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Abstract

In many distant speech acquisition scenarios, such as hands-free telephony or teleconfer-

encing, the desired speech signal is corrupted by noise and reverberation. ¿is degrades

both the speech quality and intelligibility, making communication di�cult or even im-

possible. Speech enhancement techniques seek to mitigate these e�ects and extract the

desired speech signal.

¿is objective is commonly achieved through the use of microphone arrays, which

take advantage of the spatial properties of the sound �eld in order to reduce noise and

reverberation. Spherical microphone arrays, where the microphones are arranged in a

spherical con�guration, usually mounted on a rigid ba�e, are able to analyze the sound

�eld in three dimensions; the captured sound �eld can then be e�ciently described in

the spherical harmonic domain (SHD).

In this thesis, a number of novel spherical array processing algorithms are proposed,

based in the SHD. In order to comprehensively evaluate these algorithms under a variety

of conditions, a method is developed for simulating the acoustic impulse responses

between a sound source and microphones positioned on a rigid spherical array placed

in a reverberant environment.

¿e performance of speech enhancement algorithms can o en be improved by taking

advantage of additional a priori information, obtained by estimating various acoustic

parameters. Methods for estimating two such parameters, the direction of arrival (DOA)

of a source (static or moving) and the signal-to-di�use energy ratio, are introduced.



8 Abstract

Finally, the signals received by a microphone array can be �ltered and summed by

a beamformer. A tradeo� beamformer is proposed, which achieves a balance between

speech distortion and noise reduction. ¿e beamformer weights depend on the noise

statistics, which cannot be directly observed and must be estimated. An estimation algo-

rithm is developed for this purpose, exploiting the DOA estimates previously obtained

to di�erentiate between desired and interfering coherent sources.
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Chapter 1

Introduction

1.1 Context of work

¿emotivation behind the work presented in this thesis lies in the rapidly growing de-

mand for speech communication systems over the last couple of decades. Such systems

are now commonplace in our everyday lives, primarily for human-human communica-

tion. However, as the most natural form of human communication, speech also promises

to play an ever-growing part in human-machine communication. While speech-based

interfaces were once con�ned to the realms of science �ction, they are now becoming an

increasingly popular way of interacting with devices such as smartphones, desktop and

tablet computers, robots or televisions. ¿is trend has been fueled by advances in speech

recognition and synthesis technology, as well as the explosion in available computing

power, particularly on mobile devices.

¿e �eld of acoustic signal processing seeks to solve a number of problems relating

to these systems, which can broadly be divided into two categories: acoustic parameter

estimation and acoustic signal enhancement. Acoustic parameter estimation involves

the estimation of parameters such as the location or direction of arrival of one or more

acoustic sources, the di�useness of a sound �eld, the number of sources present in a

sound �eld, or the reverberation time of an acoustic environment.
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In many speech communication systems, the speech to be acquired originates from

a distant speaker (located far away from the microphone or microphones). While in

some applications, such as teleconferencing systems, a close-talkingmicrophone forming

part of a headset may be available, in others, such as hearing aids or assistive listening

devices, this is a far less practical option. As a result, the acquired speech is corrupted

by the surrounding environment. One major cause for this degradation is the presence

of noise, where by ‘noise’ we mean any acoustic signal which is undesired, e.g., an

interfering speech signal or background noise. ¿e other is the presence of obstacles

to the propagation of sound waves, in particular room boundaries (walls, �oors and

ceiling), which cause reverberation.

¿ese e�ects degrade the quality of the acquired speech, and in some cases, its

intelligibility, making communication di�cult or even impossible. Acoustic signal

enhancement or speech enhancement techniques seek to mitigate these e�ects, and

extract the desired (usually speech) signal. ¿e main problems of interest within speech

enhancement are noise reduction, echo cancellation and dereverberation. Although the

speakerphone was �rst released by AT&T in 1954 [34], these remain unsolved problems.

Acoustic signal processing problems are commonly approached with microphone

arrays [11, 17,36], i.e., an arrangement of microphones in a speci�c con�guration, thereby

taking advantage of the spatial properties of the sound �eld (or spatial diversity) in

order to improve performance. Owing to the similarity of the problems involved, many

microphone array processing techniques are based on narrowband antenna array pro-

cessing techniques [25]; however, microphone array processing faces its own unique

challenges [11]. ¿ese include the broadband nature of speech (which covers several

octaves), the non-stationarity of speech, and the fact that the desired and noise signals

o en have very similar spectral characteristics [11]. In addition, the placement and

number of microphones is restricted, primarily by cost, aesthetics and available space.

Considerations of space limit both the inter-microphone spacing and total microphone

array size, and are of particular importance for devices operating in con�ned spaces,



1.2¿esis contributions 27

such as hearing aids.

In theory, any microphone array con�guration is possible; in practice, most micro-

phone arrays are planar, i.e., the microphones lie on a �at, two-dimensional surface. Real

sound �elds are three-dimensional, however, and can only be properly analyzed with a

three-dimensional array. ¿e spherical con�guration is convenient due to its symmetry

and equal performance in all directions. In addition, the captured sound �eld can be e�-

ciently described in the spherical harmonic domain [77], based on a formulation of the

wave equation in spherical coordinates. Spherical microphone arrays [1, 90] are usually

either open or rigid, i.e., the microphones are either suspended in free space or mounted

on a rigid ba�e. ¿ey have recently started to become commercially available, in the

form of products such as the acoustic camera by GFal, the Eigenmike by mh acoustics, or

the RealSpace Panoramic Audio Camera by VisiSonics, yet to date there have been few

algorithms designed for these arrays. It is in this context that we make the contributions

contained in this thesis.

1.2 ¿esis contributions

1.2.1 Research statement

¿e aim of this thesis is to exploit the properties of spherical microphone arrays and

the spherical harmonic domain (SHD), and propose acoustic parameter estimation

and signal enhancement algorithms that are capable of operating in noisy reverberant

environments.
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1.2.2 Publications

¿e following publications were produced during the course of this work:

Journal publications

[J1] D. P. Jarrett, E. A. P. Habets, M. R. P. Thomas, and P. A. Naylor, “Rigid sphere

room impulse response simulation: algorithm and applications,” J. Acoust. Soc.

Am., vol. 132, no. 3, pp. 1462–1472, Sep. 2012.
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1.2.3 Original contributions

¿e following aspects of the thesis are, to the best of the author’s knowledge, original

contributions:

• Development of a rigid sphere acoustic impulse response estimation method.

(Chapter 3, published in [C3,J1])

– Comparison of a theoretical prediction of reverberant sound energy on the

surface of a rigid sphere to simulated results obtained using the proposed

method. (Section 3.4.1)

– Analysis of interaural time di�erences and interaural level di�erences in a

reverberant environment using the proposed method. (Section 3.4.2)

• Development of a pseudointensity vector–based direction-of-arrival estimation

method employing zero- and �rst-order eigenbeams. (Section 4.1, published in [C1])

– Formulation and implementation of a steered response power–based direction-

of-arrival estimation method, and comparison with the proposed method.

(Sections 4.1.2 and 4.1.5)

• Development of a particle velocity vector–based source tracking method. (Section

4.2, published in [C2])

– Derivation of an adaptive �lter for particle velocity estimates. (Section 4.2.3.1)

• Development of a di�useness estimation algorithm based on the coherence be-

tween eigenbeams. (Section 4.3, published in [C6])

– Derivation of an expression for the coherence between eigenbeams in a sound

�eld composed of both directional and di�use components. (Section 4.3.2.1)

– Implementation of a coe�cient of variation–based di�useness estimation

algorithm, and comparison with the proposed method. (Sections 4.3.3 and

4.3.4)
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Figure 1.1: Relationship between the problems addressed in the thesis.

• Development of a noise reduction algorithm to suppress both spatially coherent

and spatially incoherent noise. (Chapter 5, published in/submitted to [C7,J3])

– Formulation and implementation of a SHD tradeo� beamformer. (Section

5.2, published in [C5])

– Development of a signal statistics estimation algorithm, which is necessary

to compute the weights of the tradeo� beamformer. (Section 5.3)

– Evaluation of the proposed noise reduction algorithm using measured acous-

tic impulse responses. (Section 5.6)

¿e relationship between each of the problems addressed in this thesis is summarized

in Fig. 1.1, which also indicates which publications and thesis sections/chapters relate to

each problem.
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1.3 ¿esis outline

¿e content of this thesis is structured as follows:

• In Chapter 2, the fundamentals of spherical array processing are reviewed. ¿is

includes an introduction to spherical harmonics, spatial sampling and aliasing,

spherical array con�gurations, and some simple beamforming techniques.

• In Chapter 3, a method is proposed for simulating the acoustic impulse responses

between a sound source and the microphones positioned on a spherical array,

taking into account specular re�ections of the source by employing the well-known

image method, and scattering from the rigid sphere by employing spherical har-

monic decomposition. ¿is method is necessary to comprehensively evaluate

spherical array processing algorithms under many acoustic conditions. ¿ree

examples are presented: an analysis of a di�use reverberant sound �eld, a study of

binaural cues in the presence of reverberation, and an illustration of the algorithm’s

use as a mouth simulator.

• Chapter 4 presents novel parameter estimation algorithms in the SHD. We �rst

propose a low-complexity method for direction of arrival estimation based on a

pseudointensity vector, and compare it to a steered response power localization

method. We then propose an adaptive source tracking algorithm, where the track-

ing is performed using an adaptive principal component analysis of the particle

velocity vector. ¿e pseudointensity and particle velocity vectors are estimated

using a spherical microphone array, and are formed by combining the zero- and

�rst-order eigenbeams, which result from a spherical harmonic decomposition of

the sound �eld. Finally, we propose a di�useness estimator based on the coher-

ence between eigenbeams. ¿e weighted averaging of the di�useness estimates

over all eigenbeam pairs, unlike in the spatial domain where the di�useness is

typically estimated using the coherence between a pair of microphones, is shown
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to signi�cantly reduce the variance of the estimates, particularly in �elds with low

di�useness.

• In Chapter 5 we present a tradeo� beamformer in the SHD that enables a trade-

o� between noise reduction and speech distortion. ¿is beamformer includes

the SHDminimum variance distortionless response (MVDR) and multichannel

Wiener �lters as special cases. We propose an algorithm to estimate the second-

order statistics of the noise and desired signal using a speech presence probability–

based method that can distinguish between a coherent desired source and a co-

herent noise source. We show that the tradeo� beamformer is able to reduce high

levels of coherent noise with low speech distortion.

• ¿e thesis is concluded and future work is discussed in Chapter 6.
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Chapter 2

Background

¿e sound �eld captured at a point r in space and time t is denoted as p(t, r). By applying

the temporal Fourier transform to p(t, r), we obtain the sound pressure P(k, r), where

k denotes the wavenumber and is related to the angular frequency ω and speed of sound

c via the dispersion relation k = ω/c. We assume the acoustic waves propagate in a non-

dispersive medium, such that the propagation speed c is independent of the wavenumber

k.

2.1 Coordinate systems

Unless otherwise indicated, in this thesis we work in spherical coordinates r = (r, Ω) =

(r, θ , ϕ), with radial distance r, inclination θ and azimuth ϕ. We adopt the spherical

coordinate system used in [35, 76, 112, 119], which is illustrated in Fig. 2.1. ¿e spherical

coordinates are related to Cartesian coordinates x, y, z via the expressions [119, eqn.

2.47]

x = r sin θ cosϕ (2.1a)

y = r sin θ sinϕ (2.1b)

z = r cos θ . (2.1c)
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z
(r,θ,φ)

x

y

φ

θ

Figure 2.1: Spherical coordinate systemused in this thesis, de�ned relative toCartesian coordi-
nates. ¿e radial distance r is the distance between the observation point and the origin of the
coordinate system. ¿e inclination θ is measured from the positive z-axis, and the azimuth ϕ
is measured in the xy-plane from the positive x-axis.

Conversely, the spherical coordinates may be obtained from the Cartesian coordinates

using

r =
√
x2 + y2 + z2 (2.2a)

θ = arccos(z
r
) (2.2b)

z = arctan(
y
x
) , (2.2c)

where arctan is the four-quadrant inverse tangent (implemented using the function

atan2() in most environments).
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2.2 Spherical harmonics

¿e sound �eld captured by a spherical array can be conveniently described in the

spherical harmonic domain (SHD). ¿e spatial domain signals P(k, r) are expanded

into a series of orthogonal basis functions, the spherical harmonics Ylm [119], via the

expression [119, eqn. 6.48]

P(k, r) =
∞

∑
l=0

l

∑
m=−l

Plm(k)Ylm(Ω), (2.3)

which is referred to as a spherical harmonic(s) expansion or spherical harmonic decomposi-

tion of the sound �eld. ¿e coe�cients Plm(k), which can be considered as counterparts

to the Fourier series coe�cients in one dimension, are o en called eigenbeams to re�ect

the fact that the spherical harmonics are eigensolutions of the wave equation in spherical

coordinates [7, 119], and are given by [119, eqn. 6.48]

Plm(k) =
ˆ
Ω∈S2

P(k, r)Y∗
lm(Ω)dΩ, (2.4)

where
´
Ω∈S2 dΩ =

´ 2π
0 dϕ

´ π
0 sin θdθ and (⋅)∗ denotes the complex conjugate. ¿e opera-

tions in (2.4) and (2.3) are respectively referred to as the forward and inverse spherical

Fourier transform; the parameters of the spherical Fourier transform are the order l and

degree m.

¿e spherical harmonic of order l and degree m is de�ned as [119, eqn. 6.20]

Ylm(Ω) =

¿
Á
ÁÀ2l + 1

4π
(l −m)!
(l +m)!

Plm(cos θ)e imϕ , (2.5)

where Plm is the associated Legendre function1 and i =
√
−1. ¿e beam patterns of the

1In this thesis, for consistency with spherical array processing literature, we refer to l as the order
and m as the degree of the spherical harmonics and associated Legendre functions (or polynomials).
However, it should be noted that in other �elds, l is referred to as the degree, and m as the order. ¿is
re�ects the fact that the words degree and order are used interchangeably when referring to polynomials.
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spherical harmonics up to second order are illustrated in Fig. 2.2. It can be seen that

the zero-order spherical harmonic is omnidirectional, while the �rst-order spherical

harmonics have a dipole directivity pattern.

¿e spherical harmonics exhibit a useful property that we will make use of later in

this thesis, namely that they are mutually orthonormal [119, eqn. 6.45], i.e.,

Property 2.2.1. ˆ
Ω∈S2

Ylm(Ω)Y∗
pq(Ω)dΩ = δl pδmq , (2.6)

where the Kronecker delta δ is de�ned as follows:

δi j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, if i = j;

0, if i ≠ j.
(2.7)

2.3 Spatial sampling and aliasing

In practice a continuous pressure sensor is not available, and the sound �eld must be

spatially sampled, such that the integral in (2.4) is replaced by a sum over a discrete

number of microphones Q at positions rq, q = 1, . . . Q [78, 90, 95]

Plm(k) =
ˆ
Ω∈S2

P(k, r)Y∗
lm(Ω)dΩ (2.8a)

≈
Q

∑
q=1

äq,lm P(k, rq). (2.8b)

¿is is a quadrature rule: the approximation of a de�nite integral by a weighted sum. ¿e

quadrature weights äq,lm are chosen such that the error involved in this approximation is

minimized, and are a function of the sampling con�guration chosen. Error-free sampling

is achieved when the approximation in (2.8b) becomes an equality, or equivalently, when

the discrete orthonormality error is zero [90], i.e.,

Q

∑
q=1

äq,lmYl ′m′(Ωq) = δl−l ′δm−m′ . (2.9)
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Figure 2.2: Beam patterns ∣Ylm(θ , ϕ)∣ of some of the most commonly used spherical harmon-
ics, for {l ∈ Z∣0 ≤ l ≤ 2}, {m ∈ Z∣0 ≤ m ≤ l}. ¿e beam patterns for m < 0 are omitted as they
are identical to those for m > 0.
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In the same way that a time domain signal must be temporally band-limited in order

to be fully reconstructed from a �nite number of samples without temporal aliasing,

the SHD sound �eld must be order-limited (Plm = 0 for l > L, where L is the order of

the sound �eld) to be captured with a �nite number of microphones without spatial

aliasing [90]. A sound �eld which is limited to an order L is represented using a total of

∑
L
l=0∑

l
m=−l 1 = ∑L

l=0(2l + 1) = (L+ 1)2 eigenbeams, therefore all spatial sampling schemes

require at least (L + 1)2 microphones to sample a sound �eld of order L without spatial

aliasing.

Spatial aliasing occurs when high-order sound �elds are captured using an insu�-

cient number of sensors and the high-order eigenbeams are aliased into the lower orders.

A number of sampling schemes, three of which are presented below, are aliasing-free (or

have negligible aliasing) for order-limited functions. However, in practice, sound �elds

are not order-limited: they are represented by an in�nite series of spherical harmon-

ics [94]. Nevertheless, the magnitude of the eigenbeams decays rapidly for l > kr (see

Section 2.4). We can therefore consider the aliasing error to be negligible if kr < L [90,94],

or equivalently if the operating frequency
ffl
satis�es

ffl
< Lc

2πr , where c is the speed of

sound, and the frequency
ffl
and wavenumber k are related via the expression

ffl
= kc

2π .

¿is means that for a sound �eld of order L = 4 and an array radius of r = 4.2 cm (the

radius of the Eigenmike [79]), the operating frequency must be smaller than 5.2 kHz, for

example. For higher operating frequencies, Rafaely et al. proposed spatial anti-aliasing

�lters to reduce the aliasing errors [94].

2.3.1 Sampling schemes

¿e simplest sampling scheme is equiangle sampling, where the inclination θ and az-

imuth ϕ are uniformly sampled at 2(L+ 1) angles given by θ i = πi
2L+2 , i = 0, . . . , 2L+ 1 and

ϕ j =
2π j
2L+2 , j = 0, . . . , 2L+ 1 [32,90]. ¿e scheme therefore requires a total ofQ = 4(L+ 1)2

microphones. ¿e quadrature weights are given by äq,lm = äiY∗
lm(θ i , ϕ j) [32, 90], where

q = j + i(2L + 2) + 1, and the term äi compensates for the denser sampling in θ near the
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poles [32, 90]. ¿e advantage of this scheme is the uniformity of the angle distributions,

which can be useful when samples are taken by a rotating microphone, however this

comes at the expense of a relatively large number of required samples.

In Gaussian sampling, only half as many samples are needed: the azimuth is still

sampled at 2(L+1) angles, whereas the inclination is sampled at only L+1 angles, requiring

a total of 2(L + 1)2 microphones. ¿e azimuth angles are the same as for equiangle

sampling, while the inclination angles must satisfy PL+1(cos θ i) = 0, i = 0, . . . , L [90],

where PL+1 is the Legendre polynomial of order L + 1. ¿e quadrature weights are then

given by äq,lm = äiY∗
lm(θ i , ϕ j) [94], where q = j + i(2L + 2) + 1 and the weights äi are

given in [7, 67]. ¿e disadvantage of this scheme is that the inclination distribution is no

longer uniform, however for a �xed array con�guration this is not likely to be a problem.

Finally, in (quasi) uniform sampling, the samples are (quasi) uniformly distributed

on the sphere, i.e., the distance between each sample and its neighbours is (quasi) constant.

A limited number of distributions perfectly satisfy this requirement: the vertices of the

so-called platonic solids. However, there are a number of nearly uniform distributions

with negligible orthogonality error, which require at least (L + 1)2 microphones. ¿e

quadrature weights are given by äq,lm = 4π
Q Y∗

lm(Ωq) for uniform sampling [35, 119].

In the rest of this thesis, uniform sampling will be employed, and it will be assumed

that this sampling is aliasing-free. ¿is is a reasonable assumption for the operating

frequencies (up to 4 kHz) considered in this work.

2.4 Array con�gurations

¿esound pressure captured by themicrophones in a spherical array depends on the array

properties, e.g., radius, con�guration (open, rigid, dual-sphere, etc.), or microphone

type. ¿is dependence is captured by the frequency-dependent mode strength bl(k),

which determines the amplitude of the l th-order eigenbeam(s) Plm(k) (m = −l , . . . , l).

For a unit amplitude plane wave incident from a direction Ω0, the SHD sound pressure
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Figure 2.3: ¿e GFal Sphere120 pro acoustic camera. ¿is open array of radius 30 cm is com-
prised of 120 microphones, as well as a digital camera. © gfai tech GmbH, used with permis-
sion.

and the mode strength bl(k) are related via the expression [77, 89, 112]

Plm(k) = bl(k)Y∗
lm(Ω0). (2.10)

¿e simplest array con�guration is the open sphere composed of omnidirectional

microphones suspended in free space. It is assumed that the microphones and associated

cabling and mounting brackets are acoustically transparent, i.e., that they have no e�ect

on the measured sound �eld. In this case, the mode strength is given by [89, 112]

bl(k) = (−i)l jl(kr), (2.11)

where jl(kr) is the spherical Bessel function of order l . ¿is con�guration is convenient

for large array radii, where a rigid array would be impractical, and for scanning arrays.

An example of an open spherical array, the Sphere120 pro by GFal, is shown in Fig. 2.3.

When processing the eigenbeams captured using the spherical array, it is necessary
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Figure 2.4: Magnitude of the mode strength bl(k) for orders l ∈ {0, 1, 2, 3} as a function of kr.
¿e solid lines denote a rigid sphere, and the dashed lines denote an open sphere.

to remove the dependence on the array properties by dividing the eigenbeams by bl(k),

thereby removing the frequency-dependence of the eigenbeams. ¿e open sphere mode

strength is plotted in Figure 2.4 (dashed line); it can be seen that there are zeros at certain

frequencies (for certain values of kr). As a result, the open array may su�er from poor

robustness at these frequencies, where measurement noise will be signi�cantly ampli�ed.

In addition, it can be seen that for l > 0, at low frequencies the mode strength is very

small; as a result, high-order eigenbeams are generally not used at low frequencies [76].

¿e rigid sphere is a popular alternative to the open sphere. In this con�guration,

omnidirectional microphones are mounted on a rigid ba�e, and the array is therefore

no longer acoustically transparent: the sound waves are scattered by the sphere. An

example of a rigid spherical array, the Eigenmike [79], is shown in Fig. 2.5. ¿e mode



44 Chapter 2. Background

Figure 2.5: ¿e em32 Eigenmike spherical microphone array. ¿is rigid array of radius 4.2 cm
is comprised of 32 omnidirectional microphones. (Photo credit: Emanuël Habets)

strength for a rigid sphere of radius ra is given by [77, 89]

bl(kra, kr) = (−i)l
⎛

⎝
jl(kr) −

j′l(kra)
h(1)

′

l (kra)
h(1)l (kr)

⎞

⎠
, (2.12)

where j′l and h
(1)′

l respectively denote the �rst derivatives of jl and h(1)l with respect to the

argument, and h(1)l is the spherical Hankel function of the �rst kind. ¿e microphones

are normally positioned on the surface of the rigid sphere (i.e., r = ra), therefore we

de�ne bl(k) ≜ bl(kr, kr). ¿e second term in (2.12) compared to (2.11) accounts for the

e�ect of scattering.

