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Abstract

Technology advancements profoundly impact numerous aspects of life, including how we communi-
cate and interact. For instance, hearing aids enable hearing-impaired or elderly people to participate
comfortably in daily conversations; telecommunications equipment lifts distance constraints, enabling
people to communicate remotely; smart machines are developed to interact with humans by under-
standing and responding to their instructions. These applications involve speech-based interaction not
only between humans but also between humans and machines. However, the microphones mounted
on these technical devices can capture both target speech and interfering sounds, posing challenges
to the reliability of speech communication in noisy environments. For example, distorted speech
signals may reduce communication fluency among participants during teleconferencing. Addition-
ally, noise interference can negatively affect the speech recognition and understanding modules of a
voice-controlled machine. This calls for speech enhancement algorithms to extract clean speech and
suppress undesired interfering signals, improving the overall quality and intelligibility of speech.

Traditional speech enhancement algorithms often rely on simplifying assumptions, such as slowly
changing noise, to estimate the parameters required for clean speech estimators. This may lead to less
than satisfactory results in acoustically challenging scenarios. In recent years, the field has seen great
strides through deep learning-based algorithms. The success of deep learning stems largely from its
universal function approximation capability and scalability to large datasets. In particular, deep predic-
tive approaches have received widespread attention due to their remarkable flexibility in incorporating
key features of the target speech into various stages of the speech enhancement framework. These
stages include input feature processing, network architecture design, training objective formulation,
and optimization strategy development. Essentially, deep predictive methods aim to learn a mapping
between noisy mixtures and clean speech by training deep neural networks (DNNs) on a large number
of paired noisy-clean speech samples. However, the performance of these algorithms depends heavily
on the quantity and diversity of training data. As a result, performance degradation often occurs when
there is a data mismatch between training and testing, known as the generalization problem. Moreover,
predictive approaches are typically framed as problems with a single output, which may result in
erroneous estimates for complex and unseen samples without any indication of uncertainty. Indeed,
due to the black-box nature of DNNs, deep learning-based algorithms produce clean speech estimates
in a non-transparent manner, making them difficult to interpret. In this thesis, we aim to incorporate
statistical models into DNN-based speech enhancement to improve its robustness and interpretability.
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The first part of the thesis explores these ideas from the perspective of uncertainty. We augment
predictive speech enhancement with an uncertainty estimation task, such that the network model can
provide not only clean speech estimates but also their associated predictive uncertainty. Furthermore,
since generic Bayesian methods for uncertainty modeling in deep learning usually involve costly
sampling processes, this thesis seeks to leverage statistical knowledge from the speech processing
domain to efficiently estimate uncertainty with minimal computational overhead. We experimentally
demonstrate that the proposed uncertainty-augmented framework effectively identifies when predic-
tions deviate significantly from the true data by producing large uncertainty estimates. This allows
us to assess the model’s confidence in predictions when clean speech ground truth is unavailable.
Additionally, we show that the uncertainty-augmented methods grounded in statistical modeling
improve speech enhancement performance compared to methods that predict a single filter mask only.
Next, we explore the direct use of uncertainty estimates for speech enhancement tasks. This includes
unsupervised domain adaptation, where we utilize uncertainty-based filtering to select high-quality
pseudo-targets to alleviate generalization issues. In another application, alongside audio inputs, we
further explore modeling uncertainty originating from distorted video signals in an audio-visual
phoneme classification task and demonstrate how to exploit modality-wise uncertainty to achieve
more effective and robust multimodal fusion.

In the second part of the thesis, we investigate the issues of interpretability and robustness by
focusing on deep generative approaches. In contrast to predictive approaches that learn a deterministic
mapping between noisy and clean speech, deep generative approaches aim to learn prior distributions
of given data and reuse this knowledge to perform speech enhancement during inference. In the thesis,
we consider a specific group of methods, which use a variational autoencoder (VAE) to learn a prior
distribution of clean speech and combine it with an untrained non-negative matrix factorization (NMF)-
based noise model to estimate a filter mask for speech enhancement. The statistically interpretable
VAE-NMF framework exhibits an improved generalization ability to unseen acoustic conditions
compared to predictive methods. However, training the VAE solely with clean speech makes it
susceptible to noise interference during testing, especially for inputs with low signal-to-noise ratios.
In this part, we aim to improve overall robustness in difficult acoustic conditions by augmenting
separately the speech and noise models with noise information. The resulting noise-aware speech and
noise models retain the high interpretability provided by statistical modeling while at the same time
exhibiting improved speech enhancement performance in acoustically challenging environments.



Zusammenfassung

Der technologische Fortschritt hat tiefgreifende Auswirkungen auf zahlreiche Aspekte des Lebens,
einschließlich darauf, wie wir kommunizieren und interagieren. Beispielsweise ermöglichen Hör-
geräte es hörgeschädigten oder älteren Menschen, bequem an alltäglichen Gesprächen teilzunehmen;
Telekommunikationsgeräte heben Entfernungsbeschränkungen auf und ermöglichen es Menschen,
aus der Ferne miteinander zu kommunizieren; intelligente Maschinen werden entwickelt, um mit
Menschen zu interagieren, indem sie deren Anweisungen verstehen und darauf reagieren. Diese
Anwendungen beinhalten sprachbasierte Interaktionen nicht nur zwischen Menschen, sondern auch
zwischen Menschen und Maschinen. An solchen technischen Geräten angebrachte Mikrofone können
jedoch sowohl die Sprache der Zielquelle als auch Störgeräusche erfassen, was die Zuverlässigkeit
der Sprachkommunikation in lauten Umgebungen beeinträchtigt. So können beispielsweise verz-
errte Sprachsignale den Kommunikationsfluss zwischen den Teilnehmern einer Telefonkonferenz
beeinträchtigen. Außerdem können Störgeräusche die Module einer sprachgesteuerten Maschine
zur Spracherkennung und zum Sprachverstehen negativ beeinflussen. Daher sind Algorithmen zur
Sprachverbesserung erforderlich, die das saubere Sprachsignal extrahieren und unerwünschte Störsig-
nale unterdrücken, um die Gesamtqualität und Verständlichkeit der Sprache zu verbessern.

Herkömmliche Algorithmen zur Sprachverbesserung stützen sich häufig auf vereinfachende An-
nahmen, wie z. B. sich nur langsam verändernde Störgeräusche, um die erforderlichen Parameter für
die Schätzung der sauberen Sprache zu bestimmen. Dies kann in akustisch schwierigen Szenarien zu
unbefriedigenden Ergebnissen führen. In den letzten Jahren wurden auf diesem Gebiet durch Algorith-
men, die auf Deep Learning basieren, große Fortschritte erzielt. Der Erfolg von Deep Learning beruht
zum großen Teil auf seiner universellen Fähigkeit zur Approximation mathematischer Funktionen
und seiner Skalierbarkeit für große Datensätze. Insbesondere prädiktive Deep-Learning-Ansätze
haben aufgrund ihrer bemerkenswerten Flexibilität bei der Einbeziehung von Kernmerkmalen des
Zielsprachsignals in verschiedenen Schritten des Sprachverbesserungsalgorithmus große Beachtung
gefunden. Zu diesen Schritten gehören die Verarbeitung von Merkmalen des Eingangssignales, das
Design der Netzwerkarchitektur, die Formulierung von Trainingszielen und die Entwicklung von
Optimierungsstrategien. Im Wesentlichen zielen prädiktive Deep-Learning-Methoden darauf ab, eine
Abbildung zwischen verrauschten Mischsignalen und sauberer Sprache zu erlernen, wobei Deep
Neural Networks (DNNs) auf einer großen Anzahl von gepaarten verrauschten und sauberen Sprach-
beispielen trainiert werden. Die Leistung dieser Algorithmen hängt jedoch stark von der Menge
und Vielfalt der Trainingsdaten ab. Daher kommt es häufig zu einer Leistungsverschlechterung,
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wenn die Daten zwischen Training und Test nicht übereinstimmen, was als Generalisierungsproblem
bekannt ist. Darüber hinaus werden prädiktive Ansätze in der Regel als Probleme mit einer einzi-
gen möglichen Lösung betrachtet, was zu fehlerhaften Schätzungen für komplexe und ungesehene
Beispiele ohne jegliche Angabe von Unsicherheiten führen kann. Aufgrund des Black-Box-Charakters
von DNNs produzieren Deep-Learning-Algorithmen saubere Sprachschätzungen auf eine nicht inter-
pretierbare Weise. In dieser Arbeit zielen wir darauf ab, statistische Modelle in die DNN-basierte
Sprachverbesserung zu integrieren, um ihre Robustheit und Interpretierbarkeit zu verbessern.

Im ersten Teil der Arbeit werden diese Ideen aus einer auf Unsicherheit fokussierten Perspektive
untersucht. Wir erweitern die prädiktive Sprachverbesserung darum, zusätzlich Unsicherheiten zu
schätzen, sodass das Netzwerkmodell nicht nur saubere Sprachschätzungen, sondern auch die damit
verbundene prädiktive Unsicherheit liefern kann. Da generische Bayes’sche Methoden zur Unsicher-
heitsmodellierung im Deep Learning in der Regel kostspielige Sampling-Prozesse involvieren, wird
in dieser Arbeit versucht, statistisches Wissen aus dem Bereich der Sprachverarbeitung zu nutzen und
so die Unsicherheit unter minimalem zusätzlichem Rechenaufwand effizient zu schätzen. Wir demon-
strieren experimentell, dass das vorgeschlagene um Unsicherheitsschätzung erweiterte Rahmenwerk
effektiv Fälle identifiziert, in denen die Vorhersagen signifikant von den wahren Daten abweichen,
indem es dort große Unsicherheiten ausgibt. Dies ermöglicht es uns, das Vertrauen des Modells in
seine eigenen Vorhersagen zu bewerten, auch wenn das saubere Referenzsprachsignal nicht verfügbar
ist. Darüber hinaus zeigen wir – im Vergleich zu Methoden, welche nur eine einzelne Filtermaske
schätzen – dass unsere auf statistischer Modellierung basierenden um Unsicherheitsschätzung erweit-
erten Methoden die Qualität der Sprachverbesserung verbessern. Als nächstes untersuchen wir die
direkte Nutzung der geschätzten Unsicherheiten für Aufgaben der Sprachverbesserung. Dazu gehört
die sogenannte unsupervised domain adaptation, bei der wir eine auf Unsicherheit basierende Filterung
nutzen, um qualitativ hochwertige Pseudo-Ziele auszuwählen und damit Generalisierungsprobleme
abzumildern. In einer weiteren Anwendung für die audiovisuelle Klassifikation von Phonemen
erforschen wir neben Audio-Eingabesignalen auch die Modellierung der Unsicherheiten von verzer-
rten Videosignalen, und zeigen, wie man modalitätsbezogene Unsicherheiten nutzen kann, um eine
effektivere und robustere Fusion dieser multimodalen Signale zu erreichen.

Im zweiten Teil der Arbeit untersuchen wir die Fragen der Interpretierbarkeit und Robustheit,
und fokussieren uns hierfür auf generative Ansätze des Deep Learning. Im Gegensatz zu prädik-
tiven Ansätzen, die eine deterministische Abbildung von verrauschter zu sauberer Sprache erlernen,
zielen generative Deep-Learning-Ansätze darauf ab, a-priori-Verteilungen der gegebenen Daten
zu erlernen und dieses Wissen wiederzuverwenden, um eine Sprachverbesserung durchzuführen.
In dieser Arbeit betrachten wir eine spezielle Klasse von Methoden zur Schätzung einer Filter-
maske für die Sprachverbesserung, welche einen variational autoencoder (VAE) verwenden, um
eine a-priori-Verteilung von sauberer Sprache zu lernen und diese mit einem untrainierten, auf einer
non-negative matrix factorization (NMF) basierenden Rauschmodell kombinieren. Dieses statistisch
interpretierbare VAE-NMF-Framework zeigt im Vergleich zu prädiktiven Methoden eine verbesserte
Generalisierungsfähigkeit für zuvor ungesehene akustische Szenarien. Wird der VAE jedoch auss-
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chließlich mit sauberer Sprache trainiert, ist er anfällig für Störgeräusche beim Testen, insbesondere
bei Eingaben mit niedrigem Signal-Rausch-Verhältnis. In diesem Teil der Arbeit versuchen wir, die
allgemeine Robustheit unter schwierigen akustischen Bedingungen zu verbessern, indem wir die
Sprach- und Störsignalmodelle separat mit Informationen über das Störsignal augmentieren. Die
daraus resultierenden Sprach- und Störsignalmodelle erhalten die hohe Interpretierbarkeit der statistis-
chen Modellierung und zeigen gleichzeitig eine Verbesserung der Sprache in akustisch schwierigen
Szenarien.
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CHAPTER 1

Introduction

1.1 Motivation

Speech communication plays a vital role in human interaction; it is an intuitive way to connect with
people and express emotions. Nowadays, speech communication is no longer limited by distance, but
can also take place remotely through teleconferencing equipment. Furthermore, the rapid development
of technology has resulted in the emergence of many intelligent machines, such as smart-home devices,
autonomous vehicles, and humanoid interactive robots. These smart systems can sense and interact
with the surrounding environment through the key modality of acoustic signals. Thus, speech-based
interaction occurs not only between humans but also between humans and machines. While speech
communication devices and smart machines have become ubiquitous, they face the same challenge that
the target speech recorded by microphones is inevitably distorted by interfering noise. Communication
becomes more challenging and less comprehensible when noise interference becomes severe. The
same holds for interaction with machines, where heavily distorted target signals pose great challenges
to the speech recognition and understanding modules of smart devices. This calls for robust speech
enhancement algorithms, which extract the target speech by suppressing undesired interference
signals.

Common environmental interference signals encompass a wide variety of background noises,
ranging from traffic noise recorded on the street to human-generated noise from indoor activities. The
nature of environmental noise is closely related to the application scenario, exhibiting diverse spectral
characteristics and varying input signal-to-noise ratios (SNRs). Notably, ensuring the robustness
of speech enhancement algorithms across various acoustic conditions is crucial yet challenging.
Besides background noise disturbances, human-robot interaction introduces additional self-created
noise, commonly referred to as ego-noise [1], mainly caused by the internal motors and mechanical
parts of robots. Ego-noise generated by motors moving at different speeds is non-stationary, and its
time-frequency analysis exhibits broadband characteristics. This implies that noise interference can
largely overlap with the target speech in the spectral domain. Moreover, for small-sized robots like
NAO [2, 3], microphones are positioned close to joints. This proximity to noise sources often leads
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to low SNR recordings. These observations make ego-noise reduction also a challenging problem.
However, compared to environmental noise that varies with the surrounding environment, ego-noise
often exhibits less diversity due to the limited degrees of freedom of motors’ motion. Therefore,
effective ego-noise reduction methods can be developed by leveraging the relatively less diverse
nature of ego-noise [1]. In contrast, speech enhancement algorithms handling environmental noise
often target high generalization ability so that one algorithm can be applied to various acoustic
scenarios [4, 5].

Various speech enhancement algorithms have been proposed to suppress environmental noise
or ego-noise, achieving different degrees of success. Traditional approaches estimate the statistical
parameters of speech and noise from noisy mixtures using, e.g., power spectrum density (PSD)
tracking techniques based on voice activity or speech presence probability [6, 7]. However, it is
often assumed that noise is changing more slowly than speech, which leads to limited enhancement
performance when speech is distorted by non-stationary noise. In contrast, machine learning-based
methods do not necessarily need to follow these simplifying assumptions. They can optionally learn
prior knowledge from data and often yield superior performance. For example, dictionary-based
algorithms [8–10] can be used to learn the temporal-spectral patterns in the time-frequency domain
from training data, providing a good fit for modeling structured signals. As an illustration, each
phoneme in a language exhibits a specific spectral pattern and a group of phonemes shows additional
temporal characteristics. Besides these observed in speech, we may also detect certain spectral
features in noise signals [1]. Further performance gains can be obtained through deep learning-based
methods, which have received widespread attention due to their excellent ability to learn meaningful
and complex representations from data.

Deep neural networks (DNNs) can arbitrarily approximate any functions, offering great flexibility
to integrate key characteristics of the target signal into the algorithm development. The versatility
has facilitated widespread use in the field of speech enhancement, from replacing building blocks of
conventional approaches to developing end-to-end speech enhancement frameworks. These methods
are primarily data-driven and have demonstrated remarkable performance improvements compared
to traditional methods. In particular, deep predictive approaches have emerged as the dominant
technique in DNN-based speech enhancement (also called deep speech enhancement interchangeably
in the thesis). In machine learning, the problem of learning a function that maps inputs to outputs
from a paired dataset can be modeled using a conditional probability function. When the output
variable is discrete, it is typically referred to as a discriminative model, which is intuitively understood
as discriminating between the classification boundaries among different classes. In contrast, it is
referred to as a regression model when the output variable is continuous. In this thesis, we follow
the discussion in [11] and use a unified term predictive model to cover both the regression and
classification settings. For instance, prevailing predictive masking approaches learn to estimate
multiplicative filter masks and extract clean speech by applying these masks to the corresponding
noisy mixtures. The training process is guided by the noisy-to-clean mapping relationships established
through labeled training data. However, the performance of these algorithms is closely tied to the
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diversity and quantity of training data. Their robustness is not guaranteed under acoustic conditions
not covered by training data, leading to generalization issues. Various aspects of these approaches
have evolved significantly to overcome the limitations, including the development of informative
input features [4, 12], advanced network architectures [13–16], effective loss functions [17], and
improved optimization schemes [18, 19]. Nevertheless, gaining robustness under complex and unseen
test conditions remains an ongoing research topic. Furthermore, despite being widely used, DNNs are
typically treated as tools of a black-box nature and provide clean speech estimates in a non-transparent
manner, making the network model’s estimation behavior difficult to interpret. This thesis investigates
the challenges of generalization and interpretability from two perspectives:

• We want the predictive model to provide a reliability indicator for its predictions through
uncertainty modeling.

• Instead of relying exclusively on the deterministic mapping function learned from labeled
data, we want to explore statistically interpretable deep generative models that can learn data
distributions.

The thesis revolves around incorporating statistical modeling into deep speech enhancement, showing
how these ideas are realized through this incorporation. Moreover, this enables the combination of
the regularization benefits of statistical modeling with the non-linear modeling capabilities of DNNs.
The thesis mainly contains two parts. The first part is based on prevailing deep predictive masking
approaches. The inevitable data mismatch between training and testing raises the question: Can we
enable neural networks to provide confidence in their predictions? Therefore, our focus in the first part
is to investigate uncertainty modeling in the context of DNN-based speech enhancement. Uncertainty
suggests discrepancies between predictions and the true data, and uncertainty quantification should
be considered an important feature of deep speech enhancement algorithms, in addition to achieving
high performance. Thus, the questions of how to model uncertainty in the context of deep speech en-
hancement, how to incorporate domain-specific statistical knowledge to facilitate efficient uncertainty
modeling, and how to employ uncertainty arising from DNN-based methods for further use are of
great interest. In the second part, we study the interpretability and generalization issues by focusing on
deep generative approaches, more specifically, a framework that integrates a variational autoencoder
(VAE)-based speech model and non-negative matrix factorization (NMF)-based noise model [20]. It is
observed that the performance of deep predictive approaches depends heavily on paired training data,
leading to challenges in generalizing well to out-of-distribution samples during testing. These may
include unseen noise types, SNRs, speakers, sound loudness, and acoustic properties. In contrast, the
VAE-NMF framework learns a prior distribution of clean speech and reuses this knowledge for speech
enhancement in a statistically principled manner. This exhibits improved generalization capabilities
over comparable predictive baselines [21, 22]. However, it is difficult to ensure that such a method
can consistently present good performance in adverse acoustic situations, including unseen speakers,
non-stationary noise distortions, and low SNRs. Building upon this framework grounded in statistical
modeling, the second part of the thesis focuses on how prior noise information can be used to refine
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the speech and noise models separately in order to improve the overall robustness of the algorithm in
challenging acoustic environments.

In the rest of this chapter, we first describe statistical assumptions relevant to this thesis in Sec-
tion 1.2. In Section 1.3, we provide an overview of deep predictive speech enhancement, followed by
uncertainty modeling in predictive learning. We introduce deep generative approaches in Section 1.4.
We present the thesis structure and an overview of the related publications in Section 1.5 and 1.6
respectively. We categorize our publications into two groups based on the research topics. Chapter 2
contains the accepted versions of articles focusing on uncertainty modeling. Chapter 3 includes
the accepted versions of articles exploring deep generative approaches. Finally, we summarize our
findings and discuss potential future research in Chapter 4.

1.2 Statistical Modeling in Speech Enhancement

In this section, we focus on the speech enhancement task, which aims to remove noise interference
from noisy mixtures to improve the quality and intelligibility of target speech. The majority of
traditional speech enhancement algorithms are formulated in the time-frequency domain, rather
than directly operating in the time domain [5]. This is motivated by the fact that time-frequency
representations of signals often show distinctive structures. For example, it can be observed that
vowel sounds of speech in the time-frequency domain exhibit harmonic structures, which are integer
multiples of the fundamental frequency. Moreover, since speech utterances are composed of a
sequence of phonemes, a combination of multiple phonemes may exhibit specific temporal structures,
which can be leveraged to differentiate target speech from other sources effectively. Not only speech
but also some noise sources exhibit specific temporal-spectral structures. For instance, environmental
noise recorded on streets may contain, e.g., bus engine noise, which is relatively stationary and may
slowly change over time. Spectral representations of ego-noise generated by the robot’s motors and
mechanical parts also exhibit harmonic structures [1]. These observations make signal modeling in
the time-frequency domain more efficient and effective than direct processing in the time domain.
Moreover, sound sources often display sparse characteristics in the time-frequency domain, where
only a limited number of time-frequency bins contain large amplitude values while the rest remain
relatively small. The sparsity leads to less overlap of these large amplitude values in the time-frequency
domain [23]. Therefore, recognizing and distinguishing these unique temporal-spectral characteristics
is crucial in effectively restoring clean speech and suppressing undesirable noise.

1.2.1 Clean Speech Estimators

A widely used tool to convert time-domain signals to their time-frequency representations is the
short-time Fourier transform (STFT). Its widespread adoption can be attributed to several desirable
properties. One of the advantages is the computational efficiency achieved through the fast Fourier
transform. Additionally, the Fourier basis functions are orthogonal and can easily decompose a
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windowed signal into its frequency components. We can perfectly reconstruct the original signal
from its unmodified STFT spectrogram with properly designed transform parameters. Furthermore,
the time-frequency representations provide information about both the time and frequency content,
and this provides a good fit for the spectral analysis of non-stationary signals, whose characteristics
change over time. The window length is often chosen to reach a desired trade-off between time and
frequency resolution. In STFT-based speech enhancement methods, it is generally assumed that clean
speech is distorted by additive and independent noise, which can be mathematically defined as:

X f t = S f t +N f t , (1.1)

where X f t , S f t , and N f t denote spectral coefficients of the noisy mixture, clean speech, and additive
noise, respectively. f ∈ {1, · · · ,F} and t ∈ {1, · · · ,T} are the frequency index and time frame index,
respectively. In the time-frequency domain, speech enhancement can be achieved by applying a
multiplicative filter Wf t to the noisy mixture, giving a clean speech estimate Ŝ f t :

Ŝ f t =Wf tX f t . (1.2)

Bayesian modeling considers these spectral coefficients as realizations of random variables and
provides a principled method to obtain filter masks. Typically, the speech-plus-noise model is applied
independently to each time-frequency bin to facilitate mathematical computation and derive an
analytical solution for the clean speech estimator in a Bayesian optimal sense [5]. Various Bayesian
estimators have been developed based on different statistical assumptions about speech and noise,
aiming to restore either the spectral coefficients of the STFT or the spectral magnitudes. Common
statistical estimators include the maximum a posterior (MAP) estimator, which finds the mode of the
posterior distribution of clean speech, and the minimum mean square error (MMSE) estimator, which
minimizes the average squared error of the clean speech estimate.

Different models assume different statistical beliefs about the signal of interest, referred to as
the prior. Statistical magnitude estimators can be derived by combining a magnitude prior (e.g.,
generalized-Gamma distribution) with the uniform-distributed phase assumption [24], while estimators
of the complex spectral coefficients are often derived based on the independent assumption made
between the real and imaginary parts of the complex spectral coefficients [5]. For example, assuming
that speech is degraded by additive noise and both follow a circularly symmetric complex Gaussian
distribution yields the well-known Wiener filter [25]. Formally, the speech and noise priors are defined
as follows:

S f t ∼NC(0,σ2
S, f t) and N f t ∼NC(0,σ2

N, f t), (1.3)

where NC denotes the complex Gaussian distributions. σ2
S, f t and σ2

N, f t are the speech and noise
variances, respectively. Given the additive and independence assumptions, the likelihood p(X f t |S f t) is
thus given in the form of complex Gaussian with mean S f t and variance σ2

N, f t and the evidence p(X f t)

follows a zero-mean complex Gaussian with variance σ2
S, f t +σ2

N, f t . By applying Bayes’ theorem
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p(S f t |X f t) =
p(X f t |S f t)p(S f t)

p(X f t)
, we can obtain the posterior distribution of clean speech [25]:

p(S f t |X f t) =
1

πλ f t
exp
(
−|S f t −Wf tX f t |2

λ f t

)
, (1.4)

where Wf t =
σ2

S, f t

σ2
S, f t+σ2

N, f t
is referred to as Wiener filter and λ f t =

σ2
S, f t σ

2
N, f t

σ2
S, f t+σ2

N, f t
is the variance of the posterior

distribution. Therefore, clean speech can be estimated by taking the mean of the posterior. Since
the posterior is also normally distributed and thus unimodal and symmetric (skewness of zero),
the MMSE estimator and the MAP estimator of spectral coefficients are equivalent, i.e., both are
represented by the Wiener filter. The local Gaussian model has received widespread attention and
has been combined with many variance modeling techniques to extract the target source in many
applications [26, 27], partially due to its simplicity. While the speech and noise variances in the
Wiener filter can be estimated using traditional statistical methods [7, 25, 6], its performance is often
limited when handling non-stationary noise distortions. This problem can be largely alleviated when
leveraging DNNs to estimate filter masks directly. Furthermore, supervised DNN-based approaches
trained on synthetic noisy-clean speech pairs with the common mean squared error (MSE) cost
function:

L=
1

FT ∑
f ,t
|S f t −Wf tX f t |2 (1.5)

can be interpreted as implicitly assuming the complex Gaussian model of speech and noise and a
constant variance for all time-frequency bins [17], as will be illustrated in [P2].

Noise is often seen as a sum of numerous independent sources and is typically modeled by a
complex Gaussian distribution, which is motivated by the central limit theorem [28, 5]. In contrast,
the histogram of speech spectral coefficients has shown super-Gaussianity, i.e., the histograms of
real/imaginary parts of the spectral coefficients are more peaky and heavy-tailed than Gaussian [5, 29].
This observation allows the use of a super-Gaussian prior to fit speech spectral coefficients [30, 29, 31].
However, super-Gaussian speech priors are often accompanied by complex mathematical derivations
of MMSE solutions. The resulting clean speech estimators may require the accurate computation
of complex functions, which is computationally demanding [29, 24]. To overcome the complexity,
Astudillo [32] has proposed to approximate super-Gaussian priors by extending the complex Gaussian
to the complex Gaussian mixture model (CGMM). The mixture model is generally referred to
as a linear combination of basis distributions; the CGMM here takes as the basis distribution the
complex Gaussian. The Gaussian mixture density model possesses the advantage of being able to
approximate any continuous density function to arbitrary accuracy with a sufficient number of basis
components [33], which provides a good fit for modeling super-Gaussian characteristics of the speech
coefficients. Thus, we can model the spectral coefficients of speech and noise with a mixture of
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zero-mean circularly symmetric complex Gaussians

S f t ∼
I

∑
i=1

Ω(i)NC(0, σ
2
i, f t), N f t ∼

J

∑
j=1

Ω( j)NC(0, σ
2
j, f t) , (1.6)

where σ2
i, f t represents the variance of the i-th complex Gaussian component of the speech CGMM, and

σ2
j, f t denotes the variance of the j-th complex Gaussian component of the noise CGMM. Similarly, the

likelihood p(X f t |S f t) is modeled by a CGMM centered at S f t . With the prior and likelihood specified,
we can apply Bayes’ theorem to obtain the corresponding posterior of speech spectral coefficients:

p(S f t |X f t) =
I

∑
i=1

J

∑
j=1

Ω(i, j|X f t)
1

πλi j, f t
exp
(
−|S f t −Wi j, f tX f t |2

λi j, f t

)
, (1.7)

where Wi j, f t =
σ2

i, f t

σ2
i, f t+σ2

j, f t
and λi j, f t =

σ2
i, f t σ

2
j, f t

σ2
i, f t+σ2

j, f t
are the Wiener filter and the posterior’s variance of the

mixture Gaussian pair (i, j), respectively. Ω(i, j|X f t) denotes the posterior’s mixture weights, which
sum to 1. As a result, each Gaussian component, indexed by i j, in the posterior provides a Wiener
estimate:

Ŝi j, f t =Wi j, f tX f t =
σ2

i, f t

σ2
i, f t +σ2

j, f t
X f t . (1.8)

A clean speech estimate can then be obtained by computing the expectation of the posterior CGMM,
yielding:

E(S f t |X f t) =
∫

S f t p(S f t |X f t)dS f t =
I

∑
i=1

J

∑
j=1

Ω(i, j|X f t)Ŝi j, f t . (1.9)

With the extension to the mixture priors, one can derive a closed-form MMSE solution, allowing
for more accurate modeling of the speech target in the time-frequency domain. Unlike the posterior
mean, finding the MAP solution of the mixture model is challenging due to the inherent complexity
of the multi-mode nature of the posterior. While the accurate estimation of the posterior mode may
involve complex iterative optimization procedures, a simplified approximation can be determined
as a practical alternative, i.e., by selecting the mode of a single Gaussian component of the CGMM
posterior guided by the mixing coefficients Ω(i, j|X f t) [33]. However, this is not guaranteed to obtain
a global mode.

Clean speech estimation based on statistical modeling of complex spectral coefficients provides a
principled way to obtain clean speech filter masks. Nevertheless, the efficacy of statistical estimators
relies heavily on accurate parameter estimation. DNNs have emerged as a universal model that
possesses powerful non-linear modeling capabilities and allows the use for a variety of purposes, as
will be discussed in Section 1.3 and 1.4. In this thesis, we will discuss integrating statistical models
into deep speech enhancement frameworks in various settings. This integration aims to combine the
universal approximation capabilities provided by neural networks with statistical modeling as a way
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to improve the robustness of the algorithm as well as to provide more interpretability of the estimation
behavior.

Multi-Channel Clean Speech Estimator

In the last section, we discussed the single-channel case, where speech enhancement algorithms extract
clean speech by differentiating temporal-spectral features of speech from that of noise. Multi-channel
speech enhancement algorithms can leverage additional spatial information, which characterizes the
sound propagation path between the sources and microphones. Let X f t ∈CM denote the multi-channel
noisy spectral coefficients and M is the number of microphones of a microphone array. Given the
additive speech-plus-noise assumption, the spectral coefficients of the noisy mixture signal recorded
by a microphone array can be decomposed into

X f t = S f t +N f t , (1.10)

where S f t ∈ CM and N f t ∈ CM are the spectral coefficients of the spatial images of speech and noise.
Similar to the single-channel case, a multiplicative filter can be applied to extract the clean speech
target

Ŝ f t = WH
f tX f t , (1.11)

where W f t ∈ CM×M denotes a multi-channel filter mask at f -th frequency bin and t-th time frame
and (·)H denotes the conjugate transpose operator. Ŝ f t denotes an clean speech estimate at f -th
frequency bin and t-th time frame . It can be observed that this filtering process extracts clean speech
by performing a linear operation with respect to a local multi-channel time-frequency bin. A typical
example of such a filter mask is the multi-channel Wiener filter, which can be derived under the
MMSE criterion [34]:

W f t = argmin
W

E{||WH
f tX f t −S f t ||22}. (1.12)

It is known that the MMSE solution is equivalent to finding the mean of the speech posterior [25]. Thus,
we can also obtain the multi-channel Wiener filter by deriving the multi-channel speech posterior. For
this, we can model multi-channel speech and noise spectral coefficients using zero-mean multivariate
Gaussian distributions [27]:

S f t ∼NC(000,ΣΣΣS, f t) , and N f t ∼NC(000,ΣΣΣN, f t) , (1.13)

where ΣΣΣS, f t ∈ CM×M and ΣΣΣN, f t ∈ CM×M are the covariance matrices of speech and noise, respectively.
The spatial covariance matrix can be factorized into ΣΣΣ f t = σ2

f tRRR f , where σ2
f t are time-varying temporal-

spectral variances that describe the temporal-spectral power of sources and RRR f ∈ CM×M are time-
invariant spatial covariance matrices characterizing the sound propagation process from sources to
microphones [27, 35]. The speech posterior can be derived using Bayes’ theorem, similar to the
single-channel case discussed in Section 1.2.1. Computing the posterior mean of the speech spectral
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coefficients also leads to the multi-channel Wiener filter [34]:

W f t = ΣΣΣ−1
X, f tΣΣΣS, f t , (1.14)

where the mixture covariance matrix ΣΣΣX, f t can be decomposed as ΣΣΣX, f t = ΣΣΣS, f t +ΣΣΣN, f t under the
assumption that speech and noise are uncorrelated. The multi-channel Wiener filtering can be
achieved through various parameter estimation methods and has been applied in, e.g., audio source
separation, blind speech separation, and speech enhancement [36, 37, 27, 10]. For example, these
model parameters can be obtained in the maximum likelihood sense using expectation-maximization
(EM) update rules [27] or multiplicative update rules [10]. In this thesis, we focus on its application
in combination with the VAE and multichannel extensions of NMF [10, 38], as will be discussed in
Section 1.4.2. In other words, the multi-channel Wiener filter presented here serves as a basis for
extending the VAE-NMF framework considered in Section 1.4 to the multi-channel case [38] [P8]. It
is worth noting that this thesis focuses primarily on single-channel speech enhancement, and unless
explicitly stated otherwise, all discussions and analyses are conducted in the single-channel context.

Eventually, based on the available prior knowledge, such as the collection of speech and noise
data, parameter estimation methods regardless of single-channel and multi-channel applications can
be grouped into supervised learning, unsupervised learning, and semi-supervised learning, which
will be described in the next section.

1.2.2 Parameter Estimation

By imposing different statistical assumptions on speech and noise, we can develop various clean speech
estimators for single-channel and multi-channel application scenarios. It is important to recognize
that the effectiveness of statistical speech estimators is closely tied to the accurate estimation of their
parameters. In single-channel scenarios, clean speech estimators usually require estimates of temporal-
spectral PSDs of speech and noise, while in multi-channel scenarios, it additionally requires accurate
estimation of the spatial covariance matrices of speech and noise. Thus, clean speech estimators can be
combined with various parameter estimation schemes. For example, the noise PSD can be estimated
from the noisy observation by detecting speech activity [7, 39] or more advanced speech presence
probability [40, 6]. However, these methods often rely on the assumption that noise is changing more
slowly than speech, which is not valid when dealing with highly non-stationary noise interferences.
Therefore, statistical model-based parameter estimation relying on simplified assumptions may show
limited performance under challenging acoustic conditions. Machine learning-based algorithms
can overcome this limitation to some extent by learning discriminative patterns directly from data
without making explicit prior assumptions about the acoustic environment. This advantage has led to
the integration of representation learning techniques, such as NMF [8, 41, 42, 35, 27, 10], with the
statistical speech estimators, as will be detailed in Section 1.4. More recently, DNNs have emerged as
a more powerful tool and have revolutionized many application scenarios, including speech signal
processing, primarily due to their universal approximation capabilities. DNNs can model complex
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non-linear relationships in data more effectively than traditional methods and thus allow capturing
intrinsic variations in speech and noise. As a result, deep learning-based methods can improve the
overall performance of speech enhancement in acoustically adverse scenarios. The use of DNNs in
speech enhancement will be described in more detail in the following sections.

Different types of parameter learning methods can be developed based on specific prior knowledge.
Machine learning algorithms typically operate in two steps, i.e., training and testing. Depending on the
extent of available training data, these algorithms may be treated differently during the training stage.
This flexibility allows the adaptation to various application scenarios. Note that it may also be possible
to bypass the training step when no training data is available. In this thesis, we categorize training
mechanisms into three groups: supervised learning, semi-supervised learning, and unsupervised
learning, based on whether we have access to labeled data. Note that these terms may have different
interpretations in different contexts of the literature. For example, obtaining model parameters from
isolated source signals is referred to as “unsupervised modeling” in [43]. It is termed “supervised
modeling” when additional annotation of isolated sources, such as note information in music signal
processing, is provided. In computer vision tasks, it is typically referred to as “semi-supervised
learning” when a limited number of labeled samples alongside a large amount of unlabeled data are
available [44]. This thesis is concerned with speech enhancement involving speech and noise sources,
so here we clarify these terms accordingly to avoid possible confusion. We define these terms based
on the nature of the training data available. More specifically, we relate the supervision to whether we
can access corresponding speech targets given noisy mixtures. We consider it to be semi-supervised
learning when the training stage has limited prior knowledge (e.g., isolated speech or noise) and
refer to it as unsupervised learning when no prior knowledge is accessible other than training noisy
mixtures. In summary, we distinguish three learning strategies:

• Supervised learning relies on parallel noisy-clean speech data, that is, the training process
involves using noisy mixtures and their corresponding isolated speech and noise signals. The
labeled dataset can be used in a variety of ways depending on the algorithm under consideration.
For instance, various training targets can be constructed from a paired synthetic dataset, as will
be introduced in Section 1.3.

• Unsupervised learning includes methods that rely solely on noisy mixtures during training. It
also includes methods that do not require any training data but can derive solutions directly
from individual test samples.

• Semi-supervised learning lies in between supervised and unsupervised learning. Unlike super-
vised learning, it cannot access paired noisy-clean speech but can train the model using isolated
speech or noise data. This implies that only limited prior knowledge is known, e.g., specific
application acoustic scenarios or speaker information, as will be discussed in Section 1.4.

In general, supervised algorithms aim to learn from paired training data and apply it to unseen
samples. However, its performance is often related to the quality and diversity of training data and
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may exhibit limited generalization ability in acoustic scenarios under-represented by training data.
In contrast, unsupervised learning schemes refrain from learning from labeled data but focus on
leveraging unlabeled noisy mixtures, which are relatively easier to collect. This may be feasible
and preferred when paired training samples from the target domain are difficult or costly to collect.
However, gaining high performance in this blind manner remains a challenging research problem.
Semi-supervised algorithms acquire knowledge specific to each sound source by analyzing isolated
speech or noise data, independent of deterministic mapping relationships established through synthetic
noisy-clean speech pairs. In this thesis, we refer to the definitions above when discussing different
settings in deep speech enhancement.

1.3 Predictive Speech Enhancement

Deep learning-based speech enhancement algorithms have been an active research topic and currently
offer state-of-the-art performance thanks to the powerful non-linear modeling capabilities of DNNs.
Among them, deep predictive methods are widely used, aiming to learn the mapping between noisy
mixtures and the corresponding clean speech. These algorithms are often trained on a synthetic
dataset consisting of numerous paired noisy-clean speech samples covering a wide range of acoustic
conditions, such as various noise types and different input SNRs. The supervised predictive scheme
may perform well when the prior knowledge acquired from training data matches the test condition.
However, an inevitable data mismatch between training and testing may result in degraded speech
enhancement performance. The performance gap becomes more prominent when this distribution
shift increases. Building upon deep predictive learning, this thesis delves into a new yet crucial aspect:
how uncertainty is modeled and quantified within a DNN-based speech enhancement framework.
This section presents an overview of deep predictive speech enhancement in Section 1.3.1 and then
discusses uncertainty modeling in Section 1.3.2.

Deep speech enhancement is often formulated as a regression task to restore clean speech.
Alternatively, when dealing with noisy signals intended for the recognition modules of intelligent
machines, this problem can optionally be framed as a classification task, in which DNNs can predict the
phonemes of a speech utterance, i.e., phoneme recognition [P5]. Therefore, in addition to uncertainty
modeling in regression tasks, we also briefly introduce uncertainty modeling in classification tasks in
Section 1.3.2.

1.3.1 Deep Predictive Speech Enhancement

DNNs can learn complex patterns from data and can be trained to approximate various training
targets [4], allowing them to be flexibly integrated with traditional speech enhancement methods.
Moreover, existing work has explored end-to-end speech enhancement systems, where neural networks
are used to output speech predictions directly through spectral mapping or indirectly through filter
masking. Depending on their application, varying degrees of success have been reported.
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DNN

Noisy speech 
X

Fig. 1.1 Deep predictive masking-based speech enhancement. The neural network takes as input the
magnitude spectrogram, |X |, and outputs a filter mask, W , to extract clean speech from the complex
spectrogram of the noisy mixture, Ŝ.

DNNs have been utilized to replace some of the building blocks of traditional speech enhancement
methods. To overcome the tracking delay caused by statistical model-based noise PSD trackers [40, 6],
Zhang et al. have proposed a DNN-based noise PSD tracker, which utilizes a neural network
to estimate the a prior SNR required in an MMSE estimate of the noise periodogram [45]. A
periodogram is an estimate of a signal’s PSD, which describes the power distribution over frequencies.
The follow-up work has also proposed to improve it with different training targets and more advanced
architectures [46–48]. Furthermore, a neural network-based speech presence probability estimator has
been proposed in [49] for robust detection performance and combined with a single-channel multi-
frame clean speech estimator, i.e., the multi-frame minimum variance distortionless response (MVDR)
filter [50]. The single-channel multi-frame filter extends the well-known multi-channel MVDR filter
to single-microphone applications, that is, instead of employing spatial information between multiple
microphones, the extended single-channel filter exploits inter-frame correlation to perform noise
reduction under the speech distortion-free constraint. In the follow-up work [51], Tammen et al.
integrate this multi-frame estimator into a deep learning framework by using DNNs to estimate
necessary parameters that are typically difficult to estimate blindly from noisy mixtures [52, 53],
such as a prior SNR and highly-varying inter-frame correlation vectors. In contrast to methods
that construct intermediate training targets, they optimize the parameters of DNNs in an end-to-end
fashion, which is achieved by applying differentiable operations to the intermediate network outputs.
Similar ideas can also be found in multi-channel multi-frame approaches [54, 55]. Note that there are
no explicit assumptions applied to the network architecture, allowing for the flexible design.

Another research line that dominates predictive learning is masking-based approaches, which
aim to learn a mapping between noisy mixtures and filter masks to extract clean speech [56, 4], as
illustrated in Figure 1.1. These approaches focus less on statistical assumptions but mainly leverage
the data-driven nature of DNNs. By training on a dataset that covers a wide range of acoustic
scenarios, DNNs can discover underlying patterns of target sources. Various training targets have been
constructed in the time-frequency domain using paired speech and noise signals. For example, the
sparsity of the time-frequency representation leads to W-disjoint orthogonality [57], which indicates
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that sound sources exhibit less overlap in the spectral domain. This motivates the development of an
ideal binary mask, which assigns a time-frequency bin to one of the sound sources in the mixture
based on the SNR. Besides speech enhancement, this has also been used in DNN-based speech
separation, such as in deep clustering [58]. An improved filter mask is an ideal ratio mask, which
instead of determining speech and noise through a binary decision, assigns a soft value between zero
and one to indicate how likely it belongs to a certain source. Other extension includes phase-sensitive
mask [59] and complex ratio mask [60], which implicitly take into account phase information. While it
seems that the speech enhancement methods considering phase information can naturally outperform
magnitude-based counterparts, an empirical study on DNN-based phase-aware speech enhancement
presented in [61] demonstrates that the performance is closely related to the chosen frame length. It
reveals that the phase-aware algorithm outperforms the magnitude-only counterpart when operating
on short-frame time-frequency representations (e.g., a frame length of 4 ms at a sampling frequency
of 16 kHz), while the performance is comparable when using long frame lengths, e.g., 32 ms. A
similar discussion can also be found in [62]. While phase modeling is an intriguing research topic and
may potentially provide additional performance gains when appropriately used [63], it is not the main
focus of this thesis, thus refraining from further discussion.

