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AAbbssttrraacctt  

TThis study proposes a new spectral representation called the Zeros of Z-Transform (ZZT), which 
is an all-zero representation of the z-transform of the signal. In addition, new chirp group delay 
processing techniques are developed for analysis of resonances of a signal. The combination of the 
ZZT representation with the chirp group delay processing algorithms provides a useful domain to 
study resonance characteristics of source and filter components of speech. Using the two 
representations, effective algorithms are developed for: source-tract decomposition of speech, 
glottal flow parameter estimation, formant tracking and feature extraction for speech recognition.   

The ZZT representation is mainly important for theoretical studies. Studying the ZZT of a signal is 
essential to be able to develop effective chirp group delay processing methods. Therefore, first the 
ZZT representation of the source-filter model of speech is studied for providing a theoretical 
background. We confirm through ZZT representation that anti-causality of the glottal flow signal 
introduces mixed-phase characteristics in speech signals. The ZZT of windowed speech signals is 
also studied since windowing cannot be avoided in practical signal processing algorithms and the 
effect of windowing on ZZT representation is drastic. We show that separate patterns exist in ZZT 
representations of windowed speech signals for the glottal flow and the vocal tract contributions. 
A decomposition method for source-tract separation is developed based on these patterns in ZZT.  

We define chirp group delay as group delay calculated on a circle other than the unit circle in z-
plane. The need to compute group delay on a circle other than the unit circle comes from the fact 
that group delay spectra are often very noisy and cannot be easily processed for formant tracking 
purposes (the reasons are explained through ZZT representation). In this thesis, we propose 
methods to avoid such problems by modifying the ZZT of a signal and further computing the chirp 
group delay spectrum. New algorithms based on processing of the chirp group delay spectrum are 
developed for formant tracking and feature estimation for speech recognition. The proposed 
algorithms are compared to state-of-the-art techniques. Equivalent or higher efficiency is obtained 
for all proposed algorithms. 

The theoretical parts of the thesis further discuss a mixed-phase model for speech and phase 
processing problems in detail. 

 

 

Index Terms—spectral representation, source-filter separation, glottal flow estimation, formant 
tracking, zeros of z-transform, group delay processing, phase processing  
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CChhaapptteerr  II::                                                                                                
IInnttrroodduuccttiioonn  

 
 
  

I.1. Motivations 

Starting from 60’s speech processing has attracted many researchers. The speech research 
community and the literature have grown largely in the last 40 years. Today, yearly conferences are 
dedicated to speech processing (ICSLP and Eurospeech) which gather thousands of researchers 
from all around the world. Speech technology has taken important steps especially in the last 10-15 
years. For single speaker-language settings, very high quality speech synthesis and recognition are 
achieved. With existing tools and large speech corpora available to many people, even small 
research labs can develop high quality systems. It is interesting to note that the tools and 
approaches multiplied in time but most of today’s high quality systems have high similarity in 
terms of structure and performance. We seem to have reached a “plateau” in technology for many 
speech processing problems where break-through paradigm changes are necessary for further 
development. For that purpose, we need to re-ask our selves the fundamental questions, try to find 
gaps in our understanding of the speech phenomenon, try to have access to the “unused” 
information available in our data.  This thesis research tries to follow such a direction and mainly 
deals with very basic speech processing issues: source-tract separation, speech modeling, spectral 
processing and tries to propose new ways out of the mainstream to some of these problems. 

The (hi)story of this study  

The initial goals of this research was studying voice quality variations in speech: an area which we 
believe to be one of promising speech signal processing topics. We immediately faced the well-
known basic problem of source-tract decomposition for such a study. Although high quality 
decomposition is indispensable, the state-of-the-art algorithms have very limited quality. We think 
that source-tract decomposition stays at the very heart of many speech processing problems and 
this rather fundamental research topic deserves more attention than the existing efforts. Therefore 
we have updated our targets and decided to study this basic problem.  

For decomposing two components from a given signal, one has to ask the questions: what is the 
main difference between the two components? For which features of the signal the components 
have different characteristics? One of the discriminating features we could find is the “causality”: 
the glottal flow (source) component exhibit anti-causal spectral characteristics [Gardner, 1994, 
Doval & d’Alessandro, 1997] in contrast to the vocal tract filter component. The path to follow was 
obvious from that point on: we needed to find ways of tracking anti-causal and causal 
components/information from a given signal. It is a common practice to study the Fourier 
Transform (FT) spectrum of signals for almost all signal processing problems, and it was also our 
first direction. In the FT spectrum domain, the causality information is coded in the phase part of 
the spectrum. (Un) fortunately, phase processing is known to be another difficult topic for which 
tools/algorithms/advances are rather limited and many problems exist. We were left with two basic 
problems: source-tract separation and phase processing.  

The further questions were: why phase processing is difficult? What are the obstacles? Some 
answers we could find in literature were: phase information is in wrapped form and unwrapping is 
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necessary and difficult; phase derivative includes peaks for frequency bins where a zero/root of the 
z-transform polynomial occurs very close to the unit circle that make the unwrapping operation 
difficult [Yegnanarayana et al, 1984]. Therefore we decided to study the zero/root locations of 
signals’ z-transform on the z-plane. 

Once basic questions and possible paths to be followed are available what a researcher needs more 
is perhaps some luck. I was in VOQUAL03-Geneva [www-Voqual03] when luck hit me: Prof. 
Kawahara from Wakayama University/Japan came after my presentation to show me the matching 
points between his observations and my points/discussions and showed me a one minute movie 
which created the “butterfly effect”. It was obvious from that point on that I had to study 
windowing effects to phase spectrum and zero locations. If you continue reading this thesis I think 
you’ll agree that it was “the butterfly”. To keep some interest of the reader to Prof. Kawahara’s 
work (and since it is a bit off-topic), I do not mention in detail what I have seen in that movie.  

In short, this thesis issues two fundamental speech processing problems: source-tract separation 
and phase processing; it proposes new spectral representations to study these problems: the zeros of 
the z-transform (ZZT) representation and various chirp group delay functions; it proposes 
algorithms using these representations in the applications: glottal flow parameter estimation, 
formant estimation and feature extraction for speech recognition.  

 

  

I.2. Original contributions of the thesis 

ZZT Representation of signals 

In this thesis, we introduce a new spectral representation for a signal: the zeros of the z-transform 
(ZZT) representation. There are mainly two useful points of the ZZT representation for speech 
signals: i) it sheds light into many difficulties involved in phase spectrum processing and for this 
reason provides us with the opportunity to design better methodologies, ii) patterns exist in the ZZT 
of speech signals which make it possible to design a new spectral decomposition method for 
source-tract separation.  

Being a form of z-transform representation, ZZT representation is especially useful for studying 
some properties of the Discrete Fourier Transform (DFT) of a signal. Through a systematic study 
of ZZT of windowed speech, we show that windowing lies at the very heart of the problem of 
spikes in the derivative of phase spectrum due to zeros close to the unit circle. To obtain spike-free 
group delay functions, all zeros should be at some distance from the unit circle and we can 
guarantee existence of a zero-free region around the unit circle only for a very special case of 
windowing: glottal closure instant synchronous windowing with a size of two pitch periods and 
with one of the three windowing functions: Blackman, Gaussian or Hanning-Poisson.  

The fact that we can obtain spike-free group delay functions is an important step for phase 
processing. There are actually plenty of signal processing applications, which can benefit from the 
results of this study. In many signal processing studies, phase estimation is considered to be a 
difficult problem and discarded. However, for some applications, the phase information is essential 
or at least is an important factor of the efficiency of the algorithms. The methods defined in this 
thesis provide hopefully a potential to remove some of the obstacles in the phase estimation 
problem. Some of these applications are listed in Section II.4 dedicated to review of state-of-the-art 
for phase processing of speech.   

The systematic study of the ZZT of windowed speech signals has one more important output: 
separate patterns for the glottal flow and vocal tract contributions can be observed. The ZZT 
representation includes two lines/groups of zeros: one outside the unit circle and one inside the unit 
circle with gaps creating formant peaks on the spectrum. These observations have led us to design a 
spectral source-tract separation algorithm based on ZZT-decomposition. Our methodology involves 
no modeling but direct separation in the spectral domain. In addition, such an observation both 
supports the studies discussing anti-causality of the glottal flow component [Jackson, 1989, 
Gardner, 1994, Doval et al, 2003] and suggests a mixed-phase model for speech signals. For 
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completeness of the theoretical background, we also discuss a mixed-phase model for speech 
signals through ZZT patterns of source-filter model of speech. 

Chirp group delay processing  

In this thesis, we propose use of new ‘chirp group delay functions’ for speech analysis. The chirp 
group delay simply corresponds to the group delay function computed on a circle in z-plane other 
than the unit circle. It is the negative derivative of the phase component of the chirp z-transform.  

The necessity of such a representation is due to the difficulties involved in group delay processing. 
We first discuss these difficulties, show that windowing is very important through ZZT 
representation and we propose criteria for optimum windowing. Although the group delay one can 
obtain after appropriate windowing is incomparably smoother and spike-free, there are still some 
problematic issues for some special cases like: reliable glottal closure instant (GCI) detection for 
synchronicity of the window is not always easy and it is not possible to guarantee absence of zeros 
close to the unit circle for noisy speech even when windowing is appropriately performed. 
Therefore we have developed chirp group delay processing as an alternative, for which spike-
freeness can be guaranteed. Robust spectral processing can be achieved using this representation.  

Applications of ZZT and chirp group delay 

Using the proposed representations and functions, various algorithms are developed in this thesis 
for formant tracking, glottal flow parameter estimation and feature extraction for speech 
recognition. Due to time constraints the application areas are kept limited to these topics however 
we believe that the two representations can be further used in many other speech analysis 
applications. Some of these potential areas are discussed throughout the manuscript in various 
sections.  

 

  

I.3. Plan 

The thesis manuscript starts with this introduction chapter dedicated to presentation of motivations 
and achievements together with a state-of-the-art review for the applications targeted. Following 
the introduction chapter, the main contributions of this thesis are presented in two parts: theory and 
applications. 

The first part is titled “Spectral representation of speech by zeros of the z-transform (ZZT) 
representation and chirp group delay” and it presents the two representations developed within 
this thesis work. The first chapter of this part (chapter III) is dedicated to the ZZT representation. 
First, the ZZT representation is presented as a form of z-transform representation of discrete time 
signals.  Then source-filter model of speech is studied through the ZZT representation. Finally the 
ZZT of windowed speech signals is studied (which is very important for real-life applications). The 
second chapter (chapter IV) of this part is dedicated to chirp group delay processing. First, a review 
of group delay processing theory is presented. Then difficulties of group delay processing are 
discussed and finally chirp group delay function is proposed as an alternative phase based 
representation for which problems of group delay processing are avoided. This chapter also 
includes study of group delay characteristics of a mixed-phase speech model. 

The second part, “Applications of ZZT and chirp group delay processing in speech analysis”, is 
dedicated to application of the two representations.  First, we describe a source-filter 
decomposition algorithm based on ZZT representation (the algorithm is named as ZZT-
decomposition). The second application presented is a glottal flow parameter estimation algorithm 
using the ZZT-decomposition. Third application is in formant tracking and both the ZZT 
representation and chirp group delay processing theory is utilized. The fourth algorithm presented 
is based on linear predictive (LP) modeling of mixed-phase speech signals. This algorithm does not 
include ZZT or chirp group delay but the mixed-phase speech model discussed in the second part 
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and the well-known LP-covariance approach to modeling/analysis from literature. Finally the fifth 
application is in speech recognition. In this part we show that chirp group delay functions can be 
effectively used in speech recognition systems to improve recognition rates. 

Finally, the manuscript closes with the “Conclusion and future works” part that summarizes the 
outputs of the study, lists unanswered questions and proposes future works using ZZT 
representation and chirp group delay processing theory.   
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CChhaapptteerr  IIII::                                                                                                
SSttaattee--ooff--tthhee--aarrtt  

 
  

II.1. Introduction 

According to the well-known source-filter model for speech (Fig. 1), speech signals are produced 
by exciting the vocal tract system by periodic source (glottal flow) signals. Speech analysis studies 
mainly target analysis of short-time and long-time variations in the characteristics of these two 
components. 

 

Periodic glottal  
pulse 

Vocal tract  
filter 

Friction noise 

Lip  
radiation 

Filter Source 

Speech 

 
Fig. 1: Source-filter model of speech [Fant, 1960] 

Estimation of the vocal tract filter properties and glottal flow estimation are the two problems 
addressed in most studies in the area of speech analysis. Studies on glottal flow and vocal tract 
components of speech have the potential to extend our knowledge and understanding of dynamics 
of speech signals and get more in-depths to natural human communication system. Although these 
topics have been extensively studied during last 40 years it is very likely that both of the topics will 
continue to be open for the years to come. 

Glottal flow estimation is important in many speech applications. In pathological voice processing 
for diagnosis and therapy, reliable glottal flow estimation is of great importance since perturbations 
in glottal flow component are considered to be one of the main sources of speech disorders. Glottal 
flow estimation is also important for voice quality (the auditory ‘coloring’ of a person’s voice) 
analysis, which is a topic gaining popularity in especially speech synthesis for generation of affect. 
Some other application areas for glottal flow estimation are: prosodic annotation of speech (stress 
labeling), expressive or emotional speech synthesis, speaker identification, emotion recognition, 
high quality parametric speech synthesis.  

Natural resonances of the vocal tract filter are named as formants, which are the representative 
features of the vocal tract system. Many researchers have studied ways of tracking formant 
frequencies and the literature issuing this problem is growing constantly. One of the main 
applications of formant tracking is parametric speech synthesis in which speech is synthesized by 
exciting a time-varying vocal tract filter. Formant tracking is important for understanding/modeling 
vocal tract filter dynamics and for further designing rules needed for computation of filter 
coefficients during synthesis time. Another application area of formant tracking is speech 
recognition [Deng & Sun, 1994, Welling & Ney, 1998].  

Spectral analysis techniques have been used in speech processing for many years, in many 
applications. In most of those applications, estimation of some global characteristics is aimed and a 
smoothed form of the magnitude spectrum obtained from Fourier Transform (FT) spectra is 
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utilized. Due to difficulties in processing phase spectrum, researchers have preferred working on 
the magnitude spectrum most of the time. However, amplitude carries only a part of the spectral 
information and studying phase characteristics, we may get access to some information not 
completely available in the magnitude spectrum.  

This thesis discusses these three issues (source and vocal tract parameter estimation and spectral 
processing) in speech analysis. A detailed literature review on all of these topics is likely to end up 
in being a complete PhD thesis due to the size of the literature and the variety of approaches. To be 
able to concentrate on the topics that are original in this thesis, we first present a general view of 
the state-of-the-art in these application topics in the following section. Detailed reviews of the state 
of the art of some specific topics (like group delay processing theory) are presented in the sections 
where we present our original approaches. 

 
  

II.2. Glottal flow estimation and voice quality analysis 

Glottal flow (i.e. source) estimation from recorded speech signals is a problem extensively studied 
by many researchers in the last 40 years. It is considered as one of the important and difficult 
problems of speech processing. Various techniques have been proposed for the estimation and 
various models have been introduced describing the glottal flow signal for voiced speech. Among 
the glottal flow models (a review of the popular models is available in [Doval & d’Alessandro, 
1999] and in [Cummings & Clements, 1995]), the Liljencrants-Fant (LF) model [Fant, 1985] is the 
most frequently used one.  

In Fig. 2, the periodic LF model glottal flow derivative signal (dUg(t)) is presented together with 
the glottal flow (Ug(t)) signal (scaled for better comparative viewing). The time parameters (Tp, 
Te, Tc, Ta) indicate the zero-crossings and function change points, which serve as landmarks on the 
waveform. Ee defines the amplitude of excitation and T0 defines the fundamental pitch period. The 
LF model signal is composed of two waveform segments concatenated at glottal closure instant 
(GCI), the instant of maximum negative peak of the glottal flow derivative signal. The first 
segment is referred as the first phase (Eq. 2.1). The length of the first phase is defined by the Te 
parameter. The first phase includes the maximum peak of the glottal flow signal and the location of 
the maximum peak is defined by the Tp parameter (or by αm, the asymmetry coefficient which 
indicates the location with respect to the length of the first phase). The open quotient (Oq) is used 
as a measure of glottis open duration within a pitch period. The second segment is named as the 
return phase (Eq. 2.2) and characterizes the closure of the glottis. The effective duration of the 
return phase is indicated by the Ta parameter. The duration of the LF model signal is Tc and 
together with a zero-valued segment (Eq. 2.3) a complete pitch cycle is obtained with length T0. 

 
Fig. 2: LF model of glottal flow signal. 
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As time-domain signals are concerned, the differential glottal flow component can very vaguely be 
observed on the speech pressure signal recorded (see Fig.3a) and once lip radiation (which is often 
modeled as a differentiator) is compensated by integration of the speech signal, the glottal flow 
signals can be observed more apparently (see Fig.3c). In the spectral domain, the glottal flow 
component contributes to the speech spectrum with two components [Doval & d’Alessandro, 
1999]: the so-called glottal formant (due to the first phase, Eq. 2.1) and the spectral tilt (due to the 
return phase, Eq. 2.2). As the spectrum is concerned, visual observation of the glottal flow 
contribution is more difficult. The glottal formant can be observed (Fig.3b) for some vowels and 
phonation types for which the first vocal tract formant frequency is relatively high (for example for 
low pitch /a/). 

 

 
Fig. 3: Glottal flow contribution in speech signals. 

a) time-domain synthetic speech signal (with formants at 600Hz, 1200Hz, 2200Hz, 3200Hz and 
4200Hz) and LF model glottal flow derivative, b)magnitude spectrum of synthetic speech and 

glottal flow derivative, c) time-domain integrated synthetic speech signal and glottal flow signal, 
d)magnitude spectrum of integrated synthetic speech and glottal flow. 

 

 

Most (if not all) glottal flow estimation (from recorded speech signals) methods in literature suffer 
from robustness problems and the techniques, that are known to be best, work only for very limited 
conditions (normal phonation, sustained vowels with high first formant frequency and moderate or 
low pitch). Glottal flow estimation is usually accompanied by parameter estimation techniques, 
which compute the parameters indicated in Fig. 2 that describe the LF model signal. Therefore, 
there are actually two problems to be solved: estimating the glottal flow signal from speech signals 
and extracting the parameters of the model from the estimated glottal flow. Below we present a 
short review of the state-of-the-art in glottal flow estimation. For a more detailed review of the 
theory and techniques, the reader is referred to the recent PhD dissertation by Christer Gobl [Gobl, 
2003]. 
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Glottal flow signal estimation methods 

In the basic source-filter model, speech production is a “forward only” system without interaction 
between source and vocal tract filter. Many studies are based on the property that linear decoupling 
of vocal tract (called ‘inverse filtering’) is possible, which is not completely true [Rothenberg, 
1981]. However, with the existing approximations and estimations, we are still able to understand 
some phenomenon and build high quality formant synthesis, which proves the potential of currently 
existing linear techniques. For this reason and also for its low complexity, linear techniques are still 
much more popular than non-linear techniques. 

One of the earliest ways of inverse filtering is recording the volume velocity waveform by the help 
of a flow mask [Rothenberg, 1973] and removing formants manually by anti-resonance circuits 
[Gauffin & Sundberg, 1989]. This technique needs utilization of a specially designed mask and 
manual inverse filter design. Manual inverse filtering techniques are reported to be sometimes more 
reliable than automatic inverse filtering techniques [Gobl & Chasaide, 2001], but they are time 
consuming and subjective. Therefore analysis of large speech databases by manual inverse filtering 
is inappropriate and robust automatic tools are needed. Manual inverse filtering is more appropriate 
for studies aimed at investigating certain phenomenon of speech with a small set of data. 

One automatic technique that influenced many researches in all areas of speech processing is the 
Linear Predictive (LP) modeling of speech [Makhoul, 1975], which assumes that each speech 
sample can be expressed as a linear combination of the past samples (referred to as all-pole 
modeling). Both the glottal excitation signal and the vocal tract can be modeled by all-pole systems 
[Jackson, 1989, Gardner, 1994, Doval et al, 2003] and LP analysis applied directly on speech 
signals provides an all-pole system that is a combination of the two systems. The main difficulty is 
obtaining the vocal tract part of the all-pole system required for inverse filtering to get the glottal 
flow signal.  

The techniques of glottal flow estimation by LP inverse filtering can be classified by the approach 
they use to get the vocal tract part. One class of studies uses only some part of the speech 
waveform called the closed-phase (referring to portion of the pitch period glottis being closed), 
which is supposed to include only the vocal tract filter impulse response [Wong et al, 1979]. 
Therefore, such systems need to detect the closed-phase and apply LP analysis to estimate directly 
the vocal tract filter. Such an approach suffers from the difficulties in finding the closed-phase 
correctly and with enough duration (i.e. the closed-phase needs to be long enough to be able to 
estimate the vocal tract filter coefficients accurately). For breathy phonation for example, the 
existence of closed-phase cannot be guaranteed at every pitch period.  

A second class of studies jointly estimates vocal tract and source [Milenkovic, 1986, Lu & Smith, 
1999]. These studies utilize a linearly separable source-filter model and a linear model for the 
source signal. The estimation procedure jointly determines auto-regressive (AR) model of the vocal 
tract response together with the parameters of the glottal flow model.  

Another class of studies cover the iterative approaches [Alku, 1992 a], which start estimation with 
a rough initialization for the source and tract components and try to separate the two systems in an 
iterative procedure. There is actually one well-known problem in LP analysis, which is general to 
all types of LP-based analysis: the dependency on the analysis order (i.e. the number of past 
samples used in the model). Once the number of resonances available in the speech signal does not 
match the number of pole-pairs1 in the model, either spurious resonances are detected or some are 
missed. In the iterative approaches, the number of poles in the glottal signal and in the vocal tract 
filter are fixed to constant values (usually 3 for the glottal flow component, corresponding to a real 
pole and a complex pole-pair) and it is hard to obtain a reliable pole separation with fixed number 
of poles. In addition, the detection of a glottal formant at an equal or higher frequency than the 
frequency of the first vocal tract formant (F1) pole is very difficult and remains as an important 
obstacle to source-tract separation by LP analysis.  

One of the main difficulties of inverse filtering studies is the lack of available reference data; 
therefore there is difficulty in comparing various methods. Fortunately, recently some efforts have 
been made to collect-provide common data (in the voice quality workshop VOQUAL03 [www-
Voqual03], a useful data collection is provided for public use). However, this serves as the first 

                                                           
1 Please refer to Appendix B for a short description of the LP model and relation between pole-pairs and 
resonances. 
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step only. Because given a speech signal, it is very difficult to judge which inverse filtered version 
is closer to its real glottal flow. A common agreed (among experts) glottal flow estimate data is of 
ultimate need for future improvement in inverse filtering techniques for comparing existing 
methods. Most often controlled tests on synthetic speech are performed, which are currently the 
only way to have reference data. However, the robustness of methods varies a lot when we switch 
from synthetic speech to real speech (see our tests for comparing robustness of three formant 
tracking algorithms on real and synthetic speech signals in section V.3.2). An alternative path to 
follow is to compare results of glottal flow estimation from speech signals and results obtained 
using other modalities (like video data [Alku et al, 2000] or EGG [Henrich et al, 2000]) and check 
correlation of results. We think this is currently the most appropriate way of testing algorithms, 
therefore in our tests we used this approach. 

Glottal flow parameter estimation methods 

Once an estimate of the glottal flow signal is obtained, parameters of a glottal flow model should 
be calculated to be able to continue with higher level studies on detection of phonation type, 
studying voice quality variations, etc.  

In [Strik, 1998], some of the available parameter estimation methods are compared. We enlarge his 
classified list of methods below. 

Parameter estimation can be performed on the time domain signal by detecting landmarks of the 
signal (minima, maxima, zero crossings) [Alku, 1992 b]. These methods are not very robust to 
noisy data since the time domain waveforms and landmarks vary a lot with noise. More robust 
time-domain methods also exist like estimation of NAQ (or Rd) parameter [Fant, 1997, Bäckström 
et al, 2002]. NAQ (or Rd) parameter is a single parameter representation of the glottal flow signal 
and may provide good initial estimates of parameters for iterative techniques.  