From the plot of the rigid spheremode strength in Figure 2.4 (solid line), an advantage

of the rigid sphere can be observed: it does not su�er from zeros in its mode strength,

unlike the open sphere. In addition, the scattering e�ects of the rigid sphere are rigorously

calculable and can be incorporated into the eigenbeam processing framework. For a

detailed discussion of the scattering e�ects of the rigid sphere, the reader is referred to

Chapter 3.
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As the spherical microphone array available at the host institution is a rigid array (the

Eigenmike), this con�guration will be used for most of the work in this thesis. A number

of other con�gurations have been proposed, but will not be discussed in this thesis. ¿e

mode strength expressions for the following con�gurations can be found in [93] and

the references therein. ¿e hemisphere [72] exploits the symmetry of the sound �eld

by mounting the array on a rigid surface. ¿e open dual-sphere [9], comprised of two

spheres with di�erent radii, and the open sphere with cardioid microphones [9] both

overcome the problem of zeros in the open sphere mode strength, although cardioid

microphones are not as readily available as omnidirectional microphones. Finally, in the

free sampling con�guration the microphones can be placed anywhere on the surface

of a rigid sphere [71]; their positions are then optimized to robustly achieve an optimal

approximation of a desired beampattern, or maximum directivity. ¿e choice of array

con�guration is usually based on the intended application; for example, in a confer-

ence room where the microphone array is placed on a large table, the hemispherical

con�guration could be the most appropriate.

2.5 Beamforming

Once the sound �eld has been sampled and the eigenbeams have been computed, the

eigenbeams can be combined to produce an enhanced output by applying a SHD beam-

former. ¿e output Z(k) of an Lth-order SHD beamformer can be expressed as [90, eqn.

12]

Z(k) =
L

∑
l=0

l

∑
m=−l

W∗
lm(k)Plm(k), (2.13)

whereWlm(k) denotes the beamformer weights. ¿e beamformer weights are chosen in

order to achieve speci�c performance objectives.

¿e simplest beamformer is the plane-wave decomposition beamformer for which
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the weights are given by [92]

W∗
lm(k) =

Ylm(Ωu)

bl(k)
, (2.14)

where Ωu is the beamformer look direction. As the array order L tends to in�nity, the

beamformer performs plane wave decomposition: the output tends towards a delta

function in the direction of arrival (DOA) Ω0 [89], i.e.,

lim
L→∞

Z(k) = δ(Θ), (2.15)

where δ(⋅) is the Dirac delta function and Θ is the angle between Ω0 and Ωu. ¿e

advantage of this beamformer is that it achieves maximum directivity [35, 95], i.e., the

ratio of the output power in the look direction to the output power averaged over all

directions [116] is maximized.

A commonly used beamformer in the spatial domain is the delay-and-sum beam-

former (DSB), where it is assumed that the signals reaching each microphone in an array

are identical with the exception of a time delay, and the beamformer output is formed by

time-aligning and then summing the microphone signals [17, 116]. In the SHD, the so-

called DSB is actually only mathematically equivalent to the spatial domain DSB in the

case of an open sphere as L →∞ [91, eqn. 14]. Under these conditions, this beamformer

achieves maximumwhite noise gain, i.e., the improvement in signal-to-noise ratio (SNR)

between the array output and input for spatially white noise [116] is maximized [95]. ¿e

weights of the SHD DSB are given by [91, eqn. 16]

W∗
lm(k) = b∗l (k)Ylm(Ωu). (2.16)

A number of other more complex beamformers have also been proposed: some are

�xed (like the two aforementioned beamformers), and apply a constraint to a speci�c look

direction while optimizing the weights with respect to array performance measures (like
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the directivity and white noise gain), whereas others are signal-dependent (e.g., [84,120]),

and optimize the weights taking into account characteristics of the desired signal and

noise. Rafaely provides a summary of some �xed beamforming methods in [92]. In

Chapter 5, we propose a signal-dependent beamformer for noise reduction.

2.6 Associated literature

¿emain literature relevant to spherical microphone arrays has been referenced through-

out this chapter, while the literature relevant to the speci�c problems addressed in this

thesis (acoustic impulse response simulation, acoustic parameter estimation and signal

enhancement) will be discussed in the relevant thesis chapters. ¿e following section

provides a brief overview of the fundamental publications in the �eld.

¿e literature relating to spherical microphone arrays is relatively sparse, and only

begins in earnest at the turn of the century. Meyer & Elko, Gover, Ryan & Stinson,

and Abhayapala & Ward were among the �rst to investigate spherical microphone ar-

rays in 2002. Meyer & Elko presented an array based on a rigid sphere to be used for

beamforming [77]. Gover, Ryan & Stinson used a spherical array to analyze acoustic

impulse responses, reverberation times and the di�useness of sound �elds in rooms [43].

Abhayapala &Ward presented an open sphere array as an alternative to the Sound�eld

microphone [106] (a tetrahedral array composed of four microphones), capable of record-

ing higher-order (second-order and above) sound �elds, which they considered to be

necessary for the accurate reproduction of a sound �eld [1].

¿e mathematical framework used for spherical array processing, based on spherical

harmonic decomposition, was developed by Williams in Fourier Acoustics [119], where

he gave a theoretical background on sound radiation with Fourier analysis in mind. In

particular he rederived the equations that describe the scattering e�ect introduced by a

rigid sphere, �rst formulated by Rayleigh in the 19th century [73]. Rafaely later presented

a comprehensive theoretical analysis of spherical microphone arrays [90] and looked at
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design issues such as sampling schemes, errors introduced by having a �nite number of

microphones, errors in microphone positioning, spatial aliasing, etc.

While the �eld of spherical array processing is relatively new, the spherical harmonics

used are not: theywere �rst introduced by Laplace in 1784, and are thus sometimes known

as Laplace coe�cients, despite the fact that the similar coe�cients for two dimensions

had been published by Legendre the previous year [97]. Since then they have been

widely used in �elds such as atomic physics, quantum chemistry, geodesy, magnetics,

and computer graphics.

Although not the focus of this thesis, spherical microphone arrays can also be used

for sound �eld recording and reproduction. Ambisonics, a series of surround sound

acquisition and reproduction techniques, works with signals that are also based on a

spherical harmonic decomposition of the sound �eld, although the terminology used is

o en di�erent. Historically it has usually involved only zero- and �rst-order eigenbeams,

referred to as B-format signals, although more recently higher-order systems have been

investigated [80], providing increased spatial resolution. An introduction to Ambisonics

is provided in [40].
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Chapter 3

Acoustic impulse response simulation

In general, the evaluation of acoustic signal processing algorithms, such as direction

of arrival (DOA) estimation (see Chapter 4) and speech enhancement (see Chapter 5)

algorithms, makes use of simulated acoustic transfer functions (ATFs). By using simu-

lated ATFs it is possible to comprehensively evaluate an algorithm under many acoustic

conditions (e.g., reverberation time, room dimensions and source-array distance). Allen

& Berkley’s imagemethod [6] is a widely used approach to simulate ATFs between an om-

nidirectional sound source and one or more microphones in a reverberant environment.

In the last few decades, several extensions have been proposed [70, 85].

In recent years the use of spherical microphone arrays has become prevalent. ¿ese

arrays are commonly of one of two types: the open array, where microphones are

suspended in free space on an ‘open’ sphere, and the rigid array, where microphones

are mounted on a rigid ba�e. ¿e rigid sphere is o en preferred as it improves the

numerical stability of many processing algorithms [89] and its scattering e�ects are

rigorously calculable [77].

Currently, many works relating to spherical array processing consider only free-�eld

responses, however, when a rigid array is used, the rigid ba�e causes scattering of the

Portions of this work were �rst published in the Journal of the Acoustical Society of America [62] in
2012. © 2012 Acoustical Society of America.
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sound waves incident upon the array that the image method does not consider. ¿is scat-

tering has an e�ect on the ATFs, especially at high frequencies and/or for microphones

situated on the occluded side of the array. Furthermore the reverberation due to room

boundaries such as walls, ceiling and �oor must also be considered, particularly in small

rooms.

While measured transfer functions include both these e�ects, they are both time-

consuming and expensive to acquire. A method for simulating ATFs in a reverberant

room while accounting for scattering is therefore essential, allowing for fast, comprehen-

sive and repeatable testing. In this chapter, we propose such a method that combines a

model of the scattering in the spherical harmonic domain (SHD) with a version of the

image method that accounts for reverberation in a computationally e�cient way.

¿e simulated ATFs include the direct path, re�ections due to room reverberation,

scattering of the direct path and scattering of the reverberant re�ections. Re�ections

of the scattered sound and multiple interactions between the room boundaries and the

sphere are excluded as they do not contribute signi�cantly to the sound �eld, provided

the distances between the room boundaries and the sphere are several times the sphere’s

radius [44], which is easily achieved in the case of a small scatterer [16]. Furthermore,

we assume an empty rectangular shoebox room (with the exception of the rigid sphere)

and specular re�ections, as was assumed in the conventional image method [6]. Finally,

the scattering model used assumes a perfectly rigid ba�e, without absorption.

In this chapter, we �rst brie�y summarize Allen & Berkley’s image method and then

present our proposedmethod in the SHD. We then discuss some implementation aspects,

namely the truncation of an in�nite sum in the ATF expression and the reduction of

the method’s computational complexity, and then provide a pseudocode description of

the method. An open-source so ware implementation is available online [54]. Finally,

we show some example uses of the method and, where possible, compare the simulated

results obtained with theoretical models. Earlier versions of this work were previously

published in [61, 62].
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3.1 Allen & Berkley’s image method

¿e source-image or imagemethod [6] is one of themost commonly used room acoustics

simulation methods in the acoustic signal processing community. ¿e principle of the

method is to model an ATF as the sum of a direct path component and a number of

discrete re�ections, each of these components being represented in the ATF by a free-

space Green’s function. In this section, we review the free-space Green’s function and

the image method.

3.1.1 Green’s function

For a source at a position rs and a receiver at a position r, the free-space Green’s function,

a solution to the inhomogeneous Helmholtz equation applying the Sommerfeld radiation

condition, is given by1

G(r∣rs, k) =
e+ik∣∣r−rs ∣∣
4π ∣∣r − rs∣∣

, (3.1)

where ∣∣⋅∣∣ denotes the ℓ-2 norm and the wavenumber k is related to frequency
ffl
(in Hz),

angular frequency ω (in rad ⋅ s−1) and the speed of sound c (in m ⋅ s−1) via the relationship

k = ω/c = 2π
ffl
/c.

In the time-domain, the Green’s function is given by

д(r∣rs, t) =
δ(t − ∣∣r−rs ∣∣c )

4π ∣∣r − rs∣∣
, (3.2)

where δ is the Dirac delta function and t is time. ¿is corresponds to a pure impulse at

time t = ∣∣r−rs ∣∣c , i.e. the propagation time from rs to r.

1¿is expression assumes the sign convention commonly used in physics/acoustics, whereby the
temporal Fourier transform is de�ned as F(ω) =

´∞
−∞ f (t)e+iωtdt in order to eliminate the e−iωt term

in the time-harmonic solution to the wave equation, as in Morse & Ingard [81] and Williams [119]. ¿e
formulae in this thesis are the complex conjugates of those found in other publications which use the
opposite sign convention.
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3.1.2 Image method

Consider a rectangular room with length Lx , width Ly and height Lz. ¿e re�ection

coe�cients of the four walls, �oor and ceiling are βx1 , βx2 , βy1 , βy2 , βz1 and βz2 , where the

v1 coe�cients (v ∈ {x , y, z}) correspond to the boundaries at v = 0 and the v2 coe�cients

correspond to the boundaries at v = Lv .

If the sound source is located at rs = (xs, ys, zs) and the receiver is located at r =

(x , y, z), the images obtained using the walls at x = 0, y = 0 and z = 0 can be expressed

as a vector Rp:

Rp = [xs − x + 2pxx , ys − y + 2py y, zs − z + 2pzz], (3.3)

where each of the elements in p = (px , py , pz) can take values 0 or 1, thus resulting in

eight combinations that form a set P . To consider all re�ections we also de�ne a vector

Rm which we add to Rp:

Rm = [2mxLx , 2myLy , 2mzLz], (3.4)

where each of the elements inm = (mx ,my ,mz) can take values between −Nm and Nm,

and Nm is used to limit computational complexity and circular convolution errors, thus

resulting in a setM of (2Nm + 1)3 combinations. ¿e image positions in the x and y

dimensions are illustrated in Fig. 3.1.

¿e distance between an image and the receiver is given by ∣∣Rp +Rm∣∣. Using (3.1),

the ATF H is then given by

H(r∣rs, k) = ∑
p∈P
∑
m∈M

β∣mx+px ∣
x1 β∣mx ∣

x2 β∣my+py ∣
y1 β∣my ∣

y2 β∣mz+pz ∣
z1 β∣mz ∣

z2
e+ik∣∣Rp+Rm ∣∣

4π ∣∣Rp +Rm∣∣
. (3.5)
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Figure 3.1: A slice through the image space showing the positions of the images in the x and
y dimensions, with a source S and receiver R. ¿e full image space has three dimensions (x, y
and z). An example of a re�ected path (�rst-order re�ection about the x-axis) is also shown.

Using (3.2), we obtain the acoustic impulse response (AIR)

h(r∣rs, t) = ∑
p∈P
∑
m∈M

β∣mx+px ∣
x1 β∣mx ∣

x2 β∣my+py ∣
y1 β∣my ∣

y2 β∣mz+pz ∣
z1 β∣mz ∣

z2
δ(t − ∣∣Rp+Rm ∣∣c )

4π ∣∣Rp +Rm∣∣
. (3.6)

3.2 Proposed method in the spherical harmonic domain

¿ere exists a compact analytical expression for the scattering due to the rigid sphere in

the SHD, therefore we �rst express the free-space Green’s function in this domain, and

then use this to form an expression for the ATF including scattering.

3.2.1 Green’s function

We de�ne position vectors in spherical coordinates relative to the centre of our array.

Letting r be the array radius andΩ an inclination-azimuth pair, the microphone position

vector is de�ned as r̃ ≜ (r, Ω) (where in this chapter ⋅̃ indicates a vector in spherical

coordinates). Similarly, the source position vector is given by r̃s ≜ (rs, Ωs). It is herea er

assumed that where the addition, ℓ-2 norm or scalar product operations are applied to

spherical polar vectors, they have previously been converted to Cartesian coordinates.



54 Chapter 3. Acoustic impulse response simulation

¿e free-space Green’s function (3.1) can be expressed in the SHD using the following

spherical harmonic decomposition [119]:

G(r̃∣r̃s, k) =
e+ik∣∣r̃−r̃s ∣∣
4π ∣∣r̃ − r̃s∣∣

=ik
∞

∑
l=0

l

∑
m=−l

jl(kr)h(1)l (krs)Y∗
lm(Ωs)Ylm(Ω)

=ik
∞

∑
l=0

jl(kr)h(1)l (krs)
l

∑
m=−l

Y∗
lm(Ωs)Ylm(Ω), (3.7)

where Ylm is the spherical harmonic function of order l and degree m, jl is the spherical

Bessel function of order l and h(1)l is the spherical Hankel function of the �rst kind and

of order l . ¿is decomposition is also known as a spherical Fourier series expansion or

spherical harmonics expansion of the Green’s function.

According to the spherical harmonic addition theorem [119],

l

∑
m=−l

Y∗
lm(Ωs)Ylm(Ω) =

2l + 1
4π

Pl(cosΘr̃,r̃s), (3.8)

where Pl is the Legendre polynomial of order l and Θr̃,r̃s is the angle between r̃ and r̃s.

Using this theorem, which in many cases reduces the complexity of the implementation,

we can simplify the Green’s function in (3.7) to

G(r̃∣r̃s, k)=
ik
4π

∞

∑
l=0

jl(kr)h(1)l (krs)(2l + 1)Pl(cosΘr̃,r̃s). (3.9)

¿e cosine of the angleΘr̃,r̃s is obtained as the dot product of the two normalized vectors

r̂s = r̃s/rs and r̂ = r̃/r:

cosΘr̃,r̃s = r̂ ⋅ r̂s. (3.10)

3.2.2 Neumann Green’s function

¿e free-space Green’s function describes the propagation of sound in free space only.

However, when a rigid sphere is present, a boundary condition must hold: the radial
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velocity must vanish on the surface of the sphere. ¿e functionGN(r̃∣r̃s, k) satisfying this

boundary condition is called the Neumann Green’s function, and describes the sound

propagation between a point r̃s and a point r̃ on the rigid sphere [119]:

GN(r̃∣r̃s, k) = G(r̃∣r̃s, k) −
ik
4π

∞

∑
l=0

j′l(kr)
h(1)

′

l (kr)
h(1)l (kr)h(1)l (krs)(2l + 1)Pl(cosΘr̃,r̃s)

=
k
4π

∞

∑
l=0

(−i)−(l+1)bl(k)h(1)l (krs)(2l + 1)Pl(cosΘr̃,r̃s), (3.11)

where (⋅)′ denotes the �rst derivative and the term

bl(k) = (−i)l
⎛

⎝
jl(kr) −

j′l(kr)
h(1)

′

l (kr)
h(1)l (kr)

⎞

⎠
(3.12)

is o en called the (far�eld) mode strength. For the open sphere, bl(k) = (−i)l jl(kr)

yields the free-space Green’s function. ¿eWronskian relation for the spherical Bessel

and Hankel functions [119]

jl(x)h(1)
′

l (x) − j′l(x)h
(1)
l (x) = i

x2
(3.13)

allows us to simplify (3.12) to

bl(k) =
(−i)l−1

h(1)
′

l (kr)(kr)2
. (3.14)

3.2.3 Scattering model

¿e proposed rigid sphere scattering model2 has a long history in the literature; it was

�rst developed by Clebsch and Rayleigh in 1871-72 [73]. It is presented in a number

of acoustics texts [81, 101, 119], and is used in many theoretical analyses for spherical

2Some texts [33] refer to the scattering e�ect as di�raction, although Morse & Ingard note that “When
the scattering object is large compared with the wavelength of the scattered sound, we usually say the sound
is re�ected and di�racted, rather than scattered” [81], therefore in the case of spherical microphone arrays
(particularly rigid ones which tend to be relatively small for practical reasons), scattering is possibly the
more appropriate term.



56 Chapter 3. Acoustic impulse response simulation

microphone arrays [78, 90].

3.2.3.1 ¿eoretical behaviour

¿e behaviour of the scattering model is illustrated in Fig. 3.2, which plots the magnitude

of the response between a source and a receiver on a rigid sphere of radius 5 cm for a

source-array distance of 1 m, as a function of frequency and DOA. ¿e response was

normalized using the free-�eld/open sphere response, therefore the plot shows only

the e�ect due to scattering. Due to rotational symmetry, we only looked at the one-

dimensional DOA, instead of looking at both azimuth and inclination, and limited the

DOA to the 0–180○ range.

When the source is located on the same side of the sphere as the receiver (i.e. the

direction of arrival is 0○), the rigid sphere response is greater than the open sphere

response due to constructive scattering, tending towards a 6 dBmagnitude gain compared

to the open sphere at in�nite frequency. ¿e response on the back side of the rigid sphere

is generally lower than in the open sphere case and lower than on the front side, as one

would intuitively expect due to it being occluded. However at the very back of the sphere

(i.e. the DOA is 180○) we observe a narrow bright spot: the waves propagating around

the sphere all arrive in phase at the 180○ point and as a result sum constructively.

A polar plot of the magnitude response (Fig. 3.3) illustrates both the near-doubling

of the response on the front side of the sphere, and the bright spot on the back side of

the sphere, which narrows as frequency increases. It should be noted that although the

above results are for a �xed sphere radius, as the scattering model is a function of kr, the

e�ects of a change in radius are the same as a change in frequency; indeed the relevant

factor is the radius of the sphere relative to the wavelength.

¿ese substantial di�erences between the open and rigid sphere responses con�rm

the need for a simulation method which accounts for scattering, even for sphere radii as

small as 5 cm.
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Figure 3.2: Magnitude of the response between a source and a receiver placed on a rigid sphere
of radius 5 cm at a distance of 1 m, as a function of frequency and DOA. ¿e response was
normalized with respect to the free-�eld response.
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3.2.3.2 Experimental validation

In addition to being widely used in theory, this model has also been experimentally

validated by Duda & Martens [33] using a single microphone inserted in a hole drilled

through a 10.9 cm radius bowling ball placed in an anechoic chamber. ¿is is a reasonable

approximation to a spherical microphone array; indeed a bowling ball was used by Li &

Duraiswami to construct a hemispherical microphone array [72].

Duda & Martens’s experimental results broadly agree with the theoretical model. In

our case we are most interested in the results in their Fig. 12 a) where the source-array

distance is largest (20 times the array radius), as in typical spherical array usage scenarios

the source is unlikely to be much closer to the array. ¿e only notable di�erence between

the theoretical and experimental results in this case is for a direction of arrival of 180○,

where the high frequency response is found to be lower than expected. ¿e authors

suggest this is due to small alignment errors, which would indeed have an e�ect given

the narrowness of the bright spot in the model (see Fig. 3.3 for
ffl
= 8 kHz). Given

these results, we conclude that the use of this scattering model is su�ciently accurate for

simulating a small rigid array, such as the Eigenmike [79].

3.2.4 Proposed method

We now present our proposed method, incorporating the spherical harmonic decompo-

sition presented in Section 3.2.1 and the scattering model introduced in Section 3.2.2.

Due to the di�erences between the SHD Neumann Green’s function in (3.11) and

the spatial domain Green’s function in (3.1), as well as the directionality of the array’s

response, two changes must be made to the image position vectors Rp and Rm in our

proposed method. Firstly, to compute the spherical harmonic decomposition in the

Neumann Green’s function, we require the distance between each image and the centre of

the array [rs in (3.11)]; this is accomplished by computing the image position vectors using

the position of the centre of the array rather than the position of the receiver. Secondly,
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to compute the spherical harmonic decomposition we require the angle between each

image and the receiver with respect to the centre of the array [Θr̃,r̃s in (3.11)]. In Allen

& Berkley’s image method, the direction of the vector Rp +Rm is not always the same:

in some cases it points from the receiver to the image and in others it points from the

image to the receiver. ¿is is not an issue for the image method as only the norm of this

vector is used. As we also require the angle of the images in our proposed method, we

modify the de�nition of Rp such that the vector Rp +Rm always points from the centre

of the array to the image.

