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Abstract

Various real-life data such as time series and multi-sensor recordings can be
represented by vectors and matrices, which are one-way and two-way arrays
of numerical values, respectively. Valuable information can be extracted from
these measured data matrices by means of matrix factorizations in a broad
range of applications within signal processing, data mining, and machine
learning. While matrix-based methods are powerful and well-known tools for
various applications, they are limited to single-mode variations, making them
ill-suited to tackle multi-way data without loss of information. Higher-order
tensors are a natural extension of vectors (first order) and matrices (second-
order), enabling us to represent multi-way arrays of numerical values, which
have become ubiquitous in signal processing and data mining applications.
By leveraging the powerful utitilies offered by tensor decompositions such
as compression and uniqueness properties, we can extract more information
from multi-way data than what is possible by using only matrix tools.
While higher-order tensors allow us to properly accommodate for multi-

ple modes of variation in data, tensor problems are often large-scale because
the number of entries in a tensor increases exponentially with the tensor or-
der. This curse of dimensionality can, however, be alleviated or even broken
by various techniques such as representing the tensor by an approximate but
compact tensor model. While a pessimist only sees the curse, an optimist sees
a significant opportunity for the compact representation of large-scale data
vectors: by representing a large-scale vector (first order) using a compact
(higher-order) tensor model, the number of parameters needed to represent
the underlying vector decreases exponentially in the order of the tensor rep-
resentation. The key assumption to employ this blessing of dimensionality
is that the data can be described by much fewer parameters than the actual
number of samples, which is often true in large-scale applications.
By leveraging the blessing of dimensionality in this thesis for blind source

separation and (blind) system identification, we can tackle large-scale ap-
plications through explicit and implicit tensor decomposition-based methods.
While explicit decompositions decompose a tensor that is known a priori,
implicit decompositions decompose a tensor that is only known implicitly. In
this thesis, we present a single-step framework for a particular type of im-
plicit tensor decomposition, consisting of optimization-based and algebraic
algorithms as well as generic uniqueness results. By properly exploiting ad-
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ditional structure in specific applications, we can significantly reduce the
computational complexity of our optimization-based method. Our approach
for large-scale instantaneous blind source separation and (blind) system iden-
tification enables various applications such as direction-of-arrival estimation
in large-scale arrays and neural spike sorting in high-density recordings. Fur-
thermore, we link implicit tensor decompositions to multilinear systems of
equations, which are a generalization of linear systems, allowing us to propose
a novel tensor-based classification scheme that we use for face recognition and
irregular heartbeat classification with excellent performance.
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Beknopte samenvatting

Vectoren en matrices zijn respectievelijk één- en tweewegse tabellen van ge-
tallen die gebruikt kunnen worden om allerlei soorten data zoals tijdsreeksen
en multi-sensoropnames voor te stellen. Met behulp van matrixontbindin-
gen kan men waardevolle informatie ontginnen uit dergelijke datamatrices
in een brede waaier van toepassingen binnen signaalverwerking, dataontgin-
ning, en machinaal leren. Hoewel matrixtechnieken krachtige instrumenten
zijn in heel wat toepassingen, zijn matrices ontoereikend om meerwegsdata
voor te stellen zonder informatieverlies. Een hogere-ordetensor is een uitbrei-
ding van een vector (eerste orde) en een matrix (tweede orde) die ons toelaat
om de alomtegenwoordige meerwegsdata in signaalverwerking en dataontgin-
ning op een natuurlijke wijze voor te stellen. Door gebruik te maken van de
krachtige eigenschappen van tensorontbindingen zoals compressie en unici-
teitsvoorwaarden, kunnen we de resultaten van methoden die enkel matrices
gebruiken overtreffen.
Terwijl hogere-ordetensoren uitermate geschikt zijn om meerwegsdata op

een gepaste wijze te kunnen voorstellen, zijn tensorproblemen vaak groot-
schalig omdat het aantal waarden in een tensor exponentieel toeneemt met
de orde van de tensor. Deze vloek van de dimensionaliteit kan echter ver-
licht of zelfs gebroken worden door allerlei technieken. Zo worden bijvoor-
beeld tensorontbindingen gebruikt voor een compacte voorstelling van een
tensor. Terwijl een pessimist enkel een vloek ziet, herkent een optimist een
belangrijke opportuniteit voor de compacte voorstelling van grootschalige
datavectoren: door de grootschalige vector (eerste orde) voor te stellen met
een compact (hogere-orde) tensormodel, bekomen we een voorstelling waar-
van het aantal parameters exponentieel afneemt met de orde van de tensor.
Dit noemen we de zegen van de dimensionaliteit. Hierbij maken we de be-
langrijke veronderstelling dat de data kunnen voorgesteld worden door veel
minder parameters dan het effectieve aantal bemonsteringen, wat vaak het
geval is in grootschalige toepassingen.
Door gebruik te maken van de zegen van de dimensionaliteit in blinde

signaalscheiding en (blinde) systeemidentificatie, kunnen we grootschalige
toepassingen aanpakken via ontbindingen van expliciet en impliciet gegeven
tensoren. Terwijl een expliciete ontbinding een tensor ontbindt die a pri-
ori gegeven is, ontbindt een impliciete ontbinding een tensor die enkel op
impliciete wijze gekend is. We ontwikkelen in deze thesis generische unici-
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teitsvoorwaarden en een éénstapsraamwerk voor een bepaald type ontbinding
van een impliciet gegeven tensor met behulp van optimalisatie en klassieke
lineaire algebra. Door op gepaste wijze bijkomende structuur uit te buiten
in specifieke toepassingen, kunnen we de computationele vereisten van onze
optimalisatiegebaseerde algoritmen significant verlagen. Onze methode voor
grootschalige ogenblikkelijke blinde signaalscheiding en (blinde) systeemiden-
tificatie laat toe om allerlei toepassingen efficiënt aan te pakken. Voorbeelden
zijn de schatting van de aankomstrichting van signalen die opgemeten worden
door grote rijen van antennes alsook het scheiden van neurale pieken in hoge-
densiteitsopnames. We tonen verder aan dat de ontbinding van een impliciet
gegeven tensor kan gerelateerd worden aan multilineaire stelsels van vergelij-
kingen, welke een veralgemening zijn van klassieke lineare stelsels. Dit laat
ons toe om een nieuwe tensorgebaseerde classificatiemethode te ontwikkelen
waarmee we gezichtsherkenning en irreguliere hartslagclassificatie nauwkeu-
rig kunnen uitvoeren.
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Introduction 1
1.1 From two-way to multi-way data
Vectors and matrices are one-way and two-way arrays of numerical values,
respectively, allowing us to represent various types of real-life data: a multi-
sensor recording in a telecommunication application, a gray-scale image, or a
movie rating table with user scores are all examples of data matrices. Matrix
factorizations allow us to extract valuable information from the measured
data matrix using the following simple but effective model:

X = M · S, (1.1)

which has been employed successfully in various applications within signal
processing, data mining, and machine learning. Examples are matrix-based
compression for image, audio, or video data, matrix completion techniques
to predict unknown values in recommender systems [33], and dimensionality
reduction via principal component analysis (PCA) [121]. An important ap-
plication in signal processing is blind source separation (BSS), which aims
to recover the unknown mixing vectors in M and/or the unknown sources in
S from the noisy data matrix X using the linear and instantaneous matrix
model in (1.1) [42], [45], [50]. In order to interpret the mixing vectors and/or
sources in real-life applications, it is important to obtain a unique solution.
In general, however, a unique solution to (1.1) does not exist without impos-
ing additional constraints because we can introduce any invertible matrix in
such a way that we obtain an equally valid factorization of the given matrix:

X = (MW) ·
(
W−1S

)
= M̃ · S̃.

By imposing orthogonality, triangularity, or nonnegativity, one obtains the
singular value decomposition (SVD), QR decomposition, or nonnegative ma-
trix factorization (NMF), respectively. Although these constraints are useful
in various applications, they are typically not suitable for BSS.
While matrix-based decompositions are powerful tools across a wide range
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1 Introduction

Vector Matrix Tensor

Increasing order

Figure 1.1: While a vector (first order) and a matrix (second order) represent one-way and
two-way arrays of data, resp., a higher-order tensor represents a multi-way array of data.

of applications, matrices are limited to single-mode variations, making them
less suited to tackle multi-way data. For example, multi-lead measurements
of the electrocardiogram (ECG) signal of a single person can be stored in a
matrix with modes channel× time, accommodating for the channel variation
in the rows of the matrix. However, we cannot accommodate for different
persons, rest states, and parameter settings in a straightforward way using
only matrices. Higher-order tensors are a natural extension of vectors (first
order) and matrices (second order), as shown in Figure 1.1, allowing us to
represent multi-way data and therefore enabling us to tackle multiple modes
of variation. Tensors are ubiquitous across various domains such as data
mining, machine learning and signal processing [41], [125], [168]. Various
techniques also employ a tensorization step to obtain a higher-order tensor
and leverage the powerful utilities offered by higher-order tensors and tensor
decompositions such as compression and uniqueness properties, among others
[63]. For example, by segmenting and reshaping a multi-lead ECG signal, we
obtain a tensor as shown in Figure 1.2.
Well-known matrix decompositions such as the SVD have been generalized

to higher-order tensors, allowing us to use a multilinear SVD (MLSVD) [54].
The MLSVD, as shown in Figure 1.3, is closely related to the low-multilinear
rank approximation (LMLRA) and the Tucker decomposition [125], [214],
and has been successfully used in various applications for compression, di-
mensionality reduction, and subspace analysis [59], [98], [125], [214]. Another
important tensor decomposition is the (canonical) polyadic decomposition
(CPD) which decomposes a tensor into a (minimal) sum of rank-1 tensors.
The decomposition is unique under fairly mild conditions [72], [73], [75], mak-
ing the CPD a powerful tool in various signal processing applications. For
example, a third-order tensor with one long mode is common in a signal pro-
cessing context because that mode relates to the so-called “sample mode”. In
that case, the CPD is unique with probability one if the number of rank-1
terms is bounded by the product of the other two tensor dimensions [47].
Various techniques (implicitly) reformulate the BSS problem in (1.1) into
the computation of a CPD, enabling us to extract a unique solution from the

4
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channels

time

· · ·

· · ·

· · ·

channels

time
1st heartbeat

2nd heartbeat

Jth heartbeat
· · ·

· · ·

Figure 1.2: While tensors are by themselves already ubiquitous in a broad range of appli-
cations within signal processing, data mining, and machine learning, we also often want to
construct a tensor from given data matrices. This is called tensorization and it allows us to
leverage the powerful properties of higher-order tensors such as compression and unique-
ness conditions. In this example, we tensorize a given electrocardiogram data matrix by
segmenting the heartbeats in each channel and then stacking them in a third-order tensor
with modes channel × time × heartbeat. This figure is a reproduction of Figure 9.1; full
details can be found in Chapter 9.

(Matrix) SVD M = U
VTS

Multilinear SVD T =

W

U

VS

Figure 1.3: Matrix decompositions such as the well-known SVD can be generalized to the
multilinear SVD, enabling compression and subspace analysis for higher-order tensors.
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. . .

I3I2I IN

Figure 1.4: The number of entries in a higher-order tensor increases exponentially with
the order of the tensor, which is known as the curse of dimensionality. Given a vector,
matrix, or third-order tensor with all dimensions equal to I, we have I, I2, and I3 entries,
respectively, and, more generally, IN entries for a Nth-order tensor, which can explode,
even for small I, when increasing the order N .

decomposition under fairly mild conditions in contrast to the matrix case [1],
[11], [45], [167]. Block term decompositions (BTD) allow us to model more
complex phenomena than what is possible using the simple rank-1 terms of
the CPD [48], [49], [51]–[53], [58]. We discuss tensor decompositions, unique-
ness conditions, and computational methods in more detail in Chapter 2.

1.2 From a curse to a blessing
While the higher-order nature of tensors can accomodate for different modes
of variation in data, the number of entries in a tensor increases exponentially
with the tensor order as shown in Figure 1.4. This curse of dimensionality
significantly limits the order of the tensors that can be handled in practical
applications due to memory issues and computational requirements. Even
for small dimensions, tensor problems are often large-scale; for example, a
sixth-order tensor with size 100 for each mode, contains 1012 entries! The
curse can, however, be alleviated or even broken by exploiting the low-rank
structure by means of tensor decompositions as shown in Table 1.1. While
we focus on a decomposition-based approach for full, but low-rank, tensors
in this thesis, other techniques exist such as leveraging incomplete or sparse
tensors and techniques employing approaches from compressed sensing (CS)
[171], [208], [214].
While the MLSVD can be computed in a numerically stable way [54],

[201], it can only alleviate the curse because we still need a core tensor of
the same order as the original tensor. Although the core tensor can be much
smaller than the original tensor, we still have an exponential dependence on
the order which can blow up even for modest values. While the CPD allows
us to effectively break the curse of dimensionality, it is a priori possible that
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1.2 From a curse to a blessing

Table 1.1: By representing a higher-order tensor by a compact tensor decomposition, we
can alleviate or even break the curse of dimensionality. Given an Nth-order tensor T with
dimensions I1 × I2 × · · · × IN , we assume that I1 = I2 = · · · = IN = I. For the low
multilinear rank approximation, we assume that the multilinear rank equals (R,R, . . . , R).
For the canonical polyadic decomposition, R equals the tensor rank. For the tensor train
(TT) and hierarchical Tucker (HT) decomposition, we assume that the TT- and HT-ranks
are equal to R.

Decomposition Number of variables

Low multilinear rank approximation O
(
NIR+RN

)
Canonical polyadic cecomposition O (NIR)
Tensor trains / matrix product states O

(
2IR+ (N − 2)IR2

)
Hierarchical Tucker decomposition O

(
(N − 1)R3 +NIR

)

degeneracy occurs [126], [172]. This means that, e.g., the magnitude of two
terms grows without bounds but with opposite sign, resulting in numerical
problems and a poor solution but a good fit. The problem can be avoided,
however, by increasing the number of rank-1 terms or imposing constraints
such as orthogonality or non-negativity [41], [126], [134], [185]. Tensor models
such as tensor trains (TT) and hierarchical Tucker (HT) are often used in
tensor-based scientific computing because they combine large compression
rates with good numerical properties, allowing one to solve problems in a
number of unknowns that exceeds the number of atoms in the universe [95],
[96], [152].
While a pessimist would interpret the higher-order nature of tensors as a

curse, an optimist sees an opportunity: by representing a large-scale vector
by means of a low-rank tensor model, we can obtain a compact model for
the large vector, as shown in Figure 1.5. Moreover, by representing the
underlying vector by tensors of increasing order, we can obtain even more
compact models. As illustrated in Figure 1.6, the number of parameters
needed to represent the underlying vector decreases exponentially in the order
of the tensor representation. This is a well-known strategy in tensor-based
scientific computing and is also known as quantization [96], [99], [123]. The
values for the dimensions of each mode of the tensor depend on the needs
in a particular application and allow for a trade-off between accuracy and
compression rate, as we will explain in Chapter 5 and Chapter 6.
The key assumption to employ this blessing of dimensionality is that the

tensor representation has low rank such that we need only a few terms to
accurately represent the underlying vector. Fortunately, this condition is of-
ten satisfied for large-scale problems [34] and for various signal models such
as (exponential) polynomials, rational functions, and, in a broader sense,
smooth signals, as shown in Figure 1.7 [51], [65], [95], [96], [123]. By lever-
aging this blessing of dimensionality in a novel way for instantaneous and
convolutive BSS, we can tackle large-scale problems.
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Tensorize−−−−−−−→ ≈ + · · ·+

IJK I × J ×K (I + J +K − 2) per rank-1 term

Figure 1.5: By approximating a tensorized representation of a large-scale data vector by a
low-rank tensor decomposition, we obtain a compact model for the underlying data vector.
After reshaping a vector of length IJK into a third-order tensor of size I × J × K, we
employ a canonical polyadic decomposition to represent the underlying vector with only
(I + J + K − 2) parameters per rank-1 term; we need only (I + J + K − 2) instead of
(I+J +K) parameters because we compensate for scaling indeterminacies within a term.

Representation # Entries # Parameters per rank-1 term

...

Nth-order tensor

I2

I3

...

IN

2I

3I

...

NI

Increasing
order

N

Figure 1.6: While the number of parameters needed to represent a large-scale data vector
by a low-rank tensor model decreases exponentially in the order of the representation,
it increases only linearly in the number of rank-1 terms. By leveraging this blessing of
dimensionality in this thesis, we can tackle large-scale problems. For each representation
of dimensions I1 × I2 × · · · IN , we assume that In = I for all n.
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1.2 From a curse to a blessing

Original function

Sinc Hyperbolic Rational

Rank-1 model

Rank-2 model

Figure 1.7: A low-rank approximation of a tensorized smooth function often provides an
accurate representation. While only a few rank-1 terms already provide a good approxi-
mation, the accuracy can be improved by increasing the rank of the model. This figure is
a reproduction of Figure 6.4; full details can be found in Chapter 6.
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1.3 From explicit to implicit decompositions
Although the decomposition of a tensor that is known explicitly is a preva-
lent problem in signal processing and machine learning [41], [168], we often
want to compute a decomposition of a tensor that is only known implicitly.
Examples can be found in a wide range of domains such as signal process-
ing [26], [221], system identification [17], [143], pattern recognition [23], [25],
[26], [97], [197], [202], and scientific computing [8], [14], [94]–[96].
In this thesis, we focus on a particular type of implicit decomposition

in the sense that we want to compute a decomposition of a tensor that is
only known implicitly via the solution of a linear system of equations, as
shown in Figure 1.8. We aim to develop a framework for implicit tensor
decompositions in Chapter 3 and Chapter 4, enabling us to tackle various
(large-scale) applications within signal processing, system identification, and
pattern recognition. By directly solving the problem via optimization-based
and algebraic methods, instead of first solving the unstructured system and
then decomposing the reshaped solution, we can work much more efficiently
and avoid error accumulation. By leveraging the compact representation of
the solution vector in this way, we can tackle large-scale problems without
constructing the tensor explicitly.
While leveraging the blessing of dimensionality for instantaneous and con-

volutive source separation gives rise to explicit tensor decomposition-based
algorithms in Chapter 5 and Chapter 6, applying the same strategy to autore-
gressive (AR) system identification leads to implicit tensor decomposition-
based algorithms in Chapter 7. The fairly mild uniqueness conditions of the
CPD enable unique reconstruction and identification in large-scale source
separation and system identification problems, respectively. Additionally,
linear systems with a CPD constrained solution can be seen as multilinear
systems, see Figure 1.9, which are a higher-order extension of linear systems
of equations. By leveraging this interpretation, we develop a multilinear gen-
eralization of matrix-based classification, enabling tensor-based classification
in Chapter 8 and Chapter 9.

1.4 Research objectives
In this thesis, we aim to develop explicit and implicit tensor decomposition-
based algorithms with applications in blind source separation, (blind) system
identification, and pattern recognition. We provide three main objectives.

Objective I: To provide implicit tensor decomposition-based algorithms.

While many algorithms have been proposed for the decomposition of a tensor
that is known explicitly, implicit tensor decomposition-based algorithms have
been less explored. Our objective is to develop state-of-the-art algebraic and
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= + · · ·+

· vec
(

+ · · ·+
)

= b

Implicit tensor decomposition

Explicit tensor decomposition

Figure 1.8: By representing the solution of a linear system of equations by a low-rank
tensor model in a similar fashion as before, we obtain an implicit tensor decomposition. In
contrast to the decomposition of a tensor that is known explicitly, we want to compute a
decomposition of a tensor that is only defined implicitly via the solution of a linear system.

= + · · ·+

Matrix decomposition

=

Linear system

= + · · ·+

Tensor decomposition

=

Multilinear system

Figure 1.9: While a tensor decomposition is a higher-order generalization of a matrix de-
composition, a multilinear system of equations is a higher-order generalization of a linear
system of equations. This figure is a reproduction of Figure 3.1; full details can be found
in Chapter 3.
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optimization-based algorithms for the computation of a CPD that is known
implicitly via the solution of a linear system of equations. This type of
problem appears in a wide range of applications, but the CPD structure is
often not recognized or not fully exploited.

Objective II: To leverage the blessing of dimensionality in large-scale
(convolutive) signal separation and (blind) system identification.

Leveraging the blessing of dimensionality is a well-known strategy in tensor-
based scientific computing to tackle large-scale problems. Our aim is to
introduce this strategy in large-scale instantaneous and convolutive blind sig-
nal separation and system identification, yielding explicit and implicit tensor
decomposition-based algorithms depending on the type of model.

Objective III: To develop a novel tensor-based classification scheme.

Linear systems with a CPD-constrained solution can be seen as multilinear
systems, which are a generalization of linear systems of equations. By lever-
aging this interpretation, we aim to develop a novel tensor-based classification
scheme with broad applicability.

The thesis contains three major parts:

• Introduction. The first part consists of this introductory chapter and
an overview of explicit tensor decompositions. We discuss the state-
of-the-art all-at-once optimization-based approach of [180], [210], [215]
that will be used for the algorithmic development in the next part.

• Algorithms. In the second part, we propose a generic framework for
implicit tensor decomposition-based algorithms. In Chapter 3, we de-
velop algebraic and all-at-once optimization-based algorithms for a
CPD that is known implicitly as the solution of a linear system of
equations. By exploiting additional structure of the linear system, the
computational complexity can be significantly reduced as we show for
Kronecker-structured LS-CPD problems in Chapter 4.

• Applications. The third part comprises a set of applications within
signal processing, system identification, and pattern recognition. By
leveraging the blessing of dimensionality in large-scale instantaneous
BSS, we obtain an explicit tensor decomposition-based algorithm in
Chapter 5, enabling a unique solution and a way to cope with large-
scale instantaneous BSS problems. In Chapter 6, we generalize the
approach to convolutive mixtures, enabling large-scale blind system
identification. By applying a similar approach for large-scale AR sys-
tem identification, we obtain an implicit tensor decomposition-based
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1.5 Thesis overview

algorithm in Chapter 7. Finally, we employ implicit tensor decomposi-
tions for tensor-based classification tasks such as face recognition and
irregular heartbeat classification in Chapter 8 and Chapter 9, resp.

Each chapter of Part II and Part III is an adapted version of a paper that
has been peer reviewed and contains research performed by the author of this
thesis in collaboration with coauthors. Every chapter is self-contained, i.e., it
contains a motivation, preliminaries, literature overview, methods, numerical
experiments, and conclusion.

1.5 Thesis overview
We give a brief overview to all chapters below. The overall structure of the
thesis is illustrated in Figure 1.10.

Part I: Introduction

In the remainder of this introduction, we give an overview of explicit tensor
decompositions in Chapter 2. We focus on the CPD, MLSVD, and BTD
because they are used extensively in the rest of the thesis. We discuss com-
putational methods and give pointers to (generic) uniqueness conditions.

Part II: Algorithms

While Chapter 2 illustrates the importance of explicit tensor decomposition-
based algorithms in signal processing and machine learning applications, we
propose a general framework for implicit tensor decompositions in Chapter 3,
allowing one to tackle various applications within signal processing, system
identification, and pattern recognition. We limit ourselves to the computation
of a CPD that is given implicitly as the solution of a linear system of equations
(LS-CPD):

Ax = b subject to x = vec (CPD) . (1.2)

The CPD structure significantly reduces the number of parameters needed
to represent the solution of the linear system of equations, enabling one to
solve (1.2) when the matrix A does not have full column rank, enabling a
CS-style approach. In contrast to well-known CS reconstruction results that
hold with a certain probability, we provide a uniqueness condition that holds
with probability one: for random A, we show that the CPD can be recovered
uniquely, with probability one, if the number of equations is strictly larger
than the number of free variables in the CPD. Equation (1.2) can also be
interpreted as a multilinear system of equations, which is a generalization of
linear systems of equations. In the linear case we have Ax = A ·2 x = b,
while in the multilinear case we have, e.g., A ·2 u ·3 v = b, which is the
rank-1 case of (1.2). A naive method to solve (1.2) could be to first solve
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the linear system without structure and subsequently decompose a tensorized
version unvec (x) of the obtained solution. This approach works well if the
linear system is overdetermined, but fails when A does not have full column
rank. In contrast to the naive approach, we derive algebraic and all-at-once
optimization-based methods that allow us to also solve the problem when
the matrix A is fat or rank-deficient. Additionally, our approach allows us to
work much more efficiently and avoid error accumulation. While we discuss
LS-CPD applications extensively in Part III, we also illustrate the broad
applicability of the proposed framework for three examples in this chapter:
face recognition (see Chapter 8 for a detailed discussion), the construction
of tensors with given multilinear singular values, and the deconvolution of
constant modulus (CM) signals.
By fully exploiting the structure of A, the computational complexity of

the optimization-based algorithm can be significantly reduced, allowing us
to tackle large-scale problems. In Chapter 4, we assume that A can be
written as a sum of Kronecker products, which is a well-known strategy
to reduce the computational complexity in various applications [9], [147],
[198]. By leveraging the Kronecker structure, we show that the LS-CPD
problem can be reformulated as a sum of CPDs with linearly constrained
factor matrices. We derive an optimization-based algorithm that carefully
exploits all available structure, enabling us to tackle large-scale problems.
We illustrate our approach for graph clustering, demonstrating, once again,
the wide applicability of our framework.

Part III: Applications

By leveraging the blessing of dimensionality for BSS in Chapter 5, we can
uniquely recover the sources in large-scale problems. Our method models
the sources by means of low-rank tensor models such as the CPD in order
to obtain compact representations of the sources. After tensorizing the ob-
served data matrix, we show that our method reduces to the computation of
a tensor decomposition, allowing us to leverage mild uniqueness conditions.
The deterministic tensorization technique employed in this step is called seg-
mentation and is closely related to Hankel-based tensorization in the sense
that segmentation is a compact version of Hankelization, allowing us to ex-
actly represent (exponential) polynomials which can model a wide variety of
signals. We show that the same strategy can be applied to the mixing coef-
ficients of the BSS problem as in many large-scale applications the mixture
is also compressible because of many and closely located sensors. Moreover,
we combine both strategies, yielding a general explicit tensor decomposition-
based technique that enables us to exploit the underlying structure of the
sources and the mixtures simultaneously. We illustrate our method for fe-
tal ECG extraction and direction-of-arrival (DOA) estimation in large-scale
antenna arrays.
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In Chapter 6, we generalize the segmentation-based approach for instanta-
neous BSS to the blind identification of finite impulse response (FIR) systems,
allowing us to model large-scale convolutive mixtures of the inputs. We show
that our method reduces the blind system identification (BSI) problem to a
structured tensor decomposition of a tensor obtained by applying segmenta-
tion to the measured outputs, enabling a unique identification of the system
and reconstruction of the inputs. We discuss the segmentation parameters in
more detail and provide rules of thumb to find ‘good’ parameter values, en-
abling a trade-off between accuracy and compression rate. By leveraging the
structure due to the convolutive nature of the FIR model, we can obtain more
relaxed uniqueness results than results that do not take the structure into
account. By exploiting the compact representation of low-rank tensor mod-
els, our method enables large-scale applications where conventional methods
fall short. As such, we illustrate our method for DOA estimation in large-
scale antenna arrays for uniform and non-uniform settings and scenarios with
partially malfunctioning antennas. We also illustrate our method for neural
spike sorting in high-density microelectrode arrays.
While the (blind) identification of FIR systems reduces to the computation

of an explicit tensor decomposition, the identification of AR systems (using
input and output data) reduces to the computation of an implicit tensor de-
composition. By employing a similar strategy as before, we show in Chapter 7
that the identification of large-scale AR systems can be reformulated as the
computation of an LS-CPD. The duality between explicit and implicit tensor
decomposition-based algorithms emerges naturally for the identification of
large-scale FIR and AR models, respectively, by means of segmentation.
By interpreting (1.2) as a multilinear system of equations, we can derive

a multilinear generalization of matrix-based classification techniques such
as EigenFaces [194]. For example, given the SVD of a labeled data matrix
M = (US)VT, one can express a new data vector m(new) in the basis (US) by
solving a linear system of equations: (US) · v(new) = m(new). By comparing
the estimated coefficients with the rows of V, one can classify the new data
vector by assigning the label corresponding to the closest match. In a similar
fashion, we propose a generic scheme for tensor-based classification by replac-
ing the SVD by the multilinear SVD and the linear system by a multilinear
system. Although we illustrate the technique for face recognition and irregu-
lar heartbeat classification in Chapter 8 and Chapter 9, respectively, it can be
used for other classification tasks such as single-lead electroencephalography
(EEG) classification [197] and atrial fibrillation detection [87].
Various parameters influence the performance of face recognition methods

such as expression, pose, and illumination. In contrast to matrices, higher-
order tensors enable us to naturally accommodate for the different modes of
variation in real-life settings [203]. In Chapter 8, we show that tensor-based
classification using the approach of TensorFaces [202] can be reformulated as
the computation of an implicit tensor decomposition, yielding higher perfor-
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1.5 Thesis overview

mance than matrix-based methods such as EigenFaces and other tensor-based
techniques. More robust results can be achieved by using multiple images of
the same person under different conditions, leading to coupled implicit de-
compositions. In order to add a new person to the database, existing methods
require a facial image of the new person for each combination of condition,
e.g., for each pose and illumination combination, which is a major drawback.
We show that our method can add the new person to the database using only
a few images with acceptable performance. We illustrate the performance of
our method on the Extended Yale B dataset.
Cardiac arrhythmia are an important feature to assess the risk on sudden

cardiac death. Automatic classification of irregular heartbeats is therefore
an important part of ECG analysis. We propose a tensor-based method for
single- and multi-lead heartbeat classification in Chapter 9 using a similar
approach as in Chapter 8. Even though we use only one (or a few) leads
instead of all leads to perform classification, we obtain similar performance
as state-of-the-art matrix-based methods on the INCART dataset.

Conclusion and appendix

In Chapter 10, we summarize the main contributions of this thesis per chapter
and provide directions for prospective work.
In Appendix A, we propose a weighted least-squares approach for the com-

putation of a CPD of a higher-order tensor, enabling us to include prior
knowledge about the noise in the least-squares cost function. Standard least-
squares methods assume that the residuals are uncorrelated and have equal
variances which is often not true in practice, rendering the approach subop-
timal. We derive an optimization-based algorithm for the computation of a
CPD using low-rank weights, enabling efficient weighting of the residuals. We
illustrate our algorithm for DOA estimation using sensors with varying qual-
ity. In (near) real-time applications, it is possible to update the weights; see
[199]. We also applied our approach to heartbeat morphology analysis [92].
We have included this contribution in the appendix because we want to em-
phasize the development of implicit tensor-decomposition based algorithms
in the algorithmic part of this thesis.
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Tensor decompositions 2
2.1 Introduction

While vectors and matrices represent one-way and two-way arrays of data,
respectively, higher-order tensors represent multi-way arrays of data, allow-
ing us to tackle multiple modes of variation. For example, a multi-channel
ECG measurement of a single person can be represented by a matrix with
modes channel and time, enabling us to extract valuable information through
various well-known matrix-based tools. While multi-channel ECG measure-
ments of multiple persons under different experimental conditions cannot be
represented in a straightforward way using matrices, higher-order tensors can
accommodate for the higher-order nature of the problem. By stacking the
ECG measurements in a higher-order tensor with modes channel, time, per-
sons, etc., we can employ powerful tensor-based techniques and potentially
extract more information than what is possible using only matrix-based tools.
As a matter of fact, higher-order tensors are ubiquitous across a wide range

of applications within domains such as data mining, machine learning, and
(biomedical) signal processing [41], [112], [125], [155], [166]. Even though ten-
sors arise naturally in many applications, various tensorization techniques ex-
ist that allow us to transform a known data matrix into a higher-order tensor,
enabling us to leverage the powerful utitilies offered by tensor decomposition-
based methods such as compression and mild uniqueness conditions [63].
In this chapter, we introduce basic concepts, definitions, and notations for

higher-order tensors. Importantly, we discuss three (explicit) tensor decom-
positions that will be used extensively in this thesis: the multilinear singular
value decomposition, the canonical polyadic decomposition, and a particular
type of block term decomposition. We give pointers to applications, com-
putational methods, and applications for all three decompositions. Finally,
we discuss an all-at-once optimization-based framework to compute tensor
decompositions that will be used for the development of algorithms in Part II.
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2 Tensor decompositions

2.2 Basic definitions and notations

2.2.1 Notations
We denote scalars, vectors, matrices, and tensors by lower case (e.g., a), bold
lowercase (e.g., a), bold uppercase (e.g., A), and calligraphic letters (e.g.,
A), respectively. The order of a tensor is equal to the number of modes,
e.g., a tensor with three modes is a third-order tensor. The (i1, i2, . . . , iN )th
entry of an Nth-order tensor A ∈ KI1×I2×···×IN , with K denoting either R
or C, is denoted by ai1i2...iN . The nth element in a sequence is indicated by
a superscript between parentheses, e.g., {A(n)}Nn=1. The transpose, Hermi-
tian transpose, inverse, Moore–Penrose pseudoinverse, and conjugation are
denoted by ·T, ·H, ·−1, ·†, and ·, respectively. The row-wise and column-wise
concatenation of two vectors a and b is denoted by

[
a b
]
and

[
a; b

]
, respec-

tively, with the latter being equal to
[
aT bT

]T. A vector of ones or zeros of
length N is denoted by 1N or 0N , respectively. Similarly, we define a matrix
of ones or zeros of size M × N as 1M×N and 0M×N , respectively. Finally,
we define the identity matrix of size N ×N as IN .

2.2.2 Terminology
Definition 1. A mode-n vector of a tensor T ∈ KI1×I2×···×IN is a vector ob-
tained by fixing every index except the nth and denoted as ti1···in−1:in+1···iN .

A mode-n vector of a higher-order tensor is a natural extension of the
columns (mode-1) and rows (mode-2) of a matrix.

Definition 2. A nth-order slice of an Nth-order tensor T ∈ KI1×I2×···×IN is
a nth-order tensor obtained by fixing every index except n.

For example, the horizontal, frontal, and lateral (second-order) slices of a
third-order tensor X ∈ KI×J×K are denoted by Xi::, X:j:, and X::k, resp.

Definition 3. The mode-n matrix representation (or, alternatively, mode-n
unfolding) of a higher-order tensor T ∈ KI1×I2×···×IN is a matrix T(n) ∈
KIn×I1I2···In−1In+1···IN−1IN with the mode-n vectors of T as its columns.

Definition 4. Vectorization of a tensor T ∈ KI1×I2×···×IN , denoted as vec(T ),
maps each element ti1i2···iN onto vec(T )j with j = 1 +

∑N
k=1(ik − 1)Jk and

Jk =
∏k−1
m=1 Im.

The operation unvec (·) is the inverse of vec (·).

2.2.3 Products
We introduce important matrix and tensor products and their relations.
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Definition 5. Given two matrices A ∈ KI×J and B ∈ KK×L, the Kronecker
product A⊗B ∈ KIK×JL is given by:

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

... · · ·
...

aI1B aI2B · · · aIJB

 .
Definition 6. Given two matrices A ∈ KI×K and B ∈ KJ×K , the (column-
wise) Khatri–Rao product A�B ∈ KIJ×K is defined as the column-wise
Kronecker product:

A�B =
[
a1⊗b1 a2⊗b2 · · · aK ⊗bK

]
.

The row-wise Khatri–Rao product is denoted by �T and is defined as the
row-wise Kronecker product such that the following identity holds:

A�T B = (AT�BT)T
.

Definition 7. Given two matrices A ∈ KI×J and B ∈ KI×J , the Hadamard
product (or element-wise product) A∗B ∈ KI×J is given by:

A∗B =


a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
... · · ·

...
aI1bI1 aI2bI2 · · · aIJbIJ


Definition 8. Given two Nth-order tensors A ∈ KI1×I2×···×IN and B ∈
KI1×I2×···×IN , the inner product 〈A,B〉 is given by

vec (B)Hvec (A) .

Definition 9. Given a Nth-order tensor A ∈ KI1×I2×···×IN and and a Mth-
order tensor B ∈ KJ1×J2×···×JM , the outer product is a tensor A ⊗ B ∈
KI1×I2×···×IN×J1×J2×···×JM defined element-wise as:

(A ⊗ B)i1i2···iN j1j2···jM = ai1i2···iN bj1j2···jM .

For example, the outer product of two vectors a ∈ KI and b ∈ KJ is a
matrix a ⊗ b ∈ KI×J of which the elements are defined as (a ⊗ b)ij = aibj .
The outer product is related to the Kronecker product via a vectorization:

vec (a ⊗ b) = b⊗a.

Using the above definitions, one can obtain the following useful matrix
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identities [136], [212]:

(A⊗B)(C⊗D) = (AC)⊗ (BD) ,

(A⊗B)(C�D) = (AC)� (BD) ,

(A�B)T (C�D) = (ATC)∗ (BTD) ,

vec (ABC) = (CT⊗A) vec (B) ,

Definition 10. Given a tensor T ∈ KI1×I2×···×IN and a matrix M ∈ KJn×In ,
the mode-n product T ·n M ∈ KI1×···In−1×Jn×In+1×···×IN is defined element-
wise as:

(T ·n M)i1···in−1jnin+1···iN =
In∑
in=1

ti1i2···iNmjnin .

One can see that each mode-n vector of T is multiplied with the matrix M,
i.e., we have the following equivalent expression using the mode-n unfolding:

(T ·n M)(n) = MT(n).

The mode-n product allows us to omit the use of (generalized) transposes
in the higher-order case. For example, the matrix product Y = AXBT is
equivalent with Y = X ·1 A ·2 B, allowing one to generalize the equation in
a straightforward way for higher order problems, e.g., Y = X ·1 A ·2 B ·3 C.

2.2.4 Rank

Definition 11. A rank-1 tensor of order N is a tensor that can be written as
the outer product of N nonzero vectors.

Definition 12. The rank of a tensor T is equal to the minimal number of
rank-1 terms that generate the tensor as their sum.

Definition 13. The mode-n rank of a Nth-order tensor is equal to the rank
of the mode-n unfolding.

The mode-n rank is an extension of the column (mode-1) and row (mode-
2) rank of matrix. Recall that the row rank, the column rank, and the rank
are equal for matrices. For higher-order tensors, however, the mode-n ranks
are not necessarily equal and the rank is not necessarily equal to any of the
mode-n rank values [54].

Definition 14. The multilinear rank of a Nth-order tensor is equal to the
N -tuple of mode-n rank values.
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T =

W

U

VS

Figure 2.1: The multilinear SVD is a higher-order generalization of the well-known matrix
SVD, enabling dimensionality reduction and subspace analysis for higher-order tensors.

2.2.5 Properties
Definition 15. The Nth-order tensors A ∈ KI1×I2×···IN and B ∈ KI1×I2×···IN

are said to be orthogonal if the inner product 〈A,B〉 is equal to zero.
Definition 16. A Nth-order tensor T is said to be all-orthogonal if all slices
of order N − 1 are mutually orthogonal for each mode.

2.3 Tensor decompositions
2.3.1 Multilinear singular value decomposition (MLSVD)
The multilinear singular value decomposition (MLSVD) of a tensor is a
higher-order extension of the matrix singular value decomposition (SVD) [41],
[54], [168]. The decomposition describes a higher-order tensor by a set of fac-
tor matrices that are each related to a single mode and a core tensor that
explains the interactions between the different modes, as shown in Figure 2.1.
Definition 17. The multilinear singular value decomposition (MLSVD) of a
Nth-order tensor T ∈ KI1×I2×···×IN writes T as the product:

T = S ·1 U(1) ·2 U(2) · · · ·n U(N) def=
r
S; U(1),U(2), . . . ,U(N)

z

in which U(n) ∈ RIn×In is a unitary matrix, for 1 ≤ n ≤ N , and the core
tensor S ∈ RI1×I2×···×IN is ordered and all-orthogonal.
The core tensor is ordered in the sense that the slices have non-increasing

Frobenius norm. The norms of the slices are equal to the mode-n singular
values which are equal to the singular values of the mode-n unfoldings. The
MLSVD has several other useful properties such as the fact that it is multi-
linear rank-revealing (in its number of significant multilinear singular values),
has similar uniqueness properties as the matrix SVD, and can be used for
subspace analysis, see [54] for a detailed discussion.
The MLSVD has been used successfully for dimensionality reduction, com-

pression, and subspace analysis in various applications [41], [125], [168] within
signal processing [59], [98], [146], [157], image processing [46], [147], [205],
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= + · · ·+

Figure 2.2: The polyadic decomposition writes a tensor as a sum of rank-1 terms and is a
fundamental tool for signal separation because it is unique under fairly mild conditions.

pattern recognition [162], [203], [204], [216], and machine learning [168]. The
MLSVD has also been used as a preprocessing step for the efficient compu-
tation of other tensor decompositions such as the canonical polyadic decom-
position (CPD), see subsection 2.3.2 [28], [208], [210], [211], [213].
The MLSVD is closely related to the low-multilinear rank approximation

(LMLRA) and the Tucker decomposition (TD); see, e.g., [54], [125], [214].
Several strategies to compute the decomposition have been proposed such
as a SVD-based approach [54], [201], higher-order orthogonal iteration [56],
and optimization-based methods [115], [116], [178], [180]. For large-scale
tensors, efficient computational approaches have been proposed such as cross
approximation [30], [140], [153] and a method using randomized SVDs [211].

2.3.2 Canonical polyadic decomposition (CPD)
The CPD is an important tool in many applications within signal processing
and machine learning [41], [125], [168]. One of the reasons for the success
of the CPD is the fact that the decomposition is unique under fairly mild
uniqueness conditions [72], [75], yielding a powerful advantage over matrices
in many applications such as blind source separation (BSS) and blind system
identification (BSI) [168].
Definition 18. A polyadic decomposition (PD) writes a Nth-order tensor T ∈
KI1×I2×···×IN as a sum of R rank-1 terms:

T =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r

def=
r
U(1),U(2), . . . ,U(N)

z
. (2.1)

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor
vectors u(n)

r for 1 ≤ r ≤ R. The PD is called canonical (CPD) when R is
equal to the rank of T .

The CPD is a popular tensor decomposition in a wide range of applica-
tions within signal processing such as instantaneous and convolutive BSS [11],
[45], [51], [57], [64], [187], sensor array processing [141], [167], [181]–[183], and
telecommunications [53], [169], [170]. In biomedical applications [112], the
decomposition has been employed for the analysis of ECG [92], [155], EEG [2],
[10], [61], [66], [142], [145], [223] and fMRI data [15], [36], [113]. The CPD
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has also been used successfully in data mining and machine learning appli-
cations [5], [6], [12], [122], [168], [202].
The CPD is said to be essentially unique if the decomposition is unique up

to trivial permutation of the rank-1 terms and scaling and counterscaling of
the factors within the same rank-1 term. In general, no unique solution exists
in the matrix case, i.e., for N = 2, without additional assumptions for R > 1.
For tensors, i.e., for N > 2, we typically expect uniqueness under fairly
mild conditions. Moreover, for increasing order N , we expect even milder
uniqueness conditions [166], [184], [186]. Deterministic uniqueness conditions
guarantee uniqueness for a particular choice of factor matrices satisfying the
condition. For example, consider the following uniqueness result:

Theorem 1. Given a CPD JA,B,CK of a tensor X ∈ KI×J×K as in (2.1)
with N = 3. If the matrices A and B have full column rank and C does not
have proportional columns, the decomposition is essentially unique.

