. DoF Analysis

The DoF performance of the RS scheme in (5.34) is characterized in the following result.

Theorem 5.2. The optimum MMF-DoF achieved by solving (5.34) is given by

d∗RS , lim
Pt→∞

RRS(Pt)

log2(Pt)
=

1

1 +M −Mms
(5.36)

where Mms is given in (5.26).

The achievability of (5.36) follows from Proposition 5.1 and (5.35). In particular, since

this MMF-DoF is achievable by the mixed scheme, then it is achievable by the RS scheme,

as the former’s solution is feasible for the latter. The converse on the other hand is relegated

to Appendix C.2. Theorem 5.2 implies that the achievable MMF-DoF in Proposition 5.1

is optimum for the mixed scheme, as we have d∗RS ≥ d∗mix, which follows from (5.35).

In Section 5.4.2, we gained some insight into how the MMF-DoF achieved through the

mixed scheme and RS, given in (5.28) and (5.36), compares to the one achieved by the

conventional scheme given in (5.13). This is revisited here in more detail. To see the full

picture, we substitute the expression ofMms in (5.36) into the MMF-DoF in (5.36) yielding

d∗RS =



1, 1 +
∑M

j=2Gj ≤ Nt

1
2 , 1 +

∑M−1
j=2 Gj ≤ Nt < 1 +

∑M
j=2Gj

1
3 , 1 +

∑M−2
j=2 Gj ≤ Nt < 1 +

∑M−1
j=2 Gj

...
...

1
M−1 , 1 +G2 ≤ Nt < 1 +G2 +G3

1
M , 1 ≤ Nt < 1 +G2

(5.37)

Now, it is easy to compare d∗RS in (5.37) with d∗ in (5.13). It can be seen that the condition

under which the MMF-DoF drops below 1 is the same in (5.13) and (5.37), i.e. Nt <

N1, which follows directly from Lemma 5.1. However, what is interesting is how the two

performances differ once such condition is violated.

As observed in Section 5.4.2, the range of Nt under which a MMF-DoF of 0.5 is main-

tained is wider in (5.37) than it is in (5.13). Moreover, once the condition that guarantees

d∗RS = 0.5 is violated, d∗RS drops to 1/3 and so forth until it reaches a lower-bound of 1/M .

The RS and the mixed schemes exploit all the interference-free multi-stream beamform-

ing capabilities available, and compensate for the rest through the common stream. This
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is carried out until Nt cannot support any form of interference-free multi-stream beam-

forming anymore. In this case, all groups share the inherent DoF of 1 achieved through

interference-free single-stream transmission, with 1/M for each group.

On the other hand, the conventional scheme that relies solely on multi-stream beam-

forming looses all DoF capabilities once Nt drops below NM . In this case, the number of

antennas is not sufficient to align all inter-group interference in the path of one group. This

creates mutual interference between at least two groups, in which one group’s gain is the

other’s loss. As a result, the MMF-DoF collapses to zero.

5.5.2. Precoder Optimization

The RS problem in (5.34) is solved by invoking the WMMSE algorithm. Since the WMMSE

method has already been used multiple times in this thesis, it is only described briefly here

to avoid repetition. First, we reformulate (5.34) into an equivalent smooth problem by

introducing auxiliary variables to eliminate the point-wise minimizations. This yields

RRS(Pt) :



max
r,r,c,P

r

s.t. Cm + rm ≥ r,∀m ∈M

Ri ≥ rm, ∀i ∈ Gm,∀m ∈M

Rc,k ≥
∑M

m=1Cm, ∀k ∈ K

Cm ≥ 0, ∀m ∈M

∥pc∥2 +
M∑

m=1

∥pm∥2 ≤ Pt

(5.38)

where at optimality, r , [r1, . . . , rM ]T correspond to the rates of the designated streams,

and r is the MMF group-rate. Then, the equivalent WMSE problem is formulated as

R̄RS(Pt) :



max
r,r,c,P,g,u

r

s.t. Cm + rm ≥ r,∀m ∈M

1− ξi ≥ rm,∀i ∈ Gm, ∀m ∈M

1− ξc,k ≥
∑M

m=1Cm, ∀k ∈ K

Cm ≥ 0, ∀m ∈M

∥pc∥2 +
M∑

m=1

∥pm∥2 ≤ Pt

(5.39)

where ξi and ξc,k are the WMSEs that correspond to Ri and Rc,k respectively. g and u

are the sets of equalizers and weights, with a pair of equalizers and a pair of weights for

each user. The problem in (5.39) is solved using the AO principle in Section 3.1, where the

convergence and KKT optimality results also apply.
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Figure 5.1.: The MMF rate for NoRS and RS under a varied number of antennas: Nt = 2, 4
and 6, in a setup with K = 6, M = 3, G1 = 1, G2 = 2 and G3 = 3.

5.6. Simulation Results and Analysis

In this section, RS transmission for multigroup multicasting is evaluated through simu-

lations. We consider i.i.d channels with entries drawn from CN (0, 1). All rate results

are averaged over 100 channel realizations. RS transmission is compared to conventional

beamforming (NoRS). Results for RS are obtained by solving (5.34) using the WMMSE

approach, while results for NoRS are obtained by solving (5.7) using the SDR method

in [90]. Note that for NoRS we present optimistic rate performances by plotting the SDR

upper-bound without performing the randomization step in [90]. On the other hand, the

RS results represent the actual achievable performance.

In Figure 5.1, we consider a system with K = 6 users divided into M = 3 groups with

sizes G1 = 1, G2 = 2 and G3 = 3. The number of transmitting antennas is varied such that

Nt = 2, 4 and 6. For Nt = 6, it follows from Theorem 5.1 and Theorem 5.2 that both NoRS

and RS achieve the full DoF. This is clear from Figure 5.1, where the two performances

are almost identical. For Nt = 4, both schemes achieve a MMF-DoF of 0.5. However,

RS gives a marginal improvement in the rate performance. This is due to the fact that

the NoRS scheme is restricted to the strategy described in Section (5.3.2), while the RS

scheme offers more flexibility, particularly when it comes to the largest group, through the

common message and SIC. Nt = 2 is insufficient to achieve a non-zero MMF-DoF through

beamforming, hence the NoRS rate saturates. The RS rate on the other hand keeps growing

with a DoF of 1/3. The RS scheme is most beneficial in this overloaded regime, achieving
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Figure 5.2.: The MMF rate for NoRS and RS in a setup with Nt = 4 under a varied number
groups: M = 3 and 4. Groups have equal sizes with 2 users per group.

significant gains over NoRS.

