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Abstract of the dissertation
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This dissertation deals with the distributed processing techniques for parameter estima-

tion and efficient data-gathering in wireless communication and sensor networks.

The estimation problem consists in inferring a set of parameters from temporal and

spatial noisy observations collected by different nodes that monitor an area or field.

The objective is to derive an estimate that is as accurate as the one that would be

obtained if each node had access to the information across the entire network. With

the aim of enabling an energy aware and low-complexity distributed implementation of

the estimation task, several useful optimization techniques that generally yield linear

estimators were derived in the literature. Up to now, most of the works considered

that the nodes are interested in estimating the same vector of global parameters. This

scenario can be viewed as a special case of a more general problem where the nodes of

the network have overlapped but different estimation interests.

Motivated by this fact, this dissertation states a new Node-Specific Parameter Esti-

mation (NSPE) formulation where the nodes are interested in estimating parameters of

local, common and/or global interest. We consider a setting where the NSPE interests

are partially overlapping, while the non-overlapping parts can be arbitrarily different.

This setting can model several applications, e.g., cooperative spectrum sensing in cog-

nitive radio networks, power system state estimation in smart grids etc. Unsurprisingly,

the effectiveness of any distributed adaptive implementation is dependent on the ways

cooperation is established at the network level, as well as the processing strategies con-

sidered at the node level. At the network level, this dissertation is concerned with

the incremental and diffusion cooperation schemes in the NSPE settings. Under the

incremental mode, each node communicates with only one neighbor, and the data are

processed in a cyclic manner throughout the network at each time instant. On the other

hand, in the diffusion mode at each time step each node of the network cooperates with

a set of neighboring nodes. Based on Least-Mean Squares (LMS) and Recursive Least-

Squares (RLS) learning rules employed at the node level, we derive novel distributed

estimation algorithms that undertake distinct but coupled optimization processes in

order to obtain adaptive solutions of the considered NSPE setting. The detailed analy-

ses of the mean convergence and the steady-state mean-square performance have been

provided. Finally, different performance gains have been illustrated in the context of

cooperative spectrum sensing in cognitive radio networks.

Another fundamental problem that has been considered in this dissertation is the

data-gathering problem, sometimes also named as the sensor reachback, that arises in

Wireless Sensor Networks (WSN). In particular, the problem is related to the trans-

mission of the acquired observations to a data-collecting node, often termed to as sink

node, which has increased processing capabilities and more available power as compared
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to the other nodes. Here, we focus on WSNs deployed for structural health monitoring.

In general, there are several difficulties in the sensor reachback problem arising in such

a network. Firstly, the amount of data generated by the sensor nodes may be immense,

due to the fact that structural monitoring applications need to transfer relatively large

amounts of dynamic response measurement data. Furthermore, the assumption that

all sensors have direct, line-of-sight link to the sink does not hold in the case of these

structures.

To reduce the amount of data required to be transmitted to the sink node, the

correlation among measurements of neighboring nodes can be exploited. A possible

approach to exploit spatial data correlation is Distributed Source Coding (DSC). A

DSC technique may achieve lossless compression of multiple correlated sensor outputs

without establishing any communication links between the nodes. Other approaches

employ lossy techniques by taking advantage of the temporal correlations in the data

and/or suitable stochastic modeling of the underlying processes. In this dissertation, we

present a channel-aware lossless extension of sequential decoding based on cooperation

between the nodes. Next, we also present a cooperative communication protocol based

on adaptive spatio-temporal prediction. As a more practical approach, it allows a lossy

reconstruction of transmitted data, while offering considerable energy savings in terms

of transmissions toward the sink.
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Η παρούσα διατριβή ασχολείται με τεχνικές κατανεμημένης επεξεργασίας για εκτίμηση παρα-

μέτρων και για την αποδοτική συλλογή δεδομένων σε ασύρματα δίκτυα επικοινωνιών και

αισθητήρων.

Το πρόβλημα της εκτίμησης συνίσταται στην εξαγωγή ενός συνόλου παραμέτρων από

χρονικές και χωρικές θορυβώδεις μετρήσεις που συλλέγονται από διαφορετικούς κόμβους

οι οποίοι παρακολουθούν μια περιοχή ή ένα πεδίο. Ο στόχος είναι να εξαχθεί μια εκτίμηση

που θα είναι τόσο ακριβής όσο αυτή που θα πετυχαίναμε εάν κάθε κόμβος είχε πρόσβαση

στην πληροφορία που έχει το σύνολο του δικτύου. Στο πρόσφατο σχετικά παρελθόν

έγιναν διάφορες προσπάθειες που είχαν ως σκοπό την ανάπτυξη ενεργειακά αποδοτικών

και χαμηλής πολυπλοκότητας κατανεμημένων υλοποίησεων του εκτιμητή. ΄Ετσι, υπάρχουν

πλέον στη βιβλιογραφία διάφορες ενδιαφέρουσες τεχνικές βελτιστοποίησης που οδηγούν

σε γραμμικούς, κυρίως, εκτιμητές. Μέχρι τώρα, οι περισσότερες εργασίες θεωρούσαν ότι

οι κόμβοι ενδιαφέρονται για την εκτίμηση ενός κοινού διανύσματος παραμέτρων, το οποίο

είναι ίδιο για όλο το δίκτυο. Αυτό το σενάριο μπορεί να θεωρηθεί ως μια ειδική περίπτωση

ενός γενικότερου προβλήματος, όπου οι κόμβοι του δικτύου έχουν επικαλυπτόμενα αλλά

διαφορετικά ενδιαφέροντα εκτίμησης.

Παρακινημένη από αυτό το γεγονός, αυτή η Διατριβή ορίζει ένα νέο πλαίσιο της Κόμβο-

Ειδικής Εκτίμησης Παραμέτρων (ΚΕΕΠ), όπου οι κόμβοι ενδιαφέρονται για την εκτίμηση

των παραμέτρων τοπικού ενδιαφέροντος, των παραμέτρων που είναι κοινές σε ένα υποσύνολο

των κόμβων ή/και των παραμέτρων που είναι κοινές σε όλο το δίκτυο. Θεωρούμε ένα

περιβάλλον όπου η ΚΕΕΠ αναφέρεται σε ενδιαφέροντα που αλληλεπικαλύπτονται εν μέρει,

ενώ τα μη επικαλυπτόμενα τμήματα μπορούν να είναι αυθαίρετα διαφορετικά. Αυτό το πλαίσιο

μπορεί να μοντελοποιήσει διάφορες εφαρμογές, π.χ., συνεργατική ανίχνευση φάσματος σε

γνωστικά δίκτυα ραδιοεπικοινωνιών, εκτίμηση της κατάστασης ενός δικτύου μεταφοράς

ενέργειας κλπ. ΄Οπως αναμένεται, η αποτελεσματικότητα της οποιασδήποτε κατανεμημένης

προσαρμοστικής τεχνικής εξαρτάται και από τον συγκεκριμένο τρόπο με τον οποίο πραγ-

ματοποιείται η συνεργασία σε επίπεδο δικτύου, καθώς και από τις στρατηγικές επεξεργασίας

που χρησιμοποιούνται σε επίπεδο κόμβου. Σε επίπεδο δικτύου, αυτή η διατριβή ασχολείται

με τον incremental (κυκλικά εξελισσόμενο) και με τον diffusion (διαχεόμενο) τρόπο συνερ-

γασίας στο πλαίσιο της ΚΕΕΠ. Στον ινςρεμενταλ τρόπο, κάθε κόμβος επικοινωνεί μόνο με

ένα γείτονα, και τα δεδομένα από το δίκτυο υποβάλλονται σε επεξεργασία με ένα κυκλικό

τρόπο σε κάθε χρονική στιγμή. Από την άλλη πλευρά, στον diffusion τρόπο σε κάθε χρονική

στιγμή κάθε κόμβος του δικτύου συνεργάζεται με ένα σύνολο γειτονικών κόμβων. Με βάση

τους αλγορίθμους Ελαχίστων Μέσων Τετραγώνων (ΕΜΤ) και Αναδρομικών Ελαχίστων

Τετραγώνων (ΑΕΤ) οι οποίοι χρησιμοποιούνται ως κανόνες μάθησης σε επίπεδο κόμβου,

αναπτύσσουμε νέους κατανεμημένους αλγόριθμους για την εκτίμηση οι οποίοι αναλαμβάνουν

ευδιακριτές, αλλά συνδεδεμένες διαδικασίες βελτιστοποίησης, προκειμένου να αποκτηθούν οι

προσαρμοστικές λύσεις της εξεταζόμενης ΚΕΕΠ. Οι λεπτομερείς αναλύσεις για τη σύγκλιση
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ως προς τη μέση τιμή και για τη μέση τετραγωνική απόδοση σταθερής κατάστασης έχουν

επίσης εξαχθεί στο πλαίσιο αυτής της Διατριβής. Τέλος, όπως αποδεικνύεται, η εφαρμογή

των προτεινόμενων τεχνικών εκτίμησης στο πλαίσιο της συνεργατικής ανίχνευσης φάσματος

σε γνωστικές ραδιοεπικοινωνίες, οδηγεί σε αισθητά κέρδη απόδοσης.

΄Ενα άλλο βασικό πρόβλημα που έχει μελετηθεί στην παρούσα εργασία είναι το πρόβλημα

συλλογής δεδομένων, επίσης γνωστό ως sensor reachback, το οποίο προκύπτει σε ασύρματα

δίκτυα αισθητήρων (ΑΔΑ). Πιο συγκεκριμένα, το πρόβλημα σχετίζεται με την μετάδοση

των λαμβανόμενων μετρήσεων σε έναν κόμβο συλλογής δεδομένων, που ονομάζεται sink

node, ο οποίος έχει αυξημένες δυνατότητες επεξεργασίας και περισσότερη διαθέσιμη ισχύ

σε σύγκριση με τους άλλους κόμβους. Εδώ, έχουμε επικεντρωθεί σε ΑΔΑ που έχουν

αναπτυχθεί για την παρακολούθηση της υγείας κατασκευών. Σε γενικές γραμμές, σε ένα

τέτοιο δίκτυο προκύπτουν πολλές δυσκολίες σε ότι αφορά το sensor reachback προβλήμα.

Πρώτον, η ποσότητα των δεδομένων που παράγονται από τους αισθητήρες μπορεί να είναι

τεράστια, γεγονός που οφείλεται στο ότι για την παρακολούθηση της υγείας κατασκευών

είναι απαραίτητο να μεταφερθούν σχετικά μεγάλες ποσότητες μετρήσεων δυναμικής από-

κρισης. Επιπλέον, η υπόθεση ότι όλοι οι αισθητήρες έχουν απευθείας μονοπάτι μετάδοσης,

με άλλα λόγια ότι βρίσκονται σε οπτική επαφή με τον sink node, δεν ισχύει στην περίπτωση

των δομών αυτών.

Για να μειωθεί η ποσότητα των δεδομένων που απαιτούνται για να μεταδοθούν στον sink

node, αξιοποιείται η συσχέτιση μεταξύ των μετρήσεων των γειτονικών κόμβων. Μία πιθανή

προσέγγιση για την αξιοποίηση της χωρικής συσχέτισης μεταξύ δεδομένων σχετίζεται με την

Κατανεμημένη Κωδικοποίηση Πηγής (ΚΚΠ). Η τεχνική ΚΚΠ επιτυγχάνει μη απωλεστική

συμπίεση των πολλαπλών συσχετιζόμενων μετρήσεων των κόμβων χωρίς να απαιτεί την

οποιαδήποτε επικοινωνία μεταξύ των κόμβων. ΄Αλλες προσεγγίσεις χρησιμοποιούν απ-

ωλεστικές τεχνικές συμπίεσης εκμεταλλευόμενες τις χρονικές συσχετίσεις στα δεδομένα

ή / και κάνοντας μία κατάλληλη στοχαστική μοντελοποίηση των σχετικών διαδικασιών. Σε

αυτή τη Διατριβή, παρουσιάζουμε μία επέκταση της διαδοχικής αποκωδικοποίησης χωρίς

απώλειες λαμβάνοντας υπόψιν το κανάλι και βασιζόμενοι σε κατάλληλα σχεδιασμένη συνερ-

γασία μεταξύ των κόμβων. Επιπρόσθετα, παρουσιάζουμε ενα συνεργατικό πρωτόκολλο

επικοινωνίας που στηρίζεται σε προσαρμοστική χωρο-χρονική πρόβλεψη. Ως μια πιο πρακ-

τική προσέγγιση, το πρωτόκολλο επιτρέπει απώλειες στην ανακατασκευή των μεταδιδόμενων

δεδομένων, ενώ προσφέρει σημαντική εξοικονόμηση ενέργειας μειώνοντας των αριθμό των

απαιτούμενων μεταδόσεων προς τον sink node.
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and Evica, and my sister Nataša, because of their love and support of all kinds during

all these years. I cannot help but remember also my sister’s late husband Nikola who

tragically lost his life just before finishing his PhD and who had been also giving me

great encouragement. I am also thankful to my girlfriend Ivana for her unconditional

support, since all this would not have a meaning without her. Last, but not least, I thank

all my friends in Serbia, Greece and everywhere, for their friendship and the strength

that they gave me throughout these years. Hvala svima!

Nikola Bogdanović
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Chapter 1

Introduction

Distributed processing over networks relies on in-network signal processing and coop-

eration among neighboring agents. Each agent performs some signal processing task

such as estimation, detection, compression, fitting a model, and so forth. Cooperation

among the agents can be established in different manners, e.g., by forming a cyclic co-

operation path, or broadcasting information to nearby neighbors, and under different

distortion criteria and channel modeling assumptions. Distributed processing techniques

are suitable for resolving critical issues in various types of networks, such as cognitive

radio networks, power grids, wireless sensor networks, next generation mobile networks,

to mention a few. For instance, cognitive radio networks aim to alleviate today’s radio

spectrum scarcity problem. The wireless spectral detection and estimation techniques for

sensing of available spectrum play a key role in implementing cognitive radio networks.

However, the performance of spectrum sensing at a single agent may be detrimentally

affected by the signal path loss or local shadowing. The effect of these phenomena can

be facilitated through collaboration among the agents and thus the probability of de-

tecting the channels occupied by the licensed users can be improved. In future power

grids, distributed processing is desirable for performing power system state estimation

and tracking, monitoring and prediction of energy consumption and production from

renewable energy sources, detection of malicious attacks and anomalies etc. Also, wire-

less sensor networks have received great attention from the scientific community over

the past decade or so, because they hold the key to revolutionize many aspects of the

industry and our life. They encompass a wide range of applications, some of which are

related to health, military, environmental monitoring, or monitoring of civil infrastruc-

tures, such as roads, bridges and buildings. In a practical wireless sensor network, there

is typically one or a few nodes responsible for the data fusion, usually termed to as sink

node(s). The sink nodes gather the observations taken by the sensor nodes and process

1
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them, in a centralized fashion, so as to produce some decision about the observed phe-

nomena. Instead of sending the raw data to the sink nodes, sensor nodes may exploit

their processing capabilities to locally perform simple computational tasks and transmit

only the required and partially processed data, thereby saving bandwidth and energy,

and extending the network lifetime.

This dissertation deals with two basic problems of in-network collaborative signal

processing. The main research emphasis is on parameter estimation in case where there

is no statistical model for the underlying processes of interest. Then, the focus has

been put on some theoretical and practical aspects of data gathering in wireless sensor

networks.

1.1 Parameter estimation

In the last decades there have been considerable research efforts on the estimation of a

parameter or signal from noisy, temporal and spatial data measured by a set of nodes

deployed over a geographical area. Traditionally, the observations from the nodes would

be sent to a central base station for processing. Then, the central processor would per-

form all computations regarding the estimation tasks and transmit the results back to

the individual nodes. However, this approach is not scalable with respect to both com-

munication resources and computational power. Therefore, in many cases a distributed

approach is desired, where the nodes rely only on their own data and on interactions

with their immediate neighbors. As a result, in addition to an increase of the energy

efficiency, an improved robustness and scalability can be achieved when performing the

estimation task in a distributed fashion [1–6].

With the aim of enabling an energy-aware and low-complexity distributed imple-

mentation of the estimation task, several useful optimization techniques that generally

yield linear estimators have been derived. Generally, these techniques rely on some sep-

arable structure of a cost function, and most of the existing works in literature belong

to the following two categories. The first category consists of the techniques following

a consensus approach. In some initial works, for instance [7], the implementation of the

consensus strategy is done in two stages. Unfortunately, this kind of implementation is

not suitable for real time estimation as required in time-varying environments. After-

wards, motivated by the procedure obtained in [8], alternative implementations of the

consensus strategy were presented in the literature (e.g., [9]-[10]) which force agreement

among the cooperating nodes in a single time-scale. For instance, in [9], the alternating-

direction method of multipliers is used to obtain a distributed solution. For a thorough

review of the literature on consensus algorithms, see [11] and references therein. The
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second category, motivating the approach suggested in this dissertation, comprises sin-

gle time-scale distributed estimation algorithms that are based on adaptive filtering

techniques. In particular, in this kind of techniques a linear estimator is obtained by

distributing a specific stochastic gradient method under a diffusion or an incremental

mode of cooperation. In the so-called diffusion mode, considered for instance in [12–18],

at each time step each node of the network cooperates with a set of neighboring nodes

in order to provide a robust and adaptive solution of the network-wide estimation prob-

lem. Under the incremental mode (e.g., [19–21]), each node communicates with only one

neighbor, and the data are processed in a cyclic manner throughout the network at each

time instant. Determining a cyclic path that covers all nodes is an NP-hard problem [22]

and, in addition, cyclic trajectories are more sensitive to node failures and to link fail-

ures. On the contrary, since the incremental cooperation requires the minimum amount

of power, it constitutes a highly-competitive distributed solution for energy-constrained

networks whose size allows to find a cyclic trajectory. Moreover, it is well-known that

incremental strategies can achieve the performance of the centralized-like solution, which

cannot be achieved by diffusion-based algorithms as long as the nodes are not allowed

to share measurements or there is no prior knowledge regarding the quality of the data

observed at the different nodes. On the other hand, better reliability can be achieved

at the expense of increased energy consumption in the diffusion mode, due to the fact

that the cooperation is undertaken in a fully ad-hoc manner.

In most of the distributed estimation problems, it is considered that the nodes have

the same interests. This scenario can be viewed as a special case of a more general

problem where the nodes of the network have overlapping but different estimation in-

terests. Some examples of this kind of networks can be found in the context of power

system state estimation in smart grids, speech enhancement and active noise control in

wireless acoustic networks and cooperative spectrum sensing in Cognitive Radio (CR)

networks. In the signal estimation case, some of the first works explicitly considering

the aforementioned setting can be found in [23]-[24]. In these works, for networks with a

fully connected and tree topology, Bertrand et al. proposed distributed algorithms that

allow to estimate node-specific desired signals sharing a common latent signal subspace.

This dissertation is concerned with the estimation scenarios which can be formulated

as Node-Specific Parameter Estimation (NSPE) problems. Within this category, most

of the existing works are based on consensus implementations. For instance, the consen-

sus approach presented in [25] is based on optimization techniques that force different

nodes to reach an agreement when estimating parameters of common interest. At the

same time, the consensus-based technique in [25] allows each node to estimate a vector

of parameters that is only of its own interest. In the case of schemes based on a dis-

tributed implementation of adaptive filtering techniques, NSPE problems are recently
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receiving an increasing attention. In [26], a diffusion-based scheme is used to solve an

NSPE problem where the node-specific estimation interests are expressed as the product

of a node-specific matrix of basis functions and a vector of global parameters. Since the

matrix of basis functions is known by each node, the problem finally reduces to the

estimation of a vector of global interest. In [27], the authors use diffusion adaptation

and scalarization techniques to obtain a Pareto-optimal solution for the multi-objective

cost function that appears in a distributed estimation problem where each node has

a different interest. For a network formed by non-overlapping clusters of nodes, each

with a different estimation interest, a diffusion-based strategy with an adaptive combi-

nation rule is proposed in [28]. However, in the proposed strategy the cooperation is

finally limited to nodes that have exactly the same objectives. For the same network,

a diffusion-based algorithm with spatial regularization that simultaneously provides bi-

ased estimates of the multiple vectors of parameters has been derived in [29]. Unlike

previous works, the algorithm allows cooperation among neighboring nodes as long as

they have numerically similar parameter estimation interests. Additionally, in [30] the

authors analyze the performance of the diffusion-based LMS algorithm derived in [13]

when it is run in the NSPE setting considered in [29].

In this dissertation, as thoroughly explained in Section 1.3, we state a new NSPE

formulation where the nodes are interested in estimating parameters of local, common

and/or global interest. In other words, the NSPE interests are partially overlapping,

while the non-overlapping parts can be arbitrarily different.

1.2 Data gathering

Wireless Sensor Networks (WSN), as an alternative to the conventional wired systems,

provide accurate and continuous monitoring of some phenomena over some specific ter-

ritory or structure, see [1–6] and references therein. The application of our interest is

related to Structural Health Monitoring (SHM). The SHM systems are widely adopted to

monitor the behavior of structures during forced vibration testing or natural excitation

(e.g. earthquakes, winds, live loading). Structural monitoring systems are applicable to

a number of common structures including buildings, bridges, aircrafts and ships. The

monitoring system is primarily responsible for collecting the measurement output from

sensors installed in the structure and gathering the measurement data at the central

sink node [31]. There are already commercially available sensor platforms that can meet

the demands of SHM, such as Imote2 [32].
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Figure 1.1: A span on a bridge.

When accomplishing monitoring tasks such as SHM, one of the most fundamental

problems arising in such a network is the data gathering problem [33]. The data gather-

ing problem, or the sensor reachback problem as it is sometimes referred to, is related to

the transmission of the acquired observations to a data-collecting node (the sink node)

which has increased processing and power consumption capabilities as compared to the

sensor nodes. In general, there are several difficulties in the data gathering problem.

Firstly, the amount of data generated by the sensor nodes is immense, owing to the

fact that structural monitoring applications need to transfer relatively large amounts

of dynamic response measurement data with sampling frequencies as high as 1000 Hz

[34]. Also, the number of sensor nodes may be very large. Next, the assumption that

all sensors have direct, line-of-sight link to the sink does not hold in the case of these

structures. Radio communication on and around structures made of concrete or steel

components is usually complicated due to radio wave reflection, absorption, and other

phenomena that result in poor received signal quality. Moreover, sensor nodes are fre-

quently installed in partially- or completely- obscured areas, such as between girders.

As a result, not all sensors may always have a channel to the sink of good enough qual-

ity and therefore, direct communication between each sensor node and the sink would

consume all the energy stored in the batteries of the sensor nodes very quickly.

The problem of the limited energy that the sensor nodes can afford for data trans-

mission can be alleviated by exploiting recent advances in the field of cooperative com-

munications. To reduce the amount of data required to be transmitted to the sink node,

and therefore, to tackle the problem of massive data generated at the sensor nodes, the

correlation among the measurements from nearby sensors can be leveraged [35]. For

instance, the data collected by the sensors on each span of a bridge are correlated since

they are measuring the vibration of the same part of the physical structure (Fig. 1.1). In

addition, in some cases of bridge design, two adjacent spans are connected to a common

anchorage, resulting in the data across the two spans to be correlated. Similarly, in the

case of large buildings, it is natural to group the sensors of the several distinct parts

of the building (e.g. floors). In all these cases, data compression approaches exploiting



6 1.3. Contributions and Outline

the correlation of the data offer the potential to greatly reduce the amount of data that

needs to be transmitted. An approach which could exploit the spatial data correlation

is Distributed Source Coding (DSC). A DSC technique achieves lossless compression of

multiple correlated sensor outputs [36] without establishing any communication links

between the nodes. A DSC algorithm for the reachback problem, based on pair match-

ing of the nodes, was proposed in [37]. A significantly improved algorithm was proposed

in [38], based on application of DSC strategy in a sequential manner. Other approaches

employ lossy techniques by taking advantage of the temporal correlation in the data

and/or suitable stochastic modeling of the underlying processes. In [39], one may find

a comprehensive survey of the research efforts toward the practical data compression

techniques for WSNs, e.g., the techniques based on compressed sensing, distributed

transform coding, differential pulse code modulation etc.

In this dissertation, first we propose a channel-aware lossless extension of sequential

decoding based on cooperation between the nodes. Secondly, we present cooperative

communication protocols based on adaptive spatio-temporal prediction. As more prac-

tical approaches, they allow a lossy reconstruction of transmitted data, while offering

considerable energy savings in terms of transmissions toward the sink.

1.3 Contributions and Outline

In this section, the main contributions of the dissertation are stated. In addition, the

organization of the work is provided and the motivation is discussed chapter by chapter.

The contributions of the dissertation are presented in the following:

1) To formulate a new Node-Specific Parameter Estimation (NSPE) set-

ting, [40–44]:

As discussed in Section 1.1, most of the existing incremental/diffusion literature

is actually restricted to the cases when all the nodes have the same vectors of

parameters to estimate, i.e., wok = wo. Hence, the aim of this dissertation was to

remove these restrictions by introducing a new NSPE formulation to this category

of solutions where the nodes are interested in estimating parameters of local, com-

mon and/or global interest, see Fig. 2.1. We consider a setting where the NSPE

interests are partially overlapping, while the non-overlapping parts can be arbi-

trarily different. One of the facts that motivated us to state this formulation was

the applicability of the algorithms that assume the same vector of coefficients wo

modeling all the events in the network. In real world, it may rarely occur that there
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Figure 1.2: An example of an NSPE network affected by two overlapping events
specified by wo

a and wo
b .

is only one phenomenon influencing the whole network or that different events can

be modeled only with wo since they have their influences over exactly the same

geographical areas. It is more realistic to assume that the events may affect the

nodes in different scales, i.e., global, common and/or local. Note that the algo-

rithm has been designed for the case where parameters of local, common and global

interest coexist, however, the derived algorithm can be simplified straightforwardly

to scenarios where there might not be all of these parameters. For instance, the

proposed NSPE formulation can be used to model a setting where there are two

events and where there are some nodes influenced by one of the two events as well

other nodes affected by both events, i.e., by their superposition (Fig. 1.2).

2) To derive distributed adaptive strategies, i.e., Incremental Least Mean

Squares, Incremental Recursive Least Squares, Diffusion Least Mean

Squares, that solve the formulated NSPE problem, [40–44]:

The effectiveness of distributed adaptive algorithms that solve the novel NSPE

problem depends on the ways cooperation is organized at the network level, as

well as the processing strategies adopted at the node level. At the network level,

this dissertation derives the incremental and diffusion cooperation schemes in the

NSPE settings. Incremental strategies constitute a highly-competitive distributed

solution for energy-constrained networks since they can achieve the performance of

the centralized-like solution. On the other hand, due to the requirement of finding

a Hamiltonian path, they might not scale well with network size. However, the

proposed algorithm can be simplified straightforwardly to a scenario where there

might not be parameters of local, common or global interest. As a result, the

longest Hamiltonian cycle that has to be found for the implementation of I-NSPE

LMS depends only on the maximum number of nodes interested in estimating

one specific vector of parameters. In the diffusion mode, better reliability can be

achieved at the expense of increased energy consumption, due to the fact that the

cooperation is carried out in a fully ad-hoc manner where at each time step each
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node of the network cooperates with a set of neighboring nodes. Based on Least-

Mean Squares (LMS) and Recursive Least-Squares (RLS) learning rules employed

at the node level, we derive novel distributed estimation algorithms that undertake

distinct but coupled optimization processes so as to obtain adaptive solutions of

the considered NSPE setting.

3) To undertake the theoretical performance analyses of the Incremental

NSPE LMS and Diffusion NSPE LMS and to apply these algorithms

to the problem of cooperative spectrum sensing in cognitive radio net-

works, [43, 44]:

The two algorithms mentioned above are analyzed in terms of their mean perfor-

mance and their mean-square performance in the steady state. Firstly, in Theo-

rem 2.1, we provide conditions for the mean convergence of the Incremental NSPE

LMS to the unique centralized batch solution of (2.6). To prove this, it should be

emphasized that we do not assume any independence among the regressors corre-

sponding to the global, common and local parameters. Next, for the scalar obser-

vation model (2.38) and Gaussian data, the mean-square steady-state performance

analysis of the Incremental NSPE LMS is conducted by relying on the weighted

energy conservation arguments. For the Diffusion NSPE LMS, Theorem 4.1 estab-

lishes conditions for its asymptotic unbiasedness. Then, its mean-square analysis is

performed by assuming the more involving vector observation model (4.1) and the

regression matrices following a real matrix variate normal distribution where their

fourth-order moments are also evaluated. Simulation results confirm the theoreti-

cal findings for both algorithms. Furthermore, they are applied to a problem that

recently attracted a lot of interest, i.e., cooperative spectrum sensing in cognitive

radio networks.

4) To analyze some theoretical and practical aspects of data gathering in

Wireless Sensor Networks for Structural Health Monitoring and derive

suitable data gathering schemes, [45–48]:

The final contribution is related to the data gathering task in wireless sensor net-

works that are applied to monitor some civil structures. To tackle the challenges

corresponding to this task, we analyze them from the two essentially different

perspectives, i.e., the lossless and the lossy compression perspective. In the for-

mer approach, to utilize spatial data correlation, we propose a scheme relied on

distributed source coding where we also incorporate channel-awareness. The lat-

ter one deals with a more practical approach based on adaptive spatio-temporal
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prediction. The proposed protocols mitigate the problem of the energy consump-

tion for sensor nodes, either by reducing the required transmission power or by

decreasing the number of transmissions toward the data-gathering node.

The dissertation is organized as follows. Chapters 2-4 are concerned with the pa-

rameter estimation problem over adaptive networks while Chapters 5 and 6 are devoted

to the problem of data gathering in wireless sensor networks for structural health mon-

itoring.

In Chapters 2 and 3, the novel NSPE formulation is stated and analyzed within the

framework of incremental strategies.