DNN-based speech enhancement may benefit from integrating various engineered features derived
from time-frequency representations of noisy mixtures, such as log-compressed spectrograms and
pitch-based features [4]. Moreover, inspired by human auditory perception, input features can be
computed based on perceptual scales, such as Mel scale, Bark scale, and equivalent rectangular
bandwidth scale [4, 64–66]. However, modern network architectures are often designed with millions
of parameters, which tend to be over-parameterized. Given the capability to learn complex features, it
remains unclear whether heavily engineered features can consistently outperform raw spectrograms.
Another crucial aspect of training a network model is the choice of loss function. An appropriate
loss function can provide informative gradients during optimization and guide the network model
to reach stable local minima in the loss landscape. A diverse range of loss functions has been
proposed in speech enhancement [17], including magnitude MSE/mean absolute error (MAE) [56],
complex spectral MSE/MAE [67], and their time-domain counterparts [17, 68]. Similar measures
can also be computed on the logarithmic scale [17]. Commonly used energy-based losses include
signal-to-distortion ratio (SDR) [69] and scale-invariant signal-to-distortion ratio (SI-SDR) [70]. In
general, it is not straightforward to assert that one particular cost function is superior to others, as their
effectiveness often depends on various aspects involved in the optimization process and the specific
network architecture of choice. Moreover, the loss function does not necessarily need to be applied
directly to the output of the DNN. As demonstrated in [51], the intermediate estimates generated by
the DNN can be used to compute the final speech estimate, to which the loss function is subsequently
applied. The essential criterion is that the operations applied to the DNN’s output are differentiable,
or approximately differentiable such that gradients can be back-propagated.

In addition to input features and loss functions, an important research focus is the design of
network architectures that capture the underlying characteristics of clean speech. This is essential



14 Introduction

for maintaining the algorithm’s robustness in complex and unseen acoustic scenarios. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) have been empirically shown to
be very effective in feature extraction and modeling, and thus have served as basis components for
most existing work in the field. CNNs are typically used to extract representative features from
data [13], while RNNs, such as its variants long short-term memory (LSTM) and gated recurrent
unit (GRU), are often used to model temporal characteristics of signals [71, 12]. Recent work has
also attempted to model long-range temporal information utilizing temporal convolutional networks,
which introduce the dilation operation to increase the receptive field of CNN layers [45, 51, 72].
Among existing work, one of the most commonly used architectures in deep learning is U-Net, which
was originally proposed for medical image segmentation [14] and was later successfully applied to
various domains [73–76], including speech enhancement [13, 15, 77, 78, 66]. The U-Net architecture
typically features an encoder-decoder structure with skip connections linking the two. When handling
data of sequential nature, such as speech, RNNs layers can be inserted between the encoder and the
decoder to model temporal information [77, 15]. Further extensions include combining U-Net with
temporal convolution networks [79], dual-path RNN [80], attention modules [16], and state space
models [81]. While recent work has explored improving U-Net with various emerging architectures, it
remains unclear which combination of these modules can provide consistently superior performance
in a variety of acoustic environments.

Deep learning algorithms offer great flexibility during algorithm development. For example,
some methods employ progressive learning [82] or multi-stage learning [83] to perform speech
enhancement through multiple steps. This can be interpreted as decomposing a complex regression
task into multiple subtasks, where small gains achieved at each step can be accumulated to better
the entire task. Furthermore, perceptual instrumental metrics can be used as loss functions to train
neural networks. This entails developing differentiable perceptual instrumental metrics, such as
speech quality metric-based methods [84] and intelligibility metric-based methods [85]. However,
the existing work has also noted the disadvantages of metric-based loss functions, such as producing
unnatural speech [86, 87]. The research also focuses on optimization schemes. For instance, several
studies have explored the adversarial training scheme provided by generative adversarial networks [88]
to improve clean speech estimation [18, 19]. Moreover, learnable transforms have been a major focus
in speech enhancement [89] since the exploratory study on speech separation by Luo et al. [72]. To
advocate a learnable transform, one may argue that the transform learned from training data is task-
specific and likely leads to more discriminative representations. However, it remains an unresolved
question whether learned signal encoding outperforms deterministic ones for speech enhancement and
separation tasks, and vice versa [65, 90, 91]. Additionally, research has been conducted to develop
complex operation-based neural networks [92, 93], but the advantages against real-valued counterparts
are still unclear [94].

Next, we will discuss the incorporation of uncertainty modeling into DNN-based predictive
speech enhancement. Specifically, We will build on the prevalent predictive masking approaches in
the time-frequency domain.
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1.3.2 Modeling Uncertainty in Predictive Learning

The previous section discussed key aspects of progress in deep predictive speech enhancement, from
input features to optimization techniques. The literature has reported varying levels of success for
these factors, depending on the specific application. Deep predictive models are typically used to
output a single-point clean speech estimate for each noisy input, but it is important to note that the
trained model’s predictions may not always be accurate. Indeed, supervised predictive approaches
have shown a high dependence on training data [22, 86, 21] and a slight distribution shift in the data
during testing may easily cause the model to perform poorly. Therefore, these approaches formulated
as a problem with a single output may result in fundamentally erroneous estimates for complex and
unseen samples without indicating that the erroneous estimate is uncertain. Orthogonal to the progress
outlined in Section 1.3.1, in this thesis, we investigate whether DNN-based speech enhancement
algorithms can produce clean speech estimates while at the same time outputting confidence in the
predictions, i.e., uncertainty, especially for underrepresented noisy samples.

Uncertainty prediction is of great interest for machine learning models since it can inform about
the reliability of estimates in the absence of the ground truth, which is usually unavailable to us during
inference. Low uncertainty generally indicates a small deviation from the ground truth, while high
uncertainty indicates a large estimation error. Thus, a measure that can reflect how large the error
margin is can be used to quantify uncertainty; in other words, uncertainty describes how wide the
distribution of predictions is [95]. Depending on the task, various uncertainty measures have been
employed, such as confidence intervals, entropy, and variance. For example, Depeweg et al. [96]
propose to measure uncertainty based on the entropy of the predictive distribution, which represents
the information level of random variables. Pearce et al. [97] use confidence intervals in a distribution-
free setting, illustrating how certain the estimate is within a certain range. Another widely used
measure is variance [73, 74, 98], which is a measure of the spread of a distribution. Some other
metrics, which may be task-dependent, are also employed, such as in [99, 100]. Here, we address
uncertainty modeling in a probabilistic manner following [74, 101] and use variance in regression
settings and entropy in classification settings.

Sources of Uncertainty

Methods for modeling and predicting uncertainty in machine learning can be quite diverse and often
depend on the chosen setting and methodology; here, we focus on uncertainty modeling in the context
of DNNs. Before we proceed with methods to capture uncertainty, we clarify the sources of uncertainty.
For example, when dealing with neural network-based speech enhancement, one can identify several
sources of uncertainty, such as from statistical model assumptions, data collection process (e.g., data
quality), network model design, and randomness introduced during optimization. Despite many
sources, they are typically categorized into aleatoric uncertainty and epistemic uncertainty in machine
learning when it comes to uncertainty modeling [102, 103, 11].
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Uncertainty estimation in deep learning-based methods has gained increasing interest, especially in
computer vision tasks [74, 75]. In [74], the authors define aleatoric uncertainty as inherent uncertainty
in data, thus also referred to as data uncertainty. In image processing tasks, data uncertainty can often
be attributed to, e.g., noisy labels or object occlusion. Images of objects without distinct features, or
those with reflective surfaces, also pose challenges to the model and can lead to high data uncertainty.
This type of uncertainty is characterized by the stochastic dependency between input and output,
which can be represented by means of a conditional probability distribution. It is also considered
independent of the network model. Additionally, due to its intrinsic uncertainty nature, this type
of uncertainty is viewed as irreducible, as discussed in [74]. In contrast, epistemic uncertainty is
described as uncertainty arising from the network model weights in [74], also referred to as model
uncertainty. This uncertainty indicates a lack of knowledge about the network model and can be
reduced by training the network model on more data. For example, high epistemic uncertainty may be
observed when an under-represented sample is presented during inference. This type of uncertainty
can be captured by modeling the parameters of the neural network stochastically in the form of
probability distributions, instead of deterministically by point numbers.

However, clearly defining and distinguishing different types of uncertainty is non-trivial, and
the boundary between the two may be blurry and can be context- and task-dependent [103, 95].
Thus, simply transferring the definitions outlined above to the speech enhancement setting may
be inappropriate. For example, one may analogize DNN-based speech enhancement to an image
processing task, where the spectrogram can be treated as an image and each time-frequency bin
corresponds to a pixel. The goal is to extract clean speech from the noisy input. Similar to object
occlusion in image processing, speech and noise are likely heavily overlapping, which can naturally
lead to high aleatoric uncertainty. One solution to improve the performance of separating clean speech
from overlapping background noise is to include more training data covering a wide range of noise
distortions. For example, for vowel sounds in a magnitude spectrogram, a network model can learn to
better recognize harmonic structures with more training data included. This stands in contrast to the
non-reducible definition of aleatoric uncertainty provided in [74] since the network model in this task
can gain knowledge through more data and then compensate for aleatoric uncertainty [95]. Thus, these
observations blur the boundary between the two uncertainties. A similar view has also been presented
in [103], where the authors argue that by altering the setting of the problem, such as performing
a classification task with an additional feature dimension (e.g., one-dimensional classification vs
two-dimensional classification), aleatoric uncertainty can be possibly reduced in a higher dimensional
space. Meanwhile, a more complicated model may be required to fit the given dataset, which can
potentially increase epistemic uncertainty. This suggests that changing the problem setting may
switch one type of uncertainty to the other, emphasizing the difficulty in attempting to have absolute
definitions.

Another factor that can increase aleatoric uncertainty is the ambiguity present in the ground
truth of the training data, such as the difficulty in labeling occluded object boundaries in image
segmentation tasks. In speech enhancement, noisy labels in training data can be related to disturbing
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effects in the ground truth clean speech, such as the breathing sounds of speakers and microphone
noise. However, this can be largely ignored when using a synthesized dataset containing high-quality
clean speech materials. Our analysis often shows that uncertainty is mainly caused by external
interfering distortions that we want to remove. Furthermore, we can observe that a single network
that models only aleatoric uncertainty can raise high uncertainty for noisy samples not sufficiently
represented by training data, such as unseen noise types. This indicates that a single model can
also capture the effects of epistemic uncertainty and inform data outliers without applying statistical
modeling to the network weights as in [74]. These observations and potential ambiguities again
illustrate that distinguishing one uncertainty from another is not straightforward and may be closely
related to the task.

In order to avoid potential confusion, in [104, 95], the authors depart from the conventional
aleatoric and epistemic terminology and introduce new terms to clarify uncertainty definitions. Here,
we want to minimize confusion while using the same terminology, with some necessary clarification.
We maintain consistency with most of the existing literature by adhering to the terms aleatoric
uncertainty (data uncertainty) and epistemic uncertainty (model uncertainty). However, in our
specific task, they may extend beyond the definitions of the inherent randomness in data and the
uncertainty of the model weights, respectively. Deep learning algorithms involve many steps that can
introduce uncertainty, from data preparation to target prediction. In addition to modeling the inherent
randomness of data and uncertainty of the network model weights, uncertainties arising from the
training process also contribute to the uncertainty in predictions: If the parameters of a neural network
are trained, e.g., using different training data, different initialization schemes and stopping criteria, or
a different number of epochs, different parameters result. This is closely related to the convergence of
a network model, thus affecting the estimation of uncertainty about the model weights; however, from
a practical point of view, this may also have an impact on the estimation of uncertainty inherent in
data, as neural networks landed at different local minima of the loss landscape provide different data
uncertainty estimates. Therefore, both data and model uncertainty can, to some extent, encompass the
uncertainty introduced during the training/convergence process.

When modeling the uncertainty of the network weights, an assumption has been made implicitly:
The network model designed is a powerful universal approximator, while the discrepancy caused by
the model design is simply ignored. In other words, modeling the posterior of the network weights
has been considered sufficiently general to describe not only all model parameter sets but also all
possible network models. The uncertainty arising from the model design and selection is practically
difficult to model [103]. Here, we share the same view as in [95] that when modeling input-output
dependency stochastically in the form of a conditional distribution and leveraging a DNN to perform
the estimation, the variance associated with the prediction captures not only the inherent randomness
in data but also limitations of the model. Consequently, a single model (without modeling the network
weights probabilistically) has the potential to elevate uncertainty estimates in situations where the
model lacks knowledge about specific test samples.
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In a nutshell, we employ the term aleatoric uncertainty or data uncertainty to refer to the
uncertainty that stems from the stochastic dependency between input and output as well as the
limitations of manually designed network architectures. We use the term epistemic uncertainty or
model uncertainty to refer to the uncertainty of the model parameters. Importantly, uncertainty arising
from the optimization process contributes to both sources of uncertainty.

Estimating Data Uncertainty

Having discussed the sources of uncertainty in deep learning-based speech enhancement, we first
discuss how to estimate the uncertainty in the predictions arising from data uncertainty. Given
the stochastic dependency between input and output represented by a conditional distribution, data
uncertainty can be quantified by estimating this full predictive distribution. Specifically, with the
speech-plus-noise assumption as in section 1.2, one can derive a closed form of the speech posterior
p(S|X). For example, a complex Gaussian posterior can be derived based on the common complex
Gaussian priors of speech and noise, see equation 1.4. By estimating the statistical moments of
this distribution, the predicted mean serves as an estimate of the speech target, while the associated
variance can be used to quantify data uncertainty. Essentially, the predicted mean is the MMSE
estimate of clean speech, which in this case, is equivalent to the MAP estimate since the posterior is
unimodal and symmetric.

Although in principle it is possible to use tools, such as noise and speech PSD trackers, to estimate
the full posterior distribution, here we make use of DNNs due to their powerful non-linear modeling
capability. A standard neural network that outputs a point estimate for each input noisy sample does not
allow the estimation of predictive uncertainty. For instance, a DNN trained by minimizing the widely-
used loss function MSE can be interpreted as assuming homoscedastic uncertainty, which implies
a constant variance that is not explicitly estimated. To capture input-dependent data uncertainty,
we instead predict the full posterior distribution, and in the case of the Gaussian distribution, a
simple solution is to split the output layer into two layers to estimate the mean and its associated
variance, following p(S|X)∼Nc(µ(X),λ (X)), where µ(·) and λ (·) denote the mean and variance
functions parameterized by θ . Given a training dataset that contains paired noisy-clean speech
complex spectrograms D = {(S11,X11), ...,(SFT ,XFT )}, the network weights θ can be obtained by
maximum-likelihood estimation, with the loss function:

θ̃ = argmin
θ

L(θ) = argmin
θ

− 1
FT ∑

f ,t
log(p(S f t |X f t ,θ)). (1.15)

In the speech enhancement task, DNNs output an estimate for each input time-frequency bin. The
index f t is thus omitted when no confusion occurs. While the loss function is typically computed by
averaging over time-frequency bins of the input spectrogram, a well-designed DNN can effectively
exploit both temporal and spectral correlations in the input.
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Eventually, in situations where the network model has difficulty in predicting certain samples,
either due to inherent stochastic dependency or due to limitations in the network architecture and its
training procedure, the network model may exhibit high uncertainty as an indicator that the predictions
may be inaccurate. However, training a probabilistic model is not a trivial task. For example, the
ground truth of uncertainty is not readily available, making uncertainty estimation an unsupervised
task with an unspecified search space. Also, in order to appropriately capture a full distribution
parameterized by the mean and variance, the neural network may require to be trained on a sufficient
amount of data. Furthermore, once we have reliable estimates of data uncertainty, the question that
may arise is how we can leverage them to further enhance the estimation of clean speech. These
questions are explored and addressed in our contribution [P2], where we employ an approximate MAP
estimator of spectral magnitudes that explicitly requires variance estimates to further refine speech
estimates [105]. The proposed joint scheme establishes an interesting connection between the complex
spectral domain and the magnitude domain based on complex Gaussian assumptions. The resulting
joint loss objective has also been shown to be effective in stabilizing the training process.

Estimating Model Uncertainty

In the previous section, we discussed how to employ a DNN to capture data uncertainty. However,
directly estimating the full conditional distribution p(S|X) based on a single deterministic neural net-
work is agnostic to model uncertainty. To capture uncertainty in predictions due to model uncertainty,
one can utilize Bayesian deep learning, which provides a principled tool to model uncertainty in neural
networks. Rather than assuming deterministic neural network parameters, Bayesian deep learning
treats the network parameters θ as random variables and models the network weights stochastically
by placing a distribution over them. Thus, the task of estimating model uncertainty boils down to
performing Bayesian inference, i.e., deriving the posterior over the network weights p(θ |D) that
captures model uncertainty. Formally, with a proper prior p(θ) and likelihood p(D|θ), one may
derive a posterior distribution using Bayes’ rule:

p(θ |D) =
p(D|θ)p(θ)

p(D)
, (1.16)

where D denotes a dataset comprising paired noisy-clean speech samples. However, for neural
networks with millions of parameters, it is computationally intractable to compute an analytic form of
the posterior distribution (e.g., due to difficulty in computing the integration in the evidence p(D)).
Hence, various approximation methods have been proposed.

To perform Bayesian posterior inference, early work has been focused on sampling-based methods,
e.g., Markov chain Monte Carlo (MCMC) methods, which construct a Markov Chain with the posterior
distribution as its stationary distribution. In order to scale to large datasets, stochastic gradient versions
have been investigated [106–108], where a subset of data, i.e., a minibatch of data, is employed for
gradient computation instead of the whole dataset. However, MCMC methods are computationally
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inefficient and face challenges in handling high-dimensional functional spaces, especially for DNNs
with a large number of parameters [75, 95].

Another method of approximate inference is variational inference, where one can approximate
the complex posterior distribution p(θ |D) with a simpler variational distribution q(θ), such as
Gaussians [109, 110]. The discrepancy between these two distributions can be measured through a
predefined metric, which turns the approximation problem into an optimization problem. Among
them, a predominant measure is the Kullback-Leibler (KL) divergence. Specifically, with reverse
KL divergence KL[q(θ ||p(θ |D))], the problem can be formulated as maximizing the evidence lower
bound (ELBO). Then, intractability due to the absence of the analytical solution of the posterior
distribution is avoided, and the optimization with respect to the ELBO is mainly to find the approximate
variational distribution q(θ). A detailed discussion of this approximation will be given mathematically
in Section 1.4.1. The main concern is that the terms in the ELBO require computing the expectation
with respect to the variational distribution. This may also not be computed analytically but can be
approximated via Monte Carlo sampling [99]. To embed this into the context of neural networks
optimized using stochastic gradient optimization, another problem to consider is how to make the
sampling process differentiable. To solve this, Kingma et al. [109] proposed a reparameterization
technique, which is a differential transformation. This transformation allows the backpropagation
of the gradient through the parameters of interest while at the same time injecting stochasticity
through a random sampling process. While Kingma et al. apply this technique to autoencoders
and randomize their hidden variables [109], the follow-up work [110] extends this to capture the
probability distribution of neural network weights in a much higher dimensional space and diversifies
the variational distribution with a Gaussian mixture model. While variational inference tends to be
more computationally efficient than sampling-based methods [111, 112], there are some challenges
highlighted in the literature [112, 101]. For example, it is difficult to determine a proper common
prior, considering various possibilities of network design; optimizing the objective function KL
divergence may not be the optimal choice and alternative divergence measures may improve overall
approximation quality [112, 99]; independence assumptions have typically been made among the
network weights to facilitate derivation of solutions for large DNNs, but this may potentially limit
the approximation performance. Furthermore, depending on the chosen variational distribution,
Bayesian neural networks may greatly increase the number of parameters. For instance, with a
Gaussian distribution fully described by a mean and variance, the number of parameters is doubled
compared to the corresponding deterministic countpart. In practice, it may not be necessary to
introduce stochasticity to all parameters; instead, one can selectively randomize specific parts of a
DNN [73, 113].

Despite potential limitations, some methods performing variational inference have shown promis-
ing uncertainty estimation performance for large-scale DNNs [75, 74]. For example, Gal et al. [114]
approximate the posterior distribution with a Gaussian mixture model (i.e., a mixture of two Gaus-
sians) and build an interesting connection between variational inference and the dropout regularization
technique [115]. This method is referred to as Monte Carlo (MC) dropout. Sampling from the
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posterior distribution of the network weights at inference time is achieved by activating dropout. A
single forward pass generates a set of network parameters. By performing multiple forward passes,
we generate multiple sets of parameters, simulating sampling from a network parameter posterior
distribution. Given the widespread use of dropout in architectural design, MC dropout can scale easily
to large datasets and network architectures. Recent studies have also attempted to adopt MC dropout in
speech processing tasks, such as speech recognition [116–118] and speech emotion recognition [119].

While Bayesian inference provides an elegant tool to reason about the posterior distribution
of the network weights, model uncertainty can also be captured by an ensemble of deterministic
networks, i.e., ensembling [98]. The motivation is that a network with millions of parameters gives
rise to a multi-mode function space and a network trained multiple times may land in different local
minima of this high-dimensional space due to randomness introduced during the optimization process
(e.g., initialization, data shuffling). An ensemble of network models can then be viewed as samples
obtained from some network parameter posterior distribution and is thus also considered equivalent to
approximate Bayesian inference [75, 120]. Consequently, while Bayesian deep learning techniques
allow a trained network to be sampled from a local mode in the high-dimensional space, an ensemble
of networks trained with randomness may allow sampling from different local minima, as empirically
shown in [121]. This hypothesis has also been supported by comprehensive experimental comparison
reported in [75], in which Deep ensembles [98] outperform other Bayesian inference methods, leading
to state-of-the-art performance in uncertainty estimation. Various ensembling techniques have been
designed in the literature [122, 123]. For example, an ensemble of network models can be obtained
through different random initialization seeds, i.e., training the same network model multiple times
on the same amount of data using random initialization, such as Deep ensembles [98]. Furthermore,
one can create network variation by bagging (also called bootstrapping [123]), which uses the same
initialization seed but trains the network model on different subsets of the training data through
resampling. A comparison presented in [122] has shown that for large models trained with a large
amount of training data, random initialization is effective and preferred over bagging in terms of
model diversity. Specifically, it has been pointed out in [122, 98] that training on a resampled version
of the dataset leads to worse performance, possibly due to that data resampling reduces the number of
unique samples. This observation has also been empirically evaluated in [123].

Overall, the true posterior distribution of network weights can be approximated through 1)
sampling-based methods, 2) approximate variational inference, and 3) ensemble-based methods. With
M network realizations obtained from an approximate posterior network parameter distribution, we
can generate M output predictions for each input sample. Uncertainty in predictions due to model
uncertainty can be empirically quantified by the variance in these output predictions

S̃ =
1
M

M

∑
m=1

S̃θm ,

Σ̃ =
1
M

M

∑
m=1

|S̃θm − S̃|2,
(1.17)
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where S̃θm denotes a clean speech estimate using the network model with parameters θm. S̃ and Σ̃
represent the average clean speech estimate and the associated model uncertainty, respectively. Note
that there is a clean speech estimate and an associated variance estimate for each f t-th bin, and the
index f t is omitted for brevity.

Previous studies on model uncertainty have been focused on tasks other than speech enhancement,
e.g., [73, 104, 119, 124, 116–118]. Yet, questions such as how reliable and accurate the estimates of
epistemic uncertainty are in speech enhancement, and how modeling epistemic uncertainty affects
enhancement performance, have not been addressed. Hence, we study these questions in [P2] and
investigate two Bayesian deep learning techniques: MC dropout and Deep ensembles, to capture
model uncertainty in clean speech estimation because of their efficiency in approximating Bayesian
inference and scalability to large neural networks.

Estimating Overall Predictive Uncertainty

Having discussed how to quantify data uncertainty and model uncertainty in the context of deep
speech enhancement, in this section, we illustrate how to estimate overall predictive uncertainty, which
reflects both sources of uncertainty. To achieve this, we can inject the speech posterior distribution
into approximate Bayesian inference methods. In the case of MC dropout, we can use a neural
network with dropout regularization to estimate the full speech posterior distribution by minimizing
the objective (1.15); similarly, for Deep ensembles, we train M network models, each of which is
optimized using the loss function (1.15). At inference time, the predictive distribution is obtained by
marginalizing out the posterior network parameter distribution:

p(S|X ,D) =
∫

p(S|X ,θ)p(θ |D)dθ . (1.18)

Due to computational intractability, we approximate the expectation with a MC estimator:

p(S|X ,D) =
1
M

M

∑
m=1

p(S|X ,θm), with θm ∼ q(θ), (1.19)

where θm denotes samples from an approximate posterior distribution q(θ).
With the law of total variance [95, 99, 101], the total variance V(S|X) can be decomposed into

the variance of speech posterior means and the expectation of speech posterior variances:

V[S|X ]︸ ︷︷ ︸
Overall Predictive Uncertainty

= Vp(θ |D)[E[S|X ,θ ]]
︸ ︷︷ ︸

Model Uncertainty

+Ep(θ |D)[V[S|X ,θ ]]
︸ ︷︷ ︸

Data Uncertainty

. (1.20)

Therefore, the former approximates uncertainty arising from model uncertainty, while the latter
approximates uncertainty in predictions due to data uncertainty. Similarly, since these quantities can
not be computed analytically, they are estimated using MC estimators as in (1.19). The approximate
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overall predictive variance is given by:

Σ̂ =
1
M

M

∑
m=1

(|S̃θm − S̃|2 + λ̃θm). (1.21)

where λ̃θm denotes the speech posterior variance estimated by the DNN with parameters θm. A clean
speech estimate can be obtained by averaging the multiple predictions as in (1.17). The index f t is
omitted for brevity.

Bayesian inference provides principled methods to model uncertainty. However, one downside
of the approximate inference methods outlined above is their computational inefficiency. During
inference, the computational effort increases in proportion to the number of realizations M. While
ensemble-based methods, such as Deep ensembles, deliver superior results in uncertainty estimation,
training M individual network models makes them less efficient in terms of memory and storage.
Therefore, an effective alternative solution might be to generate multiple predictions with a single
forward pass through the network, thus bypassing the need for an extensive sampling process. This
results in our contribution in [P3], in which we combine the powerful nonlinear modeling capabilities
provided by neural networks with super-Gaussian speech priors as a way to improve the robustness of
the algorithm as well as to capture predictive uncertainty efficiently.

Uncertainty Estimation in Classification Tasks

In previous sections, we have discussed modeling predictive uncertainty in regression settings. We now
present how to estimate data uncertainty and model uncertainty in classification tasks, in which DNNs
are employed to estimate discrete class labels. More specifically, network models in classification
settings are used to estimate the probability of an input sample belonging to a specific class.

Similar to the regression setting, the network predicts the class variable’s posterior distribution,
which is usually modeled as a categorical distribution, i.e., a discrete random variable with multiple
possible outcomes. We can denote a discrete random variable that can take values from I categories
by C ∈ {1, · · · , I}. We denote pi as the probability of classifying the input data as class i. The sum of
pi is constrained to be 1, i.e., ∑I

i=1 pi = 1. Hence, given the input X , the classification task is to find
the mode of the posterior:

p(C|X) =
I

∏
i=1

pI(C=i)
i , (1.22)

where I(·) is an indication function equal to 1 when C = i and 0 otherwise. For deep learning multi-
class classification, the DNN can output a logit score for each class, which can then be normalized
using a Softmax activation function. Given an independently and identically distributed data set
consisting of input data and corresponding class labels, D = {(C1,X1), · · · ,(CN ,XN)}, a network
model parameterized by θ can be trained by minimizing the negative log-posterior, which is the
well-known cross-entropy loss function.
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By estimating the parameters of a categorical distribution using a deterministic network, the
entropy of a discrete distribution can capture uncertainty in predictions due to data uncertainty [101].
However, this does not take into account model uncertainty. To this end, we can adopt Bayesian deep
learning techniques to sample an ensemble of network parameters {θm}M

m=1. Thus, multiple network
realizations can generate multiple sets of logits for an input sample. The expectation of the resulting en-
tropy with respect to the network posterior quantifies the data uncertainty, i.e., Ep(θ |D) [H [p(C|X ,θ)]]

[99], where H[·] represents the entropy. In addition, the predictive distribution can be computed by
marginalizing out the network parameter posterior as in (1.18), i.e., Ep(θ |D) [p(C|X ,θ)]. In practice,
this can be approximated by MC approximation due to computational intractability, i.e., the average of
M predictions. Consequently, the entropy of this expected distribution quantifies the overall predictive
uncertainty [101, 99], i.e., H

[
Ep(θ |D) [p(C|X ,θ)]

]
. Eventually, by computing the difference between

the total predictive uncertainty and data uncertainty, we can obtain uncertainty in predictions arising
from model uncertainty, which quantifies the spread of predictions from an ensemble of models [101]:

I[C,θ |X ,D]︸ ︷︷ ︸
Model Uncertainty

=H
[
Ep(θ |D) [p(C|X ,θ)]

]
︸ ︷︷ ︸
Overall Predictive Uncertainty

−Ep(θ |D) [H [p(C|X ,θ)]]
︸ ︷︷ ︸

Data Uncertainty

, (1.23)

Where I[·] denotes the mutual information operator. Model uncertainty is captured through the mutual
information between the network parameters θ and the class C, which represents the amount of
information that can be gained about one variable given the other variable [103, 125].

Reliable uncertainty estimates can indicate when a model lacks confidence in its predictions. We
want to explore further uses of uncertainty estimates to improve speech enhancement tasks in both
regression and classification settings. In our work [P4], we seek to improve the noise robustness of
speech enhancement algorithms using unlabeled data from the target domain to which the model
is applied. This is achieved through a process known as uncertainty-based filtering, where we
filter out low-quality training samples based on uncertainty estimates and adapt the model to high-
quality speech samples. Another application we explore is audio-visual phoneme recognition. While
complementary features of the visual modality can improve overall performance, unreliable visual
input may result in degraded performance that may be even worse than methods based solely on
the audio modality [126] [P5]. Existing works in audio-visual speech recognition have proposed
to address visual input distortions by jointly processing modality-specific posteriors and reliability
measures using a fusion network [127, 128] or by introducing more carefully designed network
architectures [126]. Our work in [P5] studies a uncertainty-based fusion scheme for audio-visual
phoneme recognition, where a simple uncertainty-weighted combination is performed at the output
level without relying on an additional post-fusion DNN. Moreover, the uncertainty-based fusion
strategy uses only clean visual data during training, making it video corruption-agnostic, and is thus
expected to generalize to various visual distortions. It allows the model to identify when predictions
from a particular modality might be less reliable and determine the extent to which the decision
depends on each modality.
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1.4 Generative Speech Enhancement

The previous section is focused on deep predictive approaches, where we rely on paired noisy-clean
speech data and train neural networks to learn a deterministic mapping between the noisy input and
clean speech. While supervised predictive methods have achieved impressive results under matched
conditions, their ability to generalize to unseen conditions is limited. The distribution mismatch
between training and testing data may lead to performance degradation. However, recent work
leveraging generative models has shown the potential to narrow the performance gap between matched
and mismatched scenarios. Generative models aim to learn, implicitly or explicitly, probability
distributions of complex data, thus capturing inherent signal characteristics. In the time-frequency
domain, this includes particularly temporal-spectral features. The learned statistical models can adapt
to various acoustic conditions and demonstrate high performance in the presence of noise disturbances
unseen during training.

The variational autoencoder (VAE) is a powerful deep generative model that has gained widespread
attention in machine learning [109]. It is trained to capture complex features in high-dimensional data
such as speech and images by learning low-dimensional latent representations. This makes it suitable
for many tasks, such as data compression and representation learning. Recent work has explored
its application in speech enhancement [21, 129, 20, 38]. For example, the VAE has been used to
learn a prior distribution of clean speech. This is then combined with an untrained non-negative
matrix factorization (NMF)-based noise model to perform speech enhancement using a Bayesian
inference algorithm, such as Monte Carlo expectation maximization (MCEM) [20]. In contrast to deep
predictive models, the original VAE-NMF methods in [21, 20] do not require paired noisy-speech
data, but only learn prior speech knowledge on isolated clean speech data. This makes the algorithms
semi-supervised.

In this chapter, we first describe the probabilistic tools to model speech and noise signals. This is
followed by the MCEM, based on which we estimate unknown parameters at inference time.

1.4.1 Non-Negative Matrix Factorization and Variational Autoencoder

Non-Negative Matrix Factorization

NMF is a widely used technique that can learn the intrinsic characteristics of given data [8]. NMF
aims to factorize a non-negative matrix into the product of two lower-dimensional matrices, under the
constraint that these matrices have no negative values. For example, NMF can decompose an image
by identifying basic parts of its composition. NMF has also been a prevailing technique to model
speech and audio signals. A common example is to take some preprocessing to convert the complex
STFT coefficients to non-negative values, e.g., taking the absolute value or the square. NMF can then
be used to find representative features that form the input magnitude spectrogram or periodogram.

Formally, given a non-negative matrix Y ∈ RF×T
+ , NMF decomposes it into two non-negative

matrices W ∈ RF×K
+ and H ∈ RK×T

+ , such that their product approximates the input Ŷ ≈ WH. Let Ŷ
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denote an estimate of the input Y. Here, F and T are the number of rows and columns of the input
matrix (e.g., corresponding to the number of frequency bins and time frames of the input spectrogram),
indexed by f and t, respectively. R+ denotes the positive real values. Essentially, the data matrix Y
can be interpreted as a linear combination of the columns of the matrix W, with weights specified
by the elements in the matrix H. For illustration, we take one column vector from Y, denoted as
Yt ∈ RF

+, and the corresponding vector in H, represented by Ht ∈ RF
+, visualized in Figure 1.2. The

approximation is then given by Ŷt ≈ WHt , which indeed gives a weighted sum of the columns of
W, with weights specified by the entries in Ht . Thus, the matrix W is referred to as a dictionary
matrix or template matrix, which contains the columns that serve as basis components (or templates).
The matrix H is referred to as an activation matrix, which describes the temporal activity of input.
K indicates the size of the dictionary and can be set much smaller than F and T (i.e., K ≪ F or T ).
Hence, this gives a compressed version of the input matrix, and NMF can also be seen as a dimension
reduction technique [8]. However, in some applications [130, 131], an overcomplete dictionary is
desired, where the dictionary size K is larger than F or T . This approach is often coupled with a
sparsity constraint to ensure that the dictionary captures underlying features instead of memorizing
input details. Furthermore, the non-negative constraint can help prevent dictionary elements from
canceling each other out, thereby encouraging the learning of both meaningful and interpretable basis
representations of the input [8, 132]. Its applicability has been demonstrated in various domains. This
thesis specifically focuses on its application in speech and audio signal processing.

Given the approximation problem defined above, the decomposition can be mathematically solved
by minimizing an error measure:

min
W,H≥0

D(Y|WH) and D(Y|WH) =
F

∑
f=1

T

∑
t=1

D([Y] f t |[WH] f t). (1.24)

D(·|·) denotes a cost function that measures the discrepancy of approximation, and [·] f t denotes the
f t-th element of the matrix. Common cost functions include the Euclidean distance and the KL
divergence, as introduced by Lee et al. in [8]. Since both measures are non-convex in the joint
optimization of W and H, it is not guaranteed to find a global minimum. One can resort to iterative
optimization, which optimizes one variable while fixing the other, allowing NMF to converge to a local
minimum. However, due to its non-convex nature, the NMF algorithm with different initializations
may converge to different local minima [133]. The optimization process can be implemented using
simple techniques such as gradient descent to find these local minima [8]. Interestingly, Lee et al.
have shown that when carefully choosing the learning rate to be adaptive, the gradient descent-based
additive update rule can be transformed into an easy-to-implement multiplicative update rule. The
multiplicative rule can also be derived by using auxiliary functions [8]. This further reduces the burden
of hyperparameter search during optimization, such as avoiding the need to search for the learning
rate. The following works have also extended NMF with various cost functions [134, 135, 42, 41].
For example, Févotte et al. in [41] propose to measure the approximation discrepancy with the
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Fig. 1.2 Illustration of NMF that decomposes an input matrix Y into a dictionary matrix W and an
activation matrix H.

scale-invariant Itakura-Saito (IS) divergence and, similar to the Euclidean distance and KL divergence,
provide easily implemented multiplicative update rules. It is interesting in speech and audio signal
processing because the IS divergence depends only on the ratio between the true value and the
approximate value. Therefore, it treats different frequency components equally and disregards energy
distribution over frequency, [41, 10]. This makes the algorithm robust to energy variations and
prevents quieter frequencies from being dominated by louder ones. In general, the choice of the cost
function may depend on the specific application requirements.

Error measures of NMF can also be defined using appropriate statistical models [136, 10]. For
example, optimizing NMF with the Euclidean distance can be interpreted as maximizing the log-
likelihood, which has the form of a Gaussian with mean defined as the NMF approximation and a
constant variance. Also, the optimization based on the KL divergence is equivalent to performing
maximum likelihood estimation using a Poisson distribution [10]. Furthermore, by assuming the
complex-valued STFT coefficients complex Gaussian-distributed and approximating the variances
with the NMF approximation Ŷ, maximum likelihood estimation with respect to the matrices W
and H leads to the IS divergence. Note that to strictly establish this equivalence, the decomposition
needs to be applied to the periodogram [10]. Furthermore, Févotte et al. in [41] interpret the IS
divergence-based optimization as the maximum likelihood estimation in Gamma multiplicative noise.
Similarly, the probabilistic interpretation has also been extended to multichannel signals in [10]. In the
multichannel case, optimizing IS divergence can be associated with a multivariate complex Gaussian
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distribution, where the dimension of the covariance matrix is equal to the number of microphones.
Euclidean distance-based NMF can also be derived based on a univariate complex Gaussian. Overall,
optimization based on the cost functions may align with certain statistical assumptions, building
interesting connections with probabilistic modeling. We will introduce later in Section 1.4.2 that the
probabilistic interpretation allows NMF to be combined with DNN-based latent variable models, such
as VAE, resulting in statistically interpretable deep generative speech enhancement algorithms [20, 21].

NMF has been widely used to model signals that exhibit structured patterns in source separa-
tion [10, 130, 137], speech recognition [138–140], and speech enhancement [141–143]. To effectively
separate two or more sources in a mixture, each source (e.g., speech or background noise in speech
enhancement) can be modeled by a separate NMF model. These unknown parameters are determined
under the constraint that the sum of the approximations of multiple sources is optimized to fit the
input data. The target source can then be approximated by computing the matrix product of the
corresponding dictionary and activity matrices. Moreover, a post-processing step can be applied to
refine the target source estimates. For example, in speech enhancement, instead of approximating
through direct matrix factorization, one can obtain clean speech estimates by a Wiener-like filter
constructed using the estimated variances of speech and noise [10].

Various training schemes have been derived depending on prior knowledge of the data. For
example, when no training data is available [141], the dictionary and activation matrices for speech
and noise can be learned online during inference. If all source data is available, each NMF model
can be pre-trained on the isolated data. During testing, the pre-learned dictionary matrices are fixed,
and only the corresponding activation matrices are optimized to account for the temporal activity
of individual signal sources in the input [130]. When only a subset of the source data is available
beforehand, the corresponding NMF models can be pre-trained, while the remaining source models
are adapted to fit the test data. This allows for flexible integration of incomplete prior knowledge
of the data into the model. For example, in speech enhancement, a dictionary matrix of an NMF-
based speech model can be pre-learned to capture phonetic information [144, 145]. At test time, its
activation matrix and all the unknown noise model parameters are learned on the fly from the input.
This training scheme is noise-agnostic and thus expected to generalize across various application
scenarios. In contrast, if we have prior knowledge of application scenarios, we can anticipate certain
types of noise and thus train a noise dictionary matrix accordingly [1, 146]. For example, this idea
has led to various ego-noise reduction algorithms [1]. Ego-noise can be effectively modeled by
dictionary-based methods due to its distinct temporal-spectral harmonic structures [9, 147, 148]. The
dictionary learning can be further regularized by incorporating information from other modalities,
such as motor data [149, 150].

We discussed that the two constituent matrices in NMF have unique functional roles: the dictionary
matrix W captures underlying patterns in the data while the activity matrix H describes the temporal
activity. This interpretability can be leveraged to design efficient real-time systems [130, 143, 141],
which are of interest in various speech-based interactive scenarios. It can be observed that each input
feature vector is treated independently in the original NMF formulation, as illustrated by Ŷt ≈ WHt in
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Figure 1.2. By learning the corresponding dictionary matrices beforehand and fixing them at test time,
only a single column of the activation matrix Ht needs to be optimized for each input feature vector
(e.g., a magnitude/power spectrum vector). This allows us to perform efficient frame-based speech
enhancement and source separation [130, 143]. The dictionary matrix W must be learned online when
no prior data are available. This causes difficulty in performing speech enhancement or separation
on a frame-by-frame basis. However, it is possible to reduce latency by learning a dictionary matrix
of unknown sound sources over a certain number of frames (e.g., with a sliding window), instead of
an entire utterance. Nevertheless, dictionary learning requires analyzing a large number of frames
to capture underlying features. Thus, a trade-off must be made between dictionary learning and the
speed of inference. Eventually, the overall latency is related to the length of the sliding window plus
the processing time for the matrix optimization.

To successfully separate different signals in a mixture, it is essential to have a high-quality
representative dictionary matrix for each sound source, such that a linear combination of the templates
in the dictionary can accurately describe the corresponding target signal. One crucial factor in
learning representative basis components is the appropriate selection of dictionary size. It is often
set to strike a balance between being oversized or undersized [138]: an undersized dictionary may
have difficulty in learning underlying features and representing the complexity of high-dimensional
signals, which potentially affects the overall quality of signal reconstruction, while an over-complete
dictionary may overfit the training data, which potentially degrades its generalization performance.
However, in a setup where the dictionaries are learned in advance during training and are expected to
generalize to new unseen samples, a large dictionary size may be required [151, 130]. For example,
the dictionaries with sufficiently large sizes can capture diverse variations in speech and noise signals,
enabling generalization to unseen speakers and a wide range of noise conditions. This is typically
combined with a sparsity constraint imposed on the activity coefficients, such that only a subset of
templates are employed to reconstruct source signals [142, 130]. The sparsity constraints can alleviate
overfitting and make the learned features more discriminative. In contrast, exemplar-based algorithms
solve the problem differently. They do not require a typical training stage to obtain a representative
dictionary matrix but construct one by sampling observations from the training data [131, 140].
Despite imposing a sparsity constraint, these methods designed with a large number of templates can
pose challenges in terms of storage requirements. Additionally, the dictionary matrices for different
sources need to be sufficiently independent, e.g., speech templates should not capture noise features.
If the target signal can be approximated using basis templates from other source signals, unwanted
interference may be leaked into the reconstructed target source, resulting in performance degradation.
Research has been conducted to distinguish distinctive temporal structures between source signals
and incorporate temporal dependency across time frames to improve signal modeling quality and thus
speech-denoising performance [152, 145].