Next, we focus on the overloaded regime. In Figure 5.2, we consider a fixed number of

antennas Nt = 4 and a varied number of groups. We consider M = 3 and 4 groups, with 2

users per group for both cases. From Theorem 5.1, it can be seen that for both cases, we

have zero MMF-DoF for NoRS. This is reflected in the saturating performances in Figure

5.2. Theorem 5.1 on the other hand suggests that RS achieves a MMF-DoF of 0.5 for

M = 3, and 1/3 for M = 4. This is confirmed in Figure 5.2, where it is also demonstrated

that RS achieves significant gains for the whole range of SNRs.

5.7. Summary and Conclusion

In this chapter, we considered the problem of achieving max-min fairness in multigroup

multicasting systems. We derived the performance limits of the conventional beamforming

scheme in terms of the MMF-DoF. The MMF-DoF was expressed as a function of the

system parameters, including the number of transmitting antennas, the number of groups,

and the distribution of users across groups. The interference-limited regime under which

the MMF-DoF collapses to zero was identified. As we learned from the previous chapters,

the collapsing MMF-DoF yields a saturating rate performance.

We proposed a strategy based on single-stream/multi-stream beamforming and interfer-

ence cancellation. This was shown to improve the MMF-DoF performance, and avoid the

saturating rate performance. It was then shown that this strategy is in fact a special case
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of the RS strategy considered in the previous two chapters for MU-MISO systems with

partial CSIT. Hence, the problem was reformulated in terms of RS and the precoders were

optimized using the WMMSE approach. Simulations showed that RS provides tremen-

dous gains over conventional beamforming techniques, particularly in interference-limited

overloaded scenarios.
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6. Conclusion

This thesis addressed a number of design and optimization problems in multiple antenna

broadcasting scenarios with CSIT uncertainty in the light of the RS transmission strategy.

A two-fold approach was taken for each of the considered scenarios such that:

1. The benefits of applying RS was analytically demonstrated through deriving asymp-

totic performance limits in terms of the DoF achieved by the optimum design.

2. An algorithm that realizes such high SNR benefits, while guaranteeing an optimized

performance across the entire range of SNRs, was developed.

We started by considering the problem of ergodic sum-rate maximization in MU-MISO

systems under statistical CSIT uncertainty in Chapter 3. To address this problem, we

developed an average WMMSE algorithm based on SAA. The gains achieved by employing

RS were demonstrated through simulations for a variety of system parameters. Moreover,

we solved the weighted sum-rate maximization problem to obtain the boundary of the

ergodic rate region achieved through RS. This highlighted the gains of applying RS to

realize any tradeoff point in the achievable region.

In Chapter 4, we addressed the problem of achieving max-min fairness in MU-MISO

systems under bounded CSIT uncertainties. We started by characterising the MMF-DoF

(or symmetric-DoF) achieved through NoRS and RS designs in the general case where

users experience different CSIT qualities. Then we developed a robust WMMSE algorithm

based on the cutting-set method. The convergence of the developed algorithm to the set of

KKT points of the semi-infinite rate problem was established. Simulation results showed

the significant gains achieved by employing RS in such scenarios. The developed methods

were extended to address the QoS constrained problem. It was shown that RS resolves the

feasibility issue and reduces the transmission power.

In Chapter 5, the RS strategy was extended to the multigroup multicasting setup. We

started by characterizing the DoF performance of the conventional beamforming strat-

egy. We identified the antenna regime under which the symmetric-DoF collapses to zero,

i.e. the overloaded regime. We then showed through DoF analysis that RS is superior

to the conventional beamforming strategy. The precoder design problem was solved us-

ing a WMMSE algorithm, and significant performance gains achieved through RS were

demonstrated through simulations.
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6.1. Future Work

In conclusion of this these, some future research directions are proposed.

• Rate-Splitting for Interfering Networks: The work in this thesis was restricted

to systems with only one BS1. RS however is not restricted to this model, and can

be applied to networks with multiple interfering BSs. The design and optimization

in such setups brings a whole new set of challenges. This is mainly due to the

distributed nature of the transmitters, hence requiring distributed algorithms that

operate under little or no cooperation. Prior work on distributed algorithms for multi-

cell transmission can be leveraged in this context [8, 45]. In situations where RS is

carried out for all users, the common massage cannot be constructed as described

in Section 4.3.1. This will likely require a hierarchy of common messages. Progress

towards the DoF analysis of such systems has been made in [99].

• Non-linear Precoding: Preprocessing techniques in this thesis were restricted to

linear precoding. A question that comes to mind in this context is: how would a

RS design based on non-linear precoding perform? While this is not expected to

enhance the DoF performance, it may nontrivially benefit the rate performance at

finite SNRs. Such non-linear RS design can be built upon existing works on robust

non-linear precoder optimization [75].

• Application to Information and Power Broadcasting Systems: It was shown

in Section 4.8 that RS transmission is more power-efficient compared to NoRS trans-

mission. This leaves us wondering whether such power efficiency can be leveraged to

enhance the performance of broadcasting systems with Simultaneous Wireless Infor-

mation and Power Transfer (SWIPT) and imperfect CSIT [100]. It is not clear yet

if the common stream can act as the energy signal in such setups, or if a dedicated

energy signal is required on top.

• Physical-Layer Secrecy: We have seen that as the CSIT quality decreases, the

RS transmission becomes increasingly dependent on the common message. Since the

common message is broadcasted to all users in the system, this raises some questions

about operation under physical-layer secrecy constraints. Addressing this requires an

investigation of the secure DoF under partial CSIT, before moving into the design

and optimization problems.