Fitting a source model to time domain data is maybe the most frequently used approach 
[Riegelsberger et al, 1993, Plumpe & Quatieri, 1999, Childers, 1995]. Most of the glottal flow 
models are nonlinear models. Therefore the parameter estimation problem is actually a nonlinear 
curve-fit problem. Many studies include nonlinear least squares estimation methods (Gauss-
Newton, gradient algorithms, simplex search, etc.) in their procedures. While being more robust to 
noise, these methods have difficulty with phase distorted data since the waveform shape is the main 
source of information for this type of analysis. 

Frequency domain methods seem to be more robust in handling both noisy and phase distorted data 
[Oliveira, 1993, Alku et al, 1997, Ding & Kasuya, 1996]. Equally, the glottal flow signal is 
modeled by an all-pole filter and parameters are estimated using LP analysis in some studies 
[Jackson, 1989, Gardner, 1994, Childers, 1995, Henrich et al, 1999], which can be considered to be 
a frequency-domain method.  

Apart from parameter estimation from estimated glottal flow signals, there exist some parameter 
estimation methods directly on the speech signal spectrum. Doval and d’Alessandro's study [Doval 
& d’Alessandro, 1997], showed that glottal flow characteristics contribute to the speech signal 
spectrum with two components: the so-called glottal formant and spectral tilt. Considering the 
difficulties and robustness problems of inverse filtering, estimation of spectral parameters directly 
from speech spectrum related with phonation changes is potentially a good direction to follow (i.e. 
tracking variations on those two components in speech spectrum). In [Hanson & Chuang, 1999], 
several spectral parameters based on harmonic amplitudes are proposed (like H1-A3 as a measure 
of spectral tilt) and have been tested in many studies. However, very few studies report successful 
utilization of such parameters in real applications. We believe that this area is still open for further 
research and potentially will result in advanced methods with higher robustness than the existing 
methods.  

One of the main application areas of glottal flow signal and parameter estimation is in voice quality 
research. We find it important at this point to provide a short review of the current state-of-the-art 
in voice quality analysis in concatenative TTS since some outputs of this research are directly 
applicable in some problems in this topic and it is within our primary motivations for future works 
of this thesis.  
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Applications of glottal flow estimation in voice quality analysis for 
concatenative TTS  

Voice quality in speech synthesis research usually refers to the perceived degree of characteristics 
like breathiness, creakiness and loudness. Voice quality variations are considered to be mainly due 
to the variations in the phonation (production of the glottal excitation signal) process at the glottis. 
Voice quality issues have often been studied within the context of formant synthesis in the speech 
synthesis area since in this type of parametric approach, glottal excitation signals are synthesized 
parametrically and therefore can rather easily be controlled. Few studies address voice quality 
issues in concatenative synthesis [Alessandro et al, 1998, Kawai & Tsuzaki, 2004, Stylianou, 1999, 
Campbell & Marumoto, 2000]. But voice quality analysis/synthesis is drawing more and more 
attention in the domain of concatenative speech synthesis since it is one of the most important 
features of naturalness in speech. In addition, it is especially important for emotional/expressive 
speech synthesis (an area which is gaining popularity) since voice quality codes as much 
information about the state of the speaker as does the prosodic information [Campbell & 
Marumoto, 2000]. There is a strong correlation between voice quality variations and prosodic 
variations in speech since both are features of the phonation process. Therefore, advances in one of 
the fields would potentially result in advancement in the other. However, current state of the art in 
voice quality analysis/modification/synthesis of recorded speech is not yet advanced enough to be 
widely used since tools for estimating and modifying features of the glottal excitation are 
necessary; this is a challenging problem due to non-linear processes in speech production.  

From a signal processing point of view, voice quality variations mainly correspond to variations in 
spectral tilt, in the relative amount of aperiodic components in speech, and in some spectral 
variations in the low frequency part of the spectrum (like variations in the glottal formant 
frequency (Fg), in the first formant bandwidth, in amplitudes of the first few harmonics, etc.) 
[Alessandro et al, 1998]. In Fig. 4, we demonstrate (on synthetic speech signals) how variations in 
two spectral features (glottal formant frequency, Fg, and high frequency band energy) correspond 
to a variation of phonation in the tense-soft dimension. The time-domain signals presented at the 
bottom figures include the glottal excitation (glottal flow derivative) signal and the speech signal 
obtained by filtering this glottal excitation signal with an all-pole vocal tract filter with resonances 
at 600Hz, 1200Hz, 2200Hz and 3200Hz. A variation from tense phonation to soft phonation 
corresponds to a decrease both in glottal formant frequency and high frequency band energy (and 
vice versa). For a detailed study of acoustic feature variations due to voice quality variations, see 
[Klatt & Klatt, 1990]. In the following paragraphs we provide a list of current-future issues in voice 
quality for concatenative text-to-speech (TTS). 

 
Fig. 4: Spectral variations due to variations in phonation.  

Top figures show the magnitude spectrum of the speech signals and bottom figures show the time 
domain signals for glottal excitation and speech. 
 

Voice quality studies in concatenative speech synthesis research are concentrated mainly on voice 
quality labeling of speech corpora. In corpus construction for concatenative synthesis, one of the 
main difficulties is the need for long recording sessions and this brings; as a matter of fact, voice 
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quality changes during sessions (for example the voice fatigue effect at the end of sessions). Once 
long sessions are split into smaller sessions to avoid fatigue, then rises the problem of matching 
voice qualities between sessions. Voice quality variations may be induced by many other factors, 
which are related to physical properties of the vocal folds or even psychological factors (when the 
speaker gets bored, he/she may start speaking fast-tense to be able to finish the recording quickly). 
Such variations in speech corpora potentially result in an increased degree and frequency of 
acoustic discontinuities in synthetic speech. This problem has been addressed in some recent 
studies [Campbell & Marumoto, 2000, Kawai & Tsuzaki, 2004] and is an open research area.  

Most often, voice quality variations are treated as very slow variations (for example variations 
between two recording sessions of several hours) but actually, voice quality differences do not only 
exist between segments from two different phrases. Voice source characteristics may show quite 
fast variations and voice quality discontinuities may exist even between two segments of the same 
sentence. One of the reasons why voice quality discontinuities are not seen as a major concern by 
current TTS systems is that unit selection is based on phonological structure matching and 
therefore implicitly selects segments with substantial voice quality continuity. However, voice 
quality and prosody are not completely interdependent and the realization of various voice quality 
effects for the same prosodic pattern and phonological segment is possible, and even desirable for 
emotional speech synthesis.  

There are mainly two ways to avoid the discontinuities introduced by voice quality mismatches: 
using off-line signal processing to equalize some voice quality variations, or including voice 
quality features in concatenation costs for unit selection to guarantee voice quality variation 
continuity. These are among our future goals of research. 

The advantage of off-line processing for voice quality equalization is that it does not introduce 
additional complexity in unit selection or to run time signal processing. The second solution stays 
rather as an unstudied subject apart from studies investigating which acoustic features are 
correlated with voice quality variations. One such study is [Kawai & Tsuzaki, 2004] which 
investigates the correlation of various measures (MFCC, Spectral tilt, band limited power) to 
perception scores of voice quality discontinuities constructed by concatenating phrases recorded 
over a long period of time (up to 202 days) and conclude that band limited power (8-16Khz) is a 
good measure for detecting voice quality discontinuities. This area is likely to be studied in the 
concatenative emotional speech synthesis area in the upcoming years. 

One other possible solution to the voice quality discontinuity problem is voice quality smoothing 
on the fly, which is another unstudied subject. For such an operation, some means of voice quality 
modification without audible degradation in the segmental quality of speech are clearly needed. 
Most of the concatenative synthesis algorithms, which include some means of spectral smoothing, 
smooth some of the voice quality discontinuities automatically (for example, spectral envelope 
smoothing operation results in smoothing of some spectral tilt discontinuity automatically). 
However such smoothing is too local for removing all voice quality variations. Higher quality 
smoothing can be possible once the separate components of discontinuity are understood (for 
example the discontinuity in the aperiodic component of speech). 

Voice quality modification is not only useful for smoothing voice quality variations but also for 
synthesizing variations on purpose. A potentially very useful and interesting approach in emotional 
speech synthesis is to use some hybrid synthesis paradigm: concatenative synthesis with more 
control parameters (like energy, spectral tilt, relative energy of the aperiodic component, glottal 
formant frequency) than the conventional concatenative synthesizers (which mostly include only 
duration and intonation information). Such an approach would stretch the limits of what is possible 
with the available data while keeping naturalness at a higher level compared to formant synthesis.  

Natural voice quality modification is one of the unaccomplished goals of speech synthesis research. 
Defining high level rules that will drive low-level parameter modifications is too complex with our 
current understanding of the phenomenon. Even, signal processing for low-level parameter 
modification on real speech signals is being addressed in just a few studies.  

As in many parameter modification schemes, there are mainly two classes of approaches: spectral 
modification techniques and parametric methods performing some form of decomposition-
modification-synthesis. The latter is usually known to introduce some audible artifacts and spectral 
modifications are preferred when possible. Spectral techniques are especially advantageous for 
voice quality modification since the perceptual relevance of spectral parameters is high, the 
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representations are rather simplified (various time-domain models can be unified into a single 
spectral representation, as presented in [Doval & d’Alessandro, 1999]) and less sensitive to phase 
distortions (while time-domain voice quality modification applied on phase distorted speech signals 
often results in very low quality speech). d’Alessandro and Doval [d’Alessandro & Doval, 1998] 
draw guidelines for spectral modification for voice quality modification. Their method includes 
modification on three dimensions: glottal formant, spectral tilt and PAPR (periodic to aperiodic 
ratio). However, the implementation of their ideas in a speech synthesizer is still not tested and is 
potentially a promising research area.   

 
  

II.3. Formant Tracking 

Automatic tracking of acoustic resonance frequencies of the vocal tract filter, the formant 
frequencies, has been another important speech analysis problem for many years. Many 
applications exist for formant tracking including parametric speech synthesis and speech 
recognition. The proposed algorithms for formant tracking in literature show large variety. We 
provide a list of approaches below without discussing them in detail to avoid large off-topic 
discussions. 

Formants are observed as smooth peaks on the envelope of magnitude spectrum of short-time 
speech signals. Most of the formant tracking algorithms perform processing of magnitude spectrum 
of speech to detect these smooth peaks on the envelope [Schafer & Rabiner, 1970, Sun, 1995, 
Zolfaghari & Robinson, 1996, Chen & Loizou, 2004]. Another type of formant trackers use LP 
analysis where the formants are defined as poles in the all-pole vocal tract system function 
[McCandless, 1974, Snell & Milinazzo, 1993, You, 2004]. Potamianos and Maragos proposed a 
formant tracking method based on AM-FM demodulation of speech signals [Potamianos & 
Maragos, 1996, Potamianos & Maragos, 1999]. Some dynamic programming algorithms, which 
match multiple resonator responses to the speech spectrum, are proposed [Talkin, 1987, Chatwal & 
Constantinides, 1987, Welling & Ney, 1998, Xia & Epsy-Wilson, 2000, Laprie, 2004]. Algorithms 
based on hidden Markov models are also available [Kopec, 1986, Yan et al, 2004]. The algorithm 
by Rao and Kumaresan [Rao & Kumaresan, 2000] uses adaptive filters to decompose speech into 
modulated components. Various modifications/implementations of this algorithm are derived 
thereafter [Bruce et al, 2002, Mustafa, 2003]. Watanabe proposed an algorithm using notch inverse 
filters mutually controlled to separate speech into single resonances [Watanabe, 2001].  

A rather unpopular way for formant tracking is group delay processing. This is mainly due to the 
fact that the group delay function has a noisy structure. Early in 1985, it has been shown that 
formant tracks can be observed on the group delay spectrogram with appropriate post-processing 
[Friedman, 1985] and theoretically the group delay functions should provide better resolution for 
formant peaks compared to the magnitude spectrum [Murthy & Yegnanarayana, 1991 a]. 
Yegnanarayana and Murthy have studied the characteristics of group delay spectra [Yegnanarayana 
& Murthy, 1992] and their application to formant tracking [Murthy et al, 1989 a, Murthy & 
Yegnanarayana, 1991 a], and drawn the theoretical background for group delay processing. The 
formant tracking method we propose is also based on group delay processing. Therefore studies of 
Yegnanarayana and Murthy are discussed more in detail in Section IV.2. 

Moderate-good quality of formant tracking has been achieved with most of the presented 
technologies however further improvement is still needed for applications like formant synthesis of 
speech. There actually is a lack of evaluation platform. Robustness of methods change from 
utterance to utterance and from synthetic speech to real speech, so it is difficult to draw conclusions 
out of tests with few speech examples.  

 
  

II.4. Phase Processing of Speech 

Most of speech processing algorithms use spectral methods, i.e. some processing of the Fourier 
transform (FT) of speech signals. The magnitude spectrum has been the preferred part of Fourier 
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Transform (FT) spectrum in most of the speech processing methods although it carries only part of 
the available information. This is mainly due to the difficulties involved in phase processing. In 
speech processing research, phase processing is often cited as very difficult and most of the 
algorithms, which also need to reconstruct speech signals after modifying certain parameters, try to 
avoid phase related difficulties by “keeping the original phase information”. However, recent 
studies on speech perception report the importance of phase information [Paliwal & Alsteris, 2003]. 
Phase processing stands as one of unsolved, less studied topics and deserves much more attention for 
next generation speech processing applications. Many of the phase processing studies are based on 
trial-error due to obscurity of the phase related problems. There is an important lack in the 
understanding of the problems involved and in systematic ways of avoiding them. This thesis 
addresses some of these issues. 

Phase processing is not only necessary for speech processing. It is essential for many fields of signal 
processing like: radar signal processing [Costantini et al, 1999, Chen & Zebker, 2002], medical 
imaging [Chavez et al, 2002, Frolova & Taxt, 1996], source localization [Andersen & Jensen, 
2001, Li & Levinson, 2002], etc. as well as many other research fields like optics, solid state 
physics, geophysics, holography, etc [Vyacheslav & Zhu, 2003].   

Below, we summarize the phase processing studies in the speech processing area. Again detailed 
reviews of some of the methods that have similarity to our work are presented in the main text of the 
thesis where necessary.  

Phase processing in sinusoidal/harmonic modeling 

One of the topics where phase processing is essential is sinusoidal/harmonic coding-modification-
synthesis of speech signals. The sinusoidal/harmonic modeling literature is quite large; for detailed 
description the reader is referred to [Stylianou, 1996 b, Quatieri, 2002]. Here, we simply mention 
the phase related issues.  

In the sinusoidal representation of speech, short-time speech signals (s(t)) are considered to be 
composed of harmonically related sinusoids 
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where Ak is the amplitude and θk is the phase of the k-th harmonic. Plenty of methodologies for 
estimating these parameters have been proposed [McAulay & Quatieri, 1986, Griffin & Lim, 1988, 
Macon 1996, Stylianou, 1996 b].  

The sinusoidal/harmonic modeling is largely and effectively used in speech coding applications 
[Marques, 1989, Marques et al, 1990, McAulay & Quatieri, 1991]. Reliable estimation and proper 
coding of harmonic phases is essential for speech coding applications and is reported to be a 
difficult problem. Often the phase related problems are tried to be avoided by various methods: 
using the zero-phase or minimum-phase phase spectrum obtained from magnitude spectrum 
information [Oppenheim, 1969], deriving the mixed-phase signal phase spectrum through complex 
cepstrum [Quatieri, 1979], phase compensation with some all-pass filtering at the speech 
reconstruction stage [Hedelin, 1988, Sun, 1997], etc. Most of such methodologies target avoiding 
the mismatch between what is expected and what is measured, using compensation methods.  

High quality phase processing is also essential when sinusoidal/harmonic modeling is to be used in 
the context of concatenative synthesis, which is synthesis of speech signals by concatenation of 
pre-recorded speech segments. For such a task, recorded speech segments (the speech database), 
needs to be transformed into a parametric database by sinusoidal analysis (i.e. each short-time 
speech frame is represented by harmonic amplitude and phase parameters). During speech 
synthesis, speech segments are re-constructed with modified prosody (only pitch and duration are 
modified in most of the concatenative synthesis systems) and concatenated in such a way that no 
audible discontinuity exists at concatenation points. The phase related issues in concatenative 
speech synthesis can be considered in two dimensions: synchronicity of speech frames that are 
concatenated and phase spectrum discontinuities (or inter-frame incoherence and system phase 
incoherence [Stylianou, 2001]).  
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The concatenation of speech frames can be performed in many different ways (that can be grouped 
into two classes: overlap-addition (OLA) concatenation [Charpentier, 1988] and direct 
concatenation with phase continuity criterion [McAulay & Quatieri, 1986]). In all concatenation 
methods using sinusoidal representation, the continuity of harmonic phases of consecutive frames 
is a very important problem. Discontinuities in the harmonic phases result in reverberant, noisy and 
garbled speech. The most common way to guarantee the least possible audible discontinuity is to 
perform concatenation synchronously with the glottal closure instants (GCI) or removing some 
linear phase component from harmonic phases [Pollard, 1997, Stylianou, 2001].  

Phase spectrum discontinuities are part of spectral discontinuities, which appear at concatenation 
points. The existence of spectral discontinuities at concatenation is well-known and the most 
preferred way to handle this problem today is to find an optimized way to record a large variety of 
speech segments [Klabbers, 2000] and guarantee the selection of segments with minimum spectral 
discontinuities [Moebius, 2000]. In systems where the coverage of the recorded speech database is 
smaller than the target domain of synthesis, spectral discontinuities are likely to occur; therefore 
the signal concatenation tools need to be equipped with some spectral smoothing methodologies. 
Magnitude spectrum discontinuities are usually removed by linear interpolation applied on a few 
concatenation frames around the concatenation point [Stylianou, 1996 b, Dutoit & Leich, 1993, 
Dutoit & Gosselin, 1996]. Although similar interpolation techniques are also proposed for the 
phase spectrum discontinuities [McAulay & Quatieri, 1986, Macon 1996, Stylianou, 1996 b], these 
type of discontinuities are considered to be too difficult to remove since a smooth reliable phase 
spectrum is needed which is difficult to estimate. One alternative way of handling the phase 
envelope discontinuities is resetting phase spectrum of all speech frames to a fixed phase spectrum 
estimate as in the MBROLA algorithm [Dutoit & Leich, 1993]. The payback is some reduction in 
naturalness of speech (discussed in detail in [Bozkurt et al, 2004 f]). 

In addition, for high quality pitch modification of speech frames using the sinusoidal model, 
spectral envelope resampling is performed, that is: a smooth spectral envelope is obtained from the 
set of harmonic amplitudes which is supposed to include peaks and valleys due to the particular 
formant structure of the speech frame. To synthesize speech at a new pitch frequency, the modified 
set of harmonic parameters is calculated by resampling the spectral envelope at harmonic 
frequencies of the new pitch frequency.  This operation ensures that the formant structure in 
spectrum is not altered (pitch modification, which is considered to correspond to changes only on 
the glottal excitation frequency, should not alter vocal tract information: the formant peaks and 
valleys on the spectral envelope). Theoretically, resampling of the spectrum needs to be performed 
both in phase and in amplitude domains. Therefore, reliable resampling of the phase spectrum is 
also important for high quality prosody modification. 

Phase processing in speech perception 

Early investigations on the perceptual relevance of phase information came up with the conclusion 
that the human ear is phase-deaf [Helmholtz, 1875]. After a long period of time, the issue was 
restudied and falsifying results were obtained [Schroeder, 1959, Schroeder & Strube, 1986, 
Patterson, 1987]. Recently, although in very limited number, more and more researches study the 
perceptual relevance of phase information and show evidences about the importance of phase 
information in speech perception.  

Through human perception experiments, Liu et al [Liu et al, 1997] and Paliwal and Alsteris 
[Paliwal & Alsteris, 2003] showed that the short-time phase spectrum contributes to speech 
intelligibility as much as the corresponding power spectrum. Pobloth and Kleijn [Pobloth & Kleijn, 
1999] showed in a speech coding and psycho-acoustic research that human beings are able to 
distinguish between different phase spectra much better than often assumed. The studies of 
Kawahara et al showed that phase information plays an important role in high quality speech 
synthesis [Kawahara et al, 2001]. Banno et al [Banno et al, 2001] proved that the human auditory 
system is sensitive to the difference between zero and non-zero phase signals.  

The studies listed showed that phase plays an important part in perception. However due to the 
difficulties in analyzing the phase content of signals, perception studies can be conducted within 
very limited boundaries. Without reliable phase estimation, conducting reliable perceptual 
experiments using real speech data is not possible. Therefore, phase analysis studies are essential 
for speech perception studies.  
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Phase processing in speech analysis 

Phase spectrum has been used in some studies for parameter estimation purposes, though quite 
limited in number compared to amplitude based parameter estimation methods. Charpentier 
[Charpentier, 1986] proposed a pitch detection algorithm based on short-time phase spectrum 
processing. Several studies address GCI detection using group delay processing [Smits & 
Yegnanarayana, 1995, Murthy & Yegnanarayana, 1999, Kawahara et al, 2000]. Yegnanarayana 
and Murthy have studied the characteristics of group delay spectra and the application to formant 
tracking in several papers [Murthy et al, 1989 a, Murthy & Yegnanarayana, 1991 a].  

The main problem with phase based parameter estimation is robustness since phase analysis is very 
sensitive to windowing effects and noise. However we show in this thesis that it is possible to avoid 
most of the problems and estimate reliable phase information potentially useful for parameter 
estimation. 

Phase processing in automatic speech recognition 

In most state-of-the-art automatic speech recognition (ASR) systems, again the amplitude/power 
spectrum has been preferred. Two recent studies address the possibility of using phase information 
in ASR systems [Hegde et al, 2004 b, Zhu & Paliwal, 2004]. The topic is rather very new and 
currently we have no clues that phase spectrum can bring complementary information to amplitude 
based systems for improving ASR quality. In the applications part of this study, we propose new 
group delay based functions and compare our group delay functions with the two group delay 
based functions in [Hegde et al, 2004 b, Zhu & Paliwal, 2004] in an ASR experiment. We show 
that the results are encouraging and indeed there exists some potential for using phase based 
features in ASR systems.  
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FFiirrsstt  PPaarrtt                                                                                            
SSPPEECCTTRRAALL  RREEPPRREESSEENNTTAATTIIOONN  OOFF  SSPPEEEECCHH  
BBYY  ZZEERROOSS  OOFF  TTHHEE  ZZ--TTRRAANNSSFFOORRMM  ((ZZZZTT))  

AANNDD  CCHHIIRRPP  GGRROOUUPP  DDEELLAAYY  

IIn this part of this thesis, we introduce two spectral representations for speech 
analysis: the Zeros of the Z-Transform (ZZT) representation, which we define as the 
set of roots of the Z-transform polynomial for a discrete time signal and the chirp 
group delay, which refers to group delay computed from the chirp z-transform of a 
signal. This first part is dedicated to the theoretical study of these two 
representations and to a mixed-phase model for speech.  

We start with presenting a theoretical study of the ZZT of speech signals in chapter 
three. We discuss both the ZZT of the source-filter model for speech and the ZZT of 
windowed real speech data. Chapter four is dedicated to the chirp group delay 
functions and to the mixed-phase model. In addition to the presentation of the 
theory, we also present the links between ZZT and chirp group delay processing and 
show that study of ZZT is essential for phase processing of speech signals. 
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CChhaapptteerr  IIIIII::                                                                                                  
ZZeerrooss  ooff  tthhee  zz--ttrraannssffoorrmm  ((ZZZZTT))  
rreepprreesseennttaattiioonn  ooff  ssppeeeecchh    

 
  

III.1. Introduction 

Spectral analysis techniques that aim at estimating some global characteristics and are based on 
processing a smoothed form of the magnitude spectrum have been used in speech processing for 
many years, in many applications. Spectral details are also studied (although not so often as 
smoothed spectral envelope) for example for estimating aperiodic contributions [Yegnanarayana et 
al, 1998] and maintaining the fine structure of speech spectrum for high quality re-synthesis 
[Spanias, 1994]. These details are assumed to be mainly due to noise or to aperiodic components of 
speech, or due to windowing effects. Most often, some form of filtering (for example cepstral 
smoothing [Rabiner & Schafer, 1978]) is used to get rid of their effect on the spectral envelope.  