Recent work has explored combining representation learning capabilities of NMF with non-linear
modeling capabilities of DNNs. Particularly, it has been proposed to replace the NMF-based speech
model with a VAE, showing superior performance than a fully DNN-based predictive approach [20]



30 Introduction

and a fully NMF-based baseline [21]. We will introduce the VAE model in the next subsection and
present how the VAE-NMF model can be applied to speech enhancement in Section 1.4.2.

Variational Autoencoder

For a given dataset with observations y, the VAE aims to model its underlying distribution p(y), which
is often complex when it comes to high-dimensional data such as speech and images. While the true
data distribution is typically unknown, it can be approximated by pθ (y), with distribution parameters
θ . The optimization goal at the learning stage is to find the parameters θ such that pθ (y) can describe
the data sufficiently:

θ̃ = argmax
θ

log pθ (y). (1.25)

It is assumed that there exist associated hidden random variables z and that the data is generated
conditional on the latent variables z, i.e., pθ (y|z). The marginal distribution is then written as:

pθ (y) =
∫

pθ (y,z)dz =
∫

pθ (y|z)pθ (z)dz, (1.26)

where in Bayesian inference, pθ (y) is called the evidence or the marginal likelihood and pθ (z) is the
prior. The latent variable model provides an effective framework for modeling complex data, and even
if we choose simple prior and conditional distributions, the marginal distribution can be flexible and
very complicated, as discussed in [153]. A simple example is the Gaussian mixture model [33], which
includes the discrete hidden variable z to indicate the Gaussian component from which the data is
generated. Moreover, when the latent variable z is continuous [153], it can be seen as a mixture model
comprised of infinitely many conditional distributions. Therefore, the expressive latent variable model
is powerful and potentially capable of approximating high-dimensional complex data distributions.

Note that the marginal distribution in equation (1.26) is computationally intractable, that is, the
integral makes it challenging to find a closed-form solution [33]. In practice, it is often more feasible
to work with the joint distribution pθ (y,z) rather than with the marginal distribution pθ (y) [33,
Section 9.3]. Using Bayes’ theorem, we can derive the posterior of the latent variables pθ (z|y) as:

pθ (z|y) =
pθ (y,z)
pθ (y)

. (1.27)

pθ (z|y) can be seen as the reverse of the generative process pθ (y|z). It remains non-trivial to
analytically compute pθ (z|y) due to the integral in the denominator. Given that pθ (y,z) is relatively
simple to compute, approximating one computationally intractable term in equation (1.27) may
facilitate the evaluation of the other [153]. The following discusses how approximating the posterior
distribution of the latent variables pθ (z|y) can assist in evaluating the marginal likelihood pθ (y).

The true posterior distribution of latent variables pθ (z|y) can be approximated by a tractable
variational distribution qφ (z|y), with φ denoting the variational parameters. To address the problem
of approximating the true posterior, one can make use of variational inference, which measures the
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Sampling

Fig. 1.3 Illustration of VAE with an encoder and decoder.

discrepancy of two distributions with the reverse KL divergence, i.e., KL(qφ (z|y)||pθ (z|y)) [112].
An easy-to-calculate approximate variational distribution is usually chosen, such as a commonly used
Gaussian. For any choice of variational distribution, one can rewrite the approximation problem as:

KL(qφ (z|y)||pθ (z|y)) =
∫

qφ (z|y) log
qφ (z|y)
pθ (z|y)

dz

= log pθ (y)−Lφ ,θ (y),
(1.28)

where Lφ ,θ (y) is referred to as the ELBO and defined as

Lφ ,θ (y) = Eqφ (z|y)[log pθ (y|z)]−KL(qφ (z|y)||pθ (z)). (1.29)

The derivation can be found in, e.g., [33]. It indicates that minimizing the KL divergence between the
approximate variational distribution qφ (z|y) and the true posterior distribution pθ (z|y) is equivalent
to maximizing the ELBO. A simple re-arrangement of equation (1.28) gives:

Lφ ,θ (y) = log pθ (y)−KL(qφ (z|y)||pθ (z|y))
≤ log pθ (y).

(1.30)

This indicates that the ELBO Lφ ,θ (y) can act as a surrogate objective for optimizing the underlying
distribution log pθ (y). In other words, maximizing the surrogate objective ELBO help reduce the gap
to log pθ (y). When KL(qφ (z|y)||pθ (z|y)) = 0, i.e., qφ (z|y) perfectly match the target pθ (z|y), the
ELBO is equal to log pθ (y). Additionally, ELBO can also be derived using Jensen’s inequality from
the frequentist perspective [99].

The generative model VAE is trained by maximizing the ELBO. The VAE provides an efficient
scheme to jointly model the approximate posterior qφ (z|y) and a stochastic data generator pθ (y|z).
Specifically, the former is called the inference model (or recognition model), which is achieved
by the probabilistic encoder, and the latter is called the generative model, which is achieved by
the probabilistic decoder. φ and θ are comprised of the parameters of the encoder and decoder
respectively. A VAE is illustrated in Figure 1.3.
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Alternatively, the VAE can also be seen as a probabilistic version of autoencoders. Autoencoders
refer to a particular type of DNN architecture, which features an encoder and decoder. The encoder
network maps inputs into deterministic representations and the decoder network maps these latent
representations back to the original data space. In contrast, the decoder of the VAE takes as input
probabilistic representations z and can generate multiple valid target estimates by sampling in the
latent space. Therefore, regularization is required to ensure a meaningful and constrained latent space.
This is achieved through the KL divergence term in the optimization objective ELBO (1.29), which
regularizes latent variables z to follow a prior distribution pθ (z). Note that the prior distribution is
usually chosen to be non-parameterized, such as a standard Gaussian. Eventually, training a VAE
using stochastic gradient descent optimizes the encoder and decoder jointly, i.e., the parameters φ and
θ [153].

Optimization of the ELBO using stochastic gradient techniques requires computing the gradient
with respect to the parameters φ and θ , i.e., ∇φLφ ,θ (y) and ∇θLφ ,θ (y). This involves the expectation
with respect to the variational distribution qφ (z|y). This becomes clearer when we expand the KL
divergence in (1.29) and rearrange the ELBO into:

Lφ ,θ (y) = Eqφ (z|y)[log pθ (y|z)]−KL(qφ (z|y)||pθ (z))

= Eqφ (z|y)[log pθ (y|z)]−Eqφ (z|y)

[
log
(

qφ (z|y)
pθ (z)

)]

= Eqφ (z|y)


log

pθ (y,z)
qφ (z|y)︸ ︷︷ ︸
f (z)


 .

(1.31)

Since the variational distribution qφ (z|y) is not a function of θ , the gradient computation with re-
spect to θ can be applied directly to the log-density ratio f (z). However, this does not hold for
variational parameters φ and therefore requires a stochastic estimator to obtain a tractable expecta-
tion [109, 154, 155]. To jointly train a neural network with parameters φ and θ , a reparameterization
trick has been proposed for low-variance gradient approximation (where low variance can ensure
fast convergences) [109, 154, 155]. The reparameterization technique assumes an invertible and
differentiable transform, z = gφ (ε,y), where ε is another random variable. For example, when
we have Gaussian-distributed latent variables N (µφ (y),σ2

φ
(y)), where µφ (y) and σ2

φ
(y) denote the

nonlinear mapping from the input to the mean and variance of the latent Gaussian variables, it can be
standardized by:

ε =
z−µφ (y)

σφ (y)
with ε ∼ p(ε), (1.32)

where p(ε) is a standard Gaussian with zero mean and unit variance. Then, the differential transform
gφ (ε,y) can be specified to be

z = gφ (ε,y) = µφ (y)+σφ (y)ε. (1.33)
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This reparameterization represents latent variables z as a function of another random variable ε ,
allowing transforming the expectation with respect to qφ (y|z) into the expectation with respect to
p(ε):

Eqφ (y|z)[ f (z)] = Ep(ε) [ f (gφ (ε,y))]. (1.34)

It can be seen that the standard Gaussian p(ε) is not a function of φ and thus the gradient computation
can be performed inside the expectation operator. Overall, the reparameterization gradient estimator
allows for stable and efficient optimization by enabling direct computation of gradients with respect
to the parameters of interest.

The VAE has been widely used to model the prior distribution of clean speech in speech signal
processing [20, 21]. Several variants of the basic VAE framework have been developed [156–159].
For instance, besides utilizing Gaussian-distributed continuous latent variables, Kingma et al. [156]
use additional categorically distributed discrete variables to incorporate class label information to
form a conditional generation process. Similar ideas have also been applied to tasks involving speech
modeling, where class labels can represent speech activity [160], phonemes [161], or speaker identi-
ties [161, 162]. Another conditional generative model to make diverse and structured predictions has
been proposed by Sohn et al. [157]. Furthermore, Aksan et al. [158] proposed to capture temporal
dependencies of input data through a combination of statistical hierarchical latent variables and tem-
poral convolutional networks. Its excellent temporal modeling capabilities provide a good fit to handle
speech data, which is inherently sequential. Richter [163] et al. applied it to speech enhancement and
showed improved speech modeling capabilities than the vanilla VAE, which processes each frame
independently. Similarly, Leglaive1 et al. [164] have also proposed a probabilistic generative model
based on recurrent neural networks to better model the temporal activity of speech signals. Girin et
al. [165] presented a consolidated overview of several variants of the VAE with a focus on modeling
temporal dependencies within sequential data. Their following work in [22] has also experimentally
evaluated the performance of these variants on the speech enhancement task.

Studies on the VAE have also focused on disentangling latent variables from speech data and
incorporating other modalities such as visual information. For example, Hsu et al. [159] leveraged
the observation that some attributes of speech vary slightly within an utterance but significantly
across utterances, while others vary similarly both within and between utterances, to effectively
disentangle sequence-level and segment-level attributes of speech signals. Also, a similar idea to
disentangle global speaker information and local content representation has been studied in [166].
Carbajal et al. [167] proposed to disentangle speech activity from other latent variables through
adversarial training, which is achieved in combination with visual modality. Indeed, despite the
effectiveness of the VAE-based speech model, it is still challenging to estimate the parameters of
clean speech from noisy mixtures in challenging noise conditions, such as low SNRs. For this,
audio-visual speech enhancement can incorporate complementary features from visual information,
which is independent of acoustic interference. Sadeghi et al. followed the conditional generative
framework [157] and extended the audio-only VAE [20] to incorporate visual information for speech
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enhancement, specifically lip movements [168]. A further improvement was proposed in [169] to
process audio and video modalities with separate encoders. Nguyen et al. applied a similar idea to
audio-visual speech separation [170]. Their subsequent extensions [171, 172] tackled the cases of
unreliable visual inputs by switching between audio-only and audio-visual VAE-based priors.

Existing research has sought to improve speech modeling by exploring various methods that
take into account different characteristics of speech signals. As part of the thesis, we present a
method [P6] in Chapter 3 to further refine speech modeling by incorporating noise information while
at the same time retaining its generative capabilities. Another advantage is that the proposed method
can complement the current advances in speech modeling. This is because it maintains the same
architecture as the VAE model presented in [20], making it easy to combine with other techniques.

1.4.2 Deep Generative Speech Enhancement

As discussed in the previous sections, representation learning techniques, such as the VAE and NMF,
have found their widespread use in speech and audio signal processing. The adaptable nature of
lightweight NMF models makes them suitable for various problem settings. Meanwhile, the data-
driven nature of VAE models enables them to learn prior distributions from complex, high-dimensional
data. Recent research has been conducted to integrate the VAE and NMF into a unified Bayesian
framework, combining the benefits of both techniques [21, 20]. Specifically, it has been proposed
to combine a VAE-based speech model and a NMF-based noise model, showing superior results
than the algorithms based exclusively on NMF in speech enhancement [20, 38]. Aiming to achieve
high robustness to unseen acoustic conditions, the NMF-based noise model is not pre-trained but
adapted to individual samples during testing, that is, the noise parameters are estimated directly from
input noisy mixtures. Therefore, only the parameters of the VAE are learned on isolated clean speech
data during training, making the algorithm semi-supervised. Such methods have also demonstrated
improved generalization capabilities over supervised masking baselines [21, 129].

Given a pre-trained VAE-based speech model and an untrained NMF-based noise model, var-
ious Bayesian optimization methods have been proposed to perform speech enhancement. These
optimization strategies may define stochastic latent variables and deterministic unknown parameters
differently [62]. For example, besides speech latent variables in the VAE, Bando et al. [21] adopted a
fully Bayesian model and placed conjugate prior distributions on the NMF parameters, independently
on each element in the dictionary and activation matrices. At inference, the posterior distributions
of the random variables are sampled iteratively using an MCMC algorithm. A similar optimization
method has also been developed for multichannel speech enhancement, where in addition to speech
latent variables and stochastic elements in the dictionary and activation matrices, a prior distribution
is also imposed on the spatial covariance matrix [173]. In contrast, Leglaive et al. [20] proposed to
perform maximum likelihood estimation using an MCEM optimization method, where only speech
latent representations in the VAE are considered as random variables, and the dictionary and activation
matrices in NMF are seen as unknown parameters. The posterior distribution of speech latent vari-
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ables is evaluated using a Metropolis-Hastings sampling algorithm, and unknown NMF parameters
are updated by deriving multiplicative update rules with auxiliary function techniques [41, 42]. A
further extension to the multichannel case is presented in [38], where the additional spatial covariance
matrix is seen as an unknown parameter and updated by solving the Riccati equations as in [10].
This optimization strategy has been applied or adapted in several studies [160, 167, 163, 168, 170].
Besides, different variants of variational EM algorithms have been presented, such as [164, 174, 171].
For instance, Pariente et al. [174] derived a variational EM algorithm by treating the speech latent
variables and the complex coefficients of speech and noise as a set of latent variables. This is followed
by further factorizing the joint posterior distribution of the latent variables using mean-field variational
inference principles [33]. Leglaive et al. formulated the optimization problem using a fixed form
variational inference strategy in [164], where the variational distribution of speech latent variables
is predefined as a Gaussian parameterized by the encoder of the VAE at both training and inference.
At inference, the encoder of the VAE is further tuned based on the noisy input using gradient-based
optimization techniques, while the unknown NMF parameters are updated similar to [20]. Other
optimization techniques involve reusing and adapting the decoder of the VAE include, e.g., [129, 175].

In this thesis, we follow the MCEM optimization methods [20, 38], which can yield good
approximation results given sufficient computational power. Furthermore, our contribution in the
thesis is in principle independent of specific optimization strategies and thus has the potential to be
extended to many existing optimization formulations. Next, we introduce the VAE-NMF framework
and the MCEM optimization strategy presented in [20] in detail.

NMF-Based Noise Model and VAE-Based Speech Model

Complex spectral coefficients of noise are independently modeled using a NMF-based Gaussian:

N f t ∼NC(N f t ;0, [WH] f t). (1.35)

The VAE has been combined with the local Gaussian assumption [20, 176] to model the complex
spectral coefficients of clean speech. Specifically, the decoder, parameterized by θ , models the
spectral variance conditioned on the latent variable z. The generative model can then be represented
by:

S f t |zt ∼NC(S f t ;0,σ2
f (zt)), (1.36)

where zt ∈ RL denotes a latent random vector at t-th frame and σ2
f (zt) : RL → R+ denotes the

nonlinear mapping function generating the speech tempo-spectral power conditioned on the latent
variables. The inference model, i.e., the VAE encoder, infers latent variables zt from the observed
data st = {S1t , · · · ,SFt} ∈ CF , which is a vector of complex speech coefficients at the t-th time frame.
It is typically assumed that the posterior of latent variables qφ (zt |st) follows a real-valued Gaussian
distribution

zt |st ∼N (µz(|st |2), σz(|st |2)) , (1.37)
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where µz(|st |2) : RF
+ → RL and σz(|st |2) : RF

+ → RL
+ denote the nonlinear mapping from the power

spectrogram to the mean and variance of the latent variables. Finally, the parameters of the encoder
and decoder can be jointly optimized by maximizing the ELBO

Lφ ,θ (st) = Eqφ (zt |st)[log pθ (st |zt)]−KL(qφ (zt |st)||p(zt)), (1.38)

where p(zt) represents the standard Gaussian prior of zt . The first term is a reconstruction term, which
measures how effectively the decoder can reconstruct the input from the latent representation. The
second is the regularization term, which ensures that the latent variable follows a prior distribution,
promoting a continuous latent space.

The reconstruction term in the ELBO involves computing the expectation of log pθ (st |zt) with
respect to the posterior qφ (zt |st), which can not be solved analytically; therefore it is approximated
by a MC estimator with R samples. It has been pointed out that in practice, when the batch size is
large enough, the number of samples R can be set to 1 [109]. Furthermore, the posterior of latent
variables is factorized as the product of elements in the vector, i.e., qφ (zt |st) = ∏L

l=1 qφ (Ztl|st) and
zt = {Zt1, · · · ,ZtL}. With these assumptions, the ELBO (1.38) is approximated by:

Lφ ,θ (st)≈− 1
R

R

∑
r=1

F

∑
f=1

IS(|S f t |2,σ2
f (z

(r)
t ))+

1
2

L

∑
l=1

[
lnσ

2
z,l(|st |2)−µz,l(|st |2)2 −σ

2
z,l(|st |2)

]
, (1.39)

where z(r)t denotes the r-th sample from the posterior and IS(·, ·) denotes the Itakura-Saito divergence.
Eventually, with an additive model, the noisy mixture signal can be written as:

X f t =
√

gtS f t +N f t , (1.40)

where gt ∈ R+ is a gain parameter to increase the robustness to the time-varying loudness of speech
sounds. Given the VAE-based speech model and the NMF-based noise model, under the independence
assumption of speech and noise, the noisy mixture coefficients X f t follow:

X f t ∼NC(0, gtσ
2
f (zt)+ [WH] f t). (1.41)

Next, we will introduce the MCEM optimization strategy to solve the model with latent variables
and unknown parameters.

Monte Carlo expectation-maximization algorithm

For probability models involving latent variables and unknown parameters, the expectation-maximization
algorithm is often used to find maximum likelihood solutions [33]. It is performed in a two-step
iterative manner: expectation (E) and maximization (M). For example, one can first derive the lower
bound of a log-likelihood [33, Sec. 9.4]. In step E, we fix the unknown parameters to their current
values and maximize the lower bound with respect to the variational distribution introduced. Given
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the current values of unknown parameters, the solution is obtained when the lower bound is equal to
the log-likelihood. This is given by the posterior distribution of latent variables given the currently
fixed parameters. In the M step, the variational distribution of latent variables is fixed to the solution
obtained in the preceding E step, and the lower bound is maximized with respect to the unknown
parameters [177]. The function being maximized at this step is the expectation of the complete-data
log-likelihood [33].

We observe only noisy mixtures X f t during testing, from which we need to infer proper random
variables zt and unknown parameters ζ = {gt , [WH] f t}, as shown in (1.41). A solution to this additive
model can be derived by following the iterative optimization technique to approximate the likelihood
function [33, 177]. The complete-data log-likelihood is denoted by

log pζ (x,z) =
F

∑
f=1

T

∑
t=1

log pζ (xt ,zt)
c.
=−

F

∑
f=1

T

∑
t=1

log
(
gtσ

2
f (zt)+ [WH] f t

)
+

|X f t |2
gtσ

2
f (zt)+ [WH] f t

,

(1.42)
where c.

= denotes equality up to a constant. A set of the mixture STFT coefficients is denoted by
x = {x1, · · · ,xt , · · ·xT} and xt = {X1t , · · · ,X f t , · · · ,XFt}. Let z = {z1, · · · ,zt , · · ·zT} denote a set of
latent vectors. The complete-data log-likelihood incorporates both speech and noise models, and the
dependency on the VAE-based speech model is omitted for notation simplicity since its parameters
remain fixed during inference. We follow an MCEM algorithm [20] in this thesis. Note that during
inference, we can only access noisy mixtures rather than the posterior of latent variables qφ (zt |st) in
(1.38). Therefore, the speech latent variables z are inferred from the noisy mixtures, i.e. pζ (zt |xt),

In the E step, the current values of the parameter set are denoted as ζ ∗, which we use to evaluate
the posterior distribution pζ ∗(z|x). The posterior distribution is then used to compute the expectation
of the complete-data log-likelihood, denoted as Q(ζ ,ζ ∗)

Q(ζ ,ζ ∗) = Epζ∗ (z|x)
[
log pζ (x,z)

]
. (1.43)

Since the posterior pζ ∗(z|x) can not be computed analytically, we need to perform approximate
inference. Here, a MCMC method is used, specifically, a Metropolis-Hastings (MH) algorithm with a
symmetric Gaussian as the proposal distribution. The MH method constructs a Markov chain with
the posterior pζ ∗(zt |xt) as its stationary distribution for all frames t ∈ [1, · · · ,T ]. When sampling
iteratively, the sample at the m-th iteration is drawn from the proposal random distribution constructed
based on the preceding step [20]:

zt |z(m−1)
t ∼N (z(m−1)

t ,ε2I), (1.44)

where ε2 is a hyperparameter. The samples are selectively accepted according to the probability:

αt = min

(
1,

pζ ∗(xt |zt)p(zt)

pζ ∗(xt |z(m−1)
t )p(z(m−1)

t )

)
, (1.45)
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where the independence assumption is often applied to xt such that pζ ∗(xt |zt) can be written as the
product of the elements in the t-th frame vector [20]. When ideally, the sampling process arrives at
the stationary distribution, one can approximate the expectation in (1.43) with a MC estimator by
sampling from the posterior R times:

Q(ζ ,ζ ∗)≈ 1
R

R

∑
r=1

log pζ (x,z(r)). (1.46)

In the M step, the function Q(ζ ,ζ ∗) is maximized with respect to all parameters in the set ζ :

ζ̃ = argmax
ζ

Q(ζ ,ζ ∗), (1.47)

where ζ̃ denotes a new set of parameters after the optimization. Here, the update rules for each
parameter in ζ can be derived using a block-coordinate approach [42]. With the complex Gaussian
assumptions of speech and noise, the function Q(ζ ,ζ ∗) can be decomposed into a superposition of a
convex term and a concave term, which can be bounded using the auxiliary function techniques. For
example, a convex function can be bounded using Jensen’s inequality, while a concave function can
be bounded using a first-order Taylor expansion [42, 20, 38]. Consequently, the optimization of the
function Q(ζ ,ζ ∗) turns into the optimization of an upper bound, and the multiplicative update rules
for the parameters in ζ are derived accordingly.

Given the estimates of unknown parameters, the speech spectral coefficients are obtained by
computing the speech posterior mean [20]:

Ŝ f t = Epζ (zt |xt)

[
gtσ

2
f (zt)

gtσ
2
f (zt)+ [WH] f t

]
X f t , (1.48)

where Ŝ f t is an estimate of the speech spectral coefficients. The expectation can be approximated by
drawing samples using the Metropolis-Hastings algorithm similar to the E step.

Extension to Multichannel VAE-NMF

By applying the additive model to the multi-channel mixtures, we have:

X f t = S f t +N f t , (1.49)

where X f t , S f t , and N f t ∈ CM represent the multichannel spectral coefficients of the noisy speech,
clean speech, and noise, respectively. The VAE-NMF can be extended to the multichannel scenarios
accordingly, where additional spatial information can be exploited. We model the speech and noise
spectral coefficients with multivariate complex Gaussian distributions:

S f t ∼NC(000,σ2
f (zt)RRRS, f ), and N f t ∼NC(000, [WH] f tRRRN, f ) , (1.50)
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where RRRS, f ∈ CM×M and RRRN, f ∈ CM×M are the spatial covariance matrices of speech and noise,
respectively. The temporal-spectral power of speech and noise are modeled by the VAE and NMF
respectively, i.e., by σ2

f (zt) and (WH) f t . We can pre-train the VAE model on clean speech at the
training stage and estimate the parameters of the NMF-based noise model on the noisy mixtures using
a MCEM algorithm presented in [38]. Compared to the single-channel scenario, the multichannel
VAE-NMF also requires estimating the spatial covariance matrices of speech and noise, which is
achieved by solving the Riccati equations as in [10]. Finally, the spectral coefficients of clean speech
can be obtained through multichannel Wiener filtering [38].

As previously discussed, the parameters of NMF are estimated based on noisy mixtures at the
inference stage. This allows the VAE-NMF method to potentially adapt to various acoustic conditions.
However, it remains a challenge to perform robustly on challenging acoustic scenarios, such as those
involving non-stationary noise. In this thesis, we investigate its application in human-robot interaction
scenarios, which involves dealing with not only environmental noise but also ego-noise. To increase
the algorithm’s robustness to noise, we take advantage of the less diverse nature of ego-noise and
extend the NMF-based noise model to incorporate this prior information. The proposed scheme has
been applied to both single-channel [P7] and multichannel [P8] applications, resulting in improved
overall speech enhancement performance.

1.5 Thesis Outline

Predictive approaches are trained to learn mappings from input features to output targets. However,
their estimation mechanisms are difficult to interpret due to the black-box nature of DNNs. Although
supervised deep predictive models have been the dominant tool in speech enhancement, they often
exhibit limited generalization ability under complex and unseen acoustic conditions. In this thesis, we
endeavor to overcome these limitations by exploring uncertainty modeling and developing methods
based on statistically principled generative frameworks. Essentially, we aim to incorporate statistical
modeling into deep speech enhancement to improve its interpretability and robustness.
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1. Uncertainty in Deep Predictive Speech Enhancement

Research Questions

RQ1 How can uncertainty be effectively modeled in deep predictive speech enhancement, and
to what extent can uncertainty estimates reliably predict deviations from ground-truth
speech? How does uncertainty estimation affect speech enhancement performance?

RQ2 How can one leverage statistical domain knowledge to develop more efficient methods
for uncertainty estimation in deep predictive speech enhancement?

RQ3 Can uncertainty estimates be further leveraged to improve the robustness and generaliza-
tion ability of speech enhancement systems?

The first part of this thesis is centered around predictive time-frequency masking, which has
demonstrated remarkable speech enhancement performance in existing work. It can leverage non-
linear modeling capabilities provided by DNNs to approximate various training targets. Despite being
widely used, predictive methods still face challenges in understanding how particular solutions are
derived from training data. In particular, these approaches are often framed as single-output estimation
problems, and their estimates are accepted without questioning their accuracy. As a result, these
approaches may result in fundamentally incorrect estimates for unseen samples without any indication
that these estimates are uncertain. This naturally gives rise to uncertainty in the model’s predictions.
Modeling uncertainty allows us to quantify and interpret the predictive confidence, especially when
the network model is processing out-of-distribution samples. Various sources in a DNN framework
can contribute to uncertainty in the predictions. While uncertainty modeling has received increasing
attention in computer vision and deep learning, its study in DNN-based speech enhancement remains
under-explored.

The thesis explores the uncertainty in predictions arising from various aspects of deep speech
enhancement. The first question we aim to answer concerns how uncertainty can be modeled and
captured in deep predictive speech enhancement and how uncertainty estimation impacts speech
enhancement performance. For this, we start with the Gaussian priors for the speech and noise spectral
coefficients and use a neural network to estimate the full clean speech posterior distribution. This
statistical assumption is further incorporated into Bayesian deep learning frameworks. Based on
this, we present a comprehensive analysis of uncertainty estimates on a time-frequency bin scale and
evaluate the uncertainty-augmented speech enhancement methods over different datasets. Second,
we observe that generic task-agnostic uncertainty modeling methods may involve a costly sampling
process, which poses challenges for applications under resource-constrained conditions. Thus, we
delve into the question of whether domain-specific statistical knowledge allows for efficient uncertainty
estimation with negligible computational overhead. We assume a complex Gaussian mixture model
for speech and noise and employ a DNN to estimate the resulting speech posterior distribution, which
also has the form of a CGMM. With this, we demonstrate the potential to obtain the uncertainty in
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predictions arising from both data uncertainty and model uncertainty with only a single forward pass
of DNNs. Uncertainty can help assess the reliability of a model’s predictions by quantifying the degree
of deviation from the true data. This motivates the research question of how uncertainty estimates can
be leveraged to improve the robustness and generalization ability of speech enhancement systems.
We explore its application in two tasks: unsupervised domain adaptation for speech enhancement
and modality fusion in audio-visual phoneme recognition. For domain adaptation, we develop an
uncertainty-based filtering strategy that selects high-quality speech estimates from an unlabeled target
domain to fine-tune a model trained on the source domain. For multimodal information fusion, we
investigate how uncertainty arising from noisy audio and video modalities can lead to a more informed
fusion scheme in audio-visual phoneme recognition.

2. Noise-Aware Generative Speech Enhancement Based on Variational Autoencoder and Non-
Negative Matrix Factorization

Research Questions

RQ4 How can VAE-NMF-based generative approaches leverage prior noise knowledge to
improve speech modeling capabilities for better generalization in unseen acoustic envi-
ronments?

RQ5 Can one derive a flexible and effective noise adaptation scheme that can reuse learned
noise representation while adapting to unseen noise characteristics? Furthermore, can
such an adaptation scheme be extended to multichannel applications?

To address the interpretability and generalization issues, we depart from predictive principles
and focus instead on deep generative speech enhancement in the latter half of the thesis. Deep
generative models aim to learn prior distributions of given data and reuse the learned knowledge
to perform speech enhancement. A recent framework built on generative VAE and NMF [21, 20]
models provides an elegant combination of DNNs and statistical models, demonstrating a promising
generalization ability to unseen acoustic conditions. More specifically, a VAE is used to learn a prior
distribution of clean speech, which is then combined with an untrained NMF-based noise model.
The parameters of the VAE can be obtained beforehand by training on isolated clean speech, while
the NMF parameters can be adapted to individual noisy samples during testing. Thus, it leverages
the benefits of data-driven methods, while the adaptability to test inputs ensures its generalization
ability to diverse noise conditions. Notably, this framework is statistically principled and the unknown
parameters can be derived in some optimal statistical sense. However, training the VAE only on
clean speech data makes the algorithm susceptible to noise presence during testing. As a result, the
VAE-NMF framework lacks noise-robustness in acoustically challenging conditions, such as when
clean speech is distorted simultaneously by non-stationary ego-noise generated by interactive robots
and unseen background noise [178].
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The second part of the thesis focuses on introducing noise information into deep generative
approaches and extending their application to challenging human-robot-interaction scenarios, which
involve both ego-noise and environmental noise. When dealing with ego-noise distortion, we leverage
the limited-degree-of-freedom nature of ego-noise and augment the noise model accordingly by
incorporating this prior knowledge. When multichannel ego-noise recordings are available, we are
able to additionally make use of spatial information of noise sources distributed over the robot’s body.
In this way, we aim to leverage structured characteristics of ego-noise, spectrally and/or spatially,
to gain robustness to ego-noise distortions, while at the same time retaining the ability to adapt to
unseen environmental noise. We demonstrate the potential advantages by comparing the resulting
noise adaptation scheme to the baselines that either learn noise on-the-fly or rely solely on learned
prior knowledge. In addition to improving noise modeling capabilities, we also want to improve
the robustness of the VAE-based speech model. To this end, we employ paired noisy-clean speech
data during training to improve the inference of the latent variables of clean speech, leading to a
noise-aware encoder for the VAE. Thus, the core research topic in this part centers on how the speech
and noise models can be improved by incorporating prior noise knowledge while maintaining the
statistical interpretability of the framework.

1.6 Related Publications

This cumulative thesis is based on the following publications. We categorized the publications into
two groups according to the two main research topics we explored. We include [P2], [P3], [P4], [P5],
[P6], [P7], and [P8], in the main part of the thesis and enclose them with gray boxes. The conference
publication [P1] serves as the basis for the extended journal publication [P2]. Therefore, there is an
overlap in content, and [P1] is included in Appendix A.

Chapter 2 Uncertainty in Deep Predictive Speech Enhancement

2.1 Integrating Uncertainty into Neural Network-Based Speech Enhancement

[P1] H. Fang, T. Peer, S. Wermter, and T. Gerkmann, “Integrating statistical uncertainty into neural
network-based speech enhancement,” in IEEE Int. Conf. Acoustics, Speech, Signal Proc.
(ICASSP), Singapore, Singapore, 2022, pp. 386–390.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Peer
provided feedback through discussions about the results, helped create the method diagram,
and reviewed the final manuscript. Gerkmann provided feedback on the ideas and intermediate
results and reviewed the final manuscript. Wermter contributed to providing feedback on the
final manuscript.
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[P2] H. Fang, D. Becker, S. Wermter, and T. Gerkmann, “Integrating uncertainty into neural network-
based speech enhancement,” IEEE/ACM Trans. Audio, Speech, Language Proc., vol. 31, pp.
1587–1600, 2023.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Gerkmann
provided feedback on the ideas and intermediate results and reviewed the final manuscript.
Becker and Wermter contributed to providing feedback on the final manuscript.

2.2 Uncertainty Estimation in Deep Speech Enhancement Using Complex Gaussian Mixture
Models

[P3] H. Fang and T. Gerkmann, “Uncertainty estimation in deep speech enhancement using complex
Gaussian mixture models,” in IEEE Int. Conf. Acoustics, Speech, Signal Proc. (ICASSP),
Rhodes Island, Greece, 2023, pp. 1–5.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Gerkmann
provided feedback on the ideas and intermediate results and reviewed the final manuscript.

2.3 Uncertainty-Based Remixing for Unsupervised Domain Adaptation in Deep Speech
Enhancement

[P4] H. Fang, and T. Gerkmann, “Uncertainty-based remixing for unsupervised domain adaptation
in deep speech enhancement,” in International Workshop on Acoustic Signal Enhancement
(IWAENC), Aalborg, Denmark, 2024, pp. 45-49.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Gerkmann
provided feedback on the ideas and intermediate results and reviewed the final manuscript.

2.4 Uncertainty-Driven Hybrid Fusion for Audio-Visual Phoneme Recognition

[P5] H. Fang, S. Frintrop, and T. Gerkmann, “Uncertainty-driven hybrid fusion for audio-visual
phoneme recognition,” in Speech Communication; 15th ITG Conference, Aachen, Germany,
2023, pp. 255–259.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Gerkmann
provided feedback on the ideas and intermediate results and reviewed the final manuscript.
Frintrop contributed to providing feedback on the final manuscript.
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Chapter 3 Noise-Aware Generative Speech Enhancement Based on Vari-
ational Autoencoder and Non-Negative Matrix Factorization

3.1 Variational Autoencoder for Speech Enhancement with a Noise-Aware Encoder

[P6] H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Variational autoencoder for speech
enhancement with a noise-aware encoder,” in IEEE Int. Conf. Acoustics, Speech, Signal Proc.
(ICASSP), Toronto, ON, Canada, 2021, pp. 676–680.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Carbajal
and Gerkmann provided feedback on the ideas and intermediate results and reviewed the final
manuscript. Wermter contributed to providing feedback on the final manuscript.

3.2 Joint Reduction of Ego-Noise and Environmental Noise with a Partially-Adaptive Dictio-
nary

[P7] H. Fang, G. Carbajal, S. Wermter, and T. Gerkmann, “Joint reduction of ego-noise and envi-
ronmental noise with a partially-adaptive dictionary,” in Speech Communication; 14th ITG
Conference, online, 2021, pp. 1–5.

Contribution: The experimental results are obtained by Fang. Fang wrote the paper. Carbajal
and Gerkmann provided feedback on the ideas and intermediate results and reviewed the final
manuscript. Wermter contributed to providing feedback on the final manuscript.

3.3 Partially Adaptive Multichannel Joint Reduction of Ego-Noise and Environmental Noise

[P8] H. Fang, N. Wittmer, J. Twiefel, S. Wermter, and T. Gerkmann, “Partially adaptive multichannel
joint reduction of ego-noise and environmental noise,” in IEEE Int. Conf. Acoustics, Speech,
Signal Proc. (ICASSP), Rhodes Island, Greece, 2023, pp. 1–5.

Contribution: The experimental results are based on the master thesis of Wittmer supervised by
Fang. Fang wrote the paper. Gerkmann provided feedback on the ideas and intermediate results
and reviewed the final manuscript. Twiefel and Wermter contributed to providing feedback on
the final manuscript.
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Integrating Uncertainty into Neural Network-based
Speech Enhancement

Huajian Fang∗† , Student Member, IEEE, Dennis Becker† ,
Stefan Wermter† , Member, IEEE, and Timo Gerkmann∗ , Senior Member, IEEE

Abstract—Supervised masking approaches in the time-frequency do-
main aim to employ deep neural networks to estimate a multiplicative
mask to extract clean speech. This leads to a single estimate for each in-
put without any guarantees or measures of reliability. In this paper, we
study the benefits of modeling uncertainty in clean speech estimation.
Prediction uncertainty is typically categorized into aleatoric uncertainty
and epistemic uncertainty. The former refers to inherent randomness
in data, while the latter describes uncertainty in the model parameters.
In this work, we propose a framework to jointly model aleatoric and
epistemic uncertainties in neural network-based speech enhancement.
The proposed approach captures aleatoric uncertainty by estimating
the statistical moments of the speech posterior distribution and
explicitly incorporates the uncertainty estimate to further improve
clean speech estimation. For epistemic uncertainty, we investigate
two Bayesian deep learning approaches: Monte Carlo dropout and
Deep ensembles to quantify the uncertainty of the neural network
parameters. Our analyses show that the proposed framework promotes
capturing practical and reliable uncertainty, while combining different
sources of uncertainties yields more reliable predictive uncertainty
estimates. Furthermore, we demonstrate the benefits of modeling
uncertainty on speech enhancement performance by evaluating the
framework on different datasets, exhibiting notable improvement over
comparable models that fail to account for uncertainty.

Index Terms—Speech enhancement, Bayesian estimator, uncertainty
estimation, deep neural networks

I. INTRODUCTION

Speech recorded in noisy environments is often corrupted by
background noise, which renders it difficult to understand by either
humans or machines via automatic speech recognition systems.
These problems call for robust speech enhancement algorithms,
which extract desired clean speech from noisy mixtures to improve
speech quality and intelligibility of recordings. In this paper, we
consider single-channel speech enhancement.

Speech enhancement algorithms typically utilize the short-time
Fourier transform (STFT) to transfer the recorded signal into the
time-frequency domain, where multiplicative filters can be applied
to obtain an estimate of clean speech [1], [2]. Various Bayesian
estimators, e.g., maximum a posteriori (MAP) and minimum
mean squared error (MMSE) estimators, have been developed
based on different statistical distributions about speech and noise,
aiming to restore either the spectral coefficients of the STFT or
the spectral magnitudes [3]–[6]. Given the assumption that speech
is degraded by uncorrelated additive noise and that both follow

The authors gratefully acknowledge support from the German Research
Foundation DFG under the project CML (TRR 169) and ahoi.digital.

The authors are with the ∗Signal Processing (SP) Group, the †Knowledge
Technology (WTM) Group, Department of Informatics, Universität Hamburg,
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timo.gerkmann}@uni-hamburg.de).

complex Gaussian distributions with zero mean, the well-known
Wiener filter can be derived. Traditionally, the speech and noise
variances estimated by statistical model-based methods [1], [7] can
be used to construct the MMSE-optimal Wiener filter.

Recently, neural networks have been widely used in speech
enhancement methods due to their flexibility and effectiveness in
nonlinear modeling. Depending on their application, varying degrees
of success are reported [8]–[19]. Specifically, deep neural networks
have been utilized to replace some of the building blocks of conven-
tional speech enhancement methods. For instance, a neural network-
based speech presence probability estimator has been proposed
in [8] and combined with a single-channel multi-frame approach [9].
In [10], [11], neural networks are employed to estimate speech and
noise power spectrum densities that are required in various Bayesian
estimators. Additionally, recent work has leveraged the probabilistic
modeling of generative networks for speech enhancement. For
example, the variational autoencoder (VAE) has been used to
estimate the clean speech distribution, which is then combined
with a separate noise model to construct a noise reduction Wiener
filter [12], [14]. The robustness of this filter can be further improved
by injecting noise information [16], temporal dependencies [20]–
[22], and information from other modalities, such as vision [17],
[23]. Besides, speech enhancement approaches based on perceptual
metric-guided adversarial training [24], [25] and diffusion-based
generative models [26], [27] have also been presented. In contrast,
supervised masking approaches [18] aim to learn a mapping from
the noisy input to a masking filter. It allows neural networks to di-
rectly estimate a time-frequency filter by training on a large amount
of noisy-clean speech pairs using an appropriate cost function [19].
In this work, we focus on supervised masking approaches.

While the time-frequency noise-removing filter aims to remove
noise with minimum speech distortions, the algorithm’s robustness
and reliability are not guaranteed, especially when speech is
corrupted by previously unobserved noise. To alleviate this
shortcoming, research has been conducted to investigate how
to generalize to unseen situations by, e.g., developing more
sophisticated network architectures, improved features, or including
more training data that covers a wide variety of acoustic scenarios
[28]–[30]. The first is often accompanied by a tremendous increase
in model parameters, while the latter is rather time-demanding. Still,
improving the generalization ability of neural networks in unseen
scenarios is an unsolved problem considering the black-box nature
of neural networks. It is thus necessary and beneficial to obtain the
associated uncertainty as an indicator of reliability besides the point
estimate, especially when the model is processing out-of-distribution
samples that are insufficiently represented by training data.

In machine learning, predictive uncertainty is typically decom-
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posed into two categories [31]–[33]: aleatoric uncertainty and epis-
temic uncertainty. The term aleatoric uncertainty is used to describe
the uncertainty of an estimate due to the intrinsic randomness of
noisy observations. For speech enhancement, it originates from
the stochastic nature of both speech and noise and is reflected in
the variance of the clean speech posterior predictive distribution.
Epistemic uncertainty is of different nature: If the parameters of
a neural network are trained, e.g., using different training data,
different initialization, or a different number of epochs, different
parameters result. Therefore, also the parameters of a neural network
used to estimate clean speech are uncertain. This uncertainty of the
parameters is called epistemic uncertainty (also known as model
uncertainty). For a general introduction to uncertainty modeling,
readers are suggested to refer to a review article by Hüllermeier et
al. [31]. Various uncertainty measures have been employed in the
deep regression setting, such as confidence intervals, differential
entropy, and variance. Depeweg et al. [34] propose to measure uncer-
tainty based on the entropy of the predictive distribution, which rep-
resents the information level of random variables. Pearce et al. [35]
use confidence intervals (which state how certain the estimate is
within a certain range) in a distribution-free setting. In this paper, we
address uncertainty modeling in a probabilistic way following [33],
[36], [37] and measure the uncertainty in terms of the variance.

Aleatoric uncertainty. Due to the stochastic nature of speech
and noise, a mapping from noisy speech to clean speech is uncertain
as reflected by the posterior predictive distribution of clean speech.
We can model this posterior using a specific conditional distribution,
such as a Gaussian or a Laplacian [33], [36], [38], and employ a
neural network to directly estimate the statistical moments of this
distribution. While the predicted mean is the MMSE estimate of
the target [2], the associated variance can be used to quantify the
data inherent uncertainty, i.e., aleatoric uncertainty [33].

Few studies in neural network-based speech enhancement have
incorporated the uncertainty of aleatoric nature. Chai et al. propose
to use a generalized Gaussian distribution to model the prediction
error on a logarithmic scale [39]. In [40], a neural network is
used to estimate the parameters of a Gaussian mixture model,
which then serves as the basis of an extra statistical model-based
speech enhancement approach. This results in only a slight
improvement over the baseline optimized with the MMSE criterion.
Siniscalchi [41] leverages neural networks to learn a histogram
distribution to approximate the conditional target speech distribution,
which is assumed to be a truncated Gaussian distribution with a
fixed variance in each frequency band. However, the fixed variance
does not help to capture data-dependent uncertainty.