• Overloaded Systems: In Chapter 5 we considered the overloaded regime in multi-

group multicasting systems. The overloaded regime; however, is not restricted to

multigroup multicasting and can also occur in MU-MISO transmission where each

1The results and schemes also apply to systems with multiple fully-cooperating BSs. This may require
per-transmitter power constraints that can be easily incorporated into problem formulations.
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receiver requests a private message. Such scenarios have not been thoroughly ad-

dressed in literature. Imagine a system with K > Nt, and heterogeneous CSIT

qualities across users. Maximizing the sum-DoF necessitates scheduling the K users

with the highest CSIT qualities. If we assume that the rest of the users request low

rates, for example low-power sensors, then it may be sufficient to serve them through

the common message without influencing the achievable sum-DoF. Moreover, their

messages could be transmitted in a non-orthogonal manner with multilayered SIC to

further enhance their achievable rates, drawing a connection with Non-Orthogonal

Multiple Access (NOMA) techniques [101].

• Relation to Coded Caching: In a recent work [102], the relationship between

coded caching [103] and the MISO-BC with imperfect CSIT was established. This

work demonstrates that coded caching can be used to relax the constraints on the

required CSIT quality. This follows from understanding the fundamental role of

CSIT: that is eliminating multiuser interference, and the nature of coded caching:

that is creating multicast transmission opportunities which are robust with respect

to CSIT requirements. The achievability scheme in [102] is based on the RS strategy.

In realistic scenarios, the number of subscribed users may exceed Nt as pointed out

above. A naive scheme would be to perform the transmission in [102] over orthogonal

time slots, by scheduling K = Nt users at a time. However, since coded caching

relaxes CSIT requirements and reduces the multiuser interference, it may be possible

to develop a scheme that serves an overloaded setup with K > Nt users in a non-

orthogonal manner in less time. This needs further research and investigation.
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A. Proofs for Chapter 3

A.1. Proof of Theorem 3.1

Since P is designed separately for each Ĥ, we focus on a precoding scheme defined for a

given Ĥ as
{
P(Pt)

}
Pt
. We recall that the powers allocated to the common stream and the

kth private stream are given by qc , ∥pc∥2 and qk , ∥pk∥2 respectively. We assume that

such powers scale with increased Pt as O(P ac
t ) and O(P ak

t ) respectively, where ac, ak ∈ [0, 1]

are power scaling factors. The streams interfering with the kth user are dominated by a

power scaling factor of āk , maxj{aj}j ̸=k. We define the kth user’s conditional average

DoFs as

d̄c,k , lim
Pt→∞

R̄c,k(Pt)

log2(Pt)
and d̄k , lim

Pt→∞

R̄k(Pt)

log2(Pt)
. (A.1)

For a given precoding scheme defined over all Ĥ, the long-term DoFs are given by

dc,k , lim
Pt→∞

E
Ĥ

{
R̄c,k(Pt)

}
log2(Pt)

= E
Ĥ
{d̄c,k} and dk , lim

Pt→∞

E
Ĥ

{
R̄k(Pt)

}
log2(Pt)

= E
Ĥ
{d̄k} (A.2)

which follows from the bounded convergence theorem. The same definitions extend to

NoRS precoding schemes while discarding the common power. Without loss of generality,

σ2n = 1 is assumed throughout the proof.

Proof of (3.14)

For an arbitrary precoding scheme, let us find an upper-bound for

R̄k = E
H|Ĥ

{
log2(Tk)− log2(Ik) | Ĥ

}
(A.3)

by upper-bounding and lower-bounding the first and second right-hand-side terms respec-

tively. From Jensen’s inequality, we write

E
H|Ĥ

{
log2(Tk) | Ĥ

}
≤ log2(T̄k) (A.4)

where T̄k is defined in (3.35b). From the Cauchy-Schwarz inequality and the isotropic

property of the CSIT errors, we have

T̄k ≤
(
∥ĥk∥2 + σ2e

) K∑
i=1

qi + 1 (A.5)
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where σ2e = N−1
t σ2e,k. Since the actual channel state H does not depend on SNR, we have

∥hk∥2, ∥ĥk∥2 = O(1). It follows that T̄k ≤ O
(
P

max{ak,āk}
t

)
, from which we write

E
H|Ĥ

{
log2(Tk) | Ĥ

}
≤ max{ak, āk} log2(Pt) +O(1). (A.6)

Next, from the isotropic property and [2, Lemma 1], we write

E
H|Ĥ

{
log2(Ik) | Ĥ

}
≥ log2(2

κσ2eλ1 + 1) +O(1) (A.7)

where κ , E
H|Ĥ

{
log2

(
|eT1 h̃k|2

σ2
e

)
| Ĥ

}
is bounded [2], and λ1 is the dominant eigenvalue of∑

i ̸=k pip
H
i . Since the maximum is lower-bounded by the average, we write

λ1 ≥ N−1
t

∑
i̸=k

qi = O
(
P āk
t

)
(A.8)

from which we obtain

E
H|Ĥ

{
log2(Ik) | Ĥ

}
≥ (āk − α)+ log2(Pt) +O(1). (A.9)

Form (A.1), (A.3), (A.6) and (A.9), we have

d̄k ≤ max{ak, āk} −max{āk − α, 0}. (A.10)

When ak ≥ āk, the upper-bound is given by min{α + ak − āk, ak}, otherwise we have 0.

Combining the two cases, we write d̄k ≤ min {(α+ ak − āk)+, ak}, from which the sum

DoF is upper-bounded by

K∑
k=1

d̄k ≤
K∑
k=1

min
{
(α+ ak − āk)+, ak

}
. (A.11)

To obtain the maximum upper-bound for (A.11), we define J ⊆ K as the subset composed

of all users with non-zero DoF. Due to the symmetry in the CSIT qualities, it is sufficient

to assume, without loss of generality, that J , {1, . . . , J} with J , |J |. We define

d̄(J) ,
∑J

j=1 d̄j . It is evident that d̄(1) ≤ 1. On the other hand, we have d̄(J) ≤ Jα for

J > 1. This is shown from

J∑
k=1

d̄k ≤ Jα+

J∑
k=1

(ak − āk) (A.12a)

≤ Jα+ (aJ − a1) +
J−1∑
k=1

(ak − ak+1) (A.12b)

where (A.12a) follows from min{x, y} ≤ x, y, and the positivity of DoF assumption. (A.12b)

follows from āk ≥ aj , ∀j ̸= k, and is equal to Jα. We conclude that the maximum upper-
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bound is obtained when J = K for α ≥ K−1, and J = 1 otherwise. Hence, we obtain

K∑
k=1

d̄k ≤ max{1,Kα}. (A.13)

From the bounded convergence theorem, it follows that limPt→∞
E
Ĥ

{
R(Pt)

}
log2(Pt)

is also upper-

bounded by the right-hand side quantity in (A.13).

