
Doctoral Thesis

Adaptive Digital Predistortion of

Nonlinear Systems

Li Gan

————————————–

Faculty of Electrical and Information Engineering
Graz University of Technology, Austria

First Examiner:
Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin

Graz University of Technology, Austria

Second Examiner:
Prof. Giovanni Sicuranza

University of Trieste, Italy

Co-Advisor:
Dr. Emad Abd-Elrady

Graz University of Technology, Austria

Graz, April 2009

Kurzfassung

Die Kompensation oder Reduktion von Nichtlinearen Verzerrungen, welche üblicherweise von
Nichtlinearen Systemen resultieren, wird zunehmend eine unentbehrliche Voraussetzung in
vielen Anwendungsgebieten. In dieser Arbeit werden digitale Vorverzerrungtechniken für eine
breite Klasse von Nichtlinearen Systemen präsentiert. Für die Parameterschätzung der Vor-
verzerrung werden verschiedene Architekturen behandelt: die direkte Lernarchitektur (Direct
Learning Architecture, DLA) und die indirekte Lernarchitektur (Indirect Learning Archi-
tecture, ILA). Für den DLA Ansatz schlagen wir einen neuen Adaptionsalgorithmus vor
(Nonlinear Filtered-x Prediction Error Method, NFxPEM), welcher den konventionellen Al-
gorithmus (Nonlinear Filtered-x Least Mean Squares, NFxLMS) bezüglich Konvergenzge-
schwindigkeit und Leistungsfähigkeit übertrifft. All diese Algorithmen operieren im Zeitbe-
reich und benötigen eine genaue Identifikation des Nichtlinearen Systems. Um diese strenge
Einschränkung abzuschwächen oder ganz zu vermeiden wurden die Algorithmen NFxLSM
und NFxPEM mit einer einfachen, initialen Teilsystem Identifikationsmethode (Initial Sub-
system Estimates, ISE) zu NFxLMS-ISE und NFxPEM-ISE erweitert. Weiters schlagen wir
eine Vorverzerrungsmethode im Frequenzbereich vor, welche das Betragsspektrum am Aus-
gang eines Nichtlinearen Systems kompensiert (Spectral Magnitude Matching, SMM).

Der ILA Ansatz ist in ILA-I und ILA-II Ansätze unterteilt, für die eine rekursive Fehler-
prädiktionsmethode (Recursive Prediction Error Method, RPEM) vorgeschlagen wird. Für
den ILA-I Ansatz kann der RPEM Algorithmus das durch Nichtlinearitäten verursachte
neuerliche Anwachsen von bereits zur Bandbegrenzung unterdrückten Spektralkomponen-
ten (spectral regrowth) reduzieren und die Nichtlinearen Verzerrungen kompensieren. Für
den ILA-II Ansatz kann der RPEM Algorithmus die Leistungsfähigkeit der Vorverzerrung
im Vergleich zu konventionellen LMS (Least Mean Squares) Algorithmen stark verbessern.
Für die Implementierung dieser Algorithmen wird für die Berechnung des Gradienten eine
allgemeine Architektur (General Gradient Calculation Architecture, GGCA) für verschiedene
Nichtlineare Systeme vorgeschlagen. Schließlich wenden wir diese Techniken für die Vorver-
zerrung von Nichtlinearen Modellen an, welche in existierenden Kommunikationssystemen
eingesetzt werden. Diese Modelle sind zum Beispiel das parallele Wiener Modell (parallel
Wiener-type model) und das Modell mit gedächtnisbehafteten Polynomen (memory polyno-
mial model).

i

Abstract

Compensating or reducing the nonlinear distortion - usually resulting from a nonlinear sys-
tem - is becoming an essential requirement in many areas. In this thesis adaptive digital
predistortion techniques for a wide class of nonlinear systems are presented. For estimat-
ing the coefficients of the predistorter, different learning architectures are considered: the
Direct Learning Architecture (DLA) and Indirect Learning Architecture (ILA). In the DLA
approach, we propose a new adaptation algorithm - the Nonlinear Filtered-x Prediction Error
Method (NFxPEM) algorithm, which has much faster convergence and much better perfor-
mance compared to the conventional Nonlinear Filtered-x Least Mean Squares (NFxLMS)
algorithm. All of these time domain adaptive algorithms require accurate system identifica-
tion of the nonlinear system. In order to relax or avoid this strict requirement, the NFxLMS
with Initial Subsystem Estimates (NFxLMS-ISE) and NFxPEM-ISE algorithms are proposed.
Furthermore, we propose a frequency domain predistortion technique - the Spectral Magni-
tude Matching (SMM) method. The ILA approach is classified into ILA-I and ILA-II ap-
proaches and the Recursive Prediction Error Method (RPEM) algorithm is proposed. In the
ILA-I approach, the RPEM algorithm can well reduce the spectral regrowth and compensate
the nonlinear distortion. Also, using the RPEM algorithm in the ILA-II approach can greatly
improve the performance of the predistorter, compared to the traditional Least Mean Squares
(LMS) algorithm. For implementation of these algorithms, General Gradient Calculation Ar-
chitectures (GGCAs) are proposed for different nonlinear systems. Finally we apply these
techniques for the predistortion of some nonlinear models used in practical communication
systems, e.g., the parallel Wiener-type model and the memory polynomial model.

ii

Acknowledgement

The research work for this doctoral thesis was carried out within a cooperation between
Infineon Technologies, Villach and the Christian Doppler Laboratory for Nonlinear Signal
Processing at the Signal Processing and Speech Communication Laboratory, Graz University
of Technology. I am grateful to Infineon Technologies and the Christian Doppler Association
for the financial support of this work.

Special thanks go to my supervisor, Professor Gernot Kubin, for leading me to the nonlinear
signal processing area with his excellent guidance, support and encouragement. Furthermore,
I would like to thank Dr. Emad Abd-Elrady, who cooperates with me in the project and
gives me lots of help. I would also like to thank Professor Giovanni Sicuranza for being my
second examiner for this thesis.

Many thanks to my family for their continuous support and to all my friends in China and
Austria. Finally, I would like to thank everybody in SPSC for the wonderful time we had
during my PhD study.

Graz, April 2009 Li Gan

iii

iv

Contents

1. Introduction 1

1.1. Motivation of This Thesis . 3

1.2. Thesis Outline and Contributions . 6

2. Predistortion Using the Direct Learning Architecture (DLA) 9

2.1. Introduction . 9

2.2. Predistortion of Volterra Systems . 12

2.2.1. The NFxLMS algorithm . 13

2.2.2. The NFxRLS algorithm . 14

2.2.3. The NFxPEM algorithm . 15

2.2.4. Simulation study . 16

2.3. Predistortion of Wiener Systems . 17

2.3.1. The NFxLMS algorithm . 20

2.3.2. The NFxLMS-ISE algorithm . 23

2.3.3. The NFxPEM and NFxPEM-ISE algorithms 24

2.3.4. Simulation study . 25

2.4. Predistortion of Hammerstein Systems . 28

2.4.1. The NFxLMS algorithm . 30

2.4.2. The NFxPEM algorithm . 32

2.4.3. Simulation study . 32

2.5. Predistortion Using the SMM Method . 33

2.5.1. The SMM method . 35

2.5.2. Simulation study . 37

2.6. Summary . 42

3. Predistortion Using the Indirect Learning Architecture (ILA) 45

3.1. Introduction . 45

3.2. Predistortion of Volterra Systems . 46

3.2.1. The ILA-I approach . 46

3.2.2. The ILA-II approach . 51

v

3.3. Predistortion of Wiener Systems . 58
3.3.1. The ILA-I approach . 60
3.3.2. Simulation study . 63

3.4. Predistortion of Hammerstein Systems . 64
3.4.1. The ILA-I approach . 64
3.4.2. Simulation study . 69

3.5. Summary . 70

4. Adaptive Predistorter Design 73
4.1. General Gradient Calculation Architecture . 73

4.1.1. Architecture for predistortion of Volterra systems 74
4.1.2. Architecture for predistortion of Wiener systems 76
4.1.3. Architecture for predistortion of Hammerstein systems 79

4.2. Additional Issues for Adaptive Predistorter Design 80
4.2.1. The predistorter model . 82
4.2.2. The learning architectures and adaptation algorithms 83
4.2.3. The computational complexity . 84
4.2.4. Summary . 84

5. Exemplary Applications 89
5.1. Predistortion of Parallel Wiener-Type Systems 89

5.1.1. The predistorter models and learning architectures 89
5.1.2. Adaptation algorithms using the DLA approach 90
5.1.3. Adaptation algorithms using the ILA approach 94
5.1.4. Simulation results . 96

5.2. Predistortion of Memory Polynomial Systems 97
5.2.1. The predistorter models . 98
5.2.2. Adaptation algorithms using the DLA approach 99
5.2.3. Adaptation algorithms using the ILA approach 103
5.2.4. Simulation results . 106

5.3. Summary . 107

6. Conclusion and Outlook 109

A. Appendix 111
A.1. The pth-order inverse . 111

vi

List of Abbreviations

AWGN Additive White Gaussian Noise

CC Computational Complexity

CDMA Code Division Multiple Access

DFT Discrete Fourier Transform

DLA Direct Learning Architecture

DSP Digital Signal Processing

FDMA Frequency Division Multiple Access

FFT Fast Fourier Transform

FIR Finite Impulse Response

FRF Frequency Response Function

FT Fourier Transform

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

ILA Indirect Learning Architecture

ISE Indirect Subsystem Estimate

KF Kalman Filter

LD Line Driver

LS Least Squares

LMS Least Mean Squares

LUT Look Up Table

MSD Mean Square Distortion

MSE Mean Square Error

MSND Mean Square Nonlinear Distortion

vii

NFxLMS Nonlinear Filtered-x Least Mean Squares

NFxLMS-ISE Nonlinear Filtered-x Least Mean Squares with Initial Sub-
system Estimate

NFxPEM Nonlinear Filtered-x Prediction Error Mehtod

NFxPEM-ISE Nonlinear Filtered-x Prediction Error Method with Initial
Subsystem Estimate

NFxRLS Nonlinear Filtered-x Recursive Least Squares

PA Power Amplifier

PSD Power Spectral Density

RF Radio-Frequency

RLS Recursive Least Squares

RMS Root Mean Square

RPEM Recursive Prediction Error Method

SMM Spectral Magnitude Matching

SPR Strictly Positive Real

SNR Signal-to-Noise Ratio

viii

Chapter1
Introduction

Nowadays, cancelling or reducing the effects of nonlinear distortion is an essential requirement
in many areas. In wireless communication systems, e.g., frequency division multiple access
(FDMA) and code division multiple access (CDMA) systems, power amplifiers (PAs) are often
driven into their nonlinear region in order to increase the efficiency [1,2,3,4]. The nonlinearity
of the PA will warp the signal constellation, generate spectral regrowth and distort the signal
pulse shape. In optical communication systems, nonlinear distortion caused by laser diodes
should be reduced in order to satisfy the system requirements [5, 6]. In audio systems, the
loudspeaker has several major sources of nonlinearity [7,8] and the small distortion caused by
nonlinear components can dominate the overall performance. Other examples can be found in
integrated filters, radio systems, speech processing and control engineering, see [9,10,11,12].

The nonlinearity can be described using different kinds of nonlinear models, e.g., Volterra,
Wiener and Hammerstein models. Volterra series [13, 14] is a general model for nonlinear
systems, which can be described as

z(n) = h0 +

∞∑

k=1

∞∑

i1=−∞

∞∑

i2=−∞

· · ·
∞∑

ik=−∞

hi1,··· ,iky(n − i1) · · · y(n − ik) (1.1)

where y(n) and z(n) are the input and output signals, respectively, and hi1,··· ,ik is the kth-
order Volterra kernel of the system. If hi1,··· ,ik = 0 for all ik < 0, the Volterra system is
causal, and (1.1) becomes

z(n) = h0 +
∞∑

k=1

∞∑

i1=0

∞∑

i2=0

· · ·
∞∑

ik=0

hi1,··· ,iky(n − i1) · · · y(n − ik). (1.2)

Normally, the memory length required to approximate a nonlinear system is finite, and the
Volterra series is truncated to a finite order q, a finite-memory, finite-order Volterra series is
obtained as

z(n) = h0 +

q∑

k=1

Mk−1∑

i1=0

Mk−1∑

i2=0

· · ·

Mk−1∑

ik=0

hi1,··· ,iky(n − i1) · · · y(n − ik) (1.3)

where Mk is the memory length. However, the main problem encountered while using Volterra
models is high computational complexity due to the large number of parameters. For this

1

Chapter 1. Introduction

reason, block-structured models such as Winer and Hammerstein models are considered in
order to decrease the number of parameters - hence decrease the computational complexity.

Linear

system
dynamic Static

nonlinearitynonlinearity
Static Linear

dynamic
system

Hammerstein modelWiener model

Figure 1.1 Wiener and Hammerstein models.

The Wiener and Hammerstein models are particular cases of the truncated Volterra series
[14], the Wiener model structure consists of a linear dynamic system followed by a static
nonlinearity. On the other hand, in the Hammerstein model structure the static nonlinearity
precedes the linear dynamic system, see Fig. 1.1. For these nonlinear models, it is assumed
that only the input and the output signals of the model are measurable.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Output signal

Figure 1.2 Nonlinear distortion.

The distortion caused by the nonlinearity can be easily observed in frequency domain. If
a system is described by a nonlinear model, the output singal of the nonlinear model will
contain new frequency components, namely spectral regrowth, compared to the input signal.
Fig. 1.2 shows the Power Spectral Densities (PSDs) of the input and output signals of a
Volterra system. The dashed line represents the PSD of the input signal, and the solid line
represents the PSD of the output signal. It is very obvious that there is significant spectral
regrowth in the normalized frequency band (0.30π, 0.55π).

In order to reduce the spectral regrowth - hence to reduce or compensate the nonlinear
distortion, there are two kinds of linearization techniques: predistortion and post-distortion
[15], see Fig. 1.3. A nonlinear filter can be connected in cascade before the nonlinear system

2

1.1. Motivation of This Thesis

Predistortion

Nonlinear Post−
distorter

NonlinearPredistorter

Post−distortion

system system

Figure 1.3 Predistortion and post-distortion.

(called predistorter) or after the nonlinear system (called post-distorter or equalizer), which
results in an overall system whose characteristics correspond to a reference linear system, in
the range of input signals of interest and in the desired frequency band. In many applications,
predistortion is more efficient than post-distortion. For example, in wireless communication
systems, PA is an analog device and its output is a radio signal. Therefore, implementing
post-distortion needs to include a nonlinear filter (usually adaptive) in the analog domain
which is difficult and expensive. In this case, predistortion is more suitable since it can
implement the predistorter in the digital domain.

This thesis has three primary objectives: first, to introduce new and robust adaptation
algorithms for estimating the coefficients of the predistorter. Second, to discuss the important
aspects during the implementation of adaptive nonlinear predistortion. Third, to utilize the
proposed adaptation algorithms in selected areas of telecommunications.

In the next section, the motivation for implementing adaptive nonlinear predistortion will
be further elaborated.

1.1. Motivation of This Thesis

Predistortion of nonlinear systems was first studied in [16]. The proposed pth-order inverse
technique can remove nonlinear distortion up to pth order, see Appendix A. However, this
method is a non-adaptive technique to estimate the coefficients of the predistorter. Adaptive
predistortion is usually required in implementation in case of time-varying and/or unknown
nonlinear systems. Adaptive predistortion is first considered in digital radio systems [17]
based on adaptive Lookup Table (LUT) technique, but the predistorter using the LUT tech-
nique is usually restricted to particular modulation formats. Adaptive predistortion for PAs
has been considered in [18, 19] but without considering the existence of memory effects in
PAs. However, recently research results have indicated that the memory effects in an PA
could seriously affect the performance of wireless communication systems [20,21,22], and the
updating techniques for a memoryless predistorter in [18, 19] can’t be extended to update
nonlinear predistorters for PAs with memory. Therefore, adaptive predistortion techniques
for nonlinear physical system models with memory, such as Volterra models etc., should be
investigated.

In adaptive predistortion, two important aspects needs to be considered for finding the
coefficients of the predistorter:

• Learning architecture

• Adaptation algorithm

In general, there are two learning architectures: the direct learning architecture (DLA)
and the indirect learning architecture (ILA).

3

Chapter 1. Introduction

+

_ +

Error

Input Output

Reference

Nonlinear predistorter Nonlinear physical system

Adaptation algorithm

Figure 1.4 The DLA approach.

The basic scheme of the DLA approach is given in Fig. 1.4. The nonlinear predistorter
is connected tandemly with the nonlinear physical system. The coefficients of the predis-
torter are estimated directly using the feedback error signal and adaptation algorithms. The
most commonly used adaptation algorithm is the Nonlinear Filtered-x Least Mean Squares
(NFxLMS) algorithm [23,24,25]. However, the NFxLMS algorithm usually suffers from slow
convergence. The Nonlinear Filtered-x Recursive Least Squares (NFxRLS) algorithm has
been proposed in [26] in order to speed up the convergence, but it can only be derived for the
scenario where the outputs of the the nonlinear physical system and the predistorter are linear
in their coefficients. The challenge is to find an adaptation algorithm with fast convergence
and suitable for predistortion regardless the model type of the nonlinear physical system and
predistorter. Besides, all mentioned algorithms require adaptive system identification of the
nonlinear physical system prior to adaptation of the predistorter. To relax or avoid this strict
requirement is another interesting topic to investigate.

+

+

−

Input

Error

Output
Nonlinear predistorter Nonlinear physical system

Training filter

Figure 1.5 The ILA-I approach.

The ILA approaches can be classified into two kinds: the ILA-I approach and the ILA-II
approach. The ILA-I approach is demonstrated in Fig. 1.5. The coefficients of the predis-
torter are a copy of the coefficients of the training filter connected as a post-distorter to the

4

1.1. Motivation of This Thesis

nonlinear physical system. The coefficients of the training filter are estimated using the error
signal and adaptation algorithms [27, 28, 29, 30, 31]. In [31], the training filter is modeled
as a Volterra system, a static polynomial system and a memory polynomial system, respec-
tively. The well known Least Squares (LS) method is used to evaluate its coefficients. In [28],
the training filter is modeled by combining the memory polynomial model with an envelope
memory term. The LS method is also used to evaluate its coefficients. However, the noisy
measurement of the output of the nonlinear physical system makes the training filter con-
verge to a biased estimate and hence degrade the performance of the ILA-I approach. The
publications [29, 30] have tried to solve this problem by proposing a modified configuration
or new methods to update the coefficients of the memory polynomial predistorter directly.
In [27], the Recursive Least Squares (RLS) algorithm has been proposed, where both the
training filter and the predistorter are modeled as Volterra systems. Adaptation algorithms
suitable for other nonlinear models should be investigated as well.

+

Adaptation algorithm

+

+

+

+

−

−

Predistorter

Adaptive FIR filters

Linear FIR filterNonlinear FIR filter Nonlinear physical system

Adaptive linear FIR filter

Estimation of

System identification of

Input

Output

Adaptation algorithm

+

−

z
−τ ′

z
−τ ′

Ĥ−1
L

H

Ĥ−1
L

ĤN

ĤL, ĤN

H−1
L

H

Figure 1.6 The ILA-II approach.

The ILA-II approach is first proposed in [9] for predistortion of Volterra systems. The
structure of this approach is given in Fig. 1.6. The Volterra system H is assumed to be a
weakly nonlinear system and can be divided into two subsystems, one is the purely linear
subsystem HL and the other is the purely nonlinear subsystem HN , where H = HL + HN .
The predistorter can be constructed using HN , the inverse of the purely linear subsystem H−1

L

and the delayed input signal. In order to construct the predistorter, first, the subsystems HL,
HN are identified by using adaptive linear and nonlinear FIR filters [32], ĤL and ĤN . H−1

L

is estimated directly using an adaptive linear FIR filter Ĥ−1
L . Note that the input of Ĥ−1

L

5

Chapter 1. Introduction

should be the output of ĤL, and it can use the output of H under the assumption that H is
a weakly nonlinear system. Then, the predistorter is constructed by copying the estimated
coefficients from ĤN and Ĥ−1

L to the predistorter.
The suggested adaptation algorithm for estimating the coefficients of HL, HN and H−1

L

in [9] is the Least Mean Squares (LMS) algorithm. However, since identifying Volterra systems
using the LMS algorithm usually provides inaccurate estimates [33] due to slow convergence,
inaccurate estimates of HN and H−1

L will then degrade the performance of the predistorter.
Finding an adaptation algorithm to obtain more accurate estimates and hence to improve
the performance of the predistorter is an important issue.

Most of the existing adaptation algorithms based on these two architectures are time do-
main adaptation algorithms, predistortion using frequency domain adaptation algorithms is
also an interesting topic to investigate since predistortion aims to reduce the spectral regrowth
in frequency domain.

1.2. Thesis Outline and Contributions

In chapter 2, the adaptation algorithms for predistortion using the DLA approach will be
covered. The existing time domain algorithms, i.e., the NFxLMS and NFxRLS algorithms are
first reviewed. Then, the Nonlinear Filtered-x Prediction Error Method (NFxPEM) algorithm
is proposed for predistortion of different nonlinear physical system models. Both the NFxLMS
and NFxPEM algorithms require accurate identification of the nonlinear physical system. In
order to avoid or relax this requirement, we propose the NFxLMS with Initial Subsystem
Estimates (NFxLMS-ISE) and NFxPEM with Initial Subsystem Estimates (NFxPEM-ISE)
algorithms, using the Initial Subsystem Estimate (ISE) method instead of accurate system
identification.

A frequency domain predistortion technique, the Spectral Magnitude Matching (SMM)
method, is also proposed in this chapter to compensate the nonlinear distortion.

The contributions of chapter 2 have been previously presented in the following publications:

• E. Abd-Elrady and L. Gan: Direct predistortion of nonlinear systems using adaptive
Volterra systems and prediction error method. Submitted to IEEE Signal Processing
letters. [34]

• E. Abd-Elrady and L. Gan: Direct predistortion of Hammerstein and Wiener systems
using prediction error method. Submitted to Signal Processing. [35]

• E. Abd-Elrady and L. Gan: Direct linearization of weakly nonlinear Volterra systems
using adaptive linear and nonlinear FIR filters. In Proceeding of the IFAC Symposium
on System Identification (SYSID’09), Saint-Malo, France, July 6-8, 2009. [36]

• E. Abd-Elrady, L. Gan and G. Kubin: Adaptive Predistortion of Nonlinear Volterra
Systems using Spectral Magnitude Matching. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’09), Taiwan, April
19-24, 2009, pp. 2985-2988. [37]

• L. Gan and E. Abd-Elrady: Adaptive predistortion of Wiener systems using the NFxLMS
algorithm and initial subsystem estimates. In Proceedings of the European Signal Pro-
cessing Conference (EUSIPCO’08), Lausanne, Switzerland, August 25-29, 2008. [38]

6

1.2. Thesis Outline and Contributions

• L. Gan and E. Abd-Elrady: Adaptive predistortion of IIR Hammerstein systems using
the nonlinear filtered-x LMS algorithm. In Proceedings of the IEEE Symposium on
Communication Systems, Networks and Digital Signal Processing (CSNDSP’08), Graz,
Austria, July 23-25, 2008, pp. 702-705. [39]

The main ideas of [34, 35, 36, 37] came from Dr. E. Abd-Elrady and L. Gan made major
contributions to the simulation section and performance analysis. The publications [38, 39]
were based on L. Gan’s idea and simulation results, under Dr. E. Abd-Elrady’s supervision.

Chapter 3 introduces the adaptation algorithms for the ILA approach. The existing RLS
algorithm for predistortion of Volterra systems using the ILA-I approach is first reviewed.
Within the same learning architecture, the Kalman Filter (KF) and Recursive Prediction
Error Method (RPEM) algorithms are then derived for predistortion of Volterra systems.
The RPEM algorithm is also derived for predistortion of Wiener and Hammerstein systems.
In the ILA-II approach, the RPEM algorithm is used instead of the LMS algorithm to improve
the performance of the predistorter.

The contributions of chapter 3 have been previously presented in the following publications:

• E. Abd-Elrady, L. Gan and G. Kubin: Direct and Indirect Learning Methods for Adap-
tive Predistortion of IIR Hammerstein Systems. In e&i Elektrotechnik und Informa-
tionstechnik Special issue on Analog & Mixed Signal-Schaltungen und -Systeme, 125/4:
126-131, 2008. [40]

• L. Gan and E. Abd-Elrady: Linearization of weakly nonlinear systems using adaptive
FIR filters and recursive prediction error method. In Proceedings of the IEEE Inter-
national Workshop on Machine Learning for Signal Processing (MLSP’08), Cancun,
Mexico, October 16-19, 2008, pp. 409-414. [41]

• E. Abd-Elrady and L. Gan: Adaptive predistortion of Hammerstein systems based
on indirect learning architecture and prediction error method. In Proceedings of the
IEEE International Conference on Signals and Electronic Systems (ICSES’08), Krakow,
Poland, September 14-17, 2008, pp. 389-392. [42]

• E. Abd-Elrady, L. Gan and G. Kubin: Distortion compensation of nonlinear systems
based on indirect learning architecture. In Proceedings of the IEEE International Sym-
posium on Communications, Control and Signal Processing (ISCCSP’08), St. Julians,
Malta, March 12-14, 2008, pp. 184-187. [43]

The publication [40] was the combination of the previous works from Dr. E. Abd-Elrady
and L. Gan, supervised by Prof. G. Kubin. The main ideas of [42, 43] came from Dr. E.
Abd-Elrady and L. Gan made major contributions to the simulation section and performance
analysis. The publication [41] was based on L. Gan’s idea and simulation results, under Dr.
E. Abd-Elrady’s supervision.

Chapter 4 proposed the General Gradient Calculation Architecture (GGCA) for predistor-
tion of Volterra, Wiener and Hammerstein systems, respectively. The GGCA is a common
structure to calculate the gradient vector required in the adaptation algorithms using the
DLA approach and the ILA-I approach. Also, several important aspects of adaptive predis-
torter design are discussed. At the end of the chapter, a comparison of all the existing and
proposed adaptation algorithms is presented.

7

Chapter 1. Introduction

In Chapter 5, the proposed adaptation algorithms are utilized for predistortion of some
specific nonlinear systems, e.g., the parallel Wiener-type system and memory polynomial
system.

The contributions of chapter 5 have been previously presented in the following publications:

• L. Gan and E. Abd-Elrady: Digital Predistortion of Memory Polynomial Systems using
Direct and Indirect Learning Architectures. In Proceedings of the IASTED Conference
on Signal and Image Processing (SIP’09), Honolulu, Hawaii, USA, August 17-19, 2009.
[44]

• L. Gan, E. Abd-Elrady and G. Kubin: Nonlinear distortion compensation for parallel
Wiener-type systems using predistorter and direct learning architecture. In Proceedings
of the IEEE Digital Signal Processing Workshop (DSP’09), Marco Island, FL, USA,
January 4-7, 2009, pp. 72-77. [45]

• L. Gan and E. Abd-Elrady: Digital predistortion of parallel Wiener-type systems us-
ing the RPEM and NFxLMS algorithms. In Proceedings of the IEEE International
Conference on Signal Processing (ICSP’08), Beijing, China, October 26-29, 2008, pp.
149-152. [46]

These publications were based on L. Gan’s idea and simulation results, under Dr. E.
Abd-Elrady and/or Prof. G. Kubin’s supervision.

Furthermore, the author contributed to the simulation section of a publication which is
beyond the scope of this thesis, which is

• E. Abd-Elrady and L. Gan: Identification of Hammerstein and Wiener Models using
Spectral Magnitude Matching. In Proceedings of the IFAC World Congress on Auto-
matic Control, Seoul, Korea, July 6-11, 2008, pp. 6440-6445. [47]

8

Chapter2
Predistortion Using the Direct Learning Architecture

(DLA)

In this chapter the nonlinear physical system is modeled as Volterra, Wiener and Ham-
merstein systems, respectively, and the adaptation algorithms based on the Direct Learning
Architecture (DLA) approach are presented to estimate the coefficients of the predistorter.
The existing adaptation algorithms, such as the Nonlinear Filtered-x Least Mean Squares
(NFxLMS) and the Nonlinear Filtered-x Recursive Least Squares (NFxRLS) algorithms, are
first reviewed. Then new adaptation algorithms are developed in this chapter, such as the
Nonlinear Filtered-x Prediction Error Method (NFxPEM), the NFxLMS with Initial Subsys-
tem Estimates (NFxLMS-ISE), the NFxPEM with Initial Subsystem Estimates (NFxPEM-
ISE) algorithms, and the Spectral Magnitude Matching (SMM) method.

This chapter is based on the publications [34,35,36,37,38,39,40,48], which are edited and
refined in order to fit the current style of the thesis.

2.1. Introduction

+

_ +Nonlinear predistorter

Adaptation algorithm

Nonlinear physical system +
+

+

e(n)

r̃(n)υ(n)

x(n) z(n) z̃(n)

Figure 2.1 Predistortion using the DLA approach.

In the DLA approach, see Fig. 2.1, the nonlinear predistorter is connected tandemly with
the nonlinear physical system. The coefficients of the predistorter are estimated directly
using the feedback error signal e(n) and adaptation algorithms. The error signal e(n) is the
difference between the reference signal r(n) and the noisy measurement of the system output

9

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

z̃(n), defined as

z̃(n) = z(n) + υ(n) (2.1)

where z(n) is the clean output of the nonlinear physical system and υ(n) is zero-mean Additive
White Gaussian Noise (AWGN). The reference signal r̃(n) is usually defined as r̃(n) = x(n−
τ), where τ is the time delay caused by the overall system consisting of the predistorter and
the nonlinear physical system.
Remark 2.1: The delay time τ equals zero in case the linear subsystem of the nonlinear
physical system is minimum phase [13,23].