Here we introduce a new spectral representation for a signal: the zeros of the z-transform (ZZT) 
representation, which can be thought of as an “all-detail” representation. It is simply defined as the 
set of zeros of the z-transform polynomial of a discrete time signal. For most of the zeros in the 
ZZT set, the effect of a single zero on the FT spectrum is very local and can be considered to be a 
detail. However it is the sum of the contributions of all details, which constitute the spectrum of the 
signal.   

A systematic study of all such details (zeros) shows us that some patterns exist for the position of 
zeros in the z-plane. Studying such patterns observed on ZZT representations of speech signals has 
several interesting outputs. Among those, the most interesting is that separate patterns for the 
glottal flow and vocal tract contributions can be observed on ZZT representation of speech signals. 
Studying the ZZT representations of signals has some important by-products. It is useful for 
studying the local contributions of zeros of the z-transforms to Fourier Transform (FT) spectra. 
These effects are especially important for phase spectra since their influence (such as spikes on the 
derivative of the phase) is so high that they mask important information, like formant peaks. We 
show, using ZZT representations, that formant peaks can clearly be observed on group delay 
functions (negative derivative of phase spectrum) of speech signals once windowing is 
appropriately performed. 

  

III.2. Definition 

For a series of N samples (x(0), x(1),…x(N-1)) taken from a discrete time signal x(n), the Zeros of 
the Z-Transform (ZZT) representation is defined as the set of roots (zeros), {Z1, Z2, Z3,…Zm}, of the 
corresponding z-transform polynomial X(z) (where N is the length of the time series): 
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provided that x(0) is non-zero. 
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ZZT representation can be presented on the z-plane in cartesian or polar coordinates. In most of the 
representations we prefer polar coordinates since visual comparison with amplitude or phase 
spectrum is much easier as shown in Fig. 5.  

 
Fig. 5: ZZT plots on z-plane  

a) The time-domain signal, b)ZZT plot in cartesian coordinates, c) ZZT plot in polar coordinates, 
d)ZZT plot in polar coordinates (right half-plane), e)magnitude spectrum, f)group delay function 
 

For the given signal (a truncated all-pole filter impulse response) in Fig. 5a, the ZZT are located 
closely to the unit circle. When the ZZT are plotted on polar coordinates, as in Fig. 5d, visual 
comparison to magnitude spectrum and group delay function is easier (we can observe that the 
peaks in the spectra correspond to zero-gaps on the ZZT plot). Throughout this thesis, we prefer 
labeling the frequency axis in (Hz) for the ease of referencing with actual resonance frequencies in 
speech.  

Finding the roots of high degree polynomials 

Computation of the ZZT of a discrete-time signal necessitates finding the roots of high degree 
polynomials. For example, the z-transform polynomial of a 30msec. data window at 16000Hz has a 
degree of 480. There is no known method to derive the roots of such high degree polynomials 
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analytically (it has been shown that there can be no general formula for the roots of polynomials 
with degree higher than four (Abel-Ruffini theorem, [Abel, 1826])). Using numerical methods to 
find the roots is our only alternative way. Twenty years ago, when today’s powerful computers 
were not yet available, this would cause a speech analysis study based on roots of z-transforms to 
stop just at the first step: we would maybe need years to handle a systematic study on the roots 
locations of various speech signals. Today, an ordinary computer with a CPU at 2GHz can find 
roots of a 480 degree polynomial in 3 seconds. We no more need months but only hours to get a 
spectrogram-like view of roots for a given speech signal. 
 
This part of the thesis study contains an experimental approach: we use numerical methods to find 
the roots (which we cannot really explain why they are located such) and then observe the root 
locations for various signals and draw conclusions from those observations.  
 
In all the root calculations in this thesis, ROOTS function of MATLAB is used, which finds the 
Eigen values of the associated companion matrix [Edelman & Murakami, 1995]. The ROOTS 
function is based on the property that for a given polynomial, 
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the roots of the polynomial are the same as the Eigen values of the matrix. 
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More efficient algorithms also exist. In [Sitton et al, 2003], a review of some of the efficient root 
finding algorithms can be found. 

  

III.3. ZZT representation of speech signals 

Studying ZZT of some basic signals is useful to understand the patterns in the ZZT of speech 
signals. Therefore in the following subsection, we first study the ZZT of two basic signals: the 
exponential and the damped sinusoid. Based on the patterns of these two signals, we study the ZZT 
of the LF model glottal flow signal. We continue with discussing the source-filter model of speech 
through the ZZT representation, which concludes the theoretical aspects on this topic. In further 
sections, we consider the ZZT of windowed speech for real-life applications of the ZZT 
representation of signals.  

 

III.3.1. ZZT of some basic signals 

ZZT of an exponential time series 

Analytically, for a simple exponential function, all the roots, Zm (Eq. 3.6), of the z-transform 
polynomial X(z) (Eq. 3.5) calculated for the signal x(n) (Eq. 3.4) are equally spaced on a single 
circle at radius R=a (and the zero on the real axis is cancelled by the pole at the same location 
resulting in what we call a “zero-gap” in the remainder of this thesis). An example is presented in 
Fig. 6. 
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For an increasing exponential, a>1: the zeros are outside the unit circle. For a decreasing 
exponential, a<1: the zeros are inside the unit circle (Fig. 6). 

 

Fig. 6: ZZT of two exponential functions 

a)Time domain waveforms, b)the ZZT plots 

ZZT of a damped sinusoid 

A damped sinusoid can be expressed as in Eq. 3.7 where k is the decaying coefficient of the 
exponential and ω is the frequency of the sinusoid. 

  (3.7) 1...1,0),sin()( −== Nnnenx kn ω

The ZZT pattern of a damped sinusoid can be explained through the ZZT pattern of a sinusoid. 
Therefore, we start with studying the ZZT pattern of a sinusoid. 

In Fig. 7a and Fig. 7b, we present two truncated sinusoids and their corresponding ZZT 
representations. The ZZT pattern of a sinusoid depends very much on the truncation point. When 
the truncation points for the sinusoidal signal are at zero-crossings, all the zeros appear on the unit 
circle (i.e. the ZZT pattern is a line at R=1 in z-plane in polar coordinates) and two zero-gaps exist 
at the frequency of the sinusoid (one at a negative frequency and one at a positive frequency) (Fig. 
7a) which create two peaks in the magnitude spectrum. The effect of a discontinuity at the 
truncation point on the ZZT of a sinusoidal function is a wing-like pattern, which can be observed 
by comparing figures Fig. 7a and Fig. 7b. To observe the dependency on truncation points, the 
reader is invited to watch the movie ”sinusZeros.avi” available on 
http://www.tcts.fpms.ac.be/demos/zzt/index.html. The movie presents variation of ZZT patterns 
with the truncation point for a discrete time sinusoidal signal. 

The damped sinusoid in Fig. 7c can be obtained from Fig. 7b by term-wise multiplication with an 
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exponential signal. The ZZT pattern of a damped sinusoid is just the shifted version of the ZZT 
pattern of a sinusoid since a term-wise multiplication of the sinusoid with an increasing exponential 
simply shifts the ZZT pattern out of the unit circle (Fig. 7c). As a matter of fact, a term-wise 
multiplication of a discrete time signal by an exponential of form ekn shifts the ZZT of a signal in 
the radial direction by an amount equal to ek. This can be easily shown by variable substitution in 
X(z) and its representation in ZZT form: 
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The reader is invited to watch the movie ‘expCoeffInDampedSinusoid.avi’ available on 
http://www.tcts.fpms.ac.be/demos/zzt/index.html, for a demonstration of the shift introduced by the 
exponential component. The movie presents variation of ZZT patterns with the linear variation of 
the exponential decay coefficient. 

 
Fig. 7: ZZT of a damped sinusoid. 

Waveform and ZZT of a) a sinusoid truncated at zero crossings, b) a sinusoid truncated at a non-
zero value at right boundary, c) the sinusoid in b multiplied with an increasing exponential 
 
 

III.3.2. ZZT of the glottal flow signal 

According to the well-known source-filter model for speech, voiced speech signals are produced by 
exciting the vocal tract system by periodic glottal flow signals. The most widely accepted model 
for the derivative of the glottal flow signal is the LF model [Fant, 1995], where the signal is 
supposed to be composed of two non-overlapping parts: an increasing exponential multiplied by a 
sinusoid (the first phase, Eq. 3.11) and a decreasing exponential function (the return phase, Eq. 
3.12) (both functions are truncated to obtain a one pitch period size data). 
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In Fig. 8, the ZZT representation of an LF model (glottal flow derivative) signal is presented. 

 
Fig. 8: ZZT pattern of a typical differential LF signal. 

a) waveform, b) ZZT representation in cartesian coordinates, c) ZZT representation in polar 
coordinates, d) magnitude spectrum. 
 

The ZZT representation of the LF signal, shown in Fig. 8 contains two groups of zeros: a circle 
inside the unit circle and a circle outside the unit circle in cartesian coordinates (Fig. 8b) or a line 
below R=1 and a line above R=1 in polar coordinates (Fig. 8c). The group of zeros inside the unit 
circle is due to the return phase and the group outside the unit circle is due to the first phase (Eq. 
3.11) of the LF signal.  

It is interesting to note at this point that the LF signal appears to be a mixed-phase signal2 since 
some zeros occur on both sides of the unit circle and the zeros outside the unit circle are due to its 
first part. This output/observation is in accordance with those presented in [Jackson, 1989, Gardner, 
1994, Doval et al, 2003] about anti-causal (maximum-phase) components in glottal flow signals.  
We further discuss these issues in the next section and in Section IV.4. 

Contribution of the first phase to the ZZT of LF model glottal flow 
signal 

As explained for the damped sinusoid ZZT in the previous sub-section, the sinusoidal component 
of the first phase is responsible for the zero gaps located outside the unit circle on the wing-like 
ZZT pattern (Fig. 7c). These gaps create in turn an anti-causal resonance like spectral peak, which 
can be observed on the magnitude spectrum (Fig. 8d, at around 200Hz for this signal) as discussed 
in [Doval & d’Alessandro, 1997], and on the group delay as a negative peak. This is like the effect 
of an anti-causal pole at the frequency of the gap. This resonance-like peak on the spectrum carries 

                                                           
2 Please refer to Section IV.2 for the description of the minimum-phase, the maximum-phase and the 
mixed-phase characteristics for a signal. 
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all information about the first phase of the LF signal and is called the glottal formant (Fg)[Doval et 
al, 2003]. The main excitation of the glottal flow signal is produced by the discontinuity at 
truncation end point of the first phase which also creates the wing-like pattern instead of a straight 
line as explained in the previous subsection. 

When the spectrum of glottal flow signal derivative is considered, there are mainly two important 
parameters for the first phase of the glottal flow: the asymmetry coefficient (αm) and the open 
quotient (Oq) [Doval & d’Alessandro, 1999]. The asymmetry coefficient controls the location of 
the peak in the glottal flow signal and the open quotient controls the duration of the open phase. In 
Fig. 9, we show the effect of variations of these two parameters of the first phase on the ZZT of the 
glottal flow signal. The first column in Fig. 9 presents the effect of variations of αm and the second 
column in Fig. 9 presents the effect of variations of Oq. 

Three glottal flow signals are presented in Fig. 9a. All parameters of the LF signal are set to 
constant values (Oq=0.75, f0=160 Hz) except αm is varied: 0.6, 0.7, and 0.8 to construct these 
signals. The differential glottal flow and glottal flow signals obtained are presented in Fig. 9a and 
Fig. 9b. ZZT and amplitude spectra of the differential glottal flow are presented in Fig. 9c and Fig. 
9d. An increase in αm corresponds to shifting of the wing pattern of ZZT further away from the unit 
circle (R=1) which corresponds to blurring of the glottal formant peak without much change in its 
frequency since the center frequency of the zero-gap on the ZZT pattern is almost unchanged. As 
αm increases, the zeros and the zero-gap moves further away from the unit circle. Increase of the 
steepness of the exponential results in concentration of more energy on the right-hand side of the 
signal, i.e. the signal becomes more “anti-causal” as zeros and the zero gaps move away from the 
unit circle.  

Four glottal flow signals are presented in the second column of Fig. 9. All parameters of the LF 
signal are set to constant values (αm=0.6, f0=160 Hz) except Oq is varied: 0.3, 0.5, 0.7 and 0.9 to 
construct these signals. The differential glottal flow and glottal flow signals obtained are presented 
in Fig. 9e and Fig. 9f. ZZT and amplitude spectra of the differential glottal flow are presented in 
Fig. 9g and Fig. 9h. An increase in Oq corresponds to narrowing of the zero-gap, which 
corresponds to a decrease in the frequency and bandwidth of the glottal formant peak. These 
observations are in accordance with the results of [Doval et al, 2003]. 
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Fig. 9:  Effect of parameter variation on the ZZT of glottal flow signals. 

Asymmetry coefficient variation: a) differential glottal flow signals, b) glottal flow signals 
(equalized), c) ZZT representations, d) amplitude spectra.  
Open quotient variation: e) differential glottal flow signals, f) glottal flow signals (equalized), g) 
ZZT representations, h) amplitude spectra. 
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Contribution of the return phase to the ZZT of the LF model glottal 
flow signal 

The return phase exponential component (Ta indicated on Fig. 2) of the differential LF function 
contributes to the ZZT representation by a group of zeros inside the unit circle, aligned in parallel 
to the unit circle and the distance of these lined zeros to the unit circle is proportional to the 
exponential decay coefficient. Again, there exists a gap on the real axis (Fig. 8c, Fig. 10c). Its 
effect on the magnitude spectrum is a slope, spectral tilt, change for the high frequency part of the 
magnitude spectrum.  

In Fig. 10, the effect of varying the return phase coefficient on the ZZT pattern of differential 
glottal flow is shown. Three glottal flow signals are created by keeping all time parameters of the 
LF model constant but only varying Ta (three values are assigned: 0.02, 0.06, and 0.1). The 
differential glottal flow and glottal flow signals obtained are presented in Fig. 10a and Fig. 10b. 
ZZT and amplitude spectra are presented in Fig. 10c and Fig. 10d. A variation in the return phase 
causes a modification in the first phase of the signal since the integral of a one period length 
differential glottal flow signal should equal to zero not to have a DC component in the glottal flow 
signal. The LF model is designed with such consideration. If we only consider the change 
introduced in the return phase, we observe that an increase in Ta (which results in slower closing of 
the vocal folds) corresponds to shifting of the ZZT of the return phase closer to the unit circle 
which corresponds to more suppression for the high frequency components. For this reason, the 
glottal flow signal (labeled with Ta=0.1), which corresponds to a high Ta value has its return phase 
ZZT closest to the unit circle and the spectral tilt is higher (i.e. the energy of high frequency 
components are lower).  

 
Fig. 10: Effect of spectral tilt variation to ZZT of glottal flow signals. 

a) Glottal flow derivative, b) glottal flow, c) ZZT representation, d) magnitude spectrum. 
 
 

III.3.3.  ZZT representation and source-filter model of speech 

In Fig. 11, we present the ZZT patterns for the source filter model of speech [Fant, 1960] for 
voiced speech. For simplicity, the lip radiation component is included in the source signal as a 
derivation, resulting in differential glottal flow signal on the second column: speech signals can be 
expressed as s(t)=d(Ug(t)*v(t))/dt where Ug(t) stands for the glottal flow signal, v(t) stands for the 
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vocal tract filter impulse response and the lip radiation component is approximated by a derivation 
operation. Equivalently, we can re-write this as: s(t)=(d(Ug(t))/dt)*v(t) including the derivative 
operation in the glottal flow part.  

In Fig. 11, each row presents the model in one domain: the 1st row is in the time domain, the 2nd 
row is in the z-domain (ZZT representation) and the 3rd row is in the log-magnitude spectrum. The 
operators are: convolution (*), union (U) and addition (+). We now discuss in detail the second 
row, the ZZT-representations. Since we have discussed the ZZT patterns for differential glottal 
flow signals in the previous section, there remains two components to be discussed: impulse train 
(the first column in Fig. 11) and vocal tract filter (the third column in Fig. 11).  

The ZZT pattern for an impulse train (2nd row 1st column in Fig. 11) is such that, zeros are 
equally spaced on the unit circle with the exception that there exist gaps at all harmonics of the 
fundamental frequency, which create the harmonic peaks on the magnitude spectrum (3rd row 1st 
column in Fig. 11). The location of zeros for an impulse train (Eq. 3.14) with period P can be 
analytically found by finding the roots of its z-transform (Eq. 3.15). The roots of the denominator 
in (Eq. 3.15) are expressed in (Eq. 3.16) and the roots of the numerator are expressed in (Eq. 3.17). 
P roots of the denominator cancels P roots of the numerator resulting in P(M-1) zeros for the 
impulse train z-transform, located on the same circle and P zero gaps exist on the zero-circle at 
multiples of the fundamental frequency (i.e. the harmonic frequencies), 2πm/P. 
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The zeros of the vocal tract filter response are mainly inside the unit circle due to the decreasing 
exponential character and there exists gaps for the formant locations, which create formant spectral 
peaks. Again, we observe the wing-like character for the ZZT pattern of vocal tract response 
depending on the location of the truncation point for the time-domain response. The reader is 
invited to watch the movie ”causalResponseZeros1.avi” available on 
http://www.tcts.fpms.ac.be/demos/zzt/index.html for a demonstration of the effects of the 
truncation point to the ZZT pattern of a causal all-pole filter response. 

It is interesting to note here that the set of ZZT of speech is just the union of ZZT sets of the 
three components. This is due to the fact that the convolution operation in time-domain 
corresponds to multiplication of the z-transform polynomials in z-domain. What is 
interesting is that the ZZT of each component appear at a different area on the z-plane and 
have effect on the magnitude spectrum relative to their distance to the unit circle. The closest 
zeros to the unit circle are the impulse train zeros and they cause the spectral dips on the 
magnitude spectrum, which give rise to harmonic peaks. Vocal tract zeros are the second 
closest set and the zero-gaps due to formants contribute to the magnitude spectrum with 
formant peaks on the spectral envelope. Glottal flow ZZT are further away from the unit 
circle and their contribution on the magnitude spectrum is rather vague and distributed 
along the frequency axis.  
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Fig. 11: ZZT and source-filter m
odel

(note that the am
plitude spectra added are in dB

s) 
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III.3.4. ZZT of windowed synthetic speech signals 

In real-life applications, the windowing operation is essential especially for the spectral analysis of 
signals. The effect of windowing is very drastic on ZZT patterns. The size, location and function of 
the window play an important role on the resulting ZZT patterns for the windowed signal. It is very 
difficult to analytically study the effect of windowing on the ZZT patterns since we face the 
difficult problem mentioned previously: the windowing operation is a term-wise multiplication 
operation in the time-domain, and there is no known methodology for estimating roots of the 
resulting z-transform polynomial directly from the roots of the two polynomials that are subject to 
term-wise coefficient multiplication. For this reason, our discussions in this section are again based 
only on experimental observations of ZZT patterns on the z-plane.  

In Fig. 12, we present the effect of windowing on a truncated frame with single excitation. The 
glottal flow derivative, the synthetic speech signal obtained by all-pole filtering (with resonances at 
600Hz, 1200Hz, 2200Hz and 3200Hz) of the glottal flow derivative and the windowed synthetic 
speech signal are presented respectively in Fig. 12a, Fig. 12b and Fig. 12c together with their ZZT 
representation and amplitude spectra. The ZZT patterns in Fig. 12, compared to the ZZT patterns 
for the source-filter model of speech in Fig. 11, do not contain the zero pattern of an impulse train 
on the unit circle since there is only a single excitation. On the ZZT representations in Fig. 12, the 
corresponding glottal formant zero-gap and the vocal tract zero-gaps are indicated. As discussed 
previously, the glottal formant zero-gap is located outside of the unit circle and the vocal tract zero-
gaps are located inside the unit circle. The ZZT of the windowed synthetic speech signal in Fig. 
12c has an important property: a zero-free region exists around the unit circle and for this reason a 
noise-free group delay function with clear formant peaks is obtained (Fig. 12c). We show in the 
following chapters that having a zero-free region around the unit circle is very advantageous for 
phase (or group delay) spectrum processing. In addition, it is also the basis for our source-tract 
decomposition algorithm (called the ZZT-decomposition), since the zeros (and the zero-gaps) for 
the vocal tract and the glottal flow fall on two different sides of the unit circle.  

The ZZT representation in Fig. 12c includes two lines of zeros (with some ripples): one outside the 
unit circle and one inside the unit circle with gaps creating formant peaks on the spectrum. The 
reason for this alignment is as follows: once the window is placed such that the increasing 
exponential part of a single speech frame (due to the first phase (Eq. 3.11) of the glottal flow 
signal) is multiplied with the first half of the window, which is also increasing, and the decreasing 
exponential part (due to the vocal tract filter response and to the return phase of the glottal flow 
when it exists) is multiplied with the second half of the window, which is also decreasing, the ZZT 
of the resulting windowed speech has a pattern close to that of the glottal flow (with additional 
patterns inside the unit circle due to the vocal tract filter). For the cases where there exits a non-
zero return phase of the glottal flow signal, its zeros are combined with those of the vocal tract 
resulting in a single line of zeros inside the unit circle.  When the window is not centered on the 
increasing-decreasing function turning point, the ZZT-pattern is destroyed, and zeros do not group 
on the two sides of the unit circle. Therefore, GCI-synchronous windowing is necessary to obtain 
separate ZZT patterns for glottal flow and vocal tract contributions, which provides the opportunity 
to perform decomposition. 

The windowing operation shifts the two zero-groups (lines) (Fig. 12b) away from the unit circle 
(Fig. 12c). The zero-gaps are also shifted out of the unit circle but the frequency location stays 
almost unchanged. The glottal formant zero-gap creates a negative peak on the group delay 
function, which is labeled as a glottal formant peak on the third plot in Fig 12c since it is outside 
the unit circle. All the other peaks on group delay are positive since the zero-gaps creating those 
peaks are located inside the unit circle. This is an interesting observation since it sheds light into 
some phase related auditory phenomena, which is reported in some studies but no 
explanation/theory has been provided. For example in [Sun, 1997], it has been shown (without any 
theoretical background but mainly with observations) that introducing negative group delay (via 
some randomization) the perceptual quality of speech coding increases. In addition, this 
observation leads us to question the minimum-phase property assigned to speech signals in many 
applications. In the following chapters, we discuss a mixed-phase model for speech signals based 
on anti-causality of the glottal formant.  
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Fig. 12: ZZT patterns for a single excitation speech frame. 

a) Time-domain glottal flow derivative signal, corresponding ZZT representation and magnitude 
spectrum, b) time-domain synthetic speech signal, corresponding ZZT representation and 
magnitude spectrum, c) time-domain Blackman windowed synthetic speech signal, corresponding 
ZZT representation, magnitude spectrum and group delay function scaled and plotted together. 
 

As the next step we start testing if similar patterns can be obtained when real speech frames are 
windowed. We study the effects of window location, window size and window function on ZZT 
patterns and study the criteria for optimum windowing. 

Effect of window location on ZZT patterns 

In Fig. 13, we demonstrate the windowing location effect on ZZT patterns. A Blackman window of 
two pitch period size is slided in six steps within a pitch period and the resulting ZZT are presented 
(please refer to the Appendix for window function definitions). In addition, a movie demonstration 
is available on http://www.tcts.fpms.ac.be/demos/zzt/index.html : real2T0Blackman.avi.  