Specifically, Chapter 2 proposes incremental LMS algorithm for NSPE problem. At

each node, the parameters to be estimated can be of local interest, global interest to the

whole network and common interest to a subset of nodes. To estimate each set of local,

common and global parameters, a least mean squares algorithm is implemented under

an incremental mode of cooperation. Coupled with the estimation of the different sets

of parameters, the implementation of each LMS algorithm is only undertaken by the

nodes of the network interested in a specific set of local, common or global parameters.

After the algorithm derivation, the conditions under which it converges in the mean are

provided. Firstly, the theoretical analysis of the mean-square steady-state performance

for a scenario where there are only parameters of global and local interests has been

undertaken, and then, a more general scenario with parameters of local, common and

global interest has been analyzed. The theoretical results related to its mean and mean-

square performance are validated through computer simulations, and also simulation

results are provided in the context of cooperative spectrum sensing in cognitive radio

networks.

Chapter 3 deals with the derivation of two distributed RLS-based schemes, under an

incremental mode of cooperation, that solve a NSPE problem where each node is inter-

ested in a set of parameters of local interest and a set of global parameters. Initially,

we propose a scheme which achieves the exact RLS solution of a central unit processing

the data of all the nodes. Then, a scheme with lower transmission complexity for ap-

plications where the communications and energy resources are scarce has been derived.

Additionally, it was shown that this simplified scheme may converge to the exact RLS

solution. Finally, by performing computer simulations we showed the effectiveness of

the proposed algorithms.

Chapter 4 motivates the diffusion NSPE LMS algorithm. To address the differ-

ent node-specific parameter estimation problems, the proposed algorithm relies on a
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diffusion-based implementation of different least mean squares algorithms, each associ-

ated with the estimation of a specific set of local, common or global parameters. The

study of convergence in the mean sense reveals that the proposed algorithm is asymptot-

ically unbiased. The closed-form expressions for the excess mean square error and mean

square deviation achieved by each node have been provided. Finally, the theoretical

analysis is verified via generic simulations and the algorithm is applied to the problem

of cooperative spectrum sensing.

Next, the problem of data gathering in WSN for SHM is discussed in Chapters 5

and 6.

Chapter 5 examines an information-theoretic lossless approach based on Distributed

Source Coding (DSC). By building upon the fact that the source coding problem can be

optimally separated from the transmission problem in the considered setting, we explain

the merit of relays in providing power-efficient and channel-aware protocol based on

DSC. Under the assumption that some nodes experience deeply faded channels toward

the sink comparing to their neighbors, the proposed strategy achieves both a lower peak

power constraint, as well as reduced total power consumption.

Chapter 6 considers a more practical approach where a certain information loss is

allowed while satisfying a predefined accuracy constraint. In particular, a cooperative

communication protocol based on adaptive spatio-temporal prediction is proposed. The

spatio-temporal prediction is realized with adaptive filtering techniques such as least

mean squares or recursive least squares. The proposed techniques have been tested ex-

tensively via real acceleration measurements from the Canton Tower in China. For both

kinds of implementations, it turns out that the proposed strategy may offer considerable

savings in transmitted energy.

Finally, Chapter 7 draws a conclusion and describes open research issues to be ad-

dressed in future work.



Chapter 2

Incremental NSPE LMS

Incremental strategies process the data in a cyclic manner where each node communi-

cates with only one neighbor [19], [49–51]. In fact, these strategies encompass all the

information available in the network at each time instant, and therefore, they can achieve

the performance of the centralized-like solution. On the other hand, finding a cyclic path

for a given network is known to be an NP-hard problem and they are also prone to node

and link failures [20–22]. However, these issues could be mitigated by allowing retrans-

missions and by letting certain nodes to be visited more than once [20]. Thus, incremen-

tal strategies establish a highly-competitive distributed solution for energy-constrained

networks.

The discussion in Section 1.1 reveals that most research efforts have been focused

on the case where the nodes are interested in estimating exactly the same vector of

global parameters in both the incremental [19–21] and the diffusion mode of coopera-

tion [13], [14], [16–18]. To the authors knowledge, there is no existing literature dealing

with incremental-type adaptive filtering for node-specific parameter estimation prob-

lems. On the other hand, some initial attempts in the literature toward solving NSPE

problems based on the diffusion cooperation have been thoroughly surveyed in Sec-

tion 1.1.

Hence, this chapters states a new NSPE formulation where the nodes are interested

in estimating parameters of local, common and/or global interest. In considered setting,

the NSPE interests are partially overlapping, while the non-overlapping parts can be

arbitrarily different. Based on adaptive filtering techniques, we derive a novel distributed

estimation algorithm that undertakes distinct but coupled optimization processes in

order to obtain unbiased and adaptive solutions of the considered NSPE problem. Each

one of them relies on a least mean squares adaptive algorithm that, under an incremental

mode of cooperation, is implemented by a subset of nodes of the network interested in

11
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Figure 2.1: Network with node-specific parameter estimation interests.

the estimation of a specific set of local, common and/or global parameters. We provide

the conditions under which it converges in the mean to the solution of a central unit that

processes all the observations of the nodes. The theoretical analysis of the steady-state

mean-square performance, for Gaussian data, is provided. The results are verified via

generic simulations, and also simulation results are given in the context of cooperative

spectrum sensing in cognitive radio networks.

2.1 Problem statement

Let us consider a network consisting of N nodes randomly deployed over some region

(see Fig. 2.1). Each node k, at discrete time i, has access to data {dk,i, Uk,i}. These

data are related to events that take place in the network area and follow the subsequent

model

dk,i = Uk,iw
o
k + vk,i (2.1)

where, for each time instant i,

- wok equals the vector of dimension Mk that gathers all parameters of interest for

node k,

- vk,i denotes measurement and/or model noise with zero mean and covariance ma-

trix Rvk,i of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with dimensions Lk×1 and Lk×Mk,

respectively.
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Given the previous observation model, the objective for each node in the network is

to use data {dk,i, Uk,i} in order to estimate its specific unknown vector wok. In particular,

we seek the set of linear node-specific estimators {wk}Nk=1 that minimize the following

global cost function

Jglob({wk}Nk=1) =
N∑

k=1

E
{
‖dk,i −Uk,iwk‖2

}
. (2.2)

In most of the existing papers, e.g., [13, 19, 21], the derived adaptation strategies mini-

mize (2.2) when wok = wo for all k ∈ {1, 2, . . . , N}. However, note that the formulation

considered in this dissertation goes one step further by considering a more general sce-

nario where not all node-specific parameters of interest, i.e. {wok}Nk=1, are the same.

Instead, we allow some of these parameters to differ from one node to another.

As shown in Fig. 2.1, each vector {wok}Nk=1 might consist of parameters of global

interest to the whole network, parameters of common interest to subsets of nodes in-

cluding node k and parameters of local interest for node k. In particular, each one of the

parameters in wok may account for events that affect the nodes in different scales. The

global parameters might be related to a phenomenon affecting the whole network. The

parameters of common interest might be associated with events measured by a specific

subset of nodes. Note that subsets of nodes associated with different events of common

interest might be partially or fully overlapped. Finally, the parameters of local interest

may reflect an influence of some phenomena that is only present over an area moni-

tored by one node of the network. In this way, considering a scenario where there are J

different subsets of common parameters (see Fig. 2.1), the observation model provided

in (2.1) can be reformulated as

dk,i = Ukg ,iw
o +

∑

j∈Ik

Ukjc,iς
o
j + Ukl,iξ

o
k + vk,i (2.3)

where, for k ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , J} and i ≥ 1,

- wo is a Mg×1 sub-vector of wok that consists of all the parameters of global interest,

- ςoj is a Mjc×1 sub-vector of wok formed by the j-th subset of parameters of common

interest,

- ξok is a Mkl × 1 sub-vector of wok that gathers all the parameters of local interest

for node k,

- Ik equals an ordered set of indices j associated with the vectors ςoj that are of

interest for sensor k,



14 2.2. A solution of the new NSPE problem

- Ukg ,i, Ukjc,i and Ukl,i are matrices of dimensions Lk×Mg, Lk×Mjc and Lk×Mkl

that might be correlated, and consist of the columns of Uk,i associated with wo,

ςoj and ξok, respectively.

Thus, according to (2.2) and (2.3), our NSPE problem can be restated as minimizing

the following cost

N∑

k=1

E



‖dk,i −Ukg ,iw −

∑

j∈Ik

Ukjc,iςj −Ukl,iξk‖2


 (2.4)

with respect to variables w, {ςj}Jj=1 and {ξk}Nk=1.

2.2 A solution of the new NSPE problem

In this section, first we derive a centralized solution of the optimization problem (2.4),

and then we develop a distributed strategy that converges to this centralized solution.

For the sake of simplicity and without losing generality, we assume that Mkl = Ml,

Mjc = Mc and Lk = L for all k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J}.

2.2.1 Centralized solution

As it can be seen by inspecting (2.4), in order to solve the considered NSPE problem

we have to optimize a scalar real-valued cost function w.r.t. multiple vector variables,

i.e., {w, {ςj}Jj=1, {ξk}Nk=1}. After gathering these variables into the following augmented

vector

w̃ =
[
wT ςT1 ςT2 · · · ςTJ ξT1 ξT2 · · · ξTN

]T
( M̃ × 1 ) (2.5)

where M̃ = Mg + J ·Mc +N ·Ml, we can easily verify that our optimization problem is

equivalent to

̂̃w = argmin
w̃
{Jglob(w̃)} = argmin

w̃

{
N∑

k=1

E
{
‖dk,i − Ũk,iw̃‖2

}}
(2.6)

where Ũk,i is defined in (2.7) at the top of the following page with Ma = (k− 1)Ml and

Mb = (N − k)Ml and

1{X∈A} =

{
1 if X ⊆ A,
0 otherwise.

(2.8)
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Ũk,i =
[
Ukg ,i 1{1∈Ik}Uk1c,i 1{2∈Ik}Uk2c,i · · · 1{J∈Ik}UkJc,i 0L×Ma Ukl,i 0L×Mb

]

(2.7)

RŨk
=




RUkg
· · · 1{J∈Ik}RUkg ,UkJc

0Mg×Ma
RUkg ,Ukl

0Mg×Mb

...
. . .

...
...

...
...

1{J∈Ik}R
H
Ukg ,UkJc

· · · 1{J∈Ik}RUk1c
0Mc×Ma

1{J∈Ik}RUkJc
,Ukl

0Mc×Mb

0Ma×Mg
· · · 0Ma×Mc

0Ma×Ma
0Ma×Ml

0Ma×Mb

RH
Ukg ,Ukl

· · · 1{J∈Ik}RUlg ,UkJc
0Ml×Ma

RUkl
0Ml×Mb

0Mb×Mg
· · · 0Mb×Mc

0Mb×Ma
0Mb×Ml

0Mb×Mb




(2.10)

r
Ũkdk

=
[
rHUkgdk

1{1∈Ik}r
H
Uk1c

dk
· · · 1{J∈Ik}r

H
UkJc

dk
0HMa×1 rHUkl

dk
0HMb×1

]H

(2.11)

It is well-known that the resulting solutions ̂̃w are optimal, if random processes {dk,i,Uk,i}
are jointly wide-sense stationary, and are given by the normal equations [52]

(
N∑

k=1

R
Ũk

)
· ̂̃w =

N∑

k=1

r
Ũkdk

, (2.9)

where R
Ũk

and r
Ũkdk

are given in (2.10) and (2.11) , respectively.

However, this centralized batch solution requires the inversion of a square matrix

whose dimension is actually proportional to the number of nodes N , and hence, a pro-

hibitively high computational cost is needed. To alleviate this problem, different iterative

procedures can be followed, e.g., an iterative steepest descent method [52].

2.2.2 Distributed solution

To improve energy efficiency, robustness and scalability of the previously described cen-

tralized approach, it is highly desirable to design a distributed and adaptive scheme

for the computation of ̂̃w. To this aim, our starting point is a partly distributed ver-

sion of the traditional steepest-descent algorithm. Next, we focus on a fully distributed

incremental method that generally has better rate of convergence and steady-state per-

formance than its steepest descent counterpart [19].
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Taking into account that our global cost function Jglob(w̃) is given as the sum of N

local cost functions {Jk(w̃)}Nk=1 with

Jk(w̃) = E
{
‖dk,i − Ũk,iw̃‖2

}
, (2.12)

a recursion for updating w̃(i) from w̃(i−1), where w̃(i) is an estimate of w̃o at iteration

i, can be realized in a distributed manner by splitting the update across the network.

In particular, by setting w̃(i) = ψ̃
(i)
N , the distributed steepest-descent algorithm can be

written as

ψ̃
(i)
k = ψ̃

(i)
(k−1) − µk

[
∇Jk(w̃(i−1))

]H
(2.13)

with

[
∇Jk(w̃(i−1))

]H
= R

Ũk
w̃(i−1) − r

Ũk,dk
(2.14)

where ψ̃
(i)
k denotes a local estimate of w̃o at node k and iteration i according to (2.6),

ψ̃
(0)
N equals an initial guess about w̃o, and µk is a suitably chosen positive step-size. Note

that throughout the text, we use the subindex (k − 1) according to

ψ̃
(i)
(k−1) =





ψ̃
(i−1)
N if k = 1

ψ̃
(i)
k−1 otherwise.

(2.15)

Next, for sufficiently small step-sizes {µk}Nk=1 obeying

0 < µk < 2/λmax (2.16)

with λmax equal to the largest eigenvalue of the invertible matrix
∑N

k=1RŨk
[52], this

strategy converges to the centralized solution

lim
i→∞

ψ̃
(i)
k = ̂̃w (2.17)

with k ∈ {1, 2, . . . , N} and ̂̃w equal to the solution of (2.9) (see [19] and the references

therein).

Note that in (2.13)-(2.14), each node k at time i is required to have access to the

global information, i.e., w̃(i−1). To obtain a fully distributed solution, we apply incre-

mental gradient technique ([19], [49] and [51]), where each node k, at time i, evaluates
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the partial gradient ∇Jk(·) at the local estimate ψ̃
(i)
(k−1). The resulting algorithm is

ψ̃
(i)
k = ψ̃

(i)
(k−1) − µk

[
∇Jk(ψ̃(i)

(k−1))
]H

(2.18)

with

[
∇Jk(ψ̃(i)

(k−1))
]H

= R
Ũk
ψ̃

(i)
(k−1) − rŨk,dk

. (2.19)

This incremental algorithm establishes a cyclic cooperation where each node of the net-

work transmits only its local estimate ψ̃
(i)
k to an immediate neighbor. Nonetheless, since

the dimension of ψ̃
(i)
k depends on the number of nodes, this kind of iterative solutions

is still non-scalable with respect to both communication resources and computational

power, an issue that will be addressed in the following.

Due to the structure of the augmented regressors Ũk,i defined in (2.7) and the cor-

relation quantities involved in (2.18) and (2.19), we can easily see that, only 2 + |Ik|
sub-vectors of ψ̃

(i)
k are updated at each iteration i, when a specific node k performs the

update step of (2.18). In particular, according to (4.5) and (2.18), only the sub-vectors

associated with the local estimates of wo, {ςok,j}j∈Ik and ξok at node k and iteration i, de-

noted as ψ
(i)
k , {ς(i)

k,j}j∈Ik and ξ
(i)
k , respectively, are updated based on a linear combination

of ψ
(i)
(k−1), ξ

(i−1)
k and {ς(i)

fj(k),j}j∈Ik where

ς
(i)
fj(k),j =





ς
(i−1)
max{Cj},j if Cj,k = ∅,

ς
(i)
max{Cj,k},j otherwise,

(2.20)

with

Cj,k = {k′ ∈ Cj : k′ < k}, (2.21)

and Cj denoting the ordered set of indexes associated with those nodes interested in

estimating ςoj , i.e.,

Cj = {k : j ∈ Ik}. (2.22)

Therefore, without any loss of optimality the previous fact allows for properly modify-

ing (2.18) and (2.19) to obtain an incremental-based NSPE algorithm where, for some
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initializations ψ
(0)
N , {ξ(0)

k }Nk=1 and {ς(0)
max{Cj},j}

J
j=1, at iteration i > 0, each node k executes




ψ
(i)
k

ς̃
(i)
k

ξ
(i)
k


 =




ψ
(i)
(k−1)

ς̃
(i)
(k−1)

ξ
(i−1)
k


+ µk


rUk,idk,i

−RUk,i




ψ
(i)
(k−1)

ς̃
(i)
(k−1)

ξ
(i−1)
k





 (2.23)

where

ς̃
(i)
k = col

{
ς

(i)
k,Ik(1), ς

(i)
k,Ik(2), . . . , ς

(i)
k,Ik(|Ik|)

}
(2.24)

and

ς̃
(i)
(k−1) = col

{
ς

(i)
fIk(1)(k),Ik(1), . . . , ς

(i)
fIk(|Ik|)(k),Ik(|Ik|)

}
. (2.25)

with fj(k) defined in (2.20)-(2.22) for j ∈ Ik.

Unlike the incremental algorithm of (2.18) and (2.19), the above NSPE algorithm

is scalable in terms of computational burden and energy resources. On the one hand,

regarding the computational complexity, at each iteration, each node k only needs to

update 2 + |Ik| vectors whose dimensions are independent of the number of nodes.

According to (2.23), these 2 + |Ik| vectors are ψ
(i)
k , {ς(i)

k,j}j∈Ik and ξ
(i)
k , consequently a

total of Mg+|Ik|·Mc+Ml parameters are updated at node k and any iteration i. On the

other hand, decreasing the power consumption, at each iteration i, the NSPE strategy

requires J+1 cyclic modes of cooperation (see Fig. 2.2). In one of them, all nodes of the

network are involved in order to estimate wo in an incremental fashion. To do so, at each

iteration i, each node transmits its local estimate of the vector of global parameters, ψ
(i)
k ,

to its immediate neighbor (see Fig. 2.2). It should be realized that the index k assigned

to each node sets the order at which nodes cooperate when estimating wo. Similarly,

an incremental mode of cooperation is established to estimate each one of the vectors

of common parameters ςoj with j ∈ {1, 2, . . . , J}. However, now the cooperation is only

established by the nodes interested in estimating ςoj , which are gathered in the ordered

set Cj . Note that Cj is a subset of the ordered set of node indexes defining the order

of cooperation associated with the estimation of global parameters wo. In particular,

given a specific order of cooperation for the estimation of wo, (2.20)-(2.22) allow the

scheme provided in (2.23) to achieve the same performance as the non-scalable strategy

described in (2.18)-(2.19). Nevertheless, other orders of cooperation can be set among

the nodes estimating a specific vector ςoj .

To proceed further, let us derive a suitable adaptive mechanism that will enable the

network to respond to time-variations in the underlying signal statistics. To do so, sev-

eral approaches may be followed. Among them, in this work we adopt the instantaneous
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Figure 2.2: Order of cooperation among the nodes of the network when implementing
the Incremental-based NSPE.

approximations r
Uk,idk,i

≈ UHk,idk,i and RUk,i
≈ UHk,iUk,i in (2.23), where now i denotes

time step. This leads to a distributed incremental-based LMS type algorithm depicted

in Fig 2.3 and summarized as follows,

Incremental-Based NSPE LMS (I-NSPE LMS)

• Start with some initial guess ψ
(0)
N , {ξ(0)

k }Nk=1 and {ς(0)
max{Cj},j}

J
j=1 with Cj defined as

in (2.22).

• At each time i, for each node k ∈ {1, 2, . . . , N}, update the vectors ψ
(i)
k , ς̃

(i)
k and

ξ
(i)
k by executing




ψ
(i)
k

ς̃
(i)
k

ξ
(i)
k


 =




ψ
(i)
(k−1)

ς̃
(i)
(k−1)

ξ
(i−1)
k


+ µkU

H
k,i


dk,i − Uk,i




ψ
(i)
(k−1)

ς̃
(i)
(k−1)

ξ
(i−1)
k





 (2.26)

with ς̃
(i)
(k−1) defined as in (2.25) according to the order of cooperation given in (2.20)-

(2.22).

The new algorithm couples, in a fully distributed fashion, a set of N+J+1 optimiza-

tion processes. One of them consists in the estimation of wo by means of a global LMS

algorithm that is implemented at all nodes under an incremental mode of cooperation.

Similarly, an incremental-based LMS is implemented to solve each one of the J optimiza-

tion processes associated with the estimation of the J vectors of common parameters,
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Figure 2.3: Structure of the distributed I-NSPE.

{ςoj }Jj=1. In this case, the implementation of the incremental-based LMS estimating ςoj is

only undertaken by the subset of nodes Cj , which might be overlapped with the subset

of nodes Cj′ interested in ςoj′ with j, j′ ∈ {1, . . . , J} and j 6= j′. Unlike the estimation of

the global and common vectors of parameters, each one of the N remaining processes is

solved by an LMS algorithm that is locally performed at each node in order to estimate

its parameters of local interest.

Although the algorithm has been designed for the case where parameters of local,

common and global interest coexist, note that the derived algorithm can be simplified

straightforwardly to scenarios where there might not be all of these types of parameters.

Therefore, according to the order of cooperation established among the nodes to solve the

considered NSPE problem (see Fig. 2.2), the longest Hamiltonian cycle that has to be

found in the network depends on the maximum number of nodes interested in estimating

one specific vector of parameters. As a result, if there are no parameters of global

interest, the implementation of the proposed algorithm does not require a Hamiltonian

cycle that covers all nodes of the network, and therefore, the proposed incremental

algorithm can scale well according the network size. Note that the drawback related

to the determination of cyclic paths of cooperation can be significantly alleviated when

there are no vectors of global parameters and the sets {Cj} have a cardinality sufficiently

smaller than N .

Next, in Theorem 2.1 we provide the conditions under which the I-NSPE algorithm

converges to the centralized solution of (2.6). Before stating the theorem formally, we

provide a useful property from [53, p.410], that was used in the work of [54] in the

context of proving the mean stability of a stand-alone sequential partial update LMS

algorithm.
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Property 1 - [53, p.410]. Let A be an arbitrary N × N matrix. Then, ρ(A) < 1 if

and only if there exists some positive definite N ×N matrix B such that B −AHBA is

positive definite. Here, ρ(A) denotes the spectral radius of A, i.e., ρ(A) = max
i
|λi(A)|.

Theorem 2.1. Consider any initialization of ψ
(0)
N , {ξ(0)

k }Nk=1 and {ς(0)
max{Cj},j}

J
j=1 with

Cj defined as in (2.22). Assume that

• noise vk,i is independent of the regressors Uk′,i′ for all k, k′ ∈ {1, 2, . . . , N} and

i, i′ > 0,

• {dk,i,Uk,i} are jointly wide-sense stationary random processes,

• the regressors are spatially and temporally independent.

Furthermore, assume that
N∑

k=1

R
Ũk
� 0. (2.27)

Then, the I-NSPE LMS algorithm asymptotically converges in the mean to the unique

centralized batch solution of (2.6), if every step-size µk satisfies

0 < µk < 2/λmax(RUk
). (2.28)

Proof. We characterize the mean behavior of I-NSPE LMS over the network by analyzing

the mean behavior of the estimates ψ̃
(i)
k of the augmented vector of parameters w̃o at

node k and time instant i. As previously defined in Section 2.2.2, recall that ψ̃
(i)
k stacks

the most recent estimates of each of the sub-vectors of w̃o till node k and time i. Firstly,

we consider the spatial updates that occur throughout the cycle from time i − 1 to i.

Throughout this cycle, it can be shown that the expectation of ϕ̃
(i)
k = w̃o − ψ̃(i)

k evolve

as

Eϕ̃
(i)
k =

N∏

k=1

(I
M̃
− µkRŨk

)Eϕ̃
(i−1)
k , (2.29)

From (2.29) note that limi→∞ ‖Eϕ̃(i)
k ‖2 = 0 if ρ

(∏N
k=1(I

M̃
− µkRŨk

)
)
< 1.

Similarly to the argument in [54], we now analyze the adaptation of the squares

of the mean errors. For simplicity of presentation, let xk,i = Eϕ̃
(i)
k , where xN,0 is an

arbitrary nonzero vector. Initially, we focus on the update at node k from node k − 1,
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at time i, i.e.,

xHk,ixk,i =xHk−1,i(IM̃ − µkRŨk
)H(I

M̃
− µkRŨk

)xk−1,i

=xHk−1,ixk−1,i − αkxHk−1,iµkRŨk
xk−1,i

− βkxHk−1,iµkRŨk
xk−1,i + xHk−1,iµkRŨk

µkRŨk
xk−1,i,

(2.30)

where βk = λmax(µkRŨk
) and αk = 2− βk. Next, in order to understand the influence

of the last two terms of the r.h.s in (2.30), it can be verified that the resulting matrix

βkµkRŨk
− µkRŨk

µkRŨk
= βkµkRŨk

(I − 1

βk
µkRŨk

) (2.31)

is a positive semi-definite matrix [55]. This implies that the relation (2.30) can be

rewritten as the following inequality

xHk,ixk,i ≤ xHk−1,ixk−1,i − αkxHk−1,iµkRŨk
xk−1,i. (2.32)

Since λmax(R
Ũk

) = λmax(RUk
), note that αk > 0 if the condition in (2.28) holds.

At this point, let us show by contradiction that the adaption occurs. By iterat-

ing (2.32) over the whole network cycle at time i = 1, we can see that xHN,1xN,1 < xHN,0xN,0

if xHk−1,1µkRŨk
xk−1,1 > 0 for at least one node k. If not, then xHk−1,1µkRŨk

xk−1,1 = 0, for

all k. Note that this last condition implies that µkRŨk
xk−1,1 = 0 [56, p.431], and that

xk,1 = xN,0 for all k. Hence, we have that 0 =
∑N

k=1 xHN,0RŨk
xN,0 if xHk−1,1µkRŨk

xk−1,1 >

0 does not hold for at least one node k. However, this is in contradiction with the as-

sumption of positive definiteness given in (2.27).

Finally, based on the previous argument and relation (2.29), we conclude that

xHN,0BxN,0 − xHN,0A
HBAxN,0 > 0, (2.33)

where B = I
M̃

and A =
∏N
k=1(I

M̃
−µkRŨk

). Thus, by applying Property 1, we conclude

that

ρ

(
N∏

k=1

(I
M̃
− µkRŨk

)

)
< 1. (2.34)

Consequently, under the assumptions in (2.27) and (2.28), the I-NSPE LMS is convergent

in the mean and hence, asymptotically unbiased. This concludes the proof.

Remark 2.1: Note that in Theorem 2.1, we do not assume any independence among

Ukg ,i, Ukl,i and Ukjc,i. Assuming such intra-independence in the regressors at each node
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k, the sufficient conditions ensuring strict convexity in (2.6) reduce to that

RUkl,i
� 0 (2.35)

for all k ∈ {1, . . . , N} and that, for at least one index k ∈ {1, 2, . . . , N},

RUkg,i
� 0 (2.36)

and

RUkjc,i
� 0 (2.37)

for all j ∈ {1, 2, . . . , J}. From the previous conditions, we can easily see that the coop-

eration established by I-NSPE for the estimation of the global and common parameters

can allow each node k to estimate wok even when its local cost function is not strictly

convex. Consequently, concluding this section we can easily realize that the proposed

strategy leverages cooperation to alleviate the problem of local unobservability of the

parameters of interest, wok, at a specific set of nodes.

2.3 Performance analysis: A scenario with global and local

parameters

In this section, we rely on the weighted energy conservation arguments [19], [52] in order

to conduct the mean-square performance analysis of the proposed algorithm. Specif-

ically, we evaluate the steady-state performance at each individual node in terms of

Mean-Square Deviation (MSD) and Excess Mean-Square Error (EMSE). For the sake of

an easy exposition, we initially consider the performance analysis for the case where a

node estimates only the parameters of the global and its local interests. In the following

section, we generalize this to the case where there are also different vectors {ςj}Jj=1 of

common parameters.

2.3.1 Data assumptions

To proceed, we adopt the following independence assumptions on the data, where we

analyze, for the sake of clarity, the scalar counterpart (Lk = 1) of the observation model

defined in (2.1), i.e.,

dk(i) = uk,iw
o
k + υk(i) (2.38)

where
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• υk(i) is temporally and spatially white noise whose variance is σ2
vk

and which is

independent of dk′(i
′) for k 6= k′ and i 6= i′, and uk′,i′ for all k′ and i′, with

k, k′ ∈ {1, 2, . . . , N} and i, i′ > 0;

• uk,i is independent of uk′,i, with k, k′ ∈ {1, 2, . . . , N} and k 6= k′ (spatial indepen-

dence);

• uk,i is independent of uk,i′ , with i, i′ > 0 and i 6= i′ (temporal independence).

