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Abstract

This thesis develops new mathematical theory and presents novel recovery algorithms

for discrete linear dynamical systems (LDS) with sparsity constraints on either control

inputs or initial state. The recovery problems in this framework manifest as the problem

of reconstructing one or more sparse signals from a set of noisy underdetermined linear

measurements. The goal of our work is to design algorithms for sparse signal recovery

which can exploit the underlying structure in the measurement matrix and the unknown

sparse vectors, and to analyze the impact of these structures on the efficacy of the recovery.

We answer three fundamental and interconnected questions on sparse signal recovery

problems that arise in the context of LDS. First, what are necessary and sufficient con-

ditions for the existence of a sparse solution? Second, given that a sparse solution exists,

what are good low-complexity algorithms that exploit the underlying signal structure?

Third, when are these algorithms guaranteed to succeed? These questions are considered

in the context of three different sparsity models, as described below.

Within the LDS framework, we first consider the simplest sparsity model of a single

unknown sparse initial state vector with no additional structure. This problem is known

as the observability problem in the control theory literature, and the initial state can

be recovered using standard compressed sensing (CS) algorithms. However, the recovery

guarantees for this case are different from the classical sparse recovery guarantees because

the measurement matrix that arises in LDS is fundamentally different from the matrices

that are typically considered in the CS literature. We seek to obtain the conditions for

observability of LDS when the initial state is sparse and the observation matrix is random.

Taking advantage of randomness in the measurements, we use concentration inequalities to

derive an upper bound on the minimum number of measurements that can ensure faithful

recovery of the sparse initial state.

iii



Abstract iv

Next, we move to a more complicated sparsity model, which is concerned with the re-

covery of a set of sparse control input vectors. In this setting, we first derive necessary

and sufficient conditions for the existence of a sparse solution for any given pair of initial

and final states in the LDS. These conditions enable us to develop a simple procedure to

test the controllability of LDS using sparse inputs, which is non-combinatorial in nature,

unlike the existing sparse-controllability tests.

Following the existence test, we address the second question, namely that of devising

low-complexity recovery algorithms. We develop online non-iterative algorithms for the

same sparsity model. Motivated by the wideband wireless channel estimation problem, we

assume that the control inputs are jointly sparse, and the system transfer matrix is diag-

onal. We devise two online algorithms based on the sparse Bayesian learning framework.

The algorithms are implemented using the sequential expectation-maximization proce-

dure, combined with Kalman smoothing. Consequently, they require minimal computa-

tional and memory resources, and have bounded delays. Further, we rigorously examine

the properties of the algorithm to answer the third question on recovery guarantees. The

analysis involves elegant use of tools from stochastic approximation theory.

Finally, we present the most sophisticated sparsity model considered in the thesis, where

both the control inputs and observation matrix are assumed to be unknown. This problem

is referred to as the dictionary learning problem in the CS literature. Here, we focus on

algorithm development and establishing its guarantees. We adopt a Bayesian approach for

the recovery, and solve the resulting optimization problem using the alternating minimiza-

tion procedure and the Armijo line search procedure. We then provide recovery guarantees

by characterizing the properties of the algorithm using Kurdyka- Lojasiewicz-based analy-

sis. We also show that the algorithm is likely to converge to a sparse representation.

Apart from the above set of algorithms and theoretical results, we also apply the sparse

signal recovery framework to anomaly imaging for structural health monitoring. The goal

here is to recover the anomaly map of a structure using multi-sensor measurements. We

develop an algorithm that exploits the inherit clustered sparsity in the map, and bench-

mark its performance against two state-of-the-art algorithms using real-world damage

measurements.

Overall, the thesis presents rigorous theoretical analysis and accurate yet low complexity

algorithms for sparse recovery problems that arise in the context of LDS.



Glossary

AM : Alternating Minimization

a.s. : almost surely

ALS : Armijo Line Search

AR : Auto-Regressive

CoSaMP : Compressive Sampling Matching Pursuit

CS : Compressive Sensing

EM : Expectation Maximization

i.i.d. : Independent and Identically Distributed

ITH : Iterative Hard Thresholding

KL : Kullback-Leibler

KM-SBL : Kalman Multiple Sparse Bayesian Learning

LASSO : Least Angle Absolute Shrinkage and Selection Operator

LHS : Left Hand Side

LDS : Linear Dynamical Systems

MAP : Maximum a Posteriori

ML : Maximum Likelihood

MSE : Mean Squared Error

MMV : Multiple Measurement Vector

M-SBL : Multiple Sparse Bayesian Learning

PBH : Popov-Belevitch-Hautus

OFDM : Orthogonal Frequency Division Multiplexing

OMP : Orthogonal Matching Pursuit

RHS : Right Hand Side

RMSE : Relative Mean Square Error

RIC : Restricted Isometry Constant

RIP : Restricted Isometry Property

SBL : Sparse Bayesian Learning

SNR : Signal-to-Noise Ratio

SRR : Support Recovery Rate
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Notation

Vectors and matrices are denoted by boldface small letters and boldface capital letters,

respectively. Sets are denoted by calligraphy letters. Rest of the notation is listed below.

Vector

ai : ith element of vector a

‖·‖ : Euclidean norm of a vector

‖·‖0 : Number of nonzero entries of a vector

‖·‖1 : `1−norm of a vector

‖·‖∞ : Infinity norm of a vector

Diag {·} : Diagonal matrix of with entries of a vector on the diagonal

Supp {·} : Support set of a vector

Matrix

Aij : (i, j)th entry of matrix A

Ai : ith column of matrix A(
AT
)
i

: ith row of matrix A

AS : Set of columns of matrix A indexed by the set S
(·)T : Transpose of a matrix

|·| : Determinant of a matrix

(·)† : Pseudo-inverse of a matrix

Tr {·} : Trace of a matrix

Rank {·} : Rank of a matrix

‖·‖F : Frobenius norm of a matrix

‖·‖2 : Spectral norm of a matrix

D {·} : Diagonal matrix with same diagonal entries as the argument matrix

vec {·} : Vectorized version of a matrix

CS {·} : Column space of a matrix

� : Khatri-Rao product of matrices

vi



Notation vii

Field

R : Field of real numbers

R+ : Field of non-negative real numbers

C : Field of complex numbers

Probability

P {·} : Probability of an event

E {·} : Expectation operator

N : Normal distribution

Set

|·| : Cardinality of a set

(·)c : Complement of a set

∪ : Union of two sets

∩ : Intersection of two sets

Miscellaneous

0 : All zero vector or matrix

1 : All ones vector

I : Identity matrix

1{·} : Indicator function
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Chapter 1

Introduction

Connecting sparsity and state space models

Linear dynamical systems (LDS) are well studied and widely accepted mathematical

models for describing and analyzing a variety of physical systems that evolve in time. The

model serves as the core engine in diverse fields such as automatic control systems [1], signal

processing [2], communications [3], economics [4], mechanical and civil engineering [5, 6],

health care [7,8], etc. The canonical representation of the linear dynamics is the discrete-

time state space model as given below:

xk = Dxk−1 +Hhk (1.1)

yk = A(k)xk +wk, (1.2)

for time instants k = 0, 1, . . .. Here, xk ∈ RN denotes the state vector that characterizes

the system. The state is influenced by the input hk ∈ RL; and the output yk ∈ Rm

represents the measured response of the system. The output is corrupted by the noise term

denoted by wk ∈ Rm. Also, D ∈ RN×N is the system transfer matrix, H ∈ RN×L is the

1
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input matrix, and A(k) ∈ Rm×N is the observation matrix of the system at time instant k.

For example, in an orthogonal frequency division multiplexing (OFDM) wireless system,

the state denotes the successive instantiations of a time-varying wireless channel. The

temporal correlation of the channel, modeled using a first-order auto-regressive process,

is captured by (1.1). Also, (1.2) denotes the linear relation between the received signal,

pilot signal, and the channel instantiation.

An important problem associated with a linear dynamical system is the estimation of the

system state vectors xk, for k = 0, 1, . . . using the corresponding measurements yk. This

problem is equivalent to solving a system of linear equations. For example, in the context

of wireless channel model explained above, this problem translates to the time-varying

channel estimation and tracking problem. We recall that, in general, for solving a linear

system, the number of measurements should not be less than the number of unknowns.

However, if the solution is known to admit a sparse representation in a suitable basis, the

number of measurements required can be potentially reduced by exploiting this additional

information. The reduction in the number of measurements is advantageous in many real

world systems. For instance, in wireless channel estimation, the channel vector is known to

be sparse in the lag domain, and thus exploiting sparsity help to reduce the pilot overhead.

Hence, the whole thesis is devoted to the mathematics underlying the state estimation of

LDS when the state vectors admit sparse representation. Our work is motivated by the

results from the area of sparse signal recovery and compressive sensing (CS) literature.

These results serve as the point of departure for our work, and we discuss them in the

next section.
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1.1 Review of Compressed Sensing

The CS framework studies the theory and algorithmic development for finding sparse

solutions to underdetermined systems of linear equations [9–11]. The standard CS problem

is to reconstruct an s−sparse vector x ∈ RN from linear measurements:

y = Ax ∈ Rm,m < N. (1.3)

There are two aspects to the CS problem: one, design of the linear measurement process,

and second, design of a suitable recovery algorithm. These two problems are equally

important and delicate, and they form the foundation of the thesis. In the next subsection,

we discuss some of the popular and well-understood algorithms and the associated recovery

guarantees available in the literature.

1.1.1 Sparse Recovery Algorithms

Some of the existing algorithms for the recovery of a sparse vector are as follows:

• Basis pursuit : It is a convex optimization method with polynomial time complex-

ity [9, 12]. It solves the following optimization problem:

arg minx∈RN ‖x‖1 subject to y = Ax. (1.4)

There are other variants of the algorithm such as LASSO, Dantzig selector, `p norm

minimization, etc [13, 14].

• Thresholding algorithms : These are iterative algorithms based on carefully designed

thresholding functions. Basic thresholding, iterative hard thresholding (IHT) and
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hard thresholding pursuit (HTP) are some of the algorithms that belong to this class

of algorithms [15].

• Greedy algorithms : These algorithms are designed based on making a locally opti-

mal choice of the support of the vector at each stage. Orthogonal matching pur-

suit (OMP) and compressive sampling matching pursuit (CoSaMP) are examples of

greedy algorithms [16–21].

• Bayesian methods: These algorithms impose a fictitious Bayesian prior on the un-

known vector and solve the sparse recovery problem using probabilistic estimation.

Sparse Bayesian learning (SBL) and approximate message passing are some well-

received Bayesian methods in literature [22–26].

Clearly, the recovery performance of these algorithms depend on the properties of the

measurement matrices. For example, if the number of rows m of the measurement matrix

is less than the sparsity s, the recovery is information theoretically impossible. The desired

properties of the measurement matrices are discussed next.

1.1.2 Recovery Guarantees

One can look for two types of guarantees for a CS problem:

• Existence and uniqueness: When is a solution to a compressed sensing problem

guaranteed to exist?

• Recovery guarantee: When is the compressed sensing algorithm guaranteed to be

recover the sparsest solution?



Chapter 1. 5

The first question is relatively easy to answer, as the solution is guaranteed to exist if the

union of subspaces spanned by all sets of s columns of A is Rm. However, union of two

subspaces is a subspace if and only if one of them is contained in the other one. Thus, the

solution is guaranteed to exist if the column space spanned by the any of the s columns

of A is Rm. Further, the solution is unique if the null space of A does not contain any

2s−sparse vector. However, the second question is by far less trivial and has received a

lot of research attention. The most popular approach to establishing guarantees for the

exact recovery is through the so-called restricted isometry property (RIP) [27,28], defined

as follows. A measurement matrix A is said to satisfy the s-RIP with restricted isometry

constant (RIC) δs if δs ∈ (0, 1), where

δs , inf
{
δ : 1− δ ≤ ‖Az‖2 ≤ 1 + δ, ∀ ‖z‖ = 1, and ‖z‖0 ≤ s} . (1.5)

Some examples of RIP based guarantees for exact recovery of sparse vectors with `0 norm

at most s are as follows:

• δs < 1/3 and δ2s <
√

1/2, (more generally, δts <
√

(t− 1)/t for t ≥ 4/3 and

δts <
√
t/(4− t) for 0 < t < 4/3) are sharp for recovery using basis pursuit [29–31].

• δ3s < 1/8 is sufficient for recovery via the iterative hard thresholding (IHT) algo-

rithm [32].

• δs+1 <
1√
s+1

is sufficient for recovery via the orthogonal matching pursuit (OMP)

algorithm [33].

The RIP also ensures that the recovery process is robust to additive noise and is stable

when the unknown vector is not precisely sparse.
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1.1.3 Extensions

The theory and algorithms we discussed so far are appropriate for the recovery of a single

sparse vector with no additional side information or constraint. However, in practice, there

are LDS related problems for which one has to recover more than one sparse vector and

the sparse vectors exhibit additional structural properties. For example, in the wireless

channel estimation problem, one has to recover successive instantiations of a sparse time-

varying wireless channel. These instantiations have the same power delay profile, and the

nonzero coefficients of these instantiations are temporally correlated. Thus, a recovery

algorithm exploiting the common support and temporal correlation yields better recovery

performance. We list the different types of sparsity models studied in the literature:

• Block sparsity: A sparsity pattern in which the non-zero entries occur in multiple

clusters [34,35].

• Piecewise sparsity: A sparsity pattern formed by the concatenation of a set of sparse

vectors [36].

• Joint sparsity: A sparsity pattern in which a set of sparse vectors share the same

support [37–41].

• Temporally correlated joint sparsity: A model in which vectors exhibit joint sparsity

along with temporal correlation of the nonzero entries [3, 42, 43].

In the light of the above discussion, for a given sparse recovery problem, the first step

is to identify any structure in addition to sparsity that exists in the signal. Then, one

can explore two facets of the problem: development of efficient recovery algorithms and

theoretical guarantees on existence of a solution, and recovery performance. Hence, in this
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thesis, we build on the theory of sparse signal recovery to address the state estimation

problem in LDS, which deals with the above aspects.

With the above background, we next introduce the sparsity models associated with LDS

that are investigated in this thesis.

1.2 Sparsity Models in LDS

We consider three versions (denoted by SM1-SM3) of sparse recovery problems for state

estimation in LDS. The categorization is based on the information available to the recovery

algorithm about the inputs and the observation matrix, as we describe next. Here, our

goal is to highlight a selection of LDS-related problems that can be reduced to or can be

modeled using the CS framework, without explicitly detailing the mathematical model.

1.2.1 SM1: Known inputs and observation matrix

In version 1 (SM1) of the problem, the inputs and observation matrix are known, and

the goal is to estimate the sequence of system states. This problem is equivalent to the

estimation of the initial state, i.e., the state at time zero. Thus, this version is concerned

with the question of how well the initial state of a linear dynamical system can be inferred

from its observations and inputs. Here, we assume that the initial state of the system is

known to admit a sparse representation in a suitable basis. For example, diffusion processes

in complex networks that model phenomena like disease or epidemic spreading in human

society [7, 8], air or water pollution [5, 6], virus spreading in computer and mobile phone

networks [44,45], information propagation in online social networks [46], etc., are known to

have a sparse initialization. Identifying the initial state of these processes accurately is a
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critical first step towards their control [47]. Thus, a key problem here is the recoverability

of the sparse system state, which simplifies to a single measurement model as in (1.3).

1.2.2 SM2: Unknown inputs and known observation matrix

In the next model, version 2 (SM2), the goal is to estimate inputs and the initial state,

which is equivalent to the estimation of the state evolution over time. Thus, this version

refers to the estimation of a sequence of vectors, which are assumed to be sparse. In

other words, we assume that the initial state and the inputs are sparse. A motivating

application for such sparse control is a networked control system. The system is comprised

of controllers, plants and sensors, connected over a network medium. Due to the limited

bandwidth of the physical communication network, the communication in the network

only support low data rates [48,49]. In order to reduce the size of data exchanged between

controllers and plants, one can use sparse signals as control inputs, because the sparse

signals are known to admit compact representations [9–11]. Another motivating real-

world problem that can be modeled using sparse inputs is the wireless channel estimation

problem described at the beginning of this chapter. For this problem, the inputs could

refer to the difference between the consecutive instantiations of the channel, and the goal

is to recover the sequence of sparse channel instantiations.

1.2.3 SM3: Unknown inputs and observation matrix

In this sparse recovery problem, version 3 (SM3), one needs to learn both the matrix that

characterizes LDS and the external inputs that influence the state. In the CS setup, this

problem is known as dictionary learning. Learning system specific, adaptive measurement

matrices are particularly beneficial when the measurement model is not precisely known,
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as in the case of an image. The use of adaptive dictionaries often leads to more compact

representations and better performance in signal denoising, inpainting, and restoration.

This method is known to outperform the traditional approach of using predefined dictio-

naries like wavelets or union of orthogonal bases like the Fourier and Dirac.

The above three sparsity patterns that arise in LDS are motivated by different real-world

applications, and it is interesting to explore the theoretical and algorithmic aspects of these

sparsity models. In the next section, we sketch the territory of research presented in this

thesis.

1.3 Scope and Contributions of the Thesis

The central research questions that drive our investigation are as follows:

Q1. When is a sparse solution is guaranteed to exist for a given sparsity model?

Q2. If the solution exists, what are some efficient reconstruction algorithms?

Q3. For a given reconstruction algorithm, when is the solution guaranteed to be faithfully

recovered?

These questions are not independent, as the recovery guarantees are algorithm dependent,

and the reconstruction algorithm assumes the existence of at least one sparse solution. The

thesis addresses these fundamental questions for the three versions of sparsity patterns

presented in Section 1.2.

The overall thesis organization follows a path from simple to more complicated versions

of the problems, i.e., from SM1-SM3. In the following subsections, we give an overview of

CS problems considered and the major findings obtained in the thesis. Here, we adopt an
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informal style rather than delving into the technical details. We refine these questions for

each case separately, mentioning the special structures associated with the measurement

matrices or the sparse signals. This helps us connect the LDS problems with the existing

CS literature and recognize the gaps in the literature. We then elaborate on the specific

contributions of the thesis.

1.3.1 Known inputs and observation matrix (SM1)

As mentioned in the previous section, this version of the problem reduces to the standard

CS problem in Section 1.1. Since we do not assume any special structure on the initial

state vector, any conventional recovery algorithm can be applied to this version of the

problem. However, the theoretical guarantees which depend on the properties of the

measurement model require a fresh look, as the LDS model imposes a special structure on

the measurement matrices. Due to this structure, classical CS based recovery guarantees

do not apply to this problem. The initial state estimation problem in LDS is called

observability problem in the control theory terminology. To sum up, under the model

SM1, we present an in-depth study of question Q3, and establish recovery guarantees

under the measurement matrix that arises in the observability problem of an LDS. We

discuss this in Chapter 2.

We show that, if the initial state vector admits a sparse representation, the number of

measurements can be significantly reduced by using random projections for obtaining the

measurements. Our analysis gives sufficient conditions for the RIP of the observability

matrix to hold, which leads to guarantees for the observability of the system. These

conditions depend only on the properties of system transfer and observation matrices and

are derived using tools from probability theory and compressed sensing. Our results are
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stronger than the existing results in the regime where they are comparable. These results

appear in [50,51].

1.3.2 Unknown inputs and known observation matrix (SM2)

For this version of the sparsity model, the goal is to estimate a set of sparse vectors,

which makes it different from SM1. We address all three questions Q1, Q2 and Q3 for this

problem in Chapters 3,4 and 5, respectively. We start with the question Q1 regarding the

existence of a set of sparse control inputs which can drive the system to any desired state.

This problem is referred to as the controllability problem. We revisit the controllability

problem taking the sparsity constraints into account. To this end, we first derive necessary

and sufficient conditions for ensuring controllability of an LDS with arbitrary transfer ma-

trices. Our characterizations are in terms of algebraic conditions, which require verifying

rank conditions on an appropriately defined set of matrices. The number of conditions to

be verified grows with the state dimension, but does not depend on the number of input

vectors required to steer the system to the desired state. In this way, the results have a

similar flavor as the classical results for unconstrained input system, although the proof

technique is completely different. Using these conditions, we design a non-combinatorial

test to check the controllability of LDS using sparse inputs. Further, we characterize

the minimum number of input vectors required to satisfy the derived conditions for con-

trollability. Finally, we present a generalized Kalman decomposition-like procedure that

separates the state-space into subspaces corresponding to sparse-controllable and sparse-

uncontrollable parts. Our results form a theoretical foundation for designing networked

linear control systems with sparse inputs, by introducing and investigating the notion of

controllability under sparsity constraints. These results appear in [52].
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Next, we address the question Q2 on the recovery of sparse state vectors of LDS for

model SM2 in Chapter 4. In this part of the study, we assume that the system transfer

matrix is a diagonal matrix. Hence, the problem is to reconstruct temporally sparse

vectors sharing a common support, from noisy underdetermined linear measurements. We

devise two Bayesian algorithms that sequentially recover the vectors, without waiting for

all the measurements to arrive. The online algorithms are formulated using the SBL

framework and are implemented using a sequential expectation-maximization procedure

combined with Kalman smoothing. The first set of algorithms are iterative in nature,

which are then modified to develop noniterative algorithms. Due to the online nature of

the algorithm, it requires less computational and memory resources compared to offline

processing. We illustrate the efficacy of the algorithms using sparse orthogonal frequency

division multiplexing channel estimation through numerical results. These results are

published in [53,54].

Finally, we present the solution to question Q3 for model SM2 in Chapter 5, in the context

of algorithms presented in Chapter 4. We analyze the convergence of the algorithms in

the special case when the sparse vectors are uncorrelated, using tools from stochastic

approximation theory. We show that the sequence of the covariance estimates converges

either to the global minimum of the offline equivalent cost function or to the all-zero vector,

regardless of the sparsity level of the signal. These results appear in [54].

1.3.3 Unknown inputs and observation matrix (SM3)

In this version, we need to find a decomposition that can explain our measurements and

ensure that the control inputs are sparse. This problem is equivalent to a matrix factor-

ization problem, and it is different from the sparse signal recovery problem of solving a
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system of linear equations with some constraints or signal structure. Thus, the theoret-

ical analysis demanded by question Q1 is often hard to carry out for this version of the

problem. Hence, we restrict our work to the algorithm design and the related recovery

guarantees, i.e., we only seek answers to questions Q2 and Q3, for SM3, and our results

are presented in Chapter 6.

For this work, we assume that the system transfer matrix is a zero matrix. The joint re-

covery of the sparse representation and dictionary is formulated using the sparse Bayesian

learning framework by imposing a fictitious prior on the sparse vectors. The parameters

of the prior on the sparse vectors and the dictionary are simultaneously learned using the

expectation-maximization algorithm. The dictionary update step turns out to be a noncon-

vex problem which is solved using either an alternating minimization (AM) procedure or

the Armijo line search (ALS). Next, to address Q3, we show that the algorithm converges,

and further analyze the stability of the solution by characterizing its limit points. We

also analyze the minima of the overall cost function of the presented algorithm and prove

that the desired sparse representation is likely to be achieved by the algorithm. Through

numerical results, we demonstrate the efficacy of the presented algorithm and compare it

with existing dictionary learning algorithms for the application of image denoising. These

results appear in [55].

1.3.4 Anomaly imaging for structural health monitoring

In Chapter 7, we include a different application of structured sparse signal recovery,

namely, anomaly imaging for structural health monitoring. Although this chapter does

not discuss an LDS-based sparsity model, the ideas of the chapter are aligned with the

main theme of sparse signal recovery. This chapter presents a new tomography-based
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anomaly mapping algorithm for composite structures. The system consists of an array of

piezoelectric transducers which sequentially excites the structure and collects the result-

ing waveform at the remaining transducers. Anomaly indices computed from the sensor

waveforms are fed as input to the mapping algorithm. The output of the algorithm is a

color map indicating the outline of damage on the structure when present. Unlike prior

work on this topic, the algorithm of this chapter explicitly accounts for both sparsity and

cluster pattern structures that are typical of structural anomalies. Hence, our algorithm

provides excellent reconstruction accuracy by incorporating the available prior information

on the anomaly map. Experimental results on a unidirectional composite plate confirm

that the algorithm outperforms two competing existing methods in terms of reconstruction

accuracy. These results appear in [56].

We offer some concluding remarks and questions for further study in Chapter 8. The

appendices containing supplementary material, namely, Appendix A for Chapter 2, Ap-

pendix B for Chapter 3, and Appendix C for Chapter 5 are included at the end of the

thesis.

On the whole, the thesis presents three different sparsity models related to LDS which

are of practical relevance. We develop rigorous recovery results for the three models,

answering some fundamental questions on existence and recoverability of the solution.
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Chapter 2

Observability of Sparse Initial State

Answering problem Q3 for SM1

In this chapter, we look at the LDS sparsity model with only initial state unknown,

and all the control inputs and the system matrices known (model SM1). The unknown

initial state is assumed to sparse in a suitable basis. For this setting, we consider two

cases: one, the observation matrices are independent random matrices, and two, they

are identical to a single random matrix. We derive an upper bound on the number of

measurements required for recovering the sparse initial state using classical compressive

sensing algorithms. The results are probabilistic in nature and depend on the properties

of the system matrices. Also, the bound is more general and stronger than the existing

results in the regime where they are comparable.

2.1 Background

Observability is an important notion in control theory. It is concerned with the question

of how well the state of a linear dynamical system can be inferred from its observations

17
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and inputs [57]. The classical observability problem involves solving a linear system of

equations:

ỹ(K) = Ã(K)x0, (2.1)

where the measurement vector ỹ(K) and the observability matrix Ã(K) are known, and

we need to estimate x0 exactly.1 The standard results from linear algebra state that a

discrete time system is observable if the rank of the observability matrix Ã(K) equals the

system dimension [58]. This result applies to the general formulation of the problem, and

hence, a large number of measurements are required to recover the initial state for systems

with a high dimensional state [59–61]. However, if the initial state of the system is known

to admit a sparse representation in a suitable basis, the number of measurements required

can be potentially reduced by exploiting this additional information. As we mentioned in

Chapter 1, diffusion processes in complex networks that model phenomena like disease or

epidemic spreading in the human society [7,8], air or water pollution [5,6], virus spreading

in computer and mobile phone networks [44,45], information propagation in online social

networks [46], etc., are known to have a sparse initialization. Identifying the initial state

of these processes accurately is a critical first step towards their control [47]. Thus, a

key problem in this context is the recoverability of the sparse system state using as few

measurements as possible. Further, in some cases, the measurements are obtained as

random linear projections of the system state. For example, in the problem of finding the

source of pollution in a water body or in the atmosphere, measurements collected from

sensors placed at spatially random locations can be mathematically modeled as random

linear projections of the system state [62–65]. Hence, in this chapter, we provide guarantees

1We discuss the system model in detail in Section 2.2.
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on the observability of a system when the observability matrix is random and possibly

rank deficient, and the initial state admits a sparse representation. We establish these

guarantees by analyzing the RIP of the structured random observability matrix arising out

of a linear dynamical system.

2.1.1 Related Work

Our work focuses on two aspects: first, we explore the connection between compressed

sensing and observability of the state of a linear dynamical system, and second, we derive

sufficient conditions for state recovery by analyzing the RIP of the observability matrix.

In our case, the observability matrix is a random matrix with a special structure. Hence,

the existing results from the compressed sensing literature cannot be directly applied to

our problem. In this subsection, we provide review the past literature in this direction.

Compressed sensing and observability

The connection between the compressed sensing and linear dynamical systems is a nascent

topic, and has only recently been studied in the literature. The design of control algorithms

based on sparsity in the state using tools from compressed sensing is presented in [66].

However, this paper does not discuss guarantees for recoverability of the system state in

the presented framework. On the other hand, [67,68] assert that a linear dynamical system

is observable if the observability matrix satisfies the RIP. However, conditions under which

the observability matrix satisfies RIP are not discussed.

The results in [62–64] characterize the number of measurements required for the exact

recovery of the initial state in a stochastic setting. However, the results are useful only

under somewhat overly restrictive conditions such as the system transfer matrix being
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unitary, the observation matrices being i.i.d. Gaussian, and the initial state being sparse

in the canonical basis. Moreover, those results depend on the smallest singular value of

the transfer matrix. As a consequence, they are not independent of scaling of the transfer

matrix. In this chapter, we derive more general results on the observability of LDS under

sparsity constraints, which are independent of the scaling of the matrices.

RIP of structured random matrices

We list a few types of structured random matrices which have been shown to satisfy the

RIP in the literature:

• Subsampled bounded orthonormal systems [69,70]

• Partial random circulant matrices and partial random Toeplitz matrices [71–73]

• Block diagonal measurement matrices where each block on the main diagonal is a

subgaussian random matrix [74]

• The columnwise Khatri-Rao product of two matrices [75].

As we will see, the RIP of the structured random observability matrix that arises in our

problem has not been studied in the past. Hence, it requires new analysis using tools from

non-asymptotic random matrix theory.

In this chapter, we first derive guarantees on the system observability under a stochas-

tic setting when the observation matrices are i.i.d. subgaussian random matrices and the

system transfer matrix is nonzero. However, in many applications, due to hardware con-

straints, the measurement process could involve linear projection using a single, randomly

selected matrix, rather than an independent matrix for each measurement instant. Hence,
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it is more pertinent to derive recovery guarantees for the case when the observation matrix

is fixed, but equal to an instantiation of a random matrix. We present a different, new

analysis to obtain guarantees for uniform recovery of the state for the identical observation

matrices cases. We also study the problem of joint recovery of the initial state and sparse

input vectors. The key novelty in the results is the derivation of sufficient conditions on K

and m required for the recovery of sparse initialization and inputs. The results presented

here are of independent interest, since they provide insights to the RIP and NSP of the

matrices with similar structure. In summary, we show that systems that are unobservable

using classical control theory can be observable under the sparsity constraints.

2.2 System Model

We consider discrete-time linear system which is modeled as follows:

xk = Dxk−1 (2.2)

yk = A(k)xk, (2.3)

for discrete time instants k = 0, 1, . . . , K − 1. Here, D ∈ RN×N is a nonzero system

transfer matrix and A(k) ∈ Rm×N ,m� N is the observation matrix of the system at time

instant k. We are interested in the observability of the system when the initial state is

sparse. We make the following points before proceeding further:

(a) Observability of the initial sparse state x0 implies the observability of xk for all k.

(b) In (2.2), we do not include an innovation term as we did in (1.1). Since we are

considering the problem of system observability, the system input is assumed to be
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known. We can therefore simply subtract its effect from the system evolution as

well as observation equations, resulting in the system model given by (2.2) and (2.3).

We consider the joint recovery of the initial state and sparse innovation terms in

Section 2.6.

(c) The system equations do not consider measurement noise or model mismatch. How-

ever, in the presence of these impairments, our results can be extended to robust

recovery of the initial state; we discuss this in Section 2.4.4.

In view of the above, we formally define the notion of observability as follows:

Definition 2.1 (Observability). A system is said to be observable if any unknowns−sparse

initial state x0 can be determined uniquely from the outputs {yk}K−1
k=0 , the transfer matrix

D, and the observation matrices
{
A(k)

}K−1

k=0
.

To recover the sparse initial vector, we consider the following equivalent linear system at

time K:

ỹ(K) = Ã(K)x0, (2.4)

where the measurement vector ỹ(K) ∈ RKm and the observability matrix Ã(K) ∈ RKm×N

are defined as

ỹ(K) =


y0

y1

...

yK−1

 , Ã(K) =


A(0)

A(1)D
...

A(K−1)D
K−1

 . (2.5)

In order to ensure the recovery of x0 from (2.4) using sparse signal recovery techniques,

we need to analyze the RIP of the observability matrix Ã(K). This, in turn, yields bounds

on the number of measurement vectors required to recover any sparse initial state. Before



Chapter 2. 23

launching into the RIP analysis, we note that an overall scaling does not affect the RIP of

a matrix. Now, let λmax 6= 0 be the largest singular value of D. We can rewrite (2.4) as

L̃(λmax)ỹ(K) = L̃(λmax)Ã(K)x0, (2.6)

where λmax =
[
1 λmax . . . λK−1

max

]T
∈ RK and the matrix function L̃(λ) : RK →

RKm×Km is defined as

L̃(λ) =
1√
Km


λ1I

λ2I

. . .

λKI



−1

. (2.7)

Therefore, we get the following relation:

L̃(λmax)Ã(K) =


A(0)

A(1)D̄

. . .

A(K−1)D̄
K−1

 , (2.8)

where D̄ = D/λmax has the largest and the smallest singular values as 1 and λ, respec-

tively. Here, λ is the ratio of the smallest to the largest singular value of D. Analyzing

the recoverability of x0 from (2.6), which is equivalent to (2.4), requires one to study the

RIP of the matrix L̃(λmax)Ã(K). Therefore, in this chapter, we focus on the RIP of such

a scaled version of Ã(K).
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2.3 Preliminaries

In this section, we define a subgaussian random matrix and summarize some of its prop-

erties.

Definition 2.2 (Subgaussian random variable). A random variable A is said to be sub-

gaussian with parameter c if, for any θ ∈ R,

E {exp (θA)} ≤ exp
(
cθ2
)
. (2.9)

Definition 2.3 (Subgaussian random matrix). A random matrix A ∈ Rm×N is said to be

a subgaussian random matrix if its entries are independent zero mean and unit variance

subgaussian random variables with common parameter c.

The subgaussian random matrix includes a large class of random matrices including inde-

pendent and identically distributed (i.i.d.) Gaussian random matrices, and i.i.d. Bernoulli

random matrices, etc. Next, we present two results that are necessary for the derivation

of the main results in the chapter.

Lemma 2.1. If A is a subgaussian random variable with parameter c, then A2 − E {A2}

is a subexponential random variable with parameter 16c, i.e., for |θ| ≤ 1
16c

, we have

E
{

exp
[
θ
(
A2 − E

{
A2
})]}

≤ exp
(
128θ2c2

)
. (2.10)

Proof. See [76, Lemma 1.12].
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Proposition 2.1 (Bernstein-type inequality). Let {Al}l=1,2,...,m be independent subexpo-

nential random variables such that amin ≤ E {Al} ≤ amax. That is, for all t ≥ 0,

P {|Al − E {Al}| ≥ t} ≤ c1 exp (−c2t) , (2.11)

for l = 1, 2, . . . ,m, and some constants c1, c2 > 0. Then, for any t > mmax {amax,−amin},

P

{∣∣∣∣∣
m∑
l=1

Al

∣∣∣∣∣ ≥ t

}
≤ exp

(
− c2

2(t−mamax)2/2

m(2c1 + c2amax) + c2t

)
+ exp

(
− c2

2(t+mamin)2/2

m(2c1 + c2amin) + c2t

)
.

(2.12)

Proof. See Appendix A.1.

2.4 RIP For Independent Observation Matrices

In this section, we present the first main result of the chapter and its implications.

Theorem 2.1 (Independent random observation matrices). Suppose measurement matri-

ces A(k), k = 0, 1, . . . , K− 1 are independent subgaussian random matrices with parameter

c. Then, if

Km
(
δ − 1 + λ2(K−1)

)2 ≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.13)

the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K) satisfies δs < δ for all 1−λ2(K−1) <

δ < 1 with probability at least 1− ε. Here, c̃ is a constant dependent only on c, and λ ≤ 1

is the ratio of the smallest to the largest singular values of D. When (2.13) holds, the

system is observable for sufficiently large λ with high probability.

Proof. See Appendix A.2.

Here, we note that the phrase “sufficiently large” λ refers to the fact that it must be



Chapter 2. 26

large enough so as to be able to meet the upper bound on the RIC set by the RIP based

guarantees of different algorithms, as discussed in Section 1.1. We discuss this point in

detail in Section 2.4.2.

Next, using the proof technique of the above theorem, we can show the following inter-

esting corollaries. We omit their proofs as they are straightforward. The first corollary

extends Theorem 2.1 to the case when the measurements are not necessarily taken over a

contiguous set of time instants.

Corollary 2.1 (Non-consecutive measurements). Suppose the available measurements are

{yk}k∈K, where K is an index set of cardinality K, and A(k), k = 0, 1, . . . , K − 1 are

independent subgaussian random matrices with parameter c. Then, if

Km
(
δ − 1 + λ2(max{K}−1)

)2 ≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.14)

then the RIC δs of the scaled version L̃ (λmax,K) Ã(K) of Ã(K) satisfies δs < δ for all

1− λ2 max{K} < δ < 1 with probability at least 1− ε. Here, c̃ is a constant dependent only

on c, and λ ≤ 1 is the ratio of the smallest to the largest singular values of D. Also,

λmax,K ∈ RK has jth entry as λj̃max. Hence, when (2.15) holds, the system is observable

for sufficiently large λ with high probability.

The next corollary extends Theorem 2.1 to the case when x0 is sparse under an arbitrary

basis Ψ ∈ RN×N rather than the canonical basis.

Corollary 2.2 (Sparsifying basis other than the canonical basis). Suppose the observa-

tion matrices A(k), k = 0, 1, . . . , K − 1 are independent subgaussian random matrices with

parameter c, and the initial state is sparse under the basis Ψ ∈ RN×N , which need not be
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the canonical basis. Then, if

Km
(
δ − 1 + λ̃2

)2

≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.15)

the RIC δs of the scaled version L̃
(
λ̃max

)
Ã(K) of Ã(K) satisfies δs < δ, for all 1− λ̃2 <

δ < 1, with probability at least 1− ε. Here, c̃ is a constant dependent only on c, and λ̃ ≤ 1

is the ratio of the smallest to the largest singular value of D(K−1)Ψ. Also, λ̃max ∈ RK has

jth entry as the largest singular value of Dj−1Ψ. Hence, when (2.15) holds, the system is

observable for sufficiently large λ̃ with high probability.

It is also interesting to consider guarantees for the case where the matrix D is an RIP-

compliant matrix. The following corollary gives guarantees similar to Theorem 2.3 based

on the RIC of an RIP-compliant N ×N matrix D.

Corollary 2.3 (Relaxation based on the RIP of the transfer matrix). Suppose A(k), k =

0, 1, . . . , K − 1 are independent subgaussian random matrices with parameter c. Then, if

Km
(
δ − 1 + λ̄2(K−2)(1− δ̃s)2

)2

≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.16)

then the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K) satisfies δs < δ for all 1 −

λ̄2(K−2)(1 − δ̃s)2 < δ < 1 with probability at least 1 − ε. Here, c̃ is a constant dependent

only on c, and λ̄ < 1 and δ̃s ≤ 1 are the smallest nonzero singular value and the RIC of

D normalized to unit spectral norm. Hence, when (2.16) holds, the system is observable

for sufficiently small δ̃s with high probability.

Proof. When the matrixD is normalized to unit spectral norm, for any unit norm s−sparse
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vector z ∈ RN , we have

∥∥Dkz
∥∥ ≥ λ̄k−1 ‖Dz‖ ≥ λ̄k−1(1− δ̃s), (2.17)

since the vector Dz belongs to the column space of D. Thus, we can replace λ(K−1) with

λ̄(K−2)(1− δ̃s) in Theorem 2.3 to obtain the desired result.

We note that λ̄ ≥ λ and 1 − δ̃s ≥ λ, and thus the above corollary is a stronger result

than Theorem 2.1. However, λ is easier to compute than the RIC constant of D. In the

following subsections, we discuss some implications of the above results.

2.4.1 Special Cases

1. Suppose D is a scaled unitary matrix. Then, λ = 1, and Theorem 2.1 simplifies

to the recovery condition for the standard compressed sensing problem with Km

measurements. Since the RIP of a matrix is invariant to multiplication by a uni-

tary matrix, each new observation vector adds m new measurements to (2.4) as K

increases.

2. Suppose D is rank-deficient. Then, λ = 0, and (2.13) does not hold for any δ < 1,

unless the following holds:

m ≥ c̃

δ2

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
. (2.18)

This is intuitive, because when x0 lies in the null space of D, yk = 0 for k ≥ 1.

Hence, the system is observable if it is observable from y0. Thus, the uniform

recovery guarantee does not hold for a rank deficient D.
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3. Suppose that D is an ill-conditioned matrix, i.e., λ is close to zero. Then, the

upper bound on δ required to guarantee observability may not hold [29,77,78]. This

is because right multiplication of a matrix by another ill-conditioned matrix may

severely degrade its RIP. However, Corollary 2.3 guarantees that if δ̃s 6= 0, it is

possible to recover x0 even if (2.18) is not satisfied.

4. For K = 1, Theorem 2.1 reduces to the recovery condition of the standard com-

pressed sensing problem [32]. Also, if the system is observable with m measurements

(for example, when (2.18) is satisfied), the conditions in Theorem 2.1 hold for K = 1,

as expected.

2.4.2 Number of Measurements

Theorem 2.1 shows that Km = O(s ln(N/s)) is sufficient for observability. Note that

the number of measurements are independent of the scaling of D. Thus, the number of

measurements can be greatly reduced for large dimensional systems. In contrast, Km =

O(N) measurements are necessary for observability of a general non-sparse initial state

vector. We also recall from Section 1.1 that the initial state can be recovered using any of

the compressed sensing techniques like basis pursuit, thresholding algorithms, or greedy

algorithms.

The RIP based recovery guarantees available in the literature set an upper bound on

the RIC. For example, using the necessary and sufficient condition for `1 based recovery:

δs ≤ 1/3 [29], (2.13) reduces to

K
(
λ2(K−1) − 2/3

)2 ≥ c̃

m

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (2.19)
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for λ2(K−1) ≥ 2/3. In other words, if (2.19) is satisfied for some K which is less than

b(ln(2/3))/(2 ln(λ))c+ 1, then the system is observable. However, note that, if the system

is observable for K1 measurements, it remains observable for K > K1.

We note that K
(
λ2(K−1) − 2/3

)2
is an increasing function of K, which gives a lower

bound m from (2.19). Therefore, for λ < 1,

m = O
(

ln(N/s)

K (λ2(K−1) − 2/3)
2

)
. (2.20)

We also note that value of m required decreases with λ and K. This is in agreement

with the fact that as K increases, we get more measurements and a smaller m suffices

for ensuring successful recovery of the initial state. Also, as λ increases, the matrix D

becomes better conditioned, and, consequently, a smaller value of m is sufficient for exact

recovery.