The six ZZT representations in Fig. 13 show that the influence of window location on ZZT patterns 
is indeed very important. Among the six possibilities presented, the fourth window, centered on the 
glottal closure instant (GCI) matches the theoretical expectations: there exists a zero-free region 
around unit circle in the [0-5000Hz] frequency region as discussed in the previous section. In Fig. 
14, we present a zoomed plot (of the shaded are on Fig. 13) of this complicated picture and show 
the windowed signal waveform, ZZT representation and the corresponding magnitude spectrum 
and group delay function. 
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Fig. 13: Effect of windowing location on ZZT of a real speech signal. 

Each (Blackman) window position is indicated on the signal on the top figure with reference 
numbers. The ZZT representation of the resulting windowed data for each window is presented 
with the window index indicated on the right-top corner of the figure. 
 

 
Fig. 14: GCI synchronous windowing.  

Time-domain waveform of the windowed signal, corresponding ZZT representation, magnitude 
spectrum and group delay scaled and plotted together. 
 

The group delay contains peaks, which corresponds to the formant peaks observed on the 
magnitude spectrum. In addition, for the lowest frequency peak in magnitude spectrum, the group 
delay peak has a negative direction since the corresponding glottal formant zero-gap is outside the 
unit circle. This is further discussed in Section IV.4. 

We conclude that GCI synchronous windowing is necessary to obtain windowed signals with ZZT 
patterns that match the theory presented.  
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Effect of window function on ZZT patterns 

Window function also has important influences on the ZZT patterns. In Fig. 15, we present the 
ZZT patterns obtained by windowing (with six different windowing functions) the real speech data 
in Fig. 14 by a two pitch period size window centered at GCI. 

 
Fig. 15: Effect of window function to ZZT patterns. 

GCI synchronous windowing using several window functions: rectangle, Hamming, Hanning, 
Blackman, Gaussian and Hanning-Poisson 
 

The resulting ZZT patterns are quite different for the different window functions used. Optimality 
of a windowing function depends on the particular task and the ZZT properties desired. For 
example, for obtaining noise-free group delay functions, it is important to have a zero-free region 
around unit circle and given this criterion Blackman, Gaussian and Hanning-Poisson windowing 
functions are advantageous.  

When GCI synchronous windowing is concerned, it is possible to consider the window being 
composed of two parts, an increasing first half boosting the glottal flow first phase component of 
the signal and a decreasing second half boosting the vocal tract response and return phase of glottal 
flow. This is mainly due to the specific localization of the events in the speech signal, and it only 
holds for speech signals for which phase spectrum is not modified by some filtering operation. We 
can consider two parts independently and adjust the contribution of each half which leads to 
“asymmetric windowing” of the speech frame. In Fig. 16 we present the effect of two different 
asymmetric windows on the ZZT representation and spectrum of speech frame used in Fig. 14. 
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Fig. 16: GCI synchronous Hanning-Poisson asymmetric windowing. 

Each row includes the window function used and ZZT representation, group delay and magnitude 
spectrum of the windowed signal. 
 

The window in Fig. 16a has a second half decaying coefficient higher than first half decaying 
coefficient (and vice versa for the window in Fig. 16b). We have previously mentioned that 
multiplication with an exponential shifts the ZZT in the radial direction. When we compare the two 
ZZT plots, we observe that for the first window, ZZT inside the unit circle due to vocal tract 
response is shifted further away from the unit circle therefore the formant peaks are less prominent. 
Equally, for the second window glottal flow ZZT are shifted away from the unit circle resulting in 
glottal formant peak becoming less prominent. This example shows that asymmetric windowing 
can be applied to adjust the level of contribution of the glottal flow or the vocal tract in the 
resultant magnitude spectrum once the window is centered at GCI and the window size is less than 
two pitch periods.  

Effect of window size on ZZT patterns 

The window size determines the number of zeros in the ZZT representation (given that the first 
sample is non-zero).  

In Fig. 17, we present the ZZT patterns obtained by GCI synchronous windowing with different 
window sizes (one, two, three and four pitch periods respectively). The first row provides a larger 
view and the second row a zoomed view of the ZZT representations.  

When window size gets larger than two pitch periods some zeros close to the unit circle are 
observed. As discussed previously, the existence of a zero-free region around unit circle is 
important for group delay processing and for source-tract separation by ZZT-decomposition. 
Therefore in most of the cases in our analysis tools, we use a maximum window size of two pitch 
periods. However, one can consider other applications where the existence of these zeros is 
advantageous for analysis, for example in f0 estimation. 
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Fig. 17: Effect of window size on ZZT of windowed speech signals. 

First row: large view of the ZZT representation, second row: zoomed view of the shaded part of the 
ZZT representation. Blackman window is used.  
 

III.3.5. ZZT of aperiodic components in speech 

It is a common practice in speech processing to consider speech being composed of two types of 
components: periodic and aperiodic. The periodic part is considered to be due to the periodic 
excitation created at vocal folds which result in voiced speech. For all parts of speech, whether 
voiced or unvoiced, some aperiodic contribution exists in varying levels due to various sources like 
air flow through the vocal folds containing some random fluctuations or noise.  

By intuition, we assume that the roots of a polynomial with random coefficients are located 
randomly on the z-plane. Observations on a few examples support that assumption. On an example, 
we study the contribution of the random component on the ZZT of speech signals. 

In Fig. 18, we present time domain signals and the ZZT of windowed noise (Fig. 18a), glottal flow 
derivative (Fig. 18b), excitation obtained by summing these two components (Fig. 18c) and the 
result of vocal tract filtering of these three signals (in Fig. 18d, 18e and 18f respectively). The ZZT 
of noise is quite unorganized compared to that of the ZZT of glottal flow derivative and the speech 
signal obtained by filtering the glottal flow derivative. No patterns are observed for noise or the 
noise contribution in speech; the contribution can rather be considered as disturbances in the ZZT 
patterns. For this reason, the ZZT of unvoiced speech is not studied in detail in this thesis (but we 
provide noise robustness test results when ZZT is used in a proposed algorithm). In addition, the 
same properties are observed for additive noise, so they are also considered as unorganized 
disturbances to the ZZT patterns and the degree of disturbance is related to the relative amplitude 
of the noise component to the periodic speech components. 
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Fig. 18: Aperiodic component contribution to ZZT of speech. 

Each couple of plots includes the time domain signal and the ZZT representation. a)windowed 
noise with uniform distribution, b)glottal flow derivative, c)excitation signal obtained by summing 
a and b, d)vocal tract filtered a, e)vocal tract filtered b, f)vocal tract filtered c. Blackman window is 
used. 
 

III.3.6. Conclusion 

In this chapter we have presented the ZZT representation and discussed ZZT patterns for discrete 
time speech signals. We have shown that the glottal flow component of ZZT occurs outside the unit 
circle and the speech signals are mixed-phase due to this component.  

The theory and discussions presented in this chapter will further lead us to a source-tract 
decomposition algorithm, which will be presented in the applications part of the thesis (section 
V.1).  

A study of windowed speech ZZT was presented, which is important for the spectral study of 
speech signals in real-life applications. The usefulness of the ZZT representation becomes clearer 
in the next chapter where group delay functions are studied together with zero locations.  
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CChhaapptteerr  IIVV::                                                                                                  
CChhiirrpp  ggrroouupp  ddeellaayy  pprroocceessssiinngg  ooff  ssiiggnnaallss  

  

IV.1. Introduction 

As we have discussed in the previous sections, speech signals exhibit mixed-phase signal 
characteristics due to anti-causality of the glottal flow signals. The mixed-phase characteristics can 
only be observed on the phase component of the FT spectrum but not on the magnitude spectrum. 
For this reason, group delay processing is especially important for studying characteristics of the 
glottal flow and the vocal tract contributions separately. However the phase spectrum is often 
considered to be difficult to process to extract useful information. By nature, the phase component 
of the FT spectrum is in a wrapped form (see next section for definitions) and the first derivative of 
the unwrapped phase spectrum (the group delay function) is much more easy to study both for 
numerical and observation based analysis.  

B.Yegnanarayana and H.A. Murthy have published plenty of papers in a period of 20 years on 
processing the group delay function. In this chapter, we first present a review of their theoretical 
discussions and methods, which provides the basic terminology and the current state-of-the-art in 
group delay processing of speech signals.  

Then we present a mixed-phase speech model and discuss the phase/group delay spectrum 
characteristics of speech signals theoretically. We show that, when minimum-phase assumption for 
speech signals is used or a conversion to minimum-phase version is applied in group delay 
processing (a common step in many algorithms), the glottal flow characteristics are mixed with that 
of vocal tract characteristics in the phase/group delay spectrum domain.  

Our second focus point is on the reliable estimation of a smooth phase spectrum with well-
preserved resonance structure for speech signals. Such a study is of ultimate need for most of the 
phase processing applications listed in the introduction chapters. The main difficulties in correct 
phase spectrum estimation and unwrapping are mostly related with the ZZT close to the unit circle, 
which cause spikes on the derivative of the phase spectrum (group delay) [Yegnanarayana & 
Murthy, 1992]. We show through ZZT representations that windowing plays a very important role 
in determining the phase characteristics of the resulting signal and in the reliable estimation of 
phase information since the location of ZZT (or the existence of zeros close to the unit circle) is 
very much affected by the windowing operation.  

As the final step we propose the chirp group delay as a spectral representation for signals. Chirp 
group delay (CGD) is potentially useful for tracking resonances of signals and also for spectral 
feature extraction for speech recognition. “By both manipulating the ZZT and adjusting the 
analysis circle radius for CGD computation, we can guarantee certain distance of zeros to the 
analysis circle and obtain spike-free functions revealing clear formant peaks. This is one of 
the basic ideas proposed and used through out this thesis.” In this part, we only discuss the 
basic theoretical issues; the applications of chirp group delay processing are presented in the next 
part of the thesis. 
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IV.2. Methods proposed by Yegnanarayana and Murthy for 
group delay processing 

B. Yegnanarayana and H.A Murthy are the two researchers who most contributed to the rather 
small literature of group delay processing. They have discussed both theoretical aspects of the issue 
and applications in formant tracking [Murthy et al, 1989 a, Murthy & Yegnanarayana, 1991 a] and 
glottal instant marking [Smits & Yegnanarayana, 1995]. In the group delay processing literature, 
their methods are closest to our own methods. Therefore we find it necessary to provide a review of 
their studies below.  

Terminology 

The following list of definitions of terminology is provided in their early papers [Yegnanarayana et 
al, 1984, Murthy & Yegnanarayana, 1991 b].  

For a discrete time digital signal {x(n)}, n=0,1,2,…N-1, the z-transform is expressed as: 
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or in a rational form as: 
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where A is a real constant, n0 is an integer, D(z) is the denominator polynomial and N(z) is the 
nominator polynomial. The roots of D(z) are the poles and roots of N(z) are the zeros of the z-
transform. 

Causality: A signal {x(n)} is said to be causal if x(n)=0 for all negative values of n. 

Minimum-phase signal: If n0=0 and if all poles and zeros of the z-transform are inside the unit 
circle, the signal is said to be minimum-phase.  

Maximum-phase signal: If all poles and zeros of the z-transform are outside the unit circle, the 
signal is said to be maximum-phase.  

Mixed-phase signal: If all poles and zeros of the z-transform lie both inside and outside the unit 
circle, the signal is said to be mixed-phase. 

The Fourier Transform (FT) is expressed as 

 ωω jez
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where |X(ω)| is the magnitude and θ(ω) is the phase component. θ(ω) is a wrapped phase 
information: –π ≤ θ(ω) ≤ π. The FT can also be expressed as  

 [ ])(2)()()( ωπλωθωω += jeXX  (4.5) 

where λ(ω) is an integer such that [θ(ω)+2πλ(ω)] is a continuous function of ω. Then θ(ω) is called 
the principle phase value or the wrapped phase function. The unwrapped phase function is:  

 )(2)()( ωπλωθωθ +=u  (4.6) 

The group delay function is defined as the negative derivative of the unwrapped phase function. 
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This is called the group delay function derived from the FT phase function, therefore denoted as 
τp(ω). Eq. 4.7 can also be expressed as: 
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where Y(ω) is the FT of nx(n) and R and I refer to real and imaginary parts. The advantage of this 
representation is that phase unwrapping, which is a problematic task, is not necessary. 

The authors also find it necessary to define a version of group delay derived from the magnitude 
spectrum, |X(ω)|, denoted as τm(ω). Their definition is based on the cepstral relation between group 
delay and magnitude spectrum for a minimum-phase signal.  

Given the Fourier transform V(w) of a minimum-phase signal v(n),  

 )()()( ωθωω vjeVV =  (4.9) 

it can be shown that  
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and the unwrapped phase function 
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where c(n) are the cepstral coefficients. Then the group delay function obtained by finding the 
derivative with respect to w can be expressed as 
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Comparing the two equations Eq. 4.10 and Eq. 4.12, for a minimum-phase signal, we see that the 
natural logarithm of the amplitude function and the group delay function are related through 
cepstrum (this is further discussed in the next sub-section). 

This property does not hold for mixed-phase signals, therefore the authors follow an alternative 
path and define two sets of cepstral coefficients, c1(n) and c2(n) for magnitude function and phase 
function: 
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They define two group delay functions, one derived from magnitude spectrum: 
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and one derived from the phase spectrum: 
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which are equivalent when the signal is a minimum-phase signal. However for maximum-phase 
signals τm = - τp and for mixed-phase signals there is no direct formula. 

The relation between phase and amplitude of frequency response of minimum-phase systems 

As a matter of fact, it is well known that for minimum-phase systems, the phase function can be 
computed directly from the amplitude function. Such a relation has been shown by Bode [Bode, 
1945] that for a stable minimum-phase transfer function H(ω), the phase of the system at ω0 is 
given by: 
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where v=ln(ω/ω0). For the computation of this integral transform in the discrete time, the following 
method can be used [Cizek, 1970, Damera-Venkata et al, 2000]: Given a sampled magnitude 
spectrum |H[i]| for i=0,…M-1 where M is the DFT length, the sampled phase spectrum can be  
computed by: 
 }}{{ aIDFTsjDFT •−=θ  (4.18) 
where • corresponds to term-wise vector multiplication and 
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Similarly, such a relation is expressed through Hilbert transform in [Papoulis, 1962] as follows: 
If the causal and minimum-phase-shift function h(t) contains no singularities at the origin, then 
with: 

))()(()( ωθωαω jeH +−=  (4.21) 
the phase and the amplitude functions, α(ω) and θ(ω) satisfy these equations: 
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θ(ω) can be uniquely determined from α(ω), and for the determination of α(ω) one needs not only 
θ(ω) but also the constant α(0). 
The numerical evaluation of the two integrals is in general complicated. By a change in the 
independent variable, a simpler set of equations, known as Wiener-Lee transforms are derived. 
Introducing the variable δ defined by 

2
tan δω −=  (4.24) 

If variable exchange is applied to phase and magnitude components we get (please refer to 
[Papoulis, 1962] for the complete derivation/proof): 
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and the coefficients are related by: 

nn ed −=  (4.28) 
if h(t) is causal and minimum-phase-shift. 
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Difficulties in group delay processing 

At the frequency values where one or more zeros exist very close to the unit circle, spikes are 
observed on the group delay function. One explanation for this phenomenon is that the term |X(ω)|2 
gets very small in Eq. 4.8 at those frequency bins [Hegde et al, 2004 a].  

We can also add a geometric explanation at this point. The FT can be expressed through ZZT 
representation as 
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where Zm are the zeros. Each factor in Eq. 4.29 corresponds, in the z-plane, to a vector starting at Zm 
and ending at ejω and rate of change in the phase component (the group delay) is very high at 
frequency bins very close to the zero (Fig. 19). 

 
Fig. 19: Geometric interpretation for spikes in the group delay function at frequency 

locations close to a zero 

For actual speech signals, many zeros appear to be very close to the unit circle. The effect of zeros 
close to the unit circle can easily be observed both on amplitude spectra and group delay functions. 
In Fig. 20, we present a windowed real speech frame with its ZZT representation and spectrum 
plots. The zeros close to the unit circle are shown in between dashed lines in Fig. 20b and they are 
also superimposed on spectrum plots to draw attention to their relation with the spectral dips in the 
magnitude spectrum (Fig. 20c) and with spikes on the group delay function (Fig. 20d).  

 
Fig. 20: Effects of zeros to the spectrum of a signal.  

a) Hanning windowed real speech frame taken from a natural utterance (phoneme /a/ in the word 
“party”), b) ZZT representation in polar coordinates (zeros close to the unit circle are indicated by 
labeling a region in-between dashed lines), c) magnitude spectrum, d) group delay function. The 
zeros close to the unit circle are superimposed on c) and d) to show their effect. 
 

The general shape of the group delay function is mainly dictated by the zeros close to the unit circle 
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(Fig. 20d waveform is like a DC function with spikes due to zeros close to the unit circle and no 
other spectral information is observed), and this domination of spikes hide the formant structure in 
the group delay function. For the magnitude spectrum, the spiky effect of zeros close to the unit 
circle is much reduced and we can still observe formants.  

In the papers of Yegnanarayana and Murthy, the authors mention the existence of spikes on the 
group delay due to the zeros close to the unit circle and propose methods to remove those effects to 
obtain smooth group delay function. In our study, we aim at understanding the sources of zeros 
close to unit circle (by studying ZZT representations of speech signals) and developing methods 
that guarantee certain distance of zeros from the frequency points where FT (or the chirp z-
transform (see Section IV.6)) is computed. We have shown in Section III.3.4 that the existence of 
zeros close to the unit circle is highly dependent on how windowing is performed. We show 
through ZZT representations that by appropriate windowing, group delay functions free of spikes 
can be obtained without further de-noising of the group delay on voice speech frames. We also 
propose computation of group delay on circles other than the unit circle (which results in what we 
name the chirp group delay) as an efficient way of avoiding spikes on the final spectral 
representation. Before presenting our methods, we present the methods for spike removal proposed 
by Yegnanarayana and Murthy.  

Processing group delay of the minimum-phase version of a signal 

For getting rid of spikes due to the zeros, the authors propose several versions of group delay 
function estimation from minimum-phase version of a given signal [Yegnanarayana et al, 1988, 
Murthy et al, 1989 a, Murthy & Yegnanarayana, 1991 a]. The common steps involved in their 
methods are: 

1. Obtaining the magnitude spectrum for a short-time windowed speech frame 

2. Smoothing the magnitude spectrum via cepstral smoothing and  

3. Computing smooth minimum-phase group delay from this representation through 
cepstrum. 

Such processing removes the spikes from the group delay function computed. However, the 
resulting spectrum is a form of smoothed magnitude spectrum representation and the conversion to 
minimum-phase destroys the phase information available in the signal. The advantage of this 
representation compared to the magnitude spectrum is that the formant peaks appear with better 
resolution [Murthy et al, 1989 a]. The authors propose formant tracking algorithms by picking 
peaks on this new representation.  

Modified group delay function 

Recently, Murthy and her colleagues proposed another group delay function, which does not 
include the “conversion to minimum-phase” step. The basic idea behind the calculation of this new 
representation called the Modified Group Delay (MODGD) function is: smoothing the |X(ω)|2 
component (in Eq. 4.8) (through cepstrum) which is considered as the main source of spikes. 
However, this modification alone cannot remove all spikes (see Fig. 21 for an example). The 
resulting spectrum still includes spikes but some formant peaks can be observed. To further reduce 
spikes, two new parameters are introduced: γ and α which need to be fine-tuned according to the 
environment. The modified group delay function is defined as: 
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where  X(ω) and Y(ω) refer to the FT of x(n) and nx(n) respectively, R and I refer to real and 
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imaginary parts and S(ω) is the cepstrally smoothed version of  |X(ω)|.  

The authors propose to use this new representation in feature extraction for speech recognition and 
report improvement when combined with the power spectrum based feature construction [Hegde et 
al, 2004 b]. However, the results have been falsified in another paper [Zhu & Paliwal, 2004]. In the 
applications chapter of this thesis dissertation, we provide comparative tests in speech recognition 
for feature construction using the MODGD, Zhu and Paliwal’s alternative: the product spectrum, 
the magnitude spectrum, and the group delay functions we specifically propose in this thesis. 

 
Fig. 21: Modified group delay function.  

a) Time-domain speech signal, b)magnitude spectrum, c)group delay function, d)modified group 
delay function 
 

The group delay functions proposed by Yegnanarayana and Murthy (which appear to contain either 
amplitude-only information or a mixture of amplitude and phase information) seem to be 
potentially useful in some spectral processing applications that process some global spectral 
characteristics of the speech signals (like ASR systems). However, such phase representations 
cannot provide real phase information that can be attributed to glottal flow or vocal tract 
components or improve our understanding of phase characteristics of speech signals. To enhance 
our knowledge about the phase content of speech signals we need to study phase characteristics in 
the view of the speech production theory and phase properties of finite length discrete time signals. 
Such a study leads to a better understanding of the phase component properties as we show in the 
next section.   

  

IV.3. Phase processing of mixed-phase signals 

As defined in the previous section, the term “mixed-phase” (as defined for signals) refers to signals 
which have zeros on both sides (outside/inside) of the unit circle. There is some confusion when we 
consider the signal as an output of a system and attribute similar characteristics to the system 
(especially if the system is infinite impulse response (IIR)). When we analyze real-life signals, 
windowing is unavoidable, as we do not have the facilities to analyze infinite length signals. As we 
have shown previously, windowing changes the characteristics of signals to a great extent. Below, 
we demonstrate how window size may change the phase characteristics of a signal. A signal is 
created by exciting a minimum-phase all-pole system (with poles at [0.9432 + 0.2264i   0.9432 - 
0.2264i], and sampling frequency at 16000Hz) by a single impulse. Two windowed versions are 
obtained using different sized rectangular windows, one having minimum-phase characteristics and 
one having mixed-phase characteristics.  
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Fig. 22: Effect of windowing to phase characteristics of a signal.  

Minimum-phase system output truncated at a zero-crossings: a) time domain signal, b)ZZT, c) 
magnitude spectrum, d)group delay function. Minimum-phase system output truncated at a non 
zero-crossing right-hand boundary: e) time domain signal, f)ZZT, g) magnitude spectrum, h)group 
delay function. 
 

Considering the zero locations in Fig. 22b, the signal in Fig. 22a is a minimum-phase signal since 
all zeros occur inside the unit circle. The spectra for this signal are smooth and contain a peak 
corresponding to the single resonance due to the pole-pair. A second version of the windowed 
signal is obtained by taking the first 60 points of the same discrete time signal (Fig. 22e). This time 
the signal is mixed-phase since some of the zeros fall outside the unit circle (Fig. 22f). Therefore, 
the phase characteristics of a truncated signal cannot be directly attributed to the system of which 
the signal is considered to be a response.  
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Mixed-phase characteristics have been observed for speech signals starting from the early times of 
speech processing. However, very few studies address these observations and develop methods 
accordingly. A study of mixed-phase characteristics of speech signals is especially necessary in 
analysis/modification/synthesis methods since synchronization of excitation instants is very 
important in such systems. Introducing distortions in phase/synchronization leads to hoarseness and 
roughness in re-constructed speech.  

One of the early uses of mixed-phase speech processing is [Quatieri, 1979]. Quatieri’s study aims 
at reducing the dispersion of the signal in the time-domain caused by minimum-phase (or zero-
phase) reconstruction. Such dispersion introduces hoarseness in re-constructed speech. Quatieri 
proposes a mixed-phase homomorphic system that uses complex cepstrum to retain the mixed-
phase characteristics of the analyzed signal. He reports that using mixed-phase reconstruction 
provides generally higher quality speech than its minimum-phase counterpart. 

In such approaches, the mixed-phase characteristics appear as an observed phenomenon and the 
general approach in processing is: “keep it as is not to introduce distortions”. The sources of 
mixed-phase characteristics and the extent to which the components of the speech production 
mechanism contribute to these characteristics is not a largely studied issue. Below, we first show 
that speech signals are mixed-phase as a result of the production model. Then we discuss the 
effects of windowing discrete time speech signals and the contribution of windowing on the final 
speech data that is subject to analysis in our speech technology systems.  