Therefore, the error signal can be written as

e(n) = r̃(n) − z̃(n) = r̃(n) − υ(n) − z(n). (2.2)

Since r̃(n) − υ(n) = r̃(n) + υ̃(n) where υ̃(n) = −υ(n) is also AWGN, for convenience, we
redefine the reference signal as

r(n) = r̃(n) + υ̃(n). (2.3)

Consequently, the error signal e(n) becomes the difference between the new defined reference
signal r(n) and the clean system output z(n), written as

e(n) = r(n) − z(n). (2.4)

Several adaptation algorithms using the DLA approach have been proposed [23,24,25,26],
and all of these algorithms are time domain adaptation algorithms. In [23], the nonlinear
physical system is modeled as a Volterra system, the predistorter is also modeled as a Volterra
system and the NFxLMS algorithm is proposed to estimate the coefficients of the predistorter.
In [24], the NFxLMS algorithm is derived for predistortion of Wiener systems, where the
nonlinear physical system is modeled as a Wiener system and the predistorter is modeled as
a Hammerstein system. In [25], the NFxLMS algorithm is applied for predistortion of Power
Amplifiers (PAs) modeled as Wiener systems in wireless communication systems.

The NFxLMS algorithm estimates the coefficients of the predistorter by minimizing the
Mean Square Error (MSE) defined as

E{e2(n)} = E{(r(n) − z(n))2} (2.5)

where E{.} denotes the Expectation. The NFxLMS algorithm is an extension of the Filtered-x
LMS (FxLMS) algorithm, which is widely used in active noise control. The FxLMS algorithm
is first developed in [49] and the performance of the FxLMS algorithm has been studied
in [50, 51, 52, 53, 54]. In [53], the nonlinear physical system is described using a scaled error
function. It is shown that the steady-state MSE of the FxLMS algorithm highly depends
on the degree of nonlinearity of the nonlinear physical system. The error signal e(n) in
steady state increases with the degree of nonlinearity. Therefore, the NFxLMS algorithm
is expected to provide inaccurate estimates of the predistorter. Also, Least Mean Squares
(LMS) type algorithms usually have slow convergence since increasing the step size parameter
leads to instability problems [55]. In order to speed up the convergence of the adaptation, the
NFxRLS algorithm is proposed for predistortion of Volterra systems in [26]. The NFxRLS
algorithm is derived using the property that the output of the Volterra predistorter is linear
in the parameters and the nonlinear physical system is a weakly nonlinear system. Hence, it

10

2.1. Introduction

is difficult to derive the NFxRLS algorithm for other predistorter models, where the output
is not linear in the parameters.

In this chapter, the NFxPEM algorithm is proposed where the coefficients of the predis-
torter are estimated using the Recursive Prediction Error Method (RPEM) algorithm [56,57].
The NFxPEM algorithm is expected to speed up the convergence, reduce the steady-state
MSE and hence minimize the total nonlinear distortion at the output of the nonlinear phys-
ical system. The NFxPEM algorithm can also be derived for predistortion of Wiener and
Hammerstein systems.

In order to implement the NFxLMS and NFxPEM algorithms, accurate system identifica-
tion of the nonlinear physical system is needed. The effect of inaccurate estimation of the
system transfer function on the FxLMS algorithm has been studied in [58, 59], the authors
concluded that if the phase error in the estimate of the system transfer function does not
exceed ±90◦, stable convergence of the FxLMS algorithm can be guaranteed. This is known
as the Strictly Positive Real (SPR) condition [60]. However, the effect of the phase error
between these bounds is very difficult to predict [59]. In order to relax the requirement for
accurate system identification, the NFxLMS-ISE and NFxPEM-ISE algorithms are proposed
for predistortion of Wiener systems, due to the effect that the ISE method is simple, fast and
does not require high computational complexity, compared to the full system identification
of Wiener systems.

Furthermore, a frequency domain predistortion technique is also introduced in this chapter.
The basic idea is an extension from [61], where a frequency domain method is introduced
for estimating the telephone handset nonlinearity by matching the spectral magnitude of the
distorted signal to the output of a nonlinear model. The nonlinear model is chosen as a
Wiener-Hammerstein cascade system with a static nonlinearity described by a finite-order
polynomial. The coefficients of the nonlinear model are estimated using the generalized
Newton iteration algorithm [49, 62] that minimizes a cost function of the sum squared error
between the spectral magnitudes - evaluated over a number of short-time time frames - of
the measured distorted signal and the output signal of the nonlinear model. In this chapter,
this nonlinear system identification [61], namely the Spectral Magnitude Matching (SMM)
method, is extended to predistortion of nonlinear systems. The coefficients of the predistorter
are estimated recursively using the generalized Newton iteration algorithm to minimize the
sum squared error between the spectral magnitudes of the system output z(n) in Fig. 2.1 and
the new defined reference signal r(n) in (2.3). The SMM approach is a general DLA approach
for any kind of predistorter model and does not require the nonlinear physical system to be
identified as required for the time domain approaches.

Two methods are used to measure the performance of the adaptation algorithms in this
chapter. First, we define the normalized Mean Square Distortion (MSD) of the linearized
system as

ED = 10 log10

(
Ê{e2(n)}

Ê{r2(n)}

)
(2.6)

where Ê{.} is the mean obtained by a number of independent experiments. From ED we can
observe whether the error signal e(n) is well reduced - hence z(n) is well approximating r(n).
Second, the mean Power Spectral Density (PSD) of the output signal z(n) over a number of
independent experiments is considered to check whether the spectral regrowth is effectively
reduced.

11

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

2.2. Predistortion of Volterra Systems

In this section, the adaptation algorithms for predistortion of Volterra systems using the DLA
approach are introduced. The NFxLMS and NFxRLS algorithms are first reviewed, and then
the NFxPEM algorithm is derived. Simulation results for comparison of these algorithms are
given at the end of this section.

+

_ +

Volterra predistorter Volterra system

Adaptation algorithm
e(n)

r(n)

y(n) z(n)x(n)
HC(n)

Figure 2.2 The DLA approach for predistortion of Volterra systems.

The DLA approach for predistortion of Volterra systems is shown in Fig. 2.2. The nonlinear
physical system H is a qth-order Volterra series with input and output signals y(n) and z(n),
respectively. The output signal z(n) is given by

z(n) = hT y(n) =

q∑

k=1

hT
k yk(n)

=

q∑

k=1

Mk−1∑

i1=0

· · ·

Mk−1∑

ik=0

hk(i1, · · · , ik)y(n − i1) · · · y(n − ik)

 (2.7)

where Mk is the memory length of the kth order kernel. The kernel vector h is defined as

h =
(

hT
1 · · · hT

q

)T
, (2.8)

hk =

hk(0, · · · , 0)
...

hk(i1, · · · , ik)
...

hk(Mk − 1, · · · , Mk − 1)

, k = 1, · · · , q, (2.9)

and the input vector y(n) is defined as

y(n) =
(

yT
1 (n) · · · yT

q (n)
)T

, (2.10)

yk(n) =

yk(n)
...

y(n − i1) · · · y(n − ik)
...

yk(n − Mk + 1)

, k = 1, · · · , q. (2.11)

12

2.2. Predistortion of Volterra Systems

Similarly, the relation between the input and output of the adaptive Volterra predistorter
C(n) is given by

y(n) = cT (n)x(n) =

p∑

k=1

cT
k (n)xk(n)

=

p∑

k=1

cMk−1∑

i1=0

· · ·

cMk−1∑

ik=0

ck(i1, · · · , ik; n)x(n − i1) · · ·x(n − ik)

 (2.12)

where M̂k is the memory length. The kernel vector c(n) is defined as

c(n) =
(

cT
1 (n) · · · cT

p (n)
)T

, (2.13)

ck(n) =

ck(0, · · · , 0; n)
...

ck(i1, · · · , ik; n)
...

ck(M̂k − 1, · · · , M̂k − 1; n)

, k = 1, · · · , p, (2.14)

and the input vector x(n) is defined as

x(n) =
(

xT
1 (n) · · · xT

p (n)
)T

, (2.15)

xk(n) =

xk(n)
...

x(n − i1) · · ·x(n − ik)
...

xk(n − M̂k + 1)

, k = 1, · · · , p. (2.16)

Note that kernel vector c(n) of the adaptive Volterra predistorter shows an explicit depen-
dence on the time index n, where the kernel vector h of the nonlinear physical system is
considered time-invariant.

According to the pth-order inverse theory [13], the Volterra predistorter C(n) can remove
nonlinearities up to pth-order provided that the inverse of the first-order kernel of the Volterra
system H is causal and stable. The kernels of C(n) can be estimated using different adapta-
tion algorithms, which are the topics of the next sections.

2.2.1. The NFxLMS algorithm

The NFxLMS algorithm in [23] is obtained by applying the stochastic gradient algorithm,
see [56,63], as

c(n + 1) = c(n) −
µ

2
∆T (n) (2.17)

where µ, usually defined as the step-size parameter, is a small positive constant that controls
stability and rate of convergence of the adaptation algorithm. The gradient vector ∆(n) is
defined as

∆(n) = ∇c(n)e
2(n). (2.18)

13

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Taking into consideration of (2.5), we have

∇c(n)e
2(n) = −2e(n)∇c(n)z(n) (2.19)

where ∇c(n)z(n) can be written as (cf. (2.7))

∇c(n)z(n) =
M−1∑

r=0

∂z(n)

∂y(n − r)
∇c(n)y(n − r) =

M−1∑

r=0

g(r; n)∇c(n)y(n − r). (2.20)

Here M = max{M1, · · · , Mq} and g(r; n) is given by

g(r; n) =
∂z(n)

∂y(n − r)
= h1(r) + 2

M2−1∑

i=0

h2(r, i)y(n − i) +

3

M3−1∑

i1=0

M3−1∑

i2=0

h3(r, i1, i2)y(n − i1)y(n − i2) + · · · (2.21)

where hk(r, i1, · · · , ik), k = 1, · · · , q is equal to 0 when Mk < r ≤ M . Assuming that µ is
chosen sufficiently small so that the kernel vector c(n) is changing slowly [23,26], ∇c(n)y(n−r)
can be approximated as (cf. (2.12))

∇c(n)y(n − r) ≈ ∇c(n−r)y(n − r) = xT (n − r). (2.22)

Substituting (2.20)-(2.22) in (2.19), we have

∆(n) = ∇c(n)e
2(n) = −2e(n)

M−1∑

r=0

g(r; n)xT (n − r). (2.23)

Remark 2.2: In (2.21), it is assumed that the correct kernels of the nonlinear physical
system H are known or have been estimated. The problem of estimating Volterra kernels for
nonlinear systems is discussed, e.g., in [33].

2.2.2. The NFxRLS algorithm

The NFxRLS algorithm in [26] is derived by minimizing the cost function

ξ(n) =

n∑

i=1

λn−ie2(i) =

n∑

i=1

λn−i(r(i) − z(i))2 (2.24)

where 0 < λ < 1 is an exponential forgetting factor and r(i) is defined similarly as in (2.3).
To derive the NFxRLS algorithm we need to solve ∇c(n)ξ(n), so differentiating both sides

of (2.24) w.r.t. c(n) we have

∇c(n)ξ(n) = −2
n∑

i=1

λn−i(r(i) − z(i))∇c(n)z(i). (2.25)

Straightforward analysis identical to Section 2.2.1 gives

∇c(n)z(i) =

M−1∑

r=0

g(r; i)xT (i − r) = ϕT (i) (2.26)

14

2.2. Predistortion of Volterra Systems

where M = max{M1, · · · , Mq} and g(r; i) is given by (2.21). Also, the output of H can be
approximated as

z(i) ≈
M−1∑

r=0

g(r; i)y(i − r) =
M−1∑

r=0

g(r; i)[cT (n)x(i − r)]

= cT (n)
M−1∑

r=0

g(r; i)x(i − r) = cT (n)ϕ(i). (2.27)

Note that y(i) = c(n)x(i) for all i = 1, ..., n because in RLS algorithm, at time n, there is a
unique optimal c(n) held constant over entire optimal window running from i = 1 to i = n.

Substituting (2.26) and (2.27) in (2.25) gives

∇c(n)ξ(n) ≈ −2
n∑

i=1

λn−i(r(i) − cT (n)ϕ(i))ϕT (i)

= −2
n∑

i=1

λn−ir(i)ϕT (i) + 2
n∑

i=1

λn−icT (n)ϕ(i)ϕT (i). (2.28)

Setting the right hand side of (2.28) equal to zero vector yields

Rϕϕ(n)c(n) = rrϕ(n) (2.29)

where

Rϕϕ(n) =
n∑

i=1

λn−iϕ(i)ϕT (i) (2.30)

rrϕ(n) =

n∑

i=1

λn−ir(i)ϕ(i). (2.31)

Therefore, the NFxRLS algorithm follows as (cf. [57, 63,64])

e(n) = r(n) − z(n)

k(n) =
(
λ + ϕT (n)P (n − 1)ϕ(n)

)−1
P (n − 1)ϕ(n)

P (n) =
(
P (n − 1) − k(n)ϕT (n)P (n − 1)

)
/λ

c(n + 1) = c(n) + k(n)e(n).

(2.32)

The most common choice for the initial condition of P (n) is P (0) = ρI where I is the identity
matrix and ρ is a constant which reflects our trust in the initial kernel vector c(0).

2.2.3. The NFxPEM algorithm

The NFxPEM algorithm is derived by the minimization of the cost function [57]

V (c) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(2.33)

15

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (2.34)

The formulation of the NFxPEM algorithm requires the negative gradient of e(n) w.r.t.
c(n) which is defined as

ϕT (n) = −∇c(n)e(n) = ∇c(n)z(n). (2.35)

Straightforward analysis identical to Section 2.2.1 gives

ϕT (n) = ∇c(n)z(n) =
M−1∑

r=0

g(r; n)xT (n − r) (2.36)

where M = max{M1, · · · , Mq} and g(r; n) is given in (2.21). Hence, the NFxPEM algorithm
follows as (cf. [57, 63])

e(n) = r(n) − z(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕT (n)P (n − 1)

)
/λ(n)

c(n + 1) = c(n) + P (n)ϕ(n)e(n).

(2.37)

Here λ(n) is a forgetting factor that grows exponentially to 1 as n → ∞ where the rate λ0 and
the initial value λ(0) are design variables. The numerical values λ0 = 0.99 and λ(0) = 0.95
have proven to be useful in many applications [57]. Also, P (n) = nR−1(n) where R(n) is
the Hessian approximation in the Gauss-Newton algorithm, see [57, 63]. The most common
choice for the initial condition of P (n) is P (0) = ρI where I is the identity matrix and ρ is a
constant that reflects our trust in the initial kernel vector c(0). In case of no prior knowledge,
c(0) = 0 and ρ is large to speed up convergence to the true parameter vector.

Remark 2.3: Since the gradient vectors ϕ(n) in (2.26) and (2.36) are equivalent, the
NFxRLS algorithms in (2.32) can be obtained exactly from the NFxPEM algorithm in (2.37)
by setting λ0 = 1 and λ(0) = λ.

2.2.4. Simulation study

In this section, a comparative simulation study of the NFxLMS, NFxRLS and NFxPEM
algorithms is given.

The nonlinear physical system H was chosen as a known 2nd-order time-invariant Volterra
system with memory length M1 = 4 and M2 = 3. The adaptive predistorter C(n) was also
assumed to be a 2nd-order Volterra filter. This means that q = p = 2. Also, the number of
memory in the adaptive Volterra predistorter was chosen as M̂1 = M̂2 = 4. The input-output
relation of H was chosen to be

z(n) = hT
1 y1(n) + hT

2 y2(n) (2.38)

where the first-order kernel vector h1 was

h1 =
(

0.5625 0.4810 0.1124 −0.1669
)

(2.39)

16

2.3. Predistortion of Wiener Systems

and the second-order kernel vector h2 was

h2 = (0.0175 0 0 0 0 − 0.0088 0 − 0.0088 0) . (2.40)

Here h2 was obtained by vectorizing the second-order kernel matrix

H2 =

0.0175 0 0
0 0 −0.0088
0 −0.0088 0

 . (2.41)

The number of independent experiments was 100. In each experiment, the input signal
x(n) to the predistorter was chosen as a random signal with uniform distribution over (−1, 1)
with data length 2 × 104 and the frequency band was limited by a low-pass filter in order to
prevent aliasing at the output of H [13]. The normalized cut-off frequency of this filter is
chosen as π

4 , because after the two cascaded 2nd-order nonlinear systems C(n) and H, the
bandwidth of z(n) will be 4 times as wide as the bandwidth of x(n). The reference signal
r(n) was chosen to be equal to the input signal x(n) without delay since the linear subsystem
of H is minimum phase, plus the measurement noise which was AWGN such that a signal to
noise ratio (SNR) of 40 dB was achieved.

The MSD comparison between the NFxLMS, NFxRLS and NFxPEM algorithms is given
in Fig. 2.3. The step size of the NFxLMS algorithm was µ = 0.1 and the matrix P(0) = 100I
for the NFxRLS and NFxPEM algorithms. λ, λ0 and λ(0) were chosen as 1, 0.99 and 0.95,
respectively. The MSD of the nonlinear physical system without predistorter was about
−16 dB. The NFxRLS and NFxPEM algorithms achieve much lower distortion values than
the NFxLMS algorithm. On average, the NFxLMS algorithm achieves about −23 dB after
2× 104 samples but it still does not converge. The NFxRLS algorithm converges after about
4000 samples and achieves about −40 dB. The NFxPEM algorithm converges after about
800 samples and achieves about −40 dB. Obviously, the NFxRLS and NFxPEM algorithms
converge much faster than the NFxLMS algorithm.

Figure 2.4 shows the mean PSDs of the output signals of the nonlinear physical system
without and with the predistorter after 2× 104 samples. From this figure, we can see that in
the normalized frequency band (0.30π, 0.55π), the NFxLMS algorithm can only reduce the
spectral regrowth by up to 5 dB. As compared to the NFxLMS algorithm, the NFxRLS and
NFxPEM algorithms can reduce the spectral regrowth more effectively (up to 30 dB). For all
algorithms, there is spectral regrowth in the normalized frequency band (0.55π, 0.75π), which
is caused by the cascaded nonlinear systems C(n) and H. However, this spectral regrowth has
no significant impact on the performance of predistortion since it is relatively small (under
−80 dB).

2.3. Predistortion of Wiener Systems

The adaptation algorithms for predistortion of Wiener systems using the DLA approach
are introduced in this section. The Wiener model structure consists of a linear dynamic
system followed by a static nonlinearity, and the linear dynamic system can be modeled
as a Finite Impulse Response (FIR) filter or an Infinite Impulse Response (IIR) filter. In
this section the predistortion of IIR Wiener systems, where the linear dynamic system is
modeled as an IIR filter, is considered - hence the predistortion of FIR Wiener systems can

17

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

0 0.5 1 1.5 2
x 10

4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Samples

E
D

 (
dB

)

Without Pred.
NFxLMS
NFxRLS
NFxPEM

Figure 2.3 MSD ED for different adaptation algorithms.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without Pred.
NFxLMS
NFxRLS
NFxPEM

Figure 2.4 Mean PSDs for different adaptation algorithms.

18

2.3. Predistortion of Wiener Systems

be regarded as a special case. The NFxLMS algorithm is first derived and the NFxLMS-
ISE algorithm is proposed, based on using an initial estimate for the linear and nonlinear
subsystems as described in [65]. Then, the NFxPEM is derived and by using the initial
subsystem estimates, the NFxPEM-ISE algorithms is also proposed. The validity of these
algorithms is demonstrated via computer simulation.

Hammerstein predistorter Wiener system

+

−

Adaptation algorithm

x(n) x2(n) y2(n) z(n)

r(n)

e(n)

y(n)
FP (n, z−1) H(z−1)G(n)

Figure 2.5 The DLA approach for predistortion of Wiener systems.

The DLA approach for predistortion of Wiener systems is shown in Fig. 2.5. The output
of the IIR Wiener system is

z(n) = f1y2(n) + f2y
2
2(n) + · · · + fmf

y
mf

2 (n)

= fT y2(n) (2.42)

where f is the parameter vector of the nonlinear subsystem F defined as

f =
(

f1 f2 · · · fmf

)T
(2.43)

and the corresponding input vector y2(n) is given by

y2(n) =
(

y2(n) y2
2(n) · · · y

mf

2 (n)
)T

. (2.44)

The intermediate signal y2(n) is defined as

y2(n) = H(z−1)y(n) =
B(z−1)

1 − A(z−1)
y(n)

=

mb∑

m=0

bmy(n − m) +

ma∑

m=1

amy2(n − m) (2.45)

where H(z−1) = B(z−1)
1−A(z−1)

is an IIR filter and the polynomials A(z−1) and B(z−1) are defined
as

A(z−1) =

ma∑

m=1

amz
−m

B(z−1) =

mb∑

m=0

bmz
−m.

(2.46)

19

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Here z−1 is the delay operator such that z−mx(n) = x(n − m).
The predistorter of the IIR Wiener system is chosen as an IIR Hammerstein system and

the reason to choose Hammerstein predistorter is given in Section 4.2.1. The output of the
predistorter is

y(n) = P (n, z−1)x2(n) =
D(n, z−1)

1 − C(n, z−1)
x2(n)

=

md∑

m=0

dm(n)x2(n − m) +

mc∑

m=1

cm(n)y(n − m) (2.47)

where P (n, z−1) = D(n,z−1)
1−C(n,z−1)

is an IIR filter and the polynomials C(n, z−1) and D(n, z−1)

are defined as

C(n, z−1) =

mc∑

m=1

cm(n)z−m

D(n, z−1) =

md∑

m=0

dm(n)z−m.

(2.48)

The intermediate signal x2(n) is defined as

x2(n) = g1(n)x(n) + g2(n)x2(n) + · · · + gmg(n)xmg(n)

= gT (n)x(n) (2.49)

where g(n) is the parameter vector of the nonlinear subsystem G(n) defined as

g(n) =
(

g1(n) g2(n) · · · gmg(n)
)T

(2.50)

and the corresponding input vector x(n) is given by

x(n) =
(

x(n) x2(n) · · · xmg(n)
)T

. (2.51)

Here we define the parameter vector θ of the predistorter as

θ =
(

θT
d θT

c θT
g

)T

θd =
(

d0 d1 · · · dmd

)T

θc =
(

c1 c2 · · · cmc

)T

θg =
(

g1 g2 · · · gmg

)T
.

(2.52)

Different adaptation algorithms for estimating the parameter vector θ are introduced in the
following sections.

2.3.1. The NFxLMS algorithm

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63]:

θ(n + 1) = θ(n) −
µ

2
∆T (n) (2.53)

20

2.3. Predistortion of Wiener Systems

where µ is the step-size parameter. The gradient vector ∆(n) is defined as

∆(n) = ∇θ(n)e
2(n) = −2e(n)∇θ(n)z(n). (2.54)

Using (2.42)-(2.44), ∇θ(n)z(n) can be derived as

∇θ(n)z(n) = fT
∇θ(n)y2(n) = fT

∇θ(n)y2(n)

∇θ(n)y
2
2(n)

...

∇θ(n)y
mf

2 (n)

= fT

1
2y2(n)

...

mfy
mf−1
2 (n)

∇θ(n)y2(n). (2.55)

Since it is not possible to measure the intermediate signal y2(n), using (2.45) and defining

s1(n) = fT

1
2y2(n)

...

mfy
mf−1
2 (n)

 = fT

1
2
[
H(z−1)y(n)

]

...

mf

[
H(z−1)y(n)

]mf−1

 (2.56)

we have

∇θ(n)z(n) = s1(n)∇θ(n)y2(n) (2.57)

where

∇θ(n)y2(n) =

mb∑

m=0

bm∇θ(n)y(n − m) +

ma∑

m=1

am∇θ(n)y2(n − m). (2.58)

Assuming that θ(n) changes slowly [23,26], we have

∇θ(n)y(n − m) ≈ ∇θ(n−m)y(n − m), m = 0, 1, · · · , mb

∇θ(n)y2(n − m) ≈ ∇θ(n−m)y2(n − m), m = 1, · · · , ma.
(2.59)

Thus (2.58) becomes

∇θ(n)y2(n) ≈

mb∑

m=0

bm∇θ(n−m)y(n − m) +

ma∑

m=1

am∇θ(n−m)y2(n − m)

=
B(z−1)

1 − A(z−1)
∇θ(n)y(n). (2.60)

Again using (2.45), (2.60) can be written as

∇θ(n)y2(n) = H(z−1)∇θ(n)y(n) = H(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
. (2.61)

21

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Differentiating both sides of (2.47) with respect to dk(n) and ck(n) gives

∂y(n)

∂dk(n)
= x2(n − k) +

mc∑

m=1

cm(n)
∂y(n − m)

∂dk(n)

∂y(n)

∂ck(n)
= y(n − k) +

mc∑

m=1

cm(n)
∂y(n − m)

∂ck(n)
.

(2.62)

Since the parameter vector θ(n) is assumed to be changing slowly, we can write

∂y(n − m)

∂dk(n)
≈

∂y(n − m)

∂dk(n − m)
, m = 1, 2, · · · , mc

∂y(n − m)

∂ck(n)
≈

∂y(n − m)

∂ck(n − m)
, m = 1, 2, · · · , mc.

(2.63)

Hence, (2.62) can be rewritten as

∂y(n)

∂dk(n)
≈ x2(n − k) +

mc∑

m=1

cm(n)
∂y(n − m)

∂dk(n − m)

∂y(n)

∂ck(n)
≈ y(n − k) +

mc∑

m=1

cm(n)
∂y(n − m)

∂ck(n − m)

(2.64)

or

∂y(n)

∂dk(n)
≈

z−k

1 − C(n, z−1)
x2(n)

=
z−k

1 − C(n, z−1)

(
θT

g (n)x(n)
)
, k = 0, 1, · · · , md

∂y(n)

∂ck(n)
≈

z−k

1 − C(n, z−1)
y(n), k = 1, · · · , mc.

(2.65)

Similarly, differentiating both sides of (2.47) with respect to gk(n) gives

∂y(n)

∂gk(n)
=

md∑

m=0

dm(n)
∂x2(n − m)

∂gk(n)
+

mc∑

m=1

cm(n)
∂y(n − m)

∂gk(n)
. (2.66)

Again because the parameter vector θ(n) is assumed to be changing slowly, we can write

∂x2(n − m)

∂gk(n)
≈

∂x2(n − m)

∂gk(n − m)
, m = 0, · · · , md

∂y(n − m)

∂gk(n)
≈

∂y(n − m)

∂gk(n − m)
, m = 1, · · · , mc.

(2.67)

Hence, (2.66) can be rewritten as

∂y(n)

∂gk(n)
=

md∑

m=0

dm(n)
∂x2(n − m)

∂gk(n − m)
+

mc∑

m=1

cm(n)
∂y(n − m)

∂gk(n − m)

=

md∑

m=0

dm(n)xk(n − m) +

mc∑

m=1

cm(n)
∂y(n − m)

∂gk(n − m)

=
D(n, z−1)

1 − C(n, z−1)
xk(n) = P (n, z−1)xk(n), k = 1, · · · , mg. (2.68)

22

2.3. Predistortion of Wiener Systems

In summary, the gradient vector ∆(n) can be written as

∆(n) = −2e(n)s1(n)H(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
(2.69)

where s1(n) is calculated in (2.56), and ∇θd(n)y(n), ∇θc(n)y(n) and ∇θg(n)y(n) are given by
(2.65) and (2.68), respectively. Predistortion of IIR Wiener system has been treated for the
first time in our previous publication [38] and predistortion of FIR Wiener systems using the
NFxLMS algorithm in [24,25] is a special case when A(z−1) = 0 in H(z−1) and C(n, z−1) = 0
in P (n, z−1).

2.3.2. The NFxLMS-ISE algorithm

As it is clear from (2.56) and (2.69), the IIR Wiener system should be known or identified
before applying the NFxLMS algorithm since the linear subsystem H(z−1) and the nonlinear
subsystem F are needed in order to calculate the gradient vector. Notice that in (2.69),
H(z−1) performs as a filter for the gradient components. Hence, it could be replaced by any
other filter with a similar frequency response. On the other hand, the accuracy of estimating
the nonlinear subsystem F is not critical here since this will only contribute to the scalar
factor s1(n) and, therefore, not change the direction of the gradient vector. In [65], the Initial
Subsystem Estimates (ISE) method is proposed in order to approximately estimate the linear
and nonlinear subsystems of the Wiener systems, and this approximate estimates can be used
as the initial parameters for the system identification process. Therefore, the ISE method
can be applied as an initial step and then we make use of the estimated subsystems in the
NFxLMS algorithm. This will save the effort needed to identify accurate estimates for the
linear and nonlinear subsystems.

The ISE method uses Discrete Multitone (DMT) signals to construct the excitation inputs
of the system. There are two main advantages to use the DMT signals [65]: first, this signal
is periodic which can average out the measurement noise. Second, the periodicity allows
us to use a frequency domain representation without leakage problems. Also, as explained
in [66], the frequency response function (FRF) of the best linear approximation of a nonlinear
system can be better measured by averaging the system responses to the DMT signal than
the system responses to the Gaussian signal, in terms of the variance and the bias of the
measured FRF of the approximated nonlinear system.

The ISE method follows the following lines:

(1) Generate M different DMT singals y[m], 1 < m ≤ M .

(2) For each DMT signal y[m], measure N periods of output signal z[m] in steady state
excitation, take the average over these periods to obtain the mean output signal z̄[m]

and similarly evaluate the mean input signal ȳ[m].

(3) Use the Fast Fourier Transform (FFT) to calculate the spectrum of z̄[m], Z̄
[m]

(k) and

the spectrum of ȳ[m], Ȳ
[m]

(k). Then, estimate the frequency response Ĥ
[m]

(k) for each

excitation, i.e., Ĥ
[m]

(k) = Z̄
[m]

(k)/Ȳ
[m]

(k).

(4) Take the average of all frequency response functions: Ĥ(k) = 1
M

∑M
m=1 Ĥ

[m]
(k). From

Ĥ(k), estimate a parametric linear model Ĥ(z−1).