2.4.3 RIP of the Product of Matrices

We can derive an sufficient condition for the product of a subgaussian matrix and a

deterministic matrix to satisfy the RIP property as follows:

Corollary 2.4. Suppose A ∈ Rm×N is subgaussian random matrix with parameter c. If

m
(
δ − 1 + λ2

)2 ≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.21)

the RIC δs of a suitably scaled version of AD satisfies δs < δ, for all 1−λ2 < δ < 1, with

probability at least 1− ε. Here, c̃ is a constant dependent only on c, and λ ≤ 1 is the ratio

of the smallest to the largest singular values of D.

Corollary 2.4 is an immediate by-product of the proof of Theorem 2.1, but it is an
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interesting and potentially useful result in its own right, as it provides conditions under

which right-multiplication of a subgaussian random matrix by a deterministic matrix D

preserves its RIP.

2.4.4 Extension to Robust Recovery

The RIP based analysis allows us to extend Theorem 2.1 to bound the `1 and `2 norm

error in recovery of the initial state under bounded noise and model mismatch. These

impairments correspond to the cases when the measurements are noisy and the initial

state is not exactly sparse, respectively. In this case, the system model modifies as follows:

xk = Dk(x0 + x̌0) (2.22)

yk = A(k)xk +wk, (2.23)

for discrete time instants k = 0, 1, . . . , K − 1. Here, wk ∈ Rm denotes the bounded

measurement noise: ‖wk‖ ≤ W ; while x̌0 ∈ RN represents the error in approximating the

initial state by an s−sparse vector. That is, x0 = arg min
v∈RN :‖v‖0≤s

‖x0 + x̌0 − v‖. Therefore,

the overall set of equations can be written as

ỹ(K) = Ã(K)(x0 + x̌0) + w̃, (2.24)

where the bounded noise w̃ ∈ RKm satisfies ‖w̃‖ ≤
√
KW .

Corollary 2.5. Suppose A(k), k = 0, 1, . . . , K − 1 are independent subgaussian random

matrices with parameter c. Suppose that, for some integer p > 0 and positive number cth,

Km
(
cth − 1 + λ2(K−1)

)2 ≥ c̃

[
9ps ln

(
eN

ps

)
+ 2 ln

(
2

ε

)]
, (2.25)
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and λ2(K−1) > 1− cth. Here, c̃ is a constant dependent only on c, and λ ≤ 1 is the ratio of

the smallest to the largest singular values of D. Then, with probability at least 1− ε, the

initial vector x0 + x̌0 can be recovered from (2.24) with errors as follows:

‖x0 + x̌0 − x̂0‖1 ≤ c1 ‖x̌0‖1 + c2

√
s(1− λ−2K

max )

Km(1− λ−2
max)

W (2.26)

‖x0 + x̌0 − x̂0‖ ≤
c1√
s
‖x̌0‖1 + c2

√
(1− λ−2K

max )

Km(1− λ−2
max)

W, (2.27)

where x̂0 is the estimate of the initial vector, and c1, c2 > 0 are universal constants. The

constants p and cth depend on the recovery algorithms as follows:

• For BP: p = 2 and cth = 4√
41

.

• For IHT: p = 6 and cth = 1√
3
.

• For compressive sampling matched pursuit (CoSAMP): p = 8 and cth =

√√
11/3−1

2
.

Proof. Follows from the upper bound on the RIC required by the different algorithms to

ensure robust recovery [32, Theorem 6.12, 6.21, 6.28].

We note the dependence on λmax in the above expressions is not unexpected: it arises

because of the scaling of the measurement matrix. The scaling operation is reasonable

due to the following reasons:

• One can always scale the linear equations with no information loss. The scaling

operation neither changes the problem nor affects any intuitive notion of SNR.

• The scaling matrix is diagonal, and therefore does not introduce any correlation

between the noise terms which might affect the recovery. Moreover, the recovery
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guarantees of the algorithms listed in Corollary 2.5 depend only on the `2 norm of

the noise vector, and are independent of the individual variances of the noise terms.

• Note that λmax determines the effective SNR of the system, and hence it plays an

important role in recoverability of the initial state. The effect of λmax appears as

the factor
√
s

√
(1−λ−2K

max )

K(1−λ−2
max)

W√
m

in (2.26). Here,
√
s and W/

√
m capture the same effect

as those of the sparsity s and the average noise power per measurement W/
√
m,

respectively, in the standard compressed sensing results. Further, we intuitively

examine the term

√
(1−λ−2K

max )

K(1−λ−2
max)

via three special cases of λmax below:

(i) λmax � 1: When λmax is large, this term reduces to 1/
√
K, which has no

dependence on λmax. This is because the effective SNR is large, and hence the

noise term is negligible, for all measurements except for the first measurement

vector, y0. Thus, we have one noisy and K − 1 noiseless measurements, which

leads to an error bound that decreases with K.

(ii) λmax ≈ 1: When λmax is close to 1, this term reduces to 1. This is equivalent

to having K noisy measurements with equal scaling factor and thus the error

bound per measurement is independent of K. In this case, the advantage of

having multiple observations comes in terms of the Km dependence of the

number of measurements in (2.25).

(iii) λmax � 1: When λmax is small, this term reduces to λ
−(K−1)
max /

√
K, which is a

new dependence. In this case, the noise in the later measurements gets amplified

by the scaling factor. Hence, the noise term in the last measurement dominates

the average noise power. However, in practice, one would consider the smallest
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value of K for which (2.25) is satisfied, and substitute that value of K in (2.26)

and (2.27) to get the bound on robust recovery of the initial state.

2.4.5 Comparison With Prior Work

In [63,64], the authors address the same problem as ours and give a sufficient condition on

number of measurements Km for successful recovery. In this subsection, we compare and

contrast the two results. We begin with the result from [63,64], stated in our notation.

Theorem 2.2 (Prior work [63, 64]). Suppose that D = aU where a 6= 0 and U ∈ RN×N

is unitary. Define b ,
∑K

k=1 a
2(k−1). Assume A(k), k = 0, 1, . . . , K − 1 are independent

Gaussian random matrices with mean zero and variance 1/m. Then, if

Kmδ2 ≥ 512

[
s ln

(
42

δ

)
+ 1 + ln

(
N

s

)
+ ln

(
2

ε

)][‖1− a2|K + min {1, a2}
max {1, a2}

]
, (2.28)

the RIC δs of 1√
b
Ã(K) satisfies δs < δ < 1 with probability at least 1− ε.

We make the following observations:

• Restriction on D: Theorem 2.2 is applicable only whenD is a scaled unitary matrix.

Reference [64] extends the result to a certain type of positive definite matrices. Our

results are more general, and hold true for any arbitrary matrix D 6= 0.

• Bound for scaled unitary matrices : For the special case of D = aU , (2.13) reduces

to the following:

Kmδ2 ≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln

(
2

ε

)]
, (2.29)

for 0 < δ < 1. We see that there is an extra term on the right hand side of (2.28) of
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Theorem 2.2. We can bound this term as follows:

‖1− a2|K + min {1, a2}
max {1, a2} ≥ ‖1− a

2|+ min {1, a2}
max {1, a2} = 1, (2.30)

for all a 6= 0. Hence, our results are stronger than Theorem 2.2 for the scaled unitary

matrix case.

• Dependency on the eigenvalue: The condition (2.28) heavily depends on the eigen-

value a of D. The least number of measurements Km are required for |a| = 1, and

as |a| moves away from unity, the lower bound on Km increases. However, our re-

sults depend only on the ratio of the smallest to the largest singular value of D, and

therefore gives the best bound for all values of a. This is because our results make

use of the fact that the recovery properties are independent of scaling due to the

equivalence of (2.4) and (2.6). This critical observation allowed us to get stronger

results compared to Theorem 2.2.

2.4.6 Extension to Identical Observation Matrices Case

Suppose we carry out a similar analysis for the case when all observation matrices are

identical A(k) = A for k= 0, 1, . . . , K−1, where A is a subgaussian random matrix with

parameter c. The sufficient condition then obtained shows that the system is recoverable if

(2.18) is satisfied. However, this condition ensures that the system is observable with K =

1. This is a weak result, because it implies that the availability of additional measurements

does not improve the sufficient condition for observability. This is indeed true when

D = αI, for some α ∈ R, because we are only adding scaled versions of the rows of A to

Ã(K) as K increases. For general D, a different proof technique has to be used, which is
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discussed in the next section.

2.5 RIP For Identical Observation Matrices Case

In this section, we present a result on the RIP of the observability matrix when the obser-

vation matrices are identical random matrices. First, we define the following quantities:

D̃(K,i) ,
[
I i Di . . . DK−1

i

]
, (2.31)

L (D, K) , max
i

∥∥∥D̃(K,i)

∥∥∥
2
, (2.32)

where I i is the ith column of identity matrix of size N × N and Dk
i is the ith column of

matrix Dk.

Theorem 2.3 (Identical random observation matrices). Suppose all the observation ma-

trices are identical, i.e., A(k) = A for k = 0, 1, . . . , K − 1, where A is a subgaussian

random matrix with parameter c. Then, if

Km

(
δ − 1 + λ2(K−1)

)2

L2 (D, K)
≥ c̃smax

{
ln2 s ln2N, ln(2ε−1)

}
, (2.33)

then the RIC δs of the scaled version L̃(λmax)Ã(K) of Ã(K) satisfies δs < δ for all 1 −

λ2(K−1) < δ < 1 with probability at least 1 − ε. Here, c̃ is a constant dependent only on

c, and λ ≤ 1 is the ratio of the smallest to the largest singular values of D. Hence, when

(2.33) holds, the system is observable for sufficiently large λ with high probability.

Proof. See Appendix A.3.

In the following subsections, we provide more insights into the above results.
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2.5.1 Special Cases

1. Suppose D is a scaled identity matrix. Then, λ = 1, and L2 (D, K) = K, and hence

from Theorem 2.3, we retrieve the recovery condition for a standard compressed

sensing problem with m measurements, and the guarantee does not improve with

increasing K. This is intuitive, because we are only adding scaled versions of the

rows of A to Ã(K) as K increases.

2. Suppose D is rank-deficient. Then, λ = 0, and (2.33) does not hold for any δ < 1,

unless the following holds:

m ≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (2.34)

as expected.

3. Suppose that D is ill-conditioned, i.e., λ is close to zero. Then, the upper bound

on δ required to guarantee observability may not hold [29,77,78], which is in similar

vein as explained in the case of Theorem 2.1.

4. For K = 1, Theorem 2.3 reduces to the recovery condition of the standard com-

pressed sensing problem [32]. Also, if the system is observable with m measurements

(for example, when (2.34) is satisfied), the conditions in Theorem 2.3 hold for K = 1,

as expected.

2.5.2 Number of Measurements

Theorem 2.3 shows that Km = O(s ln2 s ln2N) is sufficient for observability, whereas

O(N) measurements are necessary for observability of a non-sparse initial state vector.
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Figure 2.1: Variation of K/L2 (D, K) with K when D generated using different distribu-
tions. We see that K/L2 (D, K) is a (linearly) non-decreasing function of K.

Also, as mentioned in Section 1.1, the initial state can be recovered using any of the

compressed sensing techniques like basis pursuit, thresholding algorithms, or greedy algo-

rithms. As in the case of Theorem 2.1, the RIP based guarantees fix an upper bound on

K, and hence a lower bound on m. However, note that, if the system is observable for K1

measurements, it remains observable for K > K1.

The main difference between the results in Theorem 2.1 and Theorem 2.3 is in the

L2 (D, K) term. Hence, in order to gain intuition on the number of measurements required

in the identical observation matrices case, we study the behavior of the L (D, K) term in

the following proposition.
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Figure 2.2: Variation of K/L2 (D, K) with K for Fourier, Hadamard and identity con-
structions of D. We see that K/L2 (D, K) is not an increasing function of K.

Proposition 2.2. The term K/L2 (D, K) satisfies

1 ≤ K/L2 (D, K) ≤ K. (2.35)

Proof. See Appendix A.8.

We note that the upper and the lower bounds are achieved by D = 0, and D = I,

respectively. Further, as discussed in Section 2.5.1, both cases are not favorable from the

observability point of view. Although the D = 0 case achieves the upper bound of the

term K/L2 (D, K), this choice is not desirable since λ = 0.

In Figure 2.1, we empirically illustrate that if D is randomly chosen, the upper bound
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can be nearly achieved. Also, when D is a random matrix, λ is non-zero with high prob-

ability [79], which makes this choice desirable. Random transfer matrices occur in some

linear dynamical systems with sparse initial state, which models homogeneous spreading

of epidemic or information or computer virus. For example, a dynamical system corre-

sponding to a epidemic spread can be modeled using a Erdos-Renyi model in which case

the transfer matrix has independent Bernoulli distributed entries [80–83]. In Figure 2.1,

we use N = 50 and vary K from 1 to N [80]. The entries of D are drawn from the

following four distributions:

1. Standard Gaussian distribution

2. Uniform distribution on [0, 1]

3. Bernoulli distribution with parameter 0.5

4. Rademacher distribution.

The curve f(K) = K is labeled as linear fit. The value of K/L2 (D, K) is averaged over

100 trials and plotted along the Y-axis as a function of K. In all the four cases, the

behavior of the curves is nearly linear, and K/L2 (D, K) ≈ K.

Before we discuss the implications of the result, we first give some intuition on reason

behind this linear behavior. Since L2(D, K) is a complicated function of D, we focus

on the regime where N is large and the distribution of the entries of D is Gaussian.

We note that, from the Marchenko-Pastur theorem [84], the spectral norm of a Gaussian

matrix with zero mean and unit variance is close to 2
√
N . Thus, after normalization, as

K increases, DK goes to 0, and the extra column that gets added to the matrix D̃K,i

as K increases is approximately 0. Therefore, we have
∥∥∥D̃(K,i)

∥∥∥
2
≈
∥∥∥D̃(2,i)

∥∥∥
2
. Further,
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∥∥∥D̃(2,i)

∥∥∥
2

is the same as the largest eigenvalue of the matrix:

 1 Dii

Dii ‖Di‖2

. Also, for

large N , ‖Di‖2 ≈ 1 and D2
ii ≈ 0, which gives

∥∥∥D̃(K,2)

∥∥∥
2
≈ 1. Hence, we have the following

relation:

L(D, K) = arg max
i

∥∥∥D̃(K,i)

∥∥∥
2
≈
∥∥∥D̃(K,2)

∥∥∥
2
≈ 1. (2.36)

Thus, intuitively, K/L2(D, K) ≈ K for sufficiently large N . Also, from Figure 2.1, we see

that N = 50 is large enough for the argument to hold.

Next, we discuss some implications of Figure 2.1. The RIP of the observability matrix

Ã(K) is on par with an unstructured random Gaussian matrix. In turn, this suggests

that it is not necessary to use independent observation matrices to ensure observability;

identical observation matrices result in a penalty of only O(ln2s lnN) in terms of the

number of measurements required, provided D is a random matrix. Hence, we conclude

that even though I and 0 are poor choices for D, matrices with good recovery properties

are plenty in number.

Another important observation from the plot is that K/L2 (D, K) is a non-decreasing

function of K. Thus, as K increases, we need a smaller value of m for exact recovery of

the sparse initial state. That is, one can trade-off K and m while ensuring observability.

The following result shows that the function is increasing for the special case when D is

a positive semi-definite (psd) matrix.

Proposition 2.3. When D is a psd matrix, the function K/L2 (D, K) is a non-decreasing

function of K.

Proof. See Appendix A.9.

Remark 1: The above result does not, in general, imply that K/L2 (D, K) increases with
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K. For example, from Figure 2.2, we see that K/L2 (D, K) for standard dictionaries like

Fourier and Hadamard matrices is not strictly increasing with K.

Remark 2: Theorem 2.3 also has corollaries similar to Corollary 2.1-Corollary 2.3 and

Corollary 2.5. We omit those results to avoid repetition.

2.6 Joint Recovery of Sparse Initial State and Sparse

Inputs

We now discuss the extension of the results presented thus far to the problem of jointly

estimating the initial state as well as the input sequence, under sparsity constraints [68].

The system model in this case is as follows:

xk = Dxk−1 +Hhk, (2.37)

yk = A(k)xk, (2.38)

where H ∈ Rn×L is the input matrix and hk ∈ RL is the input vector such that ‖hk‖0 ≤

sin. Therefore, the sparse recovery problem is given by the following equation:

ỹ(K) = Ã(K)x0 + J̃ (K)h̃(K), (2.39)

where the measurement vector ỹ(K) ∈ RKm (as defined in (2.5)), the unknown sparse

vector h̃(K) ,
[
hT

1 . . . hT
K−1

]T
∈ R(K−1)L which is at most s̃ = s + (K − 1)sin sparse,
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and the matrix J̃ (K) ∈ RKm×(K−1)L is defined follows:

J̃ (K) =



0 ∈ Rm×(K−1)L

A(1)H̃(1) ∈ Rm×L 0 ∈ Rm×(K−2)L

A(2)H̃(2) ∈ Rm×2L 0 ∈ Rm×(K−3)L

...

A(K−1)H̃(K−1) ∈ Rm×(K−1)L


(2.40)

H̃(k)=
[
Dk−1H Dk−2H . . . H

]
∈ RN×kL. (2.41)

Comparing (2.39) with (2.4), the effective measurement matrix of the recovery problem

takes the form 
A(0)U (0)

A(1)U (1)

...

A(K−1)U (K−1),

 ,

where we define

U (k) ,
[
Dk H̃(k) 0N×(K−1−k)L

]
∈ RN×(N+(K−1)L). (2.42)

To state results similar to Theorem 2.1 and Theorem 2.3, we define δ̃s,max as the largest

of the RICs among the matrices
{
U (k)

}K−1

k=0
.The proofs of the two theorems below are

similar to that of the earlier results, and hence are omitted.

Theorem 2.4 (Independent random observation matrices). Suppose the measurement
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matrices A(k), k = 0, 1, . . . , K − 1 are independent subgaussian random matrices with pa-

rameter c. Then, if

Km
(
δ − 1 + (1− δ̃s,max)2

)2

≥ c̃

[
9s ln

(
eN

s

)
+ 2 ln(2ε−1)

]
, (2.43)

the RIC δs of a suitably scaled version L̃(δ)
[
Ã(K) J̃ (K)

]
of
[
Ã(K) J̃ (K)

]
satisfies δs < δ

for all 1 − (1 − δ̃s,max)2 < δ < 1 with probability at least 1 − ε. Here, c̃ is a constant

dependent only on c, and δj = 1 − δ̃s,j where δ̃s,j is the RIC of matrix U (j). Hence,

when (2.43) holds for s = s̃, the system is observable for sufficiently small δ̃s,max with high

probability.

Next, to state the corresponding result for the identical observation matrices case, we

define quantities similar to (2.31) and (2.32) as follows:

Ũ (K,i) ,
[
U (0)i U (1)i . . . U (K−1)i

]
, (2.44)

LU (D,H , K) , max
i

∥∥∥Ũ (K,i)

∥∥∥
2
, (2.45)

where U (k)i denotes the ith column of U (k).

Theorem 2.5 (Identical random observation matrices). Suppose all observation matrices

are identical, i.e., A(k) = A for k = 0, 1, . . . , K−1, where A is a subgaussian random

matrix with parameter c. Then, if

Km

(
δ − 1 + (1− δ̃s,max)2(K−1)

)2

L2
U (D,H , K)

≥ c̃smax
{

ln2 s ln2N, ln(2ε−1)
}
, (2.46)

then the RIC δs of a suitably scaled version L̃(δ)
[
Ã(K) J̃ (K)

]
of
[
Ã(K) J̃ (K)

]
satisfies

δs < δ for all 1− (1− δ̃s,max)2 < δ < 1 with probability at least 1− ε. Here, c̃ is a constant
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dependent only on c, and δj = 1 − δ̃s,j where δ̃s,j is the RIC of matrix U (j). Hence,

when (2.46) holds for s = s̃, the system is observable for sufficiently small δ̃s,max with high

probability.

Remark 1: As before, we can extend the above results to the nonconsecutive measure-

ments, noncanonical basis and robust recovery cases. Also, conditions in Theorem 2.4 and

Theorem 2.5 can be made less stringent using the RIC of D. We omit explicitly stating

the results to avoid repetition.

Remark 2: The above three theorems show how to extend three main results of the chapter

(Theorem 2.1 and Theorem 2.3) to derive a sufficient condition for the structured random

matrix in (2.40) to satisfy the RIP. These results could be of independent interest: they

provide insight to the RIP of two special types of structured random matrices (resulting

from independent and identical A(k)).

2.7 Summary

In this chapter, we derived the conditions for a linear dynamical system to be observable

using the knowledge of its noiseless observations and inputs, when the initial state is sparse.

We derived the results in the stochastic setting, both when the observation matrices are

independent random matrices and when they are identical to a single random matrix. We

characterized the number of measurements that are sufficient to observe the state of the

linear dynamical system, using tools from compressed sensing. Thus, we completed the

detailed theoretical analysis for the model with only initial state unknown. In the next

chapter, we progress to the next level model in which both control inputs and the initial

state is unknown (model SM2).
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Sparse-Controllability

Answering problem Q1 for SM2

In this chapter, we consider at the LDS sparsity model with both initial state and sparse

inputs being unknown, and all system matrices known (model SM2). The unknown control

inputs are assumed to sparse in a suitable basis. For this setting, we examine the conditions

for sparse-controllability which is defined as the existence of a set of sparse control inputs

that can drive the system from any arbitrary state to any other arbitrary final state. We

note that unlike the previous chapter, we do not assume that the initial state is sparse.

This chapter covers the necessary and sufficient conditions for the controllability, upper

and lower bounds on the number of input vectors that ensure controllability, a state

space decomposition to separate sparse-controllable and sparse-uncontrollable spaces, and

extensions to the output controllability case.

46
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3.1 Background

Networked control systems have attracted intense research attention from both academia

and industry over the past decades [85–89]. In such a system, the notion of controllability

refers to the ability to drive the system from an arbitrary initial state to a desired final

state within a finite amount of time. Complete characterization of controllability of linear

dynamical systems using unconstrained inputs have pure algebraic forms, and are rather

easily verifiable [57, 90]. These conditions involve verification of the rank conditions of

suitably defined matrices. However, in applications involving networked control systems,

it is often necessary to select a small subset of the available sensors or actuators at each

time instant, due to cost or energy constraints. For example, in an energy constrained

network, energy-aware scheduling of actuators can help to extend the battery life of the

nodes [91]. Similarly, in a system where the controller and plant communicate over a

network, sparse control signals are required to meet the bandwidth constraints imposed

by the links over which the control signals are exchanged [48,49]. Now, when the number

of actuators or input variables that can be activated is limited, the system may become

uncontrollable because all the feasible control signals are restricted to lie in the union of

low-dimensional subspaces. Thus, the controllability of linear dynamical systems under

sparse input constraints is an important problem, and is the focus of this chapter.

3.1.1 Related Literature

We first discuss the relationship between the problem considered in this chapter and the

existing literature in control theory and sparse signal porcessing.
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Time-varying actuator scheduling problem

This problem focuses on finding a schedule for sparse actuator control, such that the

system is sparse-controllable [88, 89, 91]. These works rely on a well known condition for

controllability, namely, an extended version of the Kalman rank test. This test depends on

the rank of the so-called Gramian matrix of the sparsity-constrained system.1 However,

finding sequence of control inputs that satisfy the rank condition on the Gramian matrix

is a combinatorial problem, and it is known to be NP-hard [92,93]. Moreover, it has been

recently shown that the relatively simpler problem of finding a sparse set of actuators to

guarantee reachability of a particular state is hard to approximate, even when a solution

is known to exist [94]. Hence, different quantitative measures of controllability based on

the Gramian matrix have been considered: smallest eigenvalue, the trace of the inverse,

inverse of the trace, the determinant, maximum entry in the diagonal, etc. [91]. Based on

these metrics, several algorithms and related guarantees are available in the literature [85,

88,89]. However, none of the above mentioned references directly address the fundamental

question of whether or not the system can be controlled by sparse inputs. Further, direct

extension of the Kalman rank test leads to a combinatorial problem that is computationally

infeasible to solve in practice. Thus, the goal of our chapter is to study the controllability of

a linear dynamical system under sparsity constraints without directly relying on Gramian

matrix. We are not interested in finding the optimal actuator selection; rather we deal

with the more basic problem of deriving conditions for the existence of a selection that

drives the system from any initial state to any final state.

1Refer to [91, Section II.B] for details.
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Minimal input selection problem

The minimal input selection involves selecting a small set of input variables so that the

system is controllable using the selected set [92,93,95]. This problem is a special case of our

sparse input problem because of the extra constraint that the support of the control input

remains unchanged for all time instants. Moreover, the controllability conditions for the

minimal input selection problem can be easily be derived from the classical controllability

results for the unconstrained system. We discuss and contrast the two cases in detail in

Section 3.3.3.

Design of sparse control inputs

Some recent works connecting compressive sensing and control theory focus on the design

of control inputs [68, 96, 97]. They propose algorithms for the recovery (design) of sparse

control inputs based on the observations, and derive conditions under which the input can

be uniquely recovered using a limited number of observations [68,96,97]. These problems

do not deal with controllability related issues, rather assume the existence of sparse control

inputs and initial state for reaching a given final state.

Observability under sparsity constraints

Due to the recent advances in sparse signal processing and compressed sensing, researchers

have recently started looking at the observability of linear systems with a sparse initial

state [50, 51, 62, 67]. For a system with unconstrained inputs, observability and control-

lability are dual problems and do not require separate analysis. However, our problem

assumes a general initial state and sparse control inputs, whereas [50, 51, 62, 67] consider

a sparse initial state and known control inputs. Therefore, the problems have different
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sparsity pattern models, and consequently require separate analysis.

Sparse signal recovery guarantees

The sparse controllability problem studies the conditions that ensure the existence of sparse

control inputs to drive a linear system from any given state to any other state. Moreover,

it is not required that the solution be unique. In contrast, the focus of traditional sparse

signal processing studies is on developing algorithms and guarantees for the cases where

the linear system is already known to admit a sparse solution [9–11,32]. Also, the structure

of the effective measurement matrix that arises in the context of linear dynamical systems

is different from the type of random measurement matrices that are usually considered in

the compressed sensing literature.

In the light of the discussion thus far, the primary questions that we address in this

chapter are as follows:

1. What are necessary and sufficient conditions for ensuring controllability under sparse

input constraints? Can we devise a simple method to test for controllability?

2. If a system is controllable using sparse inputs, what is the minimum number of

control input vectors needed to drive the system from a given initial state to an

arbitrary final state?

3. If the system is not controllable using sparse inputs, what parts of the state space

are reachable using sparse inputs? In other words, how does one decompose the

state space into three subspaces: uncontrollable, uncontrollable using sparse inputs

and controllable using sparse inputs?
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Answering above questions requires a fresh look at controllability, and we start by deriving

a Popov-Belevitch-Hautus (PBH)-like test [90]. Unlike the Gamian matrix based test

discussed above, the new approach presented in this chapter allows one to check for sparse-

controllability of a system without solving a combinatorial problem. In a nutshell, this

chapter studies theoretical aspects of the one of the most important notion in control

theory: controllability under sparsity constraints on the input. We also note that the

classical results for the unconstrained system can be recovered as a special case of our

results, by relaxing the sparsity constraint.

3.2 System Model

We consider the discrete-time linear dynamical system

xk = Dxk−1 +Hhk, (3.1)

where the transfer matrix D ∈ RN×N and input matrix H ∈ RN×L. Here, the input

vectors are assumed to be sparse, i.e., ‖hk‖0 ≤ s for all k. We denote the rank of the

matrices D and H using RD and RH , respectively.

We revisit the problem of controllability in the context of sparsity. We formally define

the notion of controllability using sparse inputs as follows:

Definition 3.1 (Sparse-controllability). The linear system defined by (3.1) is said to be

s−sparse-controllable if for any initial state x0 and any final state xK, there exists an

input sequence hk, k = 1, 2, · · · , K such that ‖hk‖0 ≤ s, which steers the system from the

state x0 to xK for some finite K.

Next, to characterize the sparse-controllability of the system, we consider the following
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equivalent system of equations:

xK −DKx0 = H̃(K)h(K), (3.2)

where we define the matrices as follows:

H̃(K) =
[
DK−1H DK−2H . . .H

]
∈ RN×KL (3.3)

h(K) =
[
hT

1 hT
2 . . . hT

K

]T
∈ RKL. (3.4)

Note that h(K) is a piecewise sparse vector, i.e., it is formed by concatenating K sparse

vectors, each with sparsity at most s.

3.3 Necessary and Sufficient Conditions for Sparse-

Controllability

This section addresses question 1 in Section 3.1. It is well-known that the system is

sparse-controllable if for some finite K, there exists a submatrix of H̃(K) with rank N of

the following form:

[
DK−1HS1 DK−2HS2 . . . HSK

]
∈ RN×Ks,

such that the index set Si ⊆ {1, 2, . . . , L} and |Si| = s, for i = 1, 2, . . . , K. In the sequel, we

refer this condition to as the Kalman-type rank test. Note that the first (K−1)N columns

of H̃(K) belong to CS {D}. Hence, to satisfy the Kalman-type rank test, SK should be

such that CS {HSK} should contain the left null space of D. Thus, the Kalman-type rank

test naturally leads to the necessary condition for sparse-controllability as the existence
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of an index set S with s entries such that rank of the matrix
[
D HS

]
∈ RN×(N+s) is N .

With this intuition in mind, we next show that the above condition is not only necessary

but also sufficient for a controllable system to be s−sparse-controllable.

Theorem 3.1. The system given by (3.1) is s−sparse-controllable if and only if the fol-

lowing two conditions hold:

1. For all λ ∈ C, rank of the matrix
[
λI −D H

]
∈ RN×(N+L) is N .

2. There exists an index set S ⊆ {1, 2, . . . , L} with s entries such that rank of matrix[
D HS

]
∈ RN×(N+s) is N .

Proof. See Appendix B.1.

We make the following remarks from Theorem 3.1:

• From condition 2, if a system is s−sparse-controllable, then for all s ≤ s̃ ≤ L, it is

s̃−sparse-controllable. This is intuitive since every s−sparse vector is also s̃−sparse.

• From condition 2, the system is s−sparse-controllable only if

min {RH , s} ≥ N −RD. (3.5)

This relation gives a necessary condition on the minimum sparsity s required to en-

sure the controllability using sparse inputs. Also, we note that for an unconstrained

system, min {RH , s} = RH , and thus RH + RD ≥ N is a necessary condition for

controllability.

• For s = L, Theorem 3.1 reduces to the PBH test [90] since there is no constraint
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on the input. Similarly, when L = 1, the notion of controllability and sparse-

controllability are the same, and hence Theorem 3.1 reduces to the PBH test.

• If the system defined by the transfer matrix-input matrix pair (D,HS) is controllable

for some index set S with s entries, the system is s−sparse-controllable. In particular,

a controllable system with RH ≤ s is s−sparse-controllable.

Before we present the detailed implications of the theorem, we present some interesting

corollaries of Theorem 3.1. The theorem assumes that the input vectors are sparse in the

canonical basis. However, the result can be extended to the more general class of inputs

that are sparse under a basis Ψ ∈ RL×L other than the canonical basis to get the following

corollary:

Corollary 3.1. The system given by (3.1) is controllable using inputs which are s−sparse

under a basis Ψ ∈ RL×L if and only if the following two conditions hold:

1. For all λ ∈ C, rank of
[
λI −D H

]
is N .

2. There exists an index set S ⊆ {1, 2, . . . , L} with s entries such that the rank of[
D HΨS

]
is N .

Proof. Since the input vector is sparse under the basis Ψ, the effective input matrix

becomes HΨ. Thus, replacing H with HΨ in Theorem 3.1, we obtain a similar result

for a non-canonical basis. Further, To obtain condition 1, we note that

[
λI −D HΨ

]
=
[
λI −D H

]I 0

0 Ψ

 , (3.6)

and the matrix

I 0

0 Ψ

 ∈ RN+L×N+L is invertible as Ψ is invertible. Therefore, rank of
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[
λI −D HΨ

]
is N for all λ ∈ C if and only if rank of

[
λI −D H

]
is N for all λ ∈ C,

which gives condition 1.

Our next corollary gives a sufficient condition under which controllability without any

input constraints is equivalent to sparse-controllability, for the system given by (3.1).

Corollary 3.2. A reversible system, i.e., a system with an invertible state transition

matrix D, is s−sparse-controllable for any 0 < s ≤ L if and only if it is controllable.

Proof. See Appendix B.2.

In the following subsection, we bring out the usefulness of Theorem 3.1 by developing a

simple procedure to check the controllability of a system under sparsity constraints.

3.3.1 Verification Procedure

We present the following procedure to verify the conditions of Theorem 3.1:

1. Compute the eigendecomposition of DT.

2. If s < N −RD, the system is not sparse-controllable.

3. Check condition 1 for λ set to be equal to each of the eigenvalues of DT. If the

condition fails, the system is not sparse-controllable.

4. If none of the eigenvalues of DT is zero, the system is sparse-controllable.

5. Project the columns of H onto the null space of DT obtained from its eigende-

composition to get H⊥ ∈ RN×L. If rank of the H⊥ is N − RD, the system is

sparse-controllable.
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Here, step 2 follows from necessary condition for sparse-controllability given by (3.5). Next,

step 3 verifies condition 1 for all values of λ. This is because if there exists z ∈ RN , λ ∈ C

such that zT
[
λI −D H

]
= 0, then zTD = λzT. Thus, it suffices to verify condition

1 for at most N values of λ. The step 4 follows from Corollary 3.2 if D has full column

rank. Finally, in step 5, since the columns of H⊥ are orthogonal to the columns of D, we

have

Rank
{
H⊥

}
≤ N −RD ≤ s. (3.7)

Here, the last inequality follows from step 2. Further, we also have

Rank
{[
D HS

]}
= Rank

{[
D H⊥S

]}
(3.8)

= Rank {D}+ Rank
{
H⊥S

}
. (3.9)

Therefore, an index S satisfies condition 2 if and only if Rank
{
H⊥S

}
= N−RD. Moreover,

(3.7) ensures that this condition is equivalent to Rank
{
H⊥

}
= N − RD, as verified by

step 5.

The complexity of the procedure depends on the computations required for the eigen-

decomposition in step 1, N + 1 rank computations in steps 2 and 5, and the matrix

multiplication in step 5 required for the projection operation using the obtained eigen-

decomposition. It is known that the complexity of finding the eigendecomposition of a

matrix is O(N3) [98]. Therefore, Theorem 3.1 allows us to verify the controllability of any

discrete system in polynomial time in N . It is interesting to note that the complexity is

independent of the sparsity s. We reiterate that the above procedure ensures that there

exists a set of s−sparse control inputs for every pair of initial and final states of the system.

However, it does not reveal any insight on the support pattern of the input sequence. The
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determination of the support sequence is a completely different problem and is known to

be NP-hard.

In the following two subsections, we discuss the several implications of Theorem 3.1 by

relating it to the Kalman-type rank test and the minimal input selection problem.

3.3.2 Comparison with the Kalman-type Rank Test

The two conditions of Theorem 3.1 and the Kalman-type rank test described at the be-

ginning of Section 3.3 are based on the two different characteristics of controllability, and

provide insights into two aspects of the problem. The Kalman-type rank test identifies

the range spaces of the possible controllability matrices for different sparsity patterns of

the input. The union of these range spaces represents the set of all states that can be

reached from zero-initial condition. This observation is immediate from (3.2) with x0 = 0.

Therefore, the minimum number of input vectors required to satisfy the Kalman-type rank

test characterizes the length of the input sequence, K, required to ensure controllability.

We exploit this fact to characterize the minimum number of input vectors that ensures

controllability in Section 3.4. Moreover, the Kalman-type rank test also identifies the

support pattern of the input sequence that can drive the system from any given state to

any other final state.

On the other hand, the conditions of Theorem 3.1 are based on recognizing the uncon-

trollable and sparse-uncontrollable parts of the system. Interestingly, these conditions are

independent of the number of input vectors, K. The first condition is the same as the PBH

test. Thus, it elegantly separates systems into three categories: sparse-controllable, con-

trollable but sparse-uncontrollable, and uncontrollable. The system is sparse-controllable if

both conditions 1 and 2 of the theorem are satisfied; controllable but sparse-uncontrollable
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if only condition 1 is satisfied; and uncontrollable if condition 1 is violated. We exploit

this observation to design a recipe to decompose the system into sparse-controllable and

sparse-uncontrollable parts in Section 3.5.

Next, we comment on the computational effort required to verify the two tests. To verify

the Kalman-type rank test, we need to do at most
(
L
s

)N
rank computations. However, as

outlined in Section 3.3.1, Theorem 3.1 requires one to do at most N + 1 rank computa-

tions, one eigendecomposition and a matrix multiplication. Therefore, the computational

cost required for Theorem 3.1 is polynomial in N and independent of s. In contrast, the

computational complexity of the Kalman-type rank test grows exponentially with N and

s. We also note that, since the Kalman-type rank test involves powers ofD, numerical sta-

bility also needs to be considered. Overall, conditions of Theorem 3.1 are computationally

easier to verify compared to the Kalman-type rank test.

3.3.3 Inputs with Common Support

We recall the minimal input selection problem discussed in Section 3.1. For such a problem,

the system is controlled using sparse inputs with a common support, i.e., when the indices

of the nonzero entries of all the inputs coincide. In this case, the effective system has the

transfer matrix-input matrix pair as (D,HS) for some index set S such that |S| = s.

Hence, the controllability conditions are given as follows:

1. For some finite K, there exists a submatrix of H̃(K) with rank N of the following

form: [
DK−1HS DK−2HS . . . HS

]
∈ RN×Ks,

such that the index set S ⊆ {1, 2, . . . , L} and |S| = s.
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2. For all λ ∈ C, rank of the matrix
[
λI −D HS

]
∈ RN×(N+s) is N , for some index

set S ⊆ {1, 2, . . . , L} such that |S| = s.

We see that, due to the additional constraint of controllability using a common support,

the above conditions are more stringent than those in Theorem 3.1. Thus, a system with

sparse inputs offers greater flexibility and control, and incurs a similar communication

cost,2 compared to a system restricted to using sparse inputs with common support.

Finally, we provide some illustrative numerical examples in the following subsection.

3.3.4 Illustrative Examples

We first give an example to demonstrate that a controllable system which does not satisfy

condition 2 of Theorem 3.1 is not sparse-controllable.

Example 3.1. Consider a linear system with N = 3, L = 2,

D =


1 0 0

0 0 0

0 0 0

 , and H =


1 1

1 0

0 1

 . (3.10)

Using the PBH test, it is easy to see that the system is controllable. Also, using the

procedure given Section 3.3.1, the system does not satisfy the conditions of Theorem 3.1.

We verify that the system is not 1−sparse-controllable using the initial state x0 = 0 and

final state xf =
[
1 1 1

]T
. From (3.2), we have,


1

1

1

 =
K∑
k=1

DK−kHhk =


∑K

k=1 hk[1] + hk[2]

hK [1]

hK [2]

 . (3.11)

2The communication cost remains of order s, since the support can be conveyed using s log(N) bits.
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Since hK is 1−sparse, the above system of equations does not have any solution, for any

finite value of K. Thus, the system is not 1−sparse-controllable.

Our next example illustrates the benefits of using sparse control in a linear system over

the sparse control with common support discussed in Section 3.3.3.

Example 3.2. Consider a linear system with N = 3, L = 3,

D =


1 0 0

0 0 0

0 0 −1

 , and H =


0 1 0

0 0 1

1 0 0

 . (3.12)

This system satisfies the conditions in Theorem 3.1 for s = 2, and is hence 2−sparse-

controllable. There are three possible unconstrained systems with input matrices of size

3× 2:

H(1) =


0 1

0 0

1 0

 H(2) =


1 0

0 1

0 0

 H(3) =


0 0

0 1

1 0

 .
However, the three subsystems described by the matrix pair (D,H(k)) for k = 1, 2, 3 are

individually uncontrollable. Hence, sparse control allows the system to be controllable

without adding much communication burden.

Finally, we give an example of a system with non-invertible D which is both controllable

and sparse-controllable. This example shows that the condition in Corollary 3.2 that D is

invertible is not necessary, but sufficient for a controllable system to be sparse-controllable.

Example 3.3. Consider a linear system with N = 3, L = 2,

D =


0 1 0

0 0 1

0 0 0

 , and H =


1 1

1 0

1 1

 . (3.13)
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We note that D is not an invertible matrix. Further, the system satisfies the conditions

in Theorem 3.1 for s = 1, and hence it is 1−sparse-controllable.

In summary, in this section, we derived necessary and sufficient conditions that a system

needs to satisfy to ensure sparse-controllability. We also presented a procedure with poly-

nomial complexity to verify the conditions. Next, we address the question 2 in Section 3.1,

and derive bounds on the number of sparse input vectors required to drive the system from

a given state to any desired final state.

3.4 Minimum Number of Control Input Vectors

In this section, we upper and lower bound the minimum number of input vectors that are

required to drive the system from any given state to any final state. Before we present

the main result of the section, for comparison, we state the corresponding result for the

unconstrained system. To state the result, we denote the degree of minimal polynomial of

D using q.

Theorem 3.2. For a controllable system, the minimum number of input vectors K required

to steer the system from any given state to any other state satisfies

N/RH ≤ K ≤ min {q,N −RH + 1} ≤ N. (3.14)

Proof. See [99, Section 6.2.1].

We note that when we restrict the admissible inputs to sparse vectors, the minimum

number of input vectors required can possibly increase. The following theorem gives

bounds on the number of sparse control inputs.
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Theorem 3.3. For an s−sparse-controllable system, the minimum number of s−sparse

input vectors K∗ required to steer the system from any given state to any other state

satisfies

N

min {RH , s}
≤K∗≤min

{
q

⌈
RH
s

⌉
, N −R∗H,s + 1

}
≤ N, (3.15)

where R∗H,s = max
S⊆{1,2,...,L}
|S|=s

Rank {HS}.

Proof. See Appendix B.3.

We can relax the above upper bound to get a simpler relation without R∗H,s as follows.