Generic uniqueness conditions consider uniqueness with probability one
when the entries of the factor matrices are drawn from absolutely continuous
probability density functions. As such, the generic counterpart of Theorem 1
implies uniqueness if I ≥ R, J ≥ R, and K ≥ 2. In practice, however, milder
uniqueness conditions than Theorem 1 can be obtained. For example, the
CPD is generically unique (with a few known exceptions) if [39]:

R ≤
⌈

IJK

I + J +K − 2

⌉
− 1 and IJK ≤ 15000,

with dxe the smallest integer not less than x. The bound on the number of
entries IJK has only been verified numerically up to 15000, but is assumed
to hold for larger number of entries as well. State-of-the-art deterministic
and generic uniqueness conditions for higher-order tensors can be found in
[39], [70]–[75], [135], [184], [186] and references therein. CPD existence and
uniqueness results in the noisy case are considered in [84]. For a brief intro-
duction to CPD uniqueness we refer to [168, Section IV].
Many algorithms have been proposed for the computation of (coupled and

constrained) CPDs such as algebraic methods [47], [72], [75], [181], [186], al-
ternating least-squares (ALS) techniques [125], and all-at-once optimization-
based algorithms [4], [154], [158], [178], [180], [189], [211]. For example, if a
CPD of a third-order tensor satisfies Theorem 1, it can be found algebraically
by means of a generalized eigenvalue decomposition (GEVD) [103]. While
ALS methods are popular thanks to their straightforward implementation
and speed for simple problems, they are often outperformed in ill-conditioned
cases by optimization-based techniques such as qN and NLS algorithms [210].
Additionally, these sophisticated optimization techniques have favorable con-
vergence properties and are more robust in practice [150], [180], [210]. We
discuss the all-at-once optimization framework in more detail in section 2.4.
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Figure 2.3: The more general block terms in a decomposition in multilinear rank-(Lr, Lr, 1)
terms allow us to model more complex phenomena than what is possible with the simple
rank-1 terms of the canonical polyadic decomposition.

2.3.3 Block term decomposition (BTD)
BTDs are a generalization of the CPD and the MLSVD in the sense that
they decompose a tensor into a sum of blocks with a particular multilinear
rank, enabling us to model more complex phenomena [49]. While several
variants exist, we focus on a BTD that decomposes a tensor in multilinear
rank-(Lr, Lr, 1) terms, as illustrated in Figure 2.3. Other BTDs, associated
uniqueness results, and algorithms can be found in [48], [49], [51], [58].
Definition 19. A block term decomposition (BTD) writes a third-order tensor
X ∈ KI×J×K as a sum of R multilinear rank-(Lr, Lr, 1) terms:

X =
R∑
r=1

(ArBT
r ) ⊗ cr, (2.2)

in which Ar ∈ KI×Lr and Br ∈ KJ×Lr have full column rank Lr and cr is a
nonzero vector.
The decomposition in (2.2) can be interpreted as a CPD with proportional

columns in the third factor matrix. By defining the following factor matrices:

A =
[
A1 A2 · · · AR

]
∈ KI×R

′
,

B =
[
B1 B2 · · · BR

]
∈ KJ×R

′
,

C(ext) =
[
1T
L1
⊗ c1 1T

L2
⊗ c2 · · · 1T

LR
⊗ cR

]
∈ KK×R

′

with R′ =
∑R
r=1 Lr, we can reformulate (2.2) as a rank-R′ CPD of X :

X =
r
A,B,C(ext)

z
.

The block terms are more general than the simple rank-1 terms of a PD,
enabling us to model more complex phenomena [52] in various applications
such as BSS [51], [65], blind deconvolution [53], [187], biomedical signal pro-
cessing [36], [111], [151], [218], and system identification [79]. The values of
the parameters Lr can be estimated algebraically under some conditions [76].
The BTD in multilinear rank-(Lr, Lr, 1) terms is essentially unique if it is

unique up to trivial permutation of the rth and r′th term, if Lr = Lr′ , and
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scaling and counter-scaling of (ArBT
r ) and cr in the same term. For example,

consider the following uniqueness condition; see [49] for a detailed discussion.
Theorem 2. Given a BTD in multilinear rank-(Lr, Lr, 1) terms of a tensor
X ∈ KI×J×K as in (2.2) with I, J ≥ R′. If the matrices A and B have
full column rank and C =

[
c1 c2 · · · cR

]
does not have proportional

columns, the decomposition is essentially unique.
Theorem 2 is the counterpart of Theorem 1 for CPDs.

2.4 All-at-once optimization-based algorithms
In Part II, we develop all-at-once optimization-based algorithms for implicit
tensor decompositions using the complex optimization toolbox (COT) as a
numerical optimization solver [177], [179]. This framework provides quasi-
Newton (qN) and nonlinear-least squares (NLS) implementations as well as
line search, plane search and trust-region methods [150]. We aim to develop
algorithms in the same spirit as the optimization-based algorithms for explicit
tensor decompositions in Tensorlab [178], [180], [211], [212], [215]. While we
provide a brief overview of the optimization framework in this section, we
refer the interested reader to a more detailed discussion in [210].
In this thesis, we aim to develop optimization-based algorithms using a

NLS approach. The goal of NLS is to minimize the squared error between a
known data vector t and a nonlinear model m(z) with optimization variables
z. Mathematically, we obtain the following optimization problem:

min
z
f(z) with f(z) = ||m(z)− t||2F (2.3)

using the Frobenius norm. For example, the computation of a CPD of a
known third-order tensor T can be formulated as problem (2.3) by taking
t = vec (T ), z =

[
vec (A) ; vec (B) ; vec (C)

]
, and model m(z) = JA,B,CK.

While we focus on the implementation of GN-style methods, the expres-
sions can be used for other qN and NLS algorithms as well. A GN method
using a trust region (TR) approach solves the optimization problem in (2.3)
by linearizing the residual r = m(z)− t in each iteration k and subsequently
solving the following least-squares (LS) problem [150], [210]:

min
pk

1
2 ||rk + Jkpk||2F subject to ||pk|| ≤ ∆k (2.4)

with step pk = zk+1 − zk, Jacobian J = dr/dz, and trust-region ∆k. The
exact solution to (2.4) is given by the following linear system [150]:

Hkpk = −gk (2.5)

with H being the Hessian and the conjugated gradient g = (∂f/∂z)H. The
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Hessian is typically approximated in some way because it is often expensive
or difficult to compute explicitly [210]. In the GN method we approximate
the Hessian with the Gramian of the Jacobian in each iteration, i.e., we use:

Hk = JH
kJk.

The variables can then be updated all at once in each iteration as:

zk+1 = zk + pk.

The linear system in (2.5) can be solved exactly for small-scale problems, but
for large-scale problems we typically use several preconditioned conjugated
gradient (PCG) iterations in order to reduce the computational complexity.
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Linear systems with a canonical
polyadic decomposition
constrained solution: algorithms
and applications 3
ABSTRACT Real-life data often exhibit some structure and/or sparsity,
allowing one to use parsimonious models for compact representation and
approximation. When considering matrix and tensor data, low-rank mod-
els such as the (multilinear) singular value decomposition (SVD), canonical
polyadic decomposition (CPD), tensor train (TT), and hierachical Tucker
(HT) model are very common. The solution of (large-scale) linear systems
is often structured in a similar way, allowing one to use compact matrix and
tensor models as well. In this chapter we focus on linear systems with a CPD
constrained solution (LS-CPD). Our main contribution is the development of
optimization-based and algebraic methods to solve LS-CPDs. Furthermore,
we propose a condition that guarantees generic uniqueness of the obtained
solution. We also show that LS-CPDs provide a broad framework for the
analysis of multilinear systems of equations. The latter are a higher-order
generalization of linear systems, similar to tensor decompositions being a
generalization of matrix decompositions. The wide applicability of LS-CPDs
in domains such as classification, multilinear algebra, and signal processing
is illustrated.

This chapter is a slightly adapted version of M. Boussé, N. Vervliet, I. Domanov, O.
Debals, and L. De Lathauwer, “Linear systems with a canonical polyadic decomposition
constrained solution: Algorithms and applications”, Numerical Linear Algebra with
Applications, vol. 25, no. 6, e2190, Aug. 2018. The figures have been updated for
consistency.
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3 Linear systems with a CPD constrained solution

3.1 Introduction

Real-life data can often be modeled using compact representations because
of some intrinsic structure and/or sparsity [34]. Well-known representations
are low-rank matrix and tensor models such as nonnegative matrix factoriza-
tion (NMF), the (multilinear) singular value decomposition (SVD), canonical
polyadic decomposition (CPD), tensor train (TT), and hierarchical Tucker
(HT) models [41], [54], [90], [95], [125], [152], [168]. Examples of data that can
be represented or well approximated by such models are exponential poly-
nomials, rational functions (and in a broader sense smooth signals), as well
as periodic functions [20], [21], [96], [123]. When dealing with vector/matrix
data, one often reshapes the data into higher-order tensors which are then
modeled using low-rank approximations, enabling efficient processing in the
compressed format. This strategy has been used in tensor-based scientific
computing and signal processing to handle various large-scale problems [20],
[21], [96], [99].
Similarly, the solution of a (large-scale) linear system can often be ex-

pressed by a low-rank tensor. Such problems are well-known in tensor-
based scientific computing; see [96]. They arise, e.g., after discretizing high-
dimensional partial differential equations (PDEs). The low-rank model en-
sures efficient computations and a compact representation of the solution.
In such large-scale problems, one often assumes that the coefficient matrix
and/or right-hand side have some additional structure or can also be ex-
pressed using a tensor model. Several methods have been developed for lin-
ear systems with a Kronecker-structured coefficient matrix and a CPD struc-
tured solution such as the projection method [8], alternating least squares
(ALS) [14], and a gradient method [83]. TTs or HT models are also of-
ten used because they combine large compression rates and good numerical
properties [95], [152].
In this chapter, we present a new framework for linear systems of equations

with a CPD constrained solution, abbreviated as LS-CPD. In other words,
we want to solve linear systems of the form:

Ax = b with x = vec (CPD) ,

in which vec(·) is a vectorization. A simple second-order rank-1 example is
x = vec(u⊗v) with ⊗ the outer product. In particular we develop algebraic as
well as optimization-based algorithms that properly address the CPD struc-
ture. A naive method to solve LS-CPDs could be to first solve Ax = b with-
out structure and subsequently decompose a tensorized version unvec(x) of
the obtained solution. This approach works well if the linear system is overde-
termined, but, in contrast to our algebraic and optimization-based methods,
fails in the underdetermined case. The proposed optimization-based method
computes a solution of the LS-CPD problem by minimizing a least-squares
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objective function. We have derived expressions for the gradient, Jacobian,
and approximation of the Hessian which are the ingredients for standard
quasi-Newton (qN) and nonlinear least squares (NLS) techniques. We use
the complex optimization framework in Tensorlab, a toolbox for tensor com-
putations in Matlab, as a numerical optimization solver [177], [179], [180],
[215]. The optimization-based methods allow us to work much more effi-
ciently and avoid error accumulation in contrast to the naive or algebraic
methods. The latter two methods can be used to obtain a good initializa-
tion for the optimization-based methods when considering perturbed LS-CPD
problems. Our framework can be extended to other tensor decompositions
such as the block term decomposition (BTD), multilinear SVD (MLSVD),
low-multilinear rank approximation (LMLRA), TTs or HT models [49], [54],
[96], [168].
Furthermore, LS-CPDs can be interpreted as multilinear systems of equa-

tions which are a generalization of linear systems of equations. The latter can
be expressed by a matrix-vector product between the coefficient matrix and
the solution vector, e.g., Ax = b, or, equivalently, A ·2 xT, using the mode-n
product [125]. The generalization to a multilinear system is then straight-
forward because it can be expressed by tensor-vector products between the
coefficient tensor and multiple solution vectors: A ·2 xT ·3 yT = b. This is
very similar to tensor decompositions which are higher-order generalizations
of matrix decompositions [41], [125], [168]. However, in contrast to tensor
decompositions, the domain of multilinear systems is relatively unexplored.
To the best of the authors’ knowledge, only a few cases have been studied in a
disparate manner such as the fully symmetric rank-1 tensor case with a par-
ticular coefficient structure [68], sets of bilinear equations [7], [44], [120], and
a particular type of multilinear systems that can be solved via so-called ten-
sor inversion [27]. LS-CPDs provide a general framework to solve multilinear
systems; see Figure 3.1.
The CPD structure in LS-CPDs strongly reduces the number of parame-

ters needed to represent the solution. For example, a cubic third-order tensor
of size I × I × I contains I3 entries but its CPD needs only O(3RI) param-
eters with R being the number of terms in the decomposition. The possibly
very compact representation of the solution enables one to solve the LS-CPD
problem for the underdetermined case in a compressed-sensing (CS) style [34],
[78]. A similar idea has been studied for the low-rank matrix case [193]. In
contrast to well-known CS reconstruction conditions, we derive a uniqueness
condition for LS-CPDs that holds with probability one. In particular, we de-
rive a generic uniqueness condition for the solution x of the LS-CPD problem
given a coefficient matrix A of which the entries are drawn from absolutely
continuous probability density functions.
LS-CPDs appear in a wide range of applications; see, e.g., [149], [188],

[204], but the CPD structure is often not recognized or not fully exploited.
In this chapter, the applicability of LS-CPDs is illustrated in three different
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= + · · ·+

Matrix decomposition

=

Linear system

= + · · ·+

Tensor decomposition

=

Multilinear system

Figure 3.1: Tensor decompositions are a higher-order generalization of matrix decomposi-
tions and are well-known tools in many applications within various domains. Although
multilinear systems are a generalization of linear systems in a similar way, this domain is
relatively unexplored. LS-CPDs can be interpreted as multilinear systems of equations,
providing a broad framework for the analysis of these types of problems.

domains: classification, multilinear algebra, and signal processing. In the
first case, we show that tensor-based classification can be formulated as the
computation of an LS-CPD. Although we illustrate the technique with face
recognition [25], one can consider other classification tasks such as irregu-
lar heartbeat classification and various computer vision problems [23], [202]–
[204]. Next, the construction of a real-valued tensor that has particular mul-
tilinear singular values is formulated as an LS-CPD. By properly exploiting
the symmetry in the resulting problem, our method is faster than literature
methods. We conclude with the blind deconvolution of constant modulus
(CM) signals such as 4-QAM or BPSK signals using LS-CPDs.

In the remainder of this introduction, we give an overview of the notation,
basic definitions, and multilinear algebra prerequisites. In section 3.2, we
define LS-CPDs and briefly discuss structure and generic uniqueness. Next,
we develop an algebraic algorithm and an optimization-based algorithm to
compute LS-CPDs in section 3.3. Numerical experiments and applications
are presented in sections 3.4 and 3.5, respectively. We conclude the chapter
and discuss possible future work in section 3.6.
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3.1.1 Notation and definitions

A tensor is a higher-order generalization of a vector (first-order) and a matrix
(second-order). We denote tensors by calligraphic letters, e.g., A. Vectors
and matrices are denoted by bold lower and bold uppercase letters, respec-
tively, e.g., a and A. A mode-n vector of a tensor A ∈ KI1×I2×···×IN (with
K meaning R or C) is defined by fixing every index except the nth, e.g.,
ai1...in−1:in+1...iN , and is a natural extension of a row or a column of a matrix.
The mode-n unfolding of A is the matrix A(n) with the mode-n vectors as its
columns (following the ordering convention in [125]). An Mth-order slice of
A is obtained by fixing all butM indices. The vectorization of A, denoted as
vec(A), maps each element ai1i2...iN onto vec(A)j with j = 1+

∑N
k=1(ik−1)Jk

and Jk =
∏k−1
m=1 Im (with

∏k−1
m (·) = 1 if m > k− 1). The unvec(·) operation

is defined as the inverse of vec(·).
The nth element in a sequence is indicated by a superscript between paren-

theses, e.g., {A(n)}Nn=1. The complex conjugate, transpose, conjugated trans-
pose, inverse, and pseudoinverse are denoted as ·, ·T, ·H, ·−1 and ·†, respec-
tively. A vector of length K with all entries equal to one is denoted as 1K .
The identity matrix of size K×K is denoted as IK . The binomial coefficient
is denoted by Ckn = n!

(n−k)!k! . A = diag(a) is a diagonal matrix with the
elements of a on the main diagonal.
The outer and Kronecker product are denoted by ⊗ and ⊗, respectively,

and are related through a vectorization: vec (a ⊗ b) = b⊗a. The mode-n
product of a tensor A ∈ KI1×I2×···×IN and a matrix B ∈ KJn×In , denoted
by A ·n B ∈ KI1×···×In−1×Jn×In+1×···IN , is defined element-wise as (A ·n
B)i1...in−1jnin+1...iN =

∑In
in=1 ai1i2...iN bjnin . Hence, each mode-n vector of

the tensor A is multiplied with the matrix B, i.e., (A ·nB)(n) = BA(n). The
inner product of two tensors A,B ∈ KI1×I2×···×IN is denoted by 〈A,B〉 and
defined as 〈A,B〉 =

∑I1
i1

∑I2
i2
· · ·
∑IN
iN
ai1i2...iN bi1i2...iN . The Khatri–Rao and

Hadamard product are denoted by � and ∗, respectively.
An Nth-order tensor has rank one if it can be written as the outer product

of N nonzero vectors. The rank of a tensor is defined as the minimal number
of rank-1 terms that generate the tensor as their sum. The mode-n rank of a
tensor is defined as the rank of the mode-n unfolding. The multilinear rank
of an Nth-order tensor is equal to the tuple of mode-n ranks.

3.1.2 Multilinear algebraic prerequisites

The CPD is a powerful model for various applications within signal process-
ing, biomedical sciences, computer vision, data mining and machine learn-
ing [41], [125], [168].

Definition 20. A polyadic decomposition (PD) writes an Nth-order tensor
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T ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

T =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r

def=
r
U(1),U(2), . . . ,U(N)

z
,

in which the columns of the factor matrices U(n) ∈ KIn×R are equal to the
factor vectors u(n)

r for 1 ≤ r ≤ R. The PD is called canonical (CPD) if R is
equal to the rank of T , i.e., R is minimal.

The decomposition is essentially unique if it is unique up to trivial permu-
tation of the rank-1 terms and scaling and counterscaling of the factors in
the same rank-1 term. In the matrix case (N = 2) the CPD is not unique
without additional assumptions for R > 1. Uniqueness is typically expected
under rather mild conditions when N > 2; see, e.g., [70], [71], [73], [75], [128]
and references therein.
The MLSVD of a higher-order tensor is a multilinear generalization of the

SVD of a matrix [41], [54], [168].
Definition 21. A multilinear singular value decomposition (MLSVD) writes
a tensor T ∈ KI1×I2×···×IN as the product

T = S ·1 U(1) ·2 U(2) · · · ·N U(N) def=
r
S; U(1),U(2), . . . ,U(N)

z
. (3.1)

The factor matrices U(n) ∈ KIn×In , for 1 ≤ n ≤ N , are unitary matrices and
the core tensor S ∈ KI1×I2×···×IN is ordered and all-orthogonal [54].
The (truncated) MLSVD is a powerful tool in various applications such as

compression, dimensionality reduction, and face recognition [59], [125], [204].
The decomposition is related to the LMLRA and the Tucker decomposition
(TD); see [54], [214] and references therein. The mode-n unfolding of (3.1)
is given by:

T(n) = U(n)S(n)

(
U(N)⊗ · · ·⊗U(n+1)⊗U(n−1)⊗ · · ·⊗U(1)

)T

.

3.2 Linear systems with a CPD constrained
solution

First, we define linear systems with a CPD constrained solution in subsec-
tion 3.2.1. Next, we discuss structure of the coefficient matrix and generic
uniqueness in subsections 3.2.2 and 3.2.3, respectively.

3.2.1 Definition
In this chapter, linear systems of equations of which the solution can be
represented by a tensor decomposition are considered. We limit ourselves to
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3.2 Linear systems with a CPD constrained solution

linear systems with a CPD structured solution, abbreviated as LS-CPD, but
one can also use other decompositions such as the MLSVD, TT or HT [54],
[96], [152]. Concretely, consider a linear system Ax = b with coefficient
matrix A ∈ KM×K , solution vector x ∈ KK , and right-hand side b ∈ KM .
As such, we define LS-CPD as

Ax = b with x = vec
(r

U(1),U(2), . . . ,U(N)
z)

(3.2)

with U(n) ∈ KIn×R, for 1 ≤ n ≤ N , and K =
∏N
n=1 In. Equation (3.2)

can be interpreted as a decomposition of a tensor X = unvec(x) that is only
implicitly known via the solution x of a linear system. Rather than K vari-
ables, the CPD structure allows the vector x of length K to be represented
by only O(RI ′) variables with I ′ =

∑N
n=1 In, or, when accommodating for

scaling indeterminacies, R(I ′ −N + 1) free variables. For example, consider
the following second-order rank-1 structure [x; y; z]⊗[u; v;w] which is equiva-
lent with [1; y/x; z/x]⊗[ux; vx;wx], reducing the number of variables by one.
For higher-order structures, this extends to a reduction by N − 1, i.e., from
O
(
IN
)
to O (NI) entries. This compact representation allows one to solve

the structured linear system in (3.2) in the underdetermined case (M < K),
enabling a compressed-sensing-style approach [34], [78].

We show that LS-CPDs are multilinear systems of equations. Let A be a
tensor of orderN+1 with dimensionsM×I1×I2×· · ·×IN such that its mode-
1 unfolding A(1) equals the coefficient matrix A, i.e., we have A(1) = A. We
can then rewrite (3.2) as a set of inner products:〈

Am,
r
U(1),U(2), . . . ,U(N)

z〉
= bm, for 1 ≤ m ≤M, (3.3)

in which Am = A(m, :, :, . . . , :) is the Nth-order “horizontal slice” of A. If
N = R = 1, we obtain a linear system of equations and (3.3) reduces to:

〈aT
m,x〉 = bm, for 1 ≤ m ≤M,

with aT
m the mth row of A. Clearly, (3.3) is a set ofM multilinear equations.

For example, consider the following simple LS-CPD with N = 2 and R = 1:

Avec(u ⊗ v) = b, or, equivalently, A(v⊗u) = b (3.4)

with A = A(1) ∈ KM×IJ , u ∈ KI , and v ∈ KJ . Equation (3.4) is clearly
a compact form of the following set of multilinear equations (with values
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3 Linear systems with a CPD constrained solution

I = J = 2 and M = 4):
a111v1u1 + a121v1u2 + a112v2u1 + a122v2u2 = b1,

a211v1u1 + a221v1u2 + a212v2u1 + a222v2u2 = b2,

a311v1u1 + a321v1u2 + a312v2u1 + a322v2u2 = b3,

a411v1u1 + a421v1u2 + a412v2u1 + a422v2u2 = b4.

or, equivalently, we have A ·1 uT ·2 vT = b.

3.2.2 LS-CPD as CPD by exploiting structure of A
For particular types of structure on the coefficient matrix A in (3.2), the LS-
CPD problem can be reformulated as a (constrained) tensor decomposition.
Two examples are investigated here. First, if the coefficient matrix in (3.2)
is a diagonal matrix D = diag(d), the LS-CPD model reduces to a weighted
CPD of a tensor B = unvec(b) [154], [189], i.e., we have:

B = D∗
r
U(1),U(2), . . . ,U(N)

z

with D a tensor defined such that D = unvec(d). This model can also
be used to handle missing entries by setting the corresponding weights to
zero [3], [214]. It is clear that an LS-CPD reduces to a CPD if D is the
identity matrix.
Next, we consider a coefficient matrix A ∈ KM×K that has a Kronecker

product structure: A = A(N)⊗A(N−1)⊗ · · ·⊗A(1) with A(n) ∈ KJn×In
such that M =

∏N
n=1 Jn and K =

∏N
n=1 In. Note that

vec
(r

U(1),U(2), . . . ,U(N)
z)

=
(
U(N)�U(N−1)� · · ·�U(1)

)
1R.

One can then show that (3.2) can be written as [136]:(
A(N)⊗A(N−1)⊗ · · ·⊗A(1)

)(
U(N)�U(N−1)� · · ·�U(1)

)
1R = b,(

A(N)U(N)�A(N−1)U(N−1)� · · ·�A(1)U(1)
)

1R = b,

vec
(r

A(1)U(1),A(2)U(2), . . . ,A(N)U(N)
z)

= b,

which is equivalent to:
r
A(1)U(1),A(2)U(2), . . . ,A(N)U(N)

z
= B. (3.5)

Expression (3.5) is a CPD with linear constraints on the factor matrices and
is also known as the CANDELINC model [35], [125]; note that compatibility
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3.3 Algorithms

of the dimensions of U(n) and A(n) is essential to reformulate the LS-CPD
as (3.5). Expression (3.5) can be computed using projection or by using a
specific algorithm if the tensor B has missing entries [212].

3.2.3 Generic uniqueness
We show that generic uniqueness is possible when the number of equations
is larger than the number of free variables plus one. More specifically, we
present a bound on M guaranteeing uniqueness of x in (3.2) for a generic
M×K coefficient matrix A. Generic uniqueness means that we have unique-
ness with probability one when the entries of A are drawn from absolutely
continuous probability density functions. We refer the reader to [70], [71],
[73], [75], [128] and references therein regarding (generic) uniqueness con-
ditions for the factor matrices in the CPD of X . Our main result states
that in order to have a generically unique solution, we need at least as many
equations as free variables (i.e., after removing scaling indeterminacies) plus
one.
Lemma 1. Let A be a generic M × K matrix with K = I1 · · · IN . Define
b = Avec(X0) with X0 a I1× · · · × IN tensor with rank less than or equal to
R. In that case, the solution vector x in (3.2) is unique if M ≥ (I1 + · · · +
IN −N + 1)R+ 1.

Proof. Consider an irreducible algebraic variety V ∈ KK of dimension dV . It
is known that a generic plane of dimension less than or equal to K − dV − 1
does not intersect with V [176, Theorem A.8.1, p. 326]. It is clear that a
generic plane of dimension K −M can be interpreted as the null space of a
generic M ×K matrix. Hence, if A is a generic M ×K matrix, v0 ∈ V and
b := Av0, then the problem

Ax = b, with x ∈ V (3.6)

has a unique solution whenever K − M ≤ K − dV − 1 or M ≥ dV + 1.
We interpret (3.2) as (3.6) in which V is the Zariskii closure of the set of
I1×· · ·× IN tensors whose rank does not exceed R. Since a generic tensor in
V can be parameterized with at most (I1 + · · ·+ IN −N + 1)R parameters,
it follows that dV ≥ (I1 + · · · + IN − N + 1)R. Hence, a solution vector x
in (3.2) is unique if M ≥ dV + 1 ≥ (I1 + · · ·+ IN −N + 1)R+ 1.

3.3 Algorithms
First, we derive an algebraic method to solve an LS-CPD with R = 1 in sub-
section 3.3.1. Next, we develop an optimization-based algorithm for general
LS-CPDs in subsection 3.3.2.
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3 Linear systems with a CPD constrained solution

3.3.1 Algebraic computation

We present an algebraic method to solve (3.2). The derivation is closely
related to [47]. Importantly, all steps can be performed by means of conven-
tional linear algebra. The overall algebraic procedure is summarized in Algo-
rithm 3.1. This method finds the exact solution in the case of exact problems,
but can also be used to obtain a good initialization for optimization-based
methods in the case of perturbed problems.
It is well-known that a tensor X of order N has rank one if and only if all

its matrix unfoldings have rank one, i.e., we have:

rank
(
X(n)

)
= R = 1, for 1 ≤ n ≤ N. (3.7)

In this particular case a solution x to (3.2) is also a solution of

Ax = b with x = vec (X ) , where X satisfies (3.7) (3.8)

and a solution to (3.8) is also a solution to (3.2). The case R > 1 relates to
linear systems with a MLSVD constrained solution; see [22]. We can compute
a solution of (3.2) algebraically in two steps as follows. First, we use (3.8) to
recover X . Next, we compute the (exact) rank-1 CPD of X .

Trivial case

Assume that the solution of the unstructured linear system Ax = b is unique,
i.e., the null space of the extended matrix

[
A b

]
is one-dimensional. In

that case, we can compute the solution to (3.8) by ignoring the multilinear
structure (3.7), i.e., we solve for x and subsequently compute a CPD of
X = unvec(x). Clearly, the tensor X is unique if b 6= 0 or is unique up to
a scaling factor if b = 0. This approach is the naive method that we have
mentioned in section 3.1.

Reduction of the general case to the trivial case

We explain how to find a solution of (3.8) when the dimension of the null
space of

[
A b

]
is larger than one, e.g., when A is a fat matrix or rank-

deficient. We limit ourselves to the case where b 6= 0, which implies that the
dimension of the null space of A is at least one. It can be shown that the
case where b = 0 follows in a similar way.
Let f (0) be a particular solution of Ax = b and let the vectors f (l), for

1 ≤ l ≤ L, form a basis of the L-dimensional null space of A. Consider the
tensorized versions of f (l) denoted by F (l) ∈ KI1×I2×···×IN , for 0 ≤ l ≤ L.
In order to solve (3.8), we have to find values cl, for 1 ≤ l ≤ L, such that
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X = F (0) + c1F (1) + · · ·+ cLF (L) (with c0 = 1) satisfies (3.7), i.e., we have:

rank
(
X(n)

)
= rank

(
F(0)

(n) + c1F(1)
(n) + · · ·+ cLF(L)

(n)

)
= 1, 1 ≤ n ≤ N.

(3.9)
We can reformulate (3.9) as the following LS-CPD problem:

Ã(c⊗ c) = 0 with c = [1 c1 · · · cL]T (3.10)

with, as explained below, Ã constructed from the tensors F (l) such that
each row of Ã is a vectorized (L + 1) × (L + 1) symmetric matrix. We
make the assumption that the intersection of the null space of Ã with the
subspace of vectorized symmetric matrices is one-dimensional. In practice
this assumption is satisfied when the difference between the number of rows
and columns of Ã is sufficiently large. In that case, the solution c⊗ c is
unique and can be computed as explained for the trivial case, from which c
can be easily recovered.
We explain the construction of Ã in more detail. First, partition Ã as

follows:
Ã =

[
Ã(1)T Ã(2)T · · · Ã(N)T

]T

, (3.11)

where the matrices Ã(n) correspond to the constraints in (3.9). Consider the
following definition.
Definition 22. The second compound matrix C2(F) of an I × J matrix F,
with 2 ≤ min(I, J), is a C2

I × C2
J matrix containing all 2 × 2 minors of F

ordered lexicographically [108].
It is well-known that the following algebraic identity holds for any 2 × 2

matrices F(0), . . . ,F(L) and values c0, . . . , cL:

det(c0F(0) + c1F(1) + · · ·+ cLF(L)) =

1
2

L+1∑
j1,j2=1

cj1cj2

[
det(F(j1) + F(j2))− det(F(j1))− det(F(j2))

]
. (3.12)

By applying (3.12) to each 2× 2 submatrix of c0F(0)
(n) + c1F(1)

(n) + · · ·+ cLF(L)
(n) ,

we obtain:

C2
(
c0F(0)

(n) + c1F(1)
(n) + · · ·+ cLF(L)

(n)

)
=

1
2

L+1∑
j1,j2=1

cj1cj2

[
C2
(
F(j1)

(n) + F(j2)
(n)

)
− C2

(
F(j1)

(n)

)
− C2

(
F(j2)

(n)

)]
. (3.13)

Condition (3.9) states that all 2 × 2 minors of the matrix X(n) = F(0)
(n) +

c1F(1)
(n) + · · ·+cLF(L)

(n) are zero, or, in other words, we have that C2
(
X(n)

)
= 0.
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3 Linear systems with a CPD constrained solution

Hence, according to (3.13), we have:

L+1∑
j1,j2=1

cj1cj2

[
C2
(
F(j1)

(n) + F(j2)
(n)

)
− C2

(
F(j1)

(n)

)
− C2

(
F(j2)

(n)

)]
= 0,

with c0 = 1, which is equivalent to

Ã(n)(c⊗ c) = 0, with c = [1 c1 . . . cL]T
, 1 ≤ n ≤ N,

in which Ã(n) has size C2
In
C2
KI−1

n
× (L + 1)2 and is defined column-wise as

follows:

ã(n)
j2+(L+1)(j1−1) = vec

(
C2
(
F(j1)

(n) + F(j2)
(n)

)
− C2

(
F(j1)

(n)

)
− C2

(
F(j2)

(n)

))
.

(3.14)
In Algorithm 3.1, the number of rows of Ã should be at least the dimension
of the subspace of the symmetric L+ 1×L+ 1 matrices minus one. Hence, a
necessary condition for the algebraic computation is that

∑N
n=1 C

2
In
C2
KI−1

n
≥

(L+ 1)(L+ 2)/2− 1 ≥ (K −M + 1)(K −M + 2)− 1. Note that L satisfies
L = K − dim (range (A)) ≥ K − M by the rank nullity theorem. The
computational complexity of Algorithm 3.1 is dominated by the construction
of Ã.

Algorithm 3.1: Algebraic algorithm to solve a linear system of equations Ax = b in which
the solution x has a rank-1 CPD structure.

1: Input: A and nonzero b
2: Output: {u(n)}Nn=1
3: Find f (0) ∈ KK such that Af (0) = b
4: Find f (l) ∈ KK , for 1 ≤ l ≤ L, that form a basis for null(A) ∈ KK×L
5: Reshape f (l) into I1 × I2 × · · · × IN tensors F(l), for 0 ≤ l ≤ L
6: Construct Ã(1), . . . , Ã(N) as in (3.14) and construct Ã as in (3.11)
7: Find a nonzero solution of Ãc̃ = 0 (if null(Ã) is one-dimensional)
8: Find the vector c = [1 c1 . . . cL]T such that c⊗ c is proportional to c̃
9: Construct X = F(0) + c1F(1) + · · ·+ cLF(L)

10: Compute the rank-1 CPD of X =
q

u(1),u(2), . . . ,u(N)y

3.3.2 Optimization-based methods

In this subsection, we solve the LS-CPD problem in (3.2) via a least-squares
approach, leading to the following optimization problem:

min
z
f = 1

2 ||r(z)||2F (3.15)
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in which the residual r(z) ∈ KM is defined as

r(z) = Avec
(r

U(1),U(2), . . . ,U(N)
z)
− b,

where we have concatenated the optimization variables in a vector z ∈ KRI′

with I ′ =
∑N
n=1 In as z =

[
vec
(
U(1)) ; vec

(
U(2)) ; · · · ; vec

(
U(N))]. To

solve the NLS problem (3.15), we use the Gauss–Newton (GN) method which
is a particular NLS algorithm [150]. In order to attain global convergence,
we employ a trust region approach, allowing the algorithm to converge to a
(local) minimum for any starting point under mild conditions. Notably, if
the algorithm converges, GN often converges quadratically, hence, fewer iter-
ations are needed. The GN algorithm requires expressions for the objective
function, gradient, Gramian, and Gramian-vector product. Although we fo-
cus on the GN method, the expressions can be used to implement other NLS
algorithms as well as qN algorithms. In order to implement the methods,
we use the complex optimization framework from [177], [179] which provides
implementations for qN and NLS algorithms as well as line search, plane
search, and trust region methods.
The GN method solves (3.15) by linearizing the residual vector r(z) and

solving a least-squares problem in each iteration k:

min
pk

1
2 ||r(zk) + Jkpk||2F s.t. ||pk|| ≤ ∆k

with step pk = zk+1 − zk and trust-region radius ∆k [150]. The Jacobian
J = dr(z)/dz ∈ KM×RI′ is evaluated at zk. The exact solution to the
linearized problem is given by the normal equations:

JH
kJkpk = −JH

kr(zk), or, equivalently, Hkpk = −gk. (3.16)

In the NLS formulation, H ∈ KRI′×RI′ is the Gramian of the Jacobian which
is an approximation to the Hessian of f [150]. The conjugated gradient
g ∈ KRI′ is defined as g = (∂f/∂z)H. The normal equations are solved
inexactly using several preconditioned conjugate gradient (CG) iterations to
reduce the computational complexity. After solving (3.16), the variables can
be updated as zk+1 = zk + pk. While a dogleg trust-region method is used
here, other updating methods such as line and plane search can be used as
well, see [150] for details. In the remainder of this subsection we derive the
required expressions for the GN method summarized in Algorithm 3.2.

Objective function

We evaluate the objective function f by taking the sum of squared entries
of the residual r(z). The latter can be computed by using contractions as
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3 Linear systems with a CPD constrained solution

Algorithm 3.2: LS-CPD using Gauss–Newton with dogleg trust region.

1: Input: A, b, and initial estimate for {U(n)}Nn=1
2: Output: {U(n)}Nn=1
3: while not converged do
4: Compute gradient g using (3.17).
5: Use PCG to solve Hp = −g for p using Gramian-vector products as in (3.20)

using a (block)-Jacobi preconditioner, see subsection 3.3.2.
6: Update U(n), for 1 ≤ n ≤ N , using dogleg trust region from p, g, and function

evaluation (3.15).
7: end while

follows:

r(z) =
R∑
r=1
A ·2 u(1)

r

T
·3 u(2)

r

T
· · · ·N+1 u(N)

r

T
− b.

Gradient

We partition the gradient as

g =
[
g(1,1); g(1,2); . . . ; g(1,R); g(2,1); . . . ; g(N,R)]

in which the subgradients g(n,r) ∈ KIn are defined as

g(n,r) =
(
J(n,r)

)T

r(z) (3.17)

in which J(n,r) is defined as

J(n,r) = ∂r(z)
∂u(n)

r

=
(
A ·2 u(1)

r

T
· · · ·n u(n−1)

r

T
·n+2 u(n+1)

r

T
· · · ·N+1 u(N)

r

T
)

(1)
.

(3.18)
Equation (3.18) equals the (n, r)th sub-Jacobian, using a similar partitioning
for J. The sub-Jacobians require a contraction in all but the first and nth
mode and are precomputed.

Gramian of the Jacobian

We partition the Gramian H into a grid of NR×NR blocks H(n,r,m,l) with
1 ≤ n,m ≤ N and 1 ≤ r, l ≤ R. Each block H(n,r,m,l) is defined by:

H(n,r,m,l) =
(
J(n,r)

)H

J(m,l), (3.19)

using the sub-Jacobians in (3.18). Equation (3.19) approximates the second-
order derivative of f with respect to the variables u(n)

r and u(m)
l .
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Table 3.1: The per-iteration computational complexity of the NLS algorithm for LS-CPD
is dominated by the computation of the Jacobian. The algorithm uses a trust region ap-
proach to determine the update, which requires itTR additional evaluations of the objective
function.

Calls per iteration Complexity

Objective function 1 + itTR O(MRIN )
Jacobian 1 O(MRNIN )
Gradient 1 O(MRNI)
Gramian 1 O(MR2N2I2)
Gramian-vector itCG O(MRNI)

As preconditioned CG (PCG) is used, only matrix vector-products are
needed. The full Gramian is never constructed because one can exploit the
block structure to compute fast matrix-vector products. Hence, in each iter-
ation we compute Gramian-vector products of the form z = JHJy as follows:

z(n,r) =
(
J(n,r)

)H
(

N∑
n=1

R∑
r=1

J(n,r)y(n,r)

)
, for 1 ≤ n ≤ N, and 1 ≤ r ≤ R,

(3.20)
in which we partitioned z and y in a similar way as before.
In this chapter, we use either a block-Jacobi or Jacobi preconditioner to

improve convergence or reduce the number of CG iterations. In the former
case, we compute the (In × In) Gramians H(n,n,r,r), for 1 ≤ n ≤ N and
1 ≤ r ≤ R, and their inverses in each iteration. Combining both operations
leads to a per-iteration computational complexity of O(MI2

n + I3
n) which is

relatively expensive, especially for large problems. One can instead use a
Jacobi preconditioner which uses a diagonal approximation of the Gramian
and, consequently, an inexpensive computation of the inverse. The diagonal
elements are computed as the inner product J(n,r)

in

H
J(n,r)
in

, for 1 ≤ in ≤ In,
leading to an overall computational complexity of O(MIn + In) which is
relatively inexpensive. We compare the effectiveness of the Jacobi and block-
Jacobi preconditioner in section 3.4.

Complexity

We report the per-iteration complexity of the NLS algorithm for LS-CPD
in Table 3.1 by counting multiplications. For simplicity, we assume that
I1 = I2 = · · · = IN = I in (3.2). Clearly the computational complexity is
dominated by the computation of the sub-Jacobians in (3.18). The compu-
tational complexity can be reduced by computing the contractions in (3.18)
as efficiently as possible. Note that the evaluation of the objective function
is a factor N less expensive.
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Efficient contractions

The per-iteration complexity of the NLS algorithm is relatively high, however,
only a few iterations are often necessary in order to obtain convergence. One
can reduce the overall computation time of the algorithm by reducing the
computational cost per iteration or the number of iterations. We have shown
that the computation of the Jacobians is relatively expensive; see Table 3.1.
Computing the sub-Jacobians requires the sequential computation of N − 1
contractions of the form A ·n x(n)T ∈ KI1×···×In−1×In+1×···×IN which are
defined as

(A ·n x(n)T
)i1...in−1in+1...iN =

In∑
in=1

ai1...iNx
(n)
in

(3.21)

with A ∈ KI1×···×IN and a vector x(n) ∈ KIn . Clearly, it is important to
perform the contractions as efficiently as possible to reduce the per-iteration
complexity of the algorithm. Note that the computation of the contractions
can be done in a memory-efficient way by computing the contractions se-
quentially via the matrix unfoldings and permuting the first mode of A to
the middle. This approach guarantees that A is permuted in memory at most
once.
One way to compute contractions efficiently is by exploiting all possible

structure of the coefficient tensorA in (3.21). For example, if A is the identity
matrix, the LS-CPD problem reduces to a CPD. In that case, the Gramians
and their inverses can be computed efficiently by storing the Gramians of the
factor matrices; see [180]. If A has a Kronecker product structure, the LS-
CPD problem reduces to a CANDELINC model, as shown in subsection 3.2.2,
which can be computed efficiently in both the dense and sparse case; see [125],
[212]. For specific types of structure in A, forward-adjoint oracles [67] can
be generalized to the multilinear case.
Let us illustrate how we can compute efficient contractions in the case of

a sparse A. Assume we have a vector a ∈ KM containing the M nonzero
values of A and corresponding index sets Im = {i(m)

1 , i
(m)
2 , . . . , i

(m)
N }, for

1 ≤ m ≤ M . We can then compute (3.21) efficiently as w = a ∗x(n)
I′n

with
I ′n = {i(1)

n , i
(2)
n , . . . , i

(M)
n }, for 1 ≤ n ≤ N . As such, we obtain a new index-

value pair with w ∈ KM and Jm = Im\i(m)
n for 1 ≤ m ≤M .