We now incorporate these two changes into the de�nition of the image vectors Rp

and Rm. If the sound source is located at rs = (xs, ys, zs) and the centre of the sphere is

located at ra = (xa, ya, za), the images obtained using the walls at x = 0, y = 0 and z = 0

are expressed as a vector Rp:

Rp = [xs − 2pxxs − xa, ys − 2py ys − ya, zs − 2pzzs − za]. (3.15)

For brevity we de�ne Rp,m ≜ Rp +Rm, allowing us to express the distance between an

image and the centre of the sphere as ∣∣Rp,m∣∣ and the angle between the image and the

receiver as Θr̃,R̃p,m , computed in the same way as (3.10), where R̃p,m denotes the image

positions in spherical coordinates. ¿e image positions in the x dimension are illustrated

in Fig. 3.4. Finally, the ATF H(r̃∣r̃s, k) is the weighted sum of the individual responses

GN(r̃∣R̃p,m, k) for each of the images3

H(r̃∣r̃s, k) = ∑
p∈P
∑
m∈M

β∣mx−px ∣
x1 β∣mx ∣

x2 β∣my−py ∣
y1 β∣my ∣

y2 β∣mz−pz ∣
z1 β∣mz ∣

z2 GN(r̃∣R̃p,m, k). (3.16)

Since we are working in the wavenumber domain, we can allow for frequency de-

pendent boundary re�ection coe�cients in (3.16), if desired. ¿e re�ection coe�cients

would then be written as βx1(k), βx2(k) and so on. Chen & Maher [21] provide some

3¿e sign in the powers of β is di�erent from that in Allen & Berkley’s conventional image method,
due to the change in the de�nition of Rp that is required for our proposed method.
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Figure 3.4: A slice through the image space showing the positions of the images in the x di-
mension, with a source S and array A. ¿e full image space has three dimensions (x, y and z).
An example of a re�ected path is shown for the image with px = 1 and mx = 0.

measured re�ection coe�cients for a wall, window, �oor and ceiling.

3.3 Implementation

3.3.1 Truncation error

To compute the expression for the ATF in (3.16), the sum over an in�nite number of

orders l in the Neumann Green’s function GN must be approximated by a sum ĜN

over a �nite order L. Choosing L too small will result in a large approximation error,

while choosing L too large will result in too high a computational complexity. We now

investigate the approximation error in order to provide some guidelines for the choice of

the order L. ¿e results for an open sphere are provided for reference, andwere computed

by using a truncated spherical harmonic decomposition of the Green’s function Ĝ instead

of a Neumann Green’s function.

For an open sphere, the error can be determined exactly because the Green’s function

is a decomposition of the closed-form expression in (3.1). For a rigid sphere, however, no

closed-form expression exists since the scattering term can be expressed only in the SHD.

We therefore estimated the error by comparing the truncated Neumann Green’s function

ĜN to a high-order Neumann Green’s function. Based on simulations performed with

an open sphere, where a true reference is available, we can safely assume that the error

involved in using a high-orderNeumannGreen’s function as a reference as opposed to the
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untruncated NeumannGreen’s function is small. In practice, we cannot choose very large

values of L because of numerical di�culties involved in multiplying high order spherical

Bessel and Hankel functions. For typical sphere radii and source-array distances, this

allows us to reach L values of up to about 100 using our MATLAB implementation [54].

We evaluated the truncated (Neumann) Green’s function at K = 1024 discrete values

of k (denoted by k̇), forming a set K corresponding to frequencies in the range 100 Hz -

8 kHz4, and then calculated the normalized root-mean-square magnitude error єm and

the root-mean-square phase error єp, i.e.,

єm(r̃∣r̃s, L) =

¿
Á
Á
ÁÀ

1
K ∑k̇∈K

(∣GN(r̃∣r̃s, k̇)∣ −∣ĜN(r̃∣r̃s, k̇, L)∣)
2

∣GN(r̃∣r̃s, k̇)∣
2 , (3.17)

єp(r̃∣r̃s, L) =

¿
Á
ÁÀ

1
K ∑k̇∈K

(∠GN(r̃∣r̃s, k̇) −∠ĜN(r̃∣r̃s, k̇, L))
2
. (3.18)

We averaged the magnitude and phase errors over 32 quasi-equidistant receivers and 50

random source positions at a �xed distance from the centre of the array.

¿e resulting average errors are given in Fig. 3.5, for both the open and rigid sphere

cases. ¿ree di�erent sphere radii were used: r = 4.2 cm (the radius of the Eigenmike [76]),

r = 10 cm and r = 15 cm. A source-array distance of 1 m was used; results for 1–5 m are

omitted as they are essentially identical. It can be seen that beyond a certain threshold,

increases in L give only a very small reduction in error; this is due to the fast convergence

of the spherical harmonic decomposition [45]. From Fig. 3.5, we can see that a sensible

rule of thumb for choosing L is L > ⌈1.1 kmaxr⌉ where kmax is the largest wavenumber of

interest.

4Very low frequencies are omitted due to the fact that the spherical Hankel function h l(x) has a
singularity around x = 0.
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Figure 3.5: Magnitude and phase errors involved in the truncation of the spherical harmonic
decomposition in the Green’s function (open sphere) and the Neumann Green’s function
(rigid sphere). ¿e errors reduce rapidly beyond L = kmaxr, where here kmax = 147 m−1.

3.3.2 Computational complexity

As the ATFs are made up of a sum over all orders l which includes spherical Hankel

functions hl and Legendre polynomials Pl , we can make use of recursion relations over

l to reduce the computational complexity of these functions. For the spherical Hankel

function, we make use of the following relation [2]

hm(x) =
2m − 1
x

hm−1(x) − hm−2(x), m ≥ 2 (3.19)

where

h0(x) =
e ix
ix
, h1(x) =

e ix
ix2

−
e ix
x
. (3.20)
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For the Legendre polynomial we use a similar recursion relation [2], known as Bonnet’s

recursion formula

Pm(x) =
2m − 1
m

xPm−1(x) −
m − 1
m

Pm−2(x), m ≥ 2 (3.21)

where P0(x) = 1 and P1(x) = x.

While replacing the exponential in (3.1) with a spherical harmonic decomposition

does lead to an increase in computational complexity when computing the ATF for a

single receiver (which is unavoidable in the rigid sphere case), this can have an advantage

when simulating many receiver positions. For the conventional image method, we

must compute the image positions and resulting response separately for each individual

receiver. However, in the proposed method the image positions are all computed with

respect to the centre of our array, and therefore only once for all of the microphones in

the array.

An alternative to (3.16) is obtained by changing the order of the summations in the

ATF and computing the sum over all images only once, instead of once per receiver, i.e.,

H(r̃∣r̃s, k) = k
∞

∑
l=0

(−i)−(l+1)
l

∑
m=−l

Ylm(Ω)

⋅∑
p∈P
∑
m∈M

β∣mx−px ∣
x1 β∣mx ∣

x2 β∣my−py ∣
y1 β∣my ∣

y2 β∣mz−pz ∣
z1 β∣mz ∣

z2 bl(k)h(1)l (k ∣∣Rp,m∣∣)Y∗
lm(∠Rp,m).

(3.22)

¿e expression in (3.22) requires O ((N + Q)(L + 1)2) operations per discrete fre-

quency, where L is the maximum spherical harmonic order, N is the number of images

andQ is the number ofmicrophones, while the approach in (3.16) requiresO (NQ(L + 1))

operations per discrete frequency. Since the number of images N is typically very large,

(N +Q)(L+ 1)2 ≈ N(L+ 1)2. Assuming the operations in the two approaches are of sim-

ilar complexity, it is therefore more e�cient to use the expression in (3.16) for Q < L + 1

and the expression in (3.22) for Q > L + 1. Consequently the least computationally
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complex approach depends on the number of microphones Q and array radius r. In the

remainder of this chapter we use the expression in (3.16); this is particularly appropriate

in the applications in Section 3.4.2 where Q = 2 and in Section 3.4.3 where Q = 1.

3.3.3 Algorithm summary

A summary of the proposed method is presented in the form of pseudocode in Fig. 3.6.

¿e variable nsample denotes the number of samples in the AIR and No the maximum

re�ection order.

¿e number of computations has been reduced by processing only half of the fre-

quency spectrum because we know the AIR is real and the corresponding ATF is con-

jugate symmetric. ¿e pseudocode necessary to compute the Hankel functions and

Legendre polynomials is omitted here, since their computation is straightforward using

recursion relations (3.19) and (3.21).

SMIRgen, a MATLAB/C++ implementation of the method in the form of a MEX-

function is presented in Appendix A and is available online [54].

3.4 Examples and applications

In this section we give a number of examples that make use of the proposed method.

Wherever possible we compared the simulated results to theoretical results obtained

using approximate models. ¿ese examples are given to illustrate and partially validate

the proposed method.

3.4.1 Di�use sound �eld energy

In statistical room acoustics (SRA), reverberant sound �elds are modelled as di�use

sound �elds, allowing for a statistical analysis of reverberation instead of computing each

of the individual re�ections. In this subsection, we compare a theoretical prediction of
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1: P = {0, 1}3
2: M = {−Nm, · · · , 0, · · · , Nm}3
3: A = P ×M

4: for (p,m) ∈ A do
5: if |2mx − px|+ |2my − py|+ |2mz − pz| ≤ No then

6: Rp,m =

[
xs − 2pxxs − xa + 2mxLx
ys − 2pyys − ya + 2myLy
zs − 2pzzs − za + 2mzLz

]

7: β(p,m) = β
|mx−px|
x1 β

|mx|
x2 β

|my−py|
y1 β

|my|
y2 β

|mz−pz|
z1 β

|mz|
z2

8: else
9: A = A \ {(p,m)}

10: end if
11: end for

12: for k = 1→ nsample/2 + 1 do
13: for l = 0→ L do
14: if sphType =‘rigid’ then
15: ∆(k, l) = (−i)l−1

h
(1)′
l (kr)(kr)2

16: else
17: ∆(k, l) = (−i)ljl(kr)
18: end if
19: end for
20: Γ(k, l) = (−i)−(l+1)k

4π ·∆(k, l)
21: end for

22: for (p,m) ∈ A do
23: if ||Rp,m||+ r < c · nsample/fs then
24: for ang = 1→ Q do
25: Θ = R̂p,m · r̂(ang)
26: Ψ = Pl(Θ)
27: for l = 0→ L do
28: Υ(ang, l) = Ψ · (2l + 1)
29: end for
30: end for
31: for k = 1→ nsample/2 + 1 do
32: for l = 0→ L do
33: Λ(k, l) = hl(k||Rp,m||) · Γ(k, l)
34: end for
35: end for
36: for ang = 1→ Q do
37: for k = 1→ nsample/2 + 1 do
38: for l = 0→ L do
39: H(p,m, ang, k, l) = β(p,m) ·Υ(ang, l) · Λ(k, l)
40: end for
41: H(p,m, ang, k) =

∑
lH(p,m, ang, k, l)

42: end for
43: end for
44: end if
45: end for
46: H(ang, k) =

∑
(p,m)∈AH(p,m, ang, k)

47: h(ang, n) = IFFTR{H(ang, k)}

1

Figure 3.6: Pseudocode for the proposed method.
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sound energy on the surface of a rigid sphere, based on a di�use model of reverberation,

to simulated results obtained using the proposed algorithm.

A di�use sound �eld is composed of plane waves incident from all directions with

equal probability and amplitude [69]. Using the scattering model previously introduced,

we can determine the cross-correlation between the sound pressure at positions r̃ and r̃′

on the surface of a sphere, due to a unit amplitude plane wave with a random uniformly

distributed direction of arrival (see Appendix B for derivation) [60]:

C(r̃, r̃′, k) =
∞

∑
l=0

∣bl(k)∣2(2l + 1)Pl(cosΘr̃,r̃′), (3.23)

where Θr̃,r̃′ is the angle between r̃ and r̃′. In the open sphere case, it is shown in Ap-

pendix B that this simpli�es to the well-known spatial domain expression [69, 88, 118]

sinc(k ∣∣r̃ − r̃′∣∣), where sinc denotes the unnormalized sinc function.

For the sound energy at a position r̃ we substitute Θr̃,r̃′ = 0 and �nd C(r̃, r̃, k) =

∑
∞
l=0 ∣bl(k)∣2(2l + 1). According to SRA theory [69, 118], for frequencies above the

Schroeder frequency [69] the energy of the reverberant sound �eld Hr is then given

by [118]

Es{∣Hr(r̃, k)∣2} =
1 − ᾱ
πAᾱ

C(r̃, r̃, k)

=
1 − ᾱ
πAᾱ

∞

∑
l=0

∣bl(k)∣2(2l + 1), (3.24)

where Es{⋅} denotes spatial expectation, ᾱ is the average wall absorption coe�cient and

A is the total wall surface area.

¿e above theoretical expression for the average reverberant energy can be compared

to simulated results obtained using our method. We computed the spatial expectation

using an average over 200 source-array positions, using the approach in Radlović et

al. [88]: the array and source were kept in a �xed con�guration (at a distance of 2 m

from each other), which was then randomly rotated and translated. Both sources and
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microphones were kept at least half a wavelength from the boundaries of the room,

helping to ensure the di�useness of the reverberant sound �eld [69]. ¿e reverberant

component Hr of the ATFs was computed by subtracting the direct path Hd from the

simulated ATFs.

¿e room dimensions were equal to 6.4 × 5 × 4 m, as in [88, 110], such that the ratio

of the dimensions was (1.6 ∶ 1.25 ∶ 1), as recommended in [66, 88] to approximate a

di�use sound �eld. ¿e reverberation time T60 was set to 500 ms, giving an average wall

absorption coe�cient of ᾱ = 0.2656. We simulated AIRs with a length of 4096 samples

at a sampling frequency of 8 kHz. We considered frequencies from 300 Hz to 4 kHz,

well above the Schroeder frequency of 2000
√

0.5
4⋅5⋅6.4 = 125 Hz, and the half-wavelength

minimum distance is therefore 57 cm for a speed of sound of 343 m/s. We averaged the

results over the 200 source-array positions and 32 quasi-equidistant receiver positions.

In Fig. 3.7, we plot the theoretical and simulated energy of Hr as a function of

frequency, for two array radii (4.2 cm and 15 cm). We note that, except at low frequencies,

there is a good match between the theoretical di�use �eld energy expression we derived

and the results obtained using ourmethod. At lower frequencies, the theoretical equation

overestimates the energy; we hypothesize that this is due to the reverberant sound �eld

not being fully di�use.
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Figure 3.7: ¿eoretical and simulated reverberant sound �eld energy on the surface of a rigid
sphere, as a function of frequency for two array radii. ¿e simulated results are averaged over
200 source-array positions, all at least half a wavelength from the room boundaries.

3.4.2 Binaural interaural time and level di�erences

¿e topic of binaural sound and in particular head-related transfer functions (HRTFs)

or head-related impulse responses (HRIRs) is of interest to researchers and engineers

working on surround sound reproduction, who for example aim to reproduce spatial

audio through a pair of stereo headphones. In addition, the psychoacoustic community

is interested in the ability of the human brain to localize sound sources using only two

ears.

Two binaural cues that contribute to sound source localization in humans are the

interaural time di�erence (ITD) and the interaural level di�erence (ILD) [98]. ¿e ITD

measures the di�erence in arrival time of a sound at the two ears, and the ILD measures

the level di�erence between the two ears. In this example, we study the long-term cues

assuming the source signal is spectrally white. ¿erefore, we can compute the cues

directly using the simulated ATFs.

We used the proposed method to simulate a simple HRTF by considering micro-
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phones placed at locations on a rigid sphere corresponding to ear positions on the human

head. Although real HRTFs vary from individual to individual, depending on the head,

torso and pinnae, the main characteristics of the HRTF are also exhibited by a simple

rigid sphere ATF [33]. ¿e representation of HRTFs using spherical harmonics was

studied in [8, 38].

Whereas HRTFs do not include the e�ects of reverberation, and as a result typically

sound arti�cial and provide poor cues for the perception of sound source distance [102],

the proposed method also allows for the inclusion of reverberation in HRIRs. In this

case, they are then referred to as binaural room impulse responses (BRIRs). BRIRs

are important for the analysis of the e�ects of reverberation on auditory perception,

for example its impact on localization accuracy. Since rotational symmetry no longer

necessarily holds once the room re�ections are taken into account, the measurement

of BRIRs must be done for every source-head position and orientation and is therefore

very time-consuming. Simulating BRIRs allows us to more easily study the e�ects of

early and late re�ections on the binaural cues.

We begin by looking at ITDs in an anechoic environment, in order to illustrate the

e�ect of the head in isolation. We compare simulated results to approximate theoretical

results provided by a ray-tracing formula attributed to Woodworth & Schlosberg that

looks at the distance travelled from the source to an observation point on the sphere,

either in free-space if the observation point is on the near side of the sphere, or via a

point of tangency if the observation point is on the far side [33].

¿e simulated results were obtained by generating HRIRs at a sampling frequency of

32 kHz, with a sphere radius of 8.75 cm and microphones placed at (90○, 100○) (corre-

sponding to the le ear) and (90○, 260○) (corresponding to the right ear). ¿e HRIRs

were then band-pass �ltered between 2.8 and 3.2 kHz5. ¿e DOA was varied by ro-

5While the ray-tracing formula is frequency-independent, it has been shown [20] that ITDs actually
exhibit some frequency dependence, and that because the ray-tracing concept applies to short wavelengths,
this model yields only the high frequency time delay. Kuhn provides a more comprehensive discussion
of this model and the frequency-dependence of ITDs [68]. It should be noted the simulation results in
Fig. 3.8 are in broad agreement with Kuhn’s measured results at 3.0 kHz.
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Figure 3.8: Comparison of ITDs as a function of source DOA, in simulation and using the
theoretical ray model approximation. ¿e simulated ITDs are based on HRIRs computed
using our proposed algorithm in an anechoic environment.

tating the source around the sphere at a �xed distance of 1 m and inclination of 90○.

¿e simulated ITD was computed by determining the time delay that maximized the

interaural cross-correlation between the two simulated and band-pass �ltered HRIRs.

¿e cross-correlation was interpolated using a second-order polynomial in order to

obtain sub-sample delays.

In Fig. 3.8 we plot the ITDs as a function of direction of arrival, where 0○ corresponds

to the median plane on the front side of the sphere and 180○ corresponds to the median

plane on the back side of the sphere. As expected, as the DOA increases from 0○ to 80○

and the source gets closer to the ipsilateral ear, the ITD increases monotonically until it

reaches its maximum at 80○, at which point the source is furthest from the contralateral

ear. ¿e ITD then decreases from 80○ to 180○ as the source nears the median plane and

gets closer to the contralateral ear. ¿e response from 180○ to 360○ is not shown due to

the symmetry about 180○. As we expect, our simulated results are reasonably close to the
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Figure 3.9: Comparison of ILDs in echoic and anechoic environments, with the sphere placed
in the centre of the room and a DOA of 0○. ¿e ILDs are based on HRTFs (anechoic) and
BRIRs (echoic) computed using the proposed method.

theoretical ray-tracing results [33], with a di�erence of less than 70 µs.

Using the proposed method, we analyzed the ILDs in a reverberant environment

under three scenarios: the sphere was either placed in the centre of the roomwith a DOA

of 0○ (where the source is equidistant from the two ears), or at a distance of approximately

0.5 m from one of the walls with DOAs of 0○ and 100○ (where the source is aligned with

the le ear). In all three cases the source was placed at a distance of 1 m from the centre of

the sphere. We chose a room size of 9 × 5 × 3 m with a reverberation time T60 of 500 ms,

and simulated BRIRs with a length of 4096 samples at a sampling frequency of 8 kHz.

In Figs. 3.9, 3.10 & 3.11 we plot the ILDs for the three above cases, as well as the ILDs

we would obtain in an anechoic environment, which are entirely due to scattering. ¿e

ILDs were computed by taking the di�erence in magnitude between the le ear response

and the right ear response. A negative ILD therefore indicates that the magnitude of the

ipsilateral ear response is lower than that of the contralateral ear response. ¿e smoothed

echoic ILDs were obtained using a Savitzky-Golay smoothing �lter [99].
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Figure 3.10: Comparisonof ILDs in echoic and anechoic environments, with the sphere placed
near a room wall and a DOA of 0○.
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Figure 3.11: Comparison of ILDs in echoic and anechoic environments, with the sphere placed
near a room wall and a DOA of 100○.
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¿e main e�ect of reverberation we can observe is the introduction of random

frequency-to-frequency variations; these are particularly obvious when most of the

reverberant energy is di�use, i.e. when the sphere is placed in the centre of the room

(Fig. 3.9). Room re�ections also increase the overall reverberant energy, particularly in

the contralateral ear which receives less direct path energy, thus reducing the ILDs. ¿is

is especially noticeable when the contralateral ear is placed near a wall: the contralateral

ear receives more energy than in the anechoic case and the ILD is therefore closer to

zero (Fig. 3.11).

Placement of the sphere near a wall additionally introduces systematic distortions in

the ILDs associated with the prominent early re�ection from this wall. ¿is is visible in

Fig. 3.11 and most noticeably in Fig. 3.10.

All these e�ects have also been observed experimentally with a manikin by Shinn-

Cunningham et al. [102]. ¿e proposed algorithm is therefore an inexpensive way of

predicting the e�ects of head movement and environmental changes (such as reverbera-

tion time) on HRTFs or BRIRs, without the need for more cumbersome experiments

with head and torso simulators for example.

3.4.3 Mouth simulator

¿e principle of reciprocity can o en be advantageously used in room acoustics mea-

surements. ¿e principle states that ATFs are symmetric in the coordinates of the sound

source and the observation point: “If we put the sound source at r, we observe at point

r0 the same sound pressure as we did before at r, when the sound source was at r0” [69].

We can apply this principle to ATF simulations, and use our method to generate the

ATF between one or more sources on a sphere and a single omnidirectional microphone

placed away from the sphere.

A speci�c application of this is amouth simulator: wemodel the head as a rigid sphere

(as in Section 3.4.2) of radius rh, and themouth as an omnidirectional point source placed

on this rigid sphere. ¿is is straightforwardly implemented in the proposed method
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by replacing the source position with the microphone position r̃mic, the microphone

position with the mouth position r̃mouth = (rh, Ωmouth), and the array position with the

head position, i.e.,

H(r̃mic∣r̃mouth, k) = H(r̃ = r̃mouth∣r̃s = r̃mic, k).

As a result we can simulate the ATF between amouth on a head, and a single microphone

in free space. Repeated use of the algorithm allows for multiple receivers.

Although more accurate modelling of the head and mouth is possible using �nite

element or boundary element methods for example, our algorithm is valuable for appli-

cation to this problem due its comparative simplicity and the fact that, if desired, it can

also take into account room reverberation. While the diameter of the mouth plays an

important role in determining the �lter characteristic of the vocal tract [30], we assume

for the purposes of the scattering model that the mouth is a point source.

As an illustration of this application, Fig. 3.12 shows the energy of the ATF between

the mouth and a microphone as a function of microphone position at frequencies of

100 Hz and 3 kHz in an anechoic environment. ¿e mouth was positioned on a sphere

of radius 8.75 cm. Only two dimensions, x and y, are shown for brevity since the z

dimension is identical to x and y. We observe that at 100 Hz there is no scattering and

the radiation pattern is omnidirectional so that the sphere has little e�ect. At 3 kHz

the e�ect of scattering starts to become more signi�cant, and the energy at the back of

the sphere is reduced while the energy at the front is increased. Finally the bright spot

discussed in Section 3.2.3 is particularly apparent at the very back of the sphere in the

bottom plot.
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Figure 3.12: Sound energy radiation pattern (in dB) at 100 Hz (top) and 3 kHz (bottom). ¿e
mouth position is denoted by a black dot.
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3.5 Conclusions

Spherical microphone arrays on a rigid ba�e are of great interest currently. In order

to analyze, work with and develop acoustic signal processing algorithms that make use

of a spherical microphone array, a simulator is desired that can take into account the

e�ects of the acoustic environment of the array as well as the scattering e�ects of the rigid

spherical ba�e. Accordingly, in this chapter a method was presented for the simulation

of AIRs or ATFs for a rigid spherical microphone array in a reverberant environment.