Corollary 3.3. For an s−sparse-controllable system, the minimum number of input vec-

tors K∗ required to steer the system from any given state to any other state satisfies

N

min {RH , s}
≤ K∗ ≤ min

{
q

⌈
RH
s

⌉
, RD + 1, N

}
. (3.16)

Proof. The result follows from condition 2 of Theorem 3.1 which gives the following:

R∗H,s ≥ max {N −RD, 1} . (3.17)

We make the following observations from Theorem 3.3.

• Invariance: The bound is invariant under right or left multiplication of H by a

non-singular matrix, and under any similarity transform on D.

• Relation to s: Both the upper and the lower bounds decrease with s. This is intuitive:

as s increases, the system has more flexibility to choose its inputs, and thus it requires

fewer number of input vectors to ensure controllability.
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• Equivalence between Theorem 3.2 and Theorem 3.3: We consider three cases for

comparison:

1. When s = L, which corresponds to the unconstrained case, Theorem 3.3 reduces

to Theorem 3.2, as expected.

2. When s ≥ RH , Theorem 3.3 reduces to Theorem 3.2, as R∗H,s = RH . This

follows because when s ≥ RH , CS
{
H̃(K)

}
is the same as the column space of

an N ×Ks submatrix of H̃(K) with maximum rank.

3. When min {q,N −RH + 1} = N , the system requires the same number of

control inputs to achieve controllability and s−sparse-controllability for any s.

However, this is possible only if RH = 1, and any system with s ≥ RH is

equivalent to an unconstrained system, as discussed above.

• Equality: We note that the upper and lower bounds in Theorem 3.2 meet when

N/RH = N − RH + 1, which gives RH as 1 or N . Similarly, for s = 1, the lower

and upper bounds in Theorem 3.3 are equal, and K∗ = N . Further, if RH ≥ s, we

get R∗H,s = s, and thus the bounds are equal when s = N .

3.5 Decomposing Sparse-controllable States

In this section, we consider question 3 in Section 3.1, and present a decomposition of the

state space into sparse-controllable, sparse-uncontrollable and uncontrollable subspaces.

We begin with the observation that s−sparse-controllability inherits the invariance under

a change of basis property of the conventional controllability.

Proposition 3.1 (Invariance under change of basis). The system defined by the matrix
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pair (D,H) is s−sparse-controllable if and only if the system defined by the matrix pair

(U−1DU ,U−1H) is s−sparse-controllable for every nonsingular U ∈ RN×N .

Proof. We note that when D and H are replaced with U−1DU and U−1H respectively,

in (3.3), we get U−1H̃(K) instead of H̃(K). Now, the result follows from the Kalman-type

rank test and the fact that the rank of every submatrix of H̃(K) and U−1H̃(K) are the

same.

Inspired by the above proposition and in the same spirit as the Kalman decomposi-

tion [100], we transform the original system to an equivalent standard form using a

change of basis, such that, the transformed state-space is separated into an s−sparse-

controllable subspace and an orthogonal s−sparse-uncontrollable subspace. As discussed

in Section 3.3.2, the key idea of such a decomposition is as follows: if a system is not

controllable, then it is not sparse-controllable. Therefore, the first step to decompose the

system is to separate the controllable and uncontrollable states using the Kalman decom-

position. Next, we identify the sparse-controllable part of the controllable part, for which

we use Theorem 3.1. Recall that a controllable system is sparse-controllable if it satisfies

condition 2 of Theorem 3.1. Hence, we need to find a basis for the controllable part such

that the transformed state-space separates into two subsystems: one which satisfies con-

dition 2 of Theorem 3.1, and the other which does not. The two bases together give the

transform that decomposes the system to sparse-controllable and sparse-uncontrollable

parts. We next describe the procedure for the decomposition followed by an explanation

on why the procedure works.

1. Find a basis for CS
{
H̃(N)

}
as {ui}R1

i=1, where R1 ≤ N is the rank of H̃(N). Extend

the basis by adding N −R1 linearly independent vectors {ui}Ni=R1+1 to form a basis
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for RN . Define an invertible matrix U ,
[
u1 u2 . . .uN

]
∈ RN×N .

2. Compute Ď = U−1DU and Ȟ = U−1H which take the following forms:

Ď =

Ď(1) ∈ RR1×R1 Ď(2) ∈ RR1×N−R1

0 ∈ RN−R1×R1 Ď(3) ∈ RN−R1×N−R1

 (3.18)

Ȟ =

Ȟ(1) ∈ RR1×L

0 ∈ RN−R1×L

 . (3.19)

3. Use the QR-decomposition to get Ď(1) = Ǔ (1)D̃(1), where Ǔ (1) ∈ RR1×R1 is an

orthogonal matrix, and D̃(1) ∈ RR1×R1 is an upper triangular matrix. The matrix

Ǔ (1) takes the following form:

Ǔ (1) =
[
Ǔ (11) ∈ RR1×R2 Ǔ (12) ∈ RR1×R1−R2

]
, (3.20)

where R2 is the rank of Ď(11).

4. Let R3 = min
{
s,Rank

{
Ǔ

T

(12)Ȟ(1)

}}
. Find a set of R3 independent rows of the

matrix Ǔ
T

(12)Ȟ(1), indexed by T . Define Ū (1) by rearranging the columns of Ǔ (1) as

follows:

Ū (1) ,
[
Ǔ (11) Ǔ (12)T Ǔ (12)T c

]
∈ RR1×R1 , (3.21)

where the matrices Ǔ (12)T ∈ RR3×L and Ǔ (12)T c ∈ RR1−R2−R3×L are the submatrices

of Ǔ (12) with columns are indexed by T and T c, respectively. Define an invertible

matrix Ū ∈ RN×N using some arbitrary invertible matrix Ū (2) ∈ RN−R1×N−R1 as

follows:

Ū ,

Ū (1) ∈ RR1×R1 0 ∈ RR1×N−R1

0 ∈ RN−R1×R1 Ū (2) ∈ RN−R1×N−R1

 . (3.22)
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5. Compute D̄ = Ū
−1
ĎŪ and H̄ = Ū

−1
Ȟ , which take the following forms:

D̄ =

D̄(1) ∈ RR2+R3×R2+R3 D̄(2)

0 ∈ RN−R2−R3×R2+R3 D̄(3)

 (3.23)

H̄ =


H̄(1) ∈ RR2+R3×L

H̄(2) ∈ RR1−R2−R3×L

0 ∈ RN−R1×L

 . (3.24)

The (R2 + R3)−dimensional part corresponding to the matrix pair (D̄(1), H̄(1)) is

s−sparse-controllable, while the remaining part is s−sparse-uncontrollable. Also,

since D̄ =
(
UŪ

)−1
D
(
UŪ

)
and H̄ =

(
UŪ

)−1
H , the new basis is UŪ .

Here, in steps 1 and 2 are the same as the Kalman decomposition, and thus the R1-

dimensional part corresponding to (Ď(1), Ȟ(1)) is controllable, while the part correspond-

ing to (Ď(2),0) is uncontrollable. From the PBH test based conditions, we know that

(Ď(1), Ȟ(1)) satisfies condition 1 of Theorem 3.1.

Next, in steps 3 and step 4, we find a basis that separates the sparse-controllable part from

the controllable part corresponding to (Ď(1), Ȟ(1)), i.e., the part which satisfies condition

2 of Theorem 3.1. In step 4, since R3 ≤ Rank
{
Ǔ

T

(12)Ȟ(1)

}
, we can always find R3 linearly

independent rows of Ǔ
T

(12)Ȟ(1). After step 4, we have

[
Ǔ
−1

(1)Ď(1)Ǔ (1) Ǔ
−1

(1)Ȟ(1)

]
=


D̄(11) Ǔ

T

(11)Ȟ(1) ∈ RR2×R1

0 Ǔ
T

(12)T Ȟ(1) ∈ RR3×R1

0 Ǔ
T

(12)T cȞ(1) ∈ R(R1−R2−R3)×R1

 , (3.25)

since the rank of Ď(1) has rankR2. The firstR2 rows of the matrix are linearly independent,

as D̄(11) has full row-rank. Further, we note that T is chosen such that it is the largest
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index set such that
(
Ǔ (12)T

)T
Ȟ(1) has a submatrix with s columns and has rank as R3.

Thus, we get the following:

max
S⊆{1,2,...,L}
‖S‖=s

Rank
{[
Ǔ
−1

(1)Ď(1)Ǔ (1) Ǔ
−1

(1)Ȟ(1)S

]}
= Rank

{
D̄(11)

}
+ max
S⊆{1,2,...,L}
‖S‖=s

Rank
{
Ǔ

T

(12)Ȟ(1)S

}
. (3.26)

Further, we have

max
S⊆{1,2,...,L}
‖S‖=s

Rank
{[
Ǔ
−1

(1)Ď(1)Ǔ (1) Ǔ
−1

(1)Ȟ(1)S

]}
= Rank

{
D̄(11)

}
+ min

{
s,Rank

{
Ǔ

T

(12)Ȟ(1)

}}
(3.27)

= Rank
{
D̄(11)

}
+ Rank

{
Ǔ

T

(12)T Ȟ(1)

}
(3.28)

= R2 +R3. (3.29)

Thus, condition 2 of Theorem 3.1 is satisfied by the reduced space of dimension R2 +R3 ≤

R1, and therefore, it is the sparse-controllable part. Also, since R3 is nondecreasing in s,

the dimension of the sparse-controllable part is also nondecreasing in s.

Finally, in step 5, we extend the basis Ū (1) obtained in step 4, to span RN . Overall,

the basis for the sparse-controllability decomposition is UŪ , and the dimension of the

sparse-controllable part of the system is R2 +R3 ≤ R1.

We illustrate the decomposition procedure with the following example.
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Example 3.4. Consider a linear system with N = 4, L = 3, s = 1:

D =


5.65 0 −1.25 −7.95

3.3 0 −0.9 −4.7

−0.55 0 0.35 0.85

3.4 0 −0.8 −4.8

 (3.30)

H =


0.25 1.25 1.5

0.25 1.25 1.5

−0.5 −0.75 −1.25

0.25 1 1.25

 . (3.31)

Following the above procedure, from step 1

U =


1 0 4 1

2 −1 3 0

−2 0 −1 1

1 0 3 0

 . (3.32)

Step 2 gives the following with R1 = 3:

Ď(1) =


0.2 0 0

0 0 0

0 0 0

 , Ȟ(1) =


0.25 0.25 0.5

0.25 0 0.25

0 0.25 0.25

 . (3.33)

In step 3, we get R2 = 1, and

Ǔ (11) =


1

0

0

 , Ǔ (12) =


0 0

1 0

0 1

 . (3.34)

In step 4, we compute Ǔ
T

(12)Ȟ(1) =

0.25 0 0.25

0 0.25 0.25

. Thus, R3 = 1, and T = {1} or



Chapter 3. 69

{2} for s = 1. With T = {1}, we get

Ū =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , UŪ =


1 4 0 1

2 3 −1 0

−2 −1 0 1

1 3 0 0

 . (3.35)

Finally, step 5 gives

D̄(1) =

0.2 0

0 0

 , H̄(1) =

0.25 0.25 0.5

0 0.25 0.25

 , (3.36)

which corresponds to the 1−sparse-controllable part of the system which has dimension

R2+R3 = 2. It can be easily verified that the system defined using (D̄(1), H̄(1)) is 1−sparse-

controllable using Theorem 3.1.

3.6 Output Sparse-Controllability

The notion of controllability we discussed thus far has been concerned with state control-

lability: we analyzed the conditions for driving the system state from any initial state to

any arbitrary final state using a finite number of sparse inputs. In this section, we extend

our results to a variant of controllability called output controllability, which is related to

transferring any initial state to any desired final output. Hence, we consider the following

linear dynamical system:

xk = Dxk−1 +Hhk (3.37)

yk = Axk, (3.38)
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where the output matrix A ∈ Rm×N with m < N , and the state evolution equation (3.37)

is same as (3.1). Next, we define the notion of output sparse-controllability as follows:

Definition 3.2 (Output sparse-controllability). The system defined by (3.37) and (3.38)

is called output s−sparse-controllable if for any given initial state x0 and any desired final

output vector yK, there exists an input sequence hk, k = 1, 2, · · · , K such that ‖hk‖0 ≤ s,

which steers the system from initial state x0 to a final output yK for some finite K.

Now, to characterize the output sparse-controllability, we consider the following equiva-

lent system of equations:

yK −ADKx0 = AH̃(K)h(K). (3.39)

In the following subsections, we extend the results in the previous sections to the output

sparse-controllability case.

3.6.1 Necessary and Sufficient Conditions for Output Sparse-

Controllability

We begin by stating necessary and sufficient conditions for output controllability of an

unconstrained system. In [101], a Kalman test for output controllability is derived, which

states that an unconstrained system given by (3.37) and (3.38) is output controllable if and

only if the matrix AH̃(K) has full row rank for some finite K. However, a direct extension

of this result to the case of output sparse-controllability leads to a combinatorial test,

which is computationally expensive. Hence, we first derive a PBH-type test for output

(unconstrained) controllability, which we present as the following proposition.

Proposition 3.2. For an unconstrained system given by (3.37) and (3.38), the system is

output controllable only if the rank of the matrix A
[
λI −D H

]
∈ Rm×(N+L) is m for
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all λ ∈ C.

Proof. Our proof is by contradiction. Suppose that, the matrix A
[
λI −D H

]
does not

have full row rank, for some λ ∈ C. Then, there exists a 0 6= z ∈ Cm such that

zTAD = λzTA and zTAH = 0, (3.40)

which implies zTAH̃(K) = 0 for all K. Hence, the Kalman test is violated, and thus the

system is not output controllable, as required.

We note that the PBH test for output controllability only gives us a necessary condition

for output controllability. We illustrate this using the following example:

Example 3.5. Let m = 3, N = 5 and L = 3, and suppose the system given by (3.37) and

(3.38) is defined by the following matrices:

D =



1 2 4 5 9

7 2 3 1 7

0 0 1 2 5

0 0 3 4 7

0 0 1 6 9


, H =



1

2

0

0

0


, and A =


0 0.019 −0.14 0.02 0.99

0 −0.08 0.24 0.97 0.018

1 0 0 0 0

 .

(3.41)

It can be verified that the system fails the Kalman test, as Rank
{
AH̃(K)

}
< m for all K.

However, for all values of λ ∈ C, Rank
{
A
[
λI −D H

]}
= 3 = m. Thus, the condition

of the PBH test is necessary but not sufficient for output controllability.

Before we present the main result, we note that the Kalman-type test for output (un-

constrained) controllability [101] immediately extends to output sparse-controllability as
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follows. The system is output controllable if and only if, for some finite K, there exists a

submatrix of AH̃(K) with rank m of the following form:

A
[
DK−1HS1 DK−2HS2 . . . HSK

]
∈ Rm×Ks,

such that the index set Si ⊆ {1, 2, . . . , L} and |Si| = s, for i = 1, 2, . . . , K. Next, we

extend Theorem 3.1 to the output sparse-controllability, as follows:

Theorem 3.4. The system given by (3.37) and (3.38) is output s−sparse-controllable only

if the following conditions are satisfied:

1. For all λ ∈ C, rank of A
[
λI −D H

]
∈ Rm×(N+L) is m.

2. There exists an index set S ⊆ {1, 2, . . . , L} with s entries such that rank of the matrix

A
[
D HS

]
∈ Rm×(N+s) is m.

Proof. The result can be proved by using an approach similar to the proof of Theorem 3.1

given in Appendix B.1. We replace z in the third part of the proof with Az to show the

necessity of the above conditions.

Theorem 3.4 is the same as Theorem 3.1, except for a pre-multiplication with A. We

make the following observations:

• When A = I, Theorem 3.4 reduces to Theorem 3.1, as expected.

• We know that Rank {AH∗} ≤ Rank {A}, for any matrix H∗. Thus, if Rank {A} <

m, the Kalman test for output sparse-controllability fails. Hence, the system is not

output sparse-controllable.
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• Suppose Rank {A} = m for an s−sparse-controllable system. Invoking Sylvester’s

rank inequality [102], we get

m = Rank {A}+ Rank {H∗} −N ≤ Rank {AH∗} ≤ Rank {A} = m, (3.42)

where H∗ ∈ RN×Ks is the submatrix of H̃(K) that satisfies the Kalman test for state

sparse-controllability, for some finite K. Hence, the system is output s−sparse-

controllable. Therefore, the conditions in Theorem 3.4 are less restrictive than those

in Theorem 3.1, as the output dimension m < N , provided A has rank m.

From the last observation, we see that it is possible that the system is output s−sparse-

controllable, even if it is not s−sparse-controllable, provided Rank {A} = m. We illustrate

this using the following example.

Example 3.6. Let m = 2, N = 3 and L = 2, and suppose the system given by (3.37) and

(3.38) is defined by the following matrices:

D =


1 0 0

0 0 0

0 0 0

 , H =


1 1

1 0

0 1

 and A =

1 0 0

0 1 0

 . (3.43)

It can be verified that the system is not 1−sparse-controllable, but the system is output

1−sparse-controllable.

From Theorem 3.4, we can derive a procedure similar to the one given in Section 3.3.1,

to verify output sparse-controllability of a system. We omit it to avoid repetition.
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3.6.2 Minimum Number of Input Vectors for Output Controlla-

bility

A bound on the smallest number of s−sparse input vectors that ensures output controlla-

bility is given the following theorem:

Theorem 3.5. For an output s−sparse-controllable system, the minimum number of input

vectors K∗ required to steer any initial output to any final output satisfies

m

min {Rank {AH} , s} ≤ K∗ ≤ min

{
q

⌈
RH
s

⌉
,m−R∗AH,s + 1

}
≤ m, (3.44)

where R∗AH,s = max
S⊆{1,2,...,L}
|S|=s

Rank {AHS}, RH is the rank of H, and q is the degree of the

minimal polynomial of D.

Proof. The proof is along similar lines as the proof in Appendix B.1. We start by premul-

tiplying the right-hand side of (B.6) by A to get a modified definition of submatrices of

AH̃ , and then follow the same arguments as in Appendix B.1 to get the desired result.

It is interesting to note that the bounds in Theorem 3.5 are smaller than those in The-

orem 3.3. This is because the dimension of the output space, m, is smaller than that of

the state space, N . Also, the above result depends only on the degree of the minimal

polynomial of D, and not on the degree of the minimal polynomial of AD.

A relaxed version of the above result, similar to Corollary 3.3, is as follows:

Corollary 3.4. For an s−sparse-controllable system, the minimum number of input vec-

tors K∗ required to steer any initial output to any other final output satisfies

m

min {Rank {AH} , s} ≤ K∗ ≤ min

{
q

⌈
RH
s

⌉
,Rank {AD}+ 1,m

}
. (3.45)
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Theorem 3.5 provides bounds on the minimum number of input vectors to ensure output

controllability without any constraints on the input, by substituting s = L. We get the

following result:

Corollary 3.5. For an output controllable system, the minimum number of input vectors

K required to steer any initial output to any final output satisfies

m

Rank {AH} ≤ K ≤ min {q,m− Rank {AH}+ 1} ≤ m. (3.46)

3.6.3 Change of Basis Property

Output sparse-controllability possesses invariance under a change of basis, similar to state

sparse-controllability.

Proposition 3.3 (Invariance under change of basis). The linear system defined by the

matrix tuple (D,H ,A) is output s−sparse-controllable if and only if the system defined

by (U−1DU ,U−1H ,AU ) is output s−sparse-controllable for every nonsingular matrix

U ∈ RN×N .

Proof. We note that when D and H are replaced with U−1DU and U−1H respectively,

in (3.3), we get U−1H̃(K) instead of H̃(K). Further, replacingA withAU does not change

in rank criterion in the Kalman-type rank test for output sparse controllability.

Unlike state controllability, the change of basis does not change the equivalent linear

system of equations given by (3.39). However, designing a procedure for decomposing the

output space into sparse-controllable and sparse-uncontrollable subspaces similar to the

one proposed for sparse-controllability is non-trivial, and we defer it to future work.
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3.7 Summary

This chapter presented the necessary and sufficient conditions for controllability of linear

systems subject to sparsity constraints on the input. We derived two easily verifiable con-

ditions equivalent the Kalman-type rank test for the sparse-controllability of the system.

We also presented a simple procedure with polynomial complexity to verify the condi-

tions of the theorem. Further, we bounded the minimum number of input vectors that

ensures controllability. In addition, the sparse-controllability tests also led to a Kalman

decomposition-like procedure for decomposing the system into sparse-controllable, control-

lable but sparse-uncontrollable and uncontrollable parts. Thus, we have addressed three

important aspects of controllability of a system with sparse inputs. Finally, we extended

our results on state controllability to the output controllability.

This chapter dealt with the first question Q1 on the existence of a sparse solution for the

model SM2. In the next chapter, we proceed to the next question Q2 in Chapter 1 for the

same sparsity model.
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Bayesian Recovery Algorithms for

Jointly Sparse Control Inputs

Answering problem Q2 for SM2

In this chapter, we present recovery algorithms for the recovery of jointly sparse control

inputs, i.e., we consider the special case when D is a diagonal matrix. Also, we are

interested in designing a sequential (online) algorithm with low complexity. These type of

algorithms are particularly useful in case of applications like wireless channel estimation.

The measurements are processed one after another in a sequential fashion, without waiting

for the complete input to arrive. Such algorithms require significantly lower computational

and memory resources compared to their offline counterparts. Also, estimates of the sparse

vectors become available after a fixed delay from the time observations arrive.

4.1 Background

In many applications, such as wireless channel tracking [3], radar signal processing [103,

104], and biomedical imaging [105–108], the goal is to recover a sequence of sparse vectors

77
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that exhibit additional structure, such as a common support and temporal correlation. For

example, successive instantiations of a time-varying wireless channel have the same power

delay profile, and the nonzero coefficients of these instantiations are temporally correlated,

and can be modeled using a first-order auto-regressive (AR) process. Exploiting this

additional structure in the multiple measurement vectors (MMV) can improve the recovery

performance, but at the cost of higher latency, memory, and computational complexity.

Hence, the goal of this chapter is to develop algorithms that exploit the structure in

the signal to reconstruct a sequence of sparse vectors. We are particularly interested in

developing algorithms with low complexity and bounded latency.

In the literature, there are many offline recovery algorithm that exploits the temporal

correlation across the sparse vectors [3, 42, 43]. These algorithms are offline in nature,

i.e., they process the entire set of measurement vectors in a single batch. Hence, when

the data set is large, these algorithms suffer from poor efficiency and scalability. On the

other hand, online algorithms process small batches of the measurement vectors at a time

and recover the sparse vectors sequentially, resulting in low-complexity implementations.

Online algorithms offer the additional benefit of low latency between the measurement and

estimation, which may be necessary in certain applications. For example, in a real-time

broadband communication system with high data rate and high mobility, offline estimation

of the wireless channel is infeasible.

Several sequential algorithms for sparse signal recovery have been presented in the litera-

ture [109–117]. An online algorithm for recovery for sparse signal with common support is

presented in [109]. However, the algorithm does not account for the temporal correlation

in the signal. A non-iterative modified OMP algorithm for sequential recovery of sparse
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signals is described in [110] for the case when the coefficient in the autoregression is unity.

A combination of Kalman filtering and dynamic programming is givem in [111]. This algo-

rithm is slow because it runs l1 optimization multiple times for every measurement vector.

Another iterative sequential algorithm that decouples the support recovery step from the

Kalman filtering-based amplitude estimation step is presented in [112]. However, the al-

gorithm requires one to tune a number of parameters beforehand. An alternate iterative

online algorithm that jointly estimates the amplitude and support is hierarchical Bayesian

Kalman filtering [113]. This algorithm does not require one to tune many parameters,

but suffers from high complexity. Another algorithm for the sequential recovery of sparse

signals is dynamic sparse coding [114]. The algorithm executes an optimization procedure

based on gradient descent, and is also iterative in nature.

The above discussed algorithms do not allow one to improve the current estimate using a

small set of future measurements. For scenarios that often arise in communication related

applications (e.g., wireless channel estimation), a small delay is allowed if the estimation

performance can be improved. Therefore, we need to use a smoothing operation instead

of a filtering operation, and then filtering becomes a special case of smoothing when the

allowed delay is zero. We present two algorithms in this chapter: iterative online algorithm

and non-iterative online algorithm. The iterative algorithm allows a bounded delay be-

tween the measurement and estimation by combining the Kalman smoothing and the SBL

framework. The algorithm runs multiple rounds of the expectation-maximization (EM)

procedure for every measurement vector. Next, we improve this algorithm to obtain a

non-iterative algorithm which has simpler implementation with minimal resource require-

ments. The non-iterative online algorithm where as every measurement vector arrives,
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we do not run an iterative procedure until convergence of some metric. The algorithm

does one round of update using the measurement vector, and waits for the next measure-

ment vector. We reiterte that both these algorithms do not require parameter tuning and

allows a small delay between the measurement and estimation, for the reconstruction of

temporally correlated sparse vectors with common support.

Our online algorithms are based on the SBL framework [22,41]. The SBL approach offers

superior performance compared to other algorithms like l1 minimization and OMP, and

does not require one to tune the algorithm parameters. Moreover, it naturally extends to

incorporate the temporal correlation structure in the signal model. However, its complexity

and memory requirements increase with the number of measurements to be processed,

which limits its practical application. Our algorithms overcome this drawback, and is

computationally efficient, while retaining the good performance of SBL.

4.2 Problem Formulation

We consider a special case of LDS presented in Chapter 1, where x0 , 0 andD ∈ [0, 1)N×N

and H ∈ RN×L are the known diagonal matrices. The system model is given by

xk = Dxk−1 +Hhk (4.1)

yk = Akxk +wk, k = 1, 2, . . . (4.2)

Here, wk is a zero mean Gaussian distributed noise with a full rank covariance matrix

Rk. The number of measurements m is assumed to be smaller than the number of un-

knowns N which makes the system underdetermined. The unknown sequence of vectors

{hk, k = 1, 2, . . .} are sparse, i.e., the number of nonzero entries, S, is small compared to
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the size of the vector, N . The hk are simultaneously sparse, that is, they share a common

support. This implies that the indices of the nonzero entries of all the sparse vectors co-

incide. Note that, in our model, the sparse vectors are temporally correlated, but because

D and H are both assumed to be diagonal, there is no intra-vector correlation. Also, the

support of xk coincides with that of {hk}k∈N.

4.2.1 Estimation Objectives

The objective of this work is to estimate the sparse vectors on-the-fly, without storing

all the measurement data and the corresponding measurement matrices. The maximum

delay allowed between the measurement and estimation is ∆ <∞, and therefore our goal

is to recursively estimate xk using the measurements up to time k+ ∆, denoted by yk+∆.

Throughout the chapter, we use subscripts to denote the value of a variable at a particular

time instant (e.g., yk denotes the observation at time k), and superscripts to denote the

sequence of observations up to a particular time instant
(
e.g., y` denotes the sequence of

observations {yk, k = 1, 2, . . . , `}).

We design an online scheme inspired by the SBL algorithm [22], [41]. The extension

of SBL for the recovery of simultaneous sparse vectors imposes a common prior on the

unknown vectors, namely, xk ∼ N (0,Γ) [41]. The covariance matrix Γ ∈ RN×N
+ is a

diagonal matrix with N hyperparameters γ ∈ RN
+ along the diagonal. In SBL, we compute

the ML estimate γML of γ, which in turn gives the MAP estimate of the sparse vectors.

In the following subsections, we contrast the offline and online approaches to estimating

the hyperparameters and sparse vectors, which serves to bring out the primary estimation

objectives of this work. We start with the online case.
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Online

Let γk−1 denote the sequence of estimates of the hyperparameters γ till time k − 1. At

time k, we want to compute the estimate of the hyperparameter vector γk, using yk+∆ and

γk−1. Since we do not want to store the complete set of past measurements, we recursively

update γk using a small set of measurements {yt, t = k, k + 1, . . . , k + ∆} and γk−1. The

update rule for γk is discussed in Section 4.4.

Using γk, the online estimate of xk is computed as its conditional mean given yk+∆,

with Γt as the covariance of xt for t = 1, 2, . . . , k − 1, and Γk as the covariance of xt for

t = k, k + 1, . . . , k + ∆. Mathematically,

x̂k = E
{
xk|yk+∆;γk−1,γk

}
. (4.3)

The estimate x̂k is obtained using fixed interval Kalman smoothing on a data block of

size ∆ + 1 [2]. That is, xk is recursively updated using the set of measurement vectors

{yt, t = k, k + 1, . . . , k + ∆} and γk. Note that γk−1 is not used in the estimation of xk.

We emphasize that, with the estimate of γk in hand, the estimation of xk is a straight-

forward application of the Kalman filtering principle. The key contribution of this chapter

is the development of a recursive, online technique for estimating γk and its convergence

analysis. We next discuss the offline case.

Offline

In the offline setting, we find the ML estimate γOFF of γ given the entire sequence yK ,

where K denotes the total number of measurements [3, 41]. The estimation procedure is

detailed in Section 4.2.2. The estimate of xk is computed as its conditional mean given



Chapter 4. 83

yK , using Diag
{
γOFF

}
as the signal covariance matrix. Mathematically,

x̂OFF
k = E

{
xk|yK ;γOFF

}
, (4.4)

for k = 1, 2, . . . , K. These estimates are computed efficiently using fixed interval Kalman

smoothing on the data block yK .

Thus, the primary goal in both the offline and online algorithms is the estimation of γ.

In the offline case, a single estimate of γ is computed using the entire set of observa-

tions. In the online version, a sequence of estimates are computed using small batches of

observations, and in a recursive manner.

In the next subsection, we first describe the offline SBL algorithm for the correlated MMV

problem, which we refer to as the offline Kalman MMV SBL (KM-SBL) algorithm [3].

4.2.2 Offline KM-SBL Algorithm

The offline algorithm uses the expectation-maximization (EM) procedure, which treats the

unknowns xK as the hidden data and the observations yK as the known data. The EM

procedure iterates between two steps: an expectation step (E-step) and a maximization

step (M-step). Let γ(r−1) be the estimate of γ at the rth iteration.1 The E-step computes

Q
(
γ,γ(r−1)

)
, which is the marginal log-likelihood of the observed data. The M-step

computes the hyperparameters that maximize Q
(
γ,γ(r−1)

)
.

E-step: Q
(
γ,γ(r−1)

)
= ExK |yK ;γ(r−1)

{
log p

(
yK ,xK ;γ

)}
M-step: γ(r) = arg max

γ∈RN×1
+

Q
(
γ,γ(r−1)

)
. (4.5)

1For ease of notation, we omit the superscript OFF here.
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Simplifying Q
(
γ,γ(r−1)

)
we get,

Q
(
γ,γ(r−1)

)
= cK −

K

2
log |Γ| − 1

2
Tr
{
Γ−1C1|K,γ(r−1)

}
− 1

2

K∑
t=2

Tr
{

Γ−1
(
I −D2

)−1
T t|K,γ(r−1)

}
. (4.6)

where the constant cK is independent of γ, and the N ×N matrices are defined as follows:

T t|K,γ(r−1) , Ct|K,γ(r−1) +DCt−1|K,γ(r−1)D − 2DCt,t−1|K,γ(r−1) (4.7)

Ct|K,γ(r−1) , P t|K,γ(r−1) + x̂t|K,γ(r−1)x̂
T
t|K,γ(r−1) (4.8)

Ct,t−1|K,γ(r−1) , P t,t−1|K,γ(r−1) +x̂t|K,γ(r−1)x̂
T
t−1|K,γ(r−1) , (4.9)

for t ≤ K. Here, the mean x̂t|K,γ(r−1) , E
{
xt|yK ;γ(r−1)

}
; and the covariance P t|K,γ(r−1)

and the cross-covariance P t,t−1|K,γ(r−1) are defined as

P t|K,γ(r−1) , E
{
x̃tx̃

T
t

∣∣yK ;γ(r−1)
}

(4.10)

P t,t−1|K,γ(r−1) , E
{
x̃tx̃

T
t−1

∣∣yK ;γ(r−1)
}
, (4.11)

where x̃t = xt − x̂t|K,γ(r−1) . The calculation of the variables x̂t|K,γ(r−1) , P t|K,γ(r−1) , and

P t,t−1|K,γ(r−1) is implemented using fixed interval Kalman smoothing [2]. Maximizing

Q
(
γ,γ(r−1)

)
with respect to γ, we get the following M-step:

γ(r)=
1

K
Diag

{(
I−D2

)−1
K∑
t=2

T t|K,γ(r−1)+C1|K,γ(r−1)

}
. (4.12)

We note that the latency in estimating xK is 0, that of xK−1 is 1, and so on. Hence, the

average latency of the offline KM-SBL algorithm is 1
K

∑K
t=1(K − t) = (K − 1)/2. We now

present our online algorithm.
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4.3 Iterative Online Algorithm Development

4.3.1 Fixed Lag KSBL

The natural extension of the offline KSBL to partial data is to run the forward and back-

ward recursions on the available data at each time, as each new measurement vector

arrives. However, this approach requires storage of all forward variables, and it is compu-

tationally expensive. Hence, we propose to estimate the hyperparameters using data in

a small fixed time window of size ∆ + 1, and produce smoothed estimates of all sparse

vectors in that window. This leads us to the fixed lag Kalman smoothing, which estimates

the state in a sliding window of time [118]. Note that the conventional fixed lag smooth-

ing algorithms assume complete knowledge of the signal statistics, i.e., Γ, whereas here

we have to adaptively estimate Γ while computing the smoothed estimates. We combine

fixed lag Kalman smoothing with the EM algorithm to learn the hyperparameter Γ in the

M-step, and perform fixed lag filtering to estimate the sparse vector in the E-step.

When yk arrives, the algorithm estimates the hyperparameter Γ using the EM algorithm

using data over a time window of length ∆ + 1. The E-step and the M-step for the fixed

lag smoothing scheme are

E-step: Q(Γ|Γ(r−1)
k ) = E {log [p (Y k−∆:k,Xk−∆:k)]}

M-step: Γ
(r)
k = arg max

γ∈RN×1
+ ;Γ=Diag{γ}

Q(Γ|Γ(r−1)),

where the expectation operation is over the distribution of Xk−∆:k conditioned on Y k−∆:k

and parameterized Γ
(r−1)
k . Similar to the offline KSBL, the E-step involves computation

of the posterior statistics of the sparse vectors over the time window. We employ fixed



Chapter 4. 86

Algorithm 1 E-Step of Fixed Lag KSBL at time k in the rth EM iteration

Input: yk,Ak,Γ
(r−1)
k

Initialization: Γ = Γ
(r−1)
k

Prediction:
x̂k|k−1 = Dx̂k−1|k−1

P k|k−1 = DP k−1|k−1D + Γ(IN −D2)

Jk = AT
k

(
AkP k|k−1A

T
k +R

)−1

vk = yk −Akx̂k|k−1

for t = 0, 1, 2, . . . ,∆ do
Smoothing:
G

(t)
k = P T

k,k−t|k−1Jk

x̂k−t|k = x̂k−t|k−1 +G
(t)
k vk

P k−t|k = P k−t|k−1 −G(t)
k AkP k,k−t|k−1

if t 6= ∆ then

P k−t,k−t−1|k =
(
IN −G(t)

k Ak

)
P k,k−t−1|k−1

end if
P k+1,k−t|k = D

(
IN −G(0)

k Ak

)
P k,k−t|k−1

end for

lag smoothing to estimate these, and the pseudocode is given in Algorithm 1, where

Γ
(0)
k = Γk−1 and Γ

(0)
1 = IN . At the start of algorithm (k = 1), we initialize all vectors

and matrices except P 1|0 with all zero entries, and P 1|0 = IN . For each successive k, the

variables are initialized with the estimates obtained in the previous iteration. The M-step

in the rth iteration can be simplified to a closed form expression for the new estimate of

hyperparameters given by

Diag
{

Γ
(r)
k

}
=

1

∆ + 1
Diag

{(
IN −D2

)−1
k∑

t=k−∆+1

T
t|k;Γ

(r−1)
k

+C
k−∆|k;Γ

(r−1)
k

}
. (4.13)

The proof is similar to that for the offline KSBL [3], and hence omitted. The E-step and

the M-step are repeated until convergence of Γk, and upon convergence the algorithm

outputs the estimate of xk−∆ as x̂k−∆|k.
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4.3.2 Sawtooth Lag KSBL

Although our fixed lag KSBL possess low computational complexity and storage, our nu-

merical experiments show that the performance of the fixed lag comes close to that of

offline KSBL only for large number of measurements K. The reason for the poor perfor-

mance of the fixed lag filter is that it has only one step of forward recursion and ∆ steps of

backward recursions. This results in using different values of covariance matrix estimates

Γ for updating the estimate of state statistics at each value of t, i.e., {x̂t,P t,P t,t−1}, in

different rounds of the EM iterations. In the initial part of the algorithm, the estimates of

Γ in consecutive rounds of EM algorithm could possibly have different support. Hence, the

support recovery performance of the algorithm is poor when K is small. In this section, we

present another online scheme for the same recovery problem using a smoothing scheme

known as the sawtooth lag filter, which uses the same value of Γ for computing the state

statistics at any given t [119]. The sawtooth lag scheme is a compromise between the

fixed interval and the fixed lag smoothing. Here, the fixed interval smoothing is run on

overlapping blocks of data. In the E-step, the forward and backward recursions are run on

a data block of size ∆ + 1, as given in Algorithm 2. The M-step is given by (4.13). Upon

convergence of the EM procedure, the algorithm outputs the estimates of sparse vectors

corresponding to the first ∆̄ < ∆ indices in the block, i.e., at time k, the estimates at

times t = k −∆, . . . , k −∆ + ∆̄ are declared as x̂t|k. Then, algorithm waits for next set

of ∆̄ measurement vectors before proceeding further, shifting the time window by ∆̄.

Unlike the previous algorithm, the sawtooth lag KSBL waits for a block of data of size ∆̄,

which is typically much smaller than the total number of observations. The EM procedure

is run at times k = i∆̄+∆+1, i = 0, 1, . . . and when ith EM procedure converges estimates
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Algorithm 2 E-Step of Sawtooth Lag KSBL at time k = i∆̄ + ∆ + 1 in the rth iteration

Input: Y k−∆:k,Ak−∆:k,Γ
(r−1)
i

Initialization: Γ = Γ
(r−1)
i

for t = k −∆, . . . , k do
Prediction:
x̂t|t−1 = Dx̂t−1|t−1

P t|t−1 = DP t−1|t−1D + Γ(IN −D2)
Filtering:

Gt = P t|t−1A
T
t

(
R+AtP t|t−1A

T
t

)−1

x̂t|t = x̂t|t−1 +Gt(yt −Atx̂t|t−1)
P t|t = (IN −GtAt)P t|t−1

end for
P k,k−1|k = (IN −GkAk)DP k−1|k−1

for t = k, k − 1, . . . , k −∆ + 1 do
Smoothing:
J t−1 = P t−1|t−1DP

−1
t|t−1

x̂t−1|K = x̂t−1|t−1 + J t−1(x̂t|K − x̂t|t−1)
P t−1|K = P t−1|t−1 + J t−1(P t|K − P t|t−1)JT

t−1

if t 6= ∆ then
P t,t−1|k = P t|tJ

T
t−1 + J t

(
P t+1,t|k −DP t|t

)
JT
t−1

end if
end for

of sparse vectors at time t = i∆̄ + 1, i∆̄ + 2, . . . , (i+ 1)∆̄, are declared. Hence, the latency

in estimation is not fixed, but varies between ∆ − ∆̄ + 1 and ∆; the average latency is

∆ − (∆̄ − 1)/2. As in the previous case, at the start of algorithm (i = 0), we initialize

the algorithm with Γ
(0)
0 = IN , x̂1|0 = 0N , and P 1|0 = IN . For each successive i, the

variables are initialized with the estimates obtained in the previous iteration. Based on

our numerical experiments, the computational and storage demand of the sawtooth lag

KSBL is comparable to that of the fixed lag KSBL, while its the performance is close to

that of the offline KSBL. This happens because the sawtooth lag scheme has both forward

and backward recursions, whereas the fixed lag scheme has only backward computations.

Thus, it combines the best of both the fixed lag and the fixed interval procedures. Remark:

Sawtooth lag smoothing reduces to the optimal offline KSBL if when ∆̄ = ∆ = K.
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Typically, ∆̄ is chosen as ∆/2 or smaller [119].

4.3.3 Complexity Analysis

Computational Cost

We assume that the multiplication of a p× q matrix with a q× r matrix is of the order pqr

flops, and inversion of a p×pmatrix is of the order p3 flops [120]. Also, we assume thatm�

N , and for simplicity, we neglect lower order terms involved in computational complexity.

We also note that the overall computational complexity of the fixed lag smoothing scheme

and the sawtooth lag smoothing scheme scale with the number of observation vectors K,

but the complexity per EM iteration is independent of K. However, simulation results

show that the overall run time of our online algorithms is much smaller then the offline

algorithm.

Memory Requirement

In the case of the offline algorithm, we need to save all forward variables, which demands

memory that scales with K. For the fixed lag and the sawtooth lag smoothing schemes,

data is processed over a small time window. Thus, the memory requirements do not scale

with K, a primary advantage of our online algorithms. The variables that need to be

stored are the statistics of the sparse vectors, which is of the order N2.

We compare the computational demands and memory requirements of the three algo-

rithms in Table 4.1. Next, we present an improved version of the above algorithms which

demands lesser computational resources.
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Smoothing Computational cost Memory Average latency

per EM iteration Requirement

Offline scheme O(KN3) O (KN2) (K − 1)/2

Fixed Lag O (∆N2m) O (∆N2) ∆

Sawtooth Lag O(∆N3) O (∆N2) ∆− (∆̄− 1)/2

Table 4.1: Comparison of online schemes against offline scheme when K observations are
available

4.4 Non-iterative Online Algorithm Development

In the non-iterative version of KM-SBL, we process the data sequentially, without waiting

for the complete input to arrive or storing all the data that has already arrived. Since

we do not store data, it is not feasible to compute the mean x̂t|K ,2 the covariance P t|K ,

and the cross-covariance P t,t−1|K . Instead, we approximate them with x̂t|t+∆, P t|t+∆, and

P t,t−1|t+∆, respectively. Then,

Qk

(
γ,γk−1

)
≈ ak −

k

2
log |Γ| − 1

2
Tr
{
Γ−1C1|∆

}
− 1

2
Tr

{
Γ−1

(
I −D2

)−1
k∑
t=2

T t|t+∆

}
, (4.14)

where the constant ak is independent of γ.