2.3.2 Weighted Spatial-Temporal Energy Relation

Now, let us define the local error quantities at each node k:

ea,k(i) , uk,iϕ
(i)
(k−1) (a priori error) (2.39)

ep,k(i) , uk,iϕ
(i)
k (a posteriori error) (2.40)

ek(i) , dk(i)− uk,i

[
ψ

(i)
(k−1)

ξ
(i−1)
k

]
(output error) (2.41)

where

ϕ
(i)
k ,

[
wo

ξok

]
−
[
ψ

(i)
k

ξ
(i)
k

]
and ϕ

(i)
(k−1) ,

[
wo

ξok

]
−
[
ψ

(i)
(k−1)

ξ
(i−1)
k

]
. (2.42)

Note that the output error can also be expressed as

ek(i) = uk,iϕ
(i)
(k−1) + υk(i). (2.43)

In order to obtain MSD and EMSE at each node k, we need to evaluate the means

of the weighted norms of ϕ
(∞)
k and ϕ

(∞)
(k−1), as follows:

MSDtot
k , E‖ϕ(∞)

k ‖2I (2.44)

EMSEtotk , E|ea,k(∞)|2 = E‖ϕ(∞)
(k−1)‖

2
Ruk

. (2.45)

Thus, to undertake the performance analysis, it firstly suffices to calculate E‖ϕ(∞)
(k−1)‖2Σk

with Σk � 0, and then particularize the previous performance measure to Σk = Ruk and
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Σk = I. Toward this goal, let us define the weighted a priori and a posteriori errors at

node k [52],

eDkΣk
a,k (i) , uk,iDkΣkϕ

(i)
(k−1)

(2.46)

eDkΣk
p,k (i) , uk,iDkΣkϕ

(i)
k

(2.47)

where

Dk = diag(µψk
IMg , µξkIMl

). (2.48)

Next, by particularizing (2.26) for the case where a node k estimates only the global

and local parameters (i.e., wo and ξok, respectively), and using (2.42), we get the following

recursion:

ϕ
(i)
k = ϕ

(i)
(k−1) −Dku

H
k,iek(i). (2.49)

Multiplying both sides of (2.49) by uk,iDkΣk from the left, after rearrangement we

express the output error vector as

ek(i) =
eDkΣk
a,k (i)− eDkΣk

p,k (i)

‖uk,i‖2DkΣkDk

. (2.50)

Now, after substituting (2.50) back into (2.49) and equating the weighted norm of both

sides, we can write the weighted energy-conservation relation for the analyzed algorithm

as

‖ϕ(i)
k ‖2Σk

+
|eDkΣk
a,k (i)|2

‖uk,i‖2DkΣkDk

= ‖ϕ(i)
(k−1)‖

2
Σk

+
|eDkΣk
p,k (i)|2

‖uk,i‖2DkΣkDk

. (2.51)

2.3.3 Weighted Variance Relation

Firstly, note that the weighted a posteriori error vector can be expressed from (2.50).

Then, substituting it in (2.51) and rearranging, we get

‖ϕ(i)
k ‖2Σk

=‖ϕ(i)
(k−1)‖

2
Σk
− eDkΣk

a,k (i)Hek(i)− ek(i)
HeDkΣk

a,k (i) + ‖uk,i‖2DkΣkDk
|ek(i)|2.

(2.52)
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Now, using (2.43) and taking expectations of both sides, due to the independence of the

regression data {uk} assumed in Subsection 2.3.1, we can rewrite (2.52) into

E‖ϕ(i)
k ‖2Σk

= E‖ϕ(i)
(k−1)‖

2
Σ′k

+ σ2
vk
E‖uk,i‖2DkΣkDk

(2.53)

where Σ′k is a deterministic matrix defined as

Σ′k =Σk − ΣkDkE
{
uHk,iuk,i

}
− E

{
uHk,iuk,i

}
DkΣk + E

{
‖uk,i‖2DkΣkDk

uHk,iuk,i
}
. (2.54)

2.3.4 Gaussian data

In order to evaluate all the terms in the variance relation given in (2.53) and (2.54), we

may follow two approaches. One approach is to assume that the regressors come from

a circular Gaussian distribution, and then introduce the eigendecomposition and the

diagonalization steps [19]. Alternatively, one could use the vectorization operator and

the properties of Kronecker product [21], [52]. For simplicity of presentation, we choose

the former approach.

To begin with, let us perform the eigendecomposition Ruk = VkΛkV
H
k where Vk

is unitary and Λk is a diagonal matrix with the eigenvalues of Ruk . Also, define the

following transformed quantities

ϕk , V H
k ϕk, ϕ(k−1) , V H

k ϕ(k−1), uk , ukVk, Σk , V H
k ΣkVk,

Σ
′
k , V H

k Σ′kVk, Dk , V H
k DkVk.

By following the same arguments as in [19], it is straightforward to show that the

variance relation (2.53) can be rewritten as

E‖ϕ(i)
k ‖2Σk

= E‖ϕ(i)
(k−1)‖

2
Σ
′
k

+ σ2
vk

Tr(ΛkDkΣkDk) (2.55)

Σ
′
k =Σk − ΛkDkΣk − ΣkDkΛk + ΛkTr(DkΣkDkΛk) + γΛkDkΣkDkΛk. (2.56)

where γ = 1 for circular complex data and γ = 2 for real data.

2.3.5 Steady-State Performance

Next, we focus on obtaining the MSD and EMSE associated with the estimation of the

vectors of global and local parameters at each node k. After this derivation, we will

be able to get the total MSD and EMSE at each node. To simplify the mean-square

analysis in the steady state, we first adopt the following additional assumption:
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• ukg ,i regressor is independent of ukl,i.

Now, the matrix Λk has the following structure

Λk = blockdiag{Λk,g,Λk,l} (2.57)

where Λk,g and Λk,l are diagonal matrices with the eigenvalues corresponding to Rukg
and Rukl , respectively, i.e.,

Rukg = Vk,gΛk,gV
H
k,g and Rukl = Vk,lΛk,lV

H
k,l .

Hence, to conduct the performance analysis it suffices to focus on a weighting matrix

with a block-diagonal structure, which implies that its transformed counterpart has the

structure

Σk = blockdiag{Σk,g,Σk,l} (2.58)

where

Σk,g , V H
k,gΣk,gVk,g and Σk,l , V H

k,lΣk,lVk,l. (2.59)

At this point, note that Dk = Dk and that the term Tr(ΛkDkΣkDk) can be rewritten

as

Tr(ΛkDkΣkDk) = µ2
ψk

Tr(Λk,gΣk,g) + µ2
ξk

Tr(Λk,lΣk,l). (2.60)

If we now verify that the transformed quantity ϕ
(i)
k consists of the global and the local

weight error vectors (yet transformed),

ψ
(i)
k , V H

k,gϕ
(i)
k,g and ξ

(i)
k , V H

k,lϕ
(i)
k,l

where ϕ
(i)
k,g , wo−ψ(i)

k and ϕ
(i)
k,l , ξok − ξ

(i)
k , respectively, we can write (2.55) and (2.56)

for ψ
(i)
k and ξ

(i)
k as follows

E‖ψ(i)
k ‖2Σk,g

=E‖ψ(i)
(k−1)‖2Σ′k,g + µ2

ψk
σ2
vk

Tr(Λk,gΣk,g) + µ2
ψk
E‖ξ(i−1)

k ‖2Λk,l
Tr(Λk,gΣk,g)

(2.61)

E‖ξ(i)
k ‖2Σk,l

=E‖ξ(i−1)
k ‖2

Σ
′
k,l

+ µ2
ξk
σ2
vk

Tr(Λk,lΣk,l) + µ2
ξk
E‖ψ(i)

(k−1)‖2Λk,g
Tr(Λk,lΣk,l) (2.62)
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with

Σ
′
k,g =Σk,g − µψk

(
Λk,gΣk,g + Σk,gΛk,g

)
+ µ2

ψk

(
Λk,gTr(Σk,gΛk,g) + γΛk,gΣk,gΛk,g

)

(2.63)

and

Σ
′
k,l =Σk,l − µξk

(
Λk,lΣk,l + Σk,lΛk,l

)
+ µ2

ξk

(
Λk,lTr(Σk,lΛk,l) + γΛk,lΣk,lΛk,l

)
. (2.64)

It can be easily shown that, when ukg ,i is independent of ukl,i for all i > 0 and k ∈
{1, . . . , N}, equation (2.61) represents the weighted variance relation which (instead of

using (2.49)) is obtained from the subsequent recursion

ϕ
(i)
k,g = ϕ

(i)
(k−1),g − µψk

uHkg ,iek(i).

Similarly, (2.62) and (2.64) can be obtained from the weighted variance relation that

results from considering the update equation corresponding to the estimate of the vector

of local parameters at node k and iteration i.

Subsequently, to obtain the closed-form expressions for the mean-square quantities,

we proceed by exploiting the diagonal structure of the matrices below

σk,g , diag(Σk,g), σ′k,g , diag(Σ
′
k,g), λk,g , diag(Λk,g),

σk,l , diag(Σk,l), σ′k,l , diag(Σ
′
k,l), λk,l , diag(Λk,l),

where a , diag(A) is a column vector with the diagonal entries of A. Also, we will use

A , diag(a) , where A is a diagonal matrix whose entries are those of the column vector

a. In this way, the relation (2.63) is now equivalent to

σ′k,g = F k,gσk,g (2.65)

where the coefficient matrix is

F k,g , I − 2µψk
Λk,g + γµ2

ψk
Λ2
k,g + µ2

ψk
λk,gλ

T
k,g. (2.66)

As a result, the relation (2.61) is

E‖ψ(i)
k ‖2diag(σk,g) = E‖ψ(i)

(k−1)‖2diag(Fk,gσk,g)
+ µ2

ψk
σ2
v,kλ

T
k,gσk,g

+ µ2
ψk
E‖ξ(i−1)

k ‖2diag(λk,l)
λTk,gσk,g.

(2.67)
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Likewise, the expression (2.62) for evaluating the performance of the local part for each

node k is given by

E‖ξ(i)
k ‖2diag(σk,l)

= E‖ξ(i−1)
k ‖2

diag(Fk,lσk,l)
+ µ2

ξk
σ2
v,kλ

T
k,lσk,l

+ µ2
ξk
E‖ψ(i)

(k−1)‖2diag(λk,g)λ
T
k,lσk,l

(2.68)

with

F k,l , I − 2µξkΛk,l + γµ2
ξk

Λ2
k,l + µ2

ξk
λk,lλ

T
k,l. (2.69)

For compactness, from now on we drop the diag(·) notation in (2.67) and (2.68).

We collect now the equations (2.67), (2.68) in steady-state, i.e., as i→∞, for all the

nodes. Thus, we obtain two systems of N equations which are interrelated. By defining

hk,g , µ2
ψk
λk,g and hk,l , µ2

ξk
λk,l, (2.70)

the (k − 1)th equation, out of N equations associated with the parameters of global

interest, is written as follows

E‖ψ(∞)
k−1‖2σk−1,g

= E‖ψ(∞)
k−2‖2Fk−1,gσk−1,g

+ σ2
v,k−1 h

T
k−1,gσk−1,g

+ E‖ξ(∞)
k−1‖2λk−1,l

hTk−1,gσk−1,g (2.71)

while the (k − 1)th equation of the second system, associated with the parameters of

local interest, is given by

E‖ξ(∞)
k−1‖2σk−1,l

= E‖ξ(∞)
k−1‖2Fk−1,lσk−1,l

+ σ2
v,(k−1) h

T
k−1,lσk−1,l

+ E‖ψ(∞)
k−2‖2λ(k−1),g

hTk−1,lσk−1,l. (2.72)

Observe now that the desired performance measures for each node k can be expressed

as follows

MSDtot
k = MSDg

k + MSDl
k = E‖ψ(∞)

k ‖21Mg
+ E‖ξ(∞)

k ‖21Ml
, (2.73)

EMSEtotk = EMSEgk + EMSElk = E‖ψ(∞)
(k−1)‖2λk,g + E‖ξ(∞)

k ‖2λk,l , (2.74)

where k ∈ {1, 2, . . . , N} and 1M denotes a M × 1 vector of ones.
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Subsequently, let us express the EMSElk from the kth equation in (2.72), which can

be rewritten as

E‖ξ(∞)
k ‖2[I−Fk,l]σk,l

=σ2
v,k h

T
k,lσk,l + E‖ψ(∞)

(k−1)‖2λk,gh
T
k,lσk,l. (2.75)

To this end, the weighting vector σk,l should satisfy the following relation

[
I − F k,l

]
σk,l = λk,l. (2.76)

In this way, for all k ∈ {1, 2, . . . , N}, it can be verified that

EMSElk =ζk,l
(
σ2
v,k + EMSEgk

)
(2.77)

with

ζk,l = hTk,l
[
I − F k,l

]−1
λk,l. (2.78)

By substituting the previous relation for each node k into (2.71), the kth equation

in (2.71) takes the following form

E‖ψ(∞)
k ‖2σk,g

= E‖ψ(∞)
(k−1)‖2Bk,gσk,g

+ bTk,gσk,g (2.79)

where, for k ∈ {1, 2, . . . , N},

Bk,g = F k,g + ζk,lλk,gh
T
k,g (2.80)

and

bk,g = σ2
v,k(1 + ζk,l)hk,g. (2.81)

By iterating (2.79) over the whole network cycle, and by choosing the proper weighting

vectors σk,g for each k, it can be verified that

E‖ψ(∞)
(k−1)‖2σ(k−1),g

= E‖ψ(∞)
(k−1)‖2Bk,g ···BN,gB1,g ···B(k−1),gσ(k−1),g

+ bTk,gBk+1,g · · ·BN,gB1,g · · ·B(k−1),gσ(k−1),g

+ bTk+1,gBk+2,g · · ·BN,gB1,g · · ·B(k−1),gσ(k−1),g

+ · · ·+ bTk−2,gB(k−1),gσ(k−1),g + b(k−1),gσ(k−1),g

(2.82)

where all subscripts are either modN or N if the result of the modN operation equals

0.
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If we now define the transition matrix

Πk,g,` , Bk+`−1,g · · ·BN,gB1,g · · ·B(k−1),g (2.83)

with `, k ∈ {1, 2, . . . , N}, (2.82) can straightforwardly be rewritten as

E‖ψ(∞)
(k−1)‖2[I−Πk,g,1]σ(k−1),g

= aTk,gσ(k−1),g. (2.84)

where

aTk,g , bTk,gΠk,g,2 + bTk+1,gΠk,g,3 + · · ·+ bTk−2,gΠk,g,N + bT(k−1),g. (2.85)

By choosing σ(k−1),g as the solutions of the linear equations [I −Πk,g,1]σ(k−1),g = λk,g

and [I −Πk,g,1]σ(k−1),g = 1Mg , according to the definitions given in (2.73) and (2.74)

we obtain the desired EMSEgk and MSDg
k for each node k ∈ {1, 2, . . . , N}, respectively,

EMSEgk = aTk,g [I −Πk,g,1]−1 λk,g (2.86)

and

MSDg
k−1 = aTk,g [I −Πk,g,1]−1 1Mg . (2.87)

Now, we express the estimation performance measures related to the parameter of local

interest, at node k. In order to obtain MSDl
k, from (2.75) we can check that the weighting

vector σk,l has to satisfy

[
I − F k,l

]
σk,l = 1Ml

. (2.88)

Thus, taking into account the definition of EMSEgk provided in (2.74), we can note that

MSDl
k = ηk,l

(
σ2
v,k + EMSEgk

)
(2.89)

with

ηk,l = hTk,l
[
I − F k,l

]−1
1Ml

. (2.90)

Finally, from (2.77), (2.86), (2.87) and (2.89), for the definitions in (2.73) and (2.74) we

get

MSDtot
k =aTk+1,g [I −Πk+1,g,1]−1 1Mg + ηk,l

(
σ2
v,k + aTk,g [I −Πk,g,1]−1 λk,g

)
(2.91)
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and

EMSEtotk =aTk,g [I −Πk,g,1]−1 λk,g + ζk,l

(
σ2
v,k + aTk,g [I −Πk,g,1]−1 λk,g

)
. (2.92)

As it is expected from (2.77) and (2.89), the expressions (2.91) and (2.92) indicate a

coupling effect between the estimation processes for the global and local parameters at

each node.

2.4 Performance analysis: A scenario with global, common

and local parameters

The performance analysis steps for the more general case, where local, common and

global interests coexist, depend also on the way the sets of nodes {Cj}Jj=1 are overlapped.

Due to this fact, for the sake of generality, we will show the main steps that have to

be followed to obtain the performance analysis once the different node-specific interests

have been defined.

2.4.1 Weighted Variance Relation for Gaussian data

For a scenario where some subsets of nodes are interested in estimating several vectors

of common parameters, let us firstly make the subsequent redefinitions

ϕ
(i)
k ,




wo

ς̃ok

ξok


−




ψ
(i)
k

ς̃
(i)
k

ξ
(i)
k


 and ϕ

(i)
(k−1) ,




wo

ς̃ok

ξok


−




ψ
(i)
(k−1)

ς̃
(i)
(k−1)

ξ
(i−1)
k


 (2.93)

and Dk = diag
(
µψk

IMg , Dς̃k , µξkIMl

)
, with

ς̃ok = col
{
ςoIk(1), ς

o
Ik(2), . . . , ς

o
Ik(|Ik|)

}
(2.94)

and Dς̃k = diag
(
µςk,Ik(1)

IMc , . . . , µςk,Ik(|Ik|)
IMc

)
.

At this point, under the assumptions stated in Subsection 2.3.1 it can be straight-

forwardly shown that the weighted variance relation for Gaussian data follows the same

expression as the one provided in (2.55) and (2.56) for a scenario where there are only

parameters of global and local interest. Consequently, assuming that ukg ,i, ukl,i and

ukjc,i are independent for any j ∈ {1, 2, . . . , J}, by following the same reasoning as in
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Subsection 2.3.5 we can particularize (2.55) and (2.56) to

E‖ψ(i)
k ‖2Σk,g

=E‖ψ(i)
(k−1)‖2Σ′k,g + µ2

ψk
σ2
vk

Tr(Λk,gΣk,g)

+ µ2
ψk
E‖ξ(i−1)

k ‖2Λk,l
Tr(Λk,gΣk,g) + µ2

ψk

∑

j∈Ik

E‖ς(i)
fj(k),j‖

2
Λk,j

Tr(Λk,gΣk,g)

(2.95)

E‖ς(i)
k,j‖2Σk,j

= E‖ς(i)
fj(k),j‖

2
Σ
′
k,j

+ µ2
ςk,j
σ2
v,kTr(Λk,jΣk,j) + µ2

ςk,j
E‖ξ(i−1)

k ‖2Λk,l
Tr(Λk,jΣk,j)

+µ2
ςk,j
E‖ψ(i)

(k−1)‖2Λk,g
Tr(Λk,jΣk,j) + µ2

ςk,j

∑

j′∈Ik
j′ 6=j

E‖ς(i)
fj′ (k),j′‖

2
Λk,j′

Tr(Λk,jΣk,j)

(2.96)

and

E‖ξ(i)
k ‖2Σk,l

=E‖ξ(i−1)
k ‖2

Σ
′
k,l

+ µ2
ξk
σ2
vk

Tr(Λk,lΣk,l)

+ µ2
ξk
E‖ψ(i)

(k−1)‖2Λk,g
Tr(Λk,lΣk,l) + µ2

ξk

∑

j∈Ik

E‖ς(i)
fj(k),j‖

2
Λkj

Tr(Λk,lΣk,l)

(2.97)

where, for k ∈ {1, . . . , N}, Σk,g, Σk,l, Σ
′
k,g and Σ

′
k,l are given in (2.59), (2.63) and (2.64),

respectively. In (2.96), for any j ∈ Ik,

Σ
′
k,j = Σk,j − µςk,j

(
Λk,jΣk,j + Σk,jΛk,j

)
+ µ2

ςk,j

(
Λk,jTr(Σk,jΛk,j) + γΛk,jΣk,jΛk,j

)

(2.98)

where Λk,j equals to a diagonal matrix whose entries are the eigenvalues corresponding

to Rukj , i.e., Rukj = Vk,jΛk,jV
H
k,j , and where Σk,j , V H

k,jΣVk,j and ς
(i)
k,j , V H

k,jϕ
(i)
k,j with

ϕ
(i)
k,j = ςoj − ς

(i)
k,j .

2.4.2 Diagonalization and Steady-State Performance

In order to leverage the diagonal structure of Σk,g, Σk,l and Σk,j with j ∈ Ik, we

additionally define

σk,j = diag(Σk,j), λk,j , diag(Λk,j)

and F k,j , I − 2µςk,jΛk,j + γµ2
ςk,j

Λ2
k,j + µ2

ςk,j
λk,jλ

T
k,j .

Next, we proceed with the derivation of the steady state equations associated with

the vectors of global, common and local parameters at node k, i.e., ψ
(∞)
k , ς

(∞)
k,j and ξ

(∞)
k ,
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respectively, with k ∈ {1, 2, . . . , N} and j ∈ Ik. In particular, after defining

hk,j , µ2
ςk,j
λk,j (2.99)

for k ∈ {1, 2, . . . , N} and j ∈ Ik, from the evaluation of (2.95)-(2.97) at i =∞ we obtain

E‖ψ(∞)
k ‖2σk,g

= E‖ψ(∞)
(k−1)‖2Fk,gσk,g

+ hTk,gσk,gσ
2
v,k

+ hTk,gσk,gEMSElk + hTk,gσk,g
∑

j∈Ik

EMSE
cj
k

(2.100)

E‖ς(∞)
k,j ‖2σkj

=E‖ς(∞)
fj(k),j‖

2
Fk,jσk,j

+ hTk,jσk,j σ
2
v,k

+ hTk,jσk,jEMSElk + hTk,jσk,jEMSEgk + hTk,jσk,j
∑

j′∈Ik
j′ 6=j

EMSE
cj′
k

(2.101)

and

E‖ξ(∞)
k ‖2σk,l

=E‖ξ(∞)
k ‖2

Fk,lσk,l
+ hTk,lσk,lσ

2
v,k + hTk,lσk,lEMSEgk + hTk,lσk,l

∑

j∈Ik

EMSE
cj
k

(2.102)

where, for k ∈ {1, 2, . . . , N}, hk,g, hk,l, EMSEgk and EMSElk are given in (2.70) and (2.74),

respectively, and where

EMSE
cj
k , E‖ς(∞)

fj(k),j‖
2
λk,j

(2.103)

for j ∈ Ik.

If we now take into account the definition of EMSElk provided in (2.74) and follow

the same steps as in Subsection 2.3.5, we can verify that, when σk,l satisfies (2.76),

then (2.102) leads to

EMSElk = ζk,l


σ2

v,k + EMSEgk +
∑

j∈Ik

EMSE
cj
k


 (2.104)

with ζk,l defined in (2.78) and k ∈ {1, 2, . . . , N}. Analogously,

MSDl
k = ηk,l


σ2

v,k + EMSEgk +
∑

j∈Ik

EMSE
cj
k


 (2.105)

with ηk,l defined in (2.90) and k ∈ {1, 2, . . . , N}.

From (2.104) and (2.105) we can check that, for each node k ∈ {1, 2, . . . , N}, both
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EMSElk and MSDl
k are dependent on EMSEgk and {EMSE

cj
k }j∈Ik . Thus, to obtain an

analytical expression for the aforementioned performance measures, we need to derive

closed-form expressions for the mean-square measures associated with the estimation of

wo and {ςoj }j∈Ik . Toward this goal, let us first substitute the right-hand side of (2.104)

into the right-hand side of (2.101). As a result of this substitution, after some algebraic

manipulations, we get

E‖ς(∞)
k,j ‖2σk,j

=E‖ς(∞)
fj(k),j‖

2
Bk,jσk,j

+ bTk,jσk,j

+ hTk,jσk,j(1 + ζk,l) EMSEgk + hTk,jσk,j(1 + ζk,l)
∑

j′∈Ik
j′ 6=j

EMSE
cj′
k

(2.106)

with

Bk,j = F k,j + ζk,lλk,jh
T
k,j (2.107)

and

bk,j = σ2
v,k(1 + ζk,l)hk,j . (2.108)

Subsequently, similarly to the steps undertaken in Subsection 2.3.5, by only focusing on

the nodes interested in estimating ςoj we can construct a set of nj = |Cj | equations, whose

k-th member is given by (2.106). After defining f `j (k) as the repeated composition of

fj(k) with itself `− 1 times, i.e.,

f `j (k) = fj(k) ◦ fj(k) ◦ fj(k) ◦ · · · ◦ fj(k)︸ ︷︷ ︸
`−1 times

with `, k ∈ {1, 2, . . . , nj} and j ∈ Ik, we now iterate (2.106) over the set Cj and choose

the proper weighting vectors σk,j for each k ∈ Cj . Thus, it can be verified that

E‖ς(∞)
fj(k),j‖

2
σfj(k),j

= E‖ς(∞)
fj(k),j‖

2
Πk,j,1σfj(k),j

+ aTk,jσfj(k),j

+
[
hgk,j

]T
σfj(k),j +

[
hck,j

]T
σfj(k),j

(2.109)

where

aTk,j ,b
T
k,jΠk,j,2 + bT

f
nj−1

j (k),j
Πk,j,3 + · · ·+ bTf2

j (k),jΠk,j,nj
+ bTfj(k),j , (2.110)

Πk,j,` ,B
f
nj−`+1

j (k),j
· · ·Bmax{Cj},jBCj(1),j · · ·Bfj(k),j , (2.111)



36 2.4. Performance analysis: A scenario with global, common and local parameters

with

[
hgk,j

]T
, hTk,j Πk,j,2 (1 + ζk,l)EMSEgk + hT

f
nj−1

j (k),j
Πk,j,3(1 + ζ

f
nj−1

j (k),l
)EMSEg

f
nj−1

j (k)

+ · · ·+ hTf2
j (k),jΠk,j,nj

(1 + ζf2
j (k),l)EMSEg

f2
j (k)

+ hTfj(k),j(1 + ζfj(k),l)EMSEgfj(k)

(2.112)

and

[ hck,j
]T

, hTk,j Πk,j,2 (1 + ζk,l)
∑

j′∈Ik,j′ 6=j
EMSE

cj′
k + · · ·

+ hTf2
j (k),jΠk,j,nj

(1 + ζf2
j (k),l)

∑

j′∈I
f2
j

(k)
,j′ 6=j

EMSE
cj′

f2
j (k)

+ hTfj(k),j(1 + ζfj(k),l)
∑

j′∈Ifj(k),j
′ 6=j

EMSE
cj′

fj(k).

(2.113)

Now, according to (2.103) for σfj(k),j = [IMc −Πk,j,1]−1 λk,j , the expression provided

in (2.109) leads to

EMSE
cj
k =aTk,j [IMc −Πk,j,1]−1 λk,j +

[
hck,j + hgk,j

]T
[IMc −Πk,j,1]−1 λk,j (2.114)

for k ∈ {1, 2, . . . , N} and j ∈ Ik. Similarly, according to the subsequent definition

MSD
cj
k , E‖ς(∞)

k,j ‖21Mc
, (2.115)

the expression (2.109) yields

MSD
cj
fj(k) =aTk,j [IMc −Πk,j,1]−1 1Mc +

[
hck,j + hgk,j

]T
[IMc −Πk,j,1]−1 1Mc . (2.116)

with k ∈ {1, 2, . . . , N} and j ∈ Ik.

An analysis of (2.114) and (2.116) reveals that both EMSE
cj
k and MSD

cj
fj(k) are

dependent on {EMSEgk′}k′∈Cj and

{EMSE
cj′

k′ }k′∈Cj ,j′∈Ik′\j .

As a result, to derive closed-form expressions of EMSE
cj
k and MSD

cj
fj(k) that are only

dependent on the performance measures associated with the estimation of the vector

of global interest, we have to solve a linear system of equations. Each equation of this

system is given by the expressions provided in (2.114) for EMSE
cj′

k′ , where j′ ∈ Ik′ and

k′ ∈ {Θj} with Θj equal to the set that results from ordering the connected component

of

∪Jj′=1 Gj′ (2.117)
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Figure 2.4: Connected component associated with the vector of common parameters
ςoj is denoted Θj .

that contains the set Cj (see Fig. 2.4).

In (2.117), the graph Gj′ denotes a directed graph whose nodes are Cj′ and whose

directed edges are given by {(fj′(k), k)}k∈Cj′ . Hence, the aforementioned linear system

has the following form

Ac
Θj
· EMSEc

Θj
= bc

Θj
(2.118)

where EMSEc
Θj

is the vector formed by stacking EMSE
c′j
k′ , with k′ ∈ Θj and j′ ∈ Ik′ ,

according to the bijective function

fΘj
(k′, j′) =

|Θj,k′ |∑

m=1

|I
Θj(m)

|+ |Ik′,j′ |+ 1 (2.119)

defined on

Dj =
{

(k′, j′) ∈ Θj × {1, 2, . . . , J} | ∀k′ ∈ Θj , j
′ ∈ Ik′

}
(2.120)

where Ik,j′ = {j′′ ∈ Ik|j′′ < j′}, and Θj,k′ = {k′′ ∈ Θj |k′′ < k′}. Accordingly, for k′, k′′ ∈
Θj , j

′ ∈ Ik′ and j′′ ∈ Ik′′ ,

bc
Θj

(fΘj
(k′, j′)) =

[
ak′,j′ + hgk′,j′

]T [
IMc −Πk′,j′,1

]−1
λk′,j′ (2.121)
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and

Ac
Θj

(fΘj
(k′, j′), fΘj

(k′′, j′′)) =





1 if (k′, j′) = (k′′, j′′)

−(1 + ζk′′,l)h
T
k′′,j′ if j′ 6= j′′ and

×Πk′,j′,ρc(k′,k′′,j′) Ik′ ∩ Ik′′ 6= ∅,
×
[
IMc −Πk′,j′,1

]−1
λk′,j′

0 otherwise

(2.122)

where ρc(k′, k′′, j′) = mod(∆c
k′→k′′,j′ + 2, nj′ + 1), and where ∆c

k′→k′′,j′ equals the num-

ber of sub-iterations from node k′ to node k′′ when estimating the common vector of

parameters ςoj′ with ∆c
k′→k′,j′ = 0 and Πk′,j′,0 = IMc .

Due to the fact that the elements of Ac
Θj

do not depend on {EMSEgk′}Nk′=1, the

solution of (2.118) is given by a linear combination of {EMSEgk′}k′∈Θj
. Consequently,

after solving as many linear systems of equations as the number of connected components

in ∪Jj′=1Gj′ , from (2.114) and (2.116) we are able to express EMSE
cj
k and MSD

cj
k as a

linear combination of {EMSEgk′}Nk′=1 with k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J}. At

the same time, after solving the aforementioned linear system of equations, from (2.104)

and (2.105) we are able to derive closed-form solutions for EMSElk and MSDl
k that only

depend on EMSEgk with k ∈ {1, 2, . . . , N}.