23

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

(5) For each y[m], compute the intermediate signal y
[m]
2 using Ĥ(z−1). From the signals

y
[m]
2 and z[m], the nonlinear subsystem F can be estimated using different techniques,

e.g., Least Squares (LS) fitting [63].

Therefore, the filter H(z−1) can be replaced in (2.69) by the initial linear subsystem esti-
mate Ĥ(z−1) and the scalar factor s1(n) is replaced with

ŝ1(n) = f̂
T

1

2[Ĥ(z−1)y(n)]
...

m̂f [Ĥ(z−1)y(n)]bmf−1

 (2.70)

where f̂ represents the initial nonlinear subsystem estimate of order m̂f .
Now, the coefficient adaptation of the NFxLMS-ISE algorithm can be described as

θ(n + 1) = θ(n) −
µ

2
∆T (n) (2.71)

with

∆(n) = −2e(n)ŝ1(n)Ĥ(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
(2.72)

where Ĥ(z−1) is the initial linear subsystem estimate, ŝ1(n) is calculated using the initial
nonlinear subsystem estimate f̂ as in (2.70), and ∇θd(n)y(n), ∇θc(n)y(n) and ∇θg(n)y(n) are
given by (2.65) and (2.68), respectively.

2.3.3. The NFxPEM and NFxPEM-ISE algorithms

The NFxPEM algorithm is derived by the minimization of the cost function [57]

V (θ) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(2.73)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (2.74)

The formulation of the NFxPEM algorithm requires the negative gradient of e(n) w.r.t.
θ(n) which is defined as

ϕT (n) = −∇θ(n)e(n) = ∇θ(n)z(n). (2.75)

Straightforward analysis identical to Section 2.3.1 gives

ϕT (n) = ∇θ(n)z(n) = s1(n)H(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
(2.76)

where s1(n) is calculated in (2.56), and ∇θd(n)y(n), ∇θc(n)y(n) and ∇θg(n)y(n) are given by
(2.65) and (2.68), respectively. Hence, the NFxPEM algorithm follows as (cf. [57, 63])

e(n) = r(n) − z(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕT (n)P (n − 1)

)
/λ(n)

θ(n + 1) = θ(n) + P (n)ϕ(n)e(n).

(2.77)

24

2.3. Predistortion of Wiener Systems

Here, λ0, λ(0) and P (0) are design variables as introduced in Section 2.2.3.

From (2.76), it is clear that the IIR Wiener system should also be known or identified
before applying the NFxPEM algorithm since the parameters of the linear subsystem H(z−1)
and the nonlinear subsystem F are needed in order to calculate the negative gradient vector
ϕ(n). Therefore, the ISE method can also be used to approximately estimate the linear
and nonlinear subsystems of the Wiener system as an initial step and then be used for the
NFxPEM algorithm. The ISE method follows the same procedure as in Section 2.3.2 and the
negative gradient of e(n) w.r.t. θ(n) in the NFxPEM-ISE algorithm can be described as

ϕ̂T (n) = ∇θ(n)z(n) = s1(n)H(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)

≈ ŝ1(n)Ĥ(z−1)
(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
(2.78)

where Ĥ(z−1) is the initial linear subsystem estimate, ŝ1(n) is calculated using the initial
nonlinear subsystem estimate f̂ as in (2.70), and ∇θd(n)y(n), ∇θc(n)y(n) and ∇θg(n)y(n) are
given by (2.65) and (2.68), respectively. Hence, the NFxPEM-ISE algorithm follows as

e(n) = r(n) − z(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕ̂T (n)P (n − 1)ϕ̂(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ̂(n)s−1(n)ϕ̂T (n)P (n − 1)

)
/λ(n)

θ(n + 1) = θ(n) + P (n)ϕ̂(n)e(n).

(2.79)

2.3.4. Simulation study

The simulation study for all algorithms regarding predistortion of IIR Wiener systems is
given in this section. The following IIR Wiener system was considered:

z(n) = y2(n) + 0.25y2
2(n) + 0.125y3

2(n)

y2(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y(n).

(2.80)

The order of the linear block of the IIR Hammerstein predistorter was chosen as mc = 3
and md = 3, in order to avoid model error. The order of the nonlinear block was chosen as
mg = 9, since it can achieve the best performance based on large number of experiments for
different values. The number of independent experiments was 100 and in each experiment,
the input signal was chosen to be a random signal with uniform distribution over (−1, 1) and
data length of 105 samples. The bandwidth of the input signal was limited by a low-pass
filter in order to prevent aliasing [13] and the normalized cut-off frequency of this filter is
chosen as π

5 . The output measurement noise was considered as AWGN with SNR=40 dB.

The parameter vectors θ were initialized as

θd(0) =
(

1 0 0 0
)T

θc(0) =
(

0 0 0
)T

θg(0) =
(

1 0 · · · 0
)T

.

(2.81)

25

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

0 0.2 0.4 0.6 0.8 1
−200

−100

0

100

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

ĥ
h

ĥ
h

Figure 2.6 Frequency responses of the initial estimates of the linear subsystem
H(z−1).

For the initial estimate of the IIR Wiener system, 10 different 64-tones DMT signals with
crest factor (peak-to-average ratio) value of 3 and Root Mean Square (RMS) value of 0.25
were used as the system inputs. The constant crest factor of different DMT signals is achieved
by using the time-frequency domain swapping algorithm proposed in [67]. The output mea-
surement noise was considered as zero-mean AWGN with SNR=40 dB. Ĥ(z−1) was assumed
to be an IIR filter with numerator order 5 and denominator order 5, and F̂ was assumed to
be a 5th order static nonlinearity. The result of the ISE method Ĥ(z−1) is an estimation
of the linear subsystem H(z−1) scaled with an unknown constant [65], and Fig. 2.6 gives
the frequency responses of the initial estimates of H(z−1). The initial estimates of F were
(1.0001 0.2502 0.1246 − 0.0007 0.0005)T .

The MSD comparison of the NFxLMS, NFxLMS-ISE, NFxPEM and NFxPEM-ISE algo-
rithms is given in Fig. 2.7. The MSD of the IIR Wiener system without predistorter was
about −18 dB in a noise-free scenario. The step sizes of the NFxLMS and NFxLMS-ISE
algorithms were µ = 0.03 and the matrix P(0) = I for the NFxPEM and NFxPEM-ISE
algorithms. λ0 and λ(0) were chosen as 0.99 and 0.95, respectively. These algorithms achieve
similar MSD performance in the steady state. On average, the NFxLMS-ISE and NFxLMS
algorithms converge after about 8 × 104 samples and both of them achieve about −39 dB.
The NFxPEM-ISE and NFxPEM algorithms converge after about 1000 samples and both of
them achieve about −40 dB. Obviously, the NFxPEM and NFxPEM-ISE algorithms converge
much faster than the NFxLMS and NFxLMS-ISE algorithms.

Figure 2.8 shows the mean PSDs of the output signals of the IIR Wiener system without
and with predistorter after 105 samples. From this figure, we can see that all of these
algorithms can effectively reduce the spectral regrowth in the normalized frequency band
(0.25π, 0.60π). Both the NFxLMS and NFxLMS-ISE algorithms can achieve up to 20 dB
reduction. The NFxPEM algorithm has the best performance (up to 40 dB reduction), and
the NFxPEM-ISE algorithm has the second best performance (up to 35 dB reduction) but

26

2.3. Predistortion of Wiener Systems

0 2 4 6 8 10
x 10

4

−50

−40

−30

−20

−10

0

10

Samples

E
D

 (
dB

)

Without pred.
NFxLMS−ISE
NFxLMS
NFxPEM−ISE
NFxPEM

Figure 2.7 MSD ED for different adaptation algorithms.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
NFxLMS−ISE
NFxLMS
NFxPEM−ISE
NFxPEM

Figure 2.8 Mean PSDs for different adaptation algorithms.

27

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

without using the accurate system identification of the IIR Wiener system. For all algorithms,
there is spectral regrowth in the normalized frequency band (0.6π, π), which is caused by the
cascaded nonlinear systems. However, this spectral regrowth has no significant impact on
the performance of predistortion since it is relatively small (under −70 dB).

2.4. Predistortion of Hammerstein Systems

According to [68], power amplifiers can be modeled as FIR Wiener systems or IIR Hammer-
stein systems, where the linear dynamic system is modeled as an IIR filter. The authors also
concluded that high power amplifiers are better modeled using IIR Hammerstein systems
than using FIR Wiener systems, since the IIR Hammerstein models need less parameters,
are easier to estimate and present better performance. Therefore, the predistortion of IIR
Hammerstein systems using the DLA approach is introduced in this section. The NFxLMS
and NFxPEM algorithms are developed for estimating the coefficients of the predistorter.
The validity of the algorithms is demonstrated via computer simulation.

+

−

Wiener predistorter Hammerstein system

Adaptation algorithm

x(n) x2(n) y2(n) z(n)

r(n)

e(n)

y(n)
G H(z−1)P (n, z−1) F (n)

Figure 2.9 The DLA approach for predistortion of Hammerstein systems.

The DLA approach for predistortion of Hammerstein systems is shown in Fig. 2.9. The
output of the IIR Hammerstein system is

z(n) = H(z−1)y2(n) =
B(z−1)

1 − A(z−1)
y2(n)

=

mb∑

m=0

bmy2(n − m) +

ma∑

m=1

amz(n − m) (2.82)

where H(z−1) = B(z−1)
1−A(z−1)

is an IIR filter and the polynomials A(z−1) and B(z−1) are defined
as

A(z−1) =

ma∑

m=1

amz
−m

B(z−1) =

mb∑

m=0

bmz
−m.

(2.83)

28

2.4. Predistortion of Hammerstein Systems

Here z−1 is the delay operator such that z−mx(n) = x(n−m). The intermediate signal y2(n)
is defined as

y2(n) = g1y(n) + g2y
2(n) + · · · + gmgy

mg(n)

= gT y(n) (2.84)

where g is the parameter vector of the nonlinear subsystem G defined as

g =
(

g1 g2 · · · gmg

)T
(2.85)

and the corresponding input vector y(n) is given by

y(n) =
(

y(n) y2(n) · · · ymg(n)
)T

. (2.86)

The predistorter of the IIR Hammerstein system is chosen as an IIR Wiener system. The
output of the predistorter is

y(n) = f1(n)x2(n) + f2(n)x2
2(n) + · · · + fmf

x
mf

2 (n)

= fT (n)x2(n) (2.87)

where f(n) is the parameter vector of the nonlinear subsystem F (n) defined as

f(n) =
(

f1(n) f2(n) · · · fmf
(n)

)T
(2.88)

and the corresponding input vector x2(n) is given by

x2(n) =
(

x2(n) x2
2(n) · · · x

mf

2 (n)
)T

. (2.89)

The intermediate signal x2(n) is given by

x2(n) = P (n, z−1)x(n) =
D(n, z−1)

1 − C(n, z−1)
x(n)

=

md∑

m=0

dm(n)x(n − m) +

mc∑

m=1

cm(n)x2(n − m). (2.90)

where P (n, z−1) = D(n,z−1)
1−C(n,z−1)

is an IIR filter and the polynomials C(n, z−1) and D(n, z−1)

are defined as

C(n, z−1) =

mc∑

m=1

cm(n)z−m

D(n, z−1) =

md∑

m=0

dm(n)z−m.

(2.91)

Let us define the parameter vector θ of the predistorter as follows

θ =
(

θT
f θT

d θT
c

)T

θf =
(

f1 f2 · · · fmf

)T

θd =
(

d0 d1 · · · dmd

)T

θc =
(

c1 c2 · · · cmc

)T
.

(2.92)

The NFxLMS and NFxPEM algorithms for estimating the parameter vector θ have been
developed for the first time in our publication [35, 39] and they will be introduced in the
following sections.

29

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

2.4.1. The NFxLMS algorithm

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63]:

θ(n + 1) = θ(n) −
µ

2
∆T (n) (2.93)

where µ is the step-size parameter. Also, ∆(n) is the gradient vector which is defined as

∆(n) = ∇θ(n)e
2(n) = −2e(n)∇θ(n)z(n). (2.94)

Using (2.82), ∇θ(n)z(n) can be derived as

∇θ(n)z(n) =

mb∑

m=0

bm∇θ(n)y2(n − m) +

ma∑

m=1

am∇θ(n)z(n − m). (2.95)

Assuming that the parameter vector θ(n) changes slowly [23,26], the following approximations
can be made:

∇θ(n)y2(n − m) ≈ ∇θ(n−m)y2(n − m), m = 0, 1, · · · , mb

∇θ(n)z(n − m) ≈ ∇θ(n−m)z(n − m), m = 1, 2, · · · , ma.
(2.96)

Consequently, (2.95) can be written as

∇θ(n)z(n) ≈

mb∑

m=0

bm∇θ(n−m)y2(n − m) +

ma∑

m=1

am∇θ(n−m)z(n − m)

=
B(z−1)

1 − A(z−1)
∇θ(n)y2(n) = H(z−1)∇θ(n)y2(n). (2.97)

From (2.84)-(2.86), we have

∇θ(n)y2(n) = gT
∇θ(n)y(n) = gT

∇y(n)y(n)∇θ(n)y(n) = s1(n)∇θ(n)y(n) (2.98)

where

s1(n) = gT
∇y(n)y(n) = gT

1
2y(n)

...
mgy

mg−1(n)

 . (2.99)

Using (2.92) and (2.98), (2.97) becomes

∇θ(n)z(n) = H(z−1)s1(n)∇θ(n)y(n)

= H(z−1)s1(n)
(
∇θf (n)y(n) ∇θd(n)y(n) ∇θc(n)y(n)

)
. (2.100)

Considering (2.87), (2.89) and (2.90), ∇θf (n)y(n) can be derived as

∇θf (n)y(n) = ∇θf (n)

(
θT

f (n)x2(n)
)

= xT
2 (n) =

P (n, z−1)x(n)[
P (n, z−1)x(n)

]2
...[

P (n, z−1)x(n)
]mf

T

. (2.101)

30

2.4. Predistortion of Hammerstein Systems

Note that the intermediate signal x2(n) should be estimated since it is usually not measurable.
Again, using (2.87), (2.89) and (2.90), ∇θd(n)y(n) and ∇θc(n)y(n) can be derived as

∇θd(n)y(n) = θT
f (n)∇x2(n)x2(n)∇θd(n)x2(n) = s2(n)∇θd(n)x2(n)

∇θc(n)y(n) = θT
f (n)∇x2(n)x2(n)∇θc(n)x2(n) = s2(n)∇θc(n)x2(n)

(2.102)

where

s2(n) = θT
f (n)∇x2(n)x2(n) = θT

f (n)

1
2x2(n)

...

mfx
mf−1
2 (n)

= θT
f (n)

1
2
[
P (n, z−1)x(n)

]

...

mf

[
P (n, z−1)x(n)

]mf−1

 . (2.103)

Now, it remains to derive ∇θd(n)x2(n) and ∇θc(n)x2(n). Differentiating both sides of (2.90)
with respect to dk(n) and ck(n) gives

∂x2(n)

∂dk(n)
= x(n − k) +

mc∑

m=1

cm(n)
∂x2(n − m)

∂dk(n)

∂x2(n)

∂ck(n)
= x2(n − k) +

mc∑

m=1

cm(n)
∂x2(n − m)

∂ck(n)
.

(2.104)

Since the parameter vector θ(n) is assumed to be changing slowly, we can write

∂x2(n − m)

∂dk(n)
≈

∂x2(n − m)

∂dk(n − m)
, m = 1, 2, · · · , mc

∂x2(n − m)

∂ck(n)
≈

∂x2(n − m)

∂ck(n − m)
, m = 1, 2, · · · , mc.

(2.105)

Hence, (2.104) can be rewritten as

∂x2(n)

∂dk(n)
≈ x(n − k) +

mc∑

m=1

cm(n)
∂x2(n − m)

∂dk(n − m)

∂x2(n)

∂ck(n)
≈ x2(n − k) +

mc∑

m=1

cm(n)
∂x2(n − m)

∂ck(n − m)

(2.106)

or

∂x2(n)

∂dk(n)
≈

z−k

1 − C(n, z−1)
x(n), k = 0, 1, · · · , md

∂x2(n)

∂ck(n)
≈

z−k

1 − C(n, z−1)
x2(n)

=
z−k

1 − C(n, z−1)

[
P (n, z−1)x(n)

]
, k = 1, · · · , mc.

(2.107)

31

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Now, we have completely derived the components of ∇θ(n)z(n) in (2.100) and the gradient
vector ∆(n) can be written as

∆(n) = −2e(n)H(z−1)s1(n)
(
∇θf (n)y(n) s2(n)∇θd(n)x2(n) s2(n)∇θc(n)x2(n)

)
(2.108)

where s1(n) and s2(n) are calculated in (2.99) and (2.103), respectively, and ∇θf (n)y(n),
∇θd(n)x2(n) and ∇θc(n)x2(n) are given by (2.101) and (2.107), respectively.

2.4.2. The NFxPEM algorithm

The NFxPEM algorithm is derived by the minimization of the cost function [57]

V (θ) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(2.109)

where e(n) is the prediction error which is defined as

e(n) = r(n) − z(n). (2.110)

The formulation of the NFxPEM algorithm requires the negative gradient of e(n) w.r.t.
θ(n) which is defined as

ϕT (n) = −∇θ(n)e(n) = ∇θ(n)z(n). (2.111)

Straightforward analysis identical to Section 2.4.1 gives

ϕT (n) = H(z−1)s1(n)
(
∇θf (n)y(n) s2(n)∇θd(n)x2(n) s2(n)∇θc(n)x2(n)

)
(2.112)

where s1(n) and s2(n) are calculated as in (2.99) and (2.103), respectively, and ∇θf (n)y(n),
∇θd(n)x2(n) and ∇θc(n)x2(n) are given by (2.101) and (2.107), respectively. Hence, the
NFxPEM algorithm follows as (cf. [57, 63])

e(n) = r(n) − z(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕT (n)P (n − 1)

)
/λ(n)

θ(n + 1) = θ(n) + P (n)ϕ(n)e(n).

(2.113)

Here, λ0, λ(0) and P (0) are design variables as introduced in Section 2.2.3.

2.4.3. Simulation study

In this simulation study, the following IIR Hammerstein system was considered:

z(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y2(n)

y2(n) = y(n) + 0.25y2(n) + 0.125y3(n).

(2.114)

32

2.5. Predistortion Using the SMM Method

The order of the linear block of the IIR Wiener predistorter was chosen as mc = 3 and
md = 3, in order to avoid model error. The order of the nonlinear block was chosen as
mg = 9, since it can achieve the best performance based on large number of experiments for
different values. The number of independent experiments was 100 and in each experiment,
the input signal was a random signal with uniform distribution over (−1, 1) and data length
of 2 × 105 samples. The bandwidth of the input signal was limited by a low-pass filter in
order to prevent aliasing [13] and the normalized cut-off frequency of this filter is chosen as
π
5 . The output measurement noise was considered as AWGN with SNR=40 dB.

The parameter vectors θ were initialized as

θf (0) =
(

1 0 · · · 0
)T

θd(0) =
(

1 0 0 0
)T

θc(0) =
(

0 0 0
)T

.

(2.115)

The MSD comparison between the NFxLMS and NFxPEM algorithms is given in Fig. 2.10.
The MSD of the IIR Hammerstein system without predistorter was about −18 dB in noise-
free scenario. The step size of the NFxLMS algorithm was µ = 0.05 and the matrix P(0) = I

for the NFxPEM algorithms. λ0 and λ(0) were chosen as 0.99 and 0.95, respectively. The
predistorters using these algorithms achieve similar MSD performance in the steady state.
On average, the NFxLMS algorithm converges after about 1.5 × 105 samples and achieves
about −39 dB. The NFxPEM algorithm converges after about 1000 samples and achieves
about −40 dB. On the other hand, the NFxPEM algorithm converges much faster than the
NFxLMS algorithm.

Figure 2.11 shows the mean PSDs of the output signals of the IIR Hammerstein system
without and with predistorter after 2 × 105 samples. From this figure, we can see that
both algorithms can effectively reduce the spectral regrowth in the normalized frequency
band (0.25π, 0.65π). The NFxLMS algorithm can achieve up to 30 dB reduction. The
NFxPEM algorithm has even better performance (up to 60 dB reduction) compared to the
NFxLMS algorithm. For all algorithms, there is spectral regrowth in the normalized frequency
band (0.65π, π), which is caused by the cascaded nonlinear systems. However, this spectral
regrowth has no significant impact on the performance of predistortion since it is relatively
small (under −70 dB).

2.5. Predistortion Using the SMM Method

The SMM method is first proposed in [61] to identify the telephone handset nonlinearity by
matching the spectral magnitude of the distorted signal to the output of a nonlinear model.
This method is introduced in this section for predistortion of nonlinear systems. The SMM
method is first described in a general formulation and then implemented for predistortion
of Volterra, Wiener and Hammerstein systems, respectively. The validity of the method is
demonstrated via computer simulation.

The DLA approach using the SMM method is shown in Fig. 2.12. The reference signal
r(n) is defined as

r(n) = x(n − τ) + υ(n) (2.116)

33

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

0 0.5 1 1.5 2
x 10

5

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Samples

E
D

 (
dB

)

Without pred.
NFxLMS
NFxPEM

Figure 2.10 MSD ED for different adaptation algorithms.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
NFxLMS
NFxPEM

Figure 2.11 Mean PSDs for different adaptation algorithms.

34

2.5. Predistortion Using the SMM Method

+

_ +

|DFT|

|DFT|Nonlinear
predistorter

Nonlinear
physical system

SMM method

x(n) y(n) z(n)

r(n)

Figure 2.12 The DLA approach using the SMM method.

where τ is the time delay and υ(n) is AWGN. The nonlinear physical system here is a baseband
nonlinear system and the input signal is a real value signal. The predistorter intends to reduce
the spectral magnitude regrowth of the signal at the output of the nonlinear physical system.
Therefore, by defining θ as the parameter vector of the adaptive predistorter, the goal of the
SMM method is to estimate the parameter vector θ by minimizing the sum squared error
between the spectral magnitude of the reference signal r(n) and the spectral magnitude of
the received output signal z(n) through the following cost function:

Vθ =
K−1∑

k=0

L−1∑

l=0

[
|R(l, k)| − |Z(l, k,θ)|

]2
(2.117)

where R(l, k) and Z(l, k,θ) are the short-time DFTs of r(n) and z(n), respectively. K is
the number of uniformly-spaced short-time frames and L is the DFT length. Note that the
phase of the DFT is neglected since reducing the phase distortion here is less important than
reducing the spectral regrowth.

R(l, k) can be generated as in Fig. 2.13, where R(k) is the short-time DFT vector defined
as

R(k) =
(

R(0, k) · · · R(l, k) · · · R(L − 1, k)
)T

, k = 0, · · · , K − 1. (2.118)

Z(l, k,θ) can also be generated using the same structure.

2.5.1. The SMM method

The cost function Vθ can be rewritten as

Vθ = ΓT
θΓθ (2.119)

35

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

|DFT| |DFT| |DFT| |DFT|

L L L L

r

r2r0 r1 rK−1

R(2)R(1)R(0) R(K − 1)

Figure 2.13 Generation of the short-time DFT vectors R(k).

where

Γθ =

γ0(θ)
γ1(θ)

...
γK−1(θ)

 (2.120)

and

γk(θ) =

|R(0, k)| − |Z(0, k,θ)|
...

|R(L − 1, k)| − |Z(L − 1, k,θ)|

 , k = 0, · · · , K − 1. (2.121)

In the SMM method, the parameter vector θ that minimizes the cost function Vθ can be
estimated using the generalized Newton iteration [49,62]. In each iteration, the output signal
of the nonlinear physical system with the predistorter is generated using the same series of
input signals. The parameter vector θ is updated by

θ(m + 1) = θ(m) + µ ∆(m) (2.122)

where m is the iteration index, µ is the step size, and ∆(m) is given by [57,61,63]

∆(m) = −
[
∇

2
θVθ

]−1
[∇θVθ] |θ=θ(m) = −

(
JT (m)J(m)

)−1
JT (m) Γθ|θ=θ(m). (2.123)

Here J(m) is the Jacobian matrix of first derivative of Γθ with respect to θ(m), i.e.,

J(m) = ∇θΓθ|θ=θ(m) =

J0(m)
J1(m)

...

JK−1(m)

 (2.124)

where

Jk(m) = ∇θγk(θ)|θ=θ(m) = −

∇θ|Z(0, k,θ)|
...

∇θ|Z(L − 1, k,θ)|

 |θ=θ(m), k = 0, · · · , K−1. (2.125)

36

2.5. Predistortion Using the SMM Method

Due to the fact that there is no closed form expression for ∆(m), an approximate gradient
was evaluated in [61] by finite element approximation. The same approach is considered here.
The approximation follows the following lines:

1. Initialize with a parameter vector θ(0) and compute the DFT magnitude |R(l, k)|.

2. Compute the DFT magnitude |Z(l, k,θ)| based on the current value of the parameter
vector θ(m) and form Γθ.

3. Recalculate z(n, θ) for each perturbed component of θ(m) separately and then compute
its DFT magnitude, i.e., the DFT magnitude vector for the kth frame when the jth
component is perturbed is Z(k, θ1(m), ..., θj(m) + εm, ...). The (i, j)th element of the
matrix element Jk(m), denoted as Jk

i,j(m), is evaluated using finite element approxi-
mation for each element of θ(m) as

Jk
i,j(m) = ∇θj

γk
i (m, θ)|θ=θ(m) ≈ −

1

εm
(|Z(i, k, θ1(m), · · · , θj(m) + εm, · · ·)|

−|Z(i, k, θ1(m), · · · , θj(m), · · ·)|) (2.126)

where γk
i (m, θ) is the ith element of γk(θ), θj(m) is the jth element of the parameter

vector θ(m) and εm is a small adaptive perturbation evaluated as

εm =
Vθ(m)

Vθ(0)
ε0 (2.127)

where ε0 is the initial perturbation, Vθ(0) is the initial value of Vθ, and Vθ(m) is the
mth step value of Vθ. This means that the perturbation decreases proportionally with
the error, i.e., Vθ(m) → 0 when εm → 0.

4. Finally, evaluate the correction term ∆(m) from (2.123) and update the parameter
vector θ using (2.122).

Remark 2.4: The calculation of ∆(m) in each iteration only needs to observe the output
signals of the nonlinear physical system - z(n, θ) for θ(m) and for all the component-wise
perturbed version of θ(m). Therefore, the SMM method can be used for predistortion of non-
linear physical systems without knowing the system information before hand. After choosing
the model of the predistorter, its coefficients can be estimated using the procedure mentioned
before. However, this advantage comes at a huge price because, for each iteration, we need
to perform measurement on the physical output of the nonlinear physical system driven by
as many perturbed versions of the predistorter.

The flowchart of the SMM method is summarized in Fig. 2.14. Here, N is the number
of parameters in the parameter vector θ. The iteration can stop when m has reached the
pre-defined iteration number or the parameter vector θ has converged to the steady state.

2.5.2. Simulation study

In this section, predistortion using the SMM method is applied to different nonlinear physical
systems - Volterra, Wiener and Hammerstein systems. Because the SMM method intends to

37

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Iteration stop?

Initialize
and

Set
Calculate

Set

Construct

Calculate

Stop

Set

Yes

No

Yes

No

Update

Set
Calculate

Construct

where

ε0

m = 1

εm

j = 1

θ̂(m)

j > N θ(m)

m = m + 1

θ(0)

j = j + 1

Jk
i,j(m)

ΓθJ(m),

R(l, k)

Z(l, k, θ),

θ̂j(m) = θj(m) + εm

Figure 2.14 Flowchart of the SMM method.

minimize the sum squared error between the spectral magnitudes of r(n) and z(n), we define
the normalized spectral magnitude sum squared error, which is

ESM (m) = 10 log10

(∑K−1
k=0

∑L−1
l=0

[
|R(l, k)| − |Z(l, k,θ)|

]2
∑K−1

k=0

∑L−1
l=0

[
R(l, k)

]2

)
|θ=θ(m). (2.128)

In each independent experiment, ESM is evaluated in each iteration in order to observe
whether the spectral magnitude difference between r(n) and z(n) is well reduced. The mean
PSD of z(n) is also estimated after the parameter vector θ converges to the steady state.

Predistortion of Volterra systems

The nonlinear physical system was the 2nd-order Volterra system defined as in Section 2.2.4.
The output z(n) was

z(n) = hT
1 y1(n) + hT

2 y2(n) (2.129)

where the first-order kernel vector h1 was

h1 =
(

0.5625 0.4810 0.1124 −0.1669
)

(2.130)

and the second-order kernel vector h2 was

h2 = (0.0175 0 0 0 0 − 0.0088 0 − 0.0088 0) . (2.131)

38

2.5. Predistortion Using the SMM Method

The adaptive predistorter was also assumed to be a 2nd-order Volterra filter defined identical
to Section 2.2.4.

The number of independent experiments was 100 and in each experiment, the input signal
was chosen as a random signal with uniform distribution over (−1, 1). The bandwidth of
the input signal was limited by a low-pass filter in order to prevent aliasing [13] and the
normalized cut-off frequency of this filter is chosen as π

4 . For the SMM approach, a data
length of 10 × 28 input samples were divided into 10 short-time frames, each with length 28

samples. The DFT length L was 28. An initial perturbation of ε0 = 0.001 and adaptation
gain of µ = 0.5 were used.

Figure 2.15 demonstrates the ESM evaluated in one experiment. ESM achieves a stable
value of about −60 dB after about 20 iterations, which means that the parameter vector θ

converges to the steady state.

The mean PSDs of the output signals of the Volterra system without and with predistorter
after 30 iterations are shown in Fig. 2.16. From this figure, we can see that the SMM method
can effectively reduce the spectral regrowth in the normalized frequency band (0.30π, 0.55π).
Compared to the simulation result in Fig. 2.4, the SMM method can achieve similar perfor-
mance as the NFxRLS and NFxPEM algorithms (up to 30 dB reduction).