Maximizing Qk

(
γ,γk−1

)
with respect to γ, we have the following recursion

γk =
1

k
Diag

{(
I −D2

)−1
k∑
t=2

T t|t+∆ +C1|∆

}
(4.15)

= γk−1 +
1

k
Diag

{(
I −D2

)−1
T k|k+∆ − Γk−1

}
. (4.16)

Thus, γk can be estimated using γk−1 and T k|k+∆. We next present a procedure to

2For brevity, we drop γ from the subscript.
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recursively estimate T k|k+∆.

4.4.1 Implementation of the Algorithm

In order to compute T k|k+∆, we need to recursively update the mean x̂k|k+∆, the auto-

covariance P k|k+∆, and the cross-covariance P k,k−1|k+∆. We describe two implementations:

a fixed lag scheme and a sawtooth lag scheme.

Fixed Lag Scheme

We consider a Kalman filter designed for the following state space model with state vari-

ables as xk and measurement variables as ỹk , yk+∆. From (4.1),

ỹk = Ak+∆D
∆xk +Ak+∆

∆−1∑
i=0

Dizk+∆−i +wk+∆ = Ãkxk + w̃k, (4.17)

where Ãk , Ak+∆D
∆ and w̃k ∼ N

(
0, R̃k

)
. Since the covariance of zk+∆−i is (I−D2)Γ,

it is easy to show that

R̃k = Ak+∆

(
I −D2∆

)
ΓAT

k+∆ +Rk+∆. (4.18)

The new state space model is given by (4.1) and (4.17). The Kalman filter equations for

the new system are given below:

x̂k|k+∆−1 = Dx̂k−1|k+∆−1 (4.19)

P k|k+∆−1 = DP k−1|k+∆−1D +
(
I −D2

)
Γ (4.20)

Jk = P k|k+∆−1Ã
T

k

(
ÃkP k|k+∆−1Ã

T

k +R̃k

)−1

(4.21)

x̂k|k+∆ = (I − JkÃk)x̂k|k+∆−1 + Jkyk+∆ (4.22)
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P k|k+∆ = (I − JkÃk)P k|k+∆−1 (4.23)

P k,k−1|k+∆ = (I − JkÃk)DP k−1|k+∆−1. (4.24)

As every measurement vector yk+∆ arrives, the algorithm updates γ using (4.16). Then,

the online estimate of xk can be computed using forward and backward recursions of a fixed

interval Kalman smoother on the block of data of size ∆+1, at times t = k, k+1, . . . , k+∆,

as described in Section 4.2.1.

Remark: The above scheme is not applicable when D = 0 and ∆ > 0, because yk+∆ is

independent of xk in this case. Also, the fixed lag scheme only uses the latest measurement

vector to update γ, while one can achieve better performance by using all the available

measurements in a window around the time instant of interest. In the following subsection,

we present a sawtooth lag scheme that addresses the above issues.

Sawtooth Lag Scheme

In this scheme, we update γ as every data block of size ∆̄ ≤ ∆ + 1 arrives. Consider

k ∈ [kl + 1, kl + ∆̄] where kl , (l − 1)∆̄ for the update index l = 1, 2, . . .. We replace the

fixed lag variables x̂k|k+∆, P k|k+∆, and P k,k−1|k+∆ with variables x̂k|ǩl , P k|ǩl , and P k,k−1|ǩl ,

respectively, where ǩl , kl + ∆ + 1. We compute these variables using the estimate of γ

obtained in the previous update, γ l−1. For the lth update, (4.15) modifies to

γ l =
1

kl+1

Diag


(
I −D2

)−1
l∑

i=1

ki+1∑
t=ki+1,
t6=1

T t|ǩi +C1|∆


= γ l−1 +

1

kl+1

kl+1∑
t=kl+1

Diag
{(
I −D2

)−1
T t|ǩl − Γl−1

}
. (4.25)
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Figure 4.1: The sawtooth lag processing scheme

To compute T t|ǩl , we run the fixed interval Kalman smoothing algorithm on overlapping

blocks of data of size ∆ + 1, and discard the last ∆ + 1− ∆̄ values of every block (this is

referred to as sawtooth lag smoothing [119]). The processing window is shifted by ∆̄ after

every update. The update equations are comprised of forward recursions and backward

recursions. In the forward recursions, we estimate x̂t|t and P t|t for t = kl + 1, kl + 2, . . . , ǩl

using a Kalman filter as given below:

x̂t|t−1 = Dx̂t−1|t−1 (4.26)

P t|t−1 = DP t−1|t−1D + (I −D2)Γ (4.27)

J t = P t|t−1A
T
t

(
AtP t|t−1A

T
t +Rt

)−1
(4.28)

x̂t|t = (I − J tAt)x̂t|t−1 + J tyt (4.29)

P t|t = (I − J tAt)P t|t−1 (4.30)
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P ǩl,ǩl−1|ǩl =
(
I − J ǩlAǩl

)
DP ǩl−1|ǩl−1. (4.31)

In the backward recursions, we estimate x̂t|ǩl , P t|ǩl and P t,t−1|ǩl in the reverse order. For

t = ǩl, ǩl − 1, . . . , kl + 2 we get the following smoothing equations:

Gt−1 = P t−1|t−1DP
−1
t|t−1 (4.32)

x̂t−1|ǩl = x̂t−1|t−1 +Gt−1(x̂t|ǩl − x̂t|t−1) (4.33)

P t−1|ǩl = P t−1|t−1 +Gt−1(P t|ǩl − P t|t−1)GT
t−1 (4.34)

For t 6= ǩl

P t,t−1|ǩl = P t|tG
T
t−1+Gt

(
P t+1,t|ǩl−DP t|t

)
GT
t−1. (4.35)

The scheme is illustrated in Section 4.4.1. In the figure, each box represents a time

(sampling) instant with which it is indexed, and each row corresponds to an update index,

with the index indicated in blue. The set of y in red represents the new measurement

set processed in each update. A green box (with indices kl + 1 = (l − 1)∆̄ + 1 to ǩl =

(l− 1)∆̄ + ∆ + 1) indicates that the state statistics corresponding to the index on box are

updated, a yellow box (with indices k ≤ kl = (l − 1)∆̄) indicates that the state statistics

are not updated, and a white box (with indices k ≥ ǩl = (l − 1)∆̄ + ∆ + 1) indicates

that the state statistics have not been computed yet. The processing window indicated by

green is shifted by ∆̄ after every update. The average latency of the fixed lag scheme is ∆,

whereas that of the sawtooth lag scheme is ∆−
(
∆̄− 1

)
/2. In the sawtooth lag scheme,

∆̄ also controls the frequency of update of γ. If ∆̄ is large, the average latency decreases,

but the γ gets updated more slowly. So, there is a tradeoff between the accuracy and the

latency in selecting ∆̄.



Chapter 4. 95

Next, we discuss the special case of D = 0. We refer to this algorithm as the online

M-SBL algorithm, as there is no role for Kalman filtering when D = 0.

Online M-SBL: When the sparse vectors are uncorrelated, i.e., D = 0, (4.25) simplifies

to the following recursion:

γ l = γ l−1 +
1

kl+1

kl+1∑
t=kl+1

Diag
{
P t(γ l−1) + x̂t(yt,γ l−1)x̂t(yt,γ l−1)T − Γl−1

}
, (4.36)

where

P t(γ) , Γ− ΓAT
t

(
AtΓA

T
t +Rt

)−1
AtΓ (4.37)

x̂t(y,γ) , P t(γ)AT
t R
−1
t y. (4.38)

We note that this implementation depends only on ∆̄, and not on ∆, because the set

of measurement vectors
{
yt, t = kl+1 + 1, kl+1 + 2, . . . , ǩl

}
and the set of sparse vectors

{xt, t = kl + 1, kl + 2, . . . , kl+1} are independent.

To summarize, we have presented a fixed lag scheme and a sawtooth lag scheme, for

computing T k|k+∆ recursively using the data in batches. We next discuss the initialization

of the algorithm and several interesting special cases.

4.4.2 Discussion

Initialization

The initial estimate of γ can be obtained from the first ∆ + 1 input measurements vectors

using the offline KM-SBL algorithm. The one round of the offline KM-SBL algorithm can

be interpreted as an estimation step, and the recursive update of γ using (4.16) can be

interpreted as a tracking process. In fact, if γ is slowly varying over time, the recursive
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update step (4.16) can track its temporal variations.

Special Cases

We make a few interesting observations about the algorithm in the following special cases:

(a) When D = 0, the sparse vectors are uncorrelated and thus x̂t|K = x̂t|t+∆, P t|K =

P t|t+∆, and P t,t−1|K = P t,t−1|t+∆. Hence, there is no approximation in (4.14). On

the other hand, as the correlation coefficient increases, the approximation in (4.14)

becomes loose.

(b) When D = 0 and ∆ = 0, the fixed lag and the sawtooth lag schemes become identical.

(c) When ∆ = 0, the filter for the modified state space reduces to the original Kalman

filter equations [2].

(d) When ∆̄ = 1, the latency of the sawtooth lag scheme equals ∆ for all sparse vectors,

similar to the fixed lag scheme. Nonetheless, the two schemes are different, because

of the forward and backward recursions in the sawtooth lag scheme.

4.4.3 Refinements

Different Learning Rates

Instead of 1/k in (4.16), any sequence of positive numbers bk can be used in the recursive

algorithm as long as the following conditions are satisfied:

0 ≤ bk ≤ 1
∞∑
k=1

bk =∞
∞∑
k=1

b2
k <∞. (4.39)
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The modified algorithm is given by

γk = γk−1 + bkDiag
{(
I −D2

)−1
T k|k+∆ − Γk−1

}
. (4.40)

A good choice for the sequence is bk = 1/kα, 1/2 < α ≤ 1, since
∑∞

k=1 1/kα converges

if α > 1 and diverges otherwise. In Section 4.5, we empirically show that the modified

algorithm converges faster than the original version (see Figure 5.1).

Improved Online M-SBL

Notice that the online M-SBL algorithm in (4.36) does not use the observations yt, t =

kl+1 + 1, kl+1 + 2, . . . , ǩl, even though they are available at time kl+1. Hence, we modify

the update step in (4.36) to update γ using all the available measurement vectors yǩl , and

then estimate the sparse vectors x̂kl+1 to x̂k(l+1)
, as follows:

γ l = γ l−1 +
1

ǩl

ǩl∑
t=ǩl−∆̄+1

Diag

{
P t(γ l−1) + x̂t(yt,γ l−1)x̂t(yt,γ l−1)T − Γl−1

}
. (4.41)

Thus, for each update, we use only the latest available block of size ∆̄, and not the past

values which have already been used. Hence, in this case, we need not store any of the

past measurements or the sparse vector estimates.

4.4.4 Complexity Analysis

We now briefly discuss the computational complexity and memory requirements of our

algorithms. We note that Table 4.1 summarized the computational demands of every

iteration of the iterative algorithms whereas here in Table 4.2 we summarize the total

computational requirements of the non-iterative algorithm as every measurement block
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Scheme
Computational

cost

Memory

demand

KM-SBL

(D 6= 0)

Offline O(KN3) O (KN2)

Fixed lag O (KN2m) O (∆N2)

Sawtooth lag O(KN3) O (∆N2)

M-SBL

(D = 0)

Offline O(KN2m) O (Km+N2)

Online O(KN2m) O (∆m+N2)

Table 4.2: Comparison of the online schemes with the offline scheme when K observations
are available.

arrive.

Computational Cost

We assume that the multiplication of a p× q matrix with a q × r matrix requires O(pqr)

floating-point operations (flops), and the inversion of a p × p positive definite matrix

requires O(p3) flops [120].

We note that the computational cost per update of γ in the online scheme depends only

on ∆ (which is � K), although the overall computational complexity does depend on the

number of sparse vectors K. However, simulation results show that the overall run time of

our online algorithms grow slowly with K when compared to their offline counterparts (see

Figure 4.2a). The order-wise complexity of the online M-SBL algorithm (4.36) is similar

to the online KM-SBL fixed-lag scheme, but its run time is much smaller than KM-SBL

since it does not involve Kalman filtering or smoothing. Note that, the computational

cost of the offline algorithms correspond to the complexity of a single iteration, while that

of the online algorithms correspond to the overall complexity, as they are non-iterative in

nature.
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4.5 Numerical Results: Non-iterative Algorithm

We use the following setup to evaluate the performance of the algorithm and corroborate

the theoretical results. We generate sparse signals of length N = 60, each with s = 6

nonzero entries. The locations of nonzero coefficients are chosen uniformly at random,

and the nonzero entries are independent and identically distributed with zero mean and

unit variance. The length of measurement vector is chosen as m = 20. The measurement

matrices Ak are generated with independent and Gaussian distributed entries with zero

mean, and the columns are normalized to have unit Euclidean norm.

We study the properties of the algorithm for both uncorrelated and highly correlated

cases in the following subsections. For the uncorrelated case, we consider the improved

online algorithm given by (4.41). We evaluate the performance of our algorithm using the

same three metrics used in the last section. We consider two methods to initialize the

hyperparameter vector γ for the online schemes, which we term proper initialization and

fixed initialization. Proper initialization refers to initializing γ with its estimate obtained

from the first ∆+1 measurements using the offline KM-SBL algorithm. Fixed initialization

refers to initializing γ with a fixed vector (which we take as 4 · 1).

Uncorrelated Case

Figures 4.2a-4.3c show the performance of the different schemes when D = 0. The curves

labeled Offline correspond to the performance of the offline M-SBL algorithm, which

is our benchmark, and all other curves correspond to the improved online sawtooth lag

scheme discussed in Section 4.4.3. The curves labeled Init ∆̄ = 1, Init ∆̄ = 3 and Init

∆̄ = 5 correspond to the online algorithm with proper initialization, while the curves
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Figure 4.2: Performance of our algorithms relative to the offline algorithm for D = 0
(uncorrelated case, where we use the M-SBL based algorithm). Other paramters are
∆ = 5 and SNR = 20 dB.
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Figure 4.3: Performance of our algorithms relative to the offline algorithm for D = 0
(uncorrelated case, where we use the M-SBL based algorithm). Other paramters are
∆ = 5 and K = 120.
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Figure 4.4: Performance of our algorithms relative to the offline algorithm for D = 0
(uncorrelated case, where we use the M-SBL based algorithm). Other paramters are
K = 150, ∆ = 5 and SNR = 20 dB.
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labeled No Init ∆̄ = 1, No Init ∆̄ = 3 and No Init ∆̄ = 5 correspond to the online

algorithm with fixed initialization. Our observations from the results are as follows:

• Initialization: The online scheme with proper initialization closely matches with the

offline scheme in terms of the recovery performance. On the other hand, the online

scheme with fixed initialization requires significantly smaller time for execution, but

the convergence is slower.

• Number of sparse vectors K: As K increases, the quality of the covariance estimate

improves, and this, in turn, leads to better recovery performance; see Figures 4.2a

and 4.2b. From Figure 4.2c, we see that the run time increases almost linearly with

K for the offline scheme and the online scheme with fixed initialization. With proper

initialization, the run time is roughly constant with K, as most of execution time is

spent in computing the initialization of γ.

• SNR: The recovery performance of all algorithms improve with increase in SNR,

see Figures 4.3a and 4.3b. Also, the gap between the online scheme with proper

initialization and the offline scheme virtually closes beyond an SNR of 10 dB. From

Figure 4.3c, the run time remains almost constant with SNR, even though the offline

scheme and the online scheme with proper initialization use an iterative step to

estimate γ.

• Sparsity level: The recovery performance of all algorithms degrade with increase

in sparsity level (number of non-zero entries), see Figures 4.4a and 4.4b. However,

the SRR performance of the algorithm with fixed initialization degrades significantly

with the increase in the sparsity level. From Figure 4.4c, the run time remains almost
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constant with sparsity level, since the complexity does not depend on the sparsity

level.

• Output batch-size ∆̄: The performance of online schemes do not vary much with ∆̄,

as can be seen from Figures 4.2a-4.3c. However, the recovery performance is slightly

better and the run time is slightly worse for smaller values of ∆̄, as γ is updated

more frequently.

• Maximum delay ∆: The performance of the algorithm with varying maximum delay

∆ is similar to that of the highly correlated case as shown in Figure 4.5a-Figure 4.5c,

and hence omitted. The performance of the online schemes improve as ∆ increases,

and the proper initialization can greatly improve the recovery performance compared

to fixed initialization. The run time of the online scheme with proper initialization

increases with ∆, because the number of measurement vectors used to initialize

γ increases. However, the behavior the run time of the online schemes for the

uncorrelated case is different from that of the highly correlated case, as discussed in

Section 4.4.4. This is because the online algorithms use Kalman smoothing in the

correlated case, and the complexity of Kalman smoothing increases with ∆. In the

uncorrelated case, the complexity is independent of ∆, thus the run time remains

constant for all values of ∆.

Highly Correlated Case

Figures 4.5a-4.6a show the performance of the different algorithms when the sparse vectors

are highly correlated (D 6= 0). The curves labeled Init Fixed and No Init Fixed

correspond to the fixed lag scheme with proper and fixed initialization, respectively, while
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Figure 4.5: Performance of our algorithms relative to the offline algorithm for D = 0.9I
(correlated case, where we use the KM-SBL algorithm). Other paramters are ∆ = 5 and
SNR = 20 dB.
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Figure 4.6: Performance of our algorithms relative to the offline algorithm for D = ρI
(correlated case, where we use the KM-SBL algorithm). Other paramters are K = 150,
∆ = 5 and SNR = 20 dB.
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the other labels are as in the previous plots. Our observations from the results are as

follows:

• Implementation schemes: As discussed in Section 4.4.1, for the same output batch-

size of ∆̄ = 1, the sawtooth lag scheme outperforms the fixed lag scheme, at the cost

of a higher run time. This is because the sawtooth lag scheme uses all the available

measurements for updating the hyperparameters, while the fixed lag scheme uses only

the latest available measurement. Comparing the fixed lag scheme with the sawtooth

lag scheme with higher output batch-sizes (∆̄ = 3 and 5), the fixed lag scheme is

slower but more accurate, as it updates the hyperparameters more frequently.

• Correlation coefficient ρ: The performance of the algorithms with varying correlation

coefficient ρ (recall D = ρI) is shown in Figures 4.6a-4.6c. As ρ increases, the

recovery performance of the sawtooth lag scheme decreases, while that of the fixed

lag scheme improves. This seemingly counterintuitive behavior can be explained as

follows. In the offline case, an increase in ρ can worsen the support recovery of the

sparse vectors, but helps the estimation of the amplitude of the nonzero entries. A

combination of these effects determine the overall performance of the algorithm, and

we see that the recovery performance slightly degrades as the ρ increases. A similar

trend was observed in the SRR for the temporal M-SBL algorithm for recovering

correlated sparse vectors [121, Figure 2]. In case of the sawtooth lag scheme, in

addition to the above, an increase in ρ also makes the approximation in (4.14) loose.

Due to this, the degradation in the recovery performance of the sawtooth lag scheme

is large compared to the offline algorithm. In case of the fixed lag scheme, apart

from the effects discussed above, an increase in ρ also improves ρ∆, the correlation
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between the state and the observation in the new state space model (described by

(4.1) and (4.17)). This improves the quality of the estimate output by the Kalman

filter, and in turn helps the recovery. The overall effect of these is an improvement

in the recovery performance of the fixed lag scheme. A more rigorous study of the

effect of ρ an interesting topic for future work.

The run time of the algorithm remains the same for all values of ρ for the fixed

initialization case, as its complexity is independent of ρ. However, the run time of

the online schemes with proper initialization is higher in the highly correlated case.

This is because, when data is highly correlated, the initialization phase using the

offline scheme takes more iterations to converge. We can see a similar slight increase

in the run time of the offline scheme in the highly correlated case.

• Maximum delay ∆: As the delay increases, the recovery performance of the online

schemes increases for both methods of initialization. The change is more evident for

the fixed initialization case, as the recovery performance of with proper initialization

is very close to that of the offline scheme. We also observe that the improvement in

recovery performance is small for the fixed lag scheme compared to the sawtooth lag

scheme. This is because of the reduced correlation
(
D∆

)
between the state and the

observation of the new state space model given by (4.1) and (4.17). Also as pointed

out earlier, the run time of the online schemes increases with ∆.

• Output batch-size ∆̄: The performance of the online algorithms remains constant

with ∆̄ for both the correlated and uncorrelated case. However, the gap between the

run time curves is wider for the correlated case. This is because each update of γ

is computationally more expensive due to the Kalman smoothing in the correlated
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case.

The performance of the online algorithms with K and SNR in the highly correlated case

is similar to that observed in the uncorrelated case, and hence omitted.

In the next subsection, we compare the performance of our scheme with other existing

online algorithms found in the literature as mentioned in Section 4.1.

4.5.1 Comparison with Existing Algorithms

In Figure 4.7a-Figure 4.7c, we compare our algorithm, labeled Non-iterative KMSBL,

with the following algorithms (labels in brackets):

(i) Offline KM-SBL [3] (Offline KMSBL)

(ii) Reweighted l1 dynamic filtering [111] (RL1-DF)

(iii) Iterative online KM-SBL (Iterative KMSBL)

(iv) Standard l1 norm based algorithm on each measurement vector [122] (Regular l1

Norm)

(v) Kalman compressed sensing [112] (KF-CS)

(vi) Least squares compressed sensing [109] (LS-CS)

Here, we choose ∆ = 0, as the other online schemes except the iterative online KM-

SBL algorithm are not designed for ∆ > 0. We also note that we extended the Kalman

compressed sensing algorithm in [112] to handle a first-order AR process with correlation

matrix D ∈ [0, 1]N , while the original algorithm only considers D = I. The recovery

performance of our scheme is comparable with the other online schemes algorithms, and
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Figure 4.7: Comparison of RMSE, SRR and run time of our algorithm with the existing
online schemes.
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approaches the offline performance as K increases. However, the run time of our scheme

is significantly lower than all the other schemes. Moreover, the rate of increase of the

run time of our scheme with K is much smaller than the other schemes. The significant

reduction in the run time is primarily due to the non-iterative nature of our scheme. Since

all other algorithms are iterative in nature, their complexity and hence run time depends

linearly on the number of iterations which, in turn, depends on N , m, K, the threshold

used for stopping the iterations, etc. This brings out the major difference between the

other algorithms and our online non-iterative schemes. Thus, our scheme is both fast and

accurate, as promised in Section 4.1.

4.5.2 Sparse OFDM Channel Estimation

Parameter Value

OFDM

(3GPP/LTE

broadband

standard [123])

Transmission bandwidth 2.5 MHz

Sub-frame duration 0.5 ms

Subcarrier spacing 15 kHz

Sampling frequency 3.84 MHz

FFT size 256

No. of data subcarriers 200

OFDM symbol/slot 6

CP length 16.67 µs

Channel

Environment Pedestrian B [124]

Model Jakes model [125]

Norm. Doppler freq. 10−3

Coding and modulation
rate 1/2 Turbo code

and QPSK

Pulse shaping

Raised cosine

with rolloff

factor= 0.5 [126]

Table 4.3: Simulation parameters for OFDM channel estimation
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In this subsection, we consider the sparse OFDM channel estimation problem as an

application of our algorithm [3]. We list the simulation parameters in Table 4.3. The

sparse channel is of length N = 59, which taken as the length of the cyclic prefixing (CP),

with s = 6 nonzero entries for each channel instantiation (PedB channel model [124]). In

each OFDM symbol, m = 20 pilot symbols are placed uniformly, and the number of OFDM

symbols K is taken as 150. We assume that the algorithms estimate the channel once in

every OFDM slot, which gives ∆ = 6. We consider both coded3 and uncoded scenarios

and three metrics for the performance comparison: BER, MSE in channel estimation,

and run time per channel vector estimation. We estimate the channel using the pilot

symbols, and decode the data using the channel estimate (for details, refer to [3]). In

Figure 4.8a-Figure 4.8c, we compare the performance of our algorithm, labeled Online

Non-iterative, with the following three schemes (labels in brackets):

(i) Offline KM-SBL [3] (Offline)

(ii) Iterative online KM-SBL (Online Iterative)

(iii) Receiver with perfect knowledge of channel (Genie)

As mentioned earlier, the other online schemes are not applicable here, as we take ∆ > 0.

From the figure, we infer that the BER and the MSE performance of our algorithm is

better than the offline algorithm which was originally proposed for the channel estimation

problem [3]. This is because the offline algorithm processes the data in blocks of size 6,

and does not reuse the past measurements blocks, whereas our algorithm uses information

3For the Turbo code generation, we use the publicly available software [127].
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Figure 4.8: Comparison of the BER, RMSE and run time of our algorithm with existing
schemes
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from all past measurement blocks to estimate the channel vectors for the current block.

Moreover, our algorithm has an added advantage of significantly reduced run time.

4.6 Summary

The chapter presented algorithms that are particularly useful in scenarios where noisy

undetermined linear measurements of sparse state vectors arrive sequentially, and when

one wants to exploit structure in the signal beyond (simultaneous) sparsity, specifically,

the correlation introduced by the LDS. We developed two algorithms, namely, iterative

and non-iterative, by combining the sequential EM procedure and the SBL framework,

and presented two schemes for implementation: the fixed lag and sawtooth lag schemes.

Our algorithms do not require any parameter tuning. Simulations showed that the per-

formance of our algorithm is close to that of the offline algorithm, but it demands less

memory and computational resources, both when the sparse vectors are uncorrelated and

highly correlated. In short, in this chapter, we answered question Q2 for model SM2 by

developing an online algorithm with good recovery properties. In the next chapter, we

address question Q3 for the same model by providing some theoretical guarantees for the

presented algorithms.



Chapter 5

Convergence Analysis of Online

M-SBL Algorithm

Answering problem Q3 for SM2

In this chapter, we continue from the previous chapter and discuss the uniqueness of

the solution obtained using the non-iterative online KM-SBL algorithm. The estimator

for sparse unknowns is a MAP estimator, which enjoys the properties of being linear,

unbiased and minimum variance. If the hyperparameter iterates converge to the true

value, then the accuracy of estimating sparse unknowns is asymptotically equal to that

of an oracle estimator that knows the variances of the entries of the unknowns. Thus,

the convergence analysis has implications on the accuracy of the estimates, and provides

insights to the uniqueness of the solution. Hence, we establish the uniqueness by examining

the convergence properties of the presented algorithms and computing the limit point of the

sequence of common hyperparameter iterates generated by the algorithm. However, the

analysis for the arbitrary correlation case is hard, because the evolution of the every value

in the sequence is a complicated function of the previous value. Therefore, we consider the

115
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convergence results for the two extreme values of correlation: the uncorrelated case, and

the perfectly correlated case. Intuitively, the algorithm should converge for all intermediate

values of the correlation also. This is corroborated by our empirical results.

5.1 Uncorrelated Case

In the section, we study the convergence properties of the non-iterative online algorithm

under the following assumptions:

(A1) The measurement matrices are identical, i.e., Ak = A, ∀k, and without loss of

generality, Rank {A} = m.

(A2) The noise covariance matrix is the same for all measurements, i.e., Rk = R, ∀k.

(A3) The sparse vectors are uncorrelated, i.e., D = 0.

The above assumptions are standard in the MMV literature, and are referred to as the

joint sparsity model-2 (JSM-2) [37, 39–41]. The assumptions simplify the recursive algo-

rithm, and make the analysis tractable. Since D = 0, the fixed lag scheme discussed in

Section 4.4.1 is not applicable, and we focus our analysis on the sawtooth lag implemen-

tation. We start with the case when ∆̄ = 1. A similar analysis follows for ∆̄ > 1, and we

discuss this case later in the sequel.

When Ak = A and Rk = R, (4.36)-(4.38) simplify to the following recursion:

γk = γk−1 +
1

k
Diag

{
P (γk−1)

}
+

1

k
Diag

{
x̂(yk,γk−1)x̂(yk,γk−1)T − Γk−1

}
, (5.1)

where P (γ) and x̂(y,γ) are as defined in (4.37) and (4.38), with At and Rt replaced by
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A and R, respectively. We can rewrite (5.1) as a stochastic approximation recursion as

follows:

γk = γk−1 +
1

k
f(γk−1) +

1

k
ek. (5.2)

Here, f(γ) is the mean field function, given by

f(γ), Diag
{
P (γ)+P (γ)ATR−1E

{
yyT

}
R−1AP (γ)

}
−γ, (5.3)

where the expectation is over the distribution of y, and ek is given by

ek , Diag
{
P (γk−1) + x̂(yk,γk−1)x̂(yk,γk−1)T

}
− γk−1 − f(γk−1). (5.4)

Further, using P (γ) from (4.37),

P (γ)− Γ = −ΓAT
(
AΓAT +R

)−1
AΓ (5.5)

P (γ)ATR−1 = ΓAT
(
AΓAT +R

)−1
. (5.6)

Thus, we get the following:

f(γ) = Diag
{

ΓAT
(
AΓAT +R

)−1 (E {yyT
}
−AΓAT −R

) (
AΓAT +R

)−1
AΓ
}

(5.7)

ek = Diag
{
Γk−1A

T
(
AΓk−1A

T +R
)−1(

yky
T
k − E

{
yyT

})(
AΓk−1A

T +R
)−1
AΓk−1

}
.

(5.8)

We next present the convergence results of the algorithm. We begin with a proposition

which shows that the sequence of γk generated by the algorithm is bounded.
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Proposition 5.1. If γ0 is a nonnegative vector, the sequence γk generated by (5.1) re-

mains in a compact subset of RN
+ almost surely ( a.s.).

Proof. See Appendix C.1.

The next question to be answered is about the values to which the sequence γk could

converge. The following theorem characterizes the asymptotic behavior of the algorithm.

Theorem 5.1. Assume that the nonzero entries of x are orthogonal, and the diagonal

matrix Γopt , E
{
xxT

}
. If γ0 is a nonnegative vector, then the sequence γk of the online

M-SBL algorithm given by (5.1) converges to an element in the union set: {0}∪{γ ∈ RN
+ :

A (Γ− Γopt)A
T = 0} a.s. Further, if Rank {A�A} = N , the sequence γk converges to

a point in the two-element set {0,γopt} a.s.

Proof. See Appendix C.2.

We make the following observations from Theorem 5.1.

• The results are independent of the following parameters:

(a) sparsity level of the unknown vectors

(b) initialization of the algorithm (however, γ0 ∈ RN
+ )

(c) distribution of the sparse vectors (even though the algorithm is designed as-

suming a Gaussian distribution), as long as the entries are orthogonal

(d) properties of A, such as its restricted isometry constant or mutual coherence

(e) construction of A, i.e., it can be deterministic or random, with normalized or

unnormalized columns.
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• The convergence guarantee of the original M-SBL algorithm in [41] holds only in the

noiseless case. However, our generalized result applies whether noise is present or

not. Hence, the result is practically more useful.

• The condition that the nonzero entries of x should be orthogonal is similar to the

orthogonality condition required for the convergence guarantee of the original M-

SBL algorithm in the noiseless case [41]. In fact, the orthogonality condition in [41]

is hard to achieve since the number of sparse vectors to be estimated is finite. In

that sense, ours is a more reasonable assumption.

• The M-SBL cost function [41] is defined as

VM-SBL (γ) = lim
k→∞

[
1

k

k∑
t=1

yT
t

(
AΓAT +R

)−1
yt + log |AΓAT +R|

]
= Tr

{(
AΓAT +R

)−1 (
AΓoptA

T +R
)}
− log

∣∣∣(AΓAT +R
)−1
∣∣∣ .
(5.9)

We note that VM-SBL (γ)− log |AΓoptA
T+R|−m is the Kullback-Leibler (KL) diver-

gence between two distributions: N (0,AΓAT +R) and N (0,AΓoptA
T +R). The

global minimum of VM-SBL (γ) is therefore achieved at {γ ∈ RN
+ : A (Γ− Γopt)A

T =

0}. Hence, the set to which our algorithm converges contains all the points achieving

the global minimum of VM-SBL (γ).

• Since VM-SBL (γ) is a function of AΓAT, the smallest set to which M-SBL can con-

verge is {γ ∈ RN
+ : A (Γ− Γopt)A

T = 0}. The γk output by our algorithm converges

to the union of this set with 0.

• It can be shown that the algorithm is guaranteed to converge to a sparse solution,
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where, by sparse solution, we mean one with no more than m nonzero entries. Given

any s-sparse vector γopt and sensing matrixA, we can always construct a pair (xc,yc)

such that yc = Axc and xc = Γ
1/2
opt (AΓ

1/2
opt )

†yc. By [23, Theorem 1], γopt is the global

minimizer of the SBL cost function constructed under a noiseless measurement model

using yc andA. Further, from [23, Theorem 2], it is known that every local minimum

of the SBL cost function is achieved at a sparse solution (even in the presence of

noise). Now, the SBL cost is a function of Γ only through AΓAT. Hence, the set

{γ ∈ RN
+ : A (Γ− Γopt)A

T = 0} consists of local minima of this SBL cost function,

which implies that the elements of the set are all sparse. Therefore, the algorithm

is guaranteed to converge to a sparse solution.

We can extend the above convergence results to the refined algorithm given by (4.40)

using the following corollary.

Corollary 5.1. Consider the modified online M-SBL algorithm given by (4.40) and having

learning rates satisfying (4.39). Under the assumptions of Theorem 5.1, the sequence γk

converges to a point in the set {0} ∪ {γ ∈ RN
+ : A (Γ− Γopt)A

T = 0} a.s. Further, if

Rank {A�A} = N , the sequence γk converges to a point in the set {0,γopt} a.s.

The proof of the above is similar to that of Theorem 5.1 because the only properties of

the sequence 1/k (in (4.16)) that are used in Theorem 5.1 are the ones listed in (4.39).

We now consider the more general case where ∆̄ ≥ 1. As in the previous case, the

algorithm can be rewritten as a stochastic approximation recursion as follows:

γ l = γ l−1 +
1

l
f(γ l−1) +

1

l
ẽl, (5.10)
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where f(γ) is as defined in (5.3), and

ẽl , −f(γ l−1) +
1

∆̄

kl+∆̄∑
t=kl+1

Diag
{
P (γ l−1) + x̂(yt,γ l−1)x̂(yt,γ l−1)T

}
. (5.11)

The following theorem characterizes the asymptotic behavior of the above algorithm. Us-

ing the theorem, we can also derive a corollary similar to Corollary 5.1. However, we omit

the statement to avoid repetition.

Theorem 5.2. Under the assumptions of Theorem 5.1, the sequence γ l output by the

online M-SBL algorithm given by (5.10) converges to a point in the set {0} ∪ {γ ∈ RN
+ :

A (Γ− Γopt)A
T = 0} a.s. Further, if Rank {A�A} = N , the sequence γ l converges to a

point in the set {0,γopt} a.s.

Proof. The algorithm given by (5.10) differs from the algorithm given by (5.2) only in the

last term. The only place where this term plays a role in the proof in Appendix C.2 is

via Lemma C.1. Hence, it suffices to show that liml→∞
∑l

i=1
1
i
ẽi exists and is finite. From

(5.11), we get

ẽl = Diag

{
Γl−1A

T
(
AΓl−1A

T +R
)−1

(
E
{
yyT

}
− 1

∆̄

ki+1∑
t=ki+1

yty
T
t

)(
AΓl−1A

T +R
)−1
AΓl−1

}
.

Now the result follows by replacing ek in the proof of Lemma C.1 with ẽl.

We can also get similar convergence results for the improved M-SBL algorithm given by

(4.41), as follows.

Corollary 5.2. Under the assumptions of Theorem 5.1, the sequence γ l output by the

improved online M-SBL algorithm given by (4.41) converges to a point in the set {0}∪{γ ∈
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RN
+ : A (Γ− Γopt)A

T = 0} a.s. Further, if Rank {A�A} = N , the sequence γ l converges

to a point in the set {0,γopt} a.s.

Proof. Under the assumptions of Theorem 5.1, the improved online algorithm given by

(4.41) is equivalent to the original algorithm given by (4.36) except that it uses ∆̄ mea-

surement vectors
{
yt, t = ǩl − ∆̄ + 1, ǩl − ∆̄ + 2, . . . , ǩl

}
instead of ∆̄ measurement vec-

tors {yt, t = kl + 1, kl + 2, . . . , kl+1} used by the original version. Since the measurement

vectors are independent and identically distributed, the rest of the proof is the same as

that of Theorem 5.1.

5.2 Perfectly Correlated Case

In this section, we consider the convergence results for the other extreme value of corre-

lation, i.e., D = I. We note that when D = I, from (4.1), we get xk = x1 , x for all

values of k. This is because the covariance of zk is assumed to be I −D = 0. Further,

the Kalman filtering/smoothing equations for estimating the sparse vectors (4.19)-(4.24)

and (4.26)-(4.31) become independent of γ. Thus, when ∆ = 1, the algorithm simplifies

to

Jk = P k−1A
T
k

(
AkP k−1A

T
k +Rk

)−1
(5.12)

x̂k = (I − JkAk)x̂k−1 + Jkyk (5.13)

P k = (I − JkAk)P k−1, (5.14)

where xk and P k are the estimates of x and its covariance, respectively, at time k.

When D = I, (4.27) becomes P k|k−1 = P k−1, and hence, here we analyze the converge

of P k. Further, when D = 0, we showed that AΓkA
T converges to AΓoptA

T. Similarly,
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here we show the convergence of AP kA
T.

As before, we first prove that the algorithm converges and then characterize the limit

points.

Proposition 5.2. Under assumptions A1 and A2, the algorithm given by (5.12)-(5.14)

converges as k → ∞, provided P 0, the initialization of the covariance matrix, has full

rank.

Proof. See Appendix C.3.

Now that we know the algorithm converges, and the next important question is whether

the algorithm converges to the right solution. This is addressed in the following theorem.

Theorem 5.3. Under assumptions A1 and A2, the sequence x̂k of the algorithm given by

(5.12)-(5.14) converges to the true solution almost surely, if the initialization P 0 is a full

rank matrix.

Proof. See Appendix C.4.

Remark 1: Theorem 5.3 is very general, and holds under a variety of settings. In particular,

it is independent of:

• the sparsity level of the unknown vector x

• initializations of x̂0 and P 0, provided P 0 has full rank

• measurement noise level and noise correlation, i.e., R
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5.3 Simulation Results

We use the following setup to evaluate the performance of the algorithm and corroborate

the theoretical results. We generate sparse signals of length N = 60, each with s = 6

nonzero entries. The locations of nonzero coefficients are chosen uniformly at random,

and the nonzero entries are independent and identically distributed with zero mean and

unit variance. The length of measurement vector is chosen as m = 20. The measurement

matrices Ak are generated with independent and Gaussian distributed entries with zero

mean, and the columns are normalized to have unit Euclidean norm.

We study the properties of the algorithm for both uncorrelated and highly correlated

cases in the following subsections. For the uncorrelated case, we consider the improved

online algorithm given by (4.41).

5.3.1 Convergence

We consider three different learning rates bk = 1/kα: α = 0.6, 0.8 and 1. The maximum

delay between the measurement and estimation is taken as ∆ = 5. To highlight the

convergence behavior, we initialize the hyperparameters with a fixed value 4·1, irrespective

of the measurements. The SNR is chosen as 20 dB for all the results in this subsection.

Uncorrelated Case

We generate the sparse vectors from two distributions: Gaussian and Rademacher distri-

bution. The mean squared error (MSE) in the estimated hyperparameters when ∆̄ = 3

are plotted in Figure 5.1a. The curves labeled Fit are the fitted curves on the error using

the function: f(x) = ax−p where a and p are parameters. The result for other values of

∆̄ is similar, and we summarize the values of p in Table 5.1. Our observations from the
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Figure 5.1: Convergence of the hyperparameters to the true value.
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Algo.
Rademacher Dist. Gaussian Dist.

∆̄ = 1 ∆̄ = 3 ∆̄ = 5 ∆̄ = 1 ∆̄ = 3 ∆̄ = 5

α = 0.6 1.69 1.30 1.17 1.18 1.09 0.96

α = 0.8 0.87 0.79 0.72 0.86 0.78 0.71

α = 1.0 0.49 0.47 0.43 0.49 0.47 0.43

Table 5.1: Value of error-fit power function parameter p when D = 0.

results are as follows:

• Convergence: The algorithm converges to the true γ, and not to the other equilib-

rium point, γ = 0, in all cases. This happens even if we initialize the algorithm with

very small values such as 10−2 · 1.

• Sparse vector distribution: The algorithm works equally well for both Gaussian

(which is continuous) and Rademacher distribution (which is discrete), as guaranteed

by Theorem 5.2. In particular, it works for the Rademacher distribution even though

it was developed by imposing a Gaussian distribution on the nonzero coefficients of

the sparse vectors.

• Learning rate: The smaller the α, the larger the learning rate bk, and hence the larger

the weightage given to the update term Diag
{(
I −D2

)
T k|k+∆ − Γk−1

}
in (4.40),

leading to faster convergence. Since 1/2 < α ≤ 1 is required for theoretical conver-

gence guarantee, a value of α close to 1/2 ensures the fastest convergence. However,

we have also observed from our experiments that α ≤ 1/2 leads to even faster con-

vergence. Hence, in practice, one could try using α ≤ 1/2, but the convergence

would not be guaranteed by our analysis.

• Value of ∆̄: As ∆̄ increases, the exponent p slightly decreases. This is because when
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∆̄ increases, the hyperparameter γ gets updated less frequently. Hence, a lower ∆̄

improves the convergence rate and estimation accuracy, but at the cost of higher

average latency and computational complexity. This is further illustrated in the

following subsections.

Highly Correlated Case

Next, we study the convergence of our algorithm in the highly correlated case. Figures

5.1b and 5.1c show the MSE in the hyperparameter estimates when ∆̄ = 3, for the fixed

lag and sawtooth lag schemes, respectively. A few interesting observations from the figures

are as follows:

• Correlation coefficient: As the correlation coefficient increases, the convergence be-

comes slower. This is because the approximation in (4.14) becomes loose as the

correlation increases, as discussed in Section 4.4.2.

• Implementation scheme: We see that the convergence behavior of the fixed lag and

sawtooth lag schemes are similar. However, the gap between the curves when the

correlation coefficient is 0.9 and 0.95 is smaller for the fixed lag scheme compared to

the sawtooth lag scheme. Further discussion about this is provided in Section 4.5.