We presented a scattering model used to model the rigid sphere, justifying its use

with references to the literature, and provided an overview of the model’s behaviour.

We showed that the error with respect to the theoretical model can be controlled at

the expense of increased computational complexity. Finally we provided a number of

examples showing additional applications of this method.
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Spatial acoustic parameter estimation

Acoustic parameter estimation, the estimation of quantities which describe the sound

�eld, is a major �eld of research within acoustic signal processing. Considerable research

interest has focused on the estimation of parameters relating to sound sources, such

as the number of active sound sources and their direction of arrival (DOA), initially

inspired by work in wireless communications. It can also be useful to estimate room

acoustic parameters, e.g., reverberation time, or parameters which relate to both the

acoustic environment and the sound source, like the signal-to-di�use energy ratio.

¿e estimation of certain acoustic parameters can provide additional a priori infor-

mation to speech enhancement algorithms, thereby improving their performance. In this

chapter, we propose methods for estimating two such parameters: the DOA of a source,

for both the static (Section 4.1) and moving (Section 4.2) cases, and the signal-to-di�use

ratio or di�useness (Section 4.3).



78 Chapter 4. Spatial acoustic parameter estimation

4.1 Direction of arrival estimation

In this section, we seek to perform two-dimensional DOA estimation (azimuth and

inclination)1 using spherical microphone arrays, which is useful in applications such

as beamforming (see Chapter 5), noise source identi�cation (in vehicles or aircra , for

example), or automatic camera steering.

One-dimensional DOA estimation (azimuth only) has been widely studied, using

time di�erence of arrival (TDOA)-basedmethods (such as GCC-PHAT), subspace-based

methods (ESPRIT, MUSIC), or steered response power (SRP). MUSIC and ESPRIT

have also been generalized to two dimensions and extended to the spherical harmonic

domain (SHD) [65,113], although they are typically not robust to reverberation, and both

MUSIC and SRP are computationally ine�cient due to the need for an exhaustive search.

Additionally TDOA-based methods are unsuitable for practical spherical microphone

arrays with a small radius, due to the insu�cient spacing between microphones.

In this work, we propose a two-dimensional DOA estimation method for spherical

microphone arrays, based on a pseudointensity vector that indicates the direction of

the active sound source. ¿is vector is calculated using only the zero- and �rst-order

eigenbeams. We compare the proposed method to a SHD implementation of the SRP

method which is commonly used in the spatial domain.

¿is work relates to previous intensity vector–based DOA estimation work in the

�eld of Directional Audio Coding (DirAC) [5], although the pseudointensity vector

is calculated using eigenbeams, while the intensity vector is computed using the Am-

bisonic B-format signals, which are o en measured directly (using an omnidirectional

microphone and three dipole microphones) or with a three or four omnidirectional

microphone grid. ¿e eigenbeams we use for DOA estimation are computed using

Portions of this work were �rst published in the Proceedings of the 18th European Signal Processing
Conference (EUSIPCO-2010) [57] in 2010, published by EURASIP.

1We refer to this problem as two-dimensional DOA estimation rather than three-dimensional source
localization to re�ect the fact that we do not estimate the source-array distance. ¿e source position is
not, however, con�ned to a two-dimensional space.
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all of the microphones in a spherical array, of which there are typically a few dozen,

thus providing more robustness to noise that is incoherent in the SHD (either spatially

incoherent noise, or di�use noise, as shown in Section 4.3.2). An earlier version of this

work was previously published in [57].

4.1.1 Spherical harmonics

Consider a sound pressure �eld at a point r = (r, Ω) = (r, θ , ϕ) (in spherical polar

coordinates, with inclination θ and azimuth ϕ), denoted by P(k, r), where k is the

wavenumber.

¿e spherical Fourier transform of P(k, r) is denoted by Plm(k), as de�ned in (2.4).

In a Q microphone system with spherical coordinates rq = (rq , Ωq), q = 1, . . . , Q, we

must approximate the integral in (2.4) with a sum:

Plm(k) ≈
Q

∑
q=1

äq,lmP(k, rq). (4.1)

¿e number of microphones Q and the quadrature weights äq,lm must be chosen such

that (4.1) is a su�ciently accurate approximation of (2.4), as explained in Section 2.3.

4.1.2 Direction of arrival estimation using the steered response power

As a baseline for comparison, we now present a SHD equivalent of a conventional

spatial domain DOA estimation method; namely, computing a map of the SRP, which is

obtained by steering a beamformer in various directions and determining the output

power. ¿e DOA is then obtained by �nding the direction with the highest power. In

order to produce this acoustic map using eigenbeams, we �rst introduce the theory of

beamforming in the SHD.
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4.1.2.1 Beamforming

¿e eigenbeams Plm(k) that result from the spherical Fourier transform can be inter-

preted as individual sensors in the classical sensor array processing framework. It is

important to note that the directivity pattern of the eigenbeams is frequency-invariant,

while each magnitude response depends on the order l .

Once we have computed the eigenbeams, we can synthesize an arbitrary beam pattern

by applying a modal beamformer. In the same way that the output of a spatial domain

beamformer can be expressed as a weighted sum of the spatial domain input signals, the

output of a modal beamformer can be expressed as a weighted sum of the eigenbeams2,

i.e.,

Z(k) =
L

∑
l=0

l

∑
m=−l

W∗
lm(k)Plm(k), (4.2)

where L is the array order andWlm(k) are the SHD beamforming weights.

It is o en su�cient to use a beam pattern which is rotationally symmetric around

the look direction Ωu, in which case the weights can be expressed as [77]

W∗
lm(k, Ωu) =

dl(k)
bl(k)

Ylm(Ωu), (4.3)

where dl(k) allows us to control the beam pattern, Ylm is the spherical harmonic of

order l and degree m as de�ned in (2.5), and bl(k) is the mode strength, as de�ned in

Section 2.4. While the above interpretation has some practical advantages, it should be

noted that the inverse spherical Fourier transform given by (2.3) is done implicitly as it

is incorporated into the beamformer weights.

2In practice, the acquired pressure signals in the time domain are normally transformed to the short-
time Fourier transform domain, such that they depend on the time index, although this dependency is
omitted for brevity.
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By combining (4.2) and (4.3) and reorganizing the terms we obtain

Z(k, Ωu) =
L

∑
l=0

l

∑
m=−l

dl(k)
bl(k)

Ylm(Ωu)Plm(k) (4.4a)

=
L

∑
l=0

dl(k)
bl(k)

l

∑
m=−l

Ylm(Ωu)Plm(k). (4.4b)

From (4.4b) it can be seen that the output of the beamformer can be computed in two

steps. In the �rst step (the inner summation) the beamformer is steered to the look

direction Ωu. In the second step (the outer summation) the beam pattern is synthesized.

We take advantage of the orthonormality of the spherical harmonics in (2.6) and

choose weights äq,lm given by

äq,lm =
4π
Q
Y∗
lm(Ωq), (4.5)

which makes the approximation in (4.1) exact if Q ≥ (L + 1)2 and the microphones are

equally spaced on the sphere. For non-trivialmicrophone con�gurations, it is not possible

for the microphones to be perfectly equidistant, therefore a small error is involved. By

substituting the expression for the weights äq,lm in (4.5) into (4.1) we obtain

Plm(k) ≈
4π
Q

Q

∑
q=1
Y∗
lm(Ωq)P(k, rq), (4.6)

and substituting this expression into the beamformer output Z(k, Ωu) expression in

(4.4b), choosing dl(k) = 1 (which yields the plane-wave decomposition beamformer

from Sec. 2.5 with maximum directivity [95]), we �nd an expression relating the beam-

former output Z(k, Ωu) to the measured pressure signals P(k, rq):

Z(k, Ωu) ≈
4π
Q

L

∑
l=0

1
bl(k)

l

∑
m=−l

Ylm(Ωu)
Q

∑
q=1
Y∗
lm(Ωq)P(k, rq). (4.7)

¿e theoretical beamformer output can be predicted by assuming a single active

sound source and far-�eld conditions, in which case the wavefront impinging on a
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spherical array of radius r can be assumed to be planar, and if we denote its arrival

direction as Ω0, we can write Plm(k) as [89]

Plm(k) = A(k)bl(k)Y∗
lm(Ω0), (4.8)

where A(k) is the wave amplitude. Substituting (4.8) in (4.4b), and choosing dl(k) = 1,

we obtain

Z(k, Ωu) =
L

∑
l=0

1
bl(k)

l

∑
m=−l

Ylm(Ωu)A(k)bl(k)Y∗
lm(Ω0) (4.9a)

= A(k)
L

∑
l=0

l

∑
m=−l

Ylm(Ωu)Y∗
lm(Ω0) (4.9b)

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

A(k)(L + 1)2
4π

if Ω0 = Ωu,

A(k)(L + 1)
4π(cosΘ − 1)

[PL+1(cosΘ) −PL(cosΘ)] otherwise,
(4.9c)

where Θ is the angle between Ω0 and Ωu. ¿e last step in the derivation is explained

in [89]. ¿e beamformer output Z(k, Ωu) reaches its maximum when Θ = 0 [89], i.e.,

when the look directionΩu is equal to the arrival directionΩ0, as desired. We normalize

the beamformer output with respect to its value for Θ = 0, and plot it as a function of

Θ in Fig. 4.1. We see that as L increases, the distribution of Z(k, Ωu) narrows around

Θ = 0, tending towards a delta function for L →∞ [89].

4.1.2.2 Steered response power map

An acoustic map can be computed and depicted in di�erent ways. Here we choose to

compute the power corresponding to the output of a beamformer steered in di�erent

directions. ¿e direction with the highest power provides an estimate of the location of

the sound source. ¿e resolution of the acoustic map depends on the directivity pattern

of the beamformer (which in turn depends on the array order L), and on the number of

beams for which the power is measured.
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Figure 4.1: Normalized beamformer output as a function of the beamformer order L and Θ,
the angle between the beamformer look direction and the DOA.

From the expression for the beamformer output as a function of the look direction

Ωu, we can compute a powermapM(Ωu) for each directionΩu by averaging ∣Z(k, Ωu)∣
2

across a number of discrete wavenumber values (denoted by k̇), forming a set K, i.e.,

M(Ωu) = ∑
k̇∈K

βZ(k̇) ∣Z(k̇, Ωu)∣
2
, (4.10)

where βZ(k̇) is a weighting function which allows us to, for example, ignore all beams

below a certain frequency, which are likely to contain low frequency noise and little

speech, or to apply an A-weighting function. We can also smooth the map over multiple

time frames, depending on the time resolution which is desired for the DOA estimates.

Assuming a single active source, the source DOA Ωs is then given by the direction

with maximum power:

Ωs = argmax
Ωu

M(Ωu). (4.11)
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4.1.3 Direction of arrival estimation using the pseudointensity vector

4.1.3.1 Motivation

While intuitively simple, the SRP method is computationally complex: as the function

M(Ωu) is non-convex, we must steer a beam in many directions to determine which

direction has the highest power, and hence where the sound source is likely to be located.

We now present a novel alternative method for DOA estimation with low computational

complexity, based on pseudointensity vectors.

In acoustics, sound intensity is a measure of the �ow of sound energy through

a surface per unit area, in a direction perpendicular to this surface. ¿e idea of a

pseudointensity vector is inspired by the concept of intensity vectors, de�ned as [27]

I =
1
2
R{P∗ ⋅ v} , (4.12)

where P is the sound pressure, v = [Vx ,Vy ,Vz]T is the particle velocity vector, and R{⋅}

denotes the real part of a complex number. For a single plane wave, the particle velocity

vector is given by [26, p. 31]

v = − P
ρ0c

u, (4.13)

where c is the speed of sound in the medium, ρ0 is the ambient density, and u is a unit

vector pointing towards the acoustic source. Consequently, the intensity vector points in

the direction opposite to the vector u.

¿e intensity vector corresponds to the magnitude and direction of the transport

of acoustical energy, indicating its utility for determining the DOA of a sound wave.

Unfortunately in practice it is di�cult to measure particle velocity, although attempts

have been made using vibrating surfaces and accelerometers, or more successfully, using

the �nite di�erence method with dual-microphone arrays [27]. More recently particle

velocity has been measured with a micromachined transducer, the Micro�own [28]. In

order to be able to use only one type of sensor, we would like to compute the intensity



4.1 Direction of arrival estimation 85

vector using a spherical microphone array.

4.1.3.2 De�nition

We propose a pseudointensity vector I(k) which is conceptually similar to an intensity

vector, but is calculated using the zero- and �rst-order eigenbeams Plm(k) (l = 0, 1), and

is de�ned as follows:

I(k) =
1
2
R

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
P00(k)
b0(k)

)

∗

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Px(k)

Py(k)

Pz(k)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (4.14)

where the �rst term, (P00(k)/b0(k))∗ is the complex conjugate of the omnidirectional

sound pressure signal, and the second term corresponds to the particle velocity vector

in (4.12). ¿e components Px(k), Py(k) and Pz(k) of this vector are dipoles steered in

the opposite direction to the x, y and z axes [see Fig. 4.2 for a plot of the beam pattern

of Px(k)]. ¿ese dipoles approximate the pressure gradient, which is proportional to

the particle velocity [75, 119]. Since we are only interested in the pseudointensity vector’s

direction, the scale factor (ρ0c)−1 is omitted here.

In order to form the beams Px(k), Py(k) and Pz(k), we make use of the available

eigenbeams P1(−1)(k), P10(k) and P11(k). ¿is can be done by forming a linear combina-

tion of rotated eigenbeams, i.e., implementing a plane-wave decomposition beamformer

as de�ned in (2.14):

Pa(k) =
1

b1(k)

1

∑
m=−1

α a,m P1m(k), a ∈ {x , y, z}, (4.15)

where the b1(k) factor is required to make the beam patterns independent of the

wavenumber.

To rotate each of the eigenbeams in the appropriate direction (θr, ϕr), we multiply
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Figure 4.2: Beam pattern of the beam Px , aligned to the x-axis: ∣α x ,(−1)Y1(−1)(θ , ϕ) +
α x ,0 Y10(θ , ϕ) + α x ,1 Y11(θ , ϕ)∣.

them by the spherical harmonics Y1m(θr, ϕr). We therefore require:

α x ,m = Y1m(π/2, π), (4.16a)

α y,m = Y1m(π/2,−π/2), (4.16b)

α z,m = Y1m(π, 0). (4.16c)

¿e beam pattern of Px , which is aligned to the x-axis, is shown as an example in Fig.

4.2.

4.1.3.3 Direction of arrival estimation

¿e pseudointensity vector is calculated for every discrete wavenumber; for every time

instant we therefore have a number of vectors which point in slightly di�erent directions.

While they provide an approximate location for the sound source, some averaging is

necessary to locate it more precisely. ¿e intensity vector averaged across the discrete
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wavenumbers k̇ forming a set K is given by

I = ∑
k̇∈K

βI(k̇)I(k̇), (4.17)

where βI(k̇) is a weighting function similar to βZ(k̇) in (4.10). Note that even with

βI(k̇) = 1, ∀k̇ we are implicitly giving a higher weight to the intensity vectors with

the highest norm, which we consider to be more reliable for DOA estimation. If DOA

estimates are required for every time and frequency instant, the wavenumber dependent

pseudointensity vector I(k) can be used, at the expense of reduced accuracy.

An estimate of the unit vector u pointing in the direction of the sound source, as in

(4.13), is given by normalizing the pseudointensity vector, i.e.,

û = − I
∥I∥2

, (4.18)

where ∥⋅∥2 denotes the ℓ-2 vector norm. When multiple time observations are available,

one can additionally smooth I or û over time.

4.1.4 Computational complexity

¿e pseudointensity method requires the computation of the four zero- and �rst-order

eigenbeams, and three weighted averages Px(k), Py(k) and Pz(k) of these eigenbeams.

¿e SRP method, on the other hand, requires us to compute these eigenbeams (and

potentially more eigenbeams if L > 1), and additionally steer beams in many directions

as shown in (4.4).

A fair comparison of these two methods would therefore be to compute the SRP

with only three beams, however for this number of beams it is impossible to obtain a

reasonable DOA estimate from the SRP. As wewill see in Section 4.1.5, to obtain accuracy

of the same order as the pseudointensity vector method, we must steer thousands of

beams.



88 Chapter 4. Spatial acoustic parameter estimation

In practice, however, it is not e�cient to steer this many beams indiscriminately in

all directions: a coarse grid approach can be taken at �rst, to determine the DOA within

±30○, for example, and we can then apply a �ner grid to the area of interest, thus reducing

the amount of unnecessary detail in directions where the acoustic source cannot be

located (based on the results of the �rst search).

4.1.5 Performance evaluation

In order to evaluate and compare the performance of these twoDOA estimationmethods,

we calculate the angle є between a unit vector pointing in the correct direction u, and a

unit vector û pointing in the direction estimated by either of the two methods, as in [15].

¿e angle є is then given by

є = cos−1(uTû). (4.19)

4.1.5.1 Using simulated data

In order to objectively evaluate the accuracy of the pseudointensity vector DOA esti-

mation method, we must generate pseudointensity vectors in a simulated environment

where the true source positions are known precisely. We achieve this by simulating

impulse responses with SMIRgen [54], an acoustic impulse response (AIR) simulator

for spherical microphone arrays based on the algorithm presented in Chapter 3.

For these simulations we placed a Q = 32 microphone array with radius 4.2 cm

near the centre of an acoustic space with dimensions 10 × 8 × 12 m in which a single

source was present. ¿e source signal consisted of a white Gaussian noise sequence.

We processed the signals in the short-time Fourier transform (STFT) domain with a

sampling frequency of 8 kHz and a frame length of 64 ms with a 50% overlap. We

averaged the acoustic map and pseudointensity vectors over 5 time frames, i.e., 192 ms

of data. We used the same number of eigenbeams for the SRP as for the pseudointensity

vector, i.e., we chose the limit L = 1. We did not apply any weighting in (4.10) and (4.17),

that is, we set βZ(k̇) = βI(k̇) = 1,∀k̇. We added spatio-temporally white Gaussian noise
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to the individual microphone signals in order to obtain an input signal-to-incoherent-

noise ratio (iSINR) of 20 dB at the microphone closest to the source, i.e., the microphone

with the highest iSINR.

In the �rst simulation, the reverberation time T60 was varied between 0 (anechoic

room) and 600mswhile the source-array distance was �xed at 2.5m. ¿e roomboundary

re�ection coe�cients were computed from the desired reverberation times using Sabin-

Franklin’s formula [86]. With such a con�guration, reverberation times between 300

and 600 ms corresponded to direct-to-reverberant energy ratios between approximately

10 and 0 dB. In the second simulation the source-array distance ranged between 1 and

3 m while the reverberation time was �xed at 450 ms.

A statistical analysis of the results of these simulations is shown in Fig. 4.3, based

on Monte Carlo simulations with 100 runs. For each run a new DOA was randomly

selected from a uniform angular distribution around the sphere. ¿e accuracy of the

pseudointensity vector method is signi�cantly higher than that of the SRPmethod with a

small number of beams (266). For a larger number of beams (3962), the pseudointensity

vector method still outperforms the SRP method, but by a smaller margin. ¿is is still

the case even as the source-array distance increases above 2 m and the reverberation

time increases above 450 ms.

As expected, the accuracy of the proposed method increases as the source-array

distance and reverberation time decrease, since both these changes lead to an increase

in the direct-to-reverberant energy ratio. ¿e robustness of the proposed method to

reverberation is due to the fact that the reverberation is mostly di�use, and therefore

causes little bias in the DOA estimates once they have been averaged over frequency

(and optionally over time).

4.1.5.2 Using spherical microphone array measurements

To experimentally test our proposed method, we measured a sound �eld using an em32

Eigenmike from mh acoustics, which is a commercially available spherical microphone
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(a) Angular errors as a function of reverberation time T60 for a source-array distance of 2.5 m.
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(b) Angular errors as a function of source-array distance for a reverberation time of 450 ms.
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Figure 4.3: Median and standard deviation of the angular errors for the SRP and pseudoin-
tensity vector methods, as a function of reverberation time (a) and source-array distance (b).
In (a) the source-array distance is 2.5 m and in (b) the reverberation time is 450 ms; both of
these conditions ensure that the direct-to-reverberant energy ratio remains above 0 dB.
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array of radius r = 4.2 cm with Q = 32 microphones. Measurements were taken in a

room with dimensions 2.9 × 2.7 × 3.3 m with a reverberation time of approximately

300 ms. ¿e source signal consisted of 2 s of white Gaussian noise. We again chose L = 1.

Unfortunately as it was not possible to take precise measurements of the true DOAs,

a quantitative assessment of the accuracy of the two methods would not be meaningful,

however for illustrative purposes Fig. 4.4 shows a power map obtained using the SRP

method, and Fig. 4.5 is a plot of the azimuths and inclinations of the DOAs obtained

using the proposed method, for a source located at approximately (87○, 36○). In Fig.

4.5 we note a cluster of DOA estimates centred around the correct DOA, and Fig. 4.4

con�rms that the direction of highest power corresponds to this same DOA.

4.1.6 Conclusion

¿e pseudointensity vector o�ers the possibility of fast DOA estimation without the

computational complexity of steering beams in all directions. Furthermore, the results it

yields are highly accurate when compared to the SRP method with a viable number of

beams (266): in typical environments, the median error is around 1○, as opposed to 4–5○

with the SRP method.
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4.2 Source tracking

In Section 4.1, we proposed a low computational complexity DOA estimation method

based on eigenbeams. ¿e eigenbeams were used to compute a pseudointensity vector

indicating the DOA of the source. In this section, we use a similar eigenbeam-based

method to estimate the particle velocity vector, which can also be used for DOA estima-

tion [82]. An earlier version of this work was previously published in [58].

¿e source tracking is performed using an adaptive principal component analy-

sis (PCA) of the acoustic particle velocity vector, and is robust to both noise and rever-

beration. ¿e low complexity of the proposed method is crucial for real-time tracking

applications. For plane wave incidence, the particle velocity vector points from the

acoustic source to the receiver; we therefore assume far-�eld conditions, a point source

and point sensors.

4.2.1 Problem formulation

4.2.1.1 Particle velocity vector

Let u be a unit vector pointing from the array towards an acoustic source. Assuming

plane wave incidence, the acoustic particle velocity vector s at a discrete time instant n is

given by [26, p. 31]

s(n) = − p(n)
Z0

u(n), (4.20)

where p is the sound pressure and Z0 = ρ0c is the characteristic acoustic impedance of

air.

Unfortunately, while the particle velocity vector can be computed using pressure

measurements from a spherical microphone array, the resulting vector is corrupted by

both noise and reverberation. We seek to mitigate these e�ects and accurately track the

source DOA, i.e., the vector u, by applying a beamformer to the noisy particle velocity

Portions of this work were �rst published in the Proceedings of the IEEE Asilomar Conference on
Signals, Systems, and Computers [58] in 2010. © 2010 IEEE.
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vector estimates.

