
Voice biometric system security:

Design and analysis of countermeasures

for replay attacks

Bhusan Chettri

PhD thesis

School of Electronic Engineering and Computer Science

Queen Mary University of London

2020

Author’s declaration

I, Bhusan Chettri, confirm that the research included within this thesis is my

own work or that where it has been carried out in collaboration with, or sup-

ported by others, that this is duly acknowledged below and my contribution

indicated. Previously published material are also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge break any UK law, infringe any third

party’s copyright or other Intellectual Property Rights, or contain any confiden-

tial material.

I accept that the university has the right to use plagiarism detection software

to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a

degree by this or any other university.

The copyright of this thesis rests with the author.

Signature: Bhusan Chettri

Date: 19/05/2020

Details of collaboration and publications: see Section 1.5.

1

Abstract

Voice biometric systems use automatic speaker verification (ASV) technology for

user authentication. Even if it is among the most convenient means of biometric

authentication, the robustness and security of ASV in the face of spoofing attacks

(or presentation attacks) is of growing concern and is now well acknowledged

by the research community. A spoofing attack involves illegitimate access to

personal data of a targeted user. Replay is among the simplest attacks to

mount — yet difficult to detect reliably and is the focus of this thesis.

This research focuses on the analysis and design of existing and novel coun-

termeasures for replay attack detection in ASV, organised in two major parts.

The first part of the thesis investigates existing methods for spoofing detection

from several perspectives. I first study the generalisability of hand-crafted fea-

tures for replay detection that show promising results on synthetic speech detec-

tion. I find, however, that it is difficult to achieve similar levels of performance

due to the acoustically different problem under investigation. In addition, I show

how class-dependent cues in a benchmark dataset (ASVspoof 2017) can lead to

the manipulation of class predictions. I then analyse the performance of several

countermeasure models under varied replay attack conditions. I find that it is

difficult to account for the effects of various factors in a replay attack: acous-

tic environment, playback device and recording device, and their interactions.

Subsequently, I developed and studied a convolutional neural network (CNN)

model that demonstrates comparable performance to the one that ranked first

in the ASVspoof 2017 challenge. Here, the experiment analyses what the CNN

has learned for replay detection using a method from interpretable machine

learning. The findings suggest that the model highly attends at the first few

milliseconds of test recordings in order to make predictions. Then, I perform

an in-depth analysis of a benchmark dataset (ASVspoof 2017) for spoofing de-

tection and demonstrate that any machine learning countermeasure model can

still exploit the artefacts I identified in this dataset.

The second part of the thesis studies the design of countermeasures for ASV,

focusing on model robustness and avoiding dataset biases. First, I proposed

an ensemble model combining shallow and deep machine learning methods for

spoofing detection, and then demonstrate its effectiveness on the latest bench-

mark datasets (ASVspoof 2019). Next, I proposed the use of speech endpoint de-

tection for reliable and robust model predictions on the ASVspoof 2017 dataset.

For this, I created a publicly available collection of hand-annotations of speech

endpoints for the same dataset, and new benchmark results for both frame-based

and utterance-based countermeasures are also developed.

I then proposed spectral subband modelling using CNNs for replay detec-

tion. My results indicate that models that learn subband-specific information

substantially outperform models trained on complete spectrograms. Finally, I

proposed to use variational autoencoders — deep unsupervised generative mod-

els — as an alternative backend for spoofing detection and demonstrate encour-

aging results when compared with the traditional Gaussian mixture models.

2

Acknowledgements

As the journey of my PhD research has come to an end, I look back and realize

that this wouldn’t have been possible without the blessing from the lord almighty

and the tremendous support and guidance from the exceptional supervisors I

was fortunate to have met during this journey.

First and foremost, I would like to thank my supervisor Dr. Bob L. Sturm for

giving me the freedom to explore the research work on voice-biometrics security

although we had agreed to work on a different topic in the start. His sound

advice and motivation has helped me to improve my research skills and grow as

a researcher.

I would also like to thank my supervisor Dr. Emmanouil Benetos for kindly

agreeing to supervise me from the second year of my PhD and providing me

with all the best guidance I needed to finish this PhD research. His prompt way

of responding to my questions, detailed feedback, and supervision has helped

me to accomplish the goals of my thesis. Without his support and guidance,

this journey would have been a difficult one.

I would also like to thank Prof. Ioannis Patras and Dr. Dan Stowell for

their detailed feedback and useful advice that helped shape my research work.

I want to thank all the members of C4DM for providing a wonderful workplace

with a willingness to always help which really helped me to overcome stressful

moments, and stay focused towards achieving my research goals on time.

My sincere thanks goes to Dr. Tomi Kinnunen who introduced me the

research topic on the security of voice-biometrics. I am extremely grateful to

him for his mentorship and support throughout my PhD and for the opportunity

he gave me to work on the NOTCH project at the University of Eastern Finland.

Special thanks to all the members of Computational speech group and Juha

Hakkarainen for their support during my stay in Finland.

I want to thank my wife, Namrata Bora for all her tremendous support and

understanding throughout this journey, without which none of this would have

been possible. I would also like to to thank my family back in India, my father

Tilak Chettri, mother Krishna Maya Chettri, my in-laws Kiran Chandra Bora

3

and Rekha Bora, my sisters (Roshni and Seema), Pinki Bora, Chandan Bora

and our little Tia for their motivation through love and prayers for good health

during my PhD study.

I am also very grateful to George and Christine, they have played a major

role in helping me make a big decision of considering QMUL for my PhD over

other offers I was holding.

Finally, I take this opportunity to thank Chinedu Iheagwam for his help on

proof-reading my thesis.

This PhD research work was funded by a QMUL Principal’s research stu-

dentship.

4

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Aim . 17

1.3 Thesis structure . 18

1.4 Contributions . 19

1.5 Associated publications . 20

2 Background 23

2.1 Automatic speaker verification (ASV) 24

2.2 Spoofing attacks in ASV . 27

2.2.1 Mimicry . 28

2.2.2 Speech synthesis . 28

2.2.3 Voice conversion . 29

2.2.4 Replay attacks . 29

2.3 ASVspoof challenge . 30

2.4 Countermeasures for replay spoofing attacks 32

2.4.1 Traditional methods . 32

2.4.2 Deep learning methods . 35

2.5 Signal processing methods . 40

2.6 Discriminative models . 45

2.6.1 Support vector machine 45

2.6.2 Convolutional neural networks 46

2.7 Generative models . 48

2.7.1 Gaussian mixture model (GMM) 48

2.7.2 i-vectors . 49

2.7.3 Variational Autoencoders (VAEs) 50

2.8 Subband modelling . 54

2.9 Towards trustworthy countermeasures 55

2.9.1 Artefacts and their influence in machine learning 56

2.9.2 Understanding model predictions 57

5

2.10 Discussion . 59

3 Spoofing corpus and evaluation metrics 61

3.1 Introduction . 61

3.2 ASVspoof 2017 dataset . 62

3.2.1 Version 1.0 . 62

3.2.2 Version 2.0 . 63

3.2.3 Qualitative analysis of v2.0 65

3.3 ASVspoof 2019 . 68

3.3.1 Logical access (LA) spoofing dataset 69

3.3.2 Physical access (PA) spoofing dataset 69

3.3.3 Real PA dataset . 70

3.4 Other spoofing corpora . 70

3.4.1 ReMASC . 70

3.4.2 AVspoof . 71

3.5 Evaluation metrics . 71

3.5.1 Equal error rate . 72

3.5.2 Tandem detection cost function 72

3.6 Summary . 73

4 Analysis of spoofing countermeasures 74

4.1 Introduction . 74

4.2 Generalisability of hand-crafted features 75

4.2.1 Introduction . 75

4.2.2 Experimental design and evaluation 76

4.2.3 Analysis . 78

4.2.4 Discussion . 82

4.3 CNNs for spoofing detection . 83

4.3.1 Introduction . 83

4.3.2 Replicating the state-of-the-art LCNN 86

4.3.3 Investigating alternative CNN architectures 89

4.3.4 Effect of parameterisation on performance 92

4.3.5 Discussion . 94

4.4 Analysing spoofing countermeasure performance under varied con-

ditions . 95

4.4.1 Introduction . 95

4.4.2 Experimental design . 96

4.4.3 Evaluation . 98

4.4.4 Analysis . 99

4.4.5 Discussion . 106

6

4.5 Explaining CNN predictions . 107

4.5.1 Introduction . 107

4.5.2 Experimental design and evaluation 108

4.5.3 Explaining predictions using SLIME 110

4.5.4 Interventions to test the significance of explanations . . . 115

4.5.5 Discussion . 117

4.6 A deeper look at the ASVspoof 2017 dataset 118

4.6.1 Introduction . 118

4.6.2 Experimental design and evaluation 119

4.6.3 Understanding the influence of dataset artefacts 122

4.6.4 Manipulating model decisions 126

4.6.5 Discussion . 131

4.7 Summary . 134

5 Design of novel spoofing countermeasures 136

5.1 Introduction . 136

5.2 Ensemble models for spoofing detection 137

5.2.1 Introduction . 137

5.2.2 Models in the proposed ensemble 138

5.2.3 Dataset and proposed partitions 141

5.2.4 Evaluation . 143

5.2.5 Interventions on the PA tasks 147

5.2.6 Discussion . 149

5.3 Overcoming the impact of dataset artefacts 151

5.3.1 Introduction . 151

5.3.2 Proposed method . 152

5.3.3 Experimental setup and evaluation 156

5.3.4 Discussion . 159

5.4 Subband analysis for spoofing detection 161

5.4.1 Introduction . 161

5.4.2 Proposed method . 163

5.4.3 Experimental design . 166

5.4.4 Evaluation . 168

5.4.5 Discussion . 173

5.5 Deep VAEs for spoofing detection 175

5.5.1 Introduction . 175

5.5.2 Proposed method . 179

5.5.3 Experimental setup . 181

5.5.4 Evaluation . 187

5.5.5 Discussion . 194

7

5.6 Summary . 195

6 Conclusions and future work 197

6.1 Summary . 197

6.1.1 Analysis of countermeasures 197

6.1.2 Design of novel countermeasures 199

6.2 Future work . 201

Appendices 206

A Deep model architectures 207

8

List of Figures

1.1 Countermeasure for spoofing attack detection. 16

2.1 Automatic speaker verification system. 24

2.2 Possible locations an ASV system can be spoofed from. 27

2.3 Difference between a genuine (bonafide) and a replayed speech. . 30

2.4 MFCC/IMFCC feature extraction pipeline. 40

2.5 LFCC/RFCC feature extraction pipeline. 42

2.6 SCMC feature extraction pipeline. 43

2.7 CQCC feature extraction pipeline. 43

2.8 Illustration of filters used in extracting RFCC, LFCC, MFCC and

IMFCC features. 44

2.9 Block diagram illustrating a Variational Autoencoder. 50

2.10 Temporal segmentation of an input spectrogram (xi) into 10 uni-

form segments (Ti), each of duration 400 ms. 58

4.1 Spectrograms and frame-wise log likelihood score difference. . . . 78

4.2 Cross entropy loss visualisations for different training runs. . . . 87

4.3 The proposed model architecture. 92

4.4 Log eneray and log-likelihood plots for a spoofed and bonafide

audio file. 104

4.5 Intervention framework to understand the impact of artefacts on

countermeasures. 122

4.6 Illustrating how artefacts propagate as a result of creating fixed-

duration input representation. 124

4.7 Score distribution illustrating how true negatives (spoof files) are

misclassified after adding a BCS signature on them. 128

4.8 Score distributions of true negatives that gets misclassified after

adding 100 ms silence at random time locations. 133

4.9 Impact of the BCS intervention across ten different phrases of the

ASVspoof 2017 dataset. 134

9

5.1 Proposed CM design for trustworthy performance estimates. . . . 153

5.2 Performance of models trained with manual and automatic speech

endpoint annotations. 154

5.3 Proposed subband CNN modeling framework. 163

5.4 Spoofing countermeasure pipeline using a generative model back-

end. 178

5.5 Different VAE setups investigated. 182

5.6 Proposed countermeasure design using VAE residual. 183

5.7 Visualisation of the reconstructed spectrograms by the C-VAE . 184

5.8 Latent space visualisation for the ten phrases of the ASVspoof

2017 dataset. 190

5.9 Latent space visualisation of C-VAE trained on the ASVspoof

2019 PA. 193

10

List of Tables

2.1 Traditional methods for replay spoofing attack detection. 36

2.2 Deep learning methods for replay spoofing attack detection. . . . 41

3.1 Phrases used in the ASVspoof 2017 dataset. 62

3.2 The ASVspoof 2017 v1.0 dataset statistics. 63

3.3 The ASVspoof 2017 v2.0 dataset statistics 63

3.4 Acoustic environments used in the ASVspoof 2017 v2.0 dataset. . 63

3.5 Playback devices used in the ASVspoof 2017 v2.0 dataset. . . . 64

3.6 Recording devices used in the ASVspoof 2017 v2.0 dataset. . . . 65

3.7 ASVspoof 2019 LA dataset statistics. 68

3.8 ASVspoof 2019 PA dataset statistics. 69

4.1 Performance of GMMs on the ASVspoof 2017 v1.0 dataset. . . . 77

4.2 Performance of GMMs after adding the genuine signature during

testing. 79

4.3 Performance of GMMs after preprocessing the audio signals. . . . 80

4.4 Utterance-based model performance before and after adding the

genuine signature during testing. 81

4.5 Performance of deep learning countermeasures on the ASVspoof

2017 v1.0 dataset. 85

4.6 Performance of our replicated LCNN on the ASVspoof 2017 v1.0

dataset. 88

4.7 Performance comparison of different CNN architectures studied. 90

4.8 Model performance for different activation functions. 92

4.9 Model performance for different batch sizes. 93

4.10 Comparing performance for different input excerpts. 93

4.11 Different countermeasure performance on the ASVspoof 2017 v2.0

testset. 98

4.12 Performance of countermeasures for different qualities of playback

and recording devices and acoustic environment. 101

11

4.13 Performance of countermeasures for different types of replay at-

tack configurations. 103

4.14 Confusion matrix for GMM1 and GMM2. 105

4.15 Performance (EER%) of our replicated LCNN models: M1 and

M2 on the ASVspoof 2017 dataset respectively. 109

4.16 Instance level temporal explanations. 111

4.17 Instance level spectral explanations. 111

4.18 Dataset level temporal and spectral explanations. 113

4.19 Spectral and temporal explanations for all the misclassified test

audio files. 113

4.20 Intervention experiment to break the CNN countermeasure. . . . 115

4.21 Intervention experiment to protect the CNN countermeasure. . . 116

4.22 EER% before and after the two interventions on M2. 117

4.23 Initial model performance. Θ = EER decision threshold. 121

4.24 Results of BCS intervention experiment. 123

4.25 Results of DTMF intervention experiment. 124

4.26 Results of pattern difference intervention experiment. 125

4.27 Manipulating model decisions using BCS. 127

4.28 Manipulating model decisions injecting white noise at random

locations. 129

4.29 Manipulating model decisions injecting white noise at the start. . 130

4.30 Manipulating model decisions injecting silence at the start. . . . 131

4.31 Manipulating model decisions injecting silence at random locations.132

5.1 Comparing model performance trained using the original and our

proposed protocol. 144

5.2 Results of countermeasures on the LA and PA development sets. 145

5.3 Results of countermeasures on the LA and PA evaluation sets. . 146

5.4 Test set results of all our models used in ensemble. 147

5.5 Intervention results on the development set of the PA tasks. . . . 148

5.6 Intervention results on the evaluation set of the PA tasks. 148

5.7 New benchmark results on the ASVspoof 2017 v2.0 testset. . . . 157

5.8 Model robustness experimental results. 158

5.9 Fusion system details. 167

5.10 Performance of the baselines on the ASVspoof 2017 and 2019

evaluation sets. 169

5.11 Performance of subband models using 4 kHz bandwidth. 170

5.12 Performance of subband models using 2 kHz bandwidth. 170

5.13 Performance of subband models using 1 kHz bandwidth. 171

5.14 Fusion experimental results. 171

12

5.15 Cross dataset performance evaluation. 172

5.16 Summary of results highlighting best models. 173

5.17 The architecture of encoder network. 185

5.18 The architecture of decoder network. 185

5.19 Impact of the latent space dimensionality. 187

5.20 Performance of GMM and VAE variants using CQCC inputs. . . 188

5.21 Comparing VAE and C-VAE performance. 189

5.22 Comparing the C-VAE performance using binary and multi-class

conditioning. 192

5.23 Effectiveness of VAE residual features in spoofing detection. . . . 193

A.1 LCNN model architecture. 208

A.2 Our proposed CNN architecture that is motivated from the LCNN.209

A.3 CNN2 model architecture with only 36,174 free parameters. . . . 209

A.4 Frame-based DNN architecture. 210

13

List of abbreviations

ASV Automatic Speaker Verification
ASR Automatic Speech Recognition
CNN Convolutional Neural Network
CQT Constant Q Transform
CQCC Constant Q Cepstral Coefficient
CM Countermeasure
CVAE Conditional Variational Autoencoder
DNN Deep Neural Network
DFT Discrete Fourier Transform
ELBO Evidence Lower Bound
EER Equal Error Rate
EM Expectation Maximization
FFT Fast Fourier Transform
GMM Gaussian Mixture Model
IMFCC Inverted Mel-Frequency Cepstral Coefficient
KL Kullback Leibler
LA Logical Access
LDA Linear Discriminant Analysis
LFCC Linear Frequency Cepstral Coefficient
MFCC Mel-Frequency Cepstral Coefficient
ML Machine Learning
MFM Max Feature Map
PCA Principal Components Analysis
PLDA Probabilistic Linear Discriminant Analysis
PA Physical Access
PDF Probability Density Function
RELU Rectified Linear Units
RFCC Rectangular Frequency Cepstral Coefficient
SCMC Subband Centroid Magnitude Coefficient
SVM Support Vector Machine
TTS Text to Speech Synthesis
t-DCF Tandem Detection Cost Function
UBM Universal Background Model
VC Voice Conversion
VAE Variational Autoencoder

14

Chapter 1

Introduction

The main topic of this thesis is analysis and design of spoofing countermeasures

for secure voice biometrics. This chapter first explains the motivations and aims

of this work in Sections 1.1 and 1.2. Then the structure of the thesis is described

in Section 1.3. Finally, Section 1.4 summarises the publications associated with

this thesis.

1.1 Motivation

Voice biometric systems use automatic speaker verification (ASV) [Reynolds,

1995] technology for user authentication. The main goal of an ASV system is to

verify the identity of a claimed person using their voice characteristics. Even if it

is among the most convenient means of biometric authentication, the robustness

and security of ASV in the face of spoofing attacks (or presentation attacks) is of

growing concern, and is now well acknowledged by the community [Sahidullah

et al., 2019]. A spoofing attack involves illegitimate access to personal data of a

targeted user. The vulnerability of ASV systems against spoofing attacks is an

important problem to solve because it poses a serious threat to the security of

such systems. When successful, a spoofing attack can grant unauthorized access

of private and sensitive data. Spoofing attack methods include text-to-speech

(TTS) [Masuko et al., 1999], voice conversion (VC) [Pellom and Hansen, 1999]

techniques, impersonation [Lau et al., 2004] and playing back speech recordings

[Wu et al., 2014a]. Section 2.2 provides further background on spoofing attacks.

High-stakes ASV applications, therefore, demand trustworthy fail-safe mech-

anisms (countermeasures) against such attacks. In this thesis, a countermeasure

(CM) is defined as a binary classifier that aims at discriminating bonafide (hu-

man speech) utterances from spoofing attacks. To allow maximum re-usability

across different applications, the ideal CM should generalise across environ-

15

Figure 1.1: Countermeasure for spoofing attack detection.

ments, speakers, languages, channels, and attacks. In practice, this is not the

case; CMs are prone to overfitting. This could be due to variations within the

spoof class (e.g. speech synthesizers or attack conditions not present in the

training set), within the bonafide class (e.g. due to content and speaker), or

extrinsic nuisance factors (e.g. background noise).

Like any traditional machine learning classifier, a spoofing countermeasure

(Fig. 1.1) typically consists of a frontend module, a backend module and a de-

cision logic (for the final classification based on a decision threshold). The key

function of the frontend is to transform the raw acoustic waveform to a sequence

of short-term feature vectors. These short-term feature vectors are then used

to derive either intermediate recording-level features (such as i-vectors [Khoury

et al., 2014] or x-vectors [Williams and Rownicka, 2019]) or statistical mod-

els, such as Gaussian mixture models (GMMs) [Patel and Patil, 2015] to be

used for bonafide or spoof class modeling. In contrast to these approaches that

require a certain level of handcrafting especially in the frontend, modern deep-

learning based countermeasures are often trained using either raw-audio wave-

forms [Dinkel et al., 2017] or an intermediate high-dimensional time-frequency

representation — often the power spectrogram [Zhang et al., 2017]. In these

approaches, the notions of frontend and backend are less clearly distinguished.

A summary of deep learning-based methods for spoofing detection is provided

in Subsection 2.4.2 and Table 2.2.

Among four different approaches of spoofing ASV systems highlighted early

in this section, this thesis focusses on replay attacks. The motivations are

twofold. First, replay attack is the simplest form of attack to implement that

does not require any specific expertise either from speech technology or machine

learning. Second, it is equally difficult to detect reliably as this form of attack

involves propagating the recorded speech of a target user to fool an ASV system.

Two publicly available replay datasets, ASVspoof 2017 and ASVspoof 2019 PA

(described in Chapter 3), are used to study replay attacks in this thesis.

16

1.2 Aim

The aim of this thesis is to analyse and design existing and novel methods for

replay spoofing detection for secure voice biometrics. To this end, this thesis

focusses on answering the following research questions:

• Can hand-crafted features used in speech processing be used for replay

spoofing detection?

• Are dataset artefacts biasing model predictions?

• Can data-driven ML models be effective in discriminative spoofing at-

tacks? Is the current state-of-the-art model for replay spoofing detection

reproducible?

• Can countermeasures designed using speech endpoint detection (discard-

ing everything before and after the actual speech utterance) ensure ro-

bustness and good detection performance?

• What makes replay spoofing detection hard? How do different factors such

as acoustic environment, recording device and playback device affect the

performance of replay countermeasures?

• Can we use methods from interpretable machine learning to understand

predictions of countermeasure models?

• How do data selection for model training and validation impact model gen-

eralisation? Would combining information from multiple models improve

performance?

• Can information exploited in specific subbands be exploited to discrimi-

nate between bonafide and spoof recordings?

• Can Variational Autoencoders (VAEs), a deep generative model, be used

as a backend classifier for spoofing detection? Can VAEs be used to derive

new feature representations for replay spoofing detection?

The research involved in addressing the above listed questions is presented

in two major chapters: Chapter 4 and Chapter 5.

17

1.3 Thesis structure

• Chapter 2 provides the necessary background on spoofing attacks and

methods used for spoofing detection in the literature. It starts with a brief

overview of classical and deep learning-based ASV systems. A detailed

survey of spoofing attacks and different countermeasures based on signal

processing and machine learning methods are presented. The chapter also

summarises the related literature on subband modelling for spoofing detec-

tion. Finally, this chapter provides a detailed background on variational

autoencoders along with the motivation towards using them for spoofing

detection.

• Chapter 3 presents details of the corpus and the evaluation metrics used

in this thesis. Firstly, it provides a detailed summary of the ASVspoof

2017 and ASVspoof 2019 datasets used for the analysis and design of spoof-

ing countermeasures. A brief overview of other publicly available spoofing

datasets is also provided for general awareness. Finally, the chapter ex-

plains the two metrics that are adopted in this thesis to evaluate the

performance of a countermeasure.

• Chapter 4 serves as the basis towards understanding the replay spoofing

problem by investigating existing methods from the literature. Firstly,

signal processing methods used in TTS and VC spoofing detection are

studied. The chapter then summarises issues towards reproducing a state-

of-the-art CNN model, proposes an adapted version of this model, and

analyses it to discover cues on which it focusses for classification. The

chapter also analyses the effect of different factors involved in a replay

attack and their interactions. Then, an in-depth analysis on a bench-

mark dataset highlighting dataset artefacts and their influence on model

decisions is provided.

• Chapter 5 presents novel methods proposed for replay spoofing detec-

tion, with a focus on model robustness and avoiding biases in the datasets.

Ensemble models and dataset partitions are first proposed for improved

generalisation. Speech endpoint detection for reliable performance esti-

mates is proposed. Using this, a frame-level deep countermeasure model

is proposed showcasing its robustness against cues in the dataset. Further,

a joint subband framework that exploits information across different fre-

quency bands of a spectrogram is proposed. Finally, this chapter proposes

VAEs as an alternative backend classifier and as a feature extractor.

• Chapter 6 concludes this thesis. It provides a summary of research find-

18

ings related to the analysis and design of replay attack countermeasures in

this thesis. A general discussion on future research directions towards im-

proved countermeasure design and challenges involved are also provided.

1.4 Contributions

The key contributions of the research carried out in this thesis are summarised

below:

Chapter 3

• A qualitative analysis of the ASVspoof v2.0 dataset.

Chapter 4

• A study on the effectiveness of existing signal processing methods for re-

play spoofing detection.

• Demonstration of the challenges in replicating a state-of-the-art deep model

for replay attack detection, a study on alternative deep models, and an

investigation regarding network hyper-parameters.

• An analysis of the developed model using a method from interpretable

machine learning to understand what it has learned to detect spoof record-

ings.

• An analysis of countermeasure model performance under varied attack

conditions, highlighting the difficulty in understanding the influence of

different conditions and their interaction in a replay attack.

• Discovery of dataset-related artefacts in a benchmark replay spoofing

dataset (ASVspoof 2017 v2.0) and a detailed analysis demonstrating aware-

ness on how they influence machine learning models.

Chapter 5

• An ensemble model combining deep and shallow models for effective spoof-

ing detection.

• Dataset partitions for model training and validation for better generalisa-

tion.

• Discovery of dataset-related cues in the latest benchmark spoofing dataset

(ASVspoof 2019 PA) that models exploit in decision making.

19

• Countermeasure design using speech endpoint detection for robust perfor-

mance estimates, new benchmark results, and a new frame-level robust

deep countermeasure model.

• Manual and automatic speech endpoint annotations for the ASVspoof

2017 v2.0 dataset.

• A joint subband modelling framework using CNNs for effective spoofing

detection.

• Experimental evaluation on how different subbands contribute in spoofing

detection, and their cross-dataset performance evaluation on an unseen

testset.

• A deep generative model as an alternative backend to traditional shallow

generative models.

• New features for replay spoofing detection using deep generative models.

1.5 Associated publications

This thesis covers work on replay spoofing detection which was carried out by

the author between September 2016 and December 2020 at Queen Mary Uni-

versity of London. The work on variational autoencoders for spoofing detection

(detailed in Section 5.5) was performed during a six-month (May - October

2019) research visit to the Computational Speech group, University of Eastern

Finland, Finland. The majority of the work presented in this thesis has been

presented in international peer-reviewed conferences and journals:

Journal papers

[1] B. Chettri, T. Kinnunen and E. Benetos, “Deep Generative Variational

Autoencoding for Replay Spoof Detection in Automatic Speaker Verifica-

tion”, Computer Speech & Language, vol. 63, September 2020.

[2] B. Chettri, E. Benetos and B. L. Sturm, “Dataset Artefacts in Anti-

Spoofing Systems: a Case Study on the ASVspoof 2017 benchmark”,

submitted to IEEE/ACM Transactions on Audio Speech and Language

Processing.

20

Conference papers

[3] B. Chettri and B. L. Sturm, “A Deeper Look at Gaussian Mixture Model

Based Anti-Spoofing Systems”, in IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 5159-5163, April 2018.

[4] B. Chettri, B. L. Sturm and E. Benetos, “Analysing Replay Spoofing

Countermeasure Performance Under Varied Conditions”, in IEEE 28th In-

ternational Workshop on Machine Learning for Signal Processing (MLSP),

September 2018.

[5] B. Chettri, S. Mishra, B. L. Sturm and E. Benetos, “Analysing the Predic-

tions of a CNN-Based Replay Spoofing Detection System”, in IEEE Spo-

ken Language Technology Workshop (SLT), pp. 92–97, December 2018.

[6] B. Chettri, D. Stoller, V. Morfi, M. A. M. Ramı́rez, E. Benetos and B. L.

Sturm, “Ensemble Models for Spoofing Detection in Automatic Speaker

Verification”, in Proc. Interspeech, pp. 1018–1022, September 2019.

[7] B. Chettri, T. Kinnunen and E. Benetos, “Subband Modeling for Spoofing

Detection in Automatic Speaker Verification”, to appear in Odyssey 2020:

The Speaker and Language Recognition Workshop, November 2020.

Other publications

[8] B. Chettri, S. Mishra, B. L. Sturm and E. Benetos, “A Study on Con-

volutional Neural Network Based End-To-End Replay Anti-Spoofing”,

arXiv:1805.09164 preprint, May 2018.

Here we provide a summary of contributions from authors listed in the above

publications. For [5], S. Mishra contributed in writing the technical description

of the SLIME algorithm and also contributed to the discussions on the inter-

vention experiments. For [6], each of the co-authors D. Stoller, V. Morfi, M. A.

M. Ramı́rez contributed in training one deep model (and writing the technical

description of their respective models) that were used in building the ensemble

model. Furthermore, V. Morfi contributed in preparing the proposed partition

for the PA dataset, and D. Stoller helped in reviewing the paper draft. For [8],

S. Mishra helped in reviewing the paper and contributed to the discussion on

replicating a state-of-the-art CNN model.

21

In all of the above publications, the thesis author is the main contributor

responsible for the design and implementation of experiments, analysis of results

and writing the papers (as the lead author). Co-authors Dr. T. Kinnunen, Dr.

B. L. Sturm and Dr. E. Benetos have contributed in a supervisory role towards

discussion of research ideas, analysing the results of research experiments, and

helping with reviewing the drafts of the papers. Furthermore, Dr. T. Kinnunen

also contributed in writing the theory section of the journal article in [1].

22

Chapter 2

Background

This chapter describes state-of-the-art methods on spoofing countermeasures for

voice biometric systems. Voice biometric systems use automatic speaker veri-

fication (ASV) technologies. Therefore, this chapter first provides background

information on classical and state-of-the-art ASV systems (Section 2.1). Then

Section 2.2 provides a description of various spoofing attacks that are used to by-

pass an ASV system. A summary of the community driven Automatic Speaker

Verification Spoofing and Countermeasures Challenge (ASVspoof) is provided in

Section 2.3, which focusses on promoting anti-spoofing research while releasing

standard evaluation protocols and publicly available databases. Following this,

the next Section 2.4 provides a detailed literature on countermeasures for re-

play spoofing attacks that were studied before the ASVspoof series began along

with published works on the ASVspoof datasets for replay attack. For better

readability, this literature is organized into two categories: traditional methods

(Subsection 2.4.1) and deep learning methods (Subsection 2.4.2). Then the next

Section 2.5 provides a background on various hand-crafted features that have

been used in this thesis. After this, a detailed background on backend classifiers

that have been investigated towards the analysis and design of replay spoofing

countermeasures is provided in Sections 2.6 and 2.7. Section 2.6 provides a

background on discriminative models such as support vector machines and con-

volutional neural networks. Section 2.7 on the other hand provides background

on generative models such as Gaussian mixture models, i-vectors and Varia-

tional Autoencoders. The next Section 2.8 summarises the related works on

subband modelling applied to audio and speech applications including spoofing

detection. Then Section 2.9 describes work on trustworthy machine learning

and its significance on countermeasures for spoofing detection. First, informa-

tion on how artefacts and confounders in a dataset can affect model predictions

is provided in Subsection 2.9.1. Then Subsection 2.9.2 explains a method from

23

(a) Speaker enrollment phase. The goal here is to build speaker specific models by adapting
a background model which is trained on a large speech database.

(b) Speaker verification phase. For a given speech utterance the system obtains a verifi-
cation score and makes a decision whether to accept or reject the claimed identity.

Figure 2.1: Components of a typical speaker verification system. Figure adapted
from [Kinnunen and Li, 2010b].

interpretable machine learning called SLIME that is used in this thesis to under-

stand the predictions of a CNN-based countermeasure in Section 4.5. Finally,

Section 2.10 concludes this chapter.

2.1 Automatic speaker verification (ASV)

Automatic speaker verification (ASV) [Reynolds, 1995] systems aim at verify-

ing the identity of a claimed person using their voice characteristics. They are

commonly used in user authentication and surveillance applications. Fig. 2.1

illustrates components of a typical speaker verification system which comprises

speaker enrollment (top) and speaker verification (bottom). The role of a feature

extraction module is to transform the raw speech signal into some representation

(features) that retains speaker specific attributes useful to the downstream com-

ponents in building speaker models. The enrollment phase comprises offline and

24

online modes of building models. During the offline mode, background models

are trained on features computed from a large speech collection representing a

diverse population of speakers. The online phase comprises building a target

speaker model using features computed from target speaker’s speech. Usually,

training the target speaker model from scratch is avoided because learning re-

liable model parameters requires a sufficiently large amount of speech data,

which is usually not available for every individual speaker. To overcome this,

the parameters of a pretrained background model representing the speaker pop-

ulation are adapted using the speaker data yielding a reliable speaker model

estimate. During the speaker verification phase, for a given test speech utter-

ance, a claimed speaker’s model and the background model (representing the

world of all other possible speakers) is used to derive a confidence score. The

decision logic module then makes a binary decision: it either accepts the claimed

identity as a genuine speaker or rejects it as an impostor based on some decision

threshold.

ASV systems are broadly grouped into two categories: text dependent and

text independent systems. In text dependent systems [Larcher et al., 2014],

the same speech utterance used during speaker enrollment (or registration) is

used during verification (or testing). This is in contrast with text independent

systems [Kinnunen and Li, 2010b], where as the name suggests, speakers are free

to speak any arbitrary phrase during training and testing. Text independent

systems are in general difficult in contrast to text dependent systems due to

the variability in spoken utterances during the testing phase. We now provide

a high-level discussion on the traditional and current deep learning approaches

to speaker verification.

Traditional methods. By traditional methods we refer to approaches

driven by a Gaussian mixture model - universal background model (GMM-

UBM) [Kinnunen and Li, 2010b] that were adopted in the ASV literature until

deep learning techniques became popular in the field. Mel-frequency cepstral

coefficients (MFCCs) [Davis and Mermelstein, 1980] were popular frame-level

feature representations used in speaker verification. Using short-term MFCC

feature vectors, utterance level features such as i-vectors are often derived which

have shown state-of-the-art performance in speaker verification [Kanagasun-

daram, 2014]. Subsection 2.5 describes further details on the steps involved

in computing MFCCs. The background models such as the Universal back-

ground model (UBM) and total variability (T) matrix are learned in an offline

phase using a large collection of speech data. The UBM and T matrix are

used in computing i-vector representations. Subsection 2.7.2 provides further

details on i-vectors. The training process involves learning model (target or

background) parameters from training data. As for modelling techniques, vec-

25

tor quantization (VQ) [Burton, 1987] was one of the earliest approaches used to

represent a speaker, after which Gaussian mixture models (GMMs), an exten-

sion to VQ methods, and Support vector machines (Subsection 2.6.1) became

popular methods for speaker modelling. Please see [Kinnunen and Li, 2010b]

for a detailed overview on traditional methods. The traditional approach also

includes training an i-vector extractor (GMM-UBM, T-matrix) on MFCCs and

using a probabilistic linear discriminant analysis (PLDA) [Ioffe, 2006] backend

for scoring.

Deep learning methods. We now provide a brief summary on deep learn-

ing approaches adopted in ASV. Features are often learned in a data-driven

manner directly from the raw speech signal [Jung et al., 2018] or from some

intermediate speech representations such as filter bank energies [Heigold et al.,

2016]. Handcrafted features, for example MFCCs, are often used as input to

train deep neural network (DNN) based ASV systems [Kenny et al., 2014].

Features learned from DNNs are often used to build traditional ASV systems

[Yaman et al., 2012, Snyder et al., 2017]. Snyder et al. [2017] uses the output

from the penultimate layer of a pre-trained DNN as features to train a tradi-

tional i-vector PLDA setup (replacing i-vectors with DNN features). Yaman

et al. [2012] extracts bottleneck features (output from a hidden layer with a

relatively small number of units) from a DNN to train a GMM-UBM system

which uses the log-likelihood ratio as scoring.

Utterance-level discriminative features, so called embeddings extracted from

pre-trained DNNs have become popular recently, demonstrating good results.

Examples of such embeddings include the d-vector [Variani et al., 2014] and

x-vector [Snyder et al., 2018], and have been used in many works, for exam-

ple [Snyder et al., 2017, Garcia-Romero et al., 2019]. End-to-end modelling

approaches have also been extensively studied in speaker verification showing

promising results [Jung et al., 2018, Muckenhirn et al., 2018, Ravanelli and Ben-

gio, 2018]. In this setting, both feature learning and model training are jointly

optimised from the raw speech input. A wide range of neural architectures

have been studied for speaker verification. This includes feed forward neural

networks, commonly referred as deep neural networks (DNNs) [Variani et al.,

2014, Sztahó et al., 2019], convolutional neural networks (CNNs) [Muckenhirn

et al., 2018], recurrent neural networks [Tang et al., 2019], and attention models

[Rezaur rahman Chowdhury et al., 2018].

Training background models in deep learning approaches can be thought of

as a pretrainng phase where network parameters are trained on a large dataset.

Speaker models are then derived by adapting the pretrained model parameters

using speaker specific data, much like the same way a traditional GMM-UBM

system operates. For example, [Muckenhirn et al., 2018] first trains a DNN to

26

Figure 2.2: Possible locations [ISO/IEC, 2016] to attack an ASV system. 1: mi-
crophone point, 2: transmission point, 3: override feature extractor, 4: modify
features, 5: override classifier, 6: modify speaker database, 7: modify biometric
reference, 8: modify score and 9: override decision.

perform speaker identification discriminatively. In the second step, they use the

pretrained model to derive a speaker specific model. They repeat this process

for every speaker using speaker specific data.

As the main focus of this thesis is not on ASV, we have provided only a high-

level introductory overview on ASV to familiarise readers with the basics of voice

biometrics, with pointers to relevant papers for additional details. Please refer

to [Kinnunen and Li, 2010b] and [Sztahó et al., 2019] for further background on

traditional and deep learning approaches for ASV. Furthermore, the reader is

referred to [Kanagasundaram, 2014] for a detailed background on i-vector based

ASV systems.

2.2 Spoofing attacks in ASV

A spoofing attack (or presentation attack) involves illegitimate access to the

personal data of a targeted user. These attacks are performed on a biometric

system to provoke an increase in its false acceptance rate. The security threats

imposed by such attacks are now well acknowledged within the speech commu-

nity [Sahidullah et al., 2019]. As identified in the ISO/IEC 30107-1 standard

[ISO/IEC, 2016], a biometric system could be potentially attacked from nine

different points. Fig. 2.2 summarises this. The first two attack points are

of specific interest as they are particularly vulnerable in terms of enabling an

adversary to inject spoofed biometric data. These two points are commonly

referred as physical access (PA) and logical access (LA) attacks. As illustrated

in the figure, PA attacks involve presentation attack at the sensor (microphone

27

in case of ASV) level and LA attacks involve modifying biometric samples to

bypass the sensor. As highlighted in Section 1.1, TTS [Masuko et al., 1999] and

VC [Pellom and Hansen, 1999] techniques are used to produce artificial speech

to bypass an ASV system. These two methods are examples of LA attacks. On

the other hand, mimicry [Lau et al., 2004] and playing back speech recordings

(replay) [Wu et al., 2014b]) are examples of PA attacks.

2.2.1 Mimicry

This form of attack involves an attacker attempting to modify their voice char-

acteristics to sound like a target speaker. In other words, an attacker aims to

transform their lexical and prosodic properties to be able to sound as close as

possible to the target speaker [Lau et al., 2004, Sahidullah et al., 2019]. There-

fore, this form of attack can be highly effective when the attacker’s voice is

similar to the target speaker, as less effort would be required to adjust the voice

of an attacker in contrast to situations where the voice of the attacker is less

similar to the target speaker [Lau et al., 2005]. In other words, the success of

mimicry attacks often depends on the degree or quality of the impersonated

voice, suggesting that professional impersonators may be better at mimicking

a target speaker’s voice than inexperienced impersonators [Mariéthoz and Ben-

gio, 2005]. Furthermore, successful attackers were found to be able to transform

their F0 (fundamental frequency) and sometimes the formants close to the target

speaker [Perrot et al., 2005, Zetterholm, 2007].

While there have been some studies assessing the threat of mimicry to ASV

systems [Hautamäki et al., 2015], the main challenge however is the unavailabil-

ity of large corpora of impersonated speech. Due to this, research on mimicry

attacks is still behind in contrast to TTS, VC and replay attacks for which large

public corpora and standard evaluation protocols (See Chapter 3) are avail-

able, which has promoted growth in anti-spoofing research for these attacks

[Wu et al., 2015c, Kinnunen et al., 2017a, Todisco et al., 2019.]. Therefore, the

true potential threat of mimicry on ASV is still not very clear [Sahidullah et al.,

2019].

2.2.2 Speech synthesis

Speech synthesis or text-to-speech (TTS), is a method to generate speech from

a given text input that sounds as natural and intelligible as possible. It has a

wide range of applications including spoken dialogue systems, speech-to-speech

translation, assisting people with vocal disorders, and automatic e-book reading,

to name a few [Taylor, 2009]. Text analysis and speech waveform generation

are the two main components of a typical TTS system. The text analysis com-

28

ponent analyses the input text and produces sequence of phonemes defining the

linguistic specification of the text. Using these phonemes, the speech waveform

generation module produces the speech waveform [Hunt and Black, 1996, Zen

et al., 2009]. However, in end-to-end deep learning frameworks, speech wave-

forms are directly generated from the input text [Gibiansky et al., 2017]. An

early work investigating the impact of synthetic speech on the performance of an

ASV system is [Masuko et al., 1999]. The authors used a hidden Markov model

(HMM) based synthetic speech to fool an HMM-based ASV system, demon-

strating an increased false acceptance rate. Please refer to [Wu et al., 2015b]

and [Sahidullah et al., 2019] for additional background on TTS spoofing and

countermeasures.

2.2.3 Voice conversion

Voice conversion aims at converting the voice of a speaker to that of another.

In the context of ASV spoofing, the source voice corresponds to an attacker

which is converted to that of a target speaker to fool an ASV system. Typ-

ical VC systems operate directly on speech signals of the source and target

speaker using a parallel corpus of the two speakers (speaking the same utter-

ances) on which a transformation function is learned to convert the attacker

acoustic parameters to that of a target speaker [Mohammadi and Kain, 2017].

Applications of VC technologies include producing natural sounding voices for

people with speech disabilities and voice dubbing in entertainment industries to

name a few. Some of the early works demonstrating the impact of voice con-

verted speech to fool an ASV system include that of [Pellom and Hansen, 1999,

Matrouf et al., 2006]. Furthermore, Kinnunen et al. [2012] demonstrated the

impact of converted speech across a wide range of ASV systems. They used a

joint density Gaussian mixture model (JDGMM) based VC system to fool ASV

systems showing increased error rates. Please refer to [Desai et al., 2009, Fang

et al., 2018a, Wu et al., 2015b, Sahidullah et al., 2019] for additional background

on VC.

2.2.4 Replay attacks

A replay spoofing attack involves playing back recorded speech samples of a

target speaker (enrolled speaker) to bypass an ASV system. This type of at-

tack requires physical transmission of spoofed speech through the system mi-

crophone. This is shown as point 1 in Fig. 2.2. Replay is the simplest form of

a spoofing attack that can be implemented using smartphones, and does not

require specific expertise either in speech processing or machine learning tech-

niques. Fig. 2.3 illustrates the difference between a bonafide/genuine speech

29

Figure 2.3: Difference between a genuine (bonafide) and a replayed speech.

and a replayed speech signal. Here, bonafide/genuine speech corresponds to

speech spoken by a target speaker during enrollment (or the verification phase)

and is acquired by an ASV system’s microphone. On the other hand, a replayed

speech denotes the speech signal that is obtained by playing back a pre-recorded

bonafide speech which is then acquired by the system’s microphone. The acous-

tic environment for the acquisition of bonafide speech, and the replayed speech

can be the same — situations where an attacker manages to launch the attack

from the same physical space. But, in practice the acoustic space is usually

different (eg. a different closed room/office with no background noise) as an

attacker would not want to risk getting caught while launching such attacks.

Therefore, factors of interest in detecting replay attacks are changes/noise in-

duced in bonafide speech from the loudspeaker of playback device, recording

device and the acoustic environment where the replay attack is simulated.

Section 2.4 will provide an in-depth description of countermeasures for re-

play attacks proposed in the literature before and after the release of standard

spoofing datasets (Section 3) released as part of the ASVspoof open spoofing

evaluations. Before that, the next Section 2.3 will provide a summary of the

ASVspoof challenge series that focusses on promoting anti-spoofing research for

secure voice biometrics.

2.3 ASVspoof challenge

ASVspoof1, the automatic speaker verification spoofing and countermeasures

challenge, is an ASV community driven effort promoting research in developing

anti-spoofing algorithms for secure voice biometrics. As summarised in [Wu

et al., 2015b], a number of research studies had confirmed the vulnerability

of voice biometrics to spoofing attacks, before the ASVspoof series began in

2015. However, these studies were mostly performed on small in-house datasets

comprising limited speakers and spoofing attack conditions. Therefore, research

results were hard to reproduce and understanding the true generalisability of the

1https://www.asvspoof.org/

30

reported anti-spoofing solutions in unseen attack conditions was difficult. The

main motivation of the ASVspoof series was to overcome these issues by orga-

nizing open spoofing challenge evaluations, promoting awareness of the problem,

making publicly available spoofing corpora comprising sufficiently varying at-

tack conditions with standard evaluation protocols, and further ensuring trans-

parent research leading to reproducible results.

The first ASVspoof challenge held in 2015 focused on the detection of arti-

ficial speech generated using either speech synthesis (TTS) or voice conversion

(VC) algorithms in a text-independent setting. Clean speech recorded using

high quality microphones was used as bonafide speech and seven VC and three

TTS algorithms were used to produce spoofed speech [Wu et al., 2015c]. The sec-

ond edition of the ASVspoof challenge held in 2017 focussed on text-dependent

replay spoofing attack detection [Kinnunen et al., 2017a]. Section 3.2 describes

details of the dataset used in the ASVspoof 2017 evaluation. The recent edi-

tion held in 2019, ASVspoof 2019, combined both TTS, VC and replay attacks

together, using advanced state-of-the art spoofing algorithms and methods to

generate spoofed speech samples [Todisco et al., 2019., Wang et al., 2019b].

Section 3.3 provides further details on the datasets used in the 2019 challenge.

One key observation that is worth noting from the three ASVspoof challenges

is the paradigm shift in the use of modelling approaches for spoofing detection.

Gaussian mixture models (GMMs), which is a generative model, were popular

during the first ASVspoof challenge in 2015 as evident from the winning system

of this challenge which is a GMM-based system [Patel and Patil, 2015]. However,

the 2017 and 2019 spoofing challenges were mostly dominated by data-driven

discriminatively trained deep models [Lavrentyeva et al., 2017, 2019]. Section

2.4 provides further details. The main task, however, in all the three editions of

the ASVspoof challenge was to build a standalone countermeasure model (anti-

spoofing algorithm) that determines if a given speech recording is bonafide or

a fake recording (spoofed). As for the performance evaluation, the equal error

rate (EER) was used as a primary metric in the 2015 and 2017 edition. As for

the 2019 edition, a recently introduced tandem detection cost function (t-DCF)

metric [Kinnunen et al., 2018] was used as a primary metric and EER as the

secondary metric. Section 3.5 provides details on these metrics.

As this thesis focusses on replay attacks, we refer readers to [Wu et al., 2015c,

2017] for additional details on the ASVspoof 2015 challenge and results. Subsec-

tion 4.3.1 provides a summary of the top performing systems of the ASVspoof

2017 challenge and we refer the reader to [Kinnunen et al., 2017a] for more

details. For the 2019 evaluations and the results please refer to [ASVspoof

2019 evaluation plan, Todisco et al., 2019.].

31

2.4 Countermeasures for replay spoofing attacks

As defined in Section 1.1, a spoofing countermeasure comprises a frontend fea-

ture extractor and a backend classifier. This section now provides a detailed

background on different features and modelling approaches that have been stud-

ied in the literature for replay spoofing detection. In order to increase the read-

ability, we organize this literature in two Subsections 2.4.1 and 2.4.2. Subsection

2.4.1 groups related works that use traditional hand-designed features and ma-

chine learning techniques. Subsection 2.4.2 contains a summary of published

literature that uses deep learning either for feature extraction (and uses shallow

backend classifiers such as GMMs, SVMs), for classification as a backend model

(using hand-crafted features or time-frequency representations of audio as its

input) and end-to-end learning where features and classifiers are learned jointly

from the training data.

2.4.1 Traditional methods

One of the earliest works studying the impact of playing back recorded speech

to fool an ASV system was by [Lindberg and Blomberg, 1999]. This study was

performed in a text-dependent setting using a Swedish database for telephone

speaker verification. They concatenated pre-recorded digits and simulated re-

play attacks demonstrating increased false acceptance rates of the system for

both male and female speakers. Replay attacks in a remote telephonic appli-

cation setting were studied in [Shang and Stevenson, 2010]. If a test utterance

was found to be very similar to the ones present in the database, then it was

considered a replay attack as no speaker can reproduce the exact same utterance.

The study by [Lipeng et al., 2008] used differences in channel characteris-

tics as a cue for replay detection. They first trained a bonafide channel model

using bonafide audio recordings of mute voices. During testing, a test speech

recording is considered replayed if its channel characteristics are found to be

different than the channel model. Wang et al. [2011] also used a similar idea for

detecting replay attack. The recording devices and playback devices induce dif-

ferent channel noise in a replayed speech which would be different for bonafide

speech recordings. Using this idea, they used support vector machines to model

the channel noise difference between bonafide and replayed speech recordings

and demonstrated a reduction in the error rate of the GMM-UBM ASV system

under replay attack. The vulnerabilities of replay attacks in a far-field recorded

speech setting were studied in [Villalba and Lleida, 2010]. The authors demon-

strated an increased error rate of a joint factor analysis (JFA) based ASV system

when these recorded speech samples were replayed.

One of the first studies on spoofing detection (including replay attack) us-

32

ing a publicly available spoofing corpus was by [Ergünay et al., 2015]. The

dataset, called AVspoof (audio-visual spoofing database) which is different from

ASVspoof (Section 3 describes these datasets), consisted of spoofed speech de-

rived using replay, TTS and VC attacks. Using two state-of-the-art ASV sys-

tems, the authors demonstrated the vulnerability of ASV systems with increased

error rates in the face of spoofing attacks.

Since the release of the benchmark anti-spoofing datasets ASVspoof 2015

[Wu et al., 2015c], ASVspoof 2017 [Kinnunen et al., 2017a] and ASVspoof 2019

[Todisco et al., 2019.] as part of the ongoing ASVspoof challenge series (Sec-

tion 2.3), there has been considerable research on presentation attack detection

[Sahidullah et al., 2019], in particular for TTS, VC, and replay attacks. Many

anti-spoofing features coupled with a shallow model (such as GMMs or SVMs)

have been studied and proposed in the literature. We briefly discuss them here.

Constant Q cepstral coefficients (CQCCs) [Todisco et al., 2017], among other

features, have shown state-of-the-art performance on TTS and VC spoofed

speech detection tasks on the ASVspoof 2015 dataset [Wu et al., 2015c]. They

have been adapted as baseline features in the recent ASVspoof 2017 and ASVspoof

2019 challenges. Further tweaks on CQCCs have been studied in [Yang et al.,

2018a] showing some improvement over the standard CQCCs. Following the

widespread adoption of CQCCs in spoofing detection, [Tak et al., 2020] have

attempted to understand the effectiveness of CQCCs through a subband anal-

ysis with a GMM classifier. The work of [Wang et al., 2017] combines different

hand-crafted features with the means and variances of CQCCs to derive a high-

dimensional utterance level feature representation. The authors use an SVM

classifier for class discrimination.

Jelil et al. [2017] proposed anti-spoofing features based on source and in-

stantaneous frequency and used a GMM for class discrimination. Teager energy

operator (TEO) based spoof detection features have been studied in [Patil et al.,

2017]. Speech demodulation features using the TEO and the Hilbert transform

with a GMM classifier have been studied in [Kamble et al., 2018]. Motivated

from TEO, Kamble and Patil [2018] proposed a variable length energy separa-

tion algorithm using instantaneous amplitude as features coupled with a GMM

for replay detection. Furthermore, [Kamble and Patil, 2019] have analysed the

impact of reverberation noise on replay spoofing detection using Teager energy

features with a GMM backend. Features derived from a source-filter vocal tract

model and mel-scale relative phase features with a GMM backend have been

studied by Li et al. [2018]. Suthokumar et al. [2018] proposed two utterance

level features computed from the modulation spectrum (modulation centroid

frequency and modulation spectrum energy) and short term frame based fea-

tures with a GMM backend classifier for replay spoofing detection. Spectral

33

centroid based frequency modulation features have been proposed using a GMM

in [Gunendradasan et al., 2018].

M S and Murthy [2018] proposed the use of decision level feature switching

between mel and linear filterbank slope based features, demonstrating promising

performance on the ASVspoof 2017 v2.0 dataset. Features based on compressed

integrated linear prediction residuals coupled with a GMM were proposed by

[Jelil et al., 2018]. Investigation of several different hand-crafted features that

showed good results on synthetic and voice converted speech detection was per-

formed by Font et al. [2017]. Although they use the similar set of features that

we used in our work in Section 4.2, our objective and feature configuration is dif-

ferent. We used the default feature configuration that was used by [Sahidullah

et al., 2015]. Furthermore, both of these works were part of the ASVspoof 2017

challenge submission. Ensemble models combining scores of several different

classifiers (GMMs, SVMs) trained on hand-crafted features (CQCCs, MFCCs

and PLPs) have been studied in [Ji et al., 2017].

Motivated from models of the human cochlea, features have been proposed

for replay spoofing detection in [Patil et al., 2019, Gunendradasan et al., 2019].

Patil et al. [2019] proposed cochlear cepstral features derived from energy Separation-

Based Instantaneous Frequency Estimation with a GMM classifier. Gunen-

dradasan et al. [2019] proposed an Adaptive-Q Cochlear Model from which am-

plitude modulation features were extracted and GMMs were trained for spoofing

detection. Another line of work investigating instantaneous frequency for replay

detection is that of [Alluri and Vuppala, 2019]. They proposed three instanta-

neous cepstral features (single frequency cepstral coefficients, zero time win-

dowing cepstral coefficients, and instantaneous frequency cepstral coefficients)

with a GMM for spoofing detection. They have only reported the performance

of their proposed features on the development set of the ASVspoof 2019 PA

dataset, so it is not clear if their proposed features show good generalisation on

unseen test conditions.

Replay spoofing detection based on the blind estimation of the magnitude of

channel responses has been studied by [Avila et al., 2019]. Wickramasinghe et al.

[2019b] proposed features based on spatial differentiation on the filter outputs

of a parallel filter bank for spoofing detection using a GMM classifier. They

further proposed to use adaptive bandpass filters and derived three different

sets of features with a GMM classifier as a replay spoofing countermeasure

[Wickramasinghe et al., 2019a].

The impact of spoofing countermeasures across different phonemes has been

studied by [Suthokumar et al., 2019] on the ASVspoof 2017 v2.0 dataset. They

developed phone-specific GMMs using rectangular frequency cepstral coeffi-

cients (explained in Section 2.5) and demonstrated that more discriminative

34

information is offered by phoneme groups such as fricatives, nasals, stops and

pause phonemes. Liu et al. [2019a] have used attention-based adaptive filters to

automatically select only those frequency bands/regions that are most discrim-

inative for spoofing detection. Both phase and magnitude information is used

along with a GMM classifier for spoofing detection.

Table 2.1 provides a high-level summary of countermeasures for replay at-

tacks using traditional methods.

2.4.2 Deep learning methods

Within the context of spoofing detection, deep learning models have been pro-

posed either for feature learning [Qian et al., 2016, Lavrentyeva et al., 2017,

Nagarsheth et al., 2017, Sriskandaraja et al., 2018, Sailor et al., 2018, Gomez-

Alanis et al., 2019b, Chang et al., 2019, You et al., 2019, Gomez-Alanis et al.,

2019a], as a backend classifier [Yang et al., 2018b, Li et al., 2017, 2019b, Lai

et al., 2019b, Bia lobrzeski et al., 2019, Zeinali et al., 2019, Williams and Rown-

icka, 2019, Alzantot et al., 2019, Cai et al., 2019, Das et al., 2019, Yang et al.,

2019b, Lavrentyeva et al., 2019, Jung et al., 2019, You et al., 2019, Bakar and

Hanilçi, 2018, Lai et al., 2019a, Jung et al., 2020, Shim et al., 2019, Yang et al.,

2019a], or in an end-to-end setting to model raw audio waveforms directly

[Dinkel et al., 2017, Muckenhirn et al., 2017b].

Multi-task learning (MTL) [Caruana, 1997] and transfer learning frameworks

along with attention models [Goodfellow et al., 2016] have also been explored

for spoofing detection tasks. MTL is a branch of machine learning that aims

at learning more than one tasks in parallel for improved model generalisation,

and it has been investigated in [Li et al., 2019b, Bia lobrzeski et al., 2019, Platen

et al., 2020, Jung et al., 2020, Yang et al., 2019a, Chang et al., 2019] for replay

spoofing detection. Transfer learning is a machine learning method that uses the

parameters (weights) of a well-trained model for a particular task to initialise

a model for a target task. In such a setting either all the model parameters

are updated, or only the last few layers are updated while freezing the initial

layers of the model (the process is often called finetuning the model) [Goodfellow

et al., 2016]. Transfer learning and data augmentation approaches for spoofing

detection have been investigated in [Chang et al., 2019, Shim et al., 2019, Cai

et al., 2019] and [Bia lobrzeski et al., 2019, Yang et al., 2019b] respectively.

Attention models on the other hand refer to machine learning techniques that

are designed to focus more on those parts of the input that are more relevant

and useful for solving a problem [Goodfellow et al., 2016]. Some of the works

in spoofing detection using attention models include [Tom et al., 2018] and [Lai

et al., 2019a].

35

T
ab

le
2.

1:
S

u
m

m
ar

y
of

co
u

n
te

rm
ea

su
re

s
fo

r
re

p
la

y
sp

o
o
fi

n
g

d
et

ec
ti

o
n

u
si

n
g

tr
a
d
it

io
n

a
l

m
et

h
od

s.
R

ep
o
rt

ed
p

er
fo

rm
a
n

ce
is

o
n

th
e

ev
a
lu

a
ti

o
n

se
t

of
th

e
A

S
V

sp
o
of

20
17

v
1.

0
an

d
v
2.

0
d

at
as

et
.

E
n

se
m

b
le

:
G

M
M

,
S

V
M

,
G

M
M

-U
B

M
,

G
P

L
D

A
,

R
a
n

d
o
m

fo
re

st
.

In
p

u
t

fe
a
tu

re
s

C
la

ss
ifi

e
r

M
e
tr

ic
(E

E
R

%
)

D
a
ta

se
t

F
u

si
o
n

R
e
fe

re
n

c
e

E
m

b
ed

d
in

g
G

M
M

7
.3

7
v
1
.0

-
L

av
re

n
ty

ev
a

et
a
l.

[2
0
1
7
]

C
Q

C
C

(m
ea

n
s+

va
ri

an
ce

)
+

E
m

ot
io

n
fe

at
u
re

+
M

F
C

C
S
V

M
2
4.

77
v
1.

0
-

W
a
n
g

et
a
l.

[2
0
1
7]

In
st

an
ta

n
eo

u
s

F
re

q
u
en

cy
C

os
in

e
C

o
effi

ci
en

t
G

M
M

3
5.

19
v
1.

0
-

J
el

il
et

a
l.

[2
0
1
7
]

E
p

o
ch

fe
at

u
re

G
M

M
3
6.

29
v
1.

0
-

J
el

il
et

a
l.

[2
0
1
7
]

P
ea

k
to

S
id

e
L

ob
e

R
at

io
m

ea
n

G
M

M
3
1.

60
v
1.

0
-

J
el

il
et

a
l.

[2
0
1
7
]

C
Q

C
C

G
M

M
1
9
.5

8
v
1.

0
-

J
el

il
et

a
l.

[2
0
1
7
]

M
F

C
C

G
M

M
2
3.

55
v
1.

0
-

J
el

il
et

a
l.

[2
0
1
7
]

C
F

C
C

IF
+

V
E

S
A

-I
F

C
C

+
P

ro
so

d
y

G
M

M
1
8.

33
v
1.

0
-

P
a
ti

l
et

a
l.

[2
0
1
7
]

L
F

C
C

s
G

M
M

2
6
.2

7
v
1.

0
-

F
on

t
et

a
l.

[2
0
17

]
IM

F
C

C
s

G
M

M
3
0.

9
1

v
1
.0

-
F

on
t

et
a
l.

[2
0
17

]
R

F
C

C
s

G
M

M
1
1.

9
v
1.

0
-

F
o
n
t

et
a
l.

[2
0
1
7]

L
P

C
C

s
G

M
M

25
.2

v
1.

0
-

F
o
n
t

et
a
l.

[2
0
1
7]

S
C

F
C

s
G

M
M

2
4.

8
3

v
1
.0

-
F

o
n
t

et
a
l.

[2
0
1
7
]

S
C

M
C

s
G

M
M

1
1.

4
9

v
1
.0

-
F

o
n
t

et
a
l.

[2
0
1
7
]

S
S
F

C
s

G
M

M
22
.3

8
v
1
.0

-
F

o
n
t

et
a
l.

[2
0
1
7
]

C
Q

C
C

s
+

M
F

C
C

s
+

P
L

P
s

E
n
se

m
b
le

1
2.

4
v
1.

0
sc

o
re

+
fe

a
tu

re
J
i

et
a
l.

[2
0
1
7
]

C
Q

C
C

s
G

M
M

1
3
.7

4
v
2
.0

-
D

el
g
a
d
o

et
a
l.

[2
0
1
8
]

C
Q

C
C

i-
v
ec

to
r

C
o
si

n
e

14
.7

6
v
2
.0

-
D

el
g
a
d
o

et
a
l.

[2
0
18

]
E

x
te

n
d
ed

C
Q

C
C

s
G

M
M

1
3
.3

8
v
2
.0

-
Y

a
n
g

et
a
l.