This part of the proof is completed by showing that the upper-bound can be achieved by

a feasible precoding scheme. It is easy to show that a DoF of 1 is achieved by single-user

transmission, i.e. transmitting to one user only while switching off all other users. On the

other hand, Kα is achieved using ZF-BF as shown in Section 2.5.1. Note that max{1,Kα}
is achieved by selecting between the two modes depending on α.

Proof of (3.15)

From the definitions of the ARs, we write

R̄c + R̄1 ≤ R̄c,1 + R̄1 = E
H|Ĥ

{
log2(Tc,1)− log2(I1) | Ĥ

}
. (A.14)

Following the same approach used in the previous part, we obtain

E
H|Ĥ

{
log2(Tc,1) | Ĥ

}
≤ log2(Pt) +O(1) (A.15)

and

E
H|Ĥ

{
log2(I1) | Ĥ

}
≥ (ā1 − α)+ log2(Pt) +O(1) (A.16)

from which we write

d̄c,1 + d̄1 ≤ min{1 + α− ā1, 1}. (A.17)

Next, we define d̄RS(J) , d̄c +
∑J

k=1 d̄k for J users with positive DoFs. From (A.17), we

have d̄RS(1) ≤ 1. For J = 2, we have d̄RS(2) ≤ 1 + α − ā1 + a2 ≤ 1 + α, obtained from

(A.17), d̄2 ≤ a2, and ā1 ≥ a2. For J > 2, we have d̄RS(J) ≤ 1 + (J − 1)α obtained by

combining (A.17) and (A.12). Hence, the maximum upper-bound is 1+ (K− 1)α obtained

when J = K regardless of α. It follows from the bounded convergence theorem that this

also acts as an upper-bound for limPt→∞
E
Ĥ

{
RRS(Pt)

}
log2(Pt)

.

Finally, the achievability for this part is given in Section 2.5.3.
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B. Proofs for Chapter 4

B.1. Important Lemmas for the proof of Theorem 4.1

The following lemmas are instrumental to the proof of Theorem 4.1.

Lemma B.1. [45, Lemma 1] Given the ball uncertainty model and for any p, we have

max
hk∈Hk

|hH
k p| = |ĥH

k p|+ δk∥p∥

min
hk∈Hk

|hH
k p| =

(
|ĥH

k p| − δk∥p∥
)+
.

Lemma B.2. There exists a feasible RS precoding scheme that achieves the DoF

d̂c = 1− ā and d̂k = min{(αk + ak − āk)+, ak} (B.1)

for all ak ∈ [0, 1], ā , maxj{aj}Kj=1 and āk , maxj{aj}j ̸=k.

Proof. For the private precoder, consider the ZF-BF design in (2.24) based on the imper-

fect estimate Ĥ. Recall that this is given by Pp =
(
ĤH

)†
B diag(

√
q1, . . . ,

√
qK), where

B , diag
(√

1/b1, . . . ,
√

1/bK
)
, and b1, . . . , bK are constants that normalize the columns

of
(
ĤH

)†
. The existence of such solution is guaranteed by Assumption 4.1. The common

precoder is given as pc =
√
qce1, where ac is set to 1. We define the worst-case SINRs1 as

γ̄c,k , min
hk∈Hk

γc,k
(
hk

)
and γ̄k , min

hk∈Hk

γk
(
hk

)
. (B.2)

By applying the described scheme, γ̄k is lower-bounded as

γ̄k ≥
qk(

√
1/bk − δk)2∑

i̸=k

∣∣h̃H
k pi

∣∣2 + σ2n
≥
qk(

√
1/bk − δk)2

δ2k

∑
i ̸=k

qi + σ2n
. (B.3)

The left inequality in (B.3) follows from Lemma B.1 and the assumption that |ĥH
k pk| >

δkqk, i.e. small error [104]. The right inequality is obtained from applying the Cauchy-

Schwarz inequality and ∥h̃k∥2 ≤ δ2k to the denominator. The numerator scales as O
(
P ak
t

)
,

while the denominator scales asO
(
P

(āk−αk)
+

t

)
. It follows that d̄k ≥ min{(αk+ak−āk)+, ak}.

1Worst-case channels are equivalently obtained using the rates or SINRs
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For γ̄c,k, we write

γ̄c,k ≥
qc|hk,1|2

∥hk∥2
∑K

k=1 qk + σ2n
= O

(
P

(1−ā)
t

)
(B.4)

where the Cauchy-Schwarz inequality is applied to the denominator, and both |hk,1|2 and

∥hk∥2 scale as O(1) from Assumption 4.1. It follows that d̄c ≥ 1− ā.

B.2. Proof of Theorem 4.1

To characterize the optimum DoF performance, we define the optimum precoding schemes

for (4.9) and (4.5) as
{
P∗(Pt)

}
Pt

and
{
P∗

p(Pt)
}
Pt

respectively, where the corresponding

powers and exponents are denoted by q∗c , q
∗
k, a

∗
c and a∗k.

Proof of (4.11)

We start by showing that for any given precoding scheme with a given power allocation,

the achievable private DoF in Lemma B.2 cannot be exceeded, i.e.

d̄k ≤ min {(αk + ak − āk)+, ak}. (B.5)

The worst-case SINR is upper-bounded as γ̄k ≤ γk(hk), where hk ∈ Hk. hk is selected

such that the lth user’s interference term is maximized in accordance with Lemma B.1, i.e.∣∣ĥH
k pl + h̃H

k pl

∣∣ = ∣∣ĥH
k pl

∣∣+ δk∥pl∥, where l is chosen such that al = āk , max {aj}j ̸=k. As

a result, we obtain the upper-bound

γ̄k ≤
∣∣hH

k pk

∣∣2(
|ĥH

k pl|+δk∥pl∥
)2
+
∑
i̸=k,l

∣∣ĥH
k pi+h̃H

k pi

∣∣2+σ2n
≤ ∥hk∥2qk
δ2kql + σ2n

. (B.6)

where (B.6) follows from applying the Cauchy-Schwarz inequality and discarding non-

negative interference terms. From Assumption 4.1, it is evident that (B.6) scales as the

lower-bound in (B.3), from which (B.5) directly follows.