For scenarios where there is no vector wo of global parameters in the network, we

can easily check that the entries of the vector bc
Θj

defined in (2.121) are not dependent

on {EMSEgk′}Nk′=1 for any j ∈ {1, 2 . . . , J}. In this case, by solving (2.118) for each

connected component of the graph defined in (2.117), we are able to obtain closed-

form solutions of {EMSE
cj
k }k∈Cj for any j ∈ {1, 2, . . . , J}. Afterwards, since EMSElk,

MSDl
k and MSD

cj
fj(k) do not depend on {EMSEgk′}Nk′=1, closed-form expressions for these

mean-square measures can be obtained from the substitution of the solution of (2.118)

into (2.104), (2.105) and (2.116). Unlike the scenario where there are only parameters

of local and global interest, due to the overlapping among the areas of influence {Cj}Jj=1,

note that the closed-form expressions are now obtained after solving linear systems of

equations of the form given in (2.118).

To conclude the derivation of all the mean-square measures that quantify the es-

timation performance at each node for a scenario where there is a vector of global

parameters, we only need to obtain closed-form expressions for {EMSEgk′ ,MSDg
k′}Nk′=1.

Toward this goal, we firstly substitute the right-hand side of (2.104) into the right-hand
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side of (2.100) to get the subsequent expression

E‖ψ(∞)
k ‖2σk,g

=E‖ψ(∞)
(k−1)‖2Bk,gσk,g

+ bTk,gσk,g + hTk,gσk,g(1 + ζk,l)
∑

j′∈Ik

EMSE
cj′
k (2.123)

where, for k ∈ {1, 2, . . . , N}, Bk,g and bk,g are provided in (2.80) and (2.81) respectively.

Note that there is a total of N equations with the same form as (2.123), each one per

node k. Consequently, if we take the equation corresponding to node k − 1 and iterate

over the other N − 1 other equations by choosing the proper vectors σk,g, then similarly

to Subsection 2.3.5, we obtain

E‖ψ(∞)
(k−1)‖2σ(k−1),g

=E‖ψ(∞)
(k−1)‖2Πk,g,1σ(k−1),g

+ aTk,gσ(k−1),g+
[
hck,g

]T
σ(k−1),g (2.124)

with aTk,g given in (2.85) and

[
hck,g

]T
, hTk,g Πk,g,2 (1 + ζk,l)

∑

j′∈Ik

EMSE
cj′
k

+ hTk+1,gΠk,g,3(1 + ζk+1,l)
∑

j′∈Ik+1

EMSE
cj′
k+1

+ · · ·+ hTk−2,gΠk,g,N (1 + ζk−2,l)
∑

j′∈Ik−2

EMSE
cj′
k−2

+ hT(k−1),g(1 + ζ(k−1),l)
∑

j′∈I
(k−1)

EMSE
cj′

(k−1)

(2.125)

According to the definition of EMSEgk given in (2.74), (2.124) yields

EMSEgk =
[
ak,g + hck,g

]T [
IMg −Πk,g,1

]−1
λk,g (2.126)

where σ(k−1),g =
[
IMg −Πk,g,1

]−1
λk,g. After substituting into (2.125) the solutions

of (2.118) obtained for each connected component in ∪Jj′=1Gj′ , the evaluation of (2.126)

at each node k ∈ {1, 2, . . . , N} yields a linear system of N equations whose solu-

tion provides closed-form expressions for {EMSEgk′}Nk′=1. Alternatively, closed-form ex-

pressions for {EMSEgk′}Nk′=1 can be obtained together with closed-form expressions for

{EMSE
cj
k }Nk=1,j∈Ik by solving the subsequent linear system of equations

Ag,c EMSEg,c = bg,c (2.127)

where EMSEg,c is the vector resulting from stacking {EMSEgk′}Nk′=1 and

{EMSE
cj
k }Nk=1,j∈Ik . Note that the entries of Ag,c and bg,c in (2.127) can be easily deduced

from (2.114), (2.126) and the order under which {EMSEgk′}Nk′=1 and {EMSE
cj
k }Nk=1,j∈Ik

have been stacked in EMSEg,c.



40 2.5. Simulation results

Similarly to the reasoning used when deriving (2.126), and according to the definition

of MSDg
k given in (2.73), if we choose σ(k−1),g =

[
IMg −Πk,g,1

]−1
1Mg , equation (2.124)

yields

MSDg
k−1 = [ak,g +hck,g

]T [
IMg −Πk,g,1

]−1
1Mg . (2.128)

Therefore, to conclude, from (2.128) note that closed-form expressions for {MSDg
k′}Nk′=1

are straightforwardly obtained once closed-form expressions

{EMSE
cj′

k′ }k′∈{1,...,N},j′∈Ik′

are available, which occurs after substituting the solutions for {EMSEgk′}Nk′=1 into the

solutions of (2.118) for each connected component in ∪Jj′=1Gj′ .

2.5 Simulation results

In this section, first, some generic simulations verifying the theoretical expressions (2.91)

and (2.92) are discussed, and then, the proposed algorithm is tested for a specific appli-

cation, namely, a spectrum sensing task in a Cognitive Radio Network.

2.5.1 Validation of mean-square theoretical results

First, to verify the theoretical expressions (2.91) and (2.92), we assume a network with

N = 20 nodes where the measurements follow the observation model (2.38) with Mg = 8

and Mkl = 6 for all k = {1, . . . , N}. We have also considered that the background noise

υk(i) has variance σ2
vk

= σ2
v = 10−3 across the network. In addition, the regressors

ukg ,i and ukl,i are independently generated according to a time-correlated spatially in-

dependent Gaussian distribution. In particular, both ukg ,i and ukl,i follow a stationary

first-order autoregressive (AR) model with correlation functions rkg(i) = σ2
u,kg

α
|i|
kg

and

rkl(i) = σ2
u,kl

α
|i|
kl

, respectively. In the previous AR models, the parameters {αkg , αkl}
and {σ2

u,kg
, σ2

u,kl
} have been randomly chosen in (0,1) so that the signal-to-noise-ratio at

each node is different and varies from -2 dB to 27 dB.

The experimental values in Fig. 2.5 are obtained by running I-NSPE LMS for 10 000

iterations and then averaged over 100 independent experiments to generate the ensemble-

average curves. It is clear to see that there is a good match between simulations and

theory.
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Figure 2.5: Steady-state MSD and EMSE per node for the parameters of global and
local interest.

In order to confirm the theoretical results obtained in Section 2.4, similar experiments

are plotted in Figs. 2.6-2.7 for a scenario with N = 10 nodes and two vectors of

parameters, ςo1 and ςo2 . We consider that the nodes in C1 ∈ {2, 3, 4, 5, 6} and C2 ∈
{5, 6, 7, 8} are interested in estimating ςo1 and ςo2 of dimensions Mc1 = 5 and Mc1 = 4,

respectively. Therefore, the areas of influence C1 and C2 are overlapped. Moreover, we

still assume that each node is interested in estimating a vector of global parameters

and a vector of local parameters with dimension Mg = 10 and Ml = 6, respectively.

To solve the different estimation tasks, each node of the network performs observations

of the environment according to the model (2.1) with Lk = 1. As in the previous

experiments, we consider that the variance of the background noise is σ2
vk

= 10−3 and

that the regressors ukg ,i, ukl,i and ukjc,i, with j ∈ Ik, are independently generated

according to stationary first-order autoregressive (AR) processes. In these AR models,

the parameters characterizing the autocorrelation function are again randomly chosen

so that the SNR at each nodes varies from 6 to 20 dB and the regressors ukg ,i, ukl,i and

ukjc,i, with j ∈ Ik, have different temporal correlation. Despite the temporal correlation

of the regressors, we can again see a good match between the theoretical expressions

obtained from (2.127) and the simulated curves that result from averaging the mean-

square measures over 100 independent experiments where I-NSPE LMS is run for 10 000

iterations.
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Figure 2.6: Steady-state MSD per node.
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Figure 2.7: Steady-state EMSE per node.

2.5.2 Illustrative application

In the following, we will also demonstrate the performance of the proposed algorithm

when used for cooperative spectrum sensing in cognitive radio networks (see [57–60], [14,

Section 2.4]). In brief, there are Q primary users (PU) transmitting and N secondary

users (SU) sensing the power spectrum. In addition to PUs, for each SU we also as-

sume two types of low-power interference sources, i.e., local interferer (LI) and common
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PU 1

PU 2

SU 4

SU 1

SU 2

SU 3

LI 1

CI 1
LI 2

LI 3LI 4

Figure 2.8: An illustrative cognitive radio scenario. Each of 4 secondary users (SU)
has the scope to estimate the aggregated spectrum transmitted by the primary users
and its interferer(s). Apart from PUs, SU 1 is influenced only by its local interferer (LI
1) while SU 2, 3 and 4 are influenced by their local as well as their common interferer

(CI 1).

interferers (CI). The former is affecting only one SU, while the latter are influencing

several SUs. Therefore, the aim for each SU is to estimate the aggregated spectrum

transmitted by all the PUs as well as the spectrum of its own LI and CI. An example of

such a scenario is given in Fig. 2.8.

Next, the power spectral density (PSD) of the signal transmitted by the q-th PU,

denoted by Φt
q(f), can be approximated by using the subsequent model of X basis

functions

Φt
q(f) =

X∑

x=1

bx(f)w̌oqx = bT0 (f)w̌oq (2.129)

where b0(f) = [b1(f), . . . , bX(f)]T ∈ RX is a vector of basis functions evaluated at

frequency f and w̌oq = [w̌oq1, . . . , w̌
o
qX ]T ∈ RX is a vector of weighting coefficients repre-

senting the power transmitted by the q-th PU over each basis. For illustration purposes,

we use Gaussian pulses as basis functions and if X is chosen large enough, the model

in (2.129) can well approximate the transmitted spectrum [57],[59].

Due to the fact that the transmitted signals in cognitive radio are usually wideband,

the propagation medium introduces frequency-selective channel gains. Let ptk,i(f) =

|Htk(f, i)|2 be the frequency-dependent attenuation coefficient, where Htk(f, i) is the

channel frequency response between the t-th transmitter and k-th receiver [60]. For

each instant i and frequency f , let us now define the following quantities

- pqk,i(f) denotes the attenuation coefficient between the q-th PU and the k-th SU,
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- pIk,i(f) refers to the attenuation coefficient between the local interferer and the

k-th SU,

- pjk,i(f) is the attenuation coefficient between the j-th common interferer and the

k-th SU, where j ∈ Ik.

Then, under the assumption of spatial uncorrelatedness among the channels, the signal

received by the k-th SU at time instant i can be expressed as

Φr
k,i(f) = bTk,i(f)wok + zk,i, (2.130)

where wok = col {w̌o1, . . . , w̌oQ, ςoIk(1), . . . , ς
o
Ik(|Ik|), ξ

o
k} ∈ R(Q+|Ik|+1)X with ξok and ςoj equal

to the vectors of weighting coefficients representing the power transmitted by the LI

and j-th CI associated with the k-th SU, respectively. Also, bk,i(f) = pk,i(f)⊗ b0(f) ∈
R(Q+|Ik|+1)X with ⊗ standing for the Kronecker product, and

pk,i(f) = [p1k,i, . . . , pqk,i, pIk(1),i, . . . , pIk(|Ik|),i, pIk,i]
T , (2.131)

while zk,i is the measurement and/or model noise. In the above expression, we dropped

the frequency index for compactness of notation. Also note that, in practice, the atten-

uation factors ptk,i cannot be estimated accurately, so we assume access only to noisy

estimates p̂tk,i hereafter.

Considering that, at discrete time i, each node k observes the received PSD in (4.91)

over L frequency samples {fm}Lm=1, the subsequent vector linear model is obtained

dk,i = Uk,iw
o
k + vk,i (2.132)

where vk,i denotes noise with zero mean and covariance matrix Rvk,i of dimension L×L
and Uk,i = [bk,i(f1) . . . bk,i(fL)]T is of dimension L × (Q + |Ik| + 1)X with L > (Q +

|Ik|+ 1)X. Note that the temporal index i in the regressors Uk,i allows to account for

possible variations in the channel conditions over time.

For the computer simulations presented here, we compare the I-NSPE scheme with

an LMS-based non-cooperative strategy. At this point, it should be emphasized that

we do not compare the I-NSPE algorithm with the incremental strategy in [19], or

diffusion strategies in [13, 17, 18], [14], designed for a scenario where wok = wo for all k ∈
{1, 2, . . . , N}. Notice that such a comparison would not be fair since the latter strategies

were not designed to estimate parameters of local and common interest, and therefore,

they would experience the terms
∑

j∈Ik Ukjc,iς
o
j and Ukl,i ξ

o
k in (4.3) as additional noise

at each node. Furthermore, since the I-NSPE scheme undertakes N updates for the
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estimate of wo, |Cj | updates for each ςoj and one update for the estimate of each ξok per

time step, we assume that

µI−NSPEξk
= µncξk = µncw = µncςj

µI−NSPEξk
= |Cj |µI−NSPEςj = NµI−NSPEw

where µI−NSPEa and µnca stands for the step-size used by the I-NSPE and the non-

cooperative schemes to estimate the vector a, respectively. This way, we get a fair

comparison between both strategies.

For a scenario where there is only one common interferer whose PSD can be sensed

by nodes in C1 = {1, 4, 5, 9, 10}, Figure 2.9 depicts the learning behavior of the two

schemes in terms of the network MSD associated with the estimation of wo, ςo1 and

ξok. Each network MSD is the result of averaging the local MSDs associated with the

estimation of wo and ξok at each node, except for the network MSD associated with the

estimation of ςo1 , which is averaged over the nodes belonging to the set C1. To generate

each plot, we have averaged the results over 100 independent experiments where we

assumed Q = 2 PUs, N = 10 SUs and X = 16 Gaussian basis functions, of amplitude

normalized to one and standard deviation σb = 0.05, to model the expansion of the

transmitted spectrum. Furthermore, we have considered that each SU scans L = 80

channels over the normalized frequency axis between 0 and 1, whereas the noise zk,i in

(2.130) is zero-mean Gaussian with standard deviation varying between 0.04 and 0.16

for different k.

Each attenuation coefficient follows p̂tk,i(f) = ptk,i(f) + ntk, where ntk denotes a

zero-mean Gaussian variable with standard deviation in the range between 0.3 and 1.25,

while ptk,i(f) is related to the frequency response of the channel modeled as a static

3-tap FIR filter. Each tap is assumed to be a zero-mean complex Gaussian random

variable with variance σ2
h = 0.25. Under this setting, due to the cooperation between

the nodes, we observe that the proposed scheme outperforms the non-cooperative one,

especially when estimating wo and ςo1 . Although there is no exchange of estimates of ξok

throughout the network, the I-NSPE scheme has enhanced performance in comparison

with the non-cooperative strategy. This is a consequence of the coupling between the

three estimation tasks undertaken by I-NSPE.

Finally, to illustrate the asymptotic unbiasedness of the proposed technique, in

Fig. 2.10 we plot its mean weight behavior under the previously described setting. The

figure indicates the mean weight evolution of some vector coefficients related to the

global, common and local parameters at randomly selected nodes, whereas the optimal
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values from (2.9) are indicated by the black lines. As expected by Theorem 2.1, I-NSPE

LMS has estimated the optimum weight vectors without bias.
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Figure 2.9: Learning behavior of network MSD with respect to the parameters of
global interest (a), common interest (b) and for the parameters of local interest (c).
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Figure 2.10: The mean trajectories of some vector coefficients related to the global (a),
common (b) and local parameters (c) at randomly selected nodes.



48 2.6. Concluding Remarks

2.6 Concluding Remarks

This chapter has addressed a novel NSPE problem where the estimation interests of the

nodes consist of a set of local parameters, network-wide global parameters as well as

common parameters to a subset of nodes. More specifically, we have proposed a dis-

tributed adaptive scheme where a local LMS is run at each node in order to estimate each

set of local parameters. Coupled among themselves and with all these local estimation

processes, the parameters of global and common interests are estimated by LMS-based

schemes implemented under an incremental mode of cooperation.

In the following chapter, under the incremental cooperation strategy, two algorithms

based on RLS adaptive rule will be derived for the NSPE problem with global and local

interests.



Chapter 3

Incremental NSPE RLS

This chapter explores the use of a recursive least squares learning rule for solving a node

specific parameter estimation problem in a distributed way.

It is well-known that, for stationary processes, the stand-alone adaptive filters based

on RLS algorithm converge faster than those based on LMS [61],[52]. A main drawback

of the RLS algorithm is its computational cost which is an order of magnitude higher

than that of LMS. However, available processors continuously decrease in cost and have

more powerful batteries as well as computational capabilities. Therefore, to obtain a

better estimation performance at the expense of increased computational complexity and

energy consumption, RLS-type distributed algorithms have already been derived [15, 62,

63]. However, as explained in Section 1.1, these studies are restricted to the scenarios

where there is only a global vector of parameters affecting all nodes.

In this chapter, it is of interest to examine the incremental NSPE approach presented

in the previous chapter by adopting the RLS adaptive rule, instead of the LMS one, at

each node. To that end, it suffices to consider a scenario with global and local interests,

which is a special case of the one assumed in the previous chapter. More specifically,

we introduce an adaptive incremental-based technique that attains the exact recursive

least squares solution of the aforementioned NSPE problem. The resulting algorithm

outperforms the corresponding LMS solution [40] at the expense of increased transmis-

sion requirements. Later, since the involved communications cost may be prohibitive in

some applications [1], we modify the initial scheme to reduce the communication burden.

Finally, the performance of the proposed schemes is illustrated via indicative computer

simulations.

49
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Figure 3.1: Network with node-specific parameter estimation interests.

3.1 Problem statement

To begin with, let us consider that a network of N nodes is randomly deployed over

some region in order to estimate some unknown vectors of parameters (see Fig. 3.1). At

every time instant i, each node k has access to data {dk,i, Uk,i}. These data are assumed

to be related to the unknown vectors of parameters by the following model

dk,i = Uk,iw
o
k + vk,i =

[
Ukg ,i Ukl,i

] [wo

ξok

]
+ vk,i (3.1)

where, for each time instant i,

- wok equals the vector of dimension Mk that contains all the parameters of interest

for node k. This vector is formed by wo, which is a sub-vector of dimension Mg×1

consisting of all the parameters of global interest, and by ξok, which is a sub-vector

of dimension Mkl × 1 that gathers all the parameters of local interest,

- vk,i is measurement and/or model noise with zero mean and covariance matrix

Rvk,i of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with dimensions Lk×1 and Lk×Mk,

respectively. Forming the matrix Uk,i, the matrices Ukg ,i and Ukl,i, of dimensions

Lk × Mg and Lk × Mkl , might be correlated, and consist of the columns Uk,i

associated with wo and ξok, respectively.

In most existing works, e.g., [15] and [63], the derived adaptation schemes assume

wok = wo, for all k ∈ {1, 2, . . . , N}. As in our previous work [40], we consider a scenario

where the node-specific parameters of interest, i.e., {wok}Nk=1, may, in general, be different.
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Hence, the objective for each node k is to estimate its specific unknown vector wok from

the data {dk,i, Uk,i}, k ∈ {1, 2, . . . , N}. In particular, as shown in Fig. 3.1, each vector

{wok}Nk=1 consists of globally common components as well as components of local interest

for sensor k. The parameters of global interest in the network may account for an event

common to all nodes. In contrast, the parameters of local interest for each node k may

represent an influence of some local phenomena that is different for each node.

Given the previous observation model, the goal for each node k is to collect the

measurements and regressors from time 0 up to time i, i.e.,

Yk,i = col{dk,0, dk,1, . . . , dk,i}

and

Hk,i = col{Uk,0, Uk,1, . . . , Uk,i},

respectively, in order to obtain the node-specific estimators {wk}Nk=1 that minimize the

associated weighted, regularized, least-squares cost

N∑

k=1

(
λi+1‖wk‖2Πk

+ ‖Yk,i −Hk,iwk‖2Wk,i

)
, (3.2)

where Πk = δ−1IMk
and

Wk,i = diag{λiΓk, λi−1Γk, . . . , λΓk,Γk}

with δ > 0 equal to a large constant, Γk = R−1
vk,i

and forgetting factor 0� λ ≤ 1. Thus,

after particularizing for global and local vector of parameters, our NSPE problem can

be casted as

{ŵ, {ξ̂k}Nk=1} = argmin
w,{ξk}Nk=1

{
N∑

k=1

λi+1
[
wHξHk

] [Πk,g 0

0 Πk,l

][
w

ξk

]

+

N∑

k=1

‖Yk,i −Hgk,iw −Hlk,iξk‖2Wk,i

} (3.3)

where

Hgk,i = col{Ukg ,0, Ukg ,1, . . . , Ukg ,i}

and

Hlk,i = col{Ukl,0, Ukl,1, . . . , Ukl,i}.
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3.2 A Solution of the NSPE problem

In this section, we firstly derive a centralized solution of the optimization problem (3.3),

and then we develop a distributed strategy that converges to this centralized solution.

For the sake of simplicity and without losing generality, we assume that Mk = M ,

Mg = Mg, Mkl = Ml and Lk = L for all k ∈ {1, 2, . . . , N}.

3.2.1 Centralized solution

To solve the considered NSPE problem in (3.3), we have to optimize a scalar real-valued

cost function with respect to (w.r.t.) multiple vector variables, i.e., {w, {ξk}Nk=1}. After

defining the following augmented vector

w̃ =
[
wT ξT1 ξT2 · · · ξTN

]T
( M̃ × 1 )

and gathering all the data up to time i into

Yi = col{y0, y1, . . . , yi} (N · L · (i+ 1)× 1 )

and

H̃i = col{H̃0, H̃1, . . . , H̃i} (N · L · (i+ 1)× M̃ ) (3.4)

where M̃ = Mg +N ·Ml. In the definition of Yi and H̃i

yi = col{d1,i, d2,i, . . . , dN,i} (N · L× 1)

H̃i = col{Ũ1,i, Ũ2,i, . . . , ŨN,i} (N · L× M̃)

and the augmented regressor is expressed as

Ũk,i =
[
Ukg ,i 0L×Ma Ukl,i 0L×Mb

]
(3.5)

with Ma = (k − 1)Ml and Mb = (N − k)Ml. Now, we can easily verify that our

optimization problem is equivalent to

̂̃w = argmin
w̃

{
λi+1‖w̃‖2

Π̃
+ ‖Yi − H̃iw̃‖2Wi

}
(3.6)

where

Wi = diag{λiD,λi−1D, . . . , λD,D}
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and

Π̃ = diag

{
N∑

k=1

Πk,g,Π1,l,Π2,l, . . . ,ΠN,l

}
,

with

D = diag{Γ1,Γ2, . . . ,ΓN}.

It is well-known that the solution ̂̃wi is given by [52]:

̂̃wi = P̃iH̃Hi WiYi, (3.7)

where

P̃i =
(
λi+1Π̃ + H̃Hi WiH̃i

)−1
. (3.8)

However, this centralized batch solution requires the inversion of a square matrix whose

dimension is actually proportional to the number of nodes N . In addition, it requires

that we store in memory all data available until time i. Hence, a prohibitively high

computational and memory-wise cost is needed.

3.2.2 Distributed solution

With the aim of increasing energy efficiency and improving robustness and scalability it

is highly desirable to design a distributed and adaptive scheme in order to update ̂̃wi−1

to ̂̃wi. Toward this goal, we firstly develop a distributed recursion for P̃i.

By following the approach described in [15], we firstly express the relation (3.8) as

follows

P̃−1
i = λi+1Π̃ + H̃Hi WiH̃i

= λ
(
λiΠ̃ + H̃Hi−1Wi−1H̃i−1

)
+ H̃H

i DH̃i

= λP̃−1
i−1 + H̃H

i DH̃i.

(3.9)
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After noting that (3.9) can be rewritten as a sequence of rank-L updates, we can apply

the matrix inversion lemma so that the following distributed recursion for P̃i is obtained





P̃0,i ← λ−1P̃N,i−1

for k = 1 : N

G̃k,i =
(

Γ−1
k + Ũk,iP̃k−1,iŨ

H
k,i

)−1

P̃k,i = P̃k−1,i

+ P̃k−1,iŨ
H
k,iG̃k,iŨk,iP̃k−1,i

end

(3.10)

where P̃k,i denotes the local estimate of P̃i at node k at some time instant i.

Now, let us focus on the distributed update of ̂̃wi−1 to ̂̃wi. Toward this goal, let us

define the intermediate global matrices Yki and H̃ki that stack Yi−1 and H̃i−1 in addition

to the measurements and regressors collected across the network at time i up to node

k, respectively,

Yki =




Yi−1

d1,i

d2,i

...

dk,i




and H̃ki =




H̃i−1

Ũ1,i

Ũ2,i

...

Ũk,i




.

Given the previous definitions, we can easily check that the local estimate w̃i at node k,

i.e., ψ̃
(i)
k , at any time instant i is equal to the solution of the following LS problem

ψ̃
(i)
k = argmin

w̃

{
λi+1‖w̃‖2

Π̃
+ ‖Yki − H̃ki w̃‖2Wk

i

}
(3.11)

where

Wk
i =

[
λWi−1 0

0 Dk

]

and Dk = diag{Γ1, . . . ,Γk}. Next, if we take into account that the solution of (3.11) is

equal to

ψ̃
(i)
k = P̃k,i[H̃ki ]HWk

i Yki , (3.12)

by using (3.10) and noting that

Wk
i =

[
Wk−1
i 0

0 Γk

]

and

[H̃ki ]HWk
i Yki = [H̃k−1

i ]HWk−1
i Yk−1

i + ŨHk,iΓkdk,i,
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Figure 3.2: Data processing in the Incremental-based NSPE RLS.

several algebraic manipulations similar to the ones undertaken in [15] yield the following

distribute recursion for ψ̃
(i)
k

ψ̃
(i)
k = ψ̃

(i)
k−1 + P̃k−1,iŨ

H
k,iG̃k,i

(
dk,i − Ũk,iψ̃(i)

k−1

)
. (3.13)

Finally, if we group the recursions (3.10) and (3.13), we obtain a distributed increme-

ntal-based RLS algorithm that provides the exact solution to the centralized NSPE

problem (3.6). The new algorithm is summarized as follows

Incremental-Based NSPE RLS (I-NSPE RLS)

• Initialization: ψ
(−1)
N = 0, P̃N,−1 = Π̃−1.

• At each time i ≥ 0, for each k ∈ {1, . . . , N} execute

ψ̃
(i)
0 ← ψ̃

(i−1)
N ; P̃0,i ← λ−1P̃N,i−1

ek,i = dk,i − Ũk,iψ̃(i)
k−1

G̃k,i =
(

Γ−1
k + Ũk,iP̃k−1,iŨ

H
k,i

)−1

ψ̃
(i)
k = ψ̃

(i)
k−1 + P̃k−1,i Ũ

H
k,i G̃k,iek,i

P̃k,i = P̃k−1,i + P̃k−1,iŨ
H
k,iG̃k,iŨk,iP̃k−1,i

(3.14)

Figure 3.2 depicts the structure of proposed algorithm, in which estimates ψ̃
(i)
k and

matrices P̃k,i are shared along the cyclic path.
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Figure 3.3: A block diagonal matrix that approximates P̃k,i.

3.2.3 Low-communication distributed RLS

Although the previously developed distributed algorithm (3.14) provides the exact RLS

solution to the NSPE problem (3.6), it needs O(M̃2) transmission complexity which can

be prohibitive for applications with strict energy constraints. Motivated by this fact, at

the expense of some performance degradation, we propose a simplified implementation

that approximates P̃k,i by a block diagonal matrix (see Fig. 3.3) to reduce the number

of transmitted parameters between two neighboring nodes.

A careful inspection of (3.5) together with (3.14) reveals that, under a block diagonal

approximation for P̃k,i, only two subvectors of ψ̃
(i)
k and two submatrices of P̃k,i are

updated at each node and at a some specific time instant i. In particular, according to

the recursions (3.10) and (3.13), only the subvectors associated with the local estimates

of wo and ξok at node k and time instant i, denoted as ψ
(i)
k and ξ

(i)
k , respectively, are

updated from ψ
(i)
k−1, ξ

(i−1)
k ,

P̃k−1,i(1 : Mg) = P(k−1)g ,i

and

P̃k,i−1(Mg +Ma + 1 : Mg +Ml +Ma) = Pkl,i−1

where A(la : lb) equals a square submatrix defined by the rows and columns la, la +

1, la + 2, . . . , lb with la ≤ lb. Similarly, at each time instant i each node k updates the

submatrices Pkg ,i and Pkl,i based on P(k−1)g ,i
and Pkl,i−1. Therefore, without any loss

of optimality w.r.t. the steady state performance of I-NSPE RLS when Ukg ,i and Ukl,i
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Figure 3.4: Data processing in the Incremental-based NSPE low-communication RLS.

are independent, the previous facts allow to properly modify (3.14) in order to obtain

the subsequent incremental-based algorithm





ψ
(i)
0 ← ψ

(i−1)
N ; P0g ,i ← λ−1PNg ,i−1

for k = 1 : N

ek,i = dk,i − Uk,i
[
ψ

(i)
k−1

ξ
(i−1)
k

]

Gk,i =
(

Γ−1
k + Ukg ,iP(k−1)g ,i

UHkg ,i

+λ−1Ukl,iPkl,i−1 U
H
kl,i

)−1

[
ψ

(i)
k

ξ
(i)
k

]
=

[
ψ

(i)
k−1

ξ
(i−1)
k

]
+

[
P(k−1)g ,i

UHkg ,i

λ−1Pkl,i−1U
H
kl,i

]
Gk,iek,i

Pkg ,i = Pk−1g ,i − P(k−1)g ,i
UHkg ,iGk,iUkg ,iP(k−1)g ,i

Pkl,i = λ−1Pkl,i−1 − λ−2Pkl,i−1U
H
kl,i
Gk,iUkl,iPkl,i−1

end

(3.15)

Note that, under the above strategy, each node only needs to transmit the blocks

of P̃k,i and ψ̃
(i)
k corresponding to the global vector of parameters, i.e., Pkg ,i and ψ

(i)
k

respectively. This is illustrated in Fig 3.4. Since the dimension of the vector of global

parameters equals Mg, the scheme in (3.15) requires only O(M2
g ) transmission complex-

ity, which is not dependent on the network size.