[2
0
1
8a

]
E

S
A

-I
A

C
C

+
E

S
A

-I
F

C
C

G
M

M
9.

6
4

v
2
.0

-
K

a
m

b
le

et
a
l.

[2
0
18

]
V

E
S
A

-I
A

C
C

G
M

M
1
1
.9

4
v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
1
8
]

V
E

S
A

-I
F

C
C

G
M

M
11
.7

9
v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
18

]
V

E
S
A

-I
A

C
C

+
V

E
S
A

-I
F

C
C

G
M

M
7.

1
1

v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
1
8
]

T
ea

ge
r

E
n
er

gy
C

ep
st

ra
l

C
o
effi

ci
en

ts
(T

E
C

C
)

G
M

M
1
1
.7

3
v
2.

0
-

K
a
m

b
le

a
n
d

P
a
ti

l
[2

0
19

]
T

E
C

C
+

C
Q

C
C

G
M

M
1
1.

5
6

v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
1
9
]

T
E

C
C

+
M

F
C

C
G

M
M

1
1
.7

3
v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
1
9
]

T
E

C
C

+
L

F
C

C
G

M
M

1
0
.3

0
v
2
.0

-
K

a
m

b
le

a
n
d

P
a
ti

l
[2

0
1
9
]

P
h
as

e
fe

at
u
re

:
P

B
S
F

V
T

G
M

M
2
6.

5
8

v
2
.0

-
L

i
et

a
l.

[2
0
18

]
P

h
as

e
fe

at
u
re

:
M

el
R

P
G

M
M

1
6.

0
3

v
2
.0

-
L

i
et

a
l.

[2
0
18

]
C

Q
C

C
+

P
B

S
F

V
T

+
M

el
R

P
G

M
M

1
2
.8

8
v
2
.0

sc
o
re

-l
ev

el
L

i
et

a
l.

[2
0
1
8
]

M
o
d
u
la

ti
on

C
en

tr
oi

d
F

re
q
u
en

cy
G

M
M

1
2.

9
2

v
1
.0

-
S
u
th

o
k
u
m

a
r

et
a
l.

[2
0
1
8]

M
o
d
u
la

ti
on

S
p

ec
tr

u
m

E
n
er

gy
G

M
M

1
1.

9
7

v
1
.0

-
S
u
th

o
k
u
m

a
r

et
a
l.

[2
0
1
8]

S
h
or

t
T

er
m

C
ep

st
ra

l
C

o
effi

ci
en

ts
G

M
M

1
1
.2

7
v
1
.0

-
S
u
th

o
k
u
m

a
r

et
a
l.

[2
0
1
8]

S
p

ec
tr

al
C

en
tr

oi
d

D
ev

ia
ti

on
G

M
M

1
1
.4

5
v
1
.0

-
G

u
n
en

d
ra

d
a
sa

n
et

a
l.

[2
0
1
8
]

S
p

ec
tr

al
C

en
tr

oi
d

F
re

q
u
en

cy
G

M
M

1
2
.3

4
v
1
.0

-
G

u
n
en

d
ra

d
a
sa

n
et

a
l.

[2
0
1
8
]

M
F

C
C

/L
F

S
/M

F
S

F
ea

tu
re

S
w

it
ch

in
g

G
M

M
6
.2

3
v
2
.0

-
M

S
a
n
d

M
u
rt

h
y

[2
0
1
8
]

C
om

p
re

ss
ed

In
te

gr
at

ed
L

in
ea

r
P

re
d
ic

ti
on

R
es

id
u
a
l

G
M

M
1
5
.7

6
v
2
.0

-
J
el

il
et

a
l.

[2
0
18

]
C

F
C

C
IF

-E
S
A

G
M

M
14
.7

7
v
2
.0

-
P

a
ti

l
et

a
l.

[2
0
1
9]

A
d
ap

ti
ve

-Q
C

o
ch

le
ar

A
m

p
li
tu

d
e

M
o
d
u
la

ti
on

G
M

M
8
.0

9
v
2
.0

-
G

u
n
en

d
ra

d
a
sa

n
et

a
l.

[2
0
1
9
]

M
F

C
C

-R
A

S
T

A
G

M
M

1
1
.2

8
v
1
.0

-
A

v
il

a
et

al
.

[2
0
1
9
]

S
p

ec
tr

al
E

n
ve

lo
p

e
C

en
tr

oi
d

M
ag

n
it

u
d
e

(C
M

)
G

M
M

9
.4

2
v
2
.0

-
W

ic
k
ra

m
a
si

n
g
h
e

et
a
l.

[2
0
1
9
a
]

C
M

+
C

en
tr

oi
d

F
re

q
u
en

cy
G

M
M

8
.5

8
v
2
.0

fe
a
tu

re
W

ic
k
ra

m
a
si

n
g
h
e

et
a
l.

[2
0
1
9
b
]

36

Furthermore, some of the well known deep architectures from computer vi-

sion such as ResNet [He et al., 2015a] and light CNN (LCNN) [Wu et al., 2015a]

have been widely adopted in spoofing detection demonstrating promising per-

formance on the ASVspoof challenge datasets. For example, the ResNet model

has been used in [Chen et al., 2017, Cai et al., 2017, Tom et al., 2018, Lai et al.,

2019b, Alzantot et al., 2019, Cai et al., 2019, Yang et al., 2019b, Jung et al.,

2019, Lai et al., 2019a, Platen et al., 2020, Shim et al., 2019] and, the light

CNN model was explored in [Lavrentyeva et al., 2017, Bia lobrzeski et al., 2019,

Zeinali et al., 2019, Gomez-Alanis et al., 2019b, Lavrentyeva et al., 2019].

The recently proposed SincNet [Ravanelli and Bengio, 2018] architecture

for speaker recognition was used for spoofing detection in [Zeinali et al., 2019].

Similarly, x-vectors [Snyder et al., 2018] which were originally proposed for

speaker recognition, have been studied for spoofing detection in [Williams and

Rownicka, 2019]. Furthermore, attention-based models have been studied by Lai

et al. [2019a] and Tom et al. [2018] on the ASVspoof 2017 and ASVspoof 2019

datasets respectively.

Lavrentyeva et al. [2017] used the LCNN model on time-frequency repre-

sentation (spectrogram) inputs to learn discriminative features on which GMM

models were trained for spoofing detection. This model demonstrated the best

performance as a stand-alone system in the ASVspoof 2017 challenge. Sec-

tion 4.3 provides further details on this model and the challenges associated

in reproducing the model. Nagarsheth et al. [2017] trained a deep CNN using

tandem features (concatenation of CQCCs and high frequency cepstral coeffi-

cients) to learn different spoofing attack configurations in the training set. Using

the trained network, they extract embeddings and an SVM classifier is trained

for spoofing detection. Sriskandaraja et al. [2018] trained deep Siamese neural

networks (CNNs) that take as input a pair of speech utterances and produces

a similarity score, indicating whether the two inputs originate from the same

class. They use the network to extract features on which GMMs are trained

for spoofing detection. Sailor et al. [2018] proposed the use of convolutional

restricted Boltzmann machines (RBMs) to learn temporal modulation features

for spoofing detection. Gomez-Alanis et al. [2019b] used light convolutional

gated recurrent neural networks as deep feature extractors to robustly repre-

sent speech signals as utterance-level embeddings and shallow models such as

SVMs, linear discriminant analysis (LDA) and probabilistic linear discriminant

analysis (PLDA) were used for spoofing detection.

Chang et al. [2019] explored representation learning and transfer learning

methods to train a DNN for embedding learning and SVMs are trained on

these embeddings for spoofing detection. You et al. [2019] proposed a replay

device feature (RDF) extractor on the basis of the genuine-replay-pair training

37

database in the Constant-Q-Transform (CQT) domain. The RDF feature ex-

tractor is proposed based on the CQT transform and Bi-LSTM neural networks

to model device specific properties for efficient replay attack detection. The

DNN classifier is then trained on RDF features for spoofing detection. This

work was performed on the ASVspoof 2017 v2.0 dataset which has balanced

training examples between the bonafide and spoof classes. Gomez-Alanis et al.

[2019a] used gated recurrent convolutional neural networks as a feature extrac-

tor to derive utterance-level embeddings which are then used to train a spoofing

detector using shallow models (GMMs and SVMs).

Using the Constant-Q-Transform, Yang et al. [2018b] proposed different

types of features such as short-term spectral statistics information, octave-band

principal information and fullband principal information. They trained a DNN

on the individual features and fused feature (combining all three) for replay

spoofing detection, and showed improved performance with the fused features.

The influence of various factors such as speaker identity, speech content and

playback & recording device towards model overfitting have been studied in [Li

et al., 2017]. The authors proposed an F-ratio probing tool for this, and GMMs,

SVMs and DNN classifiers were investigated. Their analysis showed that device

is the most influential factor contributing towards the risk of overfitting. [Li

et al., 2019b] proposed a framework using time delay neural networks that inte-

grates multiple types of features (MFCCs, CQCCs, filter banks, spectrograms)

and trains the network in a multi-task setting for spoofing detection.

Using CQCCs and log power spectrogram features [Lai et al., 2019b] trained

Squeeze-Excitation Network [Hu et al., 2018], ResNet and their variants in a

multi-class setting for spoofing detection. Bayesian neural networks (BNNs) for

spoofing detection have been studied by [Bia lobrzeski et al., 2019]. Along with

BNNs they also investigated the LCNN model on spectrogram inputs. Using

data augmentation they trained these models in a multi-tasking setting for im-

proved generalisation and model robustness. Zeinali et al. [2019] investigated

the use of VGG and LCNN model architectures for spoofing detection on the

ASVspoof 2019 PA dataset using MFCCs, CQCCs and the spectrogram as input

features. Williams and Rownicka [2019] used SCMC features concatenated with

x-vector attack embedding to train a CNN for spoofing detection (ASVspoof

2019 PA dataset). Alzantot et al. [2019] investigated three different variants of

a residual convolutional neural network using different feature representations

such as MFCCs, spectrogram and CQCCs for replay spoofing detection. ResNet

models utilizing various input features such as IMFCCs, CQCCs, power spectro-

grams along with data augmentation have been studied for spoofing detection

in [Cai et al., 2019].

Different variants of CQCC features were investigated by [Das et al., 2019]

38

using GMM and DNN backends for spoofing detection. Yang et al. [2019b]

used Log-constant Q transform (CQT) and a latent vector from a pretrained

variational autoencoder as input features to train a spoofing detector that used

ResNet and LCNN architectures. Lavrentyeva et al. [2019] proposed changes in

their original LCNN architecture that was used in the 2017 evaluations [Lavren-

tyeva et al., 2017]. In this work they used the LCNN model in an end to end

setting where they used output activations as a score, unlike prior work in

[Lavrentyeva et al., 2017] where they trained GMMs on top of learned features

from the LCNN model. Furthermore, they proposed the angular margin based

softmax activation for training a robust deep LCNN classifier in [Lavrentyeva

et al., 2019]. On both the tasks of the ASVspoof 2019 challenge their proposed

model secured the second rank.

Jung et al. [2019] investigated ResNet and CNN-gated recurrent neural net-

works for spoofing detection using high resolution magnitude spectrogram (2048

FFT bins) inputs. The influence of complementary information such as phase

information and power spectral density on the detection performance was also

studied. Bakar and Hanilçi [2018] used long term average spectrum features to

train a DNN for replay spoofing detection and suggested that high-frequency

components convey more discriminative information. Lai et al. [2019a] used an

attention mechanism-based filter that enhances discriminative features prior to

a ResNet-based classifier for spoofing detection.

Self-supervised learning approaches leveraging freely-available out-of-domain

data (audio recordings from YouTube) for pretraining a DNN to learn acoustic

configurations have been investigated in a recent paper by [Shim et al., 2019].

Their proposed framework operates on two stages. First, a DNN is trained

to learn acoustic configurations by optimizing the model to detect the similar-

ity between a given pair of segments (which is extracted initially by splicing

the original utterances into different segments). Second, they apply transfer

learning using the pre-trained DNN weights on the spoofing detection tasks

demonstrating improved performance.

Motivated from the successful application of CQT, [Yang et al., 2019a]

proposed a multi-level transform framework using DNNs to capture relevant

information for spoofing detection by exploiting the octave power spectra of

long-term CQT. Tom et al. [2018] used a pre-trained ResNet model (originally

trained on images) using an attention mechanism to learn a feature mask from

the input which is a group-delay feature matrix. Then, they apply the learned

feature mask on the original group delay feature matrix and the pre-trained

ResNet model is finetuned for the spoofing detection task. Interestingly, their

model demonstrates 0% EER on both the development and evaluation sets of

the ASVspoof 2017 v1.0 dataset. Wickramasinghe et al. [2018] proposed to use

39

Figure 2.4: MFCC/IMFCC feature extraction pipeline. The flip block applies
to IMFCC only.

long-term temporal envelopes of subband signals using a frequency domain lin-

ear prediction (FDLP) framework for spoofing detection. Domain adversarial

training for spoofing detection has been studied in [Wang et al., 2019a] using

an adapted version of the LCNN model architecture.

Using a multi-task DNN framework, Jung et al. [2020] attempts to un-

derstand the impact of various factors such as ‘Room Size’, ‘Reverberation’,

‘Speaker-to-ASV distance, ‘Attacker-to-Speaker distance’, and ‘Replay Device

Quality’ on replay spoofing detection (on the ASVspoof 2019 PA dataset). Fur-

thermore, another line of work utilizing a multi-task learning framework and

Siamese Neural Networks for replay spoofing detection is that of [Platen et al.,

2020]. They investigated training this framework on a variety of input features

such as log filter bank outputs and group delay matrix.

It is also worth noting that the best performing models on the ASVspoof

challenges used fusion approaches, either at the classifier output or the feature

level [Lai et al., 2019b, Lavrentyeva et al., 2019, 2017, Lai et al., 2019b], indi-

cating the challenges in designing a single countermeasure capable of capturing

all the variabilities that may appear in wild test conditions in a presentation

attack. Table 2.2 provides a summary of deep learning based countermeasures

for replay spoofing attack detection. As Table 2.2 summarises, there is a sub-

stantial body of prior work on deep models in ASV anti-spoofing, even if it is

hard to pinpoint commonly-adopted or outstanding methods. Nonetheless, the

majority of the approaches rely either on discriminative models or on classical

(shallow) generative models.

2.5 Signal processing methods

This section briefly describes signal processing methods that showed good per-

formance on the detection of TTS and VC spoofing attacks [Sahidullah et al.,

2015]. These methods have been applied in this thesis for replay spoofing detec-

tion to study how well they generalise on acoustically different attack conditions.

Mel-frequency cepstral coefficients (MFCCs). MFCCs are popular frontend fea-

tures designed initially for automatic speech recognition [Davis and Mermel-

stein, 1980] and adopted for speaker recognition applications [Kinnunen and

40

T
ab

le
2.

2:
S

u
m

m
ar

y
of

d
ee

p
le

a
rn

in
g

m
et

h
o
d

s
fo

r
sp

o
o
fi

n
g

d
et

ec
ti

o
n

in
A

S
V

.
D

is
c:

d
is

cr
im

in
a
ti

ve
,

G
en

:
g
en

er
a
ti

v
e.

D
1
:

A
S

V
sp

o
o
f

2
0
1
5
,

D
2:

A
V

sp
o
of

20
16

,
D

3.
1:

A
S

V
sp

o
of

20
17

v
1.

0,
D

3
.2

:
A

S
V

sp
o
o
f

2
0
1
7

v
2
.0

,
D

4
:

A
S

V
sp

o
o
f

2
0
1
9

L
A

,
D

5
:

A
S

V
sp

o
o
f

2
0
1
9

P
A

.
D

et
a
il

s
o
n

th
es

e
d

at
as

et
s

an
d

m
et

ri
cs

ar
e

p
ro

v
id

ed
in

C
h

ap
te

r
3
.

R
ep

o
rt

ed
n
u
m

b
er

s
a
re

fo
r

th
e

re
sp

ec
ti

ve
ev

a
lu

a
ti

o
n

se
ts

.

M
o
d

e
li

n
g

M
o
d

e
l/

In
p

u
t

P
u

rp
o
se

M
e
tr

ic
D

a
ta

se
t

F
u

si
o
n

a
n
ti

-s
p

o
o
fi

n
g

a
p

p
ro

a
ch

A
rc

h
it

e
c
tu

re
fe

a
tu

re
s

[E
E

R
/
t-

D
C

F
]

u
se

d
re

fe
re

n
c
e

D
is

c
C

N
N

ra
w

-w
av

ef
o
rm

en
d
-t

o
-e

n
d

0
.1

5
7

D
1

-
M

u
ck

en
h
ir

n
et

a
l.

[2
0
1
7
b
]

D
is

c
C

N
N

+
L

S
T

M
ra

w
-w

av
ef

o
rm

en
d
-t

o
-e

n
d

[0
.8

2
H

T
E

R
/
-]

D
2

-
D

in
ke

l
et

a
l.

[2
0
1
7
]

D
is

c
C

N
N

sp
ec

tr
o
g
ra

m
cl

a
ss

ifi
ca

ti
o
n

[1
0
.6

/
-]

D
3
.2

-
S
ec

ti
o
n

4
.5

.2
D

is
c

L
C

N
N

[W
u

et
al

.,
20

15
a]

sp
ec

tr
o
g
ra

m
em

b
ed

d
in

g
le

a
rn

in
g

-
D

3
.1

-
L

av
re

n
ty

ev
a

et
a
l.

[2
0
1
7
]

G
en

G
M

M
s

em
b

ed
d
in

g
cl

a
ss

ifi
ca

ti
o
n

[7
.3

7/
-]

D
3
.1

-
L

av
re

n
ty

ev
a

et
a
l.

[2
0
1
7
]

D
is

c
C

N
N

C
Q

C
C

+
H

F
C

C
em

b
ed

d
in

g
le

a
rn

in
g

[1
1.

5
/
-]

D
3
.1

fe
at

u
re

N
a
g
a
rs

h
et

h
et

a
l.

[2
0
1
7
]

D
is

c
D

N
N

+
R

N
N

F
B

an
k
s,

M
F

C
C

s
em

b
ed

d
in

g
le

a
rn

in
g

-
D

1
-

Q
ia

n
et

a
l.

[2
0
1
6
]

D
is

c
S
V

M
,

L
D

A
em

b
ed

d
in

g
cl

a
ss

ifi
ca

ti
o
n

[1
.1

/
-]

D
1

sc
o
re

Q
ia

n
et

a
l.

[2
0
1
6
]

D
is

c
C

N
N

em
b

ed
d
in

g
le

a
rn

in
g

-
D

3
.1

-
S
ri

sk
a
n
d
a
ra

ja
et

a
l.

[2
0
1
8
]

G
en

G
M

M
em

b
ed

d
in

g
cl

a
ss

ifi
ca

ti
o
n

[6
.4

/
-]

D
3
.1

-
S
ri

sk
a
n
d
a
ra

ja
et

a
l.

[2
01

8
]

D
is

c
B

ay
es

ia
n

D
N

N
,

L
C

N
N

sp
ec

tr
o
g
ra

m
cl

a
ss

ifi
ca

ti
o
n

[0
.8

8/
0.

0
2
1
9
]

D
5

sc
o
re

B
ia

 lo
b
rz

es
k
i

et
a
l.

[2
01

9
]

D
is

c
V

G
G

,
S
in

cN
et

,
L

C
N

N
sp

ec
tr

og
ra

m
,

C
Q

T
cl

a
ss

ifi
ca

ti
o
n

[1
.5

1/
0.

0
3
7
2
]

D
5

sc
o
re

Z
ei

n
a
li

et
a
l.

[2
0
1
9
]

[8
.0

1
/
0.

2
0
8
0
]

D
4

sc
o
re

Z
ei

n
a
li

et
a
l.

[2
0
1
9
]

D
is

c
L

C
N

N
,

R
N

N
sp

ec
tr

o
g
ra

m
em

b
ed

d
in

g
le

a
rn

in
g

-
-

-
G

o
m

ez
-A

la
n
is

et
a
l.

[2
0
1
9
b
]

G
en

P
L

D
A

em
b

ed
d
in

g
cl

as
si

fi
ca

ti
o
n

[6
.0

8
/
-]

D
3
.1

-
G

o
m

ez
-A

la
n
is

et
a
l.

[2
0
1
9
b
]

D
is

c
L

D
A

em
b

ed
d
in

g
cl

a
ss

ifi
ca

ti
o
n

[6
.2

8/
0.

1
5
2
3
]

D
4

-
G

o
m

ez
-A

la
n
is

et
a
l.

[2
0
1
9
b
]

G
en

P
L

D
A

em
b

ed
d
in

g
cl

a
ss

ifi
ca

ti
o
n

[2
.2

3/
0.

0
6
1
4
]

D
5

-
G

o
m

ez
-A

la
n
is

et
a
l.

[2
0
1
9
b
]

D
is

c
T

D
N

N
,

L
C

N
N

,
R

es
N

et
C

Q
C

C
s,

L
F

C
C

s
em

b
ed

d
in

g
le

a
rn

in
g

[9
.0

8/
0.

1
7
9
1
]

D
4

sc
o
re

C
h
an

g
et

a
l.

[2
0
1
9
]

D
is

c
R

es
N

et
[H

e
et

al
.,

20
15

a]
S
T

F
T

,
gr

ou
p

d
el

ay
g
ra

m
cl

a
ss

ifi
ca

ti
o
n

[0
.6

6/
0.

0
1
6
8
]

D
5

sc
o
re

C
a
i

et
a
l.

[2
0
1
9
]

D
is

c
T

D
N

N
M

F
C

C
,

C
Q

C
C

,
sp

ec
tr

og
ra

m
m

u
lt

it
a
sk

in
g
,

cl
a
ss

ifi
ca

ti
on

[7
.9

4
/
-]

D
3
.2

sc
o
re

L
i

et
a
l.

[2
01

9
b
]

[7
.6

3
/
0.

2
1
2
9
]

D
4

sc
o
re

L
i

et
a
l.

[2
01

9
b

]
[0
.9

6
/
0.

0
2
6
6
]

D
5

sc
o
re

L
i

et
a
l.

[2
0
1
9
b
]

D
is

c
R

es
N

et
M

F
C

C
s,

C
Q

C
C

s
cl

a
ss

ifi
ca

ti
o
n

[1
3.

3
0
/-

]
D

3
.1

sc
o
re

C
h
en

et
al

.
[2

0
1
7
]

D
is

c
R

es
N

et
,

S
eN

et
C

Q
C

C
,

sp
ec

tr
o
gr

am
cl

a
ss

ifi
ca

ti
o
n

[0
.5

9
/
0.

0
16

]
D

5
sc

o
re

L
a
i

et
a
l.

[2
0
1
9
b
]

[6
.7

/
0
.1

5
5
]

D
4

sc
o
re

L
ai

et
a
l.

[2
0
1
9
b
]

D
is

c
R

es
N

et
M

F
C

C
s,

C
Q

C
C

,
sp

ec
tr

o
gr

am
cl

a
ss

ifi
ca

ti
o
n

[6
.0

2
/
0.

1
5
6
9
]

D
4

sc
o
re

A
lz

a
n
to

t
et

a
l.

[2
0
1
9]

[2
.7

8
/
0.

0
6
9
3
]

D
5

sc
o
re

A
lz

a
n
to

t
et

al
.

[2
0
1
9]

D
is

c
C

N
N

+
G

R
U

sp
ec

tr
o
g
ra

m
cl

a
ss

ifi
ca

ti
o
n

[2
.4

5
/
0.

0
5
7
0
]

D
5

sc
o
re

J
u
n
g

et
a
l.

[2
0
19

]
R

es
N

et
,

L
S
T

M
s

sp
ec

tr
og

ra
m

em
b

ed
d
in

g
le

a
rn

in
g

[1
6
.3

9
/
-]

D
3
.1

sc
o
re

C
a
i

et
al

.
[2

0
1
7
]

G
en

G
M

M
s

C
Q

C
C

,
L

F
C

C
,

M
el

R
P

cl
a
ss

ifi
ca

ti
o
n

[1
1
.4

3
/
-]

D
3
.2

sc
o
re

L
iu

et
a
l.

[2
0
1
9
a
]

G
en

A
tt

en
ti

on
-b

as
ed

R
es

N
et

sp
ec

tr
o
g
ra

m
cl

a
ss

ifi
ca

ti
o
n

[8
.5

4
/
-]

D
3
.2

sc
o
re

L
a
i

et
a
l.

[2
01

9
a
]

G
en

V
A

E
C

Q
T

sp
ec

tr
og

ra
m

em
b

ed
d
in

g
le

a
rn

in
g

-
D

4
-

Y
a
n
g

et
a
l.

[2
0
1
9
b
]

G
en

V
A

E
C

Q
C

C
,

sp
ec

tr
o
gr

am
cl

a
ss

ifi
ca

ti
o
n
,

fe
a
tu

re
ex

tr
a
ct

io
n

D
3
.2

,
D

5
S
ec

ti
o
n

5
.5

41

Figure 2.5: LFCC/RFCC feature extraction pipeline. LFCCs use triangular
filters and RFCCs use rectangular filters.

Li, 2010a]. These features are based on a model of human auditory percep-

tion. Fig. 2.4 summarises the steps involved in extracting this feature. A

pre-emphasis filter is first applied to the speech signal to boost energy in the

higher frequency components. This is followed by slicing the speech signal into

overlapping frames through framing and windowing operations. As for win-

dowing, Hanning or Hamming windows are generally used to smooth the edges

(boundary after the split). The discrete Fourier transform (DFT) [Dickinson

and Steiglitz, 1982] is then applied on the windowed frames to extract informa-

tion in the frequency domain. The output from the DFT (magnitude spectrum)

is first squared and Mel scaled triangular bandpass filters are applied on DFT

power spectrum. The main motivation of using Mel filters is to mimic how hu-

mans perceive sounds. These filters are linearly spaced below 1000 Hz and are

spaced logarithmically above this frequency [Lerch, 2012]. Furthermore, they

give less emphasis on higher frequency components (widely spaced filters) to

reflect human hearing sensitivity at higher frequencies. Next, a log compression

on the mel-scaled power spectrum is applied. The final step involves taking the

discrete cosine transformation to decorrelate the mel-spectral feature vectors

yielding the desired MFCCs. Usually the first few coefficients are retained as a

feature representation per frame.

Inverted Mel-frequency cepstral coefficients (IMFCCs). IMFCCs were first in-

troduced for speaker recognition applications by Chakroborty et al. [2007], and

they have been successfully applied for detecting synthetic and voice converted

speech [Sahidullah et al., 2015]. The feature extraction pipeline of IMFCCs is

the same as in MFCCs, as depicted in Fig. 2.4 with one key difference. Unlike

MFCCs which put higher emphasis in lower frequency regions, the mel-scaled

filters are flipped to emphasise more on the higher frequency components. In

other words, mel-scaled filters are now linearly spaced above 7000 Hz frequen-

cies and are spaced logartihmically below this frequency. In practise, this effect

can be incorporated by simply adding a flip block, as highlighted in blue in Fig.

2.4, that inverts the output of the DFT before applying Mel scaled triangular

bandpass filters on it.

Linear frequency cepstral coefficients (LFCCs). LFCC frontends, initially intro-

42

Figure 2.6: SCMC feature extraction pipeline.

Figure 2.7: CQCC feature extraction pipeline.

duced for speaker recognition, have been widely adopted in spoofing detection

reporting a good performance [Sahidullah et al., 2015]. Fig. 2.5 illustrates the

pipeline for LFCC feature extraction, which is similar to that of the standard

MFCCs with one key difference. Here the filters are placed in equal sizes fol-

lowing a linear scale unlike MFCCs that use mel scale spacing.

Rectangular frequency cepstral coefficients (RFCCs). The RFCC features have

shown good results in detecting artificial speech produced through TTS and VC

algorithms [Sahidullah et al., 2015]. The steps involved in extracting RFCCs

are very similar to that of LFCCs with the key difference being the filter shape.

RFCCs as the name suggests use rectangular shaped filters spaced at a linear

scale. Fig. 2.5 summarises the RFCC feature extraction pipeline.

Furthermore, Fig. 2.8 provides a visual summary of different filters used dur-

ing the extraction of the hand-crafted features discussed so far.

Subband centroid magnitude coefficients (SCMCs). SCMC [Min Karen Kua

et al., 2010] features were first introduced by Sahidullah et al. [2015] for spoof-

ing detection demonstrating a good detection performance for TTS and VC

spoofing attacks. Fig. 2.6 illustrates the steps for extracting SCMC features.

The first four steps are the same as used in computing RFCCs. This is followed

by the computation of the spectral centroid magnitude from the magnitude

spectrum, which is defined as the weighted (frequency of each magnitude com-

ponent is used as weights) average magnitude for a given subband. This step is

followed by the standard log non-linearity and DCT giving the desired SCMC

features.

Constant Q cepstral coefficients (CQCCs). This feature was proposed by Todisco

et al. [2016, 2017] for TTS and VC spoofing detection and is now widely adopted

as a default spoofing detection feature following its good performance on these

43

Figure 2.8: Illustration of filters used in extracting RFCC, LFCC, MFCC and
IMFCC features.

44

tasks. Unlike other cepstral features discussed so far which use the short time

Fourier transform (STFT), the CQCC feature extraction process uses a constant

Q transform (CQT) which provides variable time and frequency resolution. It

provides higher frequency resolution at lower frequencies and higher time resolu-

tion at higher frequencies in contrast to STFT that use fixed time and frequency

resolutions. Fig. 2.7 summarises the steps involved in extracting CQCC fea-

tures. The CQT spectrum is first obtained from the given speech signal from

which the power spectrum is computed. This is followed by the application of

a log non-linearity. A uniform resampling operation is then applied to convert

the non-uniform frequency scale of CQT to a linear frequency scale, followed by

the conventional DCT operation resulting in the desired CQCC features.

All of the above described hand-crafted features have been used in Sec-

tion 4.2. Furthermore, CQCCs have also been studied in Sections 4.4, 4.6, 5.3,

and 5.5. MFCCs and IMFCCs have also been studied in Sections 4.4.

2.6 Discriminative models

This section provides a description of discriminative models that have been used

as a backend classifier for spoofing detection in the literature and in this thesis.

2.6.1 Support vector machine

The support vector machine (SVM) is a supervised learning algorithm that

aims at solving classification problems, and is well-known for binary classifica-

tion problems. Using kernel trick [Campbell et al., 2006], it maps the original

input into a high-dimensional space to learn a decision boundary (hyperplane)

separating the two classes while maximizing the margin of separation between

the two classes. Such a decision boundary is often referred to as the optimal

hyperplane and the data points closest to this hyperplane are called support

vectors.

SVMs were one of the popular classifiers used in speaker recognition [Camp-

bell et al., 2006, 2007]. It has been adopted for spoofing detection problems

recently [Sahidullah et al., 2015, Delgado et al., 2018]. Training an SVM for

spoofing detection requires labelled training examples for both the bonafide

and spoof classes. Usually, bonafide classes are labelled with a +1 and -1 is

used for the spoof class. In the context of speaker verification, +1 corresponds

to a target speaker and -1 to the background speaker (representing the world

population). From these labelled training features, the optimizer aims to learn

a separating hyperplane in the high-dimensional space by maximizing the mar-

gin of separation between the two classes. The classifier discriminant function

45

[Campbell et al., 2006] is written as

f(x) =

N∑
i=1

αitiK(x,xi) + b (2.1)

where xi are the support vectors, ti corresponds to the class output labels

that could be either +1 or -1,
∑N

i=1 αiti = 0, and αi > 0. These parameters

along with the bias term b are estimated from the training data through some

optimisation process [Campbell et al., 2006]. Here the kernel function K(.,.) is

defined as a mapping of the input feature space into a high dimensional kernel

space, expressed as

K(x,y) = φ(x)Tφ(y) (2.2)

where φ(.) represents a mapping from the input space to a high dimensional

space. The non-linear data in the input space that was difficult to classify

becomes linearly separable in a higher dimensional space and hence classification

becomes easier.

2.6.2 Convolutional neural networks

A CNN is a class of neural network architecture that was primarily designed for

visual recognition applications [LeCun et al., 1999], but, recently they have been

successfully adopted in various audio and speech technology applications. Ex-

amples include ASR [Huang et al., 2019], acoustic scene classification [Samarth

R Phaye et al., 2019], sound event detection [Chan et al., 2020], language recog-

nition [Bartz et al., 2017], and speaker recognition [Muckenhirn et al., 2018].

CNNs have also been widely studied for spoofing detection [Zeinali et al., 2019,

Gomez-Alanis et al., 2019b, Lavrentyeva et al., 2017, Nagarsheth et al., 2017].

Dominant systems in the ASVspoof challenges used CNNs as standalone sys-

tems or in ensemble setting producing impressive results [Lavrentyeva et al.,

2017, Lai et al., 2019b].

CNNs follow the concept of weight sharing, where all the neurons in a partic-

ular feature map share the same weight parameters. Another important concept

is local connectivity, where not every neuron in the previous layer is connected

to every neuron in the following layer. A neuron is connected to only a small

subset of the input representation. This helps control the trainable parameters

of the network and makes it computationally efficient which otherwise would be

difficult if fully connected (FC) networks were used to train on high-dimensional

image data.

Unlike feed forward or fully connected neural networks where every neuron

in any given layer (except the input layer) receives inputs from every unit of the

46

previous layer, CNNs follow the concept of weight sharing where every neuron

does not receive the whole inputs from the previous layer, rather it only sees

a proportion of the input. The main motivation for this design is two-fold.

First, to control the number of trainable parameters (which otherwise would be

enormous when high dimensional image data were flattened into a single vector

and trained using a FC network). The second motivation comes from the way

receptive fields work in the visual cortex [LeCun et al., 1999]. A CNN contains

the following building blocks: convolutional, activations (non-linearity), pooling

(sub sampling), and classification.

Convolutional (Conv) layer is the main building block of CNNs. It takes

in an input signal and applies a filter over it. In other words, it performs a

dot product between the input and a kernel (filters) to obtain the convolved

or modified signal. This layer comprises a set of independent kernels or fil-

ters initialised randomly and is learned during training. Each kernel/filter is

independently convolved with the input image producing a set of feature maps.

Activation functions are mainly used to introduce non-linearity in the learn-

ing process enabling models to capture non-linear relationships in the data.

Although there exist several activation functions [Goodfellow et al., 2016] in the

literature that are used in training deep models, we provide a brief review of

two of these activations that are directly relevant to this thesis.

• Rectified linear unit (ReLU) [Nair and Hinton, 2010]. It is a widely used

activation function in training deep models and is often used as a default

activation function. It is defined as:

f(x) = max(0, x) (2.3)

For every input x, ReLU performs a simple thresholding operation allow-

ing positive values to pass through while replacing negative values with

a 0. A number of changes were introduced on ReLU and new activation

functions have been proposed in the literature. These include the expo-

nential linear unit (ELU) [Clevert et al., 2015], leaky ReLU [Maas et al.,

2013], parametric rectified linear unit (PReLU) [He et al., 2015b], and

scaled exponential linear unit (SeLU) [Klambauer et al., 2017].

• Max-Feature-Map (MFM). MFM non-linearity was originally introduced

by Wu et al. [2015a] to train a deep neural network called Light CNN

(LCNN) for face recognition. The authors claim that the MFM design

was motivated to help select optimal feature maps during model training.

47

It is defined as:

ykij = max(xkij , x
k+N

2
ij)

∀i = 1, H, j = 1,W , k = 1, N/2,
(2.4)

where x is a 3D input tensor of shape H ×W ×N and y corresponds to

output tensor having a shape H×W× N
2 . Here, H, W and W corresponds

to height, width and channel depth for a tensor. The LCNN model with

MFM activation demonstrated the best performance during the ASVspoof

2017 challenge evaluations [Lavrentyeva et al., 2017]. Section 4.3 provides

a summary of the LCNN model used in the challenge.

Pooling layer is an important property that is used to down-sample the orig-

inal input reducing its dimensionality. This operation is performed by applying

a pooling filter of small dimension (usually 2×2) onto a feature map and trans-

forms them to a single scalar either by taking the maximum value or average

of these pooling filters. The classification layer usually takes the output of the

last convolutional layer and performs classification tasks using a series of fully

connected layers.

Usually, with CNNs, the Conv layers are considered as feature extractors

which aim to learn discriminative features, and the output from the last Conv

layer which is a flattened vector is fed to a fully connected layer for the final

classification task.

In this thesis, CNNs have been used extensively in all the sections of Chap-

ters 4 and 5, and SVMs have been studied in Sections 4.2, 4.4, 4.6, and 5.3 as

a backend classifier for spoofing detection.

2.7 Generative models

This section provides the background on three different generative models:

Gaussian mixture models, i-vectors and variational autoencoders, that have

been studied for spoofing detection in the literature and in this thesis.

2.7.1 Gaussian mixture model (GMM)

A Gaussian mixture model, denoted by Λ, is defined as a weighted sum of C

component density functions:

p(x|Λ) =

C∑
k=1

wkN (x|µk,Σk), (2.5)

where C is the number of Gaussian components, wk is the prior probability or

mixture weight of the kth component, and N (x|µk,Σk) is a d-variate Gaussian

48

density function with mean µk and covariance matrix Σk, defined as:

N (x|µk,Σk) =
1

(2π)d/2|Σk|1/2
exp

{
−1

2
(x− µk)T Σ−1k (x− µk)

}
(2.6)

Here, the mixture weights wk > 0 satisfy the constraints
∑C

k=1 wk = 1.

Training. Training a GMM involves estimating the model parameters Λ =

{wk,µk,Σk}Ck=1 that maximize the average log likelihood of the data. This is

performed by applying the expectation maximization (EM) algorithm [Bishop,

2006] on a training dataset X = {xt}Tt=1. The average log-likelihood of X with

respect to model Λ is given as:

LLavg(X|Λ) =
1

T

T∑
t=1

log p(X|Λ) =
1

T

T∑
t=1

log

C∑
k=1

wkN (xt|µk,Σk), (2.7)

Testing. For a given test utteranceX consisting of T feature vectors (x1, . . . ,xT),

the GMM computes a mean log-likelihood score using (2.7). The higher the

value, the higher is the probability that Λ generated the data.

In the automatic spoofing detection task, two GMMs are usually trained

one each for the bonafide and spoof classes. During testing, for a given test

utterance X, using (2.7) we compute the average log-likelihood difference as the

final score:

LLR = LLavg(X|Λbona)− LLavg(X|Λspoof) (2.8)

where Λbona and Λspoof represents the bonafide and spoof GMMs. The larger

the LLR value is, the more confidence the model has that the test utterance X

is a bonafide utterance.

2.7.2 i-vectors

An i-vector is a fixed-dimensional utterance-level representation derived from

a variable-length speech signal through factor analysis [Dehak et al., 2011].

This representation aims at capturing the long-term characteristics in a speech

signal, such as speaker and channel properties. It models both speaker and

channel variabilities into a single low-rank space called total variability space,

and is defined by the equation:

s = m+ Tφ (2.9)

49

Figure 2.9: Block diagram illustrating a Variational Autoencoder.

where s is a speaker and channel dependent GMM mean supervector2, m is

a UBM supervector which is speaker and channel independent, T is a rectan-

gular matrix of low rank (total variability space) and φ is an identity vector,

commonly referred to as i-vector.

Initially, i-vectors were proposed for speaker recognition applications and

were state-of-the-art features until discriminatively trained deep learning-based

x-vectors [Snyder et al., 2018] were introduced recently. Channel compensation

methods are often applied on i-vectors to minimize the channel effects before

using them for speaker modelling. They have been widely used in other speech

technology applications as well. For example, in automatic speech recognition,

i-vectors are often provided as an additional input along with other acoustic

features (eg. MFCCs) which helps improve the robustness of acoustic models

[Gupta et al., 2014]. They have also been recently explored in spoofing detection

applications [Novoselov et al., 2016a, Delgado et al., 2018]. For more details on

i-vectors please refer to [Dehak et al., 2011] and [Kanagasundaram, 2014]. We

used the MSR identity toolkit [Sadjadi et al., 2013] for computing i-vectors.

2.7.3 Variational Autoencoders (VAEs)

Variational Autoencoder (VAE) [Kingma and Welling, 2013] is a deep generative

model that aims at uncovering the data generation mechanism in the form of

a probability distribution. The VAE is an unsupervised approach that learns

a low-dimensional, nonlinear data manifold from training data without class

labels. VAEs achieve this by using two separate but jointly trained neural

networks, an encoder and a decoder as illustrated in Fig. 2.9. The encoder

forces the input data through a low-dimensional latent space that the decoder

uses to reconstruct the input.

2A supervector is a high dimensional vector obtained by stacking the mean vectors from all
the Gaussian components of a UBM. A UBM is essentially a GMM trained on a large speech
corpus comprising many thousands of speakers.

50

Given a D-dimensional input x ∈ RD, the encoder network maps x into a

latent vector z ∈ Rd (d � D). Unlike in a conventional (deterministic) au-

toencoder, z is not a single point; instead, the encoder imposes a distribution

over the latent variable, qφ(z|x), where φ denotes all the parameters (network

weights) of the encoder. The default choice, also in this work, is a Gaussian

qφ(z|x) = N (z|µφ(x), diag
(
σ2
φ(x)

)
), where µφ(x) and diag

(
σ2
φ(x)

)
are de-

terministic functions (the encoder network) that return the mean and variance

vector (i.e., diagonal covariance matrix) of the latent space given an input x.

The decoder network, in turn, takes z as input and returns a parameterized

probability distribution, which is another Gaussian. The decoder distribution is

pθ(x|z) = N (x|µθ(z), diag
(
σ2
θ(z)

)
), where µφ(z) and diag

(
σ2
θ(z)

)
are deter-

ministic functions implemented by the decoder network, and where θ denotes

the decoder network parameters. Random observations sampled from the de-

coder distribution (with fixed z) should then bear resemblance to the input

x. In the standard VAE, the only sampling that takes place is from the vari-

ational posterior distribution of the latent variable. Conceptually, however, it

is useful to note that the decoder also produces a distribution of possible out-

puts, rather than a single point estimate, for a given (fixed) z. These outputs

will not be exactly the same as x due to the dimensionality reduction to the

lower-dimensional z-space, but each of the individual elements of the z-space

represents some salient, meaningful features necessary for approximating x.

VAE training. The VAE is trained by maximizing a regularized log-likelihood

function. Let X = {xn}Nn=1 denote the training set, with xn ∈ RD. The training

loss for the entire training set X ,

L(θ,φ) =

N∑
n=1

`n(θ,φ), (2.10)

decomposes to a sum of data-point specific losses. The loss of the nth training

example is a regularized reconstruction loss:

`n(θ,φ) = −Ez∼qφ(z|xn)

[
log pθ(xn|z)

]
︸ ︷︷ ︸

Reconstruction error

+ KL
(
qφ(z|xn) ‖ p(z)

)︸ ︷︷ ︸
Regularizer

, (2.11)

where E[·] denotes the expected value and KL(·‖·) is the Kullback-Leibler diver-

gence [Cover and Thomas, 2001] – a measure of difference between two prob-

ability distributions. The reconstruction error term demands for an accurate

approximation of x while the KL term penalizes the deviation of the encoder

distribution from a fixed prior distribution, p(z). Note that the prior, taken

to be the standard normal, p(z) = N (z|0, I), is shared across all the training

51

exemplars. It enforces the latent variables z to reside in a compatible feature

space across the training exemplars.

In practice, to derive a differentiable neural network after sampling z, VAEs

are trained with the aid of the so-called reparameterization trick [Kingma and

Welling, 2013]. Thus, sampling z from the posterior distribution qφ(z|x) is per-

formed by computing z = µφ(x)+σφ(x)�ε where ε is a random vector drawn

from N (z|0, I), µ and σ are the means and variance of the posterior learned

during the VAE training, and � denotes the element-wise product.

VAEs and GMMs as latent variable models. Given the widespread use of

GMMs in voice anti-spoofing studies, it is useful to compare and contrast the

two. Similar to the VAE, the GMM is also a generative model that includes

latent variables. In the case of GMMs, x is a short-term feature vector, and z is a

one-hot vector with C components (the number of Gaussians), indicating which

Gaussian was ‘responsible’ for generating x. Let zk = (0, 0, . . . , 1, 0, . . . , 0)T be

a realization of such one-hot vector where the k-th element is 1. The conditional

and prior distributions of GMM are:

p(x|z = zk,Λ) = N (x|µk,Σk)

p(z = zk,Λ) = wk,
(2.12)

where Λ = (µk,Σk, wk)Ck=1 denotes the GMM parameters (means, covariances

and mixing weights). By marginalizing the latent variable out, the log-likelihood

function of a GMM as defined in (2.7) is used as a score when comparing test

feature x against the GMM defined by Λ.

Both are generative approaches, and common to both is the assumption of

the data generation process consisting of two consecutive steps:

1. First, one draws a latent variable zn ∼ pgt(z) from a prior distribution.

2. Second, given the selected latent variable, one draws the observation

from a conditional distribution, xn ∼ pgt(x|zn),

where the subscript ‘gt’ highlights an assumed underlying ‘true’ data generator

whose details are unknown. Both VAEs and GMMs use parametric distribu-

tions to approximate pgt(z) and pgt(x|zn). In terms of the ‘z’ variable, the main

difference between GMMs and VAEs is that in the former it is discrete (cate-

gorical) and in the latter it is continuous. As for the second step, in GMMs, one

draws the observation from a multivariate Gaussian distribution corresponding

to the selected component. In VAEs, one also samples the reconstructed obser-

52

vation from a Gaussian, but the mean and covariance are not selected from an

enumerable set — they are continuous and are predicted by the decoder from a

given z.

Both GMMs and VAEs are trained with the aim of finding model parame-

ters that maximize the training data log-likelihood; common to both is that no

closed-form solution for the model parameters exists. The way the two mod-

els approach the parameter estimation (learning) problem differs substantially,

however. As in any maximum likelihood estimation problem, the training ob-

servations are assumed to be i.i.d., enabling the log-likelihood function over the

whole training dataset to be written as the sum of log-likelihoods over all the

training observations. This holds both for VAEs and GMMs. Let us use the

GMM as an example. For a single observation x, the log-likelihood function is:

log pΛ(x) = log
∑
z

p(x, z|Λ) =
∑
z

Q(z)
p(x, z|Λ)

Q(z)
= log Ez∼Q(z)

[
pΛ(x, z)

Q(z)

]

≥ Ez∼Q(z)

[
log

pΛ(x, z)

Q(z)

]
=
∑
z

Q(z) log
pΛ(x, z)

Q(z)

(2.13)

where Q(z) is any distribution, and where the inequality in the second line is

obtained using Jensen’s inequality [Cover and Thomas, 2001] (using the con-

cavity of the logarithm). The resulting last expression, known as the evidence

lower bound (ELBO), serves as a lower bound of the log-likelihood which can be

maximized more easily. The well-known EM algorithm [Dempster et al., 1977]

is an alternating maximization approach which iterates between updating the

Q-distribution and the model parameters Λ (keeping the other one fixed when

updating the other one). An important characteristic of the EM algorithm is

that, in each iteration, the posterior distribution Q(z) is selected to make the

inequality in (2.13) tight, making the ELBO equal to the log-likelihood. This

is done by choosing Q(z) to be the posterior distribution PΛ(z|x) (using the

current estimates of model parameters). Importantly, this posterior can be com-

puted in closed form. The EM algorithm is guaranteed to converge to a local

maximum of the log-likelihood. It should be noted, however, that as the like-

lihood function contains local maximae [Jin et al., 2016], global optimality is

not guaranteed. The quality of the obtained GMM (in terms of log-likelihood)

depends not only on the number of EM iterations, but on the initial parameters.

In contrast to GMMs, the posterior distribution of VAEs cannot be evaluated

in closed form at any stage (training or scoring). For this reason, it is replaced

by an approximate, variational [Bishop, 2006] posterior, qφ(z|x), leading to the

ELBO training objective of Eq. (2.11). As the true posterior distribution cannot

be evaluated, the EM algorithm cannot be used for VAE training [Kingma and

53

Welling, 2013]. The ELBO is instead optimized using gradient-based methods.

Due to all these differences, it is difficult to form an exact comparison between

the VAE and GMM models. One of the main benefits of VAEs over GMMs is

that they can handle high-dimensional inputs — for example, raw spectrograms

and CQCC-grams consisting of multiple stacked frames — allowing the use of

less restrictive features.

In this thesis, GMMs have been used in Sections 4.2, 4.4, 4.6, 5.2, 5.3, and

5.5. And, i-vectors have been used in Sections 4.2, 4.4, 4.6, 5.2, and 5.3. VAEs

have been studied in Section 5.5.

2.8 Subband modelling

A subband represents a sub-part of the speech signal frequencies, which are usu-

ally extracted to perform some specific task. For example, extracting MFCCs

for speech recognition application involves use of lower frequency subbands (typ-

ically between 100 to 3500 Hz) and discarding other frequencies as they do not

carry relevant information for the task in hand. However, for certain appli-

cations higher frequency bands may be useful, for example spoofing detection.

This section discusses the relevant background on subbands and its application

on various speech applications.

The impact of subbands on model performance has been investigated on a

wide range of ML tasks in the literature. For instance, Besacier and Bonastre

[2000] used a subband approach to extract relevant features, each modelled

using Gaussians for speaker verification. Kingma and Ba [2008] investigated the

dependencies of different frequency bands and speaker characteristics in a speech

signal for speaker verification applications. Recently, Samarth R Phaye et al.

[2019] demonstrated improved performance using different subbands for building

acoustic scene classification models. They used a sub-spectrogram, obtained by

cropping a mel-spectrogram at different bands, to train a convolutional neural

network (CNN) for learning band-specific features.

In the context of spoofing detection, the most relevant studies include [Sriskan-

daraja et al., 2016, Witkowski et al., 2017, Garg et al., 2019, Nagarsheth et al.,

2017, Lin et al., 2018, Soni et al., 2016]. Sriskandaraja et al. [2016] investi-

gated different subbands to find the most informative bands useful for spoofing

detection tasks. Using the Kullback-Leibler divergence (at model-level) and

classification-level analysis, they identified 0-1 kHz, 2.5-5.5 kHz and 7-8 kHz as

the most informative subbands for their dataset. Features were then extracted

from these bands to train a classifier (Gaussian mixture model — universal back-

ground model), demonstrating improved performance over traditional full-band

models. Witkowski et al. [2017] investigated the importance of different sub-

54

bands for spoofing detection on the ASVspoof 2017 dataset. They extracted

five different types of features from these subbands to train a GMM backend

classifier. They found the high frequency range of 6-8 kHz to be the most infor-

mative. Another similar line of work was performed by Garg et al. [2019] using

CQCC and MFCC features for replay spoofing detection on the ASVspoof 2017

dataset, reporting similar findings as in [Witkowski et al., 2017]. The high fre-

quency bands, 6-8 kHz, was found to offer more discriminative information for

replay attack detection on this dataset.

Nagarsheth et al. [2017] proposed high-frequency cepstral coefficient (HFCC)

features extracted from a high-frequency spectrum (above 3.5 kHz). They com-

bined HFCCs with CQCCs and trained a deep neural network as a feature

extractor. A support vector machine classifier was trained on deep features,

outperforming the baseline GMM models on the ASVspoof 2017 dataset. An-

other interesting work in subband modelling is by Soni et al. [2016]. They

trained a subband autoencoder (SBAE) for feature extraction by restricting the

connections between units in the input and the first hidden layer of the encoder.

By imposing such constraints they claim that models learn band-specific fea-

tures useful in spoofing detection, demonstrating a substantial gain in detection

performance on the ASVspoof 2015 dataset. Another line of study that inves-

tigates subband features for spoofing detection is by [Lin et al., 2018]. Using

the subbands that provide discriminative information, the authors design new

filters for feature extraction. Experimental results on the ASVspoof 2017 v1.0

dataset indicate that the 0-1 and 7-8 kHz subbands offer the most discriminative

information.

To sum up, previous studies indicate that certain frequency subbands are

potentially more informative to the detection of spoofing attacks, even though no

standardized approach show how that unevenly distributed information across

the frequency axis should be utilised. Our current work (Section 5.4) is different

from the prior works mentioned above because most of them aim at hand-

crafting or learning features [Soni et al., 2016] based on the relevance of specific

subbands for spoofing detection. However, our work described in Section 5.4

aims to learn band-specific features by discriminatively training a CNN on a

spectrogram input for spoofing detection.

2.9 Towards trustworthy countermeasures

Analysing spoofing detection systems is one of the objectives of this thesis.

In this direction, this section reviews related works on the trustworthiness of

machine learning models for spoofing detection. Firstly, a high level definition

of what “trustworthiness” means in this thesis is provided, and a background on

55

how artefacts and confounding factors in a dataset impact model trustworthiness

is explained in Subsection 2.9.1. Then, the next Subsection 2.9.2 explains a

method (called SLIME) from the interpretable machine learning literature that

is used in this thesis (Section 4.5) to analyse the predictions of a CNN-based

countermeasure for replay spoofing detection.

2.9.1 Artefacts and their influence in machine learning

Following the Ethics Guidelines for Trustworthy AI prepared by the High-Level

Expert Group on Artificial Intelligence (AI HLEG) of the European Commis-

sion AI-HLEG [2020], this thesis considers technical robustness, fairness and

accountability as key criteria for any ML countermeasure model to be deemed

trustworthy. These criteria suggest that the results produced by a trustworthy

countermeasure should be independent of the variables/factors that are sensitive

but not related to the actual problem.

The performance of any data-driven ML task highly depends on the train-

ing data fed to the learning algorithm. The model learns to make decisions by

exploiting the underlying patterns within the training data [Bishop, 2006]. As

demonstrated in [Sturm, 2013, Tommasi et al., 2015, Rosset et al., 2010], such

models may easily exploit irrelevant cues, artefacts or confounders (if present)

during the training optimisation. Unless explicitly accounted for during training

and inference, they can introduce biases3 in model decisions raising questions

on their reliability, and often contribute in achieving good results and overesti-

mating the actual performance on a test set. Such issues can occur in a wide

range of ML tasks [Sturm, 2013, Tommasi et al., 2015, Rodŕıguez-Algarra et al.,

2019, Rosset et al., 2010, Stowell et al., 2019]. Sturm [2013] shows how faults

in GTZAN, a popular dataset for musical genre classification, overestimated

classification accuracy. Rosset et al. [2010] found patient IDs to provide strong

predictive cues about a patient’s likelihood to have cancer. They incorporated

this as a feature to train their model demonstrating improved performance.

Rodŕıguez-Algarra et al. [2019] demonstrate how top performing music labeling

systems were exploiting characteristics from the music signal that could not even

be heard. In [Charalambous and Bharath, 2016], the accuracy of a gait recogni-

tion system was found to drop when confounding factors were removed during

training. Mendelson et al. [2017] describes how biases introduced as a result of

dataset selection influenced the performance of an Alzheimer’s disease classifi-

cation system. Stowell et al. [2019] studies reducing the effects of confounders in

the dataset that bias performance to build robust automatic acoustic individual

3“the inclination or prejudice of a decision made by an Artificial Intelligence system which
is for or against one person or group, especially in a way considered to be unfair” [Ntoutsi
et al., 2020]

56

identification systems. Even in computer vision applications, [Tommasi et al.,

2015] have analysed the effect of biases across several datasets. Furthermore,

[Kaufman et al., 2011] describes that data leakage can often lead to overestima-

tion of model performance, producing too-good-to-be-true results. One relevant

work in anti-spoofing in this regard is that of Tom et al. [2018] who reported

0% EER on both the development and evaluation sets of the ASVspoof 2017

v1.0 dataset.

Their trustworthiness is therefore called into question and some can behave

much like a “horse” in machine learning [Hernandez-Orallo, 2019, Sturm, 2014],

i.e. a model that provides excellent results using cues not relevant to the actual

problem [Sturm, 2016, Rodŕıguez-Algarra et al., 2019]. As highlighted in [Ros-

set et al., 2010], such biases can occur as a result of data collection, compilation,

aggregation and partition. Such biases can have a severe impact on the trust-

worthiness of ML applications, and for domains such as finance, medicine and

security (including ASV anti-spoofing) this can be catastrophic. Therefore, it

is beneficial to perform an in-depth dataset analysis [Torralba and Efros, 2011,

Chen and Asch, 2017], detect the presence of artefacts or confounders [Stowell

et al., 2019], ensuring models do not exploit irrelevant factors during training,

and therefore yield reliable performance estimates.

In this thesis, a study on dataset artefacts and how they impact ML coun-

termeasure decisions has been carried out in Subsection 4.2.3 (on version 1.0 of

the ASVspoof 2017 dataset), Section 4.6 (on version 2.0 of the ASVspoof 2017

dataset) and Subsection 5.2.5 (on the ASVspoof 2019 PA dataset). The details

on the two spoofing datasets are provided in Chapter 3.

2.9.2 Understanding model predictions

The ability to provide explanations for model predictions is a key factor towards

fairness and accountability of any machine learning model. There exist several

methods to understand the global or local behaviour of ML models [Montavon

et al., 2018, Mishra, 2020]. While global methods aim at understanding what

information a neuron or a group of neurons in any hidden layer has learned

during model training, local methods on the other hand aim at generating ex-

planations by highlighting input features that contributed the most for model

predictions.

Activation maximization [Erhan et al., 2009] and feature inversion [Mahen-

dran and Vedaldi, 2015] are two popular interpretable machine learning (IML)

methods focussed on global analysis of pre-trained ML models. Activation max-

imization aims at generating synthetic input examples that maximizes the acti-

vation of desired neurons in a deep neural network (DNN) [Erhan et al., 2009].

57

0 1 2 3 4
Time(sec)

0

2000

4000

6000

8000
H
z

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Figure 2.10: Temporal segmentation of an input spectrogram (xi) into 10 uni-
form segments (Ti), each of duration 400 ms.

Feature inversion on the other hand aims at learning a mapping function to

transform learned features (for example deep features — output from any hid-

den layer) back to the original input space. Learning such mapping helps to

understand the information preserved by various layers which in turn helps to

understand important features used by the model to form predictions [Mahen-

dran and Vedaldi, 2015, Mishra, 2020].

There exist many methods for analysing ML models locally, for example sen-

sitivity analysis and function decomposition [Mishra, 2020]. We describe one

IML method called Sound LIME (SLIME) [Mishra et al., 2017] that is used

in this thesis, and is based on sensitivity analysis. SLIME is an algorithm to

analyse the local behaviour of any (deep or shallow) machine listening model.

SLIME is based on the LIME algorithm [Ribeiro et al., 2016], which refers to Lo-

cal Interpretable Model-Agnostic Explanations. Ribeiro et al. [2016] introduced

the LIME algorithm and demonstrated its applicability to image recognition

and text classification models.

SLIME extends LIME to machine listening systems by defining an inter-

pretable sequence Xi for an input instance xi (e.g., a time-frequency representa-

tion). An interpretable sequence is composed of elements, called interpretable

components, that are in some way related to the classification of xi. SLIME

defines three types of interpretable sequences (temporal, spectral, and time-

frequency) depending on the way it segments xi into interpretable components.

For example, a temporal sequence X t
i consists of temporal segments that SLIME

generates by segmenting xi (uniformly or non-uniformly) along the temporal

dimension as shown in Fig. 2.10. SLIME maps an input instance xi to its inter-

pretable representation x∗i ∈ {0, 1}|Xi|. In order to generate a local explanation

for the prediction f(xi) where f : Rn → R is a classifier, SLIME first gener-

58

ates N artificial samples (z∗i) by perturbing the interpretable representation.

SLIME perturbs x∗i by randomly setting the interpretable components to zero.

For example, for the instance in Fig. 2.10, if we set the temporal segments T1,

T4 and T7 to zero, then a possible z∗i is given as (0, 1, 1, 0, 1, 1, 0, 1, 1, 1).

Later, SLIME maps each perturbed representation z∗i to the feature space with

an assumption that such a mapping exists. In other words, SLIME assumes that

for each z∗i there exists a corresponding zi in the feature space. Finally, SLIME

uses the perturbed representations z∗i and their corresponding predictions f(zi)

to approximate f with a linear model g in the interpretable space τ = {0, 1}|Xi|.

The explanation to the prediction f(xi) is given by the weights w of the linear

model g(z∗) = wT z∗; z∗ ∈ τ . Formally, SLIME generates an explanation by the

optimisation

min
g∈G

L(f, g, ρxi) + ∆(g) (2.14)

where L is a loss function (squared error between the original prediction f(zi)

and the model approximation g(z∗i)), ρxi
measures the distance between the in-

put instance xi and the generated sample zi, and ∆(g) measures the complexity

of g (e.g., sparsity).

2.10 Discussion

This chapter provided a detailed survey on necessary background on spoofing

attacks in voice biometrics which is driven by an ASV technology. For this, the

chapter provided a brief background on ASV as a starting point of discussion.

Although the focus of this thesis is on replay attacks, we briefly described other

three forms of spoofing attacks (mimicry, speech synthesis and voice conversion)

that have been studied in the literature in Section 2.2. The work in this thesis

uses datasets that are released as part of the ASVspoof series — an ASV-

community driven automatic speaker verification spoofing and countermeasures

challenge focussed on promoting anti-spoofing research for secure ASV. To that

end, Section 2.3 described an overview of the ASVspoof series.

After this, the chapter provided a detailed survey on published works towards

replay spoofing attacks using the ASVspoof datasets and the ones before the

ASVspoof series began in 2015. The description has been separated into two

groups for better readability. Subsection 2.4.1 summarised traditional methods

which used classical signal processing methods for feature extraction and shallow

classifiers for modelling. In contrast, Subsection 2.4.2 provided background on

deep learning based countermeasures for replay attack detection. To be precise,

all works that used deep learning either for feature learning, or as a classifier,

or for end-to-end modelling were summarised in this subsection. Following this,

59

Sections 2.5, 2.6, and 2.7 provided a detailed background of different signal

processing methods, discriminative backend classifiers and generative backend

classifiers that are used in this thesis for replay spoofing detection. A survey

on subband modelling applied to audio and speech applications including ASV

anti-spoofing was provided in Section 2.8.

Finally, this chapter also provided a survey on trustworthy machine learn-

ing and discussed the importance of trustworthy countermeasures for spoofing

detection (Section 2.9). A summary on how dataset artefacts and confounders

influence decisions of a machine learning model was provided in Subsection 2.9.1.

An overview of SLIME, a method from the interpretable machine learning lit-

erature was provided in Subsection 2.9.2 and will be used later in Section 4.5.