The optimum DoF satisfies d̄∗ ≤ d̄∗k, ∀k ∈ K, where d̄∗k is the kth user’s DoF at optimality.

From (B.5), we write

d̄∗ ≤ min
k

{
min{αk + a∗k − ā∗k, a∗k}

}K

k=1
(B.7)

where (·)+ is omitted by assuming that (αk + a∗k − ā∗k) ≥ 0. This assumption is valid as

(αk + a∗k − ā∗k) < 0 yields d̄∗ = 0, which is maintained if a∗k is increased to ā∗k − αk. On the

other hand, d̄∗ > 0 is only obtained when (αk+a
∗
k−ā∗k) > 0. (B.7) is further upper-bounded
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as

d̄∗ ≤min{α1+a
∗
1−ā∗1, a∗1}+min{α2+a

∗
2−ā∗2, a∗2}

2
(B.8)

≤ α1 + a∗1 − ā∗1 + α2 + a∗2 − ā∗2
2

(B.9)

≤ α1 + α2

2
. (B.10)

(B.8) follows from the fact that d̄∗ is upper-bounded by the average of any two DoFs, and

(B.9) is obtained by noting that the point-wise minimum is upper-bounded by any element

in the set. (B.10) follows from a∗j ≤ ā∗k, ∀j ̸= k. From Lemma B.2, allocating the private

powers such that a1 = α2 and a2, . . . , aK = α1+α2
2 , we achieve d̄k ≥ α1+α2

2 , ∀k ∈ K.

Proof of (4.12)

We start this part by showing that

d̄c + d̄k ≤ min {1 + αk − āk, 1}. (B.11)

This result follows from

R̄c + R̄k ≤ R̄c,k + R̄k

≤ Rc,k(hk

)
+Rk

(
hk

)
(B.12)

= log2

(
Tc,k

(
hk

))
− log2

(
Ik
(
hk

))
(B.13)

= log2(Pt)− (āk − αk)
+ log2(Pt) +O(1) (B.14)

where (B.12) is obtained using the same hk employed in (B.6), (B.13) follows from the rate

definitions, and (B.14) is obtained using means of previous analysis.

The optimum DoF satisfies d̄∗RS ≤ c̄∗k + d̄∗k, ∀k ∈ K, where
∑K

k=1 c̄
∗
k = d̄∗c and c̄∗k ≥ 0. An

upper-bound is obtained by taking the average of any number of user DoFs. To obtain a

tighter upper-bound, we optimize over the number of averaged users such that

d̄∗RS ≤ min
J∈K

∑J
k=1

(
c̄∗k + d̄∗k

)
J

≤ min
J∈K

d̄∗c +
∑J

k=1 d̄
∗
k

J
(B.15)

where (B.15) follows from
∑J

k=1 c̄
∗
k ≤ d̄∗c . The argument used to omit (·)+ in (B.7) cannot

be directly applied for (B.15). Alternatively, we start by assuming that (αk + a∗k − ā∗k) ≥
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0, ∀k ∈ {1, . . . , J}, for a given J . For the case where J is an odd number, we write

d̄∗c +
∑J

k=1 d̄
∗
k

J
=
d̄∗c + d̄∗J +

∑J−1
k=1 d̄

∗
k

J

≤
1 +

∑J−1
k=1(αk + a∗k − ā∗k)

J
(B.16)

≤
1 +

∑J−1
k=1 αk

J
. (B.17)

(B.16) follows from (B.11) and (B.5), where the elements 1 and (αk+a
∗
k− ā∗k) are picked to

upper-bound d̄∗c+ d̄
∗
J and d̄∗k respectively. (B.17) is obtained by writing the sum in (B.16) as

a sum of pairs, and using the approach in (B.10). For the case where J is an even number,

we write

d̄∗c+
∑J

j=1d̄
∗
j

J
=
d̄∗c + d̄∗1 + d̄∗J +

∑J−1
k=2 d̄

∗
k

J

≤
1+α1−ā∗1+a∗J+

∑J−1
k=2(αk+a

∗
k−ā∗k)

J
(B.18)

≤
1 +

∑J−1
k=1 αk

J
. (B.19)

In (B.18), 1 + α1 − ā∗1 and a∗J are chosen to upper-bound d̄∗c + d̄∗1 and d̄∗J respectively.

(B.19) is obtained from ā∗1 ≥ a∗J and the approach in (B.17). If we assume that a given

(αk + a∗k − ā∗k) < 0 for a subset of {1, . . . , J}, and hence d̄∗j = 0, we cannot exceed (B.17)

and (B.19). Combining this with (B.15), we obtain

d̄∗RS ≤ min
J∈{2,...,K}

1 +
∑J−1

j=1 αj

J
. (B.20)

where J = 1 has been omitted. Next, we show that this upper-bound is achievable by a

feasible precoding scheme. From Lemma B.2, allocating the powers such that ak = ā for

all k, we achieve DoFs d̄k and d̄c of min {αk, ā} and 1− ā respectively. We show that there

exists ā ∈ [0, 1] and feasible {c̄k}Kk=1 such that c̄k +min {αk, ā} achieves the upper-bound

in (B.20).

For a given J , the corresponding upper-bound
1+

∑J−1
j=1 αj

J is denoted by d̄UB
RS (J). Let J∗

be the argument of the minimization in (B.20), i.e. d̄UB
RS (J

∗) ≤ d̄UB
RS (J). If J

∗ < K,

αJ∗−1 ≤ d̄UB
RS (J

∗) ≤ αJ∗ (B.21)

which is shown in the following. First, we note that

d̄UB
RS (J + 1) =

Jd̄UB
RS (J) + αJ

J + 1
(B.22)

d̄UB
RS (J − 1) =

Jd̄UB
RS (J)− αJ−1

J − 1
. (B.23)
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Since d̄UB
RS (J

∗) ≤ d̄UB
RS (J

∗ +1) and d̄UB
RS (J

∗) ≤ d̄UB
RS (J

∗− 1), the right and left inequalities in

(B.21) follow from (B.22) and (B.23) respectively, as the average increases by including αJ

in (B.22) and excluding αJ−1 in (B.23). For J∗ = K, the right inequality in (B.21) does

not necessarily hold, but the left inequality always holds. Hence, we have one of the two

following cases.