Epistemic uncertainty. Estimating the statistical moments of the
speech posterior predictive distribution allows capturing aleatoric
uncertainty, but fails to account for epistemic uncertainty, which cor-
responds to the uncertainty in neural network parameters [31]–[33].
Epistemic uncertainty can be captured using Bayesian inference
approaches, which instead of modeling the parameters of a neural
network as deterministic values, place a distribution over the network
parameters and estimates the posterior distribution of the stochastic
network parameters [33]. By sampling from the posterior network
parameter distribution, multiple sets of neural network parameter
realizations can be obtained, thus producing multiple output pre-
dictions for each input sample. Uncertainty in predictions due to
epistemic uncertainty can be empirically quantified by the variance

in these output predictions [31], [33]. While the true posterior
network distribution is intractable [42], it can be approximated using
1) Markov Chain Monte Carlo (MCMC) methods [43], [44], which
are sampling-based approaches that construct a Markov Chain with
the posterior network parameter distribution as its stationary distri-
bution, 2) variational inference [42], [45], [46], which approximates
the true posterior network parameter distribution with a tractable
variational distribution, and 3) ensemble approaches [36], [47], [48],
which were proposed from the frequentist perspective but are consid-
ered as an approximate Bayesian approach [37], [49]. For instance,
Gal et al. [42] perform variational inference and interpret the dropout
regularization technique [50] as imposing Bernoulli distributions
on the neural network’s weights. This method, referred to as Monte
Carlo dropout (MC dropout), provides a set of target estimates from
multiple forward passes by activating dropout at inference. This set
of predictions can empirically approximate the outcome distribution
for each input sample and allows inference of the variance (i.e.,
epistemic uncertainty). In contrast, Deep ensembles proposed in [36]
can quantify epistemic uncertainty by training multiple neural
networks with random weight initialization [37], [38].

Recent studies attempt to consider the uncertainty of epistemic
nature in, e.g., speech emotion recognition [51], [52] and speech
recognition [53]–[55]. In [51], epistemic uncertainty is captured
in a speech emotion recognition model for selective prediction,
where samples with low confidence (high uncertainty) are rejected.
Braun et al. [53] apply a Gaussian distribution to the weights of
an end-to-end speech recognition model to capture uncertainty
of neural network parameters, which is then used for parameter
pruning. In a recent publication [54], epistemic uncertainty is
employed to improve the robustness of domain adaptation for
speech recognition. However, quantifying epistemic uncertainty in
neural network-based speech enhancement remains unexplored.

Contributions. Capturing overall predictive uncertainty, which
reflects both aleatoric and epistemic uncertainties, is challenging,
especially for deep neural networks, but crucial for an understanding
of the model’s prediction behaviour. In this work, we propose a
method that allows capturing aleatoric uncertainty and combining
it with epistemic uncertainty approximations to quantify overall
predictive uncertainty. In the context of neural network-based
speech enhancement, to the best of our knowledge, this is the first
work to study different sources of uncertainty in a joint framework
and provides for systematic analyses.

We follow the complex Gaussian speech-plus-noise assumption
and propose to train a neural network to estimate the Wiener filter
and its variance, which quantifies aleatoic uncertainty, based on
the MAP inference of complex spectral coefficients. To regularize
the variance estimation, we build an approximate MAP (AMAP)
estimator of spectral magnitudes using the estimated Wiener filter
(mean of the complex clean speech posterior predictive distribution)
and uncertainty (variance of the complex clean speech posterior
distribution) explicitly. The resulting AMAP estimator is in turn
used in conjunction with the MAP inference of complex spectral
coefficients to form a novel hybrid loss function. Rather than
discarding uncertainty information at inference, the proposed
scheme allows us to explicitly incorporate aleatoric uncertainty
approximations into clean speech estimation in a principled way
to further correct erroneous speech estimates.

Previous studies on modeling epistemic uncertainty have
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focused on other tasks than speech enhancement, e.g., [38],
[51]–[56]. Yet, questions such as how reliable and accurate the
estimates of epistemic uncertainty are in speech enhancement,
and how modeling epistemic uncertainty affects enhancement
performance, have not been addressed. To this end, we investigate
two Bayesian deep learning techniques: MC dropout [42] and
Deep ensembles [36] to capture epistemic uncertainty in clean
speech estimation due to their efficiency in approximating Bayesian
inference. Although previous works have explored ensemble-based
speech enhancement methods [57], [58], they did not investigate the
effectiveness of ensemble-based methods for uncertainty estimation.

Moreover, we propose to estimate overall predictive uncertainty
reflecting both aleatoric and epistemic uncertainties by combining
the proposed hybrid loss function with the ensemble-based method.
Finally, we present a comprehensive analysis of uncertainty from
different sources and show their impacts on speech enhancement
performance over different datasets, which we hope lays the
foundation for further use of uncertainties.

This paper extends our previous conference publication [59],
which studied aleatoric uncertainty. Here, we propose to additionally
capture epistemic uncertainty and combine them to quantify overall
predictive uncertainty in clean speech estimation. Furthermore,
we provide a more detailed analysis with respect to uncertainty
estimates from different sources in a joint framework. Section II
describes the signal model. In Section III, we propose to estimate
the uncertainty of aleatoric nature following the complex Gaussian-
distributed speech posterior and present how this uncertainty can be
incorporated into clean speech estimation. In Section IV, we show
how to capture epistemic uncertainty and quantify overall predictive
uncertainty that combines different sources of uncertainty. We
introduce the experimental setting in Section V, analyze uncertainty
estimates in Section VI, and present enhancement performance
in Section VII. Section VIII summarizes the findings.

II. SIGNAL MODEL

In the single-channel speech enhancement problem, the noisy
mixture consists of clean speech and additive noise. We apply the
STFT to obtain the representation in the time-frequency domain as:

Xft=Sft+Nft, (1)

whereXft,Sft, andNft represent the complex spectral coefficients
of mixture, speech, and noise, at the time frame t∈{1,2,···,T} and
the frequency bin f ∈{1,2,···,F}. T and F denote the number of
time frames and frequency bins respectively. The objective is to
recover clean speech in the time-frequency domain by applying
a multiplicative filter. To derive such a filter, various assumptions
are made according to different signal characteristics. By assuming
that the speech and noise coefficients are uncorrelated and follow
a circularly symmetric complex Gaussian distribution,

Sft∼NC(0,σ
2
s,ft), Nft∼NC(0,σ

2
n,ft), (2)

where σ2
s,ft and σ2

n,ft represent the variances of speech and noise
respectively, the likelihood p(Xft|Sft) follows a complex Gaussian
distribution with mean Sft and variance σ2

n,ft, given by

p(Xft|Sft)=
1

πσ2
n,ft

exp

(
−|Xft−Sft|2

σ2
n,ft

)
. (3)

With the likelihood in (3) and the prior in (2), we can apply Bayes’
theorem to obtain the posterior distribution of clean speech as a
complex Gaussian of the form [2]:

p(Sft|Xft)=
1

πλft
exp

(
−
|Sft−WWF

ft Xft|2
λft

)
, (4)

WWF
ft =

σ2
s,ft

σ2
s,ft+σ2

n,ft

, λft=
σ2
s,ftσ

2
n,ft

σ2
s,ft+σ2

n,ft

. (5)

WWF
ft is recognized as the Wiener filter and λft is the variance of the

posterior distribution. Under this assumption, the MMSE estimator,
which corresponds to the expectation of the posterior distribution,
leads to the Wiener filter applied as:

S̃ft=WWF
ft ·Xft. (6)

Due to the symmetry of the complex Gaussian distribution, the
MAP estimator of complex speech coefficients is identical to the
MMSE estimator.

III. ALEATORIC UNCERTAINTY ESTIMATION

Although speech enhancement is typically formulated as a problem
with a single output, the dependency between input and output can
be modeled stochastically by means of a speech posterior predictive
distribution p(Sft|Xft), i.e., a variance λft is associated with
the clean speech estimate and can be interpreted as a measure of
uncertainty of the Wiener estimate [2]. This uncertainty accounts for
random effects in data and is referred to as aleatoric uncertainty [33],
[36]. When properly captured, aleatoric uncertainty can reflect the
expected estimation error in the absence of ground truth.

A. Deep Aleatoric Uncertainty Estimation

In contrast to traditional signal processing techniques [1], [2], [60],
where the Wiener filter is constructed by separately estimating the
variances of speech and noise from the noisy mixture Xft, neural
network-based supervised masking methods allow direct estimation
of multiplicative filters. Besides the Wiener filter WWF

ft , one can
further estimate the data-dependent aleatoric uncertainty λft if the
neural network is optimized using the speech posterior predictive
distribution (4), i.e., by minimizing the negative logarithm of the
posterior distribution of clean speech p(Sft|Xft) (the logarithm
does not affect the optimization problem due to monotonicity) and
averaging over time-frequency bins:

W̃WF
ft ,λ̃ft=

argmin
WWF

ft ,λft

1

FT

∑

f,t

log(λft)+
|Sft−WWF

ft Xft|2
λft

︸ ︷︷ ︸
Lp(S|X)

, (7)

where W̃WF
ft , λ̃ft denote estimates of the Wiener filter and

associated aleatoric uncertainty [33], [36].
In contrast, if we assume a constant uncertainty for all time-

frequency bins, i.e., λft=λ∗, and refrain from explicitly optimizing
for λ∗, Lp(S|X) degenerates into the well-known mean squared
error (MSE) loss

LMSE=
1

FT

∑

f,t

|Sft−WWF
ft Xft|2, (8)
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Fig. 1: Block diagram of the proposed neural network-based aleatoric uncertainty estimation.

which is widely used in neural network-based regression tasks
including speech enhancement [19]. However, neural networks
trained to perform point estimation do not necessarily output reliable
estimates for clean speech when processing out-of-distribution
samples that are underrepresented by the training data [28]. In this
work, we discard the assumption of constant uncertainty; instead,
we propose to treat uncertainty estimation as an additional task by
training a neural network with the negative log speech posterior
Lp(S|X). Consequently, this method not only allows us to obtain
a noise-removing mask, but also empowers the model to capture
the uncertainty of aleatoric nature associated with predictions.

Modeling aleatoric uncertainty by minimizing the logarithm of
the posterior predictive distribution results in an improvement over
baselines that fail to account for uncertainty in computer vision
tasks [33]. However, directly using Lp(S|X) as the loss function
is prone to overfitting [59] and may result in reduced estimation
performance of the Wiener filter. A recent publication [61] also
reveals that directly minimizing the logarithm of the conditional
probability hinders the training of mean estimation, which leads
to premature convergence. To tackle this problem, we propose an
additional regularization of the loss function by incorporating the
estimated uncertainty into clean speech estimation as described next.

B. Joint Enhancement and Uncertainty Estimation
Estimating uncertainty λft associated with the Wiener filter is
challenging since ground truth of uncertainty is not readily available.
Instead, uncertainty estimation is an unsupervised task with an
unspecified search space, which can potentially lead to unstable
training [62], [63]. In this work, we propose to incorporate a
subsequent speech enhancement task that explicitly uses both the
Wiener filter and its uncertainty λft during the training procedure.
The speech enhancement task provides additional coupling between
the outputs (Wiener filter and uncertainty). In this manner, the
neural network is guided to estimate the uncertainty values that are
relevant to the speech enhancement task, as well as to enhance the
estimation of the Wiener filter.

Considering complex coefficients with a symmetric posterior (4),
the MAP and MMSE estimators both lead directly to the Wiener
filter WWF

ft and do not require an uncertainty estimate. However,
this situation changes if we consider spectral magnitude estimation.
The magnitude posterior p(|Sft||Xft), derived by integrating the
phase out of (4), follows a Rician distribution [4]

p(|Sft||Xft)=

2|Sft|
λft

exp

(
−|Sft|2+(WWF

ft )
2|Xft|2

λft

)
I0

(
2|Xft||Sft|WWF

ft

λft

)
,

(9)

where I0 (·) is the modified zeroth-order Bessel function of the first
kind.

In order to compute the MAP estimate for the spectral magnitude,
the mode of the Rician distribution has to be estimated, which is
difficult to do analytically. However, it can be approximated by
substituting a Bessel function approximation following [64] into (9)
and maximizing with respect to the spectral magnitude, yielding
a simple closed-form expression [2], [4]:

|Ŝft|≈WAMAP
ft |Xft|

=


1

2
WWF

ft +

√(
1

2
WWF

ft

)2

+
λft

4|Xft|2


|Xft|,

(10)

where |Ŝft| is an estimate of the clean spectral magnitude |Sft|
using the AMAP estimator of spectral magnitudes WAMAP

ft . It
can be noticed that the estimator WAMAP

ft utilizes both the Wiener
filter WWF

ft and the associated uncertainty λft. Fig. 2 illustrates
the input-output estimation characteristics of the AMAP estimator
and Wiener filter [2]. We can see that WAMAP

ft is nonlinear with
respect to the noisy input and tends to cause less target attenuation
than the Wiener filter especially for low inputs. This indicates
that incorporating the associated uncertainty λft may increase the
robustness of the estimator by potentially preserving more speech
at the slight cost of noise removal.

After combining the estimated magnitude |Ŝft| with the noisy
phase, we can apply the inverse STFT to obtain an estimate of the
time-domain speech signal, denoted as ŝ. Afterwards, the estimated
time-domain signal is used to compute the negative scale-invariant
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Fig. 2: Input-output characteristics of the AMAP estimator WAMAP
ft

and Wiener filter WWF
ft (setting σ2

s,ft=σ2
n,ft=1 in this example).
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signal-to-distortion ratio (SI-SDR) metric [65]:

LSI-SDR=−10log10

( ||αs||2
||αs−ŝ||2

)
, α=

ŝTs

||s||2 , (11)

which is leveraged as an additional term in the loss function that
forces the speech estimate (computed with WAMAP

ft ) to be similar
to the time-domain clean speech target s. While a spectrum loss
like (8) is a straightforward solution to regularize the uncertainty
estimation, the time-domain loss is expected to be more effective
since it is directly related to the raw waveform, implicitly taking
phase information into account and thus promoting speech
reconstruction for better perceptual performance [66].

Eventually, we propose to combine the SI-SDR loss LSI-SDR with
the negative log-posterior Lp(S|X) given in (7), and train the neural
network using a hybrid loss function

L=βLp(S|X)+(1−β)LSI-SDR, (12)

with the weighting factor β∈ [0,1]. By explicitly using the estimated
uncertainty for the speech enhancement task, the hybrid loss guides
both mean and variance estimation to improve speech enhancement
performance. Fig. 1 depicts a block diagram of this approach.

IV. BAYESIAN UNCERTAINTY ESTIMATION

While neural networks performing point estimation have
demonstrated effectiveness in speech enhancement, it is not
guaranteed that neural networks can generalize well to unfamiliar
acoustic situations. Therefore, to quantify the overall predictive
confidence regarding the estimated clean speech, it is necessary to
also assess the uncertainty of the neural network parameters (i.e.,
epistemic uncertainty). Note that a single neural network optimized
using the proposed hybrid loss (12) allows capturing aleatoric
uncertainty but is unaware of epistemic uncertainty. To solve this,
we can utilize Bayesian deep learning approaches, assuming that
the weights of a neural network follow some probability distribution
rather than deterministic values. Furthermore, when combined with
the loss (12), an ensemble of networks can provide both aleatoric
uncertainty and epistemic uncertainty estimates.

A. Epistemic Uncertainty Estimation

Bayesian deep learning provides a set of principled methods to
capture epistemic uncertainty [36], [42]–[44], [46], [48]. Early work
on MCMC methods [43], [44] constructs a Markov chain with the
posterior network parameter distribution as its stationary distribution
and generates multiple network parameter realizations by sampling
from this distribution. However, MCMC methods are computation-
ally inefficient and do not scale well to neural networks with a large
number of parameters [37], [38]. Recent work based on variational
inference allows approximating the true posterior network parameter
distribution with a tractable distribution [45], [46], while at the
same time ensemble-based methods are proposed as simple and
scalable frequentist alternatives to model uncertainty [36], [47], [48].
Among the existing Bayesian deep learning methods, MC dropout
and Deep ensembles have shown their scalability in large neural
network-based problems, such as semantic segmentation [33] and
depth estimation [37]. Here, we investigate their effectiveness for
uncertainty estimation in speech enhancement.

We define a neural network as a function parameterized by
θ and a training dataset that contains noisy-clean speech pairs
D= {(S11,X11),...,(SFT ,XFT )}. Hereafter we omit the indices
ft, since all time-frequency bins are treated independently in (4).
Since the posterior network parameter distribution p(θ|D) is
computationally intractable in a high dimensional space, variational
inference approximates the true posterior network parameter
distribution by a pre-specified variational distribution q(θ) and the
speech posterior predictive distribution at inference time is obtained
by marginalizing out q(θ) as:

p(S|X,D)=

∫
p(S|X,θ)p(θ|D)dθ

≈ 1

M

M∑

m=1

p(S|X,θm), θm∼q(θ),

(13)

where θm represents m-th sampling from q(θ) [67]. MC dropout
approximates the posterior network parameter distribution using
the Bernoulli distribution and samples neural network weights by
activating dropout at inference time. Gal et al. provide further details
on the derivations in [42]. This allows obtaining M target speech
estimates from multiple stochastic forward passes for each input.
In contrast, Deep ensembles repeatedly train the same model M
times with random initialization and random data shuffling [36],
generatingM neural networks with deterministic network parameter
estimates {θm}m=M

m=1 . Since θm can be viewed as independent sam-
ples from a certain approximate distribution q(θ), Deep ensembles
can be considered equivalent to approximate Bayesian inference [37].
Therefore, the predictive distribution is obtained similarly to (13).
Furthermore, neural networks usually contain a large number of
parameters, which makes them multi-modal in the parameter space.
Different initialization starting points in Deep ensembles allow the
neural network to converge to different local optima, thus potentially
capturing multiple modes of p(θ|D) [37], [48].

Epistemic uncertainty can be approximated by building an ensem-
ble of neural networks using either MC dropout or Deep ensembles,
where each network is trained to estimate the Wiener filter only with
the loss functionLMSE (8). With the results ofM forward passes, we
can approximate the mean and variance of the distribution p(S|X)
by the empirical mean and variance of the prediction set [38], [42]:

S̃=
1

M

M∑

m=1

S̃θm, Σ̃=
1

M

M∑

m=1

|S̃θm−S̃|2, (14)

where S̃θm denotes clean speech estimated using the neural network
with parameters θm. S̃ represents the average clean speech estimate
and Σ̃ quantifies the epistemic uncertainty.

B. Overall Predictive Uncertainty

In the case of optimizing the network using (12), besides the Wiener
estimate S̃θm , each neural network with weights θm can produce
the associated variance λ̃θm . The overall predictive uncertainty,
which reflects both aleatoric and epistemic uncertainties, can be
computed using the law of total variance [33], [38]:

S̃=
1

M

M∑

m=1

S̃θm, Σ̂=
1

M

M∑

m=1

(
|S̃θm−S̃|2+λ̃θm

)
, (15)
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where S̃ denotes the average Wiener estimate, and Σ̂ quantifies the
overall predictive uncertainty.

For each neural network with weights θm, we can further
generate the AMAP clean speech estimate Ŝθm by explicitly
incorporating the associated uncertainty λ̃θm as in (10). Therefore,
given an ensemble of networks, besides the average Wiener estimate
S̃, the average AMAP estimate can be obtained by:

Ŝ=
1

M

M∑

m=1

Ŝθm. (16)

V. EXPERIMENTAL SETTING

A. Datasets

For training and validation, we use a subset of the Deep Noise
Suppression (DNS) Challenge’s training set [68], which contains
synthetic audio samples of 100 hours with signal-to-noise ratios
(SNRs) uniformly distributed between -5 dB and 20 dB. The dataset
is randomly split into 80 and 20 hours for training and validation
respectively. The model is evaluated on two different unseen
datasets. The first is the reverb-free synthetic test set released by
DNS Challenge. This evaluation dataset is disjoint from the training
and validation datasets and is created by adding noise signals
sampled from 12 categories [68] to speech signals from [69] at
SNRs distributed between 0 dB and 25 dB [68]. The second unseen
evaluation dataset is created using clean speech from the evaluation
subset of WSJ0 (si_et_05) [70] and four types of noise from
CHiME3 (cafe, street, pedestrian, and bus) [71]. The
SNRs are randomly selected from{-10 dB, -5 dB, 0 dB, 5 dB,
10 dB}.

B. Architecture and Hyperparameters

To ensure a fair comparison, all experiments are performed based on
the same U-Net neural network architecture [72], [73]. The U-Net
structure with skip connections between the encoder and the decoder
is comprised of several blocks, each of which consists of: 2D convo-
lution layer + instance normalization [74] + Leaky ReLU with slope
0.2. The encoder contains 6 blocks that increase the feature channel
from 1 to 512 progressively (1−16−32−64−128−256−512),
while the decoder reduces it back to 16 (512−256−128−64−
32−16−16), followed by a 1×1 convolution layer that outputs a
mask of the same shape as the input. For all blocks, the kernel size
is set to (5,5) with stride (1,2) and padding (2,2), processing a 2-D
input with a dimension of (T,F). For the model estimating aleatoric
uncertainty, the output layer is split into two heads that predict both
the Wiener filter and associated uncertainty1. We applied the sigmoid
activation function to the estimated Wiener filter, while using the log-
exp technique to constrain the uncertainty output to be greater than 0,
i.e., the network outputs the logarithm of the variance, which is then
recovered by the exponential term in the loss function. The batch
size is 64; the learning rate is 0.001; the weight decay parameter
is set to 0.0005. All neural networks are trained with the Adam
optimizer [75]. The training process is stopped if the validation loss
fails to decrease for 10 consecutive epochs and the learning rate is
halved when the validation loss does not decrease for 3 epochs.

1Code for the model is available at: https://github.com/sp-uhh/uncertainty-SE.

The noisy-clean speech pairs have a sampling rate of 16 kHz,
and the STFT is computed using a 32 ms Hann window with 50%
overlap.

C. Methods

The algorithms considered in this work include:
1) Baseline WF: The U-Net architecture was trained on noisy-

clean speech pairs using loss function (8). This serves as a
baseline, assuming a constant variance for all time-frequency
bins and estimating the Wiener filter for each input only.

2) Baseline SI-SDR: Following the same constant variance
assumption as Baseline WF, the U-Net network was trained
to output a multiplicative filter and optimized using the
time-domain loss function (11). This serves as another
baseline that fails to account for uncertainty.

3) Aleatoric-WF & Aleatoric-AMAP: The hybrid loss func-
tion (12) allows us to generate two possible clean estimates
for each input, i.e., by using the estimated Wiener filter (6)
or by applying the AMAP estimator (10) that incorporates
both the Wiener filter and its associated uncertainty. They are
denoted as Aleatoric-WF and Aleatoric-AMAP respectively.
We observe experimentally that the performance of Aleatoric-
AMAP only fluctuates slightly with different β values,
while the performance of Aleatoric-WF decreases when the
value of β is large. The weighting factor β was empirically
chosen to be 0.001 to achieve a good trade-off between the
performance of Aletoric-WF and Aleaotirc-AMAP.

4) MC dropout: Inserting dropout after each convolution layer
regularizes too strongly and impacts the model perfor-
mance [56], which was confirmed in our preliminary ex-
periments. We thus studied several variants of the U-Net
by inserting the dropout layer at different positions of the
architecture, and selected the variant with three dropout lay-
ers (drop probability of 0.5 [37], [50], [56]) inserted after the
three deepest blocks of the encoder. The same cost function
as Baseline WF is used. This method captures epistemic
uncertainty by activating the dropout layers at inference.

5) Deep ensembles: The same setup as Baseline WF was trained
M times with random initialization. This allows the model
to capture epistemic uncertainty.

6) DE-Aleatoric-WF & DE-Aleatoric-AMAP: The same setup
as Aleatoric-WF/AMAP was trained M times with random
intialiation. This allows capturing aleatoric and epistemic un-
certainties simultaneously. We average over the estimates ac-
cording to (15) and (16) to obtain two clean speech estimates:
DE-Aleatoric-WF and DE-Aleatoric-AMAP respectively.

VI. ANALYSIS OF UNCERTAINTY ESTIMATION

In this section, we introduce the evaluation metrics for uncertainty
and then analyze the captured aleatoric and epistemic uncertainties.
Finally, we show that combining two types of uncertainty yields
more reliable predictive uncertainty.

A. Uncertainty Evaluation Metrics

To evaluate the captured uncertainty, the sparsification plot and
the sparsification error are used as evaluation metrics [37], [38],
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Fig. 3: Aleatoric uncertainty (shown in (e)) captured by the proposed
loss function (12) for an excerpt from the DNS test dataset. The
uncertainty is visualized as a heatmap. The black color indicates low
uncertainty, whereas the brighter color indicates higher uncertainty.

[76]. The sparsification plot illustrates the correlation between the
uncertainty measure and the true error. The error of a time-frequency
bin is defined as the absolute square between the estimated spectral
coefficient and the ground-truth. For this plot, the errors in the time-
frequency domain are first sorted according to their corresponding
uncertainty measures. The residual error should gradually decrease
when the time-frequency bins with large uncertainties are removed.
This leads to a plot of the root mean squared error (RMSE) versus
the fraction of removed time-frequency bins. Normalization is ap-
plied to ensure that the plot is initialized at 1. The best ordering of un-
certainty measures is determined by ranking the true errors [38], [76].
This provides a lower bound of each sparsification plot, denoted as
the oracle curve, i.e., when the uncertainty estimates and errors are
perfectly correlated, the sparsification plot and the oracle curve coin-
cide. The sparsficiation error is computed as the difference between
the sparsification plot and the corresponding oracle curve, and the
area under the sparsification error (AUSE) curve provides a single
value that enables comparison of different uncertainty modeling tech-
niques. A lower AUSE value (i.e., the closer the sparsification plot is
to its oracle curve) indicates a more accurate estimate of uncertainty.

B. Analysis of Aleatoric Uncertainty Estimation

In this part, we analyze the captured data-dependent aleatoric
uncertainty associated with the Wiener estimate. For this, an audio
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Fig. 4: Sparsification plot of aleatoric uncertainty λ̃ evaluated on
the DNS test dataset. The dashed line denotes the lower bound of
the sparsification plot of aleatoric uncertainty. A smaller distance of
the sparsification plot to the oracle curve indicates a more accurate
uncertainty estimation.

example from the DNS challenge test set is selected to illustrate
the effectiveness of the proposed optimization metric in modeling
uncertainty. Aleatoric-WF in Fig. 3 (c) shows the spectrogram of
the clean speech obtained by applying the estimated Wiener filter.
By computing the absolute square between the clean reference and
estimated spectral coefficients, we can obtain the estimation error as
depicted in Fig. 3 (d). It can be observed that large errors occur when
the speech is heavily disturbed by noise, as in the region marked
by the green box, while for inputs with less distortion, such as the
first three seconds, the model produces smaller errors. Meanwhile,
the proposed loss function enables the estimation of uncertainty
associated with the Wiener filter, as shown in Fig. 3 (e), denoted
as aleatoric uncertainty. It shows that aleatoric uncertainty prevails
in speech presence regions. By relating Fig. 3 (d) to Fig. 3 (e),
the model outputs relatively large uncertainty (e.g., the green
box-marked part) when large errors are produced. This suggests
that the neural network is able to produce reasonable uncertainty
estimates when dealing with complex unseen inputs. Furthermore,
we can incorporate the estimated uncertainty into clean speech
inference, as in (10), which leads to a clean speech estimate shown
in Fig. 3 (f), denoted as Aleatoric-AMAP. It is observed that more
speech is preserved than Aleatoric-WF in the highly-uncertain green
box-marked region at some cost of noise reduction, i.e., Aleatoric-
AMAP leads to less speech distortion with a slight tendency of
retaining more noise. The reason for this is that with reliable
uncertainty estimates, Aleatoric-AMAP can increase the estimator’s
value in (10) under high uncertainty (as the AMAP estimator’s
value is positively correlated with the uncertainty estimate when
other terms are fixed), thus causing less target attenuation.

Besides the qualitative analysis, we can associate the captured
uncertainty with the corresponding prediction errors on the
time-frequency bin scale and use sparsification plots to analyze
the reliability of the uncertainty estimates. The sparsification plot
shown in Fig. 4 is computed based on all audio samples in the DNS
reverb-free test dataset. We observe a rapid decrease at the beginning
in Fig. 4, implying that large errors come with large uncertainty
estimates. By removing 20 percent of time-frequency bins with
high uncertainty (i.e., 0.2 in the horizontal axis), the RMSE value
drops by around two-thirds. Thus, the monotonically decreasing
sparsification plot in Fig. 4 again suggests that the predicted aleatoric
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Fig. 5: The same excerpt as in Fig. 3 illustrates the captured
epistemic uncertainty obtained by applying Bayesian deep learning
methods (M=16). Estimate (MC dropout) and Estimate (DE) repre-
sent clean speech estimated using MC dropout and Deep ensembles.

uncertainty measurement is closely related to the estimation error.

C. Analysis of Epistemic Uncertainty Estimation

Next, we ignore aleatoric uncertainty and analyze separately
epistemic uncertainty in the model parameters. For this, the neural
networks are trained to perform only point estimation, i.e., trained
with the loss function (8). An ensemble of models is collected
by applying Deep ensembles or MC dropout to approximate the
predictive mean and variance.

In Fig. 5, we present the same audio example as in Fig. 3 to
illustrate the uncertainty measures based on MC dropout and Deep
ensembles. MC dropout and Deep ensembles provide the clean
speech estimates as shown in the first row of Fig. 5. The estimation
error for each method is obtained similarly by calculating the ab-
solute square between the estimated and clean spectral coefficients,
shown in the second row. As can be observed, both methods produce
large errors as well as associated large uncertainties when the signal
is heavily corrupted by noise, i.e., the green box-marked region.
While the noise corruption is less severe, i.e., the region marked
with a red box, the model generates low prediction errors and also
a relatively low level of uncertainty. From the visual analysis, the
uncertainty generated by Deep ensembles is more correlated with
the error, while MC dropout appears to underestimate the uncertainty
of incorrect predictions. To objectively assess the reliability of
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(a) Sparsification plot of MC dropout (MC)
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Fig. 6: Sparsification plots of epistemic uncertainty Σ̃ for the
DNS test dataset. The dashed line denotes the lower bound of the
corresponding sparsification plot, denoted as Oracle M . A smaller
distance of the sparsification plot to the oracle curve indicates a
more accurate uncertainty estimation. Note that all oracle curves
are visually overlapping.
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Fig. 7: AUSE for the DNS test dataset. AUSE is plotted relative
to a different number of forward passes M . The markers denote the
mean and the vertical bars indicate the standard deviation. Lower
values indicate a smaller deviation from the oracle curve, and thus
more reliable uncertainty estimation.

uncertainty measures, we also utilize the sparsification plots and the
sparsification errors, as illustrated in Fig. 6 and Fig. 7 respectively.

In Fig. 6, we show the sparsification plots of Deep ensembles
and MC dropout for a different number of forward passes
M ∈{2,4,8,16,32}. It can be observed that both MC dropout and
Deep ensembles yield decreasing sparsification plots, suggesting
that they produce accurate uncertainties that correlate well with
the estimation errors. It also shows that a large M leads to a
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TABLE I: AUSE values of Aleatoric, Epistemic, and Aleatoric &
epistemic in Fig. 8.

Aleatoric Epistemic Aleatoric & epistemic
AUSE 0.110 0.094 0.067

sparsification plot closer to its corresponding oracle curve, i.e.,
improves the performance of the uncertainty estimation, and this
improvement becomes saturated when M is sufficiently large, e.g.,
from M=16 to M=32.

To comprehensively compare MC dropout and Deep ensembles
in terms of uncertainty modeling, AUSE is plotted as a function of
different numbers of forward passes M . Multiple models for each
M are used to provide mean and standard deviation to account for
variations resulting from random factors in training. 16 MC dropout
models are trained and used to compute the mean of AUSE and
its standard deviation for each possible M . For Deep ensembles, 16
disjoint sets of M models are randomly selected from the 33 trained
models to compute the mean and standard deviation of AUSE. The
AUSE plot in Fig. 7 provides an alternative and more informative
evaluation than a single sparsification plot. It indicates that Deep
ensembles generally produce more accurate uncertainty than MC
dropout, which may fail to produce reliable uncertainties for some
erroneous predictions. This coincides with our visual observation
in the green box-marked region in Fig. 5.

D. Prediction Uncertainty Combining Aleatoric and Epistemic
Uncertainties

In this part, we investigate the overall prediction uncertainty obtained
by combining aleatoric uncertainty and epistemic uncertainty as
in (15). To obtain the overall prediction uncertainty, we use an
ensemble of models trained with the optimization metric (12) such
that both aleatoric and epistemic uncertainty are captured. It has been
shown in Section VI-C that Deep ensembles yield more accurate
epistemic uncertainty than MC dropout and, therefore, are selected
for the estimation of the overall predictive uncertainty. Although a
larger number of models M could potentially improve the mean and
variance estimation, we restrict M to 16 as further improvements
become subtle while the computation time increases considerably.

In Fig. 8, we use sparsification plots to analyze the quality of
prediction uncertainty estimates combining aleatoric and epistemic

TABLE II: Evaluation results on the DNS test dataset. All results
are stated as mean ± 95%-confidence interval. Unc. stands for
Uncertainty.

Unc. PESQ ESTOI SI-SDR
Noisy (DNS) - 1.58 ± 0.07 0.81 ± 0.02 9.07 ± 0.89
Baseline WF ✗ 2.48 ± 0.10 0.90 ± 0.01 16.84 ± 0.74

Baseline SI-SDR ✗ 2.63 ± 0.10 0.91 ± 0.01 17.49 ± 0.78
MC dropout ✓ 2.53 ± 0.10 0.90 ± 0.01 16.88 ± 0.74

Deep ensembles ✓ 2.66 ± 0.10 0.91 ± 0.01 17.16 ± 0.73
Aleatoric-WF ✓ 2.62 ± 0.11 0.91 ± 0.01 17.54 ± 0.78

Aleatoric-MAP ✓ 2.69 ± 0.10 0.91 ± 0.01 17.54 ± 0.78
DE-Aleatoric-WF ✓ 2.77 ± 0.11 0.92 ± 0.01 17.88 ± 0.78

DE-Aleatoric-AMAP ✓ 2.83 ± 0.10 0.92 ± 0.01 17.90 ± 0.78

uncertainties. The corresponding AUSE values are provided in
Table I. The plot illustrates that the overall predictive uncertainty es-
timates correlate stronger with the estimation error than either of the
two uncertainties alone. This suggests that two sources of uncertainty
may complement each other and combining both leads to more
reliable uncertainty estimates. For example, Deep ensembles do not
seem to capture sufficient uncertainty for less distorted input (e.g.,
first three seconds) as shown in Fig. 5, while aleatoric uncertainty
shown in Fig. 3 could be able to compensate for this shortcoming.

VII. INFLUENCE OF MODELING
UNCERTAINTY FOR SPEECH ENHANCEMENT PERFORMANCE

In this section, we show how modeling different sources of
uncertainty affects the performance of speech enhancement.
To evaluate the speech enhancement performance, we employ
perceptual evaluation of speech quality (PESQ) [77] to measure
speech quality, extended short-time objective intelligibility
(ESTOI) [78] to measure speech intelligibility, and SI-SDR to
account for both noise reduction and speech distortion.

To show the impact of modeling aleatoric uncertainty on speech
enhancement performance, we compare the performance of the
model trained with the proposed loss function (12) with that of Base-
line WF and Baseline SI-SDR. The proposed method enables speech
estimation via either the Wiener filter, which implicitly takes uncer-
tainty into account during the training process, or the approximated
MAP filter, which explicitly includes uncertainty to estimate speech,
denoted as Aleatoric-WF and Aleatoric-AMAP respectively. Table II
shows the average evaluation results on the DNS synthetic non-
reverb test set. Aleatoric-WF shows improvements in PESQ, ESTOI,
and SI-SDR compared to the Baseline WF, indicating the benefit of
weighting Wiener estimates with uncertainty during training. Further
PESQ improvements over both Baseline WF and Baseline SI-SDR
can be observed when explicitly incorporating uncertainty into clean
speech estimation, that is, Aleatoric-AMAP. This demonstrates the
advantage of modeling uncertainty associated with the Wiener esti-
mate rather than directly estimating optimal points. When evaluated
on another dataset with speech from WSJ and noise from CHiME3,
the performance gap between Aleatoric-AMAP and the baselines in
terms of PESQ is further increased, as shown in Fig. 9, indicating
that the model that takes uncertainty into account has improved gen-
eralization capacities for speech enhancement. This can be attributed
to the nonlinear estimation characteristics of the uncertainty-based
AMAP estimator with respect to noisy inputs and the resulting better
speech preservation properties. We observe larger improvements
over the baselines at high SNRs, which might be explained by the
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fact that, at high SNRs, speech quality (and thus PESQ) is mainly
affected by speech distortions, while at low SNRs the main factor
is residual noise. Overall, these evaluation results demonstrate the
notable benefits of modeling aleatoric uncertainty in the algorithm.

To show the impact of modeling epistemic uncertainty on speech
enhancement performance, we compare the performance of Deep
ensembles and MC dropout with Baseline WF. We again restrict
M to 16 as in Section VI-D. MC dropout performs comparably to
Baseline WF on the DNS test set, while a larger improvement can
be observed when using Deep ensembles. This improvement is even
more pronounced in PESQ. Similarly, the results on the second test
set are shown in Fig. 9, where Deep ensembles and MC dropout
improve over Baseline WF in terms of PESQ for all considered
SNRs and provide higher ESTOI scores, especially at low SNRs.
We observe that Deep ensembles not only provide more accurate
uncertainty estimates than MC dropout but also lead to a better
speech enhancement performance. A possible explanation is that
while MC dropout only captures local uncertainty around a single
mode, Deep ensembles trained with different initialization points
are capable of exploring multiple modes in the function space to
account for training data, see, e.g., [48], [49]. This may allow the
neural network to generalize better to complex acoustic scenarios.

To show the impact of modeling predictive uncertainty that
combines both aleatoric and epistemic uncertainties on speech
enhancement performance, we use the same set of models as
described in Section VI-D. We take the average of estimates as
in (15) and (16) and obtain two speech estimates, called DE-
Aleatoric-WF and DE-Aleatoric-AMAP respectively. They both
provide better ESTOI and SI-SDR scores than the baselines, the
epistemic uncertainty-only model, and the aleatoric uncertainty-only
model, especially at low SNRs. Moreover, DE-Aleatoric-AMAP
yields higher scores in PESQ likely due to the uncertainty-dependent
regularization and exploration of multiple modes in the function
space. This indicates that combining the model that accounts for
aleatoric uncertainty with the ensemble-based method can take
advantage of the benefits of both approaches and further improve
the performance. Overall, the evaluation results across different
datasets show that quantifying uncertainty in neural network-based
speech enhancement leads to a considerable improvement in
enhancement performance over the baseline models.

VIII. CONCLUSION

In this paper, besides estimating clean speech, we quantified
predictive uncertainty in neural network-based speech enhancement.
For this, aleatoric uncertainty, which describes inherent uncertainty
in data, and epistemic uncertainty, which accounts for uncertainty
of the model, were captured and analyzed in a joint framework. We
investigated the reliability of uncertainty estimates from different
sources, and how it affects the enhancement performance. Our
proposed hybrid loss function based on MAP inference of complex
spectral coefficients and an AMAP estimator of spectral magnitudes
has demonstrated the effectiveness in modeling aleatoric uncertainty.
In addition, the proposed scheme provided a principled way
to create a noise-removing mask that explicitly incorporates
uncertainty to further improve speech enhancement performance.
The evaluation results on different datasets have shown increased
generalization capacities when modeling aleatoric uncertainty.
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Fig. 9: Performance improvement on the dataset with speech
from WSJ0 and noise from CHiME3. PESQi denotes PESQ
improvement with respect to noisy mixtures. ESTOIi and SI-SDRi
are defined similarly. Markers and vertical bars indicate the mean
and 95% confidence interval.

To empirically approximate the predictive distribution and capture
epistemic uncertainty, we employed two Bayesian deep learning
methods, MC dropout and Deep ensembles. We showed that Deep
ensembles not only provide more accurate estimates of epistemic
uncertainty than MC dropout, but also lead to more prominent
improvements in speech enhancement. A reason may be that Deep
ensembles can potentially converge to different local minima in
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the loss landscape due to random initialization. Furthermore, we
combined the proposed hybrid function with Deep ensembles to
quantify overall prediction uncertainty, which reflects both data
uncertainty and model uncertainty. An analysis using sparsification
plots showed that combining different types of uncertainties further
improves the reliability of predictive uncertainty estimation, indi-
cating the complementary nature of the two sources of uncertainty.
Finally, our experiments indicated that the performance of clean
speech estimation can be considerably improved over the baselines
while additionally obtaining predictive uncertainty estimates.

In summary, this work investigated capturing predictive
uncertainty in neural network-based speech enhancement and
showed the noticeable benefits of modeling uncertainty for clean
speech estimation. Uncertainty can indicate the algorithm’s
confidence in the output in the absence of ground truth, which is
essential for assessing the reliability of speech estimates. With this
work, we hope to enlighten discussions on modeling uncertainty
in the speech enhancement task, while facilitating future research
on how to take advantage of uncertainty.
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UNCERTAINTY ESTIMATION IN DEEP SPEECH ENHANCEMENT
USING COMPLEX GAUSSIAN MIXTURE MODELS
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ABSTRACT
Single-channel deep speech enhancement approaches often estimate a single
multiplicative mask to extract clean speech without a measure of its accu-
racy. Instead, in this work, we propose to quantify the uncertainty associated
with clean speech estimates in neural network-based speech enhancement.
Predictive uncertainty is typically categorized into aleatoric uncertainty and
epistemic uncertainty. The former accounts for the inherent uncertainty in
data and the latter corresponds to the model uncertainty. Aiming for robust
clean speech estimation and efficient predictive uncertainty quantification,
we propose to integrate statistical complex Gaussian mixture models (CG-
MMs) into a deep speech enhancement framework. More specifically, we
model the dependency between input and output stochastically by means
of a conditional probability density and train a neural network to map the
noisy input to the full posterior distribution of clean speech, modeled as
a mixture of multiple complex Gaussian components. Experimental results
on different datasets show that the proposed algorithm effectively captures
predictive uncertainty and that combining powerful statistical models and
deep learning also delivers a superior speech enhancement performance.

Index Terms— Speech enhancement, uncertainty estimation, neural
networks, complex Gaussian mixture models

1. INTRODUCTION
Speech enhancement aims to recover clean speech from microphone
recordings distorted by interfering noise to improve speech quality and
intelligibility. The recordings are often transformed into the time-frequency
domain using the short-time Fourier transform (STFT), where an estimator
can be applied to extract clean speech. Depending on different probabilistic
assumptions, various Bayesian estimators have been presented [1], [2]. A
typical example is the Wiener filter derived based on the complex Gaussian
distribution of speech and noise signals [2]. Complex Gaussian mixture
models (CGMMs) have also been studied in [3] to model super-Gaussian
priors, which are considered a better fit for speech signals [2].

Today, deep neural network (DNN)-based approaches are the standard
tool for speech enhancement, alleviating shortcomings of traditional meth-
ods. Supervised masking approaches are trained on large databases consist-
ing of noisy-clean speech pairs and directly estimate a multiplicative mask
to extract clean speech [4]. However, supervised DNN approaches are typi-
cally formulated as a problem with a single output, which may result in fun-
damentally erroneous estimates for unseen samples, without any indication
that the erroneous estimate is uncertain. This motivates us to quantify predic-
tive uncertainty associated with clean speech estimates, which allows deter-
mining the level of confidence in the outcome in the absence of ground truth.