  

IV.4. Mixed-phase speech model 

Being the output of a physical system, the speech signal is assumed to be stable. Together with the 
causality feature, this assumption draws important guidelines for speech analysis. Once it is also 
assumed that the speech signal is causal, we end up with the minimum-phase speech model: all the 
poles of a signal that is causal and stable must lie inside the unit circle on the z-plane.  

Here, we discuss a mixed-phase model of speech, where we assume that speech is obtained by 
convolving an anti-causal and stable source signal with a causal and stable vocal tract filter. In this 
model, some resonances of the signal correspond to poles outside the unit-circle on the z-plane but 
these poles are anti-causal, and therefore still stable. These anti-causal poles correspond to 
resonances of the glottal source signal, while the causal-stable poles (inside the unit circle on z-
plane) correspond to the vocal tract resonances. The speech signal is a mixed-phase signal obtained 
by exciting a minimum-phase system (vocal tract system) by a maximum-phase signal (glottal 
source signal). It should be noted that the return phase component of the glottal source signal is 
included in the vocal tract component since it also has minimum-phase characteristics.  

This assumption is based on the characteristics of glottal flow models (LF [Fant, 1995], 
KLGLOTT88 [Klatt & Klatt, 1990]) and was already discussed to some extent in a few studies. 
Citing from [Jackson, 1989]:”Since the human vocal tract is obviously causal, the implication of 
the non-causal impulse response resulting from cepstral analysis is simply that the standard causal 
source-filter approach with impulse train source is inadequate to represent the actual speech 
waveform, even though it can model the power spectrum…The author conjectures that the causal 
portion of the impulse response corresponds primarily to the closed-glottis state because the 
primary vocal tract excitation occurs at the open-to-closed glottis transition. Assuming this to be 
true, the anti-causal portion of the impulse response then corresponds primarily to the open-glottis 
state.” Gardner [Gardner, 1994] has shown that mixed-phase models are appropriate for modeling 
voiced speech due to the maximum-phase nature of the glottal excitation. He shows that use of an 
anti-causal all-pole filter for the glottal pulse is necessary to resolve magnitude and phase 
information correctly. Anti-causality of the glottal flow signal has also been discussed within the 
context of spectrum of glottal waveform models in [Doval & d’Alessandro, 1997] and the authors 
point the similarity of the phase spectrum of KLGLOTT88 signal to an anti-causal filter phase 
spectrum. The authors compare the impulse response of an anti-causal all-pole system with 
KLGLOTT88 synthesized glottal flow signal and the main difference is reported to be the 
oscillations due to truncation.  

An intuitive method to present this property is to compare time-domain signals of glottal flow 
excitation and causal and anti-causal filter responses. In Fig. 23, we present such an example: the 
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glottal flow signal looks like a time-reversed causal filter response (anti-causal filter response). 
(similar plots are available in [Gardner & Rao, 1997]) 

 
Fig. 23: Effect of anti-causality on the time-domain waveform.  

a) a causal filter response, b) an anti-causal filter response, c) LF glottal flow signal 
 

For the stability of an anti-causal all-pole system, all of the poles have to be out of the unit circle 
and therefore the system has to be maximum-phase. The mixed-phase model assumes that speech 
signals have two types of resonances; anti-causal resonances of the glottal source signal and causal 
resonances of the vocal tract filter. 

In Fig. 24, we present the mixed-phase model for voiced speech impulse response. The lip radiation 
component is included in the glottal excitation component resulting in glottal flow derivative and 
the return phase component of the glottal flow is included in the vocal tract response which 
provides us finally with two components: a maximum-phase component and a minimum-phase 
component. The excitation of the resulting mixed-phase impulse response with a period impulse 
train results in realistic voiced speech signals.  

Several spectral representations for the two components and the resulting mixed-phase speech 
signals are presented. The amplitude spectra appear as presented in most of the textbooks. The 
group delay functions exhibit interesting properties, which have not been discussed in the literature. 
Due to the anti-causality of the glottal flow, the corresponding group delay function includes a 
negative peak, which also appears in the speech group delay function. It is obvious by comparing 
magnitude spectrum and group delay functions of speech that mixed-phase characteristics (spectral 
components from maximum and minimum-phase parts) can only be observed on the group delay 
but not on the magnitude spectrum. This shows that studying phase/group delay information is 
especially important if we want to capture the characteristics of glottal flow and of the vocal tract 
components separately. It is important to note here that the operation of “conversion to minimum-
phase” used in studies of Yegnanarayana and Murthy merges all components in a minimum-phase 
version signal. Therefore, phase/group delay information extracted from such minimum-phase 
version signals carries superimposed information from glottal flow and vocal tract. 

The all-pole representation simply presents the locations of poles and regions of convergence 
(ROC) (indicated as shaded areas on the z-plane). For stability, the unit circle should be included in 
the ROC and it is the case for the three representations. A pole pair is attributed to the glottal flow 
derivative component. For computational details about the location of these poles and the 
corresponding glottal flow parameters, the reader is referred to [Doval et al, 2003]. Estimating 
these poles from speech signals by LP analysis is an alternative way of glottal excitation analysis 
we have recently tested. We present our algorithm in the applications section of this thesis 
dissertation (section V.4). The two similar methods we could find in the literature are [Jackson, 
1989, Gardner & Rao, 1997].  

The ZZT representations are also provided. Comparing this all-zero representation with the all-pole 
representation, we see that poles correspond to zero-gaps in the ZZT representation. The previously 
discussed pattern of grouping of zeros outside and inside the unit circle is in accordance with the 
model presented here. 

In this section we have presented the mixed-phase model for the voiced speech impulse response. 
However, the observation of the discussed mixed-phase characteristics is not trivial on short-time 
speech signals. In the previous section, we have demonstrated that the phase characteristics of a 
windowed speech signal is not only dependent on the system that produces speech and that 
windowing plays an important role in the final phase characteristics of the actual discrete time 
speech signals. In the next section, we study this second part of the phase analysis problem. 
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Fig. 24: The mixed-phase speech model 
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IV.5. Effects of windowing on group delay functions 

The effects of windowing on the phase spectrum estimation have been addressed in a few recent 
studies [Zolfaghari et al, 2003, Alsteris & Paliwal, 2004]. Especially the study of Alsteris and 
Paliwal [Alsteris et al, 2004] is a good example of the importance of windowing in phase 
estimation: the authors show that Liu’s extensive study [Liu et al, 1997] on phase contribution to 
speech intelligibility can provide quite different results when the window function and window 
shift is modified in the procedure. They show that Liu’s choice of window function, Hamming, 
needs to be replaced by Rectangular and such modification completely changes the results leading 
to different conclusions. Still the studies mentioning the importance of the windowing operation 
lack background explanation and the preferences are often based only on ‘trial and error’ 
methodologies. The ZZT is a very appropriate representation to study effects of windowing on the 
phase spectrum and we use it as the basic tool in this chapter. 

The effect of windowing in zero-patterns is drastic as shown in Section III.3.4. In addition, we have 
discussed the difficulty introduced by zeros on the unit circle to phase computation. The study of 
effects of windowing on ZZT is therefore very important to understand the actual phase 
characteristics of the speech signal. However, there is an important lack of mathematical theory for 
studying roots of high degree polynomials since it is too complicated. For studying windowing, the 
main difficulty stems from the fact that term-wise multiplication of two discrete time signals in 
time-domain corresponds to term wise multiplication of z-transform polynomial coefficients and 
how roots of the polynomial are displaced after this operation is an issue very hard to predict 
analytically (This is impossible in the general case. However for very special cases like 
multiplication with an exponential, it is possible as shown in Eq. 3.8). For this reason, we studied 
the zero-patterns of windowed data and the group delay functions by observations rather than by 
mathematical analysis, on various examples. One of the best ways of studying such variations is to 
create movies and observe changes due to variations in: windowing size, location and function. We 
have created movies by shifting windows on signals and observing ZZT and group delay function 
using: 

• Synthetic and real speech signals,  

• Window sizes with T0, 2T0 and 3T0  

• Window functions: Rectangular, Hamming, Hanning, Blackman, Gaussian, Hanning-Poisson 

Candidate window functions are chosen according to their popularity and their spectral 
characteristics. In Appendix A, the definitions and plots for these functions are presented. Some of 
the movies created are available on http://www.tcts.fpms.ac.be/demos/zzt/index.html.  

Due to space limitations, here we present only selected plots. The windowing effects to ZZT have  
already been presented in Section III.3.4. To avoid duplication we present only group delay plots in 
this section and refer to the plots in Section III.3.4 when necessary. There are actually three 
dimensions to study: window location, size and function effects.  

Effects of window location on group delay functions 

We have previously shown in Fig. 22 that truncation points (window boundaries) play an important 
role in the final phase characteristics of the windowed signal. A discontinuity at these boundaries 
are likely to lead to mixed-phase characteristics even though the signal is a minimum or a 
maximum-phase system response. One other important point about location of the window is the 
synchronization of the window center with certain instants like GCI instant for speech signals. We 
have shown in Section III.3 that ZZT patterns are close to ZZT of speech production system 
impulse response patterns when window is centered at the GCI instant. Once the window is placed 
such that the increasing exponential part is multiplied with the first half of the window, which is 
also increasing, and the decreasing exponential part is multiplied with the second half of the 
window, which is also decreasing, the ZZT outside the unit circle are kept outside and ZZT inside 
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the unit circle are kept inside and further pushed away from the unit circle. This results in a zero-
gap on the unit circle and smooth group delay functions with characteristics matching the mixed-
phase model we have presented. Below in Fig. 25 (equivalent ZZT plots presented in Fig. 12 in 
section 3), we present the group delay functions obtained from a real speech signal for six different 
locations of the window.  

  
Fig. 25: Effect of windowing location to group delay of a real speech signal. 

Each (Blackman) window position is indicated on the signal on the top figure with reference 
numbers. The group delay function of the resulting windowed data for each window is presented 
with the window index indicated on the right-top corner of the figure. 
 

Therefore two criteria are derived from these observations for reliable phase/group delay function 
estimation: window center should be synchronized with GCI instants and the boundaries should 
correspond to zero-crossings of the signal. The second condition may result in asymmetric 
windowing when the distance from zero-crossing on two sides of the GCI are not the same. 
Actually, this does not appear to be an important problem in the examples we have studied. Using a 
smooth window function with zero boundaries removes such discontinuities.  Matching with zero-
crossing is necessary only for windows with non-zero boundaries and asymmetric windows can be 
used in that case, i.e. two sides of the window may have different lengths. 

Effects of window size on group delay functions 

Window size is also important. There is especially a big difference in group delay functions 
obtained with a window size smaller than two pitch periods and a window size bigger than two 
pitch periods. For windows larger than two pitch periods, the signal contains several periods, which 
means an impulse train component can be considered to be included. This results in ZZT of 
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impulse train to appear close to the unit circle introducing spikes in the group delay function. This 
is demonstrated in Fig. 26 where window center is at GCI and we only vary the window size. A 
window size in the T0-2T0 range appears to be a good choice for group delay processing. 

 
Fig. 26: Effect of windowing size to group delay of a synthetic speech signal. 

Each (Blackman ) window size is indicated on the window waveform on the top figure. The group 
delay function of the resulting windowed data for each window is presented with the window size 
indicated on the left-top corner of the figure. 

Effects of window function on group delay functions 

Windowing function is also important but comparatively less important than window size and 
location once we limit ourselves with commonly used window functions listed above (see Fig. 27 
for group delay functions obtained on the same data frame using different window functions). We 
observed that three types of windowing functions provide best group delay functions: Blackman, 
Gaussian and Hanning-Poisson.  

The Hanning-Poisson windows provide the smoothest group delay functions since the Poisson 
contribution of the window is composed of exponential functions. Windowing with a Hanning-
Poisson results in multiplication of exponentials of the Poisson function and the speech signal, thus 
addition of decay coefficients of the window and the glottal flow and vocal tract responses (Eq. 
3.11 and Eq. 3.12). This shifts zeros further away from the unit circle. For this reason, Hanning-
Poisson window is preferable in group delay based analysis methods. Hanning-Poisson and 
Gaussian are the functions for which the smoothness of the representation can be adjusted to some 
level with the decay coefficient (these two window functions have an independent user controlled 
parameter for adjusting decay coefficients).   
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Fig. 27: Effect of windowing function to group delay 

Group delay spectrogram 

Finally, we show that group delay functions, computed on data with proper windowing (two pitch 
period size Hanning-Poisson windowing centered at GCI instants), provide the formant structure, 
on a real speech example (BrianNormal3.wav from Voqual 03 database [www-Voqual03], for 
which the uttered sentence is “she has left for a great party today” with modal phonation). We 
obtained spectrogram-like plots from the positive part of the group delay functions computed for 
voiced frames of the complete speech data. Fig. 28 shows the spectrogram obtained by group delay 
functions and amplitude spectra and their correlation is obvious for the formant tracks. This figure 
shows that the group delay functions indeed carry resonance information of the signal once 
windowing is properly performed. 

Conclusion 

In this section we have shown that windowing plays a very important role in reliable group delay 
estimation. This point is very important for phase processing since even very recent studies 
concerning phase information do not take it into consideration: not respecting the criteria listed 
above results in unreliable phase estimation, which leads to loss of research time/effort.  

Until this point we have discussed how to get rid of masking spikes due to inappropriate 
windowing that hide the speech characteristics (like formants) in the actual group delay functions. 
Apart from windowing, there are still sources of spikes like the noise component in speech. As we 
have discussed in Section III.3, the ZZT of noise components may appear on the unit circle and 
introduce spikes. In addition, GCI and pitch detection are not always very robust which may result 
in inappropriate size and location of the window. These factors reduce the robustness of group 
delay computation. In the next section, we further target new group delay functions that are easy to 
process to obtain resonance information and which are more robust to compute. We introduce chirp 
group delay processing methods as alternative ways of obtaining phase related spectral 
information. Such representations are potentially useful in various speech applications like 
automatic speech recognition (ASR). They also facilitate studying minimum-phase and maximum-
phase contributions in the signals separately. 
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Fig. 28: Group delay spectrogram. 

(a) Group delay and (b) amplitude spectrogram for the sentence “she has left for a great party 
today” 
 

 
  

IV.6. Chirp group delay processing of speech 

We define the term chirp group delay3 as the negative derivative of the phase spectrum (the group 
delay function) computed from chirp z-transform [Rabiner et al, 1969], that is z-transform 
computed on a circle/spiral other than the unit circle. Given the chirp-z transform CZT(ω), the chirp 
group delay, CGD(ω), is defined by Eq. 4.35: 
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where ρ is the radius of the analysis circle. It is interesting to note that an existing fast Fourier 
Transform (FFT) implementation can be used to compute CZT(ω) by re-writing the equation as: 

                                                           
3 Initially the term “differential phase spectrum” has been used in our early papers. After a suggestion by 
Kuldip K. Paliwal, we have decided to use “chirp group delay” instead.  
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Therefore, for computation of the CGD from a given signal, it is sufficient to term-wise multiply 
the data array with an exponential array and compute the group delay with direct formula Eq. 4.8.  

Equivalently, given a ZZT representation for a signal, we can compute the chirp z-transform using 
the equation:  

  (4.39) ( ) ∏
−

=

+−
−=

1

1

)1( )e(e)0()(
N

m
m

jNj ZxCZT ωω ρρω

The main motivation for processing CGD computed on circles other than the unit circle is to get rid 
of spikes created by zeros of the z-transform (ZZT) which mask formant peaks on group delay 
functions.  

“By both manipulating the ZZT and adjusting the analysis circle radius for CGD 
computation, we can guarantee certain distance of zeros to the analysis circle. This is one of 
the basic ideas proposed and used through out this thesis.”  

We have discussed the difficulties involved in group delay processing and the link to windowing. 
We have proposed criteria for appropriate windowing. Although the group delay we obtain, when 
the criteria for windowing is taken into consideration, is incomparably smoother and spike-free, 
there are still some problematic issues for some cases like: errors in GCI detection, presence of 
additive noise in speech, errors in pitch period estimation leading to including more than two pitch 
periods in the window frame (which introduce extra zeros close to the unit circle). In Fig. 29, we 
present one such example of real speech. The formant structure is observed on group delay and 
most of spikes are avoided. But still we cannot guarantee that no zero will be close to the unit circle 
and the group delay contains some noise and two sharp spikes. For most of the speech applications 
this is undesirable. 

For applications like formant tracking and speech recognition, we propose to use CGD with some 
rough control on zero locations so that group delay is computed on a zero-free region. Two new 
representations are proposed here for this purpose: a GCI synchronous and an asynchronous 
version.  The asynchronous version is more advantageous than the synchronous method in terms of: 
i) computational efficiency, ii)independency from GCI synchronization, iii)robustness to noise. 
However the actual phase information is destroyed in the asynchronous version, since it contains 
only the information available in the magnitude spectrum. We briefly present the two methods 
below. 
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Fig. 29: Remaining problems for group delay of GCI synchronously windowed data. 

a) GCI synchronously windowed speech data, b) magnitude spectrum, c)chirp group delay 
 

Chirp Group Delay of GCI-Synchronously Windowed Speech (CGDGCI) 

Two steps are necessary in the computation of the CGDGCI representation: suppression of the ZZT 
outside the unit circle on GCI synchronously windowed data and then computing the CGD outside 
the unit circle from zeros inside the unit circle. This representation contains only the phase 
information of the minimum-phase component of the data. For GCI synchronously windowed 
speech signals, the minimum-phase component is due to vocal tract and return phase of the glottal 
flow, therefore such a representation can be used for formant tracking and speech recognition 
applications successfully.  

In Fig. 30, we present the CGDGCI computed on the example in Fig. 29. The ZZT after 
suppression of ZZT outside the unit circle and the analysis circle is presented on the left figure of 
Fig. 30. The CGDGCI obtained is much smoother than the group delay in Fig. 29c.  

 
Fig. 30: First method of chirp group delay processing.  

a) ZZT after suppression of ZZT outside the unit circle, b) chirp group delay 
 

We want to stress once more that it is extremely useful to consider CGD and ZZT together as in 
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CGDGCI: without any control on ZZT, CGD are likely to suffer from random peaks/spikes (as 
regular group delay functions). An example is presented in Fig. 31. Although most of the ZZT 
appear at a certain distance from the analysis circle, a single zero close introduces a large peak 
hiding formant information. 

 
Fig. 31: Effect of ZZT on chirp group delay  

a) magnitude spectrum of a real speech frame, b) chirp group delay computed on R=1.1, c) ZZT 
representation on z-plane (analysis circle indicated by a line at R=1.1) 
 

A formant tracking algorithm will be presented in the applications part of the thesis dissertation, 
which simply picks the peaks on CGDGCI [Bozkurt et al, 2004c]. With comparative tests both on 
synthetic and real speech, we show that our formant tracker is high quality. However it has two 
drawbacks: GCI detection is necessary and it is computationally heavy due to calculation of zeros. 
We developed the second representation to get rid of these difficulties. 

Chirp Group Delay of The Zero-Phase Version (CGDZP) 

Again the procedure contains two steps for the computation of CGDZP: computation of the zero-
phase version of the signal (inverse FT of |X(ω)|) and computation of the CGD on a circle outside 
the unit circle (ρ=1.12 appears to be a good choice by experience) using the chirp z-transform. 
Conversion to zero-phase guarantees that all of the zeros occur very close to the unit circle 
therefore the resulting chirp group delay function is very smooth with well-resolved formant peaks. 
However, the phase information is destroyed for this case, therefore the representation contains 
only the information available in the magnitude spectrum but formant peak resolutions appear with 
higher resolution. 
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Fig. 32: Second method of chirp group delay processing.  

a) ZZT after the zero-phasing operation, b) chirp group delay 

 

We provide an example of the chirp group delay obtained by this second method in Fig. 32. In 
preliminary tests, we have observed that this method is more robust to noise than the first method. 
The other advantages are: GCI synchronization is not necessary and there is no need for 
computation of zeros (therefore the computational load is much lower). 

 

  

IV.7. Conclusion 

In this section, we have first reviewed the group delay processing theory and discussed the 
difficulties involved. We have shown that windowing plays an important role and reliable/clean 
group delay functions revealing resonance information can be obtained from speech signals if 
windowing is properly performed. This is an important step in speech analysis since phase 
characteristics of speech signals are known to be important for perception but their analysis have 
always been reported to be very difficult. In some studies concerning speech coding and synthesis, 
the obscurity of phase information is reported and for improving naturalness of re-constructed 
speech, phase randomization techniques are tried (often by trial and error methodologies).  

Windowing is a secondary issue (in importance) even in most of the speech analysis studies. Many 
phase studies use rectangular or Hamming windows, which are not appropriate from our point of 
view. Here we showed that for phase analysis, windowing is indeed one of the key issues. We 
expect that the outcomes of this study will be useful for improving effectiveness of speech analysis 
algorithms where phase information is valuable. 

We have also presented a mixed-phase model for speech. In that model, the glottal flow first phase 
(“the active part”) has maximum phase characteristics and the remaining components have 
minimum phase characteristics and therefore the combination, the speech signal, has mixed-phase 
characteristics. When actually discrete-time speech signals are concerned, the 
truncation/windowing operation contribution needs to be taken into consideration and a good way 
to study this is to study the locations of the ZZT of the resulting truncated/windowed signal. As we 
have shown in Fig. 22, a truncated minimum phase filter impulse response may have minimum 
phase or mixed phase characteristics depending on the truncation boundaries.  

In addition, two new chirp group delay functions are presented (CGDGCI and CGDZP). Among 
the two representations, CGDZP appears to be especially useful in practical applications like 
speech recognition since: the load for computation of it is low and it is more robust to noise. 
However it mainly contains magnitude information. CGDGCI computation is heavy however it 
provides us the opportunity to estimate minimum phase and maximum phase components’ phase 
information separately.  

 
  67 
 
 



 

 

SSeeccoonndd  PPaarrtt                                                                                        
AAPPPPLLIICCAATTIIOONNSS  OOFF  ZZZZTT  AANNDD  CCHHIIRRPP  

GGRROOUUPP  DDEELLAAYY  PPRROOCCEESSSSIINNGG  IINN  SSPPEEEECCHH  
AANNAALLYYSSIISS  

TThe second part of this thesis is dedicated to the use of the two representations 
presented in part one in various speech analysis and parameter estimation problems.  
In the first chapter, we describe a source-filter decomposition algorithm using the 
ZZT representation. The algorithm classifies zeros of glottal flow component and 
zeros of vocal tract components and constructs FT spectra of these two components. 
The second application presented is a glottal flow parameter estimation algorithm 
using the ZZT-decomposition. The proposed algorithm estimates the frequency of 
glottal formant, which is potentially useful in studying some voice quality 
variations. Third application is in formant tracking and both the ZZT representation 
and chirp group delay processing theory are utilized. Three formant trackers are 
presented with varying complexity and robustness. The formant trackers are tested 
both on synthetic and real speech signals and shown to be effective by comparing to 
three state-of-the-art formant trackers: that of Praat, WinSnoori and Wavesurfer. The 
fourth algorithm presented is based on linear predictive (LP) modeling of mixed-
phase speech signals. This algorithm does not include ZZT or chirp group delay 
processing but the mixed-phase speech model discussed in the second part and the 
well-known LP-covariance approach to modeling/analysis from literature. Finally 
the fifth application is in speech recognition. In this part we show that chirp group 
delay function carries equivalent or complementary information to power spectrum, 
which can improve speech recognition performance.  
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V.1. ZZT-decomposition for source-filter separation of speech 

In chapter III, we have shown that separate patterns for the glottal flow first phase and the vocal 
tract (plus the return phase) contributions exist on the ZZT of speech signals. In this section, we 
propose an easy to implement and high quality source-tract decomposition algorithm using this 
property.   
In section V.1.1 we present the ZZT-decomposition algorithm and section V.1.2 is dedicated to the 
evaluation of the algorithm. A similar decomposition can theoretically be performed by cepstral 
deconvolution. Therefore, for completeness we discuss the link between ZZT decomposition and 
the mixed-phase decomposition by complex cepstrum in section V.1.3. Finally, the conclusion is 
presented in section V.1.4. 