• Learning rates: As observed in the uncorrelated case, the convergence is faster for

small values of α. However, the gap between the curves for the two correlation

coefficients is wider for smaller values of α. This is because as α decreases, the

weightage given to the update term in (4.40) increases, and thus, it becomes more

sensitive to the approximation in (4.14).
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5.4 Summary

In this chapter, we provided a rigorous convergence analysis of the algorithm presented in

Chapter 4. Using empirical simulations we showed that the algorithm output converges to

the true value, for the regimes which are not covered by the theoretical results. Hence, the

chapter throughly answered the question on uniqueness of sparse solution for the model

and algorithms under consideration. With this, we completed the mathematical theory

for the second model in this thesis. In the next chapter, we advance to the last sparsity

model considered in the thesis, model SM3. 3



Chapter 6

Bayesian Learning Algorithm for

Sparse Control Inputs and

Observation Matrix

Answering problem Q2 and Q3 for SM3

In this chapter, we consider at the most sophisticated sparsity model where the initial

state, sparse inputs and the measurement matrix are unknown (model SM3). The unknown

measurement matrices are assume be identical for all the measurements. Further, we also

assume that the transition matrix is an all zero matrix, i.e, the states are independent

of each other. For this setting, we learn a measurement matrix or a dictionary from

a finite set of noisy measurement vectors, such that the measurement vectors admit a

sparse representation over the dictionary. This problem is referred to as the dictionary

learning (DL) problem. While several solutions are available in the literature, relatively

little is known about their convergence and optimality properties. We make progress

on this problem by analyzing a Bayesian algorithm for DL. Specifically, we cast the DL

problem into the sparse Bayesian learning framework by imposing a hierarchical Gaussian

129
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prior on the sparse vectors. This allows us to simultaneously learn the dictionary as well

as the parameters of the prior on the sparse vectors using the expectation-maximization

algorithm. The dictionary update step turns out to be a nonconvex optimization problem,

and we present two solutions, namely, an alternating minimization (AM) procedure and

an Armijo line search (ALS) method. We rigorously analyze the convergence properties

of the solution, and show that the ALS procedure is globally convergent. We also analyze

the stability of the solution by characterizing its limit points. Further, we prove the

convergence and stability of the overall DL-SBL algorithm, and we show that the minima

of the cost function of the overall algorithm are achieved at sparse solutions. As a concrete

example, we consider the application of the SBL-based DL algorithm to image denoising,

and demonstrate the efficacy of the algorithm relative to existing DL algorithms.

6.1 Background

In sparse coding, the signal of interest is represented as a linear combination of a relatively

small number of columns of a properly chosen over-complete dictionary. The dictionary

can be of two types: first, non-adaptive or predefined dictionaries like Fourier, Gabor,

discrete cosine transform and wavelet [128]; and second, an adaptive or learned dictio-

nary that is specific to the given class of signals. The use of adaptive dictionaries often

leads to more compact representations and better performance in many signal processing

applications ranging from image denoising [129–131], audio processing [132,133], and clas-

sification tasks [134–140], to name a few. Therefore, we are interested in the dictionary

learning problem, where the objective is to find a dictionary over which a set of training

signals admits a sparse representation.



Chapter 6. 131

Several dictionary learning algorithms for sparse coding have been proposed in the liter-

ature such as method of optimal directions (MOD) [141], K-singular value decomposition

(K-SVD) [142], dictionary learning with the majorization method (DL-MM) [143], simul-

taneous codeword optimization (SimCO) [144], parallel atom-updating dictionary learning

(PAU-DL) [145], sequential generalization of K-means (SGK) [146], and iterative thresh-

olding and K means (ITKM) [147]. Most of the algorithms involve an iterative procedure,

alternately updating the dictionary and the sparse representation, and differ in the cost

function used in the dictionary update step. To update the sparse representation, an

existing standard sparse signal recovery algorithm is used.

Although the aforementioned algorithms achieve good performance, they require the

knowledge of the sparsity level of the system and hand-tuning of various sensitive al-

gorithm parameters. These limitations are handled to some extent by Bayesian algo-

rithms [148–150]. Bayesian algorithms come with an added advantage of not requiring

the knowledge of the measurement noise variance. However, the posterior distributions

proposed in [148, 150] cannot be derived analytically, and a Gibbs sampler is used for

Bayesian inference. The Gibbs sampling based algorithms are computationally demand-

ing as they involve ensemble learning. To overcome this difficulty, [150] also proposes a

variational Bayes’ based algorithm for dictionary learning by imposing a Gaussian prior

on the dictionary elements. The Gaussian prior intuitively models the boundedness of

the dictionary elements and helps to obtain closed form expressions for the dictionary up-

date. The closed form expressions results in faster convergence than the Gibbs sampling

based Bayesian algorithms. Nonetheless, imposing a Gaussian prior (on a dictionary with

no special structure) results in low accuracy and requires a large number of iterations to
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converge. Therefore, the choice of Gaussian prior still leaves room for improvement. This

motivates us to develop an improved Bayesian dictionary learning algorithm which does

not require the knowledge of the sparsity level, or fine-tuning of parameters, while at the

same time improving on the recovery performance.

Our proposed dictionary learning algorithm is based on the sparse Bayesian learning

(SBL) framework [22, 23]. In the context of sparse signal recovery, SBL is known to offer

superior performance compared to algorithms based on convex relation and greedy ap-

proaches, and does not require one to tune the algorithm parameters. The basic idea of

SBL is to incorporate a parameterized prior on the unknown sparse vectors that encour-

ages sparsity. Specifically, a fictitious Gaussian prior is imposed on the sparse vectors, and

the so-called hyperparameters of the Gaussian distribution are determined using Type-II

maximum likelihood (ML) estimation. Our approach is different from other Bayesian dic-

tionary learning algorithms as we impose no prior on the dictionary elements. Instead,

we estimate the dictionary as a deterministic matrix with unit norm columns. The es-

timation method uses the expectation-maximization (EM) algorithm to simultaneously

learn the parameters of the prior and the sparsifying dictionary. The dictionary update

step in the EM algorithm turns out to be a quadratic optimization problem with unit

norm constraints, which is a nonconvex problem because of the constraint. Since a closed

form solution is not available, we propose to employ the alternating minimization (AM)

procedure or Armijo line search (ALS) to solve it.
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6.2 SBL Based Dictionary Learning

We consider a special case of LDS presented in Chapter 1, where D = 0. Hence, we have a

set of K training signals yK = {yk ∈ Rm}Kk=1 such that yK admits a sparse representation

xK = {xk ∈ RN}Kk=1 over an unknown dictionary A ∈ Rm×N and is corrupted by noise,

i.e.,

yk = Axk +wk, (6.1)

where the noise term wk ∼ N (0, σ2I). Our goal is to estimate the K sparse vectors

and the measurement matrix A, using the knowledge of N . To resolve the ambiguity in

amplitude, we assume A has unit norm columns. That is, A ∈ O, where

O ,
{
A ∈ Rm×N : AT

i Ai = 1, i = 1, 2, . . . , N
}
. (6.2)

Motivated by the SBL framework [22, 23], we impose a Gaussian prior on the unknown

sparse vectors xk ∼ N (0,Diag {γk}), where γk ∈ RN
+ . Using this hierarchical model, we

first compute the ML estimates γ̂k and Â of γk and A, respectively. These estimates, in

turn, can be used to estimate the sparse vectors as x̂k = E
{
xk|yk, γ̂k, Â

}
.

We do not assume any structure in A apart from the unit norm columns, and thus

we do not impose any prior on A. To obtain the ML estimates γ̂k and Â, we need

to maximize p(yK ; Λ), where Λ = {A,γk; k = 1, 2, . . . K} ∈ O × RNK
+ is the tuple of

unknown parameters.

We now develop an EM procedure to solve the ML estimation problem, equivalently, for

minimizing the negative log likelihood − log p(yK ; Λ). Thus, the optimization problem to
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be solved is arg min
Λ∈O×RNK+

T (Λ) , where the cost function1 is

T (Λ),
K∑
k=1

log
∣∣σ2I+AΓkA

T
∣∣+ yT

k

(
σ2I+AΓkA

T
)−1
yk. (6.3)

The EM algorithm treats the unknowns xk as the hidden data and the observations yK

as known data. It is an iterative procedure with two steps: an expectation step (E-step)

and a maximization step (M-step). Let Λ(r) be the estimate of Λ at the rth iteration. The

E-step computes the marginal log-likelihood of the observed data Q(r−1), and the M-step

computes the parameter tuple Λ that maximizes Q(r−1).

E-step: Q
(
Λ; Λ(r−1)

)
= ExK |yK ;Λ(r−1)

{
log p

(
yK ,xK ; Λ

)}
M-step: Λ(r) = arg max

Λ∈O×RNK+

Q
(
Λ; Λ(r−1)

)
. (6.4)

Simplifying Q
(
Λ,Λ(r−1)

)
we get,

Q
(
Λ; Λ(r−1)

)
= cK −

1

2

K∑
k=1

[
log |Γk|+ Tr

{
Γ−1
k E

{
xkx

T
k |yK ; Λ(r−1)

}}]
− 1

2σ2

K∑
k=1

E
{

(yk −Axk)T (yk −Axk) |yK ; Λ(r−1)
}
, (6.5)

where cK is a constant independent of Λ. We notice that the optimization in the M-step

is separable in its variables Γk and A. We get the update of γk in the M-step as follows

(see [22, 23] for the detailed derivation):

γ
(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
, (6.6)

1With a slight abuse of notation, we define Γk = Diag {γk}, and not the kth column of the matrix Γ.
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where we define the following quantities:

µk , E
{
xk|yk; Λ(r−1)

}
∈ RN (6.7)

Σ(k) , E
{

(xk − µk) (xk − µk)T |yk; Λ(r−1)
}
∈ RN×N (6.8)

The optimization problem corresponding the dictionary update reduces to

arg min
A∈O

K∑
k=1

E
{

(yk −Axk)T (yk −Axk)
∣∣∣yk; Λ(r−1)

}
. (6.9)

The objective function above can be equivalently written as

g (A)=−Tr
{
MY TA

}
+

1

2
Tr
{
A (Σ−D {Σ})AT

}
, (6.10)

where M ∈ RN×K has µk as its kth column, Y ∈ Rm×K has yk as its kth column, and

Σ ,
∑K

k=1

(
Σ(k) + µkµ

T
k

)
∈ RN×N . We note that there is no closed form solution to the

quadratic optimization with the unit norm column constraints in (6.9). Therefore, we

solve the optimization problem using two iterative schemes: AM and ALS.

6.2.1 Alternating Minimization (AM)

The AM procedure updates one column of A at a time, keeping the other columns fixed.

If we fix all columns of A except the ith column, the optimization problem reduces to

arg min
Ai:A

T
iAi=1

(
K∑
k=1

−µk[i]yk +
N∑

j=1;j 6=i

Σ[i, j]Aj

)T

Ai. (6.11)

Interestingly, the above reduced optimization problem admits a unique closed form solution

provided
∑K

k=1µk[i]yk −
∑N

j=1;j 6=i Σ[i, j]Aj 6= 0. If otherwise, we skip the update of

that particular column and continue with the update of the next column. Therefore,
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Algorithm 3 Dictionary Learning via SBL using AM

Input: Y = yK , N and σ2

Parameters: ε1 and ε2 (stopping thresholds)

Initialize: r = 0,A(0) = 1,γ
(0)
k = 1, k = 1, 2, . . . , K

repeat
for k = 1, 2, . . . , K do

#E-Step:

Φ̃ =
(
σ2I +A(r)Γ

(r)
k A

(r)T
)−1

Σ(k) = Γ
(r)
k − Γ

(r)
k A

(r)TΦ̃A(r)Γ
(r)
k

µk = σ−2Σ(k)A
(r)Tyk

r ← r + 1
#M-Step:
γ

(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
end for
#Update of A (also part of the M-Step)
Initialize AM: u = 0, A(r,0) = A(r−1)

Σ =
∑K

k=1

(
Σ(k) + µkµ

T
k

)
, M = [µ1,µ2, . . . ,µK ]

repeat
u← u+ 1
for i = 1, 2, . . . , N do
v

(r,u)
i =

(
YMT

)
i
−∑i−1

j=1 Σ[i, j]A
(r,u)
j

−∑N
j=i+1 Σ[i, j]A

(r,u−1)
j

A
(r,u)
i =


1∥∥∥v(r,u)i

∥∥∥v(r,u)
i if v

(r,u)
i 6= 0

A
(r,u−1)
i otherwise.

end for
until ‖A(r,u) −A(r,u−1)‖ < ε2
A(r) = A(r,u)

until ‖A(r) −A(r−1)‖+
∑K

k=1 ‖γ
(r)
k − γ

(r−1)
k ‖ < ε1

Output: {µk, k = 1, 2, . . . , K} and A(r)
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the dictionary update in the rth iteration of the EM algorithm reduces to the following

recursions for i = 1, 2, . . . , N :

v
(r,u)
i ,

K∑
k=1

µk[i]yk−
i−1∑
j=1

Σ[i, j]A
(r,u)
j −

N∑
j=i+1

Σ[i, j]A
(r,u−1)
j (6.12)

A
(r,u)
i =


1∥∥∥v(r,u)i

∥∥∥v(r,u)
i if v

(r,u)
i 6= 0

A
(r,u−1)
i otherwise.

(6.13)

where u denotes the AM procedure iteration index. We stop the AM iterations when

A(r,u) converges, i.e., its change in successive iterations is small. The pseudo-code for this

algorithm, which we call dictionary learning via SBL (DL-SBL) using AM, is provided in

Algorithm 3.

Remark: For the special case when Σ is a diagonal matrix and YMT 6= 0, the optimization

problem (6.9) is separable in the columns ofA. Then, the AM procedure returns the global

minimum of (6.10) in one iteration.

6.2.2 Armijo Line Search (ALS)

The ALS procedure updates the entire matrix A in every iteration instead of updating

one column at a time [151–153]. The idea here is to translate the constrained optimization

problem into an unconstrained convex optimization problem using Riemannian geometry.

The algorithm continuously translates a test point in the direction of a tangent vector at

the point, while staying on the manifold, until a reasonable decrease in objective function

is obtained, and finally reaches a stationary point. Such a mapping is called a retraction,
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Algorithm 4 Dictionary Learning SBL using ALS

Input: Y = yK , N and σ2

Parameters: ε1 and ε2 (stopping thresholds)

Initialize: r = 0,A(0) = 1,γ
(0)
k = 1, k = 1, 2, . . . , K

repeat
for k = 1, 2, . . . , K do

#E-Step:

Φ̃ =
(
σ2I +A(r)Γ

(r)
k A

(r)T
)−1

Σ(k) = Γ
(r)
k − Γ

(r)
k A

(r)TΦ̃A(r)Γ
(r)
k

µk = σ−2Σ(k)A
(r)Tyk

r ← r + 1
#M-Step:
γ

(r)
k = Diag

{
µkµ

T
k + Σ(k)

}
end for
#Update of A (also part of the M-Step)
Initialize ALS: u = 0, A(r,0) = A(r−1)

Σ =
∑K

k=1

(
Σ(k) + µkµ

T
k

)
, M = [µ1,µ2, . . . ,µK ]

repeat
u← u+ 1

Z(r,u−1) = PA(r,u−1)

(
YMT −A(r,u−1)Σ

)
Compute the smallest integer p > 0 such that

g
(
RA(r,u−1)

(
βpαZ(r,u−1)

))
− g

(
A(r,u−1)

)
≤ −cβpα

∥∥∥Z(r,u−1)
∥∥∥2

A(r,u) = RA(r,u−1)

(
βpαZ(r,u−1)

)
until ‖A(r,u) −A(r,u−1)‖ < ε2
A(r) = A(r,u)

until ‖A(r) −A(r−1)‖+
∑K

k=1 ‖γ
(r)
k − γ

(r−1)
k ‖ < ε1

Output: {µk, k = 1, 2, . . . , K} and A(r)
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is denoted by RA. For Riemannian manifolds, the line search method takes the form

A(r,u) = RA(r,u−1)

(
βpαZ(r,u−1)

)
, (6.14)

where Z(r,u−1) is the tangent direction of the cost function at A(r,u−1) and βpα is the

Armijo step size. The constants β and α are the parameters of the algorithm. The step

size is chosen so that p is the smallest nonnegative integer that satisfies

g
(
RA(r,u−1)

(
βpαZ(r,u−1)

))
− g

(
A(r,u−1)

)
≤ −cβpα

∥∥∥Z(r,u−1)
∥∥∥2

, (6.15)

where the scalar parameter c ∈ (0, 1). The interested readers are referred to [151] for more

details on ALS procedure.

We first note that the feasible set O is the Cartesian product of N unit spheres in

Rm which are submanifolds of the Euclidean space Rm. Since the Cartesian product of

Riemmanian manifolds is a Riemmanian manifold, O is a Riemmanian manifold. We

define the Riemannian metric for O as 〈A,B〉 = Tr
{
ATB

}
for A,B ∈ O. The gradient

of the objective function g in the Euclidean space is as follows:

∇g (A) = −YMT +A (Σ−D {Σ}) . (6.16)

The tangent space of the Cartesian product of manifolds is the Cartesian product of the

tangent spaces. Therefore, we get the tangent space as

TA =
{
B : AT

i Bi = 0,∀i
}
. (6.17)
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The ith column of the orthogonal projection onto the tangent space is

PA (Z)i =
(
I −AiA

T
i

)
Zi. (6.18)

Thus, the gradient of the restriction of g to O is PA (∇g (A)), and we can choose the ith

column of the retraction as

RA (Z)i =
Ai +Zi

‖Ai +Zi‖
. (6.19)

We note that the denominator ‖Ai +Zi‖ 6= 0 when Zi is the orthogonal projection onto

the tangent space from (6.18). We call this algorithm DL-SBL using ALS, and summarize

its pseudo-code in Algorithm 4.

6.2.3 Comparison of the two optimization procedures

In this subsection, we compare the AM and the ALS procedures to get insights on how to

choose between them.

• Computational complexity: We assume that the multiplication of a p×q matrix with

a q × r matrix requires O(pqr) flops [120]. Each iteration of the AM procedure has

a complexity O(mKN + mN2). Typically, K � N for accurate estimation, and

therefore the complexity order is O(mKN). Thus, the complexity is linear in m, N

and K. On the other hand, the computational complexity of the ALS procedure is

also of the order O(mKN), except for the computation of the step-size parameter

m. The complexity of this step depends on c, β and α, and it is hard to determine

the precise dependence. However, we have observed in our simulations that the ALS

algorithm requires a larger number of iterations and a longer run time to converge

compared to the AM procedure for the same initialization. Hence, the AM procedure
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is faster than the ALS procedure.

• Memory Requirements: Both AM and ALS procedures require O(N2) sized memory,

as the largest matrix we keep track of has size N ×N .

• Parameter tuning: The AM procedure does not require tuning of any sensitive pa-

rameters. However, the ALS procedure has scalar parameters c, β and α which

determine the rate of convergence, but these parameters do not affect the recovery

performance of the overall algorithm. Hence, the tuning of the parameters of ALS

is not very critical.

Thus, for practical applications, we prefer AM to ALS as it is computationally less expen-

sive and does not require tuning of any parameters. However, ALS has better theoretical

convergence guarantees compared to AM algorithm, which we discuss in Section 6.3.

6.2.4 Comparison with other Bayesian techniques

The main differences between our algorithm and the other Bayesian algorithms in the

literature are as follows:

1. Our algorithm does not use Gibbs sampling, unlike the algorithms in [148,150]. In-

stead, we use a variational evidence framework which obviates the need for generating

posterior samples, and thus our algorithm is faster. Moreover, the ensemble learn-

ing based algorithms come with no convergence guarantees. We provide rigorous

convergence guarantees for our algorithm in Section 6.3.

2. Our algorithm is similar to the Sparse Bayesian dictionary learning with a Gaussian
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hierarchical model proposed in [150] except for the prior on the dictionary. The algo-

rithm in [150] uses a Gaussian prior on the dictionary elements to obtain a closed form

expression for the EM updates. However, the choice of Gaussian prior was heuris-

tically motivated by the fact that the entries of the dictionary are bounded. Since

the dictionary is an arbitrary matrix with unit norm columns, the ideal choice of

prior on the dictionary columns is a uniform distribution on the unit m−dimensional

sphere. Hence, we propose to use no prior (which is equivalent to a uniform prior)

on the dictionary and learn the dictionary as a deterministic unknown. Due to the

better prior model used, our algorithm outperforms the one in [150] in terms of

the reconstruction accuracy. The cost paid for this approach is the extra iterative

procedure that is nested within the EM algorithm. Using an optimization proce-

dure within the EM framework may appear to be more computationally demanding

than an approach with closed form expressions. Nonetheless, from our simulations,

we find that our algorithm requires far fewer number of iterations compared to the

algorithm in [150]. Hence, the overall run time of the algorithm is much smaller.2

In other words, the algorithm in this chapter is an improved version of Gaussian

hierarchical model based SBL algorithm with reduced run time and higher accuracy.

We corroborate these arguments through numerical simulations in Section 6.5.2 (See

Figure 6.2c).

3. Another Bayesian algorithm for dictionary learning is known as multimodal sparse

2A similar observation can be found, in the context of sparse signal recovery, in [154]. Iterative
reweighted `2 algorithms are typically slower than iterative reweighted `1 algorithms, even though the
former admits closed form expressions in the iterations.
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Bayesian dictionary learning [155]. This algorithm is same as the Gaussian hierar-

chical model based SBL algorithm with a non-informative prior on the dictionary

columns, except that it includes an additional projection step. This step projects

the columns of the dictionary to the unit norm sphere to avoid instabilities due to

the ambiguity in the amplitude. As in the case of the Gaussian hierarchical model

based SBL algorithm, this algorithm has a closed form expression for the M-step.

As explained above, the algorithm effectively uses a non-informative prior on the

dictionary atoms instead of using a uniform distribution on the m−dimensional unit

sphere. Further, the convergence guarantees in [155] do not apply to the algorithm

that involves the projection step, which is crucial to the success of the algorithm.

Since our cost function is carefully designed to handle the amplitude ambiguity,

our algorithm outperforms the multimodal sparse Bayesian dictionary learning al-

gorithm. We illustrate this through numerical simulations in Section 6.5.2 (See

Figure 6.2c).

6.3 Convergence of Optimization Procedures

In this section, we discuss the convergence properties of the AM and ALS procedures

proposed to solve (6.9).

Proposition 6.1 (Function value convergence). The sequences of cost function values{
g
(
A(r,u)

)}
u∈N

generated by the AM and the ALS procedures are non-increasing and

convergent.

Proof. See Appendix D.1.
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While above proposition guarantees that the cost function converges, it does not establish

the convergence of the iterates. Hence, we study the convergence behavior of the iterates

in the next subsections. We start with the following definition.

Definition 6.1 (Nash equilibrium). The matrix A with unit norm columns is said to be

a Nash equilibrium point of (6.9) if

g (A) ≤ g ([A1, . . . ,Ai−1,a,Ai+1, . . . ,AN ]) , (6.20)

for any unit-norm vector a and for i = 1, 2, . . . , N .

Every column of a Nash equilibrium is optimal when other columns of the dictionary are

held fixed, that is, one cannot unilaterally improve the cost function in (6.9) by updating

any single column. We now proceed with our analysis of the convergence of the AM

procedure in the next subsection.

6.3.1 AM Procedure

The iterative AM procedure can be viewed as a fixed point iteration with the update

mapping dictated by the function whose stationary point is sought. The following result

shows that the fixed points of the updates generated by the AM procedure are Nash

equilibria of (6.9).

Proposition 6.2 (Nash Equlibrium). Let G : O → O be the update mapping of AM

procedure, i.e., A(r,u+1) = G(A(r,u)). Then, a matrix A∗ is a fixed point of G if and only

if A∗ is a Nash equilibrium point of the objective function of (6.9). Further, all Nash

equilibrium points are stationary points of the cost function.

Proof. See Appendix D.2.
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Corollary 6.1. A matrix A with unit norm columns is a Nash equilibrium point of the

objective function in (6.9) if and only if A satisfies the relation:

AL = YMT −A (Σ−D {Σ}) , (6.21)

for some diagonal psd matrix L.

Proof. The result directly follows from the form of the fixed points shown in the proof of

Proposition 6.2.

We note that the update mapping of the AM procedure does not have a closed form

expression owing to the sequential, column-wise update of the dictionary. Due to this,

although the above theorem characterizes its fixed points, it is hard to establish the con-

vergence of the iterates. On the other hand, it is possible to show several interesting

convergence properties of the iterates in the ALS procedure. We discuss this next.

6.3.2 ALS Procedure

We begin by noting that establishing convergence guarantees for the ALS procedure is chal-

lenging because the optimization problem in (6.9) is nonconvex in A. In particular, since

A is constrained to lie in the set O, the set of all matrices with unit-norm columns, estab-

lishing convergence requires analyzing the convergence behavior over Riemann manifolds.

Existing results in this direction, e.g., [156–160], consider convex optimization problems,

and very few results are known for the nonconvex case. In [161], the authors studied

the convergence of the so-called proximal algorithm applied to nonsmooth functions that

satisfy the  Lojasiewicz inequality around their generalized critical points. Based on this,

convergence of iterative solvers for quadratic optimization of a matrix valued variable over



Chapter 6. 146

the space of orthogonal matrices was shown in [162]. In [163], quadratic optimization over

the space of unit norm vectors was studied. These results, when extended to a matrix set-

ting, lead to a unit norm constraint on the rows of the matrix, and hence are not applicable

in our case. Thus, the convergence of an ALS type procedure for a quadratic optimization

problem under unit-norm column constraints has not been studied in the literature, and

requires new analysis.

To discuss the convergence properties of the ALS procedures, we consider an equivalent

unconstrained version of the optimization problem in (6.9) as follows:

arg min
A

Tr

{
−MY TA+

1

2
(Σ−D {Σ})ATA

}
+ δnorm(A). (6.22)

Here, we define δnorm as a barrier function corresponding to the feasible region of (6.9):

δnorm(A) ,

0, if A ∈ O

∞, otherwise.

(6.23)

Also, let g̃ : Rm×N → R denote the objective function of (6.22). The critical points of

(6.9) are the points where the subgradient of g̃ vanishes. 3

Theorem 6.1 (Convergence of iterates). The sequence output by the ALS procedure,

{A(r,u)}u∈N, is globally convergent.

Proof. See Appendix D.3.

The above result guarantees that the iterates of the ALS procedure converge irrespective

of the initial point. However, it does not ensure that the algorithm converges to the same

point irrespective of the initialization. Such a guarantee exists only if the cost function

3We note that we use an extended definition of sub-gradient as the function g̃ is non-convex.
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has only one limit point. Hence, we next characterize the properties of the limits points

of the sequence of iterates.

Proposition 6.3 (Characterization of limits). The limit A(r) of the sequence
{
A(r,u)

}
u∈N

generated by the ALS procedure satisfies the relation:

YMT −A(r) (Σ−D {Σ}) = A(r)L, (6.24)

for some diagonal matrix L. Moreover,

1. A(r) is a Nash equilibrium point of (6.9) if and only if L is a positive semidefinite

matrix.

2. A(r) is a local minimum if and only if L + Σ − D {Σ} is a positive semidefinite

matrix. Further, A(r) is a strict local minimum if and only if L + Σ − D {Σ} is a

positive definite matrix.

Proof. See Appendix D.4.

We make the following observations from the above results:

• As in the case of the AM procedure, the update mapping of ALS is not available in

closed form because of the step size selection process. However, the results charac-

terize the fixed points of the mapping.

• The initialization A(r,0) need not be a feasible point of (6.9). Because of the re-

traction step which projects the iterates to the feasible set, the algorithm can be

initialized from any bounded matrix.
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• The results are independent of the estimates from the outer iteration loop of the EM

algorithm and the dimension of the dictionary. Thus, the results are applicable to

any quadratic cost function of the form (6.9).

• GivenA(r),M ,Y and Σ, the conditions for the Nash equilibrium and local minimum

are easily verifiable.

Now, for any first order method such as the ALS procedure, the best guarantees one can

obtain are that it converges to a stationary point. Further, we can determine whether the

stationary point is a local minimum using the test in step 2 of Proposition 6.3. Beyond

this, the only guarantee one can provide for first order methods is that of stability of the

limit points. Stability implies that the algorithm converges to a limit point whenever it is

initialized close enough to it. Formally, we define stability as follows:

Definition 6.2 (Stability). Let G : O → O be the update mapping of an iterative algo-

rithm, i.e., A(r,u+1) = G(A(r,u)). Also, we let G(u)(·) denote the result of u applications of

G:

G(1)(A) = G(A); G(u+1)(A) = G
(
G(u)(A)

)
. (6.25)

The matrix A∗ said to be a stable point of the iterative algorithm if, for every neighborhood

U of A∗, there exists a neighborhood V of A∗ such that, for all A ∈ V and any positive

integer u, it holds that G(u)(A) ∈ U .

We have the following characterization of the stability of the fixed points of the ALS

procedure, based on whether the fixed point is a local minimum or not.

Theorem 6.2 (Stability). Let A(r) be a limit point of the sequence
{
A(r,u)

}
u∈N

generated

by the ALS procedure. Then,
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(i) If A(r) is not a local minimum of g̃, then A(r) is not a stable point of the ALS

procedure.

(ii) If A(r) is a strict local minimum of g̃, then the algorithm converges to A(r) if the

initial point A(r,0) is sufficiently close to A(r).

Proof. See Appendix D.5.

An implication of Theorem 6.2 is that the ALS procedure converges to a local minimum

of the cost function, except when the initial condition is carefully constructed to be adver-

sarial in nature. Also, as in the previous case, the results are independent of the estimates

from the outer iteration loop of the EM algorithm and the dimension of the dictionary.

Thus, Theorem 6.2 is applicable to any optimization of the form (6.9).

In this section, we have analyzed the convergence properties of the inner loop in the M-

step of EM algorithm. Our analysis guarantees that the optimization procedure has good

converge properties. As a consequence, and by virtue of the well-known properties of the

EM algorithm, DL-SBL is globally convergent. Next, we formally prove the convergence

of the overall DL-SBL algorithm and analyze the minima of the DL-SBL cost function

given by (6.3).

6.4 Analysis of DL-SBL Algorithm

The DL-SBL algorithm is not an EM algorithm in the strict sense because the M-step of

the DL-SBL is not guaranteed to converge to the global minimizer, unlike the conventional

EM. However, DL-SBL inherits many good properties of EM such as a monotonic reduction

of the cost function. In this section, we build on the results in Section 6.3 and study the
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characteristics of the DL-SBL algorithm and the cost function.

6.4.1 Convergence of DL-SBL

We start by stating the following result, which asserts that the DL-SBL cost converges.

Proposition 6.4. Suppose that σ2 > 0. The sequence
{
T (Λ(r))

}
r∈N

generated by the

DL-SBL algorithm via ALS procedure converges to T (Λ∗) for some Λ∗ ∈ O× RKN
+ .

Proof. See Appendix D.6.

Next, we characterize the properties of the iterates generated by the algorithm.

Theorem 6.3. Suppose that σ2 > 0. The iterates
{

Λ(r)
}
r∈N

of the outer loop of the DL-

SBL algorithm converge to the set of stationary points of the DL-SBL cost function given

by (6.3). Moreover, if a limit point Λ∗ of the sequence
{

Λ(r)
}
r∈N

is not a local minimum

of T , then Λ∗ is not a stable point of the ALS procedure.

Proof. See Appendix D.7.

The above results guarantee that the cost function values
{
T (Λ(r))

}
converge to T (Λ∗)

for some stationary point Λ∗. They also guarantee that the sequence of iterates converges

to a compact and connected subset of a level set of the cost function, although it does not

necessarily converge to a single point. Theorem 6.3 also gives insights to the stability of

the fixed points of the algorithm, similar to Theorem 6.2. Further, as in the case of the

results in Section 6.3, the above results hold for any values of system dimensions: m,N ,

and K, and sparsity level s.

The next question that we address is on how good the final solution of DL-SBL is. We

answer this question by analyzing the minima of the DL-SBL cost function given by (6.3).
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6.4.2 Analysis of Minima of The Cost Function

First, note that, in the context of dictionary learning, the problem of finding the sparse

representation of a given set of vectors yK , uniqueness of the solution is defined up to an

unavoidable permutation of the unit-norm columns ofA and rows ofX, whereX ∈ RN×K

is the matrix obtained by stacking the sparse vectors xk. We now present necessary

conditions for the uniqueness of the solution:

Proposition 6.5. Consider the dictionary learning problem under noiseless condition

σ2 = 0, i.e, for any given Y , the problem of finding matrices A and X such that Y = AX,

the columns of A have unit norm and the columns of X have at most s non-zero entries.

The solution to the problem is unique only if the following conditions are satisfied:

Rank {X} = N (6.26)

Rank {ASk} = |Sk| < m, (6.27)

where Sk is the support of xk and ASk ∈ Rm×|Sk| is the submatrix of A formed by the

columns indexed by Sk. Further, for the special case of max
k=1,2,...,K

‖xk‖0 = 1, the conditions

are sufficient.

Proof. See Appendix D.8.

We note that the necessary conditions required to ensure the uniqueness of the solution

of the dictionary learning problem is applicable for any dictionary learning algorithm, and

in particular, DL-SBL. Next, we establish that the cost function in (6.3), when minimized,

has the desired global minima.
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Theorem 6.4. Suppose the tuple (A∗,X∗) satisfies the necessary conditions (6.26) and

(6.27). Also, let
{
Γ∗k ∈ RN×N}K

k=1
be a set of nonnegative diagonal matrices denoting the

covariance matrix of the sparse vectors such that

x∗k = Γ
∗1/2
k

(
A∗Γ

∗1/2
k

)†
yk and 0 < c < min

k=1,2,...K
γ∗k, (6.28)

where γ∗k is the smallest nonzero entry of Γ∗k and c is a universal constant. Then, as the

noise variance σ2 → 0, the global minimum of (6.3) is achieved at
(
A∗P , {PΓ∗kP }Kk=1

)
where P is a signed permutation matrix.

Proof. See Appendix D.9.

We note that the sparsest solution of (6.3) is (A∗,X∗) due to (6.27). Although we

assume that the necessary conditions (6.26) and (6.27) hold, the theorem holds true under

the mild condition that

max
k=1,2,...,K

‖xk‖0 < m. (6.29)

However, under the above condition, uniqueness is not guaranteed, i.e., solutions with

suboptimal sparsity may also globally minimize the cost function.

We know that the DL problem is NP-hard [164]. Thus, it is not surprising that the cost

function obtained using SBL framework may have multiple local minima. Nonetheless,

extending the results of the original SBL algorithm on sparse recovery [23], we can show

that all the local minima of the function are achieved at sparse solutions.

Theorem 6.5. Every γk corresponding to the local minimum of the DL-SBL cost function

(6.3) is at most m−sparse, regardless of the value of noise variance σ2.

Proof. See Appendix D.10.
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Table 6.1: Comparison of ALS convergence behaviour with varying step size parameters
β and α

Setting
Fit parameters no. of

iterations

run

time (s)a b

α = 0.1

β = 0.01 -0.034 -0.093 565.04 1.33

β = 0.1 -0.036 -1.102 490.09 1.5

β = 0.9 -0.044 -1.554 480.63 13.68

β = 0.1

α = 0.01 -0.036 -1.118 494.26 1.55

α = 0.1 -0.036 -1.102 490.09 1.50

α = 0.9 -0.037 -0.226 486.60 1.51

6.5 Simulation Results

We use the following simulation setup to evaluate the performance of the algorithms

and validate the theoretical convergence results in Section 6.5.1 and Section 6.5.2. The

locations of nonzero coefficients are chosen uniformly at random, and the nonzero entries

are independent and identically Gaussian distributed with zero mean and unit variance.

The length of measurement vector is chosen as m = 20 and SNR = 20 dB. The columns

of dictionary matrix A are drawn uniformly from the surface of the m-dimensional unit

hypersphere [165].

6.5.1 Convergence

To study the convergence of the AM procedure, we take size of training data set as

K = 1000. We generate sparse signals of length N = 60, each with s = 6 nonzero

entries. We look at the first iteration (r = 1) of the EM algorithm because that requires

the maximum number of inner iterations to converge, and thus illustrates the convergence

behavior well.
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Figure 6.1: Convergence of ALS procedure ((a), (b)) and comparison with AM (c), with
K = 1000, m = 20, N = 60, s = 6, and SNR = 20 dB, for the first iteration of EM
algorithm.
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Figure 6.2: Comparison of DL-SBL with KSVD, MOD, Gaussian hierarchical model based
SBL algorithm, multimodal sparse Bayesian dictionary learning, and Bayesian KSVD,
when the number of input vectors is varied. The performance of DL-SBL is superior to
the other three algorithms.
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Table 6.2: Comparison of ALS and AM convergence behavior

Algo.
Fit parameters no. of

iterations

run

time (s)a b

AM -0.0427 -0.4603 248.95 0.5828

ALS -0.0361 -1.1022 490.09 1.5020

6.5.2 Performance of the Algorithms

In this subsection, we compare the performance of our algorithms with other popular

algorithms in literature. Here, we do not show separate curves for DL-SBL using the ALS

and AM algorithms, as their performances are virtually identical.

For fairness of comparison, the noise level information is provided to all algorithms. For

SimCo, KSVD and MOD, it is used to set the error threshold in the orthogonal matching

pursuit (OMP) step of the algorithm; the threshold is set to be 1.15 times the noise

variance. For DL-SBL, GAMP, Gaussian hierarchical model based SBL, and Bayesian

KSVD, the noise variance is an input to the algorithm. We use the version of Gaussian

hierarchical model based SBL and Bayesian KSVD which do not learn the noise level, but

take the noise level as an input.

Synthetic Data

We use the same setup as in [142]. We generate sparse signals of length N = 50, each with

s = 3 nonzero entries. We let x̂k and xk denote the estimate and true value of the sparse

vector, respectively and Â and A denote the estimate and true value of the dictionary,

respectively. We use the following metrics evaluating the performance.

(i) Dictionary recovery success rate (DRSR) [142], which is the fraction of successfully

recovered columns of the dictionary. A column is said to be successfully recovered if
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the magnitude inner product between the column in the true dictionary and any of

the estimated dictionary columns exceeds 0.99.

(ii) Relative distortion (RD) [144], defined as:

RD ,

∑K
k=1 ‖Âx̂k −Axk‖2∑K

k=1 ‖Axk‖2
. (6.30)

(iii) Run time, which is the time required to complete the computations. It measures the

computational complexity.

We refer to the DRSR and RD metrics jointly as the recovery performance of the algorithm.

These two metrics are equally important due to non-uniqueness of the solution. Any

solution of the form {AP ,Pxk, k = 1, 2, . . . , K}, where P is a signed permutation matrix4

is a solution to the dictionary learning problem. Thus, the error metric
‖A−Â‖2
‖A‖2 does not

account for the inherent non-uniqueness of the solution. Hence, we use DRSR as a measure

of how well the dictionary is recovered, and RD is a measure of how well the recovered

solution matches with the measurements.

Figure 6.2 compares the proposed algorithm with the following algorithms:

• KSVD [142]

• MOD [141]

• Gaussian hierarchical model based SBL algorithms [150] (labeled as SBDL)

• Multimodal sparse Bayesian dictionary learning [155,166] (labeled as Proj-SBDL)

4A matrix is said to be a signed permutation matrix if it has exactly one nonzero entry which is either
1 or −1 in each row and each column.
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• Bayesian KSVD [167].

For the Gaussian hierarchical model based SBL, the best performance is achieved when

the prior imposed is non-informative, and therefore, we use that version of the algorithm

for comparison.

The performance of all the algorithms improve with K, as more information about the

dictionary is available to the algorithm. The DL-SBL algorithm outperforms the other

algorithms in terms of both DRSR and RD. The run time demanded by our algorithm is

larger than K-SVD, but it is lower than the other two algorithms.

The Gaussian hierarchical model based SBL and multimodal sparse Bayesian dictionary

learning have similar performance except for K = 200. When the number of measurements

is very small K = 200, the Gaussian hierarchical model based SBL algorithm fails to con-

verge and thus, the run time is higher and the recovery performance is poorer. The extra

projection step used in the multimodal sparse Bayesian dictionary learning eliminates such

instabilities. As the value of K increases, the algorithm converges, and the recovery per-

formance improves. However, in the regime shown in Figure 6.2, the performance of both

the algorithms is inferior to the other algorithms in the literature. This observation agrees

with the intuitive explanation presented in Section 6.2.4 that the Gaussian hierarchical

model based SBL algorithm requires a larger number of measurements compared to the

DL-SBL algorithm to achieve good performance.

Image Denoising

We next consider the application of DL to the problem of image denoising. Here, the

goal is to remove zero-mean white and homogeneous Gaussian additive noise from a given

image. We adopt the same simulation setup as in [142], and use 10 randomly chosen gray
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Table 6.3: Comparison of PSNR values of different algorithms with varying noise variance

Noise

Standard

Deviation

5 10 15 25

SimCo 38.9843 33.7205 30.8103 27.3856

KSVD 39.0861 33.8418 30.8928 27.3751

MOD 38.8720 33.8818 31.0586 27.5354

DL-SBL 39.0680 33.9115 31.0513 27.6371

GAMP 38.7975 33.7574 30.9353 27.4408

BKSVD 39.0317 33.8861 31.0124 27.6041

Table 6.4: Comparison of SSIM values of different algorithms with varying noise variance

Noise

Standard

Deviation

5 10 15 25

SimCo 0.9643 0.8936 0.8289 0.7396

KSVD 0.9648 0.8946 0.8297 0.7393

MOD 0.9646 0.8959 0.8324 0.7425

DL-SBL 0.9650 0.8958 0.8320 0.7440

GAMP 0.9600 0.8876 0.8252 0.7384

BKSVD 0.9644 0.8953 0.8317 0.7439
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scale images from the Berkeley segmentation database. The noise standard deviations

used in this benchmark are 5, 10, 15, and 25 gray levels. For every image, we learn the

dictionary using K = 6000 uniformly randomly chosen blocks of size m = 8 × 8 = 64

pixels. The length of the sparse vectors N is taken as 256.