Predictive uncertainty is typically categorized into aleatoric uncertainty
and epistemic uncertainty [5], [6]. Aleatoric uncertainty describes the uncer-
tainty of an estimate due to the intrinsic randomness of noisy observations.
For speech enhancement, it originates from the stochastic nature of both
speech and noise. Epistemic uncertainty (also known as model uncertainty)
corresponds to the uncertainty of the DNN parameters [6]. Hüllermeier et
al. [5] provide a general introduction to uncertainty modeling. To quantify

We thankfully acknowledge the funding from ahoi.digital.

aleatoric uncertainty, the dependency between input and output can be
modeled stochastically using a speech posterior distribution and enable
the DNN to estimate the statistical moments of this distribution. While the
predictive mean is a target estimate, the associated variance can be used to
measure aleatoric uncertainty [6]. Previous work has implicitly or explicitly
explored the uncertainty of aleatoric nature in the context of DNN-based
speech enhancement. Chai et al. [7] have proposed a generalized Gaussian
distribution to model prediction errors in the log-spectrum domain. Sinis-
calchi [8] has proposed to use a histogram distribution to approximate the
conditional speech distribution, but with a fixed variance assumption, thus
failing to capture input-dependent uncertainty. Our previous work [9] allows
capturing aleatoric uncertainty based on the complex Gaussian posterior.
In contrast, quantifying epistemic uncertainty in the context of DNN-based
speech enhancement approaches to account for model’s imperfections
remains relatively unexplored. In computer vision and deep learning,
epistemic uncertainty is usually captured using approximate Bayesian
inference. For instance, variational inference can approximate the exact
posterior distribution of DNN weights with a tractable distribution [6], [10].
At testing time, multiple sets of DNN weights can be obtained by sampling
from an approximate posterior network weight distribution, thus producing
multiple different output predictions for each input sample. Epistemic
uncertainty captures the extent to which these weights vary given input
data, which can be empirically quantified by the variance in these output
predictions [6]. However, its computational effort is proportional to the
number of sampling passes. This renders those approaches impractical for
devices with limited computational resources or strict real-time constraints.

In this work, we propose to integrate statistical CGMMs into a deep
speech enhancement framework, so that we can combine the powerful
nonlinear modeling capabilities provided by neural networks with super-
Gaussian priors as a way to improve the robustness of the algorithm as well
as to capture predictive uncertainty. More specifically, we propose to train
a DNN to estimate the full posterior distribution of clean speech, modeled
as a mixture of multiple complex Gaussian components. The one-to-many
mapping based on the CGMM enables the DNN to make multiple reason-
able hypotheses, thus increasing the robustness against adverse acoustic
scenarios. At the same time, in addition to clean speech estimates, the pro-
posed framework featuring one-to-many mappings allows capturing both
aleatoric uncertainty and epistemic uncertainty without extra computational
costs. Furthermore, we propose a pre-training scheme to mitigate the mode
collapse problem often observed in mixture models, resulting in improved
clean speech estimation. Finally, we adapt and employ a gradient modi-
fication scheme to effectively stabilize the training of our mixture model.

Note that previous work by Kinoshita et al. [11] also seeks to output
multiple hypotheses to avoid deterministic mappings. Our work is different
in two main aspects. First, Kinoshita et al. model the logarithm Mel-
filterbank features using real Gaussian mixture models, while we follow the
prior CGMM of speech and noise spectral coefficients. Second, the DNN
outputs in [11] serve as the basis for an additional statistical model-based
enhancement method, while we target to obtain clean speech estimates
directly via DNNs in an end-to-end fashion.



2. SIGNAL MODEL
We consider a single-channel speech enhancement problem in which clean
speech is distorted by additive noise. In the STFT domain, the noisy signal
is given by

Xft “Sft`Nft, (1)
where Sft and Nft denote the speech and noise complex coefficients at
the frequency bin f Pt1,...,Fu and the time frame tPt1,...,Tu. We model
the speech and noise signals as mixtures of zero-mean complex Gaussian
distributions [3]:

Sft „
Iÿ

i“1

ΩpiqNCp0,σ2
i,ftq, Nft „

Jÿ

j“1

ΩpjqNCp0,σ2
j,ftq. (2)

The speech mixture weights Ωpiq sum to one, and the same applies to
the noise mixture weights Ωpjq. The likelihood ppXft|Sftq follows a
complex Gaussian mixture distribution centered at Sft, given by

ppXft|Sftq“
Jÿ

j“1

Ωpjq 1

πσ2
j,ft

exp

˜
´|Xft´Sft|2

σ2
j,ft

¸
. (3)

Given the speech prior in (2) and the likelihood distribution in (3), one can
apply Bayes’ theorem to determine the posterior distribution of speech as
follows [3]

ppSft|Xftq“
Iÿ

i“1

Jÿ

j“1

Ωpi,j|Xftq 1

πλij,ft
exp

˜
´|Sft´WWF

ij,ftXft|2
λij,ft

¸
,

(4)
where WWF

ij,ft “ σ2
i,ft

σ2
i,ft

`σ2
j,ft

and λij,ft “ σ2
i,ftσ

2
j,ft

σ2
i,ft

`σ2
j,ft

are the Wiener

filter and the posterior’s variance of the mixture Gaussian pair pi, jq,
respectively. Ωpi,j|Xftq denotes the posterior’s mixture weights with the
same sum-to-one constraint. The variance λij,ft for the mixture pair pi,jq
can be interpreted as a measure of uncertainty for the Wiener estimate
rSij,ft “WWF

ij,ftXft [2].
Given an input noisy signal, multiple complex Gaussian components

can be combined by computing the expectation of the posterior CGMM,
yielding the clean speech estimate

EpSft|Xftq“
ż
SftppSft|XftqdSft “

Iÿ

i“1

Jÿ

j“1

Ωpi,j|XqrSij,ft . (5)

The mixture density model possesses the advantage of being able to
approximate an arbitrary density function with a sufficient number of com-
ponents [12], which provides a good fit for modeling, e.g., super-Gaussian
characteristics of the speech coefficients. In this work, we propose to
embed the CGMM into a DNN framework in order to additionally take
advantage of their non-linear modeling capacities, as will be shown next.

3. JOINT ESTIMATION OF CLEAN SPEECH
AND PREDICTIVE UNCERTAINTY

Instead of relying on traditional power spectral density tracking algorithms,
we can leverage neural networks to directly estimate a mixture of Wiener
filters to recover clean speech. Furthermore, it is also possible to optimize
the neural network based on the speech posterior distribution (4), so that
not only the Wiener filter but also the variance of each mixture pair can
be estimated. By taking the negative logarithm and averaging over the
time-frequency bins, we can obtain the following optimization problem

ĂWWF
l,ft,rλl,ft, rΩl,ft “ argmin

WWF
l,ft

,λl,ft,Ωl,ft

LCGMM
ppS|Xqhkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj

´ 1

FT

ÿ

f,t

log

˜
Lÿ

l“1

exppΘl,ftq
¸

,

Θl,ft “ logpΩpl|Xftqq´logpλl,ftq´ |Sft´WWF
l,ftXft|2

λl,ft
,

(6)

DNN

Noisy speech 

Fig. 1. Block diagram of the DNN-based predictive uncertainty estimation.

where l P t1,...,Lu indexes a mixture pair pi,jq in (4), i.e., L “ I ˆJ.
ĂWWF

l,ft and rλl,ft denote estimates of the Wiener filter and its associated
uncertainty. The CGMM and the corresponding loss function can be viewed
as a generalization of the uni-modal Gaussian assumption, which in turn
is a generalization of the mean squared error (MSE) loss function. In the
limiting case L“1 (i.e., I“J“1), LCGMM

ppS|Xq degenerates into the generic
complex Gaussian with a single mean WWF

ft and variance λft, such that

ĂWWF
ft ,rλft “ argmin

WWF
ft

,λft

1

FT

ÿ

f,t

logpλftq` |Sft´WWF
ft Xft|2

λftlooooooooooooooooooooooomooooooooooooooooooooooon
LCG
ppS|Xq

.
(7)

Furthermore, by assuming a constant uncertainty for all time-frequency
bins and refraining from optimizing for it, LCG

ppS|Xq degenerates into the
commonly-used MSE loss [13]:

LMSE “ 1

FT

ÿ

f,t

|Sft´WWF
ft Xft|2. (8)

In this work, we depart from the uni-modal Gaussian and the constant
uncertainty assumption. Alternatively, we propose to map the input to multi-
ple hypotheses by training a DNN with the negative log-posterior LCGMM

ppS|Xq,
so that we can leverage the better modeling capabilities of the multi-modal
distribution and also enable the DNN to quantify the overall predictive
uncertainty. Furthermore, incorporating the variances associated with the
Wiener estimates enables the adjustment of the weighting of the residual
loss, as interpreted in [6], improving the robustness of the network to
adverse inputs. As all time-frequency bins are treated independently in (4),
the indices ft will be omitted hereafter wherever possible.

We can compute the posterior’s variance [14, Section 5], VarpS|Xq,
to quantify the overall (squared) uncertainty in clean speech estimates
originating from different aspects. With the law of total variance, the
posterior’s variance can be decomposed into [15]:

VarpS|Xq“
Lÿ

l

Ωpl|Xq λl

loooooomoooooon
El„Ωpl|XqrVarpS|X,lqs

`
Lÿ

l

Ωpl|Xq
ˇ̌
ˇWWF

l X´EpS|Xq
ˇ̌
ˇ
2

looooooooooooooooooomooooooooooooooooooon
Varl„Ωpl|XqpErS|X,lsq

.
(9)

The inherent uncertainty associated with the l-th Gaussian component in the
outcome is given by VarpS|X,lq“λl and aleatoric uncertainty is then quan-
tified as the expectation of variance components El„Ωpl|XqrVarpS|X,lqs
following the interpretation in [6], [15]. Epistemic uncertainty can be
captured using multiple output predictions, which can be achieved here
by the mixture of Wiener estimates, thus circumventing the need for an
expensive sampling process. For this, one can compute the variance of
the conditional expectation, resulting in the epistemic uncertainty esti-
mate Varl„Ωpl|XqpErS|X,lsq. Fig 1 depicts an overview of this approach.

Probability density estimation is a non-trivial task. Our preliminary
experiments using LCGMM

ppS|Xq directly as the loss function have shown numer-
ical instabilities during training. To overcome this, a gradient modification



scheme inspired by [16] is adapted and employed. Furthermore, DNNs op-
timized based on LCGMM

ppS|Xq are not guaranteed to exploit the multi-modality
of the mixture model, i.e., the multiple hypotheses may converge to the
same estimate (collapse to a single mode). We propose to handle this using
a pre-training technique based on the winner-takes-all (WTA) scheme [17].

3.1. Gradient modification scheme
The optimization of DNNs with a uni-modal Gaussian (e.g., (7)) as the
loss function using stochastic gradient descent shows a high dependence
of the gradient on the variance, which is known to cause optimization
instabilities [16], [18]. This can be particularly problematic in our CGMM
involving multiple complex Gaussian components. It can be seen by
computing the gradients of the exponential term Θl in (6) with respect to
the l-th Wiener filter and associated variance, shown as follows

∇WWF
l
Θl “ 2Ret´SĎX`WWF

l |X|2u
λl

,∇λlΘl “ λl´|S´WWF
l X|2

λ2
l

, (10)

where the Ret¨u operation returns the real part and s̈denotes the complex
conjugate. A recent analysis of the real-valued Gaussian assumption
by Seitzer et al. [16] showed that the dependence of the gradient on the
variance can be reduced by modifying the gradient based on the variance
value. Inspired by this, here we extend it to the mixture model, which
can be achieved by introducing a weighting term λβl to each complex
Gaussian component in the loss (6):

ĂWWF
l,ft,rλl,ft “ argmin

WWF
l,ft

,λl,ft

´ 1

FT

ÿ

f,t

log

˜
Lÿ

l“1

exppsgrλβlsΘl,ftq
¸
, (11)

where sgr¨s denotes the stop gradient operation, which allows λβl to act
as an input-dependent adaptive factor on the gradient. The parameter
βl P r0,1s controls how much the gradient depends on the l-th variance.
As a result, the gradients are modified to

∇1
WWF

l
Θl “ 2Ret´SĎX`WWF

l |X|2u
λ
1´βl
l

,∇1
λl
Θl “ λl´|S´WWF

l X|2
λ
2´βl
l

. (12)

Experimentally, we find that the modification in (11) is effective in
addressing instability problems during the training of the probabilistic
mixture models.

3.2. WTA pre-training scheme
In order to obtain diverse predictions, we propose a pre-training scheme
based on the WTA loss [17] to introduce a competition mechanism among
the output layers. The concept was originally presented by Guzman-Rivera
et al. [17] for support vector machines to produce multiple outputs, and later
generalized to the context of DNNs [19]–[22]. We apply the pre-training
procedure to a DNN which outputs multiple masks to generate clean
speech estimates, i.e., it is equivalent to the CGMM consisting of only
the mixture of Wiener estimates. To prompt a network to output diverse
hypotheses based on a single ground-truth, the gradient is backpropagated
through the top K of the L output predictions at each iteration [21]:

LWTA “ 1

K

Kÿ

k“1

LMSEpWWF
k X, Sq, (13)

where the top-K winners are selected based on the MSE measure, indexed
by k. Following [21], we start with K“L, and gradually halve the number
of selections until reaching K“1. The competition mechanism prompts
the DNN to output diverse clean speech estimates to capture the model’s
uncertainty, which is expected to alleviate the mode collapse problem to
some extent. Previous work has proposed feeding these predictions into
a post-processing network to perform distribution fitting [20], [21], while
here we propose to use it to initialize the CGMM (except for the output
layers that estimates the mixing coefficient and variance of each Gaussian
component) to strengthen clean speech estimation without introducing any
additional parameters.

Methods Ale. Epi. SNR Average
<6 dB 6-12 dB >12 dB

Noisy - - 1.33/0.74 1.52/0.81 2.00/0.91 1.58/0.81
Baseline WF ✗ ✗ 2.05/0.85 2.53/0.91 3.03/0.95 2.48/0.90

Prop. CGMM1 ✓ ✗ 2.20/0.86 2.66/0.92 3.13/0.96 2.61/0.91
Prop. CGMM4-cons ✗ ✓ 2.16/0.86 2.65/0.92 3.17/0.96 2.60/0.91

Prop. CGMM4 ✓ ✓ 2.21/0.86 2.68/0.92 3.13/0.96 2.62/0.91
Prop. CGMM4-pre ✓ ✓ 2.22/0.86 2.78/0.92 3.24/0.96 2.69/0.91

Table 1. Average performance on DNS non-reverb test set. The values are
given in PESQ/ESTOI. Ale.: Aleatoric; Epi.: Epistemic; Prop.: Proposed.

4. EXPERIMENTS

4.1. Dataset
We randomly select 80 and 20 hours from the Deep Noise Suppres-
sion (DNS) Challenge dataset [23] for training and validation, respectively.
The signal-to-noise ratio (SNR) is uniformly sampled between -5 dB and
20 dB. We evaluate the model on two unseen datasets. The first is the
non-reverb synthetic test set released by DNS Challenge, which is created
by mixing speech signals from [24] with noise from 12 categories [23], at
SNRs ranging from 0 dB and 25 dB. We synthesize the second test set by
mixing speech samples from WSJ0 (si et 05) [25] and noise samples
from CHiME (cafe, street, pedestrian, and bus) [26] at
SNRs randomly chosen from{-10 dB, -5 dB, 0 dB, 5 dB, 10 dB}.

4.2. Experimental settings
We compute the STFT using a 32 ms Hann window and 50% overlap,
at a sampling rate of 16 kHz. For a fair comparison, we base all ex-
periments on a plain U-Net architecture adapted from [27], [28]. The
architecture has skip connections between the encoder and the decoder
and consists of multiple identical blocks, of which each consists of: 2D
convolution layer + instance normalization + Leaky ReLU with slope
0.2. The model processes the inputs of dimension pT,Fq, with the ker-
nel size p5,5q, stride p1,2q, and padding p2,2q. The encoder is com-
prised of 6 blocks that increase the feature channel from 1 to 512 progres-
sively (1´16´32´64´128´256´512), and then the decoder reduces
it back to 16 (512´256´128´64´32´16´16), followed by a 1ˆ1
convolution layer that outputs a single mask of the same shape as the input
when performing point estimation or outputs L pairs of masks, variance esti-
mates, and mixture weights when applying the CGMM. We set I and J to
2 in (4) , resulting in L“4. We set βl to 0.5 for lPt1,¨¨¨,Lu following [16].

The models are trained using the Adam optimizer with a learning
rate of 10´3, which is halved if the validation loss does not decrease for
consecutive 3 epochs. Early stopping with a patience of 10 epochs is
used. The batch size is 64; the weight decay factor is set to 0.0005. The
CGMM can be optionally pre-trained based on the WTA loss as described
in Section 3.2. Since it is not straightforward to determine a validation loss
for the WTA mechanism, we train the model for 125 epochs with the initial
learning rate 10´3, and then halve it every 5 epochs when it is greater
than 10´6. We halve the number of winners after every 25 epochs, from
K“4 to K“2, eventually reaching K“1, while K remains at 1 for the
rest of the training process. The CGMM is then fine-tuned with an initial
learning rate of 10´5 and the same decay and stopping schemes. Note
that the proposed gradient modification scheme described in Section 3.1
is employed to stabilize the training of all CGMM-based networks.

Finally, the following deep algorithms are evaluated:
1. Baseline WF refers to a single Wiener filter trained with the loss (8).
2. CGMM1 refers to the CGMM with L “ 1 (i.e., I “ J “ 1) trained

using the loss (11). It outputs a single Wiener filter and variance, thus
modeling only aleatoric uncertainty.

3. CGMM4 denotes the CGMM with L“4 trained using the loss (11),
which captures both aleatoric and epistemic uncertainties.

4. CGMM4-cons assumes a constant variance for CGMM4 and refrains
from optimizing for it (λl,ft “ 1), capturing epistemic uncertainty
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Fig. 2. Performance improvement obtained on the WSJ0-CHiME test set.
PESQi denotes PESQ improvement relative to noisy mixtures. The same
definition applies to ESTOIi. The marker denotes the mean value and the
vertical bar indicates the 95%-confidence interval.

through a mixture of Wiener estimates.
5. CGMM4-pre refers to the CGMM4 pre-trained with the WTA loss.

4.3. Metrics
We present speech enhancement results in terms of perceptual evaluation
of speech quality (PESQ) and extended short-time objective intelligibility
(ESTOI). We use a sparsification plot [20], [29] to quantitatively evaluate
the captured uncertainty. The sparsification plot illustrates the correlation be-
tween the uncertainty measures and the true errors. As a first step, the errors
of the spectral coefficients are ranked according to their corresponding un-
certainty measures. For well-calibrated uncertainty estimates, when the time-
frequency bins with large uncertainties are removed the residual error should
decrease. Accordingly, the root mean squared error (RMSE) can be plotted
versus the fraction of the time-frequency bins removed. Ranking the true
errors by their own values yields a lower bound for the sparsification plot, re-
ferred to as the oracle curve. When the uncertainty estimates and the errors
are perfectly correlated, the sparsification plot and the oracle curve overlap.

4.4. Results
In Table 1, we present average evaluation results on the DNS non-reverb
test set. It can be observed that the proposed framework considering either
aleatoric uncertainty (CGMM1) or epistemic uncertainty (CGMM4-cons)
outperforms the point estimation baseline, demonstrating the advantages of
modeling uncertainty associated with the clean speech estimates in speech
enhancement. Comparing CGMM4 with CGMM1 and CGMM4-cons, the
benefits of the modeling both aleatoric and epistemic uncertainties using
the multi-modal posterior distribution is not evident. This may be attributed
to the fact that training a model based on (11) is not guaranteed to explore
the multi-modal modeling capacities of the mixture model. However, this
can be largely mitigated by the proposed pre-training scheme, as indicated
by the higher PESQ scores of CGMM4-pre.

Fig. 2 shows the improvements of PESQ and ESTOI relative to the noisy
mixtures of the synthetic WSJ0-CHiME test set. We observe larger PESQ
improvements for the mixture models especially at high input SNRs. In par-
ticular, CGMM4-pre yields the highest PESQ improvements, indicating that
promoting diverse predictions in the mixture model improves generalization
capacities for speech enhancement. Furthermore, it can be observed that the
models accounting for uncertainty lead to larger ESTOI improvements at
low input SNRs, which again demonstrates the benefits of integrating statis-
tical models into deep speech enhancement as well as modeling uncertainty.

In addition to improving performance, enabling the DNNs to quantify
predictive uncertainty is essential to determine how informative a clean
speech estimate is without knowing ground-truth (which we do not have
access to in practice). Therefore, we evaluate the captured predictive
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indicates a more accurate uncertainty estimation.

uncertainty in CGMM-pre qualitatively and quantitatively. Fig. 3 shows the
spectrograms of an example utterance from the DNS test set. By computing
the absolute difference between the clean reference and estimated spectral
coefficients, we can measure the prediction error (visualized in the first
figure of the second row). It can be observed that both types of uncertainty
are closely related to the estimation error, i.e., the model outputs large
uncertainties when large errors are produced (e.g., the first 4 seconds of the
example utterance). This association is further reflected in Fig. 4, where
we observe that both sparsification plots are monotonically decreasing
and are close to the oracle curve, implying that both types of uncertainties
accurately reflect regions where speech prediction is difficult.

5. CONCLUSION

In this paper, we have proposed a deep speech enhancement framework
to jointly estimate clean speech and quantify predictive uncertainty, based
on the statistical CGMM. By estimating the parameters of the full speech
posterior distribution involving multiple complex Gaussian components,
we can effectively capture both aleatoric and epistemic uncertainties with
a single forward pass, circumventing the need for expensive sampling. In
addition, the potential of the mixture models can be better exploited if we
promote diverse predictions and mitigate the mode collapse problem using
the proposed pre-training scheme. Eventually, evaluation results in terms
of instrumental measures have demonstrated the considerable advantages
of combining powerful statistical models and deep learning compared to di-
rectly predicting a point estimate. Our reliable uncertainty estimates can en-
able interesting future work. For instance, the uncertainty of aleatoric nature
can guide multi-modality fusion [30], while epistemic uncertainty capturing
the model’s ignorance [5] can be used to design a uncertainty-driven training
mechanism to improve, e.g., domain adaptation in speech recognition [31].
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Term Clarification:
In [P4], we refer to spectral masking-based algorithms, which learn a DNN to predict filter masks
from inputs using a labeled dataset, as discriminative approaches. The term discriminative modeling
is primarily associated with classification tasks, although in a broader sense, this concept can also be
applied to regression tasks. In this thesis, we use a unified term, predictive modeling, to encompass
both the regression and classification settings, as discussed in [11].
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ABSTRACT
Recent work has shown the effectiveness of remixing-based unsupervised
domain adaption algorithms, where a student model is fine-tuned on
self-labeled noisy-clean speech data synthesized by remixing speech and
noise predictions from the teacher model. However, the optimization
of the student model may be hindered by learning from fundamentally
erroneous pseudo-targets created by the teacher model. To address this
limitation, we augment the teacher model with an uncertainty estimation
task and propose an uncertainty-based remixing method that allows the
student model to learn from the teacher model’s high-quality speech
estimates and effectively suppress noise. Experiments demonstrate im-
proved robustness against data mismatches between training and testing
conditions, especially for challenging inputs with low signal-to-noise
ratios. Moreover, by adjusting the uncertainty threshold to categorize the
teacher’s estimates for unlabeled noisy samples as reliable or unreliable,
the proposed uncertainty-based remixing process allows for a controllable
trade-off between noise suppression and speech preservation, enabling
the model to be adapted to diverse application needs.

Index Terms— Speech enhancement, deep learning, domain adapta-
tion, uncertainty modeling

1. INTRODUCTION

Speech recorded by microphones is inevitably distorted by ambient noise,
which causes difficulties for digital communication devices to work
reliably in noisy environments. This requires a speech enhancement
system that extracts the target speech from the corresponding noisy
mixture. While traditional methods exhibit limited performance for
challenging acoustic inputs [1], in recent years, the field has seen great
strides through deep learning-based algorithms [2], which can leverage
powerful non-linear modeling capacities of neural networks.

Discriminative supervised learning has emerged as a dominant tech-
nique in speech enhancement, where neural networks are trained to learn
a mapping relationship between noisy mixtures and clean speech using a
labeled training dataset consisting of large amounts of noisy-clean speech
pairs. However, data mismatch between the source domain (in which the
model is trained) and the target domain (to which the model is applied)
may raise generalization issues, that is, the performance of speech
enhancement algorithms may degrade significantly when tested on noisy
samples that do not match the training data. When the domain mismatch
is severe, the performance degradation can be particularly large. While
the performance of algorithms can potentially be improved by fine-tuning
the network model with newly collected paired data in the target domain,
this pairwise data collection process is often cumbersome and may require
careful and costly post-processing after recording. In contrast, collecting
unlabeled noisy mixtures is more feasible, and given enough time, the
quantity of noisy data can be virtually infinitely large. In this work, we
investigate how to alleviate performance degradation caused by domain
mismatch without accessing the target domain’s ground truth (i.e., clean
speech), which is referred to as unsupervised target domain adaptation.

Improving the robustness of algorithms using unlabeled data from
the target domain has been an active research topic in deep learning [3]–
[6]. Existing methods have successfully developed various effective
image [4]–[6] and speech [7]–[9] signal processing models utilizing unla-
beled data, mainly for classification tasks. Recent work has demonstrated
a growing interest in how unlabeled data can be utilized in complex re-
gression tasks, such as in source separation and speech enhancement [10]–
[14]. Sivaraman et al. create a pseudo-paired dataset by mixing noisy
recordings with isolated noise signals and optimize network models with
a loss function designed to down-weight the contribution of noisy ground
truth according to estimated input signal-to-noise ratios (SNRs) [15].
Wisdom et al. [16] propose mixture invariant training (MixIT) for univer-
sal sound separation, which forms the input to the separation model by
summing easy-to-collect acoustic mixtures. The unsupervised training
relies on the independence assumption between sources to perform sound
separation. Other work has also explored similar non-parallel training set-
tings for speech enhancement, e.g., [17], [18]. While training the model
directly with noisy mixtures of the target domain may circumvent perfor-
mance degradation between training and testing, achieving performance
on par with conventional supervised algorithms remains challenging.

A more advantageous and practical setting is to leverage paired data
from the source domain for initial learning, followed by adapting the
model to the target domain through unsupervised methods, allowing
combining benefits of supervised and unsupervised training [10]–[13],
[19], [20]. For example, a teacher-student learning framework has been
applied to unsupervised personalized speech enhancement [10], where a
large teacher model is pre-trained on a labeled dataset and then generates
pseudo-clean targets from unlabeled mixtures in the target domain to
train a specialized compact student model. In contrast, Wang et al. [11]
use the same architecture for both teacher and student models in singing
voice separation. The source estimates of the pre-trained teacher model
are randomly remixed to generate self-labeled mixtures offline to train the
student model. Similar remixing-based teacher-student frameworks have
also been proposed in speech enhancement to leverage unlabeled data to
alleviate generalization issues, e.g., [12], [13]. Tzinis et al. [13] improve
the diversity of artificial mixtures by online remixing teacher’s speech
and noise estimates in a single batch and train the student model similarly
by treating teacher’s estimates as the ground-truth labels. Lam et al. [12]
propose to generate self-labeled mixtures to train the student model by
remixing the teacher’s source estimates at random SNRs. However, when
the teacher model’s estimates are unreliable and erroneous, the student
model is forced to match fundamentally incorrect pseudo-targets, thus
negatively affecting the learning process of the student model.

In this paper, we follow the idea of remixing-based domain adapta-
tion [13] and present an uncertainty-based data augmentation process to
prevent the student model from learning from erroneous pseudo-labels
generated by the teacher model. For this, we incorporate uncertainty
estimation into the teacher model, such that the neural network can
provide not only clean speech estimates but also the associated confi-
dence (or uncertainty) [21], [22]. Uncertainty indicates discrepancies



between predictions and the true data [23] and thus can be used to assess
the quality of the estimates. Specifically, the teacher model pre-trained
on the source-domain data first generates speech and noise estimates
for unlabeled noisy samples in the target domain. In the next step, we
filter out low-quality (unreliable) speech estimates based on uncertainty
estimates and remix only the selected high-quality (reliable) speech
estimates with noise estimates. Our experiments have demonstrated that
the uncertainty-based remixing process exhibits improved robustness
against data mismatch between training and testing conditions. Interest-
ingly, we show that by adjusting the uncertainty threshold to distinguish
between reliable and unreliable estimates, the proposed uncertainty-based
remixing method can achieve different trade-offs between noise reduction
and speech distortion, and thus can be flexibly adapted to application
scenarios with different requirements.

2. SUPERVISED SPEECH ENHANCEMENT

In this work, we consider the speech enhancement problem in the
time-frequency domain and use the short-time Fourier transform (STFT)
to convert time-domain signals into their time-frequency representations.
It is generally assumed that clean speech recorded by a single microphone
is distorted by additive noise, resulting in a speech-plus-noise model:

Xft=Sft+Nft. (1)
Xft, Sft, and Nft are complex spectral coefficients of the noisy mixture,
clean speech, and noise, respectively. The frequency bin and time frame
indices are given by f ∈{1,2,···,F} and t∈{1,2,···,T}, respectively.
Clean speech estimates can be typically obtained by applying a multi-
plication mask, denoted by Wft, to time-frequency representations of
noisy mixtures, followed by the inverse STFT.

Bayesian modeling considers spectral coefficients of speech and
noise as realizations of random variables and provides a series of prin-
cipled methods to derive filter masks. Assuming that speech and noise
are independent and follow a circularly symmetric complex Gaussian
distribution: Sft ∼NC(0,σ

2
S,ft) and Nft ∼NC(0,σ

2
N,ft), we can

obtain the posterior distribution of speech spectral coefficients:

p(Sft|Xft)=
1

πλft
exp

(
−|Sft−WftXft|2

λft

)
, (2)

where WWF
ft =

σ2
s,ft

σ2
s,ft

+σ2
n,ft

is referred to as Wiener filter and λft =

σ2
s,ftσ

2
n,ft

σ2
s,ft

+σ2
n,ft

is the variance of the posterior distribution. While traditional

algorithms can use power spectral density tracking algorithms to estimate
the variances of speech and noise to implement Wiener filtering, more
recent speech enhancement work leverages the non-linear modeling
capabilities of neural networks to estimate multiplicative filter masks,
Wft, directly. This is achieved by training a neural network using a
labeled dataset consisting of large amounts of paired noisy-clean speech
data [2]. The neural network is optimized to learn a mapping relationship
between the noisy mixtures and the corresponding clean speech, referred
to as supervised discriminative approaches.

2.1. Deep Uncertainty Estimation

The performance of supervised discriminative methods is often related
to the diversity and quantity of training data. Since the synthetic training
dataset cannot fully replicate the acoustic conditions of the target domain,
there is an inevitable mismatch between training and testing data. This
data discrepancy often results in performance degradation, especially for
noisy samples with acoustic conditions largely deviated from training
data. As a result, deep discriminative methods that predict a single
filter mask may generate fundamentally erroneous estimates for unseen

samples without any indication of error. To address this issue, we can
quantify predictive uncertainty associated with clean speech estimates,
which allows us to assess the confidence of the outcome without access
to the true data [21], [22], [24].

To augment the network model with an uncertainty estimation task,
we can optimize the parameters of the neural network by minimizing the
negative log-speech posterior:

W̃ft,λ̃ft=argmin
Wft,λft

1

FT

∑

f,t

log(λft)+
|Sft−WftXft|2

λft

︸ ︷︷ ︸
Lp(S|X)

, (3)

where W̃ft and λ̃ft denote estimates of the Wiener filter and the asso-
ciated variance. The variance λft can be interpreted as a measure of
uncertainty associated with the minimum mean squared error (MMSE)
speech estimator [25], [26]. When uncertainty for each time-frequency
bin is assumed to be constant and is not optimized, the negative log-
speech posterior loss Lp(S|X) degenerates into the widely-used mean
squared error (MSE) loss:

LMSE=
1

FT

∑

f,t

|Sft−WftXft|2 (4)

In this work, we investigate the challenging topic of fine-tuning a
pre-trained network model using only the target-domain noisy mixtures.
For this, we follow the remixing-based teacher-student learning [12],
[13], where the teacher model is pre-trained on a source-domain dataset
consisting of parallel noisy-clean speech data. Different from previous
work, here we augment the teacher model to output speech estimates and
associated uncertainty estimates by training the neural network with the
loss (3). This is achieved by splitting the neural network output layer into
two, for the mask Wft and uncertainty λft respectively. More details
on uncertainty estimation in deep speech enhancement can be found
in, e.g., [21], [22]. The student model uses the same architecture as the
teacher model, except that the student model has only one output layer
for filter mask estimation. In the following section, we will present how
the student model can learn from noisy mixtures by performing online
remixing of teacher’s speech and noise estimates [13], and furthermore,
how to incorporate uncertainty estimates from the teacher model to
prevent the student model from learning from erroneous pseudo-targets.

3. UNSUPERVISED DOMAIN ADAPTATION

To exploit unlabeled noisy mixtures in the target domain, we follow
the teacher-student training method proposed in [13]. In this method,
the teacher model is pre-trained on a labeled source-domain dataset
in a conventional supervised manner. To adapt to the unlabeled tar-
get domain, the pre-trained teacher model first generates speech and
noise estimates from a batch of unlabeled noisy mixtures, shown as
Ŝb,N̂b = TeacherModel(Xb), where Xb ∈RB×F×T , Ŝb ∈RB×F×T ,
and N̂b∈RB×F×T denote a batch of noisy mixtures, speech estimates,
and noise estimates respectively. B denotes the batch size. Then, we
randomly permute (RP) the noise estimates and add them to clean speech
estimates to generate a bootstrapped batch of noisy mixtures, shown as
X̂b = Ŝb+RP(N̂b). The new batch of noisy mixtures is finally used
to train the student model: S̃b,Ñb = StudentModel(X̂b). As the boot-
strapped batch of noisy mixtures is self-labeled by the teacher model, the
student model is optimized by treating the teacher’s estimates as ground
truth, that is, the loss function (e.g., MSE (4)), is computed between Ŝb

and S̃b. Moreover, the teacher model can be updated during the training
process using, e.g., an exponential moving average update rule [27], thus
making the teacher-student framework a continuous learning process.
This method is referred to as blind remixing in Section 4.3.



However, due to the data shift between the source and target domains,
the teacher model may perform poorly for unseen inputs with different
noise types and SNRs, etc [28], [29]. Consequently, this can lead the
student to match fundamentally erroneous estimates generated by the
teacher model, which is particularly problematic when the data mismatch
is large. In the extreme case, when the teacher model generates clean
speech estimates with severe noise leakage and the noise estimates
suffer similarly from speech leakage, the student model trained on the
bootstrapped batches can be misled into learning to extract noise and
suppress speech. In this work, we attempt to address this issue by
incorporating uncertainty into the teacher model, where we filter out the
low-quality speech estimates and enable the student model to learn from
high-quality pseudo-targets, as will be detailed next.

3.1. Uncertainty-Based Domain Adaptation

The teacher model is trained using the speech log-posterior loss func-
tion (3). As described in Section 2.1, the neural network can simultane-
ously estimate a multiplicative mask and the associated uncertainty in a
manner grounded in Bayesian modeling. This stands in contrast to heuris-
tic quality metrics, such as voice activity-based [2] and segmental SNR-
based [15] methods, which require an extra neural network to perform
pre-defined auxiliary tasks to approximate the quality assessment of esti-
mates. Uncertainty-based domain adaption can be performed in two steps.

Uncertainty-based data selection step. For each noisy sample in
an unlabeled target-domain dataset, the teacher model can provide an
utterance-level uncertainty value for the entire estimated clean speech
estimate. This is achieved by averaging the associated uncertainty
values across the time-frequency bins of the sample. Due to the additive
modeling assumption, the noise estimate can be obtained by subtracting
the estimated clean speech from the noisy mixture in the time domain.
Consequently, lower uncertainty estimates indicate higher quality in
both speech and noise estimates, whereas higher uncertainty estimates
suggest lower quality. After processing all unlabeled noisy mixtures
from the target-domain dataset using the pre-trained teacher model, the
noisy mixtures can be sorted based on the uncertainty estimates assigned
by the teacher model to the corresponding speech and noise estimates.
Given a sorted array of noisy mixtures, we can categorize the noisy
mixtures with uncertainty estimates less than a predefined threshold
into the high-quality (reliable) group and the rest into the low-quality
(unreliable) group. Correspondingly, the resulting speech and noise
estimates obtained by the teacher model can be expressed as reliable
speech (RS), reliable noise (RN), unreliable speech (US), and unreliable
noise (UN) estimates. The student model trained in blind bootstrapped
remixing [13] may be adversely affected by low-quality remixed noisy
mixtures, such as US-plus-RN and US-plus-UN. As discussed previously,
US-plus-UN may mislead the student model into learning to extract noise
and suppress speech, while similarly, US-plus-RN can cause the student
model to learn to extract noise from noise.

Uncertainty-based data remixing step. The uncertainty-based
remixing strategy aims to prevent the student model from learning from
low-quality speech estimates. This is achieved by filtering out US
estimates and remixing reliable speech estimates with all noise estimates,
giving RS-plus-RN and RS-plus-UN. Clearly, remixing RS with RN
can produce high-quality bootstrapped noisy mixtures. In contrast,
RS-plus-UN may seem to be less optimal. However, the high-uncertainty
speech and noise estimates may occur on noisy samples with challenging
input SNRs, i.e., noise-dominated mixtures. Thus, the UN estimates may
contain substantial noise distortion that may be useful when remixed
with reliable pseudo-clean targets, i.e., RS. Overall, it remains crucial to
incorporate a broad range of noise estimates since more noise estimates
can provide rich acoustic characteristics of the target domain, thereby

Student

Unreliable 

Reliable 

Pretrained 
 Teacher

Permute
UN US

NNoisy mixtures
Bootstrapped  
noisy mixturesRN RS

Fig. 1. Illustration of uncertainty-based remixing process. RN and RS
stand for reliable noise and reliable speech estimates. UN and US repre-
sent unreliable noise and unreliable speech estimates.

improving its noise reduction capabilities.
Given a dataset where the noisy mixtures are sorted according to the

corresponding uncertainty estimates, the uncertainty-based remixing step
can be achieved by two batch samplers with the same batch size, as illus-
trated in Figure 1. We define a threshold to classify noisy mixtures associ-
ated with low-uncertainty estimates into the reliable group, from which the
first batch sampler yields noisy samples. The second batch sampler sam-
ples from the rest of the noisy files, i.e., the unreliable group. The speech
and noise estimates from the first batch sampler are used to produce
a bootstrapped batch of noisy mixtures, i.e., RS-plus-RN, whereas the
speech estimates from the second batch, US, are abandoned, while the cor-
responding noise estimates, UN, are kept. To exploit the noise characteris-
tics contained in UN, we repeat reliable speech estimates in the same step
and remix them with unreliable noise estimates, resulting in RS-plus-UN.
With this, the uncertainty-based remixing strategy aims to learn from high-
quality pseudo-targets generated by the teacher model, while at the same
time learning to discriminate noise characteristics of the target domain.

4. EXPERIMENTS

4.1. Datasets

We use the Deep Noise Suppression (DNS) Challenge database [30]
as the source-domain data and randomly select a subset consisting of
45 hours of noisy mixtures. These noisy mixtures are created with
SNRs uniformly sampled from{-5 dB, -4 dB, ···, 15 dB}. We create a
target-domain dataset whose acoustic conditions differ from the source
domain, including both noise type and the range of SNR. We mix clean
speech from the si tr s subset of the WSJ0 dataset [31] with noise
clips from CHiME3 [32] at SNRs sampled from{-8 dB, -7 dB, ···, 8 dB}.
Instead of uniform sampling, the SNR values of the target-domain data
follow a truncated normal distribution with a mean of -5 dB and a
standard deviation of 5 dB. The amount of target-domain noisy mixtures
is the same as the source domain, i.e., 45 hours. The loudness levels
of synthetic noisy mixtures are re-scaled to range from -35 dBFS to
-15 dBFS. Note that when fine-tuning the student model with the target-
domain data, only the noisy mixtures are accessible. For evaluation of
unsupervised domain adaptation, we create a test set using clean speech
signals from si et 05 subset of the WSJ0 and four types of noise
signals from CHiME3 (cafe, street, pedestrian, and bus) with SNRs
randomly sampled from{-10 dB, -5 dB, 0 dB, 5 dB, 10dB}. Note that
there is no data overlap between training and testing.

4.2. Settings

We convert the time-domain signals into their time-frequency represen-
tations using the STFT with a 32 ms Hann Window and 50 % overlap.
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Fig. 2. Performance evaluated at different input SNRs. Seg. and Uncer. stand for Segmental and Uncertainty. Markers and error bars denote the mean
values and 95%-confidence intervals. For all measures, higher values indicate better performance.

All speech and noise signals are sampled at 16 kHz.
We evaluate the unsupervised domain adaptation using a lightweight

U-Net architecture adapted from [33], [34]. The U-Net architecture
features an encoder and a decoder, each composed of 5 blocks. The
model processes the magnitude spectrogram of dimension (T , F ). The
encoder/decoder blocks consist of 2D convolution/transposed convolution
layers with the kernel size (2, 3) and stride (1, 2), followed by leaky ReLU
activation (α=0.2). The encoder increases the feature channel progres-
sively (8-16-32-64-64) and the decoder decreases it back to 8 (64-32-16-
8-8), followed by a convolution layer of the kernel (1, 3) to output a filter
mask of the same shape as the input. For the teacher model that performs
uncertainty estimation, we add an extra convolution layer with the same
parameters as the mask branch to output the variance estimates. More-
over, the skip connections between the encoder and decoder are achieved
by 1x1 convolutions and addition [34]. The model architecture is imple-
mented using causal convolutions with approximately 88K parameters.
Since the neural network is based on causal operations, no normalization
techniques using global statistics are applied to the noisy inputs.

The teacher model is pre-trained on the source-domain data using
the Adam optimizer with a learning rate of 0.0005 for 150 epochs. Since
optimizing a teacher model with the probabilistic loss (3) may lead to
numerical instabilities, we use the gradient adaption scheme as discussed
in [22]. The model performing best on the validation set is saved. The
student model is initialized with the weights of the pre-trained teacher
model (except the uncertainty estimation layer, as the student model has
only a mask estimation layer focusing only on speech enhancement) and
is fined-tuned using a learning rate of 0.0001 for 60 epochs. The learning
rate is reduced to one-third of its current value every 15 epochs. During
fine-tuning, the teacher model is updated using the exponential moving
average update technique with a momentum value of 0.99 [13]. The two
batch samplers have a batch size of 32, leading to a total batch size of 64.
All adaptation models are trained for the same number of steps per epoch,
independent of the threshold used to classify reliable/unreliable groups.

The proposed uncertainty-based remixing is compared with two
baselines: 1) the supervised teacher model trained exclusively on the
source-domain data, and 2) the domain adaptation framework based
on blind remixing [13]. We evaluate the performance of the methods
using segmental speech SNR, noise reduction, and segmental SNR
improvement as outlined in [1]. They are measures for speech distortion,
noise reduction, and a combined assessment of speech distortion and
noise reduction, respectively.