4.2.1.2 Maximum signal-to-noise ratio beamforming

Let v(n) = [vx(n), vy(n), vz(n)]T be the noisy input signal, a time-varying particle

velocity vector. ¿e noise is modelled by a term e(n) = [ex(n), ey(n), ez(n)]T that can

include both ambient noise and room reverberation. ¿e desired signal s and noise

signal e are assumed to be mutually uncorrelated; the re�ections due to reverberation

are therefore assumed to be di�use. Our signal model is then given by

v(n) = s(n) + e(n)

= −
p(n)
Z0

u(n) + e(n). (4.21)

We can apply a time-varying spatial weighting vector w(n) to the input signal v(n),

and sum the resulting three signals, to obtain an output signal z(n) (the beamformer

output):

z(n) = wT(n) v(n)

= wT(n) s(n) +wT(n) e(n)

= −
p(n)
Z0

wT(n)u(n) +wT(n)e(n). (4.22)

¿e signal-to-noise ratio (SNR) at the output of the beamformer can be de�ned as3

oSNR(w) =
E{[wT s] [wT s]T}

E{[wT e] [wT e]T}

=
wTΦsw
wTΦew

, (4.23)

where Φs = E{ssT} is the covariance matrix of the desired signal and Φe = E{eeT} is

3¿e dependency on n is omitted for brevity.
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the covariance matrix of the noise. As the desired signal s and the noise signal e are

mutually uncorrelated, the covariance matrix of the input signal v can be expressed as

Φv = Φs + Φe and we can express the variance of the output z as

σ2z = wTΦvw

= wT [Φs + Φe]w

= wTΦsw +wTΦew. (4.24)

¿e beamformer with weightsw that maximizes the output SNR oSNR(w) is known as a

maximum SNR beamformer. ¿is is equivalent to determining the principal component

of the data set comprising the noisy observations of the particle velocity vector.

Let us now assume spherically white noise such that

Φe = σ2e I3×3, (4.25)

where I3×3 denotes a 3 × 3 identity matrix and σ2e is a scaling factor. Substituting this

expression in (4.24), we can see that maximizing the output SNR in (4.23) is equivalent

to maximizing the power of z(n) under the constraint

wTw = 1. (4.26)

¿erefore, our objective can be formulated as

ŵ = argmax
w

wTΦvw s.t. wTw = 1. (4.27)

¿e optimal solution wo is given by s/∥s∥2, where ∥ ⋅ ∥2 denotes the ℓ-2 vector norm.

For the more general problem where the noise is not spherically white, the objective
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function would be given by

ŵ = argmax
w

wTΦvw s.t. wTΦew = 1. (4.28)

In this case an estimate of Φe would be required.

4.2.2 Eigenbeam-based particle velocity vector estimation

¿e noisy particle velocity vector v can be measured using an acoustic vector sensor

(e.g., the Micro�own [28]), however here we wish to measure it using conventional

pressure sensors. We follow the approach presented in Section 4.1, i.e., the vector v(k)

is computed using (4.15) and (4.16). ¿e particle velocities va(n) in the discrete time

domain are then obtained by taking the inverse discrete Fourier transform of the signals

Va(k) evaluated at discrete values of wavenumber k.

4.2.3 Adaptive localization algorithm

4.2.3.1 Gradient ascent algorithm for spherically white noise

¿econstraint optimization problem in (4.27) can be solved using themethod of Lagrange

multipliers:

L(w, λ) = wTΦvw + λ (wTw − 1) , (4.29)

where L denotes the Lagrangian and λ denotes the Lagrange multiplier. ¿e update

equation is given by

ŵ(n) = ŵ(n − 1) + µ∇Lw∣w=ŵ(n−1), (4.30)

where µ is the step size and

∇Lw = 2Φvw + λw. (4.31)

We determine λ under the constraint thatwT(n)w(n) = 1, neglecting terms ofO(µ2),
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as follows:

[w(n − 1) + µ∇Lw]T [w(n − 1) + µ∇Lw] = 1

wT(n − 1)w(n − 1) + 2µwT(n − 1) [2Φvw(n − 1) + λw(n − 1)] = 1

wT(n − 1)w(n − 1) + 4µwT(n − 1)Φvw(n − 1) + 2µλwT(n − 1)w(n − 1) = 1

−2wT(n − 1)Φvw(n − 1) = λ,

where it has been assumed that wT(n − 1)w(n − 1) = 1. Now we obtain the update

equation by substituting λ into (4.30)

ŵ(n) = ŵ(n − 1) + µ [2Φvŵ(n − 1) − 2ŵT(n − 1)Φvŵ(n − 1)ŵ(n − 1)] . (4.32)

4.2.3.2 Sign ambiguity

PCA and the method described in Section 4.2.3.1 have an inherent sign ambiguity which

is not mathematically solvable. To obtain an estimate û of u that points in the correct

direction, we need to determine the correct sign from an analysis of the data. ¿is can be

done by looking at the sign of the correlation rzp between z(n) and p(n): if it is positive,

then u points in the opposite direction to w, and if it is negative, then u points in the

same direction as w:

u(n) = −sign{rzp}w(n). (4.33)

4.2.3.3 Implementation

For an e�cient implementation which allows for tracking, we do not perform the pro-

cessing on a per sample basis, but instead on a frame by frame basis, where ℓ denotes

the frame index. We initialize the algorithm for frame ℓ = 0 using a standard PCA, i.e.,

we take the eigenvector corresponding to the largest eigenvalue of the data covariance

matrix Φv(0).

Let τ l denote the frame length and τinc the frame increment, thus yielding an overlap
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of 75% for τinc = τ l/4 for example. ¿e covariance matrix Φv(ℓ) can be recursively

estimated over τ l samples using

Φ̂v(ℓ) = βv Φ̂v(ℓ−1) + (1 − βv)
1
τ l

ℓτinc+τ l−1

∑
n=ℓτinc

v(n)vT(n), (4.34)

where βv is a weighting factor: the larger the weighting factor, the larger the contribution

of previous samples. ¿e correlation rzp(ℓ) can similarly be estimated as

r̂zp(ℓ) = βzp r̂zp(ℓ−1) + (1 − βzp)
1
τ l

ℓτinc+τ l−1

∑
n=ℓτinc

ŵT(n)v(n) p(n), (4.35)

where βzp is a weighting factor similar to βv .

¿e update equation for ŵ is given by:

ŵ(ℓ) = ŵ(ℓ−1) + 2µ [Φ̂v(ℓ)ŵ(ℓ−1)−ŵT(ℓ−1)Φ̂v(ℓ)ŵ(ℓ−1)ŵ(ℓ−1)] . (4.36)

Finally the estimated unit vector pointing from the sensor towards the source, for frame

ℓ, is given by:

û(ℓ) = −sign{r̂zp(ℓ)} ŵ(ℓ). (4.37)

4.2.4 Performance evaluation

4.2.4.1 Experiment setup

We tested our algorithm in a room acoustics scenario simulated using SMIRgen [54], an

implementation of the AIR simulation algorithm presented in Chapter 3. ¿e receiver, a

32microphone rigid sphericalmicrophone array of radius 4.2 cm (the same speci�cations

as the Eigenmike), was placed near the centre of a 4× 6× 8 m room. We limited the AIRs

to 2048 samples, with a sampling frequency of 8 kHz. ¿e source signal consisted of

2 s of white Gaussian noise. In order to model sensor noise, spatio-temporally white

Gaussian noise was added to the microphone signals; the noise power was set such that
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Figure 4.6: Position error as a function of SNR and reverberation time T60, for the �rst exper-
iment where the source was static. © 2010 IEEE.

a given SNR was obtained at the microphone closest to the source.

4.2.4.2 Static source

In a �rst experiment for a static source, we performed Monte Carlo simulations with 10

runs, for various SNRs and room reverberation times T60. For each run a new source

position was randomly selected, at a distance of 1.5 m from the centre of the array. We

chose a step size µ = 1, weighting factors βv = 0.95 and βzp = 0.98, frame length τ l = 256

and frame increment τinc = 64.

To evaluate the performance of our algorithm we computed the angular error є,

which is the angle between a unit vector u pointing in the correct direction and a unit

vector û pointing in the estimated direction, using (4.19).

¿e angular error averaged over all estimates from 1.5 to 2 s is shown in Fig. 4.6. It

can be seen that even with reverberation times up to 600 ms and SNRs as low as 0 dB,

the angular error remains below 3.5○. It should be noted that the error is larger than in

Section 4.1, as we have sacri�ced some accuracy for improved time resolution, which is

a reasonable tradeo� in a tracking application.
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4.2.4.3 Moving source

In a second experiment, over a period of 2 s we placed the source in four di�erent

positions around the array, at a distance of 1.5–2 m from the centre of the array, as

illustrated in Fig. 4.7. We chose µ = 0.3, βv = 0.9, βzp = 0.95, τ l = 128 and τinc = 32.

¿e reference and estimated source positions are shown in Fig. 4.8 for various rever-

beration times and an SNR of 5 dB. A er an initial tracking time, the estimates converge

to the true position, within a couple of degrees. ¿e results are similar for SNRs above

5 dB. While the tracking time generally increases as the reverberation time increases,

a er tracking the accuracy of the estimates is good even for high reverberation times. It

should be noted that while in some cases it appears the estimate is diverging from the

true position (e.g., for the azimuth at 500–700 ms), this is due to the sign ambiguity:

once the sign has changed (e.g., at 600 ms), it can be seen that the estimate is actually

converging towards the true position.

4.2.4.4 Choice of adaptive parameters

If we wish to reduce the tracking time, we can increase µ and decrease βv and βzp, at

the risk of creating instability and at the expense of accuracy. If we wish to increase the
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accuracy, we can increase βv and βzp and decrease µ, at the expense of a longer tracking

time.

4.2.5 Conclusion

¿e proposed algorithm allows us to track sources in two dimensions (azimuth and

inclination) using a spherical microphone array. An evaluation of this algorithm has

shown that it has high accuracy for the source-array distances considered, with angular

errors of 1–3○ a er convergence, even in the presence of high levels of noise (down to

SNRs of 0–5 dB), and reverberation times up to 600 ms.
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4.3 Di�useness estimation

¿e estimation of the di�useness of a sound �eld is useful for a number of acoustic signal

processing applications. For example, this information can be used in dereverberation

algorithms to suppress di�use reverberant energy while retaining the direct sound [51]. It

can also be used to improve the accuracy of source localization algorithms, by eliminating

inaccurate DOA estimates obtained under highly di�use conditions. Moreover, the

di�useness represents an important parameter in the description of spatial sound, e.g.,

in Directional Audio Coding (DirAC) [87].

Di�useness estimation has previously been accomplished by considering the spatial

coherence between a pair of omnidirectional microphones [115] and an arbitrary pair of

�rst-ordermicrophones [114]. Spherical microphone arrays, typically incorporating a few

dozen microphones, enable the analysis of sound �elds in three dimensions [1, 77], and

have recently been used for speech enhancement applications such as noise reduction [56]

and dereverberation [60].

In this section, we take advantage of the availability of these additional microphone

signals, and propose a di�useness estimation algorithm for spherical microphone ar-

rays based on the coherence between eigenbeams. An earlier version of this work was

previously published in [64].

In the spatial domain, the omnidirectional microphone signals are correlated at low

frequencies even when the sound �eld is purely di�use, which makes robust di�useness

estimation di�cult. An advantage of the SHD is that in a purely di�use sound �eld,

the coherence between the eigenbeams is zero, while in a purely directional sound �eld

(i.e., due to a single plane wave) the coherence is one. We also take advantage of the

availability of many eigenbeam pairs to reduce the variance of our estimates.

Portions of this work were �rst published in the Proceedings of the IEEE Convention of Electrical and
Electronics Engineers in Israel (IEEEI) [64] in 2012. © 2012 IEEE.



4.3 Di�useness estimation 103

4.3.1 Problem formulation

In the following, we work in the STFT domain, where Î denotes the discrete frequency

index and ℓ denotes the time frame index.

4.3.1.1 Spatial and spherical harmonic domain signal models

In the spatial domain, the signal X(Î, r, ℓ) received at amicrophone position r = (r, Ω) =

(r, θ , ϕ) (in spherical coordinates) is modeled as the sum of a directional signal Xdir, a

di�use signal Xdi� and a sensor noise signal V , i.e.,

X(Î, r, ℓ) = Xdir(Î, r, ℓ, Ωdir) + Xdi�(Î, r, ℓ) + V(Î, r, ℓ). (4.38)

¿e directional signal Xdir corresponds to a plane wave incident from a DOA Ωdir. ¿e

di�use signal Xdi� is composed of an in�nite number of independent plane waves with

equal amplitude, random phase and uniformly distributed DOA [69]. ¿e powers of

the directional and di�use signals received at a (virtual) omnidirectional reference

microphoneMref placed at the centre of the array are denoted as Pdir(Î, ℓ) and Pdi�(Î, ℓ),

respectively.

When dealing with spherical microphone arrays, it is convenient to work in the SHD,

particularly for rigid arrays whose scattering behaviour can be described analytically in

the SHD. We denote the spherical Fourier transform of X(Î, r, ℓ), as de�ned in (2.4),

as Xlm(Î, ℓ). In the following, we assume perfect spatial sampling; the e�ects of spatial

aliasing [94] are therefore neglected.

Using the spherical Fourier transform in (2.4), the spatial domain signal model (4.38)

can now be expressed in the SHD:

Xlm(Î, ℓ) = Xdir
lm(Î, ℓ, Ωdir) + Xdi�

lm (Î, ℓ) + Vlm(Î, ℓ), (4.39)

where Xlm, Xdir
lm , Xdi�

lm and Vlm are respectively the spherical Fourier transforms of X,
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Xdir, Xdi� and V .

¿e directional signal Xdir
lm(Î, ℓ) can be expressed in the SHD as [90]

Xdir
lm(Î, ℓ, Ωdir) =

√
Pdir(Î, ℓ)φdir(Î, ℓ)4πBl(Î)Y∗

lm(Ωdir), (4.40)

where φdir(Î, ℓ) is the wave phase (with ∣φdir(Î, ℓ)∣ = 1 ∀Î, ℓ). ¿e mode strength Bl(Î)

is given by evaluating the mode strength bl(k), as de�ned in Section 2.4, at discrete

wavenumber values corresponding to the frequency indices Î. It is a function of the

array properties (con�guration, microphone type, radius); mode strength expressions

for various con�gurations (open, rigid, dual-sphere, etc.) can be found in [92]4.

¿e di�use signal Xdi�
lm (Î, ℓ) is expressed in the SHD as

Xdi�
lm (Î, ℓ) =

√
Pdi�(Î, ℓ)

4π

ˆ
Ω∈S2

φdi�(Î, ℓ, Ω)4πBl(Î)Y∗
lm(Ω)dΩ, (4.41)

whereφdi�(Î, ℓ, Ω) is the phase of thewavewithDOAΩ (with ∣φdi�(Î, ℓ, Ω)∣ = 1 ∀Î, ℓ, Ω).

As the plane waves are independent, the wave phases satisfy the property

E [φdi�(Î, ℓ, Ω)φ∗di�(Î, ℓ, Ω′)] = δΩ−Ω′ , (4.42)

where δ is the Kronecker delta and E[⋅] denotes mathematical expectation.

¿e signal received at the referencemicrophoneMref is given by X00(Î, ℓ)/ [
√
4πB0(Î)]

[55] (see Appendix C for derivation). Using this relationship and the fact that ∣Y00(⋅)∣2 =

(4π)−1, it can be veri�ed that the powers of the directional and di�use signals received

atMref are given by Pdir and Pdi�, respectively.

4It should be noted that in (4.40) and the expressions that follow, we have extracted the 4π scaling
factor from the mode strength given in [92].
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4.3.1.2 Signal to di�use ratio and di�useness

¿e signal-to-di�use ratio (SDR) Γ atMref is given by

Γ(Î, ℓ) =
∣Xdir

00 (Î, ℓ, Ωdir)∣
2

E [∣Xdi�
00 (Î, ℓ)∣2]

=
Pdir(Î, ℓ)
Pdi�(Î, ℓ)

. (4.43)

¿e di�useness Ψ of the sound �eld can be de�ned as [29]

Ψ(Î, ℓ) = [1 + Γ(Î, ℓ)]−1 . (4.44)

We have Ψ(Î, ℓ) ∈ [0, 1], where a di�useness of 0 is obtained for Γ(Î, ℓ) →∞ (purely

directional �eld), 1 for Γ(Î, ℓ) = 0 (purely di�use �eld), and 0.5 for Γ(Î, ℓ) = 1 (equal

energy directional and di�use �elds).

In the following, we aim to estimate the di�useness in (4.44) from the sound �eld

observed using a spherical array.

4.3.2 Signal-to-di�use ratio estimation using spatial coherence

In this section, we propose a method to estimate the SDR using the spatial coherence

between the SHD signals (i.e., the eigenbeams). ¿e estimated SDRs are then mapped to

obtain the estimated di�useness values using (4.44).

4.3.2.1 Spatial coherence

¿e complex spatial coherence between the eigenbeams Xlm(Î, ℓ) and Xl ′m′(Î, ℓ) is

de�ned for (l ,m) ≠ (l ′,m′) as

γlm,l ′m′(Î, ℓ) = Φlm,l ′m′(Î, ℓ)
√
Φlm,lm(Î, ℓ)

√
Φl ′m′ ,l ′m′(Î, ℓ)

, (4.45)

where the power spectral densities (PSDs) Φ are given by

Φlm,l ′m′(Î, ℓ) = E [Xlm(Î, ℓ)X∗
l ′m′(Î, ℓ)] . (4.46)
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We now determine expressions for the spatial coherence in purely directional and

purely di�use �elds, in order to express the coherence in amixed �eld as a function of

the SDR Γ.

For purely directional sound, using (4.40) and (4.46) the PSD Φdir
lm,l ′m′ is expressed

as

Φdir
lm,l ′m′(Î, ℓ) = Pdir(Î, ℓ)(4π)2Bl(Î)B∗l ′(Î)Y∗

lm(Ωdir)Yl ′m′(Ωdir) (4.47)

and the directional �eld coherence γdirlm,l ′m′ is given by

γdirlm,l ′m′(Î, ℓ) =
Bl(Î)B∗l ′(Î)Y∗

lm(Ωdir)Yl ′m′(Ωdir)

∣Bl(Î)B∗l ′(Î)Y∗
lm(Ωdir)Yl ′m′(Ωdir)∣

. (4.48)

For purely directional sound, the coherence γdirlm,l ′m′ therefore has unit magnitude.

For purely di�use sound, using (4.41), (4.46) and the orthonormality of the spherical

harmonics in (2.6), the PSD Φdi�
lm,l ′m′ is expressed as

Φdi�
lm,l ′m′(Î, ℓ) = Pdi�(Î, ℓ)4π

ˆ
Ω∈S2

Bl(Î)B∗l ′(Î)Y∗
lm(Ω)Yl ′m′(Ω)dΩ

= Pdi�(Î, ℓ)4πBl(Î)B∗l ′(Î)δl−l ′δm−m′ . (4.49a)

¿e di�use �eld coherence γdi�lm,l ′m′ is then given by

γdi�lm,l ′m′(Î, ℓ) =
Bl(Î)B∗l ′(Î)

∣Bl(Î)∣∣Bl ′(Î)∣
δl−l ′δm−m′ = 0, (4.50)

providing (l ,m) ≠ (l ′,m′).

¿e sensor noise V is assumed to be spatially incoherent noise of equal power PN at

each of the Q equidistant microphones. ¿e SHD noise Vlm is therefore also incoherent
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across l and m and the PSD ΦN
lm,l ′m′ of the noise can be expressed as [119, eqn. 7.31]

ΦN
lm,l ′m′(Î, ℓ) = E [Vlm(Î, ℓ)V∗

l ′m′(Î, ℓ)] (4.51a)

= PN4π
Q
δl−l ′δm−m′ . (4.51b)

¿epower of the noise at the referencemicrophoneMref is then given by PN/ [Q ∣B0(Î)∣2],

i.e., it has been reduced by a factor Q ∣B0(Î)∣2.

In amixed sound �eld, both the directional and di�use sound �elds Xdir and Xdi� are

present, in addition to incoherent noise V . We assume they are mutually uncorrelated,

such that the PSD Φlm,l ′m′ is equal to the sum of the individual PSDs, i.e.,

Φlm,l ′m′(Î, ℓ) = Φdir
lm,l ′m′(Î, ℓ) +Φdi�

lm,l ′m′(Î, ℓ) +ΦN
lm,l ′m′(Î, ℓ). (4.52)

We de�ne the noiseless coherence as

γ′lm,l ′m′(Î, ℓ) =
Φ′

lm,l ′m′(Î, ℓ)
√
Φ′

lm,lm(Î, ℓ)
√
Φ′

l ′m′ ,l ′m′(Î, ℓ)
, (4.53)

where the noiseless PSD Φ′
lm,l ′m′(Î, ℓ) is de�ned as Φ′

lm,l ′m′(Î, ℓ) = Φdir
lm,l ′m′(Î, ℓ) +

Φdi�
lm,l ′m′(Î, ℓ). Using (4.47) and (4.49), the noiseless PSD can be expressed as

Φ′
lm,l ′m′(Î, ℓ) = 4πBl(Î)B∗l ′(Î) [4πPdir(Î, ℓ)Y∗

lm(Ωdir)Yl ′m′(Ωdir) + Pdi�(Î, ℓ)δl−l ′δm−m′] .

(4.54)

By substituting (4.54) in (4.53), and using (4.43), it can straightforwardly be shown that

γ′lm,l ′m′(Î, ℓ) =
Γ(Î, ℓ)γdirlm,l ′m′(Î, ℓ)clmcl ′m′

√
Γ2(Î, ℓ)c2lmc2l ′m′ + Γ(Î, ℓ)(c2lm + c2l ′m′) + 1

, (4.55)

where we have de�ned clm =
√
4π∣Ylm(Ωdir)∣.

¿e noiseless PSDs in (4.53) cannot be directly observed, however as the noise Vlm



108 Chapter 4. Spatial acoustic parameter estimation

is incoherent across l and m, with su�cient time averaging the noise cross PSD ΦN
lm,l ′m′

will average to zero in Φlm,l ′m′ . ¿e noiseless auto PSD can be estimated providing an

estimate of the noise power PN is available. For simplicity, in this work we will assume a

su�ciently high SNR and estimate the noiseless coherence directly from the noisy signals,

i.e., we will not compensate for the noise. ¿e e�ect of sensor noise on the estimation

will be discussed in Section 4.3.4.

4.3.2.2 Signal-to-di�use ratio estimation

¿e SDR is determined by �rst computing the coherence between pairs of eigenbeams

Xlm(Î, ℓ) and Xl ′m′(Î, ℓ). ¿e SDR for each speci�c eigenbeam pair is then found by

solving for Γ(Î, ℓ) in (4.55)5, as in [114]:

Γ̂lm,l ′m′ =

G +

√

G2 + 4 (∣γ′lm,l ′m′ ∣
−2
− 1)

2clmcl ′m′ (∣γ′lm,l ′m′ ∣
−2
− 1)

, (4.56)

where we have de�ned

G =
clm
cl ′m′

+
cl ′m′

clm
. (4.57)

In order to compute clm, the DOA Ωdir must be estimated; a robust DOA estimation

method for spherical arrays is presented in Section 4.1.

¿e possible combinations of the pair (l ,m) form a set A with (L + 1)2 elements,

where L is the array order. ¿e SDR can be estimated using (4.56) for all possible

combinations of (l ,m) and (l ′,m′) (i.e., the set A2) excluding identical pairs for which

(l ,m) = (l ′,m′); however we also exclude duplicate pairs ((l ′,m′), (l ,m)) that provide

the same information as ((l ,m), (l ′,m′)) due to the symmetry of the coherence function.