For all the algorithms, once the dictionary is learned, the complete image is reconstructed

using the OMP algorithm with the corrupted image and the learned dictionary as inputs

and error threshold as 1.15 times the noise variance. We reconstruct the image as 8 × 8

overlapping blocks which are then combined by averaging the overlapping pixels. The peak

SNR (PSNR) and structural similarity index (SSIM) values of the images reconstructed

by the following algorithms are shown in Table 6.3 and Table 6.4, respectively. The tables

show the median values of the corresponding measures for each noise levels.

• Simultaneous codeword optimization (SimCo) [144];

• K-singular value decomposition (K-SVD) [142];

• Method of optimal directions (MOD) [141].

• Bilinear generalized approximate message passing algorithm (GAMP) [149];

• Bayesian K-SVD (BKSVD) [167]

The results show that the performance of DL-SBL matches that of the other algorithms

at all noise levels, and it offers the best performance at a noise level of 25. At smaller noise

levels (5 and 10), there is no clear winner as the best PSNR value and the best SSIM value

correspond to different algorithms including DL-SBL. At noise level 15, MOD has the

best performance. However, the performance of DL-SBL is close to the best performing
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algorithm for both metrics for all noise levels. Therefore, the performance of our algorithm

is similar to the state-of-the-art algorithms.

6.6 Summary

In this chapter, we analyzed a Bayesian algorithm for jointly recovering a dictionary matrix

and a set of sparse vectors from a noisy linear underdetermined training set. We developed

the algorithm using the SBL framework, and implemented it using the EM algorithm, with

the dictionary matrix and the variances of the entries of the sparse vectors as unknown

parameters. The EM algorithm requires one to solve a non-convex optimization problem

in the M-step, which we tackled using an AM or ALS procedure. We compared the AM

and ALS procedures in terms of their computational complexity and memory require-

ments. We also provided a rigorous convergence analysis of the proposed optimization

procedures. Further, by direct analysis of the cost function involved, we showed that the

DL-SBL algorithm is likely to output the sparsest representation of the input vectors. We

empirically showed the efficacy of our algorithm compared to existing algorithms, when

applied to the image denoising problem. This chapter dealt with the questions Q2 and

Q3 on algorithm development and recovery guarantees for the model SM3. So, we have

looked at all questions posed in Chapter 1 in Chapter 2 to Chapter 6. Before we conclude

the thesis, in the next chapter, we shift gears and provide a new application of structured

sparse signal recovery in the context of structural health monitoring.



Chapter 7

Anomaly Imaging for Structural

Health Monitoring

Exploiting clustered sparsity

In this chapter, we take a small deviation from the main theme of the thesis and present

a structured sparse signal recovery algorithm to a signal model which is not coupled with

LDS. The goal here is to develop an algorithm for anomaly imaging for structural health

monitoring. Under this model, we are given a set of sensor measurements which are

linearly related to an unknown anomaly map. We use a Bayesian framework to explicitly

account for both sparsity and cluster pattern structures that are typical of structural

anomalies. Hence, the algorithm of this chapter provides excellent reconstruction accuracy

by incorporating the available prior information on the anomaly map. Experimental results

on a unidirectional composite plate confirms that the algorithm of this chapter outperforms

two competing methods in terms of reconstruction accuracy.

162
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7.1 Background

Many critical infrastructures like aircraft, load bearing walls and oil pipelines use fiber

reinforced laminate composite materials. Although composite materials are lightweight,

strong, and possess excellent fatigue and corrosion resistance, many inter-laminar defects

may show no visible evidence [168, 169]. To ensure the integrity of the structure for

safe and efficient operation, it is desirable to embed an inspection system within the

structure [170]. An active structural health monitoring (SHM) system consists of an array

of transducers that can excite and sense wave propagation within the thickness of the

structure. The system periodically excites the structure using the transducers sequentially.

The resulting waveforms are collected at the remaining transducers which act as sensors.

The collected signal is compared to a set of baseline measurements acquired from the

structure prior to deployment. The differences between the two signals are characterized

using an anomaly metric. The anomaly metric for all actuator-sensor pairs are used to

detect and characterize structural damage.

Several algorithms for anomaly mapping have been presented in the literature. Mal-

yarenko and Hinders [171] described a tomography-based approach to image flaws and

corrosion on metallic structures. This approach employs the time difference of arrival of

the wave between an actuator and a sensor as the measure of the average properties of

the actuator-sensor path. A similar approach is studied for composite plates in [172].

Later, Prasad et al. [173] successfully located holes on crossply and quasi-isotropic plates

using an iterative algebraic reconstruction technique (ART). The algorithm uses the root-

mean-square value between the sensor signals and the corresponding baseline signals as

the basis for the reconstruction algorithm. Gao et al. [174] proposed the reconstruction
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algorithm for probabilistic inspection of damage (RAPID) for damage mapping. Although

low in complexity, the algorithm design does not consider any particular signal structure

associated with the anomaly map. Recently, Zoubi and Mathews [175, 176] developed an

anomaly mapping algorithm that uses the sparse nature of damage distribution on struc-

tures. However, the sparsity model in the anomaly map is significantly more structured

and exhibits a two-dimensional clustered pattern. Therefore, we present a new solution

exploiting the two-dimensional clustered sparsity pattern as a prior information to the

anomaly map reconstruction problem.

This chapter presents a new algorithm for anomaly imaging, based on ART and the

two-dimensional pattern coupled sparse Bayesian learning algorithm. The algorithm takes

a set of Lamb wave measurements collected on the structure as input, and outputs an

anomaly map from which one can estimate the boundaries of damage on the structure. To

the best of our knowledge, this chapter is the first to exploit the two-dimensional clustered

sparsity pattern of the anomaly map to improve damage mapping accuracy. Experimental

results on a unidirectional composite plate show that the method of this chapter provides

more accurate estimates of the damage boundaries than two competing algorithms.

7.2 System Model

We consider an SHM system that uses a set of m transducers where each transducer can

act as a wave sensor or a wave actuator, as needed. The structure is excited sequentially

by the transducers to obtain an anomaly metric (index) for each signal path connecting

the actuator-sensor pairs. The goal is to estimate the anomaly map of the structure, using

the K = m(m− 1) damage indices thus obtained.
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L(i; j)

Actuator
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Figure 7.1: The figure shows ith sensor-actuator pair and the direct path between them.
The pixels in blue correspond to the nonzero entries of jth row of L, and the non-zero
value equals the length of the path overlapping the pixel.

To reconstruct the anomaly map, we employ a grid architecture where the spatially

continuous map is discretized into N cells or pixels using a grid as shown in Figure 7.1.

The damage value associated with each pixel indicates the state of the corresponding part

of the structure. Thus, our goal reduces to computing the map value at each pixel using

the measured anomaly indices. The mathematical model relating anomaly map values

and the damage indices is adopted from the ART framework. Here, the damage indices

are assumed to be a linear combination of the pixel values weighted with the length of the

direct path between the actuator-sensor pair that crosses the pixel [177]. For instance, in

Figure 7.1, the damage index for the signal path between the sensor-actuator pair depends

on the pixels which are marked in blue. This linear relationship can be written as

y = Lx, (7.1)
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where y ∈ RK is obtained by stacking the damage metrics into a column vector. The

column vector x ∈ RN is the vector of the pixel values or the vectorized version of the

discretized anomaly map. The (i, j)th entry of the matrix L ∈ RK×N is the length of ith

line segment that overlaps pixel j, as illustrated using Figure 7.1. Hence, the map recovery

problem is equivalent to the recovery of x from (7.1) when y and L are known. In the next

section, we present the algorithm to recover the discretized anomaly map which utilizes

the sparse and clustered structures associated with the unknown map.

7.3 Map Recovery Algorithm

We recover the unknown x by exploiting two underlying structures in the signal:

1. Anomaly areas on the structure are usually small compared to its overall size, which

makes x naturally sparse.

2. The anomaly areas occupy a small continuous region of the structure. Therefore,

the anomaly map exhibits two-dimensional cluster patterns, also known as block-

sparsity.

Several recovery algorithms that exploit block-sparsity have been proposed in the liter-

ature. Examples include block-OMP [178], mixed `2/`1 norm-minimization [179], group

LASSO [180] and block-sparse Bayesian learning [181]. These algorithms require apriori

knowledge of the block boundaries. However, in our case, the two-dimensional cluster pat-

tern is not known as it depends on the unknown location and shape of the anomaly area.

Recently, a new approach has been proposed to tackle the difficulty of unknown block

boundaries using the sparse Bayesian learning (SBL) framework [182,183]. Moreover, the
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SBL-based algorithms are known to have superior performance compared to convex re-

laxation or greedy approaches. Hence, we use the pattern-coupled (PC) SBL algorithm to

exploit the two-dimensional block-sparse structure.

In the SBL framework, we use a fictitious prior on the unknown signal which promotes the

underlying signal structures. To account for the two-dimensional block-sparse structure, a

pattern-coupled Gaussian hierarchical prior is imposed on x. The use of hyper-parameters

associated with each entry of x in the hierarchical Gaussian prior is known to promote

sparsity. In addition, two-dimensional block-sparse structure is captured by imposing

dependency between the hyper-parameters associated with each entry and that of its

neighboring entries: x ∼ N (x; 0,Γ), where Γ ∈ RN×N is a diagonal matrix with diagonal

entries:

γ−1
i = αi + β

∑
j∈B(i)

αj, (7.2)

Here, α ∈ RN is a vector of non-negative hyperparameters, β ∈ [0, 1] is the coupling

parameter, and B(i) is the set of neighboring entries of xi in the two-dimensional signal.

Due to the interdependence on the priors, the entry xi is driven to zero if αi or any of

its neighboring hyperparameters goes to infinity. The shared hyperparameters enables

the prior to flexibly model any block-sparse structure, without pre-specifying the block

boundaries.

Using the model in (7.2), as in conventional SBL, we use type II maximum likelihood

estimation for x. In other words, we first estimate the hyperparamters of the imposed

prior which in turn yields an estimate of the sparse x. The hyperparameters are obtained

using the expectation-maximization (EM) algorithm, where the sparse vectors are treated

as hidden variables. We summarize the pseudo-code for anomaly mapping in Algorithm 5.
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For detailed derivation of the PC-SBL algorithm, please refer to [182,183].

Algorithm 5 The PC-SBL Recovery Algorithm

Input: y and L
Parameters: Coupling coefficient β, Tolerance ε
Initialize: α(0), σ2(0), c = d = 10−4

while
∥∥α(r) −α(r−1)

∥∥ ≤ ε and
∣∣σ2(r) − σ2(r−1)

∣∣≤ε do
for r = 1, 2, . . . do

γi=
(
α

(r−1)
i +β

∑
j∈B(i)α

(r−1)
j

)−1

, i=1,2,. . . ,N

Σ = (σ−2(r−1)LLT + Diag {γ})−1

µ = σ−2(r−1)ΣLTy

σ2(r) = K + 2c
(
2d+ ‖y −Lµ‖2 + Tr {(}LLTΣ)

)−1

for i = 1, 2, . . . , N do

α
(r)
i = 2

(
µ2
i + Σii + β

∑
j∈B(i)µ

2
j + Σjj

)−1

end for
end for

end while
Output: x = µ

Although (7.1) does not assume any model mismatch, PC-SBL can handle noisy mea-

surements. The PC-SBL based reconstruction can also be applied to other ART-based

tomographic imaging methods such as MRI, for cancer detection.

7.4 Experimental Results

The experiments described here were conducted on a 41′′ wide, 40′′ long and 0.1′′ thick,

unidirectional composite panel made out of 8 IM7/8552 carbon fiber plies. Thirty two

piezoelectric transducers were attached to the plate covering the middle 33′′ × 32′′ region

of the plate. The excitation signal used was a linear chirp with bandwidth [150,300 kHz]

and the resulting waveforms were acquired with a 2× 106 samples/second sampling rate.

First, the baseline signals were collected before impact damage was introduced into the

structure. Then, we impacted the structure on different locations to create damage, and
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the test signals were acquired after each impact experiment. Other computational details

are as follows:

Choice of damage index: We first applied a mode decomposition algorithm based on

cross Wigner-Ville-distribution of the received signal. The anomaly indices were computed

using the extracted first arriving mode of the measured signal and the baseline signal, as

proposed in [175,176,184].

Multi-grid architecture: The virtual grid on the structure is assumed to be rectangular

with 22× 22 pixels. Since the choice of the grid structure is arbitrary, we used the multi-

grid architecture to improve the reconstruction accuracy. We reconstructed the map using

20 different grids on the structure, then, interpolated them to obtain a map on a high-

resolution grid. The interpolated grids were 200 × 200 pixels. The final estimate of the

anomaly map was obtained by averaging over these 20 maps. Further details on the

multi-grid averaging approach can be found in [185].

Algorithm tuning: From our experiments, we have seen that the choice of parameters β

and ε of Algorithm 5 is not critical. For the results presented here, we choose β = 1 and

ε = 10−6. Also, in the algorithm, we adopt a pruning operation for faster convergence.

At each iteration, we pruned those small coefficients associated with hyperparameters αi

greater than 1011 times the minimum value.

Estimation of anomaly boundaries: The damage area was estimated as the locations on

the structure where the estimated map value was greater than some threshold, and the

threshold is calculated using training data.

Recovery accuracy metric: We used the Sørenson-Dice index (also known as F1 score),

which computes the correlation between two data sets A and B as 2|A∩B|
|A|+|B| . Here, the
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anomaly map obtained using an A-scan device (manual non-destructive evaluation tech-

nique) was used as the ground truth.

To illustrate the performance of our algorithm, we compare the algorithm of this chapter

based on PC-SBL with two state-of-the-art algorithms: a least-squares (LS) based dam-

age mapping algorithm [185] and a LASSO based damage mapping algorithm [175, 176].

Figure 7.2 shows the reconstructed map of the composite plate obtained using three al-

gorithms after impact experiments. Each row corresponds to an experiment, and each

column corresponds to an algorithm. The blue outlines in the maps represent the bound-

aries of the anomaly estimated using A-scan. The extent of the anomaly estimated by

each algorithm is shown in red. We also provide the Sørenson-Dice similarity index of the

estimated boundaries in the caption of each figure.

From Figure 7.2, we see that, compared to the LS-based method (first column), the

algorithm of this chapter (last column) has fewer false alarms. Also, compared to the

LASSO based method (middle column), the algorithm of this chapter gives better estimate

of the damage boundaries, which is evident from the Sørenson-Dice index. Overall, the

results clearly indicate that the map reconstructed by the PC-SBL algorithm identifies the

true anomalies in the structure more closely compared to the other approaches.

7.5 Summary

This chapter presented a new algorithm for anomaly map reconstruction for health moni-

toring of composite structures. We utilized the two-dimensional clustered sparse structure

associated with structural damage to present a new map reconstruction algorithm. Us-

ing a data set obtained from impact experiments, we demonstrated the superiority of our
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(a) Experiment 1: Least-squares
Sørenson-Dice index = 0.6827

(b) Experiment 1: LASSO
Sørenson-Dice index = 0.9186

(c) Experiment 1: PC-SBL
Sørenson-Dice index = 0.9402

(d) Experiment 2: Least-squares
Sørenson-Dice index = 0.3427

(e) Experiment 2: LASSO
Sørenson-Dice index = 0.9005

(f) Experiment 2: PC-SBL
Sørenson-Dice index = 0.9377

(g) Experiment 3: Least-squares
Sørenson-Dice index = 0.7491

(h) Experiment 3: LASSO
Sørenson-Dice index = 0.8379

(i) Experiment 3: PC-SBL
Sørenson-Dice index = 0.8729

Figure 7.2: Comparison of the damage outlines estimated by three different algorithms
along with corresponding Sørenson-Dice similary index. The method of this chapter pro-
vides the best results out of the three methods.
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algorithm compared to two competing algorithms available in the literature. The results

showed that exploiting any underlying structure of the damage improves the map recon-

struction accuracy. Hence, this chapter covered a problem which is not related to LDS,

but connected the sparsity property of a linear system, which is the central theme of the

thesis. Finally, in the next and the final chapter of the thesis, we summarize the main

points and discuss some broader implications of the research presented.
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Conclusions

Summarizing the key takeaways and looking ahead

The thesis presented new theoretical results and algorithms concerning the estimation

of state vectors in LDS with sparsity constraints. This final chapter summarizes all the

findings presented so far, and the new insights the thesis has contributed. We also provide

some exciting questions that the results raise and directions that seem to be promising for

future work.

8.1 Summary of Contributions

We studied the sparse signal recovery problem under three different models associated with

LDS. For each model, we investigated three important aspects: conditions for the existence

of a solution, low-complexity recovery algorithm development, and recovery guarantees.

We list the specific contributions associated with each model in the following subsections.

173
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8.1.1 SM1: Known inputs and observation matrix

Under this model, we considered the recovery of a sparse initial state using the knowledge of

measurements, inputs and other system matrices. We derived guarantees on recoverability

of the sparse initial state of a linear dynamical system under a stochastic setting for

two cases: (i) the observation matrices at different time instants are independent and

identically distributed subgaussian random matrices; (ii) the observation matrices at all

time instants are identical, and equal to a subgaussian random matrix. Our results revealed

that when the system transfer matrix is arbitrary, the measurement bound for recovery

depends on the inverse of the condition number of the matrix. Furthermore, our results

are more general than existing results, and for the regime where they are comparable, our

measurement bounds are tighter.

8.1.2 SM2: Unknown inputs and Known observation matrix

Under this model, we looked at the recovery of a set of sparse control inputs using the

knowledge of the measurements and system transfer matrices. We first considered the

conditions on the system for the existence of a solution. We developed a non-combinatorial,

polynomial time test, called the PBH test, for determining the existence of a solution.

Our procedure is equivalent to the existing Kalman rank based test, but it comes with the

advantage of low complexity. It is interesting to note that such a non-combinational test

is not available for a canonical sparse recovery problem, and the special structure in the

measurement induced by the LDS made it possible to develop this simple test. We also

derived bounds on the minimum number of input vectors required to ensure the existence

of a solution, and an extension of the Kalman decomposition algorithm for sparse inputs.
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In brief, the key contribution from this part of the work is the first-ever low-complexity

controllability test for LDS with sparse inputs.

Next, we addressed the recovery of jointly sparse control inputs using the SBL framework.

We developed a low-complexity, memory efficient algorithm that retained the good per-

formance of SBL. Specifically, we presented a non-iterative online algorithm for recovering

temporally correlated sparse vectors, which resulted in low computational complexity and

memory requirements. We presented two schemes for implementation: a fixed lag scheme

and a sawtooth lag scheme, and discussed an efficient method to initialize the algorithm.

Further, we demonstrated the efficacy of the algorithm by applying it to the problem of

OFDM wireless channel estimation.

Even though the proposed algorithm performed better than the existing algorithms in

terms of recovery performance and run time, the key novelty of the work is in the anal-

ysis of the algorithm. To the best of our knowledge, none of the online algorithms for

the sparse signal recovery come with theoretical guarantees. The offline counterpart of

our algorithm, KM-SBL, is known to have theoretical guarantees only for the special

cases when the sparse vectors are uncorrelated or perfectly correlated. We analyzed the

proposed algorithms for these two special cases and established strong convergence guar-

antees. However, there is an important difference between the offline and online algorithm

guarantees: offline algorithm analysis does not consider computational or memory limita-

tions, and establishes recovery guarantees given a finite set of measurements; the online

algorithm analysis accounts for the computational and memory limitations of the system,

and establishes asymptotic guarantees describing limiting behavior as the number of mea-

surements gets large. Therefore, although both type of algorithms have guarantees for
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the same special cases, the flavor of results and the mathematical machinery used are

completely different. In a few words, our algorithm stands out from the array of existing

online sparse recovery algorithms owing to its strong theoretical guarantees.

8.1.3 SM3: Unknown inputs and observation matrix

Under this model, we considered the dictionary learning problem where the goal is to

recover both the set of sparse control inputs and the observation matrix from the noisy

measurements. We tackled the problem using the SBL framework by estimating the dic-

tionary as a deterministic matrix with unit norm columns. Due to this, our algorithm

outperforms existing Bayesian algorithms which use a prior on the dictionary elements,

both in terms of the reconstruction accuracy and run time. The estimation method uses

the expectation-maximization (EM) algorithm to simultaneously learn the parameters of

the prior and the sparsifying dictionary. The dictionary update step in the EM algorithm

is a quadratic optimization problem with unit norm constraints, which is a nonconvex

problem because of the constraint. Since a closed form solution is not available, we pro-

posed to employ the alternating minimization (AM) procedure or Armijo line search (ALS)

to solve it. We illustrated the performance of the algorithms by comparing it with the

other popular algorithms in the literature when applied to the image denoising problem.

Apart from the superior recovery performance, the main highlight of our dictionary learn-

ing algorithm is the associated theoretical guarantees. We showed that our formulation of

the underlying cost function ensures that the algorithm converges to the sparsest possible

representation. Further, we derived convergence guarantees of the dictionary update step

using AM and ALS optimization procedures and established the stability of the limit points

of the ALS procedure. Thus, the remarkable characteristic of the algorithm compared to
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other dictionary algorithms is the powerful recovery guarantees.

8.1.4 Anomaly Imaging Exploiting Clustered Sparsity

We presented a new algorithm for anomaly imaging, based on algebraic reconstruction

technique and the two-dimensional pattern coupled sparse Bayesian learning algorithm.

The key features of this part of our work are as follows:

• Exploiting Clustered Sparsity: We exploit the two-dimensional clustered sparsity

pattern of the anomaly map to improve damage mapping accuracy.

• Experimental Validation: Experimental results on a unidirectional composite plate

show that our method provides more accurate estimates of the damage boundaries

than two competing algorithms.

The major takeaway of this work is that exploiting any known structure in the map

significantly improves the reconstruction accuracy of the anomaly map.

Overall, the thesis revolves around investigating the role of sparsity in linear systems.

We looked at three different models of sparsity, and thoroughly examined some of the

fundamental aspects related to sparse signal recovery in the context of LDS. The theoretical

analysis presented here is deep-rooted in the rich and elegant mathematical theory of

linear algebra, optimization, probability theory (in particular, concentration inequalities

and random matrix theory), stochastic approximation, Riemannian matrix manifold, etc.

The mathematical analysis presented in the thesis can lead to some interesting future

research, and we discuss some ideas in the next section
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8.2 Future Work

Using this thesis as a point of departure, one can consider new algorithm development for

different but related sparsity models, and a deeper analysis of some of the problems, or

explore theoretical aspects of the results out of simple curiosity. Some possible directions

for future work are as follows:

1. Stabilizability: Similar to the analysis of observability and the controllability of

LDS presented in Chapter 2 and Chapter 3, a similar theory on the stabilizability of

an LDS under sparsity constraints can be developed. Further, it would be interesting

to develop guarantees for the case where the measurement matrices are deterministic,

possibly via the mutual coherence of the matrices.

2. Constrained sparse-controllability: Building upon our results in Chapter 3,

further studies which impose a constraint on the maximum magnitude of the sparse

inputs, or integer or lattice constraints on the sparse inputs, can be undertaken in

the future.

3. Online recovery algorithms: Continuing the online algorithm development in

Chapter 4, one can devise online algorithms where the measurements arrive sequen-

tially, for the following scenarios:

• Single sparse recovery problem (D = I).

• Sparse input recovery in LDS for arbitrary D and H .

• Dictionary learning using linear projections of sparse data.

4. Dictionary learning for LDS: Following the ideas presented in Chapter 6, a
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universal algorithm that can learn the observation matrix for a general LDS can be

developed.

To conclude, the research presented in the thesis offered new mathematical theory and a

bundle of algorithms connecting the areas of control theory, compressed sensing and on-

line learning algorithms. We identified that sparse structures can arise in LDS in several

practical scenarios. The results established that exploiting the sparsity along with any

additional structure is intriguing and fascinating because of the beauty of its theoretical

guarantees and the superior performance. Moreover, involving randomness in the mea-

surement step enables one to establish strong theoretical guarantees. These realizations,

together with their potential applications, have also triggered some important research

questions that need to be looked at in the future.
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Appendix to Chapter 2

A.1 Proof of Proposition 2.1

Proof. Using [32, Corollary 7.32] and [32, Theorem 7.30], we can show that, for t > 0,

P

{
m∑
l=1

(Al − E {Al}) ≥ t

}
≤ exp

(
− c2

2t
2/2

2c1m+ c2t

)
(A.1)

P

{
m∑
l=1

(−Al + E {Al}) ≥ t

}
≤ exp

(
− c2

2t
2/2

2c1m+ c2t

)
. (A.2)

Therefore, for t > mmax {amax,−amin},

P

{
m∑
l=1

Al ≥ t

}
≤ exp

(
− c2

2(t−mamax)2/2

2c1m+ c2(t−mamax)

)

P

{
m∑
l=1

−Al ≥ t

}
≤ exp

(
− c2

2(t+mamin)2/2

2c1m+ c2(t+mamin)

)
.

We get the desired result by combining the above inequalities using the union bound.
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A.2 Proof of Theorem 2.1

Proof. First, we note that an overall scaling does not affect the RIP of a matrix. Hence,

without loss of generality, we assume that the largest and the smallest singular values of

D 6= 0 are 1 and λ, respectively. For any z ∈ RN such that ‖z‖2 = 1 and t ∈ (0, 1), we

have

P
{∣∣∣∣ 1

Km

∥∥∥Ã(K)z
∥∥∥2

− ‖z‖2

∣∣∣∣ ≥ t

}
= P

{∣∣∣∣∣
K−1∑
k=0

m∑
l=1

(
ak,l +

∥∥Dkz
∥∥2 − ‖z‖2

)∣∣∣∣∣ ≥ Kmt

}
, (A.3)

where ak,l ,
∣∣(AT

(k))
T
l D

kz
∣∣2 − ∥∥Dkz

∥∥2
, where (AT

(k))
T
l is the lth row of the matrix A(k).

Here, the term (AT
(k))

T
l D

kz is the inner product between a row of Ã(K) and z. It is

easy to see that (AT
(k))

T
l D

kz is a subgaussian random variable with parameter c
∥∥Dkz

∥∥2
.

Also, using the independence and unit variance property of the entries of (AT
(k))l, we have

E {ak,l} = 0. Thus, from Lemma 2.1, for |θ| ≤ 1

16c‖Dkz‖2 and hence for |θ| ≤ 1
16c

, we have

E {exp (θak,l)} ≤ exp
(
128θ2c2

∥∥Dkz
∥∥4
)
≤exp

(
128θ2c2

)
,

which follows since the largest singular value of D is 1. Note that this holds true even if

D is not invertible. Hence, using the Chernoff bound, for all t > 0,

P {|ak,l| ≥ t} ≤ 2 min
0<θ≤ 1

16c

exp
(
128θ2c2

)
exp (−θt) (A.4)

≤ 2 exp (1/8) e−t/(32c), (A.5)

where (A.5) is obtained by setting θ = 1/(32c). Further, independence of the rows of A(k)

for k = 1, 2, . . . , K implies that ak,l are independent. Therefore, ak,l +
∥∥Dkz

∥∥2 − ‖z‖2
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satisfies the conditions required to apply Proposition 2.1. Thus, (A.3), along with the fact

λ2(K−1) − 1 ≤
∥∥Dkz

∥∥2−‖z‖2 ≤ 0 yields, for t ∈ (1− λ2(K−1), 1)

P
{∣∣∣∣ 1

Km

∥∥∥Ã(K)z
∥∥∥2

− ‖z‖2

∣∣∣∣ ≥ t

}
≤ exp

(
− c2

2(Kmt)2/2

2c1Km+ c2Kmt

)
+ exp

(
−c

2
2

[
Kmt+Km

(
λ2(K−1) − 1

)]2
/2

2c1Km+ c2Km (t+ λ2(K−1) − 1)

)
(A.6)

≤ exp

(
− c2

2Kmt
2

2 (2c1 + c2t)

)
+ exp

(
−c

2
2Km

(
t+ λ2(K−1) − 1

)2

2 (2c1 + c2t)

)
(A.7)

≤ 2 exp
(
−c̃Km

(
t− 1 + λ2(K−1)

)2
)
, (A.8)

where c1 = 2 exp (1/8), c2 = 1/(32c) and c̃ =
c22

2(2c1+c2)
. Also, the last step follows because

when t ∈ (1−λ2(K−1), 1), we have t2 ≥
(
t+ λ2(K−1) − 1

)2
. Now, using the proof technique

in [32, Theorem 9.11], we get that if (2.13) holds, the RIC δs of A satisfies δs < δ, for all

δ > 1− λ2(K−1), with probability at least 1− ε. This completes the proof.

A.3 Proof of Theorem 2.3

Before we prove the theorem, we present a set of mathematical tools used in the proof.

A.3.1 Toolbox

Let Z ⊂ Rm×N be a set of matrices, and the set Ts denote the set of s−sparse vectors

in RN : Ts =
{
z ∈ RN : ‖z‖ = 1 and ‖z‖0 ≤ s

}
. We need the following two definitions to

state the results in this subsection.

Definition A.1 (Admissible sequence). An admissible sequence U = {Ui}∞i=0 on Z is an

increasing sequence of partitions of Z such that |Ui| = 22i and |U0| = 1. Here, increasing

sequence of partitions implies that every set of Ui is contained in one of the sets of Ui−1
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for all i. Also, U0 = Z, and every set of Ui is a subset of Z. Given a matrix Z ∈ Z, we

denote the unique set of Ui that contains Z by Ui(Z).

Definition A.2. [Functionals on a set of matrices] We define three functionals on Z as

follows:

dF (Z) , sup
Z∈Z
‖Z‖F (A.9)

d2 (Z) , sup
Z∈Z
‖Z‖2 (A.10)

ζ (Z) , inf
U={Ui}∞i=0

sup
Z∈Z

∞∑
i=0

2i/2D(Ui(Z)), (A.11)

where the inf is over all possible admissible sequences, and the term D is defined as follows:

D(Ui(Z)) , max
U (1),U (2)∈Ui(Z)

∥∥U (1) −U (2)

∥∥ . (A.12)

It represents the diameter the set Ui(Z), which is a decreasing function of i.

Next, we state a result which is the main ingredient of our proof. It bounds the suprema

of a chaos process indexed by the set Z .

Theorem A.1. [72, Theorem 3.1] Let u be a random vector whose entries are independent

zero-mean, unit-variance subgaussian random variables with common parameter c. Let

F1 , ζ (Z) [ζ (Z) + dF (Z)] + dF (Z) d2 (Z) (A.13)

F2 , d2
2 (Z) [ζ (Z) + dF (Z)]2 (A.14)

F3 , d2
2 (Z) . (A.15)
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Then, for t > 0, it holds that

P
{

sup
Z∈Z

∣∣‖Zu‖2 − E
{
‖Zu‖2}∣∣ > c1F1 + t

}
≤ 2 exp

(
−c2 min

{
t2

F2

,
t

F3

})
, (A.16)

where c1, c2 > 0 are universal positive constants which depend only on c.

It is difficult to directly apply the above theorem due to the complicated form of the

functional ζ (Z). We need a result that bounds the function ζ (Z) using the notion of the

covering number. The covering number is defined as follows.

Definition A.3 (Covering number). Given u > 0, the covering number CN {Z, u} is

defined as the smallest integer p such that one can find a subset Z ′ ⊂ Z satisfying |Z ′| ≤ p

and

min
Z′∈Z′

‖Z −Z ′‖2 ≤ u,∀Z ∈ Z. (A.17)

Lemma A.1. [186]. For the functional ζ (Z), it holds that

ζ (Z) ≤
∫ ∞

0

ln1/2 (CN {Z, u}) du. (A.18)

The covering number is hard to compute in closed form. Hence, we use the following

lemma to further bound the covering number of the set of interest to us.

Lemma A.2. [74, Lemma 6] Let a linear map A : RN → Rm be such that

∥∥∥∥ 1√
s
A(z)

∥∥∥∥ ≤ κ ‖z‖1 , ∀z ∈ RN , κ > 0. (A.19)
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Then, for the set Ts, it holds that

ln (CN {A(Ts), u})


≤ Csmin

{
κ2

u2
ln2N, s lnN + s ln

(
1 + 2κ

u

)}
for 0 < u < κ

= 0 for u > κ,

(A.20)

where C is a universal positive constant.

We will also need the following result from elementary calculus in the proof to tackle the

integral in Lemma A.1.

Lemma A.3. For a ≤ b, it holds that

∫ a

0

√
ln

(
1 +

b

u

)
du ≤ 3

2
a

√
ln

(
1 +

b

a

)
. (A.21)

Proof. See Appendix A.4.

We have now presented all the mathematical tools that are required to prove the theorem.

In the next subsection, we formally prove the desired result.

A.3.2 Proof

As mentioned in Section 2.2, (2.6) is equivalent to (2.4). Therefore, without loss of gen-

reality, we assume that the largest and the smallest singular values of D are 1 and λ,

respectively. We recall that our goal is to obtain a probabilistic bound on
∥∥∥Ã(K)z

∥∥∥ for

z ∈ Ts, using Theorem A.1. At a high level, there are four main steps to the proof:

• First, we convert Ã(K)z to the form given in Theorem A.1, i.e., the product of a

matrix and a subgaussian vector.

• Second, we bound the three functionals d2, dF and ζ in Definition A.2.
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• Third, using the bounds in the previous step, we bound F1, F2 and F3 in Theo-

rem A.1, since the three quantities are functions of d2, dF and ζ.

• Fourth, we apply Theorem A.1 with the upper bounds on F1, F2 and F3. Here, we

note that Theorem A.1 holds for upper bounds on F1, F2 and F3. This yields a con-

centration inequality bounding the deviation of the random variable
∥∥∥ 1√

Km
Ã(K)z

∥∥∥2

from its mean 1
K

∑K−1
k=0

∥∥Dkz
∥∥2

. Finally, we establish the desired result by suitable

algebraic manipulation of the concentration inequality.

In the remainder of this section, we provide the details of each of these steps.

For the first step, we consider the following:

∥∥∥∥ 1√
Km

Ã(K)z

∥∥∥∥2

=
K−1∑
k=0

∥∥∥∥ 1√
Km

ADkz

∥∥∥∥2

(A.22)

=

∥∥∥∥ 1√
Km

AZ(K)(z)

∥∥∥∥2

F

, (A.23)

where the matrix function Z(K) : Ts → RN×K is defined as follows:

Z(K)(z) ,
[
z Dz . . .DK−1z

]
, z ∈ Ts. (A.24)

Further, we have

∥∥∥∥ 1√
Km

Ã(K)z

∥∥∥∥2

=

∥∥∥∥ 1√
Km

ZT
(K)(z)AT

∥∥∥∥2

F

(A.25)

=
∥∥∥Z̃(K)(z)vec

{
AT
}∥∥∥2

, (A.26)

where vec
{
AT
}
∈ RmN is the vectorized version of the matrix AT, which has subgaussian

entries with common parameter c. The matrix function Z̃(K) : Ts → RKm×mN is a block

diagonal matrix with 1√
Km
ZT

(K)(z) as the mth block diagonal entries, for all z ∈ Ts. Thus,
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the first step is complete.

The next step is bound the three terms d2, dF and ζ using the following lemmas.

Lemma A.4. For the set Z̃(K),

dF

(
Z̃(K)

)
≤ 1 (A.27)

d2

(
Z̃(K)

)
≤
√

s

Km
L (D, K) , (A.28)

where L (D, K) is as defined in (2.32).

Proof. See Appendix A.5.

Lemma A.5. The functional ζ
(
Z̃(K)

)
can be bounded as follows:

ζ
(
Z̃(K)

)
≤ C

√
s

Km
L (D, K) lnN ln s, (A.29)

for some C which is universal positive constant that depends only on the subgaussian

parameter c.

Proof. See Appendix A.6.

Now, we combine the results in the second step to obtain bounds on F1, F2, and F3.

Further, we note that we need to bound P
{∣∣∣∣∥∥∥ 1√

Km
Ã(K)z

∥∥∥2

− 1
K

∑K−1
k=0

∥∥Dkz
∥∥2
∣∣∣∣ > δ̃

}
, for

some 0 ≤ δ̃ < 1 using Theorem A.1. To this end, we use the assumptions of Theorem 2.3

to further upper bound F1 to make it a multiple of δ̃. We summarize the third step in the

following lemma.
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Lemma A.6. Using the definitions in Theorem A.1 and under the assumptions of Theo-

rem 2.3, there exists a constant C1 > 0 such that

F1 ≤ δ̃/2c1 (A.30)

F2 ≤ C1
s

Km
L2 (D, K) (A.31)

F3 ≤
s

Km
L2 (D, K) , (A.32)

where c1 is the same constant as in Theorem A.1 and

δ̃ , δ − 1 + λ2(K−1). (A.33)

Proof. See Appendix A.7.

Now, we are ready to go the final step of the proof. We apply Theorem A.1 to (A.26)

with t = δ̃/2 to get

P

{∣∣∣∣∣
∥∥∥∥ 1√

Km
Ã(K)z

∥∥∥∥2

− 1

K

K−1∑
k=0

∥∥Dkz
∥∥2

∣∣∣∣∣ > δ̃

}
≤ 2 exp

(
−C min

{
δ̃2, δ̃

} Km

sL2 (D, K)

)
(A.34)

≤ 2 exp

(
−C Kmδ̃2

sL2 (D, K)

)
≤ ε, (A.35)

where the universal positive constant C depends on the subgaussian parameter c, and we

use (2.33) of Theorem 2.3 to bound using ε in the last step.

Thus, for all z ∈ RN such that ‖z‖ = 1 and ‖z‖0 ≤ s, with probability at least 1− ε,

∣∣∣∣∣
∥∥∥∥ 1√

Km
Ã(K)z

∥∥∥∥2

− 1

K

K−1∑
k=0

∥∥Dkz
∥∥2

∣∣∣∣∣ ≤ δ̃. (A.36)
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Therefore, for 0 ≤ δ̃ < λ2(K−1),

λ2(K−1) − δ̃ < 1

Km

∥∥∥Ã(K)z
∥∥∥2

< 1 + δ̃, (A.37)

since λK−1 ≤ λk ≤
∥∥Dkz

∥∥ ≤ 1. We also use (A.33) to relate δ and δ̃ as follows:

1− δ < 1

Km

∥∥∥Ã(K)z
∥∥∥2

< 1 + δ, (A.38)

for δ > 1− λ2(K−1), with probability at least 1− ε. Hence, 1
Km
Ã(K) satisfies RIP of order

s with RIC as δ, with probability at least 1− ε. Thus, the proof is complete.

A.4 Proof of Lemma A.3

We have

∫ a

0

√
ln

(
1 +

b

u

)
du = b

∫ ∞
√

ln(1+b/a)

td

(
1

exp(t2)− 1

)
(A.39)

= a

√
ln

(
1 +

b

a

)
+ b

∫ ∞
√

ln(1+b/a)

1

exp(t2)− 1
dt, (A.40)

where we use the substitution t =
√

ln
(
1 + b

u

)
in (A.39) and integration by parts to get

(A.40). Now, the second term simplifies as follows:

∫ ∞
√

ln(1+b/a)

1

exp(t2)− 1
dt ≤

∫ ∞
√

ln(1+b/a)

t√
ln(1 + b/a)

e−t
2

1− e−t2 dt (A.41)

=
1

2
√

ln(1 + b/a)
ln
(

1 +
a

b

)
. (A.42)
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Therefore, we get

∫ a

0

√
ln

(
1 +

b

u

)
du ≤ a

√
ln

(
1 +

b

a

)
+

b

2
√

ln(1 + b/a)
ln
(

1 +
a

b

)
(A.43)

= a

√
ln

(
1 +

b

a

)[
1 +

b

2a

(
1− ln

(
b
a

)
ln(1 + b/a)

)]
. (A.44)

Now, we need to show that b
a

(
1− ln( ba)

ln(1+b/a)

)
≤ 1 to complete the proof. So, we consider

the function h(u) , u
(

1− lnu
ln(u+1)

)
, by replacing b/a = u ≥ 1. Further, we note that

h(1) = 1, and therefore it suffices to show that d
du
h(u) ≤ 0, which then implies that

h(u) ≤ h(1) = 1, for all u ≥ 1. We have

d

du
h(u) = 1− lnu

ln(u+ 1)
− (u+ 1) ln(u+ 1)− u lnu

(u+ 1) ln2(u+ 1)
(A.45)

=
h̃(u)

(u+ 1) ln2(u+ 1)
, (A.46)

where we define

h̃(u) , (u+ 1) ln2(u+ 1)− (u+ 1) ln(u+ 1) lnu− (u+ 1) ln(u+ 1) + u lnu. (A.47)

Now, d
du
h(u) ≤ 0 if h̃(u) ≤ 0. Therefore, we show that d

du
h̃(u) ≤ 0, which implies that

h̃(u) ≤ h̃(1) = 2 ln2 2− 2 ln 2 < 0. Then, we get

d

du
h̃(u) = ln(u+ 1)

(
ln(u+ 1)− lnu− u+ 1

u

)
(A.48)

= − ln(u+ 1)

(
lnu+ 1− ln(u+ 1) +

1

u

)
. (A.49)

Using the same technique again, we now consider the function lnu+ 1− ln(u+ 1). Since

derivative of lnu+ 1− ln(u+ 1) is 1
u(u+1)

> 0, for u ≥ 1, lnu+ 1− ln(u+ 1) ≥ 1− ln 2 > 0.
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Therefore, d
du
h̃(u) ≤ 0 because lnu + 1 − ln(u + 1) ≥ 0 and 1

u
≥ 0, for u ≥ 1. Hence,

we get h̃(u) < 0. This implies that d
du
h(u) < 0, and thus, h(u) ≤ h(1) = 1, for u ≥ 1.

Substituting this in (A.44) completes the proof.

A.5 Proof of Lemma A.4

To show the first part of the lemma, we have

dF

(
Z̃(K)

)
= sup
z∈Ts

∥∥∥Z̃(K)(z)
∥∥∥
F

(A.50)

=
1√
K

sup
z∈Ts

∥∥Z(K)(z)
∥∥
F

(A.51)

= sup
z∈Ts

1√
K

√√√√K−1∑
k=0

∥∥Dkz
∥∥2 ≤ 1, (A.52)

where the last step follows from the definition of Ts, and the fact that the largest singular

value of D is unity.