3.4 Numerical experiments
First, two proof-of-concept experiments are conducted to illustrate the alge-
braic and optimization-based methods in subsection 3.4.1. Next, we compare
accuracy and time complexity of the naive, algebraic, and NLS method in sub-
section 3.4.2. We also compare algebraic and random initialization methods
for the NLS algorithm in subsection 3.4.3. In subsection 3.4.4, we compare
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original algebraic method
optimization with

random initialization

Figure 3.2: Our algebraic method and optimization-based method (with random initializa-
tion) can perfectly reconstruct an exponential solution vector in the noiseless case.

the Jacobi and block-Jacobi preconditioner for the NLS algorithm. All com-
putations are done with Tensorlab [215]. We define the relative error εx as
the relative difference in Frobenius norm ‖x−x̂‖F/‖x‖F with x̂ being an esti-
mate for x. We use factor matrices in which the elements are drawn from the
standard normal distribution, unless stated otherwise, to generate tensors.
In that case the factor matrices are well-conditioned because the expected
angle between the factor vectors is 90◦ for large matrices. The coefficient
matrices A are constructed in a similar way, unless stated otherwise. We use
i.i.d. Gaussian noise to perturb the entries of a tensor, unless stated other-
wise. The noise is scaled to obtain a given signal-to-noise ratio (SNR) (with
the signal equal to the noiseless tensor). If we consider a perturbed LS-CPD
problem, we perturb the right-hand side in (3.2), unless stated otherwise.

3.4.1 Proof-of-concept

We give two simple proof-of-concept experiments, illustrating our algorithms
for linear systems with a solution that can be represented or well approx-
imated by a low-rank model. First, consider an LS-CPD with a solution
x ∈ KK that is constrained to be an exponential, i.e., xk = e−2k evaluated
in K equidistant samples in [0, 1]. It is known that sums of exponentials can
be exactly represented by low-rank tensors [20], [21], [51]. In this case, the
corresponding tensor X = unvec(x) has rank one (R = 1) [51]. We choose
N = 3, I1 = I2 = I3 = I = 4, K = I3 = 64, and M = 34. We compute
a solution using the algebraic method and the NLS algorithm with random
initialization. Perfect reconstruction of the exponential is obtained with both
methods as shown in Figure 3.2.
In the previous experiment the solution vector could be exactly represented

by a low-rank tensor. Many signals, such as Gaussians, rational functions,
and periodic signals, can also be well approximated by a low-rank model [20],
[21]. In this experiment, we consider an LS-CPD of which the solution vector
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original function rank-1 model rank-2 model rank-3 model

Figure 3.3: Our optimization-based method (with random initialization) can reconstruct
the rational solution vector in the noiseless case. Increasing the rank of the CPD model
improves the accuracy of the solution. For example, the rank-3 model is almost indistin-
guishable from the original function.

x = vec (X) is a rational function:

xk = 1
(k − 0.3)2 + 0.042 + 1

(k − 0.8)2 + 0.062 ,

evaluated at K equidistant samples in [0, 1]. We take N = 2, I1 = 10,
I2 = 25, K = I1I2 = 250, and M = 350. The NLS algorithm with random
initialization is used for R = {1, 2, 3} to compute a solution. In Figure 3.3,
one can see that the accuracy of the approximation increases when using
higher-rank values.

3.4.2 Comparison of methods
We compare the algebraic method in Algorithm 3.1, the NLS method in Algo-
rithm 3.2, and the naive method, i.e., the trivial case of the algebraic method,
see subsection 3.3.1. Remember that the latter can be computed by first solv-
ing the unstructured system and afterwards fitting the CPD structure on the
obtained solution. Consider an LS-CPD with N = 3, I1 = I2 = I3 = I = 3,
R = 1, K = I3 = 27. We choose M (min) ≤ M ≤ K with M (min) = 8 which
equals the minimal value of M to obtain a (generically) unique solution ac-
cording to Lemma 1. We report the median relative error on the solution
εx and the computation time across 100 experiments in Figure 3.4. Timing
experiments are performed on a standard laptop (quad core i7-4810MQ @
2.80 GHz, 16 GB RAM, PM851 SSD) running Matlab 2016a on Windows 10.
The naive method fails when M < K because we solve an underdetermined
linear system, resulting in a nonunique solution due to the nonemptiness of
the null space of A. The algebraic method works well, but fails if M ≤ 10
because then the dimension of the null space of Ã in (3.10) is larger than one,
see subsection 3.3.1. For M = K, the algebraic method coincides with the
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Figure 3.4: The naive method fails for an underdetermined LS-CPD while the NLS and al-
gebraic method both perform well. The computational complexity of the algebraic method
is much higher than the other two methods, especially for the highly underdetermined case
(i.e., M close to the number of free variables).

naive method. The NLS method performs well for all M using five random
initializations. Note that NLS typically needs many random initializations
when M is close to M (min). The accuracy is slightly higher than the al-
gebraic method. The computational cost of the algebraic method increases
when M decreases because Ã in (3.10) depends quadratically on L which is
the dimension of the null space of A.

3.4.3 Initialization methods

The algebraic method in Algorithm 3.1 finds the exact solution in the case of
exact problems. In the case of perturbed problems, however, the solution can
be used to obtain a good initialization for optimization-based methods such
as the NLS algorithm from subsection 3.3.2. Often the algebraic solution
provides a better starting value for optimization-based algorithms than a
random initialization. We illustrate this for an underdetermined LS-CPD of
the form (3.2) with N = 3, R = 1, I1 = I2 = I3 = I = 4, K = I3 = 64,
and M = 60. We compute a solution using the NLS algorithm with random
and algebraic initialization. In Figure 3.5, we report the median number of
iterations across 20 experiments for several values of the SNR (right); we also
show the convergence plot for 20 dB SNR on the left. By starting the NLS
algorithm from the algebraic solution instead of using a random initialization,
we need fewer iterations to achieve convergence. Importantly, the algebraic
method can still find a solution in the noisy case but the accuracy is typically
low. Optimization-based methods such as the NLS algorithm can use this
solution as an initialization and improve the accuracy.
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Figure 3.5: By initializing the NLS algorithm with the algebraic solution instead of using
a random initialization, fewer iterations are needed to achieve convergence. The relative
function value is defined as the difference in objective function value between every two
succesive iterations, relative to its initial value.

3.4.4 Preconditioner

The overall computation time of the NLS algorithm can be reduced by re-
ducing the computational cost per iteration or the number of iterations. Re-
member that we solve the normal equations in the NLS algorithm inexactly
via a number of PCG iterations. Good preconditioning is essential to lower
the number of CG iterations and, consequently, reduce the per-iteration com-
plexity of the NLS algorithm. Here, we compare the Jacobi and block-Jacobi
preconditioner (PC), see section 3.3.

Consider an LS-CPD problem with N = 3, R = 3, I1 = 250, I2 = I3 = 10,
K = I1I2I3 = 25000. We consider three different scenarios: the highly under-
determined case (M = R(I1 + I2 + I3) + 5 = 815), the underdetermined case
(M = 1.5R(I1 + I2 + I3) = 1215), and the square case M = K = 25000. We
simulate a typical iteration of the NLS algorithm as follows. We compute the
Gramian H and the gradient g for random factor matrices U(n) and solve the
normal equations in (3.16) using PCG until convergence (i.e., up to a relative
error on the residual of 10−6). In Table 3.2 we report the average number of
CG iterations across 50 experiments when using no PC, the Jacobi PC, and
the block-Jacobi PC for the three different scenarios. In this experiment, the
block-Jacobi preconditioner reduces the number of CG iterations more than
the Jacobi preconditioner, especially for the highly underdetermined case. In
the square case, both PCs have similar performance, but the Jacobi PC is
preferred because of its lower computational complexity. We have observed
that the overall computation time of the algorithm can be reduced by using
a preconditioner.
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Table 3.2: Both PCs reduce the number of CG iterations in the underdetermined and
square case. In the highly underdetermined case only the block-Jacobi PC can reduce the
number of CG iterations. We reported the average (and standard deviation of the) number
of CG iterations across 50 experiments

Scenario No PC Jacobi PC block-Jacobi PC

highly underdetermined 810 (0) 790 (30) 644 (55)
underdetermined 181 (38) 56 (2) 46 (2)
square 45 (12) 12 (2) 12 (2)

3.5 Applications

LS-CPDs provide a generic framework that can be used in a wide range of
applications. In this chapter, we illustrate with three applications in clas-
sification, multilinear algebra and signal processing, respectively. First, LS-
CPDs are used for tensor-based face recognition in subsection 3.5.1. The
technique is very generic and can be used for other classification tasks as
well. For example, a similar method was used in [23] for irregular heartbeat
classification in the analysis of electrocardiogram data. Next, it is shown in
subsection 3.5.2 that tensors that have particular multilinear singular values
can be constructed using LS-CPDs. Finally, in subsection 3.5.3, LS-CPDs
are used for the blind deconvolution of CM signals.

3.5.1 Tensor-based face recognition using LS-CPDs

LS-CPDs can be used for generic classification tasks which is illustrated here
using tensor-based face recognition [25], [204]. Consider a set of matrices
of size Mx ×My representing the facial images of J persons, taken under I
different illumination conditions. All vectorized images of lengthM = MxMy

are stacked in a third-order tensor D ∈ KM×I×J with modes pixels (px) ×
illumination (i) × persons (p). Next, we perform a multilinear analysis by
computing a (truncated) MLSVD of the tensor D, i.e., we have:

D ≈ S ·1 Upx ·2 Ui ·3 Up.

with Upx, Ui, and Up forming an orthonormal basis for the pixel, illumi-
nation, and person mode, respectively. The core tensor S explains the in-
teraction between the different modes. The vectorized image d ∈ KM for a
particular illumination i and person p satisfies:

d = (S ·1 Upx) ·2 cT
i ·3 cT

p (3.22)
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with cT
i and cT

p rows of Ui and Up, with Up acting as a database. The
mode-1 unfolding of (3.22) is an LS-CPD of the form (3.4):

d = UpxS(1)(cp⊗ ci).

Consider a previously unknown image d(new) of a person that is included
in the database. Classification or recognition of this person corresponds to
finding the coefficient vector cp, i.e., we solve an LS-CPD of the form:

d(new) = UpxS(1)

(
c(new)

p ⊗ c(new)
i

)
,

resulting into estimates c̃(new)
p and c̃(new)

i . The coefficient vector for the
person dimension c̃(new)

p is compared with the rows of Up using the Frobenius
norm of the difference (after fixing scaling and sign invariance)1. We then
classify the person in the image according to the label of the closest match.

Let us illustrate the above strategy for the extended YaleB dataset2. This
real-life dataset consists of cropped facial images of 39 persons in 64 illumi-
nation conditions. We remove illumination conditions for which some of the
images are missing and retain one of the conditions as test data, resulting
into I = 56 conditions. We vectorize each image of 51 × 58 pixels into a
vector of length M = 2958 for J = 37 persons. The resulting data tensor D
has size 2958× 56× 37. We compute the MLSVD of D using a randomized
algorithm called mlsvd_rsi, which is faster than non-randomized algorithms
but achieves similar accuracy [211]. We compress the pixel mode to reduce
noise influences. As such, we obtain a core tensor S ∈ K500×56×37 and ma-
trices Upx ∈ K2958×500, Ui ∈ K56×56, and Up ∈ K37×37. We use the NLS
algorithm to compute a solution, starting from a random initialization. We
project the new image d(new) onto the column space of the pixel matrix Upx
in order to decrease computation time, i.e., b = UT

pxd(new). We compare the
estimated coefficient vector with U = Up. To accommodate for scaling and
sign invariance, we normalize the rows of U and c̃(new)

p as follows: a vector
c is normalized as sign(c1) c

||c|| . On the left in Figure 3.6, we see the facial
image of a person that is known to our model but for a new illumination
condition. In the middle one can see the reconstruction of the image using
the estimated coefficient vectors. Moreover, we correctly classified the person
as the person on the right in Figure 3.6.

1Note that other metrics can be used such as cosine similarity [148].
2Available from http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.
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ReconstructedGiven Match

Figure 3.6: Correct classification of a facial image under a new illumination condition.

3.5.2 Constructing a tensor that has particular multilinear
singular values

Constructing a matrix with particular singular values is trivial. One can
simply use the SVD: A = UΣVT in which Σ is a diagonal matrix containing
the given singular values and U and V are random orthogonal matrices. For
tensors, this is not straightforward. It is of fundamental importance to un-
derstand the behavior of multilinear singular values [77], [100], [101]. In this
section, we show how one can construct an all-orthogonal tensor T ∈ RI×J×K
with particular multilinear singular values using an LS-CPD. Consider the
following expressions: 

T(1)TT
(1) = Σ(1),

T(2)TT
(2) = Σ(2),

T(3)TT
(3) = Σ(3), (3.23)

in which Σ(n) = diag(σ(n)2) is a diagonal matrix containing the squared
multilinear singular values σ(n), n = 1, 2, 3. Expression (3.23) states that
T is all-orthogonal and has multilinear singular values σ(n). In order to
reformulate (3.23) as an LS-CPD, we only take the upper triangular parts
into account because of symmetry in the left- and right-hand side in (3.23),
leading to the following equations for the first expression in (3.23):∑

j,k

tijktijk =
(
σ

(1)
i

)2
, for 1 ≤ i ≤ I,

∑
j,k

ti1jkti2jk = 0, for 1 ≤ i1 < i2 ≤ I,

and similarly for the second and third expression. We can write this more
compactly as an LS-CPD:

A(u⊗u) = b with u = vec(T ).
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Table 3.3: The LS-CPD method for constructing a tensor with particular multilinear sin-
gular values is faster than APM. This is illustrated by comparing the median computation
time (in seconds) across 20 experiments for an I1 × I2 × I3 tensor with I1 = I2 = 10α
and I3 = 5α in which α = {1, 5, 10}.

α = 1 α = 5 α = 10
Alternating projection method (APM) [100] 0.100 34.4 1747

Construction of A 0.004 1.4 23
Initialization (i.e., one iteration of APM) 0.002 0.4 12
LS-CPD 0.023 15.4 444

Total computation time of LS-CPD 0.029 17.2 479

A is a binary and sparse matrix of size IA × J2
A with IA =

∑N
n=1

In(In+1)
2

and JA =
∏N
n=1 In. The right-hand side b ∈ KIA is defined as

b =
[
triu

(
Σ(1)) ; triu

(
Σ(2)) ; · · · ; triu

(
Σ(N))]

in which each entry is either zero or a squared multilinear singular value. One
can show that the Jacobian for this particular problem is also a sparse matrix
of size IA × JA with

∑N
n=1 In nonzeros in each column. More specifically,

the Jacobian has the form: J = J(1) + J(2) with J(1) and J(2) the derivative
to the first and second u, respectively. Computing the sub-Jacobians J(n)

is reduced to filling in elements of T at the correct position in J(n) for the
orthogonality constraints. For the multilinear singular value constraints, one
has to multiply by two. By exploiting the structure, no additional operations
are required. We implemented this using a C/mex function that replaces
entries to avoid the overhead of constructing sparse matrices in Matlab. The
Gramian of the Jacobian is computed using sparse matrix-vector products.
We compare the optimized NLS algorithm with the alternating projection

method (APM) [100] in terms of computation time needed to construct an
I1 × I2 × I3 tensor with given multilinear singular values. We take I1 =
I2 = 10α and I3 = 5α in which α = {1, 5, 10}. The multilinear singular
values are chosen by constructing a tensor that can be written as a sum of
a multilinear rank-(L1, 1, L1) term and a multilinear rank-(1, L2, L2) term
with L1 = I3 − 1 and L2 = I3 + 1. The elements of the factor matrices are
drawn from the standard normal distribution. We normalize the multilinear
singular values such that the tensor has unit Frobenius norm. We initialize
the NLS algorithm with the solution obtained after one iteration of APM.
In Table 3.3, we report the median computation time across 20 experiments.
The time to construct A is reported separately because it depends only on
the size of the tensor and its construction has to be performed only once.
Clearly, the computation time of LS-CPD is much lower than APM, even if
we include the time needed to construct A.
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3.5.3 Blind deconvolution of constant modulus signals
LS-CPDs can also be used in signal processing applications. We illustrate
this by reformulating the blind deconvolution of a CM signal [206] as the
computation of an LS-CPD. In this chapter, we investigate the single-input-
single-output (SISO) case using an autoregressive (AR) model [137], i.e., we
have:

L∑
l=0

wl · y[k − l] = s[k] + n[k], for 1 ≤ k ≤ K, (3.24)

with y[k], s[k], and n[k] being the measured output, the input, and the
additive noise at the kth time instance, respectively. The lth filter coefficient
is denoted as wl. Assume we have K + L − 1 samples y[−L + 1], . . . , y[K]
and let Y ∈ KL×K be a Toeplitz matrix defined as ylk = y[k − l]. Also, the
filter coefficients are collected in w ∈ KL and the source vector s ∈ KK is
defined as sk = s[k]. We ignore the noise in the derivation of our method for
simplicity. Equation (3.24) can then be expressed in matrix form as:

YTw = s. (3.25)

The goal of blind deconvolution is to find the vector w using only the mea-
sured output values [1]. In order to make this problem identifiable, addi-
tional prior knowledge has to be exploited. Here, we assume that the input
signal has constant modulus, i.e., each sample sk satisfies the following prop-
erty [64]:

|sk|2 = sk · sk = c, for 1 ≤ k ≤ K (3.26)

with c being the squared constant modulus which is known a priori. By
using (3.25) in (3.26), we obtain:

(yT
kw)

(
yT
kw
)

= c, or, equivalently, (yk ⊗yk)T (w⊗w) = c, (3.27)

in which yk is the kth column of Y, for 1 ≤ k ≤ K. Taking into account all
equations, (3.27) reduces to the following LS-CPD:(

Y�Y
)T (w⊗w) = c · 1K . (3.28)

We illustrate the approach by means of the following straightforward ex-
ample. Consider an AR model of degree L = 5 with uniformly distributed
coefficients between zero and one, sample length K = 100, and c = 1. We
perturb the measurements with additive Gaussian noise which is scaled to
obtain a particular SNR. We solve (3.28) by relaxing w to v:(

Y�Y
)T (w⊗v) = c · 1K (3.29)

using the NLS algorithm with the Jacobi PC and starting from the algebraic
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Figure 3.7: The LS-CPD approach obtains more accurate results than the naive method
and achieves similar accuracy as the dedicated OSACM method. The run-time of LS-CPD
is slightly higher than OSACM for this example. The naive method has a lower run-time
than the other methods.

solution. In Figure 3.7, we report the median relative error on w and the
median run-time across 50 experiments for several values of the SNR. Tim-
ing experiments are performed on a standard laptop (quad core i7-4810MQ
@ 2.80 GHz, 16 GB RAM, PM851 SSD) running Matlab 2016a on Win-
dows 10. We compare our approach to the naive method, i.e., the method
that relaxes the Kronecker structure in (3.29), solves the system, and subse-
quently fits the Kronecker structure to the least-squares solution. These are
the core elements of the well-known analytical constant modulus algorithm
(ACMA) [206], [207]. We also compare with a state-of-the-art SISO CM al-
gorithm (CMA) called optimal step-size CMA (OSCMA) [191], [219]. It is
clear that our generic LS-CPD method obtains more accurate results than
the relaxation-based technique and achieves similar accuracy as the dedicated
OSCMA method. Also, the run-time of the LS-CPD approach is only slightly
higher than the OSCMA method in this example, but can be further reduced
by exploiting the structure in the coefficient matrix.

3.6 Conclusion and future research
We presented a new framework for linear systems with a CPD constrained so-
lution (LS-CPD). We defined the LS-CPD problem, discussed links between
particular types of structured coefficient matrices and the CPD problem, and
derived a condition guaranteeing generic uniqueness of the solution. In con-
trast to the naive method, the proposed algebraic and optimization-based
methods allow one to solve the LS-CPD problem in the underdetermined
case. Although we focused on the Gauss–Newton (GN) method, the deriva-
tions of the expressions for the objective function, gradient, Gramian, and
Gramian-vector product can also be used to implement various nonlinear
least-squares and quasi-Newton algorithms. Numerical experiments show
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that the algebraic method is a good starting point for optimization-based
methods. We also compared the effectiveness of two preconditioners for the
GN method. The wide applicability of LS-CPDs is illustrated with three ap-
plications from classification, multilinear algebra, and signal processing. Im-
portantly, we have explained that many classification tasks can be formulated
as the computation of an LS-CPD. In order to reduce the per-iteration com-
putational complexity of the NLS algorithm, application-dependent structure
can be exploited, as we have shown with the construction of tensors that have
particular singular values.
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NLS algorithm for
Kronecker-structured linear
systems with a CPD constrained
solution 4
ABSTRACT In various applications within signal processing, system identi-
fication, pattern recognition, and scientific computing, the canonical polyadic
decomposition (CPD) of a higher-order tensor is only known via general lin-
ear measurements. In this chapter, we show that the computation of such a
CPD can be reformulated as a sum of CPDs with linearly constrained factor
matrices by assuming that the measurement matrix can be approximated by
a sum of a (small) number of Kronecker products. By properly exploiting
the hypothesized structure, we can derive an efficient non-linear least-squares
algorithm, allowing us to tackle large-scale problems.

This chapter is a slightly adapted version of M. Boussé, N. Sidiropoulos, and L. De
Lathauwer, “NLS algorithm for Kronecker-structured linear systems with a CPD con-
strained solution”, ESAT-STADIUS, KU Leuven, Leuven, Belgium, Tech. Rep. 19-13,
2019, Accepted for publication in the proceedings of the 27th European Signal Process-
ing Conference (EUSIPCO 2019, A Coruña, Spain).
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4 NLS algorithm for Kronecker-structured LS-CPD

4.1 Introduction

Even though the decomposition of a tensor that is known explicitly is a
prevalent problem in signal processing and machine learning [41], [168], we
often want to compute a decomposition of a tensor that is only known via
linear measurements [26]. Applications can be found in a wide range of
domains such as signal processing [26], [221], system identification [17], [143],
pattern recognition [23], [25], [26], [97], and scientific computing [8], [14], [83],
[96]. By limiting ourselves to a canonical polyadic decomposition (CPD) in
this chapter, we can formulate the problem as a linear system of equations
with a CPD constrained solution (LS-CPD) [26], i.e., Ax = b with x =
vec (CPD). Or, equivalently, we want to compute a CPD of a tensor X =
unvec (x) that is only defined implicitly via the solution of a linear system.
By fully exploiting all structure of the measurement matrix A, the com-

putational complexity of a dedicated algorithm can be significantly reduced,
enabling efficient processing for large-scale problems [26]. For example, if
A is equal to the identity (or a diagonal) matrix, the problem reduces to
a (weighted) CPD of a known tensor, allowing efficient computations [16],
[154], [180]. In the special case where A is sparse, we can also obtain efficient
algorithms, see [26].
In this chapter, we assume that A can be written as a sum of L Kronecker

products. This strategy is employed to reduce the computational complexity
of algorithms in various applications within signal processing [20], [21], sys-
tem identification [17], [143], [173], [174], and tensor-based scientific comput-
ing [8], [14], [96], among others. Depending on the application, the products
are considered to be given or they can be computed. As a matter of fact, any
measurement matrix can be approximated by a sum of Kronecker products
for sufficiently large L. For a given L, a least-squares approximation can be
computed via a Kronecker product decomposition [9], [147], [198].
By explicitly leveraging the Kronecker structure of A, the LS-CPD problem

can be reformulated as a sum of L CPDs with linear constraints. In constrast
to existing methods that employ projection [8], alternating least-squares [14],
[221], or a gradient approach [83], we develop numerical optimization-based
techniques such as quasi-Newton (qN) and nonlinear least-squares (NLS)
with known convergence properties [150]. By carefully exploiting all available
structure, our algorithm can tackle large-scale problems [210]. For L = 1, the
problem can be related to CANDELINC [35], [125], which can be computed
efficiently in the dense [35] and sparse [212] case.
In the remainder of this section, we discuss notations and basic definitions.

In section 4.2, we reformulate the LS-CPD via Kronecker structure. By
properly exploiting the structure, we obtain an efficient optimization-based
algorithm in section 4.3. Numerical experiments are discussed in section 4.4.
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4.1 Introduction

4.1.1 Notations and basic definitions
A tensor (denoted by A) is a higher-order generalization of a vector and a
matrix (denoted by a and A, respectively). A mode-n vector of a tensor
A ∈ KI1×I2×···×IN (with K meaning R or C) is defined by fixing every in-
dex except the nth. The mode-n unfolding of A is the matrix A(n) with
the mode-n vectors as its columns (using the ordering convention in [125]).
The vectorization of A, denoted as vec(A), maps each element ai1i2...iN onto
vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im (with

∏k−1
m (·) = 1

if m > k − 1). The unvec(·) operation is defined as the inverse of vec(·). We
denote the outer, Kronecker and Khatri–Rao product as ⊗, ⊗ and �, respec-
tively. We say that a Nth-order tensor has rank one if it can be written as
the outer product of N nonzero vectors. The rank of a tensor is defined as
the minimal number of rank-1 terms that generate the tensor as their sum.

4.1.2 Canonical Polyadic Decomposition (CPD)
The CPD is an important tool for tensor analysis in signal processing, data
mining and machine learning [41], [125], [168]. The decomposition is unique
under rather mild conditions [72], [75], which is a powerful advantage over
matrices [168].
Definition 23. A polyadic decomposition (PD) writes an Nth-order tensor
A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r =

r
U(1),U(2), . . . ,U(N)

z
.

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor
vectors u(n)

r for 1 ≤ r ≤ R. The PD is said to be canonical (CPD) when R
is equal to the rank of A.

The CANDELINC model is a popular tool to incorporate prior knowledge
in the CPD by means of linear constraints, allowing one to improve the accu-
racy and/or interpretability [35], [212]. One assumes that U(n) = A(n)C(n)

in which A(n) is known and C(n) is the unknown coefficient matrix.

4.1.3 Identities and derivatives
We use the following identities in the derivation of our algorithm [136]:

(A⊗B)(C⊗D) = AC⊗BD, (4.1)

(A⊗B)(C�D) = AC�BD, (4.2)

(A�B)T (C�D) = ATC∗BTD, (4.3)
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4 NLS algorithm for Kronecker-structured LS-CPD

vec (ABC) = (CT⊗A) vec (B) , (4.4)
vec (JA,B,CKR) = (C�B�A) 1R. (4.5)

Given a matrix P(n) that permutes the nth mode of a vectorized tensor to
the first mode and P(n)TP(n) = I, we have:

P(n)vec
(r

U(1), . . . ,U(N)
z)

=

vec
(r

U(n),U(1), . . . ,U(n−1),U(n+1), . . . ,U(N)
z)

.

By defining V{n} = �Nq=1,q 6=N−n+1 U(N−q+1), we obtain:

P(n)T
(
V{n}⊗ IIn

)
vec (X) =

vec
(r

U(1), . . . ,U(n−1),X,U(n+1), . . . ,U(N)
z)

, (4.6)

P(n)T
vec
(
U(n)V{n}T

)
= vec

(r
U(1), . . . ,U(n)

z)
.

Finally, we also use the following derivative [124]:

∂vec
(q

U(1), . . . ,U(n)y)
∂vec

(
U(n)

) = P(n)T
(
V{n}⊗ IIn

)
. (4.7)

4.2 Kronecker-structured LS-CPD as a sum of
CPDs with linearly constrained factor matrices

We consider a CPD of a tensor that is only known via linear measurements.
This can be formulated as a linear system with a CPD constrained solution
(LS-CPD) [26]:

Ax = b with x = vec
(r

U(1),U(2), . . . ,U(N)
z)

(4.8)

in which A ∈ KM×K , U(n) ∈ KIn×R, and K =
∏N
n=1 In. Additionally,

we assume that A admits, or can be well approximated by, a sum of L
Kronecker products of smaller matrices A(n,l) ∈ KJn×In , for 1 ≤ n ≤ N , and
M =

∏N
n=1 Jn, i.e.,

A =
L∑
l=1

A(N,l)⊗A(N−1,l)⊗ · · ·⊗A(1,l). (4.9)

By assuming Kronecker structure (4.9), the LS-CPD problem in (4.8) can
be reduced to a sum of CPDs with linear constraints. First, combine (4.8)
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4.3 Nonlinear least-squares (NLS) algorithm

and (4.9) to obtain:

L∑
l=1

(
A(N,l)⊗ · · ·⊗A(1,l)

)(
U(N)� · · ·�U(1)

)
· 1R = b.

By using the mixed-product rule in (4.2), we can write that:

L∑
l=1

(
A(N,l)U(N)� · · ·�A(1,l)U(1)

)
· 1R = b. (4.10)

By defining factor matrices V(n,l) = A(n,l)U(n), for 1 ≤ n ≤ N , we can
write (4.10) as a sum of L CPDs with linearly constrained factor matrices of
a tensor B = unvec(b) as follows:

B =
L∑
l=1

r
V(1,l),V(2,l), . . . ,V(N,l)

z
. (4.11)

If L = 1, it is clear that (4.11) can be related to the well-known CANDELINC.
For L > 1, we obtain a more general model.
By stacking the factor matrices V(n,l), 1 ≤ l ≤ L, in a matrix V(n) =[

V(n,1) V(n,2) · · · V(n,L)] ∈ KJn×RL, (4.11) reduces to a rank-RL CPD
with linear block constraints:

B =
r
V(1),V(2), . . . ,V(N)

z
.

If all A(n,l) have full column rank, existing uniqueness results can be used,
see [72], [75]. Depending on the application, we are interested in either inter-
pretable, and therefore unique, factor matrices or a compact representation of
the underlying tensor using factor matrices which do not need to be unique.

4.3 Nonlinear least-squares (NLS) algorithm

By properly exploiting the Kronecker structure, we derive an efficient NLS
algorithm for (4.8)-(4.9). The computation can be formulated as an opti-
mization problem as follows:

min
z
f = 1

2 ||F||
2
F with F defined as in (4.13), (4.12)

in which the variables U(n), for 1 ≤ n ≤ N , are concatenated in a vector z ∈
KRI+ with I+ =

∑N
n=1 In, as follows: z =

[
vec
(
U(1)) ; · · · ; vec

(
U(N))].
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4 NLS algorithm for Kronecker-structured LS-CPD

The residual F is given by:

F =
L∑
l=1

r
V(1,l),V(2,l), . . . ,V(N,l)

z
− B (4.13)

with linear constraints V(n,l) = A(n,l)U(n) ∈ KJn×R.
We can solve the optimization problem in (4.12)-(4.13) using standard qN

and NLS algorithms by deriving expressions for the evaluation of the ob-
jective function, gradient, Jacobian, Gramian, and Gramian-vector product.
Importantly, we exploit all available structure in order to obtain efficient
implementations. In this chapter, we focus on the Gauss–Newton (GN) al-
gorithm [150], but the expressions can be used for other qN and NLS algo-
rithms as well. In order to implement our algorithm, we use the complex
optimization framework from [177], [179], [210], which provides qN and NLS
implementations as well as line, plane search, and trust-region methods. Ad-
ditionally, we provide a computational complexity analysis.
The GN method using dogleg trust-region solves (4.12) by linearizing the

residual vec (F) in each iteration k and subsequently by solving the following
least-squares problem [150]:

min
pk

1
2 ||vec (Fk) + Jkpk||2F s.t. ||pk|| ≤ ∆k (4.14)

with step pk = zk+1 − zk, Jacobian J = dvec (F) /dz, and trust-region
∆k. The exact solution to (4.14) is given by the linear system Hkpk =
−gk with H the Hessian, which we approximate with the Gramian of the
Jacobian, and the conjugated gradient g = (∂f/∂z)H [150]. The variables
can then be updated as zk+1 = zk + pk. We solve the linear system using
several preconditioned conjugate gradient (CG) iterations in order to reduce
computational complexity. The GN method is summarized in Algorithm 4.1.

Algorithm 4.1: Kronecker-structured linear system with a CPD constrained solution using
Gauss–Newton with dogleg trust region.

1: Input: B, {A(n)}Nn=1, and initial estimate for {U(n)}Nn=1
2: Output: {U(n)}Nn=1
3: while not converged do
4: Compute gradient g using (4.15) and (4.16).
5: Use PCG to solve Hp = −g for p using Gramian-vector products in (4.17)-

(4.18) and a block-Jacobi preconditioner as explained in subsection 3.3.2.
6: Update U(n), for 1 ≤ n ≤ N , using dogleg trust region from p, g, and function

evaluation (4.12).
7: end while
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4.3 Nonlinear least-squares (NLS) algorithm

4.3.1 Objective function

The objective function f can be evaluated by taking the sum of squared
entries of the residual F(z) as defined in (4.13).

4.3.2 Jacobian

The Jacobian J can be partitioned in the following way:

J = dvec (F)
dz =

[
J(1) J(2) · · · J(N)] ∈ KK×RI

+
.

with the nth sub-Jacobian J(n) defined as:

J(n) =
L∑
l=1

P(n)T
(
V{n,l}⊗A(n,l)

)
∈ KK×RIn

with V{n,l} = �Nq=1,q 6=N−n+1 V(n,l).
Proof.

J(n) = ∂vec (F)
∂vec

(
U(n)

) =
L∑
l=1

∂
(q

V(1,l), . . . ,V(N,l)y)
∂vec

(
U(n)

)
=

L∑
l=1

∂
(q

A(1,l)U(1), . . . ,A(N,l)U(N)y)
∂vec

(
U(n)

)
=

L∑
l=1

( 1⊗
n=N

A(n,l)

)
·
∂vec

(q
U(1), . . . ,U(N)y)
∂vec

(
U(n)

)
=

L∑
l=1

( 1⊗
n=N

A(n,l)

)
P(n)T

(
V{n}⊗ IIn

)
=

L∑
l=1

P(n)T
(
V{n,l}⊗A(n,l)

)
.

Identities (4.2) and (4.5) enable the third equation. The last two equations
are obtained by using (4.7) and (4.1)-(4.2), respectively.

4.3.3 Gradient

The gradient g can be partitioned in the following way

g =
[
g(1) g(2) · · · g(N)] ∈ KRI

+
, (4.15)
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in which g(n) ∈ KRIn is defined by:

g(n) =
L∑
l=1

vec
(
A(n,l)TF(n)V{n,l}

)
. (4.16)

Proof. The nth subgradient is given by:

g(n) = ∂f

∂vec
(
U(n)

) = J(n)T
vec (F)

=
L∑
l=1

(
V{n,l}T

⊗A(n,l)T
)

P(n)vec (F)

=
L∑
l=1

vec
(
A(n,l)TF(n)V{n,l}

)
.

We use (4.4) to obtain the last equation, which can be computed efficiently
using Tensorlab’s mtkrprod implementation [215].

4.3.4 Gramian-vector product

We compute the product J(m)HJ(n)vec
(
X(n)) efficiently, by first computing

t = J(n)vec
(
X(n)) with X(n) ∈ KIn×R:

J(n)vec
(
X(n)

)
=

L∑
l=1

P(n)T
(
Ṽ{n,l}⊗A(n,l)

)
vec
(
X(n)

)
=

L∑
l=1

vec
(r

V(1,l), . . . ,V(n−1,l),A(n,l)X(n),

V(n+1,l), . . . ,V(N,l)
z)
. (4.17)

We obtain (4.17) by using (4.6). Next, we compute y = J(m)Ht:

y = J(m)Ht =
L∑
l=1

(
V{m,l}H

⊗A(m,l)H
)

P(m)t

=
L∑
l=1

vec
(
A(m,l)HT(m)V{m,l}

)
. (4.18)

We use (4.5) to obtain the last equation, which can be computed efficiently
using Tensorlab’s mtkrprod implementation [215].
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Table 4.1: By fully exploiting the Kronecker structure, we obtain a significant improvement
in the computational complexity.

Complexity

Calls/iteration Our algorithm LS-CPD

Factor matrices V(n,l) 1 O (NRIJL) /
Objective function 1 + itTR O (RML) O(RMIN )
Jacobian 1 O (NRMLI) O

(
NRMIN

)
Gradient 1 O (NRML) O (NRMI)
Gramian-vector itCG O (NRML) O (NRMI)

4.3.5 Block-Jacobi preconditioner

We use a block-Jacobi preconditioner to reduce the number of CG iterations
and improve overall convergence. In that case, we have to compute the
inverse of J(n)HJ(n) ∈ KRIn×RIn , for 1 ≤ n ≤ N , in each iteration. The
(n, n)th sub-Gramian is given by:

J(n)HJ(n) =
L∑
l=1

(
W{n,l}⊗A(n,l)HA(n,l)

)
(4.19)

with W{n,l} = V{n,l}HV{n,l} ∈ KR×R which can be computed as W{n,l} =
∗Nq=1,q 6=n V(n,l)HV(n,l) using (4.3).
For L = 1, computing the inverse of (4.19) can be done efficiently by

omitting the explicit construction of the Jacobians:(
J(n)HJ(n)

)†
=
(
W{n,l}

)†
⊗
(
A(n,l)HA(n,l)

)†
,

in which
(
A(n,l)HA(n,l)

)†
can be computed beforehand and

(
W{n,l})† re-

quires the inverse of small (R×R) matrices.

4.3.6 Computational complexity

By exploiting the Kronecker structure in (4.8)-(4.9), we obtain a significant
improvement in the computational complexity, enabling an efficient algorithm
for large-scale problems, as can be seen in Table 4.1. In order to illustrate
this, we compare the per-iteration computational complexity of our algorithm
with the LS-CPD algorithm in [26], which ignores the structure of A. For
simplicity, we assume that In = I and Jn = J for 1 ≤ n ≤ N . The num-
ber of trust-region (TR) and CG iterations are denoted by itTR and itCG,
respectively.
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Table 4.2: The block-Jacobi preconditioner (PC) effectively reduces the number of conju-
gate gradient (CG) iterations in various scenarios. We reported the average (and standard
deviation of the) number of CG iterations across fifty experiments.

Scenario No PC block-Jacobi PC

Square 35 (6) 11 (2)
Underdetermined 38 (7) 13 (2)
Highly underdetermined 60 (0) 35 (6)

4.4 Experiments
4.4.1 The block-Jacobi preconditioner is effective
By using the block-Jacobi preconditioner we can effectively reduce the num-
ber of CG iterations in different scenarios. Consider problem (4.8)-(4.9) with
N = 3, R = 2, L = 3 I1 = I2 = I3 = I = 10, and K = 1000. Taking
J1 = J2 = J3 = J , we consider three scenarios: 1) the square case with
J = 10 and M = 1000 = K, 2) the underdetermined case with J = 9 and
M = 729 < K, and 3) the highly underdetermined case with J = 5 and
M = 125 � K. We simulate a typical iteration of the algorithm by com-
puting the Gramian H and the gradient g for random factor matrices and
then solving Hp = −g using preconditioned CG until convergence (up to
a tolerance of 10−6). We report the average and standard deviation of the
number of CG iterations across fifty experiments in Table 4.2 using no PC
and the block-Jacobi PC from subsection 4.3.5.

4.4.2 Graph clustering as a Kronecker-structured LS-CPD
Partitioning a graph into meaningful clusters, is crucial to analyze large net-
works. We show that the similarity-based clustering method in [29] can be
reformulated as the computation of a Kronecker-structured LS-CPD. The
similarity measure is defined as a weighted infinite sum of the number of
common target nodes using neighborhood patterns of any length. It has
been shown in [29] that the similarity can then be computed by finding a
solution to the following equation:[

I⊗ I− β2 (G⊗G + GT⊗GT)
]
vec (S)

= vec (GGT + GTG) (4.20)

with G the weighted adjacency matrix of the graph, S the unknown similarity
measure, and a parameter β. In order to reduce the computational cost, it
has been proposed in [29] to find a low-rank approximation Ŝ of S instead,
reducing (4.20) to (4.8)-(4.9) with L = 3 and N = 2. In contrast to the
method in [29], our approach can easily be extended to N > 2, allowing one
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Figure 4.1: A low-rank model Ŝ of the similarity measure provides a good approximation,
allowing one to extract meaningful clusters using this approach [29].

to approximate S with a low-rank tensor model.
We illustrate our method for an Erdős–Rényi random graph with fifty

nodes and a simple block structure1 in the way explained in [29] and visual-
ized in Figure 4.1 (left). In this example, we simulate a community in which
nodes primarily interact with other nodes of the same cluster, which occurs,
e.g., in (online) social networks. By choosing R ≥ 3 for this example, we
can obtain a meaningful clustering of the nodes because the low-rank model
provides a good approximation of the underlying similarity measure, as can
be seen in Figure 4.1 using relative error εS = ||S− Ŝ||F/||S||F

4.5 Conclusion
In this chapter, we assumed that the measurement matrix in the LS-CPD pa-
per can be approximated by a sum of a (small) number of Kronecker products.
By fully exploiting the structure, we were able to reformulate the LS-CPD
problem as a sum of CPDs with linear constraints. This insight allowed
us to derive efficient expressions for the ingredients of well-known qN and
NLS algorithms, as demonstrated by the complexity analysis, enabling us to
tackle large-scale problems. Additionally, we have numerically tested the ef-
fectiveness of the block-Jacobi preconditioner and we have demonstrated our
approach for graph clustering. In future work, one can derive a more efficient
preconditioner for L > 1 in order to fully omit the explicit construction of
the Jacobians in the algorithm.

1We us an identity matrix as roll graph and pin = 0.9 and pout = 0.1 [29]. The error
results in Figure 4.1 are the median across fifty random experiments.
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A tensor-based method for
large-scale blind source separation
using segmentation 5
ABSTRACT Many real-life signals are compressible, meaning that they
depend on much fewer parameters than their sample size. In this chapter
we use low-rank matrix or tensor representations for signal compression. We
propose a new deterministic method for blind source separation that exploits
the low-rank structure, enabling a unique separation of the source signals
and providing a way to cope with large-scale data. We explain that our
method reformulates the blind source separation problem as the computation
of a tensor decomposition, after reshaping the observed data matrix into a
tensor. This deterministic tensorization technique is called segmentation and
is closely related to Hankel-based tensorization. We apply the same strategy
to the mixing coefficients of the blind source separation problem, as in many
large-scale applications the mixture is also compressible because of many
closely located sensors. Moreover, we combine both strategies, resulting in
a general technique that allows us to exploit the underlying compactness of
the sources and the mixture simultaneously. We illustrate the techniques
for fetal electrocardiogram extraction and direction-of-arrival estimation in
large-scale antenna arrays.