Predistortion of Wiener systems

The nonlinear physical system was an IIR Wiener system defined as in Section 2.3.4. The
output z(n) was

z(n) = y2(n) + 0.25y2
2(n) + 0.125y3

2(n)

y2(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y(n).

(2.132)

The predistorter was modeled as an IIR Hammerstein system defined identical to Sec-
tion 2.3.4. The number of independent experiments was 100 and in each experiment, the
input signal was chosen as a random signal with uniform distribution over (−1, 1). The
bandwidth of the input signal was limited by a low-pass filter in order to prevent aliasing [13]
and the normalized cut-off frequency of this filter is chosen as π

5 . For the SMM approach, a
data length of 10 × 28 input samples were divided into 20 short-time frames have been used
each with length 28 samples. The DFT length L was 28. An initial perturbation of ε0 = 0.001
and adaptation gain of µ = 0.04 were used.

Figure 2.17 demonstrates the ESM evaluated in one experiment. ESM achieves a stable
value of about −62 dB and the parameter vector θ converges to the steady state after about
125 iterations.

The mean PSDs of the output signals of the IIR Wiener system without and with pre-
distorter after 200 iterations are shown in Fig. 2.18. From this figure, we can see that the
SMM method can effectively reduce the spectral regrowth in the normalized frequency band
(0.25π, 0.60π). Compared to the simulation result in Fig. 2.8, the SMM method can achieve
similar performance as the NFxPEM algorithms (up to 40 dB reduction).

39

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

1 5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

0

10

20

Iterations

E
S

M
 (

dB
)

Figure 2.15 ESM for the SMM method in one experiment for predistortion of
Volterra system.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
SMM

Figure 2.16 Mean PSDs without and with predistorter for predistortion of
Volterra system.

40

2.5. Predistortion Using the SMM Method

1 50 100 150 200
−65

−60

−55

−50

−45

−40

−35

−30

−25

Iterations

E
S

M
 (

dB
)

Figure 2.17 ESM for the SMM method in one experiment for predistortion of
the Wiener system.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
SMM

Figure 2.18 Mean PSDs without and with predistorter for predistortion of the
Wiener system.

41

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

Predistortion of Hammerstein systems

The nonlinear physical system was an IIR Hammerstein system defined as in Section 2.4.3.
The output signal z(n) was

z(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y2(n)

y2(n) = y(n) + 0.25y2(n) + 0.125y3(n).

(2.133)

The predistorter was modeled as an IIR Wiener system defined identical to Section 2.4.3.
The number of independent experiments was 100 and in each experiment, the input signal
was chosen as a random signal with uniform distribution over (−1, 1). The bandwidth of
the input signal was limited by a low-pass filter in order to prevent aliasing [13] and the
normalized cut-off frequency of this filter is chosen as π

5 . For the SMM approach, a data
length of 10 × 28 input samples divided into 10 short-time frames have been used each with
length 28 samples. The DFT length L was 28. An initial perturbation of ε0 = 0.001 and
adaptation gain of µ = 0.04 were used.

Figure 2.19 demonstrates the ESM evaluated in one experiment. ESM achieves stable value
of about −62 dB and the parameter vector θ converges to the steady state after about 125
iterations.

The mean PSDs of the output signals of the IIR Hammerstein system without and with
predistorter after 200 iterations are shown in Fig. 2.20. From this figure, we can see that the
SMM method can effectively reduce the spectral regrowth in the normalized frequency band
(0.25π, 0.65π). Compared to the simulation result in Fig. 2.11, the SMM method can achieve
similar performance as the NFxPEM algorithms (up to 60 dB reduction).

2.6. Summary

Adaptive predistortion of nonlinear physical systems using the DLA approach is introduced
in this chapter. The coefficients of the predistorter can be estimated using the time domain
or frequency domain adaptation algorithms.

The NFxLMS algorithm is a fundamental adaptation algorithm in the time domain for
predistortion of different nonlinear systems, such as Volterra, Wiener and Hammerstein sys-
tems. However, it requires accurate system identification of the nonlinear physical system
and usually has very slow convergence speed. The existing NFxRLS algorithm can speed
up the convergence but can only be used for predistortion of the nonlinear physical system,
where the predistorter output is linear in its coefficients. The NFxPEM algorithm proposed
in this chapter can be implemented for predistortion of different nonlinear systems. From
the simulation, we can see that compared to the NFxLMS algorithm, the NFxPEM algo-
rithm has very fast convergence speed and is much more efficient in reducing the spectral
regrowth caused by the nonlinear physical system. For the predistortion of Wiener systems,
the proposed NFxLMS-ISE and NFxPEM-ISE algorithms relax the accurate system identi-
fication requirement in NFxLMS and NFxPEM algorithms, by using the ISE instead. The
NFxLMS-ISE and NFxPEM-ISE algorithms can achieve similar performance as the NFxLMS
and NFxPEM algorithms with accurate system identification, respectively. To relax the accu-
rate system identification requirement for predistortion of Volterra and Hammerstein systems
is still an open issue in the future research.

42

2.6. Summary

1 50 100 150 200
−65

−60

−55

−50

−45

−40

−35

−30

−25

−20

Iterations

E
S

M
 (

dB
)

Figure 2.19 ESM for the SMM method in one experiment for predistortion of
the Hammerstein system.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized Frequency (×π rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
SMM

Figure 2.20 Mean PSDs without and with predistorter for predistortion of the
Hammerstein system.

43

Chapter 2. Predistortion Using the Direct Learning Architecture (DLA)

The proposed SMM method is a frequency domain technique to estimate the coefficients of
the predistorter. It is also a general adaptation algorithm which can be used for predistortion
of different nonlinear systems. This method has high computational complexity and requires
matrix inversion in each adaptation iteration, and from the simulation, we can see that it has
reasonable convergence speed and also good performance in reducing the spectral regrowth.

44

Chapter3
Predistortion Using the Indirect Learning Architecture

(ILA)

In this chapter the nonlinear physical system is modeled as Volterra, Wiener and Hammer-
stein systems, respectively, and the adaptation algorithms based on the Indirect Learning
Architecture (ILA) approach are presented to estimate the coefficients of the predistorter.
The ILA approach can be classified into the ILA-I approach and the ILA-II approach. The
existing adaptation algorithms, such as the Recursive Least Squares (RLS) algorithm for pre-
distortion of Volterra systems using the ILA-I approach and the Least Mean Squares (LMS)
algorithm in the predistortion of Volterra systems using the ILA-II approach, are first re-
viewed. Then for the ILA-I approach, the Kalman Filter (KF), Recursive Prediction Error
Method (RPEM) algorithms are derived for predistortion of Volterra systems. The RPEM
algorithm is also derived for the predistortion of Wiener and Hammerstein systems. For the
ILA-II approach, the RPEM algorithm is developed in order to improve the performance of
the predistorter, as compared to the LMS algorithm.

This chapter is based on the publications [40,41,42,43,69], which are edited and refined in
order to fit the current style of the thesis.

3.1. Introduction

Predistortion using the ILA approach usually requires extra filters in addition to the predis-
torter itself: the training filter in the ILA-I approach, and the adaptive linear and nonlinear
FIR filters in the ILA-II approach.

In order to estimate the coefficients of the training filter in the ILA-I approach, an adap-
tation algorithm for predistortion of Volterra systems has been proposed in [27]. Both the
training filter and the predistorter are modeled as Volterra systems and the coefficients of the
training filter are estimated recursively using the RLS algorithm, see [57, 63]. In this chap-
ter, the KF and RPEM algorithms [56, 57] are derived for predistortion of Volterra systems.
Moreover, the RPEM algorithm is also derived for predistortion of Wiener and Hammerstein
systems.

Furthermore, the RPEM algorithm is derived to estimate the coefficients of the adap-
tive linear and nonlinear FIR filters in the ILA-II approach, instead of the suggested LMS
algorithm in [9]. The RPEM algorithm gives consistent parameter estimates under weak con-

45

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

ditions in case the asymptotic loss function has a unique stationary point which represents
the true parameter vector. Therefore, using the RPEM algorithm is expected to provide
more accurate estimates and hence to improve the performance of the predistorter.

In order to measure the performance of these approaches, the Mean Square Distortion
(MSD) and the mean Power Spectral Density (PSD) as defined in Chapter 2 are used.

3.2. Predistortion of Volterra Systems

In this section, different adaptation algorithms for predistortion of Volterra systems using the
ILA approach are introduced. For the ILA-I approach, the RLS algorithm is first reviewed,
and then the KF and RPEM algorithms are derived. Also, the ILA-II approach using the
LMS algorithm is first reviewed and then the RPEM algorithm is derived. Simulation results
are given to verify the proposed algorithms.

3.2.1. The ILA-I approach

+

+

−

Volterra predistorter Volterra system

Volterra training filter

H
z(n)

e(n)

ỹ(n)

y(n)x(n)
C(n)

C̃(n)

Figure 3.1 The ILA-I approach for predistortion of Volterra systems.

The ILA-I approach for predistortion of Volterra systems is shown in Fig. 3.1. The nonlinear
physical system H is a qth-order Volterra system with input y(n) and output z(n). The output
signal z(n) is given by

z(n) = hT y(n) =

q∑

k=1

hT
k yk(n)

=

q∑

k=1

Mk−1∑

i1=0

· · ·

Mk−1∑

ik=0

hk(i1, · · · , ik)y(n − i1) · · · y(n − ik)

 (3.1)

where Mk is the memory length for the kth order kernel. The kernel vector h is defined as

h =
(

hT
1 · · · hT

q

)T
, (3.2)

46

3.2. Predistortion of Volterra Systems

hk =

hk(0, · · · , 0)
...

hk(i1, · · · , ik)
...

hk(Mk − 1, · · · , Mk − 1)

, k = 1, · · · , q, (3.3)

and the input vector y(n) is defined as

y(n) =
(

yT
1 (n) · · · yT

q (n)
)T

, (3.4)

yk(n) =

yk(n)
...

y(n − i1) · · · y(n − ik)
...

yk(n − Mk + 1)

, k = 1, · · · , q. (3.5)

The input and output relation of the training filter C̃(n) is given by

ỹ(n) = cT (n)z(n) =

p∑

k=1

cT
k (n)zk(n)

=

p∑

k=1

cMk−1∑

i1=0

· · ·

cMk−1∑

ik=0

ck(i1, · · · , ik; n)z(n − i1) · · · z(n − ik)

 (3.6)

where M̂k is the memory length corresponding to the kth order kernel. The total kernel
vector c(n) is defined as

c(n) =
(

cT
1 (n) · · · cT

p (n)
)T

, (3.7)

ck(n) =

ck(0, · · · , 0; n)
...

ck(i1, · · · , ik; n)
...

ck(M̂k − 1, · · · , M̂k − 1; n)

, k = 1, · · · , p, (3.8)

and the input vector z(n) to the training filter is defined as

z(n) =
(

zT
1 (n) · · · zT

p (n)
)T

, (3.9)

zk(n) =

zk(n)
...

z(n − i1) · · · z(n − ik)
...

zk(n − M̂k + 1)

, k = 1, · · · , p. (3.10)

47

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

The predistorter is a copy of the training filter, hence the relation between the input and
output of the predistorter C(n) is given by

y(n) = cT (n)x(n) =

p∑

k=1

cT
k (n)xk(n)

=

p∑

k=1

cMk−1∑

i1=0

· · ·

cMk−1∑

ik=0

ck(i1, · · · , ik; n)x(n − i1) · · ·x(n − ik)

 (3.11)

where the kernel vector c(n) is defined as in (3.7) and (3.8). The input vector x(n) to the
predistorter is defined as

x(n) =
(

xT
1 (n) · · · xT

p (n)
)T

, (3.12)

xk(n) =

xk(n)
...

x(n − i1) · · ·x(n − ik)
...

xk(n − M̂k + 1)

, k = 1, · · · , p. (3.13)

Note that the predistorter can copy the coefficients from the training filter in each sample
instant n, or copy the coefficients after the training filter has converged, which is usually
preferred in real implementation in order to simplify the circuit design.

Let us define the error signal e(n) as

e(n) = y(n) − ỹ(n) (3.14)

which can be written as (cf. (3.6) and (3.11))

e(n) = cT (n)(x(n) − z(n)). (3.15)

Therefore, if the Volterra models satisfy the conditions [27]

x(n) 6= z(n) −→ y(n) 6= ỹ(n)

x(n) = z(n) −→ y(n) = ỹ(n)
(3.16)

the error signal e(n) approaches zero, z(n) approaches x(n), and hence the overall output
of the system z(n) (input to the training filter C̃) approaches the total system input x(n)
(input to the predistorter C) since the outputs of the two Volterra models, i.e., y(n) and
ỹ(n), approach each other.

When the kernel vector c(n) has been found and it is believed that the nonlinear physical
system characteristics are not changing, the training branch is shut down. The training
branch can be reconnected in case of significant change in the characteristics of the nonlinear
physical system and hence high nonlinear distortion would appear at the system output. On
the other hand, in case of time-varying nonlinear systems, the training branch should always
stay connected.

48

3.2. Predistortion of Volterra Systems

The RLS Algorithm

The kernel vector c(n) can be estimated as done in [27] using the RLS algorithm [57, 63].
The RLS algorithm with exponential forgetting minimizes the cost function ξ(n) given by

ξ(n) =

n∑

i=1

λn−ie2(i) (3.17)

where λ ≤ 1 is the forgetting factor and e(i) is given as in (3.15). The smaller the value of
λ, the quicker the information in previous data will be forgotten. Therefor, the choice of λ
controls the ability of the algorithm to track time-varying parameters. The RLS algorithm
takes the following form [57,63]:

e(n) = cT (n)(x(n) − z(n))

k(n) = (λ + zT (n)P (n − 1)z(n))−1P (n − 1)z(n)

P (n) = λ−1P (n − 1) − λ−1k(n)zT (n)P (n − 1)

c(n + 1) = c(n) + k(n)e(n)

(3.18)

The most common choice for the initial condition of P (n) is P (0) = ρI where I is the identity
matrix and ρ is a constant reflects our trust in the initial kernel vector c(0).

The KF algorithm

The KF algorithm [57,63] is a well studied algorithm that provides the optimal (mean square)
estimate of the system state vector and also has the ability to track time-varying parameters.
The KF is usually presented for state-space equations whose matrices may be time varying.

In order to construct the state space model for the ILA-I approach, the kernel vector c is
modeled as a random walk or a drift. Hence, the training filter has the following state-space
model

c(n + 1) = c(n) + v(n)

ỹ(n) = cT (n)z(n)
(3.19)

where E{v(n)vT (m)} = R1δn,m and the covariance matrix R1 describes how fast different
components of c are expected to vary.

Applying Kalman filter to the state-space model (3.19) gives the following recursive algo-
rithm [57,63]:

e(n) = cT (n)(x(n) − z(n))

k(n) = (1 + zT (n)P (n − 1)z(n))−1P (n − 1)z(n)

P (n) = P (n − 1) − k(n)zT (n)P (n − 1) + R1

c(n + 1) = c(n) + k(n)e(n)

(3.20)

The design variable R1 plays a similar role as the forgetting factor λ in the RLS algorithm
(3.18). In case of tracking time variations of the Volterra kernels, λ should be small or R1

should be large. On the other hand, for small variances of time-invariant kernels, λ should
be close to 1 or R1 close to zero.

49

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

The RPEM algorithm

The RPEM algorithm [57,63] is derived by the minimization of the cost function

V (c) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(3.21)

where e(n, c) is the prediction error defined as

e(n) = y(n) − ỹ(n). (3.22)

The formulation of the RPEM algorithm requires the negative gradient of e(n) w.r.t. c(n).
Thus using (3.6) and (3.11), we have

ϕT (n) = −∇c(n)e(n) = ∇c(n)ỹ(n) = zT (n). (3.23)

Hence, the RPEM algorithm [57,63] follows as

e(n) = y(n) − cT (n)z(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕT (n)P (n − 1)

)
/λ(n)

c(n + 1) = c(n) + P (n)ϕ(n)e(n).

(3.24)

Here λ(n) is a forgetting factor grows exponentially to 1 as n → ∞ where the rate λ0 and
the initial value λ(0) and P (0) are design variables.
Remark 3.1: In case of predistortion of time-varying nonlinear systems, the RPEM algo-
rithm of (3.24) can be modified to:

e(n) = y(n) − cT (n)z(n)

s(n) = ϕT (n)P (n − 1)ϕ(n) + r2

P (n) = P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕT (n)P (n − 1) + R3

c(n + 1) = c(n) + P (n)ϕ(n)e(n)

(3.25)

where r2 and R3 are the gain design variables, see [57]. This modification transforms the
algorithm into a special case of the KF algorithm.
Remark 3.2: Since our system model is linear in parameters, the gradient calculation in
(3.23) leads to ϕ(n) = z(n). Hence, the two algorithms (3.20) and (3.25) are expected to
perform similarly. An identical performance of these two algorithms is obtained in case the
design variables are chosen as r2 = 1 and R3 = R1. Also, the RLS algorithm in (3.19) can
be obtained exactly from the RPEM algorithm in (3.25) by setting λ0 = 1 and λ(0) = λ.

Simulation Study

In this section, a comparison study of the RLS, KF and RPEM algorithms is given using
computer simulations. The nonlinear physical system H is a known second-order Volterra
system and the input-output relation of H was chosen identical to Section 2.2.4 as

z(n) = H [y(n)] = hT
1 y1(n) + hT

2 y2(n). (3.26)

50

3.2. Predistortion of Volterra Systems

λ0 λ P (0) R1

RLS 1 - 103I -

KF - - 103I 10−5I

RPEM 0.99 0.95 103I -

Table 3.1 Initialization of the RLS, KF and RPEM algorithms.

where the first-order kernel vector h1 was

h1 =
(

0.5625 0.4810 0.1124 −0.1669
)

(3.27)

and the second-order kernel vector h2 was

h2 = (0.0175 0 0 0 0 − 0.0088 0 − 0.0088 0) . (3.28)

The predistorter C and the training filter C̃ are also assumed to be second-order Volterra
systems. This means that q = p = 2. Also, the number of memory in the training filter and
predistorter was chosen as M̂1 = M̂2 = 4.

The number of independent experiments was 100 and in each experiment, the input signal
to the predistorter was chosen as a random signal with uniform distribution over (−1, 1) with
data length 2 × 103. The bandwidth of the input signal was limited by a low-pass filter in
order to prevent aliasing [13] and the normalized cut-off frequency of this filter is chosen as
π
4 . The reference signal r(n) was chosen to be equal to the input signal x(n) in additive white
Gaussian noise (AWGN) such that a signal to noise ratio (SNR) of 40 dB was achieved.

The MSD comparison between the RLS, KF and RPEM algorithms is given in Fig. 3.2.
The algorithms were initialized as in Table 3.1. The MSD of the nonlinear physical system
without predistorter was about −16 dB. On average, these algorithms converge after about
300 samples and the achieved values of ED are about −40 dB.

Figure 3.3 shows the mean PSDs of the output signals of the nonlinear physical system
without and with predistorter after 2 × 103 samples. From this figure, we can see that with
predistorter, there is a significant spectral regrowth reduction in the normalized frequency
band (0.30π, 0.55π). The RPEM algorithm has a little better performance than the RLS
and KF algorithms. Therefore, from this simulation, we can say that for predistortion of
time-invariant Volterra systems, the RLS, KF and RPEM algorithm can achieve similar
performance with similar converge speed and computational complexity. Compared to the
simulation results in Figs. 2.4 and 2.16, these algorithms can achieve similar performance as
the NFxRLS, NFxPEM algorithms and the SMM method (up to 30 dB reduction).

3.2.2. The ILA-II approach

The ILA-II approach [9] for predistortion of Volterra systems is shown in Fig. 3.4. The
nonlinear physical system H is a qth-order Volterra system with M memories, and H can be
be divided into two subsystems, one is the purely linear subsystem HL and the other is the
purely nonlinear subsystem HN . Hence, the output of this system z(n) is given by

z(n) = H[y(n)] = HL[y(n)] + HN [y(n)]

= hT y(n) = hT
LyL(n) + hT

NyN (n) (3.29)

51

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

0 500 1000 1500 2000
−50

−40

−30

−20

−10

0

10

Samples

E
D

 (
dB

)

Without pred.
RLS
KF
RPEM

Figure 3.2 MSD ED for different adaptation algorithms.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
RLS
KF
RPEM

Figure 3.3 Mean PSDs for different adaptation algorithms.

52

3.2. Predistortion of Volterra Systems

+
+

−

+

+

+

+

−

−

Predistorter

Adaptive FIR filters

Linear FIR filterNonlinear FIR filter

Adaptive linear FIR filter

Estimation of

System identification of

Volterra system

+

+

−

Adaptation algorithm

Adaptation algorithm

z
−τ ′

z
−τ ′

Ĥ−1
L

H

Ĥ−1
L

ĤN

ĤL, ĤN

H−1
L

H

x(n)

eh(n)

eo(n)

y(n)

o(n)

ẑ(n)

z(n)

d(n)

e(n)

Figure 3.4 The ILA-II approach for predistortion of Volterra systems.

where the kernel vector h is defined as

h =
(

hT
L hT

N

)T
, (3.30)

hL =
(

h0 h1 · · · hM−1

)T
, (3.31)

hN =
(

h0,0 h0,1 · · · hM−1,··· ,M−1

)T
, (3.32)

and the corresponding input vector y(n) is given by

y(n) =
(

yT
L(n) yT

N (n)
)T

, (3.33)

yL(n) =

y(n)
y(n − 1)

...
y(n − M + 1)

 , (3.34)

yN (n) =

y2(n)
y(n)y(n − 1)

...
yq(n − M + 1)

 . (3.35)

Another Volterra system Ĥ with pth-order and M̂ memories is used to identify H. Sim-
ilarly, ĥ can also be divided into the purely linear subsystem ĤL and the purely nonlinear
subsystem ĤN . The output signal ẑ(n) can be written as

ẑ(n) = Ĥ[y(n)] = ĤL[y(n)] + ĤN [y(n)]

= ĥ
T
(n)ŷ(n) = ĥ

T

L(n)ŷL(n) + ĥ
T

N (n)ŷN (n) (3.36)

53

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

where the kernel vector ĥ(n) is defined as

ĥ(n) =
(

ĥ
T

L(n) ĥ
T

N (n)

)T

, (3.37)

ĥL(n) =
(

ĥ0(n) ĥ1(n) · · · ĥcM−1
(n)

)T

, (3.38)

ĥN (n) =
(

ĥ0,0(n) ĥ0,1(n) · · · ĥcM−1,··· ,cM−1
(n)

)T

, (3.39)

and the corresponding input vector ŷ(n) is given by

ŷ(n) =
(

ŷT
L(n) ŷT

N (n)
)T

, (3.40)

ŷL(n) =

y(n)
y(n − 1)

...

y(n − M̂ + 1)

 , (3.41)

ŷN (n) =

y2(n)
y(n)y(n − 1)

...

yp(n − M̂ + 1)

 . (3.42)

Remark 3.3: The choice of an appropriate model order p with M̂ memories is needed for
accurate identification of the system H. The ideal values are p = q and M̂ = M . Choice of
higher or lower model orders leads to over or under-parameterization, respectively. See the
parsimony principle in [63].

The inverse of the linear FIR filter, H−1
L , is also required to design the predistorter and it

is estimated using an adaptive linear FIR filter Ĥ−1
L with K memories. The output signal of

this filter can be written as

o(n) = Ĥ−1
L [z(n)] =

[
ĥ
−1

L (n)
]T

z(n) (3.43)

where

ĥ
−1

L (n) =
(

ĥ−1
0 (n) · · · ĥ−1

K−1(n)
)T

(3.44)

z(n) =
(

z(n) · · · z(n − K + 1)
)T

. (3.45)

Note that the −1 in ĥ−1
j (n) does not represent the inverse of the coefficient ĥj(n), and it just

denotes that ĥ−1
j (n) is the element of the vector ĥ

−1

L (n).

As suggested in [9], the predistorter is constructed by the copies of ĤN and Ĥ−1
L after the

adaptive filters have been running for a sufficient time T and get close to convergence.
Remark 3.4: During the time T , the signal y(n) is equal to the input x(n). Once the
predistorter is constructed, the signal y(n) becomes

y(n) = x(n − τ ′) − Ĥ−1
L

[
ĤN [x(n)]

]
. (3.46)

54

3.2. Predistortion of Volterra Systems

Now, from (3.29) and (3.46), we have

z(n) = HL[y(n)] + HN [y(n)]

= HL

[
x(n − τ ′) − Ĥ−1

L

[
ĤN [x(n)]

]]

+HN

[
x(n − τ ′) − Ĥ−1

L

[
ĤN [x(n)]

]]
. (3.47)

Assuming that we have obtained accurate estimates for HN and H−1
L , we have

Ĥ = H (3.48)

Ĥ−1
L = H−1

L (3.49)

where H−1
L HL = z−τ ′

and z−τ ′

x(n) = x(n − τ ′) [9]. Therefore, z(n) can be written as

z(n) = HL

[
x(n − τ ′) − H−1

L [HN [x(n)]]
]

+HN

[
x(n − τ ′) − H−1

L [HN [x(n)]]
]
. (3.50)

For weakly nonlinear systems, we have [9]

|HL[x(n)]| ≫ |HN [x(n)]|,

|x(n − τ ′)| ≫ |H−1
L [HN [x(n)]] |.

(3.51)

Substituting (3.51) in (3.50) gives

z(n) ≈ HL

[
x(n − τ ′)

]
− HL

[
H−1

L [HN [x(n)]]
]
+ HN

[
x(n − τ ′)

]

= HL

[
x(n − τ ′)

]
− HN

[
x(n − τ ′)

]
+ HN

[
x(n − τ ′)

]

= HL[x(n − τ ′)] = d(n) (3.52)

where d(n) is the desired signal.

Estimation of HN and H−1
L Using The LMS Algorithm

The parameter vector ĥ is estimated in [9] using the LMS algorithm as follows:

ĥ(n + 1) = ĥ(n) + µeh(n)ŷ(n) (3.53)

where µ is the step size and eh(n) is the error signal defined as

eh(n) = z(n) − ẑ(n). (3.54)

The coefficients of Ĥ−1
L are also estimated in [9] using the LMS algorithm as

ĥ
−1

L (n + 1) = ĥ
−1

L (n) + µeo(n)z(n) (3.55)

where eo(n) is the error signal defined as

eo(n) = y(n − τ ′) − o(n). (3.56)

As it is clear from (3.52), the efficiency of the suggested linearization scheme in Fig. 3.2
highly depends on the accuracy of the estimated FIR filters HN and H−1

L . However, due to the
fact that the LMS algorithm provides inaccurate estimates for the nonlinear FIR filters [33],
the performance of the linearization scheme is degraded.

55

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

Estimation of HN and H−1
L Using The RPEM Algorithm

In order to estimate the parameter vector ĥ and hence the vector ĥN to construct the
nonlinear FIR filter ĤN , the RPEM algorithm is derived by minimizing the cost function [57]

V (ĥ) = lim
N→∞

1

N

N∑

n=1

E
[
e2
h(n)

]
(3.57)

where E{.} denotes the expectation. Here, eh(n) is the prediction error defined as

eh(n) = z(n) − ẑ(n). (3.58)

The formulation of the RPEM algorithm requires the negative gradient of eh(n) w.r.t.
ĥ(n). Using (3.36), it can be written as

ϕT
h (n) = −∇bh(n)

eh(n) = ∇bh(n)
ẑ(n) = ŷT (n) (3.59)

where ŷ(n) is defined by (3.40)-(3.42). Hence, the RPEM algorithm follows as (cf. [56, 57])

eh(n) = z(n) − ẑ(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

sh(n) = ϕT
h (n)P h(n − 1)ϕh(n) + λ(n)

P h(n) =
(
P h(n − 1) − P h(n − 1)ϕh(n)s−1

h (n)ϕT
h (n)P h(n − 1)

)
/λ(n)

ĥ(n + 1) = ĥ(n) + P h(n)ϕh(n)eh(n).

(3.60)

Here λ0, the initial value λ(0) and P h(0) are design variables.
Also, the RPEM algorithm can be derived similarly to estimate the coefficients of H−1

L by
minimizing

V (ĥ
−1

L) = lim
N→∞

1

N

N∑

n=1

E
[
e2
o(n)

]
(3.61)

where eo(n) the prediction error defined as

eo(n) = y(n − τ ′) − o(n). (3.62)

The negative gradient of eo(n) w.r.t. ĥ
−1

L (n) is (cf. (3.43))

ϕT
l (n) = −∇

bh
−1

L (n)
eo(n) = ∇

bh
−1

L (n)
o(n) = zT (n). (3.63)

Hence, similarly to (3.60), the RPEM algorithm follows as:

eo(n) = y(n − τ ′) − o(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

sl(n = ϕT
l (n)P l(n − 1)ϕl(n) + λ(n)

P l(n) =
(
P l(n − 1) − P l(n − 1)ϕl(n)s−1

l (n)ϕT
l (n)P l(n − 1)

)
/λ(n)

ĥ
−1

L (n + 1) = ĥ
−1

L (n) + P l(n)ϕl(n)eo(n).

(3.64)

56

3.2. Predistortion of Volterra Systems

Simulation Study

In this section, a simulation study for the performance of the predistortion using the ILA-II
approach in case of using the LMS algorithm or the RPEM algorithm is given.

The nonlinear physical system H was a known second-order Volterra system and the first-
order kernel vector h1 and the second-order kernel vector h2 of H were defined identical to
Section 2.2.4. The adaptive filter Ĥ was chosen as a 2nd-order Volterra system with memory
length M̂ = 4. Ĥ−1

L was chosen as an adaptive linear FIR filter with memory length K = 8,
which can achieve the best performance based on large number of experiments for different
values.