To show the second part of the lemma, we have

d2

(
Z̃(K)

)
= sup
z∈Ts

∥∥∥Z̃(K)(z)
∥∥∥

2
=

1√
Km

sup
z∈Ts

∥∥Z(K)(z)
∥∥

2
=

1√
Km

sup
z∈Ts

∥∥∥∥∥
N∑
i=1

D̃(K,i)zi

∥∥∥∥∥
2

(A.53)

≤ 1√
Km

sup
z∈Ts

N∑
i=1

|zi|
∥∥∥D̃(K,i)

∥∥∥
2
≤ L (D, K)√

Km
sup
z∈Ts
‖z‖1 (A.54)

≤ L (D, K)

√
s

Km
‖z‖ =

√
s

Km
L (D, K) . (A.55)

where (A.53) and (A.54) follow from the definitions of D̃(K,i) and L (D, K) in (2.31) and

(2.32), respectively. Also, (A.55) is because z is at most s−sparse. Hence, the proof is

complete.



Appendix A. 192

A.6 Proof of Lemma A.5

From Lemma A.4, for all Z ∈ Z̃(K) and any z ∈ RmN ,

∥∥∥∥ 1√
s
Zz

∥∥∥∥ ≤
√

1

Km
L (D, K) ‖z‖ ≤

√
1

Km
L (D, K) ‖z‖1 . (A.56)

Then, from Lemma A.1, we have

1√
s
ζ
(
Z̃(K)

)
≤ 1√

s

∫ ∞
0

ln1/2
[
CN
{
Z̃(K), u

}]
du (A.57)

=
1√
s

∫ L(D,K)√
sKm

0

ln1/2
[
CN
{
Z̃(K), u

}]
du

+
1√
s

∫ L(D,K)√
Km

L(D,K)√
sKm

ln1/2
[
CN
{
Z̃(K),u

}]
du, (A.58)

Further, using Lemma A.2 with κ =
√

1
Km

L (D, K), for some positive constant C ′, we

have

1√
s
ζ
(
Z̃(K)

)
≤ C ′

∫ L(D,K)√
sKm

0

√
s lnN + s ln

(
1 +

2L (D, K)

u
√
Km

)
du

+ C ′
∫ L(D,K)√

Km

L(D,K)√
sKm

L (D, K)

u
√
Km

lnNdu (A.59)

≤ C ′
∫ L(D,K)√

sKm

0

√
s lnN +

√
s ln

(
1 +

2L (D, K)

u
√
Km

)
du

+ C ′
L (D, K)√

Km
lnN ln

√
s (A.60)

≤ C ′
L (D, K)√

Km

(√
lnN + 3/2

√
ln
(
1 + 2

√
s
)

+ lnN ln
√
s

)
(A.61)

≤ C
L (D, K)√

Km
lnN ln s, (A.62)

where C = 3C ′. Also, (A.60) uses the fact that
√
a+ b ≤ √a +

√
b, for any a, b > 0, and

(A.61) uses Lemma A.3. Thus, the proof is complete.
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A.7 Proof of Lemma A.6

From Lemma A.4 and Lemma A.5, we get

F1 = ζ
(
Z̃(K)

) [
ζ
(
Z̃(K)

)
+ dF

(
Z̃(K)

)]
+ dF

(
Z̃(K)

)
d2

(
Z̃(K)

)
(A.63)

≤ CL (D, K)

√
s

Km
lnN ln s

(
CL (D, K)

√
s

Km
lnN ln s+ 1

)
+ L (D, K)

√
s

Km

lnN ln s

ln2 2
, (A.64)

where we use the bound lnN ln s
ln2 2

> 1 when N ≥ s > 1 to get (A.64). Next, we use

assumption (2.33) in Theorem 2.3, i.e.,

L (D, K)

√
s

Km
lnN ln s ≤

√
c̃δ̃, (A.65)

to get

F1 ≤ C
√
c̃δ̃
(
C
√
c̃δ̃ + 1

)
+

√
c̃δ̃

ln2 2
(A.66)

≤
√
c̃δ̃

(
C2
√
c̃+ C +

1

ln2 2

)
. (A.67)

The last step above follows because of the bound δ̃ ≤ 1. Finally, we choose c̃ in (2.33) of

Theorem 2.3 such that

√
c̃

(
C2
√
c̃+ C +

1

ln2 2

)
≤ 1

2c1

, (A.68)

where c1 and C are the same constants as in Theorem A.1 and Lemma A.5, respectively.

We note that
√
c̃
(
C2
√
c̃+ C + 1

ln2 2

)
is strictly increasing with c̃, for c̃ ≥ 0, and the left

hand side equals zero when c̃ = 0. Thus, there exists a c̃ > 0 that satisfies (A.68), for any

c1 and C. Thus, from (A.67) and (A.68) we get F1 ≤ δ̃
2c1

, and thus, we complete of the



Appendix A. 194

first part of the proof.

Similarly, we simplify F2 using Lemma A.4, Lemma A.5 and (A.65) as follows:

F2 = d2
2

(
Z̃(K)

) [
ζ
(
Z̃(K)

)
+ dF

(
Z̃(K)

)]2

(A.69)

≤ s

Km
L2 (D, K)

(
CL (D, K)

√
s

Km
lnN ln s+ 1

)2

(A.70)

≤ s

Km
L2 (D, K)

(
C
√
c̃δ̃ + 1

)2

≤ C1
s

Km
L2 (D, K) , (A.71)

where we use the fact that δ̃ < 1 and define C1 , (C
√
c̃+ 1)2. Finally, we have,

F3 = d2
2

(
Z̃(K)

)
≤ s

Km
L2 (D, K) , (A.72)

which completes the proof.

A.8 Proof of Proposition 2.2

To prove the result, we first upper and lower bound the term L(D, K). We have,

L(D, K) ≤ max
i

∥∥∥D̃(K,i)

∥∥∥
F

(A.73)

= max
i

√√√√K−1∑
k=0

∥∥Dk
i

∥∥2 ≤
√
K, (A.74)

where we obtain the last step from the fact that the largest singular value of Dk is at most

unity, and Rayleigh-Ritz theorem [187, Theorem 4.2.2] which gives

1 = sup
z∈RN ,z 6=0

∥∥zTDkTDkz
∥∥

‖z‖2 ≥ max
i

(
DkTDk

)
i,i

= max
i

∥∥Dk
i

∥∥2
. (A.75)
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Similarly, we also have,

L(D, K)2 = max
i=1,2,...,N

 sup
z∈RK ,z 6=0

∥∥∥zTD̃T

(K,i)D̃(K,i)z
∥∥∥

‖z‖2

 (A.76)

≥ max
i=1,2,...,N

k=0,1,...,K−1

(
D̃

T

(K,i)D̃(K,i)

)
k,k

(A.77)

= max
i

[
max

k=0,1,...,K−1

∥∥Dk
i

∥∥2
]

= 1, (A.78)

where (A.78) uses the fact that
∥∥D0

i

∥∥2
= ‖I i‖2 = 1 and

∥∥Dk
i

∥∥2 ≤ 1, for k = 1, 2, . . . , K−1

from (A.75). Combining (A.74) and (A.78), we obtain the desired result.

A.9 Proof of Proposition 2.3

To prove the monotonicity of the function, we need to show that

L2 (D, K + 1) ≤ L2 (D, K)

(
1 +

1

K

)
. (A.79)

Therefore, we consider the following relation connecting L2 (D, K + 1) and L2 (D, K):

L2 (D, K + 1) = max
i

∥∥∥D̃(K+1,i)

∥∥∥
2

= max
i

sup
z∈RN
‖z‖=1

zTD̃(K+1,i)D̃
T

(K+1,i)z (A.80)

= max
i

sup
z∈RN
‖z‖=1

K∑
j=0

∣∣zTDjI i
∣∣2 (A.81)

≤ max
i

sup
z∈RN
‖z‖=1

K−1∑
j=0

∣∣zTDjI i
∣∣2 + max

i
sup
z∈RN
‖z‖=1

∣∣zTDKI i
∣∣2 (A.82)

≤ L2 (D, K) + max
i

∥∥DKI i
∥∥2
, (A.83)
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where we use the definition of L2 (D, K) and Cauchy-Schwarz inequality to get the last

step. Now, to complete the proof, it suffices to show that

max
i

∥∥DKI i
∥∥2 ≤ L2 (D, K) /K. (A.84)

Since D is a psd matrix with largest singular value as unity, Dj −Dk is a psd matrix, for

any pair of integers j ≤ k. Then, we have

K2
∥∥DKI i

∥∥2
= K2ITi D

2KI i ≤
K−1∑
j=0

K−1∑
k=0

ITi D
j+kI i (A.85)

=
K−1∑
j=0

K−1∑
k=0

ITi D
jTDkI i (A.86)

= K
(
1/
√
K
)T
D̃

T

(K+1,i)D̃(K+1,i)

(
1/
√
K
)
≤ KL2 (D, K) . (A.87)

Hence, (A.84) holds, which in turn shows (A.79). Thus, the proof is complete.
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Appendix to Chapter 3

B.1 Proof of Theorem 3.1

Proof. The proof is by showing that the conditions of the theorem are equivalent to the

Kalman-type rank test. The proof relies on the fact that the Kalman rank test for the

unconstrained system is equivalent to the PBH test. We note that the PBH test is same

as condition 1 of Theorem 3.1 [90].

We first prove that conditions of Theorem 3.1 imply the Kalman-type rank test. Suppose

that the Kalman-type rank test fails. Then, we consider the following matrix of size

N ×NK̃s:

H̃
∗

= [DK̃N−1HS1 DK̃N−2HS1 . . . D(K̃−1)NHS1

. . . D(K̃−1)N−1HS2 . . .D(K̃−2)NHS2 . . .

. . . DN−1HSK̃ . . . HSK̃
], (B.1)

where we define K̃ , dL/se index sets as follows:

|Si| = s, ∪K̃i=1Si = {1, 2, . . . , L} . (B.2)

197
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Since the Kalman-type rank test fails, H̃
∗

does not have full row rank for any finite K.

Further, we can rearrange the columns of H̃∗ to get the following matrix which has the

same rank as that of H̃
∗
:
[
DN−1H∗ DN−2H∗ . . . H∗

]
, where H∗ ∈ RN×K̃s is defined

as follows:

H∗ ,
[
D(K̃−1)NHS1 D(K̃−2)NHS2 . . . HSK̃

]
. (B.3)

Thus, using the Kalman rank test for unconstrained inputs, the system with transfer

matrix D and input matrix H∗ is not controllable. Then, the PBH test for unconstrained

inputs implies that the matrix
[
D − λI H∗

]
∈ RN×N+K̃s has rank less than N , for some

λ ∈ C. Therefore, there exists a nonzero vector z ∈ RN such that zTD = λzT and

zTH∗ = 0. However, we have

0= zTH∗= zT
[
λ(K̃−1)NHS1 λ(K̃−2)NHS2 . . . HSK̃

]
. (B.4)

So either λ = 0 and zTHSK̃ = 0, or, if λ is nonzero, then zTH = 0 because z is orthogonal

to all columns of H due to (B.2). Repeating the same arguments for all possible index

sets {Si} satisfying (B.2), we get that for every index set Si with s entries, there exists

a vector z ∈ RN such that zTD = λzT, and one of the following conditions hold: λ = 0

and zTHSi = 0, or zTH = 0. Therefore, we get that one of the following cases hold:

1. There exists a left eigenvector z of D, such that zTH = 0. In this case, condition

1 of Theorem 3.1 does not hold.

2. For every index set S with s entries, there exists a nonzero vector z ∈ RN such that

zTD = 0, and zTHS = 0. This implies that zT
[
D HS

]
= 0. Therefore, rank of[

D HS

]
is less than N , for every index set S. Thus, condition 2 of Theorem 3.1
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does not hold.

Thus, when the Kalman-type rank test is unsuccessful, the conditions of the theorem are

also violated.

Next, we prove that the Kalman-type rank test implies the conditions of the theorem.

Suppose that the two conditions do not hold simultaneously. This could happen under

the following two exhaustive cases:

1. Suppose that condition 1 does not hold. Then, the PBH test is violated, and the

system is not controllable. When a system is not controllable, it cannot be sparse-

controllable.

2. Suppose condition 2 does not hold. Then, for every index set S with s entries, there

exists a nonzero vector z such that zTHS = 0 and zTD = 0. This implies that for

any set of K index sets {Si : |Si| = s}Ki=1 there exists a nonzero vector z ∈ RN such

that

zT
[
DK−1HS1 DK−2HS2 . . . HSK

]
= 0. (B.5)

Hence, the Kalman-type rank test fails.

Thus, the proof is complete.

B.2 Proof of Corollary 3.2

Proof. We first note that if a system is s−sparse-controllable, it is controllable. Hence, we

need to prove that if a system with an invertible state transition matrix D is controllable,

it is s−sparse-controllable, for any positive integer s ≤ L.
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If the system is controllable, the PBH test for unconstrained input succeeds, which implies

that the condition 1 of Theorem 3.1 holds. Further, ifD is invertible, the matrix
[
D HS

]
has rank N for any H and index set S. Therefore, condition 2 of Theorem 3.1 always

holds, for any s ≤ L. Hence, from Theorem 3.1, the system is s−sparse-controllable.

Thus, the desired result is proved.

B.3 Proof of Theorem 3.3

Using the Kalman-type rank test, the minimum number of input vectors required to ensure

controllability is the smallest integer K that satisfies rank condition of the test. So, for

any finite K, we define H(K) ⊆ RN×Ks as the set of submatrices of H̃(K) of the following

form (as defined for the Kalman-type rank test):

[
DK−1HS1 DK−2HS2 . . . HSK

]
. (B.6)

Here, the index set Si has s entries, for i = 1, 2, . . . , K. Also, we define the following:

R∗(K) = max
H(K)∈H(K)

Rank
{
H(K)

}
. (B.7)

H∗(K) =
{
H(K) ∈ H(K) : Rank

{
H(K)

}
= R∗(K)

}
(B.8)

With these definitions, K∗ is the smallest integer such that R∗(K∗) = N .

Before starting the proof, we outline the main steps involved. At a high level, there are

five steps to the proof:

1. We begin by showing that for any matrix H(K) ∈ H(K), we can find a matrix
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H∗(K) ∈ H∗(K) such that

CS
{
H(K)

}
⊆ CS

{
H∗(K)

}
. (B.9)

2. Second, using the above claim, we show that if K is any integer such that

R∗(K) = R∗(K+1), (B.10)

then R∗(K+Q) = R∗(K), for any positive integer Q.

3. Third, we prove that K∗ is the smallest integer K such that (B.10) holds, which in

turn leads to the upper bound: K∗ ≤ N + 1−R∗H,s, where R∗H,s is as defined in the

statement of the theorem.

4. Fourth, we show that in order to satisfy the rank criterion in (B.10), H∗(K∗) needs

to contain at most qRH number of columns with a particular structure. Then,

we provide a choice of index sets {Si}K=qdRH/se
i=1 which can lead to that particular

structure. Since the smallest integer K that can achieve rank criterion in (B.10) is

K∗, we assert that K∗ ≤ qdRH/se. Thus, together with the above step, we establish

the upper bound in the theorem.

5. Finally, we lower bound K∗ to complete the proof.

B.3.1 Characterizing H∗(K)

If H(K) ∈ H∗(K), the result is trivial: H∗(K) = H(K). Suppose that H(K) /∈ H∗(K), then

Rank
{
H(K)

}
< R∗(K). Therefore, to findH∗(K), we have to replace some linearly dependent

columns of H(K) with columns which are linearly independent of the rest of the columns

of H(K), as follows:
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1. Find a set {ui}
Rank{H(K)}
i=1 of columns ofH(K) that are linearly independent and span

CS
{
H(K)

}
.

2. Since H(K) is a submatrix of H̃(K), we can extend the set {ui}
Rank{H(K)}
i=1 to form

a basis {ui}
Rank{H̃(K)}
i=1 of CS

{
H̃(K)

}
by adding columns from H̃(K). We note that

ui = DpHj for some integers p and j because of the structure of H̃(K).

3. Replace the linearly dependent columns of H(K) with the columns from the set

{ui}
Rank{H̃(K)}
i=Rank{H(K)}+1

to get a new matrix H̄(K) ∈ RN×Ks.We only replace a column of

form DpHj in H(K) with another column of the form DpHj′ , for all p and j and

some integer j′. This ensures that H̄(K) ∈ H(K). In this fashion, we replace as many

columns of H(K) as necessary to ensure that H̄(K) has the maximum rank, R∗(K).

However, since we are only replacing linearly dependent columns, we have

CS
{
H(K)

}
⊆ CS

{
H̄(K)

}
. (B.11)

Since Rank
{
H̄(K)

}
= R∗(K) and H̄(K) ∈ H(K), we get that H̄(K) ∈ H∗(K), satisfying (B.11).

Hence, the first step of the proof is complete.

B.3.2 Characterizing R∗(K)

We use the proof by induction technique to show that R∗(K+Q) = R∗(K), for any integer

Q > 0. Hence, it suffices to show the following:

R∗(K+2) = R∗(K+1). (B.12)
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From (B.7), we know that R∗(K+2) ≥ R∗(K+1). Also,

R∗(K) = max
H(K)∈H(K)

dim
{
CS
{
H(K)

}}
, (B.13)

where dim{·} denotes the dimension of a subspace. Thus, we establish (B.12) by showing

that for any matrix H(K+2) ∈ H(K+2), there exists a matrix H∗(K+1) ∈ H∗(K+1) such that

CS
{
H(K+2)

}
⊆ CS

{
H∗(K+1)

}
. (B.14)

We prove this relation by separately looking at the column spaces spanned by the first s

columns and the last (K + 1)s columns of H(K+2). We know that the submatrix formed

by the last (K + 1)s columns of any matrix in H(K+2) belongs to H(K+1). Thus, using the

claim in the first step, we can find a matrix H∗(K+1) such that the column space spanned

by the last (K + 1)s columns of H(K) is contained in CS
{
H∗(K+1)

}
. Therefore, it suffices

to show that the column space spanned by the first s columns of H(K+2) is contained in

the column space of the same matrix H∗(K+1).

To prove the above statement, we note that the column space of the first s columns

of H(K+2) is contained in CS
{
DK+1H

}
. Also, CS

{
H∗(K+1)

}
contains the intersection

∩
H∗(K+1)∈H

∗
(K+1)

CS
{
H∗(K+1)

}
. Hence, it suffices to show that

CS
{
DK+1H

}
⊆ ∩
H∗(K+1)∈H

∗
(K+1)

CS
{
H∗(K+1)

}
, (B.15)

which we prove using the relation (B.10).

To show that (B.15) holds, we consider an index set S ⊆ {1, 2, . . . , L} with s entries

and a matrix H∗(K) ∈ H∗(K). Now, the matrix
[
DKHS H∗(K)

]
∈ RN×(K+1)s belongs to
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H(K+1). Thus, from (B.7) and (B.10) we have

Rank
{[
DKHS H∗(K)

]}
≤ R∗(K+1) = R∗(K). (B.16)

However, we also have

Rank
{[
DKHS H∗(K)

]}
≥ Rank

{
H∗(K)

}
= R∗(K). (B.17)

Thus, for all index sets S with s entries and any matrix H∗(K) ∈ H∗(K),

Rank
{[
DKHS H∗(K)

]}
= Rank

{
H∗(K)

}
(B.18)

This relation immediately implies the following:

Rank
{[
DKH H∗(K)

]}
= Rank

{
H∗(K)

}
, (B.19)

for any matrix H∗(K) ∈ H∗(K). Thus, we get that the columns of DKH belong to

CS
{
H∗(K)

}
, for any matrix H∗(K) ∈ H∗(K). Hence,

CS
{
DKH

}
⊆ ∩
H∗(K)∈H

∗
(K)

CS
{
H∗(K)

}
. (B.20)

Therefore, we get

CS
{
DK+1H

}
⊆ ∩
H∗(K)∈H

∗
(K)

CS
{
DH∗(K)

}
. (B.21)

Hence, to prove (B.15), we need to show that

∩
H∗(K)∈H

∗
(K)

CS
{
DH∗(K)

}
⊆ ∩
H∗(K+1)∈H

∗
(K+1)

CS
{
H∗(K+1)

}
. (B.22)

We prove the above relation by showing that there exists a matrix H∗(K+1) ∈ H∗(K+1)
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such that

CS
{
DH∗(K)

}
⊆ CS

{
H∗(K+1)

}
, (B.23)

for every matrix H∗(K) ∈ H∗(K). So we consider a new matrix H̄(K+1) ∈ RN×(K+1)s as

follows:

H̄(K+1) ,
[
DH∗(K) HS

]
, (B.24)

for some index set S ⊆ {1, 2, . . . , L} and |S| = s. Since H̄(K+1) ∈ H(K+1), using the

arguments in the first step, we can find a matrix H∗(K+1) ∈ H∗(K+1) such that

CS
{
H̄(K+1)

}
⊆ CS

{
H∗(K+1)

}
. (B.25)

However, (B.24) implies that

CS
{
DH∗(K)

}
⊆ CS

{
H̄(K+1)

}
. (B.26)

Therefore, (B.23) holds, and hence (B.22) is proved.

Recall that (B.22) implies (B.15), which in turn establishes the relation (B.12). By math-

ematical induction, we conclude that Rank
{
H∗(K+Q)

}
= Rank

{
H∗(K)

}
, for any positive

integer Q, and the proof of the second step in the outline is complete.

B.3.3 First part of the upper bound

Suppose that K∗ is the smallest integer such that R∗(K∗) = R∗(K∗+1). From (B.7), it is clear

that

R∗(K) ≤ R∗(K+1) ≤ N, (B.27)
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for any positive integer K. Since R∗(K∗) = N , we have R∗(K∗) = R∗(K∗+1) = N . Therefore,

K∗ ≤ K∗, and R∗(K∗) = N from the claim in the second step.

Further, we know that K∗ is the smallest integer such that R∗(K∗) = N . Therefore,

K∗ = K∗. Hence, we conclude that R∗(K) strictly increases with K, for 1 ≤ K ≤ K∗.

Therefore, we have

N = R∗(K∗) ≥ R∗(K∗−1) + 1 ≥ R∗(K∗−2) + 2 (B.28)

≥ R∗(1) +K∗ − 1 (B.29)

= R∗H,s +K∗ − 1. (B.30)

Hence, the third step in the outline is complete.

B.3.4 Upper bounding K∗

To prove that K∗ ≤ qdRH/se, we first look at the linearly independent columns in H∗(K∗).

We note that for any K, each column of H∗(K) is of the form DpHj, for some integer p,

and j ∈ {1, 2, . . . , L}. However, since q is the degree of the minimal polynomial of D,

then for any integer Q, Dp can be expressed as a linear combination of
{
Di
}Q+q−1

i=Q
, for all

p ≥ Q. Therefore, for any j, if
{
DiHj ∈ RN

}Q+q−1

i=Q
are any q columns of H∗(K), further

adding columns of the form DpHj, for p ≥ Q does not improve the rank of the matrix.

Therefore, for a given j, at most q columns of the form DpHj need to be present in H∗(K)

to ensure the rank criterion in (B.10).

Further, let HS′ represents the set of RH linearly independent columns of H , i.e., S ′ ⊆

{1, 2, . . . , L} and |S ′| = RH . Then, for any integer p, if
{
DpHj ∈ RN

}
j∈S′ are any RH

columns of H∗(K), further adding columns of the form DpHj, for j /∈ S ′ does not improve
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the rank of the matrix. Therefore, for any given p, at most RH columns of the form DpHj

need to be present in H∗(K) to ensure the rank criterion.

In short, we have proved that, in order to ensure the rank criterion in (B.10), H∗(K) needs

to have at most q columns of the form DpHj, for any given j, and at most RH columns

of the form DpHj, for any given p. Hence, H∗(K) needs to have at most qRH columns to

satisfy the rank criterion in (B.10).

We complete the proof for the upper bound by providing a choice of index sets for each

input vector, that satisfies the above conditions. We form index sets {S ′i}K=dRH/se
i=1 that

partition the set of RH linearly independent columns into groups of size at most s. The

index sets are selected such that ∪Kj=1S ′i = S ′, |Si| = s, and SK is such that
[
D HSK

]
has

rank N . The existence of such an index set SK is ensured by condition 2 of Theorem 3.1.

Also, we note that due to the condition |Si| = s, the index sets need not be disjoint. Next,

we choose Si = S ′j, for i = (j − 1)q + 1, (j − 1)q + 2, . . . , jq. Hence, we get the following

N × qKs submatrix of H̃(K) ∈ RN×qKL:

H∗(K) = [DKq−1HS1 DKq−2HS1 . . . D(K−1)qHS1

. . . D(K−1)q−1HS2 . . .D(K−2)qHS2 . . .

. . . Dq−1HSK . . . HSK ]. (B.31)

It is easy to see that this choice of index sets ensures that for any given p, RH columns

of the form DpHj are present in H∗(K). Also, for any given j ∈ S ′, q columns of{
DiHj ∈ RN

}Q+q−1

i=Q
are present in H∗(K). Hence, K∗ ≤ qdRH/se, which establishes the

upper bound in (3.15).
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B.3.5 Lower bounding K∗

The lower bound is achieved when all columns of H∗(K) are linearly independent. Thus,

to ensure that rank H∗(K) is N , Ks ≥ N . However, if s ≥ RH , the maximum number of

independent columns become KRH , and thus we get that KRH ≥ N . Hence, the lower

bound in (3.15) is proved.

As noted in the proof outline, this suffices to establish Theorem 3.3.
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Appendix to Chapter 5

C.1 Proof of Proposition 5.1

We first prove a lemma to show that the noise term ek is bounded, which then enables us

to establish the required result.

Lemma C.1. In our online algorithm given by (5.2), limk→∞
∑k

t=1
1
t
et exists and is finite.

Proof. We define lk =
∑k

t=1
1
t
et, and Fk as the σ−algebra generated by yk. Then,

E {lk|Fk−1} = E {lk−1|Fk−1} + 1
k
E {ek|Fk−1} = lk−1. Thus, lk−1 is a martingale. Fur-

ther, using the orthogonality property of martingales [188],

E
{
‖lk‖2}=

k∑
t=1

E
{
‖lt − lt−1‖2}=

k∑
t=1

1

t2
E
{
‖et‖2}. (C.1)

We note that ‖y‖∞ < ∞ a.s., thus (5.8) shows that ‖et‖ < ∞ a.s., if ‖γk−1‖∞ < ∞.

When ‖γk−1‖∞ →∞, from (5.8), it can be shown that

lim
‖γ‖∞→∞

ΓAT
(
AΓAT +R

)−1
= lim
‖γ‖∞→∞

‖γ‖−
1
2∞ Γ

1
2

[
R−

1
2A
(
‖γ‖−1

∞ Γ
)
ATR−

1
2

]†
R−

1
2. (C.2)

209
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Hence, all entries of limγ→∞ ΓAT
(
AΓAT +R

)−1
are finite, and ‖et‖ < ∞ with proba-

bility one. Thus, E
{
‖et‖2} is bounded, and hence by Jensen’s inequality and (C.1), the

martingale is bounded in L1. Applying Doob’s forward convergence theorem [188] to each

coordinate of the martingale lk[i], i = 1, 2, . . . , N , the limit limk→∞ lk = limk→∞
∑k

t=1
1
t
et

exists, and is finite.

We now formally prove Proposition 5.1.

Proof. Using (5.2), we have,

γk =
k − 1

k
γk−1 +

1

k
Diag

{
P (γk−1) + x̂(yk,γk−1)x̂(yk,γk−1)T

}
. (C.3)

All entries of Diag
{
P (γk−1) + x̂(yk,γk−1)x̂(yk,γk−1)T

}
are nonnegative. This ensures

that γk[i] ≥ 0 for i = 1, 2, . . . , N and ∀k, if γ0 is a nonnegative vector. Thus, the sequence

γk is bounded from below.

Next, we use [189, Theorem 7] to show that the sequence is bounded from above, and

hence it remains in a compact set. For that, we check if the conditions below hold in our

case:

(i) The function f is Lipschitz

(ii) limk→∞
∑k

t=1
1
t
et exists

(iii) The function f∞(γ) = limc→∞ f(cγ)/c is continuous, and the ordinary differential

equation (ODE)

d

dt
γ(t) = f∞(γ(t)), (C.4)

has the origin as its unique globally asymptotic stable equilibrium.
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Since P (γ) and ΓAT
(
AΓAT +R

)−1
AΓ are positive semidefinite, all of their diagonal

entries are nonnegative. Hence, using (5.3),

f(γ) ≥ −γ + Diag
{
P (γ)ATR−1E

{
yyT

}
R−1AP (γ)

}
≥ −γ, (C.5)

where a ≥ b denotes that every entry of a is greater than or equal to the corresponding

entry of b. Further, since the matrix ΓAT
(
AΓAT +R

)−1
AΓ is positive semidefinite,

every diagonal entry of P (γ) = Γ−ΓAT
(
AΓAT +R

)−1
AΓ is less than the corresponding

diagonal entry of Γ. Thus, we get

f(γ) ≤ Diag
{
P (γ)ATR−1E

{
yyT

}
R−1AP (γ)

}
≤ λDiag

{
P (γ)ATR−2AP (γ)

}
, (C.6)

where λ is the largest eigenvalue of the positive semidefinite matrix E
{
yyT

}
, and a ≤ b

denotes an entry-wise inequality. Thus,

− γ[i] ≤ f(γ)[i] ≤ λDiag
{
P (γ)ATR−2AP (γ)

}
[i], (C.7)

for i = 1, 2, . . . , N. To further bound the last term of the inequality, we use (5.6) to get

P (γ)ATR−2AP (γ) = Γ
1
2B
(
AΓAT +R

)−1
BTΓ

1
2 . (C.8)

where B , Γ
1
2AT

(
AΓAT +R

)− 1
2 . This implies

Diag
{
P (γ)ATR−2AP (γ)

}
[i] = γ[i]B[i]T

(
AΓAT +R

)−1
B[i] (C.9)

≤ γ[i]B[i]TR−1B[i], (C.10)
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where B[i] ∈ RN is the ith column of BT. Then, we have

BBT = Γ
1
2AT

(
AΓAT +R

)−1
AΓ

1
2

= I −
(
I + Γ

1
2ATR−1AΓ

1
2

)−1

. (C.11)

This shows that I −BBT is a positive semidefinite matrix, and its diagonal entries are

nonnegative. Thus, B[i]TB[i] ≤ 1, for i = 1, 2, . . . , N . Hence, we get

Diag
{
P (γ)ATR−2AP (γ)

}
[i] ≤ λ̄γ[i], (C.12)

where λ̄ is the largest eigenvalue of R−1. Substituting this relation in (C.7), we get

− γ[i] ≤ f(γ)[i] ≤ λ̄λγ[i]. (C.13)

Thus, (i) is satisfied. The assumption (ii) is true by Lemma C.1. To check (iii), we start

with (5.7) to get

f∞(γ) = lim
c→∞

1

c
Diag

{
c2ΓAT

(
cAΓAT +R

)−1(E {ykyT
k

}
−cAΓAT −R

) (
cAΓAT +R

)−1
AΓ
}

(C.14)

= − lim
c→∞

Diag

{
Γ
(
R−

1
2AΓ

1
2

)T [
R−

1
2AΓ

1
2

(
R−

1
2AΓ

1
2

)T
+ I/c

]−1

R−
1
2AΓ

1
2

}
(C.15)

= −Diag
{

Γ
(
R−

1
2AΓ

1
2

)† (
R−

1
2AΓ

1
2

)}
. (C.16)

Note that Rank{(R− 1
2AΓ

1
2 )} = min{Rank {Γ} ,m}. For the case when Rank {Γ} < m,

we have Rank{(R− 1
2AΓ

1
2 )} = Rank {Γ}, and thus, f∞(γ) = −γ. Since 0 is the only

globally asymptotically stable equilibrium of the ODE d
dt
γ(t) = −γ(t), (iii) holds. When
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Rank{R− 1
2AΓ

1
2} = m, we have

(
R−

1
2AΓ

1
2

)†
= Γ

1
2ATR−

1
2

(
R−

1
2AΓATR−

1
2

)−1

, (C.17)

which implies the following:

(R−
1
2AΓ

1
2 )†(R−

1
2AΓ

1
2 ) = Γ

1
2AT

(
AΓAT

)−1
AΓ

1
2 . (C.18)

Since the diagonal entries of AT
(
AΓAT

)−1
A are positive, the only possible equilibrium

for the ODE is 0. However, when γ = 0, Rank{R 1
2AΓ

1
2} 6= m which is a contradiction.

Hence, there is no equilibrium point with Rank{R 1
2AΓ

1
2} = m. Thus, (iii) holds, and the

proof is complete.

C.2 Proof of Theorem 5.1

Before we prove the main theorem, we need two lemmas.

Lemma C.2. The solution set of f(γ) = 0 is {0} ∪ {γ ∈ RN : AΓAT = AΓoptA
T},

when E
{
yyT

}
= AΓoptA

T +R.

Proof. From (5.7), we get

f(γ) = Diag
{
ΓAT

(
AΓAT +R

)−1
A (Γopt − Γ)AT

(
AΓAT +R

)−1
AΓ
}
. (C.19)

Clearly, γ = 0 is a zero of f(γ). Let us consider the solutions whose support is the vector

s ∈ {0, 1}N and s 6= 0, and let the number of nonzero entries in s be denoted by s. The

union of the solutions over all possible supports gives the solution set. Let γs ∈ Rs×1 be

the vector of nonzero entries of γ and As ∈ Rm×s be the matrix formed by restricting A
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to the s columns corresponding to the support s. Let Bs =
(
AΓAT +R

)− 1
2 As ∈ Rm×s,

and B =
(
AΓAT +R

)− 1
2 A ∈ Rm×N . Then, the reduced set of equations corresponding

to f(γ) = 0 is given by

Diag
{
BT
sBsΓsB

T
sBs

}
= Diag

{
BT
sBΓoptB

TBs

}
, (C.20)

where Γs = Diag {γs} is an invertible matrix. We note that the above system of equa-

tions is linear in the vector γs, for any given fixed matrices Bs and B. However,

Diag
{
BT
sBsΓsB

T
sBs

}
=
(
BT
sBs

)
◦
(
BT
sBs

)
γs, where ◦ represents the Hadamard prod-

uct of matrices. Thus, the solution set of the system of equations is an affine space Us of

dimension given by

dim(Us) = s− Rank
{(
BT
sBs

)
◦
(
BT
sBs

)}
(C.21)

= s− Rank
{

(Bs �Bs)
T (Bs �Bs)

}
(C.22)

= s− Rank {Bs �Bs} . (C.23)

We now consider another affine space Ws of dimension s− Rank {Bs �Bs} given by the

set of γs satisfying

vec
{
BsΓsB

T
s

}
= (Bs �Bs)γs = vec

{
BΓoptB

T
}
. (C.24)



Appendix C. 215

It is easy to see that Ws ⊆ Us and dim(Us) = dim(Ws), which implies Ws = Us. Rear-

ranging, we get, for γs ∈ Us,

(
AΓAT +R

)− 1
2 AsΓsA

T
s

(
AΓAT +R

)− 1
2

=
(
AΓAT +R

)− 1
2 AΓoptA

T
(
AΓAT +R

)− 1
2 . (C.25)

Thus,

AΓAT = AsΓsA
T
s = AΓoptA

T, (C.26)

and Us ⊆ {γ : AΓAT = AΓoptA
T}, for all support sets s 6= 0. From (C.19), it is easy

to see that {γ ∈ RN : A (Γ− Γopt)A
T = 0} satisfies f(γ) = 0. Therefore, ∪

s∈{0,1}N\0
Us =

{γ : AΓAT = AΓoptA
T}. Thus, we get that the solution set of f(γ) = 0 is {0} ∪ {γ ∈

RN : A (Γ− Γopt)A
T = 0}.

We define some notation to state the next lemma. The notation X � 0 denotes that X

is a positive definite matrix and X < 0 denotes that X is a positive semidefinite matrix.

Lemma C.3. The set O = {γ ∈ RN : AΓAT +R � 0} is an open set and its closure is

{γ ∈ RN : AΓAT +R < 0}.

Proof. Let γ ∈ O. Then, uT(AΓAT + R)u > 0 ∀u ∈ Rm \ {0}, and the minimum

eigenvalue of AΓAT +R is strictly greater than some β > 0. We need to show that there

exists an ε > 0 such that AΓ̃AT +R is positive definite for all γ̃ in the ε-neighborhood of

γ, i.e., ‖γ − γ̃‖ < ε.

For a given u ∈ Rm \ {0}, if uT(AΓ̃AT +R)u ≥ uT(AΓAT +R)u, then uT(AΓ̃AT +
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R)u > 0. Otherwise,

uT
(
AΓ̃AT +R

)
u = uT

(
AΓAT +R

)
u−

∣∣∣uTA
(
Γ− Γ̃

)
ATu

∣∣∣ (C.27)

≥
(
β − ‖Γ− Γ̃‖2‖A‖2

2

)
‖u‖2 (C.28)

≥
(
β − ε‖A‖2

2

)
‖u‖2, (C.29)

where ‖ · ‖2 denotes the induced l2 norm. We can always find an ε > 0 such that

(β − ε‖A‖2
2) > 0. Therefore, uT(AΓ̃AT + R)u > 0∀u ∈ Rm \ {0}, and thus O is

an open set.

To prove the second part of the lemma, suppose the sequence γk ∈ O converges to γ.

Then, for any vector u ∈ Rm \ {0}, uT
(
AΓkA

T +R
)
u converges to uT

(
AΓAT +R

)
u

by the continuity of the function. Therefore,

uT
(
AΓkA

T +R
)
u > 0 =⇒ uT

(
AΓAT +R

)
u ≥ 0. (C.30)

Thus AΓAT +R < 0. Conversely, if there is exists a γ ∈ Rm such that AΓAT +R < 0,

the sequence γk = γ+ (1/k)1 converges to γ. We also note that AΓkA
T +R = AΓAT +

R + (1/k)AAT � 0 since A has full row rank. Thus, there exists a sequence {γk} ∈ O

that converges to γ. Hence, the proof is complete.

Proof of Theorem 5.1

We prove the convergence using [190, Theorem 2] which states that: Suppose f(·) is a

continuous vector field defined on an open set O ⊂ RN such that G = {γ ∈ O : f(γ) = 0}

is a compact subset of O. Then the distance of the sequence γk given by (5.2) to the set

G converges to 0 a.s. provided:
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(i) There exists a C1 function V : O→ R+ such that

(a) V (γ)→∞ if γ → the boundary of O or ‖γ‖ → ∞

(b) 〈∇γV (γ) ,f(γ)〉 < 0, ∀γ /∈ G.

(ii) γk belongs to a compact set of O.

(iii) limk→∞
∑k

t=1
1
t
et exists and is finite.

To check whether assumptions (i)-(iii) hold in our case, we define the set O = {γ :

Rank
{
AΓAT +R

}
= m} which is an open set by Lemma C.3. Note that f is a continuous

function of γ. Also, the inverse image of the compact set {0} by f(γ) is compact, and

hence, G is a compact subset of O.

We define the C1 function in (i) as follows:

V (γ) = Tr
{(
AΓAT +R

)−1 (
AΓoptA

T +R
)}

− log
∣∣∣(AΓAT +R

)−1 (
AΓoptA

T +R
)∣∣∣ . (C.31)

Note that V (γ)−m gives the KL divergence between the distributions N (0,AΓAT +R)

and N (0,AΓoptA
T + R). Therefore, V (γ) ≥ m > 0. By Lemma C.3, if γ is on the

boundary of O, at least one eigenvalue of AΓAT +R is zero. Hence, (ia) is satisfied. The

gradient of V (γ) is given by

∇γV (γ) = Diag
{
AT∇{AΓAT+R}V

(
AΓAT +R

)
A
}

= Diag
{
AT
(
AΓAT +R

)−1
A (Γ− Γopt)A

T
(
AΓAT +R

)−1
A
}
. (C.32)

Substituting this relation in (5.7) gives f (γ) = −Γ2∇γV (γ). Therefore, for γ ∈ O \ G,
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we have 〈∇γV (γ) ,f(γ)〉 < 0. Thus, (ib) is satisfied.

Assumptions (ii) and (iii) holds because of Proposition 5.1 and Lemma C.1, respectively.

Hence, γk converges to the set G. Further, Proposition 5.1 shows that γk ≥ 0, and hence,

we get that γk converges to the set {0} ∪ {γ ∈ RN
+ : A (Γ− Γopt)A

T = 0}. Finally, if

Rank {A�A} = N , then
{
γ ∈ RN

+ : A (Γ− Γopt)A
T = 0

}
=
{
γopt

}
. Thus, the proof is

complete. �

C.3 Proof of Proposition 5.2

Proof. From (5.14), we get,

P k = P k−1 − P k−1A
T
k

(
AkP k−1A

T
k +Rk

)−1
AkP k−1

=
(
P−1
k−1 +AT

kR
−1
k Ak

)−1
(C.33)

=

(
P−1

0 +
k∑
t=1

AT
t R
−1
t At

)−1

. (C.34)

Let Q , limk→∞
1
k

∑k
t=1A

T
t R
−1At. From assumptions A1 and A2, we have

Q , lim
k→∞

1

k

k∑
t=1

AT
t R
−1At, (C.35)

Thus, we get

Q = S + E
{
AT
t

}
R−1E {At} , (C.36)

where S , Diag
{
Tr
{
R−1cov(At[i])

}
, i = 1, 2, . . . , N

}
. Further, since At is random, S is

a positive definite matrix and hence, Q is a positive definite matrix. Let Q = UΛUT be

the eigen decomposition such that Λ is a diagonal matrix containing the positive eigen
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values of Q. Then,

lim
k→∞

P k = lim
k→∞

U(UP−1
0 U

T + kΛ)−1UT. (C.37)

Let λmin > 0 and γmin > 0 be the smallest diagonal entries of Λ and P−1
0 , respectively.

Then, the largest eigenvalue of (UP−1
0 U

T + kΛ)−1, denoted by λ̃k, can be bounded using

Weyl’s inequality as follows:

0 ≤ λ̃k ≤
1

γmin + kλmin

. (C.38)

Hence, we get

lim
k→∞

P k = U lim
k→∞

(UP−1
0 U

T + kΛ)−1UT = 0. (C.39)

From (5.12), we get limk→∞ Jk = 0, and from (5.13), we get x̂k = x̂k−1 as k →∞. Hence,

the algorithm converges.