• Case J∗ < K, or J∗ = K and (B.21) holds: For this case, we set ā = d̄UB
RS (J

∗). We

obtain DoFs of d̄k = αk, ∀k < J∗, d̄k = d̄UB
RS (J

∗), ∀k ≥ J∗, and d̄c = 1 − d̄UB
RS (J

∗).

The common DoF is split such that c̄k = d̄UB
RS (J

∗)− αk, ∀k < J∗, and c̄k = 0, ∀k ≥
J∗. The left inequality in (B.21) guarantees that c̄k ≥ 0, while we can see that∑J∗−1

k=1 c̄k = (J∗ − 1)d̄UB
RS (J

∗)−
∑J∗−1

k=1 αk = d̄c.

• Case J∗ = K and d̄UB
RS (K) ≥ αk, ∀k ∈ K: We set ā = αK obtaining DoFs of

d̄k = αk and d̄c = 1 − αK . The common DoF is split as: c̄k = d̄UB
RS (K) − αK , which

are non-negative and satisfy
∑K

k=1 c̄k = d̄c.

This completes the proof.

B.3. Proof of Proposition 4.1

Consider the semi-infinite optimization problem

min
x

f0(x)

s.t. fm(x, t) ≤ 0, ∀t ∈ Tm,m ∈M
(B.24)

where M , {1, . . . ,M}, and T1,. . . ,TM are compact infinite index sets (or uncertainty

regions) [68,69]2. The cutting-set algorithm solves (B.24) by solving a sequence of sampled

problems. The ith sampled problem is given by

min
x

f0(x)

s.t. fm(x, t) ≤ 0, ∀t ∈ T (i)
m ,m ∈M

(B.25)

where T (i)
m ⊂ Tm is a finite subset. Let F (i) be the feasible set of the ith problem, and

x̄(i) ∈ F (i) be a feasible solution (not necessarily optimum). We assume that F (1) is

compact, f0(·) and f1(·, t), . . . , fM (·, t) are continuously differentiable in x ∈ F (1), and the

pessimization step is exact. Under such assumptions, it follows from [10, Section 5.2] that

the iterates generated by the cutting-set algorithm converge to a feasible point of problem

(B.24). In particular, we have

fm(x̄, t) ≤ 0, ∀t ∈ Tm,m ∈M (B.26)

2x is the optimization variable here and should not be confused with the transmit signal.
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where x̄ is a limit point of the algorithm. Note that while global optimality of the opti-

mization step is assumed in [10], it is not necessary for convergence and the feasibility of

its limit point. This is also shown in the proof of [105, Theorem 2.1]. Next, we show that

if x̄(i) is a KKT point of (B.25) for all i, then x̄ is a KKT point of (B.24).

The Lagrangian of (B.25) is given by

L(x,λ(i)) = f0(x) +

M∑
m=1

∑
t∈T (i)

m

λ
(i)
m,tfm(x, t) (B.27)

where λ(i) ,
{
λ
(i)
m,t | t ∈ T

(i)
m ,m ∈ M

}
is the associated set of non-negative multipliers.

We define the discrete measures µ
(i)
1 , . . . , µ

(i)
M on T1,. . . ,TM respectively such that

µ(i)m (t) =

λ
(i)
m,t, ∀t ∈ T

(i)
m

0, ∀t ∈ Tm \ T (i)
m .

(B.28)

It follows that the Lagrangian in (B.27) can be expressed as

L(x,µ(i)) = f0(x) +

M∑
m=1

∫
t∈Tm

fm(x, t)dµ(i)m (t) (B.29)

where µ(i) ,
{
µ
(i)
m | m ∈ M

}
. Let (x̄(i), µ̄(i)) denote the KKT solution of problem

(B.25) obtained in the i iteration and suppose that some regularity condition holds3. The

corresponding KKT optimality conditions are given by

∇xL(x̄
(i), µ̄(i)) = 0 (B.30a)

fm(x̄(i), t) ≤ 0,∀t ∈ T (i)
m ,m ∈M (B.30b)

µ̄(i)m ≥ 0,∀m ∈M (B.30c)∫
t∈Tm

fm(x̄(i), t)dµ̄(i)m (t) = 0, ∀m ∈M (B.30d)

where µ̄
(i)
m ≥ 0 means that the measure is non-negative.

The sequence
{
x̄(i)

}∞
i=1

lies in the compact set F (1), as F (1) ⊇ F (i) for all i. Hence, there

exists a subsequence
{
x̄(ir)

}∞
r=1

converging to x̄. The regularity condition implies that at

each x̄(i), the set of KKT multipliers that satisfy (B.30) is bounded [106]. Therefore, it is

assumed without loss of generality that the subsequence
{
µ̄(ir)

}∞
r=1

converges weakly to the

accumulation point µ̄. Combining these observations with the continuity of the objective

and constraint functions and their gradients, it can be shown that ∥∇xL(x̄, µ̄)∥ = 0 and∫
t∈Tm fm(x̄, t)dµ̄m(t) = 0 using the same steps given in the proof of [105, Theorem 2.1]. It

3In particular, it is assumed that the Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds at
stationary points of (B.24) and (B.25).
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follows that the solution (x̄, µ̄) satisfies

∇xL(x̄, µ̄) = 0 (B.31a)

µ̄m ≥ 0, ∀m ∈M (B.31b)∫
t∈Tm

fm(x̄, t)dµ̄m(t) = 0,∀m ∈M (B.31c)

where (B.31b) follows from (B.30c). Combining (B.31) with (B.26) implies that (x̄, µ̄)

satisfies the KKT conditions of problem (B.24), and x̄ is a KKT point4. Since the iterates

lie in a compact set, the result holds for any sequence of iterates generated by the algorithm.

Now, we observe that problems (4.9) and (4.28) are instances of problems (B.24) and

(B.25) respectively, with continuously differentiable objective and constraint functions [8,

51]. Also, P lies in the compact set given by
{
P | tr

(
PPH

)
≤ Pt

}
. The same holds for the

rate variables R̄t and c̄, which belong to compact rate regions. Hence, the feasible sets for

(4.9) and (4.28) are compact, which completes the proof.