4.3. Experimental Results

The results of evaluations are presented in Figure 2. For the proposed
uncertainty-based remixing method, we rank the noisy mixtures from

lowest to highest based on uncertainty estimates assigned by the teacher
model to their corresponding speech and noise estimates, as described
in Section 3.1. We then categorize the first 30%, 40%, or 50% of the
noisy mixtures into the reliable group (we omit reporting other possible
thresholds to prevent clutter). We can observe that the uncertainty-based
remixing strategy results in a better trade-off between speech distor-
tion and noise reduction than the blind remixing baseline [13]. The
uncertainty-based remixing method leads to better noise reduction per-
formance at the cost of speech distortion, but also higher segmental SNR
improvement, especially at low input SNRs. Furthermore, increasing the
threshold to incorporate more noisy mixtures into the reliable group (e.g.,
from 30% to 50%) leads to the uncertainty-based remixing preserving
more speech at the expense of noise reduction, as shown by lower noise
reduction scores and higher segmental speech SNR scores. This may be
because incorporating a larger percentage of noisy mixtures can increase
the likelihood of using erroneous speech estimates as pseudo-clean
targets, thus converging to the blind remixing baseline. This observation
is particularly interesting because it allows the methods to be tailored to
different application scenarios and specific noise reduction requirements.

In addition, we also evaluate the performance of the setting where
only RS-plus-RN is adopted during the remixing step. We observe that the
overall improvement over the blind remixing baseline is marginal (thus,
the results are not reported). We hypothesize that while the quality of the
pseudo mixtures is important, the quantity of data also plays an important
role in the unsupervised domain adaptation. This also demonstrates
the benefits of the proposed strategy which reuses a broad spectrum of
noise estimates from the unreliable group. Future work may evaluate the
scheme with larger and more diverse datasets.

5. CONCLUSION

While supervised speech enhancement has demonstrated good perfor-
mance, ensuring robustness to unseen acoustic conditions during testing
remains challenging. In this work, we explored the problem of perfor-
mance degradation in masking-based supervised speech enhancement due
to data mismatch between training and testing. We presented a method
to incorporate uncertainty modeling into remixing-based unsupervised
domain adaptation. By filtering out low-quality pseudo-targets generated
by the teacher model, the student model learns only from high-quality
speech estimates. The uncertainty-based remixing also allows the student
model to effectively learn representative noise characteristics of the target
domain by repeating reliable speech estimates in the same step and
remixing them with low-quality noise estimates, leading to better noise
reduction capability at the cost of speech distortion. In addition, different
trade-offs between noise reduction and speech distortion can be observed
by adjusting the uncertainty threshold.
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Abstract
For several speech-processing tasks, complementary features from
the visual modality may improve model performance. However,
unreliable visual input may provide misleading information, result-
ing in degraded performance that may be even worse than methods
based solely on the audio modality. In this work, we propose an
uncertainty-driven hybrid fusion scheme for audio-visual phoneme
recognition, mitigating the impact of an unreliable visual modal-
ity. More specifically, we incorporate modality-wise uncertainty
into decision-making, enabling the model to adaptively determine
whether to combine multiple modalities and the extent to which
the decision depends on each modality. Experimental results show
that the proposed uncertainty-driven hybrid fusion scheme retains
the benefits of multi-modal approaches when visual inputs are
clean and informative, while at the same time being robust to
visual modality distortions.

1 Introduction
Clean speech recorded by a microphone is often corrupted by
interfering sounds, which causes difficulties for machines to un-
derstand via recognition systems [1]. Phoneme recognition aims
to recognize underlying phonetic patterns from corrupted speech
signals [2]. However, achieving model robustness across differ-
ent acoustic distortions has been challenging. Recent work has
shown that this problem can be alleviated by incorporating other
modalities such as vision, since acoustic noise distortions do not
affect the associated visual data [2, 3]. In analogy to how humans
use lipreading to aid comprehension in heavily distorted acous-
tic environments, audio-visual approaches can take advantage of
articulation features provided by the visual input (e.g., by pro-
cessing speakers’ mouths) to improve recognition performance at
low signal-to-noise ratios (SNRs).

While conventional approaches rely on, e.g., hidden Markov
models [2, 4], recent research trends have mainly adopted deep
neural networks (DNNs) due to their flexibility and powerful
non-linear modeling capacities [5–8]. DNN-based audio-visual
recognition pipelines [5–8] often leverage learned features instead
of hand-crafted features, which allows for end-to-end training and
potentially obtains a task-specific signal transform. Multi-modal
approaches involve a necessary step, i.e., modality fusion, playing
a crucial role in the resulting performance [3]. DNN-based audio-
visual fusion paradigms can be roughly categorized into early
fusion, which combines different modalities at the input space;
intermediate fusion, which occurs at a high dimensional latent rep-
resentation space; late fusion, which combines the modalities at
the decision level after being separately processed [2, 3]. Although
early fusion enables tight integration of different modalities, it
is non-trivial to design a single model capable of processing in-
herently different modalities. Late fusion is a practically easier
alternative and allows for independent uni-modal model design.
In contrast, intermediate fusion flexibly combines discriminative
features extracted from different modalities at an intermediate
level, followed by a post-processing module to further integrate
their correlations, and has been mostly utilized in the existing
systems [3].

While multi-modal methods have demonstrated benefits over
uni-modal methods [3, 6, 8, 9], most audio-visual approaches are
based on the less-than-realistic assumption that video inputs are
consistently clean and informative. Our analysis indicates that
under unreliable visual input (as in the examples provided in Fig-
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Figure 1: Examples of visual distortions with additive Gaussian
noise, blurring, and object occlusion.

ure 1), the recognition performance of the audio-visual approach
is even worse than that of the uni-modal approach. A similar
finding has also been shown in recent work [10]. Therefore, when
the visual modality is too noisy to provide useful information,
the recognition system should adaptively rely more on the audio
modality, so that the multi-modal approach can maintain the same
performance as the audio-only approach. This calls for a model
that provides not only the target prediction but also the associated
confidence (or uncertainty), according to which a decision can be
made on whether to incorporate the corresponding modality.

Predictive uncertainty is typically categorized into data uncer-
tainty, which indicates inherent uncertainty in data (e.g., phoneme
confusion between /m/ and /n/ for audio inputs, and /b/ and /p/ for
visual inputs), and model uncertainty, which describes uncertainty
in the parameters of a DNN [11]. When we consider phoneme
recognition as a classification task, data uncertainty can be com-
puted based on estimated probability scores [12]. In contrast,
model uncertainty estimation is often performed by modeling the
parameters of a DNN stochastically rather than deterministically,
i.e., approximating the posterior distribution of the stochastic net-
work parameters [12]. Among existing approximate Bayesian in-
ference methods, only a few have shown scalability to large DNN
models, such as ensemble-based [13] and variational inference-
based [14, 15] approaches. For example, Gal et al. [14] perform
variational inference and interpret the dropout regularization as
imposing Bernoulli distribution on the DNN weights, referred to
as Monte Carlo (MC) dropout.

In this work, we depart from the assumption that the video
input is consistently clean and reliable; instead, we investigate
how to improve the model’s robustness to simultaneously cor-
rupted video and audio. More specifically, we propose to tackle
this problem by incorporating modality-wise uncertainty to adap-
tively rely more on the audio modality in decision-making when
the visual input is distorted and unreliable. At the same time,
similar to intermediate fusion, we want to retain the better recog-
nition ability of the multi-modal method when the visual input is
clean. For this, we propose an uncertainty-driven hybrid fusion
strategy. To achieve that, we first extend the model based on the
intermediate fusion [8] to a three-branch model, i.e., the model
can perform audio-only, video-only, and audio-visual recognition
simultaneously. We further model the predictive uncertainty of
each recognition branch, based on which we design a simple yet ef-
fective uncertainty-driven hybrid fusion strategy, which leverages
both intermediate fusion and late fusion (thus hybrid fusion). Our
experimental results show that the proposed hybrid fusion strategy
is robust to visual corruption and meanwhile capable of incorpo-
rating the complementary feature from clean and reliable video
to improve phoneme accuracy. Note that, in contrast to previous
works that include visual input corruption during training [10, 16],
our uncertainty-driven hybrid fusion is video corruption-agnostic,
i.e., our video model is only trained on clean video data, which
is expected to generalize widely to different types of video distor-
tions.



2 Audio-Visual Phoneme Recognition
In this work, we focus on DNN-based audio-visual phoneme
recognition, where we formulate the problem as a typical classifi-
cation problem as in [8]. Specifically, the proposed hybrid fusion
scheme is built on top of the widely-used intermediate feature
fusion scheme [6, 8], which consists of two separate models pro-
cessing audio and video, followed by a multi-modal feature fusion
model.

An audio-only phoneme recognition model consists of learn-
able transform and feature processing modules, which extract rele-
vant acoustic features and refine these features into discriminative
phonetic representations. Equivalent to phonemes inferred from
speech sounds, visemes are defined based on the appearance of lips
when articulating phonemes [17]. However, multiple phonemes
can be grouped into a viseme category, that is, the correspondence
between phonemes and visemes is a many-to-one mapping. This
makes visual speech recognition inferring phonemes from visual
data only an inherently difficult task. Nevertheless, recent ad-
vances have shown that carefully-designed deep learning-based
methods, especially in combination with temporal modeling, can
yield promising results [5, 7, 8].

As data from different modalities may be recorded at differ-
ent sampling rates, synchronization is another consideration when
dealing with multiple modalities, i.e., audio and video inputs needs
to be temporally aligned. As in this work phonemes are recog-
nized at a frame level, the frame rate of audio signals depends on
the frame size selected; the video frame rate is equipment-related.
Temporal alignment is also application-oriented. For example, a
recent audio-visual method for speech enhancement has applied
pooling techniques to the audio input to match the temporal reso-
lution of the visual stream in the high-dimensional latent space [9].
In this work, we address this problem by upsampling the video
input to match the frame rate of the audio signal.

With the synchronized representative audio and visual features
in the latent space, the fusion block aims to exploit the correlations
between the audio and visual modalities. To effectively combine
different modalities, various fusion strategies have been proposed,
such as attention-based fusion [18], squeeze-excitation fusion [19],
and addition- and concatenation-based fusion [3]. However, gen-
eralizing a fusion technique across different datasets and tasks
remains challenging and its performance is often architecture-
and task-dependent. Nevertheless, the concatenation-based fusion
strategy is often preferred in multi-modal methods, partially due to
its simplicity of implementation. Furthermore, a recent empirical
comparison of various fusion strategies by Richter et al. [8] has
also revealed its effectiveness in phoneme recognition. Thus, we
concatenate the audio and visual features along the feature channel
as input to the fusion model.

While current DNN-based methods have shown success in the
speech recognition task, the generalization ability to unseen inputs
is not guaranteed, especially when the model is processing out-of-
distribution samples under-represented by training data. There-
fore, it is essential to estimate predictive uncertainty in addition
to the target prediction. This is particularly useful in audio-visual
phoneme recognition because modality-wise uncertainty can help
determine how much confidence we can put into the model’s pre-
diction without having access to ground truth. Moreover, most
existing audio-visual methods are based on the assumption that
the visual input is consistently reliable and informative, which
is less than realistic, as multiple factors can lead to unreliable
visual input, such as object occlusion, data transmission failure,
device issues, and illumination conditions. As we will show in
the experimental evaluation, misleading visual inputs can cause
significant performance decline in the audio-visual models consid-
ered. Therefore, when visual input data are unreliable and provide
misleading information, the system should adaptively rely on the
audio modality only. To achieve this, we propose to make use
of uncertainty modeling, which enables the model to output not
only target predictions but also associated uncertainty estimates.
With this, we aim to improve the model’s robustness to visual
corruption, while retaining the benefits of multi-modal approaches
when the visual input is reliable.

3 Predictive Uncertainty Estimation
Uncertainty estimation in DNN-based methods is a challenging
task, where network models typically involve millions of param-
eters or more [11, 20]. In this work, we estimate the modality-
wise uncertainty for audio and video using MC dropout, due to
its effectiveness and scalability to large DNN models, as shown
in different tasks in previous work, including computer vision
tasks semantic segmentation and depth regression [21], as well as
speech enhancement [22]. MC dropout establishes a connection
between a widely-used regularization technique, dropout [23], and
approximating the posterior distribution of the weights of a neural
network. Gal et al. provided a detailed derivation in [14]. By
activating dropout at testing, we perform multiple stochastic for-
ward passes for each input, simulating the sampling process from
the posterior of the weights of a DNN. Consequently, we can ob-
tain a set of softmax probability scores {pm}Mm=1 for each input
frame, where m indexes M sampling times. We can compute the
entropy of the expected distribution [12, 14, 24] to approximate
total uncertainty, as it takes into account both data uncertainty and
model uncertainty. Hereafter, it will be referred to as predictive
uncertainty:

µc =
1
M

M

∑
m

pm,c and U =−∑
c
µc log(µc), (1)

where pm,c indicates the probability score of the c-th class at the
m-th forward pass. Note that the predictive uncertainty can be
estimated for both uni-modal models (i.e., audio-only and video-
only models), and multi-modal models (i.e., audio-visual model).
Furthermore, this selected measure of uncertainty is bounded in
the sense that a uniform distribution across C classes leads to
the largest uncertainty. Thus, it can be further normalized into
the range of [0,1] for intuitive interpretation. Since there is no
guarantee that the visual input always provides useful information,
here we propose to tackle this problem by leveraging properly
captured modality-wise uncertainty, as will be explained next.

4 Uncertainty-Driven Hybrid Fusion
To integrate uncertainty into the framework, we aim to achieve an
uncertainty-based fusion scheme, which incorporates the visual
modality when it can provide complementary features to the audio
input, and relies more on the audio modality when the visual
input is distorted [10, 25]. This requires estimating uni-modal
uncertainty in the intermediate fusion scheme to quantify the
confidence in each modality. However, most existing algorithms
performing the feature fusion in the latent space do not allow for
uni-modal phoneme recognition, as only the fusion model is tasked
to output probabilities based on the correlations of audio-visual
inputs. Therefore, we first extend the general intermediate fusion
model to a three-branch model, where besides concatenating the
audio-visual features and feeding them into the fusion model,
we also keep the uni-modal classifier that performs uni-modal
phoneme classification. The proposed framework is illustrated in
Figure 2. The new design does not introduce a large computational
overhead compared with the general intermediate fusion model,
as only a fully-connected layer is added for each modality to
output uni-modal probability scores. Eventually, the proposed
three-branch fusion scheme can perform end-to-end training by a
joint loss:

L= βLa +βLv +αLf; s.t. α+β+β = 1, (2)

where La, Lv, and Lf are the cross entropy losses for the audio,
video, and fusion branches, respectively. α and β are hyperpa-
rameters that balance the contribution of each branch. After that,
we can compute predictive uncertainty measures for each branch
prediction as in (1), denoted as Ua, Uv, and Uf respectively. The
video uncertainty Uv here is computed by first grouping the esti-
mated phoneme probability scores into the corresponding viseme
class according to the mapping provided in [8, Table I][26].
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Figure 2: Proposed end-to-end three-branch audio-visual
phoneme recognition system. The method takes as input video
frames and raw speech waveforms. The uncertainty-based hybrid
fusion strategy is performed based on the probability scores of the
audio-visual branch (intermediate fusion) and the two uni-modal
branches (late fusion).

When the video modality is corrupted, the visual branch pre-
diction is expected to be uncertain (and likely inaccurate), which
will be reflected by high uncertainty measures. Consequently,
the uncertainty of the fusion branch may also be raised due to
possible misleading representations of the video. However, visual
corruption may not affect the audio branch, which should play a
more important role in decision-making. Therefore, for the case
of uncertain video input, we design a weighting strategy between
the audio and fusion branches. We discard the video branch in
this case because the video recognition branch is susceptible to
visual distortions and has a much worse performance than the
intermediate fusion branch, as will be shown later. Furthermore,
we do not rely exclusively on the audio branch either, as we still
want to rely more on the fusion branch to leverage the benefits
of multi-modal methods when the video modality is intact and
can provide complementary features. In the case of clean video,
the fusion branch that incorporates multiple modalities may ex-
hibit greater certainty than either uni-modal approach. Thus, the
weighting strategy needs to adaptively assign a large weight to the
fusion branch in this case.

Eventually, we need to determine an uncertainty threshold for
the video modality, Tv, to indicate whether we incorporate visual
information. Since it is still an open question in the uncertainty
modeling literature how to define a threshold to distinguish cer-
tain from uncertain estimates, here we follow [27] and select the
threshold based on the average uncertain value of the validation
dataset. Besides, we require a strategy so that the audio and fusion
branches are weighted according to their uncertainty estimates,

Algorithm 1 Uncertainty-driven hybrid fusion
Input: video uncertainty Uv, video uncertainty threshold Tv,
audio uncertainty Ua, audio score Pa,
fusion uncertainty Uf, intermediate fusion score Pf
if Uv < Tv then

Ph = Pf
else

Wa, Wf = f(Ua, Uf) ▷ Wa +Wf = 1
Ph = Wa ×Pa + Wf ×Pf

end if
return hybrid fusion score Ph

formulated as Wa, Wf = f(Ua, Uf), where Wa and Wf refer to the
weights of the probability scores of the audio and fusion branches
returned by the score calculation function f(∗,∗). While there are
various possible solutions to define the weighting score function,
here we provide a simple strategy, defined as:

Ra = 1−Ua, Rf = 1−Uf

Wa =
Ra

Ra +Rf
, Wf =

Rf

Ra +Rf
.

(3)

The uncertainty-driven hybrid fusion strategy is summarized in
Algorithm 1. By incorporating uncertainty into decision-making,
the method aims to adaptively fuse the multi-modal outputs, im-
proving the model’s robustness to visual distortions.

5 Experimental Setup
5.1 Data
In this work, we use the publicly available dataset NTCD-TIMIT
[28], which is a noisy version of TCD-TIMIT [29], which is, in
turn, an audio-visual version of TIMIT [30]. The speech material
in the corpus is split into approximately 5 hours (17 speakers),
1 hour (8 speakers), 1 hour (9 speakers) for training, validation,
and testing, respectively. The NTCD-TIMIT has been created by
mixing speech utterances with 6 types of acoustic noise: white,
babble, car, living room, street, and cafe, at 6 different SNRs:
{-5, 0, 5, 10, 15, 20} dB. To ensure that the model is tested on
completely unseen acoustic noise, the clean speech test set is
mixed with the noise signals from the QUT corpus [31], at the
same range of SNRs. All audio signals are sampled at 16 kHz. We
consider 38 phoneme classes as in [8, Table I][4].

To test the robustness of the audio-visual model to unreliable
visual input, we simulate the same video corruption as in [10] 1,
including occluding a speaker’s mouth with Naturalistic Occlusion
Generation (NatOcc) patches from [32], blurring video frames,
and introducing additive Gaussian noise. To corrupt the mouth
region of interest, it is necessary to perform face and landmark
detection, where we follow the preprocessing pipeline in [33].
The cropped visual input frames of size 67×67 are converted to
grayscale for computational efficiency. Note that video corrup-
tion only occurs during testing and has not been included in the
training.

5.2 Architecture and hyperparameters
For the architecture, we use the audio-visual backbones in [8] 2.
For the audio model, we use a 1-D convolutional layer followed
by ResNet-18 [34] and two bi-directional gated recurrent unit
(BGRU) layers with dropout layers (dropout rate 0.5) inserted
before and after the first BGRU layer. The video model is based on
three 3-D convolutional layers followed by two BGRU layers used
in [8, 35]. The fusion model consists of two layers of BGRU (512
units) followed by a fully-connected output layer with the output

1https://github.com/joannahong/AV-RelScore
2https://github.com/sp-uhh/av-phoneme
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Figure 3: Phoneme accuracy of the synthetic QUT-TIMIT test set.
The line plot represents the mean with a 95% confidence interval.
Our proposed three-branch multi-modal model is referred to as
“Audio-visual-3” and “IF” indicates the intermediate fusion branch
of “Audio-visual-3”. “Audio-visual, IF” indicates the audio-visual
baseline model using only the intermediate fusion scheme. (clean)
and (corrupted) indicate the clean and corrupted input video. Note
that “Audio-visual (clean), IF” and “Ours: Audio-visual-3 (clean),
IF” are visually overlapping.
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Figure 4: Uncertainty distribution of the video branch in Audio-
visual-3 with clean and corrupted video inputs. The density is
computed based on the time frames in the test set.

dimension C = 38. Each uni-modal classifier in Figure 2 is a fully-
connected layer. Both audio and visual models provide features
of dimension 512 for each frame. Since we perform phoneme
recognition at a frame level, the audio model is designed to obtain
a frame rate of 62.5 Hz (similar to a deterministic transform with
a window size of 64 ms and 75% overlap). The video input is
upsampled to the same frame rate using the FFmpeg tool [36]. We
optimize the DNN using Adam optimizer with an initial learning
rate of 10−3. We set the batch size to 16; the training is early
stopped with a patience of 10 epochs; α is set to 0.9.

6 Results
In this work, we compare the proposed three-branch model, de-
noted as Audio-visual-3, with the baseline audio-visual model
using only the intermediate fusion scheme [8], denoted as Audio-
visual, IF.

We present the phoneme accuracy of the uni-modal and multi-
modal methods as a function of the input audio SNR in Figure 3.
Our results first confirm the benefits of the audio-visual approach
that leverages complementary features compared to the uni-modal
approach. For our proposed three-branch model, the performance
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Figure 5: Phoneme accuracy of the synthetic QUT-TIMIT test set
(we compare the proposed hybrid scheme only with the relevant
approaches in Figure 3). Hybrid indicates the proposed hybrid
fusion strategy. Please refer to the caption of Figure 3 for other
naming conventions.

of the middle fusion branch is reported here for a fair compari-
son with the baseline intermediate fusion scheme. With the cor-
rupted video input, the performance of the video-only model
declines significantly; similar behavior can be observed for both
the baseline audio-visual method (Audio-visual (corrupted), IF)
and the intermediate fusion branch of the proposed three-branch
model (Audio-visual-3 (corrupted), IF). This drop is expected, as
unreliable visual information may mislead the fusion model and
cause performance degradation.

Next, we take the video branch of Audio-visual-3 and ana-
lyze its predictive uncertainty distribution with and without video
corruption, as shown in Figure 4. It can be observed that the
video model provides larger uncertainties for corrupted inputs,
indicating that the model provides reliable uncertainty estimates
for unseen and insufficiently represented input samples. By tak-
ing this estimated predictive uncertainty into account as in Algo-
rithm 1, the performance of our proposed hybrid fusion scheme
(Audio-visual-3 (corrupted), Hybrid) largely outperforms the base-
line (Audio-visual (corrupted), IF) and is very close to that of the
audio-only model when the corrupted video is present, as shown in
Figure 5. This demonstrates that the proposed uncertainty-driven
fusion scheme relies more on the audio modality when the visual
input becomes less instructive. At the same time, we can observe
that it performs comparably to the baseline audio-visual model on
clean video input, indicating that the proposed uncertainty-driven
scheme is capable of incorporating complementary features of the
clean video.

7 Conclusion
In this work, we present an uncertainty-driven hybrid fusion
scheme to alleviate the impact of unreliable video inputs. By con-
sidering modality-wise uncertainty as a reliability indication of the
prediction, we integrate it into decision-making for audio-visual
phoneme recognition. The proposed hybrid fusion strategy has
demonstrated its improved robustness to unseen visual corruption
compared to the baseline audio-visual method that only uses the
intermediate fusion scheme, while retaining the benefits offered by
multi-modal methods when the visual input is informative. Future
work may include exploring more sophisticated architectures and
how to extract useful information from partially distorted videos
to further improve performance on corrupted visual inputs.
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ABSTRACT

Recently, a generative variational autoencoder (VAE) has been pro-
posed for speech enhancement to model speech statistics. However,
this approach only uses clean speech in the training phase, making
the estimation particularly sensitive to noise presence, especially in
low signal-to-noise ratios (SNRs). To increase the robustness of the
VAE, we propose to include noise information in the training phase
by using a noise-aware encoder trained on noisy-clean speech pairs.
We evaluate our approach on real recordings of different noisy envi-
ronments and acoustic conditions using two different noise datasets.
We show that our proposed noise-aware VAE outperforms the standard
VAE in terms of overall distortion without increasing the number of
model parameters. At the same time, we demonstrate that our model
is capable of generalizing to unseen noise conditions better than a
supervised feedforward deep neural network (DNN). Furthermore, we
demonstrate the robustness of the model performance to a reduction of
the noisy-clean speech training data size.

Index Terms— speech enhancement, generative model, varia-
tional autoencoder, semi-supervised learning.

1. INTRODUCTION

Speech enhancement refers to the problem of extracting a target speech
signal from a noisy mixture in order to enhance the quality and intelli-
gibility of the speech. This task is of particular interest for applications
like speech recognition and hearing aids. Single-channel speech en-
hancement is a challenging task, especially at low signal-to-noise ratios
(SNRs).

Speech enhancement typically requires the statistical estimation
of the noise and speech power spectral densities (PSDs) [1, 2]. Non-
negative matrix factorization (NMF) is a popular choice for PSD
estimation [3–6]. However, underlying linearity assumptions limit
the performance when modeling complex high-dimensional data. In
contrast, speech enhancement based on non-linear deep neural networks
(DNNs) has shown better modeling capacity. Common approaches
focus on inferring a time-frequency mask in a supervised manner [7].
However, to generalize to unseen noise conditions, DNNs require a
large number of pairs of noisy and clean speech in various acoustic
conditions [8].

Recently, there has been an increasing interest in generative models,
such as generative adversarial networks (GANs) [9] and variational
autoencoders (VAEs) [10, 11]. The generative VAE is a probabilistic
model widely used for learning latent representations of a probabilistic
distribution. The VAE features a similar architecture as a classical
autoencoder with an encoder and a decoder, but its latent space dif-
fers by being regularized to follow a standard Gaussian distribution.

Moreover, the VAE has been extended to deep conditional generative
models for effectively performing probabilistic inference [12,13]. VAEs
have been applied to speech enhancement in both single-channel and
multi-channel scenarios [14–16]. They have been used to model the
speech statistics by training on clean speech spectra only. However,
because no noise information is involved in its training phase, the
encoder of the standard VAE is sensitive to noise. In low SNRs, this
noise-sensitivity results in the erroneous estimation of latent variables
and thus in inappropriately generated speech coefficients and a reduced
performance.

In this work, inspired by conditional VAEs and its application
to image segmentation [12, 13, 17], to increase noise robustness, we
propose to replace the encoder of the VAE by a noise-aware encoder.
To learn this encoder, the VAE is first trained on clean speech spectra
only, and then, given noisy speech, the proposed noise-aware encoder
is trained in a supervised fashion to make its latent space as close
as possible to that of the first speech-only trained encoder. For our
analyses we rely on the VAE-NMF speech enhancement framework
[14, 15], which uses NMF to model the noise PSD. We show that the
proposed encoder is more robust to noise presence and improves speech
estimation without increasing the number of model parameters. The
method also shows robustness to unseen noise conditions by evaluating
on real recordings from different noise datasets. Finally, we illustrate
that already a small amount of noisy-clean speech data can lead to
improvements in overall distortion.

In section 2, we introduce problem settings and notations, as well
as the framework of the VAE-based speech model and the noise model
developed on the NMF. In section 3, we introduce details about the
proposed noise-aware VAE. After showing the experiment settings in
section 4, we present experimental evaluation results and conclusions
in section 5 and section 6.

2. PROBLEM FORMULATION

2.1. Mixture model

In our work, we employ an additive signal model, where a noisy mixture
is seen as a superposition of clean speech and additive noise. In the
short-time Fourier transform (STFT) domain, it shows as

xft = sft + nft, (1)

where xft, sft, and nft represent each time-frequency coefficient
in spectra of noisy mixture X ∈ CF×T , speech S ∈ CF×T , and
noise N ∈ CF×T respectively. F denotes the number of frequency
bins, T represents the number of time frames, which are indexed by
f and t, respectively. The speech and noise spectra are assumed to
be mutually independent complex Gaussian distributions with zero-
mean, i.e., sft ∼ NC(0, σ

2
s,ft), nft ∼ NC(0, σ

2
n,ft) where σ2

s,ft,



σ2
n,ft represent the variances of speech and noise. The PSD of signals

is characterized by the parameter variance under the local stationary
assumption [18].

Furthermore, to provide an increased robustness to the loudness of
the audio utterances, a time-dependent and frequency-independent gain
gt is introduced [15]. Eventually, this modifies the additive mixture
model in (1) to

xft =
√
gtsft + nft. (2)

Given the observed noisy mixture which follows a complex Gaussian
distribution as xft ∼ NC(0, gtσ

2
s,ft + σ2

n,ft), the desired speech can
be extracted by separately modeling the speech and noise variances.

2.2. Speech model

For the VAE-based speech model, a frame-wise D-dimensional latent
variable zt ∈ RD is defined, and an F -dimensional speech frame st
is assumed to be sampled from the conditional likelihood distribution
pθ(st|zt). This is achieved by the decoder of VAE, also called the
generative model. The variable θ here indicates the parameters of the
decoder network. σ̂2

s : RD → RF+ denotes the nonlinear function from
the latent space to the reconstructed signal given by the generative
model of the VAE.

The VAE provides a principled method to jointly learn latent vari-
ables and the inference model [10]. Following a Bayesian framework,
this requires to approximate the intractable true posterior distribu-
tion p(zt|st). In the VAE, the encoder, also called the inference
model, is used to approximate the true posterior, denoted as qφ(zt|st).
The variable φ here indicates the parameters of the encoder network.
µ̂d : RF+ → RD , σ̂2

d : RF+ → RD+ indicate the nonlinear mapping of
the neural network given by the inference model of the VAE. Under
stochastic gradient descent, the generative model’s parameters θ and the
inference model’s parameters φ are jointly optimized by maximizing
variational lower bound, given by

log p(S) ≥−
∑

t

KL[qφ(zt|st)||p(zt))]

+
∑

t

Eqφ(zt|st)[log pθ(st|zt)].
(3)

The quantity p(zt) represents the prior distribution of the D-dimen-
sional variable zt, and KL indicates Kullback-Leibler divergence.
The prior of the latent variables is defined as a zero-mean isotropic
multivariate Gaussian zt ∼ N (0, I) as in [10]. The first term in the
objective function (3) refers to the regularization error in the latent
space to ensure meaningful latent variables, and the second term is the
reconstruction error.

As shown in Fig. 1, the VAE is trained on the periodograms of
clean speech |st|2 [14, 15]. During testing, the estimates of the clean
speech power spectra σ̂2

s(zt) are expected to be generated from latent
variables learnt from the noisy periodograms |xt|2 ∈ RF+. Note that a
robust estimation of latent variables that represents the clean speech
statistics plays a crucial role in the generative process.

2.3. Noise model

NMF tries to find an optimal approximation to an input matrix by a
dictionary matrix containing basis functions weighted by a coefficients
matrix [3]. Here NMF is used to model the noise variance [14, 15].
The variance of noise σ2

n is approximated by a multiplication of the
dictionary matrix W ∈ RF×K+ and the coefficients matrix H ∈

Fig. 1. The generative model and inference model of the adopted VAE.
The dashed line here indicates the sampling process.

RK×T+ , computed as

σ2
n =WH =

∑

ft

∑

k

wfkhkt, (4)

where K indicates the rank of the noise model indexed by k. wfk and
hkt are elements from W and H respectively at the corresponding row
and column indexed by f , k, and t.

2.4. Clean speech inference

By modeling speech and noise with VAE and NMF respectively, the
distribution of the noisy mixture can be represented as

xft ∼ NC(0, gtσ̂
2
s,f (zt) +

∑

k

wfkhkt), (5)

where σ̂2
s,f : RD → R+ denotes the nonlinear function σ̂2

s for f -
th frequency bin. Given the noisy mixture as an observation, the
Monte Carlo expectation-maximization (MCEM) algorithm is utilized
to estimate the NMF parameters and the gain factor [15, 19]. The
sampling strategy is based on the Metropolis-Hastings algorithm [20].
The clean speech can be extracted from a noisy mixture in the time-
frequency domain by constructing a Wiener filter denoted by m̂ft,
given as

m̂ft =
σ̂2
s,f (zt)

gtσ̂2
s,f (zt) +

∑
k wfkhkt

. (6)

Although modeling speech with a VAE can be achieved by training
solely on clean speech data, using it for speech enhancement is another
matter since gaining robustness to noise is difficult without including
noise samples in the training data and the model. However, the standard
VAE does not allow for including noise at the training phase.

3. NOISE-AWARE VAE

Instead of using the encoder trained on the clean speech signals, we
propose a noise-aware VAE that can improve the robustness of the
encoder against noise presence. For a generative process, it is difficult or
even impossible to derive the optimal mapping between latent variables
and targets. However, we argue that it might be relevant to make latent
variables estimated from noisy mixtures as close as possible to the ones
inferred from the corresponding clean speech.

To obtain the noise-aware VAE based on this assumption, we pro-
pose a two-step learning algorithm, which learns a non-linear mapping
from the noisy signals to latent variables that represent the clean speech
statistics. We first train a VAE using Equation (3) to learn a regularized



(a) (b)

Fig. 2. The proposed architecture for minimizing divergence between
latent variables. The constraint in the latent space is shown in (a), and
its graphic explanation given in (b).

latent space over the clean speech signals. The noise-aware encoder
is then proposed to approximate the probability qγ(z′t|xt) to output
D-dimensional latent variables z′t ∈ RD conditioned on the noisy mix-
ture xt. It is also assumed that the conditional probability qγ(z′t|xt)
follows a standard Gaussian distribution. The variable γ indicates the
parameters of the new encoder. Finally, the distance of z′t obtained from
noisy speech to the latent variables zt inferred form the corresponding
clean speech is minimized based on the Kullback–Leibler divergence
as shown in Fig. 2 (a), given by

L(γ) =
∑

t

KL(qφ(zt|st)||q′γ(z′t|xt)) (7)

=
∑

t,d

{ 1

2
log

σ̃2
d(|xt|2)
σ̂2
d(|st|2)

− 1

2

+
σ̂2
d(|st|2) + (µ̂d(|st|2)− µ̃d(|xt|2))2

2σ̃2
d(|xt|2)

} (8)

where µ̃d : RF+ → RD and σ̃2
d : RF+ → RD+ represents the nonlinear

mapping of the neural networks for the mean and variance of the
posterior Gaussian distribution for the variable z′t. The parameters
of the new inference model γ are optimized by minimizing the cost
function using stochastic gradient descent algorithms. In this way, we
combine unsupervised learning of the speech characteristics by the
VAE and supervised learning using the pairs of noisy-clean speech
signals.

Eventually, as graphically shown in Fig. 2 (b), by introducing
this cost function in the latent space, the latent variables z′t estimated
from the noisy mixture xt is pulled towards zt estimated from the
corresponding clean speech st. The dashed lines here indicate the
nonlinear mapping from the signal space to the latent space, and
different colors indicate two mapping pairs. At the inference stage, the
noise-aware inference model is used to replace the standard speech-
based encoder. The decoder of the VAE remains unchanged.

4. EXPERIMENTAL SETTINGS

4.1. Datasets

We evaluate the performance of the proposed model by using signals
from the speech dataset Wall Street Journal (WSJ0) [21], and the noise
databases QUT-NOISE [22] and DEMAND [23]. QUT-NOISE is used
in constructing datasets of both training and evaluation using 4 noise
types ”cafe”, ”car”, ”home”, and ”street” recorded in unique locations.
DEMAND is introduced as another evaluation dataset corresponding to
completely unseen noise conditions in the training set, and the noise
signals are randomly sampled from recordings of 12 noise types in the
categories ”domestic”, ”public”, ”street”, and ”transportation”.

To train the noise-aware encoder, around 25 hours of speech sam-
ples are chosen from WSJ0 and mixed with the sampled noise signals
at a SNR randomly chosen from the range of -5 dB to 5 dB with a gap
of 1 dB. Two speaker-independent evaluation datasets each containing
around 2.3 hours of 1000 noisy samples are created by mixing the
speech and noise signals at SNRs of -10 dB, -5 dB, 0 dB, 5 dB, and 10
dB.

4.2. Baselines

We show evaluation results by comparing the proposed noise-aware
VAE to the standard VAE, and a fully-connected DNN model. The
DNN model outputs a Wiener filter based on a mean square error cost
function [24], referred to as DNN-WF. The standard VAE is trained on
the same amount of the clean speech signals that are not mixed with
the noise signals, while the supervised DNN-WF is trained on the same
dataset as the noise-aware encoder.

4.3. Hyperparameters

All signals are sampled at 16 kHz. The signal is transformed into
the STFT domain with a sine window of length 1024 (F = 513)
and a 25% hop size. Global normalization to zero mean and unit
standard deviation is employed for training the noise-aware encoder,
since Kullback–Leibler divergence is scale-dependent. The rank of
NMF is chosen to be K = 8 when modeling noise, and its composing
matrices W and H are randomly initialized. The parameters of MCEM
algorithm follow the setting in [15].

The VAE is comprised of an encoder and a decoder both with
two feedforward hidden layers of 128 units. The hyperbolic tangent
activation function is applied to all hidden layers, except the output
layer. The dimension of the latent space L is fixed at 16. The noise-
aware encoder has the same structure as the speech-based encoder of the
standard VAE. The fully supervised DNN-WF contains 5 hidden layers,
each with 128 units, and its architecture is built to contain a similar
number of parameters as our VAE model. No temporal information is
considered in DNN-WF, which is consistent with the non-sequential
characteristic of the VAE. We apply the ReLU activation function to
all hidden layers, and the sigmoid function is put on the output layer
to ensure the estimate of the Wiener filter mask lies in the range [0, 1].
The parameters θ and φ of the VAE are optimized by Adam [25] with a
learning rate of 1e-3, and the parameters γ of the noise-aware encoder
with a learning rate of 1e-4.

4.4. Evaluation metrics

To show the enhancement performance, we employ scale-invariant
signal-to-distortion ratio (SI-SDR) in decibel (dB) [26] to measure the
overall distortion, which takes both noise reduction and artifacts into
account.



SNR Average -10 dB -5 dB 0 dB 5 dB 10 dB
Unprocessed -0.04 ± 0.44 -10.02 ± 0.03 -5.03 ± 0.01 -0.03 ± 0.01 4.95 ± 0.01 9.90 ± 0.02

DNN-WF 6.92 ± 0.42 -1.96 ± 0.66 3.43 ± 0.53 7.25 ± 0.42 11.58 ± 0.38 14.25 ± 0.34
VAE 6.72 ± 0.43 -1.92 ± 0.75 2.99 ± 0.59 6.89 ± 0.49 11.43 ± 0.42 14.14 ± 0.37

proposed NA-VAE 7.29 ± 0.43 -1.00 ± 0.78 3.64 ± 0.59 7.30 ± 0.50 11.85 ± 0.42 14.57 ± 0.39

Table 1. Performance comparison in SI-SDR on 5 different SNR conditions trained and evaluated on different subsets of the QUT-NOISE dataset
(4 noise types). Values of SI-SDR are given in mean ± confidence interval (95% confidence) over all utterances of the evaluation dataset with unit
dB. NA-VAE refers to the proposed noise-aware VAE.

SNR Average -10 dB -5 dB 0 dB 5 dB 10 dB
Unprocessed -0.04 ± 0.44 -10.01 ± 0.01 -5.02 ± 0.01 -0.03 ± 0.01 4.95 ± 0.01 9.90 ± 0.02

DNN-WF 2.93 ± 0.45 -7.38 ± 0.38 -1.65 ± 0.26 3.25 ± 0.24 8.07 ± 0.22 12.34 ± 0.21
VAE 11.44 ± 0.54 2.74 ± 1.20 7.90 ± 1.07 12.27 ± 0.90 15.27 ± 0.72 19.02 ± 0.68

proposed NA-VAE 11.88 ± 0.52 3.45 ± 1.10 8.60 ± 1.03 12.70 ± 0.89 15.63 ± 0.71 19.06 ± 0.67

Table 2. Performance comparison in SI-SDR on 5 different SNR conditions trained on the QUT-NOISE dataset and evaluated on the DEMAND
dataset (12 noise types, completely unseen noise conditions). Values of SI-SDR are given in mean ± confidence interval (95% confidence) over all
utterances of the evaluation dataset with unit dB.
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Fig. 3. Influence of the amount of noisy-clean speech training data on
SI-SDR improvements for both VAE models, averaged over all noise
conditions.

5. RESULTS AND DISCUSSIONS

5.1. Performance evaluation

As can be seen from the results in Table 1 which presents results trained
and evaluated on different subsets of QUT-NOISE, the proposed noise-
aware VAE outperforms the standard VAE in terms of overall distortion
in all SNR scenarios, and the SI-SDR improvements are more evident
at low SNR conditions. For example, the noise-aware VAE outperforms
the baseline VAE by nearly 1 dB at an input SNR of -10 dB. Table 1
also shows that the DNN-WF performs better than the plain VAE,
which implies that appropriate prior noise information is beneficial.
In Table 2, which shows the evaluation performed on the DEMAND
database while training is still conducted on QUT-NOISE, we see that
the fully connected DNN-WF performs significantly worse than the
other models. This was expected as we now test on a different more
diverse dataset with 12 noise types instead of only 4. The supervised
DNN-WF can not transfer the denoising capability to unseen noise
types implying that inappropriate prior noise information may even
deteriorate performance [8, 14]. However, the proposed noise-aware
VAE can still outperform VAE in all SNR conditions, which suggests
that the proposed method of improving latent variables in the latent
space under this configuration is more capable of generalizing to

unseen noise scenarios. Informal listening confirms the SI-SDR results
especially for Table 1, while the improvements reported in Table 2 are
relatively subtle. Audio examples are available online 1.

5.2. Analysis of the amount of training data

We then look at the influence of the amount of noisy-clean speech
training data for estimating the speech latent variable. To achieve
this, we initialize the noise-aware encoder with the encoder parameters
of the pre-trained standard VAE and then train the new encoder by
randomly selecting 1%, 3%, 5%, 10%, 25%, 50% of the noisy-clean
speech pairs constructed with the QUT-NOISE dataset. In Fig. 3, it is
shown that the performance can already be improved by using only a
small percentage of the paired noisy-clean speech data. A value of more
than 0.2 dB SI-SDR improvement can be observed with just 1% of the
total paired data. It can also be observed that increasing the number
of data in the later stage leads to gradual improvements, which may
be due to the noise diversity already being largely represented in the
small fraction of data used. The research can be extended by increasing
the diversity of the noise types in the training phase. This ability of
improving performance with only few labeled data shows potential in
alleviating overfitting issues in supervised training strategies.

6. CONCLUSION

In this paper, we proposed a noise-aware encoding scheme to improve
the robustness of the VAE encoder particularly in low SNRs. For this
we incorporate noise information into the VAE encoder to enable a
more accurate speech variance estimation based on improved latent
variables. By constraining the latent space, the VAE with the proposed
noise-aware encoder can learn a non-linear mapping from the noisy
mixture to latent variables that represent the clean speech statistics. Our
proposed VAE outperforms the standard VAE and a supervised DNN-
based filter in SI-SDR. Experiments also showed the generalization
ability to unseen noise scenarios by evaluating across different datasets.
Moreover, we showed that we could improve the performance even
with a small amount of noisy-clean speech data. For future work, our
approach could also be integrated with deep generative models that
combine temporal dependencies [27].

1https://uhh.de/inf-sp-navae2021
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Abstract
We consider the problem of simultaneous reduction of ego-
noise, i.e., the noise produced by a robot, and environmental
noise. Both noise types may occur simultaneously for humanoid
interactive robots. Dictionary- and template-based approaches
have been proposed for ego-noise reduction. However, most of
them lack adaptability to unseen noise types and thus exhibit
limited performance in real-world scenarios with environmental
noise. Recently, a variational autoencoder (VAE)-based speech
model combined with a fully-adaptive dictionary-based noise
model, i.e., non-negative matrix factorization (NMF), has been
proposed for environmental noise reduction, showing decent
adaptability to unseen noise data. In this paper, we propose to
extend this framework with a partially-adaptive dictionary-based
noise model, which partly adapts to unseen environmental noise
while keeping the part pre-trained on ego-noise unchanged. With
appropriate sizes, we demonstrate that the partially-adaptive
approach outperforms the approaches based on the fully-adaptive
and completely-fixed dictionaries, respectively.