The input signal to the predistorter x(n) was chosen to be a random signal with uniform
distribution over (−1, 1) and data length of 2 × 104. The system should start to copy the
coefficients of ĤN and Ĥ−1

L into the predistorter after they have converged. The bandwidth of
the input signal x(n) was limited by a low-pass filter. Before the copy process, the predistorter
is just a through connection. Thus, y(n) = x(n) and z(n) is the output of the 2nd-order
nonlinear system H. In this case, the normalized cut-off frequency of the low-pass filter
filter is chosen as π

2 thus the nonlinear physical system is fully triggered for the system
identification purpose. When the copy process starts, the predistorter is connected to the
nonlinear physical system and z(n) becomes the output of two cascaded 2nd-order nonlinear
systems. Therefore, the cut-off frequency of the low-pass filter is now chosen as π

4 in order to
prevent aliasing [13]. In another word, the sampling rate of the whole system should be the
sampling rate of the system output, which is different before and after the copy process.

As a measure of the performance of the system identification process, the normalized mean
square estimation error of the parameter vector h is defined as

EI = 10 log10

(
Ê{‖ĥ(n) − h‖2}

Ê{‖h‖2}

)
(3.65)

where Ê{.} is the mean obtained using 100 independent experiments. Moreover, from (3.52)
we can see that the desired signal that can be achieved by the ILA-II approach is the input
signal filtered by the linear subsystem HL, which means that the ILA-II approach can only
reduce the distortion caused by HN . Therefore, we define the normalized Mean Square
Nonlinear Distortion (MSND) as

END = 10 log10

(
Ê{e2(n)}

Ê{d2(n)}

)
(3.66)

where d(n) is given in (3.52) and e(n) is defined as

e(n) = d(n) − z(n). (3.67)

The comparison of EI between the LMS and RPEM algorithms is given in Fig. 3.5. The
measurement noise was AWGN with SNR=40 dB. The two algorithms were initialized with
µ = 0.1, λ0 = 0.99, λ(0) = 0.95, and P h(0) = P l(0) = I. After convergence, the RPEM
and LMS algorithms achieve about −46 dB and −40 dB, respectively. Therefore, the RPEM
algorithm provides much better estimates than the LMS algorithm.

Also, the comparison with respect to the MSND is given in Fig. 3.6. The system started
to copy the coefficients of ĤN and Ĥ−1

L into the predistorter after 1.6 × 104 input samples.

57

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

0 4000 8000 12000 16000
−60

−50

−40

−30

−20

−10

0

Samples

E
I (

dB
)

LMS
RPEM

Figure 3.5 EI comparison between the LMS and RPEM algorithms before
copying.

The END of the nonlinear physical system without the predistorter was about −46 dB. As
from the previous development of [9] and further elaborated in [70], the performance of the
ILA-II approach is limited by the fact that the uncompensated residual with predistorter is of
the order of the square of the original nonlinear component, i.e., the ideal MSND value that
the system with predistorter can achieve should be double of the MSND value of the system
without predistorter. As it is shown in Fig. 3.6, the RPEM algorithm gives much lower
nonlinear distortion than the LMS algorithm. On average, the RPEM and LMS algorithms
achieve about −72 dB and −56 dB, respectively.

Figure 3.7 shows the mean PSDs of the output signals of the nonlinear physical system
without and with the predistorter after 2 × 104 samples. From this figure, we can see that
the RPEM algorithm reduces spectral regrowth more effectively as compared to the LMS
algorithm. Compared to the simulation results in Figs. 2.4, 2.16 and 3.3, the ILA-II approach
using the RPEM algorithm can achieve similar performance as the previous algorithms (up
to 40 dB reduction).

3.3. Predistortion of Wiener Systems

In this section, the adaptation algorithm for predistortion of Wiener systems using the ILA-I
approach is introduced. The RPEM algorithm is derived and simulation results are given to
verify the effectiveness of the suggested the algorithm.

58

3.3. Predistortion of Wiener Systems

1.6 1.7 1.8 1.9 2
x 10

4

−100

−90

−80

−70

−60

−50

−40

−30

−20

Samples

E
N

D
 (

dB
)

Without pred.
LMS
RPEM

Figure 3.6 END for different adaptation algorithms after copying.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
LMS
RPEM

Figure 3.7 Mean PSDs for different adaptation algorithms.

59

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

Hammerstein training filter

+

+

−

Wiener systemHammerstein predistorter

e(n)

x(n)
F

y2(n)y(n) z(n)

ỹ(n) z2(n)

x2(n)
H(z−1)G(n)

G(n)P (n, z−1)

P (n, z−1)

Figure 3.8 The ILA-I approach for predistortion of Wiener systems.

3.3.1. The ILA-I approach

The ILA-I approach for predistortion of Wiener systems is shown in Fig. 3.8. The output of
the IIR Wiener system is

z(n) = f1y2(n) + f2y
2
2(n) + · · · + fmf

y
mf

2 (n)

= fT y2(n) (3.68)

where f is the parameter vector of the nonlinear subsystem F defined as

f =
(

f1 f2 · · · fmf

)T
(3.69)

and the corresponding input vector y2(n) is given by

y2(n) =
(

y2(n) y2
2(n) · · · y

mf

2 (n)
)T

. (3.70)

The intermediate signal y2(n) is defined as

y2(n) = H(z−1)y(n) =
B(z−1)

1 − A(z−1)
y(n)

=

mb∑

m=0

bmy(n − m) +

ma∑

m=1

amy2(n − m) (3.71)

where H(z−1) = B(z−1)
1−A(z−1)

is an IIR filter and the polynomials A(z−1) and B(z−1) are defined
as

A(z−1) =

ma∑

m=1

amz
−m

B(z−1) =

mb∑

m=0

bmz
−m.

(3.72)

60

3.3. Predistortion of Wiener Systems

Here z−1 is the delay operator such that z−mx(n) = x(n − m).
The training filter is modeled as a Hammerstein system and the output signal ỹ(n) is given

by

ỹ(n) = P (n, z−1)z2(n) =
D(n, z−1)

1 − C(n, z−1)
z2(n)

=

md∑

m=0

dm(n)z2(n − m) +

mc∑

m=1

cm(n)ỹ(n − m) (3.73)

where P (n, z−1) = D(n,z−1)
1−C(n,z−1)

is an IIR filter and the polynomials C(n, z−1) and D(n, z−1)

are defined as

C(n, z−1) =

mc∑

m=1

cm(n)z−m

D(n, z−1) =

md∑

m=0

dm(n)z−m.

(3.74)

The intermediate signal z2(n) is defined as

z2(n) = g1(n)z(n) + g2(n)z2(n) + · · · + gmg(n)zmg(n)

= gT (n)z(n) (3.75)

where g(n) is the parameter vector of the nonlinear subsystem G(n) defined as

g(n) =
(

g1(n) g2(n) · · · gmg(n)
)T

(3.76)

and the corresponding input vector z(n) is given by

z(n) =
(

z(n) z2(n) · · · zmg(n)
)T

. (3.77)

The predistorter is a copy of the training filter, hence the predistorter is also a Hammerstein
model with output signal y(n) given as

y(n) = P (n, z−1)x2(n) =
D(n, z−1)

1 − C(n, z−1)
x2(n)

=

md∑

m=0

dm(n)x2(n − m) +

mc∑

m=1

cm(n)y(n − m) (3.78)

where P (n, z−1) is the IIR filter with parameter vector defined as in (3.74). The intermediate
signal x2(n) is defined as

x2(n) = g1(n)x(n) + g2(n)x2(n) + · · · + gmg(n)xmg(n)

= gT (n)x(n) (3.79)

where g(n) is the parameter vector defined as in (3.76) and the corresponding input vector
x(n) is given by

x(n) =
(

x(n) x2(n) · · · xmg(n)
)T

. (3.80)

61

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

Define the parameter vector θ of the training filter as follows

θ =
(

θT
d θT

c θT
g

)T

θd =
(

d0 d1 · · · dmd

)T

θc =
(

c1 c2 · · · cmc

)T

θg =
(

g1 g2 · · · gmg

)T
.

(3.81)

The RPEM algorithm [57,63] is derived by minimization of the cost function

V (θ) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(3.82)

where e(n) is the prediction error defined as

e(n) = y(n) − ỹ(n). (3.83)

The formulation of the RPEM algorithm requires the negative gradient of e(n) with respect
to θ(n). The negative gradient ϕ(n) is defined as

ϕT (n) = −∇θ(n)e(n) = ∇θ(n)ỹ(n) =
(
∇θd(n)ỹ(n) ∇θc(n)ỹ(n) ∇θg(n)ỹ(n)

)
. (3.84)

Differentiating both sides of (3.73) with respect to dk(n) and ck(n) gives

∂ỹ(n)

∂dk(n)
= z2(n − k) +

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂dk(n)
, k = 0, 1, · · · , md

∂ỹ(n)

∂ck(n)
= ỹ(n − k) +

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂ck(n)
, k = 1, · · · , mc.

(3.85)

Since the parameter vector θ(n) is assumed to be changing slowly, we can write

∂ỹ(n − m)

∂dk(n)
≈

∂ỹ(n − m)

∂dk(n − m)
, m = 1, 2, · · · , mc

∂ỹ(n − m)

∂ck(n)
≈

∂ỹ(n − m)

∂ck(n − m)
, m = 1, 2, · · · , mc.

(3.86)

Hence, (3.85) can be rewritten as

∂ỹ(n)

∂dk(n)
≈ z2(n − k) +

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂dk(n − m)
, k = 0, 1, · · · , md

∂ỹ(n)

∂ck(n)
≈ ỹ(n − k) +

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂ck(n − m)
, k = 1, · · · , mc

(3.87)

or

∂ỹ(n)

∂dk(n)
≈

z−k

1 − C(n, z−1)
z2(n)

=
z−k

1 − C(n, z−1)

(
θT

g (n)z(n)
)
, k = 0, 1, · · · , md

∂ỹ(n)

∂ck(n)
≈

z−k

1 − C(n, z−1)
ỹ(n), k = 1, · · · , mc.

(3.88)

62

3.3. Predistortion of Wiener Systems

Similarly, differentiating both sides of (3.73) with respect to gk(n) gives

∂ỹ(n)

∂gk(n)
=

md∑

m=0

dm(n)
∂z2(n − m)

∂gk(n)
+

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂gk(n)
, k = 1, · · · , mg. (3.89)

Again because the parameter vector θ(n) is assumed to be changing slowly, we can write

∂z2(n − m)

∂gk(n)
≈

∂z2(n − m)

∂gk(n − m)
, m = 0, · · · , md

∂ỹ(n − m)

∂gk(n)
≈

∂ỹ(n − m)

∂gk(n − m)
, m = 1, · · · , mc.

(3.90)

Hence, (3.89) can be rewritten as

∂ỹ(n)

∂gk(n)
=

md∑

m=0

dm(n)
∂z2(n − m)

∂gk(n − m)
+

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂gk(n − m)

=

md∑

m=0

dm(n)zk(n − m) +

mc∑

m=1

cm(n)
∂ỹ(n − m)

∂gk(n − m)

=
D(n, z−1)

1 − C(n, z−1)
zk(n) = P (n, z−1)zk(n), k = 1, · · · , mg. (3.91)

Now, we have completely derived the gradient components and hence ϕ(n) can be written
as

ϕT (n) =
(
∇θd(n)ỹ(n) ∇θc(n)ỹ(n) ∇θg(n)ỹ(n)

)
. (3.92)

where ∇θd(n)ỹ(n), ∇θc(n)ỹ(n) and ∇θg(n)ỹ(n) are given by (3.88) and (3.91), respectively.
The RPEM algorithm [57,63] follows as

e(n) = y(n) − ỹ(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕ(n)T P (n − 1)

)
/λ(n)

θ(n + 1) = θ(n) + P (n)ϕ(n)e(n)

(3.93)

where λ0, the initial value λ(0) and P (0) are design variables.

3.3.2. Simulation study

The simulation study for the performance of the RPEM algorithm is given in this section.
The IIR Wiener system in Section 2.3.4 was considered:

z(n) = y2(n) + 0.25y2
2(n) + 0.125y3

2(n)

y2(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y(n)

(3.94)

The orders of the linear and nonlinear blocks of the IIR Hammerstein predistorter were
chosen the same as in Section 2.3.4 as mc = 3, md = 3 and mg = 9. The number of

63

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

independent experiments was 100 and in each experiment, the input signal was chosen to be
a random signal with uniform distribution over (−1, 1) and data length of 4×103 samples. The
bandwidth of the input signal was limited by a low-pass filter in order to prevent aliasing [13]
and the normalized cut-off frequency of this filter is chosen as π

5 . The output measurement
noise was considered as AWGN with SNR=40 dB.

The parameter vectors θ were initialized as

θd(0) =
(

1 0 0 0
)T

θc(0) =
(

0 0 0
)T

θg(0) =
(

1 0 · · · 0
)T

.

(3.95)

Figure 3.9 gives the MSD of the RPEM algorithm. The MSD of the IIR Wiener system
without predistorter was about −18 dB. The matrix P(0) is chosen as I, λ0 = 0.99 and
λ(0) = 0.95 for the RPEM algorithms. On average, the RPEM algorithm converges after
about 250 samples and the achieved value of ED is about −40 dB.

Figure 3.10 shows the mean PSDs of the output signals of the IIR Wiener system without
and with predistorter after 4× 103. From this figure, we can see that using the RPEM algo-
rithm, the spectral regrowth in the normalized frequency band (0.25π, 0.60π) is significantly
reduced (up to 40 dB). Compared to the simulation results in Figs. 2.8 and 2.18, the RPEM
algorithm can achieve similar performance as the NFxPEM algorithms and SMM method
(up to 40 dB reduction).

3.4. Predistortion of Hammerstein Systems

In this section, the adaptation algorithm for predistortion of Hammerstein systems using the
ILA-I approach is introduced. The RPEM algorithm is derived and simulation results are
given to verify the algorithm.

3.4.1. The ILA-I approach

The ILA-I approach for predistortion of Hammerstein systems is shown in Fig. 3.11. The
output of the Hammerstein system is

z(n) = H(z−1)y2(n) =
B(z−1)

1 − A(z−1)
y2(n)

=

mb∑

m=0

bmy2(n − m) +

ma∑

m=1

amz(n − m) (3.96)

where H(z−1) = B(z−1)
1−A(z−1)

is an IIR filter and the polynomials A(z−1) and B(z−1) are defined
as

A(z−1) =

ma∑

m=1

amz
−m

B(z−1) =

mb∑

m=0

bmz
−m.

(3.97)

64

3.4. Predistortion of Hammerstein Systems

0 1000 2000 3000 4000
−50

−40

−30

−20

−10

0

10

Samples

E
D

 (
dB

)

Without pred.
RPEM

Figure 3.9 MSD ED: without and with predistorter.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
RPEM

Figure 3.10 Mean PSDs: without and with predistorter.

65

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

The intermediate signal y2(n) is defined as

y2(n) = g1y(n) + g2y
2(n) + · · · + gmgy

mg(n)

= gT y(n) (3.98)

where g is the parameter vector of the nonlinear subsystem G defined as

g =
(

g1 g2 · · · gmg

)T
(3.99)

and the corresponding input vector y(n) is given by

y(n) =
(

y(n) y2(n) · · · ymg(n)
)T

. (3.100)

+

+

−

Wiener predistorter Hammerstein system

Wiener training filter

e(n)

x(n) y2(n)y(n) z(n)

ỹ(n) z2(n)

x2(n)
GP (n, z−1) H(z−1)

P (n, z−1)

F (n)

F (n)

Figure 3.11 The ILA-I approach for predistortion of Hammerstein systems.

The training filter is considered an IIR Wiener system with the output given as

ỹ(n) = f1(n)z2(n) + f2(n)z2
2(n) + · · · + fmf

z
mf

2 (n)

= fT (n)z2(n) (3.101)

where f(n) is the parameter vector of the nonlinear subsystem F (n) defined as

f(n) =
(

f1(n) f2(n) · · · fmf
(n)

)T
(3.102)

and the corresponding input vector z2(n) is given by

z2(n) =
(

z2(n) z2
2(n) · · · z

mf

2 (n)
)T

. (3.103)

The intermediate signal z2(n) is given by

z2(n) = P (n, z−1)z(n) =
D(n, z−1)

1 − C(n, z−1)
z(n)

=

md∑

m=0

dm(n)z(n − m) +

mc∑

m=1

cm(n)z2(n − m). (3.104)

66

3.4. Predistortion of Hammerstein Systems

where P (n, z−1) = D(n,z−1)
1−C(n,z−1)

is an IIR filter and the polynomials C(n, z−1) and D(n, z−1)

are defined as

C(n, z−1) =

mc∑

m=1

cm(n)z−m

D(n, z−1) =

md∑

m=0

dm(n)z−m.

(3.105)

The predistorter is a copy of the training filter, hence the predistorter is also an IIR Wiener
model with output signal y(n) given as

y(n) = f1(n)x2(n) + f2(n)x2
2(n) + · · · + fmf

x
mf

2 (n)

= fT (n)x2(n) (3.106)

where f(n) is the parameter vector defined as in (3.102) and the corresponding input vector
x2(n) is given by

x2(n) =
(

x2(n) x2
2(n) · · · x

mf

2 (n)
)T

. (3.107)

The intermediate signal x2(n) is given by

x2(n) = P (n, z−1)x(n) =
D(n, z−1)

1 − C(n, z−1)
x(n)

=

md∑

m=0

dm(n)x(n − m) +

mc∑

m=1

cm(n)x2(n − m). (3.108)

where P (n, z−1) = D(n,z−1)
1−C(n,z−1)

is the IIR filter with the polynomials C(n, z−1) and D(n, z−1)

defined as in (3.105).
Let us define the parameter vector θ of the training filter as follows

θ =
(

θT
f θT

d θT
d

)T

θf =
(

f1 f2 · · · fmf

)T

θd =
(

d0 d1 · · · cmd

)T

θc =
(

c1 c2 · · · dmc

)T

(3.109)

The RPEM algorithm [57,63] is derived by a minimization of the cost function

V (θ) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(3.110)

where e(n) is the prediction error defined by

e(n) = y(n) − ỹ(n). (3.111)

The formulation of the RPEM algorithm requires the negative gradient of e(n) with respect
to θ(n). The negative gradient ϕ(n) is defined as

ϕT (n) = −∇θ(n)e(n) = ∇θ(n)ỹ(n) =
(
∇θf (n)ỹ(n) ∇θd(n)ỹ(n) ∇θc(n)ỹ(n)

)
. (3.112)

67

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

From (3.101), we have

∇θf (n)ỹ(n) = zT
2 (n) =

z2(n)
...

z
mf

2 (n)

T

. (3.113)

Since the intermediate signal z2(n) is not measurable, it can be evaluated using the value of
θd(n) and θc(n). Hence, (3.113) becomes

∇θf (n)ỹ(n) =

[
D(n,z−1)
C(n,z−1)

z(n)
]

...[
D(n,z−1)
C(n,z−1)

z(n)
]mf

T

=

[
P (n, z−1)z(n)

]

...[
P (n, z−1)z(n)

]mf

T

(3.114)

Differentiating both sides of (3.101) with respect to θc(n) and θd(n) gives

∇θd(n)ỹ(n) = θT
f (n)∇z2(n)z2(n)∇θd(n)z2(n) = s3(n)∇θd(n)z2(n)

∇θc(n)ỹ(n) = θT
f (n)∇z2(n)z2(n)∇θc(n)z2(n) = s3(n)∇θc(n)z2(n)

(3.115)

where

s3(n) = θT
f (n)∇z2(n)z2(n) = θT

f (n)

1
2z2(n)

...

mfz
mf−1
2 (n)

= θT
f (n)

1
2
[
P (n, z−1)z(n)

]

...

mf

[
P (n, z−1)z(n)

]mf−1

 . (3.116)

Now, it remains to derive ∇θd(n)z2(n) and ∇θc(n)z2(n). Differentiating both sides of (3.104)
with respect to dk(n) and ck(n) gives

∂z2(n)

∂dk(n)
= z(n − k) +

mc∑

m=1

cm(n)
∂z2(n − m)

∂dk(n)

∂z2(n)

∂ck(n)
= z2(n − k) +

mc∑

m=1

cm(n)
∂z2(n − m)

∂ck(n)
.

(3.117)

Assuming that the parameter vector θ(n) is changing slowly [23,26], we can write

∂z2(n − m)

∂dk(n)
≈

∂z2(n − m)

∂dk(n − m)
, m = 1, 2, · · · , mc

∂z2(n − m)

∂ck(n)
≈

∂z2(n − m)

∂ck(n − m)
, m = 1, 2, · · · , mc.

(3.118)

68

3.4. Predistortion of Hammerstein Systems

Hence, (3.117) can be rewritten as

∂z2(n)

∂dk(n)
≈ z(n − k) +

mc∑

m=1

cm(n)
∂z2(n − m)

∂dk(n − m)

∂z2(n)

∂ck(n)
≈ z2(n − k) +

mc∑

m=1

cm(n)
∂z2(n − m)

∂ck(n − m)

(3.119)

or

∂z2(n)

∂dk(n)
≈

z−k

1 − C(n, z−1)
z(n), k = 0, 1, · · · , md

∂z2(n)

∂ck(n)
≈

z−k

1 − C(n, z−1)
z2(n)

=
z−k

1 − C(n, z−1)

[
P (n, z−1)z(n)

]
, k = 1, · · · , mc.

(3.120)

Now, we have completely derived the components of ∇θ(n)ỹ(n) in (3.112) and hence ϕ(n)
can be written as

ϕT (n) =
(
∇θf (n)ỹ(n) s3(n)∇θd(n)z2(n) s3(n)∇θc(n)z2(n)

)
(3.121)

where s3(n) is calculated in (3.116), and ∇θf (n)ỹ(n), ∇θd(n)z2(n) and ∇θc(n)z2(n) are given
by (3.114) and (3.120), respectively. The RPEM algorithm [57,63] follows as

e(n) = y(n) − ỹ(n)

λ(n) = λ0λ(n − 1) + 1 − λ0

s(n) = ϕT (n)P (n − 1u)ϕ(n) + λ(n)

P (n) =
(
P (n − 1) − P (n − 1)ϕ(n)s−1(n)ϕ(n)T P (n − 1)

)
/λ(n)

θ(n + 1) = θ(n) + P (n)ϕ(n)e(n).

(3.122)

3.4.2. Simulation study

The simulation study for the performance of the RPEM algorithm is given in this section.
The IIR Hammerstein system in Section 2.4.3 was considered:

z(n) =
0.72 + 1.51z−1 + 1.04z−2 + 0.26z−3

1 + 1.46z−1 + 0.89z−2 + 0.18z−3
y2(n)

y2(n) = y(n) + 0.25y2(n) + 0.125y3(n).

(3.123)

The order of the linear and nonlinear blocks of the IIR Wiener predistorter were chosen the
same as in Section 2.4.3 as mc = 3, md = 3 and mf = 9, respectively. The number of
independent experiments was 100 and in each experiment, the input signal was a random
signal with uniform distribution over (−1, 1) with data length of 5 × 103 samples. The
bandwidth of the input signal was limited by a low-pass filter in order to prevent aliasing [13]
and the normalized cut-off frequency of this filter is chosen as π

5 . The output measurement
noise was considered as AWGN with SNR=40 dB.

69

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

The parameter vectors θ were initialized as

θf (0) =
(

1 0 · · · 0
)T

θd(0) =
(

1 0 0 0
)T

θc(0) =
(

0 0 0
)T

.

(3.124)

Figure 3.12 gives the MSD of the RPEM algorithm. The MSD of the IIR Hammerstein
system without predistorter was about −17 dB. The matrix P(0) is chosen as I, λ0 = 0.99
and λ(0) = 0.95 for the RPEM algorithms. On average, the RPEM algorithm converges after
about 250 samples and the achieved value of ED is about −40 dB.

Figure 3.13 shows the mean PSDs of the output signals of the IIR Hammerstein system
without and with predistorter after 5× 103 samples. From this figure, we can see that using
the RPEM algorithm, there is a significant spectral regrowth reduction in the normalized
frequency band (0.25π, 0.65π). Compared to the simulation results in Figs. 2.11 and 2.20,
the RPEM algorithm can achieve similar performance as the NFxPEM algorithms and SMM
method (up to 60 dB reduction).

3.5. Summary

Adaptive predistortion of nonlinear physical systems using the ILA approach is introduced
in this chapter. The coefficients of the predistorter can be estimated using different time
domain adaptation algorithms.

The ILA-I approach can be applied for predistortion of different nonlinear systems, such
as Volterra, Wiener and Hammerstein systems. For the predistortion of Volterra systems,
both the training filter and predistorter are modeled as Volterra systems. The predistorter
is a copy of the training filter, and the RLS, KF and RPEM algorithms can be used to
estimate the coefficients of the training filter. These algorithms have similar performance
and the predistorter can efficiently reduce the spectral regrowth caused by the nonlinear
physical system. The RPEM algorithm can also be used for predistortion of Wiener and
Hammerstein systems. From the simulation, we can see that the RPEM algorithm has very
fast convergence speed, as well as good performance in reducing the nonlinear distortion in
the time domain and the spectral regrowth in the frequency domain.

If the nonlinear physical system is a weakly nonlinear system and it can be divided into
two subsystems: the sum of a purely linear subsystem and a purely nonlinear subsystem.
In this way, the ILA-II approach can be applied to construct the predistorter and estimate
its coefficients. The LMS algorithm is a widely used adaptation algorithm to estimate the
coefficients for the predistorter, however, the slow convergence speed and inaccurate estimates
degrade the performance of the predistorter. The proposed RPEM algorithm has much
faster convergence speed and can obtain more accurate estimates - hence greatly improve the
performance of the predistorter.

70

3.5. Summary

0 1000 2000 3000 4000 5000
−50

−40

−30

−20

−10

0

10

Samples

E
D

 (
dB

)

Without pred.
RPEM

Figure 3.12 MSD ED: without and with predistorter.

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
RPEM

Figure 3.13 Mean PSDs: without and with predistorter.

71

Chapter 3. Predistortion Using the Indirect Learning Architecture (ILA)

72

Chapter4
Adaptive Predistorter Design

The adaptive predistorter design is discussed in this chapter. First, we propose the General
Gradient Calculation Architecture (GGCA) for the adaptive predistortion using different
learning architectures and algorithms. Then, some additional aspects of adaptive predistorter
design are summarized and comparisons of all adaptation algorithms are given.

4.1. General Gradient Calculation Architecture

As introduced in Chapter 2 and Chapter 3, there are two learning architectures for estimating
the coefficients of the predistorter, which are the direct learning architecture (DLA) and the
indirect learning architecture (ILA). In this section, we will focus on the DLA and ILA-I
approaches.

Several adaptation algorithms based on the DLA and ILA-I approaches have been proposed,
see Table 4.1. Normally, the adaptation algorithms for the DLA approach need to calculate
the gradient of the output signal of the nonlinear physical system w.r.t. the coefficients of
the predistorter, while the adaptation algorithms for the ILA-I approach need to calculate
the gradient of the output signal of the training filter w.r.t. its coefficients. However, the
common ground of the gradient calculation for all these algorithms has not been considered
in the literature before. If a common architecture for the gradient calculation can be defined,
then all the corresponding adaptation algorithms can use this architecture directly as a black
box, without dealing with the detail design for gradient calculation.

In the following sections, a GGCA is proposed for adaptive predistortion of different non-
linear physical systems, such as Volterra, Wiener and Hammerstein systems, respectively. In
each section, the gradient vector required the adaptation algorithms for the DLA and ILA-I
approaches are summarized and then the related GGCA is proposed. There are separate out-

Learning architecture Adaptation algorithms

DLA NFxLMS, NFxLMS-ISE, NFxRLS, NFxPEM, NFxPEM-ISE

ILA-I LMS, RLS, KF, RPEM

Table 4.1 Adaptation algorithms for the DLA and ILA-I approaches.

73

Chapter 4. Adaptive Predistorter Design

puts in the GGCA, providing the gradient calculation required in the adaptation algorithms
for the DLA and ILA-I approaches.

4.1.1. Architecture for predistortion of Volterra systems

The DLA approach

+

_ +

Volterra predistorter Volterra system

Adaptation algorithm
e(n)

r(n)

y(n) z(n)x(n)
HC(n)

Figure 4.1 The DLA approach for predistortion of Volterra systems.

The DLA approach for predistortion of Volterra systems is shown in Fig. 4.1. The nonlinear
physical system H is a qth-order Volterra system, and the predistorter C(n) is a pth-order
Volterra system with the same definition as in Section 2.2.

Based on the analysis in Section 2.2.1 to 2.2.3, all the adaptation algorithms, such as
NFxLMS, Nonlinear Filtered-x Recursive Least Squares (NFxRLS) and NFxPEM algorithms,
need to calculate the gradient of the output signal z(n) w.r.t. the parameter vector of the
predistorter c(n). Therefore, we can define the gradient vector ϕg(n) as

ϕT
g (n) = ∇c(n)z(n) =

M−1∑

r=0

g(r; n)∇c(n)y(n − r) =
M−1∑

r=0

g(r; n)xT (n − r)

= G(n, z−1)xT (n) (4.1)

where G(n, z−1) denotes the Finite Impulse Response (FIR) filter defined as

G(n, z−1) = g(0; n) + g(1; n)z−1 + · · · + g(M − 1; n)z−M+1. (4.2)

Here, z−1 is the delay operator such that z−mx(n) = x(n − m) and g(r; n) is defined as

g(r; n) =
∂z(n)

∂y(n − r)
= h1(r) + 2

M2−1∑

i=0

h2(r, i)y(n − i) +

3

M3−1∑

i1=0

M3−1∑

i2=0

h3(r, i1, i2)y(n − i1)y(n − i2) + · · · (4.3)

Note that here we define the gradient vector as ϕg(n) in order to distinguish it from the
gradient vector ϕ(n) defined in the next section.

The ILA-I approach

The ILA-I approach for predistortion of Volterra systems is shown in Fig. 4.2. The training
filter C̃(n) is defined as in Section 3.2.1.

74

4.1. General Gradient Calculation Architecture

+

+

−

Volterra predistorter Volterra system

Volterra training filter

H
z(n)

e(n)

ỹ(n)

y(n)x(n)
C(n)

C̃(n)

Figure 4.2 The ILA-I approach for predistortion of Volterra systems.