This chapter is a slightly adapted version of M. Boussé, O. Debals, and L. De Lathauwer,
“A tensor-based method for large-scale blind source separation using segmentation”,
IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 346–358, Jan. 2017. The
figures have been updated for consistency.
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5 Segmentation-based blind source separation

5.1 Introduction
In blind source separation (BSS) one tries to reconstruct a set of unobserved
sources based only on a set of observed signals. In this chapter, the latter are
unknown linear instantaneous mixtures of the sources. Applications can be
found in telecommunications, signal processing and biomedical sciences [40],
[45], [114], [119]. In general, there is no unique solution to the BSS problem,
hence, one imposes additional assumptions.
A well-known BSS method, called independent component analysis (ICA),

assumes statistically independent sources [45]. Several ICA methods use
higher-order statistics (HOS) in order to tensorize the BSS problem and
then apply a tensor decomposition to uniquely identify the sources. Re-
cently, a class of deterministic methods has been proposed that do not use
(higher-order) statistics but assume that the sources can be modeled as,
e.g., exponential polynomials or rational functions [51], [65]. Specific ten-
sorization techniques can be used, such as Hankel-based or Löwner-based
tensorization [62]. The source signals can then be uniquely recovered by
block component analysis (BCA). BCA is a framework based on block term
decompositions which was introduced in [48], [49], [52]. These methods, as
well as the method we propose here, go further than dictionary-based meth-
ods. In the latter, one defines a priori a fixed signal dictionary in which
one assumes the sources can be described sparsely and then one exploits this
sparse representability to identify the sources [133], [222]. Here, we do not
need an initial dictionary.
In this chapter, we introduce a new method for BSS that exploits the fact

that many real-life signals are compressible, i.e., the fact that they can be
described in terms of much fewer parameters than the actual number of sam-
ples [31], [34]. One way of representing signals in a (possibly very) compact
way is a (higher-order) low-rank approximation of a tensorized version of the
signal [96]. This can be interpreted as approximating the original signals by
sums of Kronecker products of smaller vectors. This strategy is similar to
tensor-based scientific computing in high dimensions [96], [152], [214], which
has allowed one to solve problems in a number of unknowns that exceeds the
number of atoms in the universe. It is used in a novel way for BSS in this
chapter and is a key idea to handle large-scale BSS problems, i.e., problems
with many sensors and/or samples. In particular, we use a deterministic ten-
sorization technique, called segmentation, that reshapes each observed signal
into a matrix (tensor) and stacks them into a (higher-order) tensor. The lat-
ter can be interpreted as a compact version of the Hankel-based tensorization
mentioned above. We show that the BSS problem boils down to the computa-
tion of a decomposition of the tensor obtained by segmentation if the sources
exhibit the hypothesized low-rank structure. This yields a unique solution to
the BSS problem and provides a way to cope with large-scale problems where
conventional methods fall short. Also, it is illustrated that our method al-
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lows the separation of underdetermined mixtures, i.e., the separation of more
sources than observed signals.
We can apply the same strategy to the mixing coefficients of the BSS prob-

lem (instead of the source signals) following a similar argument. Indeed, in
the context of big data, we see a large increase in the number of sensors
and/or sensor density in fields such as biomedical sciences and sensor array
processing [13], [130]. The mixing coefficients are in that case often smoothly
varying because of the many closely located sensors, allowing a (higher-order)
low-rank approximation of a tensorized version of the mixing vectors. Con-
ventional methods such as ICA fall short in a large-scale setting because of the
exponential dependence on the order of the statistics. Exploiting low-rank
structure on the mixing level was briefly discussed in [18]. In this chapter,
we go further: we apply the strategy on the sources, as described above, but
also apply it on both the sources and the mixture simultaneously. The latter
is a natural extension that results into a more general method that exploits
the hypothesized low-rank structure of the simultaneously tensorized source
and mixing level, enabling a unique solution for large-scale BSS.
We illustrate the proposed methods with two applications. First, we have

the separation of the fetal and maternal electrocardiogram (ECG) from mul-
tilead cutaneous potential recordings. Our method allows a clear separation
of the two sources. Second, we have direction-of-arrival (DOA) estimation for
large uniform linear arrays in both a line-of-sight and multipath setting. Our
methods provides accurate estimates, even for close DOAs. In very large-
scale applications, the arrays, however, are typically non-uniform but this is
outside the scope of this chapter; here, we focus on the main principles.
In the remainder of this section we introduce the notation and basic defi-

nitions. In section 5.2 and section 5.3, we introduce a new BSS method that
exploits the hypothesized compressibility of the sources and mixing vectors,
respectively. We combine both strategies in section 5.4. Simulations and
applications are presented in section 5.5. Finally, we conclude in section 5.6.

5.1.1 Notation and definitions
Tensors, denoted by calligraphic letters (e.g., A), are higher-order generaliza-
tions of vectors and matrices, denoted by bold lowercase (e.g., a) and bold
uppercase (e.g., A) letters, respectively. The (i1, i2, . . . , iN )th entry of an
Nth-order tensor A ∈ KI1×I2×···×IN , with K meaning R or C, is denoted
by ai1i2...iN . The nth element in a sequence is indicated by a superscript
between parentheses (e.g., {A(n)}Nn=1). The unit vector with a one in the ith
row is denoted as ei.
A mode-n vector of a tensor A ∈ KI1×I2×···×IN is defined by fixing every

index except the nth, e.g., ai1···in−1:in+1···iN , and is a natural extension of the
rows and columns of a matrix. The mode-n unfolding of A is a matrix A(n)
with the mode-n vectors as its columns (following the ordering convention
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in [125]). The vectorization of A, denoted as vec(A), maps each element
ai1i2···iN onto vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im.

The outer and Kronecker product are denoted by ⊗ and ⊗, respectively, and
are related through a vectorization: vec (a ⊗ b) = b⊗a. A frontal slice of
X ∈ KI×J×K , denoted by Xk, is obtained by fixing the last index.

5.1.2 Tensor decompositions
An Nth-order tensor has rank one if it can be written as the outer product of
N nonzero vectors. The rank of a tensor is defined as the minimal number of
rank-1 terms that generate the tensor as their sum. The multilinear rank of
an Nth-order tensor is equal to the tuple of mode-n ranks, which are defined
as the ranks of the mode-n unfoldings of the tensor.

Definition 24. A polyadic decomposition (PD) writes an Nth-order tensor
A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r . (5.1)

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor
vectors u(n)

r for r = 1, . . . , R. The PD is called canonical (CPD) when R is
equal to the rank of A.

The CPD is a powerful model for several applications within signal process-
ing, biomedical sciences, computer vision, data mining and machine learn-
ing [41], [125], [168]. The decomposition is essentially unique if it is unique
up to trivial permutation of the rank-1 terms and scaling and counterscal-
ing of the factors in the same rank-1 term. In general, no unique solution
exists in the matrix case without additional assumptions for R > 1. In the
higher-order case, we typically expect uniqueness under rather mild condi-
tions. Consider a third-order tensor of rank R and size I×J ×K with factor
matrices A,B, and C. Kruskal’s condition states that the CPD is unique
if [128]:

2R+ 2 ≤ kA + kB + kC. (5.2)

The k-rank of a matrix A equals the largest number kA such that any kA
columns of A are linearly independent. Condition (5.2) is deterministic in the
sense that uniqueness is guaranteed for a particular choice of factor matri-
ces satisfying the condition. Generic uniqueness conditions consider unique-
ness with probability one when the entries of the factor matrices are drawn
from absolutely continuous probability density functions. For example, con-
dition (5.2) implies generic uniqueness if 2R + 2 ≤ min(I,R) + min(J,R) +
min(K,R) as the k-rank of a generic matrix equals its smallest dimension.
In general, milder conditions than Kruskal’s can be obtained. Let us for
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instance consider the case where at least one of the tensor dimensions is
not strictly smaller than R. For example, the CPD is generically unique for
K = C if [38], [73]:

R ≤ (I − 1)(J − 1), 3 ≤ I ≤ J, and R ≤ K. (5.3)

More generally, the CPD is generically unique (with a few known exceptions)
if [39]:

R ≤
⌈

IJK

I + J +K − 2

⌉
− 1 and IJK ≤ 15000, (5.4)

with dxe the smallest integer not less than x. The bound on the number of
entries IJK has only been verified numerically up to 15000 but is assumed
to hold for larger number of entries as well. Condition (5.4) is equivalent
with (5.3) for R ≤ K and 3 ≤ I ≤ J .

Note that condition (5.4) involves the ratio between the number of entries
in the tensor and the number of parameters in a rank-1 term (compensated
for scaling). The condition states that the decomposition is unique with
probability one if the number of entries is (strictly) larger than the number
of parameters, i.e., if the tensor is (minimally) compressible. Our working
assumption to solve the large-scale BSS problem is based on this compressibil-
ity, as will be explained further. We expect even milder uniqueness conditions
when N > 3 [166], [184]. An overview and state-of-the-art deterministic and
generic uniqueness conditions for higher-order tensors are given in [39], [70]–
[75], [135], [184] and references therein. For a short introduction to CPD
uniqueness we refer to [168, Section IV].

Definition 25. A block term decomposition (BTD) of a third-order tensor
X ∈ KI×J×K in multilinear rank-(Lr, Lr, 1) terms for r = 1, . . . , R is a
decomposition of the form:

X =
R∑
r=1

(ArBT
r ) ⊗ cr, (5.5)

in which Ar ∈ KI×Lr and Br ∈ KJ×Lr have full column rank Lr and cr is
nonzero.

These block terms are more general than the simple rank-1 terms of a third-
order PD. Hence, they allow the modeling of more complex phenomena, see
e.g., [52], [53]. Other types of BTDs and their associated uniqueness results
can be found in [48], [49], [51].
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X = M S

X =

m1

S1 + . . . +

mR

SR

Segmentation

=

m1

A1

B1
+ . . . +

mR

AR

BR

Figure 5.1: Blind Source Separation (BSS) can be reduced to the computation of a block
term decomposition (BTD) by means of segmentation if the sources allow a low-rank
representation, enabling a unique solution. Here, each row of the observed data matrix X
is reshaped into a matrix and then stacked into a tensor X . The reshaped sources appear
in the first and second mode, and the mixing vectors appear in the third mode. If the
reshaped sources allow a low-rank representation, the BSS problem boils down to a BTD
in multilinear rank-(Lr, Lr, 1) terms, allowing one to obtain a unique separation of the
sources and identification of the mixing vectors.

5.2 Large-scale blind source separation via
low-rank sources

In this section, we derive a new BSS method that exploits the hypothesized
compressibility of the sources. We show that this is possible by applying
a particular deterministic tensorization technique to the observed data ma-
trix called segmentation. Decomposition of the resulting tensor allows us to
uniquely retrieve the mixing vectors and the sources. In subsection 5.2.1,
subsection 5.2.2, and subsection 5.2.3, we define BSS, motivate the working
hypothesis, and derive our method, respectively.

5.2.1 Blind source separation
We use a linear and instantaneous data model for BSS [45]:

X = MS + N, (5.6)
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5.2 Large-scale blind source separation via low-rank sources

with X ∈ KM×K and S ∈ KR×K containing K samples of each of the M
observed and R source signals, respectively; M ∈ KM×R is the mixing ma-
trix and N ∈ KM×K is the additive noise. The goal of BSS is to retrieve
the unknown mixing vectors in M and/or the unknown sources in S, given
only the observed data X. In the derivation of our method we ignore the
noise N for notational simplicity, its influence will be further investigated in
section 5.5 by means of simulations.
The proposed method reshapes each observed signal, i.e., each row of X,

into a matrix and stacks them into a third-order tensor. This is illustrated
in Figure 5.1. If the matricized sources admit a low-rank representation, the
BSS problem can be solved uniquely by decomposing the tensorized observed
data. In general, we reshape each row into an Nth-order tensor and stack
them into an (N + 1)th-order tensor. As such, the parsimonious low-rank
models enable very large signal compressions, allowing one to tackle large-
scale problems. In general, no unique solution to (5.6) exists without addi-
tional assumptions. By assuming that the source signals are low-rank signals,
which can be written as sums of Kronecker products of smaller vectors, the
problem can be reformulated as a tensor decomposition. As a decomposi-
tion of a higher-order tensor is unique under mild conditions as discussed in
subsection 5.1.2, the working assumption enables a unique solution of (5.6)
under the same conditions.

5.2.2 Low-rank sources

Many real-life signals are compressible, e.g., many common types of signals
can be expressed in a basis such that the coefficients decay according to a
power law [81]. In a large-scale setting, the amount of information contained
in the signal can often be represented by a number of parameters that is much
smaller than the total number of entries because there is some structure in
the data [190]. Such compressible signals can often be represented in a very
compact way by a low-rank approximation of a tensor representation [96],
[123]; we call them low-rank signals. It is this notion that is the key to our
approach: it enables a unique separation of the sources and identification of
the mixing vectors. Moreover, it provides a way to cope with large-scale BSS
problems because of the large reduction in the number of parameters. We
show that our working hypothesis holds exactly for exponential polynomials.
Consider f(t) = azt evaluated in t = 0, 1, . . . , 5. The resulting vector is

reshaped into a (3× 2) matrix S of rank 1:

S = a

 1 z3

z z4

z2 z5

 = a

 1
z
z2

(1 z3) . (5.7)
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The (3× 4) Hankelized version H of the same vector is [51]:

H = a

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3) . (5.8)

It is well-known that if the original signal is exponential, then H has rank
one, as illustrated. One can see that the columns of S are a subset of the
columns of H. Hence, if H has rank one, then clearly S also has rank one.
Consider now a vector f ∈ KK defined by the underlying function f(t) as
fk = f(tk), 1 ≤ k ≤ K, using equidistant samples. We reshape f into a
(I × J) matrix S such that vec(S) = f with K = IJ . Consider also a Han-
kelized version H ∈ KI×Jh such that hijh = fi+jh−1 with K = I + Jh − 1.
Hence, we have that S = HQ with Q ∈ KJh×J the selection matrix de-
fined by qj = e(j−1)I+1 for j = 1, . . . , J . One can verify that the matrix Q
selects all distinct columns of H, by comparing, e.g., the matrices in (5.7)
and (5.8). It is clear that if H has low rank then S has low rank as well,
while S offers a more compact representation than H. It is known that H
has low rank if the underlying functions are sums of a limited number of
exponential and trigonometric terms. This fact extends to the larger class of
exponential polynomials [51]. The latter allows one to model a wide range of
signals in many applications, e.g., the autonomous behavior of linear systems
can be described by (complex) exponential and, if we admit coinciding poles,
exponential polynomials. In Table 5.1 we show the coinciding (exact) rank
values of H and S for several common (exponential) polynomials; by com-
bining such functions one can model a wide variety of signals. For example,
a sine is a linear combination of two (complex conjugated) exponentials and,
hence, admits a rank-2 model. Note that, while exponential polynomials can
be represented by low-rank matrices, the latter allow the representation of a
much larger family of signals than only exponential signals. Moreover, Han-
kel matrices are often ill-conditioned [195], so that the numerical rank can
be significantly smaller than the theoretical one.
So far we have discussed signals that admit an exact low-rank representa-

tion. However, our approach also works well for more general compressible
signals. A reshaped version of the latter often admits an approximate low-
rank model as illustrated in Figure 5.2. Assume we approximate S by a
rank-R matrix S̃ =

∑R
r=1 ar ⊗ br, then the approximation error on the orig-

inal function f = vec(S) is:

‖f − vec(S̃)‖2F = ‖f −
R∑
r=1

br ⊗ar‖2F. (5.9)

Recall from subsection 5.1.1 that a Kronecker product equals a vectorized
outer product. We can make the approximation error (5.9) as small as desired
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Gaussian

Original Rank-1 model Rank-2 model

Rational

Sigmoid

Figure 5.2: A low-rank representation of a reshaped smooth function often provides a good
approximation. This is illustrated for a Gaussian, a rational function, and a sigmoid
sampled uniformly 100 times in [0, 1]. The original functions are reshaped into a (10×10)
matrix and then approximated by a low-rank matrix by truncating the singular value de-
composition. The reconstructed functions are obtained by vectorizing this low-rank matrix.
One can clearly see that the functions can be better approximated by a rank-2 rather than
a rank-1 approximation.

81



5 Segmentation-based blind source separation

Table 5.1: If the Hankelized version of an (exponential) polynomial has low rank, then
the segmentized version has low rank as well, while the latter provides a more compact
version than the former. We show the rank r(H) of the Hankelized version of several
(exponential) polynomials f(t). If H has low rank then the (I×J) reshaped version S has
low rank as well (if R < min(I, J)). The latter, however, provides a much more compact
representation for f(t) than the former. (pr(t) is a polynomial of degree Qr.)

f(t) r(H) f(t) r(H)

azt 1
R∑
r=1

arztr R

a sin(bt)
a cos(bt) 2

R∑
r=1

ar sin(brt) 2R

azt sin(bt) 2
R∑
r=1

arztr sin(brt) 2R

p(t) =
Q∑
q=0

aqtq Q+ 1
R∑
r=1

pr(t)
R∑
r=1

Qr +R

p(t)zt Q+ 1
R∑
r=1

pr(t)ztr
R∑
r=1

Qr +R

p(t) sin(at) 2Q+ 2
R∑
r=1

pr(t) sin(art)
R∑
r=1

Qr + 2R

p(t)zt sin(at) 2Q+ 2
R∑
r=1

pr(t)ztr sin(art)
R∑
r=1

Qr + 2R

by increasing R. Since (5.9) is just a vectorized version of ‖S− S̃‖2F, Eckart–
Young’s theorem provides an upper bound on the approximation error [80].
Namely, the least-squares error on the representation of the signal f is the
sum of the squares of the discarded singular values of S. The singular value
spectrum of S is often fast decaying, and hence the signal f often admits a
good representation of the form (5.9) for low R. It is outside the scope of this
chapter to investigate in general under which conditions on the signal f the
error in (5.9) is small. However, we do provide explicit bounds by focusing
on signals that admit a good polynomial approximation. We emphasize that
these are only bounds, as 1) polynomials are only a special case of exponential
polynomials and 2) the latter are only a special case of functions that yield
a low-rank matrix S. As such, assume that we approximate the underlying
function f(t) of f with a Taylor polynomial p(t) of degree R − 1 around
t = t∗. Assuming f(t) and its derivatives up to order R are continuous,
which is satisfied for smooth signals, Taylor’s theorem provides the following
element-wise upper bound on the error in (5.9):

|f(t)− p(t)| ≤ fmax

R! |t− t∗|
R (5.10)

with fmax = maxu f (R)(u), u ∈ (t∗, t) and f (R) the Rth derivative of f . The
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5.2 Large-scale blind source separation via low-rank sources

corresponding matrix S̃ of p(t) has rank R, see Table 5.1; hence, (5.10) is a
bound on the error of the rank-R approximation of S. Signals with rapidly
converging Taylor series admit an approximate low-rank model, hence, only
a small R is needed for a good approximation. A general polynomial approx-
imation p(t) in K uniformly sampled points in the interval [a, b] gives the
following upper bound on (5.9):

‖f − vec(S̃)‖2F≤
(
hR

4Rfmax

)2

with h = (b−a)/R, f̄ = maxu f (R)(u), u ∈ [a, b], and f (R) the Rth derivative
of f . Similar results can be derived for other types of approximations, e.g., a
polynomial approximation in Chebyshev points. In section 5.5, we illustrate
our strategy for real-life signals as well, showing that our working hypothesis
is valid for a variety of signals and applications.

In this chapter we also reshape signals into higher-order tensors, going
further than the Hankel strategy from [51] and enabling an even more com-
pact representation. In tensor-based scientific computing one often reshapes
a function up to a (2× 2× · · · × 2) tensor of very high order to achieve max-
imal compression for a fixed rank R [96], [123]. Here, we allow much more
freedom in the choice of the reshaping parameters, which enables a trade-
off between the approximation error in (5.9) and the compression rate, see
subsection 5.5.5.

Let us now describe the strategy more formally. Suppose one reshapes the
rth source sr in (5.6) into a (I × J) matrix Sr such that vec(Sr) = sr with
K = IJ . Note that this is the same as stacking different decimated versions
of the signal in the rows of a matrix. If the rth reshaped (or matricized)
source Sr admits a rank-1 representation, which is our working hypothesis,
we have that Sr = ar ⊗ br with ar ∈ KI and br ∈ KJ , as, e.g., in (5.7).
In general, however, this model is too restrictive. The reshaped sources may
admit, or better be approximated by a low-rank representation, as is, e.g.,
the case for a sine and the functions in Figure 5.2, respectively. Hence, we
have that Sr =

∑Lr
lr=1 alrr ⊗ blrr. Note that this means that we assume that

the sources can be written as a sum of Kronecker products: sr = vec (Sr) =∑Lr
lr=1 blrr ⊗alrr. This strategy enables a compact representation of the

sources, see Table 5.2. Indeed, the number of parameters is one order of
magnitude lower than the finite sample length K if I ≈ J .

More generally, we can reshape the sources into a higher-order tensor,
enabling a more compact representation. Suppose we reshape the rth source
sr into an Nth-order tensor Sr ∈ KI1×I2×···×IN such that vec(Sr) = sr with
K =

∏N
n=1 In. If the rth reshaped (or tensorized) source Sr admits a (higher-
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Table 5.2: Segmentation enables possibly large compression ratios, indicating the applica-
bility of this strategy for large-scale BSS. By reshaping sr in (5.6) into Sr ∈ KI1×I2×···×IN

and then using a rank-Lr representation leads to a considerable compression. If N = 2,
we use I and J. The number of parameters decreases logarithmically in N and increases
proportionally with Lr.

K for general In In ≈ I, for all n

N = 2 IJ Lr(I + J − 1) O(LrI)
N > 2

∏N

n=1 In Lr(
∑N

n=1 In −N + 1) O(LrNI)

order) low-rank representation, we have that:

Sr =
Lr∑
lr=1

u(1)
lrr

⊗ u(2)
lrr

⊗ · · · ⊗ u(N)
lrr

, (5.11)

in which u(n)
lrr
∈ KIn for n = 1, . . . , N , where the number of rank-1 terms Lr

can differ between sources. Note that this is a PD as in (5.1). This means that
the sources can be modeled, or approximated, by sums of (N − 1) Kronecker
products [96]:

sr = vec (Sr) =
Lr∑
lr=1

u(N)
lrr
⊗u(N−1)

lrr
⊗ · · ·⊗u(1)

lrr
, (5.12)

In general, the number of parameters decreases exponentially in the number
of Kronecker products N (i.e., the order of the representation) and increases
proportionally with the number of rank-1 terms Lr, see Table 5.2. For ex-
ample, if In = I for n = 1, . . . , 3, then K = I3 and only O(3LrI) parameters
are needed. The possibly large compressions indicate the applicability of this
strategy for large-scale BSS problems.

5.2.3 Decomposition

We now demonstrate how the BSS problem in (5.6) can be reformulated as
the computation of a tensor decomposition when the sources admit a low-
rank representation. Let us start as follows: each row of X is reshaped into a
(I×J) matrix as described earlier and then stacked into a third-order tensor
X ∈ KI×J×M such that vec (Xm) = xm. In other words, the mth matricized
observed signal is equal to the mth frontal slice of X . Since the tensorization
is a linear operation, theM reshaped observed signals are linear combinations
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of the R reshaped sources Sr ∈ KI×J . As such, we have that:

X =
R∑
r=1

Sr ⊗ mr (5.13)

with mr the rth column of M. We denote this deterministic tensorization
technique by segmentation; see Figure 5.1 for an illustration. Now assume
that the rth reshaped source in (5.13) admits a rank-1 representation, i.e.,
Sr = ar ⊗ br for r = 1, . . . , R, then we have that:

X =
R∑
r=1

ar ⊗ br ⊗ mr. (5.14)

Equation (5.14) is a CPD as defined in (5.1). Consequently, the BSS problem
boils down to the computation of a CPD of a third-order tensor in R rank-1
terms. Analogously, if the reshaped sources admit a low-rank representation,
the BSS problem boils down to a BTD in multilinear rank-(Lr, Lr, 1) terms,
as in (5.5) and illustrated in Figure 5.1. References to uniqueness results
for both cases have been mentioned in subsection 5.1.2. We insist that the
compressibility of the sources has enabled their blind separation.

More generally, we can reshape each observed signal into a (I1×I2×· · ·×IN )
Nth-order tensor as described earlier and then stack it into a (N+1)th-order
tensor X ∈ KI1×I2×···×IN×M . As such, the mth tensorized observed signal is
equal to the mth Nth-order “frontal slice” of X :

X =
R∑
r=1
Sr ⊗ mr, (5.15)

If the reshaped sources Sr ∈ KI1×I2×···×IN allow a low-rank representation
as in (5.11), we have:

X =
R∑
r=1

(
Lr∑
lr=1

u(1)
lrr

⊗ u(2)
lrr

⊗ · · · ⊗ u(N)
lrr

)
⊗ mr, (5.16)

which is a decomposition in R (rank-Lr ⊗ vector) terms [180]. It is a more
general decomposition because it boils down to a CPD of a higher-order
tensor as in (5.1) if Lr = 1 for all r. Also, it boils down to a BTD in
multilinear rank-(Lr, Lr, 1) terms as in (5.5) if N = 2, i.e., if X is a third-
order tensor. In that case, the factor matrices U(1)

r and U(2)
r of the rth term

are not unique, but their products are (up to scaling and permutation). On
the other hand, for N > 2, the factor matrices U(n)

r are unique under mild
conditions because they form a rank-Lr PD of an Nth-order tensor. We will
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exploit this in the DOA estimation application in subsection 5.5.8.
The proposed method simultaneously determines both the mixing vectors

and the sources by 1) simply reshaping the data (using segmentation) and 2)
exploiting the fact that many real-life signals admit a (higher-order) low-rank
representation. As such, the BSS problem boils down to a tensor decompo-
sition and 3) we can benefit from mild uniqueness properties. Moreover, 4)
it is applicable for large-scale BSS problems, i.e., large K, as is clear from
the possibly huge compressions as indicated above. However, this is not nec-
essarily a significant advantage compared to existing methods like ICA. The
latter has only a linear dependence on K and even benefits from large K
accuracy-wise because the K samples are used to estimate statistics. Finally,
5) the method is deterministic, meaning that it does not use (higher-order)
statistics, hence, it also works well if the number of samples is small and/or
if the sources are not statistically independent. This is a difference with
statistical methods such as ICA.

5.3 Large-scale blind source separation via
low-rank mixing vectors

In the previous section we exploited the fact that many real-life (source) sig-
nals admit a low-rank representation. This is also a natural assumption for
the mixing vectors if one considers, e.g., many sensors and/or high sensor
density; we call them low-rank mixing vectors analogous to low-rank sources.
Such problems arise in biomedical sciences, e.g., wireless body area networks
(WBANs) using electroencephalography (EEG) [13] and electrocorticography
(ECoG) [161] with high spatial resolution, or neural dust with thousands
of miniature sensors (neural probes) dispersed throughout the brain [163].
Moreover, one often encounters mixing matrices with Vandermonde struc-
ture [181], i.e., each reshaped mixing vector has exactly rank one. An exam-
ple are uniform linear (ULAs) and rectangular arrays (URAs) with far-field
sources that emit narrowband signals [127], [141], [167]. Here, we also see a
trend towards large-scale antennas, also known as massive MIMO [86], [130].
If the signals propagate through several distinct paths, e.g., due to reflections
or scattering [118], each reshaped mixing vector has low rank. If the sources
are located in the near-field, the Vandermonde structure is only approximate
which can be accommodated by a low-rank approximation.
Exploitation of the underlying compactness of such low-rank mixing vec-

tors amounts to a comparable method as section 5.2, which has been briefly
addressed in [18]. Let us illustrate the analogy with the previous section
more clearly: each column (cf. above) of X is reshaped into a (I × J) matrix
withM = IJ and then stacked into a third-order tensor X ∈ KI×J×K . Next,
assume the reshaped mixing vectors admit a rank-1 representation, which is
our working hypothesis, i.e., Mr = unvec(mr) = ar ⊗ br for r = 1, . . . , R.
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Hence, we obtain:

X =
R∑
r=1

ar ⊗ br ⊗ sr. (5.17)

Note that this boils down to applying the same strategy as before on the
transposed observed data matrix. The generalization to higher-order low-
rank representations is straightforward. The same analysis as in subsec-
tion 5.2.3 applies, but now we segment the mixing vectors and exploit the
fact that they possibly admit a (higher-order) low-rank representation. More-
over, the method has several advantages over ICA: ICA methods based on
(full) HOS are infeasible when M is large as the number of entries in Qth-
order statistics is O(MQ). Also, our method can handle Gaussian random
sources in contrast to ICA (if the mixing vectors indeed exhibit some low-
rank structure) [45]. Finally, the method imposes only mild conditions (via
the uniqueness conditions) on the sources in contrast to existing methods,
e.g., linear independence instead of statistical independence as in ICA.

5.4 Large-scale blind source separation using
twofold segmentation

In the previous two sections we either reshaped the sources or the mixing
vectors and then exploited the hypothesized low-rank structure. However, as
we have illustrated before, both the mixing vectors and the sources may ad-
mit such a higher-order low-rank representation. Hence, a natural extension
is to use both strategies simultaneously. For instance, one often has sinu-
soidal sources, which admit a rank-2 representation, in ULAs of which the
Vandermonde mixing vectors admit a rank-1 representation. To the best of
our knowledge, this is the first time that tensorization is used on both levels
of the BSS problem and more generally in matrix factorization.
By exploiting the underlying compactness on both levels, we are again

able to reformulate the BSS problem as the computation of a tensor decom-
position. Let us start with reshaping each column of X into a (I1 × I2)
matrix with M = I1I2 and stacking them in an intermediate third-order ten-
sor Y ∈ KI1×I2×K . Note that the (i1, i2)th mode-3 vector of Y equals the
(i1 + (i2 − 1)I1)th row of X. Each mode-3 vector of Y (i.e., row of X) is
subsequently reshaped into a (J1 × J2) matrix with K = J1J2, which overall
yields a fourth-order tensor X ∈ KI1×I2×J1×J2 . Hence, we have that:

X =
R∑
r=1

Mr ⊗ Sr. (5.18)

We denote this by twofold segmentation (cf. section 5.2 and section 5.3). Let
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us now assume that both the reshaped mixing vectors and sources admit a
rank-1 representation. In that case, it is easy to see that (5.18) is a CPD of
a fourth-order tensor in R rank-1 terms. More generally, if the segmented
mixing vectors and sources allow a low-rank representation, we have:

X =
R∑
r=1

(ArBT
r ) ⊗ (CrDT

r ) , (5.19)

in which Ar ∈ KI1×Lr and Br ∈ KI2×Lr have full column rank Lr and
Cr ∈ KJ1×Pr and Dr ∈ KJ2×Pr have full column rank Pr. Note that the
ranks Lr and Pr can be different for each r and do not necessarily have the
same value inside the rth term. This is a new kind of decomposition: X is
decomposed in a sum of R (rank-Lr ⊗ rank-Pr) terms.
More generally, we can reshape each row and column of X into Sr ∈

KJ1×J2×···×JNs and Mr ∈ KI1×I2×···×INm such that vec(Mr) = mr and
vec(Sr) = sr, respectively, with M =

∏Nm
nm=1 Inm and K =

∏Ns
ns=1 Jns ,

analogous to the single segmentation case in (5.15). As such, we have that:

X =
R∑
r=1
Mr ⊗ Sr.

Analogous to (5.16), the reshaped mixing vectors and sources can both admit
a low-rank representation. Hence, we have that:

X =
R∑
r=1

(
Lr∑
lr=1

⊗Nm
nm=1u

(nm)
lrr

)
⊗

(
Pr∑
pr=1

⊗Ns
ns=1v

(ns)
lrr

)
,

in which u(nm)
lrr

∈ KInm and v(ns)
prr ∈ KJns . In comparison with (5.19), the

block factors U(n)
r and/or V(n)

r are unique under mild conditions if Nm > 2
and/or Ns > 2. The reason is the same as for the single segmentation case,
see subsection 5.2.3.
The proposed method offers 1) a framework to exploit the low-rank struc-

ture of both the reshaped mixing vectors and sources; the same analysis as
in the previous sections applies. Again, we reformulate the BSS problem as
the computation of a tensor decomposition, hence, 2) we can benefit from
the mild uniqueness properties. More specifically, it boils down to the com-
putation of a new and more general decomposition. As such, 3) the method
is applicable in a big data setting: it can handle both large sample sizes
and large numbers of sensors efficiently, see Table 5.2. Furthermore, 4) the
method is deterministic, hence, it is not needed per se to have a large number
of samples. Finally, 5) only mild, and natural, assumptions are imposed on
the mixing vectors and the sources. We simply exploit the low-rank structure
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which is often present in real-life signals as explained above.

5.5 Simulations and applications
In subsection 5.5.1, we give an example of the separation of two low-rank
sources and the separation of two low-rank sources that are mixed with low-
rank mixing vectors. In subsection 5.5.2, we demonstrate the separation of
more sources than observed signals. We investigate the influence of noise
and sample size in subsection 5.5.3. In subsection 5.5.4, we show how well
one can approximate the reshaped mixing vectors and/or sources for vary-
ing rank and signal-to-noise ratio (SNR). In subsection 5.5.5, we analyze
the influence of the choice of reshaping dimensions. In subsection 5.5.6, we
analyze consistency numerically. Finally, in the last two subsections, we il-
lustrate the proposed methods with fetal electrocardiogram extraction and
direction-of-arrival estimation in large-scale uniform linear arrays.
We use the segmentize command from Tensorlab to apply segmentation

to the observed data matrices [215]. The CPD and BTD in multilinear
rank-(Lr, Lr, 1) terms can typically be computed algebraically by means of
a generalized eigenvalue decomposition [49], [178], [180]. The algebraic solu-
tion is exact in the noiseless case and a good initialization for optimization-
based methods in the noisy case. In this chapter, we use least-squares (LS)
optimization-based algorithms cpd and ll1 to fit the decomposition to the
data until a sufficiently high accuracy is attained. During the computation, it
is theoretically possible that degeneracy occurs [126], [172]. For example, the
magnitude of some terms grows without bounds but with opposite sign, re-
sulting in a poor solution but a good fit. Degeneracy can be avoided in several
ways such as increasing the number of rank-1 terms or imposing orthogonal-
ity or non-negative constraints on the factor matrices [41], [126], [134], [185].
The decompositions in (rank-Lr ⊗ vector) and (rank-Lr ⊗ rank-Pr) terms
are computed with two adapted versions of cpd_nls called lvec_nls and
lp_nls, respectively, and are available upon request. For very large tensors,
one can resort to large-scale algorithms as described in [171], [209], [214].
The mixing vectors and sources can only be determined up to scaling and

permutation, i.e., the standard indeterminacies in BSS. Hence, in order to
compute the error they are first optimally scaled and permuted with respect
to the true ones. The relative error is then defined as the relative difference
in Frobenius norm, i.e., we have relative error εA = ||A − Â||F/||A||F with
Â an optimally scaled and permuted estimate of A.
We use additive i.i.d. Gaussian noise unless indicated otherwise. Note that

existing optimization-based algorithms for computing a tensor decomposition
typically employ a LS cost function, which is optimal (in the maximum like-
lihood sense) when the data is perturbed by additive i.i.d. Gaussian noise. In
order to efficiently handle nonidentically distributed errors in the LS setting,
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5 Segmentation-based blind source separation

we use a low-rank weight tensor in Appendix A. For other types of noise
distributions, one can use cost functions that employ β-divergences [200],
which are a type of divergence that interpolate between the LS distance
(β = 2), Kullback–Leibler divergence (β = 1), and Itakura–Saito divergence
(β = 0) [105]. Errors on small (large) entries are penalized more than in the
LS setting for β < 2 (β > 2), rendering β-divergences especially useful for
data data with entries of different magnitudes. This approach has been used
successfully in nonnegative matrix factorization (NMF) of audio spectra [85].

5.5.1 General experiments

First, we illustrate the method proposed in section 5.2. Consider R = 2 low-
rank sources: s1(t) = e−t and s2(t) = sin(4πt) with K = 4096 equidistant
samples in [0, 1]. They are mixed into M = 3 observed signals using M =
[0.5, 2; 2, −3; 1, 0.5]. We use a second-order (N = 2) rank-1 (L1 = 1) and
rank-2 (L2 = 2) approximation for the first and second source, respectively,
with I = J = 64. Note that the approximation of the first and second source
requires only 127 and 254 values, respectively, see Table 5.2. This is the
maximal reduction for a second-order approximation. Namely, we have a
compression of 1 − Lr

I+J−N+1
M , i.e., 96.90% and 93.80% for the first and

second source, respectively. The perfectly recovered sources are shown in
Figure 5.3.
Second, we illustrate the method proposed in section 5.4. Consider R =

2 low-rank sources: s1(t) = e−t + et − e0.5t and s2(t) = 2e−t with K =
4096 equidistant samples in [0, 1]. The sources are mixed with two low-
rank mixing vectors: m1(ξ) = sin(2πξ) and m2(ξ) = e−2ξ sin(6πξ) with
M = 4096 equidistant samples in [0, 1]. We use a third-order (Ns = 3) rank-
3 (P1 = 3) and rank-1 (P2 = 1) approximation for the first and second source,
respectively, with J1 = J2 = J3 = 16. Furthermore, we use a second-order
(Nm = 2) rank-2 approximation for both mixing vectors (L1 = L2 = 2) with
a non-optimal choice of the segmentation parameters: I1 = 128 and I2 = 32.
Hence, we decompose the (128 × 32 × 16 × 16 × 16) segmented version of
X into a sum of a (rank-2 ⊗ rank-3) and a (rank-2 ⊗ rank-1) term. The
approximation of the rth mixing vector requires only Lr(I1 + I2 −Nm + 1)
values, i.e., a compression of 1−Lr I1+I2−Nm+1

M = 92.19%, although this is not
the maximal compression. Higher compression can be attained by increasing
the order. For instance, the approximation of the rth source consists of only
Pr(J1 +J2 +J3−Ns+ 1) values, i.e., a compression of 1−Pr J1+J2+J3−Ns+1

M .
Specifically, we have a compression of 96.63% and 98.88% for the first and
second source, respectively. We further investigate the choice of Inm and Jns
in subsection 5.5.5. The perfectly recovered factors are shown in Figure 5.4.
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Original sources Observed signals Recovered sources

Figure 5.3: By exploiting the intrinstic low-rank structure of the sources, the source signals
can be perfectly reconstructed (in the noiseless case).

Original

Mixing vectors Source signals

Recovered

Figure 5.4: By exploiting the low-rank structure of the mixing coefficients and the sources,
the mixing vectors and the source signals are perfectly reconstructed (in the noiseless case).
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5 Segmentation-based blind source separation

Original sources Observed signals Recovered sources

Figure 5.5: By exploiting the intrinstic low-rank structure of the sources, the source signals
can even be perfectly recovered from underdetermined mixtures (in the noiseless case).

5.5.2 Underdetermined mixture
We illustrate the separation of more sources than observed signals. Consider
R = 3 complex exponential source signals sr(t) = e2πirt for r = 1, . . . , R
which are mixed into M = 2 observed signals using a mixture matrix M =
[−1, 0.5, 2; 0.5, 1, 0.5]. We take K = 4096 uniformly discretized samples in
[0, 1]. We use a second-order (N = 2) rank-1 approximation for the sources
with I1 = I2 = 64. The real part of the recovered sources is shown in
Figure 5.5: perfect reconstruction is obtained.

5.5.3 Noise and sample length
First, we investigate the influence of the noise and the sample size K for
the method of section 5.3. Consider a setup in which we have M = 4096
sensors and R = 2 i.i.d. zero-mean unit-variance Gaussian random sources of
length K = {101, 102, 103}. We construct the low-rank mixing vectors as the
vectorization of a second-order (N = 2) rank-2 (L1 = 2) and rank-3 (L2 = 3)
tensor using (5.12) with zero-mean unit-variance Gaussian random factor
vectors and I = J = 64. Hence, we use a second-order rank-2 and rank-3
approximation with I = J = 64, respectively. In Figure 5.6, we report the
relative error on the mixing vectors εM and the sources εS; note that the re-
sults are very accurate in comparison with the SNR. Although the method is
deterministic, it is beneficial to increase K under noisy conditions. However,
K can be (very) low in comparison to typical values in ICA. (Note that in
this particular example, ICA cannot be used since the sources are Gaussian.)
εS does not improve for increasing K because one also has to estimate longer
source signals. Similar results can be obtained for the method of section 5.2
when increasing the number of sensors M under noisy conditions.
Next, consider a similar setup as in the previous experiment but now with

the following rank-1 mixing vectors: m1(ξ) = e0.5ξ and m2(ξ) = e−2ξ with
ξ ∈ [0, 1]. We use a second-order (N = 2) rank-1 approximation for both
mixing vectors (L1 = L2 = 1) with I = J = 64. The results are shown in
Figure 5.7: in comparison with Figure 5.6, there is some loss of accuracy
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Figure 5.6: By increasing the number of samples, the relative error on the mixing vectors
can be improved. This does not hold for the relative error on the sources because we also
have to estimate longer source signals. Eventhough, the number of samples can be low in
contrast to stochastic methods, the results are very accurate compared to the signal-to-
noise ratio. Here, we plot the median across 100 experiments of the relative error on the
mixing vectors and the sources as a function of the signal-to-noise ratio for 10, 102, and
103 samples. The mixing vectors are well conditioned; compare with Figure 5.7.

on the mixing vectors and much clearer on the sources. This is due to the
condition of the problem: in the previous experiment, the mixing vectors
are approximately orthogonal and have about the same size (‖m1‖/‖m2‖ ≈
0.8), while now the angle is 37.11◦ and ‖m1‖/‖m2‖ = 2.65. Hence, the
computation of the decomposition is more difficult and the estimates less
accurate.

5.5.4 Low-rank approximation
We investigate the influence of deviations from a second-order rank-1 struc-
ture on the relative error as follows. Define each mixing vector as the vec-
torization of a random matrix with exponentially decaying singular values,
i.e., mr = vec (Urdiag (σ) Vr) with σ = e−αξ and ξ a vector containing
min (I, J) equidistant samples in [0, 1]. Ur and Vr are random orthogonal
matrices of compatible dimensions. The exponential decay of the singular
values is controlled with α which is a measure for the rank-1-ness of the
mixing vectors: increasing α leads to more rank-1-like mixing vectors and
vice-versa. We take R = 2 i.i.d. zero-mean unit-variance Gaussian random
sources of length K = 10 and use a second-order (N = 2) rank-Lr approxi-
mation with I = J = 64.
Figure 5.8 shows the relative errors εM and εS as a function of α for an

SNR of 15 dB using L1 = L2 = L = 1. Note that an estimate of the
mixing matrix M̂ can be obtained from the decomposition, i.e., from (5.17)
for this particular case, in the way explained above. However, one can also
estimate it via the noisy observed data matrix and the pseudo-inverse of the
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Figure 5.7: By using ill-conditioned mixing vectors, we simulate a difficult problem, hence,
the computation is more difficult and the estimates are less accurate, as shown above. The
effect is more pronounced for the source signals than the mixing vectors. Here, we plot the
median across 100 experiments of the relative error on the mixing vectors and the sources
as a function of the signal-to-noise ratio for 10, 102, and 103 samples. The mixing vectors
are ill-conditioned; compare with Figure 5.6.

estimated source matrix: M̂ = XŜ†. The figure illustrates that εM decreases
for increasing α until it stagnates due to noise. One can also see that, for
large α, M̂ computed via the pseudo-inverse is less accurate than directly
extracting M̂ from (5.17) and imposing rank-1 structure. However, for small
α, the opposite is true. Indeed, for decreasing α, the mixing vectors become
less rank-1 like and our rank-1 model cannot attain a better estimate than the
one given by Eckart–Young’s theorem [80]. Also, note that the sources are
estimated more accurately than the mixing vectors: the noise on the sources
is more averaged out because this factor is much shorter in the decomposition
(K � I, J) [60].