¿e reduced set thereby obtained is denoted as L̄ and contains [(L + 1)4 − (L + 1)2] /2

elements.

5¿e dependencies on Î and ℓ have been omitted for brevity.
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We then form an estimate of the SDR Γ̂ by taking a weighted average of the SDR

estimates Γ̂lm,l ′m′ , i.e.,

Γ̂(Î, ℓ) = ∑
(l ,m,l ′ ,m′)∈L̄

αlm,l ′m′(Î)Γ̂lm,l ′m′(Î, ℓ), (4.58)

where αlm,l ′m′ is a normalized weighting function. Ideally, the optimal weights αoptlm,l ′m′

depend on the variances of the SDR estimates. Since the variances are usually unknown,

we propose to compute the weights as the geometric mean of the SNRs of the eigenbeams

involved, i.e.,

αlm,l ′m′(Î) =

√
SNRlm(Î)SNRl ′m′(Î)

∑(l ,m,l ′ ,m′)∈L̄

√
SNRlm(Î)SNRl ′m′(Î)

, (4.59)

where SNRlm denotes the SNR at order l and degree m and is de�ned as

SNRlm(Î) =
∣Xdir

lm(Î, ℓ, Ωdir)∣
2

E [∣Vlm(Î, ℓ)∣2]
(4.60a)

= (PN)−1 4πQPdir(Î, ℓ)∣Bl(Î)Y∗
lm(Ωdir)∣

2. (4.60b)

¿e weighting function can then be simpli�ed to

αlm,l ′m′(Î) =
∣Bl(Î)Bl ′(Î)Y∗

lm(Ωdir)Y∗
l ′m′(Ωdir)∣

∑(l ,m,l ′ ,m′)∈L̄ ∣Bl(Î)Bl ′(Î)Y∗
lm(Ωdir)Y∗

l ′m′(Ωdir)∣
. (4.61)

Due to the chosen SNR de�nition, (4.61) depends only on the DOA and not on the wave

or noise powers.

¿e weighted averaging of the SDR estimates, which is not performed in spatial

domain coherence-based approaches with two microphones, aims to reduce the estimate

variance, at the expense of increased computational complexity.
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4.3.3 Di�useness estimation using the pseudointensity vector

We compare the proposed (coherence-based) method with the previously proposed

coe�cient of variation (CV)method [4]. ¿e CVmethod exploits the temporal variation

of the intensity vector I , and estimates the di�useness as

ΨCV(Î, ℓ) =

¿
Á
ÁÀ1 − ∥E [I(Î, ℓ)] ∥2

E [∥I(Î, ℓ)∥2]
, (4.62)

where ∥ ⋅ ∥2 denotes the ℓ-2 vector norm.

As shown in Section 4.1, the intensity vector can be estimated using a linear com-

bination of �rst-order eigenbeams obtained with a spherical microphone array. ¿e

resulting vector, which is proportional to the intensity vector, is called a pseudointensity

vector. ¿e reader is referred to Section 4.1 for details of the computation of the pseu-

dointensity vector from X00, X1(−1), X10 and X11. We herea er refer to the estimation of

the di�useness using the CV method based on pseudointensity vectors as themodi�ed

CV method.

It should be noted that while the modi�ed CV method only makes use of �rst-order

eigenbeams, all Q microphone signals are used to compute the pseudointensity vector,

unlike in previous approaches where the intensity vector was estimated using either an

acoustic vector sensor or four pressure microphones.

4.3.4 Performance evaluation

In this section, we evaluate the performance of the proposed SHD coherence-based

method, and compare it to the performance of the modi�ed CV method.

4.3.4.1 Experimental setup

We simulated the SHD signals received by a rigid spherical array of radius 4.2 cm up to

an order L (either L = 1 or L = 3). ¿e directional source signal consisted of complex

white Gaussian noise, with a DOA of (90○, 0○) (inclination, azimuth). ¿is DOA was
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assumed to be known for the estimation of the SDR in (4.56) and the weights in (4.61).

¿e di�use signal was generated by summing 200 plane waves with random phase and

uniformly distributed DOAs; the di�use signal power was set according to the desired

SDR.

¿e noise signal consisted of additive complex white Gaussian noise; the noise power

was set such that the desired SNR was obtained at the reference microphoneMref, i.e.,

SNR =
E [∣Xdir

00 (Î, ℓ, Ωdir)∣
2]

E [∣V00(Î, ℓ)∣2]
. (4.63)

¿e noise power was therefore the same for all values of SDR. We chose to compute the

SNR atMref because the directional signal power is di�erent at each sensor, particularly

for a rigid array. As noted in Section 4.3.2.1, the noise power atMref is reduced by a

factor of Q ∣B0(Î)∣2 with respect to the sensors; the noise power atMref is therefore

lowest at low frequencies, where B0(Î) is highest. With Q = 32 microphones, at low

frequencies an SNR of 25 dB atMref corresponds to an SNR of around 10 dB based on

the noise power at the sensors.

Processing was performed in the STFT domain with a sampling frequency of 8 kHz,

a window length of 16 ms and 50% overlap between consecutive frames, giving a hop

length of τhop = 8 ms. ¿e expectations in (4.45) and (4.62) were estimated using

moving averages over a given number of time frames Nframes, which is related to the time

averaging length τavg via the expression τavg = (Nframes + 1) τhop. ¿e performance results

shown were averaged over 15 s of data.

4.3.4.2 Results

In Fig. 4.9 we plot the mean di�useness estimated by the proposed and modi�ed CV

methods as a function of SDR, as well as the ideal di�useness as given by (4.44). In this

experiment, the time averaging length was 88 ms, and the proposed method exploited

eigenbeams up to order L = 3. We �nd that for high SDRs, the proposed method
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Figure 4.9: Mean di�usenessΨ estimated using the proposed (coherence-based) method and
themodi�ed CVmethod, as a function of signal to di�use ratio Γ, at two frequencies (200Hz
and 3 kHz) and two SNRs (25 dB and 35 dB). © 2012 IEEE.

estimates the di�useness more accurately, particularly at low frequencies. For low SDRs,

the proposed method has a slightly higher bias than the modi�ed CV method, due to

the limited time averaging, as in [114]. In addition, as the SNR decreases from 35 dB to

25 dB, for both methods the bias at low frequencies and high SDRs increases, however

for the proposed method this bias is in part due to the lack of compensation for the noise

power, as in [114].

We also plot the standard deviation of the di�useness estimates as a function of

the SDR in Fig. 4.10. It can be seen that at high SDRs, the estimates obtained using

the proposed method have signi�cantly lower variance than those obtained using the

modi�ed CVmethod, due to the averaging of the coherence estimates over all eigenbeam

pairs. ¿e proposed method’s estimates also have lower variance at high frequencies and

low SDRs.
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Figure 4.10: Standard deviation of the di�useness estimates obtained using the proposed
(coherence-based) method and the modi�ed CV method, as a function of signal to di�use
ratio Γ, at two frequencies (200 Hz and 3 kHz) and two SNRs (25 dB and 35 dB). © 2012
IEEE.

In order to illustrate the e�ect of increasing the time averaging, in Fig. 4.11 we plot

the mean di�useness estimated by the two methods for two di�erent averaging lengths

(88 ms and 328 ms). As expected we see that the increase in time averaging signi�cantly

reduces the bias for the proposed method. With increased time averaging, the bias for

the two methods is essentially the same at low SDRs, and is lower for the proposed

method at high SDRs.

Finally in Fig. 4.12 we plot the standard deviation of the estimates obtained for array

orders of L = 1 and L = 3. We �nd that by averaging over a larger number of SDR

estimates, the variance of the �nal estimate is greatly reduced at low SDRs (except at low

frequencies). We also note that even for L = 1, the variance of the proposed method’s

estimates is lower than those obtained using the modi�ed CV method, which also uses
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Figure 4.11: Mean di�usenessΨ estimated using the proposed (coherence-based)method and
the modi�ed CV method, as a function of signal to di�use ratio Γ, for two time averaging
lengths (88 ms and 328 ms). © 2012 IEEE.
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Figure 4.12: Standard deviation of the di�useness estimates obtained using the proposed
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IEEE.
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only zero- and �rst-order eigenbeams.

4.3.5 Conclusions

In this section, we proposed a di�useness estimator based on the coherence between

eigenbeams. We showed that at high SDRs, the proposed method has a lower bias

than a previously proposed spatial domain method (the modi�ed CV method), and

that the underestimation of the di�useness at low SDRs can be reduced by increased

time averaging. Finally we found that increasing the array order signi�cantly reduces

the variance of the di�useness estimates, and that even using a �rst-order array yields

estimates with lower variance than those obtained with the modi�ed CV method.
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Chapter 5

Noise reduction

In many distant speech acquisition scenarios, such as hands-free telephony, hearing

aids, or teleconferencing, the desired speech signal is corrupted by noise, such as sensor

noise, di�use noise or interfering speech. ¿is noise can degrade both the speech quality

and intelligibility, making communication di�cult or even impossible. Noise reduction

algorithms seek to mitigate these e�ects and extract the desired speech signal.

¿is objective is commonly achieved through the use of microphone arrays [11,17,36],

which allow us to take advantage of the spatial properties of the sound �eld in order

to achieve better noise reduction performance than with a single microphone. ¿ese

microphone arrays aremostly two dimensional (planar). Sphericalmicrophone arrays are

advantageous due to their ability to analyze the sound �eld in three dimensions [1,35,90];

the captured sound �eld can then be e�ciently described in the spherical harmonic

domain (SHD), as presented in Chapter 2.

Over the past few decades, many spatio-temporal �lters or beamformers have been

proposed to process the signals received by microphone arrays in the spatial domain

(see [11, 42, 50] and the references therein). SHD beamformers have more recently been

proposed in which, instead of �ltering and combining the individual microphone signals,

we �lter and sum the SHD signals (the eigenbeams) [3, 56, 109, 120].

Signal-dependent beamformers optimize the �lter weights taking into account char-



118 Chapter 5. Noise reduction

acteristics of the speech and noise, as opposed to �xed beamformers, which apply a

constraint to a speci�c look direction and optimize the �lter weights with respect to

performance measures such as white noise gain, sidelobe levels, or the directivity index.

In this chapter, we propose a SHD tradeo� beamformer, which achieves a balance be-

tween noise reduction and speech distortion, controlled by a tradeo� parameter. For

speci�c choices of this parameter, SHD equivalents of the well-knownminimum variance

distortionless response (MVDR) and multichannel Wiener �lters are obtained.

In order to compute the weights of signal-dependent beamformers, we usually at least

require an estimate of the noise power spectral density (PSD) matrix. Unfortunately, in

practice the noise signals are not always observable and the noise PSDmust be estimated

from the noisy signals. Previously proposed spatial domain noise estimators based on the

speech presence probability (SPP) [22, 47, 52, 105] seek to update the noise PSD estimate

only in time-frequency bins where speech is absent. A recent contribution by Souden et

al. [104] proposes a Gaussian model based multichannel SPP estimator, which is able to

detect spatially coherent sound sources from any direction.

In this work, we seek to distinguish between desired coherent sources, which are

sources located within a given region of interest, and undesired coherent sources (con-

sidered to be noise); however, this is not possible using only the SPP. To make this

distinction, we need to take into account signal properties and/or spatial information.

We propose to estimate the noise and desired PSD matrices using a desired speech pres-

ence probability (DSPP) estimator based on the product of the multichannel SPP [104]

and a direction of arrival (DOA) dependent probability. ¿e DOA-based probability is

computed for each time-frequency bin by estimating the DOA using the pseudointensity

vector method [57] (as presented in Sec. 4.1) and determining whether the active source

is likely to lie within a desired range of DOAs, taking into account the variance of the

DOA estimates. ¿e desired range or ranges of DOAs are assumed to be known; they

could be determined manually, or based on facial recognition and/or tracking data [117],

for example. We then use the estimated PSD matrices to compute the weights of the



5.1 Signal model 119

proposed tradeo� beamformer.

Earlier versions of this work were published in [56,59]. ¿is work di�ers in a number

of important ways: instead of using DOA estimates to control the a priori DSPP, the

SPP is computed using a �xed a priori SPP and is then multiplied by a DOA-dependent

probability to yield the DSPP; the uncertainty in the DOA estimates is taken into account;

and the estimated statistics are applied to a tradeo� beamformer (which can be controlled

by the DSPP) instead of an MVDR beamformer.

¿e remainder of this chapter is structured as follows: Sec. 5.1 describes the signal

model and formulates the problem. Sec. 5.2 proposes a SHD tradeo� beamformer which

is used to perform the noise reduction and depends on the signal statistics. Sec. 5.3

explains how the signal statistics can be estimated using the DSPP, Sec. 5.4 proposes

a novel way of estimating the DSPP, and Sec. 5.5 summarizes the complete proposed

statistics estimation algorithm. Sec. 5.6 evaluates the performance of the algorithm and

of the tradeo� beamformer based on the estimated statistics. Finally, conclusions are

provided in Sec. 5.7.

5.1 Signal model

5.1.1 Spatial domain signal model

We consider a scenario in which a spherical microphone array captures a mixture of

desired speech originating from a source S , spatially coherent noise (e.g., interfering

speech), and background noise that can consist of a mixture of spatially incoherent noise

(used to model sensor noise) and partially coherent noise (used to model spherically

or cylindrically isotropic noise). ¿roughout this chapter, we work in the short-time

Fourier transform (STFT) domain with a discrete frequency index Î and a discrete time

index ℓ1.

1For brevity the time index is omitted in this section.
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¿e spherical microphone array captures Q noisy signals P(Î, rq) at microphone

positions rq = (r, Ωq) (in spherical coordinates), where r is the radius of the sphere and

q ∈ {1, . . . ,Q}. ¿e signal model is expressed as

P(Î, rq) = H(Î, rq)S(Î) + Vc(Î, rq) + Vnc(Î, rq)

= X(Î, rq) + Vc(Î, rq) + Vnc(Î, rq), (5.1)

where S is the source signal, X is the reverberant speech signal, Vc is the coherent

noise signal, Vnc is the background noise signal, and H(Î, rq) is the acoustic transfer

function (ATF) between the source S and the microphone at angle Ωq. ¿e source S is

located within a region of interestR, while the coherent noise source(s) in Vc are located

outsideR. ¿e signals P, X, Vc and Vnc are a function of the microphone position, time

and frequency, and are thus referred to as spatial domain signals; they are in addition

also STFT domain signals.

¿e ATFs are assumed to be time-invariant. We also assume that the reverberant

speech signals X(Î, rq) and the noise signals Vc(Î, rq) and Vnc(Î, rq) are mutually un-

correlated. ¿e reverberant speech signals X(Î, rq) originate from a single source and

are therefore, by de�nition, coherent at all microphones in the array.

5.1.2 Spherical harmonic domain signal model

When dealing with spherical microphone arrays, it is convenient to work in the spherical

harmonic domain instead of the spatial domain. ¿e spherical Fourier transform Flm(Î)

of a spatial domain signal F(Î, rq) involves an integral over all angles Ω, however it can

be approximated for a discretely sampled sound �eld using (2.4)

Flm(Î) ≈
Q

∑
q=1
cqF(Î, rq)Y∗

lm(Ωq), (5.2)
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where Ylm is the spherical harmonic of order l ∈ {0, . . . , L} and degree m ∈ {−l , . . . , l}

and (⋅)∗ denotes the complex conjugate. ¿e weights cq are chosen such that the approxi-

mation in (5.2) is as accurate as possible (c.f. [90] for examples); with a su�cient number

of microphones and appropriate positioning, the error involved in this approximation

can be eliminated entirely for a �nite L. All spatial sampling schemes require at least

Q = (L + 1)2 microphones to sample a sound �eld of order L without spatial aliasing.

For more information on spatial sampling and aliasing, the reader is referred to Sec. 2.3.

We can now express our signal model in the SHD as:

Plm(Î) = Hlm(Î)S(Î) + Vlm,c(Î) + Vlm,nc(Î)

= Xlm(Î) + Vlm,c(Î) + Vlm,nc(Î), (5.3)

where Plm(Î), Hlm(Î), Xlm(Î), Vlm,c(Î) and Vlm,nc(Î) respectively denote the SHD

representations of P(Î, rq), H(Î, rq), X(Î, rq), Vc(Î, rq) and Vnc(Î, rq).

5.1.3 Mode strength compensation

¿e eigenbeams Plm, Hlm, Xlm, Vlm,c and Vlm,nc are dependent on the mode strength Bl ,

which is a function of the array properties (radius, con�guration, microphone type) [92].

¿e mode strength Bl(Î) is given by evaluating the mode strength bl(k), as de�ned in

Section 2.4, at discrete wavenumber values corresponding to the frequency indices Î. To

cancel this dependence, the eigenbeams are divided by the mode strength to give mode

strength compensated eigenbeams2:

P̃lm(Î) = [
√
4πBl(Î)]

−1
Plm(Î)

= H̃lm(Î)S(Î) + Ṽlm,c(Î) + Ṽlm,nc(Î)

= X̃lm(Î) + Ṽlm,c(Î) + Ṽlm,nc(Î), (5.4)

2It should be noted that in other parts of this thesis, themode strength compensation was not explicitly
performed, but was instead included in the beamformer weights, e.g., in (2.14).
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where P̃lm, H̃lm, X̃lm, Ṽlm,c and Ṽlm,nc respectively denote the eigenbeams Plm, Hlm, Xlm,

Vlm,c and Vlm,nc a er mode strength compensation.

With the addition of the
√
4π scaling factor, P̃00(Î) is equal to the signal which

would be received were an omnidirectional microphoneMref to be placed at a position

corresponding to the centre of the sphere [55] (see Appendix C for derivation), i.e., at

the origin of the spherical coordinate system. Our aim is to estimate the desired speech

component X̃00(Î) of this signal using a tradeo� beamformer.

5.2 Tradeo� beamformer

In this section, we derive a signal-dependent tradeo� beamformer, which achieves a

tradeo� between noise reduction and speech distortion. ¿is tradeo� beamformermakes

use of signal statistics that can be estimated using the method presented in the rest of

this chapter.

It is convenient to rewrite the SHD signal model (5.4) in vector notation, where each

of the vectors is of length N = (L + 1)2, the total number of eigenbeams up to order L:

p̃(Î) = h̃(Î)S(Î) + ṽc(Î) + ṽnc(Î)

= x̃(Î) + ṽc(Î) + ṽnc(Î)

= d(Î)X̃00(Î) + ṽ(Î), (5.5)

where, as in the spatial domain [41, 50], d is a propagation vector of relative transfer

functions given by

d(Î) =
⎡
⎢
⎢
⎢
⎢
⎣

1
H̃1(−1)(Î)

H̃00(Î)

H̃10(Î)

H̃00(Î)

H̃11(Î)

H̃00(Î)
⋯
H̃LL(Î)

H̃00(Î)

⎤
⎥
⎥
⎥
⎥
⎦

T

,
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the vector p̃ is de�ned as

p̃(Î) = [P̃00(Î) P̃1(−1)(Î) P̃10(Î) P̃11(Î)⋯P̃LL(Î)]
T ,

(⋅)T denotes the vector transpose, and x̃(Î), h̃(Î), ṽc(Î) and ṽnc(Î) are de�ned similarly

to p̃(Î). We assume H00(Î) ≠ 0 ∀Î, such that d(Î) is always de�ned. ¿e coherent

plus background noise signal vector ṽ is de�ned as ṽ(Î) = ṽc(Î) + ṽnc(Î).

¿e eigenbeams X̃lm are coherent across l andm [55,56], therefore the desired signal

vector x̃(Î) can be expressed as x̃(Î) = γx̃X̃00
(Î)X̃00(Î), where

γx̃X̃00
(Î) =

E [x̃(Î)X̃∗
00(Î)]

E [∣X̃00(Î)∣2]
(5.6)

is the partially normalized [with respect to X̃00(Î)] coherence vector between x̃(Î) and

X̃00(Î), and E [⋅] denotes mathematical expectation. Using (5.6), the signal model in

(5.5) can be rewritten as

p̃(Î) = γx̃X̃00
(Î)X̃00(Î) + ṽ(Î). (5.7)

As X(Î, rq), Vc(Î, rq) and Vnc(Î, rq) are mutually uncorrelated, and the spherical

Fourier transform and division by the mode strength are linear operations, X̃lm(Î),

Ṽlm,c(Î) and Ṽlm,nc(Î) are also mutually uncorrelated. ¿e PSD matrix Φp̃ of p̃ can

therefore be expressed as

Φp̃(Î) = E [p̃(Î)p̃H(Î)]

= Φx̃(Î) + Φṽ(Î)

= Φx̃(Î) + Φṽc(Î) + Φṽnc(Î), (5.8)
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where

Φx̃(Î) = E [x̃(Î)x̃H(Î)] = ϕX̃00
(Î)γx̃X̃00

(Î)γHx̃X̃00
(Î),

Φṽ(Î) = E [ṽ(Î)ṽH(Î)] = Φṽc(Î) + Φṽnc(Î),

Φṽc(Î) = E [ṽc(Î)ṽHc (Î)] and

Φṽnc(Î) = E [ṽnc(Î)ṽHnc(Î)]

are respectively the PSDmatrices of x̃(Î), ṽ(Î), ṽc(Î) and ṽnc(Î), ϕX̃00
(Î) = E [∣X̃00(Î)∣2]

is the variance of X̃00(Î), and (⋅)H denotes the Hermitian transpose.

Equation (5.7) contains the desired signal X̃00(Î) and is the basis for the design of

our beamformer. ¿e output Z(Î) of our beamformer is obtained by applying a complex

weight HHHH to each eigenbeam, and summing over all eigenbeams:

Z(Î) = HHHH(Î)p̃(Î)

= HHHH(Î)x̃(Î) +HHHH(Î)ṽc(Î) +HHHH(Î)ṽnc(Î)

= X̃fd(Î) + Ṽrc(Î) + Ṽrnc(Î), (5.9)

where X̃fd(Î) = HHHH(Î)x̃(Î) = HHHH(Î)γx̃X̃00
(Î)X̃00(Î) is the �ltered desired signal, Ṽrc(Î) =

HHHH(Î)ṽc(Î) is the residual coherent noise and Ṽrnc(Î) = HHHH(Î)ṽnc(Î) is the residual back-

ground noise.

We now de�ne two performance measures that will be used to derive our tradeo�

beamformer. ¿e �rst is the noise reduction factor, which measures the amount of

noise attenuated by the beamformer [12], and is given by the ratio of the power of the

noise atMref to the power of the residual noise at the beamformer output. We de�ne

the narrowband noise reduction factor as

ξnr [HHH(Î)] =
ϕṼ00(Î)

ϕṼr(Î)
=

ϕṼ00(Î)

HHHH(Î)Φṽ(Î)HHH(Î)
, (5.10)
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where ϕṼ00(Î) = E [∣Ṽ00,c(Î)∣2] + E [∣Ṽ00,nc(Î)∣2] is the variance of Ṽ00(Î) and ϕṼr(Î) =

E [∣Ṽrc(Î)∣2] + E [∣Ṽrnc(Î)∣2] is the variance of the residual noise.