3.3 Simulations

We assume a network with N = 10 nodes where the measurements follow the observa-

tion model (3.1) with Mlk = 8, Mg = 10 and Lk = 1 for all k = {1, . . . , N}. We have

also considered a forgetting factor λ = 1 and that the background noise vk,i has variance
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Figure 3.5: Learning behavior of network MSD.

σ2
v,k = σ2

v = 10−3 across the network. Additionally, we have assumed that the regressors

ukg ,i and ukl,i are independently generated according to a time-correlated spatially in-

dependent Gaussian distribution. In particular, both ukg ,i and ukl,i follow a stationary

first-order autoregressive (AR) model with correlation functions rkg(i) = σ2
u,kg

α
|i|
g and

rkl(i) = σ2
u,kl

α
|i|
l , respectively. In the previous AR models, the parameters {αg, αl} and

{σ2
u,kg

, σ2
u,kl
} have been randomly chosen in [0,1) so that the signal-to-noise-ratio at each

node is different and varies from 14 dB to 17 dB.

We compare the performance of the I-NSPE RLS strategy provided in (3.14), its

low-communication version summarized in (3.15) and denoted as I-NSPE LC-RLS, as

well as the I-NSPE LMS algorithm derived in [40]. Specifically, for each one of these

I-NSPE algorithms, Figure 3.5 depicts the learning behaviour of the network mean-

square deviation (MSD) associated with the estimation of wo and ξok. The curves have

been generated by averaging 50 independent experiments. We can note that, at the

expense of increased computational complexity, both I-NSPE RLS and I-NSPE LC-

RLS outperform I-NSPE LMS in terms of steady state floor and rate of convergence.

Since the processes of estimating wo and ξok are coupled though the observation model,

the improved performance appears in both estimation tasks. Furthermore, as it was



Chapter 3 Incremental NSPE RLS 59

expected during the derivations of the proposed schemes, under the considered scenario,

I-NSPE LC-RLS achieves identical steady state performance with I-NSPE RLS. In fact,

as a result of reducing the transmission complexity of I-NSPE RLS, in the considered

setting the I-NSPE LC-RLS scheme suffers only a small performance loss in the rate of

convergence.

3.4 Concluding Remarks

This chapter has initially proposed an incremental-type scheme that, in a distributed

fashion, implements the exact RLS solution of a central unit processing the data of all

the nodes. Next, a scheme with lower transmission complexity for applications where

the communications and energy resources are scarce has been derived. Additionally, it

was shown that this simplified scheme may converge to the exact RLS solution. Finally,

by performing computer simulations we showed the effectiveness of the proposed algo-

rithms. The theoretical analysis concerning the performance of the proposed techniques

can be undertaken similarly to the one related the incremental NSPE LMS presented

in the previous chapter. A complete analysis is currently under investigation. Also, the

distributed RLS schemes which have been proposed in this chapter can be readily ex-

tended for operation under the diffusion mode of cooperation. However, in the following

chapter, we will focus back on LMS adaptive rules, and develop a distributed algorithm

for the general NSPE problem under the diffusion strategy.





Chapter 4

Diffusion NSPE LMS

This chapter studies a distributed adaptive solution to the general NSPE problem, stated

in Chapter 2, under the diffusion cooperation strategy.

In the diffusion-based schemes, at each time instant, each node of the network co-

operates with a subset of nodes; however, if a network is connected, each node may

still experience the effect of the entire network. In other words, at each node, estimates

are being exchanged with neighboring nodes, then properly fused and fed into the local

adaptive filter [12]. Compared to the incremental strategies [19], this approach achieves

better scalability and robustness at the expense of increased energy consumption.

Although there are many published works related to the distributed adaptive algo-

rithms of the diffusion type, only very few papers have recently considered the settings

which are not assuming that there is only a global vector of parameters to be estimated.

For instance, the authors in [26] assume an NSPE setting, however, the different pa-

rameters to be estimated using diffusion strategy are expressed through the same global

parameter vector. In [27], the authors use diffusion adaption and scalarization tech-

niques to solve the multi-objective cost function that appears in an NSPE problem and

obtain a Pareto-optimal solution. For a network formed by non-overlapping clusters of

nodes, a diffusion-based algorithm with spatial regularization that simultaneously pro-

vides biased estimates of the multiple vectors of parameters has been derived in [29].

Unlike previous works, the algorithm allows cooperation among neighboring nodes as

long as they have numerically similar parameter estimation interests. For an extensive

literature review, see Section 1.1.

This chapter derives diffusion-based LMS techniques in order to solve the NSPE prob-

lem formulated in Chapter 2. We adopt two peer-to-peer diffusion protocols, Combine-

then-Adapt (CTA) and Adapt-then-Combine (ATC). Under the both CTA and ATC

61
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Figure 4.1: A network of N nodes with node-specific parameter estimation interests.

schemes, each node undertakes an adaptive filtering task where its local observations

are fused with an estimate of its parameters of local interest as well as estimates of

the parameters of global and common interest, which have been exchanged with its

neighbors. As a result, the network is able to adapt in real time to variations of the

data statistics related to parameters of local, common and global interest in the net-

work. Moreover, as a detailed performance analysis of the resulting adaptive network

reveals, the proposed NSPE techniques are asymptotically unbiased in the mean sense.

Afterwards, a spatial-temporal energy conservation relation is provided to evaluate the

steady-state performance at each node in the mean-square sense. In the simulation sec-

tion, the theoretical results for both the mean and mean-square performance analysis are

compared to simulation results. Finally, simulation results are provided in the context

of cooperative power spectrum sensing.

4.1 Problem statement

Let us consider a connected network consisting of N nodes that are randomly deployed

over some geographical region. Nodes that are able to share information with each

other are said to be neighbors. The neighborhood of any particular node k, including

also node k, is denoted as Nk. Since the network is connected, as shown in Fig. 4.1,

the neighborhoods are set so that there is a path between any pair of the nodes in the

network.

At discrete time i, each node k has access to data {dk,i, Uk,i}, corresponding to time

realizations of zero-mean random processes {dk,i,Uk,i}, with dimensions Lk × 1 and

Lk×Mk, respectively. These data are related to events that take place in the monitored
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area through the subsequent model

dk,i = Uk,iw
o
k + vk,i (4.1)

where, for each time instant i,

- wok equals the deterministic but unknown vector of dimension Mk that gathers all

parameters of interest for node k,

- vk,i denotes the random noise vector with zero mean and covariance matrix Rvk,i

of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with dimensions Lk×1 and Lk×Mk,

respectively.

Given the previous observation model, the objective of the network consists in estimat-

ing the node-specific vector of parameters {wk}Nk=1 that minimize the subsequent cost

function

Jglob({wk}Nk=1) =

N∑

k=1

E
{
‖dk,i −Uk,iwk‖2

}
. (4.2)

The vast majority of works dealing with distributed estimation algorithms in the context

of adaptive filtering (e.g., [19], [21], [13]), considered the case where the nodes’ interests

are the same, i.e., wok = wo for all k ∈ {1, 2, . . . , N}. However, similarly to [40, 41], [43],

the formulation of this dissertation goes further by considering that the node-specific

interests are different but overlapping.

As depicted in Fig. 4.1, each node-specific vector wok might consist of:

a) a sub-vector wo of parameters of global interest to the whole network,

b) sub-vectors {ςoj } of parameters of common interest to subsets of nodes including

node k, and

c) a sub-vector ξok of local parameters for node k.

In particular, the global parameters wo (Mg×1) might be related to a phenomenon that

can be monitored by all the nodes. In contrast, a set of parameters of common interest ςoj

(Mjc×1) might be related to a phenomenon that can be observed by a subset of nodes in

the network. The ordered set of indices k associated with the connected subset of nodes

interested in ςoj is denoted as Cj . For instance, in Fig. 4.1, C1 = {1, 2, 3}. Depending on

the areas of influence associated with the events of common interest, a node might be
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interested in more than one set of common parameters. As a result, subsets of nodes

Cj and Cj′ , with j 6= j′, might be partially or fully overlapped. For instance, Figure 4.1

indicates that node k is interested in estimating both vectors of common parameters ςoj

and ςoj−1, i.e. Cj−1 ∩ Cj = {k}. Finally, each Mlk × 1 vector of local parameters ξok may

represent the influence of some local phenomena that only affects the area monitored by

node k. In this way, considering a scenario where there are J different subsets of common

parameters (see Fig. 4.1), the observation model provided in (4.1) can be rewritten as

dk,i = Ukg ,iw
o +

∑

j∈Ik

Ukjc,iς
o
j + Ukl,iξ

o
k + vk,i (4.3)

where, for k ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , J} and i ≥ 1,

- Ik equals an ordered set of indices j associated with the vectors ςoj that are of

interest for sensor k,

- Ukg ,i, Ukjc,i and Ukl,i are matrices of dimensions Lk×Mg, Lk×Mjc and Lk×Mkl

that might be correlated, and consist of the columns of Uk,i associated with wo,

ςoj and ξok, respectively.

Thus, according to (4.2) and (4.3), our NSPE problem can be restated as minimizing

the following cost

N∑

k=1

E



‖dk,i −Ukg ,iw −

∑

j∈Ik

Ukjc,iςj −Ukl,iξk‖2


 (4.4)

with respect to the variables w, {ςj}Jj=1 and {ξk}Nk=1.

4.2 A solution of the new NSPE problem

In this section, acting as a starting point for the derivation of the distributed algorithms

and allowing us to introduce some useful notation, we briefly describe the centralized

solution provided in [43] to the NSPE problem stated in the previous section. Later,

via a diffusion-based approach, we focus on the derivation of distributed algorithms

that approximate the centralized solution. For the sake of simplicity and without losing

generality, we assume that Mlk = Ml, Mjc = Mc and Lk = L for all k ∈ {1, 2, . . . , N}
and j ∈ {1, 2, . . . , J}.
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4.2.1 Centralized solution

An inspection of (4.4) reveals that the solution of the considered NSPE problem entails

the optimization of a scalar real-valued cost function with respect to the multiple vector

variables, i.e., {w, {ςj}Jj=1, {ξk}Nk=1}. If we gather these variables into the following

augmented vector

w̄ =
[
wT ςT1 ςT2 · · · ςTJ ξT1 ξT2 · · · ξTN

]T
( M̄ × 1 ) (4.5)

where M̄ = Mg +J ·Mc +N ·Ml, from [43] we know that our optimization problem can

be cast as

̂̄w = argmin
w̃
{Jglob(w̄)} = argmin

w̄

{
N∑

k=1

E
{
‖dk,i − Ūk,iw̄‖2

}
}

(4.6)

where

Ūk,i=
[
Ukg ,i 1{1∈Ik}Uk1c,i 1{2∈Ik}Uk2c,i · · · 1{J∈Ik}UkJc,i 0L×Mak

Ukl,i 0L×Mbk

]

(4.7)

with Mak = (k − 1)Ml, Mbk = (N − k)Ml and

1{X∈A} =

{
1 if X ⊆ A,
0 otherwise.

(4.8)

From [52], we know that, if the random processes {dk,i,Uk,i} are jointly wide-sense

stationary, the optimal solution is given by the normal equations

(
N∑

k=1

RŪk

)
· ̂̄w =

N∑

k=1

rŪkdk
. (4.9)

Notice that the solution of the previous system of equations requires the transmission

of all sensor observations to the fusion center and the inversion of a square matrix

whose dimension is proportional to the network size. As a result, for large networks, the

centralized solution in (4.9) is not scalable with respect to both computational power

and communication resources, which motivates the derivation of distributed solutions.
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4.2.2 Diffusion-based NSPE solutions

By relying on in-network processing of the data {dk,i, Uk,i}, the incremental-based al-

gorithms proposed in [40] and [43] converge to the centralized solution in the mean

sense with an increase of the energy efficiency and an improved scalability. Attaining

more robustness to link or node failures than the incremental strategies, an alternative

mode of cooperation to process the data {dk,i, Uk,i} in a distributed fashion is based on

diffusion strategies, e.g., Combine-then-Adapt (CTA) and Adapt-then-Combine (ATC).

In the case where the nodes are interested in estimating the same vector of global pa-

rameters, the aforementioned strategies are known to well approximate the centralized

solution [13]. In this work, we extend them so as to be applicable to the NSPE problem

described in Section 4.1.

First, let us define ψ̄
(i)
k as the local estimate of w̄o at time instant i and node k. Note

that ψ̄
(i)
k is generally a noisy version of the optimal augmented vector w̄o. By using a

diffusion mode of cooperation, at each time instant i− 1, each node k has access to the

set of local estimates of its neighbors, i.e., Nk. Thus, node k can fuse its local estimate

with the local estimates of its neighbors as follows

φ̄
(i−1)
k = fk

(
{ψ̄(i−1)

` }`∈Nk

)
(4.10)

where fk is a local combiner function. In this work, we will focus on linear combiners of

the form

φ̄
(i−1)
k =

∑

`∈Nk

C̄k,` ψ̄
(i−1)
` (4.11)

where

C̄k,` = diag{cwk,`IMg , c
ς1
k,`IMc , . . . , c

ςJ
k,`IMcc

ξ1
k,`IMl

, . . . , cξNk,`IMl
}. (4.12)

In (4.12), cwk,` equals the weight coefficient used by node k when combining the local

estimate of the global vector wo from node `. Similarly, for `,m ∈ {1, . . . , N}, cςjk,`
and cξmk,` denote the combination coefficients employed by node k when fusing the local

estimates of ςoj and ξom, from node ` with its corresponding local estimates, respectively.

Since the contribution of each node to the different estimation tasks might be different

depending on the statistics of its observations as well as its own estimation interests,

note that we allow each node to have different coefficients when combining the local

estimates of each vector of global, common or local parameters performed by a neighbor

node `.
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To determine the combination coefficients at each node k, we can interpret (4.11) as

a weighted least squares estimate of the augmented vector of parameters w̄o given its

local estimate as well as the local estimates at the neighbor nodes [12]. This way, by

collecting the local estimates of the augmented vector w̄o at the neighbor nodes

ψ̄Nk
= col

{
{ψ̄(i−1)

` }`∈Nk

}
(4.13)

and defining

B = col{IM̄ , IM̄ , . . . , IM̄} (nk · M̄ × M̄) (4.14)

and

C̄k = diag
{{
C̄k,`,

}
`∈Nk

}
(4.15)

with nk = |Nk|, we can formulate the subsequent local weighted least-squares problem

argmin
φ̄k

{
‖ψ̄Nk

−Bφ̄k‖2C̄k

}
, (4.16)

whose solution is given by

φ̄
(i−1)
k =

[
BHC̄kB

]−1
BHC̄kψ̄Nk

. (4.17)

In more detail, focusing on the different sub-vectors that form φ̄
(i−1)
k , for k,m ∈

{1, 2, . . . , N} and j ∈ {1, 2, . . . , J} the solution provided in (4.17) can be rewritten

as

φ
(i−1)
k,w =

∑

`∈Nk

cwk,`∑
k′∈Nk

cwk,k′
ψ

(i−1)
`,w (4.18)

φ
(i−1)
k,ςj

=
∑

`∈Nk

c
ςj
k,`∑

k′∈Nk
c
ςj
k,k′

ψ
(i−1)
`,ςj (4.19)

and

φ
(i−1)
k,ξm

=
∑

`∈Nk

cξmk,`∑
k′∈Nk

cξmk,k′
ψ

(i−1)
`,ξm (4.20)

where φ
(i−1)
k,w , φ

(i−1)
k,ςj

and φ
(i−1)
k,ξm

denote the subvectors of combiner φ̄
(i−1)
k associated with

the local estimation of wo, ςoj and ξm at node k and time instant i − 1, respectively.

Analogously, ψ
(i−1)
k,w , ψ

(i−1)
k,ςj

and ψ
(i−1)
k,ξm

denote the sub-vectors of the local estimate ψ̄
(i−1)
k
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associated with the local estimation of wo, ςoj and ξm at node j and time instant i− 1,

respectively.

At this point, after a suitable redefinition of the combination coefficients that appear

in (4.18), (4.19) and (4.20), we can now verify that the combination coefficients in (4.11)

and (4.12) must satisfy

cwk,` = 0 if ` /∈ Nk;
∑

`∈Nk

cwk,` = 1 (4.21)

c
ςj
k,` = 0 if ` /∈ Nk;

∑

`∈Nk

c
ςj
k,` = 1 (4.22)

and

cξmk,` = 0 if ` /∈ Nk;
∑

`∈Nk

cξmk,` = 1 (4.23)

for j ∈ {1, 2, . . . , J} and k,m ∈ {1, 2, . . . , N}.

Next, in order to estimate w̄o at each node k in an adaptive fashion, the corresponding

local aggregate estimate φ̄
(i−1)
k is fed into the local LMS-type adaptive algorithm that

minimizes the cost associated with node k in (4.6). This way, the resulting diffusion

based strategy can be described as





Combination step:

φ̄
(i−1)
k =

∑
`∈Nk

C̄k,` ψ̄
(i−1)
`

Adaptation step:

ψ̄
(i)
k = φ̄

(i−1)
k − µkŪH

k,i

[
dk,i − Ūk,i φ̄

(i−1)
k

]

(4.24)

with i ≥ 1, {ψ̄(0)
` }`∈Nk

equal to some initial guess, C̄k,` defined in (4.12) and µk > 0

equal to a suitably chosen positive step-size parameter.

Due to the structure of the augmented regressors Ūk,i defined in (4.7), only 2 + |Ik|
sub-vectors of ψ̄

(i)
k are updated when a specific node k performs the adaptation step at

each time instant i (see (4.24)). According to (4.5) and (4.7), based on {dk,i,Uk,i} and

the aggregate estimates φ
(i−1)
k,w , {φ(i−1)

k,ςj
}j∈Ik and φ

(i−1)
k,ξk

, the updated sub-vectors corre-

spond to the local estimates of wo, {ςok,j}j∈Ik and ξok at node k and time i, respectively.

Therefore, each node updates only the sub-vectors that are within its interest, which

will be now denoted as ψ
(i)
k , {ς(i)

k,j}j∈Ik and ξ
(i)
k for the sake of simplicity. The previous
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fact allows to set the subsequent equalities in the combination coefficients as,

{
cξmk,` = 0 if k 6= ` or k 6= m

c
ςj
k,` = 0 if j /∈ Ik or j /∈ I`.

(4.25)

The first set of equalities together with (4.23) show that cξkk,k = 1 for each node k. Hence,

the vector of local parameters ξok is only estimated by node k, which is the only node

of the network observing ξok. Continuing the analysis of (4.25), from the second set of

equalities we can verify that node k only cooperate to estimate the vectors of common

parameters that are within its interests, i.e., {ςoj }j∈Ik . Then, taking into account (4.22)

we can easily show that

c
ςj
k,` = 0 if ` /∈ Nk ∩ Cj ;

∑

`∈Nk∩Cj

c
ςj
k,` = 1. (4.26)

As a result, when a node k estimates a specific vector of common parameters that

is within its interest, i.e., ςoj with j ∈ Ik, it will only cooperate with the subset of

neighbor nodesNk∩Cj , which is composed of the neighbor nodes whose measurements are

dependent on ςoj . Note that there are several ways by which the combination coefficients

can be selected. On one hand, the combination rule can be static, e.g., as in uniform,

Metropolis, relative-degree rule [14]. On the other hand, the coefficients can be adapted

over time (see, for instance, [28]).

At this point, from (4.24) together with (4.21) and (4.25)-(4.26), we can obtain the

Combine-then-Adapt (CTA) diffusion-based LMS algorithm summarized on the follow-

ing page.
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CTA Diffusion-based LMS for NSPE (CTA D-NSPE)

• Start with some initial guesses ψ
(0)
k , {ς(0)

j }j∈Ik and ξ
(0)
k at each node

k ∈ {1, 2, . . . , N} .

• For the estimation of wo and any ςoj , choose N × N combination matrices Cw

and Cςj whose elements in each row k, i.e., {cwk,`}N`=1 and {cςjk,`}N`=1, satisfy (4.21)

and (4.26), respectively.

• At each time i, for each k ∈ {1, 2, . . . , N}, execute

- Combination step:

φ
(i−1)
k,w =

∑

`∈Nk

cwk,` ψ
(i−1)
` (4.27)

and

φ
(i−1)
k,ςj

=
∑

`∈Nk∩Cj

c
ςj
k,` ς

(i−1)
`,j (4.28)

for each j ∈ Ik.

- Adaptation step:




ψ
(i)
k

ς
(i)
k

ξ
(i)
k


 =




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k





 (4.29)

with ς
(i)
k = col

{{
ς

(i)
k,j

}
j∈Ik

}
and φ

(i)
k,ς = col

{{
φ

(i)
k,ςj

}
j∈Ik

}
.

Now, let us consider that each node k firstly performs the adaptation step and af-

terwards, it solves its local weighted least squares problem given in (4.16). Then, by

following a derivation that is analogous to the one undertaken for the CTA D-NSPE

scheme and that has been omitted for the sake of brevity, we can obtain the Adapt-

then-Combine (ATC) diffusion-based LMS algorithm. Basically, as it is summarized in

the table on the next page, the new NSPE algorithm consists in reversing the order

under which the adaptation and combination steps are performed for each node k ac-

cording to the CTA D-NSPE strategy.
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ATC Diffusion-based LMS for NSPE (ATC D-NSPE)

• Start with some initial guesses φ
(0)
k,w, {φ(0)

k,ςj
}j∈Ik and ξ

(0)
k at each node

k ∈ {1, 2, . . . , N} .

• For the estimation of wo and any ςoj , choose N × N combination matrices Cw

and Cςj whose elements in each row k, i.e., {cwk,`}N`=1 and {cςjk,`}N`=1, satisfy (4.21)

and (4.26), respectively.

• At each time i, for each k ∈ {1, 2, . . . , N}, execute

- Adaptation step:




ψ
(i)
k

ς
(i)
k

ξ
(i)
k


 =




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k





 (4.30)

with ς
(i)
k = col

{{
ς

(i)
k,j

}
j∈Ik

}
and φ

(i)
k,ς = col

{{
φ

(i)
k,ςj

}
j∈Ik

}
.

- Combination step:

φ
(i)
k,w =

∑

`∈Nk

cwk,` ψ
(i)
` (4.31)

and

φ
(i)
k,ςj

=
∑

`∈Nk∩Cj

c
ςj
k,` ς

(i)
`,j . (4.32)

for each j ∈ Ik.

Although the algorithms have been designed for the case where the parameters of

local, common and global interest coexist, note that the derived algorithms can be sim-

plified straightforwardly to any other NSPE setting. For instance, the derived algorithms

can be easily simplified to a setting where there are no parameters of global interest or

where some of the nodes do not have parameters of local interest. Nevertheless, in-

dependently of the considered NSPE setting, we can check that both diffusion-based

NSPE algorithms are scalable in terms of computational burden and energy resources.

On the one hand, regarding the computational complexity, at each time instant, each

node k only needs to update a maximum of 1+2 (1+ |Ik|) vectors whose dimensions are
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independent of the number of nodes. On the other hand, at each time instant i, in both

algorithms, each node k is required to transmit a maximum of 1 + |Ik| vectors, whose

dimensions are again independent of the number of nodes.

4.3 Performance analysis

This section is concerned with the performance analysis of CTA D-NSPE and ATC D-

NSPE algorithms proposed in Section 4.2. We start by considering a general recursion

that includes both algorithms and that captures the behavior of individual nodes across

the network. We then study the convergence in the mean of the general model. Finally,

we characterize its mean-square performance in the steady-state in terms of Mean-Square

Deviation (MSD) and Excess Mean-Square Error (EMSE).

4.3.1 Network-wide recursion

In this subsection, we derive a general algorithmic form that includes CTA D-NSPE and

ATC D-NSPE as special cases. In particular, let us write the first combination step as

φ
(i−1)
k,w =

∑

`∈Nk

cwk,` q
(i−1)
`,w (4.33)

and

φ
(i−1)
k,ςj

=
∑

`∈Nk

c
ςj
k,` q

(i−1)
`,ςj (4.34)

for each j belonging to Ik. Moreover, the adaptation step is expressed by the following

equation




ψ
(i)
k

ς
(i)
k

ξ
(i)
k


 =




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k


+ µk U

H
k,i


dk,i − Uk,i




φ
(i−1)
k,w

φ
(i−1)
k,ς

ξ
(i−1)
k





 (4.35)

where, with a slight abuse of notation, ς
(i)
k = col

{{
ς

(i)
k,j

}
j∈Ik

}
and

φ
(i−1)
k,ς = col

{{
φ

(i−1)
k,ςj

}
j∈Ik

}
. Then, at each iteration of the general algorithmic form

the second combination step takes place, i.e.,

q
(i)
k,w =

∑

`∈Nk

awk,` ψ
(i)
` (4.36)
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and

q
(i)
k,ςj

=
∑

`∈Nk

a
ςj
k,` ς

(i)
`,j (4.37)

for each j belonging to Ik. In (4.33), the non-negative real coefficient cwk,` corresponds to

the (k, `)-th entries of the (N ×N) combination matrix Cw, which satisfies Cw1N = 1N .

Moreover, in (4.34), the non-negative real coefficient c
ςj
k,` corresponds to the (|Cj,k|, |Cj,`|)

entry of a (|Cj | × |Cj |) combination matrix Cςj , which satisfies

Cςj1|Cj | = 1|Cj |

with

Cj,k = {k′ ∈ Cj : k′ ≤ k}. (4.38)

and k, ` ∈ Cj for any j ∈ {1, 2, . . . , J}. Similarly, in (4.36)-(4.37) the non-negative real

coefficients {awk,`} and {aςjk,`} correspond to the (k, `)-th and the (|Cj,k|, |Cj,`|)-th entries

of the (N ×N) and (|Cj | × |Cj |) combination matrices Aw and Aςj , respectively, which

satisfy

Aw1N = 1N , Aςj1|Cj | = 1|Cj |

for any j ∈ {1, 2, . . . , J}.

Also, note that if we set Cw = IN , Cςj = I|Cj | for j ∈ {1, 2, . . . , J}, equations (4.33)-

(4.37) represent the ATC D-NSPE algorithm. On the other hand, its CTA counterpart

corresponds to selecting Aw = IN , Aςj = I|Cj | for j ∈ {1, 2, . . . , J}.

Now, let us interpret data as random variables. Associated with the quantities in

the general form in (4.33)-(4.37), we define the weight-error vectors, for k = {1, . . . , N}
and j = {1, . . . , J}, as follows

φ̃
(i)
k,w = wo − φ(i)

k,w, p̃
(i)
k,w = wo −ψ(i)

k , q̃
(i)
k,w = wo − q(i)

k,w

φ̃
(i)
k,ςj = ςoj − φ(i)

k,ςj
, p̃

(i)
k,ςj

= ςoj − ς(i)
k,j , q̃

(i)
k,ςj

= ςoj − q(i)
k,ςj

φ̃
(i)
k,ξk

= ξok − ξ
(i)
k , p̃

(i)
k,ξk

= ξok − ξ
(i)
k , q̃

(i)
k,ξk

= ξok − ξ
(i)
k .

(4.39)

Next, we collect these quantities across all agents into the corresponding (
∑N

k=1Mk)×
1 block vectors, i.e., network weight-error vectors,

φ̃i = col

{{
φ̃

(i)
k,w, {φ̃

(i)
k,ςj}j∈Ik , φ̃

(i)
k,ξk

,
}N
k=1

}
(4.40)



74 4.3. Performance analysis

In the same vein, the network vectors p̃i and q̃i are formed, by stacking the corresponding

weight-error vectors. For notational convenience, hereafter we use

M̆ =
N∑

k=1

Mk .

To proceed, let us introduce the diagonal matrix

M = diag{µ1IM1 , . . . , µNIMN
} (M̆ × M̆), (4.41)

the block-diagonal matrix

Di = diag{UH
1,iU1,i, . . . ,U

H
N,iUN,i} (M̆ × M̆), (4.42)

and the vector

V i = col{UH
1,iv1,i, . . . ,U

H
N,ivN,i} (M̆ × 1). (4.43)

Finally, the network-wide behavior can be characterized by these relations for the

block quantities:

φ̃i−1 = C̆ q̃i−1 (4.44)

p̃i = (I −MDi)φ̃i−1 −MV i (4.45)

q̃i = Ă p̃i (4.46)

where the structure of the extended weighting matrices C̆ and Ă is explained in the

following subsection.

To sum up, note that (4.44)-(4.46) can be expressed in the following equivalent form

q̃i = Ă (I −MDi) C̆ q̃i−1 − ĂMV i, (4.47)

which will be used in the Subsections 4.3.4 and 4.3.5 to study the mean stability and to

perform the mean-square steady-state analysis, respectively.
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4.3.2 Structure of the extended weighting matrices

The extended weighting matrices Ă and C̆ have the same form, only the weights can be

different. Therefore, in order to define them, let us consider, for instance, the Ă matrix,

Ă = col
{
Aw1 , {A

ςj
1 }j∈I1 , Aξ11 , . . . , A

w
N , {A

ςj
N}j∈IN , A

ξN
N

}
, (4.48)

where the blocks being stacked are defined as

Aw
k =

[
awk,1IMg

0Mg×(Mc|I1|+Ml) awk,2IMg
0Mg×(Mc|I2|+Ml) . . . awk,NIMg

0Mg×(Mc|IN |+Ml)

]

(4.49)

Aξkk =
[
0Ml×(

∑k−1
`=1 M`+Mg+Mc|Ik|) IMl

0Ml×(
∑N

`=k+1 M`)

]
(4.50)

and

A
ςj
k =

[
A
ςj
k1 A

ςj
k2 . . . A

ςj
kN

]
(4.51)

with

A
ςj
k` =





[
0Mc×(Mg+Mc|Ij`|) a

ςj
k,`IMc 0Mc×(Mc[|I`|−|Ij`|−1]+Ml)

]
if ` ∈ Cj ,

0Mc×M`
if ` 6∈ Cj

(4.52)

and Ijk = {j′ ∈ Ik : j′ < j}.