60

Chapter 3

Spoofing corpus and

evaluation metrics

3.1 Introduction

This chapter describes the corpus and the evaluation metrics used to study

replay spoofing countermeasures. The thesis mostly uses the publicly avail-

able datasets released by the ASV community as part of the ongoing bi-annual

ASVspoof challenge (as described in Section 2.3). Firstly, Section 3.2 describes

the ASVspoof 2017 dataset. This is the first publicly available replay spoofing

dataset designed by playing back bonafide audio utterances and re-recording

them in real ‘wild’ acoustic conditions. It will be extensively used in both

Chapter 4 and Chapter 5 for the analysis and design of replay spoofing coun-

termeasures. Both version 1.0 and version 2.0 of the ASVspoof 2017 dataset

are described in Subsections 3.2.1 and 3.2.2, respectively. Furthermore, Sub-

section 3.2.3 provides results of qualitative analysis performed on version 2.0 of

the dataset bringing interesting insights that might help understanding a coun-

termeasure trained on this dataset. Then Section 3.3 describes the ASVspoof

2019 dataset which was released after the 2019 challenge evaluation. This eval-

uation focused on two sub-tasks: logical access (LA) and physical access (PA)

spoofing attack conditions. These sub-tasks along with the LA and PA datasets

are discussed in Subsections 3.3.1 and 3.3.2 respectively. Furthermore, a brief

description of the real ASVspoof PA test set is provided in Subsection 3.3.3.

Then Section 3.4 provides a brief discussion on other publicly available spoofing

datasets. The next section (Section 3.5) describes different metrics used in this

thesis for evaluation of countermeasure model performance. These metrics are

adopted from the evaluation metrics used in the ASVspoof challenges. Finally,

61

Table 3.1: Phrases used in the ASVspoof 2017 dataset.

Phrase Id Description
S01 My voice is my password
S02 Ok google
S03 Only lawyers love millionaires
S04 Artificial intelligence is for real
S05 Birthday parties have cupcakes and ice cream
S06 Actions speak louder than words
S07 There is no such thing as a free lunch
S08 A watched pot never boils
S09 Jealousy has twenty-twenty vision
S10 Necessity is the mother of invention

this chapter concludes with a summary in Section 3.6.

3.2 ASVspoof 2017 dataset

3.2.1 Version 1.0

The ASVspoof 2017 challenge evaluation1 used version 1.0 of the dataset with

the same name. It is derived from RedDots [Lee et al., 2015] which is a text

dependent speaker verification dataset. Part 01 of the RedDots corpus com-

prised 10 common short phrases, as detailed in Table 3.1, were used to simulate

replay attacks. Several of these short utterances were first concatenated using

a segment marker to obtain a long utterance, which were then played back and

recorded through different types of playback and recording devices [Kinnunen

et al., 2017b]. Dual-tone multi-frequency (DTMF) sound was used as a segment

boundary marker. Such playback and re-recording was performed in diverse

acoustic conditions to capture realistic replay attack conditions. The DTMF

marker was later used to retrieve individual replayed utterances. The database

is divided into three subsets: training, development and evaluation and is sum-

marised in Table 3.2. The speakers in the three subsets are non-overlapping

and there are only male speakers in this corpus. Meta-data such as class la-

bels, speaker ID, phrase ID and replay configurations2 are available only for

the training and development sets. A total of 15 playback devices (P01-P15)

and 16 recording devices (R01-R016) were used to develop v1.0 of the corpus.

Acoustic environment details used to simulate such attacks is not publicly avail-

able. Furthermore, only the class labels and phrase IDs are available for the

evaluation set. See [Kinnunen et al., 2017a] for a summary of the ASVspoof

1https://www.asvspoof.org/index2017.html
2Replay configuration: a unique combination of recording device (R), playback device (P)

and acoustic environment (E).

62

Table 3.2: The ASVspoof 2017 v1.0 dataset statistics. * in hours. RC: replay
configuration.

Subset #Speakers #RC # Bonafide #Spoofed Duration*
Train 10 3 1508 1508 2.22
Dev 8 10 760 950 1.44
Eval 24 110 1298 12922 11.95

Table 3.3: Same as in Table 3.2 but for the ASVspoof 2017 v2.0 dataset.

Subset #Speakers #RC # Bonafide #Spoofed Duration*
Train 10 3 1507 1507 2.22
Dev 8 10 760 950 1.44
Eval 24 57 1298 12008 11.94

Table 3.4: Acoustic environments used in the ASVspoof 2017 v2.0 dataset.

ID Environment Quality ID Environment Quality
E01 Anechoic room High E14 Office 02 Medium
E02 Balcony 01 Low E15 Office 03 Medium
E03 Balcony 02 Low E16 Office 04 Medium
E04 Home 07 Medium E17 Office 05 Medium
E05 Home 08 Medium E18 Office 06 Medium
E06 Canteen Low E19 Office 07 Medium
E07 Home 01 Medium E20 Office 08 Medium
E08 Home 02 Medium E21 Office 09 Medium
E09 Home 03 Medium E22 Office 10 Medium
E10 Home 04 Medium E23 Studio High
E11 Home 05 Medium E24 Analog wire 01 High
E12 Home 06 Medium E25 Analog wire 02 High
E13 Office 01 Medium E26 Analog wire 03 High

2017 evaluation and [Kinnunen et al., 2017b] for further details on v1.0 of this

dataset.

3.2.2 Version 2.0

Post-evaluation, as described in Subsection 4.2.3, some issues with v1.0 of the

dataset were identified that biased model performance. It was demonstrated

that the knowledge of a simple class-dependent cue — silence frames of zeros

present in some of the bonafide files but missing in spoofed ones, in the v1.0

dataset can easily compromise class decisions. These findings were reported to

the challenge organisers (see Section 4.2.3), and an updated version 2.0 [Delgado

et al., 2018] dataset fixing these anomalies was subsequently released by the

organisers. Table 3.3 summarises the v2.0 dataset statistics. Two training

audio files T 1001658.wav and T 1000150.wav that do not contain any speech

63

Table 3.5: Playback devices used in the ASVspoof 2017 v2.0 dataset.

ID Playback devices Quality
P01 All-in-one PC speakers Medium
P02 Creative A60 speakers Medium
P03 Genelec 8020C studio monitor High
P04 Genelec 8020C studio monitor (2 speakers) High
P05 Beyerdynamic DT 770 PRO headphones High
P06 Dell laptop internal speakers Low
P07 Dynaudio BM5A speaker High
P08 HP Laptop internal speakers Low
P09 VIFA M10MD-39-08 speaker High
P10 ACER netbook internal speakers Low
P11 BQ Aquaris M5 smartphone Low
P12 Logitech low quality speakers Medium
P13 Desktop PC line output High
P14 Labtec LCS-1050 speakers Medium
P15 Edirol MA-15D studio monitor High
P16 Lenovo Ideatab S6000-H tablet Low
P17 Logitech S120 multimedia speakers Low
P18 MacBook pro internal speakers Low
P19 Altec lansing Orbit USB iML227 portable speaker Medium
P20 Samsung GT-I9100 smartphone Low
P21 Samsung GT-P6200 tablet Low
P22 Behringer Truth B2030A studio monitor High
P23 Focusrite Scarlett 2i2 audio interface line output High
P24 Focusrite Scarlett 2i4 audio interface line output High
P25 Genelec 6010A studio monitor High
P26 AKG K242HD Headset High

were removed. Also, 914 corrupted spoofed recordings were removed from the

evaluation set in the v2.0 dataset as can be seen from the table. Furthermore,

a number of changes were applied in terms of replay configurations (RCs). A

total of 26 different acoustic environments (E01 - E26), 26 playback devices

(P01 - P26) and 25 recording devices (R01 - R25) were used to compile v2.0

of this dataset. However, only 61 unique RCs are used in v2.0 of the dataset

from a space of 26× 26× 25 possible combinations after grouping together the

overlapping configurations.

As presented in Table 3.3, the training set has three RCs. There are no

overlapping RCs between the training and development sets. However, one RC

(E21 P03 R01) from the evaluation set is present in the training set. The devel-

opment set has ten RCs out of which seven RCs (E16 P07 R06, E16 P07 R05,

E16 P07 R07, E06 P09 R06, E06 P09 R05, E06 P09 R07, E18 P05 R03) overlap

with the ones in the evaluation set. It is worth noting that though there are

some overlaps in terms of RCs, however, the speakers are disjoint across different

64

Table 3.6: Recording devices used in the ASVspoof 2017 v2.0 dataset.

ID Recording devices Quality
R01 Zoom H6 handy recorder High
R02 BQ Aquaris M5 smartphone Low
R03 Low-quality headset Medium
R04 Nokia Lumia 635 smartphone Low
R05 Røde NT2 microphone High
R06 Røde smartLav+ microphone High
R07 Samsung Galaxy S7 smartphone Low
R08 Desktop PC microphone input High
R09 Zoom H6 recorder with Behringer ECM8000 mic. High
R10 Zoom H6 recorder with MSH-6 microphone High
R11 Zoom H6 recorder. with XY microphone High
R12 iPhone 5c smartphone Low
R13 iPhone 7 plus smartphone Low
R14 iPhone 4 smartphone Low
R15 Logitech C920 webcam Medium
R16 miniDSP UMIK-1 microphone High
R17 Samsung Galaxy Trend 2 smartphone Low
R18 Samsung GT-I9100 smartphone Low
R19 Samsung GT-P6200 tablet Low
R20 Samsung Trend 2 smartphone Low
R21 AKG C3000 microphone High
R22 SE electronic 2200a microphone High
R23 Focusrite Scarlett 2i2 interface line input High
R24 Focusrite Scarlett 2i4 interface line input High
R25 Zoom HD1 handy recorder High

sets. Delgado et al. [2018] grouped the replay configurations of the evaluation

set into three categories depending on the level of threat they present to an

ASV system. (1) Low, signifies the use of a low quality RD, PD and noisy

AE (eg. balcony) to simulate a replay attack. (2) Medium, signifies the use

of a medium quality RD, PD and a medium noise AE (eg. office). (3) High,

indicates the use of a high quality RD, PD and a low noise AE (eg. studio).

Low quality replay recordings (with high background noise, reverberation) are

assumed to pose the least threat to ASV systems in contrast to high quality

replay recordings. Tables 3.4, 3.5 and 3.6 summarises the environment, record-

ing devices and playback devices used to simulate replay attacks and create the

ASVspoof 2017 dataset. For further details please refer to [Delgado et al., 2018].

3.2.3 Qualitative analysis of v2.0

It was found that the issues on the ASVspoof 2017 dataset were not addressed

completely in the updated version. As highlighted in Section 4.5, v2.0 may

still have some issues. Therefore, this section performs qualitative analysis on

65

all the audio recordings in the training and development sets of version 2.0 of

the dataset. As for the evaluation set, this analysis was only performed on

the bonafide recordings. Due to the large number of spoof recordings (about

13, 000) in the evaluation set, manual inspection on them was not possible.

These findings are categorised into two classes: unexpected/unnatural and ex-

pected/natural, and are described next.

Expected/Natural

Though some of the observations described here are natural for a dataset, these

insights might help in understanding model behaviours.

• Mispronunciation and/or incomplete sentence. Mispronounced words and

incomplete sentences are found in some audio recordings. The words are

missing either in the beginning or at the end of an utterance. The training

and development sets have 11 and 98 such audio files and 2 files in the

evaluation set (bonafide class).

• Unwanted noise/speech. Different from a burst click sound (BCS3), audio

recordings containing short duration noise or speech (different from 10

phrases used in the corpus) in the start and/or at the end of an utterance

is found. The training set has 11 such files (4 bonafide and 7 spoof), the

development set has 70 (28 bonafide and 42 spoof), and 8 bonafide files

are found in the evaluation set.

• Sentence S02 - “Ok Google”. It is one of the phrases used in the ASVspoof

2017 dataset with an average duration between 0.7 - 0.8 seconds. We find

165, 136 and 1282 audio examples of S02 in the training, development

and evaluation sets with more than 1.5 seconds duration. This suggests

that more than half of the contents of each recording contain noise or

nonspeech.

Unexpected/Unnatural

The observations described here as unnatural or unexpected for a dataset could

be due to errors/faults made during data collection and compilation. As demon-

strated later in Section 4.6.3, some of them have a profound impact on model

decisions raising concerns on the validity of results reported in the literature

[Lavrentyeva et al., 2017, Tom et al., 2018, M S and Murthy, 2018, Suthokumar

et al., 2018].

3BCS is defined as an abrupt click sound.

66

• Pattern difference. This thesis uses the term pattern difference (applied to

the ASVspoof 2017 v2.0 dataset) as the presence or absence of nonspeech4

in the first 300 milliseconds between bonafide and spoof recordings. As

Section 4.6.3 demonstrates, this pattern difference has a profound impact

on model decisions. About 60.45%, 73.55% and 69.1% of the bonafide

audio files in the training, development and evaluation5 sets respectively

have nonspeech. On the contrary, 68.74% and 41.05% of the spoof files

in the training and development sets respectively have speech occurring

within the first 300 ms.

• Burst click sound (BCS). This thesis uses the term BCS to define an

abrupt click sound (low or loud) found in the start of audio recordings.

About 36.36%, 23.55% and 41.06% of bonafide audio files in the training,

development and evaluation sets were found to contain BCS in the start.

On the contrary, 2.45% spoof files in the training set have BCS. No spoof

class audio files in the development set have such BCS, and we do not

have ground truth annotations for spoofed signals in the evaluation set.

• Dual-tone multi-frequency signaling (DTMF) sound. About 45.58% (687

out of 1507) of spoof audio files in the training set and 16.63% (158 out of

950) in the development set were found to contain a DTMF sound (low or

loud) within the first 200-250 ms. The DTMF sound often overlaps with

the actual spoken speech. We find 33.77% (232 out of 687) spoof files and

6.96% (11 out of 158) in the training and development sets contain such

overlapping sounds. On the contrary, the bonafide class audio files do not

have such DTMF sounds.

• Silence. We find some bonafide audio recordings with more than 10 ms

zero valued silence in their start. There are 19.11% (288 out of 1507) such

bonafide files in the training set, 1.97% (15 out of 760) in the development

set and 10.09% (131 of 1298) in the evaluation set. Furthermore, in the

training set we find 23.61% (68 out of 288) files have more than 70 ms

silence and 12.85% (37 out of 288) with more than 100 ms silence in the

start. In contrast no spoof class files are found to have such zero valued

silence.

• Corrupted audio files. Bonafide files T 1000788.wav and D 1000581.wav,

and spoof files T 1002296.wav and E 1011601.wav do not contain any

speech. The prefixes T, D and E used in audio files denote training,

development and evaluation sets respectively.

4We use the nonspeech term to imply noise, music or silence samples in the start.
5Since we could not inspect a large number of spoof test files we do not have pattern

difference statistics on them.

67

Table 3.7: ASVspoof 2019 LA dataset statistics.

Subset #Speakers #Bonafide #Spoofed
Training 20 2580 22800

Development 20 2548 22296
Evaluation 67 7355 63882

The filelists corresponding to above findings are provided in https://zenodo.

org/record/3601188#.XmzuknX7TCI.

3.3 ASVspoof 2019

The ASVspoof 2019 dataset was released as part of the third ASVspoof chal-

lenge evaluation held in 2019. It comprises two subtasks: Logical access (LA)

and physical access (PA). The LA subtask involves spoofing attacks mounted

by injecting synthetic/converted speech directly into an ASV system pipeline

bypassing its microphone. The PA subtask on the other hand involves physical

transmission of impersonated or playback speech through the systems’ micro-

phone. Examples of LA attacks include TTS and VC. Replay and mimicry

are examples of PA attacks. However, the ASVspoof 2019 PA subtask includes

only replay attacks. Two sub-datasets for the LA and PA conditions were made

available publicly6 by the ASVspoof organisers. As in previous ASVspoof chal-

lenge editions, the main task in this challenge is to build a standalone spoofing

detection system. However, with the introduction of the tandem detection cost

function (t-DCF) [Kinnunen et al., 2018] metric explained in Section 3.5.2, ASV

system scores were provided to every participants making joint evaluation of

ASV and spoofing countermeasures possible. Therefore, unlike previous chal-

lenges, this challenge made use of t-DCF as a primary evaluation metric and

equal error rate (EER) as the secondary metric. Section 3.5 provides further

details on evaluation metrics.

The ASVspoof 2019 database for LA and PA is derived from a standard

multi-speaker speech synthesis database called voice cloning toolkit database7.

A total of 46 male and 61 female speakers were used to collect clean bonafide

speech recordings without any background noise or channel effects. Spoofed

speech is then derived from them by applying advanced state-of-the-art TTS, VC

algorithms (for the LA dataset) and simulating replay attacks under controlled

simulation conditions (for the PA dataset).

6https://datashare.is.ed.ac.uk/handle/10283/3336
7http://dx.doi.org/10.7488/ds/1994

68

https://zenodo.org/record/3601188#.XmzuknX7TCI
https://zenodo.org/record/3601188#.XmzuknX7TCI

Table 3.8: ASVspoof 2019 PA dataset statistics.

Subset #Speakers #Bonafide #Spoofed
Training 20 5400 48600

Development 20 5400 24300
Evaluation 67 18090 116640

3.3.1 Logical access (LA) spoofing dataset

Here, LA attack simply refers to TTS and VC attacks. The main difference

between the 2019 and 2015 editions’ TTS and VC datasets is in the use of algo-

rithms for creating them. The ASVspoof 2015 dataset was created using state-

of-the-art TTS and VC algorithms available until 2015. However, since 2015, the

TTS and VC communities both have made a substantial progress showcasing

models capable of producing synthetic and converted speech that are virtually

indistinguishable from real human speech. The ASVspoof 2019 LA dataset is

therefore created to bridge this gap and study TTS and VC based spoofing

algorithms using advanced state-of-the-art methodologies developed since 2015

[ASVspoof 2019 evaluation plan]. Table 3.7 summarises the ASVspoof 2019 LA

dataset. Both the training and development sets consist of 8 male and 12 female

speakers [Todisco et al., 2019., ASVspoof 2019 evaluation plan].

Furthermore, it should be noted that the main focus of this thesis is on

replay attacks, and therefore, most of the work is based on the ASVspoof 2017

and 2019 PA dataset. The LA dataset was used only during our participation

in the ASVspoof 2019 challenge evaluation (Section 5.2).

3.3.2 Physical access (PA) spoofing dataset

Understanding the replay spoofing attack problem using the ASVspoof 2017

edition dataset was quite challenging due to the methodology adopted for data

collection and compilation [ASVspoof 2019 evaluation plan]. It was created

from real playback and re-recording of bonafide utterances from RedDots [Lee

et al., 2015] in a somewhat uncontrolled setup [Todisco et al., 2019., ASVspoof

2019 evaluation plan]. To overcome these issues and perform better analysis

towards understanding the replay spoofing problem, the ASVspoof 2019 PA

dataset was created using simulations in a much more controlled setup. Re-

play attacks were simulated using a variety of replay and recording devices

under carefully controlled room acoustic and replay configurations as detailed

in [ASVspoof 2019 evaluation plan]. Here, PA attack simply refers to replay

spoofing attacks. Table 3.8 summarises the PA dataset. As in LA, the train-

ing and development sets consist of 8 male and 12 female speakers [Todisco

et al., 2019., ASVspoof 2019 evaluation plan]. However, the numbers of audio

69

examples in the training and development sets are comparatively larger than in

LA.

3.3.3 Real PA dataset

While the ASVspoof 2019 PA dataset was created using simulated replay at-

tacks, the ASVspoof 2019 real PA dataset consists of audio recordings developed

under real replay conditions. The real PA dataset consists of 2, 700 audio files

with 540 bonafide and 2, 160 spoof recordings [Todisco et al., 2019.]. The re-

played recordings were developed using: 10 different recording devices and 7

different playback devices of low and high qualities; three different types of

acoustic environments: medium size office, large office and a meeting room;

four different noise conditions to add additive noise: very quiet, quiet fan, low

AC noise, and window open; close and far distances between ASV-talker and

attacker-talker8. This testset is primarily developed for studying the generalis-

ability of countermeasure models in unseen real-world test conditions.

3.4 Other spoofing corpora

For completeness, this section will now provide a brief description of the other

spoofing datasets that are available publicly but not used extensively in this the-

sis. Firstly, the realistic replay attack corpus (ReMASC), a new replay spoofing

dataset, is described in Subsection 3.4.1. Then the Subsection 3.4.2 discusses

the AVspoof dataset which is the first publicly available corpus containing replay

attack samples created in a controlled recording and playback setting. Another

publicly available spoofing dataset is ASVspoof 2015 that was released in 2015

as part of the first ASVspoof competition [Wu et al., 2015c]. This chapter does

not provide much details here because this thesis focusses on replay spoofing

attacks and the ASVspoof 2015 dataset was designed to study logical access

(TTS, VC) spoofing attack conditions. Please see [Wu et al., 2015c] for more

details on the ASVspoof 2015 challenge and the dataset.

3.4.1 ReMASC

ReMASC - a realistic replay attack corpus [Gong et al., 2019] is a publicly avail-

able corpus for replay spoofing attack research in voice controlled applications.

It consists of both bonafide and replayed recordings collected under realistic

use-case scenarios. The dataset contains recordings collected using a variety

of microphone arrays recorded in different acoustical environmental conditions,

8Details taken from “README.PA.read.txt” file released along with the real PA dataset.

70

with various types of background noise and different positions between speakers

and VC systems. More details on this dataset can be found in [Gong et al.,

2019]. The current dataset version consists of two disjoint sets. The first set

has about 2, 000 replayed recordings covering all recording conditions for quick

evaluation (in a cross-dataset setting) of countermeasure models. The second

set consists of about 27, 000 recordings which can be used to design countermea-

sure models and further analyse how different playback devices and microphones

impact model performance.

3.4.2 AVspoof

The AVspoof (audio visual spoofing) dataset is the first publicly available cor-

pus that includes replay spoofing attacks [Ergünay et al., 2015]. It contains

bonafide speech samples recorded from 44 speakers (31 males and 13 females)

using one laptop and two smartphones. For controlled dataset creation the au-

thors made an assumption that an ASV system is deployed in a laptop. The

replayed samples were then generated in three different settings. First, the orig-

inal bonafide samples were replayed using a laptop with internal speakers and

external high quality (HQ) speakers, and also with two smartphones (Samsung

Galaxy S4 and iPhone 3G). Second, the synthesized speech produced using TTS

was replayed using a laptop and HQ speakers to an ASV system (installed in

the laptop). Thirdly, voice converted speech was replayed with a laptop with

HQ speakers. See [Ergünay et al., 2015] (Table 1) for further details on the

distribution of replayed and bonafide samples. It should be noted that both

bonafide and replayed utterances were compiled in a controlled setting. This

is one reason why this thesis does not use this dataset, rather it focusses on

ASVspoof datasets due to its popularity and incorporation of much more wild

replay attack conditions. However, for completeness, this thesis includes the

details of the AVspoof dataset here.

3.5 Evaluation metrics

So far this chapter has provided an overview of publicly available replay spoof-

ing datasets that will be used in this thesis. Now, to evaluate the performance

of countermeasure models it is important to define appropriate evaluation met-

rics. To this end, the thesis adopts the two metrics used in the ASVspoof chal-

lenges: equal error rate (EER) and tandem detection cost function (t-DCF).

Section 3.5.1 and Section 3.5.2 provide further details on these metrics.

Unless otherwise stated, the EER is used as a primary evaluation metric in

this thesis. Furthermore, the EER and t-DCF metrics are computed using the

71

scripts released by the organisers of the ASVspoof 2019 challenge.

3.5.1 Equal error rate

The equal error rate (EER) metric is used to evaluate the ability of spoofing

countermeasure models to discriminate bonafide and spoofed utterances from

each other. EER was the primary evaluation metric of the ASVspoof 2017

challenge, and a secondary metric of the ASVspoof 2019 challenge. EER is the

error rate at an operating point where the false acceptance (false alarm) and

false rejection (miss) rates are equal. The false acceptance rate (FAR) and the

false rejection rate (FRR) are respectively defined as:

FAR =
FP

FP + TN
(3.1)

FRR =
FN

TP + FN
(3.2)

where TP, TN, FP, and FN denote true positive, true negative, false positive

and false negative counts respectively. It should be further noted that a reference

value of 50% EER indicates the chance level.

3.5.2 Tandem detection cost function

In addition to EER, this thesis uses the tandem detection cost function (t-

DCF) [Kinnunen et al., 2018] metric to evaluate countermeasure (CM) perfor-

mance. Unlike EER, which evaluates countermeasure performance in isolation

from ASV, the t-DCF metric evaluates countermeasure and ASV performance

jointly under a Bayesian decision risk approach. Let s and t represent detection

thresholds for a CM and an ASV system respectively. The t-DCF metric is

defined as:

t-DCF(s, t) = Casv
miss · πtar · Pa(s, t)

+ Casv
fa · πnon · Pb(s, t)

+ Ccm
fa · πspoof · Pc(s, t)

+ Ccm
miss · πtar · Pd(s)

(3.3)

where, πtar, πnon, πspoof represents target, nontarget and spoof prior proba-

bilities; Pa(s, t), Pb(s, t), Pc(s, t) and Pd(s) represent 4 different error probabil-

ities represented as a function of detection thresholds and defined as follows.

Pa(s, t): CM does not miss human speech, and ASV falsely rejects the target;

Pb(s, t): CM does not miss human speech, and ASV falsely accepts the nontar-

get; Pc(s, t): CM falsely passes on a spoof sample, and ASV does not miss the

target; Pd(s): CM misses human speech; Casv
miss: cost of ASV system rejecting a

72

target trial9; Casv
fa : cost of ASV system accepting a nontarget trial; Ccm

fa : cost

of CM accepting a spoof trial; Ccm
miss: cost of CM rejecting a human trial.

The same t-DCF cost and prior parameters as used in the ASVspoof 2019

evaluation [Todisco et al., 2019., ASVspoof 2019 evaluation plan], with the x-

vector probabilistic linear discriminant analysis (PLDA) scores provided by the

organisers of the same challenge is used in this thesis. The ASV system is set

to its EER operating point while the (normalized) t-DCF is reported by setting

the countermeasure to its minimum-cost operating point. A reference value 1.00

of (normalized) t-DCF indicates an uninformative countermeasure. For further

details please see [Kinnunen et al., 2018].

3.6 Summary

This chapter provided a detailed description of the spoofing datasets and evalu-

ation metrics available publicly for promoting anti-spoofing research. The work

described in Chapters 4 and 5 mostly uses the ASVspoof 2017 and 2019 datasets.

Furthermore, for completeness, the chapter also included a brief description of

datasets not used in this thesis but available publicly. Along with the database

description, this chapter also summarised the results of a qualitative analysis

on ASVspoof 2017 v2.0 that has provided interesting insights into the dataset.

These insights will be later used in Section 4.6 to understand how they influence

decisions made by countermeasure models. Finally, this chapter provided a de-

scription of two different performance metrics that will be used in this thesis to

evaluate countermeasure performance.

9Trial: is simply a test speech utterance passed to a CM or an ASV system.

73

Chapter 4

Analysis of spoofing

countermeasures

4.1 Introduction

This chapter presents a series of studies on the analysis of existing features, clas-

sifiers and methods for replay spoofing detection. It aims at serving as the basis

towards understanding the replay spoofing attack problem by first exploring

existing methodologies and techniques from the literature. The work reported

in this chapter mostly uses the ASVspoof 2017 dataset, as the ASVspoof 2019

dataset was released towards the completion of this thesis. Section 3 describes

these datasets.

Firstly, in Section 4.2 several existing hand-crafted features, coupled with

a GMM classifier, that showed promising performance on the ASVspoof 2015

dataset for the detection of converted and synthetic speech, are considered.

Their generalisability towards replay spoofing attack detection is investigated

using the ASVspoof 2017 v1.0 dataset, followed by the analysis of the best per-

forming GMM countermeasure model. This work is a result of our participation

in the ASVspoof 2017 challenge, and was published in [Chettri and Sturm, 2018].

Following the impressive performance by Lavrentyeva et al. [2017] in the

ASVspoof 2017 challenge, Section 4.3 focusses on replicating their best per-

forming light CNN (LCNN) model. It also investigates alternative network ar-

chitectures and further studies how performance varies across different network

parameterisations. This work was published in [Chettri et al., 2018b]. The next

Section 4.4 then analyses different replay attack conditions and their impact

on both frame-level and utterance-level countermeasure models. This work was

published in [Chettri et al., 2018c]. Subsequently, Section 4.5 develops a CNN

74

countermeasure model whose architecture and input representation is adapted

from the LCNN model of the ASVspoof 2017 challenge. The SLIME algorithm

(described in Section 2.9.2) is then applied to understand what the CNN model

has learned to make spoofing decisions. This work was published in [Chettri

et al., 2018a].

Following the findings about potential dataset artefacts on the ASVspoof

2017 v2.0 dataset presented in Section 3.2.3, the next Section 4.6 performs an in-

depth study through various interventions towards understanding the impact of

different dataset artefacts (see Section 3.2.3) on both frame-level and utterance-

level countermeasure models. Finally, this chapter concludes with a summary

in Section 4.7.

4.2 Generalisability of hand-crafted features

4.2.1 Introduction

This section describes the work towards studying the effectiveness of six differ-

ent hand-designed features and machine learning approaches for the automatic

detection of replayed speech on the ASVspoof 2017 v1.0 dataset. These features

have shown good performance on the detection of synthetic and voice converted

spoofed speech applied to the ASVspoof 2015 dataset. Replay attacks, however,

are in principle very different from these artificial speech attacks: while they

have the same objective — to bypass an ASV system — they are acoustically

different. Therefore, it is not obvious whether one should expect the extensive

prior results reported in [Sahidullah et al., 2015] on the ASVspoof 2015 data to

generalise at all to the detection of replay attacks. Thus, our primary scientific

contribution in this section is to thoroughly assess performance of these features

for replay spoofing detection using the ASVspoof 2017 v1.0 dataset. The work

described here is a result of our participation in the ASVspoof 2017 evaluations

(described in Section 2.3), and our post-evaluation findings which were pub-

lished in [Chettri and Sturm, 2018]. Motivated from [Sahidullah et al., 2015],

this section focusses on using a Gaussian Mixture Model (GMM) as a backend

classifier. Subsection 4.2.2 provides a brief description of six different features

investigated and the backend GMM classifier. The performance of these sys-

tems on the replay attack problem applied to the ASVspoof 2017 v1.0 dataset

is then discussed. The next Subsection 4.2.3 then aims at understanding the

best performing GMM countermeasure model and brings interesting findings

to light. It is demonstrated that GMM performance can depend on a simple

class-dependent cue in the dataset: initial silence frames of zeros appear in the

bonafide signals but are missing in the spoofed versions. Furthermore, it is

75

shown that using this cue, model predictions can be easily fooled. Finally, this

section investigates whether this problem can be mitigated by a simple prepro-

cessing on the audio signals. Subsection 4.2.4 then provides a summary of the

work done in this section.

4.2.2 Experimental design and evaluation

This section provides a brief description of different features considered, the

backend GMM classifier, and the dataset and performance metrics used for

performance evaluation. A brief description of the ASVspoof 2017 challenge

baselines is also provided.

Feature extraction

We explore the use of six different hand-crafted features: MFCCs, IMFCCs,

RFCCs, LFCCs, SCMCs and CQCCs. While the first five features are based on

the short-time Fourier transform (STFT), CQCCs use the constant-Q transform.

Section 2.5 provides more details on these features. As for feature extraction,

we use the publicly available scripts provided by the ASVspoof 2017 challenge

organisers for computing CQCC features [Todisco et al., 2017]. For computing

the other five STFT-based features, we use the publicly released scripts by

Sahidullah et al. [2015]. All our systems use 40-dimensional features obtained

by concatenating 20 delta and 20 acceleration coefficients, including energy1.

We do not use voice activity detection or normalisation.

Model

We use a Gaussian mixture model (GMM) backend to evaluate the generalis-

ability of hand-crafted features for replay spoofing attack detection. Given a

speech utterance s, the main goal is to build a system that determines if it is

bonafide speech or a replayed recording. Each system except the CQCC2, one

extracts a series of Hamming-windowed frames of 20 ms duration with 50% over-

lap, and transforms it into a series of T feature vectors, X (s) := (x1, . . . ,xT).

The system then computes a mean log-likelihood score by

Λ(s) :=
1

|X (s)|
∑

xt∈X (s)

log
p(xt|θbonafide)
p(xt|θspoof)

(4.1)

1Our choice of feature configuration was optimised on the development set, and we do not
use static features.

2CQCC features are extracted using the same feature parameterisation as in Todisco et al.
[2017].

76

Table 4.1: GMM performance (EER%) on the ASVspoof 2017 v1.0 development
and evaluation sets. B1: baseline. na: not available.

IMFCC MFCC LFCC RFCC SCMC CQCC B1

Dev 8.5 7.17 3.33 5.15 5.46 1.51 na
Eval 17.43 26.02 17.61 16.67 14.82 17.78 24.77

where p(x|θbonafide) is the probability density characterizing genuine speech fea-

tures, and p(x|θspoof) is that of spoofed speech features. The larger Λ(s) is, the

more confidence the model has that s is genuine. We estimate p(x|θbonafide) and

p(x|θspoof) by a GMM using the expectation maximization algorithm [Bishop,

2006] on pooled training data. We optimise the number of mixture components

on the development dataset and chose 512 for MFCC, LFCC and CQCC; 128

for IMFCC and RFCC; and 256 for SCMC features.

Dataset and evaluation metric

This study uses the ASVspoof 2017 v1.0 dataset (described in Section 3.2.1) that

was released as part of the second ASVspoof challenge evaluation (Section 2.3)

and the EER metric for performance evaluation as described in Section 3.5.1.

Baseline

Two baseline GMM systems based on CQCC features were provided by the

ASVspoof 2017 challenge organisers. Both use 90-dimensional features obtained

by combining the 0th and 29 static coefficients, their delta and acceleration

coefficients. The first baseline (B1) uses both training and development data

for GMM training while the second baseline (B2) uses only the training data.

However both GMMs used 512 mixture components. Since we use pooled data

in this work, we only include B1 in our further discussion.

Results

Table 4.1 shows the results of our six frame-based GMM systems on both the

development and evaluation sets, and the baseline B1 system. Our CQCC fea-

ture based GMM outperforms the baseline performance by a large margin. This

suggests that static features may not offer substantial discriminative informa-

tion useful for replay attack detection in contrast to the use of dynamic features.

Except for the one using MFCCs, all systems outperform the 24.77% baseline

performance on the evaluation data [Kinnunen et al., 2017a] by a large mar-

gin. IMFCC features give more emphasis on high frequency information than

MFCCs, and seem to have more discriminability. LFCC and RFCC systems

equally emphasise all frequency bands and have similar performance. Both

77

0 0.15 0.3 0.45 0.6 0.75 0.9 1.1 1.2
Time

0
64

128
256
512

1024
2048
4096
8192

Fr
eq
ue
nc
y

(H
z)

(a) ge ui e_correct

0 25 50 75 100 125 150 175
frames

0

200

400

600

800

Lo
g
Lik

el
ih
oo
d

0 0.5 1 1.5 2 2.5
Time

0
64

128
256
512

1024
2048
4096
8192

H)

(b) spoofed_correct

0 50 100 150 200 250 300 350
frames

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

0 0.5 1 1.5
Time

0
64

128
256
512

1024
2048
4096
8192

H)

(c) ge ui e_i correct

0 50 100 150 200 250
frames

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Figure 4.1: Spectrograms (first row) and frame-wise log likelihood score differ-
ence (second row) between bonafide and spoof GMMs for (a) genuine correct;
(b) spoofed correct, and (c) genuine incorrect audio examples taken from the
development set.

CQCC and SCMC features show good generalisability on the replayed speech

detection task, but the latter show the best result on the evaluation data. This

suggests that the distribution of energy expressed by SCMC features is the most

discriminative and generalisable of these six kinds of features.

4.2.3 Analysis

We now take a closer look at the best GMM system which is based on SCMC

features to discover the cues that influence its prediction. We look at how the

log-likelihood scores for the bonafide (genuine) and spoofed (replayed) GMM

models are distributed across frames. We pick a bonafide and spoofed example

from the development set that the system confidently and correctly classifies:

“D 1000601.wav” produces Λ(s) = 14.66; “D 1001012.wav” produces Λ(s) =

−0.96. We also select the genuine signal “D 1000300.wav” that is confidently

misclassified with a score Λ(s) = −0.21. For easy reference we define these

signals as genuine correct, spoof correct and genuine incorrect. Figure 4.1 shows

for each signal its spectrogram (first row) and the frame-wise distribution of

log-likelihoods (bottom row) in each model. We observe a marginal difference

between genuine and spoofed model scores across frames for genuine incorrect

and spoof correct, respectively. However, we see significantly different behavior

for genuine correct. The decision for this signal is dominated by its first few

frames. We find that many genuine audio files in this dataset contain initial

silence frames with zeros which do not appear in the spoofed version. As can be

seen in Figure 4.1 second row, the spoofed model assigns a very small probability

to such a frame, thus pushing the decision toward the bonafide class. As a

78

Table 4.2: Performance (EER%) of GMMs after adding the genuine signature
to every utterance in the development and evaluation set.

IMFCC MFCC LFCC RFCC SCMC CQCC
Dev 34.54 33.48 34.92 28.92 46.74 2.27
Eval 34.46 35.95 38.23 34.22 44.44 18.71

consequence, this has a large influence on the classifier decision (Equation 4.1).

To further confirm that GMM decisions are influenced by this silence cue

favouring the bonafide class, we perform intervention3 experiments on all frame-

based GMM systems. Furthermore, for completeness and to study how this cue

affects models trained at utterance-level, we train two such models. First, we

train support vector machines (SVMs) using i-vectors which are computed us-

ing SCMC features. Second, we train a convolutional neural network (CNN)

on power spectrograms using the architecture adapted from the LCNN [Lavren-

tyeva et al., 2017] model that showed the best performance in the ASVspoof

2017 evaluations.

Frame-based model intervention

We find that genuine correct begins with 60 ms of zeros, except four samples

containing non-zero values. Therefore, we define this 60 ms segment of gen-

uine correct as a “genuine signature” and add it onto the beginning of the two

other signals, spoofed correct and genuine incorrect. As expected, the model

now scores both in favor of being genuine: Λ(s) = 6.85 and Λ(s) = 11.63 for

spoofed correct and genuine incorrect respectively. When we repeat this process

for all test files in the development and evaluation set and re-evaluate all our

GMM systems we see a dramatic increase in the EER of all systems except

for the CQCC one. The IMFCC system that showed 8.5% and 17.43% EER

before gives 34.54% and 34.46% EER on the development and evaluation sets

respectively. We observe a similar trend for the LFCC and RFCC systems. Our

best performing SCMC system now gives the worst performance. We observe

a very small increase in the EER for CQCCs: from 17.78% to 18.81% on the

evaluation set in comparison to other five features. Thus, the CQCC features

that give higher frequency resolution for lower frequencies and a higher tempo-

ral resolution for higher frequencies seem to be robust against such presentation

attacks — augmenting silence in the start of test signals.

Our above analysis casts doubts on the reliability of the evaluation results

of the ASVspoof Challenge: are the other participating systems benefiting from

3This thesis defines Intervention as a process that updates the original audio signal either
by adding or removing audio samples. This is mainly performed to understand the influence
of certain dataset related artefacts/biases on model predictions.

79

Table 4.3: Performance (EER%) for two cases of preprocessing. Approach 1:
remove the first 60 ms during testing from all the test files. Approach 2: same as
in Approach 1 but retrains the bonafide GMM applying the same preprocessing.

Approach1 Approach2

Dev Eval Dev Eval
IMFCC 8.78 19.18 8.66 19.10
MFCC 8.54 31.79 8.5 31.9
LFCC 4.01 21.46 4.41 21.06
RFCC 7.05 19.85 7.43 20.1
SCMC 6.4 17.98 6.39 17.7
CQCC 2.14 19.79 1.97 19.35

this signature, which will not exist “in the wild”? How prevalent is this signature

in the data? Can we improve the reliability of this challenge by simply deleting

the first 60 ms of each test audio file, and using the same trained models? To

this end, we propose two simple preprocessing approaches. The first approach

(Approach 1) involves removing the first 60 ms samples from all test files. The

second approach (Approach 2) is similar to the first one but this also involves

retraining the bonafide GMM removing the initial 60 ms samples from all the

training audio files. Table 4.3 shows the results of this intervention experiment.

As can be seen, applying Approach 1 on all the test files increases the EER

of each system tested in Table 4.1, but not by a large amount. Furthermore,

applying Approach 2, we observe a small increase in the EER of each system.

These results suggest that the signature is not very prevalent throughout the

data, but that it is prevalent enough to allow a simple means of bypassing an

otherwise good performing replay attack spoofing detection system.

Utterance-based model intervention

The previous models we trained and tested on the ASVspoof 2017 v1.0 dataset

are all frame-level. Will systems using utterance-level features suffer from the

same vulnerability? We now investigate two models: GMM and SVM, built

using features learned from a CNN and i-vectors [Dehak et al., 2011]. We do

not optimise these models for the best performance.

For the CNN-based features, we use the parameterisation and network archi-

tecture from [Lavrentyeva et al., 2017] for training the CNN with the following

changes. First, we use a 3 seconds log power spectrogram computed using 2048

FFT points, window size of 128 ms and a 10 ms hop size. We truncate or copy

original audio samples to obtain a fixed 3 seconds spectrogram for every audio

file in the dataset. Second, we use a convolutional layer in place of a network-

in-network layer. Third, we use 64 neurons in the fully connected layer. Fourth,

80

we replace the max-feature-map by an exponential linear unit [Clevert et al.,

2015] activation and train our network. Appendix A provides further details on

the model architecture. The trained network extracts 64-dimensional feature

vectors for every audio file in the dataset. We then train bonafide and spoofed

GMM models using 8 mixture components4. Unlike the GMMs trained earlier,

this GMM is trained at utterance-level as each audio file is represented by a

single 64-dimensional vector. It should be noted that our input pipeline for

spectrogram computation uses a preprocessing step that ensures the smallest

value in the spectrogram is no less than 1e-7. Thus the network will implicitly

take care of the genuine signature (zero-valued samples).

We use 40-dimensional delta-acceleration SCMC features to train a 256 mix-

ture universal background model and total variability matrix with 200 factors

on the pooled data. We extract 200-dimensional i-vectors for the entire dataset.

We then use the training set i-vectors to train a linear SVM using the Scikit-

learn [Pedregosa et al., 2011] library.

Table 4.4: Performance (EER%) of utterance-based models before and after
injecting the genuine signature to all the test files in the development and eval-
uation set. * trained using CNN features. ** trained using i-vectors

GMM* SVM**

Dev Eval Dev Eval
Before 9.06 32.65 21.88 20.9
After 9.24 32.69 21.81 20.5

Table 4.4 shows the performance of these two utterance-based models before

and after we add the “genuine signature” to the test files. As i-vector extraction

involves stacking mean vectors from the mixture components, the effect of the

zero valued samples is taken care of automatically and thus we do not see any

impact on performance after adding the genuine signature. Similarly, the CNN

has a max-pooling layer that chooses a maximum from a given block of convolved

input, thus the artefacts are taken care of in the first convolutional layer, thereby

eliminating the impact of the genuine signature on the predictions. As expected,

the experimental results in Table 4.4 clearly indicate that systems trained on

utterance-based fixed length feature representations using the ASVspoof 2017

v1.0 dataset are resilient against such presentation attacks.

4This choice is motivated from Lavrentyeva et al. [2017] where they used 1-mixture com-
ponent to train GMM on 32 dimensional CNN features (extracted per utterance). We tried 1,
2, 4 and 8 mixture components and found the best performance using 8 mixture components
on the development set.

81

4.2.4 Discussion

This section investigated the generalisability of six different hand-designed fea-

tures for the automatic detection of replay spoofing attacks using the ASVspoof

2017 v1.0 dataset. Though these features reported good performance for the de-

tection of synthetic and voice converted speech on the ASVspoof 2015 dataset,

they showed poor performance on the ASVspoof 2017 dataset due to the acous-

tically different problem in hand. Among different features investigated in this

section, the SCMC feature based GMMs showed the best replay attack detec-

tion performance on the ASVspoof 2017 v1.0 dataset. Deeper analysis (Sec-

tion 4.2.3) of this system led us to interesting observations. We found the

presence of recording artefacts (initial silence frames containing zeros) in some

genuine audio files in the dataset that are missing from the replayed version.

As a consequence, spoofed models assign a very low likelihood to such frames

during testing. We demonstrated how knowledge of such cues can compromise

system predictions. Though such data-intrinsic behavior may not appear in real-

world scenarios, our work showed the severe impact it can have on the EER for

frame-level GMM systems. We investigated two intervention approaches to help

mitigate against such manipulation attacks. Comparing Table 4.2 and Table 4.3

we see that our proposed approaches not only helped reduce the error rates of all

frame-based GMMs, but they are now more trustworthy. Finally, Section 4.2.3

investigated two utterance-based countermeasure models and shows that they

do not suffer from such manipulation. A bigger question we have yet to answer

is what is causing the large difference between the EER on the development and

evaluation datasets, which we aim to address in the next section.

82

4.3 CNNs for spoofing detection

4.3.1 Introduction

The previous Section 4.2 studied the generalisability of hand-crafted features

that showed good detection performance for spoofed speech produced using

text-to-speech and voice conversion techniques, but poor performance for re-

play spoofing attack detection. This indicates that crafting features incorpo-

rating human knowledge might not be easy due to the acoustically different

problems, suggesting that data-driven techniques might be more helpful for the

replay spoofing detection problem. Many competing systems in the ASVspoof

2017 evaluations used deep learning-based countermeasures for replay spoofing

detection. For example, the top two systems [Lavrentyeva et al., 2017] and

[Nagarsheth et al., 2017] used deep CNNs as feature extractors to learn discrim-

inative features. Then shallow classifiers such as GMMs and SVMs were trained

on them to discriminate between bonafide and spoofed recordings. Among three

sub-systems used in score fusion by [Lavrentyeva et al., 2017] as a primary sys-

tem submission in the 2017 challenge, the best performance was achieved by

the light CNN (LCNN) model reporting an EER of 7.34% on the evaluation

set of the ASVspoof 2017 v1.0 dataset. The success of CNNs in the ASVspoof

2017 challenge inspires the work reported in this section. Our ultimate goal

here is to understand why the LCNN showed remarkable performance towards

replay attack detection on this dataset which no other participants could reach

a performance even close to 10% EER during the 2017 evaluations. A precursor

to analyse such model is to train one that performs ‘fairly’ (better than the

baseline) in the evaluation set. The main focus of this section is therefore on

replication of the LCNN model which we aim to use later in Section 4.5 for

analysis. Related background on CNNs is provided in Subsection 2.6.2.

To this end, this section reports the experiments and challenges to design a

deep countermeasure model that is trained and evaluated on the ASVspoof 2017

v1.0 dataset. Firstly, this section provides a brief motivation of this work with

a summary of best deep models published on this dataset. Secondly, Subsec-

tion 4.3.2 describes our efforts in replicating the state-of-the-art LCNN model

in an end-to-end setting. We found that our CNN-based model generalises well

on the development set, but consistently underperforms in the evaluation set.

Thirdly we explain our experiments to find a suitable architecture that gen-

eralises well to the unseen data in Subsection 4.3.3. We explored a number of

architectures including the second best deep model of the challenge [Nagarsheth

et al., 2017]. But the performance on the evaluation dataset is always poor. This

raises several interesting questions about the possible differences in the dataset

83

and why they are more evident in an end-to-end setting and what are the possi-

ble ways to tackle this problem. We also propose a novel CNN architecture for

the spoofing detection task with far fewer trainable parameters. Furthermore,

we also investigate the effect of network parameterisation on performance in

Subsection 4.3.4. Subsection 4.3.5 then provides a summary of the work done

in this section.

It should be noted that all the models are trained and tested on the ASVspoof

2017 v1.0 dataset (see Section 3.2.1) and use the EER metric for performance

evaluation (see Section 3.5). Next, we provide a short description of the pub-

lished deep learning systems from the ASVspoof 2017 challenge evaluations.

Best published deep learning systems

Below we provide a summary of deep learning based systems that have been

evaluated on the ASVspoof 2017 v1.0 dataset.

• System A [Lavrentyeva et al., 2017]: This system used score-level fusion

of three sub-systems. The first is a GMM trained on features extracted

from a CNN — which in turn is trained on log-power spectrograms. The

second is an i-vector based SVM system where i-vectors were extracted

from LPCC. And the third is an end-to-end CNN-RNN system trained on

log-power spectrograms.

• System B [Nagarsheth et al., 2017]: The authors train a CNN as a fea-

ture extractor using tandem features — combining CQCCs with High

Frequency Cepstral Coefficients (HFCCs5). They train this network in a

multi-class setting to model different spoofing attack configurations seen

in the training and development set. Then for every audio recording in

the dataset they extract feature embeddings using the pretrained CNN. A

binary SVM classifier is then trained on these embeddings to discriminate

between the bonafide and spoofed classes.

• System C [Chen et al., 2017]: This system employed score-level fusion of

three sub-systems. The first is a GMM trained on the CQCC features. The

second and third systems are residual neural networks (ResNets) trained

on the MFCC and CQCC features respectively.

• System D [Cai et al., 2017]: This system used score-level fusion of three

sub-systems. The first is a GMM trained on CQCC features (the baseline

model from the challenge). The second is also a GMM system trained on

CQCCs but uses augmented data during training (for the spoofed GMM).

5[Nagarsheth et al., 2017] apply a high pass filter with a cutoff frequency of 3500 Hz to
discard fundamental and harmonic speech frequencies and extract HFCC features.

84

Table 4.5: Performance (EER %) of the best deep learning systems on the
development and evaluation sets.

System Dev Eval
A [Lavrentyeva et al., 2017] 3.95 6.73
B [Nagarsheth et al., 2017] 7.6 11.5
C [Chen et al., 2017] 2.58 13.29
D [Cai et al., 2017] 3.52 16.39
E [Alluri et al., 2017] 2.21 17.82
LCNN [Lavrentyeva et al., 2017] 4.53 7.34

The authors apply different parametric reverberators and phase shifters

to create simulated replay data. The third system is a residual neural

network trained on spectrograms.

• System E [Alluri et al., 2017]: This system used score-level fusion of a

GMM and a Bi-directional long short term memory network (BLSTM).

The authors use their proposed Single Frequency Filter Cepstral Coef-

ficients (SFFCC) based delta-features to train the GMM and BLSTM

models.

• LCNN [Lavrentyeva et al., 2017]: This is one of the sub-systems of A that

uses features extracted from a CNN to train a single-component GMM

to model spoofed and bonafide classes. This stand-alone system has con-

tributed the most among other sub-systems in system A reporting an EER

of 7.34% on the evaluation set (Table 4.5).

Table 4.5 summarises the results of these systems on the development and

evaluation sets. We observe a remarkable performance by system A, the state-

of-the-art [Lavrentyeva et al., 2017]. The top two systems (A and B) show

similar levels of generalisation6 on the development and the evaluation sets

which however contradicts with the performance shown by the other systems C,

D and E.

Motivation

Usually the success of deep learning systems is attributed to the availability of

large training data. However, within the context of the ASVspoof 2017 v1.0

(see Section 3.2.1), where the training data is significantly less than the test

data, training a deep neural network to be able to achieve good generalisation

can be challenging. Therefore we outline the following questions that motivate

the work in this section.

6The gap between the EER on the development and the evaluation datasets is nearly the
same.

85

• Using only the available training and development data, is it possible to

train an end-to-end CNN that generalises well to the evaluation dataset?

• Why is there a huge performance gap between the development and eval-

uation datasets? Could one reason be due to the high imbalance in the

number of utterances between the two above mentioned sets?

• Lastly, given such a small training data (about 2.22 hours), can we design

a deep architecture with fewer trainable parameters that neither underfits

nor overfits on training data?

This work tries to seek answers to the above questions and discusses the

possible outcomes. The next section will describe our experiments towards

replicating the LCNN model.

4.3.2 Replicating the state-of-the-art LCNN

Here we describe our efforts in replicating LCNN — the best performing CNN

model of the ASVspoof 2017 challenge that reported an EER of 7.34% on the

evaluation set. We train our replicated version of the LCNN model using the

same input representation and network parameterisation [Lavrentyeva et al.,

2017] with the following difference7: we use 2048 FFT points and 2048 window

size with a 10 ms hop size to compute the spectrograms. Therefore, our input

spectrogram is of shape 400 × 1025 instead of 400 × 864 as used in LCNN

[Lavrentyeva et al., 2017], where 400 denotes time frames and 1025 number

of frequency bins. We either truncate or copy the original samples depending

upon the original audio duration to create a 4 seconds fixed duration audio

representation. We do this for every audio recording in the dataset. We use

the Librosa8 library for computing the spectrograms. Appendix A provides the

details of the LCNN architecture.

Model training and testing

The input to the network is a mean-variance normalised log power magnitude

spectrogram. We initialise our network weights using Xavier initialisation [Glo-

rot and Bengio, 2010] and biases with zero. The network is trained to optimise

the cross entropy loss between the bonafide and spoofed classes. As specified

in [Lavrentyeva et al., 2017], we use max-feature-map (MFM) non-linearity, a

learning rate of 0.0001, 32 as batch size, and 0.9 as the momentum. The network

7Our preliminary experiments using 1728 FFT points show worse performance on the
evaluation set. We envisage that use of higher frequency resolution (2048 point FFT) should
help improve detection performance.

8http://librosa.github.io

86

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

cr
os

s
en

tr
op

y
lo
ss

A ­ Run 1

val_loss
train_batch_loss

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

B ­ Run 2

val_loss
train_batch_loss

0 10 20 30 40 50 60 70

epochs

0.0

0.2

0.4

0.6

cr
os

s
en

tr
op

y
lo
ss

C ­ Run 3

val_loss
train_batch_loss

0 10 20 30 40 50 60 70

epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2
D ­ Run 4

val_loss
train_batch_loss

Figure 4.2: Cross entropy loss on the training and development sets for four
different runs of training our replicated version of the LCNN.

is trained using stochastic gradient descent with the ADAM optimiser [Kingma

and Ba, 2014]. The default parameter value of epsilon did not work and we use

0.1 instead. A dropout of 70% to the inputs of the first fully connected layer is

used during model training. We use the tensorflow [Abadi et al., 2015] frame-

work for the CNN implementation. We use early stopping9 during training to

overcome overfitting. If the validation loss does not improve for 30 epochs then

we abort the training. We use a maximum of 300 training epochs and chose

the model that shows the best performance on the validation data. At inference

time, for each audio spectrogram the model outputs a posterior probability dis-

tribution for the bonafide and spoofed classes. The final score is obtained by

converting these posteriors into a log likelihood ratio and the EER is computed.

Using the above described approach, we train 5 different CNN models initialised

with different random weights, with an aim to study how model behaviour varies

across different runs of model training.

Results

Figure 4.2 shows the training and validation cross entropy loss visualisations

for four different training runs of our replicated version of LCNN model. As

expected, we see a decrease in the training loss as the number of epochs in-

crease. Except for a few bumps in some training epochs the loss decreases

smoothly reaching almost 0% after few training epochs. This holds true for

all four training runs. However, we do not observe much improvement in the

validation loss after 20 - 30 epochs suggesting a case of overfitting. All our

9Lavrentyeva et al. [2017] do not mention using early stopping in their paper.

87

Table 4.6: Performance (EER%) of our replicated CNNs in an end-to-end set-
ting and training GMMs on CNN features. Shown results are for five different
training runs.

End-to-End GMM
Dev Eval Dev Eval

Run 1 9.04 32.02 9.49 34.00
Run 2 9.30 37.67 10.46 39.00
Run 3 8.01 30.96 9.40 34.24
Run 4 14.11 36.97 12.80 38.70
Run 5 9.11 37.34 10.78 35.66

models are trained on the training set and validated using the development set.

We present the results of our replicated version of the LCNN model in Table

4.6. Furthermore, for comparison with the state-of-the-art performance we also

build a GMM system trained on features extracted from our pre-trained CNNs.

For each audio recording, a 32 dimensional feature vector, which is the output

of the fully connected layer (with 32 units), is extracted. A one-component

GMM is then trained to model the bonafide and spoofed feature distribution

and the log-likelihood difference between the bonafide and spoof GMMs is used

for scoring as described in Equation 4.1. Having run the setup for five different

runs with different random initialisations, none of our replicated version models

could achieve a performance even half of what Lavrentyeva et al. [2017] reported

under the common training conditions. We observe the best performance for

Run 3, with an EER of 8.01% and 30.96% on the development and evaluation

sets under an end-to-end setting and 9.4% and 34.24% using GMMs. We also

tried a small experiment altering the training and validation sets, where we now

use the development set for learning CNN parameters and the training set for

validation. Using this approach our model reported a small EER of 2% on the

validation set (which is the training set in this case), but worse performance on

the evaluation set.

We make the following observations: (1) We do not see a substantial differ-

ence in performance by training the GMM on CNN features in contrast to the

end-to-end model, suggesting that the features learned by CNN are not gener-

alisable; (2) On the evaluation set we see a large variance in performance across

different runs of model training, suggesting difficulty in reproducing the same

results; (3) The performance gap between the development set and evaluation

set is always large. This suggests overfitting on the development set and that the

development set partition may not be representative of the unseen evaluation

set.

Therefore these experiments suggest that it is quite difficult to replicate the

LCNN model to achieve the same level of generalisation between the develop-

88

ment and evaluation sets using the limited details provided by Lavrentyeva et al.

[2017]. In the next section we investigate new CNN architectures with an aim to

achieve better generalisation on both the development and the evaluation sets.

4.3.3 Investigating alternative CNN architectures

This section now describes three different CNN architectures using log-power

spectrogram inputs for replay spoofing attack detection. The first architecture

which we call Model1, is adapted from [Nagarsheth et al., 2017] who reported

the second best performance using CNNs on the ASVspoof 2017 v1.0 evaluation

set. The second architecture, which we call it Model2, is adapted from [Grill and

Schlüter, 2017] which is the best performing model of the Bird Audio Detection

(BAD) challenge 2017. The third architecture which we call Model3 is our

proposed CNN architecture having a smaller number of model parameters yet

reports comparable performance with all other CNN models studied here.

Model1

This section now describes the methodology used to train Model1, which uses

the CNN architecture of the second best performing CNN-based model [Na-

garsheth et al., 2017] of the ASVspoof 2017 evaluations. As mentioned earlier

in Section 4.3.1, the authors trained a CNN on tandem features (CQCCs +

HFCCs) to model different spoofing attack configurations in the training (and

development) set in a multi-class setting. Later the authors used this pretrained

CNN for feature extraction and trained an SVM classifier for spoofing detection.

In our case, we adopt this architecture but use two output targets to model the

bonafide and spoofed classes in an end-to-end setting using log-power spectro-

grams as its input representation. Furthermore, inspired by Nagarsheth et al.

[2017], we only chose to use the first one second of audio during training and

evaluation. As described earlier in Section 4.3.2, we copy or truncate samples

to obtain a one second audio representation for every audio recording. In this

setup we use a 512 point FFT, 512 window size and 10 ms hop size to produce

a unified input spectrogram of 100× 257 (time x frequency) dimensions.

The network comprises three convolutional layers with 128 filters each. The

first convolutional layer uses a 3×257 (time x frequency) filter while the second

and third layers use 3× 1 size filters. All the convolutional layers use a stride of

1×1. This is followed by a max pooling procedure over the time axis. The pooled

input is then fed to a series of three fully connected (FC) layers each having

256 units. As all the implementation details of their CNN are not disclosed

in [Nagarsheth et al., 2017], we chose to use the parameter initialisation and

training approach described in Section 4.3.2.

89

Table 4.7: Performance comparison of different CNN architectures studied.

System Dev EER (%) Eval EER (%) # params
LCNN (our) 8.01 30.96 371 K
Model1 5.47 25.28 4 M
Model2 4.52 34.91 68 K
Model3 4.98 33.11 7682

The performance of Model1 in terms of EER% is shown in Table 4.7. Here

we only report the best performing model obtained using this architecture which

shows 5.47% and 25.28% EER on the development and evaluation data. How-

ever, this model uses a high dropout rate: 90% and 80% to the inputs of the

first and second FC layers and 60% to the inputs of the output layer.

Model2

This CNN architecture is motivated from the work of Grill and Schlüter [2017]

that was submitted to the 2017 Bird Audio Detection (BAD) challenge. Al-

though the objectives of the BAD and ASVspoof 2017 challenges are completely

different, they exhibit some similarities in the proposed test conditions: both

focus on wild and diverse test conditions. Therefore, we adopt one of their CNN

architecture called “Bulbul” to study if changing the architecture helps improve

the performance gap (better generalisation) between the development and the

evaluation sets applied to the replay spoofing detection task. Our adapted

network has four convolutional layers each having 16 kernels/filters. Each con-

volutional layer is followed by a max pooling layer. The first two convolutional

layers use a 3 × 3 filter with a stride of 1 × 1 while the last two convolutional

layers use a 3× 1 size filter with 1× 1 stride. The first two pooling layers use a

3× 3 size filter and stride, and the last two pooling layers use a 3× 1 size filter

and stride. This is followed by two fully connected layers consisting of 256 and

32 units. Unlike the single unit used by [Grill and Schlüter, 2017] in the output

layer we use two units to model the probability distribution for bonafide and

spoofed classes.

In this setup, partly motivated by [Grill and Schlüter, 2017], we create ex-

cerpts of 1 second duration from the original audio files and use them during

training and testing. For a given audio utterance s, we use the following algo-

rithm to split the original data and prepare excerpts of 1 second duration.

1. Let l = length(s), be the original duration of s. Update s by copying or

truncating the original samples such that lnew = ceil(l).

2. Compute the log power magnitude spectrogram: D = log |STFT (s)|2

using a 256 point FFT, 256 window size and a 10 ms hop size. Here, the

90

resulting matrix D contains T time frames and F number of frequency

bins.

3. Let specwind and windshift be the desired excerpt (window) size and win-

dow shift size (in time) respectively. Now split D into different excerpts

by moving specwind by windshift.

4. Return the list of spectrograms generated in previous step, where each

spectrogram is of dimension specwind x F .

Using the above outlined steps and 1 second (100 frames) specwind and

windshift we created spectrogram excerpts of 1 second duration and used them

during training and testing. Therefore, the input to the network in this setup

is a spectrogram of 100 × 129 dimensions. At test time we take the average of

the scores obtained for different spectrogram excerpts corresponding to a given

test utterance and compute the EER. We use the parameterisation and training

recipe as described in Section 4.3.2.