Figure 5.9 shows the relative errors for several choices of Lr. One can
observe that for increasing Lr, the relative error decreases in the case of
small α, i.e., in the case of little rank-1-like mixing vectors. On the other
hand, little is lost through overmodeling (i.e., choosing Lr too large) for large
α. In fact, we overmodel less than conventional methods as we exploit the
low-rank structure. Hence, the choice of Lr is not so critical, see [51], [65].
In this case one also knows that the multilinear rank of X is bounded by
(
∑R
r=1 Lr,

∑R
r=1 Lr, R).

5.5.5 Compression versus accuracy
We investigate the trade-off between compression and accuracy which will
lead to a better understanding on how to choose the segmentation parame-
ters Inm and/or Ins . We do this by examining the accuracy of a low-rank
approximation of various segmentations of a real-life EEG signal with a sam-
ple rate of 500 Hz. More precisely, we reshape the EEG signal of length
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Figure 5.8: By computing the mixing vectors via the noisy observed data matrix and the
pseudo-inverse of the estimated source matrix instead of extracting them directly from
the decomposition, we can obtain a more accurate estimate of the mixing vectors when
the rank-1 assumption does not hold entirely (i.e., for low α). Indeed, when the mixing
vectors are less rank-1 like our model cannot attain a better estimate than the one given
by Eckart–Young’s theorem. Here, we report the median across 100 experiments of the
relative error on the mixing vectors, extracted from (5.17) and computed via the inverse
of Ŝ, and the sources for varying rank-1-ness α and an SNR of 15 dB. The error bound
given by the Eckart-Young theorem is shown in black.
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Figure 5.9: By increasing the rank of the model for the mixing vectors, one can decrease
the relative error in the case of little rank-1-like mixing vectors (i.e., for low α). Here,
we report the median across 100 experiments of the relative error on the mixing vectors
and the sources for varying rank-1-ness α of the mixing vectors and 20 dB SNR for
L1 = L2 = L = 1, L1 = L2 = L = 2, and L1 = L2 = L = 3. The error estimate given by
the Eckart-Young theorem is shown in black solid lines.
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Figure 5.10: What is considered a good choice of parameters will depend on the needs in
a particular application: there is a clear trade-off between the compression rate and the
accuracy. We report the normalized number of parameters K̂ as a function of the relative
error for a rank-1, -2, and -3 approximation of a segmented real-life EEG signal of length
K = 214. The signal is reshaped into a (I × J) matrix with I = 2q and J = 214−q such
that K = IJ with q = 2, . . . , 12 and q increasing from left to right on the curve.

K = 214 into a (I × J) matrix with I = 2q and vary q = 2, . . . , 12, then
J = 214−q such that K = IJ . Subsequently, we approximate the reshaped
signal with a rank-L model with L = {1, 2, 3}.
In Figure 5.10, we plot the normalized number of parameters K̂ = L(I +

J)/K versus the relative error ε of the rank-L approximation. We see a
clear trade-off between compression and accuracy, hence, what is considered
a “good” choice of parameters will depend on the needs in a particular appli-
cation. First of all, the curves are not symmetric since segmentation is not
symmetric in the modes that it creates. Note that one can easily improve the
accuracy without affecting the compression rate by switching the values of I
and J such that I < J rather than I > J for the same rank. For fixed I and
J , increasing the rank can greatly improve the accuracy, e.g., when I � J
(left part of Figure 5.10). The original signal and two particular approxima-
tions are shown in Figure 5.11. Note the relative error decreased from 0.68
to 0.096 by taking I < J and increasing L for the second approximation. On
the other hand, the compression reduced from 96.88% to 86.72%.
In general, a good choice of the parameters will depend on the application.

If compression is the objective, one should choose I ≈ J and L not too large.
If, on the other hand, accuracy is the objective, one can try other choices of
I and J and maybe a higher rank L. In practice, one can try a particular
choice of parameters, perform a similar analysis as here on the estimated
sources, and further refine the choice from there.

5.5.6 Consistency
We analyze the consistency of the mixing matrix estimate using our method
by numerically checking the behavior for increasing sample size K. Consider
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Original signal

Square rank-1 model

Wide rank-2 model

Figure 5.11: By making a good choice of parameters, one can obtain an accurate low-
rank model, even for real-life signals. This is illustrated for a real-life EEG signal and
two approximations. The latter are obtained by first reshaping the original signal into
a (27 × 27) (square) and (25 × 29) (wide) matrix, respectively, and then approximating
them by a rank-1 and rank-2 matrix by truncating the singular value decomposition. The
reconstructed signals are obtained by vectorizing these low-rank matrices. Only the first
2000 samples are shown. The rank-2 approximation is much better than the rank-1 as is
also clear from Figure 5.10.

97



5 Segmentation-based blind source separation

a problem with M = 10 sensors and R = 3 sources of increasing length
K = {103, 104, 105}. The mixing vectors are i.i.d. zero-mean unit-variance
Gaussian vectors and the source signals are constructed as the vectorization
of rank-1 (L1 = L2 = 1) matrices (N = 2) with zero-mean unit-variance
Gaussian random columns and I = J = b

√
Kc. For each value of K, we

run 1000 experiments with 20 dB SNR and check the relative error on the
estimate of the mixing matrix found from the decomposition in (5.15). By
fitting a Gaussian distribution to the histogram of the relative errors, we
obtain Figure 5.12. For increasing K, the estimates are getting more and
more concentrated near zero relative error; note that there is no visible bias.
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Figure 5.12: For increasing sample size, the relative errors on the estimates of the mixing
matrix are getting more and more concentrated near zero.

5.5.7 Fetal electrocardiogram extraction
We use the method of section 5.2 for the extraction of the antepartum fetal
electrocardiogram (FECG) from multilead cutaneous (i.e., recorded on the
mother’s skin) potential recordings. The FECG is important for analyzing
the health and condition of the fetus. The elimination of the mother’s dom-
inant heartbeat in the ECG can be seen as a BSS problem and one can use
methods such as ICA [55]. ICA, however, falls short when only a few samples
or heartbeats are available. FECG extraction is not a large-scale problem,
but it is useful to illustrate a few features of our approach. Our method
is applicable here because the typical QRS1 complexes in the ECG admit a
low-rank approximation. In other words, we show that representability by a
small number of parameters can be used as a ground for blind ECG signal
separation. We illustrate our method for a real-life dataset.
The dataset contains eight observed signals, of which five abdominal and

three thoracic; the dataset is available from DaISY2. Data acquisition and
preprocessing is described in [32]. The sampling rate is 250 Hz. We only

1The QRS complex consists of the Q, R, and S wave that occur in rapid succession.
The QRS complex represents the electrical impulse spreading through the ventricles,
indicating ventricular depolarization [43].

2Available from http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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Fetal ECG

Maternal ECG

Figure 5.13: By exploiting the intrinstic low-rank structure of the QRS complexes in the
ECG, our method can achieve a clear separation of the fetal and maternal ECG.

use the first 500 samples and scale each signal to unit norm. Each observed
signal is segmented into a (25×20) matrix and the overall data set is stacked
into a (25 × 20 × 8) tensor. We use a rank-5 approximation for each source
(L1 = L2 = L3 = L = 5). At least three sources are needed to extract the
FECG; this is also the case for ICA [55]. We use this particular segmentation
as to maximize the compression which is only an arbitrary choice. We deter-
mined L by a trial-and-error approach starting from a rank-10 approximation
and then decreasing L. Little is lost by choosing a larger L anyway, see sub-
section 5.5.4. Figure 5.13 shows two recovered sources. One can verify that
the heartbeats of the fetus are no longer visible in the ECG of the mother
and vice versa, i.e, we have a clear separation. The frequency of the FECG
is typically twice as high as the frequency of the maternal ECG (MECG),
which can be observed as well.

5.5.8 Direction of arrival estimation
We use the method of section 5.4 for direction-of-arrival (DOA) estimation
of signals impinging on a ULA. Applications include radar, sonar, wireless
communications, and seismic exploration. Recently, there has been a trend
towards large-scale array processing [130]. Our method is able to cope with
a large number of sensors, where other methods fall short. We compare our
results with two well-known DOA estimation methods, MUSIC and ESPRIT,
in several scenarios [127].
Consider a ULA that consists of M uniformly spaced and omnidirectional

antennas receiving signals from R narrow-band sources located in the far
field. In that case, the problem can be described by (5.6) with the mixing
vectors defined element-wise as mmr = θm−1

r with θr = e−2πi∆ sin(αr)λ−1 .
∆ is the inter-element spacing, the angle αr to the normal is the rth DOA
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(i.e., −90◦ ≤ αr ≤ 90◦), and λ denotes the wavelength. Note that the
mixing vectors are Vandermonde vectors: mr =

[
1 θr θ2

r · · · θM−1
r

]T,
hence, they admit a rank-1 representation [141], [166]. In a multipath setting,
the mixing vectors are defined element-wise as mmr =

∑Lr
l=1 θ

m−1
lr (ignoring

path losses for simplicity), with Lr the number of paths for the rth source,
admitting a low-rank representation. If the sources are located in the near
field, the mixing vectors no longer admit a rank-1 representation but can still
be well approximated by a low-rank model. If one also uses low-rank source
models, we can use the method of section 5.4.
First, consider a ULA withM = 64 sensors and ∆ equal to halve the wave-

length. Although our method is applicable for a large number of sensors, we
choose M rather small so we can compare with MUSIC and ESPRIT. The
latter two methods have to compute a M ×M covariance matrix and then
apply an eigenvalue decomposition (EVD). These steps can be computation-
ally expensive because they have a complexity of O(M2K) and O(M3) (or
O(M2) when using iterative methods [190])3, respectively, rendering such
methods infeasible for large M and K. Moreover, MUSIC has to evaluate
the MUSIC spectrum for many angles in order to estimate the DOAs accu-
rately. Here, we evaluated the MUSIC spectrum in 104 equidistant angles in
[−π2 ,

π
2 ]. Note that the number of evaluation points bounds the attainable ac-

curacy. Consider R = 2 low-rank sources: sr(t) = sin(10πrt) with K = 1024
equidistant samples in [0, 1]. The sources are in line-of-sight and impinge on
the ULA with α11 = 32◦ and α12 = 34◦. We use a second-order (Ns = 2)
rank-2 (P1 = P2 = 2) approximation for both sources with J1 = J2 = 32 and
a second-order (Nm = 2) rank-1 (L1 = L2 = 1) approximation for both mix-
ing vectors with I1 = I2 = 8. Note that the model of the sources and mixing
vectors requires only 126 and 15 values instead of 1024 and 64, respectively,
see Table 5.2. This results in a compression of 1− Pr J1+J2−Ns+1

K = 87.70%
and 1 − Lr I1+I2−Nm+1

M = 76.56%, respectively. In Figure 5.14 (left), we re-
port the median of the relative errors on the DOAs εα. It is clear that the
dedicated methods estimate the DOAs more accurately than our method.
On the other hand, by exploiting the low-rank structure, we show that it is
still possible to get fairly accurate estimates in comparison with well-known
dedicated methods. Moreover, our method is applicable for large M .

In a second experiment, we add a third source (R = 3) that impinges on the
ULA from two different paths (L3 = 2): α13 = −15◦ and α23 = 67◦. We use
a third-order (Nm = 3) rank-1 and rank-2 approximation for the first two and

3Consider an M ×K data matrix with M = IN and K = I, which can be segmentized
in an (N + 1)th-order tensor with size I × I × · · · × I. While the computation of
the M ×M covariance matrix and the EVD in MUSIC and ESPRIT algorithms have
a computational complexity of O(I2N+1) and O(I3N ) (or, O(I2N )), resp., the per-
iteration computational complexity of a Gauss-Newton algorithm with dogleg trust
regions for the CPD is only O(2(N + 1 + itTR)RIN+1 + 8

3 (N + 1)3R3I3) with itTR the
number of trust-region iterations [180].
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Figure 5.14: Eventhough dedicated methods for direction-of-arrival estimation such as MU-
SIC and ESPRIT are more accurate than our method, we still obtain fairly accurate esti-
mates using our general framework for both the line-of-sight and multipath scenarios. We
report the median across 100 experiments of the relative error on the direction-of-arrival
angles as a function of the signal-to-noise ratio for the line-of-sight and multipath far-field
scenario using segmentation, ESPRIT, and MUSIC.

last mixing vector, respectively, with I1 = I2 = I3 = 4. We choose Nm > 2
such that the different DOAs of the third source can be found directly from
the estimated vectors u(1)

13 and u(1)
23 (instead of the column space of S3), see

the discussion of uniqueness in subsection 5.2.3. Note that one simply has to
increase the rank Lr in order to cope with a multipath source, while MUSIC
and ESPRIT need additional spatial smoothing [164]. The results are shown
in Figure 5.14 (right).

Next, we use the same setup as in the first experiment but with two
near-field sources defined by a DOA and range relative to the first antenna:
α1 = −17◦, w1 = 2(M − 1)∆, α2 = 41◦, and w2 = 3(M − 1)∆. We compare
our results with a two-dimensional version of MUSIC [110]. Figure 5.15 shows
the median of the relative errors on the DOAs εα and the ranges εw. MUSIC
estimates both the DOA and range more accurately but is even more com-
putationally expensive because now one has to evaluate a two-dimensional
spectrum for many angles and ranges. Here, we used 102 equidistant an-
gles and ranges in [−π2 ,

π
2 ] and [5, 12], respectively. In order to cope with

near-field sources in our approach, one simply has to increase the rank Lr.

In the final experiment, we use again the same setup as the first experiment
but now with M = 9 and K = 100 with J1 = J2 = 10 and I1 = I2 = 3. As
can be seen from Figure 5.16, MUSIC fails to distinguish close DOAs when
only a few samples are available and the SNR is low [127]. A small number of
sensors M flattens the peaks in the MUSIC spectrum, making the problem
more difficult. Our method can still estimate the DOAs accurately in such a
setup because it is deterministic, performing even better than ESPRIT.

101



5 Segmentation-based blind source separation

−20 10
10−3

101

MUSIC
Segmentation

Signal-to-noise ratio (dB)

R
el
at
iv
e
er
ro
r

Direction-of-arrival

−20 10

Range

Figure 5.15: Eventhough our segmentation-based method is less accurate than the dedi-
cated MUSIC method, we simply have to increase the rank in order to cope with near-
field sources. We report the median across 100 experiments of the relative error on the
direction-of-arrival angles and ranges as a function of the signal-to-noise ratio for the
near-field scenario using segmentation and MUSIC.
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Figure 5.16: In contrast to MUSIC, our method can distinguish direction-of-arrival angles
that are close when only a few samples are available and the signal-to-noise ratio is low. We
report the median across 100 experiments of the relative error on the direction-of-arrival
angles as a function of the signal-to-noise ratio for the small-scale line-of-sight experiment
using segmentation, ESPRIT, and MUSIC.
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5.6 Conclusion
In this chapter, we have introduced a new method for BSS that exploits the
fact that many real-life signals are compressible. We expressed this by as-
suming that the tensorized sources can be well approximated by a low-rank
model. In other words, we assume that the sources can be well approxi-
mated by sums of Kronecker products of smaller vectors. As such, we have
demonstrated that, if the sources indeed admit such a low-rank representa-
tion/approximation, the BSS problem boils down to the computation of a de-
composition of the resulting tensorized observed data matrix. It is precisely
the compressibility, which is essential in large-scale problems, that makes
it very likely that the tensor decomposition is unique. Hence, our method
provides a unique solution to the BSS problem and a way to cope with large-
scale problems. Furthermore, we applied the same strategy to the mixing
level motivated by an increasing number of sensors and sensor density in
fields such as biomedical sciences and array processing. Moreover, combining
both strategies simultaneously allowed the exploitation of low-rank structure
on both levels of the BSS problem. We have illustrated our methods with
two applications: FECG and DOA estimation for large-scale ULAs. We note
that it is possible to impose constraints on the sources and/or mixture when
applicable, e.g., statistical independence of the sources as in ICA. Such vari-
ants are out of the scope of this chapter. Although we focused on the CPD
for modeling the tensorized sources and/or mixture, it is possible to consider
other tensor models such as tensor trains (TTs) and hierarchical Tucker [96].
The latter are often used in tensor-based scientific computing because they
combine large compression rates with good numerical properties. For the
CPD of very large tensors, algorithms such as the ones in [171], [209], [214]
can be used.
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Tensor-based large-scale blind
system identification using
segmentation 6
ABSTRACT Many real-life signals can be described in terms of much fewer
parameters than the actual number of samples. Such compressible signals
can often be represented very compactly with low-rank matrix and tensor
models. The authors have adopted this strategy to enable large-scale instan-
taneous blind source separation. In this chapter, we generalize the approach
to the blind identification of large-scale convolutive systems. In particular
we apply the same idea to the system coefficients of finite impulse response
systems. This allows us to reformulate blind system identification as a struc-
tured tensor decomposition. The tensor is obtained by applying a determinis-
tic tensorization technique called segmentation on the observed output data.
Exploiting the low-rank structure of the system coefficients enables a unique
identification of the system and estimation of the inputs. We obtain a new
type of deterministic uniqueness conditions. Moreover, the compactness of
the low-rank models allows one to solve large-scale problems. We illustrate
our method for direction-of-arrival estimation in large-scale antenna arrays
and neural spike sorting in high-density microelectrode arrays.

This chapter is a slightly adapted version of M. Boussé, O. Debals, and L. De Lathauwer,
“Tensor-based large-scale blind system identification using segmentation”, IEEE Trans-
actions on Signal Processing, vol. 65, no. 21, pp. 5770–5784, Nov. 2017. The figures
have been updated for consistency.
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6 Segmentation-based blind system identification

6.1 Introduction
In blind system identification (BSI) one wishes to identify an unknown system
using only the measured output values [1]. In this chapter, we specifically
limit ourselves to the blind identification of finite impulse response (FIR)
systems. Hence, the outputs are convolutive mixtures of the inputs in con-
trast with instantaneous blind source separation (BSS) [45]. Also, we define
the goal of BSI to be both the estimation of the system coefficients and the
reconstruction of the inputs; we do not make a distinction. In order to make
the BSI problem feasible, additional assumptions have to be imposed on the
inputs or the system coefficients. The choice of a particular assumption typ-
ically depends on the application; examples are independent inputs, finite
alphabet, and constant modulus [1]. BSI is an important problem with a
variety of applications in (biomedical) signal processing, image processing,
and sensor array processing [107], [129], [206].
Recently, there is a trend to more sensors and larger sensor density in

several domains. Biomedical examples include high-density surface elec-
tromyogram (sEMG) and wireless body area networks (WBANs) based on
electroencephalography (EEG) and electrocorticography (ECoG) [13], [107],
[161]. BSS and BSI are typical problems in these applications [21]. For
example, the separation of action potentials of the muscle’s motor units in
sEMG recordings is typically modeled using BSI [107]. In array process-
ing and telecommunications, an increase in the number of antennas is seen,
known as massive MIMO [130]. Here, BSI using FIR models can be used to
determine the direction-of-arrivals (DOAs) of narrow-band signals impinging
on uniform linear arrays (ULAs) and rectangular arrays (URAs) from the far
field [127].
The key idea to tackle such large-scale problems is known from compressive

sensing: there is often an excessive number of entries compared to the actual
amount of information contained in the system coefficients [34]. In other
words, there is some structure and/or sparsity in the system coefficients that
allows one to model it much more compactly [190]. Such signals are called
compressible and they can typically be represented by parsimonious models
such as low-rank higher-order tensor models. This approach is known from
tensor-based scientific computing in high dimensions [96], [214]. The com-
pactness of these models, especially in the case of higher-order tensors, has
allowed one to solve problems in a number of unknowns that exceeds the
number of atoms in the universe. The authors have adopted this particular
strategy to enable large-scale BSS [18], [21]. In this chapter, we extend the
strategy to the system coefficients in convolutive BSI.
The proposed method tensorizes the measured output values using a par-

ticular tensorization technique called segmentation [21], [62]. We show that
large-scale convolutive BSI reduces to a structured decomposition of the re-
sulting tensor. In general, the decomposition is a generalization of a particu-
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lar block term decomposition (BTD) [49] called a flower decomposition that
was first introduced in [18], [21]. The latter has a block-Toeplitz structure
in this case due to the convolutive nature of the FIR model that is used.
The above approach allows us to exploit the underlying compactness of the
system coefficients using low-rank models, enabling a unique identification of
both the system and the inputs of large-scale BSI problems. Segmentation
can be interpreted as a compact version of Hankel-based tensorization [51].
As such, one can show that the approach is exact for system coefficients that
can be modeled as exponential polynomials but also a much broader class of
signals [21]. Moreover, one can show that our method works well for system
coefficients that admit a good polynomial approximation.
To best of the authors’ knowledge, our segmentation-based method is the

first method for (very) large-scale BSI, using a similar philosophy as in tensor-
based scientific computing. The contributions of this chapter include a dis-
cussion of the uniqueness conditions for the flower decomposition and a new
algebraic method to compute it. Also, we provide novel uniqueness condi-
tions for the BSI problem with and without exploiting the block-Toeplitz
structure. Furthermore, we prove a new result for the low-rank approx-
imation of periodic signals of which the period may have been estimated
inaccurately. Additionally, we perform a parameter analysis and especially
investigate the influence of the FIR system order and the low-rank model
parameters. Finally, our method allows to accurately estimate the direction-
of-arrivals (DOAs) in large-scale URAs. Moreover, it enables DOA estimation
in non-uniform arrays and can handle broken antennas. We also illustrate our
method for spike sorting in high-density microelectrode arrays. First results
of our approach were briefly discussed in [19].
We conclude this section with an overview of the notation and definitions.

Next, we discuss the flower decomposition in section 6.2. We reformulate
convolutive BSI as a flower decomposition using segmentation in section 6.3.
Simulations and applications are presented in section 6.4 and section 6.5.

6.1.1 Notation and definitions
Vectors and matrices are denoted by bold lowercase and bold uppercase let-
ters, e.g., a and A, respectively. Tensors are a higher-order generalization
of the former and are denoted by calligraphic letters, e.g., A. We denote
index upper bounds by italic capitals, e.g., 1 ≤ i ≤ I. The (i1, i2, . . . , iN )th
entry of an Nth-order tensor A ∈ KI1×I2×···×IN (with K meaning R or C)
is denoted by ai1i2...iN . An element of a sequence is indicated by a super-
script between parentheses, e.g., the nth matrix A(n). The matrix transpose
is indicated by •T. The unit vector ei has a one in the ith row. The I × I
identity matrix is denoted by II . The entries of the nth compound matrix
of A ∈ KI×J , denoted by Cn (A) ∈ K(In)×(Jn), equal the n × n minors of A
ordered lexicographically.
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6 Segmentation-based blind system identification

The rows and columns of a matrix can be generalized for higher-order ten-
sors to mode-n vectors, which are defined by fixing every index except the
nth. A mode-n matrix unfolding of A is a matrix A(n) with the mode-n
vectors as its columns following the ordering convention in [125]. Vector-
ization of A, denoted as vec(A), maps each element ai1i2···iN onto vec(A)j
with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im. The kth frontal slice

Xk of a third-order tensor X ∈ KI×J×K is obtained by fixing only the last
index. We denote the outer and Kronecker product as ⊗ and ⊗, respectively.
They are related through a vectorization: vec (a ⊗ b) = b⊗a. We denote
the Khatri–Rao product as �.

6.1.2 Tensor decompositions
The rank of a tensor equals the minimal number of rank-1 tensors that gen-
erate the tensor as their sum. A rank-1 tensor is defined as the outer product
of nonzero vectors. The rank of a mode-n unfolding of a tensor is the mode-n
rank. The multilinear rank is defined as the tuple of these mode-n ranks.
Definition 26. A polyadic decomposition (PD) writes an Nth-order tensor
A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r . (6.1)

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor
vectors u(n)

r for 1 ≤ r ≤ R. The PD is called canonical (CPD) when R is
equal to the rank of A. The mode-n matrix unfolding of the PD defined
in (6.1) is given by:

A(n) = U(n)(U(N)� · · ·�U(n+1)�U(n−1)� · · ·�U(1))T.

The CPD is essentially unique if it is unique up to trivial permutation of the
rank-1 terms and scaling and counter-scaling of the factors in the same term.
The decomposition is unique under rather mild conditions which is a powerful
advantage of tensors over matrices in many applications. See [70]–[73], [75]
and references therein for state-of-the-art uniqueness conditions. The CPD
has been used in many applications within signal processing, biomedical sci-
ences, data mining and machine learning, see [41], [125], [168].
Definition 27. A block term decomposition (BTD) of a third-order tensor
X ∈ KI×J×K in multilinear rank-(Pr, Pr, 1) terms for 1 ≤ r ≤ R is a decom-
position of the form:

X =
R∑
r=1

(ArBT
r ) ⊗ cr =

R∑
r=1

(
Pr∑
p=1

apr ⊗ bpr

)
⊗ cr, (6.2)
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in which Ar ∈ KI×Pr and Br ∈ KJ×Pr have full column rank Pr and cr
is nonzero. Also, we define R′ =

∑R
r=1 Pr. The mode-3 unfolding X(3) ∈

KK×IJ of (6.2) is given by

X(3) = C
[
vec
(
A1BT

1
)
· · · vec

(
ARBT

R

)]T
.

The decomposition in (6.2) can be interpreted as a CPD with propor-
tional columns in the last factor matrix. Define the following factor matrices
A =

[
A1 A2 · · · AR

]
∈ KI×R′ , B =

[
B1 B2 · · · BR

]
∈ KJ×R′ ,

and C(ext) =
[
1T
P1

⊗ c1 · · · 1T
PR

⊗ cR
]
∈ KK×R′ . As such, we have a rank-R′

CPD with the following mode-3 unfolding:

X(3) = C(ext)(B�A)T
. (6.3)

The BTD is essentially unique if it is unique up to trivial permutation of the
rth and r′th term, if Pr = Pr′ , and scaling and counter-scaling of (ArBT

r )
and cr in the same term. We repeat a uniqueness result for this particular
decomposition that will be used later in section 6.3 [49, Theorem 4.1]:

Theorem 3. Consider a BTD in multilinear rank-(Pr, Pr, 1) terms of X ∈
KI×J×K as in (6.2) with I, J ≥ R′. The decomposition is essentially unique
if A =

[
A1 A2 · · · AR

]
and B =

[
B1 B2 · · · BR

]
have full column

rank and C =
[
c1 c2 · · · cr

]
does not have proportional columns.

The BTD allows one to model more complex phenomena because of the
more general block terms in comparison to the rank-1 terms of the CPD
in (6.1) [51]–[53]. Other types of BTDs and uniqueness conditions can be
found in [49], [51].

6.2 Decomposition in (rank-Pr ⊗ vector) terms

In this chapter, we introduce a new method for convolutive BSI. We show in
section 6.3 that our method reformulates BSI as a (structured) decomposition
of a higher-order tensor in (rank-Pr ⊗ vector) terms. This decomposition
was first introduced in [18], [21] and is also called the flower decomposition.
One can see the rank-Pr part as the petals and the vector as the stem of a
flower, see Figure 6.1. The decomposition can be interpreted as a higher-order
generalization of the BTD in multilinear rank-(Pr, Pr, 1) terms as defined
in subsection 6.1.2. In subsection 6.2.1 and subsection 6.2.2 we define the
decomposition and discuss uniqueness properties, respectively. We propose
a new algebraic method for its computation in subsection 6.2.3.
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= ⊗

stem (vector)

+ · · ·+ ⊗

petal (factor matrix)

Figure 6.1: Decomposition of a fourth-order tensor X (illustrated as a third-order tensor)
in (rank-Pr ⊗ vector) terms. One can see each factor matrix of the rank-Pr tensor as a
petal of the flower and the vector as the stem, hence, “flower” decomposition.

6.2.1 Definition
We generalize the BTD in multilinear rank-(Pr, Pr, 1) terms of a third-order
tensor from subsection 6.1.2. The decomposition is called a decomposition
in (rank-Pr ⊗ vector) [18], [21].
Definition 28. A flower decomposition is a decomposition of an (N + 1)th-
order tensor X ∈ KI1×I2×···×IN×K in (rank-Pr ⊗ vector) terms for 1 ≤ r ≤ R
of the form:

X =
R∑
r=1

(
Pr∑
p=1

u(1)
pr

⊗ u(2)
pr

⊗ · · · ⊗ u(N)
pr

)
⊗ sr (6.4)

with factor matrices U(n) =
[
U(n)

1 U(n)
2 · · ·U(n)

R

]
∈ KIn×R′ and S ∈ KK×R

in which U(n)
r =

[
u(n)

1r u(n)
2r · · ·u

(n)
Prr

]
∈ KIn×Pr and R′ =

∑R
r=1 Pr.

Note that each term is an outer product of a rank-Pr tensor and a vector.
Hence, it is clear that this decomposition boils down to a BTD in multilinear
rank-(Pr, Pr, 1) terms for third-order tensors, i.e., when N = 2. In that case,
however, the factor matrices Ar and Br are not unique without additional
assumptions (but their products are) because ArBr

T = (ArD−1
r )(BrDr

T)T

for any square nonsingular matrix Dr. This is not the case for N > 2 because
essential uniqueness is guaranteed under mild conditions, see subsection 6.1.2.
Finally, if Pr = 1, 1 ≤ r ≤ R, then (6.4) reduces to a PD as defined in (6.1).

6.2.2 Uniqueness
Uniqueness conditions for a decomposition of an (N + 1)th-order tensor in
(rank-Pr ⊗ vector) terms can be obtained by reworking the decomposition
into a set of coupled BTDs in rank-(Pr, Pr, 1) terms and assuming the com-

110



6.2 Decomposition in (rank-Pr ⊗ vector) terms

mon factor matrix has full column rank [184]. This is possible by keeping one
factor matrix in a common mode and combining the remaining modes in the
first and second mode while ignoring the Khatri–Rao structure. Doing this
for N possible combinations, leads to a coupled decomposition equivalent to
the original one, as we will explain here. The former is unique up to trivial
permutation of the coupled multilinear rank-(Pr, Pr, 1) terms as well as scal-
ing and counterscaling of the matrices and vectors within the same term. We
call the coupled decomposition essentially unique when it is only subject to
these indeterminacies.
Consider a tensor X ∈ KI1×I2×···×IN×K that admits a flower decomposition

with mode-(N + 1) unfolding given by

X(N+1) = S
(
vec
(
Pr∑
p=1

u(1)
p1 ⊗ u(2)

p1 ⊗ · · · ⊗ u(N)
p1

)
· · ·

vec
(
Pr∑
p=1

u(1)
pR

⊗ u(2)
pR

⊗ · · · ⊗ u(N)
pR

))T

,

or equivalently,

X(N+1) = S(ext)
(
U(N)�U(N−1)� · · ·�U(2)�U(1)

)T

(6.5)

with S(ext) =
[
1T
P1
⊗ s1 · · · 1T

PR
⊗ sR

]
∈ KK×R′ . Consider N different par-

titionings of the N factor matrices U(N) into two sets. The factor matrices
in each set can be collected in factor matrices A(w) and B(w). As such, we
obtain several matrix representations of the tensor X of the form:

X(w) = S(ext)
(
B(w)�A(w)

)T

for 1 ≤ w ≤ N (6.6)

with S(ext) acting as a common factor for all N possibilities. Clearly, every
decomposition in (6.6) is a mode-3 unfolding of a BTD in rank-(Pr, Pr, 1)
terms, see (6.3). Mathematically, we have that X(w) ∈ KK×I′ , A(w) =⊙

γ∈Γw U(γ) ∈ KI′w×R′ and B(w) =
⊙

υ∈Υw U(υ) ∈ KJ′w×R′ with I ′w =∏
γ∈Γw Iγ , J

′
w =

∏
υ∈Υw Iυ, and I ′ =

∏N
n=1 In. The sets Γw and Υw sat-

isfy Γw ∪Υw = {1, . . . , N} and Γw ∩Υw = ∅.
The Khatri-Rao products in A(w) and B(w) are ignored. Nevertheless, the

matrix representation in (6.5) and the coupled decomposition represented
in (6.6) are equivalent [184]. Hence, the full decomposition in (rank-Pr ⊗

vector) terms of the (N + 1)th-order tensor X corresponds to a coupled
decomposition in rank-(Pr, Pr, 1) terms of third-order tensors in which part
of the structure has been ignored. As such, the uniqueness results derived
in [184] can be used. For example, if one of the BTDs is unique and S has
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6 Segmentation-based blind system identification

full column rank, then the (rank-Lr ⊗ vector) decomposition is unique. This
example is in fact trivial; the uniqueness results in [184] go further than that.
Let us illustrate the approach for a 4th-order tensor X ∈ KI1×I2×I3×K that

admits the following decomposition

X =
R∑
r=1

(
Pr∑
p=1

u(1)
pr

⊗ u(2)
pr

⊗ u(3)
pr

)
⊗ sr.

This decomposition can be written as three decompositions in multilinear
rank-(Pr, Pr, 1) terms that are coupled via the factor matrix in the fourth
mode S(ext). Hence, one obtains

X(1) =
((

U(1)�U(2))�U(3))S(ext)T,

X(2) =
((

U(1)�U(3))�U(2))S(ext)T,

X(3) =
((

U(2)�U(3))�U(1))S(ext)T.

The matrices U(n), 1 ≤ n ≤ 3 are combined in the first and second mode in
three different ways. Ignoring the Khatri-Rao structure in the first mode, the
coupled decomposition of third-order tensors X(n), 1 ≤ n ≤ 3, is equivalent
with the decomposition of the fourth-order tensor X .

6.2.3 Algebraic method
Often, algebraic methods for computing a tensor decomposition provide a
good initialization for optimization-based methods. Here, we present an al-
gebraic method for the flower decomposition defined in (6.4). We do this by
generalizing an algebraic method for computing a BTD in multilinear rank-
(Pr, Pr, 1) terms that was proposed in [49]. This method assumes that the
BTD satisfies Theorem 3 and reduces the computation to the computation of
a generalized eigenvalue decomposition (GEVD). The algorithm is available
in Tensorlab as ll1_gevd [215].
A BTD in multilinear rank-(Pr, Pr, 1) terms can be interpreted as a CPD

with proportional columns in the third factor matrix as explained in sub-
section 6.1.2. As such, it can be shown that the algebraic method of [49]
boils down to the following three steps. First, we compute a solution of (6.2)
using an algebraic method for a rank-R′ CPD such as cpd_gevd from Ten-
sorlab obtaining C(ext). Next, we cluster the R′ columns of C(ext) into R
clusters of size Pr. We use the k-lines method for clustering in order to
accommodate for scaling and sign invariance. The rth cluster center then
serves as an estimate for the rth column of C. Finally, we compute the
factor matrices Ar and Br for 1 ≤ r ≤ R by reshaping the rth column of(
C†X(3)

)T =
[
(B1�A1)1P1 · · · (BR�AR)1PR

]
into a (I×J) matrix and

computing a rank-Pr approximation of this matrix. This approach can be
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6.3 Large-scale BSI using segmentation

generalized to the flower decomposition as it can be interpreted as a higher-
order generalization of the BTD in multilinear rank-(Pr, Pr, 1) terms. Hence,
we also interpret the decomposition as a CPD with proportional columns in
the last factor matrix and apply the same scheme as above. The resulting
method is called lvec_gevd, and is outlined in Algorithm 6.1.

Algorithm 6.1: Algebraic method for a decomposition of an (N + 1)th-order tensor X in
(rank-Lr ⊗ vector) terms.

1: Input: X , R, R′, and {Pr}Rr=1
2: Output: {U(n)}Nn=1 and S
3: Compute a CPD of X with R′ terms using a GEVD obtaining S(ext)

4: Cluster the R′ columns of S(ext) into R clusters. Use the cluster centers as an estimate
for S

5: Obtain the rth factor matrix U(n)
r for 1 ≤ n ≤ N by reshaping the rth column of(

S†X(N+1)
)T

=
[
(U(N)

1 � · · ·�U(1)
1 )1P1 · · · (U

(N)
R � · · ·�U(1)

R )1PR
]
into an (I1 ×

I2×· · ·×IN ) tensor and computing a rank-Pr approximation of this tensor algebraically.

6.3 Large-scale BSI using segmentation
In large-scale applications, signals and systems often admit a compact rep-
resentation. In this section we present a new method for large-scale convolu-
tive BSI that exploits this, by reformulating the problem as a block-Toeplitz
structured flower decomposition. We show that this approach allows one to
uniquely identify both the coefficients and the inputs of large-scale systems.
We define the BSI problem in subsection 6.3.1. Next, we motivate the work-
ing hypothesis of low-rank system coefficients in subsection 6.3.2 and derive
our method in subsection 6.3.3. We also consider uniqueness properties in
subsection 6.3.4. Finally, we investigate the block-Toeplitz structure of the
decomposition in subsection 6.3.5.

6.3.1 Blind system identification
The goal of convolutive blind system identification (BSI) is to identify the
coefficients of the system and/or the inputs using only the output data. More
specifically, we consider discrete linear time-invariant systems with M out-
puts, R inputs, and system order L. The mth output of the finite impulse
response (FIR) system is described by:

xm[k] =
R∑
r=1

L∑
l=0

gmr[l]sr[k − l] + nm[k], 1 ≤ k ≤ K. (6.7)
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The FIR coefficients from the rth input to the mth output are denoted by
gmr[l] for 0 ≤ l ≤ L. The rth input is denoted as sr[k] and the additive noise
on the mth output as nm[k]. Equation (6.7) can be expressed in matrix form:

X =
L∑
l=0

G(l)S(l)T
= GST (6.8)

with X ∈ KM×K the output data matrix and the matrices G(l) ∈ KM×R and
S(l) ∈ KK×R defined element-wise as g(l)

mr = gmr[l] and s(l)
kr = sr[k− l] for 0 ≤

l ≤ L, respectively. Also, G =
[
G(0) G(1) · · · G(L)] ∈ KM×R(L+1) and

S =
[
S(0) S(1) · · · S(L)] ∈ KK×R(L+1) has a block-Toeplitz structure as

illustrated in Figure 6.2. Note that BSI reduces to BSS if L = 0. We ignore
noise for notational convenience in the derivation of our method. Its influence
will be examined in subsection 6.4.2 by means of simulations.
The proposed method reshapes the columns of X, i.e., the observed outputs

at time k are put into matrices which are subsequently stacked in a tensor, as
shown in Figure 6.2. In general, the columns can be reshaped into Nth-order
tensors which are then stacked in a tensor of order N + 1. If the system
coefficients admit a low-rank model, the BSI problem can be reformulated
as a structured flower decomposition of the tensorized observed output data.
We will now discuss the different aspects of the method in more detail.

6.3.2 Low-rank coefficient vectors
In large-scale applications vectors and matrices are often compressible, mean-
ing that they can be described in terms of much fewer parameters than the
total number of values [190]. Often, the tensor representation of such a vector
or matrix allows a low-rank approximation, enabling a possibly very compact
model when using higher-order tensors [21], [96], [123]. We denote vectorized
low-rank tensors as low-rank coefficient vectors. Importantly, the system co-
efficients in large-scale BSI can often be represented or well approximated
by such low-rank tensor models. We show that the exploitation of this low-
rank structure in large-scale convolutive BSI enables a unique identification
of both the system coefficients and the inputs.
Mathematically, we reshape the rth coefficient vector g(l)

r in (6.8) into a
(I × J) matrix G(l)

r such that vec(G(l)
r ) = g(l)

r with M = IJ . Our working
hypothesis states that the matricized coefficient vectors admit a low-rank
representation:

G(l)
r =

P (l)
r∑
p=1

a(l)
pr

⊗ b(l)
pr = A(l)

r B(l)
r

T
(6.9)

with a(l)
pr ∈ KI and b(l)

pr ∈ KJ . This is equivalent with assuming g(l)
r can be
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6 Segmentation-based blind system identification

written as a sum of Kronecker products:

g(l)
r = vec(G(l)

r ) =
P (l)
r∑
p=1

b(l)
pr ⊗a(l)

pr .

This strategy clearly enables a compact representation of the coefficients
as we need only P

(l)
r (I + J − 1) parameters. For example, the number of

parameters is one order of magnitude lower than the total number of values
M when I ≈ J . Even more compact representations can be obtained by
reshaping the coefficients into higher-order tensors, as we will see later.
Exponential polynomials can be used to model a wide variety of signals in

many applications. For example, the autonomous behavior of linear systems
can be described by (complex) exponentials and, permitting coinciding poles,
exponential polynomials. Importantly, the working hypothesis of low-rank
coefficient vectors holds exactly for exponential polynomials [21]. We can
show this by linking our approach to Hankelization which is a deterministic
tensorization technique for BSS [51], [62]. Consider, e.g., an exponential
f(ξ) = zξ evaluated in 0 ≤ ξ ≤ 7. Construct the (4× 5) Hankel matrix H of
the resulting vector. Clearly, this matrix has rank one:

H =


1 z z2 z3 z4

z z2 z3 z4 z5

z2 z3 z4 z5 z6

z3 z4 z5 z6 z7

 =


1
z
z2

z3

 [1 z z2 z3 z4] .
The (4 × 2) matrix G, obtained by reshaping the same vector consists of a
subset of the columns of the Hankel matrix H:

G =


1 z4

z z5

z2 z6

z3 z7

 =


1
z
z2

z3

 [1 z4] .
Clearly, G also has rank one. This idea can be generalized as follows. Con-
sider a vector f ∈ KM and its matricized version G ∈ KI×J . Consider also
the Hankelized version H ∈ KI×Jh of f defined element-wise as hijh = fi+jh−1
with M = I + Jh − 1. Clearly, we have that G = HQ with Q ∈ KJh×J the
selection matrix defined by qj = e(j−1)I+1 for 1 ≤ j ≤ J , meaning that the
columns of G form a subset of the columns of H. It is well-known that H has
low rank if the underlying functions are exponential polynomials [21], [51].
It is clear that if H has low rank then G has low rank as well, while G offers
a more compact representation than H.
General periodic signals can also be reshaped into low-rank matrices. Con-

sider a nonzero signal with period T , i.e., f(ξ) = f(ξ+T ). CollectM samples
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6.3 Large-scale BSI using segmentation

in a vector f ∈ KM such that fξ = f(ξ) for 1 ≤ ξ ≤ M . Assume M = TW
with W the number of periods. If we reshape f into a (T ×W ) matrix G,
then the rank of G equals one regardless of the type of signal (e.g., disconti-
nuities are allowed). Analogously, if we reshape f into a (T2 × 2W ) matrix,
i.e., each column contains one half of a period, then the rank is at most two.
Hence, the rank is in general at most R if we reshape f into a (TR × RW )
matrix, meaning that each column contains 1

R -th of a period. Conversely,
if we obtain a (RT × W

R ) matrix, each column contains a multiple of the
period, and the rank is one. In practice, however, the period is typically un-
known or may have been estimated inaccurately. Hence, it is interesting to
investigate how this influences the rank of G. For example, reshape f into a
((T − 1)×b M

T−1c) matrix G. In that case, the transpose of G is a submatrix
of the circulant matrix C constructed from f , denoted as C = circ(f), i.e.,
we have GT = C1:b M

T−1 c,1:T−1 in Matlab-like notation. This is illustrated
in Figure 6.3. We now use the following property of circulant matrices [217]:

Property 1. Consider a circulant matrix C̃ = circ(c) ∈ KT×T with c ∈ KT
one period of a T -periodic signal f ∈ KM such that M = TW . The matrix
C̃ has full rank if c contains T nonzero frequency components. The circulant
matrix C = circ(f) ∈ KM×M has rank T because C = 1W×W ⊗ C̃.