From the analysis in Section 3.2.1, all the adaptation algorithms, such as the Recursive
Least Squares (RLS), Kalman Filter (KF) and RPEM algorithms, need the gradient of the
signal ỹ(n) w.r.t. the parameter vector of the training filter c(n). The gradient vector ϕ(n)
is given by

ϕT (n) = ∇c(n)ỹ(n) = zT (n). (4.4)

The GGCA for predistortion of Volterra systems

From (4.1) and (4.4), we can see that the calculation results of ∇c(n)y(n− r) and ∇c(n)ỹ(n)
are just data vectors. Also, ϕg(n) can be obtained by filtering the data vector using the FIR
filter G(n, z−1). Therefore, the GGCA for predistortion of Volterra systems can be given as
in Fig. 4.3.

Data Combiner

for ILA−I

for DLA

SIPO SR

(DLA)

(ILA−I)
x(n)

z(n)

G(n, z−1)

Figure 4.3 The GGCA for predistortion of Volterra systems.

In order to calculate the gradient vector ϕ(n) in the ILA-I approach, the input signal z(n)
is first buffered by the Single Input Parallel Output Shift Register (SIPO SR) with memory
length M , shown in Fig. 4.4. The output of the SIPO SR is the data vector z1(n), defined as

z1(n) = (z(n) z(n − 1) · · · z(n − M + 1)) .

75

Chapter 4. Adaptive Predistorter Design

Parallel Output

z
−1

z
−1

z
−1

z(n)

z(n)

z(n − 1) z(n − 2) z(n − M + 1)
· · ·

Figure 4.4 SIPO SR.

(DLA)
(ILA−I)

(DLA)
(ILA−I)

(DLA)
(ILA−I)

(DLA)
(ILA−I)

(DLA)
(ILA−I)

Parallel Output

x1(n)

z1(n)

x2(n)

z2(n)

xp(n)

zp(n)

x(n)

z(n)

x1(n)

z1(n)

· · ·

· · ·

Figure 4.5 Data combiner.

Then, the output of the SIPO SR, z1(n), is processed by a data combiner in order to construct
the input vector z(n) defined in (3.9). The structure of the data combiner is given in Fig. 4.5,
where zk(n) is the input vector for the kth-order Volterra kernel defined in (3.10). Since the
gradient vector ϕ(n) = z(n), the data vector z(n) can be used directly in the adaptation
algorithms of the ILA-I approach.

Similarly, using the input signal x(n) generates the data vector x(n) defined in (2.15), and
the gradient vector ϕg(n) in the DLA approach can be obtained by filtering the data vector
x(n) using the FIR filter G(n, z−1).

4.1.2. Architecture for predistortion of Wiener systems

The DLA approach

The DLA approach for predistortion of Wiener systems is shown in Fig. 4.6. The IIR Wiener
system and the IIR Hammerstein predistorter are defined as in Section 2.3. Also, θ is defined
as the parameter vector of the predistorter, see (2.52).

Based on the analysis in Section 2.3.1 to 2.3.3, we can define the gradient vector ϕh(n) as

ϕT
h (n) = s1(n)

(
∇θd(n)y(n) ∇θc(n)y(n) ∇θg(n)y(n)

)
(4.5)

where s1(n) is calculated in (2.56), and ∇θd(n)y(n), ∇θc(n)y(n) and ∇θg(n)y(n) are given
by (2.65) and (2.68), respectively. Here, ϕh(n) is required in both NFxLMS and NFxPEM
algorithms. Substituting H(z−1) and f by the initial subsystem estimates Ĥ(z−1) and f̂ ,

76

4.1. General Gradient Calculation Architecture

Hammerstein predistorter Wiener system

+

−

Adaptation algorithm

x(n) x2(n) y2(n) z(n)

r(n)

e(n)

y(n)
FP (n, z−1) H(z−1)G(n)

Figure 4.6 The DLA approach for predistortion of Wiener systems.

ϕh(n) can also be used in the NFxLMS with Initial Subsystem Estimates (NFxLMS-ISE)
and NFxPEM-ISE algorithms.

The ILA-I approach

Hammerstein training filter

+

+

−

Wiener systemHammerstein predistorter

e(n)

x(n)
F

y2(n)y(n) z(n)

ỹ(n) z2(n)

x2(n)

P (n, z−1)

P (n, z−1) H(z−1)G(n)

G(n)

Figure 4.7 The ILA-I approach for predistortion of Wiener systems.

The ILA-I approach for predistortion of Wiener systems is shown in Fig. 4.7. The training
filter is modeled as an IIR Hammerstein system defined as in Section 3.3.1. The parameter
vector θ of the training filter is defined as in (3.81).

Based on the analysis in Section 3.3.1, the required negative gradient of e(n) with respect
to θ(n) is equal to the gradient of ỹ(n) with respect to θ(n), see (3.84). The gradient vector
ϕ(n) is given by

ϕT (n) = ∇θ(n)ỹ(n) =
(
∇θd(n)ỹ(n) ∇θc(n)ỹ(n) ∇θg(n)ỹ(n)

)
(4.6)

where ∇θd(n)ỹ(n), ∇θc(n)ỹ(n) and ∇θg(n)ỹ(n) are given by (3.88) and (3.91), respectively.

77

Chapter 4. Adaptive Predistorter Design

The GGCA for predistortion of Wiener systems

From (2.65), (2.68) and (3.88), (3.91), we can see that the calculation of ∇θ(n)y(n) and
∇θ(n)ỹ(n) can be evaluated using similar calculation structures. Also, as quite obvious from
(4.5) and (4.6), ϕh(n) can be obtained by filtering ϕ(n) using the IIR filter H(z−1). Therefore,
the GGCA for predistortion of Wiener systems can be given as in Fig. 4.8.

SIPO SR1 SIPO SR2

Data Combiner

for DLA

for ILA

(DLA)
(ILA−I) (ILA−I)

(DLA)

Parallel Output

H(z−1)

P (n, z−1) 1
1−C(n,z−1)

1
1−C(n,z−1)

s1(n)

x(n)

z(n) ỹ(n)

y(n)

θg(n)

Figure 4.8 The GGCA for predistortion of Wiener systems.

Data Combiner

(DLA)
(ILA−I)

Parallel Output

Parallel Output

y(n)

s1(n)

(.)mf−1(.)2

H(z−1)

1

f

2 3 mf

· · ·

(.)2 · · · (.)mg

z(n)

x(n)

Figure 4.9 Data combiner and the calculation of s1(n).

When the input signals are chosen as z(n) and ỹ(n), the GGCA calculates the gradient
vector ϕ(n) for the ILA-I approach. The data combiner combines the input signal z(n) into
data vector z(n) defined in (3.77), and the structure of the data combiner is given in Fig. 4.9.
z(n) is filtered by the IIR filter P (n, z−1) to calculate ∇θg(n)ỹ(n). Also, z(n) is multiplied

78

4.1. General Gradient Calculation Architecture

with θg(n) to obtain z2(n), which is buffered in the SIPO SR1 with memory length md + 1.
The output of the SIPO SR1 is then filtered by the IIR filter 1

1−C(n,z−1)
to obtain ∇θd(n)ỹ(n).

Similarly, ∇θc(n)ỹ(n) is calculated by buffering ỹ(n) in SIPO SR2 with memory length mc

and filtering the output of the SIPO SR2 by the IIR filter 1
1−C(n,z−1)

.

When the input signals are chosen as x(n) and y(n), ∇θ(n)y(n) can be obtained by using
the same calculation structure. In order to calculate the gradient vector ϕh(n), ∇θ(n)y(n)
needs to be multiplied with s1(n) which is calculated in Fig. 4.9 and then filtered by the IIR
filter H(z−1).

4.1.3. Architecture for predistortion of Hammerstein systems

The DLA approach

+

−

Wiener predistorter Hammerstein system

Adaptation algorithm

x(n) x2(n) y2(n) z(n)

r(n)

e(n)

y(n)
G H(z−1)P (n, z−1) F (n)

Figure 4.10 The DLA approach for predistortion of Hammerstein systems.

The DLA approach for predistortion of Hammerstein systems is shown in Fig. 4.10. The
IIR Hammerstein system and the IIR Wiener predistorter are defined as in Section 2.4. Also,
θ is defined as the parameter vector of the predistorter, see (2.92).

Based on the analysis in Section 2.4.1, we can define the gradient vector ϕh(n) as

ϕT
h (n) = H(z−1)s1(n)

(
∇θf (n)y(n) s2(n)∇θd(n)x2(n) s2(n)∇θc(n)x2(n)

)
(4.7)

where s1(n) and s2(n) are calculated in (2.99) and (2.103), respectively, and ∇θf (n)y(n),
∇θd(n)x2(n) and ∇θc(n)x2(n) are given by (2.101) and (2.107), respectively.

The ILA-I approach

The ILA-I approach for predistortion of Hammerstein systems is shown in Fig. 4.11. The
training filter is modeled as an IIR Wiener system defined as in Section 3.4.1. The parameter
vector θ of the training filter is defined as in (3.109).

Based on the analysis in Section 3.4.1, the required negative gradient of e(n) with respect
to θ(n) is equal to the gradient of ỹ(n) with respect to θ(n), see (3.112). The gradient vector
ϕ(n) is given by

ϕT (n) = ∇θ(n)ỹ(n) =
(
∇θf (n)ỹ(n) s3(n)∇θd(n)z2(n) s3(n)∇θc(n)z2(n)

)
. (4.8)

where s3(n) is calculated in (3.116), and ∇θf (n)ỹ(n), ∇θd(n)z2(n) and ∇θc(n)z2(n) are given
by (3.114) and (3.120), respectively.

79

Chapter 4. Adaptive Predistorter Design

+

+

−

Wiener predistorter Hammerstein system

Wiener training filter

e(n)

x(n) y2(n)y(n) z(n)

ỹ(n) z2(n)

x2(n)
GP (n, z−1) H(z−1)

P (n, z−1)F (n)

F (n)

Figure 4.11 The ILA-I approach for predistortion of Hammerstein systems.

The GGCA for predistortion of Hammerstein systems

From (2.101), (2.107) and (3.114), (3.120), we can see that the calculation of ∇θ(n)y(n)
and ∇θ(n)ỹ(n) can be evaluated using similar calculation structures. Also, as quite obvious
from (4.7) and (4.8), ϕh(n) can be obtained by filtering ϕ(n) using the IIR filter H(z−1).
Therefore, the GGCA for predistortion of Hammerstein systems can be given as in Fig. 4.12.

When the input signal is chosen as z(n), the GGCA calculates the gradient vector ϕ(n) for
the ILA-I approach. z(n) is first filtered by the IIR filter P (n, z−1), then the filter output goes
through the data combiner, see Fig. 4.13, in order to calculate ∇θf (n)ỹ(n). Also, the filter
output is buffered by the SIPO SR2 with memory length mc, the output of the SIPO SR2
is filtered by the IIR filter 1

1−C(n,z−1)
and multiplies s3(n) to obtain ∇θc(n)z2(n). Similarly,

∇θd(n)z2(n) is obtained by buffering z(n) using the SIPO SR1 with memory length md + 1,

filtering the output of SIPO SR1 by the IIR filter 1
1−C(n,z−1)

and multiplying s3(n). The

calculation of the scalar s3(n) is given in Fig. 4.13, too.

When the input signal is chosen as x(n), ∇θ(n)y(n) can be obtained by using the same
calculation structure. In order to calculate the gradient vector ϕh(n), ∇θ(n)y(n) needs to be
multiplied with s1(n) which is calculated in Fig. 4.13 and filtered by the IIR filter H(z−1).

4.2. Additional Issues for Adaptive Predistorter Design

In this section, several important issues for adaptive predistorter design are discussed, in-
cluding predistorter models, learning architectures, adaptation algorithms and computational
complexity.

80

4.2. Additional Issues for Adaptive Predistorter Design

SIPO SR1

SIPO SR2

Data Combiner

for DLA

for ILA

(DLA)
(ILA−I)

(DLA)
(ILA−I)

(DLA)
(ILA−I)

Parallel Output

H(z−1)

1
1−C(n,z−1)

1
1−C(n,z−1)

s1(n)

x(n)

z(n)

s2(n)
s3(n)

s2(n)
s3(n)

P (n, z−1)

Figure 4.12 The GGCA for predistortion of Hammerstein systems.

Data Combiner

(DLA)

(ILA−I)

(DLA)
(ILA−I)

(DLA)
(ILA−I)

Parallel Output

Parallel Output Parallel Output

s1(n)

(.)2

1

2 3 mg

· · ·

(.)mg−1

g

y(n)

· · ·(.)2 (.)mf

1

(.)2 (.)mf−1

· · ·

2 3 mf

θf(n)

P (n, z−1)z(n)

P (n, z−1)x(n)

P (n, z−1)x(n)

P (n, z−1)z(n)

s2(n)
s3(n)

Figure 4.13 Data combiner, the calculation of s1(n), s2(n) and s3(n).

81

Chapter 4. Adaptive Predistorter Design

4.2.1. The predistorter model

The nonlinear physical system which we would like to compensate can be modeled using some
general nonlinear models, such as Volterra, Wiener or Hammerstein models. The inverse of
Volterra systems using Volterra predistorters is discussed in [13]. According to the pth-order
inverse theory proposed in [13], the Volterra predistorter can remove nonlinearities up to
pth-order provided that the inverse of the first-order Volterra system is causal and stable.
Therefore, Volterra series is a proper predistorter model for predistortion of Volterra systems.

Wiener system

Hammerstein system

Hammerstein predistorter

Wiener predistorter

x(n) z(n)
F

y(n)
G P (z−1) H(z−1)

z(n)
F

x(n) y(n)
G P (z−1)H(z−1)

Figure 4.14 The predistorter models for the Wiener and Hammerstein systems.

The Wiener model consists of a linear dynamic system H(z−1) followed by a static non-
linearity F , and in the Hammerstein model the static nonlinearity G precedes the linear
dynamic system P (z−1), see Fig. 4.14. When the nonlinear physical system is a Wiener sys-
tem, assuming that the predistorter is a Hammerstein model, the output of the predistorter
y(n) is

y(n) = P (z−1)G[x(n)] (4.9)

and the output of the Wiener model z(n) can be written as

z(n) = F [H(z−1)y(n)] = F
[
H(z−1)P (z−1)G[x(n)]

]
. (4.10)

Assuming that H(z−1)P (z−1) = z−τ1 and F [G] = z−τ2 , where τ1, τ2 are time delays and z−1

is the delay operator, z(n) can be rewritten as

z(n) = F
[
G[x(n − τ1)]

]
= x(n − τ1). (4.11)

Note that here τ2 = 0 since F and G are static nonlinearities. From (4.11), we can see
that the output of the Wiener system with predistorter is equal to the delayed input signal
and the linear and nonlinear distortion of the Wiener system is well reduced. Therefore, the
Hammerstein model is a proper model for the predistorter. Similarly analysis can be made to
show that the Wiener model is a proper predistorter model for predistortion of Hammerstein
systems.

The Volterra model can also be used as a predistorter model, since the Wiener and Ham-
merstein systems are particular cases of the truncated Volterra systems [14]. However, the
Volterra predistorter has much more coefficients and higher computational complexity com-
pared to the Hammerstein and Wiener predistorters, in case they have the same order and
memory length.

82

4.2. Additional Issues for Adaptive Predistorter Design

+

−
+

subsystem

Delay

purely nonlinear
subsystem

purely linear
Inverse of theEstimate of the

Figure 4.15 The predistorter models for the Wiener and Hammerstein systems.

A general approach to model the predistorter is proposed in [9], under the condition that
the nonlinear physical system is a weakly nonlinear system and can be decomposed into
the sum of two subsystems: one is the purely linear subsystem and the other is the purely
nonlinear subsystem. The predistorter can be constructed as in Fig. 4.15 using the estimate
of the purely nonlinear subsystem, the inverse of the purely linear subsystem and the delayed
input signal. This type of predistorter is called the “N-L type predistorter”. The N-L type
predistorter can only reduce the distortion caused by the purely nonlinear subsystem, and the
desired output signal of the nonlinear physical system is approximately equal to the delayed
input signal filtered by the purely linear subsystem, see the analysis in Section 3.2.2.

Furthermore, the publication [71] proposed the predistorter model for the nonlinear sys-
tems described by the input-output relation y(n) = G[x(n)]H[x(n − 1), y(n − 1)] + F [x(n −
1), y(n − 1)], where G[·], H[·, ·] and F [·, ·] are causal, discrete-time and nonlinear opera-
tors and the inverse function G−1[·] exists. The exact inverse of such system is then given by
z(n) = G−1 [{u(n) − F [z(n − 1), u(n − 1)]}/H[z(n − 1), u(n − 1)]]. Also, the equalizer model
for linearization of recursive polynomial systems is discussed in [72].

4.2.2. The learning architectures and adaptation algorithms

As described in previous sections, there are two kinds of learning architectures to estimate the
coefficients of the predistorter: the DLA approach and the ILA approach. The ILA approach
can still be classified into two categories: the ILA-I approach and the ILA-II approach.

Normally, the time domain adaptation algorithms using the DLA approach, such as the
NFxLMS, NFxLMS-ISE, NFxRLS, NFxPEM and NFxPEM-ISE algorithms, need system
identification or an initial subsystem estimate of the nonlinear physical system. Hence, the
nonlinear physical system has to be identified or initially estimated before implementing the
predistortion. Also, the NFxRLS algorithm can only be used in the predistortion of the
nonlinear system, where the predistorter output is linear in its coefficients. The NFxLMS-
ISE and NFxPEM-ISE algorithms are suitable for the predistortion of Wiener systems, since
the initial subsystem estimate of the Wiener system is much simpler and faster than the
accurate system identification.

System identification of the nonlinear physical system is also an important step in the ILA-
II approach, since the estimates of the nonlinear physical system are used to construct the
predistorter. Therefore, extra filters are needed for the system identification of the nonlinear
physical system and also for the estimation of the inverse of the purely linear subsystem.

Compared to the DLA approach, the system identification or initial subsystem estimate
of the nonlinear physical system is not necessary in the ILA-I approach. However, extra

83

Chapter 4. Adaptive Predistorter Design

training filter is needed. The coefficients of the training filter are estimated using adaptation
algorithms, such as the RLS, KF and RPEM algorithms, and the predistorter is a copy of the
training filter. Here, the RLS and KF algorithms can only be derived under the condition
that the output of the training filter is linear in its coefficients.

The Spectral Magnitude Matching (SMM) method is an off-line, frequency domain adap-
tation algorithm using the DLA approach. Different from the time domain adaptation al-
gorithms using the DLA approach, it does not require the system identification or initial
subsystem estimates of the nonlinear physical system.

4.2.3. The computational complexity

Now let us take a look at the Computational Complexity (CC) of the adaptation algorithms.

The gradient vector required in the adaptation algorithms of the DLA and ILA-I approaches
is obtained by differentiating the output signal of the nonlinear physical system (or training
filter) w.r.t. the parameters of the predistorter (or training filter). After obtaining the gra-
dient vector, the NFxLMS and NFxLMS-ISE algorithms in the DLA approach update the
parameter vector directly using the gradient vector. Other algorithms, such as the NFxRLS,
NFxPEM and NFxPEM-ISE algorithms in the DLA approach, and the RLS, KF and RPEM
algorithms in the ILA-I approach, still need extra calculation to update the parameter vector.
Hence, these algorithms have a little higher CC than the NFxLMS and NFxLMS-ISE algo-
rithm in each adaptation step or each input sample. However, they usually converge much
faster than the NFxLMS and NFxLMS-ISE algorithms.

In the ILA-II approach, the parameters of the predistorter are obtained by estimating the
nonlinear physical system and the inverse of the purely linear subsystem using the LMS or
RPEM algorithm. The RPEM algorithm has a little higher CC than the LMS algorithm, but
with much faster convergence speed.

The SMM method is an off-line predistortion technique, in each adaptation iteration, the
output signal of the nonlinear physical system corresponding to the input signal has to be
evaluated and the spectral magnitude is calculated using Discrete Fourier Transform (DFT)
for a number of short-time frames. Also, in the gradient calculations, previous steps are
repeated for each perturbed parameter. Meanwhile, a matrix inversion is needed, see (2.123).
Therefore, the CC of the SMM method is quite high in each adaptation iteration.

4.2.4. Summary

The characteristics of all adaptation algorithms are summarized in Table 4.2. System identi-
fication or initial subsystem estimates (SI/ISE) are usually required in the adaptation algo-
rithms of the DLA approach, except the SMM method. System identification is also required
in the ILA-II approach since the predistorter is constructed directly by using the identification
results.

The CC per sample or iteration is given by comparing these algorithms in a specific appli-
cation, i.e., predistortion of Volterra systems. Here, we make the following assumptions: the
Volterra system H is of order q with memory length m, and the number of the parameters
is
∑q

i=1 mi. The predistorter C(n) is chosen as a pth-order Volterra system with memory n,
and the number of the parameters is

∑p
i=1 ni. The training filter C̃(n) in the ILA-I approach

and the Volterra model Ĥ in the ILA-II approach are also pth-order Volterra systems with

84

4.2. Additional Issues for Adaptive Predistorter Design

Adaptation Algorithms Needs SI/ISE Extra Filters Remarks

NFxLMS (DLA) yes no -

NFxLMS-ISE (DLA) yes no predistortion of Wiener systems

NFxRLS (DLA) yes no predistorter is linear in its coefficients

NFxPEM (DLA) yes no -

NFxPEM-ISE (DLA) yes no predistortion of Wiener systems

RLS (ILA-I) no yes training filter is linear in its coefficients

KF (ILA-I) no yes -

RPEM (ILA-I) no yes -

LMS (ILA-II) yes yes linearization of weakly nonlinear systems

RPEM (ILA-II) yes yes linearization of weakly nonlinear systems

SMM (DLA) no no DFT, matrix inverse

Table 4.2 Summary of all adaptation algorithms.

memory n. The order of the linear FIR filter Ĥ−1
L in the ILA-II approach is nl. For the SMM

method, the length of the input signal is r divided into k short-time frames, and the DFT
length is l.

The approximated addition per sample (+/Sample) and multiplication per sample (×/Sample)
for the online adaptation algorithms are given in Table 4.3. The adaptation algorithms in
the ILA-II approach are mainly used for system identification. For the adaptation algorithms
using the DLA approach, we assume that the nonlinear physical system has been identified,
otherwise the CC of the LMS or RPEM algorithm in the ILA-II approach should also be
included.

The approximated addition per iteration (+/Ite) and multiplication per sample (×/Ite)
for the off-line adaptation algorithms - the SMM method - are given in Table 4.4. The
computation of the DFT and matrix inverse in the SMM method is not considered in this
table.

In order to have a direct feeling of the CC comparison, let us consider the predistortion
of a 2nd-order Volterra system and assume the follows: p = q = 2, m = n = 4, nl = 8,
r = 10 × 28, k = 10 and l = 28. We can conclude the CC of the adaptation algorithms in
Table 4.5 based on the simulation results in previous chapters. The overall CC represents the
total additions and multiplications required for the convergence of the adaptation algorithm.
From this table, we can see that the SMM method has the highest overall CC due to its high
CC per iteration, even without considering the computation of the DFT and matrix inverse.
The number of the input samples that we store in a buffer to perform this off-line adaptation
algorithm is equal to r. In the online adaptation algorithms, the over all CC of the NFxLMS
algorithm is also quite high due to its slow convergence. The overall CCs of the other online
algorithms are similar, and the LMS algorithm has lower CC per iteration but with slower
convergence, compared to the remaining algorithms. The

85

Chapter 4. Adaptive Predistorter Design

Adaptation Algorithms +/Sample

NFxLMS (DLA) m
Pq−1

i=1
mi + (m + 1)

Pp

i=1
ni

NFxRLS (DLA) (m + 2)
Pp

i=1
ni + 5(

Pp

i=1
ni)2 + m

Pq−1

i=1
mi

NFxPEM (DLA) (m + 2)
Pp

i=1
ni + 5(

Pp

i=1
ni)2 + m

Pq−1

i=1
mi

RLS (ILA-I) 5
Pp

i=1
ni + 4(

Pp

i=1
ni)2

KF (ILA-I) 5
Pp

i=1
ni + 5(

Pp

i=1
ni)2

RPEM (ILA-I) 5
Pp

i=1
ni + 5(

Pp

i=1
ni)2

LMS (ILA-II) 2
Pp

i=1
ni + 2nl

RPEM (ILA-II) 3
Pp

i=1
ni + 5(

Pp

i=1
ni)2 + 3nl + 5n2

l

Adaptation Algorithms ×/Sample

NFxLMS (DLA) (m + 1)
Pp

i=1
[i × ni] + m

Pq−1

i=1
[i × mi] + 3

Pp

i=1
ni

NFxRLS (DLA) 5(
Pp

i=1
ni)2 + (m + 1)

Pp

i=1
[i × ni] + m

Pq−1

i=1
[i × mi]

NFxPEM (DLA) 6(
Pp

i=1
ni)2 + (m + 1)

Pp

i=1
[i × ni] + m

Pq−1

i=1
[i × mi]

RLS (ILA-I) 3
Pp

i=1
ni + 5(

Pp

i=1
ni)2 + 2

Pp

i=1
[i × ni]

KF (ILA-I) 3
Pp

i=1
ni + 5(

Pp

i=1
ni)2 + 2

Pp

i=1
[i × ni]

RPEM (ILA-I) 3
Pp

i=1
ni + 6(

Pp

i=1
ni)2 + 2

Pp

i=1
[i × ni]

LMS (ILA-II) 2
Pp

i=1
[i × ni] + 2

Pp

i=1
ni + 2nl

RPEM (ILA-II) 3
Pp

i=1
ni + 6(

Pp

i=1
ni)2 + 2

Pp

i=1
[i × ni] + 4nl + 6n2

l

Table 4.3 CC per sample of the online adaptation algorithms for predistortion
of Volterra systems.

Adaptation Algorithms +/Ite

SMM (DLA) (kl + k + r)(
Pp

i=1
ni)2 + (2kl + k + r)

Pp

i=1
ni + r

Pq

i=1
mi + kl

Adaptation Algorithms ×/Ite

SMM (DLA) r
Pp

i=1
[i × ni] + r

Pq

i=1
[i × mi] + (kl + l)(

Pp

i=1
ni)2

+(2kl + 1 + r
Pp

i=1
[i × ni])

Pp

i=1
ni

Table 4.4 CC per iteration of the off-line adaptation algorithm for predistortion
of Volterra systems.

86

4.2. Additional Issues for Adaptive Predistorter Design

Adaptation Algorithms +/Sample ×/Sample Convergence (Samples) Overall CC

NFxLMS (DLA) 180 384 > 2 × 104 > 1.13 × 107

NFxRLS (DLA) 2200 2324 800 3.62 × 106

NFxPEM (DLA) 2200 2724 800 3.94 × 106

RLS (ILA-I) 1700 2132 300 1.15 × 106

KF (ILA-I) 2100 2132 300 1.27 × 106

RPEM (ILA-I) 2100 2532 300 1.39 × 106

LMS (ILA-II) 56 128 104 1.84 × 106

RPEM (ILA-II) 2404 2948 1000 5.36 × 106

Adaptation Algorithms +/Ite ×/Ite Convergence (Iterations) Overall CC

SMM (DLA) 2.26 × 106 3.26 × 106 20 1.10 × 108

Table 4.5 CC of the adaptation algorithms for predistortion of a 2nd-order
Volterra system.

87

Chapter 4. Adaptive Predistorter Design

88

Chapter5
Exemplary Applications

In this chapter, several examples of adaptive predistortion applications will be given. Also,
some nonlinear models used in practical communication systems, such as the parallel Wiener-
type model and the memory polynomial model, are considered. Adaptive predistortion of
these nonlinear models is discussed, including the predistorter models, the learning architec-
tures and adaptation algorithms.

5.1. Predistortion of Parallel Wiener-Type Systems

Recently, the parallel Wiener-type model have been proposed in [73,74,75] for modeling the
Line Driver (LD) in DSL systems. The suggested model can be considered as a generalization
of the classic Wiener system. In this section, different nonlinear models for the predistorter
are first investigated, then the learning architectures and adaptation algorithms for estimating
the coefficients of the predistorter are discussed. A comparison by simulation studies is given
at the end of this section.

This section is based on the publications [46,45,34], which are edited and refined in order
to fit the current style of the thesis.

5.1.1. The predistorter models and learning architectures

The parallel Wiener-type system H has the structure as shown in Fig. 5.1. The output signal
z(n) is given by

z(n) =

q∑

k=1

(
Hk(z

−1)y(n)
)k

=

q∑

k=1

(
hT

k y(n)
)k

(5.1)

where Hk(z
−1) denotes the FIR filter in the kth branch and z−1 is the delay operator. hk is

the parameter vector of Hk(z
−1) defined as

hk =
(

hk,0 · · · hk,M−1

)T
(5.2)

where M is the memory length and the corresponding input vector y(n) is

y(n) =
(

y(n) · · · y(n − M + 1)
)T

. (5.3)

89

Chapter 5. Exemplary Applications

+

(.)q

.

.

.

.

.

.

z(n)

y(n)

(.)2H2(z
−1)

H1(z
−1)

Hq(z
−1)

Figure 5.1 The parallel Wiener-type system.

Since the parallel Wiener-type system is a simplified factorisable Volterra system [74], the
predistorter can be modeled using Volterra series. Also, considering that the parallel Wiener-
type system can be divided into a purely linear subsystem hT

1 y(n) and a purely nonlinear

subsystem
∑q

k=2

(
hT

k y(n)
)k

, we can construct the predistorter using the N-L type model as
in Fig. 5.2, including the estimate of the purely nonlinear subsystem and the estimate of the
inverse of the purely linear subsystem, see Section 4.2.1. Here, Ĥk(n, z−1) represents the FIR
filter estimating Hk(z

−1), and Ĥ−1
1 (n, z−1) represents the FIR filter estimating the inverse of

H1(z
−1). τ ′ is the time delay satisfying H−1

1 (z−1)H1(z
−1) = z−τ ′

(z−τ ′

x(n) = x(n − τ ′)).