The performance of Model2 is shown in Table 4.7. Although we experimented

with different dropouts, we found the best result using 50% dropout to the inputs

of the last two FC layers and 90% to the first FC layer inputs. This model gives

4.52% and 34.91% EER on the development and the evaluation sets respectively.

However, the generalisation gap between the two test sets is large, suggesting

that our model might be overfitting on the development set.

Model3

Our work so far in this section has investigated different CNN architectures.

These architectures range from medium to complex in terms of trainable pa-

rameters of the network (see the last column of Table 4.7). However, none of

these systems showed a similar level of generalisation on the development and

evaluation sets of the ASVspoof 2017 v1.0 dataset. Therefore, we now propose

an architecture with a smaller number of parameters which shows comparable

performance with other network architectures studied so far. This architecture,

partly motivated from the previous two architectures (Model1 and Model2), has

three convolutional layers and two fully connected layers. Each convolutional

layer has 16 output filters (feature maps) and uses a small rectangular filter of

size 1 × 9 with a stride of 1 × 1 along the time and frequency axes. We apply

a max pooling operation after each convolution layer. We use a 3 × 3 kernel

and a stride of 3 × 3 in all max pooling layers. We use 32 neurons in the first

FC layer with linear activation and two neurons in the output layer. All other

layers use MFM non-linearity (described in Subsection 2.6.2). We apply a 50%

dropout to the first FC layer inputs. Our proposed network topology is shown

91

8
50

Conv2 + MP2Conv1 + MP1
65

Input Spectrogram
Shape: 1 x 100 x 129

8

25

33

Conv3 + MP3

160 16 Output

FC4 FC5

Figure 4.3: Architecture of the proposed model. The highlighted component
shows a layer and its output feature map. For example, the shape of the feature
map after the second convolutional layer and max pooling layer is 33 x 25 x 8.
FC: fully connected, MP: max pooling.

Table 4.8: Model3 performance (EER %) for different activation functions.

Activation function Dev Eval
MFM 4.98 33.11
ReLU 5.29 31.7
ELU 8.66 40.78

in Fig. 4.3. The input representation, model training and testing approach used

for Model3 is the same as in Model2 described earlier.

The performance of Model3 is shown in Table 4.7. Our proposed architec-

ture appears to work quite well giving about 5% EER on the development set.

However, our model shows a worse generalisation on the evaluation set yielding

an EER more than 30%.

4.3.4 Effect of parameterisation on performance

Now we take our Model3 which showed comparable performance with other

models we studied and investigate how different network parameterisations af-

fect its performance. To this end, we look at how different choices of activation

functions (non linearity) and mini batch size used during stochastic gradient

descent optimisation affect the model performance. One key motivation to do

this is that so far we have used some of these parameterisations directly from

[Lavrentyeva et al., 2017] considering the impressive performance they reported

during the ASVspoof 2017 evaluations.

Activation function vs EER

All our models studied so far have used the MFM activation function in both

convolutional and fully connected layers following [Lavrentyeva et al., 2017].

92

Table 4.9: Model3 performance (EER %) for different batch sizes.

Batch size Dev Eval
8 4.62 36.02
16 5.64 35.35
32 4.98 33.11
64 5.96 36.6

Table 4.10: Model3 performance (EER %) using a single spectrogram excerpt
and multiple one-second excerpts per audio file.

spectrogram Dev Eval
split 4.98 33.11
single 6.5 35.56

Here, we compare the performance of MFM with two other popular activation

functions: ReLU and ELU, that are often used in various deep learning tasks.

Subsection 2.6.2 provides necessary background on these activation functions.

Model3 is now trained and tested using the ReLU and ELU activation func-

tions using the same training and testing approach described earlier in Subsec-

tion 4.3.3. Table 4.8 summarises the results. The ELU activation shows worse

performance on both the development and evaluation sets. Although ReLU

shows competitive performance with MFM on the development set, it yields

the best performance on the evaluation set outperforming both MFM and ELU

activations.

Batch size vs EER

Following [Lavrentyeva et al., 2017], we have used a mini batch size of 32 samples

in training all the CNN models in this section. Using the Model3 architecture,

we now investigate how performance compares when the network is trained

using different mini batch sizes. To this end, we experiment with 8, 16 and

64 batch sizes. We use the same training and testing approach as described

earlier in Subsection 4.3.3. We present the results in Table 4.9. We see worse

performance on both the development and evaluation sets for a 64 batch size.

Similarly, batch size 16 does not seem to work well. Overall, we see an optimal

performance for a batch size of 32.

Split data vs EER

A final set of experiments we perform on Model3 is to see the variation in the

performance when the same model is trained on one-spectrogram excerpt (of

3 seconds duration) and multiple spectrogram excerpts of 1-second durations

(obtained using the approach described earlier in Subsection 4.3.3). For the

93

one-spectrogram representation, we use three seconds audio obtained either by

truncating or copying the original audio samples to match the duration. There-

fore, in this setup the input spectrogram per each audio file is of shape 300×129

with 300 time frames and 129 frequency bins. We used 256 point FFT, window

size of 256 and 10 ms hop size. We train and evaluate this model using the same

method described in Subsection 4.3.3. Table 4.10 summarises the results. The

model trained on split spectrograms outperforms the single-spectrogram repre-

sentation model on both the development and evaluation sets. However, the

gain in performance is not substantially large as we would expect by increasing

the training data points where the original spectrogram is split into multiple

excerpts.

4.3.5 Discussion

This section described our efforts towards replicating the state-of-the-art LCNN

model that showed the best replay spoofing attack detection performance in the

ASVspoof 2017 challenge evaluation set. Our experimental results suggest that

using only the available audio examples in the training set along with the de-

tails provided in their paper [Lavrentyeva et al., 2017] it is not easy to replicate

their model to reach even 10− 15% EER on the evaluation set. Following this,

we investigated alternative CNN architectures with an aim to see if the perfor-

mance on the evaluation set can be improved. To this end, we also proposed a

CNN architecture with fewer trainable parameters that showed a similar level

of performance as other models with more parameters. In all our experiments

the trained models failed to generalise on the evaluation set but achieved good

performance on the development set. We find that despite trying different CNN

architectures it is very easy to overfit not only on the training set but overfitting

on the validation set (the development set is always used for model validation) is

quite prevalent. Hence, reducing the performance gap between the development

and evaluation sets is challenging. Taking our proposed Model 3 architecture,

we then studied the effect of network parameterisation: activation functions

and mini batch sizes, on the model performance. Experimental results suggest

that 32 is an optimal choice for mini batch size on this dataset. Interestingly,

we find that the ReLU activation function shows superior performance over

the MFM activation (proposed by Lavrentyeva et al. [2017]) on the evaluation

set. Finally, our proposed idea of splitting the original data (spectrogram) into

different splits (excerpts) resulting in increased training data points — a kind

of data augmentation strategy — did not show notable performance gains in

contrast to the model trained with a fixed-duration single spectrogram input

representation (see Table 4.10).

94

4.4 Analysing spoofing countermeasure perfor-

mance under varied conditions

4.4.1 Introduction

As highlighted in Sections 2.3 and 3.2, the ASVspoof 2017 dataset contains

spoofed utterances created under ‘wild’ replay attack conditions. Although

Lavrentyeva et al. [2017] reported an EER of about 6% on the evaluation set of

the v1.0 ASVspoof 2017 dataset, the number is still high, indicating difficultly

towards reliable detection of replay spoofing attacks under wild conditions on

this dataset. Furthermore, Section 4.3 demonstrated that it is also not easy to

replicate the LCNN model of [Lavrentyeva et al., 2017] using details published

in their paper. Following these findings, this section aims at analysing the per-

formance of countermeasure models across different replay attack conditions in

the evaluation set. For this, both frame-level and utterance-level countermea-

sure models are investigated. Following the potential issues identified in v1.0

of the ASVspoof 2017 dataset, an updated version (v2.0) of the dataset was

released by the ASVspoof challenge organisers (see Section 3.2). From hereon,

all the work reported on ASVspoof 2017 dataset in this thesis uses v2.0 of the

dataset.

To this end, Subsection 4.4.2 provides details of the experimental design con-

sidered here. The description of CQCC feature-based GMM baselines, CNNs

trained on spectrogram inputs, GMMs and SVMs trained on hand-designed fea-

tures and various ensemble models is provided. Subsection 4.4.3 then evaluates

the performance of these countermeasure models using the EER metric (as de-

scribed in Subsection 3.5.1). Subsection 4.4.4 then analyses the performance of

these countermeasures under varied replay attack conditions. First, it studies

how EER varies across different qualities of playback devices, recording devices

and acoustic environments used to derive replayed recordings in the ASVspoof

2017 evaluation set. It then looks at how different qualities of replay attack

configurations impact countermeasure performance. Three different qualities of

attacks: low, medium and high as defined by Delgado et al. [2018] are used in

this study. The section then analyses two of the GMM systems for both low

and high quality replay configurations. It looks at how frame-wise energy and

log-likelihood scores are distributed across frames with an aim to understand

what influences model decisions. Finally, Subsection 4.4.5 provides a summary

of the work done in this section. This work was published in Chettri et al.

[2018c].

95

4.4.2 Experimental design

This section discusses the baselines and different countermeasure models consid-

ered in this study: (1) CNNs trained on spectrogram inputs; (2) GMMs trained

on MFCCs and IMFCCs; (3) SVMs trained on MFCC i-vectors and IMFCC

i-vectors; and finally (4) Fusion systems. We use pooled (train+development)

data for training all our systems except for the CNNs that are trained on the

training set, with the development set being used for model validation. As for

performance evaluation, this section uses the EER metric (described in Sec-

tion 3.5.1) for all models.

Baselines

The baseline system used during the ASVspoof 2017 evaluations on v1.0 of the

dataset was a 512 component GMM trained on 90 dimensional CQCC features

that was obtained by combining the delta and acceleration coefficients of the

first 30 static coefficients [Kinnunen et al., 2017a]. Using the same feature con-

figuration we train this baseline but on v2.0 of the dataset. We call this system

B1. We also design another baseline system B2 using the feature parameteri-

sation from Delgado et al. [2018] on v2.0 of the dataset. Although B2 is also

designed using 512 mixture components on CQCC acoustic features, the fea-

ture parameterisation is different. Every feature vector is now represented by

a 60-dimensional vector obtained by taking the log energy (replacing the 0th

coefficients) and the first 19 static coefficients followed by their delta and accel-

eration coefficients. This is followed by cepstral mean variance normalisation.

Although Delgado et al. [2018] calls this an enhanced baseline, this section refers

to this system as B2.

CNN-based systems

Two CNN-based countermeasure models, CNN1 and CNN2, are trained using

spectrogram inputs. CNN1 uses the architecture of our replicated LCNN model

from Subsection 4.3.2. CNN2 uses our proposed model architecture (Model3)

from Subsection 4.3.3. However, we make the following modifications in terms

of input to these models. As the average duration of the training set in v2.0

of the ASVspoof 2017 dataset is about 2.66 seconds, we chose to use a 3 sec-

onds fixed duration representation during training and testing. We copy or

truncate the original audio samples to obtain this fixed duration input repre-

sentation. Following our prior work in Subsection 4.3.3, we use a 256 point

FFT, 256 window size and a hop of 10 ms for computing spectrograms. This

holds true for both the CNNs. Thus, our input to the CNNs is a mean-variance

normalised log power spectrogram of 300× 129 (time × frequency) dimensions,

96

where time denotes the number of frames and frequency the number of bins.

The means and variances per frequency bins are computed from the training

set. Furthermore, in both the CNNs we use the ReLU activation function in

both the convolutional and fully connected layers following our findings in Sub-

section 4.3.4. However, we use the same training and testing methodology as

described in Subsection 4.3.2 for training our replicated version of the LCNN

model.

GMM-based systems

Following our prior work in Subsection 4.2.2, we chose two standard short-time

spectral features, MFCCs and IMFCCs, and build two GMM countermeasure

models, GMM1 and GMM2, respectively. Feature extraction, training and test-

ing of these GMMs is the same as described in Subsection 4.2.2. The score is

computed as the log likelihood ratio between the bonafide and spoofed GMM

models as described in Equation 4.1. GMM1 uses 512 mixture components

trained on MFCCs and GMM2 is trained on IMFCCs using 256 mixture com-

ponents. Both GMMs use a 40-dimensional feature vector per frame obtained

by concatenating delta and acceleration (DA) coefficients. This choice of feature

parameterisation comes from our prior findings in Subsection 4.2.2.

SVM-based systems

We train two utterance-level binary SVM models, SVM1 and SVM2, using i-

vectors [Dehak et al., 2011]. SVM1 is trained using MFCC feature-based i-

vectors and SVM2 uses IMFCC feature-based i-vectors. We use the same 40

dimensional DA feature representation for both MFCCs and IMFCCs that was

used in training the GMMs. Using this feature representation we train the

total variability matrix (T-matrix) and universal background model (UBM). We

use the pooled (train+development) data to train the UBM with 128 mixture

components and the T-matrix with a 100 rank. We extract i-vectors for the

entire dataset for both MFCCs and IMFCCs. Then, the SVM1 and SVM2

models with a linear kernel are trained on pooled i-vectors (MFCC and IMFCC

based i-vectors respectively) to discriminate between the bonafide and spoofed

classes. SVMs are implemented using Scikit-learn [Pedregosa et al., 2011] and

the i-vector extractor is implemented using the MSR-Identity toolkit [Sadjadi

et al., 2013].

Ensemble systems

We argue that a single feature and a single classifier may not adequately model

the diverse spoofing conditions that appear in the ASVspoof 2017 evaluation set.

97

Table 4.11: Performance of countermeasure models on the evaluation set of the
ASVspoof 2017 v2.0 dataset.

ID System Features EER %

1
B1 90 dimensional CQCCs 23.4
B2 60 dimensional CQCCs 12.2

2
CNN1 Spectrograms

28.2
CNN2 27.8

3
GMM1 MFCCs 27.8
GMM2 IMFCCs 18.3

4
SVM1 i-vectors derived from MFCCs 24.6
SVM2 i-vectors derived from IMFCCs 16.3

5

Fused1 Scores from systems in 2-4 12.3
Fused2 GMM1+GMM2 system scores 15.9
Fused3 SVM1+SVM2 system scores 11.5
Fused4 Scores from systems in 3− 4 11.0

To this end, we investigate detection performance using ensemble approaches

which have shown promising results in both the ASVspoof 2017 [Lavrentyeva

et al., 2017] and ASVspoof 2015 [Patel and Patil, 2015] challenges. Therefore,

we design four score-level fusion10 models using the linear logistic regression

implementation of Brümmer and de Villiers [2013]. Fused1 combines scores

from all the six countermeasures: CNN1, CNN2, GMM1, GMM2, SVM1 and

SVM2. Fused2 combines the GMM1 and GMM2 scores while Fused3 fuses the

scores of the SVM1 and SVM2 models. Finally, Fused4 combines the two GMMs

and the two SVMs.

It should be noted that in our work we consider CQCC-based GMMs as

baselines to compare the performance of our systems. Therefore we do not

include them in our fusion setups, although including them may offer a gain in

performance.

4.4.3 Evaluation

We now evaluate the performance of all our countermeasure models on the

ASVspoof 2017 v2.0 evaluation set using the EER metric. Table 4.11 sum-

marises the results. The two baseline GMMs B1 and B2 produce an EER of

23.4% and 12.2% respectively. The end-to-end CNN models CNN1 and CNN2

show poor performance on the evaluation set. CNN1 shows an EER of 28.2% and

CNN2 yields an EER of 27.81%. A possible reason for the poor generalisation

of both CNN models might be attributed to the small amount (only 2.22 hours)

of data available for training the models. GMM2 trained on IMFCCs shows an

10We explore many different model combinations but report only the four ensemble systems
that showed best performance on the evaluation set.

98

EER of 18.3%, clearly outperforming GMM1 which is trained on MFCC features

with an EER of 27.8%. We find a similar trend in performance for the i-vector

based SVM models. SVM2, which is trained on IMFCC-based i-vectors, shows

an EER of 16.3%, outperforming the MFCC-based i-vector SVM1 model with

24.6% EER. Thus, IMFCCs that emphasise higher frequencies of the speech

signal seem to give better performance over MFCCs in general.

By now, it is quite evident how hard it is for a single countermeasure to

counter the diverse nature of replay attacks in the evaluation set. Thus, we

investigate the benefits that these countermeasures offer as an ensemble system.

The first ensemble system Fused1 produces an EER of 12.3%, offering about

11% absolute gain over the baseline B1 and a comparable performance with

the baseline B2. The Fused2 model shows an EER of 15.9% and the Fused3

model an EER of 11.5%. Our best fusion system Fused4 reports an EER of

11.0%, outperforming both the baselines B1 and B2 by 13.4% and 1.2% absolute

value, respectively. These results suggest that ensemble approaches could be one

possible direction for further investigation.

The results seen so far do not explain what these models have learned to

make predictions or which factor (among acoustic environment, playback and

recording device in a replay attack) influences the prediction most. Thus, we

perform an analysis on countermeasure performance for different replay spoofing

conditions in the next section.

4.4.4 Analysis

This section describes the performance analysis of the various countermeasure

models considered in this study in terms of different factors of a replay attack.

The details of different factors such as acoustic environment, playback devices

and recording devices used in creating replayed utterances of the ASVspoof

2017 v2.0 dataset are provided in Subsection 3.2.2. This section first aims at

understanding the impact on model performance for different qualities of play-

back and recording devices and the type of acoustic environment individually.

Then it aims at analysing how the performance of countermeasures varies across

different qualities of replay configurations (RC) as a whole. To this end, three

different configurations of low, medium and high qualities are investigated. For

more details on different RCs please see [Delgado et al., 2018]. Furthermore,

we do not use all our countermeasure models for this analysis. We choose B2

and CNN2 as they showed better results over the B1 and CNN1 models. We

also include both GMMs and SVMs in our analysis. Among different fusion

models, we choose the Fused2 model in this analysis. One motivation for this

is that Fused2, which combines GMM1 and GMM2, shows a substantial perfor-

99

mance improvement over the GMM1 model trained on MFCCs (EER of 27.8%).

Finally, this section also performs frame-level analysis using one low- and one

high-quality replay configuration in the evaluation set. For this, the GMM1 and

GMM2 models are used.

Impact of device quality and acoustic environment

To study the impact on model performance for different quality of recording

devices, playback devices and acoustic environments, following Delgado et al.

[2018] we pool all the evaluation set scores according to low, medium and high

quality categories for each factors: acoustic environment (AE), playback device

(PD) and recording device (RD). We then evaluate the performance in terms

of EER for each of these categories. Table 4.12 summarises the results. Note

that the number of replayed utterances varies across different conditions (eg.

9336 for medium quality and 1633 for high quality acoustic environments) but

the number of genuine utterances remains the same11. We make the follow-

ing observations. (1) The Fused2 model outperforms the baseline B2 under

each category except for low quality recording devices, indicating that ensem-

ble approaches do help improve detection performance. (2) CNN2 shows worse

performance compared to the baseline B2. (3) Generally, SVM models tend

to show better performance over GMMs (with few exceptions in some cases).

(4) AE: for the low quality AE, the MFCC feature-based models (GMM1 and

SVM1) show better performance over IMFCC feature-based models (GMM2 and

SVM2). However, we see an opposite trend for replay attacks using medium and

high quality AE. (5) PD: for the low quality PD, the MFCC feature-based i-

vector model SVM1 outperforms the IMFCC feature-based model SVM2, but

on the medium and high quality PD SVM2 outperforms SVM1. (6) RD: for

all low, medium and high quality RDs, the IMFCC-ivector based SVM2 model

outperforms SVM1 based on MFCC i-vectors.

The experiments conducted here make an assumption that while analysing

the influence of one factor, say AE, the other two factors PD and RD have

negligible impact. This however is not true because it is difficult to mask out

the information related to RD and PD from a replayed audio signal. Had this

been true, the problem of replay attack detection would have been less difficult to

solve. Therefore, we argue that the results reported here may not be completely

insightful to understand a replay spoofing detection system. This leads us to

perform an analysis according to different qualities of replay configurations in

the next section.

11The evaluation subset has 1298 genuine utterances. Whether we compute EER for the
low AE or high AE the number of genuine utterances is always 1298.

100

T
ab

le
4.

12
:

P
er

fo
rm

an
ce

(E
E

R
%

)
of

co
u

n
te

rm
ea

su
re

s
a
cr

o
ss

d
iff

er
en

t
q
u

a
li

ti
es

o
f

a
co

u
st

ic
en

v
ir

o
n

m
en

ts
(A

E
),

p
la

y
b

a
ck

d
ev

ic
es

(P
D

)
a
n

d
re

co
rd

in
g

d
ev

ic
es

(R
D

).
S

h
ow

n
re

su
lt

s
ar

e
on

th
e

A
S
V

sp
o
o
f

2
0
1
7

v
2
.0

ev
a
lu

a
ti

o
n

se
t.

B
o
ld

in
d

ic
a
te

s
sy

st
em

s
o
u

tp
er

fo
rm

in
g

th
e

b
a
se

li
n

e
B

2
.

R
e
p

la
y

fa
c
to

r
Q

u
a
li

ty
B

2
F
u

se
d
2

C
N

N
2

G
M

M
1

G
M

M
2

S
V

M
1

S
V

M
2

A
c
o
u

st
ic

e
n
v
ir

o
n

m
e
n
t

L
o
w

1
6
.6

1
3
.3

2
4
.2

1
3
.5

1
8
.8

1
5
.5

2
0
.4

M
e
d

iu
m

1
8
.7

1
1
.4

2
9
.2

2
5
.4

1
8
.5

2
2
.2

1
6
.2

H
ig

h
2
1
.8

1
4
.3

2
2
.3

4
4
.4

1
6
.9

4
1
.3

1
3
.5

P
la

y
b

a
ck

d
e
v
ic

e
L

o
w

1
6
.6

1
2
.9

3
6
.4

1
8
.3

2
1
.9

1
0
.5

2
1
.6

M
e
d

iu
m

1
6
.4

9
.9

2
3
.9

1
1
.9

1
6
.2

1
6
.4

1
1
.8

H
ig

h
1
8
.3

1
1
.6

2
0
.7

3
5
.7

1
4
.5

3
4
.8

1
1
.7

R
e
c
o
rd

in
g

d
e
v
ic

e
L

o
w

1
0
.8

1
2
.2

2
7
.9

2
2
.5

1
8
.4

2
1
.4

1
7
.6

M
e
d

iu
m

1
5
.6

1
0
.0

3
8
.6

3
6
.3

1
6
.4

2
1
.7

1
2
.7

H
ig

h
1
7
.7

1
2
.3

2
4
.5

2
8
.7

1
8
.8

2
8
.2

1
5
.9

101

Impact of different replay configurations

This section aims at understanding the impact of different qualities of replay

attacks (or replay configurations) on the countermeasure models. We consider

three low quality RCs: RC15 (E02 P21 R18), RC16 (E02 P21 R14) and RC19

(E02 P20 R14); three medium quality RCs: RC30 (E15 P19 R20), RC33 (E13

P14 R04), RC34 (E17 P12 R04); and three high quality RCs: RC55 (E26 P24

R24), RC56 (E25 P13 R08) and RC57 (E24 P23 R23). The letters E,P,R de-

notes the environment, playback device and replay device IDs. Their details

are provided in Tables 3.4, 3.5 and 3.6 of Section 3.2.2. We follow the same

RC identifiers as defined by Delgado et al. [2018]. It is worth noting that these

high quality RCs use analog wire acoustic conditions, meaning there is no phys-

ical sound propagation and hence are considered to be the most difficult replay

attacks to be detected by a countermeasure. As in [Delgado et al., 2018], we

pool all the evaluation set scores corresponding to these RCs and evaluate sys-

tem performance. Table 4.13 summarises the results and the details of the RCs

considered in this analysis.

In general, the Fused2 model shows the best performance outperforming the

baseline model B2. Low: Under low quality RCs, we observe worse perfor-

mance for CNN2 and for the IMFCC feature-based GMM2 and SVM2 models.

Though we expected IMFCC features to show better performance as they em-

phasise higher frequency regions which enable capturing ambient noise, we find

contradictory results. The MFCC feature-based models show comparable per-

formance with the enhanced baseline model B2. For RC19, GMM1 shows 7.0%

EER which further reduces to 3.5% for the i-vector based model SVM1, clearly

outperforming the baseline (10.5%). Medium: except CNN2, all other mod-

els show comparable or improved performance in comparison to the baseline.

High: For high quality RCs, the MFCC feature-based models (GMM1 and

SVM1) show worse performance indicating that low frequency information is

not very helpful for discriminating high quality replay attacks. All other mod-

els including CNN2 clearly outperform the baseline for the high quality RCs

we investigated. On the RC55 configuration, the GMM2 model shows a good

performance of 3.8% EER, in comparison to the baseline (15.0%) which further

reduces to 3.5% for SVM2 using IMFCC i-vectors.

Overall, we make the following observations. Within the context of the

ASVspoof 2017 2.0 dataset, (1) MFCCs seem to show better performance for

low and medium quality replay attacks. IMFCCs on the contrary show poor

performance in general. This suggests that information at low frequencies is

helpful for detecting low quality attacks. (2) For the high quality category (the

hardest ones), MFCCs show the worse performance while IMFCC feature-based

102

T
ab

le
4.

13
:

P
er

fo
rm

an
ce

(E
E

R
%

)
of

co
u

n
te

rm
ea

su
re

s
a
cr

o
ss

d
iff

er
en

t
re

p
la

y
a
tt

a
ck

co
n

fi
g
u

ra
ti

o
n

s
(R

C
s)

in
th

e
ev

a
lu

a
ti

o
n

se
t

o
f

th
e

A
S

V
sp

o
of

20
17

v
2.

0
d

at
as

et
.

E
,

P
an

d
R

in
th

e
se

co
n

d
co

lu
m

n
re

p
re

se
n
ts

en
v
ir

o
n
m

en
t,

p
la

y
b

a
ck

a
n

d
re

co
rd

in
g

d
ev

ic
e

u
se

d
to

si
m

u
la

te
re

p
la

y
at

ta
ck

.
B

ol
d

re
p

re
se

n
ts

sy
st

em
s

ou
tp

er
fo

rm
in

g
th

e
b

a
se

li
n

e
B

2
.

T
h

e
ID

s
in

th
e

fi
rs

t
co

lu
m

n
a
re

ta
ke

n
fr

o
m

[D
el

g
a
d
o

et
a
l.

,
2
0
1
8
].

ID
R

e
p

la
y

c
o
n

fi
g
u

ra
ti

o
n

Q
u

a
li

ty
B

2
F
u

se
d
2

C
N

N
2

G
M

M
1

G
M

M
2

S
V

M
1

S
V

M
2

R
C

15
E

02
P

21
R

18
L

o
w

8
.0

1
0
.7

1
9
.9

8
.0

2
3
.2

1
3
.6

2
4
.2

R
C

16
E

02
P

21
R

14
9
.0

6
.6

2
1
.4

1
2
.5

1
3
.9

1
3
.3

1
8
.0

R
C

19
E

02
P

20
R

14
1
0
.5

8
.5

4
9
.9

7
.0

2
3
.0

3
.5

2
6
.0

R
C

30
E

15
P

19
R

20
M

e
d

iu
m

7
.0

1
.9

1
6
.0

5
.5

7
.1

6
.1

4
.1

R
C

33
E

13
P

14
R

04
8
.5

5
.0

1
2
.3

6
.4

8
.9

1
0
.5

7
.9

R
C

34
E

17
P

12
R

04
9
.0

4
.3

1
2
.5

5
.8

8
.5

1
0
.2

7
.5

R
C

55
E

26
P

24
R

24
H

ig
h

1
5
.0

1
1
.0

9
.8

4
2.

9
3
.8

4
7
.0

3
.5

R
C

56
E

25
P

13
R

08
3
6
.0

2
9
.2

2
2
.5

4
3.

4
2
6
.5

4
8
.1

2
2
.1

R
C

57
E

24
P

23
R

23
3
3
.0

2
7
.4

2
6
.6

4
4.

3
2
6
.4

4
9
.6

2
2
.3

103

0 20 40 60 80 100
−7

−6

−5

−4

−3
Lo

g
En

er
gy

0 20 40 60 80 100

Frames
−50

−40

−30

−20

−10

0

Lo
g

Lik
el

ih
oo

d

0 20 40 60 80 100
−10

−8

−6

−4

−2

0 20 40 60 80 100

Frames
−150

−100

−50

0

50

100

Figure 4.4: Log energy (top) and log-likelihood (bottom) plots for the first 100
frames of confidently classified spoofed (left) and bonafide (right) audio files in
the evaluation set of the ASVspoof 2017 v2.0 dataset. Green: log-likelihood
difference. Blue: bonafide GMM2. Orange: spoofed GMM2.

models show better performance, with SVM2 trained on IMFCC i-vectors taking

the lead. A possible explanation for this could be that these high quality devices

may use low pass filters that mask out high frequency information in a replayed

signal, leaving cues for discrimination. This hypothesis however needs further

investigation that we aim to consider as our future work.

Frame-wise energy and log-likelihood analysis

Now we conduct frame-level analysis to see if we can derive any understanding

about what the MFCC and IMFCC feature-based GMM models (GMM1 and

GMM2) have learned about high quality replay attacks. For this we look at log

energy and log-likelihood distributions across the frames of the most confidently

classified spoofed and bonafide audio files under RC5512.

Figure 4.4 shows the energy and log-likelihood distribution plots across the

first 100 frames of bonafide and spoofed files for GMM2. For the spoof file

E 1005573.wav (left column of the figure), the energy distribution across frames

seems to be uniform and smooth. The bonafide and spoofed model log-likelihood

across the frames shows competitive behaviour, indicating how hard it is to have

a clear boundary of discrimination between bonafide and replayed signals. Fur-

thermore, we find that the log-likelihood difference (green profile) across the

frames seems to be around zero indicating ambiguity in the decision boundary.

However, on the bonafide file E 1002092.wav (right column of Figure 4.4), we

find some cues about the bonafide class in the first few frames. We find lower en-

12Among the three high quality replay attacks/configurations we analysed (RC55, RC56,
RC57) the IMFCC frontend shows the lowest EER for RC55, so we choose RC55 for analysis.

104

ergy for these frames in comparison to the remaining frames of the signal. Also,

the spoof model for these frames assigns a very low likelihood score indicating

that such frame instances were not seen during training for the spoofed GMM.

As a result, the log likelihood ratio (green profile) in these frames dominates the

other frames in the signal, thus serving as a key indicator favouring the bonafide

class. We refer to these frames as outliers. Even for the MFCC feature-based

GMM1 model, we observe a similar trend as in Fig.4.4, and therefore do not

include those plots here.

Table 4.14: Confusion matrix for GMM1 and GMM2 for low and high quality
replay configurations: RC15 and RC55 respectively. B: bonafide, S: spoofed.
Columns denote ground-truth and rows the predicted.

RC15 (Low) RC55 (High)
B S B S

GMM1 (MFCC)
B 1208 22 1208 162
S 90 128 90 16

GMM2 (IMFCC)
B 1197 116 1197 2
S 101 34 101 176

From these observations, it appears that these models are also using the

class-dependent data cues (outliers) found in the bonafide signals as one of

the factors for making predictions. However, this would not be the case if a

voice activity detector (VAD) was in place that would automatically eliminate

non-speech frames, including such outliers. But this is not the case: these

countermeasures use both speech and non-speech frames. Therefore, a realistic

real-world replay countermeasure should detect and automatically handle such

outliers during model training and testing to allow reliable prediction.

Finally, we look at the confusion matrices for GMM1 and GMM2 models

for RC15 and RC55 conditions. One motivation to do this is that the reported

EERs in Table 4.13 for different replay configurations do not provide significant

statistical insights about the correct and incorrect classification for the bonafide

and spoofed classes. The confusion matrices help understand the proportion of

correct and incorrect classification. Table 4.14 shows this. For RC15, GMM1

has high true negative (85.33%) but a small false positive (14.66%) rates while

GMM2 shows the opposite trend: high false positive (77.33%) and small true

negative (22.66%) rates. On RC55, we see an opposite trend in contrast to

RC15. Here, the GMM1 model shows high false positive (91.01%) and low

true negative (8.98%) while GMM2 shows small false positive (1.12%) but high

true negative (98.87%) rates. For genuine cases, both GMM1 and GMM2 show

comparable performance (in terms of true positives and false negatives).

105

4.4.5 Discussion

This section investigated and analysed various countermeasures for replay spoof-

ing detection on the ASVspoof 2017 v2.0 dataset. We find that the models using

MFCC frontends have a smaller EER than the models using IMFCC frontends

in the evaluation set when looking at replay configurations with supposed low

quality. We find the opposite when looking at replay configurations with sup-

posed high quality. However, gaining an in-depth understanding of what is

causing this behaviour seems challenging because the original RedDots corpus

[Lee et al., 2015] of bonafide recordings includes both clean and noisy recordings

collected from heterogeneous devices, but lacks documentation on the meta-data

(acoustic conditions, recording devices). This means that “high-quality spoof-

ing conditions” may actually be low quality since the bonafide files were of low

quality and vice-versa. Thus, on this dataset it is difficult to perform evalua-

tion on factors (AE, PD, RD and RC) influencing replay attacks in controlled

conditions and provide significant conclusions whether reverberation noise or

some device-specific (recording or playback) attributes provide a cue to replay

signal discrimination. Furthermore, our analysis suggests that the models may

be using dataset-specific artefacts during prediction. Therefore, on this dataset,

a reliable replay detector should automatically take care of such outliers and al-

low learning algorithms to exploit only the information related to replay factors

to make a reliable prediction. This section also showed that ensemble models

have potential towards improving detection performance. To this end, data

augmentation approaches, augmented with ensemble techniques, may improve

generalisation, and therefore should be investigated further.

106

4.5 Explaining CNN predictions

4.5.1 Introduction

As described in Subsection 4.3.1, the most successful systems in detecting replay

spoofing attacks on the challenging ASVspoof 2017 test set are the ones based

on deep neural networks (DNNs). Although these systems have shown promis-

ing results, what they have actually learned to do has not been answered; they

are often used as a black-box. Is a system that appears to detect a spoofing

attack actually working with attributes relevant to the problem, or is it merely

a product of how a train/test dataset was constructed [Sturm, 2014]? For exam-

ple, Section 4.2 demonstrated how a frame-based GMM countermeasure trained

for replay spoofing detection exploited artefacts in the dataset (ASVspoof 2017

v1.0) to make class decisions. Similarly, Section 4.4 highlighted a similar issue

for frame-based GMMs trained on the updated version (v2.0) of the dataset.

Can we trust such a system “in the wild”? Answers to these questions can not

only help improve the security of ASV systems, but also motivate new spoofing

attacks, and improve training databases.

This section attempts to answer some of these questions for a deep CM

model trained on v2.0 of the ASVspoof 2017 dataset. Following the lessons

learnt from Section 4.3 we propose and build a new CNN model that shows

good performance on the version 2.0 of the evaluation set and a comparable

performance to the state-of-the-art LCNN model on version 1.0 of this dataset.

Subsection 4.5.2 describes these details. There exist several methods to un-

derstand the global or local behaviour of deep models [Montavon et al., 2018].

Here, we use the SLIME [Mishra et al., 2017] algorithm to generate explana-

tions for individual predictions. It is based on the LIME algorithm [Ribeiro

et al., 2016], which is an acronym for Local Interpretable Model-Agnostic Ex-

planations. Subsection 2.9.2 provides background on SLIME. Subsection 4.5.3

then provides explanations produced using this method highlighting temporal

and spectral regions that the model weighs heavily to form its decisions for each

class. The section describes explanations produced at both the instance-level

and model-level (on the whole dataset). Our findings show that a decision of

a recording being “spoofed” is weighted heavily by the information present in

the first 400 milliseconds of the recording. It then appears that at least some

of the attributes the model has learned come from peculiarities of the database,

and not from the difference in channel characteristics one would expect in a

replay attack. Next, Subsection 4.5.4 demonstrates the significance of our anal-

ysis in two ways. We show how to manipulate misclassified spoof recordings

to be judged as “spoofed” by the model, thereby lowering its EER; and we

107

show how to manipulate spoofed recordings such that the model judges them

as “bonafide”, thereby dramatically raising the EER. Finally, Subsection 4.5.5

provides a summary of the work done in this section. This work was published

in [Chettri et al., 2018a].

4.5.2 Experimental design and evaluation

This section describes details related to the experimental design and evaluation

of our CNN countermeasure model for replay spoofing detection. It provides

details of the dataset and the evaluation metric considered here. The architec-

ture details of the CNN, model training and testing methodology are described.

We follow the lesson learnt from our study in Section 4.3 (such as parameter

initialisation, training and testing methods) in training CNNs and further in-

troduce several changes that helped achieve performance closer to the LCNN

model13. For comparative purposes, we train and evaluate our CNN on v1.0

of the dataset. The section then evaluates the performance of the reproduced

models in terms of the EER metric.

Dataset and evaluation metric

This study uses the ASVspoof 2017 v2.0 dataset described in Subsection 3.2.2

and the EER metric for performance evaluation as described in Subsection 3.5.1.

CNN architecture and input representation

The architecture of our proposed CNN is adapted from the state-of-the-art

LCNN [Lavrentyeva et al., 2017] model which showed the lowest EER on the

evaluation set during the ASVspoof 2017 spoofing detection challenge. It com-

prises 5 convolution (Conv) layers, 4 network-in-network layers, 5 max-pooling

layers and 2 fully connected (FC) layers. In other words, the structure in terms

of stacking series of convolutional and fully connected layers remains the same

as in LCNN. However, following our findings in Section 4.3, we now focus more

on model generalisation. For this, we introduce following changes. First, we

reduce the number of kernels in each convolutional (Conv) layer by a factor of

2 to keep the number of free parameters to a minimum. Second, we introduced

a batch normalisation layer before applying non-linearity in every Conv layer

to ensure features follow a normal distribution after the convolution operation.

Third, we use 32 neurons in the first FC layer and a single neuron in the output

layer in contrast to 64 neurons and two neurons used in the original LCNN.

13The author would like to thank Héctor Delgado (who was one of the organisers of the
ASVspoof 2017 challenge), Senior Research Scientist at Nuance Communications Inc., for the
fruitful discussion and help in developing the proposed CNN model.

108

Table 4.15: Performance (EER%) of our replicated LCNN models: M1 and M2

on the ASVspoof 2017 dataset respectively.

System DB version Train Dev Eval
LCNN [Lavrentyeva et al., 2017] 1.0 - 4.53 7.34

M1 1.0 0.0 7.0 9.44
M2 2.0 0.0 7.6 10.6

Furthermore, we now use a binary cross entropy loss instead of softmax loss in

training CNNs. As for the non-linearity, we use the ReLU activation in both

Conv and FC layers following our findings in Section 4.3. Our proposed CNN

has 189k trainable parameters which is much smaller in comparison to the 572k

parameters of the LCNN [Lavrentyeva et al., 2017]. Further details on the CNN

architecture are provided in Appendix A.

The input to the network, as in LCNN, is a mean-variance normalised log

power spectrogram of 4 seconds duration. We perform this normalisation at

the utterance-level14 to standardize the features within a given recording. Since

the ASVspoof 2017 dataset uses 10 different phrases (shown in Table 3.1), the

duration of audio files varies across these phrases. To obtain a consistent input

representation we replicate15 the audio samples if the duration is smaller than

4 seconds or truncate them if the duration is more than 4 seconds. Here, we use

a 1728 point FFT, and a 108 ms window (1728 samples) with a hop size of 10

ms. Therefore, the input spectrogram has dimensions 865 × 400, where 865 is

the number of frequency bins and 400 the number of time frames.

Training and testing

As for training the CNN model, we follow the same approach described in Sub-

section 4.3.2 with the following changes: the shape of the input spectrogram is

now 865× 400 instead of 1025× 400; to avoid overfitting, we train our CNN for

a maximum of 100 epochs (instead of 300) with 10 epochs for early stopping

(instead of 30). We implement the model using the Keras [Chollet, 2015] frame-

work with the TensorFlow backend. During testing, for each test utterance we

use the model output — the posterior probability of being genuine — as the

score and compute the EER. Using the above approach, we train two models

M1 and M2 on versions 1.0 and 2.0 of the ASVspoof 2017 dataset, respectively.

109

Results

Table 4.15 summarises the performance of our replicated versions of the LCNN

models: M1 and M2. Model M1 shows comparable performance with the orig-

inal LCNN model trained on v1.0 of the ASVspoof 2017 dataset. Further it

should be noted that reproducing16 the exact same results is difficult due to

high dropouts and random weight initialisation used during training. Since

our main objective in this section is to understand what the CNN has learned

about spoofing detection, we do not focus on minimizing the EER of LCNN.

From hereon, we only consider M2 for further analysis as it uses the updated

(v2.0) dataset.

4.5.3 Explaining predictions using SLIME

This section aims at explaining the predictions of the M2 model using the SLIME

algorithm that is described in Subsection 2.9.2. First, explanations are produced

at instance-level taking the most confidently classified bonafide and spoofed in-

stances in the training, development and evaluation sets. Both temporal and

spectral explanations are generated for them. Following this, explanations are

then produced for the entire dataset to derive a global model-level understand-

ing of what M2 has exploited from the underlying training data to make class

decisions.

Instance-level explanations

We take the six most confidently correctly classified bonafide and spoofed audio

instances from the training, development and evaluation sets and have SLIME

generate explanations for their predictions. Table 4.16 summarises the weights

assigned to each of the ten temporal segments for these six instances. The po-

larity of the learned weights signifies how the presence (or the absence) of a

segment influences a model prediction. For example, the T8 and T5 segments

in all the bonafide instances in Table 4.16 are segments in favour of and against

the prediction, respectively. The bold numbers in the table represent the top

two weighing segments/components. We refer to them as top1 and top2 expla-

nations. For the genuine instances, SLIME assigns T8 and T9 as the top two

explanations. We observe a marginal difference in the magnitude of weights

assigned to T8 and T9 but a relatively larger difference for other temporal seg-

ments. These weights suggest that T8 and T9 offer more contribution towards

14Instead of computing means and variances from the training set as in Section 4.3.
15We replicate samples in the time domain.
16Reported models M1 and M2 are the best performing models on the development set

among five different models trained with different random initialisations.

110

T
ab

le
4.

16
:

T
em

p
or

al
ex

p
la

n
at

io
n

s
of

th
e

m
o
st

co
n

fi
d

en
tl

y
co

rr
ec

tl
y

cl
a
ss

ifi
ed

a
u

d
io

in
st

an
ce

s
in

th
e

tr
a
in

in
g

(T
),

d
ev

el
o
p

m
en

t
(D

)
a
n

d
ev

al
u

at
io

n
(E

)
se

ts
.

T
1-

T
10

re
p

re
se

n
t

te
m

p
or

al
se

g
m

en
ts

in
se

co
n

d
s.

T
1
:

0
-0
.4

,
T

2
:

0.
4
-0
.8

,
T

3
:

0.
8
-1
.2

,
T

4
:

1.
2
-1
.6

,
T

5
:

1.
6
-2
.0

,
T

6
:

2.
0-

2
.4

,
T

7:
2
.4

-2
.8

,
T

8:
2
.8

-3
.2

,
T

9:
3
.2

-3
.6

,
T

10
:

3
.6

-4
.0

.
B

a
n

d
S

d
en

o
te

th
e

b
o
n

a
fi

d
e

a
n

d
sp

o
o
fe

d
cl

a
ss

es
.

B
o
ld

va
lu

es
re

p
re

se
n
t

w
ei

g
h
ts

of
th

e
to

p
tw

o
ex

p
la

n
at

io
n

s.

W
ei

gh
ts

a
ss

ig
n

ed
to

d
iff

er
en

t
te

m
po

ra
l

se
gm

en
ts

C
la

ss
F

il
e

P
ro

b
ab

il
it

y
(%

)
T

1
T

2
T

3
T

4
T

5
T

6
T

7
T

8
T

9
T

10

B
T

10
00

78
0

87
.8

0
.0

0
9

-0
.0

00
-0
.0

02
0.

00
7

-0
.0

0
5

0.
0
09

-0
.0

03
0
.0

3
1

0
.0

2
4

-0
.0

1
3

D
10

00
26

0
91
.2

0
.0

0
7

-0
.0

06
0.

0
10

0
.0

1
8

-0
.0

1
2

0.
0
05

0
.0

0
1

0
.0

4
1

0
.0

4
2

-0
.0

2
3

E
1
00

25
3
5

88
.4

-0
.0

08
0.

0
02

-0
.0

00
0.

00
6

-0
.0

1
4

0.
0
04

-0
.0

00
0
.0

4
0

0
.0

3
4

-0
.0

2
2

S
T

10
02

12
4

86
0
.3

3
5

0.
0
00

0
.0

08
-0
.0

0
0

0.
00

8
-0
.0

15
0.

01
2

0.
0
09

-0
.0

05
0
.2

7
4

D
10

01
59

6
83
.2

0
.5

0
7

0.
0
04

-0
.0

13
-0
.0

1
0

0.
01

4
-0
.0

07
0.

00
7

0.
0
06

-0
.0

39
0
.1

1
9

E
1
01

40
0
8

81
.0

0
.3

5
3

-0
.0

05
-0
.0

15
0.

01
0

0
.0

09
-0
.0

01
0.

00
4

-0
.0

18
-0
.0

08
0
.2

0
7

T
ab

le
4.

17
:

S
p

ec
tr

al
ex

p
la

n
at

io
n

s
of

th
e

m
os

t
co

n
fi

d
en

tl
y

co
rr

ec
tl

y
cl

a
ss

ifi
ed

a
u

d
io

in
st

a
n

ce
s

in
th

e
tr

a
in

in
g

(T
),

d
ev

el
o
p

m
en

t
(D

)
a
n

d
ev

al
u

at
io

n
(E

)
se

ts
.

F
1-

F
10

re
p

re
se

n
t

sp
ec

tr
al

b
an

d
s

in
H

z.
F

1
:

0
-8

1
3
,

F
2
:

8
1
3
-1

6
2
6
,

F
3
:

1
6
2
6
-2

4
3
9
,

F
4
:

2
4
3
9
-3

2
5
2
,

F
5
:

3
2
5
2
-4

0
6
5
,

F
6
:

40
65

-4
87

8,
F

7:
48

78
-5

69
1,

F
8:

56
91

-6
50

4,
F

9:
65

04
to

7
3
1
8
,

F
1
0
:

7
3
1
8

to
8
0
0
0
.

W
ei

gh
ts

a
ss

ig
n

ed
to

d
iff

er
en

t
sp

ec
tr

a
l

se
gm

en
ts

C
la

ss
F

il
e

P
ro

b
ab

il
it

y
(%

)
F

1
F

2
F

3
F

4
F

5
F

6
F

7
F

8
F

9
F

10

B
T

10
0
07

80
87
.8

0
.0

1
9

0
.0

1
5

0.
00

7
0.

0
16

0.
01

4
0.

0
1
2

0.
01

5
0
.0

1
9

0.
0
14

0.
00

9
D

1
00

02
6
0

9
1
.2

0
.0

1
8

0.
01

8
0.

02
0

0.
0
13

0.
01

7
0
.0

2
2

0
.0

2
5

0.
0
1
1

0.
0
2
0

0.
0
13

E
10

0
25

35
88
.4

0
.0

0
5

0.
01

3
0.

01
1

0
.0

1
6

0
.0

1
2

0.
0
1
5

0.
01

5
0
.0

1
8

0.
0
13

0.
00

9

S
T

10
0
21

24
86

0
.0

9
5

0.
09

4
0
.1

0
8

0.
0
90

0
.1

0
5

0.
0
82

0.
0
7
6

0.
0
7
8

0.
0
6
2

0.
0
44

D
1
00

15
9
6

8
3
.2

0
.0

9
4

0
.1

0
2

0.
09

1
0.

1
00

0.
09

1
0.

0
9
3

0
.1

0
5

0.
0
9
7

0.
0
8
0

0.
0
55

E
10

1
40

08
81

.0
0
.1

3
6

0
.1

0
4

0
.1

4
5

0.
0
76

0.
13

2
0.

13
9

0.
0
91

0.
1
16

0.
0
9
8

0.
0
77

111

bonafide class decisions. For the spoofed instances, SLIME returns T1 and T10

as the top two explanations. Table 4.17 shows the spectral explanations for

bonafide and spoofed class predictions on the same six instances used in Ta-

ble 4.16. There is not much difference in the magnitude of weights across the

spectral segments. For both the bonafide and spoofed decisions, it seems that

M2 uses information across most of the spectral bands.

Using only the explanations for few confidently classified audio instances

would not provide a global understanding of the model behaviour. Therefore,

in the next section we apply SLIME to every audio instance of the ASVspoof

2017 2.0 dataset and study the prediction explanation (weights) statistics to

derive conclusions about what M2 has learned to make predictions.

Model-level explanations

Now we apply the SLIME algorithm across the entire training, development

and evaluation set. We record the top1 explanations returned by SLIME and

present the count statistics for top1 explanations. This helps us derive a global

understanding on the behaviour of M2 for bonafide and spoofed class decisions.

In the training set, M2 correctly classifies 1505 out of 1507 bonafide in-

stances with more than 70% confidence. Table 4.18 (first row) shows the tem-

poral and spectral explanations on these 1505 bonafide instances. The temporal

explanations suggest that though the majority vote for top1 appears to be T9,

other temporal components also have some contribution in the prediction. To

summarise, we observe that the first four (T1-T4) and the last three temporal

segments (T8-T10) contribute most towards the bonafide class decision. One

possible reason for such a spread in temporal explanations could be because of

the 10 different variable length utterances used in the ASVspoof 2017 dataset.

Further, inspecting the T9 segment of several bonafide files in the training sub-

set does not immediately reveal what M2 is detecting; however, we noticed that

many files have nonspeech (or silence) frames at their beginning. Therefore,

M2 may be using both the speech and nonspeech information across different

temporal locations. Looking at the spectral explanations (right hand side of

Table 4.18) we find that M2 gives importance to the information present across

all frequencies (0-8 kHz). To validate these findings, we repeat the above pro-

cess across all the bonafide instances in the development and evaluation sets.

As shown in Table 4.18 (third and fifth rows), we observe a consistency in the

bonafide class explanations.

As for the spoofed class, in the training set, M2 correctly classifies 1504 out

of 1507 spoofed instances with more than 70% confidence. Table 4.18 (second

row) shows the temporal and spectral explanations on these 1504 instances. The

112

T
ab

le
4.

18
:

D
is

tr
ib

u
ti

on
of

te
m

p
or

al
an

d
sp

ec
tr

a
l

ex
p

la
n

a
ti

o
n

s
g
en

er
a
te

d
fr

o
m

S
L

IM
E

o
n

th
e

A
S

V
sp

o
o
f

2
0
1
7

v
er

si
o
n

2.
0

d
a
ta

se
t.

W
e

ta
ke

al
l

th
e

in
st

an
ce

s
cl

as
si

fi
ed

co
rr

ec
tl

y
w

it
h

m
o
re

th
a
n

7
0
%

co
n

fi
d

en
ce

.
T

,
D

a
n

d
E

d
en

o
te

th
e

tr
a
in

in
g
,

d
ev

el
o
p

m
en

t
a
n

d
ev

a
lu

a
ti

o
n

su
b

se
ts

.
B

,S
d

en
ot

e
th

e
b

on
afi

d
e

an
d

sp
o
of

ed
cl

as
se

s.
T

1
-T

1
0

a
n

d
F

1
-F

1
0

h
a
s

th
e

sa
m

e
m

ea
n

in
g

a
s

in
T

a
b

le
s

4
.1

6
a
n

d
4
.1

7
.

T
h

e
n
u

m
b

er
s

re
p

re
se

n
t

th
e

co
u

n
t

st
at

is
ti

cs
fo

r
th

e
to

p
1

ex
p

la
n

a
ti

o
n

s.

W
h
a
t

te
m

po
ra

l
in

fo
rm

a
ti

o
n

is
th

e
m

o
st

cr
it

ic
a
l?

W
h
a
t

sp
ec

tr
a
l

in
fo

rm
a
ti

o
n

is
th

e
m

o
st

cr
it

ic
a
l?

S
e
t

C
la

ss
T

1
T

2
T

3
T

4
T

5
T

6
T

7
T

8
T

9
T

1
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
1
0

T
B

13
12

60
21

5
0

9
2

1
32

1
0
4
7

1
5

1
9
1

10
3

7
7

11
9

9
3

19
6

16
2

17
2

2
8
5

93
S

1
2
0
8

0
0

0
0

0
0

0
0

2
9
6

2
2
4

26
0

4
1
0

2
08

14
1

16
3

5
0

45
1

2

D
B

3
0

8
86

0
8

0
50

5
2
1

2
93

51
33

4
4

34
77

9
1

71
1
2
2

53
S

1
8
8

0
0

0
0

0
0

0
0

1
6
7

60
44

7
9

3
0

23
44

21
3
7

15
2

E
B

49
13

13
11

6
0

9
0

98
9
3
7

3
0

1
0
0

9
3

96
12

4
82

12
6

17
0

19
0

2
1
6

52
S

1
4
8
9

0
0

0
0

0
0

0
0

1
6
6
8

5
7
0

6
4
7

5
85

32
9

24
3

4
17

1
66

10
3

7
7

20

T
ab

le
4.

19
:

S
p

ec
tr

al
an

d
te

m
p

or
al

ex
p

la
n

at
io

n
s

fo
r

a
ll

th
e

m
is

c
la

ss
ifi

e
d

b
o
n

a
fi

d
e

(B
)

an
d

sp
o
o
fe

d
(S

)
in

st
a
n

ce
s

w
it

h
m

o
re

th
a
n

5
0
%

co
n

fi
d

en
ce

in
th

e
d

ev
el

op
m

en
t

(D
)

an
d

ev
al

u
at

io
n

(E
)

se
ts

.
F

1
-F

8
h

a
s

th
e

sa
m

e
m

ea
n

in
g

a
s

in
T

a
b

le
4
.1

7
a
n

d
T

1
-T

1
0

a
s

in
T

a
b

le
4
.1

6
.

W
h
a
t

te
m

po
ra

l
in

fo
rm

a
ti

o
n

is
th

e
m

o
st

cr
it

ic
a
l?

W
h
a
t

sp
ec

tr
a
l

in
fo

rm
a
ti

o
n

is
th

e
m

o
st

cr
it

ic
a
l?

C
la

ss
S

e
t

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

F
1
0

B
D

4
0

0
0

0
0

0
0

0
3

1
2

1
2

0
0

0
1

0
0

E
0

0
0

0
0

0
0

0
0

2
0

1
1

0
0

0
0

0
0

0

S
D

0
0

5
18

0
7

1
14

2
2
4

0
3

4
3

7
10

16
1
4

19
2
1

13
E

6
2

34
28

22
1

0
23

2
17

2
1
5
4
0

6
15

0
1
23

93
1
40

16
7

19
6

21
3

2
35

3
1
1

2
06

113

temporal explanation statistics suggest that the discriminative cue for replay

spoofing detection appears either in the first or the last 400 ms of the signal (T1

or T10 segments) and that M2 is not influenced much by the information present

in temporal regions T2-T9. On the spectral explanations, we observe that M2

is looking at the information present across all the frequencies. To validate

these observations we repeat the process across all the spoofed instances in the

development and evaluation sets. As shown in the fourth and sixth rows of

Table 4.18 we observe similar explanations.

Now the question is what cue is there in the first and the last 400 ms of these

instances? We inspect 50 spoof instances drawn randomly from the training set

and find that (1) the majority of instances do not have non-speech/silence in

the first 400 ms (2) and, these instances have DTMF-like (dual-tone multi-

frequency) tones with speech (29 out of 50) and without speech (7 out of 50) in

the first 400 ms of the signal. The last 400 ms of the spoof instances have the

same property found in (1) and (2). One reason for this could be due to raw

samples copied for audio instances less than 4 seconds duration.

We now analyse why a bonafide test instance is misclassified as spoofed and

vice-versa. We hypothesize that a test utterance is misclassified if it does not

exhibit its own class attributes but shows the attributes of the competing class.

First, we look at why M2 misclassifies a bonafide instance. We take all the

bonafide instances misclassified as spoofed with more than 50% confidence17

in the development and evaluation sets and generate temporal and spectral

explanations. We show the results in the first two rows of Table 4.19. We find

that these bonafide instances do not have the genuine class attributes, rather

show the attributes of a spoofed class (top1 corresponds to either T1 or T10

only), which explains the reason for misclassification.

Finally, we look at the spoofed audio instances in both the development

and evaluation sets that were successful in fooling M2 with more than 50%

confidence. We find 269 (out of 950) such instances in the development set

and 2088 (out of 12008) spoofed examples in the evaluation set. We show the

explanations obtained from SLIME in the last two rows of Table 4.19. We find

that these spoofed audio instances do not show the attributes of the spoofed class

but appear to exhibit bonafide class properties (top1 explanations distributed

across T1-T10).

17We chose confidence more than 50% as there are very few instances with more than 70%
confidence in the development and evaluation sets.

114

4.5.4 Interventions to test the significance of explanations

The previous Subsection 4.5.3 explained what M2 is using to discriminate be-

tween bonafide and spoof instances using the SLIME algorithm (see Subsec-

tion 2.9.2). This section now aims at testing the significance of such explana-

tions through two intervention experiments. The first one attempts to break the

system by manipulating correctly detected spoofed test examples. The second

intervention on the other hand aims at protecting an ASV system by manipu-

lating misclassified spoofed examples.

Table 4.20: Intervention I: breaking the system. Demonstrating the effect on
two spoof instances each in the training, development and evaluation sets.

Subset
Genuine class probability %
Instance ID Before After

Train
T 1002189 0.21 0.80
T 1001687 0.22 0.80

Dev
D 1000884 0.21 0.85
D 1000889 0.25 0.83

Eval
E 1004999 0.18 0.8
E 1008476 0.19 0.81

Intervention I - Break the system

Here, our primary goal is to break M2 from an attacker’s perspective. In other

words, we aim to increase the false alarm rate by manipulating correctly classi-

fied spoof instances so that M2 judges them as genuine. We randomly take two

spoofed audio instances from each of the training, development and evaluation

sets that have been classified correctly with more than 70% confidence and re-

place their first and last 400 ms (T1 and T10) by a T118 segment of the most

confidently classified bonafide signal in the training set (T 1000780). We then

submit them to M2 to see if they can pass as bonafide. Table 4.20 shows that M2

now misclassifies them with high confidence. When we repeat this procedure for

all the correctly detected spoofed instances in the development and evaluation

sets, we observe a dramatic increase in the EER from 7.6% to 34.1% and from

10.6% to 29.7% respectively (first and second rows of Table 4.22).

18The main motivation here is to ensure that T1 and T10 (of the spoof instances) would
not have any spoofed class attributes (as identified in Subsection 4.5.3) after the interven-
tion. The best option was to pick a bonafide audio whose first 400 ms would contain mostly
nonspeech/silence. That is why we pick T1 of T 1000780 (confident bonafide instance) which
satisfies the criteria.

115

Intervention II - Protect the system

Here, our goal is to protect M2 from a researchers’ perspective (or an ASV

system administrator). In other words, we aim to reduce the EER by manipu-

lating misclassified spoofed instances so that M2 judges them correctly. Since

the training subset does not have any misclassified spoofed instances (EER is

0.0%) we randomly take two spoofed instances each from the development and

evaluation sets that were successful in fooling M2. From Subsection 4.5.3, we

know that M2 detects a spoofed signal correctly if spoofed attribute (DTMF

tone and/or speech) appears in the first or last 400 ms (i.e T1 or T10 segment),

we hypothesize that T1 and/or T10 of these four spoofed instances do not have

such attributes. We generate temporal explanations for these four instances and

find that the top1 explanation does not favor T1 or T10.

Table 4.21: Demonstrating the effect of intervention II: protecting the system.
Training subset has no misclassified instances.

Subset
Genuine class probability %
Instance ID Before After

Dev
D 1001544 0.81 0.23
D 1000803 0.78 0.4

Eval
E 1003144 0.83 0.25
E 1001926 0.82 0.29

Now, we remove raw samples from the beginning of these four instances

to ensure that the speech signal occurs within the first 400 milliseconds. We

choose the amount of samples to remove based on the original duration of the

audio signal. For example, if the duration is between three to four seconds we

remove the first 1200 ms samples. We then submit them to M2 to see if they

can be now detected as spoofed. Table 4.21 shows that M2 now classifies them

correctly as spoofed with high confidence. When we repeat this process across

all the misclassified spoofed instances in the development and evaluation sets,

we observe a reduction in the EER from 7.6% to 5.9% and from 10.6% to 7.8%

respectively (first and third rows of Table 4.22).

Though intervention II did not completely reduce the EER of M2 to 0%

on the development and evaluation sets, it shows the potential of our analysis,

and demonstrates how knowledge gained from such model explanations can help

improve the detection performance. Upon closer analysis, we find that out of

269 misclassified spoof instances we intervened in the development subset, M2

detects only 8 instances as spoofed with high confidence while a large number

of instances were detected spoofed with low confidence. We find a similar obser-

vation on the evaluation set. Out of 2088 misclassified spoofed instances, only

88 instances were detected as spoofed with high confidence. This explains the

116

Table 4.22: EER% before and after the two interventions on M2.

Intervention Dev Eval
Initial EER 7.6 10.6

I: Break the system 34.13 29.76
II: Protect the system 5.9 7.8

reason for a small change in the EER.

4.5.5 Discussion

This section described the implementation and analysis of a replicated version of

the LCNN model for replay spoofing detection using the ASVspoof 2017 dataset.

Although our model M1 trained on v1.0 of the dataset could not achieve 7%

EER (as reported in [Lavrentyeva et al., 2017]), it achieved 9% EER on the eval-

uation set. Since version 1.0 of the dataset is obsolete, we focussed our analysis

on version 2.0 of the dataset. Our adapted LCNN model M2 reported an EER of

about 10% on the evaluation set of this dataset. We used the SLIME algorithm

to generate class explanations from both spectral and temporal perspectives.