B.4. Solving (4.36) to Global Optimality

The auxiliary problems in Lemma 4.2 are rewritten as

Dk(λk) :

max
hk∈Hk

hH
k

(
(1− λk)Q̄k − λkQk

)︸ ︷︷ ︸
Ak(λk)

hk + (1− λk)σ2n (B.32)

Dc,k(λc,k) :

max
hc,k∈Hk

hH
c,k

(
(1− λc,k)Qp−λc,kQc

)︸ ︷︷ ︸
Ac,k(λc,k)

hc,k+(1−λc,k)σ2n (B.33)

where Qk , pkp
H
k , Qc , pcp

H
c , Qp ,

∑K
k=1Qk, and Q̄k , Qp −Qk. This follows from

substituting the receive power and interference expressions in (2.37). For given parameters,

(B.32) and (B.33) are QCQPs, where Ak(λk) and Ac,k(λc,k) are symmetric and possibly

indefinite5. Hence, (B.32) and (B.33) are non-convex optimization problems in general.

For this reason, we resort to relaxation.

First, we introduce the matrix variables Xk = hkh
H
k and Xc,k = hc,kh

H
c,k from which the

quadratic terms in (B.32) and (B.33) are eliminated by writing hH
k Akhk = tr

(
XkAk

)
and

hH
c,kAc,khc,k = tr

(
Xc,kAc,k

)
. Next, the equalities associated with the introduced matrices

are relaxed into inequalities such that Xk ≽ hkh
H
k and Xc,k ≽ hc,kh

H
c,k. The resulting

4Note that under the aforementioned assumptions, the semi-infinite problem in (B.24) has a finite number
of active constraints at KKT points. Hence, the measures µ̄1, . . . , µ̄M have finite supports [68,69].

5Updating the parameters using Dinkelbach’s algorithm, we have λk, λc,k ∈ [0, 1]. Ak(0),Ac,k(0) ≽ 0,
while Ak(1),Ac,k(1) ≼ 0. Otherwise, they are generally indefinite.
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relaxed problems are formulated as

Dr
k(λk) :



max
Xk,hk

tr
(
XkAk(λk)

)
+ (1− λk)σ2n

s.t. tr(Xk)− 2ℜ(hH
k ĥk) + ĥH

k ĥk ≤ δ2k Xk hk

hH
k 1

 ≽ 0

(B.34)

Dr
c,k(λc,k) :



max
Xc,k,hc,k

tr
(
Xc,kAc,k(λc,k)

)
+(1−λc,k)σ2n

s.t. tr(Xc,k)−2ℜ(hH
c,kĥk)+ĥH

k ĥk ≤ δ2k Xc,k hc,k

hH
c,k 1

 ≽ 0

(B.35)

where the relaxed inequalities are rewritten using the Schur Complement. (B.34) and (B.35)

are SDPs and can be efficiently solved. Due to the relaxations, the feasible sets in (B.34)

and (B.35) contain their counterparts in (B.32) and (B.33). It follows that Dr
k(λk) ≥ Dk(λk)

and Dr
c,k(λc,k) ≥ Dc,k(λc,k). Before proceeding to the next result, we denote the optimum

solutions of (B.34) and (B.35) as
(
X◦

k,h
◦
k

)
and

(
X◦

c,k,h
◦
c,k

)
respectively.

Lemma B.3. The relaxations in (B.34) and (B.35) are tight at optimality, i.e. X◦
k =

h◦
kh

◦H
k and X◦

c,k = h◦
c,kh

◦H
c,k . As a result, h◦

k and h◦
c,k are optimum solutions for (B.32) and

(B.33) respectively. Finally, we have Dr
k(λk) = Dk(λk) and Dr

c,k(λc,k) = Dc,k(λc,k).

Lemma B.3 follows directly from [52, Appendix B.1], by noting that (B.32) and (B.33)

are QCQPs, with a single constraint each, that satisfy Slater’s condition.
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C. Proofs for Chapter 5

Before going into the proofs of Theorem 5.1 and Theorem 5.2, we start with some important

definitions. For the conventional transmission in Section 5.2, recall that a precoding scheme

is denoted by
{
Pp(Pt)

}
Pt
. The associated powers q1, . . . , qM scale as O

(
P a1
t

)
, . . . , O

(
P aM
t

)
respectively, where a1, . . . , aM ∈ [0, 1] are the corresponding scaling factors. For any set of

scaling factors, let ā , maxm∈M am be the maximum scaling.

A pecoding scheme has certain inter-group interference nulling capabilities, which depend

on the system setup: Nt, M and the sizes of groups, and the design itself. Let Im ⊂ M
be the set of groups with precoding vectors that interfere with the mth group, i.e. the

precoding vector of each group in Im causes non-zero interference1 to at least one user in

Gm. Moreover, we denote the exponent of the dominant interference by ām , maxj∈Im aj .

Hence, there exists at least one SINR scaling as γi = O
(
P am−ām
t

)
such that i ∈ Gm.

Recalling the DoF definitions in Section 5.3.1, we can write

dm ≤
(
am − ām

)+
(C.1)

where (·) follows from the fact that the DoF is non-negative. We recall that for a given

precoding scheme, the achievable MMF-DoF satisfies d ≤ dm for all m ∈M.

For the RS strategy in Section 5.5, a precoding scheme is denoted by
{
P(Pt)

}
Pt
. The

power allocation and power scaling factors for the designated stream are as defined above.

On the other hand, qc = O
(
P ac
t

)
with ac ∈ [0, 1] is the power allocated to the common

stream. Since at each receiver, the common stream is decoded while treating the designated

stream as noise, the common DoF is given by

dc ≤
(
ac − ā

)+ ≤ 1− ā (C.2)

which is limited by the maximum power scaling across all designated streams. The fraction

of dc allocated to the mth groups is denoted by cm, where
∑M

m=1 cm = dc. Hence, the mth

group-DoF is given by cm+dm, consisting of a common part and a designated part. Hence,

the MMF-DoF for a given precoding scheme satisfies dRS ≤ cm + dm for all m ∈M.

1This interference scales as |hH
i pj |2 = O

(
P

aj
t

)
for some i ∈ Gm and j ∈ Im.
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C.1. Proof of Theorem 5.1

The achievability of the MMF-DoF in (5.13) is shown in Section 5.3.2. Here we show the

converse, i.e. d ≤ d∗ for any feasible precoding scheme. Since d ≤ 1 is shown in (5.9), we

focus on the two other cases.