From Property 1 it follows that the rank of G equals T − 1. Let us now
consider the more general case where the estimate for the period T̂ is given
by l(T − k).

Theorem 4. Consider the (I ×J) reshaping G of a T -periodic signal f ∈ KM
such thatM ≥ IJ . Assume one period c ∈ KT contains T nonzero frequency
components. Consider also two integers k and l with l > 0. If I = l(T − k)
and J = b M

l(T−k)c, then the rank of G equals one if k = 0. If k 6= 0, we have

r(G) ≤


T

gcd(T,kl) if gcd(T, kl) > 1,
T

gcd(T,l) if gcd(T, l) > 1,
T

gcd(T,k) if gcd(T, k) > 1,
min(T, I, J) else.

Proof. As mentioned earlier, we have r(G) = 1 if k = 0 and l > 0. For
k > 0 it can be verified that GT is a submatrix of the circulant matrix
C = circ(f) ∈ KM×M , i.e., we have that

GT = C1:kl:kl
⌊

M
l(T−k)

⌋
,1:l(T−k), (6.10)

similar to the example above that was illustrated in Figure 6.3. From Prop-
erty 1 we know that r(C) = T , i.e., C contains T linearly independent
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6 Segmentation-based blind system identification

C =



1 2 3 4 1 · · · 4
4 1 2 3 4 · · · 3
3 4 1 2 3 · · · 2
2 3 4 1 2 · · · 1
1 2 3 4 1 · · · 4
...

...
...

...
...

. . .
...

2 3 4 1 2 · · · 1



GT

Figure 6.3: The transpose of a reshaped periodic signal is embedded in its ciruclant matrix.
Consider a reshaping of a T -periodic signal f into a matrix G with dimensions (T̂×bM

T̂
c).

The transpose of G equals a submatrix of the circulant matrix C = circ(f). This is
illustrated for a periodic signal f =

[
1, 2, 3, 4, 1, · · · , 4

]
∈ KM with T = 4, W = 3, and

M = TW using T̂ = T − 1.

rows. However, we only select the first l(T − k) values of each row, mean-
ing that the rows of GT are not necessarily linearly independent. First,
take l = 1. In that case one can see that in (6.10) we select every kth row
of C. Hence, if gcd(T, k) > 1, the rank of G equals at most T

gcd(T,k) . If
gcd(T, k) = 1, we select T − k = I rows, hence, the rank is bounded by
the minimal dimension of G, i.e., r(G) ≤ min(I, J). Next, take l > 1. In
that case we select every klth row of C, hence, the rank of G equals at
most T

gcd(T,kl) if gcd(T, kl) > 1. If gcd(T, kl) = 1, but gcd(T, l) > 1 or
gcd(T, k) > 1, then r(G) ≤ T

gcd(T,l) or r(G) ≤ T
gcd(T,k) , respectively. Finally,

if gcd(T, kl) = gcd(T, k) = gcd(T, l) = 1, then r(G) ≤ min(T, I, J) because
we select at most T linearly independent rows of C or the rank is bounded
by the dimensions. If k < 0, GT is a submatrix of the left circulant matrix
and one can make a similar derivation as above.

Corollary 1. Consider a T -periodic signal f ∈ KM that satisfies Property 1.
The rank of the (I × J) reshaped version G is bounded by 1 ≤ r(G) ≤ T for
any choice of I and J .

Note that Corollary 1 implies that the reshaped version G of a T -periodic
signal is a low-rank matrix if the period T is small compared to the number
of samples M .
So far we have discussed signals that exactly admit a low-rank representa-

tion. However, low-rank models are powerful models for more general com-
pressible signals as well. This has been thoroughly discussed in [21]. For
example, Gaussians, sigmoids, sincs, rational, and hyperbolic functions can
typically be well approximated by low-rank models. This is because the
singular value spectrum of the matricized version of such functions is often
fast decaying, meaning that only few rank-1 terms are needed for a good
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Original function

Sinc Hyperbolic Rational

Rank-1 model

Rank-2 model

Figure 6.4: A low-rank approximation of a reshaped smooth function often provides an
accurate representation. Increasing the rank of the model improves the approximation.
We illustrate for a sinc, a hyperbolic tangent, and a rational function evaluated in 100
equidistant samples in

[
0, 1
]
. We reshaped the original vectors into (10 × 10) matrices

and subsequently approximated them by a low-rank matrix by truncating the singular value
decomposition. The reconstructed functions are obtained by vectorizing the resulting rank-1
and rank-2 matrices. The rank-2 model approximately coincides with the original function.

approximation. This is illustrated in Figure 6.4. Explicit bounds on the ap-
proximation error have been reported in [21] for functions that admit a good
polynomial approximation.

More generally, one can reshape the coefficient vectors into a higher-order
tensor instead of a matrix, allowing an even more compact representation [18],
[21]. Indeed, we only need P

(l)
r (
∑N
n=1 In − N + 1) parameters instead of

M =
∏N
n=1 In to model the (r, l)th coefficient vector. Clearly, the number

of parameters decreases logarithmically with the order N of the tensor rep-
resentation of g(l)

r and increases proportionally with the number of rank-1
terms P (l)

r . Mathematically, we have

G(l)
r =

P (l)
r∑
p=1

u(1,l)
pr

⊗ u(2,l)
pr

⊗ · · ·u(N,l)
pr (6.11)
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with u(n,l)
pr ∈ KIn for 1 ≤ n ≤ N . The number of rank-1 terms P (l)

r may be
different for different r and for l. Note that this is in fact a PD as in (6.1).
Equivalently, the tensorized coefficient vectors can be written as sums of
Kronecker products

g(l)
r = vec(G(l)

r ) =
P (l)
r∑
p=1

u(N,l)
pr ⊗u(N−1,l)

pr ⊗ · · ·⊗u(1,l)
pr . (6.12)

6.3.3 Segmentation and decomposition
We show how BSI can be reformulated as the computation of a structured
flower decomposition. The tensor is obtained by using segmentation which
is a deterministic tensorization technique [18], [21], [62]. The decomposition
has a block-Toeplitz structure in the last mode which can be exploited in
order to obtain better uniqueness properties and accuracy.
Let us first explain the segmentation approach for the third-order case as

depicted in Figure 6.2. We will generalize for order N > 3 afterwards. First,
we reshape each column of the output data matrix X in (6.8) into a (I × J)
matrix Xk such that vec(Xk) = xk and M = IJ . We will discuss the choice
of the parameters I and J in more detail in subsection 6.4.4. Next, we stack
all the matricized columns in a third-order tensor X ∈ KI×J×K such that
the kth frontal slice of X is equal to the kth matricized column of X. This
tensorization technique is called segmentation and is a linear operation. This
means that the M matricized outputs are linear combinations of the RL
shifted sources s(l)

r using matricized coefficients G(l)
r ∈ KI×J . Hence, it holds

that

X =
R∑
r=1

L∑
l=0

G(l)
r

⊗ s(l)
r .

Assume that the system coefficients admit a low-rank model as in (6.9) in
order to obtain a BTD in multilinear rank-(P (l)

r , P
(l)
r , 1) terms:

X =
R∑
r=1

L∑
l=0

(
A(l)
r B(l)

r

T
)

⊗ s(l)
r . (6.13)

The third factor matrix S of decomposition (6.13) has a block-Toeplitz struc-
ture due to the convolution: S =

[
S(0) S(1) · · · S(L)] with s(l)

kr = sr[k− l]
for 0 ≤ l ≤ L. As such, we have shown that BSI can be solved by means
of a structured tensor decomposition. We want to emphasize that it is the
working hypothesis of low-rank approximability that has enabled the blind
identification. We mentioned uniqueness properties of this particular type of
BTD in subsection 6.1.2. We refer the interested reader to [187], [196] for
uniqueness properties of block-Toeplitz structured decompositions.
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We now generalize the above approach by reshaping the coefficient vectors
into tensors instead of matrices, leading to a structured flower decomposition.
First, we reshape each column of X into an Nth-order (I1 × I2 × · · · × IN )
tensor Xk such that vec(Xk) = xk and M =

∏N
n=1 In. Again we refer to

subsection 6.4.4 for a discussion of the choice of In. Next, we stack the
resulting tensors into a (N + 1)th-order tensor X ∈ KI1×I2×···×IN×K such
that the kth tensorized column of X equals the kth Nth-order “frontal slice”
of X , hence,

X =
R∑
r=1

L∑
l=0
G(l)
r

⊗ s(l)
r .

Let us assume that the coefficients admit a low-rank model as in (6.11) in
order to obtain the following decomposition:

X =
R∑
r=1

L∑
l=0

P (l)
r∑
p=1

u(1,l)
pr

⊗ u(2,l)
pr

⊗ · · · ⊗ u(N,l)
pr

 ⊗ s(l)
r . (6.14)

Hence, we reformulated BSI as the computation of a block-Toeplitz struc-
tured flower decomposition. It is clear that (6.14) reduces to (6.13) if N = 2.
We discussed uniqueness properties of the flower decomposition in subsec-
tion 6.2.2.

The proposed method allows one to uniquely identify both the system coef-
ficients and the inputs of large-scale BSI problems. The compressibility of the
coefficients allowed us to rewrite the problem as a tensor decomposition using
segmentation. This allows us to benefit from the mild uniqueness properties
of tensor decompositions and enables the blind identification. We empha-
size that our method is applicable to large-scale FIR systems because of the
highly compact representation of the coefficients by means of a higher-order
low-rank model. Recall that segmentation is a deterministic tensorization
technique, meaning that our method also works for very small sample sizes,
see section 6.4.

In contrast to our method, conventional techniques fall short in the large-
scale setting. For example, ICA methods that use Qth-order statistics are
infeasible when M is large because the number of entries in the resulting
tensor is O(MQ). Our segmentation-based method reshapes the (M × K)
data matrix into a (I1 × I2 × · · · × IN ×K) tensor with the same number of
entries as in the data matrix. If I1 = I2 = · · · = IN = K = I, the resulting
tensor contains O(IN+1) entries, or equivalently O(logN (M)M), which more
or less amounts to a decrease of complexity by Q orders of magnitude.
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6 Segmentation-based blind system identification

6.3.4 Uniqueness
We derive uniqueness conditions similar to the ones in [51], [65] for the decom-
position in (6.8). By ignoring the block-Toeplitz structure on S in this subsec-
tion, we can ignore the superscript l for simplicity and take 1 ≤ r ≤ R(L+1).
Assume we have low-rank coefficient vectors of the form:

gr = vec(Gr) =
Pr∑
p=1

bpr ⊗apr, (6.15)

with apr ∈ KI , bpr ∈ KJ , and R′ =
∑R
r=1 Pr. Note that Gr = ArBT

r . We
now apply Theorem 3 from subsection 6.1.2.

Theorem 5. Consider a matrix S ∈ KK×R(L+1) that does not have pro-
portional columns and a matrix G ∈ KM×R(L+1) of which the columns
have structure (6.15). Assume the matrices A =

[
A1 A2 · · · AR

]
and

B =
[
B1 B2 · · · BR

]
have full column rank. If M ≥ R′2 then the de-

composition X = GST is essentially unique.

Proof. The constraint M ≥ R′2 allows us to reshape the columns of X into
(I × J) matrices Xr such that M = IJ for 1 ≤ r ≤ R(L+ 1) with I, J ≥ R′.
The matrices Xr admit the following decomposition: Xr = ArBT

r . The
matrices Ar and Br have full column rank by definition. The result then
follows from Theorem 3.

We can apply this result to coefficient vectors that can be modeled as sums
of exponentials. Element-wise, we have:

gr(ξ)
def= gξ+1,r =

Pr∑
p=1

αprz
ξ
pr,

for 0 ≤ ξ ≤ M − 1 and 1 ≤ r ≤ R(L+ 1). One can see that this is a special
case of (6.15) as follows. Take ξ = i+ jI with 0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1
and M = IJ . Hence, we have

gξ+1,r =
Pr∑
p=1

αprz
i+jI
pr =

Pr∑
p=1

αprz
i
prz

jI
pr .

By defining aipr = zipr and bjpr = αprz
jI
pr , we obtain (6.15).

We generalize Theorem 5 for coefficient vectors of the form:

gr = vec(Gr) =
Pr∑
p

u(N)
pr ⊗u(N−1)

pr ⊗ · · ·⊗u(1)
pr (6.16)
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6.3 Large-scale BSI using segmentation

with u(n)
pr ∈ KIn .

Theorem 6. Consider a matrix S ∈ KK×R(L+1) that has full column rank
and a matrix G ∈ KM×R(L+1) with structure (6.16). Assume the matrices
U(n) =

[
U(n)

1 U(n)
2 · · · U(n)

R

]
, for 1 ≤ n ≤ N , have full column rank. If

M ≥ R′2 then the decomposition X = GS is essentially unique.

Proof. Reshape the columns of X into (I1 × I2 × · · · × IN ) tensors Xr with
M =

∏N
n=1 In for 1 ≤ r ≤ R(L+ 1). Construct N matrix representations of

the form: X(w)
r = A(w)

r B(w)
r

T
for 1 ≤ w ≤ N with A(w)

r =
⊙

γ∈Γw U(γ)
r ∈

KI′w×Pr and B(w)
r =

⊙
υ∈Υw U(υ)

r ∈ KJ′w×Pr with I ′w =
∏
γ∈Γw Iγ , and J

′
w =∏

υ∈Υw Iυ. The sets Γw and Υw satisfy Γw ∪Υw = {1, . . . , N} and Γw∩Υw =
∅. The constraint M ≥ R′2 allows at least one matrix representation w for
which I ′w, J

′
w ≥ R′. The factor matrices A(w)

r and B(w)
r have full column

rank by definition. The flower decomposition can be interpreted as a coupled
BTD in multilinear rank-(Pr, Pr, 1) terms. We know from subsection 6.2.2
that the flower decomposition is unique if one of its BTDs is unique and S
has full column rank. The result then follows from Theorem 3.

Let us now give an example to explain why the uniqueness conditions
become milder in the higher-order case. Consider decomposition (6.8) and
ignore the block-Toeplitz structure as before. Consider a coefficient matrix
G that has a 6th-order structure (N = 6), which we will represent by tensors
of increasing order. More specifically, we have a matrix of the form G =
U(6)�U(5)�U(4)�U(3)�U(2)�U(1) with U(n) ∈ KIn×R and In = 2, for
1 ≤ n ≤ N , using M = 64 and K = 1000. By applying our segmentation-
based approach to X for increasing N̂ , we obtain a CPD of an (N̂ + 1)th-
order tensor X of dimensions (I1 × · · · × IN̂ × K); see Table 6.1 for the
values of the dimensions. For N̂ > 2, one can rework the higher-order CPD
into a set of coupled third-order CPDs, similar to the explanation for the
flower decomposition in subsection 6.2.2, such that one can use the uniqueness
conditions in [184]. In order to illustrate the milder uniqueness conditions for
increasing order N̂ we check if Corollary 4.13 in [184] is generically satisfied, in
the way explained in [196, Section III-B]. The results are shown in Table 6.2.
It is clear that the uniqueness conditions are more relaxed for higher N̂ , i.e.,
when exploiting more of the intrinsic higher-order structure.

6.3.5 Block-Toeplitz structure
We have shown that convolutive BSI can be reformulated as a block-Toeplitz
constrained flower decomposition, assuming low-rank coefficient vectors. Im-
proved uniqueness conditions can be obtained by explicitly exploiting the
block-Toeplitz structure of S in (6.8) as well. Dedicated uniqueness condi-
tions have been presented in [187], [196] for the block-Toeplitz constrained
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6 Segmentation-based blind system identification

Table 6.1: Dimensions of the obtained tensor X by applying segmentation to (6.8) using
M = 64, K = 1000, and a given N̂ .

N̂ (I1 × · · · × IN̂ ×K)

2 8× 8× 1000
3 4× 4× 4× 1000
4 2× 4× 4× 2× 1000
5 2× 2× 2× 2× 4× 1000
6 2× 2× 2× 2× 2× 2× 1000

Table 6.2: By exploiting more of the intrinsic higher-order structure in problem (6.8), more
inputs can be identified. Here we report the maximum value of R for which Corollary 4.13
in [184] holds for a given N̂ and corresponding dimensions given in Table 6.1.

N̂ 2 3 4 5 6

R 40 46 49 50 52

(coupled) CPD and the BTD in multilinear rank-(Pr, Pr, 1) terms. In this
subsection, we generalize the results for the more general flower decompo-
sition. In other words, we exploit both the higher-order structure and the
block-Toeplitz structure, enabling more relaxed uniqueness conditions.
Consider the block-Toeplitz decomposition X = GST defined in (6.8). We

call it essentially unique if any other block-Toeplitz decomposition X = MTT

is related to X = GST via a nonsingular matrix F ∈ KR×R as follows:
G(l) = M(l)FT and S(l) = T(l)F−1 for 0 ≤ l ≤ L. Several essential unique-
ness conditions can be found in [187]. We repeat Lemma 2.4 from [187] as
Lemma 2 in this chapter.

Lemma 2. The block-Toeplitz constrained decomposition X = GST defined
in (6.8) is essentially unique if the matrices G and Z ∈ K(K−1)×R(L+2),
defined as

Z =
[
S(0) S(1) · · · S(L) S(L)

]
have full column rank. The matrices S(l) and S(l) are equal to S(l) with the
first and last row omitted, respectively.

Remember that the matrix S in the block-Toeplitz decomposition (6.8)
can only be found up to the intrinsic ambiguity F. Hence, we have S =
T(IL+1⊗F) in which T is a block-Toeplitz matrix with the same column
space as S, i.e., range(S) = range(T). As such, we can write (6.8) as

X = G(IL+1⊗FT)TT.

A two-step procedure for determining G, F, and T from X has been pro-
posed in [187]. First, we determine T by computing the column space
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6.3 Large-scale BSI using segmentation

range(XT) = range(S), assuming G and Z have full column rank, and solving
a linear system of equations as explained in [187]. According to Lemma 2,
we obtain S up to the intrinsic block-Toeplitz indeterminacy, i.e., we have
T = (IL+1⊗F−1)S. Next, we can determine G and F via a coupled decom-
position as follows. We have

Y = X(TT)† = GST(TT)† = G(IL+1⊗FT).

Let us partition Y ∈ KM×R(L+1) as Y =
[
Y(0) Y(1) · · · Y(L)] in which

Y(l) ∈ KM×R. Hence,

Y(l) = G(l)FT for 1 ≤ l ≤ L. (6.17)

Equation (6.17) is a coupled decomposition of matrices Y(l) with a common
factor F. One can interpret the block-Toeplitz factorization as a deconvolu-
tion, i.e., the convolutive BSI problem has been reduced to an instantaneous
BSI problem which takes the form of a coupled decomposition. Decomposi-
tion (6.8) can be interpreted as a matrix representation of a block-Toeplitz
constrained CPD or BTD in multilinear rank-(Lr, Lr, 1) terms if G = B�A
or if G =

[
vec(B1AT

1 ) · · · vec(BRAT
R)
]
, respectively.

Here we apply the same idea to the flower decomposition as follows. Con-
sider a coefficient matrix G with columns defined as in (6.12), resulting in a
coupled flower decomposition in (6.17). As explained earlier, a flower decom-
position can be written as a coupled BTD in multilinear rank-(P (l)

r , P
(l)
r , 1)

terms. Hence, each flower decomposition in (6.17) can be written as:

Y(w,l) = G(w,l)FT

in which G(w,l) ∈ KI′×R (I ′ = M) is defined as

G(w,l) =
[
vec(B(w,l)

1 A(w,l)
1

T
) · · · vec(B(w,l)

R B(w,l)
R

T
)
]

with A(w,l)
r ∈ KI′w×P (l)

r , B(w,l)
r ∈ KJ′w×P (l)

r . Or equivalently,

Y(w,l) =
(
A(w,l)�B(w,l)

)
F(ext,l)T

(6.18)

with F(ext,l) =
[
1T

P
(l)
1
⊗ f1 · · ·1T

P
(l)
R

⊗ fR
]
. Hence, we obtain a coupled BTD

and we can use the uniqueness conditions from [184], [187]. First, we define
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6 Segmentation-based blind system identification

the matrix V:

V =



CP+1(A(1,0))�CP+1(B(1,0))
...

CP+1(A(1,L))�CP+1(B(1,L))
CP+1(A(2,0))�CP+1(B(2,0))

...
CP+1(A(2,L))�CP+1(B(2,L))

...
CP+1(A(W,L))�CP+1(B(W,L))


PBTD,

in which A(w,l) ∈ KI′w×RP and B(w,l) ∈ KJ′w×RP are defined as

A(w,l) =
[
A(w,l)

1 · · · A(w,l)
R

]
,

B(w,l) =
[
B(w,l)

1 · · · B(w,l)
R

]
,

assuming P (l)
r = P for 1 ≤ r ≤ R and 0 ≤ l ≤ L.

The matrix PBTD is a selection matrix that takes into account that each
column of F(ext) is repeated P times in (6.18), see [186], [187].
Theorem 7. Consider the decomposition of X in (6.8) in which G has a
structure as in (6.12) with P (l)

r = P , for 1 ≤ r ≤ R and 0 ≤ l ≤ L, and S has
a block-Toeplitz structure. It is essentially unique if G, Z, F, and V have
full column rank.

Proof. Lemma 2 ensures that we can write the block-Toeplitz decomposition
in (6.8) as a coupled flower decomposition. We explained above how this de-
composition can be written as a coupled BTD in multilinear rank-(P (l)

r , P
(l)
r )

terms. The results then follows from [187, Theorem II.3].

By exploiting the block-Toeplitz structure in (6.8), Theorem 7 provides a
more relaxed uniqueness condition than Theorem 6. We compare the the-
orems by checking if the conditions are generically satisfied, in the way ex-
plained in [196, Section III-B]. More specifically, we construct random ma-
trices with structure as specified in Theorems 6 and 7. Next, we numerically
check for which values of R the conditions hold. The results are shown in
Table 6.3 for M = 1000, I1 = I2 = I3 = 10 (N = 3), and K = 100. Clearly,
more inputs can be identified by exploiting the available block-Toeplitz struc-
ture. The most restrictive constraint in Theorem 7 is the constraint that Z
should have full column rank, hence, the repeated values do not depend on P .

Finally, algebraic methods have been proposed that are guaranteed to find
the exact solution in the case of exact decompositions, see [187], [196]. In
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6.4 Numerical experiments

Table 6.3: By exploiting the block-Toeplitz structure in (6.8), more relaxed uniqueness
conditions can be obtained. Here, we report the maximum value of R for which Theorems 6
and 7 hold for a given pair (P,L) and M = 1000, I1 = I2 = I3 = 10, and K = 100.
Clearly, more inputs can be identified when exploiting the available block-Toeplitz structure.

L 1 2 3

P 1 2 3 1 2 3 1 2 3

Theorem 6 15 7 5 10 5 3 7 3 2
Theorem 7 33 33 33 24 24 24 19 19 19

the noisy case, such methods can be used to initialize optimization-based
methods.

6.4 Numerical experiments

In subsection 6.4.1 we illustrate our method with a simple proof-of-concept.
Next, we inspect the influence of noise and sample size as well as the system
order on the accuracy in subsection 6.4.2 and subsection 6.4.3, respectively.
In subsection 6.4.4 we discuss parameter selection. In order to compute the
relative error on the estimated FIR system coefficients and inputs, they first
have to be optimally scaled and permuted with respect to the true ones.
This is due to the standard permutation and scaling indeterminacies in BSI.
Hence, we define the relative error εA as the relative difference in Frobenius
norm ||A− Â||F/||A||F with Â the optimally scaled and permuted estimate
for the matrix A. In the experiments we use Gaussian (white) additive noise
and i.i.d. zero-mean unit-variance Gaussian random sources of length K
unless stated otherwise.
We compute tensor decompositions using least-squares optimization-based

methods from Tensorlab [211], [215]. The CPD and the BTD in multilinear
rank-(Pr, Pr, 1) terms are computed using cpd and ll1, respectively, using
a GEVD as initialization, see [49], [178], [180], [215]. The (unstructured)
decomposition in (rank-Lr ⊗ vector) terms is computed with a nonlinear
least-squares (NLS) algorithm called lvec [18], [21] which is available upon
request. We use the GEVD method from subsection 6.2.3 to initialize. For
the computation of the block-Toeplitz structured flower decomposition we use
a two step procedure. First, we compute the unstructured decomposition as
explained earlier. Next, we use this solution to initialize the computation
of the block-Toeplitz structured flower decomposition in the SDF framework
of Tensorlab [178]. Finally, we mention that for very large tensors one can
resort to large-scale algorithms, see [171], [209], [214].
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6 Segmentation-based blind system identification

Original
coefficients

First input Second input

Reconstructed
coefficients Delay zero

Delay one

Figure 6.5: By exploiting the low-rank structure of the FIR system coefficients, the coeffi-
cient vectors can be perfectly reconstructed (in the noiseless case).

6.4.1 Proof-of-concept
We illustrate the proposed method with a simple proof-of-concept. Consider
a large FIR system with M = 1000 outputs, R = 2 inputs with K = 100
samples, and system order L = 1. The coefficient vectors g(l)

r are sums of
exponentials: g(0)

1 (ξ) = e−2ξ, g(1)
1 (ξ) = 1

4 (5−10ξ + 10
ξ
2 ), g(0)

2 (ξ) = 1
3 (e

ξ
2 +

e−4ξ), and g(1)
2 (ξ) = ( 1

2 )
3ξ
2 evaluated in M equidistant samples in [0, 1]. We

know from subsection 6.3.2 that a sum of P exponentials leads to a reshaped
tensor of rank-P . Hence, we use an Nth-order rank-1 approximation for g(0)

1
and g(1)

2 (P (0)
1 = P

(1)
2 = 1) and we use anNth-order rank-2 approximation for

g
(1)
1 and g(0)

2 (P (1)
1 = P

(0)
2 = 2). We choose N = 3 with In = 10 for 1 ≤ n ≤

N . As such, we decompose the (10×10×10×100) segmented tensor obtained
from the observed data matrix X into a sum of (rank-P (l)

r ⊗ vector) terms.
We use the two step procedure explained above to compute a solution. Note
that we need only P (l)

r (I1 +I2 +I3−2) values to model the (r, l)th coefficient
vector. More specifically, we need only 28 or 56 values instead of 1000 for a
rank-1 or -2 approximation, respectively. Hence, we have compression rates
of 1−P (l)

r
I1+I2+I3−2

M = 97.20% and 94.40%, respectively. Higher compression
rates can be attained by further increasing N . Both the original and perfectly
reconstructed coefficient vectors are shown in Figure 6.5.

6.4.2 Influence of noise and sample size
Let us illustrate the influence of the noise and the sample size K for the
proposed method. Consider a large FIR system with M = 1000 outputs,
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Figure 6.6: The proposed method clearly obtains accurate results in comparison with the
SNR for both the coefficients and the inputs, e.g., a relative error of -45 dB for 10 dB SNR.
Increasing the number of samples improves the accuracy on the coefficients. This is not
the case for the inputs due to the fact that one also has to estimate longer input signals.

R = 3 inputs of sample size K, and system order L = 1. We vary the SNR
from 0 dB to 30 dB in steps of 10 dB and choose K = 10i for 1 ≤ i ≤ 3. The
low-rank coefficient vectors are constructed as vectorized low-rank tensors
using (6.12). Specifically, we have N = 2, P (l)

r = 2 for all delays of the first
input, P (l)

r = 1 for all delays of the other two inputs, and I = J = 50 for
1 ≤ n ≤ 2 using random zero-mean unit-variance Gaussian-distributed factor
vector entries. In Figure 6.6, we report the median across 50 experiments of
the relative error on the system coefficients εG and the inputs εS. The results
clearly show that the accuracy is very high in comparison with the signal-to-
noise ratio (SNR) for both the coefficients and the inputs. Moreover, even
a small sample size K leads to accurate results. Also, increasing the sample
size K is beneficial for εG but has no effect on εS. This is due to the fact
that one also has to estimate longer input signals, which was also observed
for instantaneous BSS [21].

6.4.3 Influence of the system order L

We analyze the effect of under- or overestimating the system order L for our
segmentation-based method. Consider a large FIR system with M = 1000
outputs, R = 2 inputs of sample size K = 100, and exact system order L = 2.
The low-rank coefficient vectors are constructed as vectorized rank-1 tensors
using (6.12) with N = 3, P (l)

r = 1 for all r and l, In = 10 for 1 ≤ n ≤ 3, and
random zero-mean unit-variance Gaussian-distributed factor vector entries.
The SNR is varied from 0 dB to 30 dB in steps of 10 dB. We apply our method
for 0 ≤ L̂ ≤ 4. The relative error on the system coefficients εG is defined as
εG = ||Ĝ−GPD||F/||Ĝ||F with Ĝ ∈ KM×R(L̂+1) and G ∈ KM×R(L+1). P ∈
KR(L+1)×R(L̂+1) is the optimal column selection and permutation matrix, and
D ∈ KR(L̂+1)×R(L̂+1) is the optimal scaling matrix. The relative error on the
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Figure 6.7: Overestimating the exact system order L = 2 is not so critical for the accuracy
on the coefficients. Underestimating the system order reduces the accuracy but the results
are still quite good.
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Figure 6.8: Although under- and overestimating the exact system order L = 2 decreases
the accuracy on the inputs, the former provides slightly more accurate results than the
latter.

inputs εS is defined in a similar way. We report εG and εS in Figure 6.7 and
Figure 6.8, respectively. While overestimating the system order L is not so
critical for εG, underestimating leads to less accurate results. Both under-
and overestimating the system order decreases the accuracy on the inputs, but
underestimating leads to slightly more accurate results than overestimating.
In practice, however, one can find a reasonable estimate for the system

order L as follows. The multilinear rank of the tensor X in (6.13) is bounded
by (

∑R
r=1

∑L
l=0 P

(l)
r ,
∑R
r=1

∑L
l=0 P

(l)
r , RL). Hence, one can find an estimate

for RL, in which R is equal to the number of inputs, by computing the
MLSVD of X and checking the number of significant mode-3 singular values.

6.4.4 Parameter selection
We discuss the choice of the dimensions I and J of the segmentation matrix
and the rank of the model P (l)

r for the (r, l)th coefficient vector. What is
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Figure 6.9: Our segmentation-based approach allows a trade-off between compactness and
accuracy of the model through the choice of the dimensions and the rank of the model.
What is considered a ‘good’ choice of parameters depends on the needs in a particular
application. If compactness is the objective, a square segmentation matrix is preferred. If
accuracy is the objective, a fat matrix clearly outperforms a tall one and better results can
be attained by increasing the rank. An explanation for the former phenomenon is illus-
trated in Figure 6.10 using a rank-1 approximation of two different segmented matrices.

considered a “good” choice of parameters depends of course on the needs in a
particular application. In our case, we are most interested in the compactness
and the accuracy of the model. Given those objectives, we discuss a simple
example to illustrate good choices and how to obtain them.
Consider a Gaussian with mean 0.5 and standard deviation 0.15 that is

uniformly discretized in M = 214 samples in [0, 1]. We reshape the resulting
vector into an (I × J) matrix with I = 2q and J = 214−q for 2 ≤ q ≤ 12 such
that IJ = M . Subsequently, we compute the best rank-P approximation by
truncating the singular value decomposition (SVD) for P = {1, 2, 3}. Define
the normalized number of parameters as the ratio between the number of
parameters needed in the model and the total number of values in the original
vector, i.e., M̂ = P (I + J − 1)/M . In Figure 6.9, we report the normalized
number of parameters M̂ versus the relative error ε for a rank-P model.

There is a trade-off between compactness and accuracy:

• The accuracy can be improved by choosing I and J such that I < J
rather than I > J . In other words, a fat segmentation matrix is better
than a tall one for a fixed rank; this is illustrated in Figure 6.10. Hence,
segmentation is not symmetric in the modes that it creates.

• Increasing the rank P of the model improves the accuracy, especially
when I < J .

• A compact model, on the other hand, can be obtained by reshaping
into a (nearly) square matrix (I ≈ J) and choosing P not too large.

In practice, one can first overestimate P and use the above guidelines to find
some reasonable segmentation dimensions. Most often the value of P is not
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Original function Tall segmentation matrix Fat segmentation matrix

Figure 6.10: By using a fat segmentation matrix, one can often attain a more accurate
approximation than by using a tall segmentation matrix. A tall segmentation matrix
often leads to a poor approximation because the original function is divided in only a few
segments. In the case of a rank-1 approximation (P = 1), each segment is approximated
by the same ‘long’ vector multiplied by a different coefficient. Conversely, the original
function is divided in many small segments when using a fat segmentation matrix, leading
to an overall good approximation.

very critical, cf. also [21]. Next, one can repeat the analysis with smaller
values of P and further refine the choice of the parameters.
Let us illustrate that overestimation of P is not so critical. Consider a FIR

system with M = 100 outputs, R = 2 inputs with K = 10 samples, and sys-
tem order L = 1. The coefficient vectors g(l)

r are exponentials: g(0)
1 (ξ) = e−2ξ,

g
(1)
1 (ξ) = e

ξ
2 , g(0)

2 (ξ) = −eξ, and g(1)
2 (ξ) = 1

2e
−ξ evaluated in M equidistant

samples in [0, 1]. It is known that an exponential can be exactly represented
by a rank-1 model [21], [51]. However, we overestimate the rank value of the
coefficient vectors for the zeroth delay (of both inputs) by one, i.e., we use
P

(0)
1 = P

(0)
2 = 2 and P (1)

1 = P
(1)
2 = 1. We take N = 2 with I = J = 10. The

overestimation of the rank value is clearly not so critical: we can perfectly
reconstruct the coefficient vectors as shown in Figure 6.11. We also show
the spectrum of the low-rank models G(0)

1 and G(0)
2 for coefficient vectors

g(0)
1 and g(0)

2 , respectively, in Figure 6.12. It is clear that the rank has been
overestimated; a rank-1 model would have sufficed.

6.5 Applications
6.5.1 Direction-of-arrival estimation
A uniform rectangular array (URA) is an antenna array with M = MxMy

antennas that are uniformly spaced in a rectangular grid as depicted in
Figure 6.13. There are Mx and My antennas in the x- and y-direction,
respectively. Let us assume that the output of the mth antenna satis-
fies (6.7) and that the R inputs impinging on the URA are narrow-band
signals. In that case it can be shown that the system coefficients satisfy
g(l)
r = g(l)

x,r⊗g(l)
y,r with g(l)

x,r and g(l)
y,r defined element-wise as g(l)

x,mr = (θ(l)
r )m−1
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Figure 6.11: Although we overestimate the rank value of the zeroth coefficient vector of
both inputs, the FIR system coefficients are perfectly reconstructed in the noiseless case.
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Figure 6.12: The spectra of the obtained low-rank models G(0)
1 and G(0)

2 for the reshaped
coefficient vectors of the zeroth delay clearly show a rank-1 model would have sufficed.
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Figure 6.13: Illustration of a uniform rectangular array (URA) withM = MxMy antennas:
Mx = 4 andMy = 4 in the x- and y-direction, respectively. The rth source is impinging on
the URA from the far field and is characterized by two angles: the azimuth αr and elevation
βr relative to the x-axis and the normal, respectively, hence, we have −90◦ ≤ αr, βr ≤ 90◦.

and g(l)
y,mr = (φ(l)

r )m−1, respectively. We have θ(l)
r = e2πi∆x cos(α(l)

r ) sin(β(l)
r )λ−1

and φ
(l)
r = e2πi∆y sin(α(l)

r ) sin(β(l)
r )λ−1 with inter-element spacings denoted by

∆x and ∆y, and λ denotes the wavelength. The angle αr to the x-direction
is the azimuth and the angle βr to the normal is the elevation. Clearly, the
system coefficients are Kronecker products of Vandermonde vectors that al-
low a rank-1 representation. We compare our segmentation-based method
with the well-known MUSIC method for DOA estimation [127].
Consider a large square URA with M = 625 antennas (Mx = My = 25)

with R = 2 inputs, system order L = 1, and K = 100 samples. Assume ∆x

and ∆y are both equal to half the wavelength λ. The azimuth and eleva-
tion pairs are given by (α(0)

1 , β
(0)
1 ) = (−51◦, 80◦), (α(1)

1 , β
(1)
1 ) = (55◦,−60◦),

(α(0)
2 , β

(0)
2 ) = (25◦,−20◦), and (α(1)

2 , β
(1)
2 ) = (80◦, 51◦). Recall that the co-

efficients g(l)
r are Kronecker products of Vandermonde vectors (which admit

a rank-1 representation). Hence, we first reshape each coefficient vector g(l)
r

into a (25 × 25) matrix G(l)
r such that vec(G(l)

r ) = g(l)
r and so we have

G(l)
r = g(l)

y,r ⊗ g(l)
x,r. Next, we use a (5 × 5) second-order rank-1 model for

g(l)
x,r and g(l)

y,r. This simply leads to an overall fourth-order rank-1 model
(N = 4) for each g(l)

r with In = 4 for 1 ≤ n ≤ 4. As such, we only need∑4
n=1 In − 3 = 17 values instead of 625 which means a compression rate of

1−
∑N

n=1
In−3

M = 97.28%.
We report the median across 100 experiments of the relative errors on the

azimuth and elevation angles, denoted as εα and εβ , respectively, for vary-
ing SNR in Figure 6.14. Clearly, segmentation yields more accurate results
than MUSIC; note the high accuracy compared to the SNR. The accuracy
of MUSIC, however, is bounded by the number of points used to evaluate
the 2D MUSIC spectrum [127]. Remember that MUSIC first computes an
eigenvalue decomposition of the (M ×M) covariance matrix in order to eval-
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Figure 6.14: Segmentation is clearly more accurate than 2D-MUSIC. For example, we have
a relative error of -56 dB and -36 dB for 10 dB SNR for segmentation and 2D-MUSIC,
respectively. Also, the accuracy of segmentation is high compared to the SNR, even at
low SNR. The accuracy of 2D-MUSIC, on the other hand, is bounded by the number of
points in which the MUSIC spectrum is evaluated. This number has been limited due
to the large number of antennas in the large-scale URA under consideration. However,
the median computation cost of 2D-MUSIC is still quite high compared to segmentation:
10.04 seconds versus 0.77 seconds on a standard laptop.

uate the spectrum. The peaks of the spectrum correspond to azimuth and
elevation pairs. In order to attain accurate estimates, one has to evaluate
the spectrum in many angles which can become computationally expensive.
Here, we used 100 equidistant angles in [−π2 ,

π
2 ] for both DOAs to evaluate

the spectrum. We limited the number of evaluation points because of the
relatively large number of antennas. It is the high computational load of
MUSIC for large M that makes it inaccurate or computationally infeasible
in a large-scale setting.

It is not unlikely that in a large-scale array a number of antennas will
malfunction. This would result in an observed data matrix with a few or
even all entries missing in several rows, leading to an incomplete tensor after
segmentation. Tensorlab’s built-in support for incomplete tensors, however,
allows us to compute a decomposition and retrieve the DOAs [215]. Further-
more, the arrays are typically non-uniform in large-scale applications. One
way to tackle this problem is to fit an imaginary uniform grid on top of the
existing antennas. The resulting URA is very dense and mostly filled with
non-existing antennas, resulting in a large and incomplete observed data ma-
trix. However, there exist algorithms with first and second-order convergence
that have a computational complexity that is only linear in the number known
entries [214]. Hence, it is still possible to estimate the DOAs in this case. In
Figure 6.15 we report the results for the same experiment as above but now
with a (random) fraction of the antennas turned off. Clearly, the estimates
are still very accurate, even for low SNR and 90% of the array inactive.
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Figure 6.15: The loss in accuracy in a large-scale uniform rectangular array with missing
antennas is limited, even for many inactive antennas and low SNR. For example, we
have only 14 dB loss in accuracy for the elevation in 0 dB SNR when up to 90% of the
antennas are inactive. As such, a segmentation-based approach using incomplete tensor
decompositions enables DOA estimation in large-scale grids with a few broken antennas or
even non-uniform grids. In the latter case, the grid is “completed” with a dense uniform
one that has many missing antennas.

6.5.2 Neural spike sorting
Spike-sorting refers to the separation of spike trains fired by different neu-
rons from high-density micro-electrode array (HD-MEA) recordings. Often
an instantaneous BSS model is assumed and one can use, e.g., independent
component analysis (ICA) to extract the spike trains [131]. A convolutive
model as in (6.7), however, is typically more accurate because the signals do
not propagate instantaneously [117]. Moreover, the assumption of indepen-
dence is not satisfied when spikes coincide. Also, our method works if only a
few samples are available. The amplitude of a spike train typically decreases
with a 1/d characteristic in which d equals the distance between the neuron
and the array. As such, the system coefficients can be assumed low-rank
in the high-density setting. We illustrate our method for the separation of
simulated coinciding spike trains from a large-scale convolutive mixture.
Consider an array with M = 1000 sensors, system order L = 1, and R = 2

neural spike trains with K = 270 samples. Assume the system coefficients
can be modeled using the 1/d characteristic as mentioned above, i.e., we
have:

g(l)
r (ξ) = a

(l)
r√

α2
r +

(
ξ−βr
b

(l)
r

)2

evaluated in M equidistant samples in [0, 1]. αr equals the distance between
the array and the rth neuron. (x − βr) equals the distance between an
electrode of the array and the electrode with maximum amplitude for the
rth neuron. a

(l)
r and b

(l)
r are shape coefficients for the rth neuron and lth

delay. We use α1 = 0.1, α2 = 0.05, β1 = 0.2, and β2 = 0.7. We use the
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6.6 Conclusion

Figure 6.16: Simulated outputs of a high-density microelectrode array for measuring neu-
ronal activity using simulated spike trains as inputs.

following shape coefficient pairs (a(0)
1 , b

(0)
1 ) = (1, 1), (a(1)

1 , b
(1)
1 ) = (0.5, 0.1),

(a(0)
2 , b

(0)
2 ) = (1, 1), and (a(1)

2 , b
(1)
2 ) = (0.7, 0.05). The inputs are spike trains

of length K with the spikes modeled as a linear combination of two rational
functions:

s1(t) = 0.7
(t−0.5)2

0.012 + 1
− 0.3

(t−0.54)2

0.032 + 1
,

s2(t) = 0.3
(t−0.5)2

0.0452 + 1
− 0.15

(t−0.6)2

0.132 + 1
.