¿e second measure is the speech distortion index, which measures the distortion

of the desired speech signal X̃00(Î) introduced by the beamformer. ¿e narrowband

speech distortion index [12] is de�ned as

νsd [HHH(Î)] =
E [∣X̃fd(Î) − X̃00(Î)∣2]

ϕX̃00
(Î)

(5.11a)

= ∣HHHH(Î)γx̃X̃00
(Î) − 1∣2 . (5.11b)

A tradeo� beamformer that achieves noise reduction while minimizing the speech

distortion can then be designed according to the following optimization criteria [10, 107]:

min
HHH(Î)

νsd [HHH(Î)] s.t. ξnr [HHH(Î)] = β−1

min
HHH(Î)

∣HHHH(Î)γx̃X̃00
(Î) − 1∣2 s.t. HHHH(Î)Φṽ(Î)HHH(Î) = βϕṼ00(Î),

where 0 < β < 1 controls the level of noise reduction. Using a Lagrange multiplier,

µ(Î) ≥ 0, to adjoin the constraint to the cost function, we deduce the tradeo� �lter [10]:

HHHT,µ(Î) = ϕX̃00
(Î) [Φx̃(Î) + µ(Î)Φṽ(Î)]−1 γx̃X̃00

(Î)

=
ϕX̃00

(Î)Φ−1
ṽ (Î)γx̃X̃00

(Î)

µ(Î) + ϕX̃00
(Î)γHx̃X̃00

(Î)Φ−1
ṽ (Î)γx̃X̃00

(Î)
, (5.12)

where the Lagrange multiplier, µ(Î), satis�es the constraint ξnr [HHH(Î)] = β−1. In the

spatial domain, the tradeo� �lter in (5.12) is also known as a speech distortion weighted

multichannel Wiener �lter (SDW-MWF) [31, 107].

In practice, it is not easy to determine the optimal µ(Î) and remove the dependency

of the �lter weights on µ(Î), therefore µ(Î) is chosen in an ad-hoc way and referred

to as a tradeo� parameter. Increasing the value of µ(Î) increases noise reduction at

the expense of higher speech distortion. It has been shown [10] that for µ = 0, this
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corresponds to a SHDMVDR beamformer, while for µ = 1, this corresponds to a SHD

Wiener �lter. ¿e tradeo� parameter can be signal-dependent; for example, in [83] the

authors used the SPP to increase the noise reduction when speech is likely to be absent.

5.3 Signal statistics estimation

In order to compute the tradeo� �lter in (5.12), wemust estimate the noise PSDmatrixΦṽ,

as well as the coherence vector γx̃X̃00
. Many techniques exist to estimate these statistics

using the SPP in the spatial domain [23, 24, 105, 111]; in this section, we explain how to

estimate them in the SHD using the DSPP. It should be noted that while in this chapter a

tradeo� �lter is used to extract the desired signal, the algorithm presented in this section

could also be applied to other �lters whose weights depend on the noise PSD matrix Φṽ

and/or the coherence vector γx̃X̃00
.

Due to the sparsity of speech in the time-frequency domain, it is commonly assumed

that in a sound �eld comprising a mixture of speech sources, only one of them is active in

each time-frequency bin [14,87], i.e., that the sources are perfectlyW-disjoint orthogonal.

It has been shown that this is a reasonable approximation if the STFTwindow parameters

are chosen appropriately [96].

For the purposes of the statistics estimation we therefore assume that, in a single

time-frequency bin, only a single coherent source is active, whether it be the desired

source or an interfering source. Although in practice this assumption does not always

hold, particularly when multiple interfering speakers are present (see Sec. 5.6.2), only the

desired source or the interfering sources are usually dominant in any one time-frequency

bin, such that the resulting errors in the estimated statistics only have a small e�ect on

the beamformer output (see Sec. 5.6.3). It should be noted that the tradeo� �lter makes

no such assumption, and can handle any number of simultaneously active sources.

Based on this assumption, we can then consider the following hypotheses regarding
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the presence of desired speech and interference in each time-frequency bin:

H0(Î, ℓ) ∶ p̃(Î, ℓ) = ṽnc(Î, ℓ) indicating speech absence;

H1,c(Î, ℓ) ∶ p̃(Î, ℓ) = ṽc(Î, ℓ) + ṽnc(Î, ℓ) indicating interfering speech presence;

H1,d(Î, ℓ) ∶ p̃(Î, ℓ) = x̃(Î, ℓ) + ṽnc(Î, ℓ) indicating desired speech presence.

We de�neH1 = H1,c ∪H1,d , i.e. H1 indicates speech presence (desired or interfering). ¿e

signal x̃ originates from a source located inside the region of interestR, while the signal

ṽc originates from a single source located outsideR.

5.3.1 Noise PSD matrix estimation

A minimum mean square error estimate of the noise PSD matrix taking into account

the probability of these hypotheses is given by3

E [ṽ ṽH∣p̃] =Pr [H0 ∪H1,c∣p̃]E [ṽ ṽH∣p̃,H0 ∪H1,c]

+ Pr [H1,d∣p̃]E [ṽ ṽH∣p̃,H1,d] , (5.13)

where Pr [H1,d∣p̃] is the DSPP, Pr [H0 ∪H1,c∣p̃] = 1 − Pr [H1,d∣p̃] is the desired speech

absence probability, and E [ ⋅ ∣ ⋅ ] denotes conditional expectation. A common way of

approximating (5.13) is to recursively estimate the PSD matrix with a smoothing factor

which depends on the SPP, as in [104, 111], such that the estimate is updated most rapidly

when speech is absent.

¿e smoothing factor must be carefully chosen: if the noise PSD estimate is updated

too rapidly, there is a risk that desired speech will leak into the estimate when the SPP is

high, but not equal to 1, resulting in desired speech cancellation, whereas if the estimate

is updated too slowly, non-stationary noise will not be e�ectively suppressed.

3For brevity, the dependencies on the discrete frequency and time indices Î and ℓ are omitted where
possible in the following sections.
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We would like to suppress a coherent speech source, which is non-stationary and has

a similar spectral distribution to the desired speech (i.e., high energy at low frequencies).

For this reason, we propose to estimate the PSD as

Φ̂ṽ(ℓ) = α′vΦ̂ṽ(ℓ − 1) + (1 − α′v)p̃ p̃H, (5.14)

where

α′v =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

αv, if Pr [H1,d∣p̃] < Prth;

1, otherwise,
(5.15)

and 0 < αv ≤ 1 is a smoothing factor. ¿e PSD estimate is therefore only updated if the

DSPP is below a threshold Prth.

5.3.2 Coherence vector estimation

¿e coherence vector γx̃X̃00
is given by the �rst column of Φx̃ divided by the �rst element

ϕX̃00
, and is estimated by

γ̂x̃X̃00
= ϕ̂−1X̃00

Φ̂x̃ iN , (5.16)

where iN = [1 0 ⋯ 0]T is a vector of length N . Since the noise is always present, the

desired signal is not directly observable. ¿erefore, we propose to �rst compute an

estimate of the desired speech plus background noise PSD Φ̂x̃+ṽnc as

Φ̂x̃+ṽnc(ℓ) = α′xvnc p̃ p̃
H + [1 − α′xvnc]Φ̂x̃+ṽnc(ℓ − 1), (5.17)

where α′xvnc = Pr [H1,d∣p̃] (1 − αxvnc) and 0 < αxvnc ≤ 1 is a smoothing factor. We can now

obtain an estimate Φ̂x̃ of the desired speech PSD matrix using

Φ̂x̃ = Φ̂x̃+ṽnc − Φ̂ṽnc . (5.18)
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¿e coherence vector estimate γ̂x̃X̃00
is therefore updated most rapidly when desired

speech is present.

We assume that the background noise ṽnc is stationary; an estimate Φ̂ṽnc of its PSD

matrix can therefore be obtained during initial noise only frames. If the background

noise is not stationary, its PSD matrix can be estimated using Pr [H0∣p̃] in a similar way

to the noise PSD matrix in (5.14).

5.4 Desired speech presence probability estimation

Using the de�nition of conditional probability, the DSPP Pr [H1,d∣p̃] can be expressed as

Pr [H1,d∣p̃] = Pr [H1,d ∩H1∣p̃]

= Pr [H1,d∣H1, p̃] ⋅ Pr [H1∣p̃] .

¿e term Pr [H1∣p̃] can be determined using a Gaussian model-based multichannel SPP

estimator [104], while in this work we assume the term Pr [H1,d∣H1, p̃] can be approxi-

mated based on an instantaneous DOA estimate Ω̂, i.e.,

Pr [H1,d∣H1, p̃] ≈ Pr[H1,d∣H1, Ω̂].

¿emultiplication of the SPP by a DOA-based probability allows us to di�erentiate

between desired coherent sources and interfering coherent sources. ¿e combination of

these two probabilities, along with the method for estimating the DOA-based probability,

are the two main contributions of this chapter. In the following, we explain how to

estimate the SPP and DOA-based probability.
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5.4.1 Multichannel speech presence probability

Assuming the desired speech, coherent noise, and background noise can be modeled

as complex multivariate Gaussian random variables, an a posteriorimultichannel SPP

estimate is given by [104]:

Pr [H1∣p̃] = {1 + 1 − ρ
ρ

(1 + ξ)e−
β

1+ξ}

−1

, (5.19)

where ρ = Pr [H1] denotes the a priori SPP, β is de�ned as

β = p̃HΦ̂−1
ṽncΦ̂r̃Φ̂

−1
ṽnc p̃, (5.20)

and ξ is de�ned as

ξ = tr (Φ̂−1
ṽncΦ̂r̃) . (5.21)

¿e PSD matrix Φ̂r̃ is given by

Φ̂r̃ = Φ̂p̃ − Φ̂ṽnc , (5.22)

and represents the desired signal plus coherent noise. ¿e PSD matrix Φp̃ is recursively

estimated as

Φ̂p̃(ℓ) = αpΦ̂p̃(ℓ − 1) + (1 − αp)p̃ p̃H, (5.23)

where 0 < αp ≤ 1 is a smoothing factor.

5.4.2 DOA-based probability

¿e DOA-based probability Pr[H1,d∣H1, Ω̂] is obtained from the instantaneous DOA

estimates and the associated uncertainty. Under speci�c conditions (e.g., direct-to-

reverberant ratio, signal-to-noise ratio), we can �nd an empirical probability distribution

function (PDF) f (Ω̂∣Ω;Σ) that describes the distribution of the DOA estimates Ω̂ ob-
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tained using a speci�c narrowband DOA estimation algorithm for a source at a DOA

Ω = (θ , ϕ).

A training phase is used to estimate this empirical PDF. An analytic PDF is then �tted

to the estimated DOAs for each speci�c condition. ¿e PDF is denoted by f (Ω̂∣Ω, Σ)

where Σ describes the uncertainty associated with the estimate of Ω. A region of interest

is de�ned by a function R(Ω), where 0 ≤ R(Ω) ≤ 1. ¿e DOA-based probability is then

given by

Pr[H1,d∣H1, Ω̂] = Pr[Ω∈R∣Ω̂] (5.24a)

=

ˆ
Ω∈R

f (Ω∣Ω̂;Σ)dΩ (5.24b)

=

ˆ
Ω∈R

f (Ω̂∣Ω;Σ) f (Ω)

f (Ω̂)
dΩ, (5.24c)

where dΩ = sin θdθdϕ and we have used Bayes’ rule to go from (5.24b) to (5.24c). ¿e

marginal PDF f (Ω) can be modeled using a priori information on possible source posi-

tions, while the marginal PDF f (Ω̂) can be estimated by observing the DOA estimates

during the training phase.

In this work, the DOA is estimated using the pseudointensity vector method [57] (as

presented in Sec. 4.1). ¿e pseudointensity vector I is conceptually similar to the acoustic

intensity vector, which describes the magnitude and direction of the transport of acoustic

energy, but instead of being computed using particle velocity measurements [27, 28], it

is computed using the zero- and �rst-order eigenbeams P00, P1(−1), P10 and P11 obtained

with a spherical microphone array [57]4:

I = 1
2
R

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P̃∗00

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
1
m=−1 P̃1m Y1m( π2 , π)

∑
1
m=−1 P̃1m Y1m( π2 ,−

π
2 )

∑
1
m=−1 P̃1m Y1m(π, 0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (5.25)

4It should be noted that although the dependency on the discrete frequency index Î has been omitted,
the DOA-based probability and pseudointensity vector are frequency-dependent.
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where R{⋅} denotes the real part of a complex number. An estimate û of the unit vector

u with direction Ω is given by

û(ℓ) = − ∑
ℓ
ℓ′=ℓ−τ+1 I(ℓ′)

∥∑
ℓ
ℓ′=ℓ−τ+1 I(ℓ′)∥2

. (5.26)

By summing the pseudointensity vectors over τ time frames, we give a higher weight

to pseudointensity vectors with a high norm, which are considered to be more reliable.

Finally, the instantaneous DOA estimate Ω̂ is given by the direction of the vector û. ¿e

accuracy of the DOA estimates obtained using this method is evaluated in Sec. 4.1.5.

¿e DOA estimates obtained using the pseudointensity vector method can be rep-

resented by the Fisher distribution [39], a probability distribution on the sphere with

two parameters: the mean direction and the concentration parameter κ. ¿e Fisher

distribution is rotationally symmetric about the mean direction, which is assumed to be

the true DOAΩ. ¿e concentration parameter κ can be considered to be independent of

Ω due to spherical symmetry, providing the source and array are reasonably far from the

room boundaries, and is estimated during the training phase using the method described

in [108].

Using the Fisher distribution, the PDF f (Ω̂∣Ω, Σ) is then given by [39, 74]

f (Ω̂∣Ω, κ) = κ
4π sinh κ

eκ uTû (5.27a)

=
κ

2π (eκ − e−κ)
eκ uTû. (5.27b)

Due to the symmetry of the distribution aboutΩ, the PDFonly depends on κ anduTû, i.e.,

the cosine of the angle between the true and estimated DOAs (Ω and Ω̂, respectively),

which we will call the opening angle. As κ increases, the distribution of Ω̂ becomes

more concentrated around Ω, or equivalently the distribution of the opening angles

becomes more concentrated around 0. We also note that for this choice of distribution,

f (Ω̂∣Ω, κ) = f (Ω∣Ω̂, κ), and as a result the DOA-based probability can be computed
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from (5.24b) without estimating f (Ω̂) and f (Ω).

5.5 Algorithm summary

¿e noise PSD matrix Φ̂ṽ and coherence vector γ̂x̃X̃00
are recursively estimated for all

frequency indices Î according to the following steps:

1. Estimate Pr[H1,d(ℓ)∣H1(ℓ), Ω̂(ℓ)], the DOA-based probability:

(a) Compute the pseudointensity vector I(ℓ) using (5.25).

(b) Compute the unit vector û(ℓ) using I(ℓ), I(ℓ − 1), . . . , I(ℓ − τ + 1) and (5.26).

(c) Compute the PDF f (Ω̂∣Ω, κ) using û(ℓ), the concentration parameter κ

estimated during the training phase and (5.27b).

(d) Estimate Pr[H1,d(ℓ)∣H1(ℓ), Ω̂(ℓ)] using f (Ω̂∣Ω, κ) and (5.24b).

2. Update Φ̂p̃(ℓ) using (5.23).

3. Estimate Φr̃(ℓ) as Φ̂r̃(ℓ) = Φ̂p̃(ℓ) − Φ̂ṽnc , where Φ̂ṽnc is estimated during initial

background noise only frames.

4. Estimate the a posteriorimultichannel SPP Pr [H1(ℓ)∣p̃(ℓ)] according to (5.19),

(5.20) and (5.21), using Φ̂r̃(ℓ) and Φ̂ṽnc .

5. Compute the DSPP Pr [H1,d(ℓ)∣p̃(ℓ)] as the product of Pr[H1,d(ℓ)∣H1(ℓ), Ω̂(ℓ)]

and Pr [H1(ℓ)∣p̃(ℓ)].

6. Update Φ̂ṽ(ℓ) according to (5.14) by using Pr [H1,d(ℓ)∣p̃(ℓ)].

7. Update Φ̂x̃+ṽnc(ℓ) according to (5.17) by using Pr [H1,d(ℓ)∣p̃(ℓ)], and compute

γ̂x̃X̃00
(ℓ) according to (5.16).

In Fig. 5.1, the complete noise reduction algorithm is summarized in the form of a

block diagram. ¿e gray blocks refer to the steps in the algorithm summary above.
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5.6 Performance evaluation

¿e evaluation of the performance of the proposed noise reduction algorithm consists

of two parts: 1) evaluating the proposed DSPP estimation method described in Sec. 5.4,

which is used in the estimation of the desired speech statistics, and 2) evaluating the per-

formance of the tradeo� beamformer. An evaluation of the performance of the tradeo�

beamformer under the assumption that the signal statistics are perfectly estimated can

be found in an earlier contribution [56].

As mentioned in Sec. 5.2, in previous work the tradeo� parameter µ has been chosen

to be a function of the SPP [83]. In this work, we make µ a function of the DSPP, i.e.,

µ(Î, ℓ) = 1
η 1
µ′ + (1 − η)Pr [H1,d(Î, ℓ)∣p̃(Î, ℓ)]

, (5.28)

where 0 ≤ η ≤ 1 and µ > 0. As η decreases, the in�uence of the DSPP on the tradeo�

parameter µ increases. For η = 1, µ is �xed and equals µ′, whereas for η = 0, µ is equal

to the inverse of the DSPP.

5.6.1 Experimental setup

In order to evaluate the proposed algorithm, clean speech signals were convolved with

measured acoustic impulse responses (AIRs) from one of the laboratories at Fraunhofer

IIS [103]. ¿e reverberation time of the roomwith dimensions 7.5×9.3×4.2 m was T60 ≈

330ms. ¿eAIRs weremeasured using an Eigenmike [79], i.e., aQ = 32microphone rigid

spherical array with radius 4.2 cm, located in the centre of the room. ¿e desired talker

was located at an inclination and azimuth of approximately (95○, 175○), respectively, and

a distance of 1.8 m from the centre of the array. ¿e �rst interfering talker was located at

approximately (95○, 115○) and a distance of 2.3 m from the array centre, and the second

interfering talker at (40○, 0○) and a distance of 3.0 m from the array centre.

¿e desired and interfering speech signals consisted of male and female speech

from the EBU SQAM dataset [37]. Four consecutive 15 s segments were used in the
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evaluation: desired speaker only, single interfering speaker, desired speaker and single

interfering speaker, and desired speaker and two interfering speakers. ¿e background

noise consisted of spatio-temporally white Gaussian noise with a constant input signal to

incoherent noise ratio (iSINR) of 25 dB atMref. It should be noted that the incoherent

noise power atMref is reduced by a factor of Q∣B0(Î)∣2 with respect to its power at the

microphones [55]; at low frequencies, where B0(Î) is lowest, the incoherent noise power

is approximately 15 dB lower atMref than at the microphones5. ¿e coherent noise power

was set in order to obtain a given input signal to coherent noise ratio (iSCNR) atMref,

taking into account only frames where both interfering talkers were active according to

ITU-T Rec. P.56 [53]. ¿e local iSCNR was therefore higher in frames where only one

interfering talker was active. Coherent and incoherent noise levels were set based on

active speech levels, computed according to ITU-T Rec. P.56 [53].

¿e processing was performed in the STFT domain at a sampling frequency of 8 kHz

with a frame length of 64 ms and a 50% overlap between successive frames, as in [105].

¿e beamformer was applied to eigenbeams of order up to L = 3, resulting in a total

of N = (L + 1)2 = 16 eigenbeams. In order to reduce the computational complexity,

the multichannel SPP was estimated based only on zero- and �rst-order eigenbeams,

highlighting an advantage of working in the SHD. ¿e smoothing factors in (5.23), (5.15)

and (5.17) were empirically chosen as αp = 0.8, αv = 0.7 (with Prth = 0.01) and αxvnc = 0.9,

respectively, in order to achieve high noise reduction and low speech distortion. ¿e

a priori SPP ρ was �xed to 0.4, as in [104], and the pseudointensity vectors used in the

DOA estimation were averaged over τ = 4 time frames.

5.6.2 Desired speech presence probability

In the following, we evaluate the results of the DSPP estimation described in Sec. 5.4. In

order to compute the DOA-based probability in (5.24b), the distribution f (Ω ∣ Ω̂, Σ) is

5¿e iSINR at the sensors is therefore relatively low. ¿e choice of iSINR is made to demonstrate that
the proposed algorithm is robust to high levels of sensor noise. A higher iSINR could be chosen, and
would show improved SPP estimation.
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required. ¿e distribution f (Ω ∣ Ω̂, Σ) was modeled by a Fisher distribution where the

uncertainty parameter Σ is given by a concentration parameter κ that is estimated during

a training phase. ¿e training was done using AIRs simulated with SMIRgen [54, 62],

an AIR generator for spherical arrays based on the algorithm presented in Chapter 3.

¿e reverberation time, source-array distance and iSINR chosen for the training were

the same as in Sec. 5.6.1, such that the training conditions were similar to those where

the tradeo� beamformer was applied. ¿e integral in (5.24b) was evaluated numerically

over a regionR centred around the desired source’s true DOA, de�ned as

Ω = (θ , ϕ) ∈R if θ ∈ [80○, 110○] and ϕ ∈ [160○, 190○].

Particularly in the presence of strong early re�ections, the DOA estimates at a given

frequency might not be centred around the true DOA, i.e., can be biased. In order to

reduce the bias and estimate a meaningful concentration parameter κ that will hold

for all DOAs, we combine the DOA estimates obtained by varying the source-array

positions (5 di�erent positions) and keeping the rest of the training conditions (true

DOA, source-array distance, reverberation time and iSINR) �xed. We then estimate

the concentration parameter based on this multimodal distribution. Note that due to

the frequency-dependence of the array’s directivity, the concentration parameter must

be estimated for each frequency. In Fig. 5.2 the estimated DOAs are plotted for two

di�erent frequencies. As expected, the DOA estimates have a lower concentration at low

frequencies, where the array has lower directivity.

In Fig. 5.3 we plot some illustrative time-frequency plots of the opening angles

between the true DOA of the desired source and the estimated DOAs [Fig. 5.3(a)], the

DOA-based probability [Fig. 5.3(b)], the multichannel SPP [Fig. 5.3(c)], and the product

of these two probabilities, the DSPP [Fig. 5.3(d)]. ¿e results were obtained for an iSCNR

of 0 dB atMref. ¿e signal was divided into four time segments, as in 5.6.1, namely, in

the �rst segment, only the desired talker is active, then only a single interfering talker is
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Figure 5.2: DOA estimates obtained using 5 source-array positions with identical true DOA
(indicated by a white marker), at (a) 150 Hz and (b) 1.5 kHz.

active, then a desired talker and a single interfering talker are active, and �nally a desired

talker and two interfering talkers are active. It can be seen that multiplying the commonly

used multichannel SPP by a DOA-based probability results in a su�ciently small DSPP

when only interfering talkers are present. ¿is allows us to distinguish between desired

and undesired coherent sources, and derive accurate estimators for their respective PSD

matrices, which are required to compute the tradeo� beamformer weights.