For d∗ = 0.5, it is sufficient to show that d ≤ 0.5 for Nt = N1 − 1, as further decreasing

the number of antennas cannot increase the DoF. Since Nt < N1, at least one group

sees interference from p1 for any precoding scheme. Let Gm1 be a group that sees such

interference, i.e. 1 ∈ Im1 . We may assume that am1 > ām1 , as the contrary will limit the

MMF-DoF to 0 as seen from (C.1). Next, we write the following set of inequalities

d ≤ d1 + dm1

2
(C.3)

≤ a1 + am1 − ām1

2
(C.4)

≤ a1 + am1 − a1
2

(C.5)

≤ 0.5. (C.6)

(C.3) follows from the fact that the minimum group-DoF is upper-bounded by the average

of any number of group-DoFs. (C.4) follows from (C.1), while (C.5) follows from 1 ∈ Im1 .

Finally, (C.6) follows from am1 ≤ 1. This completes the converse for this part.

Now, we show that d ≤ 0 for Nt = NM − 1. Note that Nt < Nm for all m ∈ M. Hence,

each beamforming vector causes interference to at least one group it is not intended to.

Equivalently, we have
∪

m∈M Im =M. Therefore, for any power allocation with exponents

a1, . . . , aM , there exists at least one group that sees interference from pm1 , where am1 = ā.

Let the index of such group be m2, i.e m1 ∈ Im2 . We have

dm2 ≤
(
am2 − ā

)+
= 0. (C.7)

Hence, it follows that d ≤ dm2 ≤ 0, which completes the proof.

C.2. Proof of Theorem 5.2

We recall that for any given Nt, the maximum number of groups that can be served with

interference-free beamforming is denoted by Mms, which is expressed in (5.26). Hence, for

any feasible precoding scheme, at leastMss =M−Mms groups receive non-zero interference

from the designated beams. In this proof, we show that dRS ≤ 1
1+Mss

. Before proceeding,

we present the following result which plays an important role in this proof.

Lemma C.1. For any precoding scheme, p1 interferes with at least Mss groups. Moreover,

each of p2, . . . ,pM interfere with at least Mss − 1 groups.

Proof. We recall that to place pm in the null space of all groups in Sm ⊆ M \ m, the
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following condition should be satisfied:

Nt ≥ 1 +
∑
j∈Sm

Gj . (C.8)

Hence, finding the minimum number of groups pm interferes with is equivalent to finding

the maximum |Sm|. Following the same approach in (5.26), this is found by packing the

maximum number of groups inM\m into Nt− 1, starting with the smallest. To this end,

we express Nt in terms of Mms and group sizes as

Nt =

1 + N̄ , Mms = 1

1 +
∑Mms

j=2 Gj + N̄ , Mms ≥ 2
(C.9)

where 0 ≤ N̄ < GMms+1. This follows directly from (5.26).

First, we start with p1. This can be placed in the null space of at most Mms− 1 groups,

i.e. groups G2, . . . ,GMms . This follows from (C.8) and observing that

1 +

Mms∑
j=2

Gj ≤ Nt < 1 +

Mms+1∑
j=2

Gj . (C.10)

Hence, p1 causes interference to the remaining groups after excluding G1, i.e. Mss groups.

Next, we consider pm for all m ∈ {2, . . . ,Mms}. We can write

Nt = 1 +

Mms∑
j=1,j ̸=m

Gj + (Gm −G1) + N̄ (C.11)

< 1 +

Mms∑
j=1,j ̸=m

Gj +GMms+1 +GMms+2 (C.12)

where (C.12) follows from N̄ < GMms+1 and Gm − G1 < GMms+2. Hence, in the best

case scenario, pm is placed in the null space of groups G1, . . . ,Gm−1,Gm+1, . . .GMms+1, and

causes interference to the remaining Mss − 1 groups (by excluding Gm).

Finally, consider pm for all m ∈ {Mms +1, . . . ,M}. Here, the best scenario occurs when

N̄ ≥ G1, from which we can write

1 +

Mms∑
j=1

Gj ≤ Nt < 1 +

Mms+1∑
j=2

Gj . (C.13)

It follows that pm is placed in the null space of groups G1, . . . ,GMms , and causes interference

to the remaining Mss − 1 groups.

The minimum group-DoF is upper-bounded by the average of any number of group-DoFs.
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Hence, taking the subset S ⊆M, we can write

dRS ≤
∑

m∈S dm + cm

|S|
≤

∑
m∈S dm + dc

|S|
. (C.14)

where the right-hand side inequality follows from the fact that
∑

m∈S cm ≤
∑

m∈M cm = dc.

Now, we need to find the right subset S which gives us a meaningful upper-bound in closed-

form, that applies to any feasible precoding scheme.

Let m̄ ∈ M be the index of the group with the largest power scaling, i.e. am̄ = ā.

Moreover, let S̄ ⊆ M\ m̄ be the set of groups that see interference from pm̄. From Lemma

C.1, we know that |S̄| ≥Mss − 1. For the upper-bound, we assume that |S̄| =Mss − 1, as

increasing the number of groups that see interference does not increase the DoF. We also

assume that m̄ ̸= 1, as the contrary does not influence the result as we see later. Since

p1 interferes with at least Mss groups (from Lemma C.1), we have at least one group that

sees interference from p1 and is not in S̄. Let the index of such group be m1. From (C.1),

note that a1 ≥ am1 implies d1 + dm1 ≤ a1, while if a1 ≤ am1 implies d1 + dm1 ≤ am1 . We

assume, without loss of generality, that a1 ≥ am1 , as the contrary does not affect the result

as we see next. The set of groups for the upper-bound is taken as S = {1,m1, S̄} with

|S| =Mss + 1. Now, we can write

dRS ≤
d1 + dm1 +

∑
m∈S̄ dm + dc

Mss + 1
(C.15)

≤ a1 + 1− ā
Mss + 1

(C.16)

≤ 1

Mss + 1
(C.17)

where (C.16) follows from the fact that dm = 0 for all m ∈ S̄ and (C.2), where (C.17)

follows from ā ≥ a1. Note that if we assume that m̄ = 1, then we can also assume that

|S̄| =Mss. As a result, the same upper-bound holds by addingm1 to S̄ and setting dm1 = 0.

This completes the proof.
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