The SNR is 30 dB. Some outputs are shown in Figure 6.16. A rank-2 ap-
proximation is sufficient to accurately model the smooth system coefficients,
i.e., we have P (l)

r = 2 for 1 ≤ r ≤ 2 and 0 ≤ l ≤ 1. We choose I = 20 and
J = 50 so that we have a fat reshaping, see subsection 6.4.4. In Figure 6.17
we see an excellent separation of the spike trains, even for coinciding spikes
and small sample size. Although we do not exploit the periodicity of the
inputs, it is possible to use a two-fold segmentation approach consisting of
segmentation steps along both the input and mixing level as in [21].

6.6 Conclusion
In this chapter, we presented the first BSI method that is applicable to large-
scale FIR systems. The key idea is that in large-scale applications the system
coefficients are often compressible because there is a lot of structure that can
be exploited. We used low-rank tensor models to approximate the tensorized
system coefficients in a compact way, enabling large-scale BSI. We showed
that our method reduces BSI to a structured decomposition of a tensor ob-
tained by applying segmentation on the measured outputs. This enabled a
unique identification of the system and reconstruction of the inputs; no ad-
ditional assumptions, such as independence, are needed on the inputs. The
method even works well when only a few samples are available because it
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6 Segmentation-based blind system identification

True inputs Estimated inputs

Figure 6.17: Our segmentation-based approach obtains an excellent separation of a convo-
lutive mixture of simulated spike trains stemming from high-density microelectrode arrays
for measuring neuronal activity.

is deterministic. The decomposition that we used is a generalization of a
particular block term decomposition called the flower decomposition. We
discussed uniqueness properties and proposed a new algebraic method to
compute it. We also discussed uniqueness properties when incorporating the
block-Toeplitz structure of the decomposition. Our method proved viable
for DOA estimation in large-scale URAs with possibly broken antennas and
even in non-uniform arrays. Also, we demonstrated the use of our method
for convolutive spike sorting problems.
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Large-scale autoregressive system
identification using Kronecker
product equations 7
ABSTRACT By exploiting the intrinsic structure and/or sparsity of the sys-
tem coefficients in large-scale system identification, one can enable efficient
processing. In this chapter, we employ this strategy for large-scale single-
input multiple-output autoregressive system identification by assuming the
coefficients can be well approximated by Kronecker products of smaller vec-
tors. We show that the identification problem can then be reformulated
as the computation of a Kronecker product equation, allowing one to use
optimization-based and algebraic solvers.

This chapter is a slightly adapted version of M. Boussé and L. De Lathauwer, “Large-
scale autoregressive system identification using Kronecker product equations”, in 2018
6th IEEE Global Conference on Signal and Information Processing (GlobalSIP 2018,
Anaheim, California, USA), Nov. 2018, pp. 1348–1352.
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7 Large-scale autoregressive system identification using KPEs

Original signal Rank-1 model Rank-2 model

Figure 7.1: Low-rank matrix or tensor models can often provide a parsimonious and accu-
rate representation for smooth data.

7.1 Introduction
System identification is an important engineering problem in various ap-
plications, allowing us to model various systems using input and output
data. [137]. Recently, there is a growing interest in large-scale system identifi-
cation because of an increasing number and density of antennas or sensors in
fields such as array processing, telecommunications, and (biomedical) signal
processing [13], [107], [130]. In order to tackle such large-scale problems, the
intrinsic structure and/or sparsity of the data can be exploited by means of
parsimonious models.
Large-scale data is often compressible, or, in other words, it can often

be described in terms of much fewer parameters than the total number of
values [190]. Well-known examples are (exponential) polynomials, rational
functions, and smooth and periodic functions [20], [21], [51], [65], [95], [96],
[123]. Explicitly exploiting the intrinsic compactness of this type of data, en-
ables efficient processing in large-scale applications. Popular compact models
are low-rank matrix and tensor decompositions; see [41], [125], [168] and ref-
erences therein. A well-known approach consists of reshaping a large-scale
vector or matrix into a tensor which can then be modeled using a low-rank
approximation [99]; this is illustrated for a sigmoid1 in Figure 7.1. This ap-
proach has successfully allowed one to handle various large-scale applications
in tensor-based scientific computing and (blind) system identification [20],
[21], [96], [156], [159], [173], [174].
We adopt a similar strategy for autoregressive (AR) system identifica-

tion [137], [139], enabling large-scale applications. In this chapter, we limit
ourselves to single-input multiple-output (SIMO) AR models with Kronecker
product constrained coefficients. Although this particular structure corre-

1We evaluated a sigmoid of the form f(ξ) = 1/(1 + e−20(ξ−1/2)) in 100 equidistant
samples in [0, 1] and then reshaped the vector of length 100 containing the values into
a (10 × 10) matrix. We computed a low-rank model by truncating the singular value
decomposition and the reconstructions are obtained by vectorizing the resulting rank-1
and rank-2 matrices.
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7.1 Introduction

sponds to a rank-1 model, as we will explain later, it can already provide an
accurate and compact model while allowing us to explain the basic princi-
ples within the space restrictions of this chapter. More specifically, we show
that by explicitly exploiting the Kronecker structure, AR system identifica-
tion can be reformulated as a type of Kronecker product equation (KPE). By
the latter we mean a linear system of equations with a Kronecker product
constrained solution, which has already been applied successfully in various
applications [23], [25], [26]. A generic framework for this type of problems
was developed in [26], allowing us to use optimization-based and algebraic
solvers and formulate generic uniqueness conditions.
In the remainder of this section we give an overview of the notation that

is used in this chapter, several basic definitions, and KPEs. We derive our
method for large-scale SIMO AR system identification using KPEs in sec-
tion 7.2. In section 7.3, we analyze our method via several numerical exper-
iments. We conclude the chapter and discuss future work in section 7.4.

7.1.1 Notations and basic definitions
Vectors, matrices, and tensors are denoted by bold lowercase, bold uppercase,
and calligraphic letters, respectively. The vectorization of an Nth-order ten-
sor A ∈ KI1×I2×···×IN (K meaning R or C), denoted as vec(A), maps each el-
ement ai1i2···iN onto vec(A)j with j = 1+

∑N
k=1(ik−1)Jk and Jk =

∏k−1
m=1 Im.

The inverse operation of vec(·) is unvec(·). We indicate the nth element in a
sequence by a superscript between parentheses, e.g., {A(n)}Nn=1. The outer
and Kronecker product are denoted by ⊗ and ⊗, respectively. They are re-
lated through a vectorization: vec(a ⊗ b) = b⊗a.
The rank of a tensor is equal to the minimal number of rank-1 tensors that

generate the tensor as their sum. A rank-1 tensor is defined as the outer
product of non-zero vectors.

7.1.2 Kronecker product equation
A KPE is a linear system of equations with a Kronecker product constrained
solution that has been applied successfully in various domains [23], [25], [26].
In this chapter, we limit ourselves to problems with the following Kronecker
product structure:

Ax = b with x = v⊗u, (7.1)

in which A ∈ KK×Q, x ∈ KQ, and b ∈ KK . The solution x can be expressed
as a Kronecker product v⊗u with u ∈ KI and v ∈ KJ such that Q = IJ .
More generally, x can be constrained by a Kronecker product of N non-zero
vectors:

Ax = b with x =
N⊗
n=1

u(n),
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7 Large-scale autoregressive system identification using KPEs

in which u(n) ∈ KIn and Q = I1I2 · · · IN . Importantly, a KPE is a special
case of a linear system of equations with a tensor-decomposition constrained
solution [26]. This type of problems could be solved by first solving the
system without structure and subsequently computing a rank-1 model of the
tensorized version of the solution. This approach works well if A has full
column rank, but, in contrast to the methods in [26], fails when A is rank
deficient or when K < Q, i.e., in the underdetermined case. The methods
in [26] compute the least-squares (LS) solution of (7.1).

7.2 Large-scale SIMO autoregressive system
identification using KPEs

By exploiting the intrinsic structure or sparsity of a model, one can enable
large-scale system identification. Here, we show that large-scale SIMO AR
system identification can be reformulated as a particular type of KPE by
exploiting the hypothesized Kronecker product structure of the coefficients.
First, we define AR system identification and Kronecker constrained coeffi-
cients in subsection 7.2.1 and subsection 7.2.2, respectively. Next, we derive
our KPE-based method for large-scale SIMO AR system identification in
subsection 7.2.3.

7.2.1 Autoregressive system identification
Consider a MIMO AR model with Q outputs, P exogenous inputs, and sys-
tem order L, that relates the outputs yq[k] using the following discrete dif-
ference equation:

L∑
l=0

Q∑
q=1

gpq[l] yq[k − l] = xp[k] + np[k] for 1 ≤ k ≤ K (7.2)

The AR coefficients are given by gpq[l] for 0 ≤ l ≤ L, the pth exogenous input
is denoted by xp[k] and the additive white noise is given by np[k]. Assuming
we have K + L samples, the model in (7.2) can be expressed in matrix form
as follows:

L∑
l=0

G(l)Y(l) = X + N (7.3)

with G(l) the lth (P ×Q) coefficient matrix and Y(l) the lth (Q×K) output
matrix, which are defined element-wise as g(l)

pq = gpq[l] and y(l)
qk = yq[k − l],

respectively, for 0 ≤ l ≤ L. The input and noise matrix X and N both
have dimensions (P × K). Note that one typically assumes P = Q when
considering the MIMO case; see, e.g., [137], [139] and references therein. The
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7.2 Large-scale SIMO autoregressive system identification using KPEs

formulation in (7.3), however, is more general because we allow that P 6= Q.
In this chapter, we limit ourselves to single-input multiple-output systems,
i.e., we have P = 1 and Q > 1. In that case, the AR model with exogenous
inputs (ARX) in (7.3) reduces to:

L∑
l=0

g(l)TY(l) = xT + nT

with coefficients g(l) ∈ KQ and input and noise x,n ∈ KK . The noise is
omitted in the derivation of our method for notational convenience, but its
influence is examined in section 7.3.

7.2.2 Kronecker constrained system coefficients

Large-scale data can often be compactly modeled because of some intrinsic
structure or sparsity of the data. In this chapter, we take a similar approach
as in [20], [21]: we assume the (large-scale) AR coefficients admit, or, can be
well approximated by, a Kronecker product of N non-zero vectors, enabling
a possibly very compact representation for large N . Consider the following
Kronecker product structure for g(l) ∈ KQ:

g(l) = b(l)⊗a(l), for 0 ≤ l ≤ L, (7.4)

with non-zero vectors a(l) ∈ KI(l) and b(l) ∈ KJ(l) such that Q = I(l)J (l),
for 0 ≤ l ≤ L. Clearly, this approach allows for a compact representation
of the coefficients: we need only (I(l) + J (l) − 1) values instead of Q =
I(l)J (l) to represent g(l). Interestingly, constraint (7.4) corresponds to a
rank-1 assumption on a matricized version of g(l), i.e., we have: mat

(
g(l)) =

a(l)Tb(l) = a(l) ⊗ b(l). More generally, one can consider a Kronecker product
of N non-zero vectors:

g(l) =
N⊗
n=1

u(n,l), for 0 ≤ l ≤ L, (7.5)

with u(n,l) ∈ KI(l)
n such that Q =

∏N
n=1 I

(l)
n , for 0 ≤ l ≤ L. Increasing N ,

enables even more compact representations because we need only
∑N
n=1 I

(l)
n −

N+1 values instead of Q =
∏N
n=1 I

(l)
n to represent g(l). For example, if I(l)

n =
I for 1 ≤ n ≤ N and 0 ≤ l ≤ L, the number of unknown variables reduces
from O(LIN ) to O(LNI). For N > 2, constraint (7.5) corresponds to a
rank-1 assumption on a tensorized version of g(l), i.e., we have: unvec

(
g(l)) =

u(1,l) ⊗u(2,l) ⊗· · ·⊗u(N,l). A detailed analysis on how to choose the dimensions
of the vectors in the Kronecker product can be found in [20], [21].
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7 Large-scale autoregressive system identification using KPEs

7.2.3 Large-scale AR system identification as a KPE
By explicitly exploiting the Kronecker structure in the model, one can refor-
mulate AR system identification as the computation of a (structured) KPE,
allowing one to use optimization-based and algebraic solvers and formulate
(generic) uniqueness conditions; see [26]. We illustrate this as follows.
Assuming the AR coefficients g(l), for 0 ≤ l ≤ L, can be modeled by a

simple Kronecker product as in (7.4), we obtain:

L∑
l=0

(
b(l)⊗a(l)

)T

Y(l) = xT. (7.6)

By taking the transpose, one can see that (7.6) reduces to:

L∑
l=0

Y(l)T
(
b(l)⊗a(l)

)
= x. (7.7)

For L = 0, this model reduces to a KPE of the form (7.1). For L > 0,
the model in (7.7) is a straightforward generalization where the right-hand
side equals a sum of L + 1 matrix-times-Kronecker-product terms. More
generally, one can consider a Kronecker product of N non-zero vectors as
in (7.5), obtaining:

L∑
l=0

Y(l)T

(
N⊗
n=1

u(n,l)

)
= x,

which enables higher compression rates, as explained before. As such, large-
scale AR system identification is reformulated as the computation of a par-
ticular KPE. Additionally, the matrix Ỹ =

[
Y(0)T

,Y(1)T
, · · · ,Y(L)T

]
∈

KK×(L+1)Q has a block-Toeplitz structure due to the convolutive nature of
the ARX model. This structure can be exploited to speed up KPE algorithms
and relax uniqueness conditions; see [26].

7.3 Experiments
We illustrate our method for various scenarios: 1) a proof-of-concept exper-
iment in which we use exponentials as coefficient vectors, 2) an analysis of
the influence of noise and sample size on the accuracy, and 3) an analysis of
under- or overestimating the system order. For each experiment, we simulate
a random SIMO ARX system by fixing both the coefficients and the outputs,
and then constructing an input that satisfies the model in (7.3). We use i.i.d.
zero-mean unit-variance Gaussian random outputs for each experiment and
we further specify the particular coefficient definition in each experiment de-
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delay 0

delay 1

delay 2

Original coefficients Reconstruction

Figure 7.2: By exploiting the rank-1 structure, the autoregressive coefficients are perfectly
reconstructed (in the noiseless case).

scription. When considering the noisy case, we use Gaussian (white) additive
noise. We define the relative error εA as the relative difference in Frobenius
norm ‖A − Â‖F/‖A‖F. We use an adapted version of the non-linear LS
algorithms with random initialization from [26] in order to solve KPEs.

7.3.1 Proof-of-concept experiment
Perfect reconstruction of the AR coefficients can be obtained in the noiseless
case by exploiting the intrinsic rank-1 structure. We illustrate this for a large-
scale SIMO ARX system of order L = 2 with Q = 2500 outputs and sample
size K = 600. The coefficients g(l) are defined as exponentials of length
Q; more specifically, we have g(0)(ξ) = 1

10 exp−3ξ/2, g(1)(ξ) = 1
10 (0.5)ξ/2,

and g(2)(ξ) = 1
10 exp(ξ/2) uniformly sampled in [0, 1]. It is well-known that

exponentials can be exactly represented by a rank-1 structure [20], [21], [51],
validating the model in (7.7). We choose N = 2 and I

(l)
1 = I

(l)
2 = I = 50,

for 0 ≤ l ≤ L. Hence, we need only (2I − 1) = 99 values to model an AR
coefficient vector instead of 2500, which amounts to a compression rate of
1 − I1+I2−1

P = 96.04%. The original coefficients and their reconstruction, up
to machine precision, are shown in Figure 7.2.

7.3.2 Influence of noise and sample size on the accuracy
While increasing the sample size K improves the accuracy of the estimates,
even a small number of samples can lead to accurate results. Also, the ac-
curacy is quite high in comparison to the signal-to-noise ratio (SNR). We
illustrate this for a large-scale SIMO ARX system of order L = 5 with
Q = 500 outputs. We construct the rank-1 coefficient vectors as vector-
ized third-order rank-1 tensors using i.i.d. zero-mean unit-variance Gaussian
random factor vectors. We use the following dimensions for the coefficient
vectors: (I(0)

1 , I
(0)
2 , I

(0)
3 ) = (I(1)

1 , I
(1)
2 , I

(1)
3 ) = (20, 5, 5), (I(2)

1 , I
(2)
2 , I

(2)
3 ) =

(I(3)
1 , I

(3)
2 , I

(3)
3 ) = (25, 5, 4), (I(4)

1 , I
(4)
2 , I

(4)
3 ) = (I(5)

1 , I
(5)
2 , I

(5)
3 ) = (50, 5, 2).

We choose K = 1210 and 12100, which is equal to five and fifty times the
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Figure 7.3: While our method obtains accurate results with respect to the signal-to-noise
ratio, increasing the number of samples further improves the accuracy of the coefficient
estimates.
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Figure 7.4: While overestimation slightly reduces the accuracy, underestimating the system
order fails to give accurate results.

number of unknown coefficients (242 values), and use an SNR equal to 10, 20,
or 30 dB. The median results across fifty random experiments are illustrated
in Figure 7.3.

7.3.3 Influence of the system order on the accuracy

Although the accuracy of the estimates slightly reduces, overestimating the
system order L is not so critical. However, underestimating the order fails
to give accurate results. We illustrate this for a large-scale SIMO ARX
system of order L = 2 with Q = 100 outputs. We construct the rank-1
coefficient vectors as vectorized rank-1 matrices using i.i.d. zero-mean unit-
variance Gaussian random factor vectors. We use the following dimensions
for the coefficient vectors: I(l)

1 = 20 and I(l)
2 = 5, for 0 ≤ l ≤ L. We choose

K = 50, which is equal to twice the number of unknown coefficients. We use
an SNR of 10, 20, or 30 dB. While estimating the coefficients, we vary the
system order between zero and four. The median results across fifty random
experiments are shown in Figure 7.4.
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7.4 Conclusion and future work
We have presented a method for AR system identification that enables large-
scale applications by explicitly exploiting the hypothesized structure/sparsity
of the system coefficients. In this chapter, we have shown that the identifi-
cation problem can be reformulated as the computation of a KPE, allowing
one to use optimization-based solvers. Numerical experiments have shown
that our method performs well in noisy conditions and that over-estimation
of the system order is not so critical.
In follow-up work, we will address 1) the multiple-input multiple-output

case, 2) the explicit exploitation of the block-Toeplitz structure in the com-
putation and the uniqueness conditions, and 3) sum-of-Kronecker-products
constrained coefficients. The latter means that we approximate a matricized
or tensorized version of the coefficient vectors by a low-rank model instead
of rank-1 model as explained in this chapter.
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Face recognition as a Kronecker
product equation 8
ABSTRACT Various parameters influence face recognition such as expres-
sion, pose, and illumination. In contrast to matrices, tensors can be used to
naturally accommodate for the different modes of variation. The multilin-
ear singular value decomposition (MLSVD) then allows one to describe each
mode with a factor matrix and the interaction between the modes with a
coefficient tensor. In this chapter, we show that each image in the tensor
satisfying an MLSVD model can be expressed as a structured linear system
called a Kronecker product equation (KPE). By solving a similar KPE for
a new image, we can extract a feature vector that allows us to recognize
the person with high performance. Additionally, more robust results can be
obtained by using multiple images of the same person under different condi-
tions, leading to a coupled KPE. Finally, our method can be used to update
the database with an unknown person using only a few images instead of an
image for each combination of conditions. We illustrate our method for the
extended Yale Face Database B, achieving better performance than conven-
tional methods such as Eigenfaces and other tensor-based techniques.

This chapter is a slightly adapted version of M. Boussé, N. Vervliet, O. Debals, and L.
De Lathauwer, “Face recognition as a Kronecker product equation”, in IEEE 7th Inter-
national Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP 2017, Curaçao, Dutch Antilles), Dec. 2017, pp. 276–280. The associated
paper was nominated for a best student paper award at CAMSAP 2017. The figures
have been updated for consistency.
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8 Face recognition as a Kronecker product equation

8.1 Introduction
Face recognition is an important problem in computer vision with many ap-
plications within domains such as information security, surveillance, and bio-
metric identification [220]. Although many recognition systems use matrix-
based methods, face recognition is inherently a multidimensional problem
due to variations in facial expression, pose, illumination conditions, etc. [203].
Linear algebra is of limited use because it only captures a single variation
using a mode of a matrix. For example, the well-known Eigenfaces method
stacks vectorized images in the second mode, obtaining a matrix with modes
pixels × persons [194]. Although some methods have tried to accommodate
for different conditions [37], [89], the multidimensional structure remains a
challenging problem for matrix-based methods.
Recently, tensor tools have gained increasing popularity in signal process-

ing and machine learning applications [41], [168]. Tensors are higher-order
generalizations of vectors (first order) and matrices (second order). The
higher-order structure allows one to explicitly accommodate for the multidi-
mensional structure of facial images: each mode of a tensor can represent a
single variation of the image [203]. For example, a set of (vectorized) images
of several persons under different illumination conditions can be represented
by a third-order tensor with modes pixels × illuminations × persons. An im-
portant tensor tool is the multilinear singular value decomposition (MLSVD)
of a higher-order tensor which is a generalization of the well-known singular
value decomposition (SVD) [54]. The MLSVD allows one to approximately
represent the tensor by a set of factor matrices that are each related to a single
mode and a core tensor that explains the interaction between the different
modes. This type of representation is also used in TensorFaces, enabling
improved accuracy in face recognition in comparison with conventional tech-
niques such as Eigenfaces [204]. Several other tensor-based methods have
been proposed; see [102], [104].
In this chapter, we explain that tensor-based face recognition using the

MLSVD model can be expressed as a Kronecker product equation (KPE). A
KPE is a linear system of equations with a Kronecker product constrained
solution for which the authors have developed a generic framework in [26].
We show that by solving a KPE for a new unlabeled image, one can ob-
tain a feature vector that enables better recognition rates than conventional
methods. In practice, the robustness can be improved by coupling multi-
ple images of the same person under different conditions, leading to a set of
KPEs that are coupled. Additionally, our method allows one to add a new
unknown person using only a few images instead of an image for each com-
bination of conditions. We illustrate our method for the extended Yale Face
Database B which contains facial images of multiple persons under different
illuminations [88]. Our KPE-based method achieves higher performance than
conventional Eigenfaces and the tensor-based approach in [204].
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8.1 Introduction

We conclude this section with an overview of the notation and basic def-
initions. We also define the MLSVD and KPEs. Next, we reformulate face
recognition as a KPE in section 8.2. We apply our approach to a real-life
dataset in section 8.3.

8.1.1 Notations and basic definitions
We denote vectors, matrices, and tensors by bold lowercase, e.g., a, bold
uppercase, e.g., A, and calligraphic letters, e.g., A, respectively. A natu-
ral extension of the rows and columns of a matrix, is a mode-n vector of
a tensor A ∈ RI1×I2×···×IN , defined by fixing every index except the nth,
e.g., ai1···in−1:in+1···iN . A mode-n unfolding of A is a matrix A(n) with the
mode-n vectors as its columns (following the ordering convention in [125]).
The vectorization of A, denoted as vec(A), maps each element ai1i2···iN onto
vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im. We indicate

the nth element in a sequence by a superscript between parentheses, e.g.,
{A(n)}Nn=1.

The outer and Kronecker product are denoted by ⊗ and ⊗, respectively.
The mode-n product of a tensor A ∈ RI1×I2×···×IN and a matrix B ∈ RJn×In
is a tensor A ·nB ∈ RI1×···×In−1×Jn×In+1×···IN and is defined element-wise as
(A ·n B)i1···in−1jnin+1···iN =

∑In
in=1 ai1i2···iN bjnin . Hence, each mode-n vector

of the tensor A is multiplied with the matrix B, i.e., (A ·n B)(n) = BA(n).

8.1.2 Multilinear singular value decomposition
The MLSVD of a higher-order tensor is a generalization of the SVD of a
matrix [41], [54], [168]. The MLSVD writes a tensor A ∈ RI1×I2×···×IN as
the product

A = S ·1 U(1) ·2 U(2) · · · ·n U(N),

in which U(n) ∈ RIn×In is a unitary matrix, n = 1, . . . , N , and the core
tensor S ∈ RI1×I2×···×IN is ordered and all-orthogonal; see [54] for more
details. The mode-n rank of an Nth-order tensor is equal to the rank of the
mode-n unfolding. The multilinear rank of the tensor is equal to the tuple
of mode-n rank values. The MLSVD is related to the low-multilinear rank
approximation (LMLRA) and the Tucker decomposition (TD); see, e.g., [54],
[125], [214]. The decomposition has been used successfully in applications
such as compression and dimensionality reduction [59], [125].

8.1.3 (Coupled) Kronecker product equations
A KPE is a linear system of equations with a Kronecker product constrained
solution. Here, we limit ourselves to problems with the following simple
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8 Face recognition as a Kronecker product equation

Kronecker product structure:

Ax = b with x = v⊗u, (8.1)

in which A ∈ RM×K , x ∈ RK , and b ∈ RM . The solution x can be expressed
as a Kronecker product v⊗u with u ∈ RI and v ∈ RJ such that K = IJ . As
a matter of fact, a KPE is a simple case of a linear system with a solution that
can be represented as a matrix or tensor decomposition [26]. Expression (8.1)
can be solved by first solving the system without structure and subsequently
decomposing a matricized version of the solution. This approach works well
if A has full column rank, but, in contrast to the methods in [26], fails when
A is rank deficient or in the underdetermined case. The methods in [26]
compute the least-squares (LS) solution of (8.1).
A coupled KPE (cKPE) is a set of KPEs that have a common coefficient

vector. We limit ourselves to cKPEs of the form:

A(v⊗u(q)) = b(q) for q = 1, . . . , Q,

with A ∈ RM×K , v ∈ RI , u(q) ∈ RJ , and b(q) ∈ RM such that K = IJ .
By defining U ∈ RJ×Q with uq = u(q) and B ∈ RM×Q with bq = b(q), we
obtain

A(v⊗U) = B.

8.2 Face recognition using KPEs

8.2.1 Tensorization and MLSVD model
Higher-order tensors can explicitly accommodate for the multidimensional
nature of facial images by representing each variation by a mode of the ten-
sor [203], [204]. Although our method can be used for any combination of
variations, we illustrate the strategy for the following particular case. Con-
sider a set of facial images of J persons taken under I different illumination
conditions. Each image is represented by a matrix of size Mx×My with Mx

and My pixels in the x- and y-direction, respectively. All vectorized images
of length M = MxMy are stacked into a third-order tensor D ∈ RM×I×J
with modes pixels (px) × illuminations (i) × persons (p).
Next, we compute a truncated MLSVD of the tensor D:

D ≈ S ·1 Upx ·2 Ui ·3 Up, (8.2)

in which Upx ∈ RM×P , Ui ∈ RI×R, and Up ∈ RJ×L form an orthonormal ba-
sis for the pixel, illumination, and person mode, respectively. The interaction
between the different modes is expressed by the core tensor S ∈ RP×R×L.
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8.2 Face recognition using KPEs

Each row of Up, denoted by cT
p , can be interpreted as the coefficients for per-

son p and each row of Ui, denoted by cT
i , can be interpreted as the coefficients

for illumination i.

8.2.2 Kronecker product equation
Each mode-1 fiber of D in (8.2) corresponds to an image and can be modeled
by a KPE as follows. Consider a vectorized image d ∈ RM for a particular
person p and illumination i:

d = (S ·1 Upx) ·2 cT
i ·3 cT

p , (8.3)
d = UpxS(1) (cp⊗ ci) . (8.4)

Expression (8.4) is the mode-1 unfolding of (8.3) and is a KPE: each d is a
linear combination of the columns of UpxS(1) with Kronecker product con-
strained coefficients (cp⊗ ci).
Consider a set of facial images of the same person under Q different illu-

minations, leading to a set of coupled KPEs that share the coefficient vector
in the person mode:

d(q) = UpxS(1)(cp⊗ c(q)
i ) for q = 1, . . . , Q. (8.5)

By stacking all vectorized images d(q) and illumination coefficient vectors
c(q)
i into a matrix D ∈ RM×Q and Ci ∈ RR×Q, respectively, we obtain

D = UpxS(1)(cp⊗Ci).

8.2.3 Face recognition
We explain how to recognize a person in a (set of) facial image(s) under a
new illumination condition using (c)KPEs. First, we construct a tensor D by
stacking a set of facial images of different persons under different illuminations
in the way explained in subsection 8.2.1. Second, we compute the truncated
MLSVD of D, obtaining factor matrices Upx, Ui, and Up, and core tensor S.
Every (vectorized) image of D can then be expressed as a KPE as explained
in subsection 8.2.2. Next, consider a new, unlabeled facial image d(new) of a
known person. In order to recognize the person in the image, we solve the
following KPE using the algorithms from [26]:

d(new) = UpxS(1)

(
c(new)
p ⊗ c(new)

i

)
, (8.6)

obtaining estimates c̃(new)
p and c̃(new)

i for the coefficient vectors. We compare
c̃(new)
p with the rows of Up using the Frobenius norm of the difference (after
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8 Face recognition as a Kronecker product equation

fixing scaling and sign invariance). One can then recognize the person in
the image by assigning the label corresponding to the closest match. In
other words, the estimated coefficient vector for the person mode c̃(new)

p acts
as a feature vector and Up acts as a database. More robust results can be
obtained by using images under multiple illumination conditions and coupling
the KPEs as in (8.5).
In contrast to our method, the tensor-based approach in [204] solves (8.6)

by fixing the illumination coefficients to a particular illumination. More
specifically, the approach solves (8.6) by taking c(new)

i equal to a row of Ui,
reducing (8.6) to a linear system of equations for each illumination condition.
Every estimate is then compared with Up in a similar way as explained above.
This approach is especially tedious when considering many modes because a
linear system has to be solved for every possible combination. Our method,
on the other hand, computes the LS solution of (8.6) by explicitly exploiting
the Kronecker product structure of the coefficients.

8.3 Numerical experiments
We illustrate our KPE-based method for the extended Yale Face Database B1

which contains cropped facial images of J = 37 persons under 64 illumination
conditions. Some of the illuminations are missing for several persons and are
therefore removed entirely from the dataset, obtaining I = 57 conditions.
Each image of size 51 × 58 pixels is vectorized into a vector of length M =
2958. Hence, the resulting tensor D has size 2958× 37× 57.

We use a nonlinear LS algorithm with random initialization in order to
solve (c)KPEs [26]. All computations are done with Tensorlab [215]. We
compute the MLSVD with a randomized algorithm called mlsvd_rsi [211].
We use R = 15, L = J , and P = 1000 � M which we determined via
cross validation. We project the given image onto the column space of Upx
in order to reduce computation time. In order to accommodate for scaling
and sign invariance, the rows of Up and the estimated coefficient vectors are
normalized as sign(c1) c

‖c‖ . As explained in subsection 8.2.3, the normalized
rows of Up act as database, denoted by Udb, and the normalized coefficient
vector for the person mode acts as a feature vector.

8.3.1 Proof-of-concept
Although the facial image in Figure 8.1 is almost completely dark, our method
correctly recognizes the person in the image. In this case, we constructed the
MLSVD model in (8.2) using all facial images of all persons under every
illumination condition. Hence, the coefficient vectors cp and ci are perfectly

1The extended Yale Face Database B can be downloaded from http://vision.ucsd.edu/
~leekc/ExtYaleDatabase/ExtYaleB.html (visited March 14, 2018.
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8.3 Numerical experiments

ReconstructedGiven Match

Figure 8.1: Classification of a person that is included in the dataset. Note that we can
identify the person even though the picture is almost completely dark.

Table 8.1: By reformulating face recognition as a Kronecker product equation, higher per-
formance (%) can be obtained in comparison to conventional techniques such as Eigenfaces
as well as the tensor-based approach in [204]. Lower recognition time (s) is achieved in
comparison to the method of [204].

Eigenfaces [194] Vasilescu [204] KPE

Accuracy 93.3 93.5 95.7
Precision 90.6 94.4 96.6
Recall 88.4 90.9 95.8

Time of PCA/MLSVD 2.97 3.29 3.29
Time of recognition 0.004 0.135 0.097

reconstructed and a correct match is found. The reconstructed image in
Figure 3.6 can be obtained by recomputing the vectorized image using the
estimated coefficient vectors.

8.3.2 Performance

Our method obtains higher performance than conventional techniques as we
effectively exploit the multilinear structure of facial images by reformulat-
ing the recognition task as a KPE. Although our method is slower than
the matrix-based method, it is slightly faster than the tensor-based method
from [204] for this dataset. In Table 8.1 we report the median performance
and time across 50 trials for our method, Eigenfaces, and the tensor-based
method from [204]. In particular, we report the accuracy as well as the pre-
cision and recall using macro-averaging as explained in [175]. In each trial,
75% of the illumination conditions are selected randomly as training set and
25% as test set for each person. For Eigenfaces, we unfold the data tensor
and apply principal component analysis (PCA): we have D(1) = BCT with
B ∈ RM×T and C ∈ RIJ×T using T = J = 37.
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8 Face recognition as a Kronecker product equation

Table 8.2: Higher performance (%) can be achieved by using multiple images under differ-
ent illuminations. Our cKPE-based method outperforms Eigenfaces using majority voting.

Eigenfaces [194] cKPE-based method

# illuminations 1 2 3 1 2 3

Accuracy 92.7 93.3 96.3 95.8 97.1 97.3
Precision 89.8 91.2 97.9 97.0 99.3 99.9
Recall 87.7 87.8 97.5 96.2 99.2 99.9

8.3.3 Improving performance through coupling
More robust recognition can be achieved by using multiple images of the
same person under different illuminations. In Table 8.2 we report the me-
dian performance across 15 trials when using Q = {1, 2, 3} randomly chosen
illuminations. We compare our cKPE-based method to Eigenfaces using ma-
jority voting. For the latter, we assign the label of the person with the lowest
index in the case of a tie. We use the same experiment settings as in subsec-
tion 8.3.2 and solve a cKPE with Q randomly chosen illuminations which we
repeat 25 times for each trial and each person. Clearly, higher accuracy can
be achieved by using multiple images for both approaches. Our cKPE-based
method achieves higher accuracy than Eigenfaces.

8.3.4 Updating the database with a new person
Given an MLSVD model, the KPE-based method allows one to update the
database Udb with a new person using only a few images instead of an image
for each illumination. For example, consider an MLSVD model as in (8.2)
which we have constructed using the facial images of all but one person
under every illumination. The retained person is initially not included in
the database Udb, but can be recognized as follows. By solving (8.6) for a
particular image, we obtain a feature vector c̃(new)

p which we can add as a new
row to the extended database Udb (with known label). In order to recognize
the person in a new image under a different illumination, we can proceed as
before, i.e., we solve a KPE and compare the obtained feature vector with the
extended database. This strategy works well if the given image can be well
approximated by the original MLSVD model. In practice, one can improve
the recognition by extending the database using multiple illuminations and
solving a cKPE to obtain a new row for the database.
We illustrate the approach for the person depicted in Figure 8.2 (left). In

this example, we choose a neutral illumination to update the database. The
current MLSVD captures the new person reasonably well as can be seen from
the reconstructed image on the right. The person is correctly recognized in
a new image with a different illumination as illustrated in Figure 8.3.
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Given Reconstructed

Figure 8.2: The MLSVD model captures the new person reasonably well.

ReconstructedGiven Best match Second match

Figure 8.3: Although we update the database with a new person using only one illumination
condition, the KPE-based method recognizes that person in a new image under a different
illumination condition.

By using multiple illuminations to update the database, one can again fur-
ther improve the performance. In Table 8.3 we report the performance when
updating the database with the first, 16th, or 28th person in the extended
Yale Face Database B using all other persons to construct the model. In
other words, the data is divided into a training set of 36 persons and a test
set of 1 person. In this experiment, we use P = 1000�M . When using one,
two, or three images, we use illumination setting 1, {1, 10}, and {1, 10, 55},
respectively. Illumination 1, 10, and 55 correspond to the neutral illumina-
tion and a left and right illumination of the face, respectively. Clearly, the
accuracy improves by updating the model using multiple illuminations as can
be seen in Table 8.3. Also, one can see that the median performance over all
persons in the dataset improves by using additional illuminations.

Table 8.3: When updating the database with a new person, our method can achieve higher
accuracy (%) by fusing multiple images under different illumination conditions instead of
using only one image of the new person.

Person One illumination Two illuminations Three illuminations

1 58.9 70.9 77.8
16 41.1 56.4 70.4
28 53.6 54.5 75.3

All 50.0 50.9 64.8
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8 Face recognition as a Kronecker product equation

8.4 Conclusion
In this chapter, we proposed a new tensor-based technique for face recogni-
tion that exploits the multidimensional nature of a collection of facial images
under different conditions such as illumination, pose, and expression. First,
we construct a tensor by stacking the images along several modes that each
relate to a variation in the image. Our method models the obtained tensor
by a multilinear SVD, describing each of the modes with a factor matrix
and the interaction between the modes with a tensor. By reformulating the
recognition task as the computation of a KPE, we can explicitly exploit the
multilinear structure of the problem, obtaining a feature vector that enables
higher performance than conventional methods. We illustrated our method
for the extended Yale Face Database B, obtaining better performance than
Eigenfaces and another tensor-based technique. Our method performs well
when using only a single image and the performance can be improved fur-
ther by coupling a few images with different illuminations. Remarkably, our
method also allows one to update the database with a new person using only a
few images instead of an image for each combination of conditions. In future
work, one can probably improve the performance by using neural networks or
support vector machines in combination with KPE-computed feature vectors
instead of using Euclidian distance-based comparisons. Additionally, one can
take into account the nonnegative nature of the data.
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Irregular heartbeat classification
using Kronecker product equations 9
ABSTRACT Cardiac arrhythmia or irregular heartbeats are an important
feature to assess the risk on sudden cardiac death and other cardiac disorders.
Automatic classification of irregular heartbeats is therefore an important part
of ECG analysis. We propose a tensor-based method for single- and multi-
channel irregular heartbeat classification. The method tensorizes the ECG
data matrix by segmenting each signal beat-by-beat and then stacking the
result into a third-order tensor with dimensions channel × time × heartbeat.
We use the multilinear singular value decomposition to model the obtained
tensor. Next, we formulate the classification task as the computation of a
Kronecker product equation. We apply our method on the INCART dataset,
illustrating promising results.

This chapter is a slightly adapted version of M. Boussé, G. Goovaerts, N. Vervliet, et al.,
“Irregular heartbeat classification using Kronecker product equations”, in 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC 2017, Jeju Island, South-Korea), Jul. 2017, pp. 438–441.
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9 Irregular heartbeat classification using KPEs

9.1 Introduction

Cardiac arrhythmia or irregular heartbeats are conditions where the behavior
of the heart is abnormal. This is characterized by the heart beating either
too slow, too fast, or irregularly. In many cases irregular heartbeats do not
require medical attention. However, certain types of arrhythmia such as ven-
tricular fibrillation are medical emergencies that may lead to sudden cardiac
death. The presence of arrhythmia can also be an indication of cardiac dis-
orders. It is therefore essential that irregular heartbeats can be detected in
a reliable way. Also, the rise of online and long-term ECG monitoring has
increased the need for automated heartbeat classification methods. When
an ECG signal contains thousands of heartbeats, manual beat inspection be-
comes a time-consuming and tedious task which is prone to human errors.
Automatic irregular heartbeat detection methods are therefore an important
tool in the diagnosis of patients at risk for cardiac events.

Traditional heartbeat classification methods often use RR interval or ECG
morphology features [138], [192]. These methods typically represent the ECG
signal as a vector. Recently, there is a trend to represent the signals in multi-
lead ECG as a tensor in order to preserve structural information [93], [109],
[132]. A tensor is a higher-order generalization of a vector (first-order) and
a matrix (second-order). In this chapter, we tensorize the ECG data matrix
into a third-order tensor with dimensions channel × time × heartbeat by
means of segmentation [93]. This tensorization technique segments the ECG
signal of each channel beat-by-beat and stacks the results into a third-order
tensor, enabling the use of tensor decompositions.

We propose a new tensor-based method for irregular heartbeat classifi-
cation which can classify new heartbeats as regular or irregular using the
ECG signal of a single channel. First, we model the obtained tensor using
a multilinear singular value decomposition (MLSVD) [54]. We show that
every heartbeat in the tensor can then be expressed as a Kronecker product
equation (KPE). The latter is a linear system of equations with a Kronecker
product structured solution [26]. In order to classify a new heartbeat signal
with an unknown label, we solve a similar KPE which allows us to find the
closest match with a labeled heartbeat in the tensor. In practice, the MLSVD
model is only approximate and robustness can be improved by using several
channels instead of just one, leading to a coupled KPE. We illustrate our
method on the INCART dataset.

In the remainder of this section we introduce the notation and basic defini-
tions as well as the MLSVD and (coupled) KPEs. We present our method in
Section 9.2 and discuss experiments in Section 9.3. We conclude the chapter
in Section 9.4.
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9.1 Introduction

9.1.1 Notation and definitions
We denote vectors, matrices, and tensors by bold lower (e.g., a), bold up-
percase (e.g., A), and calligraphic letters (e.g., A), respectively. The nth
element in a sequence is indicated by a superscript between parentheses, e.g.,
{A(n)}Nn=1. A mode-n vector of a tensor A ∈ RI1×I2×···×IN is defined by
fixing every index except the nth and is a natural extension of the rows and
columns of a matrix. The mode-n unfolding of A is a matrix A(n) with
mode-n vectors as its columns (following the ordering convention in [125]).
The vectorization of A, denoted as vec(A), maps each element ai1i2···iN onto
vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im.

The outer and Kronecker product are denoted by ⊗ and ⊗, respectively,
and are related by vec (a ⊗ b) = b⊗a. The mode-n product of a ten-
sor A ∈ RI1×I2×···×IN and a matrix B ∈ RJn×In is a tensor A ·n B ∈
RI1×···×In−1×Jn×In+1×···IN and is defined element-wise as

(A ·n B)i1···in−1jnin+1···iN =
In∑
in=1

ai1i2···iN bjnin

Hence, each mode-n vector of the tensor A is multiplied with B, i.e., (A ·n
B)(n) = BA(n).

An Nth-order tensor of rank one is defined as the outer product of N
nonzero vectors [168]. The rank of a tensor equals the minimal number of
rank-1 tensors that generate it as their sum. The mode-n rank of a tensor is
defined as the rank of the mode-n unfolding of the tensor. The multilinear
rank of an Nth order tensor is equal to the N -tuple of mode-n ranks.

9.1.2 Multilinear singular value decomposition
The multilinear singular value decomposition (MLSVD) of a higher-order
tensor is a multilinear generalization of the singular value decomposition
(SVD) of a matrix [41], [54], [168].

Definition 29. A multilinear singular value decomposition (MLSVD) writes
a tensor A ∈ RI1×I2×···×IN as the product

A = S ·1 U(1) ·2 U(2) · · · ·n U(N),

in which U(n) ∈ RIn×In is a unitary matrix, 1 ≤ n ≤ N , and the core
S ∈ RI1×I2×···×IN is ordered and all-orthogonal.