+

Estimate of the inverse of
the purely linear subsystem

−

+

+

Estimate of the purely
nonlinear subsystem

(.)q

.

.

.

.

.

.

(.)2 y(n)x(n)

Ĥq(n, z−1)

Ĥ2(n, z−1)

z
−τ ′

Ĥ−1
1 (n, z−1)

Figure 5.2 The N-L type predistorter model for parallel Wiener-type systems.

5.1.2. Adaptation algorithms using the DLA approach

If the parallel Wiener-type system is known or has been identified, the parameters of the
predistorter can be estimated using the DLA approach. The Nonlinear Filtered-x Least
Mean Squares (NFxLMS) and Nonlinear Filtered-x Prediction Error Method (NFxPEM)
algorithms can be derived.

90

5.1. Predistortion of Parallel Wiener-Type Systems

+

Volterra predistorter Parallel Wiener−type system

+

+

−

Adaptation algorithm

(.)q

.

.

.

.

.

.

(.)2H2(z
−1)

Hq(z
−1)

H1(z
−1)

y(n)
C(n)

x(n)

r(n)

z(n)

e(n)

Figure 5.3 The DLA approach using a Volterra predistorter.

The DLA approach using Volterra predistorter

Assuming that the predistorter is a pth-order Volterra system C(n), the relation between the
input and output of the predistorter is given by

y(n) = cT (n)x(n) =

p∑

k=1

cT
k (n)xk(n)

=

p∑

k=1

cM−1∑

i1=0

· · ·

cM−1∑

ik=0

ck(i1, · · · , ik; n)x(n − i1) · · ·x(n − ik)

 (5.4)

where M̂ is the memory length. The kernel vector c(n) and the corresponding input vector
x(n) are defined similarly as in Section 2.2.

The error signal e(n) is

e(n) = r(n) − z(n) (5.5)

where r(n) is the reference signal defined as

r(n) = H1(z
−1)x(n). (5.6)

Note that the reference signal is defined as H1(z
−1)x(n) but not x(n − τ) as in previous

chapters, since it is the ideal output of the nonlinear physical system using the N-L type
predistorter and we would like to compare the performances of different predistorter models
on reducing the distrotion caused by the nonlinear subsystem.

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63],
as

c(n + 1) = c(n) −
µ

2
∆T

c (n) (5.7)

where µ is the step-size. The gradient vector ∆c(n) is defined as

∆c(n) = ∇c(n)e
2(n) = −2e(n)∇c(n)z(n). (5.8)

91

Chapter 5. Exemplary Applications

Straightforward derivation gives

∇c(n)z(n) ≈

q∑

k=1

sk(n)hT
k

xT (n)
...

xT (n − M + 1)

 (5.9)

where
sk(n) = k

(
hT

k y(n)
)k−1

. (5.10)

Hence, the gradient vector ∆c(n) can be written as

∆c(n) = −2e(n)

q∑

k=1

sk(n)hT
k

xT (n)
...

xT (n − M + 1)

 . (5.11)

Similarly, the NFxPEM algorithm is derived by the minimization of the cost function [57]

V (c) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(5.12)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (5.13)

The formulation of the NFxPEM algorithm requires the negative gradient of e(n) w.r.t. c(n)
which is defined as

ϕT (n) = −∇c(n)e(n) = ∇c(n)z(n) ≈

q∑

k=1

sk(n)hT
k

xT (n)
...

xT (n − M + 1)

 . (5.14)

Then, the NFxPEM algorithm follows the same formulation as in Chapter 2 with the design
parameters λ0, λ(0) and P (0).

The DLA approach using the N-L type predistorter

Since the parallel Wiener-type system is assumed known or has been identified, the purely
nonlinear subsystem required in the N-L type predistorter is known. Therefore, it remains to
estimate the inverse of the purely linear subsystem, see Fig. 5.4. This inverse is modeled as a
linear FIR filter denoted as Cl(n, z−1) with memory length Ml and parameter vector defined
as

cl(n) =
(

c1(n) · · · cMl
(n)

)T
. (5.15)

The output signal of the predistorter y(n) is given by

y(n) = x(n − τ ′) − Cl(n, z−1)x2(n) = x(n − τ ′) − cT
l (n)x2(n) (5.16)

where
x2(n) =

(
x2(n) · · · x2(n − Ml + 1)

)T
. (5.17)

92

5.1. Predistortion of Parallel Wiener-Type Systems

+
−

+

+ +

Parallel Wiener−type

system
The N−L type predistorter

Adaptation algorithm

(.)q

.

.

.

.

.

.

(.)2
x(n)

Hq(n, z−1)

H2(n, z−1)

z
−τ ′

y(n) z(n)

r(n)

e(n)

H

x2(n)
Cl(n, z−1)

Figure 5.4 The DLA approach using the N-L type predistorter.

The intermediate signal x2(n) is obtained by

x2(n) =

q∑

k=2

(
hT

k (n)x(n)
)k

(5.18)

where
x(n) =

(
x(n) · · · x(n − M + 1)

)T
. (5.19)

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63],
as

cl(n + 1) = cl(n) −
µl

2
∆T

l (n) (5.20)

and in this case, the gradient vector ∆l(n) is given as

∆l(n) = 2e(n)

q∑

k=1

sk(n)hT
k

xT
2 (n)
...

xT
2 (n − M + 1)

 (5.21)

where x2(n) is defined in (5.17) - (5.18) and sk(n) is defined as

sk(n) = k
(
hT

k y(n)
)k−1

. (5.22)

The NFxPEM algorithm can also be derived similarly as the Volterra predistorter by
minimizing the cost function

V (cl) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
. (5.23)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (5.24)

93

Chapter 5. Exemplary Applications

The required negative gradient of the error signal e(n) w.r.t. cl(n) is given by

ϕT
l (n) = −∇cl(n)e(n) = ∇cl(n)z(n) = −

q∑

k=1

sk(n)hT
k

xT
2 (n)
...

xT
2 (n − M + 1)

 (5.25)

where sk(n) and x2(n) are defined as before. Then, the NFxPEM algorithm follows the same
formulation as in Chapter 2 with the design parameters λ0, λ(0) and P l(0).

5.1.3. Adaptation algorithms using the ILA approach

+

+

Parallel Wiener−type system

+
+

−

+

−

Adaptation algorithm

Adaptation algorithm

o(n)

z
−τ ′

(.)2

(.)q

.

.

.

.

.

.

y(n)

ẑ(n)

eh(n)

eo(n)

z(n)

H

H1(z
−1)

H2(z
−1)

Hq(z
−1)

Ĥ−1
L (n, z−1)

Ĥ(n)

Figure 5.5 System identification in the ILA-II approach.

The system identification scheme for the parallel Wiener-type system and the inverse of
the purely linear subsystem is given in Fig. 5.5. Another parallel Wiener-type system Ĥ(n)
with similar structure is used to identify H. The output signal ẑ(n) can be written as

ẑ(n) =

q∑

k=1

(
ĥ

T

k (n)ŷk(n)
)k

. (5.26)

The parameter vector ĥk(n) is defined as

ĥk(n) =
(

ĥk,0(n) · · · ĥ
k,cMk−1

(n)
)T

. (5.27)

94

5.1. Predistortion of Parallel Wiener-Type Systems

where M̂k is the memory length. The corresponding input vector ŷk(n) is

ŷk(n) =
(

y(n) · · · y(n − M̂k + 1)
)T

. (5.28)

Let us define the parameter vector ĥ(n) of Ĥ(n) as

ĥ(n) =
(

ĥ
T

1 (n) · · · ĥ
T

q (n)

)T

. (5.29)

In order to estimate the parameter vector ĥ, the RPEM algorithm is derived by minimizing
the cost function [57]

V (ĥ) = lim
N→∞

1

N

N∑

n=1

E
[
e2
h(n)

]
(5.30)

where eh(n) is the prediction error defined as

eh(n) = z(n) − ẑ(n). (5.31)

The negative gradient of eh(n)) w.r.t. ĥ(n) is given as

ϕT
h (n) = −∇bh(n)

eh(n) = ∇bh(n)
ẑ(n). (5.32)

Straightforward derivation gives

∇bh(n)
ẑ(n) =

q∑

k=1

k
(
ĥ

T

k (n)ŷk(n)
)k−1

ŷT
k (n). (5.33)

Then, the RPEM algorithm follows the same formulation as in Chapter 3 with the design
parameters λ0, λ(0) and P h(0).

The inverse of the purely linear subsystem is required to model the predistorter and it is
estimated using an adaptive FIR filter Ĥ−1

L (n, z−1) with K-tap memory. The output signal
of this filter can be written as

o(n) = Ĥ−1
L (n, z−1)z(n) =

[
ĥ
−1

L (n)
]T

z(n) (5.34)

where the parameter vector ĥ
−1

L (n) is defined as

ĥ
−1

L (n) =
(

ĥ−1
0 (n) · · · ĥ−1

K−1(n)
)T

(5.35)

and the corresponding input vectors z(n) is

z(n) =
(

z(n) · · · z(n − K + 1)
)T

. (5.36)

The gradient vector ϕo(n) required in the RPEM algorithm is given by

ϕT
o (n) = −∇

bh
−1

L (n)
eo(n) = ∇

bh
−1

L (n)
o(n) = zT (n). (5.37)

and the RPEM algorithm can follow the same formulation as in Chapter 3 with the design
parameters λ0, λ(0) and P s(0).

95

Chapter 5. Exemplary Applications

Predistorter Adaptive Algorithms µ µl P (0) P l(0) P h(0) P s(0)

Volterra NFxLMS (DLA) 10−3 - - - - -

Volterra NFxPEM (DLA) - - 10−3I - - -

N-L type NFxLMS (DLA) - 0.9 - - - -

N-L type NFxPEM (DLA) - - - 102I - -

N-L type RPEM (ILA-II) - - - - 10−2I 10−2I

Table 5.1 Initialization of all adaptation algorithms for predistortion of the
parallel Wiener-type system.

5.1.4. Simulation results

In the simulation study, the following parallel Wiener-type system H is considered:

z(n) = hT
1 y1(n) + (hT

3 y3(n))3 (5.38)

h1 =
(

0.5625 0.4810 0.1124 −0.1669
)T

h3 =
(

0.03572 0.07796 0.06063 0.01388
)T

.
(5.39)

In the DLA approach, the Volterra predistorter is assumed to be a known 3rd-order Volterra
filter with memory length M̂ = 4, and the memory length of Cl(n, z−1) in the N-L type
predistorter is assumed to be Ml = 6. In the ILA-II approach, the parameter vectors of Ĥ(n)
and Ĥ−1

L (n, z−1) are chosen as

ĥ(n) =
(

ĥ
T

1 (n) ĥ
T

3 (n)

)T

ĥ1(n) =
(

h1,0(n) · · · h1,3(n)
)T

ĥ3(n) =
(

h3,0(n) · · · h3,3(n)
)T

ĥ
−1

L (n) =
(

h−1
0 (n) · · · h−1

5 (n)
)T

.

(5.40)

The number of independent experiments is 100. In each experiment, the input signal to
the predistorter is chosen to be a random signal with uniform distribution over (−3, 3) and
data length of 4 × 104. The bandwidth of the input signal was limited by a low-pass filter
in order to prevent aliasing [13] and the normalized cut-off frequency of this filter is chosen
as π

6 . In the ILA-II approach, the predistorter starts to copy the coefficients after 3.2 × 104

input samples. The adaptation algorithms are initialized as in Table 5.1, where I denotes
the identity matrix. Also, the design parameters λ0 and λ(0) in the NFxPEM and RPEM
algorithms are chosen as 0.99 and 0.95, respectively.

The Mean Square Distortion (MSD) value of the parallel Wiener-type system without
predistorter is about −42 dB. The MSD of different approaches and algorithms is given in
Table. 5.2. From the table, we can see that Volterra predistorter using the DLA approach
and NFxPEM algorithm achieves the best MSD performance. Compared to the Volterra
predistorter, the N-L type predistorter using the DLA approach and NFxPEM algorithm

96

5.2. Predistortion of Memory Polynomial Systems

Predistorter Adaptive Algorithms MSD (dB)

Volterra NFxLMS (DLA) −71

Volterra NFxPEM (DLA) −79

N-L type NFxLMS (DLA) −63

N-L type NFxPEM (DLA) −76

N-L type RPEM (ILA-II) −72

Table 5.2 Comparison of the MSD for predistortion of a parallel Wiener-type
system.

achieves the second best performance but with much lower computational complexity since
it only needs to update the coefficients of a linear FIR filter in each iteration.

Figure 5.6 shows mean power spectral densities (PSDs) of the output signals of the parallel
Wiener-type system without and with the predistorter after 4×104 samples. From this figure,
we can see that the proposed predistortion techniques can effectively reduce the spectral re-
growth. The N-L type predistorter using the ILA-II approach and RPEM algorithm achieves
the best performance. The Volterra predistorter using the DLA approach and NFxPEM al-
gorithm can achieve similar performance but without using additional filters. The N-L type
predistorter using the DLA approach and NFxPEM algorithm can achieve the second best
performance but with lower computational complexity compared to the Volterra predistorter.

5.2. Predistortion of Memory Polynomial Systems

In most cases, the nonlinear behavior of Power Amplifiers (PAs) in wireless communication
systems can be modeled using either Volterra series or neural networks [76]. However, the
large number of coefficients is the drawback of these two models. Another special case of
the Volterra model is the memory polynomial model proposed in [22]. Compared to the
Volterra model, the memory polynomial model can capture memory effects with much fewer
coefficients.

Predistortion of memory polynomial systems is first considered in [22]. In [77, 78], the
predistorter is modeled as another memory polynomial system and the coefficients of the
predistorter are estimated based on the ILA-I approach. In this learning architecture, the
predistorter is a copy of a training filter. The training filter is connected in cascade with
the nonlinear physical system and its coefficients are evaluated using the Least Squares (LS)
method.

In this section, the nonlinear models for the predistorter are first investigated, then the
learning architectures and adaptation algorithms for estimating the coefficients of the predis-
torter are discussed. A comparison by simulation studies is given at the end of this section.

This section is based on the publications [44, 34], which are edited and refined in order to
fit the current style of the thesis.

97

Chapter 5. Exemplary Applications

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

20

40

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input signal
Without pred.
N−L pred.(DLA,NFxLMS)
N−L pred.(DLA,NFxPEM)
Volterra pred.(DLA,NFxLMS)
Volterra pred.(DLA,NFxPEM)
N−L pred.(ILA−II,RPEM)

Figure 5.6 Mean PSDs comparison for predistortion of a parallel Wiener-type
system.

5.2.1. The predistorter models

The qth-order memory polynomial system H is shown in Fig. 5.7. The output signal z(n) is
given by

z(n) =

q∑

k=1

Hk(z
−1)yk(n) =

q∑

k=1

hT
k yk(n) (5.41)

where Hk(z
−1) is the FIR filter in the kth branch. The parameter vector hk of Hk(z

−1) is
defined as

hk =
(

hk,0 · · · hk,M−1

)T
. (5.42)

where M is the memory length. The corresponding input vector yk(n) is

yk(n) =

y(n)k

...
y(n − M + 1)k

 . (5.43)

In many cases, especially in bandpass systems, odd-order nonlinearities usually dominate the
performance [79] and the memory polynomial system is modeled only containing odd-order
terms, which is k = 1, 3, 5, ... and q is an odd number. In this section, we will also consider

98

5.2. Predistortion of Memory Polynomial Systems

+

.

.

.

y(n)

.

.

.

|.|

|.|q−1

z(n)

H1(z
−1)

H2(z
−1)

Hq(z
−1)

y2(n)

y1(n)

yq(n)

Figure 5.7 The memory polynomial system.

the nonlinear physical system as a memory polynomial system containing odd-order terms,
even though the nonlinear physical system is a baseband system.

+ +
+

−

Estimate of the inverse of

the purely linear subsystem
Estimate of the purely nonlinear subsystem

.

.

.

|.|

|.|q−1

z
−τ ′

z(n)

x(n)

.

.

.

Ĥ2(n, z−1)

Ĥq(n, z−1)

Ĥ−1
1 (n, z−1)

Figure 5.8 The N-L type predistorter model for memory polynomial systems.

As proposed in [77], the predistorter of the memory polynomial system can be modeled as
another memory polynomial system. Also, considering that the memory polynomial system
can be divided into a purely linear subsystem hT

1 y1(n) and a purely nonlinear subsystem∑q
k=2 hT

k yk(n), we can construct the predistorter using the N-L type model including the
estimate of the purely nonlinear subsystem and the estimate of the inverse of the purely linear
subsystem as in Fig. 5.8. Here, Ĥk(n, z−1) represents the FIR filter estimating Hk(z

−1), and
Ĥ−1

1 (n, z−1) represents the FIR filter estimating the inverse of H1(z
−1).

5.2.2. Adaptation algorithms using the DLA approach

If the memory polynomial system is known or has been identified, the parameters of the pre-
distorter can be estimated using the DLA approach. The NFxLMS and NFxPEM algorithms
can be derived.

99

Chapter 5. Exemplary Applications

+

_ +

Memory polynomial systemMemory polynomial predistorter

Adaptation algorithm
e(n)

r(n)

y(n) z(n)x(n)
HC(n)

Figure 5.9 The DLA approach using a memory polynomial predistorter.

The DLA approach using the memory polynomial predistorter

The predistorter can be modeled as a pth-order memory polynomial system C(n) and its
output is given by

y(n) =

p∑

k=1

Ck(n, z−1)yk(n) =

p∑

k=1

cT
k (n)xk(n). (5.44)

The parameter vector ck(n) is defined as

ck(n) =
(

ck,0(n) · · · c
k,cM−1

(n)
)T

. (5.45)

where M̂ is the memory length. The corresponding input vector xk(n) is

xk(n) =

x(n)k

...

x(n − M̂ + 1)k

 . (5.46)

The error signal e(n) is
e(n) = r(n) − z(n) (5.47)

where r(n) is the reference signal defined as

r(n) = H1(z
−1)x(n). (5.48)

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63],
as

c(n + 1) = c(n) −
µ

2
∆T

c (n). (5.49)

The gradient vector ∆c(n) is defined as

∆c(n) = ∇c(n)e
2(n) = −2e(n)∇c(n)z(n). (5.50)

Straightforward derivation gives

∇c(n)z(n) =

q∑

k=1

M−1∑

m=0

qhq,my(n − m)q−1

x1(n − m)
...

xp(n − m)

T

. (5.51)

100

5.2. Predistortion of Memory Polynomial Systems

Hence, the gradient vector ∆c(n) can be written as

∆c(n) = −2e(n)

q∑

k=1

M−1∑

m=0

qhq,my(n − m)q−1

x1(n − m)
...

xp(n − m)

T

. (5.52)

Similarly, the NFxPEM algorithm is derived by the minimization of the cost function

V (c) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
(5.53)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (5.54)

The negative gradient of e(n) w.r.t. c(n) is given by

ϕT (n) = −∇c(n)e(n) = ∇c(n)z(n) ≈

q∑

k=1

M−1∑

m=0

qhq,m|y(n − m)|q−1

x1(n − m)
...

xp(n − m)

T

. (5.55)

Then, the NFxPEM algorithm follows the same formulation as in Chapter 2 with the design
parameters λ0, λ(0) and P (0).

The DLA approach using the N-L type predistorter

+
−

+

+ +

Adaptation algorithm

Memory polynomial

system

The N−L type predistorter

z
−τ ′

y(n) z(n)

r(n)

e(n)

H

x2(n)
Cl(n, z−1)

.

.

.

.

.

.

|.|q−1

|.|

x(n)

H2(n, z−1)

Hq(n, z−1)

Figure 5.10 The DLA approach using the N-L type predistorter.

Since the memory polynomial system is known or has been identified, the purely nonlinear
subsystem required in the N-L type predistorter is known. Therefore, it remains to estimate
the inverse of the purely linear subsystem adaptively, see Fig. 5.10. This inverse is modeled

101

Chapter 5. Exemplary Applications

as a linear FIR filter denoted as Cl(n, z−1) with memory length Ml and parameter vector
defined as

cl(n) =
(

c1(n) · · · cMl
(n)

)T
. (5.56)

The output signal of the predistorter y(n) is given by

y(n) = x(n − τ ′) − Cl(n, z−1)x2(n) = x(n − τ ′) − cT
l (n)x2(n) (5.57)

where
x2(n) =

(
x2(n) · · · x2(n − Ml + 1)

)T
. (5.58)

The intermediate signal x2(n) is obtained by

x2(n) =

q∑

k=2

hT
k (n)x(n) (5.59)

where

x(n) =

x(n)k

...
x(n − M + 1)k

 . (5.60)

The NFxLMS algorithm is obtained by applying the stochastic gradient algorithm [56,63],
as

cl(n + 1) = cl(n) −
µl

2
∆T

l (n). (5.61)

and in this case, the gradient vector ∆l(n) is given as

∆l(n) = 2e(n)

q∑

k=1

M−1∑

m=0

qhq,my(n − m)q−1xT
2 (n − m) (5.62)

where x2(n) is defined in (5.58) - (5.59).
The NFxPEM algorithm can also be derived similarly as the memory polynomial predis-

torter by minimizing the cost function

V (cl) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
. (5.63)

where e(n) is the prediction error defined as

e(n) = r(n) − z(n). (5.64)

The required negative gradient of the error signal e(n) w.r.t. cl(n) is given by

ϕT
l (n) = −

q∑

k=1

M−1∑

m=0

qhq,my(n − m)q−1xT
2 (n − m) (5.65)

where x2(n) is defined in (5.58) with the elements calculated in (5.59). Then, the NFxPEM
algorithm follows the same formulation as in Chapter 2 with the design parameters λ0, λ(0)
and P l(0).

102

5.2. Predistortion of Memory Polynomial Systems

+

+

−

Memory polynomial
predistorter

Memory polynomial

Training filter

system

x(n)

e(n)

y(n)
H

ỹ(n)

z(n)
C(n)

C̃(n)

Figure 5.11 The ILA-I approach for the predistortion of memory polynomial
systems.

5.2.3. Adaptation algorithms using the ILA approach

The ILA-I approach using memory polynomial predistorter

The ILA approach using memory polynomial predistorter is depicted in Fig 5.11. C̃(n)
is a training filter connected in parallel with the nonlinear physical system H. Then the
coefficients of C(n) are estimated indirectly as a copy of the coefficients of the training filter
C̃(n). The input-output relation of the training filter is given as

ỹ(n) =

p∑

k=1

c̃T
k (n)zk(n) (5.66)

where the parameter vector c̃k(n) is defined as

c̃k(n) =
(

c̃k,0(n) · · · c̃
k,cM−1

(n)
)T

(5.67)

and the corresponding input vector zk(n) is

zk(n) =

z(n)k

...

z(n − M̂ + 1)k

 . (5.68)

Let us define the coefficient vector of the training filter as

c̃(n) =
(

c̃T
1 (n) · · · c̃T

p (n)
)T

(5.69)

and the error signal e(n) as
e(n) = y(n) − ỹ(n). (5.70)

The coefficients of the predistorter will be estimated recursively using the RPEM algorithm.
The RPEM algorithm is derived by minimization of the cost function

V (c̃) = lim
N→∞

1

N

N∑

n=1

E
[
e2(n)

]
. (5.71)

103

Chapter 5. Exemplary Applications

The negative gradient of e(n) w.r.t. the parameter vector c̃(n) is given by

ϕT
t (n) = −∇c̃(n)e(n) = ∇c̃(n)ỹ(n) =

z1(n)
...

zp(n)

T

. (5.72)

Then, the NFxPEM algorithm follows the same formulation as in Chapter 3 with the design
parameters λ0, λ(0) and P t(0).

The ILA-II approach using the N-L type predistorter

+

+

Memory polynomial system

+
+

−

+

−

Adaptation algorithm

Adaptation algorithm

o(n)

z
−τ ′

y(n)

ẑ(n)

eh(n)

eo(n)

z(n)

Ĥ−1
L (n, z−1)

.

.

.

.

.

.

Hq(z
−1)

H2(z
−1)

H1(z
−1)

|.|q−1

|.|

H

Ĥ(n)

Figure 5.12 System identification in the ILA-II approach.

The system identification scheme for the memory polynomial system and the inverse of the
purely linear subsystem is given in Fig. 5.12. Another memory polynomial system Ĥ(n) with
similar structure is used to identify H. The output signal ẑ(n) can be written as

ẑ(n) =

q∑

k=1

ĥ
T

k (n)ŷk(n). (5.73)

The parameter vector ĥk(n) is defined as

ĥk(n) =
(

ĥk,0(n) · · · ĥ
k,cMk−1

(n)
)T

. (5.74)

where M̂k is the memory length. The corresponding input vector ŷk(n) is

ŷk(n) =

y(n)k

...

y(n − M̂k + 1)k

 . (5.75)

104

5.2. Predistortion of Memory Polynomial Systems

Let us define the parameter vector ĥ(n) of Ĥ(n) as

ĥ(n) =
(

ĥ
T

1 (n) · · · ĥ
T

q (n)

)T

. (5.76)

In order to estimate the parameter vector ĥ, the RPEM algorithm is derived by minimizing
the cost function

V (ĥ) = lim
N→∞

1

N

N∑

n=1

E
[
e2
h(n)

]
(5.77)

where eh(n) is the prediction error defined as

eh(n) = z(n) − ẑ(n). (5.78)

The formulation of the RPEM algorithm requires the negative gradient of eh(n) w.r.t.
ĥ(n), defined as

ϕT
h (n) = −∇bh(n)

e(n) = ∇bh(n)
ẑ(n). (5.79)

Straightforward derivation gives

∇bh(n)
ẑ(n) =

ŷ1(n)
...

ŷq(n)

T

. (5.80)

Then, the RPEM algorithm follows the same formulation as in Chapter 3 with the design
parameters λ0, λ(0) and P h(0).

The inverse of the purely linear subsystem is required to model the predistorter and it is
estimated using an adaptive FIR filter Ĥ−1

L (n, z−1) with K-tap memory. The output signal
of this filter can be written as

o(n) = Ĥ−1
L (n, z−1)z(n) =

[
ĥ
−1

L (n)
]T

z(n) (5.81)

where the parameter vector ĥ
−1

L (n) is defined as

ĥ
−1

L (n) =
(

ĥ−1
0 (n) · · · ĥ−1

K−1(n)
)T

(5.82)

and the corresponding input vectors z(n) is

z(n) =
(

z(n) · · · z(n − K + 1)
)T

. (5.83)

The gradient vector ϕo(n) required in RPEM algorithm is given by

ϕT
o (n) = −∇

bh
−1

L (n)
eo(n) = ∇

bh
−1

L (n)
o(n) = zT (n). (5.84)

and the RPEM algorithm can follow the same formulation as in Chapter 3 with the design
parameters λ0, λ(0) and P s(0).

105

Chapter 5. Exemplary Applications

Predistorter Adaptive Algorithms µ µl P (0) P l(0) P t(0) P h(0) P s(0)

M. P. (odd) NFxLMS (DLA) 10−1 - - - - - -

M. P. (odd) NFxPEM (DLA) - - 102I - - - -

M. P. (full) NFxLMS (DLA) 10−1 - - - - - -

M. P. (full) NFxPEM (DLA) - - 102I - - - -

N-L type NFxLMS (DLA) - 0.9 - - - - -

N-L type NFxPEM (DLA) - - - 10I - - -

M. P. (odd) RPEM (ILA-I) - - - - 10I - -

M. P. (full) RPEM (ILA-I) - - - - 10I - -

N-L type RPEM (ILA-II) - - - - - I I

Table 5.3 Initialization of all adaptation algorithms for predistortion of the
memory polynomial system.

5.2.4. Simulation results

In this simulation study, the following memory polynomial system is considered:

z(n) =
5∑

q=1

hT
q yq(n) (5.85)

with the kernels

h1 =
(

1.0513 −0.0680 0.0289
)T

h3 =
(
−0.0542 0.2234 −0.0621

)T

h5 =
(
−0.1655 −0.2451 0.1229

)T
.

(5.86)

In the DLA approach, the memory polynomial predistorter is assumed to be a 5th-order
model with memory length M̂ = 3 and the predistorter is modeled using either the odd-order
terms or full-order terms as suggested in [77]. Also, the memory length of Cl(n, z−1) in the
N-L type predistorter is assumed to be Ml = 7.

In the ILA-II approach, for modeling the N-L type predistorter, Ĥ(n) is chosen as a 5th-

order memory polynomial system with memory length M̂1 = M̂3 = M̂5 = 3 and Ĥ−1
L (n, z−1)

is chosen as an adaptive linear FIR filter with memory length K = 7.

The number of independent experiments is 100. In each experiment, the input signal to
the predistorter is chosen to be a random signal with uniform distribution over (−1, 1) and
data length of 4 × 104. The bandwidth of the input signal was limited by a low-pass filter
in order to prevent aliasing [13] and the normalized cut-off frequency of this filter is chosen
as π

10 . In the ILA-II approach, the predistorter starts to copy the coefficients after 3.2 × 104

input samples. The adaptation algorithms are initialized as in Table 5.3, where M. P. denotes
memory polynomial predistorter and the design parameters λ0 and λ(0) in the NFxPEM and
RPEM algorithms are chosen as 0.99 and 0.95, respectively.

106

5.3. Summary

Predistorter Adaptive Algorithms MSD (dB)

M. P. (odd) NFxLMS (DLA) −54

M. P. (odd) NFxPEM (DLA) −82

M. P. (full) NFxLMS (DLA) −56

M. P. (full) NFxPEM (DLA) −82

N-L type NFxLMS (DLA) −51

N-L type NFxPEM (DLA) −75

M. P. (odd) RPEM (ILA-I) −81

M. P. (full) RPEM (ILA-I) −77

N-L type RPEM (ILA-II) −78

Table 5.4 Comparison of the MSD for predistortion of a memory polynomial
system.