An alternative way to define Ă is the following relation

Ă = P Ăblkd PT (4.53)

where the block-diagonal matrix Ăblkd is given by

Ăblkd = blockdiag
{
Aw ⊗ IMg , {Aςj ⊗ IMc}Jj=1, IN ⊗ IMl

}
, (4.54)

while ⊗ stands for the Kronecker product, and P is the M̆×M̆ permutation matrix that

stacks appropriately chosen 1 × M̆ row basis vectors. In particular, a basis vector ek

has the unity at the kth position and zeros elsewhere. The structure of the permutation

matrix P in (4.53) is specified by N blocks, each corresponding to a specific node, i.e.,

P = col{E1, . . . , EN}, where the kth block Ek, of dimensions Mk×M̆ , takes the following
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form

Ek = col{efg(k,1), . . . , efg(k,Mg), efc(k,Ik(1),1),

. . . , efc(k,Ik(1),Mc), . . . , efc(k,Ik(1),Mc),

. . . , efc(k,Ik(|Ik|),1), . . . , efc(k,Ik(|Ik|),Mc),

efl(k,1), . . . , efl(k,Ml)}

(4.55)

with the three counter functions, specifying the position of the unity in the basis vectors

e(·), defined by

fg(k, c) = (k − 1) ·Mg + c , (4.56)

fc(k, j, c) = N ·Mg +

j−1∑

j′=1

|Cj′ | ·Mc + (|Cj,k| − 1) ·Mc + c (4.57)

and

fl(k, c) = N ·Mg +

J∑

j=1

|Cj | ·Mc + (k − 1) ·Ml + c (4.58)

with Cj,k given in (4.38).

4.3.3 Data assumptions

To proceed, we state the following independence assumptions on the data:

A1) vk,i is temporally and spatially white noise whose covariance matrix is Rvk,i and

which is independent of Uk′,i′ for all k′ and i′, with k, k′ ∈ {1, 2, . . . , N} and

i, i′ > 0;

A2) Uk,i is independent of Uk,i′ , with i, i′ > 0 and i 6= i′ (temporal independence).

A3) Uk,i is independent of Uk′,i, with k, k′ ∈ {1, 2, . . . , N} and k 6= k′ (spatial inde-

pendence),

A4) Ukg ,i, Ukjc,i and Ukl,i are independent for all k ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , J};

In order to evaluate the fourth-order moment of the matrix-valued regression data in

Subsection 4.3.5, we further assume:

A5) Uk,i (Lk ×Mk) has a real matrix variate normal distribution specified by mean

0Lk×Mk
and positive-semidefinite matrices Ψk (Mk×Mk) and Ωk (Lk×Lk) (see [64,
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Chapter 2]). Equivalently, using standard notation for multivariate normal distri-

bution, the distribution of Uk,i can be defined as vec(Uk,i) ∼ NMkLk

(
vec(0Lk×Mk

),

Ψk ⊗ Ωk

)
where ⊗ stands for the Kronecker product.

Remark 4.1: Note that even for the vector-valued regression data, in order to evaluate

the fourth-order moment, the Gaussian assumption is required (e.g. see [12] and [13]).

The results of the fourth-order moment of the matrix-valued regression data appear to

be more challenging than those on its vector counterpart, due to the extra dimension

involved. Therefore, the assumption A5 seems well-justified.

4.3.4 Mean stability

By taking the expectation of (4.47) and using Assumptions A1-A3, we obtain

Eq̃i = Ă (I −MRU ) C̆ Eq̃i−1, (4.59)

where

RU = EDi = blockdiag{RU1 , RU2 , . . . , RUN
}, (4.60)

and

RUk
= EUH

k,iUk,i = blockdiag
{
RUkg

, {RUkjc
}j∈Ik , RUkl

}
. (4.61)

The algorithm in (4.47) is asymptotically unbiased, i.e, Eq̃i → 0M̆×1 as i → ∞, if

the matrix Ă(I −MRU )C̆ is stable. In order to prove its stability, we will build upon

the approaches taken in [14] and [65], by selecting a convenient matrix norm ‖ · ‖ and

exploit its submultiplicativity property, i.e., ‖AB‖ ≤ ‖A‖‖B‖.

Here, we use the induced block maximum matrix norm [65], [14], however, defined

over a block matrix with different block sizes. In particular, let x be a M̆ × 1 vector

consisting of N̆ blocks, where N̆ = N +
∑n

k=1 |Ik|+N , given as

x = col

{{
xwk , {x

ςj
k }j∈Ik , x

ξk
k ,
}N
k=1

}
.

For the previous partition of x, the block maximum norm is defined as

‖x‖b,∞ = max
1≤k≤N

{
{‖xwk ‖,

{
‖xςjk ‖

}
j∈Ik

, ‖xξkk ‖
}
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where ‖ · ‖ denotes the Euclidean norm of its argument. Moreover, the matrix norm

induced from the block maximum norm is given by

‖A‖b,∞ = max
‖x‖b,∞=1

‖Ax‖b,∞

where A is M̆ × M̆ matrix. As in [65], it can be straightforwardly shown that the

block maximum norm has the unitary invariance property of the Euclidean norm under

properly defined block-wise transformation.

Next, by evaluating the block maximum norm of (4.59) and by applying its submul-

tiplicativity property, we can obtain the following relation

‖Eq̃i‖b,∞ ≤ ‖Ă‖b,∞ ‖I −MRU‖b,∞ ‖C̆‖b,∞ ‖Eq̃i−1‖b,∞. (4.62)

Let us now evaluate the block maximum norms of the extended combination matrices

Ă and C̆. To do so, we will focus on Ă given in (4.48), while the same holds for ‖C̆‖b,∞.

Since Ă is a row-stochastic matrix, we can bound ‖Ă‖b,∞ as follows

‖Ăx‖b,∞ = max
1≤k≤N





∥∥∥∥∥∥
∑

`∈Nk

awk,`x
w
`

∥∥∥∥∥∥
,





∥∥∥∥∥∥
∑

`∈Nk∩Cj

a
ςj
k,`x

ςj
`

∥∥∥∥∥∥




j∈Ik

,
∥∥∥xξkk

∥∥∥





≤ max
1≤k≤N




∑

`∈Nk

|awk,`|,max
j∈Ik

∑

`∈Nk∩Cj

|aςjk,`|, 1



 ‖x‖b,∞ = ‖x‖b,∞.

(4.63)

From the previous bound, we can easily verify that ‖Ă‖b,∞ < 1 given that Aw, Aςj are

row-stochastic, i.e., Aw1N = 1N and Aςj1|Cj | = 1|Cj |, for j = {1, . . . , J}.

At this point, we only need to find the conditions that ensure

‖I −MRU‖b,∞ < 1.

Under Assumption A4, due to the unitary invariance of the block maximum norm these

conditions correspond to the mean stability conditions of stand-alone LMS filters and

can be easily realized to be

µk <
2

λmax

(
RUkg

, {RUkjc
}j∈Ik , RUkl

) for each k,

where k = {1, . . . , N} and λmax(X,Y, Z) denotes the maximum of the maximum eigen-

values of the Hermitian matrix arguments X,Y and Z.

The above discussion is summarized in the subsequent theorem.
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Theorem 4.1. For any initial conditions, under the Assumptions A1-A4 made in Sub-

section 4.3.3, if the positive step-size of each node satisfies

µk <
2

λmax

(
RUkg

, {RUkjc
}j∈Ik , RUkl

) ,

then the estimates generated by ATC (or CTA) D-NSPE algorithm converge in the mean,

i.e.,

lim
i→∞

Eq̃i = 0M̆×1, (4.64)

if the combination matrices related to the estimates of global and common parameters

are row-stochastic.

4.3.5 Mean-square steady-state performance

At this point, we aim to evaluate the mean-square performance of the general diffusion

model in (4.47). In particular, we will examine the performance in the steady-state in

terms of MSD and EMSE.

To this end, we use the energy conservation arguments [52], [14]. Specifically, after

equating the weighted norm of (4.47) and taking the expectation under Assumptions

A1-A3, we obtain the subsequent variance relation

E‖q̃i‖2Σ = E‖q̃i−1‖2Σ′ + E
{
VH
i MĂT Σ ĂMV i

}
(4.65)

where Σ is an arbitrary (M̆ × M̆) Hermitian nonnegative-definite matrix that we are

free to choose, and

Σ′ = E
{
C̆T (I −MDi)

H ĂT Σ Ă (I −MDi) C̆
}
. (4.66)

To proceed, we have to extract Σ from r.h.s. of (4.66) and from the second term on

r.h.s. in (4.65). To do so, we will use vectorization operator and exploit some useful

properties of the trace operator and Kronecker product, i.e.,

vec(ABC) = (CT ⊗A)vec(B) (4.67)

and

Tr(AB) = vec(AT )Tvec(B). (4.68)
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Furthermore, in addition to Assumptions A1-A3, here we also use Assumption A5, stated

in Subsection 4.3.3.

Thus, after defining V = E V iVH
i = blockdiag

(
{(TrRv,kΩk)Ψk}Nk=1

)
(see [66]), we

get

E‖q̃i‖2Σ = E‖q̃i−1‖2Σ′ + Tr
(
ĂMV MĂT Σ

)
. (4.69)

Next, we introduce σ = vec(Σ). In order to extract Σ from Σ′, we take the following

steps

σ′ = vec(Σ′) = Fσ (4.70)

where F is a matrix, of dimensions M̆2 × M̆2, given by

F = E

{(
Ă (I −MDi) C̆

)T
⊗
(
C̆T (I −MDi)

T ĂT
)}

= (C̆T ⊗ C̆T )E
{

(I −MDi)
T ĂT ⊗ ((I −MDi)

T ĂT
}

= (C̆T ⊗ C̆T )G (ĂT ⊗ ĂT )

(4.71)

with

G =E
{

(I −MDi)
T ⊗ (I −MDi)

T
}

=I ⊗ I −RUM⊗ I − I ⊗RUM+ E{DT
iM⊗DT

iM}
(4.72)

and RU = blockdiag
{
{Tr(Ωk)Ψk}Nk=1

}
(see (4.60)).

For sufficiently small step sizes, the forth-order moment of regressors, i.e., the right-

most term in (4.72), can be discarded. However, under the data assumptions of Subsec-

tion 4.3.3, this term can be evaluated as follows

E{DT
iM⊗DT

iM} = S · (M⊗M) (4.73)

where

S = E{DT
i ⊗DT

i } = blockdiag
{{
E{UH

k,iUk,i ⊗Di}
}N
k=1

}
(4.74)

with

E{UH
k,iUk,i ⊗Di} = K(Mk,M̆)E{Di ⊗UH

k,iUk,i}K(M̆,Mk)
(4.75)
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and K(m,n) denoting the mn×mn commutation matrix that satisfies

K(m,n)vec(A) = vec(AT )

for any m× n matrix A [67]. In (4.75), it can be shown that

E{Di ⊗UH
k,iUk,i} = blockdiag

{{
E{UH

`,iU`,i ⊗UH
k,iUk,i}

}N
`=1

}
. (4.76)

Moreover, from [66] and [68], we can obtain closed-form expressions for the expectations

that appear in (4.76). In particular, we can verify that

E{UH
k,iUk,i ⊗UH

k,iUk,i} =Tr(Ωk)Tr(Ωk)Ψk ⊗Ψk + Tr(ΩkΩk)vec(Ψ)vec(Ψ)T

+ Tr(ΩkΩk)K(Mk,Mk)(Ψk ⊗Ψk)
(4.77)

and

E{UH
`,iU`,i ⊗UH

k,iUk,i} = [Tr(Ω`)Ψ`]⊗ [Tr(Ωk)Ψk] (4.78)

for any k, ` ∈ {1, 2, . . . , N} with k 6= `.

To evaluate the performance measures in the steady state, i.e., i → ∞, by us-

ing (4.68), we first rewrite (4.69) as

E‖q̃∞‖2σ = E‖q̃∞‖2Fσ +
[
vec(ĂMV TMĂT )

]T
σ. (4.79)

After rearranging, we obtain the following relation

E‖q̃∞‖2(I−F )σ =
[
vec(ĂMV TMĂT )

]T
· σ. (4.80)

Now, to evaluate the MSD averaged across the whole network defined by

MSDnet =
1

N
E‖q̃∞‖2I , (4.81)

we select σ = (I − F )−1 1
N vec(IM̆ ). In this way, we get

MSDnet =
1

N

[
vec(ĂMV TMĂT )

]T
(I − F )−1vec(IM̆ ). (4.82)

In order to evaluate MSD at each node k, let us first define the Khatri-Rao matrix

product.

Definition 2: Consider matrices A and B of dimensions m×n and p×q, respectively.

Let A = (Aij) be partitioned with Aij of dimensions mi × nj as the (i, j)-th block

submatrix and let B = (Bij) be partitioned with Bij as the (i, j)-th block submatrix of
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dimensions pi × qj (
∑
mi = m,

∑
nj = n,

∑
pi = p and

∑
qj = q). The Khatri-Rao

matrix product is defined as

A�B = (Aij ⊗Bij)ij

where Aij ⊗Bij is of dimensions mipi × njqj , while A�B is of dimensions (
∑
mipi)×

(
∑
njqj), (see [69]).

Based on the previous definition, the MSD at node k is

MSDk =
[
vec(ĂMV TMĂT )

]T
(I − F )−1mk, (4.83)

where the vector mk is given by

mk = vec (diag(ek)� Y ) (4.84)

with the Khatri-Rao matrix product of two N × N partitioned matrices, i.e., Y =

blockdiag{IM1 , . . . , IMN
} and diagonal matrix made of the elements of a 1 × N vector

ek with the unity at the kth position and zeros elsewhere.

On the other hand, the MSD related to the estimation of the global, some specific

common or the local vector of parameter at node k, can be evaluated by redefining Y

as a (2N +
∑N

k=1 |Ik|)× (2N +
∑N

k=1 |Ik|) partitioned matrix, i.e.,

Y = blockdiag{IMg , I|I1|Mc
, IMl

, . . . , IMg , I|IN |Mc
, IMl
}, (4.85)

and by taking 1× 2N +
∑N

k=1 |Ik| vector ek with the unity at the appropriate position

and zeros elsewhere.

Similarly, since the EMSE averaged across the whole network is defined as

EMSEnet =
1

N
E‖q̃∞‖2RU

, (4.86)

with RU given in (4.60), we have that

EMSEnet =

[
vec(ĂMV TMĂT )

]T
(I − F )−1vec(RU )

N
.

(4.87)

Additionally, the EMSE at each node k is

EMSEk =
[
vec(ĂMV TMĂT )

]T
(I − F )−1pk, (4.88)
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where we select a node k by

pk = vec (diag(ek)�RU ) (4.89)

with RU defined as N × N partitioned matrix as in (4.60). Under the independence

of Ukg ,i, Ukjc,i and Ukl,i, we can evaluate EMSE performance measure related to the

global, specific common or local parameter at some node k. To do so, we need to properly

redefine the partitions of RU and the size of vector ek.

4.4 Simulation results

In this section, we initially discuss some generic simulations that verify the mean-square

theoretical results (see Section 4.3.5). Afterwards, the effectiveness of the proposed

algorithms is illustrated in the context of cooperative spectrum sensing in CR networks.

4.4.1 Validation of mean-square theoretical results

We assume a network with N = 10 nodes where the measurements follow the observation

model provided in (4.3) with Lk = 2 for all k. In the considered setting, two different

vectors of common parameters coexist, i.e., ςo1 and ςo2 . The vector ςo1 is composed of 3

parameters, while ςo2 consists of 2 parameters. Moreover, we consider that the area of

influence of ςo1 and ςo2 is formed by C1 ∈ {2, 3, 4, 5, 6} and C2 ∈ {5, 6, 7, 8}, respectively.

As a result, there are nodes that are interested in estimating either zero, or one or

two different vectors of common parameters. In addition, each node k is interested in

estimating a vector of global parameters and a vector of local parameters, each one of

length equal to Mg = 2 and Mlk = 3, respectively.

The data observed by each node, i.e., {dk,i, Uk,i}, have been generated under the

assumption of a background noise vk,i with covariance σ2
vk
I2, where σ2

vk
= σ2

v = 10−3

across the network. Furthermore, each one of the Lk rows of the regressor

Uk,i = col
{
UTkg ,i{UTkjc,i}j∈IkU

T
kl,i

}T

has been independently drawn from a time-correlated spatially independent Gaussian

distribution. In particular, the c-th row of Uk,i is generated according to a first-order

autoregressive (AR) model with correlation function rk,c(i) = σ2
uk
α
|i|
k , where the pair

of parameters {σuk , αk} are randomly chosen in (0,1) so that the Signal-to-Noise-Ratio

(SNR) at each node ranges from 10 dB to 20 dB. Hence, Uk,i follows a real matrix variate
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Figure 4.2: Steady-state EMSE per node for CTA D-NSPE and ATC D-NSPE.

normal distribution specified by the mean matrix 02×Mk
and the positive-semidefinite

matrices Ωk = I2 and Ψk = toeplitz{[σ2
uk
σ2
uk
αk . . . σ

2
uk
αMk−1
k ]T }.

When implementing both CTA D-NSPE and ATC D-NSPE, static uniform combi-

nation weights have been assumed, i.e., awk,` = 1/|Nk| for all k ∈ {1, 2, . . . , 10} with

` ∈ Nk, and a
ςj
k,` = 1/|Nk ∩ Cj | for all k ∈ Cj and ` ∈ Nk ∩ Cj and j ∈ {1, 2}. The neigh-

borhood of each node k has been set so that the network graph as well as the subsets

C1 and C2 are connected. Moreover, in order to validate the theoretical expressions for

non-fully connected networks and non-fully connected subsets Cj , we have assumed that

max
1≤k≤N

{|Nk|} ≤ 4 and that max
1≤k≤N

{|Nk ∩ Cj |} ≤ 3 for any j ∈ {1, 2}.

The experimental values in Figs. 4.2-4.4 result by averaging the mean-square mea-

sures over 100 independent experiments where both CTA D-NSPE LMS and ATC D-

NSPE LMS are run for 10 000 iterations. Despite the temporal correlation of the regres-

sors as well as the correlation among Ukg ,i, Ukjc,i and Ukl,i, which were not assumed

for the derivation of the theoretical results, all figures show a good match between the

simulated curves and the theoretical expressions for the MSD and EMSE at each node

k.

4.4.2 Application to spectrum sensing in cognitive networks

In the following, we will also demonstrate the performance of the proposed algorithm

when used for cooperative spectrum sensing in CR networks (see [14, Section 2.4]

and [58]-[60]). In brief, there are Q primary users (PU) transmitting and N secondary

users (SU) sensing the power spectrum. In addition to PUs, for each SU we also as-

sume two types of low-power interference sources, i.e., local interferer (LI) and common

interferers (CI). The former is affecting only one SU, while the latter are influencing

several SUs. Therefore, the aim for each SU is to estimate the aggregated spectrum
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Figure 4.3: Steady-state MSD per node for CTA D-NSPE LMS.
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Figure 4.4: Steady-state MSD per node for ATC D-NSPE LMS.

transmitted by all the PUs as well as the spectrum of its own LI and CI. An example of

such a scenario is given in Fig. 4.5.

Next, the power spectral density (PSD) of the signal transmitted by the q-th PU,

denoted by Φt
q(f), can be approximated by using the subsequent model of X basis
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PU 1

PU 2

SU 4

SU 1

SU 2

SU 3

LI 1

CI 1
LI 2

LI 3LI 4

Fig. 5. An illustrative CR scenario. Each one of the 4 secondary users (SU)
has the scope to estimate the aggregated spectrum transmitted by the primary
users and its interferer(s). Apart from PUs, SU 1 is influenced only by its
local interferer (LI 1) while SU 2, 3 and 4 are influenced by their local as
well as their common interferer (CI 1).

B. Illustrative application

In the following, we will also demonstrate the performance
of the proposed algorithm when used for cooperative spectrum
sensing in CR networks (see [26, Section 2.4] and [31]-[33]).
In brief, there are Q primary users (PU) transmitting and N
secondary users (SU) sensing the power spectrum. In addition
to PUs, for each SU we also assume two types of low-power
interference sources, i.e., local interferer (LI) and common
interferers (CI). The former is affecting only one SU, while
the latter are influencing several SUs. Therefore, the aim for
each SU is to estimate the aggregated spectrum transmitted by
all the PUs as well as the spectrum of its own LI and CI. An
example of such a scenario is given in Fig. 5.

Next, the power spectral density (PSD) of the signal trans-
mitted by the q-th PU, denoted by �t

q(f), can be approximated
by using the subsequent model of X basis functions

�t
q(f) =

XX

x=1

bx(f)w̌o
qx = bT

0 (f)w̌o
q (85)

where b0(f) = [b1(f), . . . , bX(f)]T 2 RX is a vector
of basis functions evaluated at frequency f and w̌o

q =
[w̌o

q1, . . . , w̌
o
qX ]T 2 RX is a vector of weighting coefficients

representing the power transmitted by the q-th PU over each
basis.

Let ptk,i(f) = |Htk(f, i)|2 be the frequency-dependent at-
tenuation coefficient, where Htk(f, i) is the channel frequency
response between the t-th transmitter and k-th receiver [33].
For each time i and frequency f , we define

- pqk,i(f) denoting the attenuation coefficient between the
q-th PU and the k-th SU,

- pIk,i(f) refering to the attenuation coefficient between
the local interferer and the k-th SU,

- pjk,i(f) being the attenuation coefficient between the j-th
common interferer and the k-th SU, where j 2 Ik.

Then, under the assumption of spatial uncorrelation among the
channels, the signal received by the k-th SU at time instant i
can be expressed as

�r
k,i(f) = bT

k,i(f)wo
k + zk,i, (86)

where wo
k = col {w̌o

1, . . . , w̌
o
Q, &oIk(1), . . . , &

o
Ik(|Ik|), ⇠

o
k} 2

R(Q+|Ik|+1)X with ⇠o
k and &oj equal to the vectors of weighting

coefficients representing the power transmitted by the LI
and j-th CI associated with the k-th SU, respectively. Also,
bk,i(f) = pk,i(f)⌦ b0(f) 2 R(Q+|Ik|+1)X , and

pk,i(f) = [p1k,i, . . . , pqk,i, pIk(1),i, . . . , pIk(|Ik|),i, pIk,i]
T ,
(87)

while zk,i is the measurement and/or model noise. In the above
expression, we dropped the frequency index for compactness
of notation. Also note that, in practice, the attenuation factors
ptk,i cannot be estimated accurately, so we assume access only
to noisy estimates p̂tk,i hereafter.

Considering that, at discrete time i, each node k observes
the received PSD in (86) over L frequency samples {fm}L

m=1,
the subsequent vector linear model is obtained

dk,i = Uk,iw
o
k + vk,i (88)

where vk,i denotes noise with zero mean and covari-
ance matrix Rvk

of dimension L ⇥ L and Uk,i =

[bk,i(f1) . . . bk,i(fL)]
T is of dimension L⇥ (Q + |Ik| + 1)X

with L > (Q + |Ik| + 1)X .
For the computer simulations presented here, we consider

a scenario where there is only one common interferer whose
PSD can be sensed by nodes in C1 = {2, 4, 7, 9}. Further-
more, we analyze the ATC D-NSPE LMS scheme for several
different combining strategies and degrees of connectivity. In
particular, we consider the ATC D-NSPE LMS algorithms with

a) the same neighborhood size at all the nodes, i.e., |Nk| =
5, while |Nk \ C1| = 3 for all k 2 C1. In this scenario,
we employ the static uniform combination weights, i.e.,
aw

k,` = 1/5 and a&1
k,` = 1/3.

b) the clique topology, i.e., |Nk| = N and |Nk \ C1| =
|C1| for all k 2 C1, with corresponding static uniform
combination weights,

c) the topology set as in a), while the combination weights
are adaptive. Specifically, the weights corresponding to
both global and common parameter estimation processes
are being adapted according to the adaptive combination
mechanism proposed in [16]. For instance, the weights
aw

k,`, for ` 2 Nk, evolve as

aw
k,`(i) =

��2
k,`(i)P

m2Nk
��2

k,m(i)

with

�2
k,`(i) = (1� ⌫)�2

k,`(i� 1) + ⌫|| (i)
` � �

(i�1)
k,w ||2.

We also compare these schemes with an LMS-based non-
cooperative strategy as well as with the incremental-based
NSPE LMS (I-NSPE LMS), developed in [21], that is used
as a benchmark.

The step-size of the LMS adaptation at each node is set
equal to µk = 0.04 for all the algorithms, expect for the
incremental NSPE where µk is the step-size for estimating
the local parameters only. In the I-NSPE LMS, the step-
sizes for estimating global and common parameters are set
to µI�NSPE

w = µk/N and µI�NSPE
&j

= µk/|Cj |, respectively.

SU 1 

SU 2 

SU 3 

SU 4 

LI 4 
LI 3 

LI 2 

LI 1 

CI 1 

CI 2 

PU 1 

Figure 4.5: An illustrative CR scenario. Each one of the 4 secondary users (SU) aims
at estimating the aggregated spectrum transmitted by the Primary User (PU) and its
interferer(s). Apart from the PU and its Local Interferer (LI), each SU is influenced by
one or two Common Interferers (CI). SU 3 is influenced by CI 1 and CI 2, while SUs

1, 2 and 4 are only influenced by one CI.

functions

Φt
q(f) =

X∑

x=1

bx(f)w̌oqx = bT0 (f)w̌oq (4.90)

where b0(f) = [b1(f), . . . , bX(f)]T ∈ RX is a vector of basis functions evaluated at

frequency f and w̌oq = [w̌oq1, . . . , w̌
o
qX ]T ∈ RX is a vector of weighting coefficients repre-

senting the power transmitted by the q-th PU over each basis.

Let ptk,i(f) = |Htk(f, i)|2 be the frequency-dependent attenuation coefficient, where

Htk(f, i) is the channel frequency response between the t-th transmitter and k-th re-

ceiver [60]. For each time i and frequency f , we define

- pqk,i(f) denoting the attenuation coefficient between the q-th PU and the k-th SU,

- pIk,i(f) refering to the attenuation coefficient between the local interferer and the

k-th SU,

- pjk,i(f) being the attenuation coefficient between the j-th common interferer and

the k-th SU, where j ∈ Ik.

Then, under the assumption of spatial uncorrelation among the channels, the signal

received by the k-th SU at time instant i can be expressed as

Φr
k,i(f) = bTk,i(f)wok + zk,i, (4.91)
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where wok = col {w̌o1, . . . , w̌oQ, ςoIk(1), . . . , ς
o
Ik(|Ik|), ξ

o
k} ∈ R(Q+|Ik|+1)X , with ξok and ςoj equal

to the vectors of weighting coefficients representing the power transmitted by the LI and

j-th CI associated with the k-th SU, respectively. Also, bk,i(f) = pk,i(f) ⊗ b0(f) ∈
R(Q+|Ik|+1)X , and

pk,i(f) = [p1k,i, . . . , pqk,i, pIk(1),i, . . . , pIk(|Ik|),i, pIk,i]
T , (4.92)

while zk,i is the measurement and/or model noise. In the above expression, we dropped

the frequency index for compactness of notation. Also note that, in practice, the atten-

uation factors ptk,i cannot be estimated accurately, so hereafter we assume access only

to noisy estimates p̂tk,i.

Considering that, at discrete time i, each node k observes the received PSD in (4.91)

over L frequency samples {fm}Lm=1, the subsequent vector linear model is obtained

dk,i = Uk,iw
o
k + vk,i (4.93)

where vk,i denotes noise with zero mean and covariance matrix Rvk of dimension L×L
and Uk,i = [bk,i(f1) . . . bk,i(fL)]T is of dimension L × (Q + |Ik| + 1)X with L > (Q +

|Ik|+ 1)X.

For the computer simulations presented here, we consider a scenario where there

is only one common interferer whose PSD can be sensed by nodes in C1 = {2, 4, 7, 9}.
Furthermore, we analyze the ATC D-NSPE LMS scheme for several different combining

strategies and degrees of connectivity. In particular, we consider the ATC D-NSPE LMS

algorithms with:

a) the same neighborhood size at all the nodes, i.e., |Nk| = 5, while |Nk ∩ C1| = 3 for

all k ∈ C1. In this scenario, we employ the static uniform combination weights,

i.e., awk,` = 1/5 and aς1k,` = 1/3,

b) the clique topology, i.e., |Nk| = N and |Nk ∩ C1| = |C1| for all k ∈ C1, with

corresponding static uniform combination weights,

c) the topology set as in a), while the combination weights are adaptive. Specifi-

cally, the weights corresponding to both global and common parameter estimation

processes are being adapted according to the adaptive combination mechanism

proposed in [28]. For instance, the weights awk,`, for ` ∈ Nk, evolve as

awk,`(i) =
γ−2
k,` (i)∑

m∈Nk
γ−2
k,m(i)
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with

γ2
k,`(i) = (1− ν)γ2

k,`(i− 1) + ν||ψ(i)
` − φ

(i−1)
k,w ||2.

We also compare these schemes with an LMS-based non-cooperative strategy as well

as with the incremental-based NSPE LMS (I-NSPE LMS), developed in [43], that is

used as a benchmark.

The step-size of the LMS adaptation at each node is set equal to µk = 0.04 for all the

algorithms, except for I-NSPE LMS where µk is the step-size for estimating the local

parameters only. In I-NSPE LMS, the step-sizes for estimating global and common

parameters are set to µI−NSPEw = µk/N and µI−NSPEςj = µk/|Cj |, respectively, thus

assuring a fair comparison among the strategies.