The MLSVD is a powerful tensor tool in applications such as compression
and dimensionality reduction [59], [125]. It is related to the low-multilinear
rank approximation (LMLRA) and the Tucker model, see [54], [214] and
references therein.
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9 Irregular heartbeat classification using KPEs

9.1.3 Kronecker product equations
A KPE is a linear system of equations with a solution that has a Kronecker
product structure [26]. Consider a system Ax = b with A ∈ RM×K , x ∈ RK ,
and b ∈ RM . Assume the solution x is constrained to the following simple
Kronecker product structure: x = v⊗u with u ∈ RI and v ∈ RJ such that
K = IJ . As such, we have that:

A(v⊗u) = b. (9.1)

The Kronecker product structure can be exploited in order to rewrite (9.1)
as a multilinear system of equations [26]:

A ·2 uT ·3 vT = b

with the coefficient tensor A ∈ RM×I×J defined such that its mode-1 unfold-
ing A(1) ∈ RM×IJ equals the coefficient matrix A in (9.1), i.e., we have that
A(1) = A.
A coupled KPE (cKPE) is a set of KPEs that share a coefficient vector.

We limit ourselves to cKPEs of the form:

A(v(q)⊗u) = b(q) for 1 ≤ q ≤ Q (9.2)

with A ∈ RM×K , v(q) ∈ RI , u ∈ RJ , and b(q) ∈ RM such that K = IJ . We
can reformulate (9.2) as a multilinear system:

A ·2 uT ·3 VT = B (9.3)

in which V ∈ RI×Q with vq = v(q), B ∈ RM×Q with bq = b(q), and
A(1) = A. Expression (9.3) is equivalent with:

A(V⊗u) = B

which can be interpreted as a more general type of KPE.

9.2 Irregular heartbeat classification as a
Kronecker product equation

9.2.1 Preprocessing and tensorization
The preprocessing step is necessary to remove noise from the ECG signal
that may corrupt the final classification performance. Similarly as in [93], we
consider baseline wander and high frequency noise from muscle artifacts as
primary noise sources. They are removed channel-by-channel using quadratic
variation reduction and wavelet-based filtering, respectively.
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channels
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Figure 9.1: Tensorization of an ECG data matrix into a third-order tensor with dimensions
channel × time × heartbeat using segmentation.

Next, we transform the ECG data matrix into a third-order tensor as illus-
trated in Figure 9.1. First, we segment the signals into smaller segments of
size I containing only a single heartbeat. As such, we obtain J heartbeats for
all M channels. Next, we stack all heartbeats in the third mode, obtaining
a third-order tensor T ∈ RM×I×J with dimensions channel × time × heart-
beat. We use this particular tensorization because we are only interested in
the differences between subsequent heartbeats but other techniques can be
found in literature [62].
Segmentation in individual heartbeats is done here by taking a fixed-size

window of 500 ms around each R peak, starting 200 ms before the peak.
The R peak location can easily be detected using standard techniques such
as Pan-Tompkins. Note that when the heart rate changes a lot throughout
the signal (for example in long-term ambulatory signals), resampling the
heartbeats might be required to align the different ECG waves.

9.2.2 Kronecker product equation
The (truncated) MLSVD of the tensor T is given by:

T = S ·1 Uc ·2 Ut ·3 Uh (9.4)

with Uc ∈ RM×P , Ut ∈ RI×R, and Uh ∈ RJ×L forming an orthonormal basis
for the spatial, temporal, and shape component, respectively. The coefficient
tensor S ∈ RP×R×L explains the interaction between the different modes.
Every heartbeat t ∈ RI of a particular channel, i.e., every mode-2 vector of
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the tensor T , satisfies the following model:

tT = S ·1 cT
c ·2 Ut ·3 cT

h . (9.5)

Vectors cT
c and cT

h are rows of Uc and Uh, respectively, corresponding to the
coefficients of heartbeat h and channel c.
Clearly, the mode-2 unfolding of (9.5) is a KPE:

t = UtS(2)(ch⊗ cc). (9.6)

Equation (9.6) expresses t in the column space Ut and (the mode-2 unfolding
of) an additional interaction tensor S that links the different modes. The
coefficients can then be written as a Kronecker product of the coefficient
vectors ch and cc.

We can also consider a set of K channels instead of just one. In that case
we have a set of K KPEs that are coupled via the coefficient vector for the
heartbeat dimension:

t(q) = UtS(2)(ch⊗ c(q)
c ) for 1 ≤ q ≤ Q.

We collect all heartbeat signals t(q) in T ∈ RI×Q and all channel coefficients
c(q)

c in Cc ∈ RM×K . As such, we obtain:

TT = S ·1 CT
c ·2 Ut ·3 cT

h

which is equivalent with the following cKPE:

T = UtS(2)(ch⊗Cc). (9.7)

9.2.3 Irregular heartbeat classification
We explain how to classify a new heartbeat measured on a single channel
as regular or irregular using KPEs. Consider an ECG data matrix with
known heartbeat labels. First, we perform preprocessing and tensorization
as explained in Subsection 9.2.1, obtaining a tensor T . Next, we compute
a MLSVD of T as in (9.4), obtaining factor matrices Uc, Ut, and Uh and
core tensor S. Recall that every heartbeat in T can be expressed as a KPE
as in (9.6). Consider now a new heartbeat t(new) with unknown label, i.e., a
heartbeat that is not included in T . In order to classify the new heartbeat,
we solve a KPE:

UtS(2)(c
(new)
h ⊗ c(new)

c ) = t(new),

obtaining estimates c̃(new)
h and c̃(new)

c for the unknown coefficient vectors
c(new)

h and c(new)
c , respectively. We compare c̃(new)

h with the rows of Uh using
the norm of the difference (after fixing scaling and sign invariance). We then
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classify the new heartbeat with the label corresponding to the closest match.
We use the data of all channels to compute the MLSVD but classify using

the signal from a single channel. In practice, however, the MLSVD model
holds only approximately and incorrect classification can possibly occur. We
can make the classification more robust by using heartbeats from multiple
channels which can be solved using a coupled KPE as in (9.7).

9.3 Results and discussion
We illustrate the proposed method with two experiments using the first ten
subjects of the St.-Petersburg Institute of Cardiological Technics 12-lead Ar-
rhythmia (INCART) Database available on Physionet [91]. The dataset con-
sists of 75 ECG recordings from 32 subjects. All signals are 30 minutes long
and contain 12 standard leads. The sampling frequency is 257 Hz. The signals
are collected during tests for coronary artery diseases. The dataset contains
all ECG signals together with patient diagnoses, R peak locations and beat
annotations. The beat annotations were first automatically determined and
later corrected manually. We apply preprocessing and segmentation as ex-
plained in Subsection 9.2.1 and obtain heartbeats of length I = 131. The
number of heartbeats J is different for each subject. The number of channels
is M = 12.
We developed nonlinear least-squares (NLS) algorithms for solving KPEs

and cKPEs, called kpe_nls and ckpe_nls, respectively, which are available
upon request [26]. All computations are done with Tensorlab [215]. We
compute the MLSVD with a randomized algorithm called mlsvd_rsi which
is faster but achieves similar accuracy than non-randomized MLSVD algo-
rithms [211]. We use P = M = 12 and R = I = 131. Strongly truncating the
third mode, i.e., taking L � J , decreases computation time and improves
classification performance. The optimal value for L is subject dependent and
can be determined via validation data with 2 ≤ L ≤ 10. We use random
initialization in all experiments. Each row of Uh and the estimated coeffi-
cient vectors are normalized to accommodate for scaling and sign invariance
as follows: a vector c is normalized to c̄ as c̄ = sign(c1) c

‖c‖ .
In a first experiment, we show that our method achieves high classification

performance provided we choose a suitable channel for classification. This is
illustrated in Figure 9.2 where we report the median across 30 trials of the
sensitivity and specificity for subjects one and four and all channels. The data
for subject one and four consist of 2411 and 2301 regular and 344 and 121
irregular heartbeats, respectively [91]. For each subject, we randomly divided
the data in training (85%) and (15%) test set in each trial. We used L = 4 and
L = 8 in the MLSVD model, respectively. Clearly, the performance depends
on the choice of the channel and the choice is subject dependent. For example,
the highest specificity for subject one (0.8173) and four (0.8173) is achieved if
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Figure 9.2: Overall our method achieves good performance while better results can be
obtained by using a suitable channel for a given subject, e.g., channels 8 and 6 achieve the
highest specificity for subjects 1 and 4, respectively.
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Figure 9.3: Fusing signals from multiple channels leads to a better performance.

one uses channel eight (V2) and six (AVF), respectively. However, the overall
performance is also good: the median sensitivity and specificity across all
subjects, using, e.g., channel eight (V2), is 0.9083 and 0.7353, respectively.
Moreover, in that case the F1 score is 94.2% which is better than the best
performance (92%) of traditional techniques as in [138] that use all channels.
It is remarkable that our method can achieve high performance while using
only a single channel for classification.
Fusing the ECG signals from multiple channels with our method improves

classification performance. In Figure 9.3 we report the median across 10 trials
of the sensitivity and specificity for subject one (using L = 4). In each trial
we also randomly divided the data in training (85%) and test (15%) set. The
number of channels that is used for classification is varied from one to twelve
and in each trial the channels are chosen randomly. For example, coupling six
random channels greatly improves the specificity for subject one. However,
only a small improvement is obtained for the sensitivity. Also, coupling
more than six channels does not seem to increase the overall performance
significantly for this subject.

166



9.4 Conclusion

9.4 Conclusion
We presented a new tensor-based method for single- and multi-channel irreg-
ular heartbeat classification. The proposed method tensorizes the ECG data
matrix using segmentation. The obtained tensor is modeled by a MLSVD
which allows us to express every heartbeat in the tensor as a KPE. We have
shown that the classification task can then be formulated as the computa-
tion of a KPE. While the method performs well for only a single channel,
the performance can be improved by coupling the ECG signals from multiple
channels by means of a cKPE. We illustrated our method on the INCART
dataset. The proposed method can achieve high performance by choosing
a suitable channel for classification. Coupling multiple channels, improved
the overall classification performance. In future work, the method can be
extended to multi-class classification. Also, one can possibly improve the
performance by using more intricate schemes to determine the best match
in the database. Finally, further research is necessary to determine the best
channel(s) to use for classification in both the single- and multi-channel case.
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Conclusion 10
10.1 Contributions
We give a chapter-by-chapter overview of our contributions. For chapters
that rely on results obtained in collaboration with other team members, we
clearly indicate the contribution of each collaborator.

Chapter 3
In this chapter, we report the results of a collaboration with N. Vervliet, I.
Domanov, and O. Debals. The doctoral candidate has contributed to the
formulation of the LS-CPD concept, the optimization-based algorithms, and
the face recognition application.

• Implicit tensor decompositions. LS-CPDs can be interpreted as the
computation of a CPD of a tensor that is only known implicitly via
the solution of a linear system of equations. By directly solving the
problem via optimization-based and algebraic methods, instead of first
solving the unstructured system and then decomposing the reshaped
solution, we can obtain a unique solution in the underdetermined case.

• Multilinear systems of equations. LS-CPDs can be seen as multilinear
systems of equations, which are a generalization of linear systems of
equations. This is analogous to tensor decompositions being higher-
order generalizations of matrix decompositions. However, in contrast
to tensor decompositions, multilinear systems of equations have not
been extensively studied. LS-CPDs provide an initial framework to
solve and analyze multilinear systems of equations.

• Generic uniqueness conditions. Consider a linear system of equations
Ax = b with x a vectorized CPD with random factor matrices. For a
generic matrix A, the CPD can be recovered uniquely with probability
one if the number of equations is strictly larger than the number of free
variables in the CPD. This result was contributed by I. Domanov.
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• Algebraic algorithm for rank-1 tensors. Given a linear system Ax = b
with x a vectorized rank-1 tensor, we derived an algorithm to compute
the CPD even if A does not have full column rank, provided some
conditions are satisfied. This result was contributed by I. Domanov.

• Optimization-based algorithm. Instead of first solving the linear system
without structure and subsequently decomposing a tensorized version
of the obtained solution, we proposed a GN-style method that solves
the LS-CPD problem directly, allowing us to work more efficiently and
avoid error accumulation. By exploiting all available structure in A,
the computational complexity of the generic algorithm can be reduced
as we have illustrated for sparse A and Kronecker structure, see Chap-
ter 4. The rank-1 case was contributed by N. Vervliet and the extension
to R > 1 was provided by the doctoral candidate.

• Tensor-based face recognition. LS-CPDs can be used for tensor-based
classification tasks which is illustrated in this chapter for tensor-based
face recognition. We have shown that the recognition rate can be
improved by using the LS-CPD approach instead of TensorFaces [202].
See also Chapter 8 and Chapter 9.

• Algorithm for constructing tensors with particular multilinear singular
values. While the construction of a matrix with particular singular
values is trivial, the problem is not straightforward for tensors. We
have shown that the problem can in fact be formulated as a LS-CPD
by writing the orthogonality constraints and the constraints imposing
multilinear singular values as a linear system with a Kronecker-product
constrained solution. By exploiting the sparsity of the resulting ma-
trix A, one can obtain a more efficient algorithm with respect to exist-
ing techniques. The problem was formulated by I. Domanov and the
sparsity-exploiting implementation was developed by N. Vervliet.

• Blind deconvolution of constant-modulus signals. We have shown that
the blind deconvolution of constant modulus signals can be reformu-
lated as the computation of a LS-CPD. Our generic framework obtains
similar or better accuracy as state-of-the-art techniques for comparable
run times. The application was contributed by O. Debals.

Chapter 4
• Kronecker-structured LS-CPD. A GN-based algorithm for Kronecker-

structured LS-CPD is derived. By fully exploiting all available struc-
ture of the measurement matrix, the computational complexity of the
dedicated algorithm can be significantly reduced, allowing us to tackle
large-scale problems.
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• Graph clustering. We have shown that a similarity-based cluster-
ing method can be reformulated as the computation of a Kronecker-
structured LS-CPD. In contrast to existing methods, our approach can
easily be extended to higher-order approximations.

Chapter 5
In this chapter, we partially report results originating from the master’s thesis
by the doctoral candidate under daily supervision of O. Debals.

• Large-scale segmentation-based blind source separation. We derived a
deterministic method for (large-scale) BSS that exploits the fact that
signals in large-scale problems often admit a compact representation.
By using segmentation and low-rank matrix and tensor representations
to model the sources and/or mixing vectors, BSS can be reformulated
as the computation of a tensor decomposition, enabling a unique solu-
tion because of the mild uniqueness properties in the higher-order set-
ting. In contrast to existing methods, we impose only mild conditions
on the sources via the uniqueness conditions, e.g., linear independence
instead of statistical independence as in ICA. By employing tensors
of higher order, larger compression rates can be achieved, making our
approach feasible for large-scale problems.

• Connection between Hankelization and segmentation. Segmentation
is a deterministic tensorization technique that is closely related to
Hankel-based tensorization. The matrix obtained via segmentation
is a subset of the columns of the Hankel matrix and therefore low-rank
Hankel matrices also yield low-rank matrices after segmentation.

• Flower and butterfly decomposition. Higher-order segmentation and
two-fold segmentation result into the flower and butterfly decomposi-
tion, respectively, which are two novel decompositions. An algebraic
algorithm and the uniqueness conditions for the flower decomposition
are provided in the follow-up paper presented in Chapter 6.

• Fetal ECG extraction. By exploiting the intrinsic low-rank structure of
the QRS complexes in the ECG signal, our method can achieve a clear
separation of the fetal and maternal ECG from multilead cutaneous
potential recordings of pregnant women.

• Direction-of-arrival estimation. Estimating the direction of arrival
(DOA) of signals is an important application in telecommunication
and array processing. By exploiting the low-rank structure of the mix-
ing vectors in ULAs, one can extract the DOA parameters. Thanks
to the compact representation, our approach scales well to large-scale
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problems. Besides the far-field setting, our method can also tackle the
near-field and multipath settings well.

Chapter 6
In this chapter, we partially report results originating from the master’s thesis
by the doctoral candidate under daily supervision of O. Debals.

• Large-scale segmentation-based blind system identification. We suc-
cessfully generalized our segmentation-based approach for (large-scale)
BSS to the blind identification of large-scale convolutive systems. More
specifically, we applied the same idea to the system coefficients of FIR
models, allowing us to reformulate the identification problem as the
computation of a structured tensor decomposition. The fairly mild
uniqueness conditions in the higher-order setting allow us to obtain a
unique solution.

• Flower decomposition. By applying segmentation to the BSI problem,
we obtained a flower decomposition for which we have provided im-
proved uniqueness conditions and an algebraic algorithm that can be
used to effectively initialize optimization-based methods.

• Low-rank representation of periodic signals. We have shown that gen-
eral periodic signals can be represented by low-rank matrices, even in
cases where the period is unknown or may have been estimated inaccu-
rately. We proved this fact by connecting periodic signals to circulant
matrices in a similar fashion as exponential signals are linked to Hankel
matrices.

• Improved uniqueness conditions. We have provided improved unique-
ness conditions for the Toeplitz-constrained flower decomposition by
explicitly exploiting the Toeplitz structure.

• Parameter analysis. We performed a detailed analysis of the segmenta-
tion parameters, resulting into a set of practical guidelines for applying
segmentation.

• Direction-of-arrival estimation. We have shown that our method out-
performs existing methods such as 2D-MUSIC for large-scale uniform
rectangular arrays (URA). Our method also proves viable for DOA es-
timation in large-scale URAs with possibly broken antennas and even
in non-uniform arrays.

• Neural spike sorting. We have shown that our segmentation-based
approach can obtain an excellent separation of a convolutive mixture
of (simulated) spike trains stemming from high-density microelectrode
arrays for measuring neuronal activity.
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Chapter 7
• Large-scale AR system identification. By explicitly exploiting the hy-

pothesized structure of the system coefficients in large-scale applica-
tions, we have shown that the identification problem can be reformu-
lated as the computation of a KPE, allowing us to use optimization-
based solvers and uniqueness conditions.

• Explicit versus implicit tensor decompositions and a link with FIR and
AR models. Applying our segmentation-based approach to FIR models
results into explicit tensor decomposition-based algorithms, as shown
in Chapter 6, while applying the approach to AR models results into
implicit tensor decomposition-based algorithms such as the LS-CPD
framework of Chapter 3.

Chapter 8
In this chapter, we report the results of a collaboration with N. Vervliet and
O. Debals.

• Improved recognition rate via KPEs. Our KPE-based method is more
efficient and more accurate than TensorFaces [202] for tensor-based
face recognition. In contrast to TensorFaces, our method can also be
used to add an unknown person to the database using only one (or a
few) images instead of an image for each combination of conditions.
The performance is illustrated for the Extended Yale B dataset.

• Improved robustness via coupled KPEs. By using multiple images of
a person under different illluminations, one can further improve the
performance. The problem can then be formulated as the computation
of a coupled KPE which is a generalization of the LS-CPD algorithm
from Chapter 3.

Chapter 9
In this chapter, we report the results of a collaboration with G. Goovaerts.

• Single-lead irregular heartbeat classification. Our KPE-based method
can achieve high performance provided we choose a suitable lead for
classification. In contrast to existing methods that use all leads for clas-
sification, our method uses only a single channel, providing interesting
possibilities for wearable applications. The performance is illustrated
for the INCART dataset.

• Improved robustness by using multiple leads. While our method per-
forms well for only a single channel, the performance can be improved
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by coupling the ECG signals from multiple leads by means of coupled
KPEs. See also Chapter 8.

Appendix A
• Low-rank weights. A GN-style method for the computation of a CPD

using low-rank weights has been proposed, allowing us to explicitly ac-
commodate for general (co)variances in the least-squares cost function.
By using a PD model for the weight tensor, efficient expressions for the
optimization ingredients are derived.

10.2 Perspectives
We suggest the following major future directions:

• Extension to other tensor decompositions. Although the focus of this
thesis was on CPD-constrained explicit and implicit tensor decomposi-
tions, our approach can also be extended to other decompositions such
as the MLSVD, TT, or HT models. In tensor-based scientific com-
puting, one often uses TT and HT models because they combine large
compression rates with good numerical properties.

• Tensor-based learning. The LS-CPD framework enables tensor-based
pattern recognition, data analysis and learning: multilinear regres-
sion and classification tasks can be reformulated as structured LS-CPD
problems. By carefully exploiting all available structure, efficient al-
ternatives to nonlinear machine learning techniques can be derived.

• Multilinear systems of equations. LS-CPD problems can be interpreted
as multilinear systems of equations. While the latter are a higher-order
generalization of linear systems of equations, tensor decompositions are
a higher-order extension of matrix decompositions. However, in con-
trast to tensor decompositions, the domain of multilinear systems is
relatively unexplored; only a few cases have been studied in a dis-
parate manner in the literature. Various techniques and applications
for multilinear system identification can be explored.

• Large-scale system identification techniques. Our KPE-based method
for SIMO AR system identification can be extended to the MIMO case
by means of the LS-CPD framework. Additionally, the block-Toeplitz
structure can be exploited in order to improve the computational com-
plexity and the uniqueness conditions. Furthermore, identifying large-
scale autoregressive-moving average (ARMA) and state-space models
is an obvious extension of our segmentation-based methods for FIR and

174



10.2 Perspectives

AR models, enabling more general system-modeling techniques. Re-
cently, methods have been proposed for large-scale AR and state-space
identification using a similar philosophy as our segmentation-based ap-
proach, but limited to a second-order low-rank model [143], [173], [174].
A similar philosophy has also been employed recently for systems with
many delays [69], [82], [156].

We also propose several minor suggestions:

• Segmentation versus Hankelization. Segmentation provides a maxi-
mally compact representation of the data, while Hankelization maxi-
mally exploits shift invariance. A trade-off between accuracy and com-
pression ratio is possible by stacking partially overlapping segments,
allowing us to accommodate to the needs in a particular application.

• Structured LS-CPD problems. In order to obtain a computationally
efficient algorithm for structured LS-CPD problems, it is important to
exploit all available structure. In this thesis, we have focused on spar-
sity and the Kronecker format, but other structure can be investigated
such as Toeplitz or banded-matrix structures.
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Nonlinear least-squares algorithm
for canonical polyadic
decomposition using low-rank
weights A
ABSTRACT The canonical polyadic decomposition (CPD) is an important
tensor tool in signal processing with various applications in blind source sep-
aration and sensor array processing. Many algorithms have been developed
for the computation of a CPD using a least-squares cost function. Standard
least-squares methods assumes that the residuals are uncorrelated and have
equal variances which is often not true in practice, rendering the approach
suboptimal. Weighted least squares allows one to explicitly accommodate
for general (co)variances in the cost function. In this appendix, we develop
a new nonlinear least-squares algorithm for the computation of a CPD using
low-rank weights which enables efficient weighting of the residuals. We briefly
illustrate our algorithm for direction-of-arrival estimation using an array of
sensors with varying quality.

This chapter is a slightly adapted version of M. Boussé and L. De Lathauwer, “Nonlinear
least squares algorithm for canonical polyadic decomposition using low-rank weights”,
in IEEE 7th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP 2017, Curaçao, Dutch Antilles), Dec. 2017, pp. 39–43.
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A.1 Introduction
Tensors are higher-order generalizations of vectors (first-order) and matrices
(second-order). Recently, tensor tools have gained popularity in various ap-
plications within signal processing, data mining, and machine learning [41],
[125], [168]. An important tensor tool is the canonical polyadic decomposi-
tion (CPD) which decomposes a tensor into a minimal sum of rank-1 ten-
sors. The decomposition is unique under mild uniqueness conditions [71],
[73], [75], making the CPD a powerful tool in various signal processing appli-
cations such as (large-scale) instantaneous and convolutive blind source sep-
aration [20], [21], [45], [51], sensor array processing [141], [167], and telecom-
munications [53]. Various algorithms have been developed for the compu-
tation of a CPD such as algebraic methods [47], [72], [75], alternating-least
squares (ALS) methods [125], and all-at-once optimization techniques [4],
[154], [158], [180], [189]. Although ALS-based methods are popular, they
are often outperformed in ill-conditioned cases by more sophisticated opti-
mization techniques such as quasi-Newton (qN) and nonlinear least-squares
(NLS) algorithms [180].
In signal processing, the data is often perturbed by noise. Weighted least

squares (WLS) allows one to include prior knowledge about the noise in the
least-squares cost function. A common choice is the inverse of the sample
covariance matrix because it leads to the optimal estimate. In practice, the
sample covariance matrix may be unknown but often some reasonable esti-
mate can be computed by exploiting prior knowledge [144]. For example, in
array processing the measurements may be observed by sensors with varying
quality. In that case, the accuracy of the sensors is often known or can be
estimated, allowing one to use weights that are inversely proportional to the
variance of the error. Several WLS algorithms have been developed for the
CPD such as an all-at-once optimization-based method [154] and a weighted
ALS-based approach [106].
In this appendix, we develop a WLS-based algorithm for the computation

of a CPD with a weight tensor that can be modeled by a PD, enabling effi-
cient weighting of the residuals. Note that standard least squares corresponds
to a rank-1 CPD with factor vectors containing only ones. Additionally, the
low-rank structure is interesting for large-scale applications because the CPD
provides a compact model for the weights. The CPD structure of the weight
tensor allows us to derive efficient expressions for the classical ingredients of
standard qN and NLS algorithms. Special care is taken to explicitly exploit
the low-rank structure in the derivation. More specifically, we focus on the
implementation of a particular type of NLS algorithm, but the expressions
can be used for other NLS as well as qN algorithms. We implement the al-
gorithm using the complex optimization framework of Tensorlab, a toolbox
for tensor computations in Matlab, as numerical optimization solver [177],
[179], [211], [215]. Finally, the WLS-based method with CPD constrained
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weight tensor is illustrated for direction-of-arrival (DOA) estimation in uni-
form linear arrays (ULAs) with sensors of varying quality, illustrating excel-
lent results.
We conclude this section with an overview of the notation and basic defini-

tions. Next, we derive efficient expressions for the ingredients of standard qN
and NLS methods. WLS for DOA-estimation is illustrated in Appendix A.3.

A.1.1 Notations and basic definitions
Vectors, matrices, and tensors are denoted by bold lowercase, bold uppercase,
and calligraphic letters, respectively. The mode-n vector of A ∈ KI1×···×IN

is a natural extension of the rows and columns of a matrix and is defined by
fixing every index except the nth (K means R or C). A mode-n unfolding
of A is a matrix A(n) with the mode-n vectors as its columns (following the
ordering convention in [125]). The vectorization of A, denoted as vec(A),
maps each element ai1i2···iN onto vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and

Jk =
∏k−1
m=1 Im.

We indicate the nth element in a sequence by a superscript between paren-
theses, e.g., {A(n)}Nn=1. The identity matrix of size I × I is denoted by II .
A = diag(a) is a diagonal matrix with the entries of a on the main diago-
nal. The outer, Kronecker, Hadamard, column-, and row-wise Khatri–Rao
product are denoted by ⊗, ⊗, ∗, �, �T, respectively.
The rank of a tensor equals the minimal number of rank-1 tensors that

generate the tensor as their sum. A rank-1 tensor is defined as the outer
product of nonzero vectors.

A.1.2 Canonical polyadic decomposition
The CPD is an important tensor tool in many applications within signal
processing, biomedical sciences, data mining and machine learning; see [41],
[125], [168]. The decomposition is unique under rather mild conditions [72],
[75] which is a powerful advantage of tensors over matrices in many applica-
tions [168].

Definition 30. A polyadic decomposition (PD) writes an Nth-order tensor
A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r =

r
U(1),U(2), . . . ,U(N)

z
.

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor
vectors u(n)

r for 1 ≤ r ≤ R. The PD is called canonical (CPD) when R is
equal to the rank of A.
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A.1.3 Identities and derivatives
In this appendix, we use the following identities [136], [212]:

(A�B)T (C�D) = ATC∗BTD, (A.1)

(A⊗B) (C⊗D) = AC⊗BD, (A.2)

(A�B)�T (C�D) = (A�TC)� (B�TD) , (A.3)

vec (ABC) = (CT⊗A) vec (B) , (A.4)

AB �T CD = (A �T C)⊗ (B⊗D) . (A.5)

We define a permutation matrix P(n) that permutes the nth mode of a tensor
to the first mode. It holds that P(n)TP(n) = I [124]. We use the following
identity:

P(n)vec
(r

U(1), . . . ,U(N)
z)

=

vec
(r

U(n),U(1), . . . ,U(n−1),U(n+1), . . . ,U(N)
z)

. (A.6)

Denoting V{n} = �Nq=1,q 6=N−n+1 U(N−q+1), we can also define the following
two identities:

P(n)T
(
V{n}⊗ I

)
vec (X) =

vec
(r

U(1), . . . ,U(n−1),X,U(n+1), . . . ,U(N)
z)

, (A.7)

P(n)T
vec
(
U(n)V{n}T

)
= vec

(r
U(1), . . . ,U(n)

z)
. (A.8)

Finally, we also use the following derivative [124]:

∂vec
(q

U(1), . . . ,U(n)y)
∂vec

(
U(n)

) = P(n)T
(
V{n}⊗ IIn

)
. (A.9)

A.2 WLS for CPD using low-rank weights
The computation of a rank-R CPD

q
U(1), . . . ,U(N)y of a tensor T using a

weighted least-squares approach with known weight tensor W, leads to the
following optimization problem:

min
z
f = 1

2 ||F||
2
F with F =W ∗

(r
U(1), . . . ,U(N)

z
− T

)
, (A.10)

in which the variables U(n), for 1 ≤ n ≤ N , are concatenated in a vector
z =

[
vec
(
U(1)) ; · · · ; vec

(
U(N))] ∈ KRI+ with I+ =

∑N
n=1 In. Assume W
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admits a rank-L PD:

W =
r
A(1),A(2), . . . ,A(N)

z
with A(n) ∈ KIn×L. (A.11)

Note that (A.10)-(A.11) reduces to regular least squares when L = 1 and
a(1) = 1In for 1 ≤ n ≤ N . As such, the rank-L PD structure enables more
general weighting schemes.
In order to solve (A.10)-(A.11), one can use standard qN and NLS algo-

rithms, which require expressions for the evaluation of the objective function,
gradient, Jacobian, Jacobian-vector product, Gramian, and Gramian-vector
product. In this section, we derive expressions for these ingredients which
explicitly exploit the low-rank structure of the weight tensor. Although we
focus on the implementation of the Gauss–Newton (GN) method, which is a
particular type of NLS algorithm [150], the expressions can be used for other
qN and NLS algorithms as well. We use the complex optimization frame-
work from [177], [179] to implement the GN method. The framework pro-
vides qN and NLS implementations as well as line search, plane search, and
trust-region methods. Additionally, we give an overview of the per-iteration
complexity of each ingredient.
The GN method using dogleg trust-region solves (A.10)-(A.11) by lineariz-

ing the residual vec (F) in each iteration k and subsequently solving the
following least-squares problem [150]:

min
pk

1
2 ||vec (Fk) + Jkpk||2F s.t. ||pk|| ≤ ∆k (A.12)

with step pk = zk+1 − zk, Jacobian J = dvec (F) /dz, and trust-region ∆k.
The exact solution to (A.12) is given by the linear system Hkpk = −gk with
H the Hessian, which we approximate with the Gramian of the Jacobian,
and the conjugated gradient g = (∂f/∂z)H [150]. The variables can then be
updated as zk+1 = zk+pk. In this appendix, we solve the linear system using
several preconditioned conjugate gradient (PCG) iterations in order to reduce
computational complexity. The GN method is summarized in Algorithm A.1.

A.2.1 Objective function
The objective function f can be evaluated as follows:

f = 1
2

∣∣∣∣∣∣rŨ(1), Ũ(2), . . . , Ũ(N)
z
− T̃

∣∣∣∣∣∣2
F
, (A.13)

using the weighted factor matrices Ũ(n) ∈ KIn×RL, which are defined by
Ũ(n) = A(n) �T U(n), for 1 ≤ n ≤ N . Importantly, the weighted factor
matrices are computed only once per iteration. The weighted tensor T̃ =
W ∗ T can be computed beforehand.
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Algorithm A.1: Weighted Least Squares with CPD-constrained weight tensor using Gauss–
Newton and dogleg trust region

1: Input: T , {A(n)}Nn=1, and initial estimate for {U(n)}Nn=1
2: Output: {U(n)}Nn=1
3: while not converged do
4: Compute gradient g using (A.15) and (A.16).
5: Use PCG to solve Hp = −g for p using Gramian-vector products in (A.18) and

a block-Jacobi preconditioner as explained in Appendix A.2.5.
6: Update U(n), for 1 ≤ n ≤ N , using dogleg trust region from p, g, and function

evaluation (A.13).
7: end while

A.2.2 Jacobian

The Jacobian J can be partitioned in the following way:

J = dvec (F)
dz =

[
J(1) J(2) · · · J(N)] ∈ KI

××RI+

with I× =
∏N
n=1 In. The nth sub-Jacobian J(n) is defined by:

J(n) = P(n)T
(
Ṽ{n}⊗ IIn

)
M(n) ∈ KI

××RIn ,

using Ṽ{n} = �Nq=1,q 6=N−n+1 Ũ(N−q+1) and matrix M(n):

M(n) =


IR⊗diag

(
a(n)

1

)
IR⊗diag

(
a(n)

2

)
...

IR⊗diag
(
a(n)
L

)

 ∈ KRLIn×RIn . (A.14)

Proof. First, define matrix D = diag (vec (W)) ∈ KI××I× . Using (A.9),
one can show that nth sub-Jacobian equals:

J(n) = ∂vec (F)
∂vec

(
U(n)

) = D
∂vec

(q
U(1),U(2), . . . ,U(N)y)
∂vec

(
U(n)

)
= DP(n)T

(
V{n}⊗ IIn

)
.

Define B{n} = �Nq=1,q 6=N−n+1 A(N−q+1). The CPD structure of the weight
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tensor W can then be exploited as follows:

J(n) = diag
(
vec
(r

A(1),A(2), . . . ,A(N)
z))

P(n)T
(
V{n}⊗ IIn

)
= diag

(
P(n)T

(
B{n}⊗ IIn

)
vec
(
A(n)

))
P(n)T

(
V{n}⊗ IIn

)
=
[
P(n)T

(
B{n}⊗ IIn

)
vec
(
A(n)

)]
�T
[
P(n)T

(
V{n}⊗ IIn

)]
= P(n)T

((
B{n}⊗ IIn

)
�T
(
V{n}⊗ IIn

)) [
vec
(
A(n)

)
⊗ IRIn

]
= P(n)T

((
B{n} �T V{n}

)
⊗ IIn

)
M(n)

= P(n)T
(
Ṽ{n}⊗ IIn

)
M(n).

Identities (A.8) and (A.5) are used to obtain the second and fourth equation.
One can obtain the second to last equation using (A.3) and (A.14). Note
that we do not explicitly compute the Jacobian.

A.2.3 Gradient

The gradient g can be partitioned in the following way:

g =
[
g(1) g(2) · · · g(N)] ∈ KRI

+
, (A.15)

in which g(n) ∈ KRIn is defined by:

g(n) = M(n)T
vec
(
Ũ(n)Ṽ{n}

T
Ṽ{n} − T̃(n)Ṽ{n}

)
. (A.16)

Proof. The nth sub-gradient is given by:

g(n) = ∂f

∂vec
(
U(n)

) = J(n)T
vec (F)

= M(n)T
(
Ṽ{n}⊗ IIn

)T

P(n) ·P(n)T
vec
(
Ũ(n)Ṽ{n}T − T̃(n)

)
= M(n)T

[(
Ṽ{n}⊗ IIn

)T

vec
(
Ũ(n)Ṽ{n}

H
)
−
(
Ṽ{n}⊗ IIn

)T

T̃(n)

]
= M(n)T

vec
(
Ũ(n)Ṽ{n}

H
Ṽ{n} − T̃(n)Ṽ{n}

)
.

using identities (A.4) and (A.7) to obtain the last equation. The matrices
M(n), 1 ≤ n ≤ N , only depend on a factor matrix of the weight tensor and
can therefore be computed beforehand.
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A.2.4 Gramian-vector product

First, we derive an efficient way to compute the product of a sub-Jacobian
J(n) and vec

(
X(n)) with X(n) ∈ KIn×R:

J(n)vec
(
X(n)

)
= P(n)T

(
Ṽ{n}⊗ IIn

)
M(n)vec

(
X(n)

)
= P(n)T

(
Ṽ{n}⊗ IIn

)
vec
(
X̃(n)

)
= vec

(r
Ũ(1), . . . , Ũ(n−1), X̃(n), Ũ(n+1), . . . , Ũ(N)

z)
(A.17)

with X̃(n) = A(n) �T X(n) using identity (A.8) to obtain the last equation.
Next, we derive an efficient expression for the Gramian-vector product:

r = J(m)HJ(n)vec
(
X(n)

)
= M(m)H

(
Ṽ{m}⊗ IIm

)H

·P(m)vec
(r

Ũ(1), . . . , Ũ(n−1), X̃(n), Ũ(n+1), . . . , Ũ(N)
z)

= M(m)H
(
Ṽ{m}⊗ IIm

)H

vec
(r

Ũ(m), Ũ(1), . . . , X̃(n), . . . , Ũ(N)
z)

= M(m)H
(
Ṽ{m}⊗ IIm

)H (
V̂{m}⊗ IIm

)
vec
(
Ũ(m)

)
= M(m)H

(
Ṽ{m}

H
V̂{m}⊗ IIm

)
vec
(
Ũ(m)

)
(A.18)

with V̂{m} = Ũ(N)� · · ·� Ũ(n+1)� X̃(n)� Ũ(n−1)� · · ·� Ũ(1) in which m
indicates that the mth factor matrix is omitted in the Khatri–Rao product.
We used (A.17), (A.6), (A.7) and (A.2) in the subsequent steps of (A.18).
If m = n, one can show that (A.18), using Q{n} = Ṽ{n}TṼ{n} ∈ KRL×RL,
reduces to:

J(n)HJ(n)vec
(
X(n)

)
= M(n)H

vec
(
X̃(n)Q{n}T

)
.

A.2.5 Block-Jacobi preconditioner

We use a block-Jacobi preconditioner to reduce the number of conjugate
gradient (CG) iterations and improve overall convergence. In that case, one
has to compute the inverse of J(n)HJ(n) ∈ KRIn×RIn , for 1 ≤ n ≤ N , in each
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Table A.1: Per-iteration computational complexity of the ingredients of the NLS algorithm.

Calls/iteration Complexity

Weighted factor matrices 1 O(NRLI)
Objective function 1 + itTR O(RLIN )
Gradient 1 O(NRLIN +NR2LI2)
Gramian-vector itCG O(NR2L2I +NR2LI2)

iteration. First, we derive an expression for the (n, n)th sub-Gramian:

J(n)HJ(n) = M(n)H
(
Ṽ(n)⊗ IIn

)H (
Ṽ(n)⊗ IIn

)
M(n)

= M(n)H
(
Ṽ{n}

T
Ṽ{n}⊗ IIn

)
M(n)

= M(n)H
(
Q{n}⊗ IIn

)
M(n).

with Q{n} = Ṽ{n}TṼ{n} ∈ KRL×RL. Using identity (A.1), we obtain Q{n} =
∗Nq=1,q 6=n Ũ(N−q+1)HŨ(N−q+1) ∈ KRL×RL. The inverse of J(n)HJ(n) can then
be computed efficiently as:(

J(n)HJ(n)
)†

=
(
M(n)

)†((
Q{n}

)†
⊗ IIn

)(
M(n)

)†,H
,

in which
(
M(n))† can be computed beforehand and

(
Q{n}

)† requires the
inverse of small matrices of size (RL×RL).

A.2.6 Complexity
In Table A.1, we report the per-iteration complexity for the ingredients of
Algorithm A.1. We assume that In = I for 1 ≤ n ≤ N . The complexity
is similar to regular LS algorithms. In comparison to [180], the factor R is
replaced by RL and there is an additional cost for the multiplication with
M(n).

A.3 Direction-of-arrival estimation using WLS
Direction-of-arrival (DOA) estimation is an important problem in radar,
sonar, and telecommunication applications [127]. We show that the per-
formance can be improved by including prior knowledge about the accuracy
of the sensors via WLS.
When considering a uniform linear array (ULA) with line-of-sight signals

impinging from the far field, the DOA estimation problem can be reformu-
lated as the computation of a CPD [141], [160], [165], [167]. Consider a
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Table A.2: Incorporating prior knowledge about the accuracy of the sensors in DOA esti-
mation using weighted least squares allows one to decrease the relative error on the DOAs.

Least squares Weighted least squares

rank-1 rank-2

Relative error 0.0322 0.0187 0.0122

ULA with M uniformly spaced and omnidirectional sensors receiving length-
K signals from R narrow-band sources in the far field. In that case, the
problem can be described by X = MS in which X ∈ KM×K contains the
observed measurements, M ∈ KM×R contains the so-called steering vec-
tors, and S ∈ KR×K contains the sources. The steering vectors are defined
element-wise as mmr = θm−1

r with θr = e−2πi∆ sin(αr)λ−1 . The inter-element
spacing is denoted by ∆, the rth DOA with respect to the normal is denoted
by αr (i.e., -90◦ ≤ αr ≤ 90◦), and the wavelength is denoted by λ. One way
to obtain a tensor is to reshape X into a third-order tensor X ∈ KI×J×K
such that M = IJ using segmentation; see [21], [62]. The obtained tensor X
admits a CPD JA,B,SK in which A and B are Vandermonde matrices from
which the DOAs can be extracted.
Consider a ULA with M = 25 sensors and R = 2 source signals of length

K = 100. Assume there are two types of sensors with different quality:
the SNR on the first seventeen sensors is 25 dB and the SNR on the last
eight sensors is 5 dB. In order to accommodate for the difference in SNR
between the sensors, one could use the following weight tensorW = unvec (w)
with w(k−1)M+1:(k−1)M+17 = 117 and w(k−1)M+18:(k−1)M+25 = 0.01 · 18 for
1 ≤ k ≤ K. We model the weight tensor with a rank-L CPD using L = {1, 2};
note that the weight tensor has rank two. The relative error εα of the DOAs
is defined by ||α− α̂||F / ||α||F with α a vector containing the R DOAs. In
Table A.2 we report the median relative error across 50 experiments. It is
clear that WLS outperforms LS, even when using a rank-1 model for the
weight tensor. Also, using an additional rank-1 term to model the weight
tensor further decreases the relative error.

A.4 Conclusion
A newWLS-based approach has been proposed for the computation of a CPD
using low-rank weights. In particular, the weight tensor was modeled as a
PD, enabling efficient weighting schemes. We have derived expressions for
the ingredients of well-known qN and NLS algorithms that carefully exploit
the CPD structure of the weight tensor. Also, a complexity analysis was
performed for the NLS-type algorithms. We validated our algorithm for
DOA estimation in ULAs, outperforming regular least squares. In future
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work, one can derive WLS-based algorithms for other tensor decompositions.
Additionally, other tensor models for the weight tensor can be considered such
as the multilinear singular value decomposition, tensor train, or hierachical
Tucker model [54], [95], [152].
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