Our analysis shows that M2 uses the first few milliseconds of the audio signal to

make class predictions. We further demonstrated the significance of our anal-

ysis and findings by preprocessing the test signals which led to a predictable

change in the EER on both the development and evaluation sets. Though these

systems, including the state-of-the-art LCNN [Lavrentyeva et al., 2017], seem to

be successful in discriminating between bonafide and spoofed speech, our anal-

ysis shows that to some extent they could be exploiting cues from the dataset

which are unrelated to the problem. This raises a question about the integrity

and trustworthiness of such systems. Further, the variability of patterns of

signals (presence and absence of nonspeech frames in the beginning) within a

class makes the problem difficult on this dataset. For example not all spoofed

instances have a speech onset in the first few milliseconds of the audio signal

and not all bonafide instances have nonspeech signals in the start. Our anal-

ysis showed how spoofing detection performance is correlated to the first few

samples of the audio signals. This suggests that verifying dataset artefacts and

potentially removing them prior to model training is important. Doing so will

help models only exploit factors of interest relevant for replay spoofing detec-

tion (such as acoustic environment, playback device, recording device properties

etc.)

117

4.6 A deeper look at the ASVspoof 2017 dataset

The ASVspoof challenge series (Subsection 2.3) has motivated research in pro-

tecting speech biometric systems against different variety of access attacks. The

2017 edition focused on replay spoofing attacks, and involved participants build-

ing and training systems on a provided dataset (ASVspoof 2017). More than

60 research papers have so far been published with this dataset, but none have

sought to answer how successful countermeasures are in detecting spoofing at-

tacks. This section shows how artefacts inherent to the dataset may be con-

tributing to the apparent success of published systems.

4.6.1 Introduction

Most of the works on the ASVspoof 2017 dataset, as described in Section 2.4, aim

at building countermeasure (CM) models with a focus on improving detection

performance. Little attention is given to understand what these systems are

learning to make predictions and what attributes are being exploited by the

learning algorithms from the training data. Research often only focuses on

improving scores based on a particular evaluation metric, with the equal error

rate (EER) in this case. But showing better performance does not necessarily

mean a system is trustworthy [Rusak et al., 2020, Hernandez-Orallo, 2019].

The EER is a scalar that does not provide any insights into what the model is

learning to make a prediction.

Machine learning (ML) models learn to make decisions discovering patterns

in the training data [Bishop, 2006]. Such models may easily exploit irrelevant

cues, artefacts or confounders (if present) during the training optimisation. Un-

less explicitly accounted for (during training and inference) they often contribute

to achieving good results and overestimate the actual performance that would

be achieved in the wild on a test set [Kaufman et al., 2011]. As explained in

Subsection 2.9.1, such artefacts can influence ML models across a variety of

tasks including medicine, computer vision, music information retrieval, to name

a few. Their trustworthiness is therefore called into question and some can be-

have much like a “horse” in machine learning [Hernandez-Orallo, 2019, Sturm,

2014], i.e. a model that provides excellent results using cues not relevant to

the actual problem [Rodŕıguez-Algarra et al., 2019]. As highlighted in [Rosset

et al., 2010], such biases can occur as a result of data collection, compilation,

aggregation and partition. Such biases can have a severe impact on the trust-

worthiness of ML applications, and for domains such as finance, medicine and

security (including ASV anti-spoofing) this can be catastrophic. Therefore, it

is beneficial to perform an in-depth dataset analysis [Tommasi et al., 2015],

to detect the presence of artefacts or confounders [Stowell et al., 2019], ensur-

118

ing models do not exploit irrelevant factors during training, and therefore yield

reliable performance estimates.

The work in this section builds upon the findings from Section 4.5, which

suggests that v2.0 of the ASVspoof 2017 dataset contains some recording arte-

facts that bias the performance estimates. It was shown that the CNN highly

attends to the first few milliseconds to make decisions. Further analysing a few

confidently classified test audio signals showed the presence of dual tone multi-

frequency (DTMF) sounds (or speech signals) within the first few milliseconds

for spoofed audio but nonspeech or silence in case of the bonafide audio sig-

nals. Therefore we hypothesize that the training and development subsets of the

same dataset might contain such DTMF sounds and other confounders/artefacts

that might influence model decisions. Understanding their statistics enables the

building of trustworthy CMs using this dataset. To the best of our knowledge

there has been no other works in understanding this dataset, its artefacts and

its impact on machine learning CM models.

To this end, the next Subsection 4.6.2 first provides a description of differ-

ent countermeasure models investigated to understand the influence of dataset

artefacts. As for the artefact details, we use the results of qualitative analysis

on v2.0 of this dataset from Subsection 3.2.3. Then the following Subsection

4.6.3 performs an in-depth analysis through intervention experiments to uncover

the dependencies of the identified artefacts on countermeasure model decisions.

Furthermore, Subsection 4.6.4 performs additional intervention experiments to

confirm the findings on the influence of artefacts. It demonstrates how knowl-

edge of cues/artefacts in the training data can be used to compromise model

decisions. Finally, Subsection 4.6.5 provides a summary of work done in this

section.

4.6.2 Experimental design and evaluation

This section describes different features, classifiers and performance metrics

considered to evaluate the influence of the artefacts (Subsection 3.2.3) on CM

models. The section also discusses the initial performance of these models.

Features

We use CQCCs, i-vectors and power spectrograms as input features. The main

reasons for choosing them are: CQCCs and its variants have been studied ex-

tensively on the ASVspoof 2017 dataset [Delgado et al., 2018, Witkowski et al.,

2017, Yang et al., 2018a]; CQCC-based i-vectors have been used as a baseline

system [Delgado et al., 2018]; power spectrogram features have shown the best

performance during the ASVspoof 2017 challenge [Lavrentyeva et al., 2017].

119

Section 2.5 provides background on these features.

Classifiers

We now describe five different backend models: GMMs, Cosine Distance, SVMs

and two CNNs considered in this study. The motivation to chose them is twofold.

First, the above mentioned classifiers have been widely used for spoofing detec-

tion tasks [Delgado et al., 2018, Lavrentyeva et al., 2017, Sahidullah et al., 2015].

Second, we aim to demonstrate that dataset artefacts can affect any ML model

and that the issues discussed do not revolve around a specific model.

GMM: We train one GMM each for the bonafide and spoof classes using 512

mixture components with random initialisation. We use 60 dimensional CQCC

features extracted using the setup from [Delgado et al., 2018] to train the GMMs.

During testing, for each test utterance X (with T feature vectors) a score is ob-

tained using the log-likelihood ratio between the bonafide and spoofed GMM as

described in Eq. (4.1).

Cosine: We compute 100-dimensional i-vectors using the same 60 dimensional

CQCC features used in GMMs for the entire dataset. We compute the mean

i-vector corresponding to the bonafide and spoof classes in the training set

and use them as the representative models. During testing, a similarity score

is computed between a test i-vector and the model i-vector using the cosine

distance metric:

cos(θ) =
X ·Y
||X||||Y||

(4.2)

where X represents the test i-vector and Y the model i-vector. The final score

is then obtained by taking the difference between the bonafide and spoof model

scores. We follow the same i-vector setup from [Delgado et al., 2018]. It is also

worth noting that this model has far fewer parameters than the others.

SVM: We train a binary SVM classifier with a linear kernel using mean-variance

normalised i-vector features, with mean-variance values computed on the train-

ing set. Here, we use the same 100 dimensional CQCC-based i-vectors used in

the Cosine model. We use the Scikit-learn [Pedregosa et al., 2011] library with

default parameters for training the SVM model.

CNN: We use two different CNN models, CNN1 and CNN2. We take CNN1 as

a pretrained model from Section 4.5.2 (model M2). CNN2 is a newly proposed

architecture with only 36, 174 free parameters and comprises 3 convolutional

(Conv) and 2 fully connected (FC) layers unlike CNN1 which is very deep com-

120

prising 9 convolutional layers. Both CNNs operate on a fixed input representa-

tion and use a batch normalisation layer before applying ReLU nonlinearity in

every Conv and FC layers. The input representation, model training and test-

ing approach used in CNN2 is same as in CNN1 with the key difference being

the input duration and parameters used in spectrogram computation. CNN2

operates on 3 seconds input (CNN1 uses 4 seconds duration) computed using a

512-point FFT, 32 ms frame window and 10 ms hop size. Additional details on

the CNN architectures are provided in Appendix A.

Table 4.23: Initial model performance. Θ = EER decision threshold.

Model Set Θ TP FN FP TN EER%

CNN1
Dev 0.6663 701 59 74 876 7.7
Eval 0.7467 1159 139 1286 10722 10.7

CNN2
Dev 0.6 704 56 70 880 7.37
Eval 0.842 1124 174 1609 10399 13.4

Cosine
Dev 0.125 679 81 101 849 10.6
Eval 0.181 1105 193 1779 10228 14.8

SVM
Dev 0.3972 678 82 103 847 10.8
Eval 0.506 1094 204 1883 10125 15.6

GMM
Dev 0.3334 690 70 87 863 9.2
Eval 0.7120 1119 179 1656 10352 13.7

Performance measures

We use the EER metric to evaluate the performance of CM models. In order

to derive more insights in understanding the impact of the artefacts on this

dataset, we further report true positive (TP), false negative (FN), false positive

(FP), true negative (TN), false acceptance rate (FAR) and false rejection rate

(FRR) for the bonafide class. Subsection 3.5.1 provides a description of these

metrics.

Preliminary results

We train all our CM models using the training set and validate them on the de-

velopment set. Table 4.23 summarises our preliminary results. Our CM models

Cosine and GMM show consistent performance as reported in [Delgado et al.,

2018]. Although CNN2 and CNN1 show similar performance on the develop-

ment set, CNN2 performs poorly on the evaluation set. A possible reason could

be due to the simple 4 hidden layer architecture used by CNN2 in comparison

to the 10 hidden layer representation in CNN1. However, CNN2 outperforms

both Cosine, GMM and SVM on both the development and evaluation subsets.

We also record the individual EER threshold for each model (for each test set)

121

Figure 4.5: Block diagram: intervention pipeline towards understanding the
influence of artefacts on the predictions of countermeasure models.

that we use in the next section to understand the influence of the dataset cues

highlighted in Subsection 3.2.3 on model predictions.

4.6.3 Understanding the influence of dataset artefacts

In this section we thoroughly study the impact of artefacts explained in Subsec-

tion 3.2.3 on the CM model decisions. More precisely we focus on understanding

the influence of pattern difference, BCS and DTMF sounds on model prediction

through intervention experiments illustrated in Fig. 4.5. We call this setup as

inference-time intervention because we do not retrain any of our CM models,

rather use our pretrained CMs. Here the intervention module updates the test

signal by exploiting information about the dataset artefacts which we pass as a

side information. Features are then computed on the updated test signal and

scoring is performed using a pretrained model. The optional unify-duration

module truncates or replicates audio samples to create a fixed-duration input

representation. This is applicable only for the CNNs.

Finally, we demonstrate a use-case where an attacker despite having physical

access to such cues (for example, a BCS) is still capable of manipulating CM

decisions by crafting synthetic artefacts. With these interventions we confirm

that both frame-level and utterance-level CM models can exploit the artefacts

in this dataset raising concerns about their trustworthiness and reliability of the

published results.

Impact of “BCS” on prediction

As described in Subsection 3.2.3, the training set contains a large proportion

(36.36%) of bonafide examples with BCS artefacts in comparison to only 2.45%

of spoof examples. BCS, if present in an audio recording, usually occurs within

a 100 ms time window and is found either at the start or at the end. Although

few (10.81%) bonafide class audio files in the training set have BCS at the end,

our preliminary interventions showed they have no impact on model predictions.

However, we find a substantial influence for BCS found at the start of the audio

recordings. We do not perform this intervention on the spoof class as the BCS

serves as a cue for the bonafide class. Therefore we hypothesize and demonstrate

that BCS serves as one kind of bonafide signature on this dataset. And if this

122

Table 4.24: BCS intervention results. TFI: test files intervened, which cor-
responds to TP cases (Table 4.23) identified to contain BCS artefact. Prop:
proportion of files that changed class label.

Model Set # TFI FN Prop (%)

CNN1
Dev 177 +34 19.21
Eval 513 +118 23.0

CNN2
Dev 175 +12 6.85
Eval 508 +60 11.81

Cosine
Dev 159 +8 5.03
Eval 486 +32 6.58

SVM
Dev 159 +6 3.77
Eval 491 +32 6.51

GMM
Dev 173 +13 7.51
Eval 508 +56 11.02

signature is not removed, machine learning CMs can easily exploit it. To this

end, we take all the TPs for the bonafide class that contain a BCS at the start

and run this intervention on them.

Here our intervention module (Fig. 4.5) takes a BCS annotation file contain-

ing a list of files having a BCS as side information. It then discards the first

100 ms audio samples from the test utterance before extracting features and ob-

taining a classification score. Table 4.24 summarises the results. As expected,

dropping BCS samples causes models to misclassify bonafide test signals raising

the false negatives. Interestingly, we find CNN1 to be more sensitive in contrast

to CNN2 and other models. A possible explanation is since CNN1 uses a 4

second representation in contrast to the 3 seconds one for CNN2. The above

mentioned representation of CNN1 contains more replicated copies of shorter

audio segments, which propagates artefacts (see Fig. 4.6).

Impact of “DTMF” on prediction

During replay data collection a number of bonafide utterances were first con-

catenated using a DTMF sound to mark the utterance boundary and replay

attacks were simulated on them. The individual replayed utterance was then

retrieved based on this marker [Kinnunen et al., 2017b]. As outlined in Subsec-

tion 3.2.3, some spoof audio files in the training set have DTMF sounds (low

or loud) which are not present in the bonafide files. Do DTMF sounds provide

cues for the spoof class? Do these dataset artefacts bias our ML models? We

perform interventions to understand this. As the ground truth of DTMF arte-

facts for the spoof class in the evaluation set is unavailable the present study

does not include this intervention on them. To this end, we take all the TNs for

the spoof class in the development set that contain a DTMF artefact and run

123

Figure 4.6: Spectrogram (top) and raw audio (bottom) of “Ok google”. Left
represents a bonafide example and right its replayed version. The green rectan-
gular box highlights the original audio and the red box shows signal replication
to create a fixed duration (4 seconds) input representation. Two use cases are
reflected: pattern difference and BCS. It shows how artefacts spread while cre-
ating an input representation with fixed duration.

this intervention.

We pass the file identifier containing a DTMF as side information to the in-

tervention module (Fig. 4.5) which removes the first 250 ms audio samples from

them before extracting features and obtaining a classification score. Table 4.25

summarises the intervention results. We see a negligible proportion of inter-

vened files affected from this intervention, which suggests that DTMF sounds

do not provide a substantial bias on CM decisions. Another interpretation is

the fact that the spoof signals acquire other channel characteristics during the

replay simulation. Therefore, their impact may be negligible when audio signals

are replayed in noisy acoustic conditions.

Table 4.25: DTMF intervention results for the development set spoof files iden-
tified to contain a DTMF. Prop has the same meaning as in Table 4.24. TFI:
test files intervened.

Model # TFI FP Prop (%)
CNN1 136 +3 2.2
CNN2 144 +3 2.08
Cosine 145 0 0.0
SVM 145 0 0.0
GMM 141 +1 0.71

Impact of “pattern difference” on prediction

The previous two experiments involved removing BCS and DTMF artefacts

from the test files identified to contain such artefacts. In this experiment we

124

remove audio samples before and after the actual speech utterance during testing

ensuring that both bonafide and spoofed audio recordings now have similar

audio patterns. This also means that BCS or DTMF gets removed, if present,

in this intervention experiment. Thus, BCS and DTMF experiments can be

thought of as a special case of pattern difference interventions but performed

on a small set of test files identified to contain such artefacts.

Here, the intervention module uses speech endpoints as side information

and discards audio samples before and after the actual speech utterance. We

use our manual speech endpoint annotations that we prepared during dataset

inspection (Subsection 3.2.3). This intervention ensures that both bonafide

and spoof test recordings now have similar audio patterns. Following our prior

findings from Subsection 4.5.3 we hypothesize that the pattern difference favours

the bonafide class. To confirm this, we take all the TPs for the bonafide class

and all the FPs for the spoof class (from Table 4.23) and run this intervention

on them. Furthermore, due to the large numbers of spoof files in the evaluation

set we could not perform manual inspection on them. Therefore, we are unable

to run this intervention on them in the present study. We evaluate all our

countermeasure model performance using the original decision thresholds from

Table 4.23.

Table 4.26: Pattern difference intervention results. To be compared with Ta-
ble 4.23. ‘+’, ‘-’ denotes an absolute increase/decrease. Ground truth annota-
tions for spoof files in the evaluation set are unavailable (indicated by −).

Intervention on Bonafide class Spoof class
Model Set FN FRR % FP FAR %

CNN1
Dev +334 +43.95 -49 -5.16
Eval +519 +39.98 − −

CNN2
Dev +73 +9.61 -35 -3.68
Eval +289 +22.27 − −

Cosine
Dev +155 +20.39 -53 -5.58
Eval +352 +27.12 − −

SVM
Dev +174 +22.89 -52 -5.47
Eval +349 +26.89 − −

GMM
Dev +170 +22.37 -41 -4.32
Eval +429 +33.13 − −

Table 4.26 summarises the results of this intervention. As expected, a large

number of bonafide test examples on both the development and evaluation sets

are now misclassified by all our ML models as shown from the increased FN

and FRR% metrics. On the spoof class (development set) we find a drop in the

FP and FAR% metrics for all ML models. These results confirm our hypothesis

about this pattern difference on this dataset. It indeed favours the bonafide

125

class. This makes sense since a large proportion of bonafide audio files in the

training set have silence/nonspeech in the first 300 ms while the spoof class

contains speech.

4.6.4 Manipulating model decisions

Now we aim to manipulate countermeasure decisions by using the knowledge

acquired so far through our intervention experiments. Among different arte-

facts, we find that “pattern” difference and “BCS” artefacts favour the bonafide

class as evident from the increase in FRR% when we removed them from the

bonafide test files. Therefore, using the BCS artefact as a bonafide class signa-

ture we perform interventions on all the FNs (misclassified bonafide files) and

FPs (correctly detected spoof files) from Table 4.23. From these interventions

we demonstrate that machine learning CM models trained on this dataset can

indeed be manipulated using this cue.

Here the intervention module (Fig. 4.5) takes as side-information a “BCS”

signature and appends it to the start of test audio recordings before passing on

to the other modules for feature extraction and scoring. As a BCS signature we

use the first 100 ms samples of the most confidently classified bonafide audio

“T 1001039.wav” containing a BCS artefact in the training set. It should be

noted that we did a similar line of study in Sections 4.2 and 4.5 but this study

is different in terms of the signature we used for interventions. In Section 4.2

we used 60 ms zero-valued silence as a signature to fool GMM-based counter-

measures on version 1.0 of this dataset. In Section 4.5, we find that CNNs

give strong emphasis on the first 400 ms for class discrimination. And, we used

the initial 400 ms samples19 as a signature to fool the prediction of the CNN

countermeasure.

Table 4.27 shows the intervention results in terms of absolute increase/decrease

in the error metrics. The consistency in the drop of FN and FRR% and the

increase in FP and FAR% across all ML models confirm our hypothesis about

BCS. It indeed serves as a strong cue that a model attends to form bonafide

class predictions. The GMM and CNNs in particular show a high impact of this

intervention on the evaluation set. For example 124 misclassified genuine files

are now correctly classified by CNN1 (out of 139) and 142 by the GMM (out

of 179). Furthermore FAR raises by more than 40% for the GMM and CNNs

demonstrating that a large amount of correctly detected spoof files are now

able to bypass them. Even though i-vectors are computed on CQCC features

the impact on Cosine and SVM models that operate on i-vectors is much smaller

than GMMs. A possible reason for this is that i-vectors involve feature aggre-

19Taken from the most confidently classified bonafide audio signal in the training set.

126

Table 4.27: Manipulating model decisions using BCS. To be compared with
Table 4.23. ‘+’, ‘-’ denotes an absolute increase/decrease.

Intervention on
Misclassified Correctly detected
bonafide files spoof files

Model Set FN FRR % FP FAR %

CNN1
Dev -46 -6.05 +446 +46.95
Eval -129 -9.94 +4909 +40.88

CNN2
Dev -56 -7.37 +479 +50.42
Eval -153 -11.79 +4937 +41.11

Cosine
Dev -37 -4.87 +130 +13.68
Eval -54 -4.16 +1857 +15.46

SVM
Dev -33 -4.34 +106 +11.16
Eval -53 -4.08 +1952 +16.26

GMM
Dev -51 -6.71 +325 +34.21
Eval -142 -10.94 +5732 +47.73

gation across all time frames during super-vector computation which may have

reduced the influence of BCS on the final i-vector feature. Furthermore, Fig. 4.7

provides additional insights through score visualisations illustrating how confi-

dently classified spoof test examples (true negatives) are now misclassified by

our CMs.

An interesting question we now ask is: What if an attacker did not have

access to this BCS signature? Can they still fool countermeasure models trained

on this dataset using a synthesized burst sound? To demonstrate this, we now

repeat the same BCS interventions but use 100 ms white noise as a signature to

fool ML models. We experiment with synthetic noise at different signal to noise

ratios (SNR) and demonstrate that white noise with enough power can fool ML

decisions serving as a cue for the bonafide class. To ensure that the power of

the original and manipulated speech signal is equivalent after adding noise, we

first normalise the noise samples. Let Xi represent a test audio signal and ni

be the noise samples drawn from a standard normal distribution. Therefore the

signal to noise ratio (SNR) can be written as:

SNR = log10

[
Var(Xi)

Var(α× ni)

]
(4.3)

where α is the scalar we want to compute for a given Xi and an SNR and Var(.)

represents variance. Thus:

α =
√

Var(Xi)× 10−SNR. (4.4)

Using α in Equation 4.4, the intervention module (Fig. 4.5) normalises the

random noise ni before appending it to Xi. The updated signal is then prop-

127

0.2 0.4 0.6 0.8
0

2

4

6

8

10

12

14

16
De

ns
ity

CNN1
Initial scores
New scores

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

CNN2
Initial scores
New scores

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

De
ns

ity

Cosine
Initial scores
New scores

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

SVM
Initial scores
New scores

4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

GMM
Initial scores
New scores

Figure 4.7: Score distribution (before and after) illustrating how true negatives
(spoof files) in the evaluation set are misclassified after adding a BCS signature
on them. X-axis represents the countermeasure scores.

agated for feature extraction and scoring. We investigate the impact of noise

at different SNR levels and at the start and random time locations. Due to

similarity in the trend for different SNRs, we report the findings only for 0 and

6 dB SNR noise.

Tables 4.28 and 4.29 summarise the results of performing this intervention

adding white noise at random time locations and at the start of test signals.

In general, irrespective of locations where we inject this signature, on both the

development and evaluation sets we find the impact to become less effective

as we increase the SNR. Although we see a similar trend (as in Table 4.27) in

FRR% and FAR% for all our CMs, we find much smaller impact for the GMM

using noise in comparison to BCS (compare Table 4.27 and 4.28). A possible

reason could be that we normalise the noise with respect to the original signal

128

Table 4.28: Manipulating model decisions injecting white noise at random time
locations of the intervened test signal. To be compared with Table 4.23.

Intervention on
Misclassified Correctly detected

bonafide trials spoof trials
Model SNR Set FN FRR FP FAR

CNN1

0
Dev -26 -3.42 +394 +41.47
Eval -114 -8.78 +4583 +38.17

6
Dev -38 -5.0 +176 +18.53
Eval -94 -7.24 +1138 +9.48

CNN2

0
Dev -43 -5.66 +662 +69.68
Eval -136 -10.48 +6748 +56.2

6
Dev -40 -5.26 +164 +17.26
Eval -73 -5.62 +2113 +17.6

Cosine
0

Dev -63 -8.29 +161 +16.95
Eval -78 -6.01 +1425 +11.87

6
Dev -13 -1.71 +14 +1.47
Eval -13 -1.0 +240 +2.01

SVM
0

Dev -61 -8.03 +139 +14.63
Eval -74 -5.70 +1333 +11.10

6
Dev -11 -1.45 +20 +2.11
Eval -19 -1.46 +267 +2.22

GMM
0

Dev -17 -2.24 +46 +4.84
Eval -20 -1.54 +660 +5.50

6
Dev -27 -3.55 +49 +5.16
Eval -23 -1.77 +368 +3.06

power (Eq. 4.4) which is not performed with BCS. We simply copy the BCS

(raw samples containing BCS) and append it to the test signal during the in-

tervention (Fig. 4.5).

Fooling CM decisions using “silence”. A final set of intervention exper-

iments we perform is towards evaluating CM robustness against silence (zero-

valued samples). It was already demonstrated on version 1.0 of this dataset how

strong impact silence had on class decisions (see Subsection 4.2.3). During our

dataset inspection on version 2.0 of this dataset, we found some of the bonafide

audio files in the training set still contain silence of more than 10 ms in the start

(see Section 3.2.3) which is not found in the spoof class. As highlighted in Sec-

tion 3.2.3 the training set has 288 (out of 1507) bonafide files containing silence

of more than 10 ms. Out of these files, 68 files have more than 70 ms silence and

37 with more than 100 ms silence in the start. Therefore, we hypothesize that

CMs trained on the version 2.0 of this dataset may be still exploiting silence

as one potential cue for the bonafide class. To this end, we repeat the same

interventions as we did for BCS and noise, but now we use zero-valued samples

129

Table 4.29: Same as in Table 4.28 but we append white noise at the beginning
now.

Intervention on
Misclassified Correctly detected

bonafide trials spoof trials
Model SNR Set FN FRR FP FAR

CNN1
0

D -32 -4.21 +457 +48.11
E -120 -9.24 +5875 +48.93

6
D -52 -6.84 +292 +30.74
E -106 -8.17 +2519 +20.98

CNN2
0

D -52 -6.84 +798 +84.00
E -161 -12.4 +8537 +71.09

6
D -49 -6.45 +289 +30.42
E -118 -9.09 +3794 +31.6

Cosine
0

D -56 -7.37 +107 +11.26
E -74 -5.70 +1239 +10.32

6
D -20 -2.63 +17 +1.79
E -21 -1.62 +291 +2.42

SVM
0

D -59 -7.76 +101 +10.63
E -78 -6.01 +1201 +10.00

6
D -15 -1.97 +17 +1.79
E -20 -1.54 +288 +2.40

GMM
0

D -8 -1.05 +17 +1.79
E -8 -0.62 +617 +5.14

6
D -30 -3.95 +30 +3.16
E -29 -2.23 +330 +2.75

as a bonafide class signature (at start and random time locations) with an aim

to fool CM decisions. We perform this intervention using 10 ms and 100 ms

duration to demonstrate how varying duration effects CM decisions.

Tables 4.30 and 4.31 summarise the results of these intervention experiments

injecting silence at the start and at random time locations of test signals. Over-

all, both these tables illustrate a similar pattern. The impact becomes higher

as we increase zero-valued samples from 10 ms to 100 ms. This holds true for

both the development and evaluation sets. Interestingly, CNN2 appears to be

more sensitive than CNN1. A possible interpretation to this corresponds to

the framing size used during spectrogram computation. A frame size of more

than 100 ms indicates that even though all 100 ms samples are replaced with

silence, a frame may contain some speech/nonspeech information. To this end,

CNN1 uses a 108 ms frame size (1728 point FFT) while CNN2 uses only 32 ms

(512 point FFT) as frame size to compute spectrograms. Both use 10 ms frame

shift. Thus, appending silence of 10 or 100 ms would impact CNN2 more in

comparison to CNN1 due to occurrences of such silences (in the bonafide class)

during model training. To derive further understanding on the impact of this

130

Table 4.30: Manipulating CM decisions injecting silence at the start of the
intervened test signal. To be compared with Table 4.23

Intervention on
Misclassified Correctly detected

bonafide trials spoof trials
Model Silence Set FN FRR FP FAR

CNN1
10 ms

D 0 0 +1 +0.11
E -2 -0.15 +33 +0.27

100 ms
D -9 -1.18 +24 +2.53
E -8 -0.62 +199 +1.66

CNN2
10 ms

D -17 -2.24 +28 +2.95
E -17 -1.31 +219 +1.82

100 ms
D -51 -6.71 +711 +74.84
E -134 -10.32 +6226 +51.85

Cosine
10 ms

D -16 -2.11 +4 +0.42
E -9 -0.69 +97 +0.81

100 ms
D -29 -3.82 +35 +3.68
E -37 -2.85 +479 +3.99

SVM
10 ms

D -9 -1.18 +9 +0.95
E -12 -0.92 +12 +0.10

100 ms
D -33 -4.34 +33 +3.47
E -34 -2.62 +34 +0.28

GMM
10 ms

D -7 -0.92 +6 +0.63
E -5 -0.39 +78 +0.65

100 ms
D -32 -4.21 +44 +4.63
E -44 -3.39 +479 +3.99

intervention we look at the score distribution for CNN2. Fig. 4.8 shows this.

Overall, these results indicate that silence does provide cues for the bonafide

class on v2.0 of this dataset.

4.6.5 Discussion

The performance of any data-driven ML task highly depends on the training

data fed to the learning algorithm. They learn to make decisions by exploiting

the underlying pattern within the training data. Therefore, artefacts and con-

founders, if present in the dataset, can introduce biases in model decisions rais-

ing questions on their reliability and trustworthiness [Hernandez-Orallo, 2019,

Sturm, 2016]. As explained in Subsection 2.9.1 such issues can affect a wide

range of ML tasks, and the impact caused by these biases in domains such as

finance, medicine and security (including ASV anti-spoofing) can be very costly.

Therefore, it is important to ensure that dataset artefacts that introduce biases

in ML decisions are taken into account to build reliable ML models.

In this direction, this section focussed on security for voice biometric us-

ing a benchmark ASVspoof 2017 dataset which is a popular dataset for replay

131

Table 4.31: Same as in Table 4.30 but now we inject silence at random time
locations.

Intervention on
Misclassified Correctly detected

bonafide trials spoof trials
Model Silence Set FN FRR FP FAR

CNN1
10 ms

D 0 0.0 0 0.0
E -2 -0.15 +34 +0.28

100 ms
D -11 -1.45 +53 +5.58
E -9 -0.69 +295 +2.46

CNN2
10 ms

D -16 -2.11 +59 +6.21
E -34 -2.62 +355 +2.96

100 ms
D -52 -6.84 +814 +85.68
E -142 -10.94 +7310 +60.88

Cosine
10 ms

D -10 -1.32 +9 +0.95
E -10 -0.77 +100 +0.83

100 ms
D -19 -2.5 +31 +3.26
E -35 -2.7 +534 +4.45

SVM
10 ms

D -4 -0.53 +11 +1.16
E -9 -0.69 +102 +0.85

100 ms
D -26 -3.42 +33 +3.47
E -35 -2.7 +533 +4.44

GMM
10 ms

D -3 -0.39 +8 +0.84
E -10 -0.77 +103 +0.86

100 ms
D -30 -3.95 +73 +7.68
E -26 -2.0 +655 +5.45

spoofing attack detection used in more than 60 published research papers. We

identified and investigated the impact of artefacts (see Subsection 3.2.3) on this

dataset that machine learning models exploit to form decisions. Among differ-

ent artefacts, we found that burst click sounds (BCS) provide strong cues for

the bonafide class. Interestingly, experimental results for interventions using

DTMF sounds showed that they have no influence on model decisions (Sub-

section 4.6.3). We also find that silence (zero valued samples) still serves as a

cue for the bonafide class on version 2.0 of this dataset. Initially, in Section

4.2 we had shown how silence influenced model decisions on version 1.0 of this

dataset. Subsequently version 2.0 was released by the ASVspoof organisers [Del-

gado et al., 2018] fixing such issues. However, our intervention results suggest

that this problem is not solved completely, and that CM models still exploit

silence as one potential cue in class discrimination.

Among 10 different utterances (see Table 3.1) used in this dataset, S02 “Ok

Google” is the shortest one with an average duration of about 0.7 to 0.8 seconds.

However, the dataset contains a large number of S02 examples with more than

2 seconds duration indicating more than half of its contents being nonspeech,

132

0.0 0.2 0.4 0.6 0.8 1.0
Countermeasure score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
De

ns
ity

CNN2
Initial scores
New scores

Figure 4.8: Score distributions of spoof files in the evaluation set that were orig-
inally detected correctly by CNN2 and get misclassified adding 100 ms silence
at random time locations.

noise or silence. As a result of this, a reliable detection of this sentence may

be difficult and that the attacks we demonstrated using dataset cues may have

more impact on S02 than the other nine phrases. To confirm this, we visualise

the distribution of how the proportion (in terms of impact) looks across the ten

phrases. Fig. 4.9 summarises this and confirms our hypothesis.

We find the work of [Fang et al., 2018b] to be closely relevant to ours. The

authors study the effect of enhancing the quality of stolen speech using genera-

tive adversarial networks before performing a replay attack. They demonstrate

a significant increase in the EER for both the baseline GMM and CNN coun-

termeasures on the ASVspoof 2017 dataset. However, our current work demon-

strates that knowledge of artefacts in a dataset can also be used to manipulate

model predictions (Subsection 4.6.4). This is much simpler than training a GAN

on a specific dataset. Our in-depth analysis of this dataset and experimental

results from different interventions confirms the presence of a “horse” in ma-

chine learning [Hernandez-Orallo, 2019, Sturm, 2014] for anti-spoofing applied

to ASVspoof 2017 dataset. Furthermore, none of the research results published

in this dataset (more than 60 papers) have accounted for these artefacts, further

indicating that the countermeasures showing impressive results may not be fully

reliable and trustworthy as their decision process involves the contribution of

133

Figure 4.9: Impact of the BCS intervention on correctly detected spoof files
across ten different phrases (S01 through S10 defined in Table 3.1) of the
ASVspoof 2017 dataset. Shown results illustrate the proportion for different
phrases for all our CM models.

these artefacts which are not related to the actual problem.

4.7 Summary

This chapter presented a detailed study towards understanding replay spoofing

detection systems by investigating existing methodologies and techniques from

the literature. Several interesting insights have been discovered revolving around

the ASVspoof 2017 dataset, a benchmark spoofing dataset and state-of-the-art

countermeasure models on this dataset. This section provides a summary of

these findings.

In Section 4.2, our experimental results demonstrated that CM models ex-

ploited confounding factors in this dataset (version 1.0) that are not relevant to

134

the replay detection problem, overestimating the actual performance. Further-

more, the poor performance using hand-crafted features indicated that crafting

features to capture unknown attack conditions might be difficult, suggesting

data-driven models could be a way for exploration. To this end, Section 4.3 at-

tempted to replicate the best performing deep model (LCNN) of the ASVspoof

2017 challenge. It was found that replicating this model using only the pub-

lished details was not possible. Despite trying alternative network architectures

it was found that achieving good test generalisation was a major challenge on

this dataset.

Why is spoofing detection on this dataset difficult? Section 4.4 attempted

to understand this. It was found that due to inherent dataset issues, making

confident conclusions whether reverberation noise or some device-specific at-

tributes provide a cue to replay signal discrimination on this dataset is difficult.

Extending this, the next Section 4.5 developed a CNN model that showed com-

parable performance to LCNN, and used it to understand what it has learned

to detect spoofing using a method from interpretable machine learning. Results

demonstrated that the model was paying attention to the first few milliseconds

of each input recording to make class decisions. Motivated by this, Section 4.6

performed an in-depth study on the ASVspoof 2017 v2.0 dataset, discovered

artefacts/confounders and demonstrated that CM models benefit from exploit-

ing them in their decision making.

The work reported in this chapter has been published (and is under review)

in peer-reviewed international conferences and journals.

135

Chapter 5

Design of novel spoofing

countermeasures

5.1 Introduction

This chapter proposes novel methods for the design of countermeasures for re-

play spoofing attacks while also focusing on model robustness and avoiding bi-

ases in the datasets. The work reported in this chapter uses both the ASVspoof

2017 v2.0 and ASVspoof 2019 PA datasets except for Section 5.3 which mainly

focuses on the ASVspoof 2017 v2.0 dataset. Section 5.2 describes our proposed

ensemble model comprising several shallow and deep models reporting promis-

ing results on the benchmark ASVspoof 2019 PA dataset. It also discusses how

countermeasure models show biased performance with zero-valued silences in the

PA dataset, and subsequently proposes simple preprocessing methods to over-

come them. This work is a result of our participation in the recent ASVspoof

2019 challenge, and was published in [Chettri et al., 2019]. Then Section 5.3

extends work from Section 4.6 and proposes methods to mitigate the impact of

dataset biases and help countermeasure models become more robust against ma-

nipulations using dataset specific cues (see Section 4.6). The next Section 5.4

analyses how spoofing detection performance varies across different subbands

using CNNs trained on spectrograms. It then proposes a joint subband mod-

eling framework which outperforms models trained on fullband spectrograms.

Furthermore, this section performs a cross-dataset evaluation of these models

on the ASVspoof 2019 real PA test set (described in Subsection 3.3.3). Mo-

tivated from the widespread popularity of the GMM backend classifier (which

is a generative model) in spoofing detection, Section 5.5 proposes the use of

variational autoencoders (VAEs), which are deep generative models, as an al-

136

ternative backend for spoofing detection. Different VAE modelling approaches

are further studied. Furthermore, this section also studies VAEs in a classical

setting — using VAEs as a feature extractor and training a separate classifier

for classification. Finally, this chapter concludes with a summary in Section 5.6.

5.2 Ensemble models for spoofing detection

5.2.1 Introduction

Designing a single model to robustly detect unseen spoofing attacks can be chal-

lenging, as demonstrated at the ASVspoof 2015 and 2017 challenges, where the

best performing systems [Patel and Patil, 2015, Lavrentyeva et al., 2017, Na-

garsheth et al., 2017] made use of an ensemble model that combines input fea-

tures or classifier scores. To this end, this section proposes ensemble models for

robust spoofing detection combining both deep neural networks and traditional

machine learning models through logistic regression. Our proposed approach

is evaluated on the latest spoofing dataset ASVspoof 2019 (see Section 3.3)

which was released as a result of the 2019 spoofing evaluations (Section 2.3).

Both logical access (LA) and physical access (PA) spoofing detection tasks of

the challenge are considered. Although the main focus of this thesis is on PA

attacks (replay spoofing), this section describes results on the LA subtask as

well because of our participation in both the subtasks of the ASVspoof 2019

challenge. The work reported here was published in [Chettri et al., 2019].

The next Subsection 5.2.2 describes our proposed ensemble model compris-

ing various deep and shallow models. We build our models by discarding data

points ensuring non-overlap in spoofing conditions between training and vali-

dation for better generalisation. For this, we propose a dataset partition which

is described in Subsection 5.2.3. This dataset partition ensures that different

attack types are present during training and validation to improve system ro-

bustness. Then Subsection 5.2.4 evaluates the performance of our ensemble and

all the models in the ensemble. Two evaluation metrics, EER and t-DCF, as de-

scribed in Section 3.5, are considered for this. We demonstrate that combining

information from deep and traditional machine learning approaches along with

our dataset partition can improve model generalisation. Furthermore, results

on the PA tasks suggest that the same CNN performs much better when trained

on the last 4 seconds of audio than on the first 4 seconds. We find that spoofed

audio recordings for the PA task tend to have more silence at the end than

bonafide recordings. Following this, Subsection 5.2.5 performs three different

interventions proving that models exploit this silence pattern in the dataset and

achieve lower performance without these cues. Our results suggest that perfor-

137

mance metrics reported on the current PA dataset may be overestimating the

actual performance of the models, which might become somewhat of a “horse”

[Sturm, 2014] that trivially sidestep the actual problem, thus raising concerns

about model validity as well as performance results. Finally, Subsection 5.2.6

provides a summary of the work done in this section.

5.2.2 Models in the proposed ensemble

This section describes the approach used to design countermeasures for the LA

and PA tasks of the ASVspoof 2019 challenge. A model ensemble is used in

order to combine information from different countermeasure models employing

various features and training procedures. This diversity leads to a powerful

ensemble with good generalisation. Our ensemble comprises various deep and

shallow models which are described next.

Deep Models

We train five deep models using raw audio or time-frequency representations as

input to minimise a binary cross-entropy loss using Adam optimiser and early

stopping with a patience of P epochs. As the dataset has more spoofed exam-

ples, we replicate the bonafide examples to ensure that each batch contains an

equal number of bonafide and spoofed examples, which helps stabilise training.

At inference time, we use the output layer sigmoid activation as a score. We

provide model-specific training details below.

Convolutional Neural Network (CNN). We use the CNN architecture from Sub-

section 4.5.2 featuring 50% dropout in the fully connected layers, a batch size

of 32, and a learning rate of 10−4. We train the model for 100 epochs with an

early stopping patience of P = 5 and P = 2 for the LA and PA tasks, respec-

tively. We use an utterance-level mean-variance normalised log spectrogram1,

computed using a 1024-point FFT with a hop size of 160 samples, as the input.

For each task, we train two such CNN models, model A and B, on the first and

last 4 seconds of each audio sample. We truncate or loop the spectrogram time

frames to obtain a unified time representation.

Convolutional Recurrent Neural Network (CRNN). We use a modified version

of the CRNN architecture from [Morfi and Stowell, 2018] (model C). We train

the model for 500 epochs with early stopping patience of P = 10 for both the

LA and PA tasks. As input, we use a mean-variance (computed on the training

1Power-spectrogram for the LA task and Mel-spectrogram with 80 mel bands (for compu-
tational reasons) for the PA task.

138

set) normalised log-Mel spectrogram of 40 Mel bands, computed on the first 5

seconds of truncated or looped audio samples, using a 1024-point FFT with a

hop size of 256 samples. During training, we use a batch size of 8 and 32 for

the LA and PA tasks, respectively, with an initial learning rate of 10−5 that is

halved on the validation loss plateau with a patience of P = 5 epochs, until 10−8.

1D-Convolutional Neural Network. We use the network architecture from the

sample-level 1D CNN [Lee et al., 2017] (model D). In total, the model consists of

9 ReSE-2 blocks [Kim et al., 2018]. These blocks are a combination of ResNets

[He et al., 2016] and SENets [Hu et al., 2018]. We use multi-level feature aggre-

gation, where the outputs of the last three blocks are concatenated and followed

by a fully connected layer of 1024 units, batch normalization and ReLU layers,

a 50% dropout layer and a fully connected layer of 1 unit with sigmoid acti-

vation. Each convolutional layer has filters of size 3, an L2 weight regularizer

of 0.0005, and all strides are of unit value. The raw audio input is 3.7 seconds

in duration and randomly sampled segments of this size are selected from the

recordings. We loop shorter samples to obtain a unified time representation.

We train the model using a batch size of 16, learning rate of 10−4 and an early

stopping patience of P = 25 epochs.

Wave-U-Net. We use a modified version of the Wave-U-Net [Stoller et al.,

2018], with five layers of stride four, and without upsampling blocks (model E).

The outputs of the last convolution are max-pooled across time, reducing the

parameter count and incorporating the intuition that the important features in

the tasks are temporally local. Finally, we apply a fully connected layer with a

single output to yield a classification probability. We train the model using a

batch size of 64, a learning rate of 10−5 and early stopping patience of P = 10

for both the LA and PA tasks, where an epoch is defined as 500 update steps.

To ensure the audio inputs have the same length, we pad all recordings with

silence to 196608 audio samples (= 12.23 seconds). For the PA task, we also

match real samples to their spoofed versions based on the speaker identity and

utterance. We train on pairs of audio samples (discarding samples without any

matches) and balanced batches, in order to stabilise the training process and

improve generalisation by preventing the network from using speaker identity

and utterance content for discrimination.

Shallow Models

Additional to deep models, we use two different shallow [Salamon et al., 2017]

models: Gaussian Mixture Models (GMMs) and Support Vector Machines (SVMs).

139

GMM. We train three GMM models using MFCC (model F), IMFCC (model

G), and SCMC (model H) features due to their performance on the ASVspoof

2015 [Sahidullah et al., 2015] and 2017 spoofing datasets (Section 4.2.2). For

each of them, we extract 60 dimensional static-delta-acceleration (SDA) fea-

ture vectors per frame. Section 2.5 provides background information on these

features. We use 128 and 256 mixture components for the LA and PA tasks

respectively and train one GMM each for the bonafide and spoof classes. At

test time, the score of each test utterance is computed as the log likelihood ratio

between the bonafide and spoofed GMM model as described in Equation 4.1.

We use the publicly available scripts and feature configuration from [Sahidullah

et al., 2015] for computing these features.

SVM. We train two SVMs using i-vectors (model I) and the long-term-average-

spectrum (LTAS) feature (model J) since they have shown good performance

on prior spoofing datasets [Sahidullah et al., 2015, Muckenhirn et al., 2017a].

Inspired by [Novoselov et al., 2016b], we fuse multiple i-vectors in our approach,

each based on complementary hand-engineered features, and manage to improve

performance over a single i-vector based SVM. We train four different i-vector

extractors using MFCC, IMFCC, CQCC and SCMC features. For each of them

we use a 60-dimensional SDA feature vector per frame. We train the T matrix

with 100 total factors on both tasks and a universal background model (UBM)

with 128 and 256 mixtures on the LA and PA tasks, respectively and extract 4

different 100-dimensional i-vectors for every utterance. We use 400-dimensional

fused i-vectors for the LA task and 300-dimensional fused i-vectors for the PA

task. We perform mean-variance normalisation on the fused i-vectors and LTAS

feature and train SVMs with a linear kernel and the default parameters of the

Scikit-Learn [Pedregosa et al., 2011] library. We train the UBM and T matrix

using the MSR-Identity toolkit [Sadjadi et al., 2013].

Ensemble

We investigate several ensemble models combining different sets of deep and

shallow models. We optimise this choice monitoring the performance on a subset

of the development data (dev es, details in the next section). We do not use

this subset during the training of fusion weights. The weights are learned using a

logistic regression implementation using the Bosaris [Brümmer and de Villiers,

2013] toolkit. Therefore, we only report the best ensemble setting we obtain

from many combinations investigated. To this end, we define three ensemble

140

models E1
2, E2, and E3 for both the LA and PA tasks.

The E1 ensemble focuses on adding as many individual models (deep and

shallow) as possible to include more diversity that may help improve perfor-

mance on the unseen test set. On the LA task, it combines models A, C through

G and I. On the PA tasks, E1 fuses all single models except D. For the LA task,

models B, H and J were not used in E1, while model D was discarded for the

PA task since including it deteriorated the ensemble performance on dev es.

E2 on the other hand combines only deep models aiming to understand how

models trained with different architectures, input representations and training

strategies affect performance and generalisation on the test set. On the LA tasks,

E2 combines models A, B and E. On the PA tasks, E2 combines all five deep

models A through E. Including models C and D deteriorated the performance

on dev es, so they were not included in LA.

The final ensemble E3 combines two deep models A and B. While both

models use the same architecture, they operate on different parts of the audio

input —the first and the last 4 seconds audio for A and B respectively. This

ensemble aims to understand how overall performance improves when the whole

input is re-combined through score fusion.

5.2.3 Dataset and proposed partitions

We used the ASVspoof 2019 LA and PA datasets for evaluation of our en-

semble models. Section 3.3 provides a description of these datasets. Here, we

describe our proposed dataset partitions that were used during our ASVspoof

2019 challenge participation. The training and development subsets have sim-

ilar spoofing algorithms/conditions in both the LA and PA datasets. We ar-

gue that using the same types of spoofing attacks during training and val-

idation might lead to overfitting and poor generalisation on unseen attack

conditions. Thus, we further partition the original training and development

datasets for both LA and PA, ensuring non-overlap in spoofing attack con-

ditions. Protocol files and details related to data partitions are available in

https://github.com/BhusanChettri/ASVspoof2019.

LA dataset partition. The spoofed utterances in the training and devel-

opment sets are generated using one of the four speech synthesis algorithms:

SS 1, SS 2, SS 4, US 1 and two voice conversion algorithms: VC 1 and VC 4.

The voice conversion algorithms are based on neural network (VC 1) and trans-

fer function based methods (VC 4) [Bonastre et al., 2006]. Speech synthesis

2The ensemble E1 was the primary system we submitted to the ASVspoof 2019 evaluations
for ranking.

141

https://github.com/BhusanChettri/ASVspoof2019

algorithms are based on waveform concatenation (US 1) [Morise et al., 2016],

neural network-based parametric speech synthesis using Wavenet (SS 1) [Oord

et al., 2016], neural network-based parametric speech synthesis using source-

filter vocoders (SS 2) [Morise et al., 2016], and publicly available toolkits such

as Merlin3, CURRENT4 and MaryTTS5 (SS 4).

We create the train tr6 subset from the original training set by discarding

all the spoofed utterances for the SS 1 and VC 1 spoofing conditions. However,

all the bonafide utterances of the training set are used in train tr . Therefore,

our proposed training partition train tr consists of 2580 bonafide and 15200

spoofed utterances.

We partition the original development set into two subsets: dev es and

dev lr . We use dev es for model validation, early stopping and parameter

tuning; and the dev lr partition is used to learn fusion weights through logistic

regression. In the dev es partition we use the two spoofed conditions SS 1 and

VC 1 that were not used in train tr . Among 20 speakers in the bonafide class

of the development set, we chose 12 speakers (8 female and 4 male speakers)

randomly for the bonafide class of this partition. Furthermore, only 10 speakers

out of these 20 speakers in the development set are seen in the spoofed class.

Therefore, we use 6 speakers (4 female and 2 male) out of 10 in the dev es

partition. Following this criterion, the dev es partition comprises 5160 spoofed

files corresponding to the two spoofing attack conditions and six speakers and

1820 bonafide files.

In the dev lr partition we keep all the six attack conditions of the devel-

opment set but ensure that speakers seen in the dev es partition are not used

here to avoid overfitting on speakers. Therefore, in the bonafide class of this

partition, we use those 8 speakers (4 male and 4 female) that we discarded in

the dev es partition. This gives us 728 bonafide files. As for the spoofed class,

we consider all 6 attack conditions but use only those 4 speakers that were

discarded in the spoofed class of the dev es partition. Therefore, the dev lr

partition comprises 728 bonafide and 6816 spoofed utterances.

PA dataset partition. Unlike LA, the attack conditions/configurations in PA

are defined in a different manner. Here, we combine the environment identifier

and attack identifier as replay attack conditions on which we define our dataset

partition. In other words, we represent the attack condition as a quintuplet:

S,R,D s,D a,Q where the first three represent the environment ID and the re-

3https://github.com/CSTR-Edinburgh/merlin
4https://github.com/nii-yamagishilab/project-CURRENNT-public
5http://mary.dfki.de
6The suffixes tr, es, and lr signifies our proposed partition used for model training, early

stopping (model validation) and learning ensemble model through logistic regression.

142

https://github.com/CSTR-Edinburgh/merlin
https://github.com/nii-yamagishilab/project-CURRENNT-public
http://mary.dfki.de

maining two the attack ID. Parameters S,R,D s represents room size in square

meters, reverberation and talker-to-ASV distance in centimeters. Parameters

D a and Q represent attacker-to-talker distance in centimeters and replay device

quality (low, medium and high quality). Following this, we get a total of 243

different attack settings. Both the training and development sets have these at-

tack settings. As in LA, we follow the same procedure and ensure that no attack

conditions or speakers are overlapping across training and model validation and

while learning fusion weights through logistic regression.

Therefore, in train tr we keep 170 attack conditions (chosen randomly) but

all the bonafide files from the training set. This gives 5400 bonafide files and

33700 spoofed files in this partition. For early stopping and model validation

the dev es partition uses 73 attack conditions different from the ones used

in train tr . This gives 4050 bonafide files and 5966 spoofed files in dev es

partition. As for the dev lr partition we use all the 243 attack conditions

but non overlapping speakers from dev es. This gives 1350 bonafide and 4860

spoofed files in the dev lr partition.

Please see [Todisco et al., 2019.] and the ASVspoof 2019 evaluation plan7

for further details on the acronyms and different attack conditions for the LA

and PA datasets discussed here.

5.2.4 Evaluation

This section describes the approach used in model training following the pro-

posed dataset partition in Subsection 5.2.3. A brief description of the metrics

considered for performance evaluation is provided. It then evaluates the effec-

tiveness of our proposed data protocols for training and model validation. Then

it describes the performance of all our single and ensemble models on both the

development and evaluation sets for both the LA and PA tasks.

Training and testing

We train our models (single and ensemble) described in Subsection 5.2.2 using

the train tr and dev lr sets respectively. We use dev es for model validation,

early stopping and hyper-parameter optimisation. We compare our models’

performance with the baseline LFCC (model B1) and CQCC (model B2) feature

based GMM models provided by the ASVspoof 2019 challenge organisers.

Performance metric

We use the EER and t-DCF metrics to evaluate model performance. Section 3.5

and Section 2.3 provide details on these metrics and the ASVspoof 2019 chal-

7https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf

143

https://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf

Table 5.1: Comparison of Model A (CNN) performance trained and validated
using the original protocol (*) and our proposed protocol.

Protocol Test set*
LA PA

t-DCF EER% t-DCF EER%

Proposed
Dev 0.0074 0.32 0.2795 10.77
Eval 0.1790 7.66 0.3091 12.16

Original
Dev 0.0 0.0 0.2693 10.94
Eval 0.3599 11.26 0.3161 12.36

lenge, respectively.

Effectiveness of the proposed data partition

To evaluate the effectiveness of our proposed protocol for training and model

validation, we train a deep countermeasure model using both our proposed and

the original protocols. For this, we take Model A which operates on spectrogram

inputs. We chose this model architecture as it takes the least computational

time (training and testing) among other deep architectures we considered in

this section. Furthermore, our objective here is to confirm and validate our

hypothesis towards using distinct spoofing attack conditions during training

and model validation for better generalisation.

Table 5.1 summarises the performance of the CNN on the original devel-

opment and evaluation sets. The results clearly indicate that avoiding the use

of same attack conditions during model training and validation indeed helps

improve model generalisation. On the LA tasks, this is more prevalent as we

can observe that the CNN trained on the original protocol overfits easily on

the development set showing poor generalisation on the evaluation set. As for

the PA tasks, we witness improved generalisation using our protocols, but the

gain is not as substantial as we saw in the case of LA. This also suggests the

difficulty of the replay spoofing detection task itself. Nonetheless, it should be

noted that our proposed protocol discards a lot of data points yet achieves im-

proved performance on the evaluation set in comparison to using the original

data protocols.

Development set results

Table 5.2 summarises the results on the original development set for both the

LA and PA tasks. In general, the results suggest that the PA task is harder

than the LA task. For the PA task, our CNN performs noticeably better when

operating on the last 4 seconds of audio (model B) instead of the first 4 seconds

(model A), suggesting the presence of discriminative cues at the end of each

audio signal which we confirm in Subsection 5.2.5. Furthermore, we observe

144

Table 5.2: Results on the LA and PA development sets. Bold: best performance,
na: not applicable. A and B uses the same CNN but are trained on the first
and the last 4 seconds spectrogram respectively. * as we do not use the same
set of models for LA and PA, we do not provide the detailed model combination
here. Please see Subsection 5.2.2 for ensemble model details.

Model
Model LA PA

ID t-DCF EER% t-DCF EER%
LFCC-GMM B1 0.0663 2.71 0.2554 11.96
CQCC-GMM B2 0.0123 0.43 0.1953 9.87

CNN A 0.0074 0.32 0.2795 10.77
CNN B 0.0040 0.27 0.1672 5.98

CRNN C 0.1706 5.65 0.1223 5.0
1D-CNN D 0.36 13.58 0.9269 36.28

Wave-U-Net E 0.0745 2.43 0.4725 21.16
MFCC-GMM F 0.1805 7.46 0.2354 10.88
IMFCC-GMM G 0.0438 1.73 0.2119 8.94
SCMC-GMM H na na 0.2787 12.46
i-vector SVM I 0.0045 0.16 0.2537 9.93
LTAS SVM J na na 0.3534 13.6

Deep and shallow* E1 0.0 0.0 0.0354 1.33
Only deep E2 0.0002 0.03 0.0523 1.85

A+B E3 0.0025 0.2 0.1316 4.85

a poor performance for models D and E. Apart from having to learn features

directly from the raw audio, another reason could be that they involve zero-

padding all signals or using a randomly selected audio segment for prediction,

respectively, and thus might not be able to exploit such cues at the end of audio

signals.

Our i-vector feature fusion approach (model I) shows impressive performance

on the LA task but relatively poor performance on the PA task. One reason for

this could be that the i-vectors extracted using hand-crafted features are not

able to capture characteristics of unseen replay attack conditions. On both the

LA and PA tasks, model G (IMFCC) outperforms model F (MFCC) showing

consistency on prior findings on the v1.0 and v2.0 of the ASVspoof 2017 datasets

(Subsection 4.2.2 and Subsection 4.4.3). This suggests that a focus on higher

frequency information is beneficial as it might not be perfectly generated by

the TTS and VC algorithms. Likewise, on the PA task, the playback device

properties may impact high-frequency content. Finally, the poor performance

of models H and J suggest that the SCMC and LTAS features are not suitable

for this task.

As expected, our ensemble model appears to benefit from combining different

models for both tasks, as indicated by the strong reduction in t-DCF and EER

compared to all individual models. On both tasks, E1 performs better than E2

145

Table 5.3: Results on the LA and PA evaluation sets.

Model
LA PA

t-DCF EER% t-DCF EER%
B1 0.2116 8.09 0.3017 13.54
B2 0.2366 9.57 0.2454 11.04
A 0.1790 7.66 0.3091 12.16
B 0.3841 19.11 0.1577 5.75
E1 0.0755 2.64 0.1492 6.11
E2 0.2136 9.57 0.2913 14.12
E3 0.2952 10.63 0.1465 5.43

which in turn performs better than E3.

Evaluation set results

Table 5.3 summarises the results on the evaluation set8. On the LA task, model

E1 has an EER of 2.64% and a t-DCF of 0.0755, outperforming the baselines

by a large margin and securing the third rank in the ASVspoof 2019 challenge.

The superior performance of E1 over E2 and E3 suggests that fusing multiple

models employing different features does provide complementary information

useful for spoofing detection.

However, on the PA tasks our single model B outperforms ensemble models

E1 (on the EER) and E2 (both metrics). Furthermore, our two model ensemble

E3 (A+B) outperforms the five deep model ensemble E2 and nine model en-

semble E1 reaching the lowest t-DCF of 0.1465 and an EER of 5.43%. While

these results suggest good model generalisation, they raise questions about the

relevance of the cues used by model B as it is only trained on the last 4 seconds

of each recording. Besides the poor performance of models D and E, the inferior

performance of ensemble models on the evaluation set compared to the develop-

ment set (Table 5.2) could be explained by model C making random predictions

on the evaluation data (due to a bug we found after the challenge submission),

but not on the development set – which is corroborated by the fact that model

C receives the second highest weight by logistic regression in both E1 and E2.

Furthermore, post-evaluation, having received the labels for the evaluation

set, we rescored all our individual systems and our primary ensemble system E1

using the corrected system C scores. Table 5.4 summarises the results. On the

LA subtask our updated system E1 do not seem to have a substantial impact,

however, on the PA subtasks we observe a significant impact.

8Computed by the ASVspoof 2019 challenge organisers.

146

Table 5.4: Results on the LA and PA evaluation set scored post-evaluation
after the evaluation set labels were released by the ASVspoof organiser. * the
corrupted system that was used during the challenge submission. Updated:
rescored after using the correct scores from system C.

Model
LA PA

t-DCF EER% t-DCF EER%
C* 0.9993 49.62 0.9999 50.31

C (updated) 0.2536 10.45 0.2003 7.25
D 0.3801 14.88 0.6087 24.79
E 0.1841 7.81 0.9838 42.91
F 0.2988 11.41 0.3151 12.82
G 0.2615 12.35 0.2560 10.66
H na na 0.3311 14.05
I 0.2912 11.16 0.2413 9.415
J na na 0.3768 15.25

E1 (submitted) 0.0755 2.64 0.1492 6.11
E1 (updated) 0.0878 3.24 0.0620 2.36

5.2.5 Interventions on the PA tasks

In Table 5.2 we find that for the PA task, the same CNN performs much better

when trained on the last 4 seconds of audio (model B) than on the first 4

seconds (model A). We thus analyse a set of audio recordings for the PA task

that were confidently classified by model B and find that spoofed audio tends to

have more silence (zero-valued samples) at the end than bonafide examples. In

comparison, silence at the beginning of the recordings is often shorter and does

not appear to follow this pattern. Therefore, we hypothesize that any model

(deep or shallow) trained on the PA dataset that does not specifically discard

this information could exploit the duration of silence as a discriminative cue.

This leads to countermeasure models that are easily manipulated, simply by

removing silence from the spoofed signals to make the model misclassify them

as a bonafide signal, and vice versa. To demonstrate this effect in practice, we

perform three interventions on model B and the adapted9 baselines M1 and M2

by manipulating the silence at the end of the audio signal.

Intervention I: During testing

In this intervention we train the models on the original recordings with silence

but remove silence during testing10. In Table 5.5, a strong increase can be

noticed in both EER and t-DCF for all models, suggesting that they indeed

rely on the silence parts for prediction. We find that model B is most sensitive

9We use 128 mixtures to train the LFCC (M1) and CQCC (M2) GMMs in contrast to 512
mixtures used in the baselines B1 and B2.

10We use a naive approach of counting the first consecutive zeros as silence and remove
them.

147

Table 5.5: Intervention results on the development set of the PA tasks. Numbers
to the left of the arrow indicate performance without any intervention.

Intervention Model t-DCF EER%

I
M1 0.2036→ 0.2741 9.18→ 13.27
M2 0.1971→ 0.2959 10.06→ 15.59
B 0.1672→ 0.5018 5.98→ 19.8

II
M1 0.2036→ 0.9528 9.18→ 54.76
M2 0.1971→ 0.9463 10.06→ 57.98
B 0.1672→ 0.2626 5.98→ 11.20

III
M1 0.2036→ 0.8614 9.18→ 41.09
M2 0.1971→ 0.9448 10.06→ 58.71
B 0.1672→ 0.3129 5.98→ 12.85

Table 5.6: Same as in Table 5.5 but for the evaluation set.

Intervention Model t-DCF EER%

I
M1 0.2483→ 0.3349 10.85→ 15.07
M2 0.2498→ 0.3698 11.07→ 16.55
B 0.1576→ 0.5263 5.75→ 19.75

II
M1 0.2483→ 0.9734 10.85→ 53.34
M2 0.2498→ 0.9923 11.07→ 56.84
B 0.1576→ 0.2926 5.75→ 11.7

III
M1 0.2483→ 0.8871 10.85→ 38.97
M2 0.2498→ 0.9928 11.07→ 59.12
B 0.1576→ 0.3472 5.75→ 13.98

to this intervention, with t-DCF and EER rising by 0.3346 and an absolute

13.82%, respectively. This could be due to deep models focusing more strongly

on silences than the GMM models, which are trained on individual spectral

frames and aggregate the score through averaging frame-wise likelihoods.