5.6.3 Tradeo� beamformer

In order to evaluate the performance of the combined DOA-based statistics estimation

algorithm and tradeo� beamformer, we considered the following performance measures:

• ∆segSNR, the improvement in the segmental signal to noise ratio (segSNR) with

respect to the best sensor (i.e., the sensor with the best segSNR), where the signal-

to-noise ratio (SNR) was given by the ratio of the power of the desired speech to

the power of the coherent and background noise.

• segSDI, the segmental speech distortion index, as de�ned in [10, eqn 4.44] and

[49, eqn 30], with respect to the desired speech signal atMref. ¿e segSDI is equal

to 0 if there is no distortion, and is greater than 0 when distortion occurs.

• segBNRF, the segmental background noise reduction factor, given by the ratio
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Figure 5.3: Time-frequency plots of (a) opening angles, (b) DOA-based probability
Pr[H1,d∣H1, Ω̂], (c) a posteriorimultichannel SPP Pr [H1∣p̃], (d) DSPP Pr [H1,d∣p̃]. ¿e iSCNR
was 0 dB atMref.
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of the power of the background noise at the best sensor (i.e., the sensor with the

lowest background noise power) to the power of the background noise at the

output of the beamformer.

• segCNRF, the segmental coherent noise reduction factor, given by the ratio of

the power of the coherent noise atMref to the power of the coherent noise at the

output of the beamformer. It should be noted that the segCNRF with respect to the

best sensor would be slightly lower, due to the fact thatMref is omnidirectional,

while the sensors have additional directivity provided by the rigid sphere.

All performancemeasures were computed in the time domain using non-overlapping

frames of length 16 ms. ¿e segSNR and segSDI were averaged over all frames that

contained desired speech. ¿e segCNRF was averaged over all frames that contained

interfering speech. A frame was considered to contain speech if the average energy of the

frame was at least −30 dB with respect to the frame with the highest average energy. ¿e

performance measures were averaged in the log domain, except for the speech distortion

index, which was averaged in the linear domain.

¿e performance measures are plotted in Fig. 5.4 as a function of the iSCNR.¿e

performance was evaluated separately for each of the speech segments (desired source

only, one interfering source only, desired source and one interfering source, desired

source and two interfering sources). Two sets of tradeo� parameters were used: η = 1,

µ′ = 1, resulting in a SHDWiener �lter and η = 0.25, µ′ = 1, resulting in a DSPP-based

tradeo� parameter µ ranging from 1 to 4.

Although the tradeo� beamformer outperforms the SHD Wiener �lter across all

performance measures, in most cases the performance di�erence is quite small (0–1 dB).

¿e largest di�erence is observed in the presence of a single interfering source, where

the DSPP-based tradeo� parameter leads to stronger noise and interference reduction.

Comparing the segCNRF and segBNRF curves in Fig. 5.4(c) and Fig. 5.4(d), a tradeo�

between coherent and incoherent noise reduction can be observed, which is consistent
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Figure 5.4: Performance measures as a function of the input signal to coherent noise ratio
(iSCNR) atMref, for two di�erent parameter sets: η = 1, µ′ = 1 (red curves) and η = 0.25,
µ′ = 1 (black curves).
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with the �ndings presented in [48]. Finally, note that in all scenarios, as the iSCNR

increases the performance of the beamformers converges to the performance when only

a desired talker is present, as expected.

In Table 5.1, some performancemeasures are provided as a function of the parameters

η and µ′, which control the tradeo� parameter µ. In these results, it can again be observed

that during interference-only periods, the DSPP-based tradeo� parameter (η < 1) leads

to stronger noise reduction than the �xed tradeo� parameter (η = 1): when η = 0, i.e., µ

is inversely proportional to the DSPP, the segCNRF and segBNRF are 13–18dB higher

than for η = 1. For the other scenarios, the extreme case of η = 0 once more shows the

highest noise reduction, this time at the cost of increased speech distortion. However,

in the rest of the cases, the speech distortion index is largely una�ected by changes in

η and µ′, indicating that speech distortion is mostly introduced by errors in the DSPP

estimation and hence the signal statistics, rather than by an increase in the tradeo�

parameter of the beamformer.

Sample spectrograms are presented in Fig. 5.5, for a �xed iSCNR of 0 dB atMref. ¿e

sequence of speech segments is as described in 5.6.1, and each segment has duration 5 s.

¿e spectra of the desired speech signal and the mixture are illustrated in Fig. 5.5(a) and

Fig. 5.5(b), respectively. ¿e spectrograms of the tradeo� beamformer output for two

di�erent tradeo� parameters are illustrated in Fig. 5.5(c) and Fig. 5.5(d). Choosing µ′ = 0

in Fig. 5.5(c) results in µ = 0 which corresponds to the SHDMVDR beamformer. ¿e

e�ect of a DSPP-dependent tradeo� parameter is visible in Fig. 5.5(d), where the coherent

noise reduction performance is improved compared to the SHDMVDR beamformer in

Fig. 5.5(c). ¿is e�ect is most visible in the interference-only segment, where a segCNRF

improvement of about 5 dB is obtained.
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Table 5.1: Tradeo� beamformer performancemeasures (in dB) as a function of the parameters
η and µ′, for three di�erent scenarios.

a) Desired speaker only:

η µ′ µ segSDI ∆segSNR
0 > 0 DSPP−1 −10.3 24.1

0.25 1 1 – 4 −11.8 21.1
2 1.14 – 8 −11.8 21.4

0.5 1 1 – 2 −11.8 20.9
2 1.33 – 4 −11.8 21.1

1
→ 0 0 −11.8 20.6
1 1 −11.8 20.8
2 2 −11.8 20.9

b) Desired speaker and single interfering speaker:

iSCNR = 5 dB iSCNR = 15 dB
η µ′ µ segSDI ∆segSNR segSDI ∆segSNR
0 > 0 DSPP−1 −6.4 14.0 −8.6 14.8

0.25 1 1 – 4 −6.9 11.5 −9.4 12.9
2 1.14 – 8 −6.9 11.6 −9.4 13.0

0.5 1 1 – 2 −6.9 11.4 −9.4 12.8
2 1.33 – 4 −6.9 11.5 −9.4 12.9

1
→ 0 0 −6.9 11.2 −9.4 12.7
1 1 −6.9 11.3 −9.4 12.8
2 2 −6.9 11.4 −9.4 12.8

c) Single interfering speaker:

iSCNR = 5 dB iSCNR = 15 dB
η µ′ µ segCNRF segBNRF segCNRF segBNRF
0 > 0 DSPP−1 30.7 38.4 27.8 42.6

0.25 1 1 – 4 25.4 22.7 17.0 30.7
2 1.14 – 8 27.8 19.6 19.0 33.0

1 → 0 0 17.3 20.8 13.5 26.5
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(c) Z for η = 1, µ′ = 0
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(d) Z for η = 0.25, µ′ = 2
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Figure 5.5: Sample spectrograms for an iSCNR of 0 dB: (a) desired speech signal X̃00, (b)
received signal P̃00 = X̃00 + Ṽ00,c + Ṽ00,nc, beamformer output Z for (c) η = 1, µ′ = 0 and (d)
η = 0.25, µ′ = 2.
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5.7 Conclusions

A noise reduction algorithm has been proposed that can distinguish between desired and

undesired spatially coherent sources. ¿e desired speech and noise statistics are estimated

using a DSPP based on instantaneous high resolution narrowband DOA estimates. ¿e

estimated statistics are then applied to a SHD tradeo� beamformer controlled by a

tradeo� parameter that can be varied according to the DSPP. A performance evaluation

showed that even in the presence of high levels of coherent noise, the proposed algorithm

achieved high performance in noise reduction, with SNR improvements of 10–21 dB.

¿ese results are in agreement with those of informal listening tests6.

6A number of audio examples are available at
http://www.ee.ic.ac.uk/sap/sphdoa/

http://www.ee.ic.ac.uk/sap/sphdoa/
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Chapter 6

Conclusions

In this chapter, we summarize and conclude the work presented in this thesis. In Sec. 6.1,

we highlight its main achievements, and in Sec. 6.2, we outline some suggestions for

future research.

6.1 Summary of thesis achievements

¿e aim of this thesis was to propose a number of acoustic parameter estimation and

signal enhancement algorithms for spherical microphone arrays. Its main achievements

are as follows:

Acoustic impulse response (AIR) simulation [61,62] In order to comprehensively

evaluate the performance of rigid spherical microphone array processing algo-

rithms under a variety of conditions (reverberation time, source-array distance,

etc.), it is crucial to be able to simulate their performance in reverberant environ-

ments. ¿is is achieved using simulated AIRs, which should incorporate both

the e�ect of the room re�ections, and the scattering e�ects of the rigid sphere.

In order to address the lack of AIR algorithms for rigid arrays, in Chapter 3 we

proposed such an algorithm based on the combination of a spherical harmonic

domain (SHD) scattering model and Allen & Berkley’s image method. We also
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used the proposed method to investigate the energy of a reverberant sound �eld,

as well as interaural time di�erences and interaural level di�erences in both ane-

choic and echoic environments, based on a rigid spherical head model. Finally,

we showed that the proposed method can be used as a mouth simulator, i.e., to

simulate the AIR between an omnidirectional microphone and an omnidirectional

source positioned on a rigid sphere.

Direction of arrival (DOA) estimation [57]¿e estimation of the direction of

an acoustic source can provide useful information for a number of applications,

such as automatic camera steering, noise source identi�cation or beamforming.

In Sec. 4.1, we proposed an intensity vector–based DOA estimation approach

for spherical microphone arrays, and showed that for a given level of accuracy,

it has much lower computational complexity than the steered response power

method. Based on simulated AIRs obtained using the algorithm in Chapter 3, we

also showed that it is robust to both sensor noise and room reverberation. Finally,

an application was presented in Chapter 5, where we used instantaneous DOA

estimates to perform noise reduction.

Source tracking [58] In scenarios where the source is moving, DOA estimation

becomes more challenging: in order to quickly react to changes in source position,

the tracking method must be robust and have low computational complexity. In

Sec. 4.2, we proposed a novel source tracking method that meets these require-

ments, based on an adaptive principal component analysis of the particle velocity

vector, which was estimated using the approach presented in Sec. 4.1. It was shown

to quickly and accurately track changes in the DOA, even for reverberation times

up to 600 ms.

Di�useness estimation [64] One of the parameters that can be used to describe

a sound �eld is the di�useness; di�useness estimates can then be used for dere-

verberation [18], for example. In Sec. 4.3, we proposed a novel coherence-based
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di�useness estimation method, and compared its performance to a previously pro-

posed spatial domain method, the coe�cient of variation method. We showed that

for a given amount of time averaging, the estimates obtained using the proposed

method have lower variance, even when only zero- and �rst-order eigenbeams are

used.

Noise reduction [56, 59,63] In distant speech acquisition, noise reduction can be

applied to improve the quality and intelligibility of the speech. In Chapter 5, we

proposed a tradeo� beamformer in the SHD, which balances the noise reduction

performance against speech distortion. ¿e weights of this beamformer depend

on the noise and desired signal statistics; accordingly, we proposed a novel statis-

tics estimation algorithm, which can distinguish between desired and undesired

spatially coherent sources. ¿e algorithm is based on a desired speech presence

probability that is computed based on instantaneous DOA estimates, obtained

using the method in Sec. 4.1. We evaluated the complete noise reduction algo-

rithm using measured AIRs, and showed that it achieves high performance, with

signal-to-noise ratio improvements of around 10–20 dB.

6.2 Future research directions

In this thesis, we have proposed practical algorithms for acoustic parameter estima-

tion and signal enhancement, evaluated using both simulated and measured impulse

responses. Future work should should focus both on improvements to these algorithms,

to render them more capable of coping with real acoustic environments and scenarios,

and on a more comprehensive evaluation of their performance. Accordingly, we suggest

the following future research relating to the work presented in this thesis:

Processing domain: In this work, we performedmost processing in the short-time

Fourier transform domain with uniform frequency bands. However, perceptually-

motivated domains with non-uniform frequency bands have been shown to pro-
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vide good subjective performance, e.g., the cepstral domain [19]. As the theory

presented is general, the performance of the proposed algorithms could be investi-

gated in other domains.

Acoustic impulse response simulation:¿e rigid sphere AIR simulation method

presented in Chapter 3 could be improved by allowing for di�use room boundary

re�ections, in addition to specular re�ections. Its computational complexity could

be reduced by only using the proposed image-basedmethod for the low-order, early

re�ections, and using a stochastic method to generate the higher-order re�ections

that make up the reverberant tail of the impulse response, as in [100] where the

“di�use rain” algorithmwas used. ¿e accuracy of binaural room impulse responses

generated using the proposed method could be improved by usingmeasured head-

related transfer functions instead of the rigid sphere scattering model.

Direction-of-arrival estimation and tracking: ¿e direction-of-arrival estima-

tion and tracking methods respectively presented in Sec. 4.1 and Sec. 4.2 could

be extended to scenarios wheremultiple acoustic sources are present, by working

in the time-frequency domain and assuming that only a single source is active in

each time-frequency bin (W-disjoint orthogonality [14, 87]).

Di�useness estimation: Alternative SHD di�useness estimation methods could

be explored, which, while still being based on all the available eigenbeams, would

have lower computational complexity.

Noise reduction: ¿e performance of the noise reduction algorithm presented

in Chapter 5 could be analyzed in the presence of spatially di�use noise, as well

as, or instead of the spatially incoherent noise used. ¿e performance of the

algorithm could also be evaluated in terms of intelligibility using listening tests.

In addition, the proposed noise reduction algorithm could be combined with the

SHD dereverberation and incoherent noise reduction algorithm presented in [18]
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(which uses an estimate of the di�useness as a priori information), to perform

joint dereverberation and noise reduction.
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Appendix A

Spherical Microphone array Impulse

Response generator (SMIRgen) for

MATLAB

An e�cient MATLAB/C++ implementation of the rigid sphere acoustic impulse re-

sponse (AIR) simulation method presented in Chapter 3 has been created. ¿e most

computationally complex portions of the method are implemented in the form of

a MEX-function. ¿e latest version of the implementation can be downloaded at

http://www.ee.ic.ac.uk/sap/smirgen/.

A.1 Documentation

A.1.1 Function call

¿e function smir_generator is called as follows:

[h, H, beta_hat] = smir_generator(c, procFs, sphLocation, s, L,

beta, sphType, sphRadius, mic,

N_harm, nsample, K, order);

http://www.ee.ic.ac.uk/sap/smirgen/
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¿e function input parameters are described below:

Parameter Description Default value

c Sound velocity (m/s)

procFs Sampling frequency (Hz)

sphLocation Receiver location (x , y, z) in m

s Source location(s) (x , y, z) in m

L Room dimensions (x , y, z) in m

beta Room re�ection coe�cients [βx1 βx2 βy1 βy2 βz1 βz2]

or reverberation time T60 in s

sphType Type of sphere (‘open’/‘rigid’)

sphRadius Radius of the sphere (m)

mic Microphone angles (azimuth, inclination)

N_harm Maximum order of harmonics to use in spherical

harmonic decomposition

nsample Length of desired AIR T60 ⋅ procFs

K Oversampling factor 2

order Re�ection order (−1 is maximum re�ection order) −1

¿e function output parameters are described below:

Parameter Description

h M × nsamplematrix containing the calculated AIR(s)

H M × (K ⋅ nsample/2 + 1) matrix containing the calculated

ATF(s)

beta_hat If beta is the reverberation time, the room re�ection co-

e�cient calculated using Sabin-Franklin’s formula [86] is

returned.
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A.1.2 Notes

• ¿emost computationally complex parts of this algorithm have been placed in

a C++ function with a MEX wrapper. To use it you will need to build the MEX-

function using MATLAB’s mex command.

• ¿e functions mysph2cart() and mycart2sph() are included in order to convert

between spherical and Cartesian coordinates. ¿ese functions use the coordinate

systems de�ned in Sec. 2.1. ¿emicrophone angles used as inputs to SMIRgenmust

be obtained using mycart2sph(), or use the same coordinate system. Speci�cally,

azimuth is measured counterclockwise from the positive x axis (the positive y axis

has an azimuth of 90○) and inclination is measured from the positive z axis (the

x-y plane has an inclination of 90○).

• When the source-array distance is small, it is necessary to oversample in the

frequency domain in order to avoid the wrap-around e�ect of the discrete Fourier

transform. For this purpose, choose K > 1, e.g., K = 2 or K = 4.

• ¿e example script run_smir_generator_comparison compares the output of

SMIRgen to the output of Emanuël Habets’s RIR generator [46], with each of the

array’s microphones treated as a separate receiver. ¿is comparison is only valid

in the open sphere case, since the RIR generator does not account for scattering.

A copy of the AIR generator is included for this purpose, in accordance with the

terms of the GNU General Public License. To use it you will need to build the

MEX-function using MATLAB’s mex command.

A.2 Example

An example of an AIR and acoustic transfer function (ATF) generated using SMIRgen is

provided in Fig. A.1. ¿e following input parameters were used:
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Figure A.1: Sample acoustic impulse response and acoustic transfer function generated using
SMIRgen.

procFs = 8000;
c = 343;
nsample = 512;
N_harm = 40;
K = 2;
L = [4 6 8];
sphLocation = [2 3.2 4];
s = [2.37 4.05 4.4];
beta = [1 0.7 0.7 0.5 0.2 1];
order = -1;
sphRadius = 0.042;
sphType = ‘rigid’;
mic = [pi/4 pi/2; 3*pi/4 pi/2];



173

Appendix B

Spatial correlation in a di�use sound

�eld

¿e sound pressure at a position r̃ = (r, Ω) due to a unit amplitude plane wave incident

from direction Ω0 is given by [119]

P(r̃, Ω0, k) =
∞

∑
l=0

l

∑
m=−l

4πφ(Ω0)bl(k)Y∗
lm(Ω0)Ylm(Ω), (B.1)

where φ(Ω0) is a random phase term and ∣φ(Ω0)∣ = 1. Assuming a di�use sound �eld,

the spatial cross-correlation between the sound pressure at two positions r̃ = (r, Ω) and

r̃′ = (r, Ω′) is given by:

C(r̃, r̃′, k) = 1
4π

ˆ
Ω0∈S2

P(r̃, Ω0, k)P∗(r̃′, Ω0, k)dΩ0

=
1
4π

ˆ
Ω0∈S2

∞

∑
l=0

l

∑
m=−l

4πbl(k)Y∗
lm(Ω0)Ylm(Ω)

∞

∑
l ′=0

l ′

∑
m′=−l ′

4πb∗l ′(kr)Yl ′m′(Ω0)Y∗
l ′m′(Ω′)dΩ0.
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Using the orthonormality property of the spherical harmonics in (2.6) and the addition

theorem in (3.8), we eliminate the cross terms followed by the sum over m and obtain

C(r̃, r̃′, k) =
1
4π

∞

∑
l=0

l

∑
m=−l

(4π)2∣bl(k)∣2Ylm(Ω)Y∗
lm(Ω′) (B.2a)

=
1
4π

∞

∑
l=0

(4π)2∣bl(k)∣2
2l + 1
4π

Pl(cosΘr̃,r̃′) (B.2b)

=
∞

∑
l=0

∣bl(k)∣2(2l + 1)Pl(cosΘr̃,r̃′), (B.2c)

where Θr̃,r̃′ is the angle between r̃ and r̃′.

In the open sphere case where bl(k) = (−i)l jl(kr), we can express (B.2a) as

C(r̃, r̃′, k) = I{4πi
∞

∑
l=0

l

∑
m=−l

∣bl(k)∣2Ylm(Ω)Y∗
lm(Ω′)}

= I{4πi
∞

∑
l=0

l

∑
m=−l

jl(kr)h(1)l (kr)Ylm(Ω)Y∗
lm(Ω′)}

using R{h(1)l (kr)} = jl(kr), where R and I respectively denote the real and imaginary

parts of a complex number. Finally, using (3.7), we obtain the well-known spatial domain

result for two omnidirectional receivers in a di�use sound �eld [69, 88, 118]:

C(r̃, r̃′, k) = I{
e+ik∣∣r̃−r̃′∣∣
k ∣∣r̃ − r̃′∣∣

}

=
sin(k ∣∣r̃ − r̃′∣∣)
k ∣∣r̃ − r̃′∣∣

. (B.3)
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Appendix C

Relationship between the zero-order

eigenbeam and the omnidirectional

reference microphone signal

Property C.0.1. Let Plm(k) denote the spherical Fourier transform, as de�ned in (2.4),

of the spatial domain sound pressure P(k, r), where r denotes the position (in spherical

coordinates) with respect to the centre of a spherical microphone array with mode

strength bl(k). Let PMref(k) denote the sound pressure which would be measured, were

an omnidirectional microphoneMref to be placed at a position corresponding to the

centre of the sphere, i.e., at the origin of the spherical coordinate system; PMref(k) is

then related to the zero-order eigenbeam P00(k) via the relationship1

PMref(k) =
P00(k)

√
4π b0(k)

. (C.1)

1It should be noted that this relationship is dependent upon the chosen mode strength de�nition (see
Sec. 2.4). If a 4π factor is included in b l(k), as in [90], the relationship becomes PMref(k) =

√
4π P00(k)

b0(k) .
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omnidirectional reference microphone signal

Proof. We assume, without loss of generality2, that the sound �eld is composed of a

single spherical wave incident from a point source at a position rs = (rs, Ωs), in which

case the spatial domain sound pressure P(k, r) is given by (3.11), i.e.,

P(k, r) = k
∞

∑
l=0

(−i)−(l+1)bl(k)h(1)l (krs)
l

∑
m=−l

Y∗
lm(Ωs)Ylm(Ω). (C.2)

From the de�nition of the spherical Fourier transform, P00(k) is given by

P00(k) =
ˆ
Ω∈S2

P(k, r)Y∗
00(Ω)dΩ. (C.3)

By substituting (C.2) into (C.3), we �nd

P00(k) =
ˆ
Ω∈S2

k
∞

∑
l=0

(−i)−(l+1)bl(k)h(1)l (krs)
l

∑
m=−l

Y∗
lm(Ωs)Ylm(Ω)Y∗

00(Ω)dΩ. (C.4)

Using the orthonormality of the spherical harmonics (2.6) and the fact that Y00(⋅) =

1/
√
4π, we can simplify (C.4) to

P00(k) = k(−i)−1b0(k)h(1)0 (krs)Y∗
00(Ωs) (C.5a)

=
ik

√
4π

b0(k)h(1)0 (krs). (C.5b)

Furthermore, in the absence of the sphere, the sound pressure measured at a point

r = 0 due to a single spherical wave incident from a point source at a position rs = (rs, Ωs)

is given by (3.7), i.e.,

PMref(k) =
e ik∣∣rs ∣∣
4π ∣∣rs∣∣

(C.6a)

=
e ikrs
4πrs

. (C.6b)

2¿e operations involved in the proof are linear, and the proof therefore holds for any number of
spherical waves.
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Finally, using the fact that h(1)0 (x) = e ix
ix [119, eqn. 6.62], we can simplify (C.5b) to

P00(k) =
ik

√
4π

b0(k)
e ikrs
ikrs

(C.7a)

=
√
4πb0(k)

e ikrs
4πrs

(C.7b)

=
√
4πb0(k)PMref(k), (C.7c)

and therefore Property C.0.1 holds.
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