The MSD value of the memory polynomial system without predistorter is about −15 dB.
The MSD of different approaches and algorithms is given in Table. 5.4. From the table, we
can see that the predistorter using the DLA approach and NFxLMS algorithm has much
worse performance than using other predistortion techniques, and the memory polynomial
predistorter using the DLA approach and NFxPEM algorithm achieves the best performance.

Figure 5.13 shows mean PSDs of output signals of the memory polynomial system without
and with the predistorter after 4 × 104 samples. From this figure, we can see that the
memory polynomial predistorter using the DLA approach and NFxLMS algorithm can’t
reduce the spectral regrowth efficiently. The N-L type predistorter using the DLA approach
and NFxLMS algorithm has better performance but still much worse than other techniques.
Normally, the full-order memory polynomial predistorters have a little better performance
than the odd-order memory polynomial predistorters, but the odd-order predistorters have
lower computational complexity.

5.3. Summary

In this chapter, examples were given where adaptive predistortion was applied to several
nonlinear physical system used in practical communication systems, such as the parallel
Wiener-type systems and the memory polynomial systems. From the simulation, we can see
that most of the proposed methods in previous sections can well compensate the nonlinear
distortion and reduce the spectral regrowth caused by the nonlinear physical system.

107

Chapter 5. Exemplary Applications

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input Signal
Without Pred.
M.P.(full).(DLA,NFxLMS)
M.P.(odd).(DLA,NFxLMS)
M.P.(full).(DLA,NFxPEM)
M.P.(odd).(DLA,NFxPEM)

0 0.25 0.5 0.75 1
−120

−100

−80

−60

−40

−20

0

Normalized frequency (× rad/sample)

P
S

D
 (

dB
)

Input Signal
Without Pred.
N−L type pred.(DLA,NFxLMS)
N−L type pred.(DLA,NFxPEM)
M.P.(full).(ILA−I,RPEM)
M.P.(odd).(ILA−I,RPEM)
N−L type pred.(ILA−II,RPEM)

Figure 5.13 Mean PSDs comparison for predistortion of a memory polynomial
system.

108

Chapter6
Conclusion and Outlook

The primary aim of this thesis was to contribute to both theory and implementation of
adaptive predistortion of nonlinear systems. Classic models for the nonlinear physical system
include: Volterra, Wiener and Hammerstein models and the corresponding predistorters are
modeled as Volterra, Hammerstein and Wiener systems, respectively. The parameters of
the predistorter can be estimated adaptively using recursive algorithms based on the Direct
Learning Architecture (DLA) or Indirect Learning Architecture (ILA).

In Chapter 2, the adaptation algorithms using the DLA approach have been introduced.
The Nonlinear Filtered-x Least Mean Squares (NFxLMS) algorithm is a common adaptation
algorithm in the time domain. However, it usually suffers from slow convergence and bad
performance. The Nonlinear Filtered-x Recursive Least Squares (NFxRLS) algorithm can
speed up the convergence but can only be used for predistortion of the nonlinear physical
system, where the predistorter output is linear in its coefficients. The proposed Nonlinear
Filtered-x Prediction Error Method (NFxPEM) algorithm can be implemented for predistor-
tion of different nonlinear physical systems. As compared to the NFxLMS algorithm, the
NFxPEM algorithm has very fast convergence speed and is much more efficient in suppress-
ing the spectral regrowth. All of these time domain adaptation algorithms require accurate
system identification of the nonlinear physical system for the adaptation process. For the
predistortion of Wiener systems, the proposed NFxLMS with Initial Subsystem Estimates
(NFxLMS-ISE) and NFxPEM with Initial Subsystem Estimates (NFxPEM-ISE) algorithms
relax the accurate system identification requirement in NFxLMS and NFxPEM algorithms,
by using a simple and fast ISE instead. The NFxLMS-ISE and NFxPEM-ISE algorithms
can achieve similar performance as the NFxLMS and NFxPEM algorithms, respectively. To
relax the requirement of accurate system identification for other nonlinear physical systems
is still an open issue for future research. The proposed SMM method is a frequency domain
technique suitable for predistortion of different nonlinear systems. Although this method has
high computational complexity and requires matrix inversion in each adaptation iteration,
it does not need accurate identification of the nonlinear physical system as required in time
domain algorithms.

Chapter 3 concerned with the adaptation algorithms using the ILA approach, which are
classified as the ILA-I approach and ILA-II approach. In the ILA-I approach, the Recursive
Least Squares (RLS), Kalman Filter (KF) and Recursive Prediction Error Method (RPEM)
algorithms can be used to estimate the coefficients of the training filter for the predistortion

109

Chapter 6. Conclusion and Outlook

of Volterra systems. These algorithms have similar performance. The RPEM algorithm can
also be used for predistortion of Wiener and Hammerstein systems. The RPEM algorithm has
very fast convergence speed, as well as good performance in reducing the nonlinear distortion
in the time domain and spectral regrowth in the frequency domain.

A rule to construct the predistorter is given in the ILA-II approach. If the nonlinear physical
system is a weakly nonlinear system and can be divided into two subsystems: a purely linear
subsystem and a purely nonlinear subsystem, the predistorter can be constructed using the
nonlinear subsystem, the inverse of the linear subsystem and delayed input. Extra filters
are needed in order to identify the nonlinear physical system - hence to obtain the estimate
of the nonlinear subsystem, and also to estimate the inverse of the linear subsystem. The
widely used Least Mean Squares (LMS) algorithm suffers from slow convergence speed and
the inaccurate estimates degrade the performance of the predistorter. The proposed RPEM
algorithm can obtain more accurate estimates - hence greatly improve the performance of
the predistorter.

The adaptive predistorter design is discussed in Chapter 4. The various gradient calcu-
lations required in the adaptation algorithms using the DLA and ILA-I approaches can all
be obtained by using the same calculation structure, proposed as General Gradient Calcu-
lation Architecture (GGCA). Other issues, such as the predistorter model, the adaptation
algorithm and the computational complexity, are also discussed in this chapter. The relative
comparisons of all adaptation algorithms, including system identification or ISE requirement,
extra filters requirement, computational complexity per iteration and convergence speed are
summarized. This can help to make a trade-off considering every aspect and choose the
suitable techniques in implementation. The input signal also has an important effect [74] on
predistortion and this issue will be considered in future research.

Chapter 5 gives several examples of adaptive predistortion applications. Nonlinear mod-
els used in practical communication systems, such as the parallel Wiener-type models and
memory polynomial models, are considered. The predistorter models are proposed, and the
adaptation algorithms using different learning architectures are derived. The simulation re-
sults for comparison of all the techniques are given.

In this thesis, the predistorter needs to be at the same sampling rate as the nonlinear phys-
ical system, which means if the nonlinear physical system is running at the high sampling
rate (after upsampling), the predistorter needs to run at the high sampling rate as well. This
requirement increases the design cost of the predistorter. Running predistorters at low sam-
pling rate (before upsampling) and the corresponding learning architecture and adaptation
algorithms would be an interesting topic in the future.

110

AppendixA
Appendix

A.1. The pth-order inverse

The pth-order inverse theory has first been proposed in [16]. Assuming the given nonlinear
system H is represented in the Volterra series as

y(n) = H[x(n)] =
∞∑

k=1

Hk[x(n)] (A.1)

where Hk denotes the kth order operator, the pth-order inverse is defined as a Volterra system
C, when connected in tandem with H, results in a system in which the first-order Volterra
kernel is a unit impulse and the second through the pth-order Volterra kernels are zero. Thus,
if C is connected in cascade after H (called post-inverse), see Fig. A.1, the overall system Q
consisting of H and C can be rewritten as

z(n) = Q[x(n)] =
∞∑

k=1

Qk[x(n)] = x(n) +
∞∑

k=p+1

Qk[x(n)] (A.2)

in which Qk is the kth-order operator of the system Q. Also, if C is connected in cascade
before H (called pre-inverse), see Fig. A.1, the overall system R consisting of C and H can
be rewritten as

z(n) = R[x(n)] =
∞∑

k=1

Rk[x(n)] = x(n) +
∞∑

k=p+1

Rk[x(n)] (A.3)

in which Rk is the kth-order operator of the system R.
The pth-order inverse theory shows that the pth-order post-inverse of a given system H is

identical to its pth-order pre-inverse, in the sense that the first p kernels of C in post-inverse
and pre-inverse are identical. However, the kernels with orders greater than p are usually
different.

Considering the pth-order post-inverse, the 1st-order kernel of C can be determined by
requiring

Q1[x(n)] = C1[H1[x(n)]] = x(n). (A.4)

111

Appendix A. Appendix

Pre−inverse

Post−inverse

x(n)
C H

z(n)y(n)

x(n)
H C

z(n)y(n)

Q

R

Figure A.1 Post-inverse and Pre-inverse.

Therefore, the 1st-order kernel of C should satisfy

C1(s) =
1

H1(s)
(A.5)

where C1(s) and H1(s) are the Laplace transforms of the 1st-order kernel of C and H.
The 2nd-order kernel of C can be determined by requiring

Q2[x(n)] = C1[H2[x(n)]] + C2[H1[x(n)]] = 0. (A.6)

This will be satisfied only if the operator C2 satisfies

C2(s)H1(s) = −C1(s)H2(s). (A.7)

Post-multiplying both sides by the inverse of the H1(s) gives

C2(s) = −C1(s)H2(s)H
−1
1 (s) = −C1(s)H2(s)C1(s). (A.8)

Figure A.2 is the block diagram of the operator C2.

−1H2C1 C1

Figure A.2 The operator C2.

Consequently, the operator Ck, k = 3, · · · , p can be determined in the same manner. For
example, Fig. A.3 gives the block diagram of the operator C3.

Note that it is always possible to isolate the operator Ck since the only term in the ex-
pression for Qk[x(n)] that involves the operator Ck is Ck[H1[x(n)]]. Also, when determining

112

A.1. The pth-order inverse

C1

H2

−H2

−H2

H2 C1

C1

H3

Figure A.3 The operator C3.

the operator Ck from Qk, all other terms involve the operators Ci for i < k which have
been determined. Also we can observe from the construction that each of the operators Ck

is causal and stable if the system H and the operator C1 is causal and stable. Thus, we
can conclude that a stable and causal pth-order post-inverse of a stable and causal nonlinear
system H exists if and only if the inverse of the linear operator H1 is stable and causal, i.e.,
it is a minimum phase system. Due to that the pth-order post-inverse of a given system H
is identical to its pth-order pre-inverse, the design of the pre-inverse will come to the same
conclusions.

113

Appendix A. Appendix

114

Bibliography

[1] G. Pupolin, “Performance analysis of digital radio links with nonlinear transmit ampli-
fiers,” IEEE J. on Select Area Communication, vol. SAC-5, no. 4, pp. 534–546, April
1987, ➠ PDF.

[2] C. Cripps, RF Power Amplifiers for Wirelss Communications. Norwood, MA, USA:
Artech House, 1999.

[3] A. Conti, D. Dardari, and V. Tralli, “An analytical framework for CDMA system with
a nonlinear amplifier and AWGN,” IEEE Trans. on Communications, vol. 50, no. 7, pp.
1110–1120, 2002, ➠ PDF.

[4] L. Rugini, P. Banelli, and S. Cacopardi, “SER performance of linear multiuser detec-
tors for DS-CDMA downlink with transmitter nonlinear distortions,” IEEE Trans. on
Vehicular Technology, vol. 53, no. 7, pp. 992–1000, 2004, ➠ PDF.

[5] H. Kressel and eds., Semiconductor Devices for Optical Communication, (Topics in Ap-
plied Physics vol. 39). New York: Springer-Verlag, 1980.

[6] X. N. Fernando and A. B. Sesay, “Higher order adaptive filter based predistortion for
nonlinear distortion compensation of radio over fiber links,” in Proc. of the IEEE Inter-
national Conference on Communications, 2000, pp. 367–371, ➠ PDF.

[7] H. F. Olson, Acoustical Engineering. Toronto: D. Van Nostrand Company, Inc., 1964.

[8] K. B. Benson and eds., Audio Engineering Handbook. Toronto: McGraw-Hill Book
Company, 1988.

[9] X. Y. Gao and W. M. Snelgrove, “Adaptive linearization schemes for weakly nonlin-
ear systems using adaptive linear and nonlinear FIR filters,” in Proc. of the Midwest
Symposium on Circuits and Systems, 1990, pp. 9–12, ➠ PDF.

[10] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall,
2002.

115

Bibliography

[11] V. E. DeBrunner and D. Y. Zhou, “Active nonlinear noise control with certain nonlin-
earities in the secondary path,” in Conference Record of the Asilomar Conference on
Signals, Systems and Computers, 2003, pp. 2053–2057, ➠ PDF.

[12] D. Y. Zhou and V. E. DeBrunner, “A new active noise control algorithm that requires
no secondary path identification based on the SPR property,” IEEE Trans. on Signal
Processing, vol. 55, no. 5, pp. 1719–1729, 2007, ➠ PDF.

[13] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems. Florida, USA:
R. E. Krieger, 1989.

[14] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing. N.Y., USA: John
Wiley & Sons, Inc., 2000.

[15] W. A. Frank, “On the equalization of nonlinear systems,” in Proc. of the Asilomar
Conference on Signals, Systems and Computers, 1996, pp. 1157–1160, ➠ PDF.

[16] M. Schetzen, “Theory of pth-order inverses of nonlinear systems,” IEEE Trans. on Cir-
cuits and Systems, vol. CAS-23, no. 5, pp. 285–291, 1976, ➠ PDF.

[17] A. A. M. Saleh and J. Salz, “Adaptive linearization of power amplifiers in digital radio
systems,” Bell Syst. Tech. J., vol. 62, no. 4, pp. 1019–1033, Apr 1983.

[18] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation
and low memory requirement,” IEEE Trans. on Vehicular Technology, vol. 39, no. 4, pp.
374–382, Nov 1990, ➠ PDF.

[19] M. Ghaderi, S. Kumar, and D. E. Dodds, “Fast adaptive polynomial I and Q predistorter
with global optimization,” Inst. Elect. Eng. Proc. Commun., vol. 143, no. 2, pp. 78–86,
Apr 1996, ➠ PDF.

[20] W. Boesch and G. Gatti, “Measurement and simulation of memory effects in predistor-
tion linearization,” IEEE Trans. on Microwave Theory and Techniques, vol. 37, no. 12,
pp. 1885–1890, Dec 1989, ➠ PDF.

[21] J. H. K. Vuolevi, T. Rahkonen, and J. P. A. Manninen, “Measurement technique for char-
acterizing memory effects in RF power amplifiers,” IEEE Trans. on Microwave Theory
and Techniques, vol. 49, no. 8, pp. 1383–1388, Aug 2001, ➠ PDF.

[22] J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power
amplifier model with memory,” Electron. Lett, vol. 37, no. 23, pp. 1417–1418, Nov 2001,
➠ PDF.

[23] Y. H. Lim, Y. S. Cho, I. W. Cha, and D. H. Youn, “An adaptive nonlinear prefilter for
compensation of distortion in nonlinear systems,” IEEE Trans. on Signal Processing,
vol. 46, no. 6, pp. 1726–1730, 1998, ➠ PDF.

[24] H. W. Kang, Y. S. Cho, and D. H. Youn, “Adaptive precompensation of Wiener systems,”
IEEE Trans. on Signal Processing, vol. 46, no. 10, pp. 2825–2829, 1998, ➠ PDF.

116

Bibliography

[25] ——, “On compensating nonlinear distortions of an OFDM system using an efficient
adaptive predistorter,” IEEE Trans. on Communications, vol. 47, no. 4, pp. 522–526,
1999, ➠ PDF.

[26] D. Y. Zhou and V. E. DeBrunner, “Novel adaptive nonlinear predistorters based on
the direct learning algorithm,” IEEE Trans. on Signal Processing, vol. 55, no. 1, pp.
120–133, 2007, ➠ PDF.

[27] C. Eun and E. J. Powers, “A new Volterra predistorter based on indirect learning archi-
tecture,” IEEE Trans. on Signal Processing, vol. 45, no. 1, 1997, ➠ PDF.

[28] L. Ding, Z. Ma, D. R. Morgan, M. Zierdt, and J. Pastalan, “A least square/Newton
method for digital predistortion of wideband signals,” IEEE Trans. on Communications,
vol. 54, no. 5, pp. 833–840, May 2006, ➠ PDF.

[29] D. R. Morgan, Z. Ma, and L. Ding, “Reducing measurement noise effects in digital
predistortion of RF power amplifiers,” in Proc. of the IEEE International Conference on
Communications, 2003, pp. 2436–2439, ➠ PDF.

[30] Y. Qian and T. Yao, “Structure for adaptive predistortion suitable for efficient adaptive
algorithm application,” Electron. Letter, vol. 38, pp. 1282–1283, Oct 2002, ➠ PDF.

[31] P. Singerl, A. Agrawal, A. Garg, Neelabh, G. Kubin, and H. Eul, “Complex baseband pre-
distorters for nonlinear wideband RF power amplifiers,” in Proc. of the IEEE Midewest
Symposium on Circuits and Systems, 2006, pp. 675–678, ➠ PDF.

[32] G. L. Sicuranza and G. Ramponi, “Adaptive nonlinear digital filters using distributed
arithmetic,” IEEE Trans. on Acoustics, Speech and Signal Processing, vol. ASSP-34, pp.
518–526, 1986, ➠ PDF.

[33] T. Ogunfunmi, Adaptive Nonlinear System Identification. Berlin: Springer, 2007.

[34] E. Abd-Elrady and L. Gan, “Direct predistortion of nonlinear systems using adaptive
Volterra system and prediction error method,” IEEE Signal Processing Letters, Submit-
ted in late 2009.

[35] ——, “Direct predistortion of Hammerstein and Wiener systems using prediction error
method,” Signal Processing, Submitted in late 2009.

[36] E. Abd-Elrady, L. Gan, and G. Kubin, “Direct linearization of weakly nonlinear Volterra
systems using adaptive linear and nonlinear FIR filters,” in Proc. of the IFAC Symposium
on System Identification, 2009, ➠ PDF.

[37] ——, “Adaptive predistortion of nonlinear Volterra systems using spectral magnitude
matching,” in Proc. of the International Conference on Acoustics, Speech, and Signal
Processing, 2009, pp. 2985–2988, ➠ PDF.

[38] L. Gan and E. Abd-Elrady, “A NFxLMS algorithm with initial subsystem estimates
for digital predistortion of Wiener systems,” in Proc. of the European Signal Processing
Conference, 2008, ➠ PDF.

117

Bibliography

[39] ——, “Adaptive predistortion of IIR Hammerstein system using the nonlinear filtered-x
LMS algorithm,” in Proc. of the Symposium on Communication Systems, Networks and
Digital Signal Processing, 2008, pp. 702–705, ➠ PDF.

[40] E. Abd-Elrady, L. Gan, and G. Kubin, “Direct and indirect learning methods for adap-
tive predistortion of IIR Hammerstein systems,” e & i Elektrotechnik und Information-
stechnik. Special issue on Analog Mixed Signal Circuit and Systems, vol. 125, no. 4, pp.
126–131, April 2008, ➠ PDF.

[41] L. Gan and E. Abd-Elrady, “Linearization of weakly nonlinear systems using adaptive
FIR filters and recursive prediction error method,” in Proc. of the International Work-
shop on Machine Learning for Signal Processing, 2008, pp. 409–414, ➠ PDF.

[42] E. Abd-Elrady and L. Gan, “Adaptive predistortion of Hammerstein systems based on
indirect learning architecture and prediction error method,” in Proc. of the International
Conference on Signals and Electronic Systems, 2008, pp. 389–392, ➠ PDF.

[43] E. Abd-Elrady, L. Gan, and G. Kubin, “Distortion compensation of nonlinear systems
based on indirect learning architecture,” in Proc. of the IEEE International Symposium
on Communications, Control and Signal Processing, 2008, pp. 184–187, ➠ PDF.

[44] L. Gan and E. Abd-Elrady, “Digital predistortion of memory polynomial systems using
direct and indirect learning architectures,” in Proc. of the IASTED Conference on Signal
and Image Processing, 2009, ➠ PDF.

[45] L. Gan, E. Abd-Elrady, and G. Kubin, “A simplified predistorter for distortion compen-
sation of parallel Wiener-type systems based on direct learning architecture,” in Proc.
of the DSP/SPE Workshop, 2009, pp. 72–77, ➠ PDF.

[46] L. Gan and E. Abd-Elrady, “Digital predistortion of parallel Wiener-type systems using
the RPEM and NFxLMS algorithms,” in Proc. of the International Conference on Signal
Processing, 2008, pp. 149–152, ➠ PDF.

[47] E. Abd-Elrady and L. Gan, “Identification of Hammerstein and Wiener models using
spectral magnitude matching,” in Proc. of the IFAC World Congress on Automatic
Control, 2008, pp. 6440–6445, ➠ PDF.

[48] E. Abd-Elrady, “Adaptive predistortion of Wiener and Hammerstein systems using spec-
tral magnitude matching,” in Proc. of the IASTED Conference on Signal and Image
Processing, 2009, ➠ PDF.

[49] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Upper Saddle River, NJ,
USA: Prentice-Hall, 1985.

[50] P. L. Feintuch, N. J. Bershad, and A. K. Lo, “A frequency domain model for filtered
LMS algorithms - Stability analysis design and elimination of the training mode,” IEEE
Trans. on Singal Processing, vol. 41, no. 4, pp. 1518–1531, Apr 1993, ➠ PDF.

[51] E. Bjarnason, “Analysis of the filtered-x LMS algorithm,” IEEE Trans. on Speech and
Audio Processing, vol. 3, no. 6, pp. 504–514, Nov 1995, ➠ PDF.

118

Bibliography

[52] A. K. Wang and W. Ren, “Convergence analysis of the multi-variable filtered-x LMS al-
gorithm with application to active noise control,” IEEE Trans. Singal Processing, vol. 47,
no. 4, pp. 1166–1169, Apr 1999, ➠ PDF.

[53] M. H. Costa, J. C. M. Bermudez, and N. J. Bershad, “Stochastic analysis of the filtered-
X LMS algorithm in systems with nonlinear secondary paths,” IEEE Trans. on Signal
Processing, vol. 50, no. 6, 2002, ➠ PDF.

[54] Y. Hinamoto and H. Sakai, “Analysis of the filtered-x LMS algorithm and a related new
algorithm for active control of multitonal noise,” IEEE Trans. on Audio, Speech and
Language Processing, vol. 14, no. 1, pp. 123–130, Jan 2006, ➠ PDF.

[55] S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ, USA: Prentice-Hall,
2002.

[56] L. Ljung, System Identification - Theory for the User, 2nd ed. Upper Saddle River, NJ,
USA: Prentice-Hall, 1999.

[57] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification. Cam-
bridge, MA, USA: M.I.T. Press, 1983.

[58] S. D. Snyder and C. H. Hansen, “The influence of transducer transfer functions and
acoustic time delays on the LMS algorithm in active noise control systems,” J. Sound
Vibration, vol. 140, pp. 409–424, 1990, ➠ PDF.

[59] ——, “The effect of transfer function estimation errors on the Filtered-x LMS algorithm,”
IEEE Trans. on Signal Processing, vol. 42, no. 4, pp. 950–953, 1994, ➠ PDF.

[60] Z. Vukic, L. Kuljaca, D. Donlagic, and S. Tesnjak, Nonlinear Control Systems. N.Y.,
USA: CRC, 2003.

[61] T. F. Quatieri, D. A. Reynolds, and G. C. O’Leary, “Estimation of handset nonlinearity
with application to speaker recognition,” IEEE Trans. on Speech and Audio Processing,
vol. 8, no. 5, pp. 567–584, 2000, ➠ PDF.

[62] D. G. Luenberger, Introduction to Linear and Nonlinear Programming. Reading, Mas-
sachusetts: Addison-Wesley, 1973.

[63] T. Söderström and P. Stoica, System Identification. Hemel Hempstead, United King-
dom: Prentice-Hall International, 1989.

[64] M. H. Hayes, Statistical Digital Signal Prcoessing and Modeling. New York, USA: Wiley,
1998.

[65] P. Crama and J. Schoukens, “Initial estimates of Wiener and Hammerstein systems using
multisine excitation,” IEEE Trans. on Instrumentation and Measurement, vol. 50, no. 6,
pp. 1791–1795, 2001, ➠ PDF.

[66] T. P. Dobrowiecki and J. Schoukens, “Practical choices in the FRF measurement in
presence of nonlinear distortions,” IEEE Trans. on Instrumentation and Measurement,
vol. 50, no. 1, pp. 2–7, Feb 2001, ➠ PDF.

119

Bibliography

[67] E. V. der Ouderaa and J. Schoukens, “Peak factor minimization using a time-frequency
domain swapping algorithm,” IEEE Trans. on Instrumentation and Measurement, vol.
IM-37, no. 1, pp. 145–147, Mar 1988, ➠ PDF.

[68] P. Gilabert, G. Montoro, and E. Bertran, “On the Wiener and Hammerstein models
for power amplifier predistortion,” in Proc. of the Asia-Pacific Microwave Conference,
vol. 2, Suzhou, China, 2005, ➠ PDF.

[69] E. Abd-Elrady, “A recursive prediction error algorithm for digital predistortion of FIR
Wiener systems,” in Proc. of the Symposium on Communication Systems, Networks and
Digital Signal Processing, 2008, pp. 698–701, ➠ PDF.

[70] D. Schwingshackl, Digital Enhancement and Multirate Processing Methods for Nonlinear
Mixed Signal Systems. PhD thesis, Graz, Austria: TU Graz, 2005.

[71] A. Carini, G. L. Sicuranza, and V. J. Mathews, “On the inversion of certain nonlinear
systems,” IEEE Signal Processing Letters, vol. 4, no. 12, pp. 334–336, Dec 1997, ➠ PDF.

[72] A. Carini, V. J. Mathews, and G. L. Sicuranza, “Equalization of recursive polynomial
systems,” IEEE Signal Processing Letters, vol. 6, no. 12, pp. 312–314, Dec 1999, ➠ PDF.

[73] H. Koeppl and G. Paoli, “Non-linear modeling of a broadband SLIC for ADSL-Lite-
over-POTS using harmonic analysis,” in Proc. of the IEEE International Symposium on
Circuits and Systems, vol. 2, Phoenix-Scottsdale, Ariz, USA, 2002, pp. 133–136, ➠ PDF.

[74] H. Koeppl, A. S. Josan, G. Paoli, and G. Kubin, “The Cramer-Rao bound and DMT
signal optimisation for the identification of a Wiener type model,” EURASIP J. on
Applied Signal Processing, vol. 12, pp. 1817–1830, 2004, ➠ PDF.

[75] H. Koeppl, Nonlinear System Identification for Mixed Signal Processing. PhD thesis,
Graz, Austria: TU Graz, 2004.

[76] M. Isaksson, D. Wisell, and D. Ronnow, “A comparative analysis of behavioral models
for RF power amplifiers,” IEEE Trans. on Microwave Theory and Techniques, vol. 54,
no. 1, pp. 348–359, 2006, ➠ PDF.

[77] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina,
“Memory polynomial predistorter based on the indirect learning architecture,” in Proc.
of GLOBECOM, Taipei, Taiwan, 2002, pp. 967–971, ➠ PDF.

[78] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenny, J. Kim, and C. R. Giardina,
“A robust digital baseband predistorter constructed using memory polynomials,” IEEE
Trans. on Communications, vol. 52, no. 1, pp. 159–165, Jan 2004, ➠ PDF.

[79] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory
polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. on
Signal Processing, vol. 54, no. 10, pp. 3852–3860, Oct 2006, ➠ PDF.

120

	1 Introduction
	1.1 Motivation of This Thesis
	1.2 Thesis Outline and Contributions

	2 Predistortion Using the Direct Learning Architecture (DLA)
	2.1 Introduction
	2.2 Predistortion of Volterra Systems
	2.2.1 The NFxLMS algorithm
	2.2.2 The NFxRLS algorithm
	2.2.3 The NFxPEM algorithm
	2.2.4 Simulation study

	2.3 Predistortion of Wiener Systems
	2.3.1 The NFxLMS algorithm
	2.3.2 The NFxLMS-ISE algorithm
	2.3.3 The NFxPEM and NFxPEM-ISE algorithms
	2.3.4 Simulation study

	2.4 Predistortion of Hammerstein Systems
	2.4.1 The NFxLMS algorithm
	2.4.2 The NFxPEM algorithm
	2.4.3 Simulation study

	2.5 Predistortion Using the SMM Method
	2.5.1 The SMM method
	2.5.2 Simulation study

	2.6 Summary

	3 Predistortion Using the Indirect Learning Architecture (ILA)
	3.1 Introduction
	3.2 Predistortion of Volterra Systems
	3.2.1 The ILA-I approach
	3.2.2 The ILA-II approach

	3.3 Predistortion of Wiener Systems
	3.3.1 The ILA-I approach
	3.3.2 Simulation study

	3.4 Predistortion of Hammerstein Systems
	3.4.1 The ILA-I approach
	3.4.2 Simulation study

	3.5 Summary

	4 Adaptive Predistorter Design
	4.1 General Gradient Calculation Architecture
	4.1.1 Architecture for predistortion of Volterra systems
	4.1.2 Architecture for predistortion of Wiener systems
	4.1.3 Architecture for predistortion of Hammerstein systems

	4.2 Additional Issues for Adaptive Predistorter Design
	4.2.1 The predistorter model
	4.2.2 The learning architectures and adaptation algorithms
	4.2.3 The computational complexity
	4.2.4 Summary

	5 Exemplary Applications
	5.1 Predistortion of Parallel Wiener-Type Systems
	5.1.1 The predistorter models and learning architectures
	5.1.2 Adaptation algorithms using the DLA approach
	5.1.3 Adaptation algorithms using the ILA approach
	5.1.4 Simulation results

	5.2 Predistortion of Memory Polynomial Systems
	5.2.1 The predistorter models
	5.2.2 Adaptation algorithms using the DLA approach
	5.2.3 Adaptation algorithms using the ILA approach
	5.2.4 Simulation results

	5.3 Summary

	6 Conclusion and Outlook
	A Appendix
	A.1 The pth-order inverse