V.1.1. The ZZT-decomposition algorithm 

The decomposition algorithm we propose is based on the patterns of GCI synchronously windowed 
speech signals: the ZZT outside the unit circle (UC) is mainly due to the glottal flow first phase and 
the ZZT inside the unit circle is mainly due to the vocal tract filter and the glottal flow return phase. 
Grouping zeros into two sets by their location on the z-plane, the signal can be decomposed into 
those two parts. In Fig. 33, we present our ZZT-decomposition algorithm for source-tract separation 
based on the characteristics of the ZZT of GCI synchronously windowed data. 

The decomposition starts with a pitch detection algorithm (PDA) and a voiced/unvoiced decision4 
(ZZT decomposition can be performed only for voiced frames). Given a first estimate of the pitch 
mark locations, GCI detection is performed with the technique defined in [Kawahara et al, 2000], 
which is based on processing of the evolution signal of center of gravity of windowed speech 
signals. A Blackman window with a size of two pitch periods and centered at GCIs is observed to 
be a good choice for the GCI synchronous windowing operation (as discussed in Section IV.5). 
Zeros are separated into two subsets based on their radius. Computing DFTs for each group is 
straightforward using Eq. 5.1. No z-transform polynomial re-computation is performed from given 
roots since some overflow problems are observed. Direct DFT computation from the roots appears 
to be safer. 

                                                           
4 The pitch detection and voiced/unvoiced classification algorithm used in this study based on MBE 
[Griffin & Lim, 1988] analysis of speech signals. Most of the tools used for such analysis are taken 
directly from the database processing tools of the Mbrola project [www-Mbrola]. In addition to the 
available tools, a pitch marker is implemented based on processing the phase of the first harmonic. 
Details of these tools are not included in this thesis since they are rather out of topic and the theory 
presented here is independent of the particular pitch tracker. For further details, the reader is referred to 
[Bozkurt et al, 2004 f]. 

CChhaapptteerr  VV::                                                                                                    
AApppplliiccaattiioonnss  ooff  ZZZZTT  aanndd  CChhiirrpp  GGrroouupp  
DDeellaayy  PPrroocceessssiinngg  iinn  SSppeeeecchh  AAnnaallyyssiiss    
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The most important detail for ZZT-decomposition algorithm is the existence of a single zero on the 
real axis due to the anti-causal portion of the signal, which in some cases falls inside the unit circle. 
This zero can be observed on figures Fig. 8c and 2nd row 2nd column of Fig. 11. At the moment no 
governing rule has been found for the classification of this zero (inside or outside?) and an heuristic 
approach is used for this problem; if no zero has been found on the real axis in the range R=[1 1.1], 
then the closest zero on the real axis to the point (R=1, φ=0) is removed from the set of zeros inside 
the unit circle set and put in the set of zeros outside the unit circle. 

 SPEECH DATA 

PDA and v/uv detection 

GCI Detection 

GCI synchronous windowing 

Z-Transform 

Calculation of zeros 

Classification of zeros according to radius 
 

r<1                                  r>1 
inside the UC               outside the UC 

DFT calculation from zeros DFT calculation from zeros 

Source dominated spectrum Vocal tract dominated spectrum
 

Fig. 33: The ZZT-decomposition algorithm 

 

V.1.2. Examples and evaluation of the decomposition algorithm 

For demonstrating the efficiency of the algorithm, we first present example signal plots for 
decomposition of synthetic and real speech signals. For a more complete evaluation of the ZZT 
decomposition we present tests in a parameter estimation scheme: that of glottal formant frequency 
estimation (section V.2). 

Synthetic speech example 

We first present the effectiveness of the decomposition method on a synthetic speech example in 
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Fig. 34 and Fig. 35. Speech is synthesized by filtering the periodic glottal flow excitation (LF signal 
without a return phase) in Fig. 34a, by a four pair all-pole vocal tract filter. The resulting signal is 
presented in Fig. 34b. Our choice of window location for the ZZT-decomposition is presented on 
the signals in Fig. 34a and Fig. 34b and the windowed speech signal is presented in Fig 34c with 
the ZZT representation in Fig 34d. ZZT-decomposition is performed from the ZZT representation 
in Fig. 34d. 

 
Fig. 34: Synthetic speech signal for testing ZZT-decomposition. 

a) periodic glottal flow signal, b) speech synthesized by filtering the excitation signal in a, c) 
windowed synthetic speech, d) ZZT of the windowed speech frame 
 

 
Fig. 35: ZZT-decomposition results of synthetic speech.  

a) time-domain signal obtained by inverse DFT from spectrum calculated from zeros outside the 
unit circle, b) time-domain signal obtained by inverse DFT from spectrum calculated from zeros 
inside the unit circle, c) magnitude spectrum for the zeros outside the unit circle, d) magnitude 
spectrum for the zeros inside the unit circle, in a and b, estimated signals are presented together 
with the original signals (in gray) used for synthesis after the same windowing operation. 
 

The amplitude spectra of the decomposition results are Fig. 35c and Fig. 35d. Also, the time-
domain signals obtained by inverse FT of the two spectra are presented in Fig. 35a and Fig. 35b. 
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For comparison, all estimated signals are plotted together with the actual windowed excitation 
signal and windowed vocal tract impulse response used for synthesis.  The original and estimated 
signals are very close and ZZT-decomposition is indeed capable of separating source and vocal 
tract signals to a high extent (not completely though, small variations due to vocal tract formants 
are observable both on the time domain glottal flow signal and its magnitude spectrum) and 
parameter estimation can be performed effectively on the resulting spectra and time domain signals. 

Next, we present a similar example where both results obtained by the ZZT-decomposition and by 
the well-known PSIAIF [Alku, 1992 a] algorithm for source-tract decomposition are plotted 
together with the original excitation signal (Fig. 36). The PSIAIF algorithm is an iterative 
algorithm, which decomposes glottal flow and vocal tract components by LP analysis. The user sets 
fixed numbers of poles for the glottal flow and the vocal tract components. Then a sequence of 
inverse filtering analysis is applied to the speech signal to estimate each component.  
Speech is synthesized with the following parameters: open quotient=0.7, asymmetry 
coefficient=0.65, vocal tract formant frequencies =[600 1200 2200 3200] Hz. We present the glottal 
flow signals and their amplitude and group delay spectra. The color codes are: PSIAIF (red), ZZT-
decomposition (green) and the original (blue). 
 

 
Fig. 36: ZZT-decomposition example on a synthetic speech frame (comparison of ZZT-

decomposition and PSIAIF).  
Three superimposed signals: original glottal flow used for synthesis (blue), glottal flow estimated 
by PSIAIF (red), glottal flow estimated by ZZT-decomposition (green). a) time domain glottal flow 
signal, b) time domain glottal flow derivative signal, c) magnitude spectrum of the glottal flow 
derivative, d) group delay of the glottal flow derivative signal. 
 

It is hard to see from the time domain signals which method performs better but in the spectral 
domain the differences are clearer. The magnitude spectrum of the ZZT-decomposition estimate is 
quite better than that of PSIAIF. The same holds for the group delay function except the third and 
fourth formant peaks where errors in the ZZT-decomposition estimate is slightly worse. In this 
example, the ZZT-decomposition better estimates the glottal flow contribution compared to the 
PSIAIF method, which is known to be the reference method currently used in many studies A 
reliable and complete comparison of the two methods would need that we perform tests on a large 
variety of real speech signals and this is not possible at the moment due to unavailability of 
reference data. Therefore we only presented a single example for visual comparison of the 
decomposition results. The disadvantages of ZZT-decomposition compared to PSIAIF are the need 
for GCI estimation and computational complexity. 
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Real speech example 

Here we present a real speech decomposition example in Fig. 37 and Fig. 38. The speech frame is 
taken from vowel /a/, from the word “party” (The file named BrianNormal2.wav in the Voqual 
2003 [www-Voqual03] database). An example of vowel /a/ is presented since it is a rather an easy 
type of signal for visual inspection of formant locations. The displayed frequency range is 0-
4000Hz for better viewing and for the reason that ZZT-decomposition is more robust in this 
frequency range (since the zero gap around the unit circle is prominent in this region). The actual 
magnitude spectrum of the windowed speech frame is presented in Fig. 37c and the amplitude 
spectra of glottal flow and vocal tract contributions obtained by ZZT-decomposition are presented 
in Fig. 38c and Fig. 38d. 

The zero locations in Fig 37b show that indeed a zero gap exists around the unit circle for the 
windowed data and for this reason the corresponding magnitude spectrum (Fig. 37c) is smooth with 
apparent formant peaks. The ZZT-decomposition procedure results in separating the first peak as 
the glottal formant peak (Fig. 38c) and the rest of the formant peaks are included in the vocal tract 
contribution part (Fig. 38d). This fulfills our expectation for the decomposition of this signal since 
theoretical values of the formant frequencies for vowel /a/(F1~=600Hz, F2~=1200Hz) are in 
agreement with the formant peaks observed in Fig. 38d. For sounds with low F1 frequency (for 
example /i/), mid-low open quotient and high pitch, glottal formant (Fg) and F1 peak share the 
same frequency region making visual inspections very difficult. Our decomposition for such 
examples gives Fg and F1 to be very close but due to lack of reference data it is difficult to check 
the reliability of the estimate. In the following sections, we present our tests based on the analysis 
of synthetic signals in which one part of the tests is especially set for cases where Fg is very close 
to or higher than F1 frequency (high pitch female speech). 

 
Fig. 37: ZZT of the real speech frame (/a/) windowed synchronously with GCI.  

a) time domain windowed signal, b)ZZT representation, c)magnitude spectrum, d)group delay 
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Fig. 38: ZZT-decomposition result for a real speech frame.  

a) time-domain source signal estimate, b)time domain vocal tract response estimate, c)magnitude 
spectrum of the source estimate, d)magnitude spectrum of the vocal tract estimate 

Robustness tests 

Investigating the robustness of the decomposition method to GCI detection errors, to F1 variations, 
to additive noise and to return phase variations is necessary.  
 
Robustness to GCI detection errors 
Robustness tests for GCI detection errors is handled by introducing error in the GCI estimate 
sample by sample on a synthetic speech and a real speech example, and checking the glottal 
formant peak location in the decomposition result (the estimate for the source spectrum). In Fig. 39, 
we present the amplitude spectra of estimated glottal flow derivative signals when the error is 
systematically introduced in the GCI estimate for the synthetic signal (left column) and the real 
speech signal (right column). 

The left column figures show that the decomposition results are very similar in the +-%23T0 error 
range and no longer reliable beyond these limits (glottal formant peak disappears and formant peaks 
appear in the estimated source spectrum). Our main concern is the location of the glottal formant 
peak and it stays almost unaltered in this range. Similar results are obtained for the real speech 
example (right column figures); however the error range tolerated is smaller: -%17T0 to +%13T0. 
Though results may vary from signal to signal, we think that these tests show that GCI sensitivity is 
rather low: most of the state-of-the-art techniques for GCI estimation provide estimates with 
enough precision to perform ZZT-decomposition reliably. This is of course an important result. 
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Fig. 39: Tests for robustness to GCI estimation errors.  

Magnitude spectrum of estimated glottal flow derivative for synthetic speech signal(left column): 
a) error in GCI in range -%30T0 to -%20T0, b) error in GCI in range -%20T0 to +%20T0, c) error 
in GCI in range +%20T0 to +%30T0.  
Magnitude spectrum of estimated glottal flow derivative for real speech signal (right column): a) 
error in GCI in range -%20T0 to -%10T0, b) error in GCI in range -%10T0 to +%10T0, c) error in 
GCI in range +%10T0 to +%20T0. 
 

 
Fig. 40: Tests for robustness to F1 variations.  

Magnitude spectrum of estimated glottal flow derivative for synthetic speech signal: a) F1 variation 
in range 200Hz to 350Hz, b) F1 variation in range 375Hz to 500Hz, c) F1 variation in range 525Hz 
to 700Hz. 
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Robustness to F1 variations 

As the next step, we studied effects of F1 variations. Speech signals are synthesized by varying 
only the F1 frequency and keeping all other parameters constant. In Fig. 40, the amplitude spectra 
of estimated glottal flow derivative signals are presented. 

We observe in Fig. 40 that glottal formant peak is resolved reliably after F1 exceeds 375Hz. This 
shows that ZZT-decomposition is not reliable when F1 and glottal formant share the same 
frequency band. This is an important drawback. However this sensitivity exists for all source-tract 
decomposition methods and further improvement is generally necessary. 
 
Robustness to additive noise and return phase variations 
Finally we studied robustness to additive noise and return phase variations on a synthetic speech 
signal (Fig. 41). For additive noise tests, random white noise is created and mixed with the 
synthetic speech signals. The signal-to-noise-ratio (SNR) is varied from ∞ (no noise) to 25dB. Left 
column figures present the final noisy speech signal and estimation results for various mixing 
levels. Right column figures present the excitation signal with variation on the return phase and the 
corresponding estimation results. 

 
Fig. 41: Tests for robustness to additive noise and return phase variations. 

Left column: Estimation results when mixing level of additive noise is varied (in range ∞ (no 
noise) to 25dB): a) time domain speech signals with various levels of additive noise, b) amplitude 
spectra of estimated glottal flow derivative signals.  
Right column: Estimation results when return phase coefficient is varied: a) time domain glottal 
flow derivative signals used for synthesis with various return phase coefficients, b) amplitude 
spectra of estimated glottal flow derivative signals. 
 

In Fig. 41, we observe that robustness to noise is low: at an SNR level as high as 30dB, the glottal 
formant peak is no more available on the estimated spectrum. It seems that the most important 
problem introduced by noise addition is the variation introduced on the location of the zero on the 
real axis. Such variations cause, for some cases, the exclusion of the zero on the real axis due to 
glottal flow first phase from the set of glottal flow ZZT. A systematic study is difficult since we 
need to study changes in the root locations of high degree polynomials when some noise is added to 
the polynomials coefficients. This effect does not seem to be a linear function of SNR so we think 
there is no reason to study this systematically by varying SNR levels for all types of phonation and 
formant settings.  
The second test presented in Fig. 41 is return phase coefficient variation. The robustness is high for 
these variations; the glottal formant peak location stays almost unaltered.   
Summarizing the results: ZZT-decomposition suffers mainly from F1 variations when F1 is close 
to the glottal formant peak in the spectrum and is not robust to additive noise. ZZT-decomposition 
is robust to GCI errors in +-%10T0 range and variations in the return phase coefficient of the glottal 
flow component. 
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V.1.3. Mixed-phase decomposition using complex cepstrum 

ZZT decomposition corresponds to decomposing a mixed-phase signal into its maximum-phase 
and minimum-phase components (except the zero on the real axis, which affects the resulting 
spectra to a large extent). Theoretically, a similar operation can be performed using the complex 
cepstrum. Therefore for completeness, we discuss cepstral decomposition in this section. As we 
shall see, computational difficulties exist for complex cepstrum (due to phase unwrapping 
problems) and direct cepstral decomposition does not lead to source-tract decomposition as we 
show by examples. Developing a cepstrum based method needs further research. 

Links between ZZT and complex cepstrum 

A z-transform polynomial for a given signal x(n) can be expressed in the ZZT form as: 
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where (1-akz-1) correspond to zeros inside the unit circle, (1-bkz) correspond to zeros outside the 
unit circle and (1-ckz-1) correspond to zeros on the unit circle. Xmin(z) is the minimum-phase 
component, Xmax(z) is the maximum-phase component and Xzero(z) is the zero-phase component, 
and where A stands for the gain coefficient and z-r is the time-shift factor.  
Given a mixed-phase signal, one can decompose it into the minimum-phase, the maximum-phase 
components and the zero-phase components. The direct way to perform this operation is to 
compute the ZZT and classify them according to their distance to the origin of the z-plane. An 
alternative way, which is computationally more efficient, is to use the complex cepstrum for this 
operation (if no zero occurs on the unit circle). 

The complex cepstrum, , is defined as ([Quatieri, 2002]) [ ]nx
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and the even component of the complex cepstrum, denoted as c[n], is referred to as the real 
cepstrum.  
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which is also defined through magnitude spectrum only as: 
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By definition, the logarithm of the complex FT spectrum is; 

 [ ] { })(arg)(log)(log ωωω XjXX +=  (5.7) 

In order that log[X(ω)] be unique, arg{ X(ω)}, the phase spectrum, should be unique. However 
there is an ambiguity in the definition of the phase: it can be defined as arg{ X(ω)}=PV(arg{ 
X(ω)})+2πk where PV stands for the principle value (in interval [-π, π]) and k is any integer 
value. This ambiguity necessitates the unwrapping operation and appears as a computational 
difficulty in complex cepstrum computation.   

If we discard the time shift component, the gain factor of the rational form of X(z), and assume no 
roots occur on the unit circle, the complex logarithm is:  
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and referring to the power series expansion formulas: 
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where Eq. 5.9 corresponds to a right-sided sequence and Eq. 5.10 corresponds to a left-sided 
sequence according to z-transform properties. We can re-write the complex cepstrum as: 
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where u[n] is the unit step function. This suggests the complex cepstrum is a two sided sequence 
which is combination of a right-sided sequence due to the zeros outside the unit circle and a left-
sided sequence due to the zeros inside the unit circle [Quatieri, 2002]. Therefore a given mixed-
phase signal can be decomposed into minimum-phase and maximum-phase components as defined 
in [Oppenheim et al, 1976]: 
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The question to raise at this point is: does this type of decomposition lead to the same result as the 
ZZT-decomposition? To answer this question, first we present an example of decomposition results 
for a GCI-synchronously windowed synthetic speech frame using ZZT and complex cepstrum.  

 
Fig. 42: Comparison of complex cepstrum and ZZT decomposition results 

Red: complex cepstrum decomposition result, blue: ZZT decomposition result, green: original 
glottal flow derivative signal 
 

Fig. 42 shows that complex cepstrum decomposition into maximum-phase and minimum-phase 
components does not directly lead to source-tract decomposition in the example the ZZT 
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decomposition provides high quality decomposition. It seems that the main difficulty is in the 
phase unwrapping operation in calculation of the complex cepstrum. 

In the contrary, in the homomorphic decomposition literature we could find two figures where 
successful source decomposition is demonstrated: Fig.5 in [Oppenheim & Schafer, 1968] and Fig. 
6.18 in [Quatieri, 2002]. However, referring to the following statements in [Oppenheim & Schafer, 
1968]: “Since no clear statements can be made about the relative importance of the maximum and 
minimum-phase components of the glottal pulse, the notion of recovering the maximum-phase 
component has no obvious implications. However, if we retain values in the complex cepstrum for 
positive and negative values of n, then combined vocal tract and glottal pulse information can be 
recovered with appropriate phase relations”, we think that the authors could not get reliable 
decomposition in all examples and that lead to some confusion. In [Quatieri, 2002], the figure 
caption stresses: “…for this particular example…” which again makes us think that the provided 
good result cannot be generalized. We have conducted a detailed search in literature and could find 
no method proposed using this potential of complex cepstrum for source-tract decomposition. The 
fact that there exist a few demonstrations but no methods suggests that again some factors like 
windowing plays an important role (since phase unwrapping seems to be one of the main problems 
in cepstral decomposition) and researchers could not observe reliable outputs in their trials to use 
this property. Further research is needed to check if similar results can be obtained using the 
complex cepstrum.  

 

  
V.1.4. Conclusions 

A ZZT-decomposition method based on classifying roots of the z-transform of windowed speech 
data was presented. The decomposition is of high quality though not complete. The contribution of 
the vocal tract in the glottal-flow-dominated spectrum is observed as ripples of low amplitude, 
while the contribution of glottal flow in the vocal tract dominated spectrum is hardly observed. The 
proposed algorithm is very easy to implement but computationally heavy due to the need of finding 
roots of high degree polynomials. For this reason, it is more appropriate for off-line database 
processing.  
In the robustness tests, we have observed that two factors have important effects to efficiency: 
additive noise and low F1 values when Fg is high. Further research is necessary to improve 
robustness of the method for these variations. 

 

  

V.2. Application to glottal flow parameter estimation 

Apparently, source and vocal tract parameter estimation can be performed on the resulting two 
components of the ZZT-decomposition. Fg (glottal formant frequency) is one such parameter we 
are mainly interested in. Since time-domain glottal flow parameter estimation methods are sensitive 
to noise, we find spectral parameter estimation methods to be more robust. Tracking the maximum 
valued peak location of the magnitude spectrum of zeros outside the unit circle, we can easily get 
an estimate for Fg.  

The mathematical expression for Fg is derived from glottal flow models in [Doval et al, 2003] as:  
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where αm is the asymmetry coefficient, Oq is the open quotient, T0 is the pitch period (these 
parameters are indicated on Fig. 2) and fg refers to the numerator which is only a function of αm. 
The authors mention (and as presented in Fig. 9) that αm mainly controls the quality factor of the 
glottal formant and does not play an important role on the Fg value. This suggests that given the 
pitch period, Fg estimate can be useful to detect open quotient variations in speech, which is 
considered to be one of the important dimensions of voice quality variations.   

 
  79 
 
 



 

V.2.1. Testing the Fg estimation algorithm 

Tests with synthetic speech 

We first tested our algorithm with synthetic speech signals. As test signals, two periodic excitation 
(glottal flow derivative) signals are synthesized with the LF model [Fant, 1995] at constant pitch 
frequencies: 100Hz and 200Hz. All the parameters of the glottal flow have been kept constant 
except the open quotient, which is varied linearly in the range (0.3-0.98). No spectral tilt 
component is included for simplicity (Ta, the return phase decaying exponential time coefficient is 
set to zero) and the asymmetry coefficient is set to 0.7. These two excitation signals are then passed 
through three second order resonant filters for the vowel formants; /a/ (F1=600Hz, F2=1200Hz, 
F3=2200Hz, F4=3200Hz), /I/ (F1=300Hz, F2=1800Hz, F3=2200Hz, F4=3200Hz) and /u/ 
(F1=300Hz, F2=800Hz, F3=2200Hz, F4=3200Hz), thereby obtaining six synthetic speech signals. 
Then Fg is estimated using the proposed algorithm on all the signals (including pure excitation 
signals for reference). Since Fg is independent from formant variations, we expect to obtain the 
same Fg estimates for all synthetic vowels created and the glottal flow signal itself (as reference).  
The results are presented in Fig 43. 
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Fig. 43: Fg estimation results for two excitation signals. 

a)f0=100Hz, b)f0=200Hz 
 

As expected, the Fg estimate plots have the basic form y=1/x since open quotient is linearly varied 
and Fg is inversely proportional to open quotient. The robustness of the estimation depends on the 
relative location of glottal formant to the first formant of the vocal tract (F1). For the frames where 
Fg is lower than 300Hz, the estimates for the vowels compared to the reference estimate are very 
close. For higher Fg values, the maximum peak location of the magnitude spectrum corresponding 
to zeros outside the unit circle is more affected by F1, and peak picking is sensitive to this effect. 
The ZZT-decomposition result for the worst estimation in the test is shown in Fig 44. 
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Fig. 44: Magnitude spectrums of ZZT-decomposition for the worst glottal formant frequency 

estimation with peak picking. 
12th frame from the f0=200Hz test where the vowel is “a”, Fig. 42b 

 

The ripples due to incomplete separation of vocal tract from glottal flow are marked with circles on 
the glottal flow dominated spectrum. The ripple due to F1 causes the maximum valued point of the 
spectrum to appear at a higher frequency (marked with a rectangle) introducing an error in the Fg 
estimate. To improve robustness of our algorithm, we plan to apply a curve fitting method instead 
of peak picking in our future studies.  

Tests with real speech 

The Fg estimation method has also been tested on a real speech signal for which we could obtain a 
reliable open quotient estimate. A sustained vowel /a/ with flat pitch and decreasing open quotient 
has been uttered and EGG signals were recorded in parallel. Using the method described in 
[Henrich et al, 2000], open quotient (Oq) estimate was obtained5. As previously mentioned and 
also demonstrated in Section III.3.2, the effect of asymmetry coefficient variation to Fg variation is 
rather minor. For this reason, for our speech example with almost constant pitch, we expect the Fg 
estimate to be highly correlated with the inverse of the open quotient estimate (Eq. 5.15). In Fig. 45, 
we present the Fg estimate plotted together with f0 and with the inverse of the open quotient 
estimate scaled by a constant. 