Intervention II: During training

Here, we train the model with silence parts removed, but test on the original

test recordings (with silence). The stable performance of the CNN (model B)

over the GMMs in Table 5.5 suggests that the former is more robust against

variations in silence duration. On the other hand, we find a dramatic increase in

the error rates for M1 and M2. One interpretation for this is that the bonafide

and spoof GMMs may assign a low likelihood to silence frames as they have not

seen them during training. Thus, silence frames do not make large contributions

to the final score making the task much harder.

Intervention III: During training and testing

In this intervention, we remove silence during training and testing to ensure

that the audio samples do not share an easily exploitable cue. This forces the

148

models to learn about the actually relevant factors of interest and thus provides

more realistic performance estimates (Table 5.5). As in intervention II, model

B shows a stable performance indicating good generalisation and discrimination

capabilities. Models M1 and M2 on the other hand achieve poor performance,

possibly since their bonafide GMM models assign a high likelihood to spoofed

frames as they are very similar to bonafide ones when only considering the

speech frames.

Finally, we repeat the above three intervention experiments on the evaluation

set. Table 5.6 summarises the results. Since spoofed files in the evaluation set

have similar issues of silence as in the development set, we observe similar trends

across the three different intervention experiments.

5.2.6 Discussion

This section proposed an ensemble modeling approach towards the logical ac-

cess (TTS and VC) and physical access (replay) spoofing detection problem on

the ASVspoof 2019 dataset (Section 5.2.2). Then Subsection 5.2.3 described

our proposed dataset partitions for training (train tr), validation (dev es)

and learning fusion weights (dev lr). This partition involves discarding a lot

of spoofed data points to ensure that there is no overlap in terms of spoofing

attack conditions and speakers between these sets. In Subsection 5.2.4 we eval-

uated and demonstrated (see Table 5.1) the effectiveness of our proposed data

partition by comparing the generalisation performance of our CNN model when

it is trained using the original and our proposed protocols. Following this, the

experimental results in Subsection 5.2.4 further showed that combining models

trained on different feature representations and using our proposed dataset par-

tition can be effective in detecting unseen spoofing attacks. We achieve good

performance on the PA task and 3rd ranking on the LA task of the ASVspoof

2019 challenge. The PA task seems generally more difficult and will be the

primary focus of future work. Our intervention experiments described in Sub-

section 5.2.5 suggest that many models trained on the PA dataset can become

somewhat of a “horse” [Sturm, 2014], where solving the actual problem is un-

intentionally avoided by exploiting silence as trivial cues. As the evaluation set

also contains such silences (see Table 5.6), the reported performance metrics in

this task currently overestimate the actual performance. In addition to remov-

ing silence from the end of recordings, we also removed it from the beginning,

but found lesser impact on the performance and therefore do not report those

results in this section. Overall, the work in this section demonstrated the ef-

fectiveness of choosing a good data partition to use during model training and

validation. Although this might mean losing a lot of data points, our experi-

149

mental results demonstrated that such approach can potentially improve model

robustness.

150

5.3 Overcoming the impact of dataset artefacts

5.3.1 Introduction

Artefacts and confounders in a dataset can bias decisions of a machine learning

model making them unreliable and untrustworthy. Such artefacts, if appearing

in a dataset, could be the result of methods used in data collection, compilation,

aggregation and partition [Rosset et al., 2010]. These issues can occur in any

data-driven machine learning task, and the impact caused by such biases in

domains such as medicine, finance and security is not affordable. Therefore,

it is important to provide some mechanism (eg., a pre-processing step) that

would help mitigate the impact of biases induced by such dataset artefacts in

machine learning decisions. A background on artefacts and their impact on

ML is provided in Subsection 2.9.1. As suggested in Section 2.9, the results

of a trustworthy ML model should be independent of the factors or cues in a

dataset that are not relevant to the problem. As summarised in Subsection

2.9.1, the learning algorithms can easily exploit artefacts and confounders (if

present) within the training data. Biases introduced by such confounding factors

often contribute towards solving the problem measured using some figure of

merit (EER, for example). Apparently, as explained in [Hernandez-Orallo, 2019,

Sturm, 2014] these ML models behave much like a “horse” in machine learning

since they provide excellent results using cues not relevant to the actual problem

[Sturm, 2016, Rodŕıguez-Algarra et al., 2019].

To this end, this thesis has identified “horses” in machine learning for anti-

spoofing research applied to both the ASVspoof 2017 and ASVspoof 2019 PA

benchmark datasets. Section 4.2 described how initial silence in some of the

bonafide recordings served as a potential cue on the version 1.0 of the ASVspoof

2017 dataset. As a result, an updated version 2.0 dataset was released fixing

these issues. However, as explained in Section 4.6 the potential cues/confounders

in this dataset were not completely removed. The experimental intervention ex-

periments confirmed the presence of artefacts and how they contributed in model

predictions. Furthermore, as described in Subsection 5.2.5, on the ASVspoof

2019 PA dataset, the duration of silence at the end of audio signal served as

a potential cue that models exploited for spoofing detection. A simple prepro-

cessing step that removed silence samples from the start and end was proposed

that helped mitigate the issue.

Motivated from these, the work described here builds upon Section 4.6 and

aims at proposing methods to build trustworthy CM models on the ASVspoof

2017 v2.0 dataset towards producing reliable performance estimates. The next

Subsection 5.3.2 explains our proposed method that uses speech endpoint detec-

151

tion to remove audio samples before and after the actual speech utterance. This

is applied during both training and testing. As the reliability of our proposed

method highly depends on the correctness of speech endpoints, we have manu-

ally prepared speech endpoint annotations for all the audio files in the training

and development sets of this dataset. Therefore, in this section we train our

CM models applying these annotations during training and validation, which

ensures that parameter updates and model selection are independent of arte-

facts that were found in the start and end of audio recordings as highlighted

in Subsection 3.2.3. During testing, we use endpoint detection derived using

automatic speech activity detection. We use automatic methods on the evalu-

ation set for two reasons. First, due to time constraints, manually annotating

the large amount of audio recordings (more than 13, 000 recordings) was not

possible. Second, even if we do not get accurate endpoint annotations on the

evaluation set, this would not have a substantial impact on performance as mod-

els have been trained and validated using the manual endpoint annotations. The

section also provides a description of both manual and automatic endpoint an-

notations. Then the next Subsection 5.3.3 evaluates our proposed methodology

using the same five different countermeasure models that were studied in Sec-

tion 4.6. In addition, a novel frame-level deep CM model is proposed based on

endpoint detection that demonstrates robust performance even in the presence

of recording artefacts at test time. New benchmark results are provided for all

of these CM models that could serve as new baselines. The effectiveness of our

proposed approach is further demonstrated by running the same intervention

experiment from Subsection 4.6.4 using the same “burst click sound” (BCS)

artefact. Finally, Subsection 5.3.4 provides a summary of the work done in this

section.

5.3.2 Proposed method

We now describe our proposed methodology to address the issues highlighted in

the ASVspoof 2017 v2.0 dataset (Subsection 3.2.3). To this end, we propose the

use of speech endpoint detection during training and inference to build reliable

and trustworthy CMs on this dataset. Fig. 5.1 illustrates our proposed idea.

The first three blocks are shared during training and testing. The endpoint

detection module removes raw samples before and after the actual speech utter-

ance. This ensures that both bonafide and spoof utterances now have similar

audio patterns and are free from recording artefacts we highlighted in Section

3.2.3. The cleaned speech signal is then passed on to the subsequent modules for

feature extraction, model training and inference. As before (Subsection 4.6.3)

the role of unify duration, an optional module remains the same. It truncates

152

Figure 5.1: Proposed CM design for trustworthy performance estimates.

or replicates audio samples to create a fixed-duration input representation, and

is applicable only for the CNNs. Finally, we also propose a frame-level deep

countermeasure model (DNN) with endpoint detection for robust performance.

In the following we briefly discuss the approach used for speech endpoint

detection. Then we evaluate the performance of our new models providing new

benchmark results. Finally we demonstrate the effectiveness of our proposed

method through BCS intervention experiments and compare its robustness with

the initial models (Subsection 4.6.2). Furthermore, from hereon we discard the

use of corrupted audio files identified in Subsection 3.2.3 during training and

testing.

Speech endpoint detection

We use two approaches for speech endpoint detection: manual and automatic.

The manual approach uses speech endpoint annotations that we collected dur-

ing the dataset inspection. Automatic speech endpoint detection is based on

rVAD [Tan et al., 2020], a robust voice activity detection algorithm.

Manual endpoint annotation. We manually inspected all the training and de-

velopment set audio files and bonafide audio files in the evaluation set of the

ASVspoof 2017 v2.0 dataset. We record the speech start and end points for them

during the inspection. All audio recordings were carefully listened to mark the

annotations, and the process was often repeated for the replayed recordings to

ensure correctness. We further validated these annotations and updated a few

erroneous annotations. We stress that due to time constraints and a large num-

ber of spoof files in the evaluation set we did not carry out a manual inspection

on them. These annotations were developed by the author himself using Audac-

153

CNN_1
CNN_2

Cosine SVM GMM
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
EE

R
%

Manual annotations
Automatic annotations

Figure 5.2: Performance (EER%) on the evaluation set (ASVspoof 2017 v2.0)
using models trained with manual and automatic speech endpoint annotations.

ity11. One of the key motivations for manual annotations is to ensure reliable

endpoints which may be challenging using automatic methods due to the nature

of the audio recordings in this dataset. We wanted to ensure that the annota-

tions for the training and development sets are as accurate as possible because

model parameters are trained and optimised on them.

Automatic speech endpoint detection. We also create speech endpoint annota-

tions using an automatic voice activity detection (VAD) algorithm. In particu-

lar, we use rVAD [Tan et al., 2020] – robust voice activity detector – that oper-

ates on raw audio samples. The main reason for choosing the rVAD algorithm

is that this approach has shown promising results in noisy conditions. More-

over, this algorithm focusses on robust voice activity detection in the presence

of burst-like noise sound that has high energy. In the first step, high-energy

segments are detected using the a posteriori SNR weighted energy difference

measure. Then, the method checks for pitched segments. If found, they are

regarded as speech else all samples are set to zero and the segment is labelled

as nonspeech [Tan et al., 2020]. As the ASVspoof 2017 dataset contains noisy

speech recordings and recordings with burst-click sounds, the use of this algo-

rithm suits our problem. Below we describe the steps we used to derive speech

endpoints using this algorithm.

11https://www.audacityteam.org/

154

1. Framing: using a 25 ms frame window and a frame shift of 10 ms, the

original audio signal is split into frames. Then, we run the rVAD algorithm

on these frames to obtain a sequence of binary labels (0’s and 1’s).

2. Mark the speech start and end points using the following steps:

• We use N consecutive frames of 1’s as speech onset detection thresh-

old, and mark its first frame as the speech start point.

• Similarly, the algorithm counts for the detection of N consecutive

frames of 0’s after the speech onset. If found, its first frame is marked

as endpoint.

• Derive the start and end times from the speech onset and offset frame

markers.

We tried different values for N, but we chose to use N = 10 that accounts for

100 ms samples as the onset speech detection threshold because this showed bet-

ter approximation when compared with ground truth annotations (using manual

endpoint annotations) on the training and development set. Finally, we validate

the accuracy of the automatic endpoint speech annotations by comparing them

with our manual annotations on the development set. Using a 200 ms collar,

the speech onset and endpoint accuracy is 97% and 85% respectively. Further,

with a 100 ms collar these accuracies were 68% and 56% respectively.

Finally, we also compare the performance estimate on the evaluation set

using CM models using both the manual and automatic annotations during

training and validation. Fig. 5.2 summarises this result. We find a comparable

performance using models trained using manual and automatic annotations.

This holds true across all five CM models, confirming the reliability of r-VAD

method for computing speech endpoint annotations in this dataset. Therefore,

we use manual speech endpoint annotations for training and validating models

ensuring the correctness of our approach. Following the reliable performance

of our models trained and tested using automatic speech endpoint annotations

(see Fig. 5.2) we use automatic speech endpoint detection during testing.

Frame-level deep countermeasure model

From our study so far, it is confirmed that deep CMs (CNNs) not only show

superior performance over other CMs, but are equally more sensitive to arte-

facts in this dataset. One reason for this accounts to the fixed-duration input

representation used by them. Duplicating audio contents to match the desired

duration also involves spreading artefacts in the audio signal (see Fig. 4.6). As

a result they become more sensitive to artefacts (see Tables 4.26, 4.27), and

hence they are less reliable and untrustworthy.

155

Motivated from this, we propose a frame-level deep CM model (DNN) that

is trained on the original audio contents without requiring to truncate or copy

audio samples as in CNNs. The use of context-frames — augmenting past

and future time frames to the current time frame — is often adopted in training

frame-level DNNs [Cai et al., 2017]. However, for direct comparison with GMMs

we do not use any context-frames in this work. This DNN treats the inputs as a

bag-of-frames much like the way GMMs are trained. Its architecture comprises

a series of fully connected layers and operates on a single input frame to predict

whether the frame corresponds to a bonafide or spoofed class. The details of

the DNN architecture is provided in Appendix A.

As for training, we use the same procedure that was used in training the

CNNs (Subsection 4.5.2) but with different input representation. The input to

the DNN is a spectrogram frame of shape 1× 257, where 1 corresponds to time

frame and 257 to the number of frequency bins computed using a 512 point

FFT with a 10 ms hop. During testing, for a given test utterance, we compute

the score for every frame and take their average as the final score.

For comparison and completeness of the study, we first train and evaluate

this DNN on the original dataset (without endpoint detection). Our DNN re-

ports an EER of 28.95% on the the evaluation set which is worse than CNN1

(10.7%) and CNN2 (13.4%, see Table 4.23) trained using fixed-input representa-

tions. Although CNNs trained with context information yield better detection

performance over frame-based DNNs, we demonstrate in the following subsec-

tion that DNNs are much more robust and trustworthy than CNNs.

5.3.3 Experimental setup and evaluation

This section describes different features, classifiers and performance metrics con-

sidered to evaluate CM models trained using speech endpoint detection. New

benchmark results for both frame-level and utterance-level CM models are de-

scribed. Finally, this section also demonstrates the robustness of the proposed

method across various CM models confirming the reliability of endpoint detec-

tion as a simple method to mitigate the issues found in the ASVspoof 2017 v2.0

dataset.

Features, classifier and performance metric

We use the same input features (CQCCs, i-vectors and power spectrograms)

and backend classifiers (GMMs, Cosine Distance, SVMs and two CNNs) from

Subsection 4.6.2 to evaluate our proposed method. We train these CM models

in a similar way as described in Subsection 4.6.2 but now we apply the endpoint

detection that discards everything before and after the actual speech utterance.

156

As for the performance evaluation of these CMs we use the EER metric as

described in Subsection 3.5.1.

Table 5.7: New benchmark results (EER %). (1) Condition 1: evaluate on
the original test dataset. (2) Condition 2: same as in (1) but uses automatic
endpoint detection.

Model Set Condition 1 Condition 2

CNN1
Dev 7.76 9.0
Eval 17.2 14.58

CNN2
Dev 8.6 9.49
Eval 15.16 14.77

Cosine
Dev 14.76 15.91
Eval 20.49 18.89

SVM
Dev 14.80 15.76
Eval 21.34 19.26

GMM
Dev 16.41 16.21
Eval 18.6 18.29

DNN
Dev 13.03 12.92
Eval 17.55 15.94

New benchmark results

We now train and validate all our CMs applying our manual endpoint anno-

tations. We evaluate their performance under two test conditions. Condition

1: we evaluate them on the original test data containing recording artefacts.

Condition 2: we evaluate them applying automatic endpoint detection during

testing. Table 5.7 summarises the results. As expected our new models now

show worse performance in comparison to initial models (see Table 4.23) trained

without endpoint detection. However it should be noted that our main focus

here is not on improving EERs. We aim towards building trustworthy CM

models providing reliable performance estimates, and making them secure from

being manipulated using artefacts/cues in the dataset.

Overall deep CM models show better performance on both the development

and evaluation sets compared to other CMs under both test conditions. This

demonstrates their superiority in learning discriminative features. We find that

all our CMs show better generalisation on the evaluation set using endpoint

speech detection (condition 2). Furthermore, the small performance difference

of these CMs between the two test conditions suggest that they are now less

sensitive to the dataset artefacts. These results demonstrate that CMs trained

on cleaned data (using endpoint detection) are more robust even in the presence

of noisy test data. We provide experimental evidence in the next section to prove

the robustness of our approach.

157

Model robustness

We now demonstrate the robustness of our newly trained CMs against BCS sig-

natures through an intervention experiment illustrated in Fig. 4.5. We perform

this intervention on all the test recordings in the development and evaluation

sets using the same 100 ms BCS signature from Section 4.6.4 with one major

difference. Here the intervention module performs two tasks. First it applies

an automatic speech endpoint detector to remove raw samples before and after

the actual speech utterance. Second it appends the BCS signature at the start

of the cleaned speech signal. The updated signal is then passed to the subse-

quent modules for feature extraction and scoring. We score them using both

our newly trained models and initial models. Finally we compare and contrast

their performance in terms of EER. Table 5.8 summarises the results. Numbers

shown to the left of the arrow are the results of our initial models from Table

4.23 and Table 5.7 (condition 2) is included for better readability. It should be

noted that we take all our pretrained initial models from Subsection 4.6.2 to

run this intervention.

Table 5.8: Model robustness experimental results. Numbers to the left and the
right of arrow indicate EER% before and after the intervention on test signals
using the BCS signature.

Set New model Initial model

CNN1
Dev 9.0→ 10.08 7.7→ 34.5
Eval 14.58→ 18.01 10.7→ 36.19

CNN2
Dev 9.49→ 7.85 7.37→ 8.25
Eval 14.77→ 20.96 13.4→ 22.6

Cosine
Dev 15.91→ 15.24 10.6→ 15.11
Eval 18.89→ 19.11 14.8→ 18.13

SVM
Dev 15.76→ 15.43 10.8→ 15.84
Eval 19.26→ 19.33 15.6→ 18.84

GMM
Dev 16.21→ 15.50 9.2→ 16.85
Eval 18.29→ 19.65 13.7→ 22.48

DNN
Dev 12.92→ 12.40 11.57→ 13.33
Eval 15.94→ 17.91 28.95→ 31.46

From the increased EERs of our initial model, it is evident that the effect

of this intervention on CMs trained on the original training data containing

BCS signatures is much higher in comparison to the new models. We observe

that our proposed frame-level DNN model shows the best results under this

intervention, demonstrating its robustness on this dataset. Furthermore, under

the initial training conditions (without endpoint detection) the error rate of

this DNN changes by about 2.5% (on the evaluation set), and is the smallest

absolute change among all other initial models (including CNNs). Overall our

158

proposed approach of training CMs using endpoint detection demonstrates ro-

bust performance over the initial models. This holds true for all our CM models

studied in this paper.

5.3.4 Discussion

Replay spoofing attack detection, a binary classification problem, in general is a

difficult task to solve. As explained in Subsection 2.9.1 confounders or artefacts

in a dataset can affect a wide range of machine learning tasks including anti-

spoofing systems (see Sections 4.2, 4.6 and Subsection 5.2.5). Such confounders

are often overlooked in research studies. We consider two reasons for this. First,

the figure of merit used in assessing performance (a scalar) does not account for

them and their influence in learning algorithms. Second, they often offer gains

in performance (see Subsection 2.9.1 for related background). Due to these

reasons we often do not care towards accountability of such ML models trained

on data containing artefacts. But, impressive performance reported by such

untrustworthy models can be costly as they may fail with high likelihood when

used in practical real-world scenarios. Therefore, ensuring reliable performance

estimates is important to truly assess the ability of proposed features/classifiers

for a given machine learning task.

In this direction, focussing on machine learning tasks for anti-spoofing using

the benchmark ASVspoof 2017 v2.0 dataset, this section proposed a method to

mitigate the impact of artefacts on this dataset, and build reliable and trust-

worthy models. For this, a speech endpoint detection module (Fig. 5.1) that

discards every audio sample before and after the actual speech utterance was

proposed. This ensures that both classes of audio now have a similar pattern,

forcing learning algorithms to focus on exploiting factors of interest — for ex-

ample channel characteristics, in solving the spoofing detection problem, thus

producing reliable performance estimates.

As the reliability of the proposed method depends heavily on the accuracy

of endpoint annotations, manual annotations were developed and used to train

and validate model parameters. During testing, a robust voice activity detection

algorithm was used (Subection 5.3.2) to derive endpoint annotations. The cor-

rectness of automatic annotations was further verified comparing performance

of CM models trained using both automatic and manual annotations (see Fig.

5.2). Next, the proposed method was evaluated on five different countermea-

sures. This includes CQCC feature based GMM and i-vector based Cosine that

were initially used in [Delgado et al., 2018] as baselines for the version 2.0 of this

dataset. New benchmark results are provided showcasing the true performance

estimates when these confounders are taken into account, making these models

159

more trustworthy. The section also demonstrated the robustness of the pro-

posed method against being manipulated using signal artefacts. For this, both

newly trained countermeasures and the ones trained without endpoint detection

were used to assess their robustness. The results confirmed that the proposed

method helped mitigate the impact substantially (Subection 5.3.3). Finally, the

section also proposed a DNN trained at the frame-level and demonstrated its

robustness against artefacts in the dataset. The work described here and part

of the work from Section 4.6 is under review in an IEEE journal.

160

5.4 Subband analysis for spoofing detection

In the previous Sections 4.5 and 5.3, we have seen how deep models are trained

on the fullband spectrum of the speech signal using time-frequency representa-

tions (spectrograms). While this is a commonly adopted approach in spoofing

detection research as evident from the literature in Section 2.8, we argue that

not all frequency bands are useful for these tasks. To this end, this section thor-

oughly investigates the impact of different subbands and their importance on

replay spoofing detection. A joint subband modelling framework that employs

n sub-networks to learn subband specific features is proposed. These networks

are later combined and passed to a classifier and the whole network weights

are updated during training. Subsection 5.4.2 provides a detailed explanation

of the proposed methodology. Then Subsection 5.4.3 provides details of three

different experimental designs. The first design focuses on subband CNNs and

a joint subband modelling framework. The second one aims at studying the

effect of late fusion of subband CNN models and comparing its performance

with the proposed joint model training framework. For this, two linear fusion

approaches are investigated: sum of scores and weighted sum of scores where

weights are learned through logistic regression. And the final experimental de-

sign aims at investigating the generalisability of the proposed subband modelling

approaches on the ASVspoof 2019 real PA testset (see Subsection 3.3.3). Then

Subsection 5.4.4 evaluates the proposed methods and provides a summary of

results for different experimental setups. Finally, Subsection 5.4.5 provides a

summary of the work done in this section. The proposed methodology is evalu-

ated on two benchmark datasets: ASVspoof 2017 v2.0 and ASVspoof 2019 PA

as described in Section 3.

5.4.1 Introduction

Here, we focus on feature extraction for audio spoofing attack detection.

There is a vast body of prior research on developing and enhancing different

low-level feature extractors (most relevant work is reviewed in Section 2.8), some

of them obtaining very low spoof-bonafide detection error rates (even 0%) on

specific datasets. Many of these techniques leverage domain knowledge, whether

speech science (speech production or perception), signal processing theory, or

both. A potential benefit of such rationale is transparency and interpretability.

At the same time, feature extractors crafted with the aid of domain knowledge

might be too simplistic. As illustrated in Fig. 5.3 (b), we aim at hitting a

suitable balance between hand-crafted and data-driven feature extraction: we

use spectrograms (a meaningful representation of audio), processed in dis-

joint subbands to divide-and-conquer high-dimensional spectrogram modeling

161

across several, frequency-localized models, each handling a lower-dimensional

feature space, each modeled with a convolutional neural network to learn

band-specific features. The subband-specific features are concatenated to form

feature vectors that are then classified with a feedforward neural network.

The general idea of processing a power spectrogram in subbands, as such, is

not new in the speech field. Mel-frequency cepstral coefficients (MFCCs) are ex-

tracted using a filterbank consisting of frequency-localized filters and subband-

based modeling of speaker traits dates at least two decades back [Besacier and

Bonastre, 2000]. In conventional, or fullband models, one trains a single model

(with a large number of parameters) using a descriptor of the fullband spectrum.

In subband based models, the rationale is to instead divide-and-conquer the task

across independently modeled subbands which are later recombined using fea-

ture or score fusion techniques. The potential benefits include the possibility to

side-step the ‘curse of dimensionality’ by using a set of models trained on lower-

dimensional inputs, robustness to frequency-selective noise, and the possibility

to analyse the importance (contribution) of each subband to the classification

results. One potential downside, however, is that the models cannot easily learn

or exploit informative correlations between the subbands. Below we summarise

the main contributions of this work.

• A systematic study on different subbands and their contribution in replay

spoofing detection using convolutional neural networks (CNNs) trained on

time-frequency input representations (spectrograms) of the input signal is

performed.

• A joint subband CNN modelling framework is proposed. It works by first

splitting the original spectrogram into n sub-spectrograms and training

n independent models. The pretrained weights are then used to initialise

the weights of the subband joint modelling framework illustrated in Figure

5.3 (b). Subsection 5.4.4 demonstrates the effectiveness of this method

offering substantial improvement over traditional fullband modelling.

• We investigate the effect of late fusion of subband CNN models and com-

pare its performance with our proposed joint model training framework.

To this end, we investigate simple linear sum fusion and logistic regression

based score fusion approaches.

• Finally, we study the generalisability of all our replay spoofing counter-

measures on the ASVspoof 2019 “real” PA test set. We perform this study

using models trained on both the ASVspoof 2017 and 2019 PA datasets.

162

(a) Baseline. Traditional CNN model trained on the fullband spectrum.

(b) Proposed framework. (i) The original spectrogram is split into n sub-spectrograms on
which n independent CNNs are trained. (ii) uses pretrained weights from (i) to initialise n
subband CNNs of the joint subband framework. The fully-connected layers output from n sub-
band models are concatenated and fed to a feed forward neural network for final classification.
The whole network weights are updated during training.

Figure 5.3: Proposed subband CNN modeling framework.

5.4.2 Proposed method

Convolutional neural network (CNN) based countermeasure models trained us-

ing spectrograms have shown state-of-the-art performance in spoofing detection

tasks in the ASVspoof 2017 challenge. They are usually trained using the full-

band spectrum of the input signal and use a fixed-duration input representation

[Lavrentyeva et al., 2017]. This conventional approach of building CNN-based

countermeasures is illustrated in Figure 5.3 (a). As the CNN is trained discrim-

inatively, it is forced to learn discriminative features using the entire frequency

spectrum of the input signal, using a single worker to extract usable information

across all the frequency subbands for spoofing attack detection.

But as the prior studies (Section 2.8) suggest, not all the subbands are nec-

essarily equally informative. From a modeling perspective, the raw spectrogram

163

patch (extracted by stacking multiple frames using all the frequency bands) is a

high-dimensional vector, with strong correlations between any neighboring time

(frame) or frequency (DFT bin) indices. As such low-level redundancy is com-

mon to both human and spoofed samples, it does not necessarily help in the

discrimination (classification) task itself; instead, the model will have to learn

both data compression (suppressing statistical redundancy to a useful interme-

diate representation) and classification tasks. This may also result in additional

computational time during convolution operations.

Therefore, rather than having a single CNN that merges information across

different frequency bands, we propose to incorporate a bank of n different

CNNs, each operating on non-overlapping n frequency subbands. Our proposed

methodology is illustrated in Figure 5.3 (b). Each of the subband CNNs now

has to model a much lower-dimensional subspace, producing a less redundant

and more relevant representation of its respective subband. Note that the sub-

band representations are afterwards re-combined through concatenation. This

new representation now contains again information across the full frequency

band, allowing any subsequent model to exploit possibly useful band-level cor-

relations. In our case, we use a simple feedforward neural network (FFNN) for

the final classification. Natural questions that arise now are how to perform the

frequency-domain split and how to choose n. We address three different forms

of splits, n = 2, n = 4 and n = 8, and go for the easiest choice of uniform

frequency division.

This choice is motivated from [Lin et al., 2018]. They divide the original

spectrogram into n uniform subbands with bandwidth 1 kHz corresponding to

n = 8 splits and 0.5 kHz bandwidth for n = 16 splits. They remove one subband

at a time and hand-craft features from the remaining subbands. GMMs are then

trained on these features for spoofing detection and the performance is evaluated

in terms of EER on the ASVspoof 2017 evaluation sets. As our dataset consists

of 16 kHz audio (Nyquist range 8 kHz), our three choices correspond to subbands

of bandwidths 4 kHz (n = 2), 2 kHz (n = 4) and 1 kHz (n = 8). It should be

noted that the default case n = 1 corresponds to the baseline CNN (Figure 5.3

a), i.e the model trained on the fullband spectrogram. From hereon we use

“CNN” to refer to the baseline CNN. And, we use “sub-CNN” to refer to models

trained on the subband spectrograms.

We operate on power spectrograms instead of other alternative time-frequency

representations, following findings in [Lavrentyeva et al., 2017]. All our sub-

CNNs use the architecture described in Subsection 4.5.2, which is an adapted

version of the best performing model [Lavrentyeva et al., 2017] in the ASVspoof

2017 challenge. It consists of 9 convolutional layers, 5 max-pooling layers and 2

fully connected (FC) layers; refer to Subsection 4.5.2 for further details. The key

164

difference while training such sub-CNNs is in terms of the input they receive.

The bandwidth of the input sub-spectrogram varies depending upon different

values of n (number of splits). Subsection 5.4.4 provides more details regarding

input representations, training and testing of these models.

The proposed joint sub-CNN model of Figure 5.3 (b) second row uses the

same architecture as in sub-CNNs (first row of the same figure) with the fol-

lowing updates: (1) there is no output layer now, and (2) a concatenation layer

is added that merges the FC layer’s output from n sub-CNN models producing

a 32 × n dimensional vector. It should be noted that the choice of 32 units in

the FC layer comes from the baseline CNN of Figure 5.3 (a). Furthermore, this

architecture with 32 FC units has shown promising results as described in Sec-

tion 4.6. Next, the concatenated vector is fed to a feedforward neural network

for class discrimination. The FFNN consists of two fully-connected layers with

256 and 128 units. This is followed by a single unit output layer with sigmoid

non linearity for class discrimination. We apply batch normalisation before ap-

plying ReLU non-linearity to these layers. The architecture of the FFNN is

optimised through model validation (on the development set). Training and

optimisation of our proposed framework is done in two steps:

• First, the input spectrogram is split into n non-overlapping sub-spectrograms

and n sub-CNNs are trained independently on them. The training dataset

is used for model training and the development dataset is used for model

validation. This step is depicted in the top row of Figure 5.3(b).

• Second, the pretrained sub-CNNs (excluding the last layer) are used to

initialise the weights of the sub-CNN modules of our joint sub-CNN frame-

work shown in the bottom row of Figure 5.3 (b). The weights of the

FFNN layers are initialised randomly using xavier initialisation [Glorot

and Bengio, 2010]. The biases are initialised to zero. Given an input

spectrogram, the framework first splits it into n non-overlapping sub-

spectrograms which are processed by n sub-CNNs and the whole network

parameters are jointly updated during backpropagation. This step can be

interpreted as fine-tuning of the subband CNNs and the classifier back-end

jointly for best performance. As in the earlier step, model parameters are

trained on the training dataset and the development set is used for model

validation.

Our proposed work is different from prior works [Sriskandaraja et al., 2016,

Witkowski et al., 2017, Garg et al., 2019, Nagarsheth et al., 2017, Lin et al.,

2018] because most of them aim at hand-crafting or learning features [Soni

et al., 2016] based on the relevance of specific subbands for spoofing detection.

165

To the best of our knowledge, there is no work in spoofing detection aiming to

learn band-specific features by discriminatively training CNNs on a spectrogram

input.

5.4.3 Experimental design

This section describes three different experimental designs. The first experi-

ment discusses various subband and joint subband modelling designs considered

in this work. The second experiment describes various fusion setups studied.

The third experiment aims at cross-database performance evaluation of subband

models on an unseen test set. Finally, a brief summary of baseline experiments

is also provided.

Experiment 1: subband modeling. We design four experimental setups

for different values of n using our proposed methodology. We use n = 2 in our

first setup. Using the architecture and training methodology described earlier we

train two independent sub-CNNs M1 and M2. M1 operates on the first 4 kHz and

M2 on the last 4 kHz subband spectrograms. Next, we use them (except the last

output layer) to initialise the respective sub-CNN module weights of our joint

sub-CNN model framework as shown in the bottom row of Figure 5.3(b). We

call this joint model as J1. Our second setup uses n = 4. Therefore, we train four

independent sub-CNNs M3 through M6 on 2 kHz subband spectrograms. We

then use these pretrained models to initialise the weights of sub-CNN modules

of our joint model framework J2. Our final setup uses n = 8. We now train

eight independent sub-CNNs M7 through M14 operating on 1 kHz subband

spectrograms. We then use them (except the last layer weights) to initialise our

joint model framework J3 shown in Figure 5.3(b) bottom row.

Finally, motivated from the results of sub-CNNs M7 and M14 on the ASVspoof

2017 dataset (shown in Table 5.13) we design a joint framework model J4 op-

erating on the first and the last 1 kHz subband spectrograms. This setup is

different from the previous setups as more than half of the information is being

discarded here. Overall J4 utilises only 2 kHz of information (first and the last 1

kHz) bands. As in the earlier setups, the pretrained weights (here M7 and M14

models) are used to initialise the weights of sub-CNN modules of our joint model

framework J4. It should be noted that the entire model parameters are jointly

optimised while training J1, J2, J3 and J4. We perform these experiments on

both the ASVspoof 2017 v2.0 and 2019 PA datasets.

Experiment 2: score fusion. We perform fusion experiments to understand if

combining information through score-level fusion helps improve detection per-

166

Table 5.9: Fusion system details.

Fusion model ID Fusion type Models combined (scores)
F1 Linear sum M1, M2

F2 Weighted linear sum M1, M2

F3 Linear sum M3 - M6

F4 Weighted linear sum M3 - M6

F5 Linear sum M7 - M14

F6 Weighted linear sum M7 - M14

formance. In this setting we use the scores from each of the pretrained sub-

CNNs and combine their scores using two simple approaches: linear sum of

scores (LS), and linear weighted sum of scores (WLS). Let S1, S2, S3, ..., Sn rep-

resent scores from n sub-CNNs for a test utterance X. The fused score using

the two approaches is obtained as: linear sum = S1 + S2 + S3 + .. + Sn and

weighted sum = w1 ∗S1 +w2 ∗S2 +w3 ∗S3 + ..+wn ∗Sn where w1, w2, w3, ..., wn

are weights corresponding to each sub-CNN score learned using logistic regres-

sion (LR). We use the Bosaris toolkit [Brümmer and de Villiers, 2013] for the

LR implementation. We perform six different fusion experiments: F1 - F6. Ta-

ble 5.9 summarises the details of the fusion systems.

Experiment 3: cross-database evaluation. The final experimental setup

evaluates the performance of our proposed models on an unseen real replay test

dataset. In other words, the main goal here is to study the generalisability of

our models: M1 through M14 and joint models J1, J2, J3 and J4 in a cross-

database evaluation setting. We use all our pretrained models trained on the

ASVspoof 2017 and ASVspoof 2019 PA dataset and evaluate their performance

on the ASVspoof 2019 real PA test set.

Baseline. To assess the performance of our proposed framework, we train

a baseline CNN model on the fullband spectrogram. The model framework

is the same as in Figure 5.3(a) except that the number of splits is n = 1.

For completeness, we also train and test a CQCC-based GMM model so as to

compare it with our proposed framework. It should be noted that due to the

preprocessing (described in the next section) applied on the ASVspoof 2017 and

2019 PA datasets during training and testing, our baselines are different from

the ones reported in [Delgado et al., 2018, Todisco et al., 2019.]; therefore, the

numbers reported using our GMM baselines should not be directly compared

with the results of ASVspoof challenges. We train GMMs using the training

dataset and parameterisation from Delgado et al. [2018].

167

5.4.4 Evaluation

Datasets

We use two publicly available spoofing datasets: ASVspoof 2017 v2.0 and

ASVspoof 2019 physical access (PA) for model training and testing. In ad-

dition, we also include results on the recently released ASVspoof2019 real PA

dataset12 for the challenging case of cross-database performance evaluation. All

the datasets are representative of replay attacks and are complementary to each

other. Section 3 provides more details on these datasets. Following our prior

findings (Subsection 5.2.5) we adopt a custom, but publicly available protocol13

described in Subsection 5.2.3 for training models on the ASVspoof 2019 dataset.

Input representation and preprocessing

The input to the network is a mean-variance normalised log power spectrogram

of 3 seconds. This normalisation, motivated from [Lavrentyeva et al., 2017],

is performed at the utterance-level to standardize the features (zero mean and

unit variance for all frequency bins) within a given recording. We use a 512-

point fast Fourier transform (FFT), and a 32 ms window with a hop of 10 ms.

Therefore, the original input spectrogram has a shape of 300×257, where 300 is

the number of frames and 257 the number of FFT bins. To obtain a consistent

input representation we replicate the audio samples (in the time domain) if the

duration is smaller, or truncate the samples to 3 seconds duration. When n = 1,

the input shape to the baseline CNN remains the same (300× 257) however it

varies for sub-CNNs depending upon different splits we use. For example, when

n = 2, the input shape becomes 300 × 128 and 300 × 129. We always include

the leftover bin to the last split. Similarly, when n = 4 we have four sub-

spectrograms where the first three will have a shape of 300× 64, and a shape of

300× 65 for the last split. Likewise, for n = 8 we have seven sub-spectrograms

of shape 300× 32, and a shape of 300× 33 for the last split.

Following our prior findings (Subsection 5.2.5) on the ASVspoof 2019 PA

dataset, we remove zero-valued samples from the start and end of every audio

recording in the dataset. Likewise, on the ASVspoof 2017 v2.0 dataset, we

remove leading and trailing silence/nonspeech samples following our findings

described in Subsection 4.6.3. For this, we use our publicly released speech

endpoint annotations described in Subsection 5.3.2. Applying such preprocess-

ing helps the model avoid exploiting cues that are actually not relevant to the

problem, rather this forces the models to now learn relevant factors in replay

spoofing detection.

12https://www.asvspoof.org/database
13https://github.com/BhusanChettri/ASVspoof2019

168

https://www.asvspoof.org/database

Table 5.10: Performance of the baselines on the ASVspoof 2017 and 2019 eval-
uation sets. Models are trained and validated on the respective datasets.

Baseline
subbands ASVspoof 2017 ASVspoof 2019

(kHz) t-DCF EER% t-DCF EER%
CNN 0-8 0.3873 13.02 0.2019 7.00
GMM 0-8 0.5054 18.33 0.9928 59.12

Training, testing and evaluation

We train the network to optimise the binary cross entropy loss between a

bonafide and a spoof class. We use a batch size of 32 and learning rate of

1e−4. We use the ADAM [Kingma and Ba, 2014] optimiser with default param-

eters. We apply a dropout of 50% to the input of the fully connected layers. If

the validation loss does not improve for 5 epochs we stop the training process to

avoid overfitting. We train models for a maximum of 100 training epochs. Us-

ing this approach we train 5 models with random initialisation. We choose the

model showing the best performance on the development data and use it to test

performance on the evaluation data. At test time, for each audio spectrogram

we use the model output — the bonafide-class posterior probability — as our

detection score. The approach described above is the same for all our models.

We use the EER and t-DCF metrics (described in Section 3.5) to evaluate model

performance.

Results

We first look at the performance of our baseline models. Table 5.10 summarises

this. On the ASVspoof 2017 evaluation set, the GMM model reaches an EER of

18.33% and a t-DCF of 0.5054. As highlighted earlier due to the preprocessing

applied during training and testing on this dataset, the EER is worse than the

original EER of 13.74% reported by Delgado et al. [2018]. On the ASVspoof 2019

PA14 evaluation set, EER = 59.12% and t-DCF = 0.9928. The results suggest

that GMM models become less confident in making classification decisions when

silence cues are removed during training and testing. On both datasets, the

CNN baseline outperforms the GMM on both metrics. This demonstrates its

effectiveness at learning relevant features useful for discrimination despite the

preprocessing applied to the audio signals in contrast to hand-crafted CQCC

features used in the GMM.

Now we discuss the performance of our individual sub-CNNs M1, M2 and

the joint model J1. Table 5.11 summarises the results. On the ASVspoof 2017

14We used the pretrained GMM model from section 5.2.2 to test on the evaluation set with
preprocessing of silence. Without preprocessing, the same GMM reports an EER of 10.06%
and a t-DCF of 0.1971 on the evaluation set.

169

Table 5.11: Performance of sub-CNNs M1, M2 and joint model J1. Bold indi-
cates the best performance.

Model
subbands ASVspoof 2017 ASVspoof 2019

(kHz) t-DCF EER% t-DCF EER%
M1 0-4 0.7045 33.03 0.1925 6.97
M2 4-8 0.4800 18.95 0.5201 19.69
J1 - 0.2893 10.63 0.1864 6.44

Table 5.12: Performance of sub-CNNs M3 through M6 and joint model J2. Bold
indicates the best performance.

Model
subbands ASVspoof 2017 ASVspoof 2019

(kHz) t-DCF EER% t-DCF EER%
M3 0-2 0.6172 31.20 0.2265 7.97
M4 2-4 0.9773 41.58 0.4568 17.72
M5 4-6 0.9995 50.70 0.5903 23.16
M6 6-8 0.5032 23.50 0.6019 23.59
J2 - 0.3343 11.78 0.1977 6.99

dataset, the higher frequency bands (4 − 8 kHz) seem to carry more discrim-

inative information than the lower bands (0 − 4 kHz). However, we observe

the opposite pattern on the ASVspoof 2019 dataset where M1 trained on 0− 4

kHz shows better results than M2. This might be due to differences in dataset

design (real vs. simulated replay) and compilation (different speakers and audio

qualities of the source corpora). Nonetheless, on both the datasets our proposed

joint modelling framework J1 outperforms M1, M2 and the baselines by a large

margin on both performance metrics. This demonstrates the effectiveness of our

proposed approach for spoofing attack detection.

Next we discuss the performance of sub-CNNs M3 through M6 and the joint

model J2. Table 5.12 summarises this. Overall, the individual sub-CNNs now

show poor performance, which is expected as each of them now receives only

half of the information as the previous case (n = 2). Nonetheless, the proposed

model J2 that merges information from all the bands again outperforms the

fullband baselines (CNN and GMM) and sub-CNNs M3 through M6.

Table 5.13 summarises the performance of our individual sub-CNNs M7

through M14 and joint models J3 and J4. These results provide deeper insights

in understanding the influence of different subbands for spoofing detection. As

in the previous two setups (n = 2 and n = 4), our joint model J3 shows better

results than training individual sub-CNNs indicating that joint training offers

some form of complementary information across different frequency bands. We

also find that on the ASVspoof 2017 dataset, M14 trained on the last 7− 8 kHz

band outperforms all other sub-CNNs by a large margin. This is followed by

170

Table 5.13: Performance of sub-CNNs M7 through M14 and joint models J3 and
J4. Bold indicates the best performance.

Model
subbands ASVspoof 2017 ASVspoof 2019

(kHz) t-DCF EER% t-DCF EER%
M7 0-1 0.6216 31.59 0.2354 8.48
M8 1-2 0.9977 48.92 0.6557 25.15
M9 2-3 0.9971 50.61 0.7327 28.60
M10 3-4 0.9969 49.85 0.5390 21.60
M11 4-5 0.9992 44.06 0.6605 25.69
M12 5-6 0.9914 45.05 0.7118 28.34
M13 6-7 0.9817 42.23 0.7123 28.17
M14 7-8 0.4747 18.10 0.7231 28.01
J3 - 0.2734 11.02 0.1975 7.34
J4 - 0.2771 10.40 0.2238 8.30

Table 5.14: Score-level fusion results. LS: linear sum of scores. WLS: weighted
sum of scores.

Model
Fusion ASVspoof 2017 ASVspoof 2019
(type) t-DCF EER% t-DCF EER%

F1 LS 0.3208 11.86 0.2208 7.50
F2 WLS 0.3189 11.72 0.2034 6.78
F3 LS 0.6151 24.25 0.2197 8.00
F4 WLS 0.3079 11.55 0.1898 6.95
F5 LS 0.4932 18.25 0.2626 9.78
F6 WLS 0.3548 12.33 0.1848 6.99

M7 (operating on the 0 − 1 kHz band) that also performs substantially better

than the remaining sub-CNNs. Inspired by this finding, we further train another

joint model J4 trained only with the lowest and highest sub-CNNs. Interest-

ingly, this highly reduced model yields the best performance on the ASVspoof

2017 dataset, matching with the findings reported on the version 1.0 dataset

by Lin et al. [2018]. However, on the ASVspoof 2019 dataset, the first 1 kHz

subband appears to carry most relevant information as opposed to other sub-

bands. Furthermore, the results found for the ASVspoof 2017 and 2019 dataset

do not match completely with the main differences being in dataset design and

collection — the two datasets ASVspoof 2017 and 2019 PA are designed and

collected differently.

Next we discuss the performance of our fusion models. Table 5.14 shows

these results. In general, WLS fusion shows better performance than LS fu-

sion, outperforming the two baselines (Table 5.10). However they show poor

(or similar) performance compared to our joint subband modeling framework.

For example, on the ASVspoof 2017 evaluation set the joint model J4 (Table

5.13) shows better results in comparison to all our fusion models. Similarly, on

171

Table 5.15: Cross dataset performance evaluation on the unseen ASVspoof 2019
real PA testset. D1: ASVspoof 2017 v2.0, D2: ASVspoof 2019 PA. Highlighted
in bold indicates the best performing subband models.

Model
subbands Trained on D1 Trained on D2

(kHz) t-DCF EER% t-DCF EER%
CNN 0-8 0.9986 41.29 0.6374 34.25
M1 0-4 0.8205 44.81 0.6800 33.12
M2 4-8 0.9687 42.59 0.7820 39.44
J1 - 0.9939 44.07 0.6741 35.92
M3 0-2 0.8984 38.33 0.6760 33.49
M4 2-4 0.8025 46.08 0.7311 34.62
M5 4-6 0.9995 59.44 0.8033 35.74
M6 6-8 0.9976 51.85 0.6877 28.37
J2 - 0.9944 40.55 0.6544 30.18
M7 0-1 0.8508 34.81 0.6678 34.95
M8 1-2 0.9875 47.63 1.0 51.29
M9 2-3 0.9545 51.48 0.8014 32.22
M10 3-4 0.9634 42.22 0.8553 35.41
M11 4-5 0.9003 43.33 0.7524 32.80
M12 5-6 0.9788 47.03 0.8322 38.65
M13 6-7 0.9828 48.49 0.7038 28.70
M14 7-8 0.9981 42.38 0.6483 27.22
J3 - 0.9208 37.61 0.6439 30.97
J4 - 0.9081 36.62 0.7541 36.71

the ASVspoof 2019 PA evaluation set the joint model J1 (Table 5.11) shows

better EER (and slightly worse t-DCF). As expected, combining information

through score-fusion techniques offers gain in detection performance. However,

our proposed joint subband modelling framework shows better results over score-

fusion approaches. This further confirms that the complementary information

provided by individual sub-CNNs helps improve overall detection performance.

Table 5.15 summarises the results of cross-database evaluation. Our models

trained on the ASVspoof 2017 v2.0 and ASVspoof 2019 PA datasets show poor

performance on the ASVspoof 2019 real PA test set. Though they show good

performance on the respective evaluation sets (see Tables 5.11, 5.12, 5.13), they

do not generalise well to unseen replay attack conditions. On both the t-DCF

and EER metrics, we observe high error rates for our joint models J1, J2, J3 and

J4. Furthermore, most of our individual sub-CNN models M1 through M14 show

poor generalisation. This indicates overfitting on the respective datasets and

lack of generalisability in unseen attack conditions. One possible interpretation

to this observation may be attributed to dataset design and collection for the

ASVspoof 2017 and 2019 PA datasets. It is worth noting that the ASVspoof

2019 PA dataset is developed through controlled simulation while the ASVspoof

172

Table 5.16: Summary of results showing the comparison of baselines with our
proposed models. * results taken from Table 5.10.

Model
ASVspoof 2017 ASVspoof 2019
t-DCF EER% t-DCF EER%

GMM* 0.5054 18.33 0.9928 59.12
CNN* 0.3873 13.02 0.2019 7.0

J1 0.2893 10.63 0.1864 6.44
J2 0.3343 11.78 0.1977 6.99
J3 0.2734 11.02 0.1975 7.34
J4 0.2771 10.40 0.2238 8.30

2017 dataset is collected in real world recording and replay conditions. Due to

the dataset issues identified on both the ASVspoof 2017 and 2019 PA datasets,

the models trained on these datasets might not be able to capture real replay

attack conditions and thus perform poorly on the real PA test set which has been

designed carefully reflecting real replay attack conditions. This study further

suggests that there is still need for a reliable replay training dataset that can

be used to train models incorporating real world replay attack conditions.

5.4.5 Discussion

This section presented a detailed analysis on the impact of different subbands

and their importance on replay spoofing detection tasks on the benchmark

datasets ASVspoof 2017 v2.0 and ASVspoof 2019 PA. Our proposed subband

CNN model outperformed the traditional fullband CNN model, and also the

CQCC-GMM baselines by a large margin, demonstrating the significance of

our approach. We also investigated how combining information at the score

level from each subband CNNs compared with our joint subband modelling

framework. The final set of studies we performed here is on cross-database

evaluation to investigate the generalisability of replay spoofing countermeasures

on the ASVspoof 2019 real PA dataset. Table 5.16 provides a summary of our

main findings on both the ASVspoof 2017 and 2019 PA datasets. Performance

improvements obtained using our proposed approach over baselines are very

promising, encouraging further research on subband modelling for spoofing de-

tection. Furthermore, it should be noted that our main objective in this section

is not to beat the best performing models published on the two datasets, but

to validate our hypothesis about subband modelling using CNNs trained on

spectrogram inputs.

Our findings on the ASVspoof 2017 dataset suggest that the most discrimi-

native information appears to be in the first and the last 1 kHz frequency bands,

and the joint model trained on these two subbands shows the best performance

173

outperforming the baselines by a large margin. However, these findings do not

generalise on the ASVspoof 2019 PA dataset. Likewise, we find similar ob-

servations when we tested our models on the ASVspoof 2019 real replay test

recordings. Furthermore, the poor cross-database experimental results suggest

that we still have some gaps to fill towards building datasets to study replay

spoofing detection for real world conditions.

174

5.5 Deep VAEs for spoofing detection

So far, this thesis has investigated various machine learning and deep learning

approaches for spoofing attack detection in the form of discriminative mod-

els. While Chapter 4 has mainly focussed on the analysis of existing methods,

this chapter focusses on novel approaches for spoofing detection. Deep models,

usually CNNs, have been widely used for discriminative feature learning and

generative models (GMMs) have been trained on them for class discrimination

showing promising results [Lavrentyeva et al., 2017, Sriskandaraja et al., 2018].

Motivated from the widespread use of GMMs, a generative model, for audio

spoofing detection, this section explores the potential of VAEs, a deep genera-

tive model for spoofing detection. An introduction and the motivation of this

work is first provided in Subsection 5.5.1. Detailed background on GMMs and

VAEs is provided in Subsections 2.7.3 and 2.7.1 respectively. Additional details

relating GMMs and VAEs as latent variable models are provided in Subsection

2.7.3.

Then Subsection 5.5.2 describes our proposed methods of using VAEs under

two settings. First, we explore the potential of VAEs as a backend classifier.

For this, three different approaches to condition VAE training are investigated.

The second setting is on using the VAE as a feature extractor. For this, the

VAE residual, which is the absolute difference of the original input and the

reconstruction, is proposed as a new feature for spoofing detection. The next

Subsection 5.5.3 provides a description of datasets used, features and input rep-

resentations considered, model architectures, training and testing approaches,

and evaluation metrics. Then Subsection 5.5.4 evaluates our proposed meth-

ods and provides a summary of different experimental results. It first evaluates

the impact of latent space dimensionality on the VAE performance. Then, a

performance comparison of different VAE setups with the baseline GMMs is

provided. Next, this section evaluates the performance of VAEs trained with

multi-class conditioning and compares them with VAEs trained using binary-

class conditioning. Then, a qualitative analysis through t-SNE visualisations is

provided to gain insights on the latent space learned by the VAE. Next, this

section evaluates the performance of our proposed VAE residual features. Fi-

nally, Subsection 5.5.5 provides a summary of the work done in this section.

The work reported here was published in [Chettri et al., 2020].

5.5.1 Introduction

In classic automatic speech recognition (ASR) systems and many other speech

applications, prior knowledge of speech acoustics and speech perception has

guided the design of some successful feature extraction techniques, mel frequency

175

cepstral coefficients (MFCCs) [Davis and Mermelstein, 1980] being a representa-

tive example. Similar a priori characterization of acoustic cues that are relevant

for spoofing attack detection, however, is challenging; this is because many at-

tacks are unseen, and since the human auditory system has its limits — it is not

designed to detect spoofed speech and may therefore be a poor guide in feature

crafting. This motivates the study of data-driven approaches that learn auto-

matically relevant representations for spoofing detection. Both discriminative

models (such as support vector machines (SVMs), deep neural networks (DNNs)

[Nagarsheth et al., 2017, Zhang et al., 2017]) and generative models (such as

GMMs) [Patel and Patil, 2015, Lavrentyeva et al., 2017], have extensively been

used as backends for spoofing detection. The former directly optimise the class

decision boundary while the latter model the data generation process within

each of the classes, with the decision boundary being implied indirectly. Both

approaches can be used for classification but only the generative approach can

be used to sample new data points. We focus on generative modeling as it al-

lows us to interpret the generated samples to gain insights about our modeling

problem, or to “debug” the deep learning models and illustrate what the model

has learned from the data to make decisions. Further, they can be used for

data augmentation which is challenging using purely discriminative approaches.

Subsections 2.7.3 and 2.7.1 provide necessary background on GMMs and VAEs

respectively. Furthermore, Subsection 2.7.3 provides additional details relating

them as latent variable models.

GMMs have empirically been demonstrated to be competitive in both the

ASVspoof 2015 and ASVspoof 2017 challenges [Patel and Patil, 2015, Lavren-

tyeva et al., 2017]. While Patel and Patil [2015] used hand-crafted features

for synthetic speech detection, Lavrentyeva et al. [2017] used deep features to

train GMM backends. A known problem with GMMs, however, is that the

use of high-dimensional (short-term) features often leads to numerical problems

due to singular covariance matrices. Even if off-the-shelf dimensionality reduc-

tion methods such as principal component analysis (PCA) [Jolliffe and Cadima,

2016] or linear discriminant analysis (LDA) [Tharwat et al., 2017] prior to GMM

modeling may help, they are not jointly optimised with the GMM. Is there an

alternative way to learn a generative model that can handle high-dimensional

inputs natively? Three generative models that have been demonstrated to pro-

duce excellent results in different applications include generative adversarial

networks (GANs) [Goodfellow et al., 2014], variational autoencoders (VAEs)

[Kingma and Welling, 2013] and autoregressive models (for example, WaveNet

[Oord et al., 2016]). Both GANs and VAEs have demonstrated promising results

in computer vision [Pu et al., 2016, Gulrajani et al., 2016, Walker et al., 2016],

video generation [Tulyakov et al., 2017] and natural language processing tasks

176

[Subramanian et al., 2017]. VAEs have recently been studied for modeling and

generation of speech signals [Blaauw and Bonada, 2016, Hsu et al., 2017b,a],

and synthesizing music sounds in [Esling et al., 2018]. They have also been used

for speech enhancement [Leglaive et al., 2019, Kameoka et al., 2018b] and fea-

ture learning for ASR [Tan and Sim, 2016, Feng and Lee, 2019]. Recent studies

in ASV have studied the use of VAEs in data augmentation [Wu et al., 2019],

regularisation [Zhang et al., 2019b] and domain adaptation [Tu et al., 2019] for

deep speaker embeddings (x-vectors). In TTS, VAEs have been recently used

to learn speaking style in an end-to-end setting [Zhang et al., 2019a]. Recent

work in [Yang et al., 2019b] uses VAEs for extracting low-dimensional features

and trains a separate classifier on these features for spoofing detection.

However, to the best of the author’s knowledge, the application of VAEs as

a backend classifier for spoofing attack detection in ASV remains an unexplored

avenue. This section explores deep probabilistic VAEs under two settings. First,

as a backend for spoofing detection. Fig. 5.4 illustrates this idea. Second, as

a feature extractor (Fig. 5.6) where we propose VAE residuals — the absolute

difference of the original input and the reconstruction — as a new feature repre-

sentation. We are motivated to consider VAEs among other generative models

(GANs, WaveNets) because they have both the inference and generator net-

works, and are more naturally suited to our tasks. The reconstruction quality

of VAEs tends to be inferior to that obtained by GANs [Huang et al., 2018],

but for classification tasks, obtaining a perfect reconstruction is not the main

priority. A key challenge, instead, is how to train VAEs to not only preserve

reasonable reconstruction but to allow to retain discriminative information in

the latent space. To address this, VAEs are often trained with additional con-

straints. For example, by conditioning the encoder and decoder with additional

inputs — so called conditional VAEs (C-VAEs) [Kihyuk Sohn and Honglak Lee

and Xinchen Yan, 2015]; or by augmenting an auxiliary classifier either to the

latent space [Li et al., 2019a] or to the output of the decoder network [Kameoka

et al., 2018a]. As there is no de facto standard for this, we aim to fill this

knowledge gap in the domain of audio replay detection. We summarise the

contributions of this work as follows:

• While deep generative models, VAEs in particular, have been studied in

many other domains, their application in audio spoofing detection remains

less explored to date. We study the potential of deep generative VAEs as

a backend classifier for spoofing detection. To the best of our knowledge,

this is the first work in this direction.

• We describe practical challenges in training a VAE model for spoofing de-

tection applications and discuss approaches that can help overcome them,

177

Figure 5.4: Spoofing countermeasure pipeline using a generative model backend.

which could serve as potential guidelines for others.

• Along with a “naive”15 VAE we also study conditional VAEs (C-VAEs)

[Kihyuk Sohn and Honglak Lee and Xinchen Yan, 2015]. The C-VAE

uses class labels as an additional conditional input during training and

inference. Since we pass class labels in the C-VAE, we use a single model

to represent both classes unlike the naive VAE where we train two separate

models, one each for bonafide and spoof class. For the text-dependent

setting of ASVspoof 2017 data, we further address conditioning using a

combination of the class and passphrase labels.

• Inspired by [Li et al., 2019a, Kameoka et al., 2018a], we introduce an

auxiliary classifier into our VAE modeling framework and study how this

helps the latent space16 to capture discriminative information without sac-

rificing much during reconstruction. We experiment adding the classifier

model on top of the latent space and at the end of the decoder.

• While our primary focus is in using VAEs as a back-end, we also address

their potential in feature extraction. In particular, we subtract a VAE-

modeled spectrogram from the original spectrogram so as to de-emphasize

the importance of salient speech features (hypothesized to be less relevant

in spoofing attack detection) and focus on the residual details. We train

a convolutional neural network classifier using these residual features.

15We use naive VAE to refer the standard (vanilla) VAE [Kingma and Welling, 2013] trained
without any class labels. Information about the class is included by independently training
one VAE per class.

16A latent space is a probability distribution that defines the observed-data generation
process and is characterised by means and variances of the encoder network.

178

5.5.2 Proposed method

This section now provides a detailed description of our two proposed methods

for spoofing detection. The first method explores the potential of VAEs as

a classifier for spoofing detection. For this, three different VAE settings are

studied. Then the second method explores VAEs as a feature extractor. For

this, VAE residuals which is the absolute difference of the original input and

model reconstruction is proposed as a robust feature that retains the factors of

interest for replay spoofing detection. A separate classifier is then trained on

these features for final classification.

VAE as an alternative backend classifier

As described in Subsection 2.7.3, the VAE is an unsupervised method that learns

an encoder-decoder pair, Λ = (θ,φ), without requiring class labels. When used

for classification, rather than data reconstruction, we have to condition VAE

training with the class label. Here, we use labels yn = 1 (bonafide) and yn = 0

(spoof) to indicate whether or not the nth training exemplar represents bonafide

speech17. We consider three alternative approaches to condition VAE training,

described as follows.

The first, naive approach, is to train VAEs similarly as GMMs [Patil et al.,

2017, M S and Murthy, 2018, Todisco et al., 2017] — independently of each

other, using the respective training sets Xbona = {xn|yn = 1} and Xspoof =

{xn|yn = 0}. VAEs are trained to optimise the loss function described in

(2.11). This yields two VAEs, Λbona and Λspoof. At test time, they are in-

dependently scored using (2.11), and combined by subtracting the spoof score

from the bonafide score. The higher the score, the higher the confidence that

the test utterance originates from the bonafide class.

Our second approach is to train a single conditional VAE (C-VAE) [Ki-

hyuk Sohn and Honglak Lee and Xinchen Yan, 2015] model. In contrast to the

naive approach, the C-VAE can learn more complex (e.g., multimodal) distri-

butions by including auxiliary inputs (conditioning variables) to the encoder

and/or decoder distributions. In this approach, the label vector yn is used

both in training and scoring. Specifically, in our implementation inspired from

[Dahmani et al., 2019, Wu et al., 2019], we augment yn to the output of the

last convolutional layer in the encoder network and to the input of the decoder

network. Subsection 5.5.3 describes our encoder and decoder architectures. The

17We use the vector notation yn to indicate the corresponding one-hot vector — i.e., yn =
(0, 1) to represent bonafide and yn = (1, 0) to represent a spoof sample.

179

training loss (2.11) is now revised as:

`n(θ,φ) = −Ez∼qφ(z|xn,yn)

[
log pθ(xn|z,yn)

]
+ KL

(
qφ(z|xn,yn) ‖ p(z|yn)

)
,

(5.1)

where, in practice, we relax the class-conditional prior distribution of the latent

variable to be independent of the class, i.e. p(z|yn) = p(z) [Kihyuk Sohn and

Honglak Lee and Xinchen Yan, 2015]. We perform scoring in the same way as

for the previous approach: we pass each test exemplar x through the C-VAE

using genuine and spoof class vectors yn, to give two different scores, which are

then differenced as before. Note that yn may include any other available useful

metadata besides the binary bonafide/spoof class label. In our experiments on

the text-dependent ASVspoof 2017 corpus consisting of 10 fixed passphrases, we

will address the use of class labels and phrase identifiers jointly.