C.4 Proof of Theorem 5.3

Proof. Let the true solution be x, and x̂∞ , limk→∞ x̂k as guaranteed by Proposition 5.2.

From (5.13),

x̂k = (I − JkAk) x̂k−1 + Jkyk (C.40)

= P kP
−1
k−1x̂k−1 + Jkyk (C.41)

= P kP
−1
0 x̂0 + P k

k∑
t=1

P−1
t J tyt. (C.42)

Using (C.39), we get

x∞ = lim
k→∞

P k

k∑
t=1

P−1
t J tyt. (C.43)
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Since yt = Atx+wt, and from (5.14) J tAt = I − P tP
−1
t−1,

x̂∞ = lim
k→∞

P k

k∑
t=1

[
P−1
t (I − P tP

−1
t−1)x+ P−1

t J twt

]
= lim

k→∞

[(
I − P kP

−1
0

)
x+ P k

k∑
t=1

P−1
t J twt

]
(C.44)

= x+ lim
k→∞

P k

k∑
t=1

P−1
t J twt. (C.45)

We now consider the term P−1
t J t to simplify the second term in the above expression,

and using (C.33) and (5.12) we get

P−1
t J t =

(
P−1
t−1 +AT

t R
−1At

)
P t−1A

T
t

(
AtP t−1A

T
t +R

)−1
(C.46)

=AT
t

(
I+R−1AtP t−1A

T
t

)(
AtP t−1A

T
t +R

)−1
(C.47)

= AT
t R
−1. (C.48)

Thus,

x̂∞ = x+ lim
k→∞

(kP k)

(
1

k

k∑
t=1

AT
t R
−1wt

)
. (C.49)

We note that

lim
k→∞

1

k

k∑
t=1

AT
t R
−1wt = E

{
AT
t R
−1wt

}
= E {At}TR−1E {wt} = 0. (C.50)

Here, we use the fact that At and wt are independent and the mean of wt is zero. Further,

from (C.37), we get

lim
k→∞

kP k = lim
k→∞

kU(UP−1
0 U

T + kΛ)−1UT = lim
k→∞

(k−1P−1
0 +UΛUT)−1 = UΛ−1UT.

(C.51)

Substituting (C.50) and (C.51) in (C.49), we get x̂∞ = x, and the proof is complete.
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Appendix to Chapter 6

D.1 Proof of Proposition 6.1

Proof. For the AM procedure, since we optimize one column of A at a time, it is easy to

see that

g
(
A(r,u−1)

)
≥ g

(
A(r,u)

)
. (D.1)

The above relation holds even if we skip the update of a column when
∥∥∥v(r,u)

i

∥∥∥ = 0, in

which case the value of the cost function remains unchanged. Similarly, from (6.15), the

sequence
{
g
(
A(r,u)

)}
u∈N

generated by the ALS algorithm is also nonincreasing. Thus,

we conclude that in both cases, the sequence
{
g
(
A(r,u)

)}
u∈N

is a nonincreasing sequence

bounded by g
(
A(r,0)

)
from above. From (6.10), we get

g (A) =
1

2
Tr
{(
YMT −A

)T (
YMT −A

)
+AΣAT

}
− 1

2
Tr
{
Y TMMTY + Σ

}
−N/2

(D.2)

≥ −1

2
Tr
{
Y TMMTY + Σ

}
−N/2. (D.3)
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Therefore, the nonincreasing sequence
{
g
(
A(r,u)

)}
u∈N

is bounded from below, and hence

it converges.

D.2 Proof of Proposition 6.2

Proof. The first part of the result directly follows from the properties of AM. Further, any

stationary point of the cost function takes the following form:

AL = YMT −A (Σ−D {Σ}) , (D.4)

for some diagonal matrix L. From (6.13), we get

G(A)i ‖vi‖ = vi, (D.5)

where

vi =
K∑
k=1

µk[i]yk −
i−1∑
j=1

Σ[i, j]G(A)j −
N∑

j=i+1

Σ[i, j]Aj

=
(
YMT

)
i
−G(A)

(
Σ̂

T
)
i
−AΣ̂i, (D.6)

where Σ̂ is a lower triangular matrix with zero diagonal entries and Σ̂+ Σ̂
T

= Σ−D {Σ}.

When A is a fixed point of G, we get

vi =
(
YMT

)
i
−A (Σ−D {Σ})i . (D.7)

Now, from (D.5) and (D.7), it can be seen that A satisfies (D.4) with Lii = ‖vi‖ ≥ 0,

which concludes the proof.
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D.3 Proof of Theorem 6.1

The proof of the theorem rests on the following lemmas.

Lemma D.1. Let
{
A(r,u)

}
u∈N

be a sequence generated by the ALS procedure. Then, there

exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

. (D.8)

Proof. We note from (6.19) that

A
(r,u)
i =

A
(r,u−1)
i + βpαZ

(r,u−1)
i∥∥∥A(r,u−1)

i + βpαZ
(r,u−1)
i

∥∥∥ . (D.9)

Also, from (6.18), we know that

A
(r,u−1)T
i Z

(r,u−1)
i = 0. (D.10)

Therefore, we get

1

2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

=
N∑
i=1

1

2

∥∥∥A(r,u−1)
i −A(r,u)

i

∥∥∥2

(D.11)

=
N∑
i=1

(
1−A(r,u−1)T

i A
(r,u)
i

)
(D.12)

=
N∑
i=1

1− 1√
1 +

∥∥∥βpαZ(r,u−1)
i

∥∥∥2

 (D.13)

≤
N∑
i=1

∥∥∥βpαZ(r,u−1)
i

∥∥∥2

(D.14)

≤ 1

c

[
g
(
A(r,u−1)

)
− g

(
A(r,u)

)]
, (D.15)
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where (D.12) is because A
(r,u−1)
i and A

(r,u)
i are unit norm vectors, and (D.13) is a direct

consequence of (D.9) and (D.10). (D.14) is due to the fact that x2 +1/
√

1 + x2−1 ≥ 0 for

all x ∈ R, and (D.15) follows immediately from (6.15). Thus, the proof is complete.

Lemma D.2 (Subgradient of δnorm). For any matrix A ∈ O ⊂ Rm×N .

∂δnorm (A) =
{
AL̃, L̃ ∈ RN×N :

Lii≥0,∀ i
L̃ij=0,i 6=j

}
. (D.16)

Proof. Let Z ∈ ∂δnorm (A). From the definition of the subgradient, we get δnorm (A) +

Tr
{
ZT (B −A)

}
≤ δnorm (B), ∀B ∈ Rm×N . This relation is trivially satisfied for all Z

and for any B /∈ O. However, when B ∈ O, Z should satisfy

Tr
{
ZTB

}
≤ Tr

{
ZTA

}
, (D.17)

since δnorm (A) = δnorm (B).

To prove the result, we consider three different cases that cover all possible values for Z.

1. We express the columns of the matrix Z as Zi = L̃iiAi +A⊥i , where L̃ii ∈ R and

A⊥i ∈ Rm is such that AT
i A
⊥
i = 0, ∀i. Suppose A⊥i 6= 0 for at least one value of i.

Also, let B ∈ Rm×N ∈ O be defined as

Bi =

e, for ‖Zi‖ = 0

Zi/ ‖Zi‖ , for ‖Zi‖ 6= 0,

(D.18)

where e is any unit norm vector. Then,

Tr
{
ZTA

}
=

N∑
i=1

L̃ii <

N∑
i=1

‖Zi‖ = Tr
{
ZTB

}
. (D.19)

Therefore, there exists a matrix B ∈ O such that (D.17) is not satisfied. Thus, we
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get

∂δnorm (A) ⊆
{
AL̃, L̃ ∈ RN×N : L̃ij = 0, if i 6= j

}
. (D.20)

2. Let Z = AL̃ for some diagonal matrix such that at least one of the diagonal entries

of L̃ is negative. LetB ∈ Rm×N ∈ O be defined such thatBi = sign
{
L̃ii

}
Ai, where

the function sign{·} takes values 1 and −1 for nonnegative and negative arguments,

respectively. Then,

Tr
{
ZTA

}
=

N∑
i=1

L̃ii <
N∑
i=1

∣∣∣L̃ii∣∣∣ ≤ Tr
{
ZTB

}
, (D.21)

Therefore, (D.17) does not hold for B ∈ O, and from (D.20) we get

∂δnorm (A) ⊆
{
AL̃, L̃ ∈ RN×N :

Lii≥0
L̃ij=0, if i 6=j

}
. (D.22)

3. Let Z = AL̃, for some diagonal positive semidefinite (psd) matrix L̃. Here, for any

matrix B ∈ O,

Tr
{
ZTB

}
= Tr

{
L̃ATB

}
=

N∑
i=1

L̃iiA
T
i Bi (D.23)

≤
N∑
i=1

L̃ii =
N∑
i=1

L̃iiA
T
i Ai (D.24)

= Tr
{
L̃ATA

}
= Tr

{
ZTA

}
. (D.25)

Therefore, from (D.22) we get

∂δnorm (A) =
{
AL̃, L̃ ∈ RN×N :

Lii≥0,∀i
L̃ij=0, otherwise.

}
. (D.26)

Hence, the proof is complete.
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D.3.1 Proof of Theorem 6.1

Proof. In [161, Theorem 2], the authors provide a Kurdyka- Lojasiewicz property based

proof of convergence of a proximal algorithm. By careful examination their proof, it can

be shown that a bounded sequence of iterates converges to a stationary point of g̃ if the

following four conditions hold: 1

(i) The objective function g̃(A) satisfies

inf
A∈Rm×N

g̃ (A) > −∞. (D.27)

(ii) There exist constants θ ∈ [0, 1), C, ε > 0 such that

|g̃ (A)− g̃ (A∗)|θ ≤ C ‖Z‖ (D.28)

for any stationary pointA∗ of g̃, anyA such that ‖A−A∗‖ ≤ ε, and anyZ such that

Z ∈ ∂g (A). The constant θ is called the  Lojasiewicz exponent of the  Lojasiewicz

gradient inequality.

(iii) There exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

(D.29)

(iv) There exist u0 > 1, C2 > 0 and Z ∈ ∂g
(
A(r,u)

)
such that for all u > u0

‖Z‖ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (D.30)

1A more detailed version of the proof precisely connecting it to the result in [191] is given in Ap-
pendix D.12.
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Here, the first two conditions are on the cost function, and the last two are on the iterates.

In [161, Theorem 2], these conditions are verified to hold for the proximal algorithm. The

rest of the proof below is the verification of the four conditions for the ALS procedure.

As discussed in Appendix C (see (D.3)), the cost function g is bounded from below.

Therefore, g̃ is also bounded from below, and hence assumption (i) is satisfied.

Next, we note that δnorm(·) is an indicator function of a semi-algebraic set, and g is a

real analytic function. Therefore, g̃ is a sum of real analytic and semi-algebraic functions.

Thus, from [192, Section 2.2], it can be shown that g̃ satisfies the desired condition (ii).

Assumption (iii) follows from Lemma D.1.

Finally, to verify assumption (iv), we first compute the subgradient of the function g̃

using Lemma D.2. Hence, the desired condition is true if and only if, for all u > u0, it

holds that

min
Z̃∈∂g̃(A(r,u))

∥∥∥Z̃∥∥∥ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (D.31)

Now, from Lemma D.2, we have,

min
Z̃∈∂g̃(A)

∥∥∥Z̃∥∥∥2

= min
L̃ii≥0

∥∥∥∇g(A) +AL̃
∥∥∥2

. (D.32)

Since the optimization problem is separable in the diagonal entries of L̃, we get the opti-

mum value L̃
∗

as

L̃
∗
ii =

−A
T
i ∇g (A)i , if AT

i ∇g (A)i ≤ 0

0 otherwise,

(D.33)
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for i = 1, 2, . . . , N . This gives

arg min
Z̃∈∂g̃(A)

∥∥∥Z̃∥∥∥ ≤
√√√√ N∑

i=1

max
{∥∥(I −AiA

T
i

)
∇g (A)i

∥∥ , ‖∇g (A)i‖
}

(D.34)

= ‖∇g (A)‖ . (D.35)

(D.36)

Here, (D.35) follows from the fact that I−AiA
T
i is the projection matrix for the subspace

orthogonal to the unit norm column Ai. Therefore,
∥∥(I −AiA

T
i

)
∇g (A)i

∥∥ ≤ ‖∇g (A)i‖.

Thus, we have

min
Z̃∈∂g̃(A(r,u))

∥∥∥Z̃∥∥∥ =
∥∥∥(A(r,u−1) −A(r,u)

)
(Σ−D {Σ})

∥∥∥ (D.37)

≤ C2

∥∥∥(A(r,u−1) −A(r,u)
)∥∥∥ , (D.38)

where C2 is the spectral norm of Σ−D {Σ}. Also, (D.37) is due to the definition of g in

(6.10). Hence, assumption (iv) is satisfied for all u. Therefore, all four conditions are met,

and consequently, the convergence is guaranteed.

D.4 Proof of Proposition 6.3

Proof. From (6.15) and Proposition 5.2,

0 = lim
u→∞

Z(r,u) = PA(r)

(
YMT −A(r)Σ

)
. (D.39)

Thus, (6.18) gives

YMT −A(r) (Σ−D {Σ}) = A(r)L, (D.40)
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for some diagonal matrix L. Then, the result related to the Nash equilibrium point follows

from Corollary 6.1. Further, we have

∇g
(
A(r)

)
= −A(r)L. (D.41)

Let ∆ = A−A(r), where A is any matrix in O. Then, for i = 1, 2, . . . , N we have

1 = ‖Ai‖2 =
∥∥∥∆i +A

(r)
i

∥∥∥2

= ‖∆i‖2 + 1 + 2∆T
i A

(r)
i . (D.42)

Thus, we get 1
2
‖∆i‖2 = −∆T

i A
(r)
i , and similarly, expanding ‖Ai −∆i‖2, we get that

1
2
‖∆i‖2 = ∆T

i Ai. Therefore,

D
{
∆TA

}
= −D

{
∆TA(r)

}
=

1

2
D
{
∆T∆

}
. (D.43)

Now, using Taylor series expansion around A(r), we have

g (A)− g
(
A(r)

)
= Tr

{
∆T∇g

(
A(r)

)
+

1

2
∆T∆ (Σ−D {Σ})

}
(D.44)

= Tr

{
−∆TA(r)L+

1

2
∆T∆ (Σ−D {Σ})

}
(D.45)

=
1

2
Tr
{
∆T∆L+∆T∆ (Σ−D {Σ})

}
(D.46)

=
1

2
Tr
{
∆ (L+ Σ−D {Σ})∆T

}
, (D.47)

where we use (D.41) and (D.43) to get (D.45) and (D.46) respectively. Note that the

Taylor series expansion is not an approximation here, as our cost function is quadratic.

The right hand side of (D.47) is non-negative if and only if L + Σ − D {Σ} is positive

semi-definite, and strictly positive if and only if L+Σ−D {Σ} is positive definite. Hence,

the proof is complete.
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D.5 Proof of Theorem 6.2

Proof. The first part of the result directly follows from Proposition 5.2 and [151, Theorem

4.4.1].

To prove the second part, suppose that A(r) is a strict local minimum. Then, for any

neighborhood U of A(r), there exists ε > 0 such that, in the closed ball Hε ⊆ U around

A(r), g(A) > g(A(r)) for all A 6= A(r) ∈ Hε. Here, the closed ball is defined as follows:

Hε =
{
A ∈ O :

∥∥∥A−A(r)
∥∥∥ ≤ ε

}
. (D.48)

Moreover, from Lemma D.1, we get

∥∥∥G(A)−A(r)
∥∥∥ ≤ ‖G(A)−A‖+

∥∥∥A−A(r)
∥∥∥ (D.49)

≤ C1 [g (G(A))− g (A)] +
∥∥∥A−A(r)

∥∥∥ (D.50)

≤ C1

[
g (A)− g

(
A(r)

)]
+
∥∥∥A−A(r)

∥∥∥ , (D.51)

where the last step is because of Proposition 5.2 which gives g(A) ≥ g (G(A)) ≥ g(A(r)).

From Proposition 6.3, we know that A(r) satisfies the relation:

A(r)L = YMT −A(r) (Σ−D {Σ}) , (D.52)

for some diagonal matrix L. Following the same steps as (D.45)-(D.47), we get

0 < g (A)− g
(
A(r)

)
=

1

2
Tr

{(
A−A(r)

)
(L+ Σ−D {Σ})

(
A−A(r)

)T}
(D.53)

≤ λmax

2

∥∥∥A−A(r)
∥∥∥2

, (D.54)

where λmax > 0 is the largest singular value of the matrix (L+ Σ−D {Σ}). Thus, from
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(D.51), ∥∥∥G(A)−A(r)
∥∥∥ ≤ C1λmax

2

∥∥∥A−A(r)
∥∥∥2

+
∥∥∥A−A(r)

∥∥∥ . (D.55)

Let ε′ > 0 be such that

max
A∈Hε′

∥∥∥G(A)−A(r)
∥∥∥ = ε ≤

(
C1λmax

2
ε′ + 1

)
ε′. (D.56)

Therefore, for all A ∈ Hε′ , G(A) ∈ Hε. Now, using the proof technique used in [151,

Theorem 4.4.2], we define the set

V = {A ∈ Hε : g(A) < α} ⊆ Hε, (D.57)

where α is defined as below:

α =


min

B∈Hε\Hε′
G (B) ε′ ≤ ε

∞ ε′ > ε.

(D.58)

Note that, when ε′ ≤ ε, g(A) ≥ α, for all A ∈ Hε\Hε′ . Thus, V ⊆ Hε′ . Also, when ε′ > ε,

Hε′ ⊃ Hε′ ⊇ V . Therefore, in both cases, V ⊆ Hε′ . Hence, for every A ∈ V , G(A) ∈ Hε.

Further, by Proposition 6.2, the sequence g
(
G(u)(A)

)
generated by ALS is nonincreasing,

and thus

g (G(A)) ≤ g (A) < α. (D.59)

Therefore, G(A) ∈ V for all A ∈ V , hence G(u)(A) ∈ V ⊆ U for all u ∈ N. Thus, stability

of the point is guaranteed. Moreover, since by assumption A(r) is the only critical point

(strict local minimum) of g in V , it follows that limu→∞G
(u)(A) = A(r), for all A ∈ V ,

which shows the asymptotic stability of A(r). This completes the proof.
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D.6 Proof of Proposition 6.4

Proof. We first prove the convergence of the DL-SBL cost function. We note that the AM

and the ALS procedures along with the update equations of Γ ensure the the following:

Q(Λ(r); Λ(r−1)) ≤ Q(Λ(r−1); Λ(r−1)),∀r ≥ 1. (D.60)

This result immediately follows from Proposition 5.2 and the fact that (6.6) maximizes

the part of Q(Λ; Λ(r−1)) that depends on Γk. Thus, using the properties of EM [193], we

have that

T (Λ(r)) ≤ T (Λ(r−1)). (D.61)

Further, we know that
(
σ2I +AΓkA

T
)−1

is a positive-definite matrix, and from (6.3),

T (Λ) ≥
K∑
k=1

log
∣∣σ2I +AΓkA

T
∣∣ ≥ Km log σ2. (D.62)

Therefore,
{
T (Λ(r))

}
r∈N

is a monotonically decreasing sequence which is bounded from

below. Hence, the sequence of DL-SBL cost function value converges.

D.7 Proof of Theorem 6.3

Proof. The cost function T (Λ) is a coercive function of Λ, i.e.,

lim
‖Λ‖→∞

T (Λ) = lim
‖γk‖→∞

K∑
k=1

(
log
∣∣σ2I +AΓkA

T
∣∣+ yT

k

(
σ2I +AΓkA

T
)−1
yk

)
=∞.

(D.63)

This is because ‖Λ‖ → ∞ only if at least one of the entries of {γk}k=1,2,...,K goes to

∞, since A belongs to a bounded set. Further, [155, Theorem 2] shows that the cost
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function T (Λ) is jointly continuous function of γk ∈ RN
+ , k = 1, 2, . . . , K. Using the

coerciveness and continuity properties of the cost function, monotonicity of cost function

sequence established by Proposition 6.4, and [155, Corollary 1], it follows that the iterates{
γ

(r)
k

}
r∈N

admit at least one limit point for k = 1, 2, . . . , K. Further, since A ∈ O belongs

to a bounded set, the iterates
{

Λ(r)
}
r∈N

also admit at least one limit point.

Next, we use [193, Theorem 1] to prove that the iterates converge to the set of stationary

points of the cost function. Therefore, we need to establish two properties of the algorithm:

(i) T (Λ(r)) > T (Λ(r−1)), for all Λ /∈ crit(T ), where crit(T ) is the set of stationary points

of T .

(ii) The point-to-set mapping G which defines algorithm updates: Λ(r−1) = G(Λ(r)), is

such that G(Λ(r−1)) is a closed set over the complement of crit(T ).

Clearly, Condition (i) is satisfied due to Proposition 6.4 and the properties of E and M

steps. To prove Condition (ii), we first note that the AM and the ALS algorithm converge

to a closed set, as proved by Proposition 6.3. Further, since T (Λ) is a continuous function

of γk, the closed form M-step update of γk always satisfies Condition (ii) [193, Theorem

2]. Therefore, the algorithm satisfies both conditions, and hence, converges to the set of

stationary points.

The last part of the result about the stability directly follows from Proposition 6.4 and

[151, Theorem 4.4.1].

D.8 Proof of Proposition 6.5

Proof. Under noiseless condition, the dictionary learning problem reduces to a matrix

factorization problem: Y = AX. Suppose that X is already known to the algorithm.
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Then, to uniquely estimate A, the condition (6.26) is necessary. Similarly, when A is

known to the algorithm, to uniquely estimate the sparse X, (6.27) is satisfied. This is

because, if the condition is not satisfied, there exists an s sparse vector z in the null space

of A such that z + xk is s−sparse for some k, and yk = A(z + xk). Thus, the solution

is not unique.Also, we observe that for X to have full rank, at least two columns of X

must have different supports. Therefore, if |Sk| = m, uniqueness is not guaranteed, and

thus we get the condition that |Sk| < m. Thus, the first part of the result is obtained.

Next, consider the special case of maxk=1,2,...,K ‖xk‖0 = 1. Then, every nonzero measure-

ment vector is a scaled version of some column of the measurement matrix. The condition

(6.26) guarantees that there is no all-zero row in X and thus, there exists a measurement

vector yk corresponding to every column Ai of the dictionary such that yk = X ikAi

where X ik is the only nonzero entry of the kth column of X. Further, by assumption, the

columns of A are unit norm, and hence, given yk, the tuple (X ik,Ai) is unique upto the

sign of X ik. Thus, the solution is unique under (6.26) and (6.27).

D.9 Proof of Theorem 6.4

Proof. The proof is adapted from the proof of [23, Theorem 1]. The cost function T in

(6.3) consists of two terms: the logarithm of the determinant of the product of matrices

of the form σ2I +A∗Γ∗kA
∗T, and sum of projections of the inverses of the same matrices.

Since the second term is positive, the minimum is achieved when the first term goes to

minus infinity while maintaining some finite upper bound on the second term. We note
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that, from (6.27)

Rank {Γ∗k} = ‖Diag {Γ∗k}‖0 <
1

2
Spark {A∗} ≤ m+ 1

2
≤ m. (D.64)

Further, we get that

lim
σ2→0

∣∣σ2I +A∗Γ∗kA
∗T∣∣ ≤ lim

σ2→0
(λ̂max + σ2)Rank{Γ∗k}(σ2)m−Rank{Γ∗k} = 0, (D.65)

where λ̂max is the largest eigenvalue of A∗Γ∗kA
∗T. Thus, the first term goes to minus

infinity. Using arguments similar to those in [23, Theorem 1], we can show that

lim
σ2→0

yT
k

(
σ2I +A∗Γ∗kA

∗T)−1
yk ≤

1

c
‖x∗k‖2 . (D.66)

Thus, the second term in the cost function is upper bounded by 1
c
‖X∗‖2

F < ∞. Hence,(
A∗, {Γ∗k}Kk=1

)
achieves global minimum. Further, it is easy to see that the cost function

takes the same value over the set
(
A∗P , {PΓ∗kP }Kk=1

)
, and thus the result is proved.

D.10 Proof of Theorem 6.5

Proof. It is easy to see that the goal of DL-SBL is to solve the optimization problem:

min
A∈O

[
K∑
k=1

min
γk∈RN+

log
∣∣σ2I +AΓkA

T
∣∣+ yT

k

(
σ2I +AΓkA

T
)−1

yk

]
. (D.67)

For any given A, the local minima of the objective function of the sub-optimization prob-

lem within the square brackets is at most m−sparse [23, Theorem 2]. Hence, the local

minima of the DL-SBL cost function are all at most m−sparse.
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D.11 Derivation of DL-SBL Algorithm

In this section, we provide the details of the EM-algorithm development, explaining how

to obtain (6.3)-(6.10), and the γk update equations in Algorithm 3 and Algorithm 4. The

EM algorithm computes the unknown parameter set Λ by minimizing the negative log

likelihood− log p(yK ; Λ). To compute the likelihood, we first note that the SBL framework

imposes a Gaussian prior on the unknown vector xk ∼ N (0,Γk), where Γk is an unknown

diagonal matrix.. Thus, yk also follows a Gaussian distribution: yk ∼ N (0, σ2I+AΓkA
T)

because the noise term wk ∼ N (0, σ2I). Therefore, we have

p(yK ; Λ) =
K∏
k=1

1√
(2π)m

∣∣σ2I +AΓkA
T
∣∣ exp

(
−1

2
yT
k

(
σ2I +AΓkA

T
)−1

yk

)
. (D.68)

Hence, the negative log likelihood is computed as follows:

− log p(yK ; Λ) =
1

2

K∑
k=1

[
m log(2π) + log

∣∣σ2I +AΓkA
T
∣∣

+
1

2
yT
k

(
σ2I +AΓkA

T
)−1

yk

]
. (D.69)

Since the log(2π) term is a constant independent of Λ, we omit that term and the scaling

factor of 1
2

to obtain the cost function T (Λ) in (6.3).

The EM algorithm treats the unknowns xK as the hidden data and the observations yK as

the known data. It is an iterative procedure which updates the estimate of the parameters

Λ in every iteration using two steps: an expectation step (E-step) and a maximization

step (M-step). Let Λ(r) be the estimate of Λ at the rth iteration. The E-step computes

the marginal log-likelihood of the observed data Q
(
Λ; Λ(r−1)

)
, and the M-step computes
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the parameter tuple Λ that maximizes Q
(
Λ; Λ(r−1)

)
.

E-step: Q
(
Λ; Λ(r−1)

)
= ExK |yK ;Λ(r−1)

{
log p

(
yK ,xK ; Λ

)}
M-step: Λ(r) = arg max

Λ∈O×RNK+

Q
(
Λ; Λ(r−1)

)
. (D.70)

To simplify Q
(
Λ,Λ(r−1)

)
, we note that

p
(
yK ,xK ; Λ

)
=

K∏
k=1

p (yk|xk; Λ) p (xk; Λ) . (D.71)

Here, p (yk|xk; Λ) = N (Axk, σ
2I), and p (xk; Λ) = N (0,Γk). Thus, we get,

log p
(
yK ,xK ; Λ

)
= log

{
K∏
k=1

1√
(2πσ)2m

exp

(
− 1

2σ2
‖yk −Axk‖2

)

× 1√
(2π)N |Γk|

exp

(
−1

2
xT
kΓ−1

k xk

)}
(D.72)

= −Km
2

log((2π)N+1σ2)− 1

2

K∑
k=1

[
log |Γk|+Tr

{
Γ−1
k xkx

T
k

}]
− 1

2σ2

K∑
k=1

(yk −Axk)T (yk −Axk) . (D.73)

Therefore, eliminating the constant terms, we obtain (6.5) as follows:

Q
(
Λ; Λ(r−1)

)
= −K

2
log(2πσ2m)− 1

2

K∑
k=1

[
log |Γk|+ Tr

{
Γ−1
k E

{
xkx

T
k |yK ; Λ(r−1)

}}]
− 1

2σ2

K∑
k=1

E
{

(yk −Axk)T (yk −Axk) |yK ; Λ(r−1)
}
. (D.74)

We notice that the expectation terms in the above expression depend only on Λ(r−1),

and are independent of Λ. Thus, the dependence of Γk in Q
(
Λ; Λ(r−1)

)
is only through

the kth term in the first summation, and the dependence on A is only through the last
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summation term. Therefore, the optimization in the M-step is separable in its variables

Γk and A. Hence, the M-step reduces as follows:

γ
(r)
k = arg min

γ∈RN+

log |Γk|+ Tr
{

Γ−1
k E

{
xkx

T
k |yk; Λ(r−1)

}}
(D.75)

A(r) = arg min
A∈O

K∑
k=1

E
{
(yk−Axk)T(yk−Axk) |yk; Λ(r−1)

}
. (D.76)

Here, we note that (D.76) is same as (6.9). Further, differentiating the objective function,

we get the update equation (6.6):

γ
(r)
k = Diag

{
E
{
xkx

T
k |yk; Λ(r−1)

}}
(D.77)

= Diag
{
µkµ

T
k + Σ(k)

}
, (D.78)

where we use the following facts:

µk , E
{
xk|yk; Λ(r−1)

}
(D.79)

Σ(k) , E
{

(xk − µk) (xk − µk)T |yk; Λ(r−1)
}

(D.80)

= cov
{
xk|yK ; Λ(r−1)

}
. (D.81)

Next, we compute the conditional expectations terms needed to find γ
(r)
k . We start with

the following cross-covariance matrix:

E
{
ykx

T
k |γk, σ2

}
= E

{
(Axk +wk)x

T
k |γk, σ2

}
= E

{
Axkx

T
k |γk, σ2

}
= AΓk. (D.82)
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Thus, the conditional mean and covariance are given as follows:

cov
{
xk|yK ; Λ

}
= E

{
xkx

T
k |γk, σ2

}
− E

{
xky

T
k |γk, σ2

}
× E

{
yky

T
k |γk, σ2

}−1 E
{
ykx

T
k |γk, σ2

}
= Γk − ΓkA

T
(
σ2I +AΓkA

T
)−1

AΓk (D.83)

E
{
xk|yK ; Λ

}
= E

{
xk|γk, σ2

}
+ E

{
xky

T
k |γk, σ2

}
× E

{
yky

T
k |γk, σ2

}−1 (
yk − E

{
yk|γk, σ2

})
= ΓkA

T
(
σ2I +AΓkA

T
)−1

yk

= σ−2ΓkA
T
(
I −

(
σ2I +AΓkA

T
)−1

AΓkA
T
)
yk

= σ−2cov
{
xk|yK ; Λ

}
ATyk. (D.84)

Therefore, (D.77), (D.83) and (D.84) together gives the update step for γk used in

Algorithm 3 and Algorithm 4.

Similarly, the optimization problem corresponding the dictionary update (D.76) reduces

as follows:

arg min
A∈O

K∑
k=1

E
{

(yk −Axk)T (yk −Axk)
∣∣∣yk; Λ(r−1)

}
(D.85)

= arg min
A∈O

K∑
k=1

E
{
−yT

kAxk+
1

2
xT
kA

TAxk

∣∣∣∣yk; Λ(r−1)

}

= arg min
A∈O

− Tr

{(
K∑
k=1

µky
T
k

)
A+

1

2
AΣAT

}

= arg min
A∈O

Tr

{
−MY TA+

1

2
AΣAT

}
. (D.86)
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Since A ∈ O, we can further simplify the second term here as follows:

Tr
{
AΣAT

}
=

N∑
i,j=1;i 6=j

Σ[i, j]AT
i Aj +

N∑
i=1

Σ[i, i]AT
i Ai (D.87)

= Tr
{
A (Σ−D {Σ})AT

}
+

N∑
i=1

Σ[i, i]. (D.88)

Here, the second term does not depend on A, and hence, we remove the term from the

objective function to get an equivalent optimization objective function as in (6.10). Thus,

the derivation of algorithm development given by (6.3)-(6.10), and the update equations

for γk in Algorithm 3 and Algorithm 4 are completed.

Learning the noise variance

Following a similar approach as the above, we can learn the noise variance σ2 along with

the dictionary A and covariance matrices Γk. If σ2 is unknown, we have to incorporate its

update to the M-step by maximizing the Q function defined in (D.74). Thus, considering

the terms that depend on σ62, we get

(
σ2
)(r)

= arg min
σ2∈R+

Km log(σ2) +
1

σ2

K∑
k=1

E
{

(yk −Axk)T(yk −Axk) |yK ; Λ(r−1)
}

=
1

Km

K∑
k=1

E
{

(yk −Axk)T(yk −Axk) |yK;Λ(r−1)
}

=
1

Km
Tr
{
Y TY − 2MY TA+AΣAT

}
, (D.89)

where the last step follows because of the same arguments used to derive (D.86) from

(D.85).
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D.12 Proof of Kurdyka- Lojasiewicz property based

Convergence Result

Theorem D.1. A bounded sequence of iterates
{
A(r,u)

}
u∈N

generated by the ALS algo-

rithm converges to a stationary point of g̃ if the following four conditions hold:

(i) The objective function g̃(A) satisfies

inf
A∈Rm×N

g̃ (A) > −∞. (D.90)

(ii) There exist constants θ ∈ [0, 1), C, ε > 0 such that

|g̃ (A)− g̃ (A∗)|θ ≤ C ‖Z‖ (D.91)

for any stationary pointA∗ of g̃, any A such that ‖A−A∗‖ ≤ ε, and any Z such that

Z ∈ ∂g (A). The constant θ is called the  Lojasiewicz exponent of the  Lojasiewicz

gradient inequality.

(iii) There exists C1 > 0 such that

g̃
(
A(r,u−1)

)
− g̃

(
A(r,u)

)
≥ C1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

(D.92)

(iv) There exist u0 > 1, C2 > 0 and Z ∈ ∂g
(
A(r,u)

)
such that for all u > u0

‖Z‖ ≤ C2

∥∥∥A(r,u−1) −A(r,u)
∥∥∥ . (D.93)

The proof is adapted from the proof of [161, Theorem 2]. At a high level, there are four

steps to the proof:
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(A) We first prove that the sequence
{
A(r,u)

}
u∈N

converges to a bounded connected set

G ⊆ crit(g̃) ⊆ O, where crit(g̃) is the set of stationary points of g̃. Moreover, g̃ is

constant over the set G.

(B) Next, we connect the above result to Condition (ii). To establish the connection, we

define a new function ḡ : O → R+ as ḡ(A) , g̃(A) − g̃(A(r)), where A(r) is a limit

point of the sequence
{
A(r,u)

}
u∈N

, and A is any point in the set O. We note that

the definition of ḡ is unambiguous because Step A shows that g̃ is constant over the

set G. We then show that there exists a positive integer U0 ∈ N and C̃ > 0 such that

for all u ≥ U0, (
ḡ
(
A(r,u)

))θ
≥ C̃ ‖Z‖ , (D.94)

for any Z such that Z ∈ ∂g̃
(
A(r,u)

)
.

(C) Finally, using the above relation and other conditions of the theorem, we show that

the desired result follows.

Next, we present the details of the above steps:

D.12.1 Characterization of G

From Condition (iii), we get that

∞∑
u=1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

≤ 1

C1

[
lim
u→∞

g̃
(
A(r,u−1)

)
− g̃

(
A(r,0)

)]
<∞, (D.95)

where the last step follows because limu→∞ g̃
(
A(r,u−1)

)
< ∞ due to Proposition 5.2.

Further, [191, Theorem 1] states that the set of subsequential limit points of a sequence
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{
A(r,u)

}
u∈N

in a compact metric space is a connected set if it satisfies the following:

∞∑
u=1

∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

<∞. (D.96)

Consequently, the result applies to any bounded sequence satisfying (D.96). Since the

sequence
{
A(r,u)

}
u∈N

generated by the AM procedure belongs to the bounded set O, it

converges to a bounded connected set G ⊆ O. Also, since the set of subsequential limits

is closed, G is a connected compact set.

Now, for any limit point A(r) ∈ G of the sequence
{
A(r,u)

}
u∈N

, there exists a sequence

{uj}j∈N of natural numbers such that
{(
A(r,uj),Z(r,uj), g̃

(
A(r,uj)

))}
j∈N

converges to the

tuple
(
A(r),0, g̃

(
A(r)

))
. This is because the subsequence

{(
Z(r,uj), g̃

(
A(r,uj)

))}
j∈N

converges to the same limit point as that of the sequence
{(
Z(r,u), g̃

(
A(r,u)

))}
u∈N

which

is
(
0, g̃

(
A(r)

))
due to (6.15) and Proposition 5.2. Therefore, we conclude that G ⊂ crit(g̃)

and g̃ is constant over the set G, completing Step A.

D.12.2 Connection to Kurdyka- Lojasiewicz property

The compact set G can be covered with finite number of closed balls

Bj =
{
A ∈ O :

∥∥∥A−A∗(j)∥∥∥ ≤ εj

}
, (D.97)

such that Condition (ii) is satisfied by A(r,j) with constants C(j) and εj > 0. Therefore,

we have the following relation for A ∈ Bj:

∣∣∣g̃ (A)− g̃
(
A∗(j)

)∣∣∣θj ≤ C(j) ‖Z‖ , (D.98)



Appendix D. 244

for some θj and any Z such that Z ∈ ∂g̃ (A). Setting ε = min
j

εj, C̃ = max
j

C(j), and

θ = max
j

θj we get the following:

|g̃ (A)− g̃ (A∗)|θ ≤ C̃ ‖Z‖ , (D.99)

for any A∗ ∈ G of g̃, any A such that ‖A−G‖ ≤ ε, and any Z such that Z ∈ ∂g̃ (A).

Further, since
{
A(r,u)

}
u∈N

converges to G, for any ε > 0, there exists a positive integer

U0 such that for all u ≥ U0, we have
∥∥∥A(r,u) −G

∥∥∥ ≤ ε. Therefore, for all u ≥ U0,

∣∣∣ḡ (A(r,u)
)∣∣∣θ =

∣∣∣g̃ (A(r,u)
)
− g̃

(
A(r)

)∣∣∣θ ≤ C̃ ‖Z‖ . (D.100)

Thus, Step B is completed.

D.12.3 Convergence to a single point

Since
{
g̃
(
A(r,u)

)}
u∈N

is a non-increasing sequence, we have ḡ
(
A(r,u)

)
≥ 0, and the

following relation holds.

lim
u→∞

ḡ
(
A(r,u)

)
= 0. (D.101)

We first note that the function h : R+ → R defined as h(s) = −s1−θ is convex for all

0 ≤ θ ≤ 1. Thus, for all u ∈ N and for θ in Condition (ii), it holds that

[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
= h

(
ḡ
(
A(r,u−1)

))
− h

(
ḡ
(
A(r,u)

))
(D.102)

≥ dh(s)

ds

∣∣∣∣
s=ḡ(A(r,u−1))

[
ḡ
(
A(r,u−1)

)
− ḡ

(
A(r,u)

)]
.

(D.103)
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Further, we have,

[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
= (1− θ)

[
ḡ(A(r,u−1)

]−θ [
ḡ
(
A(r,u−1)

)
− ḡ

(
A(r,u)

)]
(D.104)

≥ C1(1− θ)
[
ḡ
(
A(r,u)

)]−θ ∥∥∥A(r,u−1) −A(r,u)
∥∥∥2

,

(D.105)

where we use Condition (iii) to obtain the last relation. Further, from Step B, we get that

[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
≥ C1(1− θ)

C

∥∥∥A(r,u) −A(r,u−1)
∥∥∥2

‖Z‖ (D.106)

≥ C1(1− θ)
CC2

∥∥∥A(r,u) −A(r,u−1)
∥∥∥2∥∥∥A(r,u−1) −A(r,u−2)
∥∥∥ , (D.107)

where we use Condition (iv).

Next, we fix a constant 0 < τ < 1. For some u ≥ U0, if
∥∥∥A(r,u) −A(r,u−1)

∥∥∥ ≥
τ
∥∥∥A(r,u−1) −A(r,u−2)

∥∥∥, from (D.107), we get the following:

CC2

rC1(1− θ)

{[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
}
≥
∥∥∥A(r,u) −A(r,u−1)

∥∥∥ . (D.108)

For all other values of u ≥ U0, we have the following relation:

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ τ

∥∥∥A(r,u−1) −A(r,u−2)
∥∥∥ . (D.109)

Combining (D.108) and (D.109), for all u ≥ U0, we get the upper bound as given below:

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ τ

∥∥∥A(r,u−1) −A(r,u−2)
∥∥∥

+
CC2

rC1(1− θ)

{[
ḡ
(
A(r,u−1)

)]1−θ
−
[
ḡ
(
A(r,u)

)]1−θ
}
. (D.110)
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Summing both sides, and using (D.101), we can simplify the expression as follows:

∞∑
u=U0

∥∥∥A(r,u)−A(r,u−1)
∥∥∥ ≤ τ

1− τ
∥∥∥A(r,U0−1) −A(r,U0−2)

∥∥∥+
CC2

rC1(1− θ)
[
ḡ
(
A(r,U0)

)]1−θ
.

(D.111)

Thus, we conclude that the series converges, and there exists a finite constant κ <∞ such

that the following holds:
∞∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ = κ. (D.112)

Hence, for any ε > 0, there exists a positive integer U1 such that for all U ≥ U1, we have

κ− ε/2 ≤
U∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ κ+ ε/2. (D.113)

Thus, for any U1 ≤ u1 < u2, we have

∣∣∣∥∥∥A(r,u2)
∥∥∥− ∥∥∥A(r,u1)

∥∥∥∣∣∣ ≤ u2∑
u=u1+1

∣∣∣∥∥∥A(r,u)
∥∥∥− ∥∥∥A(r,u−1)

∥∥∥∣∣∣ ≤ u2∑
u=u1+1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥

(D.114)

=

u2∑
u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥− u1∑

u=1

∥∥∥A(r,u) −A(r,u−1)
∥∥∥ ≤ ε. (D.115)

Therefore, the sequence
{
A(r,u)

}
u∈N

is Cauchy, hence it converges.
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