Figure 4.6 depicts the learning behavior of the schemes in terms of the network MSD

associated with the estimation of wo, ςo1 and ξok. Each network MSD is the result of

averaging the local MSDs associated with the estimation of wo and ξok at each node,

except for the network MSD associated with the estimation of ςo1 , which is averaged

over the nodes belonging to the set C1. To generate each plot, we have averaged the

results over 100 independent experiments where we assumed Q = 2 PUs, N = 10 SUs

and X = 16 Gaussian basis functions, of amplitude normalized to one and standard

deviation σb = 0.05. Furthermore, we have considered that each SU scans L = 80

channels over the normalized frequency axis between 0 and 1, whereas the noise zk,i in

(4.91) is zero-mean Gaussian with standard deviation varying between 0.04 and 0.16 for

different k.

Each attenuation coefficient follows p̂tk,i(f) = ptk,i(f) + ntk, where ntk denotes a

zero-mean Gaussian variable with standard deviation in the range between 0.3 and 1.25,

while ptk,i(f) is related to the frequency response of the channel modeled as a static

3-tap FIR filter. Each tap is assumed to be a zero-mean complex Gaussian random

variable with variance σ2
h = 0.25. Under this setting, we observe that all the proposed

D-NSPE schemes outperform the non-cooperative one, especially when estimating wo

and ςo1 . Note that D-NSPE(a) and D-NSPE(b) well-approximate the centralized-like

performance of the incremental strategy. Finally, due to the fact that the adaptive

combiners integrate some additional knowledge regarding the quality of the estimates at

the different nodes, D-NSPE(c) outperforms all other schemes including the incremental.

Finally, to illustrate the asymptotic unbiasedness of the proposed technique, in

Fig. 4.7 we plot its mean weight error behavior under the previously described set-

ting. In particular, the figure indicates the mean weight error evolution of some vector

coefficients related to the global, common and local parameters at randomly selected
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Figure 4.6: Learning behavior of network MSD with respect to the parameters of
global interest (a), common interest (b) and for the parameters of local interest (c).

nodes. As expected by Theorem 4.1, D-NSPE LMS has estimated the optimum weight

vectors without bias.
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Figure 4.7: The mean error trajectories of some vector coefficients related to the
global (upper left), common (upper right) and local parameters (bottom) at randomly

selected nodes.

4.5 Concluding Remarks

In this chapter, we have proposed two distributed adaptive schemes where a local LMS

is run at each node in order to estimate each set of local parameters. Coupled among

themselves and with all these local estimation processes, the parameters of global and

common interests are estimated by LMS-based schemes implemented under a diffusion

mode of cooperation. After obtaining conditions under which the proposed strategies are

asymptotically unbiased, the mean-square steady-state performance has been evaluated.

Computer simulation results supporting our theoretical findings have been provided.

Moreover, the performance of the proposed algorithms has been illustrated in the context

of cooperative spectrum sensing in cognitive radio networks.

This chapter concludes discussion on the parameter estimation issue over networks.

The following two chapters are devoted to the data gathering problem in wireless sensor

networks for structural health monitoring.



Chapter 5

Lossless DSC approach for data

gathering

This chapter addresses the problem of data gathering based on distributed source coding

in wireless sensor networks for structural health monitoring. As explained in Section 1.2

of the introductory chapter, there are several difficulties in the sensor reachback problem

arising in this kind of networks, such as massive data to be transmitted to the sink node

as well as the fact that not all sensor nodes always have communication channels of

good enough quality. To handle these difficulties, a DSC-based approach, which exploits

spatial correlation among the measurements at different nodes, will be considered in this

chapter.

A DSC technique achieves lossless compression of multiple correlated sensor outputs

[36] without establishing any communication links between the nodes. A DSC algorithm

for the reachback problem, based on pair matching of the nodes, was proposed in [37].

A significantly improved algorithm was proposed in [38], based on application of DSC

strategy in a sequential manner.

In contrast to the work in [38], where each sensor node uses a direct communication

channel with the sink node, in our work, presented in this chapter, we additionally allow

cooperation among the nodes. Under the assumption that there exist unreliable channels

between the sensor nodes and the sink, it can be shown that this approach achieves less

total power consumption as well as reduced maximum power per sensor node required for

a feasible power allocation to exist. Furthermore, these performance improvements are

obtained at the cost of only a slight increase in computational complexity as compared

to the complexity of the scheme in [38].

91
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5.1 Problem statement

In general, we consider a network of sensors acquiring data from a civil structure in

order to reproduce a physical phenomenon at the sink. The natural analog signals are

first quantized and then compressed in order to minimize the total number of bits which

will be sent to the sink.

Let us now formulate the problem more precisely. We consider a dense wireless sensor

network consisting of N nodes, deployed in a civil structure that we wish to monitor.

Each sensor node acquires a measurement Xn (n ∈ N = {1, . . . , N}) of some physical

variable of its environment and transmits it to a single sink node, for further processing.

We model each such measurement as an instance of a discrete random variable Xn whose

number of possible values equals the number of quantization levels. Due to the nature

of the event being monitored, we assume that the random variables Xn are correlated.

In this setting, our scope is to devise an energy efficient method for the sensor reachback

problem. Thus, a proper cost function would be the sum

N∑

n=1

Pn , (5.1)

where Pn denotes the power required for transmitting the data of node n to the sink.

The minimization of (5.1), subject to some proper constraints, shall give an efficient

transmission method for our problem. Apart from the power variables Pn, the trans-

mission rates Rn of each sensor node, also constitute a set of variables that need to be

defined in an optimal manner.

We assume uncorrelated flat fading channels between the sources and the sink, cor-

rupted by additive white Gaussian noise (AWGN). The channel capacity is Cn(Pn) =

log(1 + γnPn), where the noise power is normalized to one and channel gains γn are

constants known to the sink. Since the sink is supposed to recover all measurements

losslessly, the rate at which each sensor node transmits should satisfy Rn ≤ Cn(Pn). For

the power which may be transmitted by each sensor node, we also impose a peak power

constraint Pmax due to the fact that every sensor node has limited transmission power

in practice.

5.2 Information Theory background

Recall that the entropy of a discrete random variable X1, denoted as H(X1), could

be seen as the minimum number of bits required to encode X1 without any loss of
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Figure 5.1: (a) Explicit Communication. (b) Distributed Source Coding.

information. Similarly, the joint entropy H(X1, X2) of two discrete random variables

X1 and X2 can be seen as the minimum number of bits required to encode X1 and X2

jointly. In case that X1 contains some information about X2, the following inequality

holds H(X1, X2) < H(X1) +H(X2).

First, let us consider the explicit communication scenario shown in Fig. 5.1a. A

typical joint encoding of X1 and X2 could be achieved by first encoding X2 to H(X2)

bits (its individual entropy), then communicating these bits to the X1 node, and finally

encoding X1 to H(X1|X2) bits, which is the conditional entropy of X1 if X2 is known,

and by definition, joint entropy could be achieved H(X1, X2) = H(X2) + H(X1|X2).

Obviously, exploiting correlation in an efficient way by applying such a joint encoding

scheme across the whole WSN is infeasible since it would require all nodes to partici-

pate in inter-node communication. Furthermore, the nodes would need to communicate

their individual entropies among themselves which would prohibitively increase power

consumption.

An alternative strategy, Distributed source coding (DSC), refers to separate compres-

sion and joint decompression of two or more physically separated sources. The sources

are encoded independently (hence distributed) at the encoders and decompressed jointly

at the decoder [36]. In other words, it is enough to use H(X1|X2) bits to encode X1 in-

stead of H(X1), even without communication between two nodes, given that the decoder

has full knowledge of X2 (Fig. 5.1b). This was shown for the first time by Slepian and

Wolf in 1973 [70]. They showed that two discrete sources X1 and X2 can be losslessly

decoded as long as the rates of two sources are in the so-called Slepian-Wolf region (Fig.

5.2), which is defined by the following inequalities:

R1 ≥ H(X1|X2)

R2 ≥ H(X2|X1)

R = R1 +R2 ≥ H(X1, X2).
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R1 + R2 = H(X1, X2)

R1

R2

H(X2)

H(X2|X1)

H(X1)H(X1|X2)

SW1,2

Figure 5.2: The Slepian-Wolf region SW1,2 for two sources X1 and X2, defines the
feasible rate pairs (R1, R2) for which joint lossless decoding can be performed at the

destination.

To understand the concept of DSC and how correlation may be exploited let us

consider a simple example in which the most significant bits in both sequences are the

same, while some last bits, the least significant ones, differ. In fact, in this example the

conditional entropy corresponds to these (different) least significant bits.

5.3 DSC in a network case

DSC-based optimal strategies for WSNs were proposed in [71], [72]. Despite the attempts

to design codes for multiple sources [73], this problem still remains open due to the fact

that these codes achieve suboptimal rates. Thus, in practice Slepian-Wolf (S-W) codes

only for two sources are considered. These codes can operate at any rate in the S-W

region and may adapt to any change in correlation between the sources [74].

Roumy and Gesbert [37] formulated the pairwise distributed source coding problem

in the network setting. They presented algorithms for rate and power allocation for two

scenarios while assuming the existence of the direct channels between each source node

and the terminal.

In the first scenario, by assuming noiseless channels between nodes and the sink, they

considered the problem of deciding which particular nodes should be jointly decoded at

the sink and which rates should be allocated in order the total sum rate to be minimized.

In the second scenario, they assumed orthogonal noisy channels between the nodes and

the sink and considered minimization of total power consumption.

Also, it was assumed that the sink possesses full knowledge of the individual and the

joint entropies as well as the channel capacities for each possible pair of nodes.
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Figure 5.3: A hierarchical structure.

In short, the resource allocation problem is to determine the optimal pairing combi-

nations of the nodes in the network and the corresponding rates for them such that the

sum rate or the sum power is minimized. As a result, the problem was mapped onto the

graph-theoretic problem of choosing the minimum weight matching of an appropriately

defined weighted undirected graph.

It is of interest to underline that in general the chosen optimal pairs are not the same

for both scenarios considered (i.e. sum rate or sum power minimization).

Although this approach has significantly smaller cost than the one which does not

apply DSC (all nodes send the measurements at H(Xn), regardless of their correlation),

it is still far from the theoretically optimal case (DSC for N sources), especially in cases

the correlation among the nodes is high. This is the result of considering only the

correlation of the nodes in the pairs, and not among the pairs. Motivated by this, let us

examine possible ways to exploit the correlation further.

5.4 Hierarchical and Sequential structures

Let us assume a hierarchical transmission structure (Fig. 5.3). Without loss of generality,

let us assume that only 1st level nodes observe a phenomenon and take the measure-

ments X1, X2, X3, X4, ..., XN and that these measurements are correlated. Since we

are restricted to practical codes for pairwise DSC, let us examine whether hierarchical

organization of these pairs could provide us with any benefit.

Let us assume that each pair applies pairwise DSC sending total bits equal to the joint

entropy, e.g. H(X1, X2) = H(X1) + H(X2|X1). The question is whether the received

sequences at the 2nd level nodes could be further compressed. From the information-

theoretic perspective, if H(X1, X2) + H(X3, X4) > H(X1, X2, X3, X4) holds, then it is
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Figure 5.4: A sequential structure.

possible to have further gain. However, in the general case, it is not easy to find the

correlation pattern of already coded sequences by S-W codes. Therefore, in order to

further exploit the spatial correlation of X1, X2, X3, X4..., the nodes at 2nd level would

have to decode the received sequences. In other words, the sequences (X1, X2) and

(X3, X4) should be recovered at the respective nodes at 2nd level.

Let us now consider how the correlation model affects our possible strategies. If the

correlation between the joint sequences (X1, X2) and (X3, X4) was known, then even

with pairwise DSC codes (which we are practically restricted to), it would be possi-

ble to achieve the optimum overall joint entropy for four sources, H(X1, X2, X3, X4) =

H(X1, X2)+H(X3, X4|X1, X2). However, for a hierarchical structure of N = 2i sources,

in order to achieve the optimum, the correlation between (X1, X2, ..., X2i/2) and

(X(2i/2)+1, ..., XN ) should be known for each i. This is too difficult to have in practice

and thus we restrict ourselves to the pairwise correlation model (X1|X2), (X2|X3), . . . ,

(Xk−1|Xk), where k = 2, . . . , N . In this case, for a structure given in Fig. 5.3, the best

achievable rate at 3rd level could be, for instance, H(X1|X2) + H(X2) + H(X3|X2) +

H(X4|X3). Similarly, for N sources, the best achievable rate at the sink would be

H(X1) +H(X2|X1) + . . .+H(XN |XN−1).

Alternatively, the previous rate could be obtained by applying the so-called sequential

DSC [75] which is a non-hierarchical, 1-level structure (Fig. 5.4). The main idea is to use

previously decoded data as side information for other sources. For instance, using X1

as side information, and after receiving H(X2|X1), the sink could decode X2. Next, it

could use X2 as side information for decoding X3, after receiving H(X3|X2), and so on.

Consequently, the transmission of only one node at the rate of the individual entropy

is required, while all other nodes could transmit at the rates of conditional entropies

resulting in the significant reduction of overall transmitted bits.

It should be noted that the process of decoding Xn is dependent on whether

H(Xn|Xn−1) and all previous sequences have been correctly received or not. If any

of these fails to be received, the chain is broken and Xn is not able to be decoded.
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Figure 5.5: An example of a directed spanning tree.

Apart from this reliability issue, it could be concluded that hierarchical decoding/re-

encoding scheme with both pairwise S-W codes and correlation model attain the same

rate as the 1-level sequential DSC scheme. Moreover, the upper layer nodes could only

be seen as simple relay nodes, and there is no benefit of their decoding/re-encoding

capabilities. So, it can be concluded that, once properly implemented, DSC strategy

is independent of the routing/transmission structure, which was also discussed in [35],

in a more general context. The reliability issue, or dependence on receiving previous

H(Xn|Xn−1) sequences correctly, will be tackled in the following section by allowing

some cooperation between the nodes.

Also, it should be noted that the case in which all nodes in the hierarchical structure

of Fig. 5.3 take measurements (not only at 1st level) is a special case of a 2-D sequential

case, which is actually a directed spanning tree problem (Fig. 5.5), as described in

[38]. A more general solution was proposed in [38] which outperforms the one in [37],

especially in the case of high correlation among the measurements of the nodes. More

specifically, the previously explained sequential strategy was applied so that a node may

participate in joint decoding more than once, while in [37] it was assumed that each node

participates in joint decoding strictly once. They proposed solutions for both noiseless

and noisy channel cases. The former case was solved by applying an algorithm based on

finding the minimum weight directed spanning tree of an appropriately defined directed

graph. The latter case was solved by finding the minimum weight matching forest of an

appropriately defined mixed graph.

5.5 Channel-aware cooperation-based extension of sequen-

tial decoding

To begin with, let us discuss the case that two nodes transmit their measurements to

the sink as in Fig. 5.1b. In general, the nodes have to transmit at overall rate which

equals to the joint entropy of their measurements H(X1, X2).
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For the noiseless channels, the nodes may transmit at any rates as long as their rates

are on the boundary of Slepian-Wolf region (Fig. 5.2). However, it should be noted that

there are two corner points defining the minimum rate each node may have while the

other transmits at its individual entropy (maximum) rate. For noisy AWGN channels

which are of similar quality (γ1 ≈ γ2), in order to minimize the sum of powers, the sink

should set the rates to be somewhere in the middle of the slope (R1 ≈ R2). In practice,

it may happen that there is a physical obstacle between a node and the sink causing a

very small γ in the respective link. In such a case when a node experiences a deeply

faded (bad) channel, the sink may compensate for that to a certain extent by allocating

the maximum rate to the other node (corner point). Therefore, for a given channel, the

minimum transmit power of a node is a function of its conditional entropy.

In a network setting, it is shown in [38] that the sequential scheme achieves optimal

overall sum rate under pairwise DSC and pairwise correlation model constraints. Except

for the first node, which transmits at the rate of its individual entropy, all other nodes

transmit at the conditional entropy rates (corner points). As a result, in the case that a

node has a very bad channel, the sink cannot compensate for it any further. Although

a first node and one of its first neighbors will be encoded at a rate on the slope (and

allocated power proportional to their channels quality), all other nodes will have a corner

point rate allocation and corresponding power allocation.

Moreover, in [38] it is assumed that P < Pmax. However, it should be noted it is

required that all previous sequences have been correctly received in order to decode Xn,

thus Pmax threshold should be set really high to account for any possible very bad links

in the network. This is not desirable since the sensor nodes are of limited power in

practice.

To remedy this problem, we propose a cooperation scheme where a neighboring node

could be used as a relay.

Let us first give a relation between the rate variables Rn and the respective power

variables Pn. This relation will be given in terms of some functions fn(Rn) that are

defined as the minimum powers required by the nodes of the network in order to transmit

data at a rate Rn from node n to the sink node:

fn(Rn) = Minimum Pn for rate Rn . (5.2)

In the case where the nodes of the network are only allowed to transmit to the sink node

using a direct Additive White Gaussian Noise (AWGN) channel with Signal to Noise
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Ratio (SNR) equal to γn = |hn|2/σ2
n we have that

fn(Rn) =
2Rn − 1

γn
, (5.3)

which is the inverse of the capacity function of the respective AWGN channel.

Let us assume that the sink performs all calculations regarding the rate and power

allocation to the nodes. It possesses the full knowledge of the correlation between each

possible pair of nodes, the individual entropies of the sources as well as the channel

gains for all node-sink links. In addition, in our strategy, the sink should also know the

internode channels among the nodes. Therefore, the sink may locate those nodes which

have very bad channels according to some criteria. A criterion might be a threshold

channel gain γthreshold below which a channel can be considered as a bad one. Another

possibility would be to compare the power allocated to a node to a maximum power

allowed (peak power constraint). We assume that there are several nodes with bad

channels in the network, sparsely distributed. Next, for a node which has been denoted

as a large power consumer, a test whether to cooperate with the best of its neighbors is

performed as explained below.

Firstly, the sink chooses the best cooperating node from the subset of neighboring

nodes, Sn, which includes the predecessor and all successors of the node with a bad

channel. In fact, in a sequential scheme where the rate allocation is computed by the

directed spanning tree method, each node usually has one node as predecessor and one

or more as successors. The exceptions are: i) the first node, which represents the root

of the tree and do not have any predecessor ii) last nodes, which represent the leaves of

the tree and do not have any successors. However, the method can be still applied since

they have at least one neighbor.

Finally, the sink performs a test to decide whether it is beneficial to cooperate in

terms of power consumption.

So, each node may transmit either through the direct channel to the sink, or use a

relay (cooperate), so the decision will be made between these two available protocols:

1. Direct sink access: Each node n is given the option to communicate with the sink,

via an AWGN channel with complex gain hn and noise variance σ2
n. Thus, using

γn = |hn|2/σ2
n, the capacity of this link is given by

CDirect
n (Pn) = log2(1 + γnPn) . (5.4)
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2. Cooperative decode and forward: Each node n is given the option to send all its

data to a relay node, which will then forward it to the sink, in a two time-slot

protocol. Let us assume that the channel between node n and node m, which will

act as a relay, is an AWGN channel with complex gain hnm and noise variance σ2
mn,

and define also γnm = |hnm|2/σ2
nm. Then, the capacity of this protocol, taking also

into account optimal power allocation between the nodes n and m, is given by [76]:

CDF
n (Pn) =

1

2
log2

(
1 +

γnmγm
γnm + γm

Pn

)
. (5.5)

As previously explained, the node transmission performance is tested against the

performance of the best relay chosen from the subset Sn. So, the capacity of the second

option equals to

CDF
n (Pn) =

1

2
log2(1 + bnPn) , (5.6)

where

bn = max
mεSn

{
γnmγm
γnm + γm

}
. (5.7)

Thus, according to the previous, the required functions fn(Rn) in this case are given by

fn(Rn) = min

{
2Rn − 1

γn
,
4 · 2Rn − 1

bn

}
, (5.8)

and according to the values of γn and bn we have the following two cases:

(a) When bn ≤ 4γn, we have that

fn(Rn) =
2Rn − 1

γn
(5.9)

(b) When bn > 4γn (which also implies that bn > γn), we have that

fn(Rn) =





2Rn−1
γn

, Rn ≤ log2

(
bn−γn
bn−4γn

)

4·2Rn−1
bn

, Rn > log2

(
bn−γn
bn−4γn

) (5.10)

Thus, from the above, we can see that energy savings, relative to the scheme in [38],

are possible when bn > 4γn and Rn > log2

(
bn−γn
bn−4γn

)
. Fig. 5.6 depicts a plot of fn(Rn)

for γn = 1 and bn = 5, thus, since bn > 4γn, equation (5.10) is used.
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Figure 5.6: A demonstration of the function fn(Rn) for γn = 1 and bn = 5. Function
fn(Rn) appears as a solid line, while the two constituent functions according to (5.10)

appear as dashed lines.

5.5.1 Numerical Results

In order to illustrate the gains achieved by applying a DSC approach as well as the

proposed extension, let us consider a bridge scenario in which 10 sensors are equidistantly

placed along the deck, similarly as in Fig. 1.1. The joint entropy model for any two

sources, also used in [37], is a function of the individual entropy (which equals 8 for all

nodes), of a correlation coefficient c = 0.1, and the distances dij between the sources

i.e.,

H(Xi, Xj) = H(Xi) + (1− 1/(1 + dij/c))H(Xi).

The distance between consecutive sensors is 0.1 and their distance to the sink is in the

range from 0.5 to 1.0296. The channel gains are in general assumed equal to the inverse

square distance. However, in some cases node-to-sink channels are further faded due

to e.g. obstacles. Let us take as deeply faded channels those with bn/γn=10. The

total sum powers for non-DSC approach, sequential DSC and the proposed technique

are presented in Table 5.1. Under the assumption that some nodes experience deeply

faded channels comparing to their neighbors, the proposed strategy results in a decreased

power consumption by the network as a whole. Under the same assumption, the peak

power constraint is lowered as well.
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Table 5.1: Comparison of sum powers.

Number of deeply faded channels

1 2 3

Non-DSC 2571.40 3751.60 5092.90
Sequential 175.73 245.15 324.05
Proposed 129.02 152.76 179.81

5.6 Implementation-related issues

In our system model, we made several assumptions, such as independence of the channels

and full knowledge of network topology, correlation model and the channel gains. There

are several practical ways which can assure that the above assumptions come true. Let

us outline some of the main ones:

1. Independent channels can be achieved by using multiple access techniques appro-

priate for WSNs.

2. All the involved channels may be estimated during a training period in which all

nodes take part.

3. The sink could estimate the pairwise correlation model and corresponding joint

entropies from the system model created during the design phase of a construction.

Otherwise, it could be obtained after receiving the real measurements sent by the

nodes at the rates of individual entropies (without applying DSC) during the

training period.

4. In case that some node fails, the sink would need to establish new relations among

the nodes only in the neighborhood of this node, without changing the whole

sequential scheme.

5.7 Concluding Remarks

In this chapter, we studied the sensor reachback problem in wireless sensor network,

where distributed source coding is used in order to losslessly compress the data. This

approach is efficient when there is spatial correlation between the sensor nodes, as in

structural health monitoring application. After showing that the source coding problem

can be optimally separated from the transmission problem in the considered setting, the

channel-aware extension of sequential decoding, based on cooperation between the nodes,

has been proposed. In the case where some nodes experience deeply faded channels
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toward the sink, it has been shown that the proposed scheme may achieve certain energy

savings.

Throughout this chapter, we have considered only spatial correlation. However, tem-

poral correlation can be utilized as well. Developing a strategy which exploits efficiently

both types of correlation is the subject of the following chapter where we allow for a

certain information loss that satisfies a predefined accuracy constraint.





Chapter 6

Lossy Prediction-based approach

for data gathering

This chapter deals with a lossy prediction-based approach for data gathering prob-

lem in WSN for SHM. As mentioned in Section 1.2 of the introductory chapter, there

are various strategies one may employ in order to perform lossy data compression in

WSNs, e.g., the techniques based on compressed sensing, distributed transform coding,

distributed source modeling, dictionary-based approaches, differential pulse code modu-

lation etc [39]. Related to the prediction-based approach considered in this chapter, the

works focus mostly on exploiting temporal correlation among the measurements, see [77–

79]. For instance, the authors in [79] propose an approach to perform lossy compression

on single node based on a differential pulse code modulation scheme with quantization of

the differences between consecutive samples. They exploit a multi-objective evolution-

ary algorithm to generate a set of combinations of the quantization process parameters

corresponding to different trade-offs between compression performance and information

loss. Therefore, it is of interest to examine a practical prediction-based approach which

may take advantage of both spatial and temporal correlations in WSN for SHM.

In this chapter, we develop a communication protocol which, based on a Time Di-

vision Multiple Access (TDMA) strategy and adaptive filtering techniques such as least

mean squares and recursive least squares. In general, the RLS algorithm converges faster

than its LMS counterpart for stationary processes, which has been also verified in Chap-

ter 3, for the incremental-based network setting for parameter estimation. However, it

does not inevitably hold that the tracking performance of RLS is similarly superior to

that of LMS. A general conclusion about the relationship between their tracking behav-

iors is hard to make [61],[52]. Therefore, it is of interest to examine the performance of

the proposed technique for both adaptive algorithms.

105



106 6.1. Problem statement

In either case, the proposed technique aims at overcoming the difficulties associated

with the sensor reachback problem for SHM, previously described in Section 1.2. To do

so, the protocol allows the sink node to keep an exact replica of the adaptive filters that,

at each node, exploit the spatial and temporal correlations among sensor measurements

to predict the current measurement from its own past measurements as well as past

measurements obtained by its neighbors. Specifically, in the designed protocol each node

is assigned a time slot that is divided into two sub-slots. During the first sub-slot, each

sensor acquires a new measurement and computes the prediction error of its associated

adaptive filter. If the prediction error is small enough (i.e. below a predefined threshold),

then during the first sub-slot the considered sensor node sends the output of its filter to its

neighbors, so that they can use this value as input for the prediction filters they operate.

In the opposite case, i.e., when the prediction error is not small, the node updates its

filter (i.e. using an LMS or RLS update step) and sends its actual measurement to its

neighbors. Afterwards, if the prediction is not accurate, since a Multiple Input Single

Output (MISO) channel is known to result in energy savings as compared to the Single

Input Single Output (SISO) case [80], all the nodes which collaborated during the first

sub-slot will form a MISO channel to simultaneously transmit the current measurement

to the sink node. This way, with the aim of having an exact replica of all the filters

implemented by the cooperating sensor nodes, the sink node is able to incorporate the

transmitted measurement to the input of the aforementioned filters and update the filter

associated with the considered sensor node. After deriving the communication protocol,

both LMS-type and RLS-type implementations of the new technique have been tested

extensively via real acceleration measurements from the Canton Tower in China.

6.1 Problem statement

Let us consider a dense wireless sensor network consisting of N nodes, deployed in a

civil structure that we wish to monitor. Consider also that node n (n = 1, 2 . . . , N)

has Nn neighbors, in the sense that they are close enough to node n so that wireless

communication with low power can be accomplished. We will denote the neighbors of

node n as kn,1, kn,2, . . . , kn,Nn . With a slight abuse of notation, throughout this chapter

we will use normal letters (both capital and small ones) to denote scalar quantities, while

boldface capital letters refer to matrices and boldface small letters stand for vectors.

Next, each sensor node n, at discrete time t, acquires the measurement yn,t which is

related to an event that takes place in the area where the wireless sensor network has

been deployed. Define also the vectors of m past measurements of each sensor node n
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as

yn,t =
[
yn,t−1 yn,t−2 · · · yn,t−m

]T
,

n = 1, 2, . . . , N .

(6.1)

Also, let us define the stacked vectors

un,t =
[

yTn,t yTkn,1,t
yTkn,2,t

· · · yTkn,Nn ,t

]T
,

n = 1, 2, . . . , N ,

(6.2)

that represent the past m measurements of all sensor nodes in the neighborhood of node

n. Consider now the correlation matrices defined as

Rn = E[un,tu
T
n,t] , n = 1, 2, . . . , N . (6.3)

Clearly, if the matrices Rn are diagonal, the sensor measurements within all neighbor-

hoods are uncorrelated. In contrast, if the matrices Rn are only block-diagonal with

block size m, the measurements are correlated in time but spatially uncorrelated. In

this work, we will focus on the general case where Rn are of a general form, implying

that the sensor measurements are correlated both in time and in space.

Thus, we are interested in deriving a network protocol able to transmit the sensor

measurements to the data-collecting node in an energy-efficient way. Such a protocol

should take advantage of the aforementioned correlations, in order to reduce the number

of transmissions toward the sink. Furthermore, the protocol should provide accuracy

guarantees for the received data.

6.2 A TDMA based cooperative protocol

6.2.1 Predictors and correlation of measurements

As mentioned in the previous section, we are interested in deriving an energy-efficient

protocol for the transmission of the measurements to the data-collecting node. To this

end, if we were able to reduce the number of information bits that need to be transmitted,

this would have a considerable effect on the energy spent by the data-gathering process.

Such a reduction in the number of information bits that need to be transmitted can

be accomplished if we take advantage of the correlations among the measurements. In

particular, if we are able to identify and send only the ”new” information that lies in
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the measurements, then significant energy savings would emerge. A way for identifying

such ”new information” employs the notion of signal predictors.

Due to the nature of the observed phenomenon the measurements’ process yn,t is

commonly a predictable one, at least to some extent. In particular, if the data-collecting

node had knowledge of previous measurements acquired by sensor n (and possibly pre-

vious measurements of other nodes in the vicinity of node n), then it could compute an

estimate of yn,t. This estimate, of course, corresponds to information already known to

the data-collecting node. In principle, we can distinguish between two different types of

prediction functions, namely, (a) one that does not change with time, which implies that

the correlation mechanism is constant or stationary, and (b) a time-varying prediction

function, implying that the statistics of the signals measured by the nodes of the net-

work have a dynamic behavior. Assuming the process to be stationary, the prediction

function can be realized as a linear filter with coefficients obtained by minimizing the

mean-squared error between the measurements yn,t and their predicted values.