Our third approach is to use an auxiliary classifier with a conditional

VAE (AC-VAE) to train a discriminative latent space. We use rψ(x) to denote

the predicted posterior probability of the bonafide class, as given by an auxiliary

classifier (AC); ψ denotes the parameters of AC. Note that the posterior for

the spoof class is 1 − rψ(x) as there are two classes. Inspired by [Tu et al.,

2019] and [Kameoka et al., 2018a], we consider two different AC setups. First,

following [Tu et al., 2019], we use the mean µz as the input to an AC which

is a feedforward neural network with a single hidden layer. Second, following

[Kameoka et al., 2018a], we augment a deep-CNN as an AC to the output of

the decoder network. Here, we use the CNN architecture from Subsection 4.5.2.

From hereon, we call these two setups as AC-VAE1 and AC-VAE2 respectively.

To train the model, we jointly optimise the C-VAE loss (5.1) and the AC loss.

In specific, the loss for the nth training exemplar is:

`n(θ,φ,ψ) = α · `n(θ,φ) + β · `n(ψ), (5.2)

where the non-negative control parameters α and β weigh the relative impor-

tance of the regularisation terms during training, set by cross-validation18, and

where `n(ψ) denotes the binary cross-entropy loss for the training exemplar xn.

It is defined as:

`n(ψ) = −
(
yn log rψ(xn) + (1− yn) log(1− rψ(xn))

)
(5.3)

Note that setting α = 1 and β = 0 in (5.2) gives (5.1) as a special case. At

test time we discard the auxiliary classifier and follow the same approach for

scoring as in the C-VAE setup discussed earlier. All the three approaches are

18We use 0.5 for both α and β.

180

summarised in Fig. 5.5.

VAE as a feature extractor — VAE residuals

The results shown in Fig. 5.7 indicate that our VAEs have learnt to reconstruct

spectrograms using prominent acoustic cues and, further, the latent codes visu-

alised in Fig. 5.8 indicate strong content dependency. The latent space in a VAE

may therefore focus on retaining information such as broad spectral structure

and formants that help in increasing the data likelihood leading to good recon-

struction. But in spoofing attack detection (especially the case of high-quality

replay attacks) we are also interested in detail — the part not modeled by a

VAE. This motivates us to consider an alternative use case of the VAE as a fea-

ture extractor. The idea is illustrated in Fig. 5.6. We use a pre-trained C-VAE

model (with bonafide-class conditioning) to obtain a new feature representation

that we dub as VAE residual, defined as the absolute difference of the input

spectrogram and the reconstructed spectrogram by the C-VAE model. We ex-

tract the VAE residual features from all training utterances and train a new

classifier backend (here, a CNN) using these features as input. We adopt the

CNN architecture and training from Subsection 4.5.2. During testing, we use

the CNN output activation (Sigmoid activation) as our spoof detection score.

Though another recent study also used VAEs for feature extraction [Yang et al.,

2019b], our approach is different; they used the latent variable from a pretrained

VAE model, while we use the residual of the original and reconstructed inputs.

5.5.3 Experimental setup

We now describe our experimental setup. This includes description of the evalu-

ation datasets, inputs and feature representation, model architectures, training

and testing methods. A brief summary of the metrics considered for perfor-

mance evaluation is also provided.

Datasets

We use two publicly available spoofing datasets: ASVspoof 2017 v2.0 and

ASVspoof 2019 physical access (PA) for model training and testing. Section 3

provides more details on these datasets. Furthermore, following our prior find-

ings in Section 5.2, we adopt a custom protocol (described in Subsection 5.2.3)

for training and validating our models on the ASVspoof 2019 dataset.

181

(a) Naive VAE. Separate bonafide and spoof VAE models are trained using the respective-
class training audio files.

(b) C-VAE. A single VAE model is trained using the entire training examples but with
class-label vectors.

(c) AC-VAE extends C-VAE by augmenting an auxiliary classifier (AC). We include AC
in two alternative settings: (i) AC-VAE1: use latent mean vector µz as its input, or (ii)
AC-VAE2: at the end of decoder using reconstruction as its input. These are highlighted with
dotted lines. At test time we discard the AC.

Figure 5.5: Different VAE setups investigated.

182

Figure 5.6: Proposed countermeasure design using VAE residual — the dif-
ference of the original and reconstruction.

Features and input representations

We consider both CQCC [Todisco et al., 2017] and log-power spectrogram fea-

tures. On the ASVspoof 2017 v2.0 dataset, following our findings in Subsection

4.6.3, we trim silence/noise before and after the utterance in the training, de-

velopment and test sets. Similarly, on the ASVspoof 2019 PA dataset, following

our findings in Subsection 5.2.5 we remove silence from the start and end of

the utterances in the whole dataset. We apply these pre-processing steps to

ensure that models do not exploit dataset artefacts that bias their decisions

(see Subsections 4.6.3 and 5.2.5). Following [Delgado et al., 2018], we extract

log energy plus 19-dimensional CQCC static coefficients augmented with deltas

and double-deltas, yielding 60-dimensional feature vectors per frame. This is

followed by cepstral mean and variance normalisation. As for the power spec-

trogram, we use a 512-point discrete Fourier transform (DFT) with frame size

and shift of 32 ms and 10 ms, respectively, leading to N feature frames with

257 spectral bins.

As our VAE models use a fixed input representation, we create a unified

feature matrix by truncating or replicating the feature frames. If N is less than

our desired number of feature frames T , we copy the original N frames from

the beginning until the desired T frames are obtained. Otherwise, if N > T , we

retain the first T frames. The point of truncating (or replicating) frames in the

way described above is to ensure meaningful comparison where both models use

the same audio frames as their input. This also means that the numbers reported

in this paper are not directly19 comparable to those reported in literature; in

specific, excluding the trailing audio (mostly silence or nonspeech) after the first

T seconds will increase the error rates of our baseline GMM substantially. The

issue with the original, ‘low’ error rates relates in part to database design issues,

rather than bonafide/spoof discrimination (see Subsections 5.2.5 and 4.6.3). The

main motivation to use the T frames at the beginning is to build fixed-length

utterance-level countermeasure models, which is a commonly adopted design

19GMMs reported in the literature do not truncate or replicate, and this was done by us
for a fair comparison with VAEs.

183

(a) Bonafide file with bonafide-class conditioning (b) Bonafide file with spoof-class conditioning

(c) Spoof file with bonafide-class conditioning (d) Spoof file with spoof-class conditioning

Figure 5.7: Visualisation of the reconstructed spectrograms by the C-VAE.
Bonafide audio file (D 1000022.wav) and spoof audio file (D 1001049.wav) are
taken from the ASVspoof 2017 v2.0 development set.

184

Table 5.17: Encoder architecture. Conv: convolutional. T, F: the number of
time frames and feature dimensions. The scalar f is the dimension of Conv5

output flattened vector. M is 16 and 32 for spectrogram and CQCC inputs.
Conv5 is not applicable for CQCCs.

Layer
Input Filter Stride # Filters/ Output
shape size size neurons shape

Conv1 T×F×1 5×257 2×2 M T/2×F/2×M
Conv2 T/2×F/2×M 5×129 2×2 2M T/4×F/4×2M
Conv3 T/4×F/4×2M 5×65 2×2 4M T/8×F/8×4M
Conv4 T/8×F/8×4M 5×33 2×2 8M T/16×F/16×8M
Conv5 T/16×F/16×8M 5×17 2×2 16M T/32×F/32 ×16M
µz f - - 128 128

log σ2
z f - - 128 128

Table 5.18: Decoder architecture. ConvT: transposed convolutional. * denotes
zero padding to match the input shape. The Gaussian layers µx and log σ2

x

use Conv layer. H and W values depends on the number of neurons (#neurons)
in the FC layer which is 12288 and 2304 for spectrogram and CQCC inputs,
respectively.

Layer
Input Filter Stride # Filters/ Output
shape size size neurons shape

FC 128 - - #neurons #neurons
ConvT H×W×128 5×10 2×2 64 2H×2W×64
ConvT 2H×2W×64 5×20 2×2 32 4H×4W×32
ConvT* 5H×4W×32 5×20 2×2 16 10H×8W×16
ConvT* 10H×8W×16 5×20 2×2 8 20H×16W×8
µx* 100×F×8 5×5 1×1 1 100×F×1

log σ2
x∗ 100×F×8 5×5 1×1 1 100×F×1

choice for anti-spoofing systems, e.g. [Lavrentyeva et al., 2017, Zhang et al.,

2017].

This yields a 100 × 60-dimensional CQCC representation and a 100 × 257

power spectrogram representation for every audio file. We use the same number

of frames (T = 100) for both the GMM and VAE models. Note that GMMs

treat frames as independent observations while VAEs consider the whole matrix

as a single high-dimensional data point.

Model architecture

Our baseline GMM consists of 512 mixture components (motivated from [Del-

gado et al., 2018]) with diagonal covariance matrices. As for the VAE, our

encoder and decoder model architecture is adopted from [Mishra et al., 2019].

For a given T × D feature matrix, where T=time frames and D=feature di-

mension, the encoder predicts the mean µz and the log-variance log σ2
z that

185

parameterise the posterior distribution qφ(z|x), by applying a series of strided

2D convolutions [Dumoulin and Visin, 2016] as detailed in Table 5.17. We use a

stride of 2 instead of pooling for downsampling the original input. The decoder

network architecture is summarised in Table 5.18. It takes a d-dimensional sam-

pled z vector as input and predicts the mean µx and the log-variance log σ2
x

that parameterise the distribution pθ(x|z) through a series of transposed convo-

lution [Dumoulin and Visin, 2016] operations. We use LeakyReLU [Maas et al.,

2013] activations in all layers except the Gaussian mean and log variance layers

which use linear activations. We use batch normalisation before applying the

non-linearity in both the encoder and decoder networks.

Training, scoring and performance metrics

We train GMMs for a maximum of 100 EM iterations with random initialisation

of parameters. We train bonafide and spoof GMMs separately to model the

respective class distributions. We use only the training partition to train GMMs

for both the ASVspoof 2017 and 2019 datasets. At test time, the score of each

test utterance is computed as the log likelihood ratio between the bonafide and

spoofed GMM model as described in Equation 4.1. We train our VAE models

using stochastic gradient descent with Adam optimisation [Kingma and Ba,

2014], with an initial learning rate of 10−4 and 16 samples as the minibatch

size. We train them for 300 epochs and stop the training if the validation loss

does not improve for 10 epochs. We apply 50% dropout to the inputs of fully

connected layers in our auxiliary classifier. We do not apply dropout in the

encoder and decoder networks.

As for the performance evaluation of our models we use the EER and t-DCF

metrics described in Subsections 3.5.1 and 3.5.2 respectively.

Experiments

We perform several experiments using different VAE setups (described in Section

5.5.2) using CQCCs and log-power spectrogram inputs. We also train baseline

GMMs for comparing VAE performance using the same input CQCC features.

While training VAEs with an auxiliary classifier on the µz input, we use 32

units in the FC layer. We do not use the entire training and development audio

files for training and model validation on the ASVspoof 2019 dataset, but adopt

our proposed protocols described in Subsection 5.2.3. We use them here as

they showed good generalisation on the ASVspoof 2019 test dataset during the

recent ASVspoof 2019 evaluations (Subsection 5.2.4). Note, however, that all

the evaluation portion results are reported on the standard ASVspoof protocols.

186

Table 5.19: Showing the effect of latent dimensions on the performance metric
for the C-VAE model when it is trained on CQCC and spectrogram inputs.

Spectrogram CQCC
Latent dimension EER% t-DCF EER% t-DCF

8 31.20 0.8642 33.35 0.8584
16 26.88 0.7551 33.74 0.8542
32 36.65 0.9383 30.81 0.7909
64 29.73 0.7650 29.52 0.7325
128 29.43 0.7303 29.27 0.7222
256 29.80 0.7609 28.87 0.6962
512 25.73 0.6662 28.42 0.7033

5.5.4 Evaluation

This section evaluates our proposed methods providing a summary of results

for different experimental setups. First, it evaluates the impact of latent space

dimensionality on the VAE performance and finds 128 as the optimal choice.

This dimension is then used in all our VAE setups. Then, a performance com-

parison between different VAEs with the baseline GMMs is provided. Next,

this section evaluates the performance of VAEs trained with multi-class condi-

tioning and contrasts it with the ones trained using binary-class conditioning.

Then, a qualitative analysis through t-SNE visualisations is provided to gain in-

sights on the latent space learned by the VAE. Finally, this section evaluates the

performance of our proposed VAE residual features by training a separate dis-

criminative classifier (CNN in this case), and further compares its performance

with the same CNN when it is trained on the original spectrogram inputs.

Impact of the latent space dimensionality

We first address the impact of latent space dimensionality on the ASVspoof 2017

corpus. To keep computation time manageable, we focus only on the C-VAE

variant. The results, for both CQCC and spectrogram features, are summarised

in Table 5.19. Shown results are on the ASVspoof 2017 v2.0 evaluation sets. We

observe an overall decreasing trend in EER with increased latent space dimen-

sionality, as expected. All the error rates are relatively high, which indicates

general difficulty of our detection task. In the remainder of this study, we fix

the latent space dimensionality to d = 128 as a suitable trade-off in EER and

computational cost.

187

Table 5.20: Performance of GMM and VAE variants using CQCC inputs.

Model
ASVspoof 2017 ASVspoof 2019 PA

Dev Eval Dev Eval
EER t-DCF EER t-DCF EER t-DCF EER t-DCF

GMM 19.07 0.4365 22.6 0.6211 43.77 0.9973 45.48 0.9988
VAE 29.2 0.7532 32.37 0.8079 45.24 0.9855 45.53 0.9978

C-VAE 18.1 0.4635 28.1 0.7020 34.06 0.8129 36.66 0.9104
AC-VAE1 21.8 0.4914 29.3 0.7365 34.73 0.8516 36.42 0.9036
AC-VAE2 17.78 0.4469 29.73 0.7368 34.87 0.8430 36.42 0.8963

Comparing different VAE setups with GMMs

Our next experiment addresses the relative performance of different VAE vari-

ants and their relation to our GMM baseline. As GMMs cannot be used with

high-dimensional spectrogram inputs, the results are shown only for the CQCC

features. This experiment serves to answer the question on which VAE variants

are the most promising, and whether VAEs have potential to be used as a back-

end for spoofing detection. The results for both the ASVspoof 2017 and 2019

(PA) datasets are summarised in Table 5.20.

Baseline GMM. On the ASVspoof 2017 dataset, the GMM reports an EER of

19.07% and 22.6% on the development and evaluation sets, respectively. Note

that our baseline is completely different from the CQCC-GMM results of [Del-

gado et al., 2018] for two reasons. First, we use a unified time representation

of the first 100 frames obtained either by truncating or copying time frames,

for reasons explained earlier. Second, we remove the leading and trailing non-

speech/silence from every utterance, to mitigate a dataset-related bias described

in Subsection 4.6.3: the goal of our modified setup is to ensure that our models

focus on actual factors rather than database artefacts.

On the ASVspoof 2019 PA dataset, the performance of the GMM baseline20

is nearly random as indicated by both metrics. The difficulty of the task and

our modified setup to suppress database artefacts both contribute to high error

rates. The results are consistent with our earlier findings in Subsection 5.2.5.

The two separate GMMs may have learnt similar data distributions. Note that

the similarly-trained naive VAE displays similar near-random performance.

VAE variants. Let us first focus on the ASVspoof 2017 results. Our first,

naive VAE approach falls systematically behind our baseline GMM. Even if

20For sanity check, we trained a GMM without removing silence (and using all frames per
utterance) and obtained a performance similar to the official GMM baseline of the ASVspoof
2019 challenge. On the development set, our GMM now shows an EER of 10.06% and t-DCF
of 0.1971 which is slightly worse than official baseline (EER = 9.87 and t-DCF =0.1953).

188

Table 5.21: Comparing VAE and C-VAE performance on the ASVspoof 2017
dataset using the log power spectrograms as input features.

Dev Eval
Model EER t-DCF EER t-DCF
VAE 32.12 0.8037 36.92 0.9426

C-VAE 22.81 0.5219 29.52 0.7302

both the bonafide and spoof VAE models display decent reconstructions, they

lack the ability to retain discriminative information in the latent space when

trained in isolation from each other. Further, remembering that VAE training

optimises only a lower bound of the log-likelihood function, it might happen

that the detection score formed as a difference of these ‘inexact’ log-likelihoods

either under or overshoots the true log-likelihood ratio — but there is no way

of knowing which way it is.

The C-VAE model, however, shows encouraging results compared with all

the other VAE variants considered. This suggests that conditioning both the en-

coder and decoder with class labels during VAE training is helpful. Supposedly

a shared, conditional C-VAE model yields ‘more compatible’ bonafide and spoof

scores when we form the detection score. The C-VAE model shows comparable

detection performance to the GMM baseline on the development set, though it

performs poorly on the evaluation set.

The VAE variants with an auxiliary classifier outperform the naive VAE

but are behind C-VAE: both AC-VAE1 and AC-VAE2 shows slightly degraded

performance over C-VAE on the evaluation set. While AC-VAE1 and AC-VAE2

show comparable performance on the evaluation set, on the development set AC-

VAE2 outperforms all other VAE variants in both the metrics. This suggests

overfitting on the development set: adding an auxiliary classifier increases the

model complexity as the number of free parameters to be learned increases

substantially. Apart from having to learn optimal model parameters from a

small training dataset, another challenge is to find an optimal value for the

control parameters α and β in Equation 5.2.

On the ASVspoof 201921 dataset our C-VAE model now outperforms the

naive VAE and the GMM baseline. By conditioning the encoder and decoder

networks with class labels, we observe an absolute improvement of about 10%

over the naive VAE on both the development and the evaluation sets. Unlike

in the ASVspoof 2017 dataset, the auxiliary classifier VAE now offers some

improvement on the evaluation set. This might be due to the much larger

21We would like to stress that we do not use the original training and development protocols
for model training and validation. Instead, we use our custom protocol described in Section
5.2.3 that helped to improve generalisation during the ASVspoof 2019 challenge. However,
during testing, we report test results on the standard development and evaluation protocols.

189

Figure 5.8: Latent space visualisation for 10 phrases S01-S10 (see Table 3.1) of
the ASVspoof 2017 training set by C-VAE with bonafide-class conditioning.

number of training examples available in the ASVspoof 2019 dataset (54000

utterances) in comparison to the ASVspoof 2017 training set (3014 utterances).

It should be further noted that while training models on the ASVspoof

2019 dataset, we used the hyper-parameters (learning rate, mini-batch size,

control parameters including the network architecture) that were optimised on

the ASVspoof 2017 dataset. This was done to study how well the architecture

and hyper-parameters generalise from one replay dataset (ASVspoof 2017) to

another one (ASVspoof 2019).

The results in Table 5.20 with the CQCC features indicate that the C-VAE is

the most promising variant for further experiments. While adding the auxiliary

classifier improved performance in a few cases, the improvements are modest

relative to the added complexity. Therefore, in the remainder of this paper, we

focus on the C-VAE unless otherwise stated. Also, we focus testing our ideas on

the ASVspoof 2017 replay dataset for computational reasons. Next, to confirm

the observed performance improvement of the C-VAE over the naive VAE, we

further train both models using raw log power-spectrogram features. The results

in Table 5.21 confirm the anticipated result in terms of both metrics.

190

Conditioning VAEs beyond class labels

The results so far confirm that the C-VAE outperforms the naive VAE by a wide

margin. We now focus on multi-class conditioning using C-VAEs. To this end,

our possible conditioning variables could include speaker and sentence identi-

fiers. However, speakers are different across the training and test sets in both

ASVspoof 2017 and ASVspoof 2019, preventing the use of speaker conditioning.

Further, the phrase identities of the ASVspoof 2019 PA dataset are not publicly

available. For these reasons we restrict our focus on the 10 common passphrases

(S01 through S10) in the ASVspoof 2017 dataset shared across training, devel-

opment and evaluation data. The contents of these phrases are provided in

Table 3.1. The numbers of bonafide and spoof utterances for these passphrases

in the training and development sets are equally balanced. We therefore use a

20-dimensional one-hot vector to represent multi-class conditioning. The first 10

labels correspond to bonafide sentences S01 through S10 and the remaining 10

to spoofed utterances. Everything else about training and scoring the C-VAE

remains the same as before, except for the use of the 20-dimensional (rather

than 2-dimensional) one-hot vector.

We first visualise how the latent space is distributed across the 10 differ-

ent phrases of the ASVspoof 2017 training set. Fig. 5.8 shows the 2D latent

space visualisation for these utterances using the t-SNE [Maaten and Hinton,

2008] algorithm. The clear distinction between different phrases suggests that

the latent space preserves the structure and identity of different sentences of

the dataset. This suggests that choosing the sentence identity for conditioning

the VAE might be beneficial towards improving performance; such a model is

expected to learn phrase-specific bonafide-vs-spoof discriminatory cues.

Table 5.22 summarises the results. Shown results are on the ASVspoof

2017 v2.0 dataset using CQCC and spectrogram inputs. The C-VAE trained

on spectrogram features with multi-class conditioning shows a substantial im-

provement over two-class conditioning. This suggests that the network now ben-

efits from exploiting relevant information present across different passphrases,

which may be difficult from binary class conditioning. For the CQCC features,

however, we have the opposite finding: while the EER is slightly decreased

on the evaluation set with multi-class conditioning, overall it shows degraded

performance. One possible interpretation is that CQCCs are a compact feature

representation optimised specifically for anti-spoofing. CQCCs may lack phrase-

specific information relevant for anti-spoofing which is retained by the richer and

higher-dimensional raw spectrogram. To sum up, the C-VAE trained on raw

spectrograms with multi-class conditioning offers substantial improvement over

two-class conditioning in comparison to CQCC input features.

191

Table 5.22: Comparing the performance of the C-VAE model trained using
binary and multi-class conditioning.

CQCC Spectrogram
Dev Eval Dev Eval

Conditioning EER t-DCF EER t-DCF EER t-DCF EER t-DCF
Two-class 18.1 0.4635 28.1 0.7020 22.81 0.5219 29.52 0.7302
Multi-class 19.77 0.4961 27.88 0.7390 19.65 0.4324 25.48 0.6631

Qualitative results

A relevant question is whether or not the latent space features z have some clear

meaning in terms of human or spoofed speech parameters, or any other relevant

information that helps us derive some understanding about the underlying data.

To this end, we analyse the latent space through 2D visualisations using the t-

SNE algorithm. We aim to understand how the latent space is distributed

across different speakers and between genders. We do this on the ASVspoof

2019 dataset, as the 2017 dataset only has male speakers. Fig. 5.9 shows t-SNE

plots for 5 male and 5 female speakers on the ASVspoof 2019 PA training set

chosen randomly.

The subfigures in the first row of Fig. 5.9 suggest that the latent space has

learned quite well to capture speaker related information, but it does not seem

to clearly capture gender specific information as evident from the overlapping

clusters (top right figure). We further analyse bonafide and different attack

conditions per gender, taking PA 0082 and PA 0079 — one male and female

speaker randomly from the pool of 10 speakers we considered. Fig. 5.9, second

row illustrates this. We use letters A-I to indicate the bonafide class and 9

different attack conditions whose original labels are as follows. A: bonafide,

B: ‘BB’, C: ‘BA’, D: ‘CC’, E: ‘AB’, F: ‘AC’, G: ‘AA’, H: ‘CA’, I: ‘CB’, J:

‘BC’. These labels refer to the combination of different factors involved in a

replay attack. For example, an attacker to ASV microphone distance, quality

of recording device, room acoustics, quality of playback device etc. As we do

not use them further in this work, their in-depth details are not provided here.

Rather, we point the reader to see [Todisco et al., 2019.] for more details. From

Fig. 5.9, we observe overlapping attacks within a cluster, and spread of these

attacks across different clusters. The bonafide audio examples, denoted by letter

A are heavily overlapped by various spoofed examples. This gives an intuition

that the latent space is unable to preserve much discriminative information due

to the nature of the task, and rather, it might be focusing on generic speech

attributes such as acoustic content, speaker speaking style to name a few, to be

able to generate a reasonable reconstruction — as depicted in Fig 5.7.

192

Figure 5.9: 2D visualisation of the latent space learned by the C-VAE. Top left :
10 different speaker identities. Top right : 5 male and 5 female clusters. Bottom
left : distribution of bonafide and attack conditions for a male speaker PA 0082.
Bottom right : same as in (c) but for a female speaker PA 0079.

Table 5.23: Effectiveness of VAE residual features in spoofing detection.

Dev Eval
Features Model EER t-DCF EER t-DCF

Spectrogram C-VAE 22.81 0.5219 29.52 0.7302
VAE residual CNN 13.16 0.3438 17.32 0.4293
Spectrogram CNN 10.82 0.2877 16.03 0.4461

VAEs as feature extractors

Table 5.23 summarises the results. Results shown are on the ASVspoof 2017

v2.0 dataset. Numbers in the second row correspond to our proposed approach

of using VAE residual features and training a separate classifier. We also in-

clude C-VAE results from our initial approach (C-VAE as a back-end) from the

third row of Table 5.20 for comparison. For contrastive purposes we train an-

other CNN classifier with the same architecture using the original spectrogram

as its input. The results for this is shown in the third row of the table. Using

193

VAE residuals and training a separate classifier outperforms the back-end ap-

proach on both metrics and on both the development and evaluation sets. The

residual approach, however, remains behind the CNN trained directly on the

original spectrogram, on the development set. On the evaluation set, it achieves

the lowest t-DCF and displays a comparable EER. The small performance gap

(in relative terms) between the development and evaluation sets for the VAE

residual approach suggests good generalisation.

Although the proposed VAE residual approach did not outperform the raw-

spectrogram CNN, the results obtained are encouraging and show potential for

further investigation. In fact, given the similar performance of the original and

VAE residual spectrogram features, we interpret the results to mean that most

of the relevant information for discriminating bonafide and replay utterances

(on this data) lies in the residual or ‘noise’ part of the spectrogram. It is

noteworthy that heuristic ideas inspired directly by simple visualisations such

as Figs. 5.8 and 5.7 lead to boosted performance. Finally, recalling our initial

motivations, the VAE leads to a generative model (unlike CNN) that allows data

sampling and obtaining uncertainty of the latent space representation. These

favorable properties of VAEs suggest further studies towards more versatile

spoofing countermeasure solutions where the semantics, sanity and stability of

the learned feature representation can be easily explored.

5.5.5 Discussion

Inspired by the successful use of GMMs, a classical generative model, as a

backend in spoofing detection for ASV, this section performed an initial study

on exploring the potential of VAEs, a deep generative model in audio spoofing

detection. Subsection 5.5.2 described our proposed methods of using VAEs as

classifiers, and as a feature extractor. In terms of backend classifier, different

VAE variants: vanilla VAE, C-VAE and C-VAE with an auxiliary classifier were

investigated. Subsection 5.5.4 described the evaluation of our methods.

Our first study using two separate VAEs suggests that it is difficult to cap-

ture discriminative information when the models are trained using only one-

class data. Both the bonafide and spoof VAEs seem to focus on retaining in-

formation relevant for data reconstruction while giving less attention on class-

discriminative information. As a result, the latent space in both bonafide and

spoof VAEs appears to capture common prominent characteristics of bonafide

and spoofed speech, making the detection task difficult. Nonetheless, our qual-

itative results indicate that both our bonafide and spoof VAEs yield reasonable

reconstruction of the input data. Our second approach of training a single con-

ditional VAE (C-VAE) by conditioning the encoder and decoder networks by

194

class-label vectors shows far more encouraging results. The performance of our

C-VAE models on both the ASVspoof 2017 and ASVspoof 2019 datasets show

remarkable improvement in comparison to the naive VAE approach. Our third

approach of augmenting an auxiliary classifier with the C-VAE did not help

much. We did not observe substantial improvement in detection performance

on the ASVspoof 2017 dataset, though we observed some performance gain on

the ASVspoof 2019 dataset, suggesting the importance of training set size for

improved generalisation. Finally, our proposed approach of using C-VAE as

a front-end (VAE residual features), demonstrated a substantial improvement

over the VAE back-end use case.

Despite the different dataset sizes in the ASVspoof 2017 and ASVspoof 2019

datasets, we find that the model hyper-parameters tuned on the ASVspoof 2017

dataset worked quite well when applied on the 2019 dataset, showing consistency

of our findings with C-VAE models. However, the optimisation of network archi-

tecture and model hyper-parameters has not been fully explored in the present

study, leaving scope for further improvements. To sum up, based on both the ob-

served detection performance and architecture complexity considerations, from

the three VAE back-end variants considered (Fig. 5.5), the authors recommend

potential future work to focus on conditional VAEs (C-VAEs). In fact, we

obtained promising results by further conditioning C-VAEs using pass-phrase

labels. This warrants future studies with other conditioning variables such as

speaker identity, gender, and channel.

5.6 Summary

This chapter presented several novel methods for the design of countermeasures

for replay spoofing detection while focussing on model robustness and avoiding

potential biases in the datasets used for training and inference. Proposed meth-

ods were evaluated on two benchmark spoofing datasets: ASVspoof 2017 v2.0

and ASVspoof 2019 PA. The work reported in this chapter has been published

(and is under review) in international peer-reviewed conferences and journals.

In Section 5.2, an ensemble model and a dataset partition was proposed

for better generalisation. Its effectiveness was evaluated on a latest benchmark

dataset (ASVspoof 2019 PA) demonstrating good performance on the test set.

Artefacts in this dataset was discovered that provided substantial contribu-

tions in model predictions, and a method to mitigate this issue was proposed

subsequently. Extending the findings from Section 4.6, the chapter proposed

a method towards building reliable and trustworthy countermeasures on the

ASVspoof 2017 v2.0 dataset. The method involved speech endpoint detection

as a step before feature extraction to remove audio samples before and after

195

the actual speech utterance. The effectiveness of the proposed method was

demonstrated by evaluating countermeasures (trained with and without end-

point detection) on manipulated test signals. Experimental results confirmed

that countermeasures trained using the proposed method helped mitigate the

impact substantially (Section 5.3).

The chapter then proposed a joint subband modeling framework (Section 5.4)

designed to exploit information across different subbands independently. This

method is evaluated on both the 2017 and 2019 PA benchmark datasets using

the proposed data preprocessing steps removing the confounders in them. Fur-

thermore, the proposed method is also evaluated in a cross-dataset test scenario

using the ASVspoof 2019 real PA test set (described in Section 3.3.3). Although

the experimental results confirmed the superiority of the proposed method over

conventional method of training countermeasures on the fullband spectrum, the

findings obtained on one dataset did not generalise across others indicating that

the current datasets do not reflect real world replay conditions suggesting a need

for careful dataset design.

Finally, the chapter proposed the use of VAE, a deep generative model,

for replay spoofing detection in two different settings. First, as an alternative

backend classifier, and as a feature extractor. However, unlike the traditional

approaches used in the literature that use the latent space as a learned feature,

this thesis used a different approach. The proposed feature, so called VAE resid-

ual, is obtained by taking the absolute difference between the original input and

the model reconstruction. The proposed methods were evaluated on both the

2017 and 2019 PA datasets with the proposed preprocessing steps (Section 5.5).

Experimental results demonstrated that training a single VAE with class condi-

tioning (C-VAE) offered substantial improvement in comparison to training two

separate VAEs for each class. Furthermore, the proposed frontend approach

augmented with a CNN classifier demonstrated substantial improvement over

the VAE backend use case.

196

Chapter 6

Conclusions and future

work

This thesis aimed at the analysis and design of existing and novel methods for

replay spoofing detection for secure voice biometrics. Towards achieving these

objectives, several methods have been studied and proposed, and presented in

two major chapters: Chapter 4 and 5. While Chapter 4 mostly focussed on the

analysis part, Chapter 5 aimed at the design of novel spoofing countermeasures.

Most of the work reported in the two chapters was published in peer-reviewed in-

ternational journals and conferences as summarised in Section 1.5. This chapter

provides a summary of the main contributions made from the thesis in Section

6.1, and discusses the potential future work for replay spoofing detection in

Section 6.2.

6.1 Summary

6.1.1 Analysis of countermeasures

Chapter 4 aimed at serving as the basis towards understanding the replay spoof-

ing attack problem. For this, a series of studies towards analysing replay spoof-

ing countermeasures was presented by exploring existing methodologies and

techniques from the literature.

The chapter first investigated the generalisability of signal processing fron-

tends, which showed promising results in detecting converted and synthetic

speech, for the task of replay spoofing detection using the ASVspoof 2017 (v1.0)

benchmark dataset. Experimental results showed that obtaining the same level

of generalisation is difficult due to the acoustically different task under consid-

eration. Through the analysis of the best performing GMM countermeasure,

197

it was found that initial zero-valued silence, present in some of the bonafide

recordings but missing from spoof class recordings, provided cues for class dis-

crimination. Using this knowledge it was further demonstrated how easy it was

to compromise countermeasure predictions. Though such data-intrinsic behav-

ior may not appear in real-world scenarios, this work demonstrated the severe

impact it can have on countermeasure performance on this dataset (Section 4.2).

Next, a detailed study on replicating a state-of-the-art deep model (LCNN)

reported on the ASVspoof 2017 v1.0 dataset was performed, and it was shown

that using only the published system details, reproducing this model was dif-

ficult. It was further shown that despite investigating various deep model ar-

chitectures from the literature, achieving performance close to the one reported

by the LCNN authors on the evaluation set was difficult. These models would

often overfit on the validation data, resulting in a higher performance gap be-

tween the development and evaluation sets. Experimental results also showed

that a 32 mini-batch size and ReLU non-linearity (which also outperformed

the MFM activation used in the LCNN model) were optimal hyper-parameter

choices among others to train deep models on this dataset (Section 4.3).

Afterwards, a performance analysis of several countermeasures under var-

ied spoofing conditions was carried out using the updated version (2.0) of this

dataset. Experimental results demonstrated that MFCCs were better at de-

tecting low quality attacks while IMFCCs showed better results for high quality

attacks. However, gaining an in-depth insight on what is causing such behaviour

was difficult as the meta-data: acoustic environment - AE, recording devices -

RD for the bonafide class was unavailable. This also suggests that “high-quality

spoofing conditions” may actually be low quality since the bonafide files were

of low quality and vice-versa. Therefore, on this dataset it was found that

analysing factors (AE, RD, playback device and their interactions) influencing

replay attacks in a controlled condition and providing a substantial conclusion

whether reverberation noise or some device-specific (recording or playback) at-

tributes provide a cue for replay spoofing detection was difficult (Section 4.4).

Next, a deep CNN countermeasure model was developed following guidelines

from Section 4.3. It was found that batch normalisation was a key factor for

model generalisation, which helped the CNN achieve performance closer to the

state-of-the-art LCNN. The SLIME algorithm for generating local interpretable

explanations was then applied on this model (trained on v2.0 of the dataset)

to understand which part of the input highly influenced its prediction. Results

showed that the CNN was giving high weights to the first few milliseconds of

the audio signal to make class predictions. The significance of this analysis

was further demonstrated by preprocessing the test signals which led to a pre-

dictable change in the system error rate, raising questions about the integrity

198

and trustworthiness of countermeasures trained on this dataset (Section 4.5).

Following this, the chapter then performed an in-depth analysis of audio

recordings in the training and development sets (and bonafide recordings in the

evaluation set) of the ASVspoof 2017 v2.0 dataset, identified artefacts (see Sub-

section 3.2.3) and investigated their impact on machine learning countermeasure

decisions. Among different artefacts, burst click sound (BCS) was found to pro-

vide strong cues for the bonafide class. Interestingly, DTMF sounds showed

no influence on model decisions (Subsection 4.6.3). Furthermore, zero-valued

samples (silence) were still found to provide a potential cue for the bonafide

class on the v2.0 of this dataset.

Our in-depth analysis of this dataset and experimental results from dif-

ferent interventions confirmed the presence of a “horse” in machine learning

[Hernandez-Orallo, 2019, Sturm, 2014] for anti-spoofing applied to the ASVspoof

2017 dataset. Furthermore, none of the research results published in this dataset

(more than 60 papers) have accounted for these artefacts, further indicating that

the countermeasures showing impressive results may not be fully reliable and

trustworthy [Sturm, 2016] as their decision process involved the contribution of

these artefacts which are not related to the actual problem (Section 4.6).

6.1.2 Design of novel countermeasures

Replay spoofing attack detection, a binary classification problem, in general is a

difficult task to solve. As explained in Subsection 2.9.1, confounders or artefacts

in a dataset can affect a wide range of machine learning tasks including anti-

spoofing systems (see Sections 4.2, 4.6 and Subsection 5.2.5). Such confounders

are often overlooked in research studies. We consider two reasons for this. First,

the figures of merit used in assessing performance (typically a scalar) do not ac-

count for confounders and their influence in learning algorithms. Second, they

often offer gains in performance (see Subsection 2.9.1 for related background).

Due to these reasons we often do not care towards the accountability of such

ML models trained on data containing artefacts. But, impressive performance

reported by such untrustworthy models can be costly as they may fail with high

likelihood when used in practical real-world scenarios. Therefore, ensuring reli-

able performance estimates is important to truly assess the ability of proposed

features/classifiers for a given machine learning task.

In this direction, Chapter 5 proposed novel methods towards design of coun-

termeasures for replay spoofing attack detection while also focusing on model

robustness and avoiding dataset biases. Firstly, in Section 5.2 an ensemble model

and dataset partitions for better model generalisation and robustness were pro-

posed and evaluated on a latest benchmark spoofing dataset (ASVspoof 2019).

199

The ensemble combined several deep and shallow models employing different

features and training techniques for increased diversity leading to a powerful

model. Although the proposed partition involved discarding a lot of spoofed

data points in the training and validation sets, the experimental results demon-

strated improved model robustness, which helped achieve good performance on

the PA task and 3rd ranking on the LA task of the ASVspoof 2019 challenge.

Another key contribution included a demonstration of how countermeasures

trained on the PA dataset can become somewhat of a “horse” [Sturm, 2014],

where solving the actual problem is unintentionally avoided by exploiting “si-

lence” as trivial cues, for which a simple pre-processing approach was proposed

to mitigate the issue.

Then Section 5.3 proposed a method to mitigate the impact of artefacts

identified in the ASVspoof 2017 v2.0 benchmark dataset (Section 4.6) and build

robust CM models. For this, use of speech endpoint detection module before

feature extraction was proposed to discard audio samples before and after the

actual speech utterance. This ensures that both classes of audio now have a

similar pattern, forcing learning algorithms to now focus exploiting factors of

interest — for example channel characteristics, in solving the replay spoofing

attack problem, thus producing reliable performance estimates. Manual speech

endpoint annotations were developed and used during training and validation

of model parameters to ensure the correctness of our proposed method. During

testing, a robust voice activity detection algorithm was applied to obtain au-

tomatic endpoint annotations that showed satisfactory results when compared

with manual annotations. Several new benchmark results (both frame-level and

utterance-level countermeasures) are provided showcasing the true performance

estimates when these confounders are taken into account. Finally, the robustness

of countermeasures trained with and without endpoint detection was evaluated

by manipulating test utterances with signal artefacts, and the proposed method

was found to be more resilient confirming its robustness over countermeasures

trained without endpoint detection on this dataset (Subsection 5.3.3).

In the next Section 5.4, a joint subband modelling framework was proposed

and evaluated on the ASVspoof 2017 v2.0 and ASVspoof 2019 PA benchmark

datasets. Signal preprocessing methods proposed in Section 5.2 and Section 5.3

were applied on both datasets to avoid biases during the training and testing (see

Subsections 4.6.3 and 5.2.5). The proposed framework employed n sub-networks

to learn subband specific features which were later combined and passed to a

classifier, and the whole network weights were updated during training. Re-

sults on the ASVspoof 2017 dataset demonstrated that the first and the last 1

kHz frequency bands carried the most discriminative information, and the joint

model trained on these two subbands showed the best performance outperform-

200

ing the baselines (trained on fullband spectra) by a large margin. However,

these findings did not generalise on the ASVspoof 2019 PA dataset. Further-

more, models trained on the ASVspoof 2017 and 2019 PA datasets showed poor

cross-dataset performance on the ASVspoof 2019 real PA test set, indicating

that these datasets do not reflect real world replay conditions, suggesting a

need for careful design and validation of replay spoofing datasets.

Finally, motivated from the widespread use of GMMs as a backend clas-

sifier, the chapter (Section 5.5) proposed VAEs as an alternative backend for

replay attack detection, via three alternative models that differ in their class-

conditioning. The first approach (vanilla VAE) was similar to that of tradi-

tional GMMs involving training of two separate VAEs — one for each class.

The second approach trained a single conditional model (C-VAE) by injecting

a one-hot class label vector to the encoder and decoder networks. The third

approach involved integrating an auxiliary classifier to guide the learning of the

latent space.

Quantitative results for the vanilla VAE suggested that it was difficult to

capture discriminative information when the VAEs were trained using only one-

class data. It was shown that both the bonafide and spoof models focused

on retaining prominent characteristics of the speech signal relevant for data

reconstruction while giving less attention on class-discriminative information.

Nonetheless, the qualitative results indicated that both bonafide and spoof VAEs

yielded a reasonable reconstruction of the input data. Quantitative results of the

C-VAE model conditioning both the encoder and decoder networks by class-label

vectors showed far more encouraging results. The performance of this model

on both the ASVspoof 2017 and ASVspoof 2019 datasets showed remarkable

improvement in comparison to the vanilla VAE models. The third approach of

augmenting an auxiliary classifier with the C-VAE did not help much. Although

this model offered some performance gains on the ASVspoof 2019 dataset, no

substantial improvement was found on the ASVspoof 2017 dataset, suggesting

the importance of training set size for improved generalisation.

Finally, this chapter proposed the use of VAE residuals — the absolute

difference of the original input and the reconstruction — as a novel feature for

replay spoofing detection and demonstrated substantial improvement over the

VAE backend use case.

6.2 Future work

This section provides a summary of potential research directions that could be

explored towards extending the work presented in this thesis, along with key

issues and challenges in building trustworthy countermeasures for replay spoof-

201

ing attacks.

Analysis: on the reliability and trustworthiness of countermeasures

• Towards the interpretability of spoofing countermeasures. It would be

interesting to apply the SLIME algorithm (Subsection 4.5.3) and other

interpretability methods to investigate: how explanations vary across dif-

ferent phrases; how explanations vary across different types of replay

conditions/configurations; and whether speaker information (for exam-

ple, fundamental frequency, prosody) influences spoofing detection per-

formance. As ASVspoof 2019 phrase IDs are not available, an automatic

speech recognition system can be used to first decode the utterance ID

and perform the study on phrase-based analysis. Another method from

interpretable machine learning we aim to study towards understanding

a deep countermeasure model is ‘feature inversion’ [Mishra et al., 2018]

which helps derive a broader understanding of what information different

hidden layers have captured about the bonafide and spoofed classes.

• Studies on fooling ML model decisions using adversarial inputs is an active

research topic [Nguyen et al., 2015, Heaven, 2019, Szegedy et al., 2014].

Adversarial examples are carefully-crafted samples that are as real as the

original input samples, imperceptible to humans, and are capable of easily

manipulating model’s trustworthiness [Yuan et al., 2017]. Therefore, it is

important to ensure robustness of ML models against adversarial attacks.

Spoofing countermeasures are primarily designed to enhance trustworthi-

ness of voice biometrics to end-users. This also indicates that robustness

of such systems in the face of adversarial attacks is of prime importance

in achieving the goal of trustworthiness. Although there are a few recent

works on adversarial attacks on anti-spoofing systems [Liu et al., 2019b],

but these works are primarily focussed on countermeasures for LA attacks

(speech synthesis and voice conversion). Investigating the robustness of

replay spoofing countermeasures against adversarial attacks would be an-

other research avenue we look forward to.

• To mitigate the issues identified on the ASVspoof 2019 PA dataset, we

proposed a simple solution to remove the first block of zero-valued sam-

ples before and after spoofed utterances. However, near-silent segments

and silences between words within the recording might remain providing

potential cues for spoofing detection. While it is desirable to have ML

models exploit them for discrimination but we also need to ensure that

they do not leave loop-holes for manipulation by a simply copy-paste of

silences as we demonstrated in this thesis (Subsections 4.2.3 and 5.2.5).

202

To this end, we also aim to investigate the tradeoff between robustness

and accuracy by incorporating a voice activity detector to discard all non-

speech/silence frames from the whole utterance. We aim to extend this

study on the ASVspoof 2017 v2.0 dataset as well.

On the design of Countermeasures

• The ASVspoof 2017 dataset comprises ten different phrases (see Table 3.1).

It would be interesting to analyse how different phrases and words relate

to the detection performance of countermeasure models. To this end,

deep CM models can be trained by conditioning the sentence ID to derive

phrase-specific models. An alternative to this would be to incorporate

multi-task learning [Caruana, 1997] with phrase ID detection being the

secondary task and spoofing detection as the primary task to be learned

simultaneously.

• To gauge the importance of each subband, Section 5.4 can be further

extended by excluding one of the 1 kHz bands (out of 8 uniformly split

bands, each of 1 kHz) at a time and train the model on the remaining 7

bands and test the performance, and repeating the process altering the

band to be discarded. In this kind of ablation study, a high increase in

EER (relative to the use of the fullband spectrum for training) will indicate

the importance of that subband. Likewise, if the performance is almost

the same, this would indicate the specific band is less useful for the task.

• As described in Section 5.5, the optimisation of network architecture and

model hyper-parameters for the ASVspoof 2019 PA dataset has not been

fully explored in the present study (as it used parameters optimised on

the 2017 dataset), leaving scope for further improvements. We found

promising results by conditioning VAEs using phrase IDs; this warrants

future studies with other conditioning variables such as speaker identity,

gender, and channel.

• Exploring the newly released ReMASC dataset (Subsection 3.4.1). Build-

ing new countermeasure models on this dataset and performing cross-

dataset performance evaluation with the ASVspoof 2017 and 2019 PA

datasets. Further analysing different attack conditions of the ReMASC

evaluation set is one potential research avenue.

• As a future work we aim to extend our study using VAEs (Section 5.5)

for the detection of synthetic and voice-converted speech on the ASVspoof

2015 and the ASVspoof 2019 LA datasets.

203

• Feature learning from raw data. The experimental results from this thesis

suggested that data driven models or end-to-end models are a potential

direction to pursue for replay spoofing detection due to the nature of

the task. One potential future direction includes investigating end-to-end

models to learn frame-level discriminative features from raw audio.

• In Section 5.2, we studied an ensemble model combining models at the

score-level. It would be interesting to extend this work by combining

information at the feature level. The idea is to combine learned features

from deep models with hand-crafted features and train a DNN on these

features. Deep models can be trained on different inputs (eg. spectrograms

or raw audio) to learn diverse features which may potentially help during

feature fusion. These can be further combined through late fusion (score-

level fusion). This approach can be studied on both benchmark datasets.

ASVspoof challenges and dataset design. Having participated in the two

editions of the ASVspoof challenges in 2017 and 2019 we identified reliabil-

ity, robustness and reproducibility as key factors that need attention, which

in-turn directly relate to dataset design issues that we identified on both the

datasets. We make the following recommendations that can be incorporated

in future ASVspoof and other related challenges to promote trustworthiness in

anti-spoofing research and development.

First, controlled dataset design and model validation to ensure they are free

from artefacts and confounders as we have identified in this thesis. One simple

approach for this would be to analyse the frame-wise log-likelihood score dis-

tribution of few confidently classified audio examples by a GMM baseline (see

Subsection 4.2.3). Alternatively, a baseline deep model could be trained using

utterance-level feature representations and the method we adopted in Subsec-

tion 4.5.3 can be applied to validate if there are potential cues/artefacts in the

dataset that models are exploiting to form predictions. These simple approaches

can help ensure that the challenge datasets are clean and models trained on them

would be free from dataset biases.

Second, reproducibility of the top performing systems for transparency should

be promoted in future challenges. This could be incorporated by imposing com-

pulsory code submission of top ranking systems, or a separate track for repro-

ducibility could be introduced. Incorporating such constraints will of course

introduce additional work, however, these recommendations will also help avoid

additional work towards reproducing a model that is hard to do so by follow-

ing missing details of the reported systems, thereby promoting transparency

and trustworthiness in anti-spoofing research. For example, the popular LCNN

model that demonstrated the best results in the ASVspoof 2017 challenge is a

204

mystery that no research group has been able to reproduce until to this date.

Such mysteries can be avoided and research results can become more fruitful

with the introduction of reproducibility guidelines.

205

Appendices

206

Appendix A

Deep model architectures

This appendix describes the architecture details of the deep models that were

used in Chapters 4 and 5 of the thesis. More precisely, descriptions of the

original LCNN architecture from Lavrentyeva et al. [2017] is provided for ref-

erence, a description of the adapted version of LCNN model referred as CNN1

is provided, and the description of two additional deep architectures that was

proposed in this thesis is also provided. In each of the architectures described

below the abbreviations: Conv, Dense, MFM, and MP denotes convolutional,

full connected, max feature map and max pooling, respectively.

Table A.1 summarises the LCNN model architecture that was used in [Lavren-

tyeva et al., 2017]. This architecture has been used in Sections 4.2, 4.3, and 4.4

with different input dimensions (defined in time (T) and frequency (F)). The

original LCNN uses T = 400 and F = 864.

Table A.2 summarises the CNN1 model architecture which is adapted from

LCNN (Table A.1), and is used in Sections 4.5, 4.6 and in all the sections of

Chapter 5. CNN1 applies a batch normalisation and ReLU nonlinearity after

every Conv and Dense layers unlike LCNN that uses MFM nonlinearity without

batch normalisation. A dropout layer with 50% drop ratio is applied before the

Dense1 layer and dense2 layer applies sigmoid nonlinearity.

Table A.3 summarises the CNN2 model architecture that is used in Sec-

tions 4.6 and 5.3. And, Table A.4 summarises the frame-based DNN model

architecture that is used in Section 5.3.

207

Table A.1: The generalised LCNN architecture that operates on the input of
shape F ×T × 1. The original LCNN [Lavrentyeva et al., 2017] implementation
uses T = 400 and F = 864.

Layer
Input Filter Stride # Filters/ Output
shape size size neurons shape

Conv1 F × T × 1 5× 5 1× 1 32 F × T × 32
MFM1 F × T × 32 - - - F × T × 16
MP1 F × T × 16 2× 2 2× 2 - F/2× T/2× 16

Conv2a F/2× T/2× 16 1× 1 1× 1 32 F/2× T/2× 32
MFM2a F/2× T/2× 32 - - - F/2× T/2× 16
Conv2b F/2× T/2× 16 3× 3 1× 1 48 F/2× T/2× 48
MFM2b F/2× T/2× 48 - - - F/2× T/2× 24

MP2 F/2× T/2× 24 2× 2 2× 2 - F/4× T/4× 24
Conv3a F/4× T/4× 24 1× 1 1× 1 48 F/4× T/4× 48
MFM3a F/4× T/4× 48 - - - F/4× T/4× 24
Conv3b F/4× T/4× 24 3× 3 1× 1 64 F/4× T/4× 64
MFM3b F/4× T/4× 64 - - - F/4× T/4× 32

MP3 F/4× T/4× 32 2× 2 2× 2 - F/8× T/8× 32
Conv4a F/8× T/8× 32 1× 1 1× 1 64 F/8× T/8× 64
MFM4a F/8× T/8× 64 - - - F/8× T/8× 32
Conv4b F/8× T/8× 32 3× 3 1× 1 32 F/8× T/8× 32
MFM4b F/8× T/8× 32 - - - F/8× T/8× 16

MP4 F/8× T/8× 16 2× 2 2× 2 - F/16× T/16× 16
Conv5a F/16× T/16× 16 1× 1 1× 1 32 F/16× T/16× 32
MFM5a F/16× T/16× 32 - - - F/16× T/16× 16
Conv5b F/16× T/16× 16 3× 3 1× 1 32 F/16× T/16× 32
MFM5b F/16× T/16× 32 - - - F/16× T/16× 16

MP5 F/16× T/16× 16 2× 2 2× 2 - F/32× T/32× 16
FC6 F/32× T/32× 16 - - 64 32× 2

MFM6 32× 2 - - 32 32
FC7 32 - - 2 2

208

Table A.2: CNN1 model architecture which is adapted from Table A.1. This
model has 188, 875 free parameters. * indicates batch normalisation and ReLU
non-linearity. A dropout layer with 50% drop ratio is applied before the Dense1
layer. The Dense2 layer uses sigmoid non-linearity.

Layer
Input Filter Stride # Filters/ Output
shape size size neurons shape

Conv1 865× 400× 1 5× 5 1× 1 16 865× 400× 16
MP1 865× 400× 16 2× 2 2× 2 - 432× 200× 16

Conv∗2 432× 200× 16 3× 3 1× 1 16 432× 200× 16
Conv∗3 432× 200× 16 3× 3 1× 1 24 432× 200× 24
MP2 432× 200× 24 2× 2 2× 2 - 216× 100× 24

Conv∗4 216× 100× 24 3× 3 1× 1 32 216× 100× 32
Conv∗5 216× 100× 32 3× 3 1× 1 32 216× 100× 32
MP3 216× 100× 32 2× 2 2× 2 - 108× 50× 32

Conv∗6 108× 50× 32 3× 3 1× 1 32 108× 50× 32
Conv∗7 108× 50× 32 3× 3 1× 1 16 108× 50× 16
MP4 108× 50× 16 2× 2 2× 2 - 54× 25× 16

Conv∗8 54× 25× 16 3× 3 1× 1 16 54× 25× 16
Conv∗9 54× 25× 16 3× 3 1× 1 16 54× 25× 16
MP5 54× 25× 16 2× 2 2× 2 - 27× 12× 16

Flatten 27× 12× 16 - - - 5184
Dense∗1 5184 - - 32 32
Dense2 32 - - 1 1

Table A.3: CNN2 model architecture. This model has only 36,174 free param-
eters. * has the same meaning as in Table A.2. A dropout layer with 50%
drop ratio is applied before the Dense1 layer, and Dense2 applies sigmoid non-
linearity.

Layer
Input Filter Stride # Filters/ Output
shape size size neurons shape

Conv∗1 257× 300× 1 3× 3 1× 1 20 257× 300× 20
MP1 257× 300× 20 3× 3 1× 1 - 85× 100× 20

Conv∗2 85× 100× 20 3× 3 1× 1 15 85× 100× 15
MP2 85× 100× 15 3× 3 1× 1 - 28× 33× 15

Conv∗3 28× 33× 15 3× 3 1× 1 10 28× 33× 10
MP3 28× 33× 10 3× 3 1× 1 - 9× 11× 10

Flatten 9× 11× 10 - - - 990
Dense∗1 990 - - 32 32
Dense2 32 - - 1 1

209

Table A.4: Frame-based DNN architecture. ReLU non linearity is applied in
all dense layers except Dense4, the output layer that uses sigmoid non linearity.
A batch normalisation is applied to every layer before applying non linearity.
Furthermore, a dropout layer is applied before every dense layer with 30% to
the inputs of Dense1 and 50% to the other three dense layer inputs.

Layer
Input

Neurons
Output

shape shape
Flatten 1× 257× 1 - 257
Dense1 257 256 256
Dense2 256 128 128
Dense3 128 32 32
Dense4 32 1 1

210

Bibliography

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-

ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on het-

erogeneous systems, 2015. URL https://www.tensorflow.org/. Software

available from tensorflow.org.

AI-HLEG. Ethics Guidelines for Trustworthy AI, 2020. URL https://ec.

europa.eu/futurium/en/ai-alliance-consultation/guidelines.

K.N.R.K. Raju Alluri and Anil Kumar Vuppala. IIIT-H Spoofing Coun-

termeasures for Automatic Speaker Verification Spoofing and Countermea-

sures Challenge 2019. In Proc. Interspeech 2019, pages 1043–1047, 2019.

doi: 10.21437/Interspeech.2019-1623. URL http://dx.doi.org/10.21437/

Interspeech.2019-1623.

K.N.R.K. Raju Alluri, Sivanand Achanta, Sudarsana Reddy Kadiri,

Suryakanth V. Gangashetty, and Anil Kumar Vuppala. SFF Anti-Spoofer:

IIIT-H Submission for Automatic Speaker Verification Spoofing and Coun-

termeasures Challenge 2017. In Proc. Interspeech 2017, pages 107–111, 2017.

doi: 10.21437/Interspeech.2017-676. URL http://dx.doi.org/10.21437/

Interspeech.2017-676.

Moustafa Alzantot, Ziqi Wang, and Mani B. Srivastava. Deep Residual Neural

Networks for Audio Spoofing Detection. In Proc. Interspeech 2019, pages

1078–1082, 2019. doi: 10.21437/Interspeech.2019-3174. URL http://dx.

doi.org/10.21437/Interspeech.2019-3174.

211

https://www.tensorflow.org/
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
http://dx.doi.org/10.21437/Interspeech.2019-1623
http://dx.doi.org/10.21437/Interspeech.2019-1623
http://dx.doi.org/10.21437/Interspeech.2017-676
http://dx.doi.org/10.21437/Interspeech.2017-676
http://dx.doi.org/10.21437/Interspeech.2019-3174
http://dx.doi.org/10.21437/Interspeech.2019-3174

ASVspoof 2019 evaluation plan. The Automatic Speaker Verification Spoof-

ing and Countermeasures Challenge Evaluation Plan. URL http://www.

asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf.

Anderson R. Avila, Jahangir Alam, Douglas O’Shaughnessy, and Tiago H. Falk.

Blind Channel Response Estimation for Replay Attack Detection. In Proc. In-

terspeech 2019, pages 2893–2897, 2019. doi: 10.21437/Interspeech.2019-2956.

URL http://dx.doi.org/10.21437/Interspeech.2019-2956.

Bekir Bakar and Cemal Hanilçi. An Experimental Study on Audio Replay At-

tack Detection Using Deep Neural Networks. In 2018 IEEE Spoken Language

Technology Workshop (SLT), pages 132–138, 2018.

Christian Bartz, Tom Herold, Haojin Yang, and Christoph Meinel. Language

Identification Using Deep Convolutional Recurrent Neural Networks. arXiv

preprint arXiv:1708.04811, 2017.

Laurent Besacier and Jean-François Bonastre. Subband architecture for auto-

matic speaker recognition. Signal Processing, 80(7):1245 – 1259, 2000. ISSN

0165-1684. doi: https://doi.org/10.1016/S0165-1684(00)00033-5. URL http:

//www.sciencedirect.com/science/article/pii/S0165168400000335.

Rados law Bia lobrzeski, Micha l Kośmider, Mateusz Matuszewski, Marcin Plata,

and Alexander Rakowski. Robust Bayesian and Light Neural Networks for

Voice Spoofing Detection. In Proc. Interspeech 2019, pages 1028–1032, 2019.

doi: 10.21437/Interspeech.2019-2676. URL http://dx.doi.org/10.21437/

Interspeech.2019-2676.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN

0387310738.

Merlijn Blaauw and Jordi Bonada. Modeling and Transforming Speech using

Variational Autoencoders. In Proc. Interspeech 2016, pages 1770–1774, Sept

2016. doi: 10.21437/Interspeech.2016-1183.

Jean-francois Bonastre, Driss Matrouf, and Corinne Fredouille. Transfer

Function-Based Voice Transformation for Speaker Recognition. In 2006 IEEE

Odyssey - The Speaker and Language Recognition Workshop, pages 1–6, 2006.

Niko Brümmer and Edward de Villiers. The bosaris toolkit: Theory, algorithms

and code for surviving the new dcf. arXiv preprint arXiv:1304.2865, 2013.

David K. Burton. Text-dependent speaker verification using vector quantization

source coding. IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, 35(2):133–143, 1987.

212

http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://www.asvspoof.org/asvspoof2019/asvspoof2019_evaluation_plan.pdf
http://dx.doi.org/10.21437/Interspeech.2019-2956
http://www.sciencedirect.com/science/article/pii/S0165168400000335
http://www.sciencedirect.com/science/article/pii/S0165168400000335
http://dx.doi.org/10.21437/Interspeech.2019-2676
http://dx.doi.org/10.21437/Interspeech.2019-2676

Weicheng Cai, Danwei Cai, Wenbo Liu, Gang Li, and Ming Li. Countermea-

sures for Automatic Speaker Verification Replay Spoofing Attack : On Data

Augmentation, Feature Representation, Classification and Fusion. In Proc.

Interspeech 2017, pages 17–21, 2017. doi: 10.21437/Interspeech.2017-906.

URL http://dx.doi.org/10.21437/Interspeech.2017-906.

Weicheng Cai, Haiwei Wu, Danwei Cai, and Ming Li. The DKU Replay

Detection System for the ASVspoof 2019 Challenge: On Data Augmenta-

tion, Feature Representation, Classification, and Fusion. In Proc. Interspeech

2019, pages 1023–1027, 2019. doi: 10.21437/Interspeech.2019-1230. URL

http://dx.doi.org/10.21437/Interspeech.2019-1230.

William M. Campbell, Joseph P. Campbell, Douglas A. Reynolds, Elliot Singer,

and Pedro A. Torres-Carrasquillo. Support vector machines for speaker and

language recognition. Computer Speech & Language, 20(2):210 – 229, 2006.

ISSN 0885-2308. doi: https://doi.org/10.1016/j.csl.2005.06.003. URL http:

//www.sciencedirect.com/science/article/pii/S0885230805000318.

William M. Campbell, Joseph P. Campbell, Terry P. Gleason, Douglas A.

Reynolds, and Wade Shen. Speaker Verification Using Support Vector Ma-

chines and High-Level Features. IEEE Transactions on Audio, Speech, and

Language Processing, 15(7):2085–2094, 2007.

Rich Caruana. Multitask learning. Machine Learning, 28:41 – 75, July 1997.

doi: https://doi.org/10.1023/A:1007379606734.

Sandipan Chakroborty, Anindya Roy, and Goutam Saha. Improved closed set

text-independent speaker identification by combining MFCC with evidence

from flipped filter banks. IJSP, 4(2):114–122, 2007.

Teck Kai Chan, Cheng Siong Chin, and Ye Li. Non-Negative Matrix

Factorization-Convolutional Neural Network (NMF-CNN) For Sound Event

Detection. arXiv preprint arXiv:2001.07874, 2020.

Su-Yu Chang, Kai-Cheng Wu, and Chia-Ping Chen. Transfer-Representation

Learning for Detecting Spoofing Attacks with Converted and Synthesized

Speech in Automatic Speaker Verification System. In Proc. Interspeech 2019,

pages 1063–1067, 2019. doi: 10.21437/Interspeech.2019-2014. URL http:

//dx.doi.org/10.21437/Interspeech.2019-2014.