1 Introduction
Interactive robots have attracted a great deal of attention in the
last decades. Intelligent interaction between humans and robots
relies on robust verbal communication. However, the speech
dialogue system of robots is not only affected by environmental
noise, but also severely disturbed by ego-noise, which refers to
the self-created noise mainly generated by electrical and mechan-
ical elements of robots [1].

Ego-noise reduction is a challenging task [2]. The robots’
microphones are placed close to the motors, which is mainly
the case for small sized robots, resulting in challenging low
signal-to-noise ratios (SNRs). Ego-noise is highly nonstation-
ary due to irregular movements of the robot at different speeds,
which may degrade the performance of traditional noise tracking
algorithms that work independently in each time-frequency bin
[3]. However, the spectral structure of ego-noise gives rise to
many template- and dictionary-based algorithms [4–8].

Conventional template-based methods estimate ego-noise by
selecting pre-learned templates based on command data [9] or
motor data [7], but require synchronization of physical state data
with audio data. Alternatively, dictionary-based algorithms aim
at approximating ego-noise by combining pre-learned feature
elements stored in the dictionary. Non-negative matrix factor-
ization (NMF) is a widely used dictionary learning approach
[10–12], and it has been shown to be effective in suppressing ego-
noise [4, 5]. Incorporating multimodal information, e.g., motor
data, into the dictionary-based methods has also been proposed
[6, 13]. However, since most dictionary- and template-based
algorithms do not consider environmental noise, a fixed template
or dictionary trained on ego-noise only can cause noise-mismatch
problems in real-world scenarios. To introduce adaptation flex-
ibility, Ince et al. combined a template-based ego-noise estima-
tion algorithm with an independent background noise estimation

method [8]. Yet, as their approach only takes stationary noise into
account, it results in limited performance in realistic scenarios.

Recently, there has been great interest in deep generative
models, such as generative adversarial networks (GANs) [14]
and variational autoencoders (VAEs) [15]. In speech enhance-
ment, VAEs have been used to learn a prior distribution of clean
speech and have been combined with an untrained NMF noise
model to estimate the signal variances using a Monte Carlo ex-
pectation maximization (MCEM) algorithm [16–20]. However,
this approach assumes only one type of noise, i.e., environmental
noise, during inference. As no prior noise information is con-
sidered in the model or data, gaining robustness against noise
in such a framework remains a challenge [21].

In this work, to overcome the noise mismatch problem and
improve noise robustness, we extend the VAE-NMF framework
with a partially-adaptive noise dictionary to jointly reduce ego-
noise and environmental noise for robots. More specifically, the
noise dictionary is split into non-adaptive and adaptive parts,
where the non-adaptive part is trained on ego-noise only and
fixed during inference, while the untrained adaptive part is used
to fit unseen noise, such as environmental noise. We illustrate the
benefits of including prior noise information for ego-noise and
retaining adaptation flexibility for environmental noise. We show
that, with appropriate sizes, the partially-adaptive dictionary ap-
proach improves enhancement performance in comparison to
the approaches based on the completely-fixed and fully-adaptive
noise dictionaries, respectively.

In Section 2, we present the background related to signal
modeling and parameter optimization. The proposed partially-
adaptive approach is introduced in Section 3, followed by exper-
imental setup in Section 4, results in Section 5, and conclusions
in Section 6.

2 Background
2.1 Mixture Model
In the time-frequency domain using the short time Fourier trans-
form (STFT), the mixture signal xft ∈C is the sum of clean
speech sft ∈C and noise bft ∈C as:

xft =
√
gtsft+bft, (1)

at the time frame t ∈ [1,2, · · · ,T ] and the frequency bin f ∈
[1,2, · · · ,F ], where T denotes the number of time frames and F
the number of frequency bins of the utterance. A time-dependent
and frequency-independent gain gt ∈R+ is applied to improve
the robustness to the time-varying loudness of different speech
sounds [16].

Assuming that all signals are Gaussian variables and uncor-
related, the noisy mixture follows:

xft ∼NC(0, gtν2
s,ft+ν

2
b,ft), (2)

where gtν2
s,ft, ν

2
b,ft represent the variance of speech and noise,

and NC denotes complex Gaussian distribution. The clean



speech sft can be estimated by Wiener filtering, which is opti-
mal in the minimum mean square error sense [22]. The Wiener
filter can be constructed by:

m̂ft =
gtν̂

2
s,ft

gtν̂2
s,ft+ ν̂

2
b,ft

, (3)

where gtν̂2
s,ft, ν̂

2
b,ft represent the estimated variance of speech

and noise. Under the local stationarity assumption, the power
spectral density of the signal is characterized by the variance [23].

2.2 Noise Model
NMF factorizes a non-negative input matrix into a dictionary ma-
trix and a coefficient matrix; it is widely used to approximate the
noise variances [16, 24, 25]. When only the ego-noise eft ∈C
is present, i.e., bft = eft, the product of the dictionary matrix
W ∈RF×L+ and the coefficient matrixH ∈RL×T+ approximates
the ego-noise variance, given as:

ν̂2
e,ft =

(
WH

)
ft
=∑

l

wflhlt, (4)

where L denotes the dictionary size of the ego-noise model, in-
dexed by l [5, 6]. Since ego-noise is characterized by structured
patterns in the time-frequency domain, it is advantageous to
pre-train and preserve the dictionary matrix [4–6]. When only
the environmental noise nft ∈C is present, i.e., bft = nft, the
environmental noise variance is defined similarly as:

ν̂2
n,ft = (WH)ft =∑

k

wfkhkt, (5)

whereK denotes the dictionary size of the environmental noise
model, indexed by k [16].

2.3 Speech Model
In dictionary-based ego-noise reduction approaches, it is com-
mon to model the speech variances using NMFs, e.g., in [4, 5].
Recently, it has been proposed to model speech using a pre-
trained VAE, exhibiting better performance than the NMF-based
speech model [16].

The VAE provides a scheme that can jointly train generative
(decoder) and inference (encoder) models, allowing to infer a la-
tent variable zt ∈RD from noisy observationxt ∈RF and gener-
ate clean speech from the latent variable zt. Specifically, the VAE
is trained on the periodograms of clean speech |st|2 [16, 17]. At
test time, the clean speech power spectra σ̂2

s(zt) are generated
from latent variables zt inferred from the observed noisy peri-
odograms |xt|2 ∈RF+. Here, σ̂2

s : RD→RF+ denotes the non-
linear mapping from the latent space to the reconstructed speech
achieved by the generative model. Although VAE-based speech
models have been widely used for environmental noise reduction,
they have not been employed in the task of ego-noise reduction.

2.4 Parameter Optimization
In the conventional dictionary-based ego-noise reduction frame-
work [4, 5], where speech and noise are all modeled by NMFs,
the dictionary matrix W is pre-trained on ego-noise only. At
test time, the noise activation matrixH and the speech parame-
ters, i.e., the speech dictionary matrix and the speech coefficient
matrix, are estimated from the noisy observation using, e.g.,
multiplicative update rules [24].

Recently, it has been proposed to combine a VAE-based
speech model with an untrained NMF-based noise model for en-
vironmental noise reduction [16]. The speech model parameters,
i.e., the parameters of the VAE model, are obtained by training
the neural network on clean speech data, while the noise model
parameters, i.e., the noise activation matrixH and the noise coef-
ficients matrixW , are estimated based on the input noisy obser-
vation. Since it is intractable to directly compute the maximum
likelihood of the model with latent variables zt and unknown
noise parameters, the MCEM algorithm has been alternatively
proposed to solve the parameter estimation problem [16, 26, 27].

The conventional ego-noise reduction algorithms based on a
completely fixed dictionary may lack the adaptability to unseen
noise data, resulting in limited performance in realistic scenarios.
The VAE-NMF framework considers only environmental noise.
It maintains the flexibility of adaptation, but includes no prior
noise information in the model. Therefore, its enhancement
performance may be lower than that of algorithms with prior
noise information due to noise-sensitivity issues.

3 Proposed Approach
As in many realistic scenarios ego-noise and environmental noise
are simultaneously present, we propose to extend the VAE-NMF
framework with a partially-adaptive dictionary. The non-adaptive
pre-trained part allows for an efficient modeling of ego-noise,
while the adaptive untrained part maintains the ability to adapt
to unseen environmental noise.

3.1 Mixture Model
Assuming a more realistic scenario where robotic ego-noise eft
and environmental noise nft are simultaneously present, the
noise signal bft consists of the superposition of eft and nft, as:

bft = eft+nft. (6)

We propose to use NMFs to model these noise signals separately.
Given the VAE speech model and two NMF noise models, under
the assumption of uncorrelated Gaussian variables, the noisy
mixture can be described by:

xft ∼NC(0, gtσ̂2
s,f(zt)+∑

k

wfkhkt+∑
l

wflhlt), (7)

where σ̂2
s,f : RD→R+ denotes the nonlinear function σ̂2

s for
the f-th frequency bin. The Wiener filter can be constructed by:

m̂ft =
gtσ̂

2
s,f(zt)

gtσ̂2
s,f(zt)+∑kwfkhkt+∑lwflhlt

. (8)

To find the maximum likelihood solution for the model with the
latent variable zt and the unknown parameters ζ = {wfk, hkt,
wfl, hlt, gt}, we adapt the MCEM algorithm by Leglaive et al.
[16] to the proposed partially-adaptive dictionary approach.

3.2 Parameter Optimization
We describe the E-step and M-step of the MCEM algorithm
related to the proposed partially-adaptive dictionary approach.

3.2.1 E-step

In the E-step, we compute the expectation of the complete data
log-likelihood. As in Leglaive et al. [16], the intractable pos-
terior distribution is approximated by the Metropolis-Hastings



algorithm. The integral of the expectation is approximated by
the average ofR samples, indexed by r, as:

Q(ζ,ζ]) =Ep(Z|X,ζ])[ln(p(X,Z|ζ))]

'− 1
R∑

r

(
∑
f,t

(
ln

(
gtσ̂

2
s,f(z

(r)
t )+∑

k

wfkhkt+∑
l

wflhlt

)

+
|xft|2

gtσ̂2
s,f(z

(r)
t )+∑kwfkhkt+∑lwflhlt

)
+TF ln(π)

)
,

(9)

where the last constant term can be ignored and ζ] denotes an
initialization of the parameters.

3.2.2 M-step

In the M-step, we optimizeQ(ζ,ζ]) with respect to the model
parameters ζ= {wfk, hkt, wfl, hlt, gt}. Maximum likelihood
estimation of the dictionary matrix and the coefficient matrix
from input observation is equivalent to NMF optimization using
the Itakura-Saito (IS) divergence [25]. Thus, we may use the
maximization-minimization (MM) algorithm introduced in [24]
to estimate the unknown model parameters. We provide for a
similar derivation as in [16, 24] in a supporting document for
the sake of completeness 1. The update rules of hkt, hlt, wfk
and gt are given as:

hkt = hkt ·




∑f wfk · |xft|2 ·∑r
(
V

(r)
x,ft

)−2

∑f wfk ·∑r
(
V

(r)
x,ft

)−1




1
2

, (10)

hlt = hlt ·




∑f wfl · |xft|2 ·∑r
(
V

(r)
x,ft

)−2

∑f wfl ·∑r
(
V

(r)
x,ft

)−1




1
2

, (11)

wfk =wfk ·




∑t |xft|2 ·∑r
(
V

(r)
x,ft

)−2
·hkt

∑thkt ·∑r
(
V

(r)
x,ft

)−1




1
2

, (12)

gt = gt ·




∑f |xft|2 ·∑rV (r)
s,ft ·

(
V

(r)
x,ft

)−2

∑f ∑rV
(r)
s,ft ·

(
V

(r)
x,ft

)−1




1
2

, (13)

whereV (r)
x,ft= gtσ̂

2
s,f(z

(r)
t )+∑kwfkhkt+∑lwflhlt andV (r)

s,ft

= σ̂2
s,f(z

(r)
t ). Note that the dictionary of the ego-noise model

W is fixed during the M-step. We learn the dictionary of the
ego-noise modelW during the training phase which we detail
in the next subsection.

3.3 Training the Ego-Noise Dictionary
During the training phase, we train a single NMF model on ego-
noise only using the IS divergence to obtain ego-noise features
[24], shown as:

CIS =∑
f,t

(
|eft|2(
WH

)
ft

− log

(
|eft|2(
WH

)
ft

)
−1

)
, (14)

1https://uhh.de/inf-sp-partiallyadaptive2021

where |eft|2 indicates the periodogram of ego-noise at frequency
f and time t. At test time, we set W to the dictionary trained
solely on ego-noise, while its coefficient matrixH is adaptive
to the input mixture as described above.

4 Experimental Setup
The proposed algorithm is evaluated with signals we recorded
in our varechoic chamber and real environmental noise from the
DEMAND dataset [28].

4.1 Dataset
The experimental evaluation is conducted using a humanoid
interactive robot NAO H25 from Softbank [29]. We created
ego-noise by performing right arm movements involving 6 joints
while the robot was in the crouch posture. We recorded the sig-
nals by an omnidirectional electret microphone that was mounted
externally to the robot close to the position of the built-in front
head microphone. In total, we generated approximately 7 min of
ego-noise. To create the training data for the VAE-based speech
model, we recorded the TIMIT training set [30] by playing back
the noise-free speech sentences through a loudspeaker placed
at 1 m distance from the robot’s front at a height of 1.2 m. The
recordings were made in our varechoic chamber with the re-
verberation time set to T60 = 200 ms. All time-domain audio
signals are sampled at a rate of 16 kHz.

For the evaluation, we create three evaluation datasets, im-
itating three different human-robot talking scenarios. We first
select 840 speech samples from the TIMIT test set re-recorded
with the same setup as above.
1. Ego-noise only: To simulate the talking scenario where am-

bient sounds can be ignored, we mix speech signals with
out-of-training ego-noise only at an SNR randomly sampled
in the range of [−5,+5] dB with a gap of 1 dB.

2. Env-noise only: To mimic the talking scenario where the
robot stops moving and only environmental sounds are
present, we add the environmental noise selected from the
DEMAND database to speech samples [28]. The environ-
mental noise signals are randomly sampled from the noise
data in the categories {domestic, public, street, transporta-
tion} and added at a random SNR chosen in the range of [2,
14] dB with a gap of 3 dB.

3. Ego + Env: To imitate a realistic scenario where a person
is talking to a moving robot while environmental noise is
present simultaneously, we corrupt speech samples with both
noise types. For each noise type, a random SNR in the same
range as above is used.

4.2 Baselines
We compare the VAE-NMF framework based on different
adaptive schemes: the completely-fixed dictionary (denoted
as NMF-fixed), the fully-adaptive dictionary (denoted as NMF-
full), and the proposed partially-adaptive dictionary (denoted as
NMF-partial).

4.3 Parameter Settings

Total dictionary size 16 32 64 96 128
K 8 16 32 32 32
L 8 16 32 64 96

Table 1: Dictionary sizes.
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Figure 1: Performance of three adaptive schemes evaluated at different NMF dictionary sizes in SI-SDR (in dB) and POLQA,
for three different corrupted scenarios: Ego-noise only, Env-noise only, and Ego + Env. For both metrics, higher numbers indicate
better performance. The marker denotes the mean value over all utterances in the test dataset and the vertical bar indicates the
95%-confidence interval.

The signals are transformed into the time-frequency domain
using the STFT with a Hann window, where the window length
and the hop size are set to 64 ms and 16 ms, respectively. We
test the different dictionary sizes when modeling noise signals,
as shown in Table 1. For total NMF dictionary sizes greater
than 64, K = 32 empirically shows better performance than
the other tested cases. The composing matrices W , H, and
H are randomly initialized whereas the dictionary matrix W
of the ego-noise model is pre-trained. The parameters of the
Metropolis-Hastings algorithm follow the setting in [16].

Both the encoder and the decoder of the VAE have two feed-
forward hidden layers of 128 units, and the hyperbolic tangent
activation function is applied to all hidden layers. The dimension
of the latent space is fixed at 16 for all algorithms. The param-
eters of the VAE are optimized by Adam [31] with a learning
rate of 1×10−3.

4.4 Evaluation Metrics
We measure the performance of ego-noise reduction using the
scale-invariant signal-to-distortion ratio (SI-SDR) measured in
dB [32], which indicates the overall distortion including noise
reduction and speech artifacts, and the perceptual objective lis-
tening quality analysis (POLQA)2 [33], which measures speech
quality.

5 Results
From left to right, the three columns in Figure 1 show evaluation
results for cases corrupted by ego-noise only, by environmen-
tal noise only, and by both ego-noise and environmental noise
respectively. The enhancement performance in the presence of
ego-noise only shows that with proper noise information and
dictionary sizes, NMF-partial and NMF-fixed perform simi-
larly in SI-SDR and slightly better than NMF-full. NMF-partial
improves speech quality in comparison to NMF-full and NMF-

2We would like to thank J. Berger and Rohde&Schwarz SwissQual AG
for their support with POLQA.

fixed. When prior ego-noise information fails to match the test
case as shown in the second column, the proposed NMF-partial
still gives competitive or better performance than NMF-full. The
performance gain may come from the smaller size of the adap-
tive part of the dictionary, because the model performance as
shown by NMF-full can benefit from a small adaptive dictionary
size. The results shown in the first two columns indicate that the
proposed NMF-partial with appropriate NMF dictionary sizes
does not deteriorate the system even if one of the assumed noise
types is missing.

In the third column, where ego-noise and environmental
noise are present simultaneously, NMF-partial is superior to
NMF-fixed among all dictionary sizes considered, which shows
the interest of using the partially-adaptive scheme and not only
a fixed dictionary to extract noise components from an unseen
noisy mixture. For example, NMF-partial significantly outper-
forms NMF-fixed by more than 3 dB in SI-SDR at the NMF
dictionary size of 96. A performance improvement of around
0.75 dB can also be observed between NMF-partial (at the size
of 96) and NMF-full (at the size of 32), indicating that the
partially-adaptive scheme rather than adaptively estimating all
noise components is favorable. Similarly, we observe that NMF-
partial reaches the peak in terms of POLQA at the dictionary size
of 96 and outperforms both NMF-full and NFM-fixed. Audio
examples and the recorded ego-noise data are available online 1.

6 Conclusions
In this paper, we introduced a partially-adaptive noise dictio-
nary to jointly reduce ego-noise and environmental noise for
interactive NAO robots. The proposed partially-adaptive scheme
can improve noise robustness by incorporating prior ego-noise
information and retains the flexibility to adapt to unseen noise
data. With appropriate dictionary sizes, the presented approach
showed superior performance over the methods based on the
fully-adaptive dictionary and the completely-fixed dictionary in
complex situations where ego-noise and environmental noise are
present simultaneously.
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ABSTRACT
Human-robot interaction relies on a noise-robust audio processing module
capable of estimating target speech from audio recordings impacted by en-
vironmental noise, as well as self-induced noise, so-called ego-noise. While
external ambient noise sources vary from environment to environment,
ego-noise is mainly caused by the internal motors and joints of a robot. Ego-
noise and environmental noise reduction are often decoupled, i.e., ego-noise
reduction is performed without considering environmental noise. Recently,
a variational autoencoder (VAE)-based speech model has been combined
with a fully adaptive non-negative matrix factorization (NMF) noise model
to recover clean speech under different environmental noise disturbances.
However, its enhancement performance is limited in adverse acoustic sce-
narios involving, e.g. ego-noise. In this paper, we propose a multichannel
partially adaptive scheme to jointly model ego-noise and environmental
noise utilizing the VAE-NMF framework, where we take advantage of spa-
tially and spectrally structured characteristics of ego-noise by pre-training
the ego-noise model, while retaining the ability to adapt to unknown environ-
mental noise. Experimental results show that our proposed approach outper-
forms the methods based on a completely fixed scheme and a fully adaptive
scheme when ego-noise and environmental noise are present simultaneously.

Index Terms— Ego-noise reduction, speech enhancement, variational
autoencoder, multichannel non-negative matrix factorization

1. INTRODUCTION
In recent decades, research on autonomous systems (AS) such as humanoid
interactive robots has received increasing attention. Interactive robots are
typically equipped with multiple microphones to perceive their environment
and react to requests or particular commands from humans. However,
the acquisition of target acoustic information is often disturbed not only
by external interfering sources, i.e., environmental noise, but also by self-
generated noise, also called ego-noise. It poses difficulties for subsequent
tasks, such as speech recognition and language understanding. This calls
for a noise-robust audio processing module capable of recovering target
clean speech to support the robot’s actuator unit to act appropriately [1,2].

In human-robot interaction, ego-noise may originate from different parts
of the robot and reducing ego-noise is non-trivial in various aspects. It is
mainly caused by the electric motors and mechanical parts distributed all
over the robot body [3,4]. The microphones are often placed close to the
motors, especially for small-sized robots, resulting in acoustic scenarios
with challenging signal-to-noise ratios (SNRs). Furthermore, as ego-noise
coming from, e.g. robotic limb movements, is non-stationary, it may be
considered a difficult noise source. However, due to the limited degree
of motion, ego-noise from the motors and joints exhibits a characteristic
spatial and spectral structure. Thus, specialized and efficient light-weight
machine learning algorithms can be designed to learn and exploit these
distinct spatial and spectral characteristics of ego-noise [1,3–10].

This work was funded by the DFG project number 261402652 and ahoi.digital.

For instance, ego-noise can be modeled by dictionary-based algorithms,
e.g. non-negative matrix factorization (NMF) [9,11,12], where ego-noise
is approximated by a linear combination of pre-captured dictionary
components. For multichannel recordings, in addition to structured tempo-
spectral characteristics, spatial information can also be employed using,
e.g. multichannel NMF [6,7]. Deleforge et al. [4] have proposed a sparse
representation of multichannel ego-noise signals in the complex domain.
Some approaches have included information from other modalities, such
as motor data [5,8,12]. However, this requires synchronized multimodal
data, which may not be readily available. While a pre-learned ego-noise
model has shown some effectiveness in modeling noise characteristics, it
may cause noise mismatch problems in realistic scenarios that include not
only ego-noise, but also unknown environmental noise signals.

Currently, advanced methods for environmental noise reduction are
based on deep neural networks (DNNs) [13]. The variational autoen-
coder (VAE) is a deep generative model that can be used to learn a
probabilistic prior distribution of clean speech [14]. It has been combined
with a statistical NMF noise model to perform speech enhancement, where
the VAE-based speech model is pre-trained on clean speech while the
parameters of the NMF model are estimated based on noisy observa-
tions [15–17]. The VAE-NMF framework has shown improved speech
enhancement performance and generalization capabilities over its NMF
counterpart and fully supervised baselines [15–17]. While the fully adaptive
NMF noise model can potentially adapt to various acoustic scenarios, gain-
ing robustness under adverse acoustic conditions (e.g. when ego-noise and
environmental noise are present simultaneously) remains a challenging task,
as we will show in experiments. Few existing publications take both ego-
noise and environmental noise into account [10,18,19]. Ince et al. proposed
to reduce stationary background noise independently of ego-noise [10].
Our previous work [18] has presented a single-channel joint noise reduction
system for interactive robots, but disregarded spatial information.

In this work, we propose a multichannel joint ego-noise and environmen-
tal noise reduction method for interactive robots. For this, the tempo-spectral
features of speech are modeled using the VAE and the noise characteristics
are modeled by multichannel NMF as in [17]. More specifically, similar to
multichannel ego-noise approaches such as [7], we want to take advantage
of spatially and spectrally structured characteristics of ego-noise to gain
robustness in adverse conditions. At the same time, similar to, e.g. [17], we
want to retain the adaptation ability to unknown environmental noise. For
this, we propose to model ego-noise and environmental noise separately.
We pre-train the ego-noise model to capture the spectral and spatial features,
while its temporal activation is adapted to noisy observations jointly with
the parameters of the environmental noise model. Experimental results
show the considerable benefits of the proposed joint reduction method
when ego-noise and environmental noise are present simultaneously.

2. SIGNAL MODEL
We consider an acoustic scenario where the target speech signal is disturbed
by additive noise and recorded by a microphone array with M channels.



We transform the noisy mixture into the time-frequency domain using
the short-time Fourier transform (STFT):

Xft=
√
gtSft+Nft, (1)

where Xft ∈ CM , Sft ∈ CM , and Nft ∈ CM represent the complex
coefficients of the mixture signal, the speech signal, and the noise signal
at the frequency bin f ∈{1,···,F} and the time frame t∈{1,···,T}. gt
is a gain parameter to increase the robustness to the time-varying loudness
of speech sounds [17]. Note that the noise signals Nft may contain either
ego-noise or environmental noise or both. We aim to recover clean speech
with improved quality and intelligibility given only noisy mixtures.

2.1. Noise model
The noise coefficients are assumed to follow a complex Gaussian distri-
bution with zero mean

Nft∼NC(0,ΣN,ft), (2)

where NC(µ,Σ) denotes the complex Gaussian distribution with mean
µ and covariance matrix Σ. The covariance matrix is defined as

ΣN,ft=RN,fσ
2
N,ft, (3)

where RN,f ∈CM×M is a spatial covariance matrix characterizing the
sound propagation process from sources to microphones. σ2

N,ft represents
the noise spectral variance, which can be modeled using the NMF,

σ2
N,ft=[WNHN ]ft=

K∑

k=1

wfkhkt, (4)

where WN ∈ RF×K
+ denotes the dictionary matrix that captures the

time-frequency characteristics of noise and HN ∈ RK×T
+ denotes the

coefficient matrix that represents the temporal activity. The noise dictionary
contains K atoms indexed by k (K is also referred to here as the dictionary
size). We will decompose the noise signalNft=Eft+Bft into ego-noise
Eft and environmental noise Bft in Section 3.

2.2. Speech model
We assume that the clean speech coefficients are complex Gaussian-
distributed:

Sft∼NC(0,ΣS,f(zt)), (5)

where ΣS,f(zt)=RS,fσ
2
S,f(zt). RS,f ∈CM×M is the speech spatial

covariance matrix. It is assumed that the speech tempo-spectral power can
be inferred from the latent variable zt∈RL, denoted as σ2

S,f(zt), which
can be realized by the generative model of the VAE, i.e., the decoder. Let
st∈CF be a vector of single-channel clean speech spectra at the t-th time
frame. The posterior of the latent variable q(zt|st) is approximated by a
real-valued Gaussian distribution

zt|st∼N (µz(|st|2), σz(|st|2)), (6)

where µz(|st|2) : RF
+ → RL and σz(|st|2) : RF

+ → RL
+ denote the

nonlinear mapping from the power spectrogram to the mean and variance
of the latent variable, implemented by the encoder of the VAE, also called
the recognition model. The parameters of the VAE can be jointly learned
by maximizing the variational lower bound of the log-likelihood logp(st)

LVAE=Eq(zt|st)[logp(st|zt)]−KL(q(zt|st)||p(zt)), (7)

where KL(·|·) denotes the Kullback-Leibler divergence and p(zt) repre-
sents the standard Gaussian prior of zt.

2.3. Clean speech estimation

With the assumption that the speech and noise signals are independent, the
noisy mixture is given by

Xft∼NC(0, gtΣS,f(zt)+ΣN,ft). (8)

The parameters of the VAE-based speech model are obtained by training the
neural network on clean speech data. At testing, a Monte Carlo expectation
maximization (MCEM) method can be employed to estimate the unknown
parameters {WN ,HN ,RN,f ,RS,f ,gt} [17]. Finally, the multichannel
Wiener filter is employed to extract clean speech

Ŝft=gtΣS,f(zt)(gtΣS,f(zt)+ΣN,ft)
−1Xft. (9)

The fully adaptive scheme in [17] that optimizes the unknown parameters
based on noisy inputs, will adapt flexibly to different types of noise without
the need of prior information on potential noise structures. The main idea
of this approach is to achieve a high generalization ability and robustness to
unexpected noise types. However, if accurate prior knowledge is available,
it can be very helpful to improve robustness, especially in acoustically
challenging environments. Therefore, as ego-noise exhibits a very distinct
spatial-spectral structure, prior knowledge can be efficiently exploited by
pre-learning the dictionary matrix and the spatial covariance matrix on
ego-noise recordings only. However, when only pre-learned on ego-noise,
the flexibility and generalization to unseen scenarios is lost. For instance,
rather poor performance is to be expected in environmental noise, which
limits its applicability in realistic scenarios that contain both environmental
noise and background noise.

3. JOINT REDUCTION OF EGO-NOISE
AND ENVIRONMENTAL NOISE

In this section, we present a multichannel partially adaptive scheme,
where we improve noise modeling capabilities by decomposing noise into
ego-noise and environmental noise. This allows us to obtain a robust prior
pre-learned on the distinct spatial and spectral characteristics of ego-noise,
while retaining the flexibility to adapt to environmental noise signals.

3.1. Mixture model and speech estimation

In a real-world human-robot interaction scenario, a target speech signal
may be distorted by ego-noise and environmental noise simultaneously.
We, thus, consider a noise model that is comprised of ego-noise Eft and
environmental noise Bft as follows:

Nft=Eft+Bft. (10)

By assuming that the ego-noise, environmental noise and speech signals are
independent and complex Gaussian distributed, the noisy mixture follows
a complex Gaussian of the form:

Xft∼NC(0, gtΣS,f(zt)+ΣE,ft+ΣB,ft), (11)

where the covariance matrix of environmental noise is defined as
ΣB,ft = RB,f [WBHB]ft with [WBHB]ft =

∑KB
kb=1 wfkbhkbt,

and the covariance matrix of ego-noise as ΣE,ft =RE,f [WEHE]ft
with [WEHE]ft=

∑KE
ke=1wfkehket. KB and KE are the sizes of the

environmental noise dictionary and the ego-noise dictionary, respectively.
Similarly, clean speech can be estimated by applying the multichannel

Wiener filter

Ŝft=gtΣS,f(zt)(ΣX,ft(zt))
−1Xft, (12)

where ΣX,ft(zt)=gtΣS,f(zt)+ΣE,ft+ΣB,ft. This requires estimat-
ing the unknown parameters {WE,HE,WB,HB,RS,f ,RE,f ,RB,f ,



gt}. The following subsections describe the estimation of the ego-noise
dictionary matrix WE and the spatial covariance matrix RE,f using
the pre-training technique, and an MCEM optimization method to the
proposed partially adaptive scheme.

3.2. Training phase
To capture the spectral and spatial characteristics of ego-noise, we train
a multichannel NMF model on ego-noise recordings by optimizing the
negative log-likelihood:

L=

F,T∑

f=1,t=1

tr
(
EftE

H
ftΣ

−1
E,ft

)
+lndet(ΣE,ft), (13)

where constant terms are omitted [20]. tr(·) denotes the trace operator;
det(·) denotes the determinant of a matrix; ·H denotes the conjugate
transpose. Minimizing this function using the majorization scheme leads
to the multiplicative update rules for {WE,HE,RE,f} [17,20]. We fix
the dictionary matrix WE and the spatial covariance matrix RE,f at the
testing phase, while keeping HE adaptive to noisy observations to account
for different temporal variations.

3.3. Parameter optimization
To estimate the unknown parameters in the testing phase, we follow
the MCEM optimization scheme by [17]. At the Expectation step, the
complete-data log-likelihood is approximated by averaging over R samples:

Q(θ;θ∗)=Ep(z|X;θ)[lnp(X,z;θ)]
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R samples of the latent variable are drawn using the Metropolis-Hastings
algorithm with a Gaussian as a symmetric proposal distribution. θ∗ is an
initialization of the parameters. At the Maximization step, we minimize
the loss function, i.e., the negative log-likelihood −RQ(θ; θ∗), with
respect to the unknown parameters θ={HE,WB,HB,RS,f ,RB,f ,gt}
using the auxiliary function technique. For this, equation (14) can be
viewed as the superposition of a convex function (the first term) and a
concave function (the second term), where the former can be bounded
using the Jensen’s trace inequality and the latter can be bounded using
a first-order Taylor expansion [17, Appendix A]. This gives an upper
bound function and computing the partial derivative with respect to each
parameter separately leads to the iterative update rules:
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Fig. 1. Illustration of the recording setup with the NAO robot [21]. Room
dimensions (length × width × height): 504× 930× 284 cm; T60 ≈
200 ms; speaker-robot distance D≈1 m; ϕ≈15◦.
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The two adaptive spatial covariance matrices RS,f , RB,f are updated

by solving the corresponding algebraic Riccati equations as in the fully
adaptive scheme [17] [20, Appendix I].

4. EXPERIMENTS

In this section, the proposed partially adaptive scheme (referred to as
Partial) is compared to two baselines:
• Adaptive: Refers to the fully adaptive scheme with all unknown

parameters estimated based on noisy observations [17].
• Fixed: Refers to the fixed scheme with the dictionary matrix and spatial

covariance matrix pre-learned on ego-noise recordings at training time
and fixed at test time as in the ego-noise reduction literature, e.g. [6,7].

For each adaptive scheme, 7 different dictionary sizes are considered,
leading to a total of 21 compared methods. We evaluate the algorithms
in two application scenarios:
• Ego: Only ego-noise is present, mimicking a scene where a person is

talking to a robot performing certain movements.
• Ego + Env: In addition to ego-noise, environmental noise is present

simultaneously as an additional disturbance.
We use the scale-invariant signal-to-distortion ratio (Si-SDR) measured

in dB to account for both noise reduction and the speech artifacts [22], and
the perceptual objective listening quality analysis (POLQA) to measure
speech quality [23]. The speech recognition accuracy is measured by
the word error rate (WER). We employ the pre-trained speech recognition
model Quartznet [24] in the NeMo toolkit [25], in conjunction with a
4-gram language model available via the LibriSpeech website [26].

4.1. Dataset
All algorithms are trained and evaluated on a dataset recorded in our vare-
choic chamber. We use a humanoid interactive robot NAO H25 from Soft-
bank for recording purposes [27]. The clean speech utterances are randomly
chosen from the TIMIT test set [28]. Each target clean speech sample is
played through a loudspeaker randomly placed among the positions shown
in Fig. 1 and recorded using external omnidirectional electret microphones
mounted in the same position of the built-in microphone array (M=4) on
the robot. Ego-noise is recorded when the robot performs pre-defined right-
arm movements in a crouching posture. To simulate external environmental
noise sources, we re-record audio samples randomly selected from the
DEMAND database [29] and the loudspeaker emitting environmental noise
is placed at one of the four positions shown in Fig. 1. For the ego-noise only
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Fig. 2. Spectrograms of an audio example. Clean speech is distorted by
both ego-noise and environmental noise. The three plots in the second
row represent the reconstructed speech spectrograms obtained by three
compared methods.

scenario, we mix speech signals with out-of-training ego-noise recordings
(with movement speeds different from training data) at SNRs randomly
chosen from{-5 dB, -4 dB, ···, 5 dB}. To simulate a challenging realistic sce-
nario, besides ego-noise, we further corrupt speech signals by environmental
noise at a SNR of 0 dB [17]. In total, this leads to a test set of 128 noisy
samples for each evaluation scenario, with an average SNR of −2.1 dB
for the joint noise scenario and −1.8 dB for the ego-noise only scenario.

4.2. Hyperparameter settings
We use an STFT with a Hann window of 64 ms and a hop size of 25 %.
All audio signals are sampled at 16 kHz. The decoder of the VAE has two
hidden layers of sizes 128 and 512 respectively. The hyperbolic tangent
activation function is applied to the hidden layers; the linear activation is
applied to the output layer. The encoder network consists of two hidden
layers of sizes 512 and 128, respectively, with the hyperbolic tangent
activation functions applied. The latent dimension L is set to 16. The VAE
is trained on the re-recorded TIMIT training set using the same microphone
setup as described in Section 4.1. The network parameters are optimized
using the Adam optimizer with a learning rate of 0.001 and a patience of 5
epochs. The parameters of the MCEM algorithm are set as in [17], i.e., R=
10 with a burn-in phase 30 iterations. For the partially adaptive scheme, we
set the dictionary sizes for the fixed and adaptive parts as shown in Table 1.

Total dictionary size 16 32 64 96 128 160 192
KB 8 16 32 32 32 32 32
KE 8 16 32 64 96 128 160

Table 1. Dictionary sizes for the proposed partially adaptive scheme.

4.3. Results
The benefits of the partially adaptive scheme are visible in Fig. 2. While
the fully adaptive scheme possesses the flexibility to adapt to various noisy
conditions, its ability in capturing noise characteristics is limited especially
when both ego-noise and environmental noise are present. This is shown
by the residual ego-noise marked with the dashed ellipses and residual
environmental noise marked with the solid rectangle in the reconstructed
speech spectrogram. While the fixed scheme, whose reconstructed spec-
trogram is visualized in the second plot in the second row of Fig. 2, shows
some effectiveness in removing ego-noise, the residual environmental noise
is still quite pronounced, as marked by the solid rectangle. Finally, it can
be observed that the proposed partially adaptive scheme shows a higher
noise reduction effect than the other two approaches.
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Fig. 3. Higher Si-SDR and POLQA scores indicate better enhancement
performance, and lower WER indicates higher recognition accuracy. The
marker denotes the mean value and the vertical bar indicates the 95%-
confidence interval.

The two columns in Fig. 3 display the evaluation results for the ego-noise
only scenario (Ego) and the joint noise scenario (Ego+Env), respectively.
We observe that the fully adaptive approach is outperformed by the fully
fixed and partially adaptive schemes in the presence of ego-noise only, as
shown by its lowest POLQA and Si-SDR scores and the highest WER.
This again implies that the fully adaptive scheme has difficulty in capturing
ego-noise characteristics. The partially adaptive scheme and the fully
adaptive scheme perform comparably when we increase the total dictionary
size, indicating that ego-noise can be better modeled with a larger dictionary
size due to its complexity and broadband characteristics. Eventually, it can
be observed that the partially adaptive scheme delivers superior results over
the other two methods when both noise types are present simultaneously.
This indicates that with an appropriate dictionary size, the partially adaptive
scheme can effectively approximate ego-noise while properly capturing
unknown environmental noise in adverse scenarios. Audio examples are
available online1.

5. CONCLUSION

Based on the deep generative model and multichannel NMF, we proposed
to jointly model ego-noise and environmental noise with a partially adaptive
scheme. To exploit the spectrally and spatially structured characteristics
of ego-noise, we pre-train the ego-noise model while keeping the environ-
mental noise model adaptive to noisy observations. The proposed partially
adaptive scheme demonstrated an increased performance compared to the
approaches based on the fixed scheme and on the fully adaptive scheme in
adverse scenarios where both ego-noise and environmental noise are present.

1https://uhh.de/inf-sp-mcpartial2023
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CHAPTER 4

Conclusion

4.1 Summary

Speech enhancement has received widespread attention for decades. Clean speech recorded by
microphones is inevitably distorted by interfering noise, degrading speech quality and intelligibility.
Depending on the application scenario, various types of noise may be involved. This imposes
challenges for speech communication devices to work reliably in noisy environments. Traditional
algorithms attempted to track signal power changes in the time-frequency domain, exhibiting limited
effectiveness in acoustically challenging conditions. Recently, machine learning algorithms have
emerged as the prevailing technique with noticeable performance improvements, especially these
DNN-based predictive approaches. To achieve superior performance, these algorithms often require
training DNNs on large amounts of labeled data covering a wide range of acoustic conditions. However,
deep predictive models may struggle to generalize well to unseen acoustic conditions. As a result, the
network models may generate erroneous clean speech estimates without providing any indication of
uncertainty. Moreover, the lack of transparency into how neural networks generate their estimates
makes these models difficult to interpret. This thesis focuses on improving the interpretability and
robustness of DNN-based speech enhancement by incorporating statistical models. In this chapter, we
summarize the main findings and contributions of the thesis and discuss future research directions.

4.1.1 Uncertainty in Deep Predictive Speech Enhancement

In Chapter 2, we studied these problems from the perspective of uncertainty modeling, aiming to
enable network models to provide predictive uncertainty. Rather than solely estimating multiplicative
filter masks, we augment supervised masking approaches with an uncertainty estimation task. In [P2],
we follow the widely used complex Gaussian prior of speech and noise spectral coefficients and
utilize DNNs to estimate the parameters required for the speech posterior. In this case, the posterior
distribution of clean speech is also a complex Gaussian parameterized by its mean and variance. The
predicted mean serves as a clean speech estimate, and the variance is interpreted as the associated
prediction uncertainty. One of the challenges in optimizing DNN-based probabilistic models is
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training instability. Indeed, the ground truth of uncertainty is not readily available, making uncertainty
estimation an unsupervised task with an unspecified search space. In addition, we intended to use the
uncertainty estimates to further improve speech enhancement performance. Finally, we proposed to
address these two problems with a unified solution by utilizing a hybrid loss function. Specifically,
we incorporated an approximate MAP estimator of spectral magnitudes that explicitly requires the
variance estimates of complex speech spectral coefficients, establishing an interesting connection
between the complex spectral domain and the magnitude domain in a single deep framework.

The proposed loss function has experimentally shown its effectiveness in stabilizing the training
process. Meanwhile, incorporating uncertainty into clean speech estimation via an approximate MAP
magnitude estimator leads to improved speech enhancement performance compared to the baselines
that produce filter masks only. The performance improvement could be attributed to two factors. First,
explicitly considering uncertainty estimates in the magnitude estimator tends to cause less speech
attenuation than the Wiener filter, especially for low inputs, as shown in Figure 2 of [P2] in Section 2.1.
This potentially improves the robustness compared to the algorithms that estimate only a Wiener filter.
The experimental results across a range of SNRs have demonstrated that the speech preservation
tendency of the uncertainty-based speech estimator yields a more pronounced improvement in speech
quality at high input SNRs. This is because speech quality at high SNRs is mainly affected by speech
distortions. Second, the approximated MAP estimator of spectral magnitudes is nonlinear with respect
to the noisy input, while a multiplicative mask has a linear relationship with the noisy input. Thus,
when the Wiener estimate and associated uncertainty are jointly optimized using the proposed loss
function, the DNNs are expected to generate more accurate clean speech estimates, surpassing the
simple linear Wiener filter.

We further present a comprehensive analysis of data uncertainty on a time-frequency scale. We
hypothesize that uncertainty estimates are supposed to be closely related to estimation errors. In other
words, when the predictions deviate greatly from the true data, the network model should output large
estimates to indicate that its predictions are uncertain, and vice versa. The quantitative analysis over
the time-frequency bins confirmed that the captured data uncertainty accurately reflects estimation
errors in predictions. This is of great interest because data uncertainty can serve as an indicator of the
degree of confidence we can place in the predictions. Furthermore, accurate uncertainty estimation is
essential for the spectral magnitude estimator to operate as intended. This is because the approximate
MAP magnitude estimator’s value is positively correlated with the uncertainty estimate when other
terms in the formula are fixed, see equation (10) in [P2]. When the clean speech estimate deviates
largely from the true target, resulting in large errors, the corresponding large uncertainty estimate
increases the value of the magnitude estimator, thereby preserving more clean speech. It degenerates
into the Wiener filter when uncertainty approaches zero.

Besides data uncertainty, we also explored model uncertainty in deep speech enhancement
utilizing Bayesian deep learning techniques. Instead of modeling the DNN’s weights deterministically,
Bayesian deep learning places a distribution over the network parameters and approximates the
posterior distribution of these stochastic parameters. Specifically, our study in [P2] leveraged MC



4.1 Summary 97

dropout and Deep ensembles to simultaneously estimate clean speech and capture model uncertainty,
primarily due to their scalability to large models and datasets. These methods empirically approximate
the predictive distribution by sampling from the network weight posterior distribution during inference.
Although increasing the number of sampling times can theoretically lead to more accurate uncertainty
estimates, the evaluation results show that the performance of uncertainty estimation may eventually
saturate. The experiments also show that compared to MC dropout, Deep ensembles can provide not
only more reliable uncertainty estimates but also more accurate clean speech estimates. This may be
due to that Deep ensembles trained with different random seeds can exploit the multi-modal nature
of the high-dimensional network parameter space, whereas MC dropout may only sample around a
single mode.