                                                           
5 Thanks to Nathalie Henrich for providing the speech data and the EGG based open quotient estimates. 
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Fig. 45:  Comparing glottal formant frequency estimate with inverse of open quotient estimate and 

f0 estimate (k=115) 

The glottal formant frequency estimate and inverse of open quotient estimate plotted in Fig. 45 
have high correlation which indicates that our algorithm is effective not only on synthetic signals 
but can track glottal flow variations of real speech signals. 

V.2.2. Conclusions 

We have presented a method for estimating the glottal formant frequency. It is mainly composed of 
picking the maximum valued peak on the magnitude spectrum of the glottal flow obtained by ZZT-
decomposition from GCI synchronously windowed speech signals. 

The proposed algorithm was tested on synthetic speech and the results show that the ripples on 
glottal flow spectrum due to incomplete separation introduces errors when Fg and F1 values are 
close. It is also the sensitivity of peak picking to small ripples which causes the wrong estimates. 
For our future studies we target improving the quality of the Fg estimation method by replacing 
peak picking with a more robust method. 

Due to lack of reference methods and data, tests on real speech were limited. On a single real 
speech example, we have shown that open quotient variations can be tracked with the Fg estimation 
algorithm. Robustness tests on larger real speech databases are necessary. 

 

  

V.3. Application to formant tracking 

One of the potential applications of chirp group delay processing is formant tracking. During this 
thesis study, three versions of a formant tracker have been developed (the first two being presented 
in [Bozkurt & Dutoit, 2003, Bozkurt et al, 2004a]). All the versions are based on peak picking on 
the chirp group delay computed outside the unit circle. At each update of the formant tracker, 
quality and robustness are improved by solving a problem. Below we present all of the three 
versions. 
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V.3.1. Formant tracker – first version 

The first method is simply based on the fact that most of the ZZT of a speech frame is located 
around the unit circle and the spikes on the group delay due to these zeros can be avoided by simply 
calculating the chirp group delay outside the unit circle. Once the radius of the analysis circle is 
appropriately set, peaks due to formants of speech signals can be observed on chirp group delay 
functions even with better resolution than on the corresponding magnitude spectrum. This first 
version of the formant tracker was actually developed before ZZT of windowed speech was 
studied. The method presented was considered to be theoretically correct but the tests have shown 
that it lacks robustness for some unknown reason.  

The source of problem became apparent after the study of ZZT of windowed speech. We conducted 
experiments comparing the chirp group spectrum and ZZT of signals. We observed that zeros can 
appear nearly everywhere on the z-plane though most of them are closely located to the unit circle 
and a single zero close to the analysis circle where chirp group delay is computed introduces 
important errors in the formant estimation result (this issue is discussed in detail in Section IV.6 
with example figures). Therefore, the first version of the formant estimation algorithm was very 
sensitive to such unexpected zeros close to the analysis circle and we had to find a means to 
guarantee certain distance between zeros and the analysis circle. A second version of the formant 
tracker was developed to avoid this problem. 

V.3.2. Formant tracker – second version (DPPT) 

The second method we have developed [Bozkurt et al, 2004c], differential phase peak tracking 
(DPPTT

6), guarantees some distance between the analysis circle and the zeros by removing some of 
the zeros from the set of ZZT. Actually an optimum way to achieve this correctly (without 
destroying the vocal tract information available in ZZT) is to apply the ZZT-decomposition on 
GCI synchronous windowed data as apriori step. Then the chirp group delay is computed outside 
the unit circle from zeros inside the unit circle. This refers to the CGDGCI representation defined 
in section IV.6. The flow chart of the method is presented in Fig. 46. 

 SPEECH DATA 

ZZT decomposition 
zeros inside the unit circle 

Chirp Z-transform calculation outside the unit circle 

Peak picking 

Computing differential of the phase component of the chirp Z-transform 

Formant frequencies
 

Fig. 46: The Differential-Phase Peak Track (DPPT) algorithm 

 

                                                           
6 Initially the term “differential phase spectrum” was used instead of chirp group delay. Therefore the 
formant tracker was named as DPPT. 
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Once the z-transform is calculated on a circle outside the unit circle with radius R=1+deltaR, the 
closest zero is at least deltaR away from the analysis circle since all zeros are inside the unit circle. 
As deltaR increases, the differential phase spectrum gets smoother. Defining an optimum value is a 
compromise between smoothness and high resolution and deltaR=0.06 is empirically found to be 
an appropriate value. The formant tracking algorithm simply picks the peaks on the chirp group 
delay function.  

We have conducted tests for comparing the efficiency of the second version of the formant tracker 
to that of two publicly available formant trackers: that of Praat [www-Praat] and WinSnoori 
[www-WinSnoori]. Both synthetic speech and real speech examples were used for testing. The 
results of the tests are reported below. 

Tests 

Stimuli 

For the tests with synthetic speech, a single synthetic speech chunk with pitch frequency and 
formant frequency variations so as to uniformly sample the f0-F1-F2-F3-F4 parameter space (see 
Fig. 47) was designed. Speech was synthesized by all-pole filtering a periodic excitation signal. The 
excitation signal was created by using the LF model [Fant, 1995] with fixed open quotient (0.65) 
and asymmetry coefficient (0.7) and f0 was varied from 200 Hz to 100 Hz by a sinusoidal function. 

 

 
Fig. 47: Parameter space of the synthetic speech stimuli 

 

For the tests with real speech, two female and two male examples with large formant movements 
were used.  

Results 

The formant tracks obtained for the synthetic speech signal by DPPT is presented in Fig. 48 
together with the actual formant tracks used in synthesis. In addition, average percentage error rates 
and formant missing rate (percentage of frames where no estimate for that particular formant is 
available) for the outputs of the three systems are provided in Table 1. Average percentage error 
rates are calculated only for the formants, which are not missed (i.e. a formant missed does not 
contribute to the error rate by 100% but is simply not included in calculations). Plots for outputs 
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from two other formant trackers are available on the CD-ROM: 
“\formantTrackingTests\formantEstimates\plots\synth” directory.  

Table 1: Formant tracking error rates for DPPT, Winsnoori and Praat 

Average percentage error Formant missing rate  

F1 F2 F3 F4 F1 F2 F3 F4 

DPPT 6.8 1.8 1 0.8 0 17.1 3.5 0 

Win-Snoori 2.8 1.9 0.6 - 0 0 0 - 

Praat 3.8 3.8 4.7 13.8 0 0 0 24.4 

 

 
Fig. 48: DPPT formant tracks (dots) and formant synthesis parameters (solid lines) 

 
For demonstrating the results of tests with real speech, we provide only plots but no error 
rates due to unavailability of reference data for formant frequencies of real speech chunks. 
Here, we provide the DPPT peaks picked for one of the real speech examples (Fig. 49), for 
which the formant tracks on spectrogram are obvious. All plots obtained from three 
formant trackers on four real speech examples are presented in the CD-ROM.  
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Fig. 49: Differential phase spectrum peaks indicated on the spectrogram of a speech signal. 

For the phrase: "where were you while we were away?" from The DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus, NIST Speech Disc CD1-1.1, DR1/msjs1/sx9.wav 
 

Discussion 

It is interesting to observe that the robustness of methods for tracking formants on real speech and 
synthetic speech are quite different. In tests with synthetic speech, Winsnoori results are best for the 
first three formants. But the fourth formant track is not available so we cannot compare the results 
for F4. DPPT’s quality is very close to Winsnoori’s except in frames where formants get very close 
to each other (can be easily observed on Fig. 48) and it provides the F4 track with high precision. 
For frames where formant frequencies are very close, DPPT tracks a single peak instead of two 
peaks, which causes a high formant miss rate for F2. This is one of the important drawbacks of the 
DPPT algorithm. Praat’s robustness on analysis of synthetic speech is lowest except for the F1 
track. 

However, the robustness of the three methods for analyzing real speech are quite different than that 
for synthetic speech. For three of the four real speech examples, DPPT is either the best or among 
the best two. But it gives the worst results among the three techniques for the fourth example. 
Praat’s quality seems to be more constant than the other two methods when all four examples are 
considered.  Winsnoori is effective mainly for tracking F1. It has moderate quality in tracking F2 
and fails to provide reliable F3 estimates for most of the frames (and cannot provide F4 track).  

The results show that DPPT has similar quality as the two state-of-the-art methods and is an 
effective method for formant tracking. Its main advantage is in tracking high order formants and 
the main reason for this is the spectral tilt-free property of the differential phase spectra. The main 
drawbacks are: need for GCI marking and high computational load due to need for calculation of 
roots of high degree polynomials. We developed the third method to get rid of these difficulties. 

 

V.3.3. Formant tracker – third version (Fast-DPPT) 

The third method guarantees the absence of zeros outside the unit circle by computing a zero-phase 
version of the signal. A zero-phase version of a signal can be computed by applying inverse FT to 
the magnitude spectrum of the signal. Again the chirp group delay is computed outside the unit 
circle (named the CGDZP in section IV.6) and peak picking is performed. 

The third version of the formant tracking algorithm was developed (presented in Fig. 50) including 
one additional step of optimizing the radius (R) of the analysis circle by an iterative procedure. As 
discussed before, the smoothness and resolution of peaks of the chirp group delay varies with the 
radius of the analysis circle. Given a fixed number of formants to track (usually five), the iterative 
procedure optimizes the R value by decrementing/incrementing it with steps of 0.01: if the number 
of peaks picked is higher than the number of formants to be tracked, R is incremented and vice 
versa. For tracking of five formants on a 30 msec frame-size analysis, the optimum value found for 
most of the examples is R=1.12, so this value is taken as the optimum initial value for the iterative 
procedure.   
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 SPEECH DATA 

Fixed frame-size and frame-shift 
Blackman windowing 

Computation of the zero-phase version of the signal 

Peak picking 

Computation of chirp group delay outside the unit circle 

Formant frequencies

Decrement/increment 
radius of analysis circle 

Frame-size, frame-shift,  
number of formants to track 

number of peaks equal to 
number of formants to track?   NO

YES 

 
Fig. 50: The final version of the formant tracking algorithm using peak picking on chirp group 

delay computed outside the unit circle. 

 
In Fig. 51, we present the histogram of results for iteration of R on 2865 speech frames (1453 male, 
1412 female). The initial value is set to R=1.12 and the limits of the iteration are [1.05 1.25] where 
the number of formants is fixed to five. This figure shows that R=1.12 is an appropriate value for 
tracking five formant peaks. To reduce computational time of the algorithm one can remove the 
iteration block and set R=1.12 for frame size of 30 msec. with 16000Hz sampling rate. 
 

 
Fig. 51: Histogram of R values obtained by the iterative procedure. 

 
The main advantages of this last version of formant tracker to the previous version are: there is no 
need for GCI instant synchronous analysis; there is no need for finding roots of a large order 
polynomial (therefore it is named as Fast-DPPT) and it is more robust.  

Tests 

Procedure and Stimuli 

The final version of the formant tracker is compared to formant tracker of Praat and the formant 
tracker of Wavesurfer [www-WaveSurfer]. In this test Wavesurfer was preferred to WinSnoori 
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because WinSnoori had the lowest quality in the previous tests. A preliminary test was conducted 
with few real speech examples to compare WaveSurfer and WinSnoori, and WaveSurfer was more 
effective. So, the final tests include a comparison between our final algorithm and two best formant 
trackers we could access from the internet. In addition, only real speech examples were used in this 
second test (but the set of examples are enlarged) since tests on synthetic speech was not found to 
be very useful in terms of measuring the robustness of the formant trackers in the first tests. The 
first tests have shown that the robustness of the methods varies a lot from synthetic speech to real 
speech examples. 

The set of real speech examples were thus enlarged in the second test: it included five female and 
five male examples with large formant movements. The female example set contains: one sentence 
in Japanese (from [www-Voqual03]), one sentence in French (from [www-Voqual03]), one 
sentence in English (from [www-DarpaDBA]) and two sentences in Danish (from the DES 
database [Hansen et al, 1996]). The male example set contains: three sentences in English (from 
[www-DarpaDBA]) and two sentences in Danish (from the DES database [Hansen et al, 1996]). 
The files are available in the CD-ROM, in the “\wave\“ directory. 

Results 
In Fig. 52, we present one of the figures for formant tracking results. The rest of the results, formant 
tracks of nine other real speech examples using three formant trackers, are presented in Appendix C 
(all figures are also available in the CD-ROM: ‘\formantTrackTesting\formantEstimates\plots’ 
directory).  

 
Fig. 52: Formant tracking example 1 

Male speech example, 1SX9.wav from [www-DarpaDBA]: “where were you while we were away” 
 

The results of the three systems are comparable; they all provide high quality formant tracks. For 
some examples, the formant trackers of Praat and WaveSurfer provide more continuous plots since 
a smoothest path finding algorithm is included. 

The fact that high quality formant tracking can be performed on chirp group delay with a simple 
algorithm, as presented here, shows that chirp group delay is an effective spectral representation 
and can potentially be used in various other applications.  
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V.4. A Linear Prediction (LP) algorithm to estimate the glottal 
flow component from speech signals7 

 
In Section IV.4, the mixed-phase characteristic of speech was explored. In this section, we define 
an algorithm with low complexity, which performs a new use of the linear prediction analysis 
(covariance method [Makhoul, 1975]) to retrieve the maximum-phase component of speech signals.  
When an all-pole model is studied for such a mixed-phase signal, and when the covariance method 
is used, some of the poles fall outside the unit circle. In speech processing, poles outside the unit 
circle are most of the time avoided/reflected due to the minimum-phase assumption. In this study, 
we follow the inverse path: we try to find outside poles for estimating glottal flow characteristics. 
In the literature we could find two studies, which try to estimate poles outside the unit circle for 
such a purpose. In [Jackson, 1989], Jackson obtains maximum-phase and minimum-phase 
components of the speech signals by complex cepstral decomposition and analyses these 
components by LP. However, we have shown/discussed in section V.1.3 that complex cepstrum 
decomposition is not reliable due to necessity of phase unwrapping. Therefore, this method is likely 
to suffer from phase unwrapping problems (as a matter of fact no testing was presented for the 
proposed algorithm). Gardner and Rao use linear and non-linear least squares estimation methods to 
estimate the parameters of a non-causal model [Gardner & Rao, 1997]. In this approach, harmonic 
model parameters (magnitude and phase) are estimated and recursive algorithms are proposed to 
minimize error functions.  
We propose to use LP-covariance analysis to estimate a pole pair outside the unit circle 
corresponding to the anti-causal poles of the source signal component in the mixed-phase speech 
model. Given the pair of anti-causal poles, a procedure to resynthesize the anti-causal part of the 
glottal flow, and then an open quotient estimation method, are proposed. Evaluations show that the 
method is high quality for analyzing synthetic speech but lacks robustness in analysis of natural 
speech.  
 

V.4.1. The MixLP algorithm 

The proposed Mixed-Phase Linear Prediction (MixLP) algorithm, for detecting a pole pair outside 
the unit circle corresponding to the contribution of the maximum-phase glottal flow signal, is 
presented in Fig. 53a. First, a glottal closure instant (GCI) synchronous windowing is applied to the 
speech signal and a single pitch period length signal in-between two consecutive GCI marks is 
extracted. The resulting speech frame is integrated, to remove the lip radiation contribution. LP-
covariance analysis [Makhoul, 1975] is applied to this signal, which is expected to result in a pole 
pair outside the unit circle (due to the glottal flow contribution as presented in the causal/anti-causal 
model by Doval et al [Doval et al, 2003]) and several other pole pairs inside the unit circle. This is 
a particular property of the LP covariance analysis, usually considered as a sign of instability of the 
estimation algorithm [Makhoul, 1977]. 

                                                           
7 This part of the study was mostly implemented and tested by Francois Severin within the STOP project 
of TCTS Lab. 
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Fig. 53: MixLP algorithm flow diagram 

 

It is interesting to mention some of the investigations performed during the design of the algorithm. 
Our first investigation was to find optimum windowing since the existence of poles outside the unit 
circle heavily depends on the applied windowing. Although we have shown through ZZT 
representation that mixed-phase characteristics can be observed on the Fourier transform of the 
windowed speech signal when the window is centered at GCI, such windowing is not appropriate 
for estimation of poles outside the unit circle with LP-covariance. By applying sliding window 
analysis and checking the correctness of estimates on synthetic speech signals, we have observed 
that the end of the window must be synchronized with the GCI (a few samples before the GCI is a 
good choice for safety) and including even a few data samples after the GCI results in no poles 
outside the unit circle most of the time.  

A second investigation was on the order of the LP analysis, tested in the range [2-32] for 16000Hz 
synthetic speech signals (for which the LF model was used to synthesize glottal flow excitation and 
filtered by a four pole-pair all-pole vocal tract filter).  The LP degree that provided best estimates is 
14 or higher. 

Tests 

In order to test the MixLP algorithm we have designed a method to estimate the open quotient (Fig. 
53b) from poles outside the unit circle. This includes the re-synthesis of the glottal flow from the 
poles, which is achieved by: synthesis of a causal signal by computing the impulse response of a 
two-pole filter with the inverse-conjugate poles, and time reversal of this signal. A differentiation 
provides the differentiated glottal flow. In Fig. 54 we present an example of a glottal flow estimate 
using the MixLP method, together with a glottal flow estimate using the inverse filtering algorithm 
PSIAIF [Alku, 1992].  
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Fig. 54: Re-synthesized glottal flow signals obtained with the MixLP and PSIAIF algorithms 

 
Fig. 55: MixLP open quotient estimation results 

Left figure: stimuli, right figure: estimated open quotient 
Test signals are sustained vowels with constant first formant and return phase for several values of 
the pitch period and open quotient is varied linearly 
 

For evaluation of the open quotient estimation method, tests were conducted on synthetic speech 
signals, in which several parameters (pitch, spectral tilt, first formant frequency and open quotient) 
were varied systematically and higher formant frequencies are kept constant. Here we only present 
the output of our test for checking the robustness of estimation to pitch variations in Fig. 55. Some 
conclusions are: the error is small when the open quotient is higher than 0.7, and otherwise it is 
negligible. Moreover, the open quotient is better estimated if the return phase is short, and 
especially if the pitch is high. This open quotient estimation method was also compared to a well-
known algorithm ([Henrich et al, 1999]). Both methods provide similar results but the MixLP 
estimation method is more effective when the first formant frequency is small. A comparison with 
[Gardner & Rao, 1997] would be useful, however the complexity of their algorithm is very high 
and considering the time limitation of the thesis study, it was not feasible. 

The open quotient estimation on natural speech was also tested. As a reference for the open 
quotient estimation tests, we used open quotient estimates obtained from differential electro-glotto-
graph (EGG) signals by using a threshold method. Observations on a few natural utterances showed 
that the MixLP estimation method is not robust as the estimation error depends on the phonetic 
context. The development of the MixLP algorithm is stopped at this stage due to time constraints. It 
is not obvious to us at this point why robustness is very low for real speech analysis and to further 
study the problem, considerable amount of research time is needed. 

Conclusion 

A linear prediction based method was presented for estimating the maximum-phase glottal flow 
signal and the open quotient. Tests showed that open quotient estimation can be successfully 
performed on synthetic signals with LP-covariance analysis but the method lacks robustness when 
real speech signals are analyzed.  
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V.5. Application to speech recognition 

The Automatic Speech Recognition (ASR) process aims at transcribing the text content of a given 
speech utterance.  

 
 
 
 
 

Acoustic  
model speech 

Feature  
extraction 

Language 
model text

Probabilities Acoustic vectors  

Fig. 56: ASR process 

 

Our main concern is the first block of an ASR process (Fig. 56): the feature extraction where 
spectral computation is necessary. Therefore we only consider the feature extraction part and do 
not discuss further details of the ASR technology. 

The feature extraction block aims at effectively reducing the amount of data to be processed by 
extracting k-sized acoustic feature vectors xn = {xn1, …, xnk}for each N-size sample window. Most 
of the techniques use spectral envelope processing and amplitude/power spectrum has been the 
preferred component of the Fourier Transform (FT) for feature extraction. In this section, we 
investigate the possibilities of using chirp group delay function for feature extraction.  

Two recent studies address this problem and propose two group delay based features: the modified 
group delay function (MODGDF) [Hegde et al, 2004 b] and the product spectrum (PS) [Zhu & 
Paliwal, 2004]. In [Hegde et al, 2004 b] Hedge et al, shows that the MODGDF representation 
captures complementary information to that of the power spectrum and ASR performance can be 
improved by combining MODGDF features and MFCC. However the same results could not be 
obtained in [Zhu & Paliwal, 2004] and the authors propose a new representation as alternative, the 
product spectrum (PS). 

We have proposed three group delay based representations in chapter IV. In this section, we list the 
five group delay based representations used for feature extraction and we compare all five 
representations (plus the power spectrum for reference) in an ASR experiment8. The results show 
that two of the representations that we propose provide good results (outperforming the other group 
delay functions) and contain equivalent or complementary information to the power spectrum that 
is potentially useful for improving ASR performance. 

V.5.1. Group delay based features 

The five group delay based representations we have used are: 

1) The Modified Group Delay Function (MODGDF) [Hegde et al, 2004 b] explained in section 
IV.2. Its computation includes spectral smoothing of magnitude spectrum, which is further used for 
group delay computation. 

2) The Product Spectrum (PS) defined as the product of the power spectrum and the group delay 
function in [Zhu & Paliwal, 2004]: 

 )()( 2 ωτω pXPS =  (5.16) 

3) GDGCI defined as the group delay function computed on GCI-synchronously windowed speech 
data (as discussed in Section IV.5).  

                                                           
8 ASR experiments were performed by Laurent Couvreur, TCTS Lab., We thank him for his 
collaboration. 
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4) CGDGCI is defined as the chirp group delay computed on GCI-synchronously windowed data 
after ZZT-decomposition in Section IV.6 (the chirp group delay is computed on the circle with 
radius ρ=1.12).  

5) CGDZP is defined as the chirp group delay computed on zero-phase version of the signal in 
Section IV.6 (the chirp group delay is computed on the circle with radius ρ=1.12). 

Comparison of Proposed Methods via Spectral Plots 

Fig. 57 presents a typical time-domain speech signal and its group delay function.  

 
Fig. 57: Time-domain signal of a 30 ms speech frame and its group delay function. 

The frame example is extracted from the noise-free utterance “mah_4625'' of the test set A of the 
AURORA-2 [Hirsch & Pearce, 2000] and corresponds to vowel /i/ in word “six”. 

 

As expected, the group delay function computed directly on the speech frame contains mainly 
spikes and resonance information cannot be observed. In Fig. 58, we present the five group delay 
based representations together with the power spectrum for this speech frame.  

 
Fig. 58: Power spectrum (PowerS) and group delay based functions for the speech signal frame in 

Fig. 2. 

 

The formant peaks appear with high resolution in GDGCI, CGDGCI and CGDZP where in 
MODGDF the spectral envelope appears to be blurred and PS is actually very similar to the power 
spectrum (as it is the case in [Zhu & Paliwal, 2004]). GDGCI includes a spike at high frequencies 
due to a zero, which cannot be avoided by only GCI-synchronous windowing. As more noise is 
added to signals, such spikes occur more frequently, therefore the robustness of GDGCI to noise is 
rather low. Thanks to zero removal techniques and zero-phasing, CGDGCI and CGDZP are more 
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robust to noise. In Fig. 59, we also present spectrogram plots obtained using the described group 
delay functions as well as the classical power spectrum. 

 
Fig. 59: Spectrogram plots of a noise-free utterance.  

Only the first half of the file, “mah_4625a”, that contains the digit utterance “46” is presented. 
 