However, in most real world applications the observation processes are non-stationary

since their statistical characteristics are changing in time. As a result, the optimal coef-

ficients of the predictor are changing in time as well. In order to track these changes, a

practical approach is to iteratively calculate them by updating previous filter coefficients

as it is done in adaptive filters [52]. Such an approach offers the additional benefit that

the data-collecting node does not need to know the statistics of the underlying process.

Rather these statistics are in effect estimated by the adaptive filter.

6.2.2 Simple cooperative TDMA protocol

As already mentioned in the introduction, another approach for reducing the energy

required to transmit data relies on the concept of cooperative communications. In

particular, in cooperative communications, a number of accurately synchronized nodes

transmit data concurrently so that the system resembles a transmitter with multiple

antennas. During the previous phase, the nodes have agreed upon the data that will be

sent. In effect, benefits similar to Multiple Input Multiple Output (MIMO) systems can

be achieved [80], hence the terms virtual MIMO or distributed MIMO are often used

alternatively to denote cooperative communication systems.

For illustration purposes, let us consider now a straightforward cooperative commu-

nication protocol for the problem at hand, in which correlation among the measurements

acquired by the nodes of the WSN is not taken into account. According to this protocol,

each sensor node is assigned its own time-slot in order to transmit information, in a

Time Division Multiple Access (TDMA) fashion. Cooperative communication can be
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Figure 6.1: Each of the sensors is assigned its own time-slot to transmit, in a TDMA
fashion. Furthermore, each time-slot is divided into two sub-slots. During the first sub-
slot of duration TA, each sensor n transmits to its kn neighbors. During the second sub-
slot of duration TB , node n and its neighbors transmit to the sink node in a cooperative

fashion.

incorporated into this protocol, by dividing each time-slot into two sub-slots as depicted

in Figure 6.1. During the first sub-slot of duration TA, each sensor n transmits its esti-

mated (or observed) value to its kn neighbors. During the second sub-slot of duration

TB, node n and its neighbors transmit to the sink node in a cooperative fashion. In

such a scenario, both the Amplify and Forward (AF) as well as the Decode and Forward

(DF) methods [76] can be adopted.

6.2.3 Cooperative TDMA exploiting correlation

Consider now an extension of the aforementioned protocol, where the correlation of the

measurements is taken into account. Since the measurements are correlated in time

and in space, the idea of using past measurements acquired by node n as well as past

measurements from nearby sensor nodes, in order to predict new measurements, seems

well justified. This fact can be used to save some of the transmissions to the sink node,

in the case where the sink node can itself predict the required measurements within

some predefined accuracy. Thus, let each sensor node n keep a time varying prediction

filter fn,t as well as a data vector

ũn,t =
[

ỹTn,t ỹTkn,1,t
ỹTkn,2,t

· · · ỹTkn,Nn ,t

]T
, (6.4)

so that the output of the filter, defined as

ŷn,t = fTn,t · ũn,t (6.5)

is an approximation of the actual measurement yn,t obtained by sensor n at time t. In

particular, ŷn,t is a prediction of the actual measurement yn,t. In the above expressions,

we have used the vectors

ỹn,t =
[
ỹn,t−1 ỹn,t−2 · · · ỹn,t−m

]T
,

n = 1, 2, . . . , N .

(6.6)
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to represent approximate versions of the past m measurements obtained by sensor n.

Thus, vectors ũn,t and fn,t have dimensions m · kn × 1. Let us now define a binary

variable bn,t according to the prediction error, as

bn,t =





0 if |ŷn,t − yn,t| ≤ e

1 if |ŷn,t − yn,t| > e

, (6.7)

where e denotes a small positive constant. The approximate measurements ỹn,t are

defined as,

ỹn,t =





ŷn,t if bn,t = 0

yn,t if bn,t = 1

. (6.8)

Based on the above definitions, the protocol of each sensor node n can be seen in

Table 6.1. At a time instant t, each sensor acquires its new measurement yn,t and starts

a synchronized loop to track the N time-slots that will follow. As seen from Table 6.1,

node n is active in two cases: (a) when the current slot s is equal to its index n, and

(b) when the current slot s is equal to the index of any of its neighbors. In case (a),

the node computes the output of its prediction filter and compares it to the actual

measurement yn,t. Thus, it computes the binary variable bn,t that determines whether

the prediction was accurate or not. In the case where the prediction was not accurate,

the prediction filter is updated using an adaptive algorithm. Table 6.1 summarizes the

steps followed in order to perform the update of the filter, for the cases of the LMS and

the RLS update algorithms. As a general rule, the LMS algorithm should be used when

reduced computational complexity is required, due to the fact that the RLS algorithm is

an order of magnitude costlier than the LMS algorithm. On the other hand, in general,

the RLS algorithm converges faster than its LMS counterpart and is less sensitive to

eigenvalues disparities in the autocorrelation matrix of the data for stationary processes.

However, it does not inevitably hold that the tracking performance of RLS is similarly

superior to that of LMS. A general conclusion about the relationship between their

tracking behaviors is hard to make [61],[52]. Therefore, it is of interest to study the

performance of the derived protocol for both adaptive algorithms. As it will be shown

in the experiments’ section, RLS performs better when adaptation stalls and restarts

very often during operations, as it is the case with the suggested technique. Regardless

of the algorithm used for the update, yn,t is used as a desired response signal. Then, the

sensor node n computes ỹn,t, which is either the output of the prediction filter (accurate

prediction) or the actual measurement (inaccurate prediction). Thus, sensor n updates

its input vector ũn,t+1 and sends ỹn,t and bn,t to its neighbors. Finally, ỹn,t is sent to

the sink node only if the prediction was inaccurate, otherwise the sink node is able to
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Table 6.1: The protocol executed by the sensor node n.

Initialize fn,0, ũn,0 and e
Initialize µ (if LMS is used)
Initialize λ , Pn,−1 = δ−1I (if RLS is used)

For t = 0 to +∞
Acquire the measurement yn,t
For s = 1 to N

If s = n then

ŷn,t = fTn,tũn,t

bn,t =





0 if |ŷn,t − yn,t| ≤ e

1 if |ŷn,t − yn,t| > e

ỹn,t =





ŷn,t if bn,t = 0

yn,t if bn,t = 1

If bn,t = 1

fn,t+1 = fn,t + µ(yn,t − ŷn,t)ũn,t (LMS update)

OR

kn,t =
λ−1Pn,t−1ũn,t

1+λ−1ũT
n,tPn,t−1ũn,t

ξn,t = yn,t − ŷn,t (RLS update)

fn,t+1 = fn,t + kn,tξn,t
Pn,t = λ−1Pn,t−1 − λ−1kn,tũ

T
n,tPn,t−1

End
Update ũn,t+1 using ỹn,t
Send ỹn,t and bn,t to the neighbors (TA sub-slot)
If bn,t = 1

Send ỹn,t to the sink (TB sub-slot)
End

Elseif s ∈ {kn,1, kn,2, . . . , kn,Nn}
Listen for ỹs,t and bs,t (TA sub-slot)
Update ũn,t+1 using ỹs,t
If bs,t = 1

Send ỹs,t to the sink (TB sub-slot)
End

Else
Sleep(TA + TB seconds)

End
End

End

compute ỹn,t using a prediction filter. In case (b), i.e., when a neighbor of n is active,

node n listens for the transmitted values ỹs,t and bs,t. It then updates its input vector
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ũn,t+1 with the received value ỹs,t and, in the sequel, helps its neighbor transmit to the

sink by relaying ỹs,t if bs,t was 1.

The protocol followed by the sink node is depicted in Table 6.2. At each time instant,

the sink node also executes a loop so as to track the N time-slots, in a synchronized

fashion. For the first TA seconds of each slot, the sink node is inactive because sensor-to-

sensor communication takes place. At the following TB seconds however, the sink node

is receiving the measurement ỹs,t of the node assigned to the current slot. Of course,

in the case where the prediction at node s was accurate, such a message will not be

transmitted. Thus, the sink node must implement a procedure to detect such “empty”

messages. The result of the detection process is a binary variable b̂s,t which will be

equal to bs,t in the case where the detection is correct. In the sequel, the sink node is

able to compute ỹ
(S)
s,t , (that is, a copy of ỹs,t at the sink) either as the output of a local

prediction filter, i.e.,

ỹ
(S)
s,t = f

(S)T

s,t · ũ(S)
s,t , (6.9)

in the case where b̂s,t = 0 (accurate prediction) or by setting it equal to the received

measurement ỹs,t (inaccurate prediction). In the case of inaccurate prediction, the sink

node must use the same adaptive algorithm as the sensor s to update its local prediction

filter for sensor s, so that the two filters are equal (of course, if all channels are error

free). Finally, the sink node must update the input vectors of all the prediction filters

affected by ỹs,t, that is the prediction filter for node s and the local prediction filters of

all its neighbors.

It can be verified from the description of the proposed data collection protocol, that

in the case where all channels are error-free, the reconstructed sequences ỹ
(S)
n,t at the sink

node satisfy the distortion criterion

max
n,t
|ỹ(S)
n,t − yn,t| ≤ e . (6.10)

In fact, the maximum allowed distortion parameter e offers a trade-off between ac-

curate reconstruction of the measurements by the sink node, and the number of trans-

missions required. Also, some other factors, such as the degree to which the measured

signals can be predicted and the specific characteristics of the adaptive algorithm used

to update the coefficients of the prediction filters, may influence the performance of the

proposed protocol.
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Table 6.2: The protocol executed by the sink node.

Initialize f
(S)
s,0 , ũ

(S)
s,0 (s = 1, 2, . . . , N)

Initialize µ (if LMS is used)
Initialize λ , Ps,−1 = δ−1I (s = 1, 2, . . . , N) (if RLS is used)

For t = 0 to +∞
For s = 1 to N

Sleep(TA seconds)
Listen for ỹs,t (TB sub-slot)

b̂s,t =





0 if ỹs,t was not detected

1 if ỹs,t was detected

If b̂s,t = 0

ỹ
(S)
s,t = f

(S)T

s,t ũ
(S)
s,t

Else

ỹ
(S)
s,t = ỹs,t

f
(S)
s,t+1 = f

(S)
s,t + µ (ys,t − f

(S)T

s,t ũ
(S)
s,t )ũ

(S)
s,t (LMS update)

OR

ks,t =
λ−1Ps,t−1ũ

(S)
s,t

1+λ−1ũ
(S)T

s,t Ps,t−1ũ
(S)
s,t

ξs,t = ỹ
(S)
s,t − f

(S)T

s,t ũ
(S)
s,t (RLS update)

f
(S)
s,t+1 = f

(S)
s,t + ks,tξs,t

Ps,t = λ−1Ps,t−1 − λ−1ks,tũ
(S)T

s,t Ps,t−1

End

Update ũ
(S)
s,t+1 using ỹ

(S)
s,t

For i=1 to Ns

Update ũks,i,t+1 using ỹ
(S)
s,t

End
End

End

6.2.4 Cooperative neighborhood selection

Firstly, let us analyze the merits and drawbacks of having cooperation among the sensor

nodes. For a given node n, cooperation with Nn neighbors actually requires Nn addi-

tional transmissions to these neighbors at each time instant. Although the energy cost

of the additional inter-node transmissions can be low due to their proximity, one should

also take into account the channel quality between the cooperating nodes which may

introduce additional distortion to the data being sent.

On the other hand, the gains can overcome the cooperation costs in case that the
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number of transmissions toward the sink is reduced due to the exploitation of high spatial

correlation among the measurements in the cooperating neighborhood. Certainly, the

cooperation gains are not the same for all the nodes. In fact, the relation between the

values of temporal correlation among the measurements of node n on one side, and the

values of their spatial correlation with the measurements of the cooperating nodes should

determine how beneficial the cooperation may be. Furthermore, an additional benefit

can be obtained once the transmissions toward the sink are required. As previously

explained, the cooperating nodes may simultaneously transmit to the sink node; thus

forming MISO channel and improving energy-efficiency.

Not surprisingly, in the simulation section it turns out that choosing the suitable

cooperating neighborhood, in terms of its size and the actual nodes involved, plays a

significant role in enhancing the performance of the protocol. Therefore, the optimization

of the cooperating neighborhood requires (a) the knowledge of all channels among the

nodes (including the sink) and (b) the knowledge of the auto- and cross- correlation

functions of all nodes. Regarding the former issue, in a practical system, all the involved

channels may be estimated during a training period in which all nodes participate.

Initially, all the nodes would send the training sequence to the sink and all other nodes.

Afterwards, the nodes would also transmit to the sink the sequences that are received

from all other nodes. Consequently, the sink could estimate all the involved channels in a

centralized manner. However, here we focus on the criterion (b). Hence, in Section 6.3.2,

we show a simple neighborhood selection procedure based on the correlation functions

of all the nodes.

6.2.5 Possible extensions

In the previous sub-sections the basic version of the new method was presented. The

method can be extended to several directions with relative pros and cons. Below we

provide some brief discussion of possible extensions.

1) In the proposed protocol, in case that the predicted value is not accurate enough,

the node transmits the real measurement to the sink. However, since the sink has an

exact replica of the filter that run on each sensor node, it may calculate the inaccurate

predicted value by itself, as previously explained in Section 6.2.3. Some power can

be saved by sending only this difference (the prediction error) instead of the whole

measurement.

The actual measurement and its predicted value are highly correlated, so their dif-

ference has small variations and, therefore, in order to achieve a given distortion fewer

bits are required.
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It is well-known by basic Rate-Distortion Theory [81] that for a zero-mean Gaussian

source with variance σ2 and with squared-error distortion measure D, the rate-distortion

function is given by

R(D) =





1
2 log(σ

2

D ) 0 ≤ D ≤ σ2

0 otherwise

. (6.11)

Assuming that the prediction error and the measurement signal are zero-mean Gaus-

sian sources, for a given distortion D ≤ σe, it can be easily shown that

Re = Ry −
1

2
log(

σ2
y

σ2
e

) , (6.12)

where Re, Ry represent required bits to send the prediction error and the measurement

signal, respectively, while σ2
e , σ

2
y are their variances.

This means that this modified protocol can achieve performance levels compared to

the original at lower bit rates when the prediction errors are relatively small. The gain is

expressed as the second term in (Eq. 6.12). However, providing the exact relation of this

gain to the distortion criterium is not straightforward due to the following. Firstly, the

distortion value influences the process of adaptive filtering and thus influences the pre-

diction error and its variance. Secondly, only the prediction errors greater than specific

distortion value are being transmitted which results in variance change of transmitted

sequence comparing to the variance of the sequence of all prediction errors.

Let us provide an example of a possible gain using the measurements described

in Section 6.3.2. In case that sensor 10 cooperates with sensors 9 and 4, and for the

distortion value corresponding to sending the measurement with 8 bits (Ry =8 bits), the

gain defined in Equation 6.12 equals to 4.1285 bits. Accordingly, 50% of power could be

saved by sending only the prediction error (Re =4 bits) instead of the measurement in

this case.

2) Another approach to improving the protocol described in Section 6.2.3 could

be to use only appropriately chosen delayed samples of a cooperating neighbor and

not all samples in between. For instance, the highest cross-correlation between the

measurements of nodes 2 and 4 arises for delay = 45. Therefore, it can be concluded

that the adaptive predictor could have significantly less coefficients and still to be able to

exploit the spatial correlation of a great delay. In order to optimize the performance of

this protocol, some training period should be performed during forced vibration testing.
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3) Finally, the protocol can be improved by allowing each sensor to update its own

filter with the real measurement regardless of distortion criteria, but still to send the

measurements to the sink and to also periodically send the filter coefficients to the sink

only if the prediction was inaccurate (i.e., large change in input signal). In this scenario,

the filter at the sink node has slightly worse prediction abilities. Hence, it is necessary

to periodically receive the filter coefficients changes from the sensor node in order to

adjust its own filter and satisfy the distortion criterion.

6.3 Numerical results

In order to demonstrate the effectiveness of the proposed algorithms, we have performed

extensive experiments with real data. Although the dataset has not been designed for

our protocol, the experiments show certain performance benefits of cooperation among

the nodes. In particular, the acceleration measurements from the Canton Tower obtained

during an earthquake have been used in order to present these cooperation gains. Toward

this aim, we examine the number of transmissions toward the sink as a function of the

maximum allowed absolute distortion, i.e., the value of the parameter e.

6.3.1 The Canton Tower

The Canton Tower (the Guangzhou TV and Sightseeing Tower) was constructed in 2010

in Guangzhou, China. It has already attracted the interest of several researchers [82]. It

is a super-tall structure with a height of 610m. On the top level of the tower at height

of 454m an antennary mast is mounted with 164m height (Fig. 6.2).

The tower is a tube-in-tube structure; the outer tube is made of steel and the inner

one is a reinforced concrete tube. The two tubes are linked together by 36 floors and

4 levels of connection girders. The underground part of the tower is 10m height and

consists of 2 floors with plan dimensions of 167m by 176m. The outer tube is shaped

by concrete-filled-tube (CFT) columns, spaced in an oval shape, inclined vertically, and

connected by hollow steel rings and braces. The oval shape dimensions varies from 60m

by 80m at the underground level (altitude of -10m) to their minimum values of 20.65m

by 27.5m at the altitude of 280m, and then they increase again to 40.5m by 54m at

the top level of the tube (altitude of 450m). The oval shape of the top level is rotated

45 degrees horizontally relative to that of the bottom level. The top level plan is also

inclined 15.5 degrees to the horizontal plane. The inner tube shape is an oval with

constant dimensions along its height (14 m by 17 m), and its centroid is not that of the
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Figure 6.2: The distribution of accelerometers along the tower height.

outer tube. The thickness of the tube varies from 1m at the bottom to 0.4m at the top

[83].

An SHM system consisting of over 600 sensors has been designed and implemented by

the Hong Kong Polytechnic University for both in-construction and in-service real-time

monitoring of the tower [84]. The distribution of accelerometers along the tower height is

demonstrated in Figure 6.2. The dynamical response of the tower to an earthquake was

recorded by 17 sensors. The measured acceleration data sequences obtained from several

sensors are illustrated in Figure 6.3 for six minutes of response during an earthquake.

The sampling frequency of the signal was 50 Hz.

6.3.2 Results for LMS- and RLS-based protocols

In this subsection, we analyze the gains that may be achieved by applying the two

schemes described in Section 6.2.3, for different cooperation scenarios. It has been

concluded that for a given distortion, the number of required transmissions from a certain

node toward the sink varies with reference to (a) the number of the filter coefficients
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Figure 6.3: The measured acceleration data sequences.

of a sensor node, (b) the size of cooperating neighborhood and (c) which node(s) are

selected for cooperation.

Let us first consider the performance of the proposed algorithms for different values

of total filter coefficients. In particular, Figures 6.4-6.5 present the performance of the

LMS-based and RLS-based algorithms employed for sensor node 9 having different filter

lengths. It can be realized that the number of required transmissions varies for different

filter size scenarios and that the performance does not necessarily improve as the filter

length grows. Therefore, to perform a fair comparison among different cooperation

scenarios, hereafter we assume the same filter lengths. For instance, for the filter length

of 18, a non-cooperative node exploits its 18 past measurements. On the contrary, by

cooperating with one neighbor, a node exploits 9 of its own past measurements and 9 of

the neighbor’s.

Next, Figure 6.6(a) compares the LMS-based and RLS-based schemes for sensor

node 10, which is located in the middle of the tower, for a filter length equal to 6.

In both schemes, we analyze a cooperative scenario, i.e., cooperation with sensor 9

(on the same floor as node 10), and non-cooperative, where node 10 relies only on

its own measurements. It can be seen that for both protocols there is a benefit due to

cooperation. Not surprisingly, for correlated input signals, the RLS-type implementation

generally performs better due to the faster convergence speed and better ability to adapt
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Figure 6.4: Performance of the LMS-based scheme for non-cooperative sensor 9 with
different filter lengths.
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Figure 6.5: Performance of the RLS-based scheme for non-cooperative sensor 9 with
different filter lengths.
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Figure 6.6: Performance comparison between the LMS-based and RLS-based schemes
for sensor 10.

in a fast time-varying environment. Also, RLS performs better when adaptation stalls

and restarts very often during operations. Of course, such performance gains come at an

increased computational complexity over the LMS-type implementation. In Fig. 6.6(b),

for the same simulation setting we use a greater filter length, and the cooperation gain

seems to be smaller (yet still existing).

In the following, we focus on the RLS-based scheme. Let us analyze how the per-

formance changes as the cooperating neighborhood size grows, for greater filter lengths.

The results for sensor 10 demonstrate that, in general, the performance can be improved

by increasing the number of cooperating nodes. However, in order to maximize the gains,

one should carefully select suitable cooperating neighbors; see Fig. 6.8(a).

A simple, yet effective, way to determine a suitable cooperating neighborhood is to

analyze the correlation coefficients for each node at the zero-th lag. Note that in this

setting, we do not take into account the criterion of channel quality among the nodes.

Thus, after ordering the absolute values of correlation coefficients, for a neighborhood

size of 6, one should just select the best 5 nodes ordered by this criterion. In Table 6.3,

we order 10 nodes according to their relevance to node 10. For the signals considered

in these experiments, this simple approach provides good results due to the fact that

the crosscorrelation functions are wide enough, so the zero-th lag correlation coefficients

gives enough information even for longer filter lengths. The autocorrelation function of

node 10 and its crosscorrelation with several sensors are plotted in Fig. 6.7. Note that

the cooperation gain for each sensor is dependent on the relation between the values of

its auto- and cross- correlations at the different lags. In case that its autocorrelation at

the limit lags, defined by the filter length, is greater than the crosscorrelation close to the
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Table 6.3: The crosscorrelation coefficients between the data of sensor 10 and other
sensors.

Correlation coefficient Sensor number

0.9796 9
0.8756 12
0.8559 6
0.7688 20
0.7387 19
0.6286 4
0.4347 11
0.4199 2
0.3869 16
0.1520 17
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Figure 6.7: The autocorrelation function of node 10 (upper left) and its crosscorrela-
tion with several sensor nodes.

zero-th lag, then for this node the cooperation will not be useful. On the other hand,

when the crosscorrelation have greater values, then the neighbors add new information,

so the predictor learns better the process. Furthermore, observe that the performance

of the protocol may deteriorate by randomly adding nodes into the previously selected

neighborhood. In Fig. 6.8(b), we illustrate this by plotting the curve obtained for a

neighborhood consisting of 12 nodes (including node 10 itself). In fact, in addition to
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Figure 6.8: Performance of the RLS-based scheme for different cooperating neighbor-
hoods for sensor 10.

the group of 6 nodes performing well (solid line), we added 6 other nodes which seemed

to be less relevant to sensor 10. Actually, five of these less relevant nodes measure a

different axis than node 10 (see Fig. 6.2). Due to the adaptive nature of the protocol,

they actually reduced the cooperation gains with respect to the scenario with properly

selected cooperation neighborhood.

Finally, in Fig. 6.9 we plot the averaged performance of 6 sensors where in the co-

operative case all of them cooperate with their best 5 neighbors. Although not all of

them experience cooperation benefits to the same extent, there is an average perfor-

mance improvement as compared to the non-cooperative case. To conclude, the power

consumption of a sensor node may be reduced by leveraging spatio-temporal correlations

among sensor nodes. To this end, a crucial issue to be considered is the selection of an

optimal cooperating neighborhood in terms of both its size and the nodes involved.

6.4 Concluding Remarks

A TDMA based protocol for sensor reachback in an SHM system has been described.

The proposed protocol, takes into account the fact that sensor measurements are cor-

related in space and time in order to reduce the amount of information bits needed to

transmit the measurements acquired by the sensor nodes back to a sink node, within

some prescribed distortion e. Also, the protocol does not need to know the statistics

of the event being monitored by the wireless sensor network, rather, these statistics are

learned via the use of adaptive algorithms. Furthermore, the protocol uses the idea

of cooperative communication in order to reduce the required transmission power. The
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new technique, based on both the RLS-type and the LMS-type implementation, has been

tested extensively via real experimental data and it turns out that it may offer consider-

able saving in transmitted energy. It has been shown that the RLS-type implementation

performs better when adaptation stalls and restarts very often during operations, as

it is the case with the proposed technique. Furthermore, the appropriate selection of

cooperating sensor nodes is of great importance.





Chapter 7

Conclusion and Open Issues

This final chapter firstly presents an overall conclusion of this dissertation. In addition,

the current research lines that have been undertaken as well as recommendations for

future research are provided.

This dissertation has studied the distributed processing techniques for parameter

estimation and efficient data-gathering in wireless communication and sensor networks.

Regarding the parameter estimation problem, we have formulated a new node-specific

paradigm where the nodes are interested in estimating parameters of local, common

and/or global interest. This stands in sharp contrast with the literature in which most

works are actually restricted to the cases where all the nodes have the same vectors of

parameters to estimate. In the proposed node-specific parameter estimation formula-

tion, the different nodes’ interests are partially overlapping, while the non-overlapping

parts can be arbitrarily different. To solve the formulated NSPE problems, several

distributed adaptive strategies have been developed, i.e., Incremental NSPE LMS, In-

cremental NSPE RLS and Diffusion NSPE LMS. The RLS-based algorithm has been

derived to solve NSPE problem where each node is interested in a set of parameters

of local interest and a set of global parameters, while the LMS-based implementations

have considered a more general case, where there also might be parameters common to

a subsets of nodes. For the latter algorithms, the theoretical analyses related to the

mean and the mean-square performance have been carried out. Simulation results have

verified the theoretical findings and both algorithms have been applied to the problem

of cooperative spectrum sensing in cognitive radio networks.

Concerning the data-gathering in wireless sensor networks applied for structural

monitoring, the main challenges have been identified to be the huge amount of data and
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possibly unreliable channels toward the sink. To mitigate these difficulties, two compres-

sion approaches, a lossless and a lossy one, have been analyzed. In the lossless approach,

the potential of the distributed source coding have been studied from an information-

theoretic point of view. By exploiting the optimal separation between the source coding

problem and the transmission problem in the considered setting, we propose a channel-

aware protocol for sequential decoding based on cooperation between the nodes. It has

been shown that the proposed protocol achieves less total power consumption as well

as reduced maximum power per sensor node required for a feasible power allocation

to exist. In the lossy approach, the focus has been put on adaptive spatio-temporal

prediction. The derived cooperative communication protocol relies on adaptive filtering

techniques such as LMS and RLS. Experiments with real acceleration measurements,

obtained from the Canton Tower in China during an earthquake, have demonstrated the

effectiveness of the derived method for both adaptive filtering implementations.

Current work and open issues are described below:

• A coalitional game theoretical approach to the NSPE problem: Regarding the NSPE

problem presented in Chapters 2-4, it is of interest to study it in the case where

nodes or groups of nodes are allowed to be selfish using concepts from game theory.

In general, game theory can be defined as the study of mathematical models of

conflict and cooperation between intelligent rational decision-makers. It has been

applied to various disciplines such as economics, political sciences, philosophy and

more recently, to engineering [85]. Unlike non-cooperative game theory where the

modeling unit is a single player, coalitional game theory seeks for optimal coali-

tion structure of players in order to optimize the worth of each coalition. Accord-

ing to [86], coalitional games can be classified into the following three categories,

i.e., canonical coalitional games, coalition formation games and coalitional graph

games.

The literature dealing with the analyses of the adaptive networks from the game

theoretic perspective has been rather limited [87–90]. Most studies focus mainly,

although not exclusively, on the game-theoretical approaches based on non-coope-

rative game theory. In all these studies, the aim of the nodes was to estimate a

set of global parameters that were identical to all nodes.

In our current work, we analyze a distributed adaptive parameter estimation prob-

lem in the framework of coalitional game theory. We consider the coalitional game

to be the Non-Transferable Utility (NTU) game for which the choice of coalitional

actions defines each player’s payoff. The focus has been put on the following two

directions: 1) to study the parameter estimation problem via diffusion strategy as

a canonical game and to extend the analysis to NSPE setting, and 2) to propose
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coalition formation game for NSPE setting when the coalition formation cost is

considered.

• DSC from a coalitional game theoretical perspective: Distributed source coding has

been analyzed in Chapter 5 as a lossless approach to data gathering in wireless

sensor networks. As described in the previous bullet, it is of interest to examine

scenarios where sources or group of sources are permitted to be selfish using the

analytical tools from coalitional game theory. In some relevant works [91],[92],

interpretation of rate regions in terms of users that are thought as players in a

cooperative game has been done for the case where there is only one sink. There-

fore, it is of interest to study scenarios with several sinks interested in different,

but possibly overlapped groups of sources.

• Algorithmic extensions: The NSPE model and the algorithms derived in Chap-

ters 2-4 provide a set of tools which one may readily employ in order to derive

algorithms of the different types. Furthermore, a further study may encompass

different extensions of the existing algorithms. For instance, the algorithms may

be extended to incorporate adaptive topologies, dynamic nodes’ interests, node rel-

evance with respect to how many interests it has, different types of asynchronous

behavior etc.

• Applications: As previously emphasized in Section 1.3 of the introductory chapter,

a big part of the motivation for formulating the NSPE problem in this dissertation

has been the fact that the scenario where there are only global parameters to be

estimated, equal for all nodes, has a rather limited range of practical applications.

In real world, it may rarely occur that there is only one phenomenon influencing

the whole network or that different events can be modeled only with wo since

they have their influences over exactly the same geographical areas. Therefore,

by removing this restriction, it is reasonable to expect that the range of possible

applications becomes notably wider. For instance, in Chapters 2 and 4, an illustra-

tive application has been provided, i.e., cooperative spectrum sensing in cognitive

radio networks where we also account for possible local and common interferers.

Next, the proposed NSPE setting seems also to fit well in scenarios related to

cooperative adaptive processing among the devices that are affected by nuisance

sources in a different way, e.g., cooperative active noise cancellation. Furthermore,

we strongly believe that the world of multimedia represents an inexhaustible source

of applications matching well with the proposed NSPE setting.

Therefore, future work should include examining all points raised above as well as

other new applications that conform to the NSPE model introduced in this dissertation.
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