While generic Bayesian deep learning methods are task-agnostic and can be flexibly applied to
a wide range of tasks, they often require an expensive sampling process, which poses challenges to
applications with limited computational resources or real-time constraints. Thus, another research
topic we explored in the first part is to leverage domain-specific knowledge and enable the network
to capture different sources of uncertainty with only a single forward pass during inference, thereby
avoiding the computational load of sampling. In [P3], we model the spectral coefficients of speech
and noise with CGMMs, which can model the super-Gaussian characteristics of speech spectral
coefficients. Unlike other super-Gaussian priors that may yield complex posterior derivations [7, 24],
the CGMM assumption reaches an advantageous trade-off between modeling complex distributions
and analytical tractability. Similarly, we utilize DNNs to estimate the necessary parameters involved in
the speech posterior, which also follows a CGMM. However, two problems may arise when optimizing
this probabilistic network model: training instability and mode collapse. In our case, training DNNs
to minimize the negative log-posterior has experimentally shown instability due to the dependence of
the gradient on the variance. To address this issue, we employed and adapted a gradient modification
scheme. Moreover, it is indeed challenging to estimate the parameters of the multiple Gaussian
components in the CGMM based on a single input observation. The DNN may take shortcuts to
output an identical set of estimates, leading to the mode collapse problem. To address this issue, we
leverage a winner-take-all pre-training scheme to promote diverse predictions.

We can interpret network models that output the CGMM parameters as generating multiple
hypotheses. This can be particularly advantageous when dealing with difficult inputs, where inferring
a single accurate estimate might be difficult. In contrast, a model that can make multiple guesses
would increase the likelihood that an accurate estimate lies in the output space [104], thus potentially
improving the model’s robustness. The experimental results on different datasets and various SNRs
in [P3] have also confirmed the benefits of multi-hypothesis modeling over a comparable baseline
inferring a single best prediction. Moreover, these multiple Gaussian estimates in a CGMM can
simultaneously offer data uncertainty and model uncertainty estimates, thus circumventing the need
for an expensive sampling process. Qualitative and quantitative analyses have been performed to
show the correlation between estimation errors and predictive uncertainties. The close distance of the
sparsification plots to the ground truth indicates the high reliability of the uncertainty estimates. As
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a result, incorporating domain-specific statistical modeling into deep predictive approaches enables
effective and efficient uncertainty modeling. Additionally, statistical modeling acting as a form of
regularization can further boost speech enhancement performance, thereby improving the overall
interpretability and robustness of the framework.

One straightforward way to address generalization issues is to retrain the DNN using newly
collected data from the target domain. However, the process of collecting paired data is often
cumbersome and may require costly post-processing. In contrast, gathering unlabeled noisy mixtures
is more practical, and over time, the quantity of such noisy data can reach a considerable size.
Therefore, in [P4], we investigated methods to mitigate performance degradation caused by domain
mismatch using only noisy mixtures, achieving unsupervised domain adaptation. For this, we followed
the idea of remixing-based domain adaptation, where a student model is fine-tuned to approximate
the pseudo-targets generated by the teacher model. However, when the teacher model’s estimates
are erroneous, the student model is forced to align with fundamentally incorrect pseudo-targets. To
improve the data quality, we first enable the teacher model to estimate the uncertainty associated with
its clean speech predictions. This is followed by filtering out low-quality pseudo-targets generated by
the teacher model in the target domain, based on the uncertainty estimates, such that the student model
learns from only high-quality speech estimates. Eventually, the uncertainty-based remixing allows the
student model to effectively capture noise characteristics of the target domain, leading to better noise
reduction capability at the cost of some speech distortion. Additionally, adjusting the uncertainty
threshold can achieve a controllable trade-off between noise reduction and speech distortion.

Achieving high robustness across different acoustic conditions based on a single modality has
been challenging. This problem can be alleviated by leveraging features from other modalities. For
example, machines understand speech via recognition systems, whose performance can be negatively
affected by severe noise interference. However, complementary features from other modalities, such
as lip movements extracted from visual signals, can overcome the limitations since it is independent
of acoustic corruptions. This gives rise to the task of audio-visual phoneme recognition. An important
question involved in multi-modal methods is how to effectively fuse information from multiple
modalities. Moreover, similar to noisy audio inputs, video data is not guaranteed to be consistently
informative possibly due to issues such as object occlusion and illumination conditions. Unreliable
visual inputs may provide misleading information, resulting in degraded performance that may be
even worse than methods based solely on audio modality. Thus, the research question we investigated
in [P5] is how to improve the model’s robustness to simultaneously corrupted video and audio. For
this, we proposed to guide the fusion of audio and visual information by incorporating modality-wise
uncertainty, based on which we determine to which extent the final decision can rely on each modality.
In contrast to work in [126], which takes certain visual corruptions into the training process and
consequently may only perform well on in-distribution corrupted inputs, our uncertainty-based fusion
scheme is corruption-agnostic, which is expected to generalize well to a variety of possible noisy video
inputs. Our experimental results have demonstrated that the proposed hybrid fusion scheme is robust
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under noisy audio-visual conditions, while at the same time, still making use of the complementary
advantages of multi-modal methods when the video is sufficiently clean.

In Chapter 2, we have mainly discussed uncertainty modeling in the context of deep speech
enhancement. This includes capturing uncertainty based on different statistical assumptions and ex-
ploring its use in unsupervised domain adaptation and in multi-modal information fusion. Uncertainty
modeling makes the DNN-based algorithms more interpretable and can be achieved at negligible cost.
We believe uncertainty modeling is an important feature of deep learning algorithms.

Research Questions

RQ1 How can uncertainty be effectively modeled in deep predictive speech enhancement, and
to what extent can uncertainty estimates reliably predict deviations from ground-truth
speech? How does uncertainty estimation affect speech enhancement performance?

In [P2], we follow the widely used complex Gaussian priors of speech and noise spectral
coefficients and estimate the full clean speech posterior using DNNs, where the speech
posterior variance serves as a data uncertainty measure. We further embedded this
into Bayesian deep learning to additionally estimate model uncertainty. We present a
comprehensive analysis of uncertainty estimates, both qualitatively and quantitatively,
demonstrating that the uncertainty-augmented speech enhancement model can inform us
of incorrect clean speech estimates through increased associated uncertainty estimates.
Furthermore, we propose a hybrid loss function for training DNNs that achieves two
objectives. First, it stabilizes the training of the DNN-based probabilistic model. Second,
it integrates uncertainty estimates into a statistically principled uncertainty-aware speech
estimator, yielding superior speech enhancement performance than the baseline that uses
the same architecture to output single-point estimates. Combining the proposed training
loss with Bayesian deep learning frameworks can further improve the performance.

RQ2 How can one leverage statistical domain knowledge to develop more efficient methods
for uncertainty estimation in deep predictive speech enhancement?

In [P3], we model the spectral coefficients of speech and noise with CGMMs, which
can potentially approximate any probability density with arbitrary accuracy. This offers
a good fit to model super-Gaussian characteristics of speech spectral coefficients and
ensures a relatively straightforward posterior derivation. We predict the clean speech
posterior resulting from the CGMM priors using a DNN. We demonstrate that the
proposed approach can efficiently predict both data uncertainty and model uncertainty
with only a single forward pass of the DNN. Furthermore, we show that the proposed
uncertainty-augmented approach that combines powerful statistical models and deep
learning also delivers a superior speech enhancement performance compared to the
method that estimates single-point clean speech estimates.
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Research Questions

RQ3 Can uncertainty estimates be further leveraged to improve the robustness and general-
ization ability of speech enhancement systems?

We introduce in [P4] a uncertainty-based remixing strategy to mitigate performance
degradation caused by domain mismatch of data. Our experimental results demonstrate
that the proposed adaptation method provides improved generalization performance
compared to the baseline trained only on data from the source domain. Additionally, ad-
justing the uncertainty threshold allows for an interesting controllable trade-off between
noise reduction and speech distortion. We propose in [P5] a uncertainty-driven multi-
modal information fusion strategy for audio-visual phoneme recognition. We observe
that the proposed uncertainty-driven fusion scheme performs better on simultaneously
corrupted audio and visual inputs than the baseline using the intermediate feature fusion
scheme, demonstrating improved robustness to unseen modality corruption. Meanwhile,
it maintains the benefits offered by multi-modal methods when the input is sufficiently
informative.

4.1.2 Noise-Aware Generative Speech Enhancement Based on Variational Autoen-
coder and Non-Negative Matrix Factorization

In Chapter 3, we explored the interpretability and generalization issues by focusing on deep gen-
erative methods, specifically the VAE-NMF framework [21, 20]. This framework offers statistical
interpretability and elegantly embeds DNNs into a statistical framework for speech enhancement. In
contrast to predictive approaches learning deterministic mapping relationships between noisy mixtures
and clean speech, such semi-supervised generative methods learn a prior distribution over clean speech
and reuse this knowledge to extract clean speech from noisy mixtures. Deep generative approaches
can potentially generalize to various acoustic conditions by focusing on learning the underlying
distribution of data. However, training the network model on isolated clean speech data does not
always ensure high robustness in challenging acoustic environments. For instance, these methods may
struggle to perform robustly when both ego-noise and environmental noise are present. This may occur
when the target speaker talks to a moving robot in a noisy environment. In this chapter, we improve
the robustness of the deep generative methods further, while retaining the statistical interpretability.
Specifically, we incorporated the noise information into the speech [P6] and noise [P7] [P8] models,
respectively.

In [P6], we sought to improve the speech model by developing a noise-aware encoder for the VAE.
Compared with the vanilla VAE aiming to discover the latent variables of clean speech by training
the network model on clean speech only, we proposed to infer the latent variables of noisy speech
and refine them by closing the difference to that of the corresponding clean speech [P6]. This is
achieved by a two-step training strategy: The vanilla VAE is trained on clean speech only first and
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then used to guide the training of the noise-aware encoder in the latent space. The refinement step is
performed only on the encoder part while keeping the decoder obtained on clean speech unchanged.
This noise-aware speech model is then combined with a NMF-based noise model whose unknown
parameters are obtained by performing maximum likelihood estimation. The experimental results
have shown that the noise-aware training does not deteriorate the method’s generalization capabilities
but yields better speech enhancement performance without introducing any additional computational
efforts.

In [P7] and [P8], we proposed to augment the noise model by incorporating the prior knowledge
from human-robot interaction. Since ego-noise exhibits structured patterns in the time-frequency
domain, such as harmonic structures, we incorporated these temporal-spectral characteristics by
pre-training a separate NMF model on isolated ego-noise recordings. This is then combined with
an adaptive NMF model to account for unseen environmental noise. Eventually, the unknown
parameters are jointly optimized to find a maximum likelihood solution during inference. We
evaluate this partially adaptive scheme on various acoustic conditions, including different SNRs and
interaction scenarios. The experimental results over different instrumental metrics have shown that
the performance improvement is most pronounced in the most challenging case, where speech is
distorted by ego-noise and environmental noise simultaneously. In comparison, the fully adaptive
scheme has difficulty in capturing non-stationary ego-noise properly, while the fully learned and fixed
scheme struggles to model unseen environmental noise. Furthermore, the partially adaptive concept
can be extended to the multichannel cases, where the pre-training strategy leverages not only the
temporal-spectral characteristics of ego-noise but also its spatial information. Unlike environmental
noise, whose characteristics are often unknown in advance and closely related to the surrounding
environment, ego-noise is mainly generated by the motors distributed over the robot’s body. Due to
the fact that the joints can only move with limited degrees of freedom, ego-noise also exhibits limited
spatial diversity, which can be effectively captured by the multichannel partial adaptive scheme.
Therefore, we proposed in [P8] to extend the multichannel VAE-NMF framework to incorporate both
spatial and spectral knowledge of ego-noise. This is achieved by fixing both the learned dictionary
matrix and spatial covariance matrix during inference. The proposed partially adaptive multi-channel
framework shows similar performance improvement trends as the single-channel extension: In the
presence of joint ego-noise and environmental noise distortions, it yields superior performance
compared to the baselines, which include a fully adaptive multichannel scheme incorporating no prior
noise information and a fully learned and fixed multichannel scheme without adaptation capabilities.
Overall, the proposed noise-aware partially adaptive scheme can effectively suppress ego-noise, while
at the same time adapting to unseen environmental noise.

The VAE-NMF framework excels in generalizing to unseen noisy mixtures, showcasing the
potential of deep generative methods in speech enhancement. The experiments have shown that
incorporating prior noise information alongside clean speech during training is crucial to achieving
high robustness under severe noise interference.
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Research Questions

RQ4 How can VAE-NMF-based generative approaches leverage prior noise knowledge
to improve speech modeling capabilities for better generalization in unseen acoustic
environments?

We observe that the VAE-based speech model that learns a prior distribution of clean
speech faces the challenge of performing robustly in the presence of noise. Thus, we
introduce a noise-aware encoder for the VAE model. The method refines the latent
variables inferred from noisy speech by narrowing down the difference with the latent
variables of the corresponding clean speech. The resulting method preserves the original
statistical framework’s interpretability. The experimental evaluation demonstrates that
the proposed noise-aware speech model exhibits improved generalization ability to
unseen noise compared to the speech model trained only on clean speech using the same
architecture.

RQ5 Can one derive a flexible and effective noise adaptation scheme that can reuse learned
noise representation while adapting to unseen noise characteristics? Furthermore, can
such an adaptation scheme be extended to multichannel applications?

We observe that the fully adaptive noise learning scheme can potentially generalize to
various acoustic conditions but has difficulty performing robustly in challenging noisy
environments, e.g., involving both ego-noise and environmental noise. In contrast, the
learned and fixed scheme may perform well on seen acoustic conditions but fails to
capture unseen noise characteristics. Therefore, in [P7], we propose a partially adaptive
noise learning scheme that leverages prior representations learned from the collected
ego-noise while adapting to unseen environmental noise characteristics, with unknown
parameters derived jointly under the maximum likelihood criterion. This partially
adaptive scheme is further extended to multichannel application scenarios in [P8]. We
demonstrate that the resulting noise adaptation approach surpasses baselines that either
learn noise features on the fly or rely solely on learned prior noise representation.

4.2 Discussion and Future Work

This thesis focuses on DNN-based speech enhancement. While it provides excellent performance
across a range of application scenarios, there are also some costs. For instance, high performance
often comes with a significant increase in the number of parameters, which imposes great challenges
on resource-limited devices. Although research on designing lighter and more efficient network
architectures has received increasing attention, a general trend can be observed that large networks
can more easily outperform small networks. Therefore, statistical regularization might be particularly
beneficial for lightweight networks, which are considered more challenging to gain high performance.
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Rather than learning a lightweight model from scratch, another promising research direction is to use
knowledge distillation, which utilizes a teacher-student framework. Unlike the one used in our domain
adaptation problem in [P4], the teacher model used in knowledge distillation is generally larger
and more powerful than the student. In such a way, the teacher network can transfer some abstract
knowledge that can not be easily learned by smaller networks to the student model. Knowledge
distillation has become increasingly popular in deep learning and computer vision since the work by
Hinton et al. [179]. Moreover, this learning paradigm is also supported by theoretical perspectives
grounded in probability theory [179]. For example, a teacher classifier may output similar probability
values for pictures of a baby tiger and a baby cat that looks like a tiger. From the perspective of entropy,
this set of probabilities is more informative and has higher entropy compared to one-hot encoding that
tells you exactly if it belongs to a cat or tiger. As a result, training a small student network with this
pseudo target may outperform the same model architecture learning from scratch. However, most of
its applications are tailored for classification settings, and it is not straightforward to directly transfer
the theory applicable to classification tasks to regression settings. Nevertheless, existing work has
attempted to apply the knowledge distillation to achieve tiny speech enhancement [180, 181]. In such
cases, the powerful teacher model can provide pseudo-clean targets to train a student model. However,
it raises the same problem that the teacher model may provide misleading guidance to the student
model when its predictions are inaccurate as we discussed in unsupervised domain adaptation [P4].
To solve this, it can naturally be combined with uncertainty modeling, where the teacher model
selectively transfers reliable knowledge to the student model based on its uncertainty estimates.
Another interesting research direction could be to combine teacher-student learning with uncertainty-
based curriculum learning. More specifically, we can employ an uncertainty-based teacher model to
progressively guide the student model’s training. This can be achieved by ranking the difficulty of
unlabeled data based on uncertainty assigned by the teacher model to the corresponding clean speech
estimates, such that a student model can be trained on samples ranging from easy to difficult.

While in this thesis we evaluated the proposed uncertainty-based multi-modality fusion in the task
of audio-visual speech recognition, it can also be extended to various other tasks, such as audio-visual
emotion recognition and event detection. Furthermore, this is not necessarily limited to audio and
video modalities but can be extended to others such as text or biomedical signals. This is because
the proposed uncertainty-based fusion is designed to be independent of the specific type of modality,
but focuses on leveraging modality-wise confidences to perform modality fusion effectively. More
interestingly, extending the uncertainty-based fusion to encompass more than two modalities may
have a broader impact on practical applications. For this, future work may include replacing the
current engineered fusion scheme with a DNN-based learnable uncertainty-based fusion strategy.

The latter part of the thesis focuses on deep generative methods, specifically, the VAE-NMF frame-
work, which combines DNNs and statistical modeling in a principled way. However, the optimization
strategy at inference requires a costly MC sampling process, which may not meet real-time constraints.
Further research may focus on improving its inference speed. Recent work has pushed this direction
forward, such as leveraging variational inference [62] and Lagrange dynamics [182]. Developing a



104 Conclusion

more effective and faster inference scheme remains a promising area for further exploration. Another
computationally expensive factor during inference is the iterative updating required to obtain the NMF
parameters. Moreover, NMF reconstructs the input by a linear combination of templates, and the
inherent linearity in the reconstruction process may potentially restrict the overall performance. This
raises another question: Can we replace the NMF model with other techniques to avoid this computa-
tional burden and modeling limitation? Existing work has attempted to find a neural network-based
alternative by injecting the non-negative concept into an auto-encoder architecture [183]. Further
research can be conducted to combine it with the VAE-based speech model. Additionally, maintaining
its adaptation ability to generalize well to unseen acoustic conditions would be an interesting research
topic to explore next.

Recent work has shown that the research interest in deep generative models has expanded to
include diffusion models. Diffusion models can be trained to learn the probability distribution of
complex data, such as text, image, and speech. Unlike VAE, diffusion models do not necessarily
need to represent input data through a low-dimensional latent space, which may result in the loss of
fine details. Additionally, the diffusion-based speech enhancement methods can be designed to fully
leverage the non-linear modeling capabilities of DNNs, without the need to consider a NMF-based
noise model [86]. An interesting future research direction could focus on adapting the technique to
make it specific to the speech domain, e.g., by incorporating statistical knowledge of speech and noise
signals.
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verzerrte Inhalte, fehlerhafte Referenzen, Verstöße gegen das Datenschutz- und Urheberrecht oder
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Appendix A

The journal publication [P2] extends the conference publication [P1] according to the policy stated
in [184], so there is content overlap between them. [P1] is omitted in the main body for brevity and
included here for completeness.

A.1 [P1] Integrating Statistical Uncertainty Into Neural Network-Based
Speech Enhancement

Reference

H. Fang, T. Peer, S. Wermter, and T. Gerkmann, “Integrating statistical uncertainty
into neural network-based speech enhancement,” in IEEE Int. Conf. Acoustics,
Speech, Signal Proc. (ICASSP), Singapore, Singapore, 2022, pp. 386–390. DOI:
10.1109/ICASSP43922.2022.9747642
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ABSTRACT

Speech enhancement in the time-frequency domain is often performed
by estimating a multiplicative mask to extract clean speech. However,
most neural network-based methods perform point estimation, i.e.,
their output consists of a single mask. In this paper, we study the
benefits of modeling uncertainty in neural network-based speech
enhancement. For this, our neural network is trained to map a noisy
spectrogram to the Wiener filter and its associated variance, which
quantifies uncertainty, based on the maximum a posteriori (MAP)
inference of spectral coefficients. By estimating the distribution instead
of the point estimate, one can model the uncertainty associated with
each estimate. We further propose to use the estimated Wiener filter
and its uncertainty to build an approximate MAP (A-MAP) estimator of
spectral magnitudes, which in turn is combined with the MAP inference
of spectral coefficients to form a hybrid loss function to jointly reinforce
the estimation. Experimental results on different datasets show that the
proposed method can not only capture the uncertainty associated with
the estimated filters, but also yield a higher enhancement performance
over comparable models that do not take uncertainty into account.

Index Terms— Speech enhancement, uncertainty estimation,
Wiener filter, Bayesian estimator, deep neural network

1. INTRODUCTION

Single-channel speech enhancement algorithms typically operate in the
short-time Fourier transform (STFT) domain [1]–[3]. The Gaussian
statistical model in the STFT domain has been shown to be effective [1],
[4]. Given the assumption that the complex-valued speech and noise
coefficients are uncorrelated and Gaussian-distributed with zero mean,
various estimators have been derived, such as the Wiener filter and
the short-time spectral amplitude (STSA) estimator [1], [4], [5]. The
Wiener filter, which is optimal in the minimum mean squared error
(MMSE) sense, requires estimation of speech and noise variances. This
can be achieved by various signal processing estimators with varying
degrees of success for different signal characteristics [1], [2], [6]–[11].

Recently, deep neural networks (DNNs) have been successfully
applied to speech enhancement and regularly show an improved per-
formance over classical methods [10]–[13]. Among the DNN-based
approaches relevant to this work are deep generative models (e.g.,
variational autoencoder) and supervised masking approaches. Gener-
ative models estimate the clean speech distribution and subsequently
combine it with a separate noise model to construct a point estimate
of a noise-removing mask (Wiener filter) [10], [11]. In contrast, typical
supervised learning approaches are trained on pairs of noisy and clean

This work has been funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) project number 247465126

speech samples and directly estimate a time-frequency mask that aims
at reducing noise interference with minimal speech distortion given
a noisy mixture, using a suitable loss function (e.g., mean squared er-
ror (MSE)) [12], [13]. However, the supervised approaches often learn
the mapping between noisy and clean speech blindly and output a single
point estimate without guarantee or measure of its accuracy. In this
work we focus on adding an uncertainty measure to a supervised method
by estimating the speech posterior distribution, instead of only its mean.
Note that while this is conceptually related to the generative approach,
in this case we do not estimate the clean speech prior distribution, but
rather the posterior distribution of clean speech given a noisy mixture.

Uncertainty modeling based on neural networks has been actively
studied in e.g., computer vision [14]. Inspired by this, here we propose
a hybrid loss function to capture uncertainty associated with the esti-
mated Wiener filter in the neural network-based speech enhancement
algorithm, as depicted in Fig. 1. More specifically, we propose to train
a neural network to predict the Wiener filter and its variance, which
quantifies the uncertainty, based on the maximum a posteriori (MAP)
inference of complex spectral coefficients, such that full Gaussian poste-
rior distribution can be estimated. To regularize the variance estimation,
we build an approximate MAP (A-MAP) estimator of spectral magni-
tudes using the estimated Wiener filter and uncertainty, which is in turn
used together with the MAP inference of spectral coefficients to form a
hybrid loss function. Experimental results show the effectiveness of the
proposed approach in capturing uncertainty. Furthermore, the A-MAP
estimator based on the estimated Wiener filter and its associated un-
certainty results in improved speech enhancement performance.

2. SIGNAL MODEL

We consider the speech enhancement problem in the single microphone
case with additive noise. The noisy signal x can be transformed into
the time-frequency domain using the STFT:

Xft=Sft+Nft, (1)

where Xft, Sft, and Nft are complex noisy speech coefficients, com-
plex clean speech coefficients, and complex noise coefficients, respec-
tively. The frequency and frame indices are given by f ∈{1,2,···,F}
and t∈{1,2,···,T}, where F denotes the number of frequency bins,
and T represents the number of time frames. Furthermore, we assume
a Gaussian statistical model, where the speech and noise coefficients
are uncorrelated and follow a circularly symmetric complex Gaussian
distribution with zero mean, i.e.,

Sft∼NC(0,σ
2
s,ft), Nft∼NC(0,σ

2
n,ft), (2)

where σ2
s,ft and σ2

n,ft represent the variances of speech and noise,
respectively. The likelihood p(Xft|Sft) follows a complex Gaussian
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Fig. 1. Block diagram of the neural network-based uncertainty estimation. The neural network is trained according to the proposed hybrid loss
function.

distribution with mean Sft and variance σ2
n,ft, given by

p(Xft|Sft)= 1

πσ2
n,ft

exp

(
−|Xft−Sft|

2

σ2
n,ft

)
. (3)

Given the speech prior in (2) and the likelihood in (3), we can apply
Bayes’ theorem to find the speech posterior distribution, which is
complex Gaussian of the form

p(Sft|Xft)= 1

πλft
exp

(
−|Sft−W

WF
ft Xft|2

λft

)
, (4)

where WWF
ft =

σ2
s,ft

σ2
s,ft

+σ2
n,ft

is the Wiener filter and λft=
σ2
s,ftσ

2
n,ft

σ2
s,ft

+σ2
n,ft

is the posterior’s variance [1]. The MMSE and MAP estimators
of Sft under this model are both given by the Wiener filter [1]:
S̃ft=W

WF
ft Xft. It is known that the expectation of MMSE estimation

error is closely related to the posterior variance [15], and under the
assumption of complex Gaussian distribution it corresponds directly
to the variance, i.e.,

E{|Sft−S̃ft|2}=
∫∫
|Sft−S̃ft|2p(Sft|Xft)p(Xft)dSftdXft

=

∫
λftp(Xft)dXft=λft.

(5)

The variance λft can be interpreted as a measure of uncertainty
associated with the MMSE estimator [1]. In the following sections λft
will be referred to as the (estimation) uncertainty.

3. DEEP UNCERTAINTY ESTIMATION

The Wiener filter can be computed for a given noisy signal by estima-
tion of σ2

s,ft and σ2
n,ft using traditional signal processing techniques.

It is, however, also possible to directly estimate WWF
ft using a DNN.

Furthermore, if optimization is based on the posterior (4), besides
WWF
ft also the uncertainty λft can be estimated as previously proposed

in the computer vision domain [14]. Taking the negative logarithm
(which does not affect the optimization problem due to monotonicity)
and averaging over the time-frequency plane results in the following
minimization problem:

W̃WF
ft ,λ̃ft=

argmin
WWF

ft
,λft

1

FT

∑

f,t

log(λft)+
|Sft−WWF

ft Xft|2
λft

︸ ︷︷ ︸
Lp(S|X)

, (6)

where W̃ft, λ̃ft denote estimates of the Wiener filter and its uncer-
tainty. If we assume a constant uncertainty for all time-frequency bins,
i.e., λft=λ∗, and refrain from explicitly optimizing for λ∗, Lp(S|X)

degenerates into the well known MSE loss

LMSE =
1

FT

∑

f,t

|Sft−WWF
ft Xft|2, (7)

which is widely used in DNN-based regression tasks, including speech
enhancement [12], [16]. In this work we depart from the assumption
of constant uncertainty. Instead, we propose to include uncertainty
estimation as an additional task by training a DNN with the full
negative log-posterior Lp(S|X).

It has been previously shown that modeling uncertainty by mini-
mizing Lp(S|X) results in improvement over baselines that do not take
uncertainty into account in computer vision tasks [14]. However, in
preliminary experiments we have observed that directly using (6) as
loss function results in reduced estimation performance for the Wiener
filter and is prone to overfitting. To overcome this problem, we propose
an additional regularization of the loss function by incorporating the
estimated uncertainty into clean speech estimation as described next.

4. JOINT ENHANCEMENT
AND UNCERTAINTY ESTIMATION

Besides estimation of the Wiener filter and its uncertainty, we propose
to also incorporate a subsequent speech enhancement task that explicitly
uses both into the training procedure. The speech enhancement task
provides additional coupling between the DNN outputs (Wiener filter
and uncertainty). In this manner, the DNN is guided towards estimation
of uncertainty values that are relevant to the speech enhancement task,
as well as enhanced estimation of the Wiener filter.

If we consider complex coefficients with symmetric posterior (4),
the MAP and MMSE estimators both result directly in the Wiener
filter WWF

ft and do not require an uncertainty estimate. However, this
changes if we consider spectral magnitude estimation. The magnitude
posterior p(|Sft| |Xft), found by integrating the phase out of (4),
follows a Rician distribution [5]

p(|Sft||Xft)=
2|Sft|
λft

exp

(
−|Sft|

2+(WWF
ft )

2|Xft|2
λft

)
I0

(
2|Xft||Sft|WWF

ft

λft

)
,

(8)

where I0 (·) is the modified zeroth-order Bessel function of the first
kind.



In order to compute the MAP estimate for the spectral magnitude,
one needs to find the mode of the Rician distribution, which is difficult
to do analytically. However, one may approximate it with a simple
closed-form expression [5]:

|Ŝft|≈WA-MAP
ft |Xft|

=


1

2
WWF
ft +

√(
1

2
WWF
ft

)2

+
λft

4|Xft|2


|Xft|,

(9)

where |Ŝft| is an estimate of the clean spectral magnitude |Sft| using
the A-MAP estimator of spectral magnitudes WA-MAP

ft . It can be seen
that the estimatorWA-MAP

ft makes use of both the Wiener filterWWF
ft and

the associated uncertainty λft. An estimate of the time-domain clean
speech signal, denoted as ŝ, is then obtained by combining the estimated
magnitude |Ŝft| with the noisy phase, followed by the inverse STFT
(iSTFT). The estimated time-domain signal is then used to compute the
negative scale-invariant signal-to-distortion ratio (SI-SDR) metric [17]:

LSI-SDR =−10log10
( ||αs||2
||αs−ŝ||2

)
, α=

ŝT s

||s||2 , (10)

which is in turn used as an additional term in the loss function that
forces the speech estimate (computed with WA-MAP

ft ) to be similar to
the clean target s.

Finally, we propose to combine the SI-SDR loss LSI-SDR with
the negative log-posterior Lp(S|X) given in (6), and train the neural
network using a hybrid loss

L=βLp(S|X)+(1−β)LSI-SDR, (11)

with the weighting factor β∈ [0,1] as the hyperparameter. By explicitly
using the estimated uncertainty for the speech enhancement task, the
hybrid loss guides both mean and variance estimation to improve
speech enhancement performance. An overview of this approach is
depicted in Fig. 1.

5. EXPERIMENTAL SETTING

5.1. Dataset

For training we use the Deep Noise Suppression (DNS) Challenge
dataset [18], which includes a large amount of synthesized noisy and
clean speech pairs. We randomly sample a subset of 100 hours with
signal-to-noise ratios (SNRs) uniformly distributed between -5 dB and
20 dB. The data are randomly split into training and validation sets
(80% and 20% respectively).

Evaluation was performed on the synthetic test set without rever-
beration from DNS Challenge. Noisy signals are generated by mixing
clean speech signals from [19] with noise clips sampled from 12 noise
categories [18], with SNRs uniformly drawn from 0 dB to 25 dB.
To examine performance across different datasets, we additionally
synthesized another test dataset using clean speech signals from the
si et 05 subset of the WSJ0 [20] dataset and four types of noise sig-
nals from CHiME [21] (cafe, street, pedestrian, and bus)
with SNRs randomly sampled from {-10 dB, -5 dB, 0 dB, 5 dB, 10 dB}.
A few samples are dropped due to the clipping effect in the mixing
processing, and finally, this results in a test dataset of 623 files.

5.2. Baselines

To evaluate the effectiveness of modeling uncertainty in neural network-
based speech enhancement, we consider training the same neural
network using standard cost functions, i.e., the MSE defined as LMSE

in (7) and the SI-SDR defined as LSI-SDR in (10). They are represented
by MSE and SI-SDR in Table 1 and Fig. 3.
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Fig. 2. Example of estimation uncertainty captured by the proposed
method on the DNS test dataset, shown in (e). The proposed method al-
lows estimating clean speech by either using the estimated Wiener filter
or applying the A-MAP estimator that incorporates both the estimated
Wiener filter and the associated uncertainty, and the resulting estimates
are shown in (c) and (f), denoted by WF and A-MAP, respectively. The
estimation error of Wiener filtering in (d) is computed between the
estimated magnitudes (c) and clean magnitudes (b), indicating over- or
under-estimation of speech magnitudes.

5.3. Hyperparameters

All audio signals are sampled at 16 kHz and transformed into the
time-frequency domain using the STFT with a 32 ms Hann window
and 50% overlap.

For a fair comparison, we used the separator of Conv-TasNet [22]
that has a temporal convolution network (TCN) architecture. It has
been shown to be effective in modeling temporal correlations. We used
the causal version of the implementation and default hyperparameters
provided by the authors1 without performing a hyperparameter search.
Note that for our model performing uncertainty estimation, the output
layer is split into two heads that predict both the Wiener filter and the
uncertainty. We applied the sigmoid activation function to the estimated
mask, while using the log-exp technique to constrain the uncertainty
output to be greater than 0, i.e., the network outputs the logarithm of
the variance, which is then recovered by the exponential term in the loss
function. All neural networks were trained for 50 epochs with a batch

1https://github.com/naplab/Conv-TasNet
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Fig. 3. Performance improvement obtained on the synthetic dataset using clean speech from WSJ0 and noise signals from CHiME. POLQAi
denotes POLQA improvement relative to noisy mixtures. The same definition applies to ESTOIi and SI-SDRi. The marker denotes the mean value
over all utterances and the vertical bar indicates the 95%-confidence interval.

POLQA ESTOI SI-SDR (dB)
Noisy 2.30 ± 0.10 0.81 ± 0.02 9.07 ± 0.89

SI-SDR 2.93 ± 0.11 0.88 ± 0.01 15.99 ± 0.75
MSE 2.88 ± 0.10 0.88 ± 0.01 16.05 ± 0.71

Proposed WF 3.00 ± 0.11 0.88 ± 0.01 16.39 ± 0.73
Proposed A-MAP 3.06 ± 0.10 0.89 ± 0.01 16.42 ± 0.73

Table 1. Average performance over all utterances of the DNS non-
reverberant synthetic test dataset in terms of POLQA, ESTOI, and SI-
SDR. Values are given in mean± confidence interval (95% confidence).

size 16, the maximum norm of gradients was set to 5, and the parameters
were optimized using the Adam optimizer [23] with a learning rate
of 0.001. We halved the learning rate if the validation loss did not
decrease for 3 consecutive epochs. To prevent overfitting, training was
stopped if the validation loss failed to decrease within 10 consecutive
epochs. The weighting factor β is set to 0.01, chosen empirically.

6. RESULTS AND DISCUSSION

6.1. Analysis of uncertainty estimation

In Fig. 2, we use an audio example from the DNS test dataset to
illustrate the uncertainty captured by the proposed method, and all plots
are shown in decibel (dB) scale. Applying the estimated Wiener filter
to the noisy coefficients yields an estimate of the clean speech, denoted
as WF shown in Fig. 2 (c). To measure the prediction error, we can
compute the absolute values of the difference between the estimated
magnitudes, i.e., WF, and reference magnitudes given in Fig. 2 (b),
which indicates over- or under-estimation of speech magnitudes, shown
in Fig. 2 (d). It is observed that the model produces large errors when
speech is heavily corrupted by noise, as can be seen by comparing the
marking regions (green boxes) of the noisy mixture shown in Fig. 2 (a)
and the prediction error of Fig. 2 (d). By comparing error in Fig. 2 (d)
and uncertainty in Fig. 2 (e), the estimator generally associates large
uncertainty with large prediction errors, while giving low uncertainty
to accurate estimates, e.g., the first 3 seconds. This shows that the
model produces uncertainty measurements that are closely related to
estimation errors. In our proposed method with uncertainty estimation,
we can use not only the estimated Wiener filter, but also the estimated
A-MAP mask that incorporates both the estimated uncertainty and
Wiener filter, as given in (9). This estimate is denoted as A-MAP in
Fig. 2 (f). We observe that the A-MAP estimate causes less speech
distortion compared with the WF estimate, as can be seen, e.g., from

the marking regions of WF and A-MAP.

6.2. Performance Evaluation

In Table 1, we present average evaluation results of our method on the
DNS synthetic test set in terms of SI-SDR measured in dB, extended
short-time objective intelligibility (ESTOI) [24], and perceptual objec-
tive listening quality analysis (POLQA)2 [25]. We observe that mod-
eling uncertainty yields improvement over the baselines, where the pro-
posed WF outperforms the baselines in terms of POLQA and SI-SDR,
and a larger improvement can be observed between the baselines and
the proposed A-MAP. This shows that it is advantageous to model un-
certainty within the model instead of directly estimating optimal points.

In Fig. 3, we present speech enhancement results in terms of mean
improvement of POLQA, ESTOI, and SI-SDR. For this evaluation we
used another unseen test dataset based on speech from WSJ0 and noise
from CHiME. It shows that our proposed approach performs better in
terms of speech quality given by higher POLQA values without dete-
riorating ESTOI (with an exception at SNR of −10 dB) and SI-SDR,
which again demonstrates the benefit of modeling uncertainty. We also
observe that larger improvement over the baselines is achieved at high
SNRs, which may be explained by the fact that, at high SNRs, speech
quality (and thus POLQA) is mainly affected by speech distortions,
while at low SNRs the main factor is residual noise.

7. CONCLUSION

Based on the common complex Gaussian model of speech and noise
signals, we proposed to augment the existing neural network archi-
tecture with an additional uncertainty estimation task. Specifically,
we proposed simultaneous estimation of the Wiener filter and the
associated uncertainty to capture the full speech posterior distribu-
tion. Furthermore, we proposed using the estimated Wiener filter
and uncertainty to produce an A-MAP estimate of the clean spectral
magnitude. Eventually, we combined uncertainty estimation and speech
enhancement by the proposed hybrid loss function. We showed that
the approach can capture uncertainty and lead to improved speech
enhancement performance across different speech and noise datasets.
For future work, it would be interesting to integrate the uncertainty
estimation into multi-modal learning systems, which may rely more
on other modalities when audio modality raises high uncertainty.

2We would like to thank J. Berger and Rohde&Schwarz SwissQual AG
for their support with POLQA.
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Appendix B

B.1 Derivation of the Update Rule

The iterative update rules in [P7] are derived by taking the derivative of the auxiliary function with
respect to the relevant parameters. The derivation of the update rule for the activation matrix is
detailed in the accompanying support document, which is linked in the paper and openly available. It
is included below for completeness.



Supporting document to the paper "Joint Reduction of Ego-noise and
Environmental Noise with a Partially-adaptive Dictionary"

Huajian Fang, Guillaume Carbajal, Stefan Wermter, Timo Gerkmann

This supporting document provides the derivation of the update for the parameter H as an example. Recall that given the
VAE speech model and two NMF noise models, the noisy mixture can be described by

xft ∼ NC(0, gtσ̂
2
s,f (zt) +

∑

k

wfkhkt +
∑

l

wflhlt) (1)

It is intractable to compute the maximum likelihood of the model with latent variable zt and unknown parameters ζ =
{wfk, hkt, wfl, hlt, gt} directly. However, it can be alternatively solved by the Monte Carlo expectation maximization (MCEM)
algorithm [2, 3].

The expectation of the complete data log-likelihood is shown as

Q(ζ, ζ]) = Ep(Z|X,ζ])[ln p(X,Z|ζ)]

' − 1

R

∑

r


∑

f,t

(
ln

(
gtσ̂

2
s,f (z

(r)
t ) +

∑

k

wfkhkt +
∑

l

wflhlt

)

+
|xft|2

gtσ̂2
s,f (z

(r)
t ) +

∑
k wfkhkt +

∑
l wflhlt

)
+ TF ln(π)

)
,

(2)

where the last constant term can be ignored and ζ] denotes an initialization of the parameters.
The unknown parameters are optimized using the auxiliary function technique [1]. Let C(H) be defined as −Q(ζ, ζ])

with respect to the parameter H only, whereas the other parameters are seen as constants. The auxiliary function G(H|H̃) :

RK×T+ × RK×T+ → R+ is defined as the upper bound of C(H) which is tight at H̃ if and only if

• ∀H ∈ RK×T+ , C(H) = G(H|H)

• ∀(H, H̃) ∈ RK×T+ × RK×T+ , C(H) ≤ G(H|H̃).

If the (i+ 1)-th iteration H(i+1) satisfies G(H(i+1)|H(i)) ≤ G(H(i)|H(i)), C(H(i+1)) and C(H(i)) will meet

C(H(i+1)) ≤ G(H(i+1)|H(i)) ≤ G(H(i)|H(i)) = C(H(i)). (3)

H(i+1) is chosen by minimizing:
Hi+1 = arg min

H∈RK×T
+

G(H|H(i)). (4)

This turns optimization of the criterion function C(H) into iterative optimization of the auxiliary function.
By decomposing C(H) into concave and convex parts, denoted by “C(H) and C̆(H), respectively, auxiliary functions can

be constructed for each part separately [1]. The decomposition is shown as

C(H) = C̆(H) + “C(H) (5)

with
“C(H) =

1

R

∑

r

∑

f,t

(
ln
(
gtσ̂

2
s,f (z

(r)
t ) + (WH)ft +

(
WH

)
ft

))
, (6)

C̆(H) =
1

R

∑

r

∑

f,t


 |xft|2

gtσ̂2
s,f (z

(r)
t ) + (WH)ft +

(
WH

)
ft


 , (7)

where (WH)ft =
∑
k wfkhkt and

(
WH

)
ft

=
∑
l wflhlt.



• Concave:

An auxiliary function “G(H, H̃) to the concave part “C(H) can be defined as its first order Taylor approximation at H̃ using the
upper-bound property of its tangent:

“C(H) ≤ “G(H, H̃) = “C(H̃) +∇T “C(H̃)(H − H̃) (8)

This gives:

“G(H, H̃) =
1

R

∑

r

∑

f,t


ln
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 , (9)

where
(
WH̃

)
ft

=
∑
k wfkh̃kt.

• Convex

An auxiliary function Ğ(H, H̃) to the convex part C̆(H) can be obtained using Jensen’s inequality. The convex part can be
written as:

C̆(H) =
1

R

∑

r

∑

f,t

|xft|2C̆(r)
ft (ht) (10)

with
C̆

(r)
ft (ht) =

1

gtσ̂2
s,f (z

(r)
t ) + (WH)ft +

(
WH

)
ft

, (11)

where ht ∈ RK is the t-th column in H .
To construct Jensen’s formula, we can define two terms:

a =
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b =




∑
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 , (13)

such that
a+ b = 1. (14)

Applying Jensen’s inequality to C̆(r)
ft (ht) gives:

C̆
(r)
ft (ht) =

1

a

(
gtσ̂2

s,f (z
(r)
t )+(WH)

ft

)

a + b
(
∑

k wfkhkt)
b

≤ a a

gtσ̂2
s,f (z

(r)
t ) +

(
WH

)
ft

+ b
b∑

k wfkhkt
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From (10), (12), (13), and (15), Ğ(H, H̃) is given as:
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(16)
Finally, the complete auxiliary function is given by:

G(H, H̃) = “G(H, H̃) + Ğ(H, H̃) (17)

Taking the derivative of the auxiliary function with respect to H and setting to zero will give the update rule. The optimiza-
tion starts with random initialization, and the value of h̃kt is set to hkt at the previous step. The derivation for other parameters
can be done similarly.
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