The formant tracks can be well observed on all of the spectrograms except for MODGDF, and PS 
is very close to PowerS as already shown in Fig. 1 of [Zhu & Paliwal, 2004] and in Fig. 58 and Fig. 
59 above. GDGCI representation is vague to some level. This is mainly due to the fact that 
unvoiced frames include spikes with large amplitudes that force a low contrast on the plots. 
Actually, the group delay functions computed on unvoiced frames mostly do not contain resonance 
information but random spikes. GDGCI and CGDGCI are actually the two representations that 
really suffer from this problem. 

These observations suggest that the representations have some potential in an ASR framework. The 
main concern is if they can provide complementary information to the power spectrum and 
improve performance. 

 
Computation of features for ASR 

The most common feature extraction for ASR systems consists of computing power-based Mel-
frequency cepstral coefficients (MFCC) [Huang et al, 2001], that is, a Mel filterbank is applied to 
the power spectrum and an inverse discrete cosine transform (IDCT) is computed on the logarithm 
of its outputs. The main reason for such processing is to capture the essential shape of the power 
spectrum with a few coefficients well conditioned for pattern recognition. A similar scheme can be 
applied to the group delay functions in order to derive phase-based feature extractions for ASR 
systems. The simplest approach consists in replacing the power spectrum in the MFCC algorithm by 
the group delay function computed via one of the analysis techniques described in the previous 
section. 

In this work, we use a Mel filterbank with 24 triangular filters and 12 IDCT coefficients are 
computed for 30 ms frames shifted by 10 ms. Note that the logarithm is not applied on the outputs of 
the filterbank when fed with a phase spectrum. These coefficients are augmented with the frame log-
energy and their (delta-) delta coefficients. We finally come up with six feature extractions: MFCC 
as a reference and five group delay based methods. 
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V.5.2. ASR experiments 

ASR system 

The ASR system that is considered in this work relies on the STRUT toolkit [www-Strut]. It 
merely consists of three blocks. First, the feature extraction chops the discrete speech signal into 
overlapping frames and computes for each frame a set of acoustic coefficients using one of the 
algorithms described in the previous sections. Next, the acoustic coefficient vectors are fed into the 
acoustic model that is here based on the Multi Layer Perceptron (MLP) / Hidden Markov Models 
(HMM) paradigm [Bourlard & Morgan, 1994]. In this framework, the phonemes of the language 
under consideration are modeled by HMM's whose observation state probabilities are estimated as 
the outputs of a MLP. Such an acoustic model is trained beforehand in a supervised fashion on a 
large speech database containing a few hours of phonetically segmented speech material. Finally, 
the word decoder searches for the most likely word sequence given the sequence of probability 
vectors for all the frames. Here, the search is constrained by a phonetic lexicon and a word 
grammar, which together define all the authorized sequences of phonemes. Here, the search is 
performed as a one-pass frame-synchronous Viterbi algorithm [Huang et al, 2001] without any 
pruning constraints. 

Speech Database 

The AURORA-2 database [Hirsch & Pearce, 2000] was used in this work. It consists of connected 
English digit utterances sampled at 8kHz. More exactly, we used the clean training set, which 
contains 8440 noise-free utterances spoken by 110 male and female speakers, for building our 
acoustic models. These models were evaluated on the test set A. It has 4004 different noise-free 
utterances spoken by 104 other speakers. It also contains the same utterances corrupted by four 
types of real-world noises (subway, babble, car, exhibition hall) at various signal-to-noise ratios 
(SNR) ranging from 20dB to -5dB. During the recognition experiments, the decoder was 
constrained by a lexicon reduced to the English digits and no grammar was applied. 

 
Table 2: ASR performances for various feature extraction on the AURORA-2 task. Results are 
given in terms of word error rate (WER) in percent.  

 
SNR(dB) Feature 

Extraction ∞ 20 15 10 5 0 -5 
MFCC 1.9 6.7 18.6 45.2 75.1 88.8 91.5 
MODGDF 3.2 19.0 41.7 68.7 86.1 91.0 92.3 
PS 2 6.7 19.4 45.3 75.5 89 92.2 
GDGCI 8.8 32.8 49.4 69 88.3 98.6 100 
CGDGCI 3.2 12.3 25.6 50.8 80.8 97 99.8 
CGDZP 1.8 5.8 12.2 29.4 62.6 88.7 97.6 

 
  

Table 3: ASR performances for features combined with MFCC on the AURORA-2 task. Results 
are given in terms of word error rate (WER) in percent. 

SNR(dB) Feature 
Extraction ∞ 20 15 10 5 0 -5 
MODGDF 2.1 8.5 23.9 52.7 79.5 89.5 91.5 
PS 1.9 6.7 18.6 44.4 74.6 88.5 91.6 
GDGCI 2.1 7.8 16.8 36 64.4 88 96.1 
CGDGCI 1.8 5.8 12.2 29.1 58 83.8 93.8 
CGDZP 1.7 5 10.4 24.8 52.7 82.3 91.1 

  

Experimental Results 

Tab. 2 gives the word error rates (WER) for the ASR system tested with the feature extractions 
described. Errors are counted in terms of word substitutions, deletions and insertions, and error 
rates are averaged over all noise types. In Tab. 3, the results are also provided when combining 
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MFCC feature extraction with the others. The combination is simply performed by taking a 
weighted geometric average of the probability outputs of the combined acoustic models: 

  (5.17) λλ −⋅= 1
2112 ppp

where p12, p1 and p2 denote the combined probability and the probability provided by the two 
combined acoustic model, respectively. The combination parameter λ takes its value in the range 
(0,1) and is optimized for every combination. 

V.5.3. Discussion and conclusion 

Our main target in this study was to test if a phase/group delay function carries equivalent or 
complementary information to that of the power spectrum in the framework of feature extraction 
for ASR systems. The results presented in Tab. 3 shows that the group delay functions CGDGCI 
and CGDZP have this potential: the values in the last two rows of Tab. 3 compared to the MFCC-
only results (first row in Tab. 2) are in all cases lower except for the extreme noise setting SNR=-
5dB. 

In our in-detailed analysis, we have observed that the GDGCI, which is the pure group delay 
function computed on GCI-synchronous data without further processing, mainly suffers from 
window size problems (including several pitch periods result in zeros on the unit circle). In 
addition, GDGCI and CGDGCI do not carry reliable information for unvoiced frames. 

The AURORA-2 task was chosen for its simplicity and ease of comparison to the already available 
results in [Zhu & Paliwal, 2004]. Further experiments will be performed on other tasks in order to 
confirm the present results about the usefulness of phase information for ASR systems. 
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VI.1. Conclusions 

This study proposed two new spectral representations and demonstrated their use in various speech 
analysis problems: source-tract separation, glottal flow parameter estimation, reliable phase spectrum 
estimation, formant tracking and feature extraction in speech recognition. The two representations (ZZT 
and chirp group delay) are strongly linked. For most of the cases they need to be considered 
simultaneously, even in algorithms where only one is processed. The combination of the ZZT 
representation with the chirp group delay processing algorithms provides an effective framework for the 
study of the resonance characteristics of the source and filter components of speech. 
 
The ZZT representation and its applications  
 
The first spectral representation we proposed was: the zeros of the z-transform (ZZT) representation, 
which we defined as the set of roots of the Z-transform polynomial for a discrete time signal. There are 
mainly two useful points of the ZZT representation for speech signals: i) it sheds light into many 
difficulties involved in phase spectrum processing and for this reason provides us with the opportunity to 
design better methodologies, ii) patterns exist in the ZZT of speech signals which make it possible to 
design a new spectral decomposition method for source-tract separation.  
 
Being a form of z-transform representation, ZZT representation is especially useful for studying some 
properties of the Discrete Fourier Transform (DFT) of a signal, especially the phase component of it. In 
the theory part of the thesis, we have studied ZZT representation of: some elementary signals, the LF 
glottal flow model, source-filter model of speech and windowed speech signals. Through a systematic 
study of ZZT of windowed speech (with various windowing functions, size and location (with respect to 
important instants in speech signals) on various speech signals), we showed that windowing lies at the 
very heart of the problem of spikes in the derivative of phase spectrum (the group delay function) due to 
zeros close to the unit circle. The spikes in the group delay function appear as an important obstacle in 
speech processing: the often cited and unsolved “phase unwrapping problem” is mainly due to these 
spikes on the group delay function. We showed that avoiding these spikes is possible by performing the 
windowing appropriately: glottal closure instant synchronous windowing with a size of two pitch periods 
and with one of the three windowing functions: Blackman, Gaussian or Hanning-Poisson.  
The fact that we can obtain spike-free group delay functions is an important step for phase processing. 
There are actually plenty of signal processing applications, which can benefit from the results of this 
study. In many signal processing studies, phase estimation is considered to be a difficult problem and 
discarded. However, for some applications, the phase information is essential or at least is an important 
factor of the efficiency of the algorithms. The methods defined in this thesis provide hopefully a 
potential to remove some of the obstacles in the phase estimation problem. 
 
The systematic study of the ZZT of windowed speech signals has one more important output: separate 
patterns for the glottal flow and vocal tract contributions can be observed. The ZZT representation of a 
GCI synchronously windowed speech frame includes two lines/groups of zeros: one outside the unit 
circle and one inside the unit circle with gaps creating formant peaks on the spectrum. These 
observations have led us to design a spectral source-tract separation algorithm based on ZZT-
decomposition. Our methodology involves no modeling but direct separation in the spectral domain. In 
addition, such an observation both supports the studies discussing anti-causality of the glottal flow 
component in literature and suggests a mixed-phase model for speech signals. For completeness of the 

CChhaapptteerr  VVII::                                                                                                  
CCoonncclluussiioonn  aanndd  FFuuttuurree  WWoorrkkss  
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theoretical background, we also discussed the mixed-phase model for speech signals through ZZT 
patterns of source-filter model of speech.  
 
The ZZT-decomposition method was first demonstrated by synthetic speech and real speech examples. 
The decomposition is of high quality though not complete. The contribution of the vocal tract in the 
glottal-flow-dominated spectrum was observed as ripples of low amplitude, while the contribution of 
glottal flow in the vocal tract dominated spectrum was hardly observed. Then some robustness tests were 
presented using synthetic speech. We have observed that ZZT-decomposition is robust to GCI errors in 
+-%10T0 range and variations in the return phase coefficient of the glottal flow component. However, it 
suffers from F1 variations (when F1 is close to the glottal formant peak in the spectrum) and is not robust 
to additive noise. Further research is necessary to improve robustness of the method for these variations. 
The proposed algorithm is very easy to implement but computationally heavy due to the need of finding 
roots of high degree polynomials. For this reason, it is more appropriate for off-line database processing.  
 
The ZZT-decomposition was also tested in a glottal flow parameter estimation scheme: an algorithm for 
glottal formant (Fg) tracking was proposed. It is mainly composed of picking the maximum valued peak 
on the magnitude spectrum of the glottal flow obtained by ZZT-decomposition from GCI synchronously 
windowed speech signals. The frequency of glottal formant is potentially useful in studying voice quality 
variations of speech. 
The proposed algorithm was tested on synthetic speech and the results showed that the ripples on glottal 
flow spectrum due to incomplete separation introduces errors when Fg and F1 values are close. In 
addition, the sensitivity of peak picking to small ripples reduces robustness of the method. For our future 
studies we target improving the quality of the Fg estimation method by replacing peak picking with a 
more robust method. 
Due to lack of reference methods and data, tests on real speech were limited. On a single real speech 
example, we have shown that open quotient variations can be tracked with the Fg estimation algorithm. 
Further validation with real speech decomposition tests is necessary. 
 
The chirp group delay (CGD) representation 
Another representation proposed in this thesis was the ‘chirp group delay’. The chirp group delay simply 
corresponds to the group delay function computed on a circle in z-plane other than the unit circle. It is 
the negative derivative of the phase component of the chirp z-transform.  
The necessity of such a representation is due to the difficulties involved in group delay processing for 
some applications like formant tracking. Although the group delay one can obtain after appropriate 
windowing reveals formant peaks, it is not possible to guarantee absence of zeros close to the unit circle 
for noisy speech even when windowing is appropriately performed. Therefore we have developed chirp 
group delay processing as an alternative, for which spike-freeness can be guaranteed. Robust spectral 
processing can be achieved using this representation. It also facilitates studying minimum-phase and 
maximum-phase contributions in the signals separately. 
 
Applications of ZZT and CGD 
One of the potential applications of chirp group delay processing is formant tracking. Three formant 
trackers were presented with varying complexity and robustness. At each update of the formant tracker, 
quality and robustness were improved by solving a problem. All the versions are based on peak picking 
on the chirp group delay computed outside the unit circle and two versions include some ZZT 
manipulation of a given signal.  
The formant trackers were tested both on synthetic and real speech signals. The first version of the 
formant tracker was observed to have robustness problems and the second version was developed by 
solving one important problem involved. The results for the second method showed that it has similar 
quality as the two state-of-the-art methods (that of Praat and WinSnoori) and is an effective method for 
formant tracking. Its main advantage is in tracking high order formants and main drawbacks are: need for 
GCI marking and high computational load due to need for calculation of roots of high degree 
polynomials. The third version of the formant tracker was developed to get rid of these difficulties. This 
final version was further compared with formant trackers of Praat and Wavesurfer by performing tests on 
real speech. The results of the three systems are comparable; they all provide high quality formant tracks.  
The fact that high quality formant tracking can be performed on chirp group delay with a simple 
algorithm shows that chirp group delay is an effective spectral representation and can potentially be used 
in various other applications. 
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Another application was in speech recognition, more specifically in acoustic feature extraction. For this 
application, we tested if chirp group delay function carries equivalent or complementary information to 
power spectrum, which can improve speech recognition performance. 
We proposed three chirp group delay based features and compared them to two recently proposed group 
delay based features from the literature and the MFCC. The AURORA-2 task (isolated digit recognition 
testing) was chosen for its simplicity and ease of comparison to the already available results in literature. 
The results showed that two of the group delay functions we proposed (CGDGCI and CGDZP) improve 
recognition rates when combined with MFCC. We conclude that chirp group delay function carries 
equivalent or complementary information to power spectrum, which can improve speech recognition 
performance. Between the two representations, CGDZP is more applicable in speech recognition since 
the computational load is low and it is more robust to noise. Further experiments need to be performed 
on other tasks in order to confirm the present results about the usefulness of phase information for ASR 
systems. 
 
Other applications studied 
We have also studied linear prediction analysis of the mixed-phase speech signals. We have developed 
the MixLP algorithm that estimates a pole pair outside the unit circle corresponding to the anti-causal 
poles of the source signal component in the mixed-phase speech model. Given the pair of anti-causal 
poles, a procedure to resynthesize the anti-causal part of the glottal flow, and an open quotient estimation 
method, were proposed. Tests performed showed that the method is high quality for analyzing synthetic 
speech but lacks robustness in analysis of natural speech. 
 
Due to time constraints the application areas were kept limited to these topics. However we believe that 
the two representations can be further used in many other speech analysis applications.  
 
 
 

VI.2. Future works 

We have shown that the developed algorithms are high quality. However, some problems exist and there 
is still room for development. In addition, further testing is necessary for some of the algorithms. The 
thesis has been concluded at this point since testing every possible path for using the two representations 
is practically not possible in a single thesis research period.  
The speech recognition tests we have handled are rather limited though sufficient to demonstrate the 
potential; we have only tested baseline systems in limited test settings. The results are very promising. 
Therefore we find it interesting to further study this issue to integrate the proposed algorithms in a 
complete continuous speech recognition system and perform large tests. Such a study would need 
considerable amount of time since most speech recognition algorithms include fine-tuning heuristics 
rules and many trial-errors are necessary for finding those rules.  
Unfortunately the ZZT-decomposition for source-tract separation lacks robustness for two factors: 
additive noise and closeness of F1 and glottal formant. Since the algorithm uses the roots of large degree 
polynomials, studying the effect of noise is not easy. We think that F1 and glottal formant interaction can 
be further studied in detail using the ZZT representation. It is not easy to foresee a good methodology to 
study these problems at this point. Hopefully, visual study of the two phenomena for various examples 
should result in better comprehension of the problems and lead to solutions as it did during this thesis 
work.  
ZZT-decomposition needs to be further tested on continuous speech with various voice qualities. We 
have discussed the difficulties of finding reference data for such tests. We plan to further test the 
algorithm comparing glottal formant frequency variations with open quotient estimates from EGG 
signals recorded in parallel to speech signals. We cannot conclude at this point that ZZT-decomposition 
can be used for studying glottal flow variations in different phonation types before performing these 
tests. We could only show its effectiveness in limited test settings. Further tests and improvement also 
necessitate considerable amount of research time. 
One of the potentially important outputs of this thesis is that it shows that formant information exists on 
the group delay functions computed directly from the phase spectra without further processing. We think 
that some of the concatenative speech synthesis problems using the sinusoidal/harmonic model can be re-
studied based on this observation. For example spectral smoothing is usually performed at concatenation 
points for the magnitude spectrum; for the phase spectrum some form of continuity of phases are targeted 
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and algorithms are proposed for this operation. Spectral smoothing on the magnitude spectrum to some 
extent corresponds to imposing smooth formant transitions at concatenation points. Guaranteeing smooth 
formant transition for the phase component is also important to reduce discontinuities. The only 
concatenation algorithm we could find in literature using the group delay function at some levels is the 
STRAIGHT system [Kawahara et al, 2001]: for keeping a fine temporal structure of the signal, 
storing/coding the phase spectrum, etc. We believe that concatenation systems can be further improved if 
formant information in phase is further studied.    
One other research path to follow is spectral parameter estimation for voice quality analysis using (chirp) 
group delay. Compared to the magnitude spectrum, events are more localized in chirp group delay 
function, for example formant peaks occur with smaller bandwidths and sharper amplitudes. Spectral tilt 
is one of the most important parameters for voice quality analysis and it is difficult to estimate it from the 
magnitude spectrum since the effect is somehow distributed on a large frequency band. Studying effect 
of spectral tilt variations on chirp group delay functions can potentially result in developing effective 
algorithms for spectral tilt estimation.  
Actually, phase processing is not only necessary for speech processing. We hope that the discussions 
presented in this thesis will be also accessible and useful to researchers from different fields like: radar 
signal processing, medical imaging, sound source localization, optics, solid state physics, geophysics, 
holography, etc. 
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AAppppeennddiixx  AA::  WWiinnddooww  ffuunnccttiioonnss  

This appendix includes the definitions for the window functions mentioned in this thesis manuscript. For 
a large study of window function spectra please refer to [Harris, 1978]. 
Notes:  
N: window size, n=0,1,2,…N-1. α is a user defined variable for which default values is specified as 2.5 
in MATLAB. The Hanning-Poisson function is obtained by simply term-wise multiplication of Hanning 
and Poisson windows. 
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Fig. 60: Window functions 

Time domain function, ZZT representation and magnitude spectrum 
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AAppppeennddiixx  BB::  RReellaattiioonn  bbeettwweeeenn  ppoolleess  aanndd  
ssppeeccttrraall  ppeeaakkss  ooff  aann  aallll--ppoollee  ffiilltteerr    

The basic idea in the linear predictive (LP) analysis is that a speech sample can be approximated as a 
linear combination of past speech samples [Rabiner & Schafer,1978]. Here we present only the very 
basics to explain the links between the poles of an all-pole system and its resonance frequencies. For a 
detailed description of LP analysis, the reader is referred to [Makhoul, 1977]. In the LP model, a 
discrete-time sequence s[n] is expressed in terms of a weigthed sum of the past samples of s[n] : 

  [ ] [ ] [ ] [ ] [ ]nensneknsans
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where [ ]ns~ is the predicted sequence and e[n] refers to the prediction error. This is also referred as the 
auto-regressive (AR) model. 
The predicted sequence is considered to be an output of a linear predictor with coefficients αk
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The prediction error, e[n], is defined as : 
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The goal in LP analysis is to estimate the filter coefficients ak for a specific order p that will minimize 
the mean-squared prediction error over short segment of the speech waveform. Then the resulting system 
function for the AR model can be expressed as : 
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where dk are the poles of the transfer function (and * is the complex conjugate operator).  
Considering the source-filter model of speech, the complete transfer function of the speech production 
system corresponds to: 
  )()()()( zRzVzAGzH =
where G(z) is the glottal flow transfer function, V(z) is the vocal tract transfer function and R(z) is the 
radiation load transfer function. Separating the three contributions is a difficult problem and various 
algorithms have been proposed in literature (e.g. [Alku, 1992 a]). In fact, the glottal flow function is 
considered to include a maximum-phase pole pair and a zero [Doval et al, 2003] and the radiation load is 
considered to include a zero [Quatieri, 2002]. Although any zero can be expressed by infinite number of 
poles, the AR model representation is practically more convenient to express the vocal tract transfer 
function which is often approximated by an all-pole minimum-phase filter.  
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where N is smaller than p, and ck are the poles of the vocal tract transfer function. Each resonance of the 
vocal tract filter corresponds to a pole pair (ck, ck

*) in this representation and contributes to the speech 
spectrum by local spectral peaks. In the figure below, a simple three pole-pair system is presented (the 
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frequency axis of the two spectra are labeled in Hz and the sampling frequency is selected as 16000Hz. 
The main aim of this choice is facilitating any comparison to existing speech processing literature where 
formants are often mentioned with their actual frequency in Hz.). Each pole pair and the corresponding 
peaks on the log-magnitude spectrum and the group delay function are connected with lines.  In the pole-
plot in polar coordinates, the shaded area on the pole-plot in cartesian coordinates is presented.  
 

 
Figure Appendix B: Link between pole pairs and spectral peaks 
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AAppppeennddiixx  CC::  FFoorrmmaanntt  ttrraacckkiinngg  eexxaammpplleess  

In this part, we present plots of formant tracking results from three formant trackers: Fast-DPPT, Praat 
and WaveSurfer. The list of wave files used is: 

Gender of the 
speaker 

File name Language Source 

Male BrianLou5.wav English Voqual03  
Male JackBrown.wav English Private 
Male WNEU_SE9.HO.wav Danish DES 
Male WNEU_SE9.JZB.wav Danish DES 
Female f24cb1_6.wav French Voqual03  
Female 01_08-338.34.wav Japanese Voqual03  
Female 4SX9.wav English DARPA 
Female WNEU_SE9.DHC.wav Danish DES 
Female WNEU_SE9.KLA.wav Danish DES 

 
Voqual03: Database made available for the workshop Voqual03: Voice quality: Functions, analysis and 
synthesis, Geneva, August 2003. [www-Voqual03]  
DARPA: DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus, NIST Speech Disc CD1-1.1 
[www-DarpaDBA] 
DES: Danish Emotional Speech Database [Hansen & Engberg, 1996] 
Each figure contains two sub-plots: the upper subplot is the spectrogram superimposed to the formant 
tracks obtained by the Fast-DPPT formant tracker (indicated in red); the lower subplot contains the 
formant tracks obtained by the formant trackers of Praat (indicated in blue) and Wavesurfer (indicated in 
black). The spectrograms are obtained using the WaveSurfer software. 
 

 
Fig. 61: Formant tracking example 2 

BrianLou5.wav 
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Fig. 62: Formant tracking example 3 

jackBrown.wav 
 

 
Fig. 63: Formant tracking example 4 

WNEU_SE9.HO.wav 
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Fig. 64: Formant tracking example 5 

WNEU_SE9.JZB.wav 
 

 
Fig. 65: Formant tracking example 6 

f24cb1_6.wav 
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Fig. 66: Formant tracking example 7 

01_08-338.34.wav 
 

 
Fig. 67: Formant tracking example 8 

4sx9.wav 
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Fig. 68: Formant tracking example 9 

WNEU_SE9.DHC.wav 
 

 
Fig. 69: Formant tracking example 10 

WNEU_SE9.KLA.wav
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AAppppeennddiixx  DD::  PPuubblliiccaattiioonnss  nnoott  rreeffeerrrreedd  iinn  
tthhee  tthheessiiss  mmaannuussccrriipptt    

Publications/studies of Baris Bozkurt during the thesis research period that are not referred in the thesis 
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• B.Bozkurt, M.Bagein, T.Dutoit, ‘From MBROLA to NU-MBROLA’, Proc. 4th ISCA Tutorial 
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