Christoforos C. Charalambous and Anil A. Bharath. A data augmentation

methodology for training machine/deep learning gait recognition algorithms.

arXiv preprint arXiv:1610.07570, 2016.

213

http://dx.doi.org/10.21437/Interspeech.2017-906
http://dx.doi.org/10.21437/Interspeech.2019-1230
http://www.sciencedirect.com/science/article/pii/S0885230805000318
http://www.sciencedirect.com/science/article/pii/S0885230805000318
http://dx.doi.org/10.21437/Interspeech.2019-2014
http://dx.doi.org/10.21437/Interspeech.2019-2014

Jonathan Chen and Steven Asch. Machine Learning and Prediction in Medicine

— Beyond the Peak of Inflated Expectations. New England Journal of

Medicine, 376:2507–2509, 06 2017. doi: 10.1056/NEJMp1702071.

Zhuxin Chen, Zhifeng Xie, Weibin Zhang, and Xiangmin Xu. ResNet and Model

Fusion for Automatic Spoofing Detection. In Proc. Interspeech 2017, pages

102–106, 2017. doi: 10.21437/Interspeech.2017-1085. URL http://dx.doi.

org/10.21437/Interspeech.2017-1085.

Bhusan Chettri and Bob L. Sturm. A Deeper Look at Gaussian Mixture Model

Based Anti-Spoofing Systems. In 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 5159–5163, 2018.

Bhusan Chettri, Saumitra Mishra, Bob L. Sturm, and Emmanouil Benetos.

Analysing the Predictions of a CNN-based Replay Spoofing Detection Sys-

tem. In IEEE International Workshop on Spoken Language Technology (SLT),

pages 92–97, September 2018a.

Bhusan Chettri, Saumitra Mishra, Bob L. Sturm, and Emmanouil Benetos. A

Study On Convolutional Neural Network Based End-To-End Replay Anti-

Spoofing. arXiv preprint arXiv:1805.09164, 2018b.

Bhusan Chettri, Bob L. Sturm, and Emmanouil Benetos. Analysing Replay

Spoofing Countermeasure Performance under Different Conditions. In 2018

IEEE 28th International Workshop on Machine Learning for Signal Process-

ing (MLSP), pages 1–6, 2018c.

Bhusan Chettri, Daniel Stoller, Veronica Morfi, Marco A. Mart́ınez Ramı́rez,

Emmanouil Benetos, and Bob L. Sturm. Ensemble Models for Spoofing De-

tection in Automatic Speaker Verification. In Proc. Interspeech 2019, pages

1018–1022, September 2019.

Bhusan Chettri, Tomi Kinnunen, and Emmanouil Benetos. Deep generative

variational autoencoding for replay spoof detection in automatic speaker

verification. Computer Speech & Language, 63:101092, 2020. ISSN 0885-

2308. doi: https://doi.org/10.1016/j.csl.2020.101092. URL http://www.

sciencedirect.com/science/article/pii/S0885230820300255.

François Chollet. keras. https://github.com/fchollet/keras, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Ac-

curate Deep Network Learning by Exponential Linear Units (ELUs). arXiv

preprint arXiv:1511.07289, 2015.

214

http://dx.doi.org/10.21437/Interspeech.2017-1085
http://dx.doi.org/10.21437/Interspeech.2017-1085
http://www.sciencedirect.com/science/article/pii/S0885230820300255
http://www.sciencedirect.com/science/article/pii/S0885230820300255
https://github.com/fchollet/keras

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley,

2001. ISBN 9780471062592. doi: 10.1002/0471200611. URL https://doi.

org/10.1002/0471200611.

Sara Dahmani, Vincent Colotte, Valérian Girard, and Slim Ouni. Conditional

Variational Auto-Encoder for Text-Driven Expressive AudioVisual Speech

Synthesis. In Proc. Interspeech 2019, pages 2598–2602, 2019. doi: 10.21437/

Interspeech.2019-2848. URL http://dx.doi.org/10.21437/Interspeech.

2019-2848.

Rohan Kumar Das, Jichen Yang, and Haizhou Li. Long Range Acoustic Features

for Spoofed Speech Detection. In Proc. Interspeech 2019, pages 1058–1062,

2019. doi: 10.21437/Interspeech.2019-1887. URL http://dx.doi.org/10.

21437/Interspeech.2019-1887.

Steven B. Davis and Paul Mermelstein. Comparison of parametric represen-

tations for monosyllabic word recognition in continuously spoken sentences.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4):357–

366, Aug 1980.

Najim Dehak, Patrick J. Kenny, Réda Dehak, Pierre Dumouchel, and Pierre

Ouellet. Front-End Factor Analysis for Speaker Verification. IEEE Transac-

tions on Audio, Speech, and Language Processing, 19(4):788–798, May 2011.

Hector Delgado, Massimiliano Todisco, Mohammad. Sahidullah, Nicholas

Evans, Tomi Kinnunen, Kong Aik Lee, and Junichi Yamagishi. ASVspoof

2017 Version 2.0: meta-data analysis and baseline enhancements. In Proc.

Speaker Odyssey, 2018.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society: Series B, 39:1–38, 1977. URL http://web.mit.edu/6.435/www/

Dempster77.pdf.

Srinivas Desai, E. Veera Raghavendra, B. Yegnanarayana, Alan W. Black, and

Kishore Prahallad. Voice conversion using Artificial Neural Networks. In 2009

IEEE International Conference on Acoustics, Speech and Signal Processing,

pages 3893–3896, 2009.

Bradley W. Dickinson and Kenneth Steiglitz. Eigenvectors and functions of

the discrete Fourier transform. IEEE Transactions on Acoustics, Speech, and

Signal Processing, 30(1):25–31, 1982.

215

https://doi.org/10.1002/0471200611
https://doi.org/10.1002/0471200611
http://dx.doi.org/10.21437/Interspeech.2019-2848
http://dx.doi.org/10.21437/Interspeech.2019-2848
http://dx.doi.org/10.21437/Interspeech.2019-1887
http://dx.doi.org/10.21437/Interspeech.2019-1887
http://web.mit.edu/6.435/www/Dempster77.pdf
http://web.mit.edu/6.435/www/Dempster77.pdf

Heinrich Dinkel, Nanxin Chen, Yanmin Qian, and Kai Yu. End-to-end spoofing

detection with raw waveform CLDNNS. In Proc. ICASSP, pages 4860–4864,

March 2017.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for

deep learning. arXiv preprint arXiv:1603.07285, 2016.

Serife Kucur Ergünay, Elie Khoury, Alexandros Lazaridis, and Sébastien Marcel.

On the vulnerability of speaker verification to realistic voice spoofing. In 2015

IEEE 7th International Conference on Biometrics Theory, Applications and

Systems (BTAS), pages 1–6, Sep. 2015. doi: 10.1109/BTAS.2015.7358783.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visual-

izing Higher-Layer Features of a Deep Network. Technical Report, University

of Montreal, 01 2009.

Philippe Esling, Axel Chemla–Romeu-Santos, and Adrien Bitton. Generative

timbre spaces with variational audio synthesis. In Proc. of the 21st Interna-

tional Conference on Digital Audio Effects, 2018.

Fuming Fang, Junichi Yamagishi, Isao Echizen, and Jaime Lorenzo-Trueba.

High-quality nonparallel voice conversion based on cycle-consistent adversar-

ial network. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5279–5283, 2018a.

Fuming Fang, Junichi Yamagishi, Isao Echizen, Mohammad Sahidullah, and

Tomi Kinnunen. Transforming acoustic characteristics to deceive playback

spoofing countermeasures of speaker verification systems. In 2018 IEEE In-

ternational Workshop on Information Forensics and Security (WIFS), pages

1–9, Dec 2018b. doi: 10.1109/WIFS.2018.8630764.

Siyuan Feng and Tan Lee. Improving Unsupervised Subword Modeling via

Disentangled Speech Representation Learning and Transformation. In Proc.

Interspeech 2019, pages 281–285, 2019. doi: 10.21437/Interspeech.2019-1338.

URL http://dx.doi.org/10.21437/Interspeech.2019-1338.

Roberto Font, Juan M. Esṕın, and Maŕıa José Cano. Experimental Analysis of

Features for Replay Attack Detection — Results on the ASVspoof 2017 Chal-

lenge. In Proc. Interspeech 2017, pages 7–11, 2017. doi: 10.21437/Interspeech.

2017-450. URL http://dx.doi.org/10.21437/Interspeech.2017-450.

Daniel Garcia-Romero, David Snyder, Gregory Sell, Alan McCree, Daniel Povey,

and Sanjeev Khudanpur. x-Vector DNN Refinement with Full-Length Record-

ings for Speaker Recognition. In Proc. Interspeech 2019, pages 1493–1496,

216

http://dx.doi.org/10.21437/Interspeech.2019-1338
http://dx.doi.org/10.21437/Interspeech.2017-450

2019. doi: 10.21437/Interspeech.2019-2205. URL http://dx.doi.org/10.

21437/Interspeech.2019-2205.

Sachin Garg, Shruti Bhilare, and Vivek Kanhanga. Subband Analysis for Per-

formance Improvement of Replay Attack Detection in Speaker Verification

Systems. In 2019 IEEE 5th International Conference on Identity, Security,

and Behavior Analysis (ISBA), pages 1–7, Jan 2019.

Andrew Gibiansky, Sercan Arik, Gregory Diamos, John Miller, Kainan Peng,

Wei Ping, Jonathan Raiman, and Yanqi Zhou. Deep Voice 2: Multi-Speaker

Neural Text-to-Speech. In Advances in Neural Information Processing Sys-

tems 30, pages 2962–2970, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In 13th International Conference on Artificial

Intelligence and Statistics (AISTATS), volume 9, pages 249–256, 2010.

Alejandro Gomez-Alanis, Antonio M. Peinado, Jose A. Gonzalez, and Angel M.

Gomez. A Gated Recurrent Convolutional Neural Network for Robust Spoof-

ing Detection. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 27(12):1985–1999, 2019a.

Alejandro Gomez-Alanis, Antonio M. Peinado, Jose A. Gonzalez, and Angel M.

Gomez. A Light Convolutional GRU-RNN Deep Feature Extractor for ASV

Spoofing Detection. In Proc. Interspeech 2019, pages 1068–1072, 2019b.

doi: 10.21437/Interspeech.2019-2212. URL http://dx.doi.org/10.21437/

Interspeech.2019-2212.

Yuan Gong, Jian Yang, Jacob Huber, Mitchell MacKnight, and Christian

Poellabauer. ReMASC: Realistic Replay Attack Corpus for Voice Controlled

Systems. In Proc. Interspeech 2019, pages 2355–2359, 2019. doi: 10.21437/

Interspeech.2019-1541. URL http://dx.doi.org/10.21437/Interspeech.

2019-1541.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in neural information processing sys- tems, pages

2672–2680, 2014.

Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

Thomas Grill and Jan Schlüter. Two convolutional neural networks for bird de-

tection in audio signals. In 2017 25th European Signal Processing Conference

(EUSIPCO), pages 1764–1768, Aug 2017.

217

http://dx.doi.org/10.21437/Interspeech.2019-2205
http://dx.doi.org/10.21437/Interspeech.2019-2205
http://dx.doi.org/10.21437/Interspeech.2019-2212
http://dx.doi.org/10.21437/Interspeech.2019-2212
http://dx.doi.org/10.21437/Interspeech.2019-1541
http://dx.doi.org/10.21437/Interspeech.2019-1541
http://www.deeplearningbook.org

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco

Visin, David Vazquez, and Aaron Courville. PixelVAE: A Latent Variable

Model for Natural Images. arXiv preprint arXiv:1611.05013, 2016.

Tharshini Gunendradasan, Buddhi Wickramasinghe, Ngoc Phu Le, Eliathamby

Ambikairajah, and Julien Epps. Detection of Replay-Spoofing Attacks Using

Frequency Modulation Features. In Proc. Interspeech 2018, pages 636–640,

2018. doi: 10.21437/Interspeech.2018-1473. URL http://dx.doi.org/10.

21437/Interspeech.2018-1473.

Tharshini Gunendradasan, Eliathamby Ambikairajah, Julien Epps, and

Haizhou Li. An Adaptive-Q Cochlear Model for Replay Spoofing Detection.

In Proc. Interspeech 2019, pages 2918–2922, 2019. doi: 10.21437/Interspeech.

2019-2361. URL http://dx.doi.org/10.21437/Interspeech.2019-2361.

Vishwa Gupta, Patrick Kenny, Pierre Ouellet, and Themos Stafylakis. I-vector-

based speaker adaptation of deep neural networks for French broadcast audio

transcription. In 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 6334–6338, 2014.

Rosa González Hautamäki, Tomi Kinnunen, Ville Hautamäki, and Anne-Maria

Laukkanen. Automatic versus human speaker verification: The case of

voice mimicry. Speech Communication, 72:13 – 31, 2015. ISSN 0167-

6393. doi: https://doi.org/10.1016/j.specom.2015.05.002. URL http://www.

sciencedirect.com/science/article/pii/S0167639315000503.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. arXiv preprint arXiv:1512.03385, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.

arXiv preprint arXiv:1502.01852, 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual

Learning for Image Recognition. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition, 2016.

Douglas Heaven. Why deep-learning AIs are so easy to fool. Nature, 574:163–

166, 10 2019. doi: 10.1038/d41586-019-03013-5.

Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer. End-to-end

text-dependent speaker verification. In 2016 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 5115–5119, 2016.

218

http://dx.doi.org/10.21437/Interspeech.2018-1473
http://dx.doi.org/10.21437/Interspeech.2018-1473
http://dx.doi.org/10.21437/Interspeech.2019-2361
http://www.sciencedirect.com/science/article/pii/S0167639315000503
http://www.sciencedirect.com/science/article/pii/S0167639315000503

Jose Hernandez-Orallo. Gazing into Clever Hans machines. Nature Machine

Intelligence, page 1, 03 2019. doi: 10.1038/s42256-019-0032-5.

Wei Ning Hsu, Yu Zhang, and James Glass. Learning Latent Representations

for Speech Generation and Transformation. In Proc. Interspeech, pages 1273–

1277, 2017a.

Wei Ning Hsu, Yu Zhang, and James Glass. Unsupervised Learning of Disen-

tangled and Interpretable Representations from Sequential Data. In Advances

in Neural Information Processing Systems, 2017b.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-

Excitation Networks. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, 2018.

Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, and Tieniu Tan. IntroVAE:

Introspective Variational Autoencoders for Photographic Image Synthesis. In

Proc. of the 32nd International Conference on Neural Information Processing

Systems, NIPS’18, pages 52–63, USA, 2018. Curran Associates Inc.

Zhen Huang, Tim Ng, Leo Liu, Henry Mason, Xiaodan Zhuang, and Daben Liu.

SNDCNN: Self-normalizing deep CNNs with scaled exponential linear units

for speech recognition. arXiv preprint arXiv:1910.01992, 2019.

Andrew J. Hunt and Alan W. Black. Unit selection in a concatenative speech

synthesis system using a large speech database. In 1996 IEEE International

Conference on Acoustics, Speech, and Signal Processing Conference Proceed-

ings, volume 1, pages 373–376, 1996.

Sergey Ioffe. Probabilistic Linear Discriminant Analysis. In Computer Vision –

ECCV 2006, pages 531–542, Berlin, Heidelberg, 2006.

ISO/IEC. Information technology — Biometric presentation attack detection

— Part 1: Framework. https://www.iso.org/obp/ui/#iso:std:iso-iec:

30107:-1:ed-1:v1:en, 2016.

Sarfaraz Jelil, Rohan Kumar Das, S.R. Mahadeva Prasanna, and Rohit Sinha.

Spoof Detection Using Source, Instantaneous Frequency and Cepstral Fea-

tures. In Proc. Interspeech 2017, pages 22–26, 2017. doi: 10.21437/

Interspeech.2017-930. URL http://dx.doi.org/10.21437/Interspeech.

2017-930.

Sarfaraz Jelil, Sishir Kalita, S R Mahadeva Prasanna, and Rohit Sinha. Explo-

ration of Compressed ILPR Features for Replay Attack Detection. In Proc.

219

https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:30107:-1:ed-1:v1:en
http://dx.doi.org/10.21437/Interspeech.2017-930
http://dx.doi.org/10.21437/Interspeech.2017-930

Interspeech 2018, pages 631–635, 2018. doi: 10.21437/Interspeech.2018-1297.

URL http://dx.doi.org/10.21437/Interspeech.2018-1297.

Zhe Ji, Zhi-Yi Li, Peng Li, Maobo An, Shengxiang Gao, Dan Wu, and Faru

Zhao. Ensemble Learning for Countermeasure of Audio Replay Spoofing

Attack in ASVspoof2017. In Proc. Interspeech 2017, pages 87–91, 2017.

doi: 10.21437/Interspeech.2017-1246. URL http://dx.doi.org/10.21437/

Interspeech.2017-1246.

Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and

Michael I. Jordan. Local Maxima in the Likelihood of Gaussian Mixture Mod-

els: Structural Results and Algorithmic Consequences. In Advances in Neural

Information Processing Systems 29: Annual Conference on Neural Informa-

tion Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages

4116–4124, 2016.

Ian Jolliffe and Jorge Cadima. Principal component analysis: A review and re-

cent developments. Philosophical Transactions of the Royal Society A: Math-

ematical, Physical and Engineering Sciences, 374:20150202, 04 2016. doi:

10.1098/rsta.2015.0202.

Jee-Weon Jung, Hee-Soo Heo, Il-Ho Yang, Hye-Jin Shim, and Ha-Jin Yu. A

Complete End-to-End Speaker Verification System Using Deep Neural Net-

works: From Raw Signals to Verification Result. In 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5349–5353, 2018.

Jee-weon Jung, Hye jin Shim, Hee-Soo Heo, and Ha-Jin Yu. Replay Attack

Detection with Complementary High-Resolution Information Using End-to-

End DNN for the ASVspoof 2019 Challenge. In Proc. Interspeech 2019, pages

1083–1087, 2019. doi: 10.21437/Interspeech.2019-1991. URL http://dx.

doi.org/10.21437/Interspeech.2019-1991.

Jee-weon Jung, Hye jin Shim, Hee-Soo Heo, and Ha-Jin Yu. A study on the role

of subsidiary information in replay attack spoofing detection. arXiv preprint

arXiv:2001.11688, 2020.

Madhu Kamble and Hemant Patil. Novel Variable Length Energy Separation

Algorithm Using Instantaneous Amplitude Features for Replay Detection.

In Proc. Interspeech 2018, pages 646–650, 2018. doi: 10.21437/Interspeech.

2018-1687. URL http://dx.doi.org/10.21437/Interspeech.2018-1687.

Madhu Kamble, Hemlata Tak, and Hemant Patil. Effectiveness of Speech

Demodulation-Based Features for Replay Detection. In Proc. Interspeech

220

http://dx.doi.org/10.21437/Interspeech.2018-1297
http://dx.doi.org/10.21437/Interspeech.2017-1246
http://dx.doi.org/10.21437/Interspeech.2017-1246
http://dx.doi.org/10.21437/Interspeech.2019-1991
http://dx.doi.org/10.21437/Interspeech.2019-1991
http://dx.doi.org/10.21437/Interspeech.2018-1687

2018, pages 641–645, 2018. doi: 10.21437/Interspeech.2018-1675. URL

http://dx.doi.org/10.21437/Interspeech.2018-1675.

Madhu R. Kamble and Hemant A. Patil. Analysis of Reverberation via Teager

Energy Features for Replay Spoof Speech Detection. In ICASSP 2019 - 2019

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2607–2611, May 2019.

Hirokazu Kameoka, Takuhiro Kaneko, Kou Tanaka, and Nobukatsu Hojo.

ACVAE-VC: Non-parallel many-to-many voice conversion with auxiliary clas-

sifier variational autoencoder. arXiv preprint arXiv:1808.05092, 2018a.

Hirokazu Kameoka, Li Li, Shota Inoue, and Shoji Makino. Semi-blind

source separation with multichannel variational autoencoder. arXiv preprint

arXiv:1808.00892, 2018b.

Ahilan Kanagasundaram. Speaker Verification using I-vector Features. PhD

thesis, Queensland University of Technology, October 2014.

Shachar Kaufman, Saharon Rosset, and Claudia Perlich. Leakage in Data Min-

ing: Formulation, Detection, and Avoidance. volume 6, pages 556–563, 01

2011. doi: 10.1145/2020408.2020496.

Patrick Kenny, Vishwa Gupta, Themos Stafylakis, Pierre Ouellet, and Md Ja-

hangir Alam. Deep neural networks for extracting baum-welch statistics for

speaker recognition. In Proc. Odyssey Speaker and Language Recognition

Workshop, 06 2014.

Elie Khoury, Tomi Kinnunen, Aleksandr Sizov, Zhizeng Wu, and Sebastian

Marcel. Introducing i-vectors for joint anti-spoofing and speaker verification.

In Proc. Interspeech 2014, pages 61–65, September 2014.

Kihyuk Sohn and Honglak Lee and Xinchen Yan. Learning structured out-

put representation using deep conditional generative models. In Advances in

Neural Information Processing Systems, page 3483–3491, 2015.

Taejun Kim, Jongpil Lee, and Juhan Nam. Sample-Level CNN Architectures for

Music Auto-Tagging Using Raw Waveforms. In IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pages 366–370,

2018.

Diederik P. Kingma and Jimmy Ba. An investigation of dependencies be-

tween frequency components and speaker characteristics for text-independent

speaker identification. Speech Communication, 50:1820–1824, 2008.

221

http://dx.doi.org/10.21437/Interspeech.2018-1675

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimiza-

tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv

preprint arXiv:1312.6114, 2013.

Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker

recognition: From features to supervectors. Speech Communication, 52(1):

12 – 40, 2010a. ISSN 0167-6393. doi: https://doi.org/10.1016/j.specom.

2009.08.009. URL http://www.sciencedirect.com/science/article/

pii/S0167639309001289.

Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker recog-

nition: From features to supervectors. Speech Communication, 52(1):12 – 40,

2010b. ISSN 0167-6393. doi: https://doi.org/10.1016/j.specom.2009.08.009.

Tomi Kinnunen, Zhi-Zheng Wu, Kong Aik Lee, Filip Sedlak, Eng Siong Chng,

and Haizhou Li. Vulnerability of speaker verification systems against voice

conversion spoofing attacks: The case of telephone speech. In 2012 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 4401–4404, 2012.

Tomi Kinnunen, Mohammad Sahidullah, Hector Delgado, Massimiliano

Todisco, Nicholas Evans, Junichi Yamagishi, and Kong Aik Lee. The

ASVspoof 2017 Challenge: Assessing the Limits of Replay Spoofing Attack

Detection. In Proc. Interspeech 2017, 2017a.

Tomi Kinnunen, Mohammad Sahidullah, Mauro Falcone, Luca Costantini,

Rosa González Hautamäki, Dennis Thomsen, Achintya Sarkar, Zheng-Hua

Tan, Héctor Delgado, Massimiliano Todisco, Nicholas Evans, Ville Hau-

tamäki, and Kong Aik Lee. RedDots Replayed: A New Replay Spoofing

Attack Corpus for Text-dependent Speaker Verification Research. In ICASSP

2017. IEEE, 2017b.

Tomi Kinnunen, Kong Aik Lee, Hector Delgado, Nicholas Evans, Massimil-

iano Todisco, Mohammad Sahidullah, Junichi Yamagishi, and Douglas A.

Reynolds. t-DCF: a Detection Cost Function for the Tandem Assessment

of Spoofing Countermeasures and Automatic Speaker Verification. In Proc.

Speaker Odyssey, 2018.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-Normalizing Neural Networks. arXiv preprint arXiv:1706.02515, 2017.

222

http://arxiv.org/abs/1412.6980
http://www.sciencedirect.com/science/article/pii/S0167639309001289
http://www.sciencedirect.com/science/article/pii/S0167639309001289

Cheng-I Lai, Alberto Abad, Korin Richmond, Junichi Yamagishi, Najim De-

hak, and Simon King. Attentive Filtering Networks for Audio Replay Attack

Detection. In Proc. ICASSP, pages 6316–6320, May 2019a.

Cheng-I Lai, Nanxin Chen, Jesús Villalba, and Najim Dehak. ASSERT: Anti-

Spoofing with Squeeze-Excitation and Residual Networks. In Proc. Inter-

speech 2019, pages 1013–1017, 2019b. doi: 10.21437/Interspeech.2019-1794.

URL http://dx.doi.org/10.21437/Interspeech.2019-1794.

Anthony Larcher, Kong Aik Lee, Bin Ma, and Haizhou Li. Text-dependent

speaker verification: Classifiers, databases and RSR2015. Speech Communi-

cation, 60:56 – 77, 2014. ISSN 0167-6393. doi: https://doi.org/10.1016/j.

specom.2014.03.001.

Yee Lau, Dat Tran, and Michael Wagner. Testing Voice Mimicry with the

YOHO Speaker Verification Corpus. volume 3684, pages 15–21, 09 2005. doi:

10.1007/11554028 3.

Yee Wah Lau, Michael Wagner, and Dat Tran. Vulnerability of speaker verifica-

tion to voice mimicking. In Proceedings of 2004 International Symposium on

Intelligent Multimedia, Video and Speech Processing, 2004., pages 145–148,

2004.

Galina Lavrentyeva, Sergey Novoselov, Egor Malykh, Alexander Kozlov, Kuda-

shev Oleg, and Vadim Shchemelinin. Audio Replay Attack Detection with

Deep Learning Frameworks. In Proc. Interspeech 2017, pages 82–86, 2017.

Galina Lavrentyeva, Sergey Novoselov, Andzhukaev Tseren, Marina Volkova,

Artem Gorlanov, and Alexandr Kozlov. STC Antispoofing Systems for the

ASVspoof2019 Challenge. In Proc. Interspeech 2019, pages 1033–1037, 2019.

doi: 10.21437/Interspeech.2019-1768. URL http://dx.doi.org/10.21437/

Interspeech.2019-1768.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recog-

nition with gradient-based learning. In Shape, Contour and Grouping in Com-

puter Vision, pages 319–345. Springer Verlag, Jan 1999. ISBN 3540667229.

Jongpil Lee, Jiyoung Park, Keunhyoung Luke Kim, and Juhan Nam. Sample-

level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw

Waveforms. In 14th International Conference on Sound and Music Computing

(SMC), 2017.

Kong Aik Lee, Anthony Larcher, Guangsen Wang, Patrick Kenny, Niko Brum-

mer, David van Leeuwen, Hagai Aronowitz, Marcel Kockmann, Carlos Va-

quero, Bin Ma, Haizhou Li, Themos Stafylakis, Jahangir Alam, Albert Swart,

223

http://dx.doi.org/10.21437/Interspeech.2019-1794
http://dx.doi.org/10.21437/Interspeech.2019-1768
http://dx.doi.org/10.21437/Interspeech.2019-1768

and Javier Perez. The RedDots Data Collection for Speaker Recognition. In

Proc. Interspeech 2015, pages 2996–3000, 2015.

Simon Leglaive, Umut Simsekli, Antoine Liutkus, Laurent Girin, and Radu

Horaud. Speech enhancement with variational autoencoders and alpha-stable

distributions. In Proc. ICASSP, pages 541–545, Brighton, United Kingdom,

May 2019. IEEE.

Alexander Lerch. An Introduction to Audio Content Analysis: Applications in

Signal Processing and Music Informatics. John Wiley & Sons, 2012. ISBN

9781118393550.

Dongbo Li, Longbiao Wang, Jianwu Dang, Meng Liu, Zeyan Oo, Seiichi Naka-

gawa, Haotian Guan, and Xiangang Li. Multiple Phase Information Combina-

tion for Replay Attacks Detection. In Proc. Interspeech 2018, pages 656–660,

2018. doi: 10.21437/Interspeech.2018-2001. URL http://dx.doi.org/10.

21437/Interspeech.2018-2001.

Lantian Li, Yixiang Chen, Dong Wang, and Thomas Fang Zheng. A Study on

Replay Attack and Anti-Spoofing for Automatic Speaker Verification. In Proc.

Interspeech 2017, pages 92–96, 2017. doi: 10.21437/Interspeech.2017-456.

URL http://dx.doi.org/10.21437/Interspeech.2017-456.

Li Li, Hirokazu Kameoka, and Shoji Makino. Fast MVAE: Joint Separation

and Classification of Mixed Sources Based on Multichannel Variational Au-

toencoder with Auxiliary Classifier. In Proc. ICASSP, pages 546–550, May

2019a.

Rongjin Li, Miao Zhao, Zheng Li, Lin Li, and Qingyang Hong. Anti-Spoofing

Speaker Verification System with Multi-Feature Integration and Multi-Task

Learning. In Proc. Interspeech 2019, pages 1048–1052, 2019b. doi: 10.21437/

Interspeech.2019-1698. URL http://dx.doi.org/10.21437/Interspeech.

2019-1698.

Lang Lin, Rangding Wang, and Diqun Yan. A Replay Speech Detection Al-

gorithm Based on Sub-band Analysis. In 10th IFIP TC 12 International

Conference, IIP 2018, Nanning, China, October 19-22, 2018, Proceedings,

pages 337–345, 01 2018.

Johan Lindberg and Mats Blomberg. Vulnerability in speaker verification - a

study of technical impostor techniques. In Proc. European Conference on

Speech Communication and Technology, volume 3, page 1211–1214, 01 1999.

224

http://dx.doi.org/10.21437/Interspeech.2018-2001
http://dx.doi.org/10.21437/Interspeech.2018-2001
http://dx.doi.org/10.21437/Interspeech.2017-456
http://dx.doi.org/10.21437/Interspeech.2019-1698
http://dx.doi.org/10.21437/Interspeech.2019-1698

Zhang Lipeng, Cao Jiang, Xu Mingxing, and Zheng Fang. Prevention of impos-

tors entering speaker recognition systems. Journal of Tsinghua University,

48:699–703, 04 2008.

Meng Liu, Longbiao Wang, Jianwu Dang, Seiichi Nakagawa, Haotian Guan,

and Xiangang Li. Replay Attack Detection Using Magnitude and Phase In-

formation with Attention-based Adaptive Filters. In Proc. ICASSP, pages

6201–6205, May 2019a.

Songxiang Liu, Haibin Wu, Hung yi Lee, and Helen Meng. Adversarial Attacks

on Spoofing Countermeasures of Automatic Speaker Verification. In 2019

IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),

pages 312–319, 2019b.

Saranya M S and Hema Murthy. Decision-level Feature Switching as a Paradigm

for Replay Attack Detection. In Proc. Interspeech 2018, pages 686–690,

September 2018. doi: 10.21437/Interspeech.2018-1494. URL http://dx.

doi.org/10.21437/Interspeech.2018-1494.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proceedings of ICML, volume 30,

06 2013.

Laurens van der Maaten and Geoffrey E. Hinton. Visualizing Data using t-SNE.

Journal of Machine Learning Research, 1:1–48, 2008.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image repre-

sentations by inverting them. pages 5188–5196, 06 2015. doi: 10.1109/CVPR.

2015.7299155.

Johnny Mariéthoz and Samy Bengio. Can a Professional Imitator Fool a GMM-

Based Speaker Verification System? Idiap Research Report Number: Idiap-

RR-61-2005, 01 2005.

Takashi Masuko, Takafumi Hitotsumatsu, Keiichi Tokuda, and Takao

Kobayashi. On The Security of Hmm-Based Speaker Verification Systems

Against Imposture Using Synthetic Speech. In In Proceedings of the Euro-

pean Conference on Speech Communication and Technology, pages 1223–1226,

1999.

Driss Matrouf, Jean francois Bonastre, and Corinne Fredouille. Effect of Speech

Transformation on Impostor Acceptance. In 2006 IEEE International Confer-

ence on Acoustics Speech and Signal Processing Proceedings, volume 1, pages

I–I, 2006.

225

http://dx.doi.org/10.21437/Interspeech.2018-1494
http://dx.doi.org/10.21437/Interspeech.2018-1494

Alex F. Mendelson, Maria A. Zuluaga, Marco Lorenzi, Brian F. Hutton, and

Sébastien Ourselin. Selection bias in the reported performances of AD

classification pipelines. NeuroImage: Clinical, 14:400 – 416, 2017. ISSN

2213-1582. doi: https://doi.org/10.1016/j.nicl.2016.12.018. URL http:

//www.sciencedirect.com/science/article/pii/S221315821630256X.

Jia Min Karen Kua, Tharmarajah Thiruvaran, Mohaddeseh Nosratighods,

Eliathamby Ambikairajah, and Julien Epps. Investigation of spectral cen-

troid magnitude and frequency for speaker recognition. In Proc. Odyssey

Speaker and Language Recognition Workshop, pages 34–39, 2010.

Saumitra Mishra. Interpretable Machine Learning for Machine Listening. PhD

thesis, Queen Mary University of London, May 2020.

Saumitra Mishra, Bob L. Sturm, and Simon Dixon. Local Interpretable Model-

Agnostic Explanations for Music Content Analysis. In Proc. ISMIR, 2017.

Saumitra Mishra, Bob L. Sturm, and Simon Dixon. Understanding a Deep

Machine Listening Model Through Feature Inversion. In Proc. ISMIR, 2018.

Saumitra Mishra, Daniel Stoller, Emmanouil Benetos, Bob L. Sturm, and Simon

Dixon. Gan-based Generation and Automatic Selection of Explanations for

Neural Networks. arXiv preprint arXiv:1904.09533, 2019.

Seyed Hamidreza Mohammadi and Alexander Kain. An overview of voice

conversion systems. Speech Communication, 88:65 – 82, 2017. ISSN 0167-

6393. doi: https://doi.org/10.1016/j.specom.2017.01.008. URL http://www.

sciencedirect.com/science/article/pii/S0167639315300698.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for

Interpreting and Understanding Deep Neural Networks. Digital Signal Pro-

cessing, 73:1–15, 2018.

Veronica Morfi and Dan Stowell. Deep Learning for Audio Event Detection and

Tagging on Low-Resource Datasets. Applied Sciences, 8(8):1397, 2018. ISSN

2076-3417. doi: 10.3390/app8081397. URL http://dx.doi.org/10.3390/

app8081397.

Masanori Morise, Fumiya YOKOMORI, and Kenji OZAWA. WORLD: A

Vocoder-Based High-Quality Speech Synthesis System for Real-Time Applica-

tions. IEICE Transactions on Information and Systems, E99.D(7):1877–1884,

2016. doi: 10.1587/transinf.2015EDP7457.

226

http://www.sciencedirect.com/science/article/pii/S221315821630256X
http://www.sciencedirect.com/science/article/pii/S221315821630256X
http://www.sciencedirect.com/science/article/pii/S0167639315300698
http://www.sciencedirect.com/science/article/pii/S0167639315300698
http://dx.doi.org/10.3390/app8081397
http://dx.doi.org/10.3390/app8081397

Hannah Muckenhirn, Pavel Korshunov, Mathew Magimai-Doss, and Sébastien

Marcel. Long-Term Spectral Statistics for Voice Presentation Attack Detec-

tion. IEEE/ACM Transactions on Audio, Speech, and Language Process-

ing, 25(11):2098–2111, 2017a. ISSN 2329-9290. doi: 10.1109/TASLP.2017.

2743340.

Hannah Muckenhirn, Mathew Magimai-Doss, and Sébastien Marcel. End-to-

End convolutional neural network-based voice presentation attack detection.

In IEEE International Joint Conference on Biometrics (IJCB), pages 335–

341, Oct 2017b.

Hannah Muckenhirn, Mathew Magimai Doss, and Sébastien Marcell. Towards

Directly Modeling Raw Speech Signal for Speaker Verification Using CNNS.

In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 4884–4888, 2018.

Parav Nagarsheth, Elie Khoury, Kailash Patil, and Matt Garland. Replay At-

tack Detection Using DNN for Channel Discrimination. In Proc. Interspeech

2017, pages 97–101, 2017.

Vinod Nair and Geoffrey Hinton. Rectified Linear Units Improve Restricted

Boltzmann Machines. In Proceedings of ICML, volume 27, pages 807–814, 06

2010.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are eas-

ily fooled: High confidence predictions for unrecognizable images. In 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 427–436, 2015.

Sergey Novoselov, Alexandr Kozlov, Galina Lavrentyeva, Konstantin Simonchik,

and Vadim Shchemelinin. STC anti-spoofing systems for the ASVspoof 2015

challenge. In Proc. ICASSP, pages 5475–5479, March 2016a.

Sergey Novoselov, Alexandr Kozlov, Galina Lavrentyeva, Konstantin Simonchik,

and Vadim Shchemelinin. STC Anti-spoofing Systems for the ASVspoof 2015

Challenge. In 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5475–5479, 2016b.

Eirini Ntoutsi, Pavlos Fafalios, Ujwal Gadiraju, Vasileios Iosifidis, Wolf-

gang Nejdl, Maria-Esther Vidal, Salvatore Ruggieri, Franco Turini, Symeon

Papadopoulos, Emmanouil Krasanakis, Ioannis Kompatsiaris, Katharina

Kinder-Kurlanda, Claudia Wagner, Fariba Karimi, Miriam Fernandez, Harith

Alani, Bettina Berendt, Tina Kruegel, Christian Heinze, Klaus Broelemann,

Gjergji Kasneci, Thanassis Tiropanis, and Steffen Staab. Bias in data-driven

227

artificial intelligence systems—An introductory survey. WIREs Data Mining

and Knowledge Discovery, 10, June 2020.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. arXiv preprint

arXiv:1609.03499, 2016.

Tanvina B. Patel and Hemant A. Patil. Combining evidences from mel cepstral,

cochlear filter cepstral and instantaneous frequency features for detection of

natural vs. spoofed speech. In Proc. Interspeech 2015, pages 2062–2066, 2015.

Ankur T. Patil, Rajul Acharya, Pulikonda Aditya Sai, and Hemant A. Patil.

Energy Separation-Based Instantaneous Frequency Estimation for Cochlear

Cepstral Feature for Replay Spoof Detection. In Proc. Interspeech 2019, pages

2898–2902, 2019. doi: 10.21437/Interspeech.2019-2742. URL http://dx.

doi.org/10.21437/Interspeech.2019-2742.

Hemant A. Patil, Madhu R. Kamble, Tanvina B. Patel, and Meet Soni. Novel

Variable Length Teager Energy Separation Based Instantaneous Frequency

Features for Replay Detection. In Proc. Interspeech 2017, 2017.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel

Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,

Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,

Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in

Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Bryan L. Pellom and John H. L. Hansen. An experimental study of speaker

verification sensitivity to computer voice-altered imposters. In Proc. ICASSP,

pages 837–840, Mar 1999.

Patrick Perrot, Guido Aversano, and Gerard Chollet. Voice Disguise and Auto-

matic Detection: Review and Perspectives. In Progress in Nonlinear Speech

Processing. Lecture Notes in Computer Science, vol 4391. Springer, Berlin,

Heidelberg, pages 101–117, 01 2005. doi: 10.1007/978-3-540-71505-4 7.

Patrick von Platen, Fei Tao, and Gokhan Tur. Multi-Task Siamese Neu-

ral Network for Improving Replay Attack Detection. arXiv preprint

arXiv:2002.07629, 2020.

Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew

Stevens, and Lawrence Carin. Variational autoencoder for deep learning of

228

http://dx.doi.org/10.21437/Interspeech.2019-2742
http://dx.doi.org/10.21437/Interspeech.2019-2742

images, labels and captions. In Advances in neural information processing

systems, page 2352–2360, 2016.

Yanmin Qian, Nanxin Chen, and Kai Yu. Deep features for automatic spoof-

ing detection. Speech Communication, 85:43 – 52, 2016. ISSN 0167-

6393. doi: https://doi.org/10.1016/j.specom.2016.10.007. URL http://www.

sciencedirect.com/science/article/pii/S0167639316301091.

Mirco Ravanelli and Yoshua Bengio. Speaker Recognition from Raw Waveform

with SincNet. In 2018 IEEE Spoken Language Technology Workshop (SLT),

pages 1021–1028, 2018.

Douglas A Reynolds. Speaker identification and verification using Gaussian

mixture speaker models. Speech communication, 17(1):91–108, 1995.

F. A. Rezaur rahman Chowdhury, Quan Wang, Ignacio Lopez Moreno, and

Li Wan. Attention-Based Models for Text-Dependent Speaker Verification.

In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 5359–5363, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why Should I Trust

You?: Explaining the Predictions of Any Classifier. In Proc. Knowledge Dis-

covery and Data Mining(KDD), 2016.

Francisco Rodŕıguez-Algarra, Bob Sturm, and Simon Dixon. Characterising

Confounding Effects in Music Classification Experiments through Interven-

tions. Transactions of the International Society for Music Information Re-

trieval, 2:52–66, 08 2019. doi: 10.5334/tismir.24.

Saharon Rosset, Claudia Perlich, Grzegorz Swirszcz, Prem Melville, and Yan

Liu. Medical data mining: Insights from winning two competitions. Data

Mining and Knowledge Discovery, 20:439–468, 05 2010. doi: 10.1007/

s10618-009-0158-x.

Evgenia Rusak, Lukas Schott, Roland S. Zimmermann, Julian Bitterwolf, Oliver

Bringmann, Matthias Bethge, and Wieland Brendel. Increasing the robust-

ness of DNNs against image corruptions by playing the Game of Noise. arXiv

preprint arXiv:2001.06057, 2020.

Seyed Omid Sadjadi, Malcolm Slaney, , and Larry Heck. MSR Identity Toolbox

v1.0: A MATLAB Toolbox for Speaker Recognition Research. Speech and

Language Processing Technical Committee Newsletter, 2013.

Mohammad. Sahidullah, Tomi Kinnunen, and Cemal Hanilçi. A Comparison

of Features for Synthetic Speech Detection. In Proc. Interspeech 2015, pages

2087–2091, 2015.

229

http://www.sciencedirect.com/science/article/pii/S0167639316301091
http://www.sciencedirect.com/science/article/pii/S0167639316301091

Mohammad Sahidullah, H́ector Delgado, Massimiliano Todisco, Tomi Kin-

nunen, Nicholas Evans, Junichi Yamagishi, and Kong-Aik Lee. Introduction

to Voice Presentation Attack Detection and Recent Advances, 2019.

Hardik Sailor, Madhu Kamble, and Hemant Patil. Auditory Filterbank Learning

for Temporal Modulation Features in Replay Spoof Speech Detection. In Proc.

Interspeech 2018, pages 666–670, 2018. doi: 10.21437/Interspeech.2018-1651.

URL http://dx.doi.org/10.21437/Interspeech.2018-1651.

Justin Salamon, Juan Pablo Bello, Andrew Farnsworth, and Steve Kelling. Fus-

ing shallow and deep learning for bioacoustic bird species classification. In

2017 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 141–145, 2017.

Sai Samarth R Phaye, Emmanouil Benetos, and Ye Wang. SubSpectralNet –

Using Sub-spectrogram Based Convolutional Neural Networks for Acoustic

Scene Classification. In ICASSP 2019 - 2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 825–829, May

2019.

Wei Shang and Maryhelen Stevenson. Score normalization in playback attack

detection. In IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 1678–1681, 2010.

Hye-jin Shim, Hee-Soo Heo, Jee weon Jung, and Ha-Jin Yu. Self-supervised

pre-training with acoustic configurations for replay spoofing detection. arXiv

preprint arXiv:1910.09778, 2019.

David Snyder, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur.

Deep Neural Network Embeddings for Text-Independent Speaker Verification.

pages 999–1003, 08 2017. doi: 10.21437/Interspeech.2017-620.

David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev

Khudanpur. X-Vectors: Robust DNN Embeddings for Speaker Recognition.

In 2018 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 5329–5333, 2018.

Meet H. Soni, Tanvina B. Patel, and Hemant A. Patil. Novel subband au-

toencoder features for detection of spoofed speech. In Proc. Interspeech

2016, pages 1820–1824, 2016. doi: 10.21437/Interspeech.2016-668. URL

http://dx.doi.org/10.21437/Interspeech.2016-668.

Kaavya Sriskandaraja, Vidhyasaharan Sethu, Phu Ngoc Le, and Eliathamby

Ambikairajah. Investigation of Sub-Band Discriminative Information Between

230

http://dx.doi.org/10.21437/Interspeech.2018-1651
http://dx.doi.org/10.21437/Interspeech.2016-668

Spoofed and Genuine Speech. In Proc. Interspeech 2016, pages 1710–1714,

2016.

Kaavya Sriskandaraja, Vidhyasaharan Sethu, and Eliathamby Ambikairajah.

Deep Siamese Architecture Based Replay Detection for Secure Voice Bio-

metric. In Proc. Interspeech 2018, pages 671–675, 2018. doi: 10.21437/

Interspeech.2018-1819. URL http://dx.doi.org/10.21437/Interspeech.

2018-1819.

Daniel Stoller, Sebastian Ewert, and Simon Dixon. Wave-U-Net: A Multi-Scale

Neural Network for End-to-End Source Separation. In Proceedings of the

International Society for Music Information Retrieval Conference (ISMIR),

volume 19, pages 334–340, 2018.

Dan Stowell, Tereza Petruskova, Martin Šálek, and Pavel Linhart. Automatic

acoustic identification of individuals in multiple species: improving identifi-

cation across recording conditions. Journal of The Royal Society Interface,

16, 04 2019. doi: 10.1098/rsif.2018.0940.

Bob L. Sturm. The GTZAN Dataset: Its Contents, its Faults, their Effects on

Evalu- ation, and its Future Use. arXiv preprint arXiv:1306.1461, 2013.

Bob L. Sturm. A Simple Method to Determine if a Music Information Retrieval

System is a “Horse”. IEEE Transactions on Multimedia, 16(6):1636–1644,

Oct 2014.

Bob L. Sturm. The ”Horse” Inside: Seeking Causes Behind the Behaviours of

Music Content Analysis Systems. arXiv preprint arXiv:1606.03044, 2016.

Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris Pal, and Aaron

Courville. Adversarial Generation of Natural Language. In Proceedings of

the 2nd Workshop on Representation Learning for NLP, pages 241–251, Van-

couver, Canada, August 2017. Association for Computational Linguistics. doi:

10.18653/v1/W17-2629.

Gajan Suthokumar, Vidhyasaharan Sethu, Chamith Wijenayake, and

Eliathamby Ambikairajah. Modulation Dynamic Features for the Detection

of Replay Attacks. In Proc. Interspeech 2018, pages 691–695, September 2018.

Gajan Suthokumar, Kaavya Sriskandaraja, Vidhyasaharan Sethu, Chamith Wi-

jenayake, and Eliathamby Ambikairajah. Phoneme Specific Modelling and

Scoring Techniques for Anti Spoofing System. In ICASSP 2019 - 2019

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6106–6110, May 2019.

231

http://dx.doi.org/10.21437/Interspeech.2018-1819
http://dx.doi.org/10.21437/Interspeech.2018-1819

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural net-

works. In International Conference on Learning Representations, 2014. URL

http://arxiv.org/abs/1312.6199.

Dávid Sztahó, György Szaszák, and András Beke. Deep learning methods in

speaker recognition: a review. arXiv preprint arXiv:1911.06615, 2019.

Hemlata Tak, Jose Patino, Andreas Nautsch, Nicholas Evans, and Massimil-

iano Todisco. An explainability study of the constant Q cepstral coefficient

spoofing countermeasure for automatic speaker verification. arXiv preprint

arXiv:2004.06422, 2020.

Shawn Tan and Khe Chai Sim. Learning utterance-level normalisation using

Variational Autoencoders for robust automatic speech recognition. In IEEE

Spoken Language Technology Workshop (SLT), pages 43–49, Dec 2016.

Zheng-Hua Tan, Achintya kr. Sarkar, and Najim Dehak. rVAD: An unsupervised

segment-based robust voice activity detection method. Computer Speech &

Language, 59:1 – 21, 2020. ISSN 0885-2308. doi: https://doi.org/10.1016/j.

csl.2019.06.005.

Yun Tang, Guohong Ding, Jing Huang, Xiaodong He, and Bowen Zhou. Deep

Speaker Embedding Learning with Multi-level Pooling for Text-independent

Speaker Verification. In ICASSP 2019 - 2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6116–6120, 2019.

Paul Taylor. Text-to-Speech Synthesis. Cambridge University Press, USA, 1st

edition, 2009. ISBN 0521899273.

Alaa Tharwat, Tarek Gaber, Abdelhameed Ibrahim, and Aboul Ella Hassanien.

Linear discriminant analysis: A detailed tutorial. AI Communications, 30:

169–190,, 05 2017. doi: 10.3233/AIC-170729.

Massimiliano Todisco, Hector Delgado, and Nicholas Evans. A new feature for

automatic speaker verification anti-spoofing: Constant Q cepstral coefficients.

In Proc. Odyssey Speaker and Language Recognition Workshop, pages 283–

290, June 2016.

Massimiliano Todisco, H́ector Delgado, and Nicholas Evans. Constant Q cepstral

coefficients: A spoofing countermeasure for automatic speaker verification.

Computer Speech and Language,, Volume 45,:Pages 516–535, 2017.

Massimiliano Todisco, Xin Wang, Ville Vestman, Mohammad Sahidullah,

H́ector Delgado, Andreas Nautsh, Junichi Yamagishi, Nicholas Evans, Tomi

232

http://arxiv.org/abs/1312.6199

Kinnunen, and Kong Aik Lee. ASVspoof 2019: Future Horizons in Spoofed

and Fake Audio Detection. In Proc. Interspeech 2019, 2019.

Francis Tom, Mohit Jain, and Prasenjit Dey. End-To-End Audio Replay At-

tack Detection Using Deep Convolutional Networks with Attention. In Proc.

Interspeech 2018, pages 681–685, 2018.

Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. A

Deeper Look at Dataset Bias. arXiv preprint arXiv:1505.01257, 2015.

Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In CVPR

2011, pages 1521–1528, 2011.

Youzhi Tu, Man-Wai Mak, and Jen-Tzung Chien. Variational Domain Adver-

sarial Learning for Speaker Verification. In Proc. Interspeech 2019, pages

4315–4319, 2019. doi: 10.21437/Interspeech.2019-2168. URL http://dx.

doi.org/10.21437/Interspeech.2019-2168.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN:

Decomposing Motion and Content for Video Generation. arXiv preprint

arXiv:1707.04993, 2017.

Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez Moreno, and Javier

Gonzalez-Dominguez. Deep neural networks for small footprint text-

dependent speaker verification. In 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 4052–4056, 2014.

Jesús Villalba and Eduardo Lleida. Speaker verification performance degrada-

tion against spoofing and tampering attacks. In FALA 2010, pages 131–134,

2010.

Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An Uncer-

tain Future: Forecasting from Static Images using Variational Autoencoders.

arXiv preprint arXiv:1606.07873, 2016.

Hongji Wang, Heinrich Dinkel, Shuai Wang, Yanmin Qian, and Kai Yu. Cross-

Domain Replay Spoofing Attack Detection Using Domain Adversarial Train-

ing. In Proc. Interspeech 2019, pages 2938–2942, 2019a. doi: 10.21437/

Interspeech.2019-2120. URL http://dx.doi.org/10.21437/Interspeech.

2019-2120.

Xianliang Wang, Yanhong Xiao, and Xuan Zhu. Feature Selection Based on

CQCCs for Automatic Speaker Verification Spoofing. In Proc. Interspeech

2017, pages 32–36, 2017. doi: 10.21437/Interspeech.2017-304. URL http:

//dx.doi.org/10.21437/Interspeech.2017-304.

233

http://dx.doi.org/10.21437/Interspeech.2019-2168
http://dx.doi.org/10.21437/Interspeech.2019-2168
http://dx.doi.org/10.21437/Interspeech.2019-2120
http://dx.doi.org/10.21437/Interspeech.2019-2120
http://dx.doi.org/10.21437/Interspeech.2017-304
http://dx.doi.org/10.21437/Interspeech.2017-304

Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Hector Delgado, Andreas

Nautsch, Nicholas Evans, Mohammad Sahidullah, Ville Vestman, Tomi Kin-

nunen, Kong Aik Lee, Lauri Juvela, Paavo Alku, Yu-Huai Peng, Hsin-Te

Hwang, Yu Tsao, Hsin-Min Wang, Sebastien Le Maguer, Markus Becker,

Fergus Henderson, Rob Clark, Yu Zhang, Quan Wang, Ye Jia, Kai On-

uma, Koji Mushika, Takashi Kaneda, Yuan Jiang, Li-Juan Liu, Yi-Chiao

Wu, Wen-Chin Huang, Tomoki Toda, Kou Tanaka, Hirokazu Kameoka, In-

gmar Steiner, Driss Matrouf, Jean-Francois Bonastre, Avashna Govender,

Srikanth Ronanki, Jing-Xuan Zhang, and Zhen-Hua Ling. ASVspoof 2019: a

large-scale public database of synthetic, converted and replayed speech. arXiv

preprint arXiv:1911.01601, 2019b.

Zhi-Feng Wang, Gang Wei, and Qian-Hua He. Channel pattern noise based

playback attack detection algorithm for speaker recognition. In Proc. Inter-

national Conference on Machine Learning and Cybernetics, volume 4, page

1708–1713, July 2011.

Buddhi Wickramasinghe, Saad Irtza, Eliathamby Ambikairajah, and Julien

Epps. Frequency Domain Linear Prediction Features for Replay Spoof-

ing Attack Detection. In Proc. Interspeech 2018, pages 661–665, 2018.

doi: 10.21437/Interspeech.2018-1574. URL http://dx.doi.org/10.21437/

Interspeech.2018-1574.

Buddhi Wickramasinghe, Eliathamby Ambikairajah, and Julien Epps. Biologi-

cally Inspired Adaptive-Q Filterbanks for Replay Spoofing Attack Detection.

In Proc. Interspeech 2019, pages 2953–2957, 2019a. doi: 10.21437/Interspeech.

2019-1535. URL http://dx.doi.org/10.21437/Interspeech.2019-1535.

Buddhi Wickramasinghe, Eliathamby Ambikairajah, Julien Epps, Vidhyasaha-

ran Sethu, and Haizhou Li. Auditory Inspired Spatial Differentiation for

Replay Spoofing Attack Detection. In ICASSP 2019 - 2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 6011–6015, May 2019b.

Jennifer Williams and Joanna Rownicka. Speech Replay Detection with x-Vector

Attack Embeddings and Spectral Features. In Proc. Interspeech 2019, pages

1053–1057, 2019. doi: 10.21437/Interspeech.2019-1760. URL http://dx.

doi.org/10.21437/Interspeech.2019-1760.

Marcin Witkowski, Stanis law Kacprzak, Piotr Żelasko, Konrad Kowalczyk, and

Jakub Ga lka. Audio Replay Attack Detection Using High-Frequency Features.

In Proc. Interspeech 2017, pages 27–31, 2017.

234

http://dx.doi.org/10.21437/Interspeech.2018-1574
http://dx.doi.org/10.21437/Interspeech.2018-1574
http://dx.doi.org/10.21437/Interspeech.2019-1535
http://dx.doi.org/10.21437/Interspeech.2019-1760
http://dx.doi.org/10.21437/Interspeech.2019-1760

Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A Light CNN for Deep Face

Representation with Noisy Labels. arXiv preprint arXiv:1511.02683, 2015a.

Zhanghao Wu, Shuai Wang, Yanmin Qian, and Kai Yu. Data Augmentation

Using Variational Autoencoder for Embedding Based Speaker Verification.

In Proc. Interspeech 2019, pages 1163–1167, 2019. doi: 10.21437/Interspeech.

2019-2248. URL http://dx.doi.org/10.21437/Interspeech.2019-2248.

Zhizheng Wu, Sheng Gao, Eng Siong Cling, and Haizhou Li. A study on re-

play attack and anti-spoofing for text-dependent speaker verification. In Sig-

nal and Information Processing Association Annual Summit and Conference

(APSIPA), 2014 Asia-Pacific, pages 1–5, Dec 2014a.

Zhizheng Wu, Sheng Gao, Eng Siong Cling, and Haizhou Li. A study on replay

attack and anti-spoofing for text-dependent speaker verification. In Asia-

Pacific Signal and Information Processing Association, 2014 Annual Summit

and Conference (APSIPA), pages 1–5. IEEE, 2014b.

Zhizheng Wu, Nicholas Evans, Tomi Kinnunen, Junichi Yamagishi, Federico

Alegre, and Haizhou Li. Spoofing and countermeasures for speaker veri-

fication: A survey. Speech Communication, 66:130 – 153, 2015b. ISSN

0167-6393. doi: https://doi.org/10.1016/j.specom.2014.10.005. URL http:

//www.sciencedirect.com/science/article/pii/S0167639314000788.

Zhizheng Wu, Tomi Kinnunen, Nicholas Evans, Junichi Yamagishi, Cemal

Hanilci, Mohammad Sahidullah, and Aleksandr Sizov. ASVspoof 2015: the

First Automatic Speaker Verification Spoofing and Countermeasures Chal-

lenge. In Proc. Interspeech 2015, 2015c.

Zhizheng Wu, Junichi Yamagishi, Tomi Kinnunen, Cemal Hanilçi, Mohammed

Sahidullah, Aleksandr Sizov, Nicholas Evans, Massimiliano Todisco, and

Héctor Delgado. ASVspoof: The Automatic Speaker Verification Spoofing

and Countermeasures Challenge. IEEE Journal of Selected Topics in Signal

Processing, 11(4):588–604, June 2017. ISSN 1932-4553.

Sibel Yaman, Jason Pelecanos, and Ruhi Sarikaya. Bottleneck Features for

Speaker Recognition. In Proc. Odyssey Speaker and Language Recognition

Workshop, 01 2012.

Jichen Yang, Rohan Kumar Das, and Haizhou Li. Extended Constant-Q Cep-

stral Coefficients for Detection of Spoofing Attacks. In 2018 Asia-Pacific

Signal and Information Processing Association Annual Summit and Confer-

ence (APSIPA ASC), pages 1024–1029, Nov 2018a.

235

http://dx.doi.org/10.21437/Interspeech.2019-2248
http://www.sciencedirect.com/science/article/pii/S0167639314000788
http://www.sciencedirect.com/science/article/pii/S0167639314000788

Jichen Yang, Changhuai You, and Qianhua He. Feature with Complementarity

of Statistics and Principal Information for Spoofing Detection. In Proc. In-

terspeech 2018, pages 651–655, 2018b. doi: 10.21437/Interspeech.2018-1693.

URL http://dx.doi.org/10.21437/Interspeech.2018-1693.

Jichen Yang, Rohan Kumar Das, and Nina Zhou. Extraction of Octave Spec-

tra Information for Spoofing Attack Detection. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 27(12):2373–2384, 2019a.

Yexin Yang, Hongji Wang, Heinrich Dinkel, Zhengyang Chen, Shuai Wang,

Yanmin Qian, and Kai Yu. The SJTU Robust Anti-Spoofing System for

the ASVspoof 2019 Challenge. In Proc. Interspeech 2019, pages 1038–1042,

2019b. doi: 10.21437/Interspeech.2019-2170. URL http://dx.doi.org/10.

21437/Interspeech.2019-2170.

Chang Huai You, Jichen Yang, and Huy Dat Tran. Device Feature Extractor

for Replay Spoofing Detection. In Proc. Interspeech 2019, pages 2933–2937,

2019. doi: 10.21437/Interspeech.2019-2137. URL http://dx.doi.org/10.

21437/Interspeech.2019-2137.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial Examples:

Attacks and Defenses for Deep Learning. arXiv preprint arXiv:1712.07107,

2017.

Hossein Zeinali, Themos Stafylakis, Georgia Athanasopoulou, Johan Rohdin,

Ioannis Gkinis, Lukáš Burget, and Jan Černocký. Detecting Spoofing At-

tacks Using VGG and SincNet: BUT-Omilia Submission to ASVspoof 2019

Challenge. In Proc. Interspeech 2019, pages 1073–1077, 2019. doi: 10.21437/

Interspeech.2019-2892. URL http://dx.doi.org/10.21437/Interspeech.

2019-2892.

Heiga Zen, Keiichi Tokuda, and Alan W. Black. Statistical parametric speech

synthesis. Speech Communication, 51(11):1039 – 1064, 2009. ISSN 0167-

6393. doi: https://doi.org/10.1016/j.specom.2009.04.004. URL http://www.

sciencedirect.com/science/article/pii/S0167639309000648.

Elisabeth Zetterholm. Detection of Speaker Characteristics Using Voice Imita-

tion. pages 192–205, 01 2007. doi: 10.1007/978-3-540-74122-0 16.

Chunlei Zhang, Chengzhu Yu, and John HL Hansen. An Investigation of Deep-

Learning Frameworks for Speaker Verification Antispoofing. IEEE Journal of

Selected Topics in Signal Processing, 11(4):684–694, 2017.

236

http://dx.doi.org/10.21437/Interspeech.2018-1693
http://dx.doi.org/10.21437/Interspeech.2019-2170
http://dx.doi.org/10.21437/Interspeech.2019-2170
http://dx.doi.org/10.21437/Interspeech.2019-2137
http://dx.doi.org/10.21437/Interspeech.2019-2137
http://dx.doi.org/10.21437/Interspeech.2019-2892
http://dx.doi.org/10.21437/Interspeech.2019-2892
http://www.sciencedirect.com/science/article/pii/S0167639309000648
http://www.sciencedirect.com/science/article/pii/S0167639309000648

Ya-Jie Zhang, Shifeng Pan, Lei He, and Zhen-Hua Ling. Learning Latent Rep-

resentations for Style Control and Transfer in End-to-end Speech Synthesis.

In Proc. ICASSP, pages 6945–6949, May 2019a.

Yang Zhang, Lantian Li, and Dong Wang. VAE-Based Regularization for Deep

Speaker Embedding. In Proc. Interspeech 2019, pages 4020–4024, 2019b.

doi: 10.21437/Interspeech.2019-2486. URL http://dx.doi.org/10.21437/

Interspeech.2019-2486.

237

http://dx.doi.org/10.21437/Interspeech.2019-2486
http://dx.doi.org/10.21437/Interspeech.2019-2486

	Introduction
	Motivation
	Aim
	Thesis structure
	Contributions
	Associated publications

	Background
	Automatic speaker verification (ASV)
	Spoofing attacks in ASV
	Mimicry
	Speech synthesis
	Voice conversion
	Replay attacks

	ASVspoof challenge
	Countermeasures for replay spoofing attacks
	Traditional methods
	Deep learning methods

	Signal processing methods
	Discriminative models
	Support vector machine
	Convolutional neural networks

	Generative models
	Gaussian mixture model (GMM)
	i-vectors
	Variational Autoencoders (VAEs)

	Subband modelling
	Towards trustworthy countermeasures
	Artefacts and their influence in machine learning
	Understanding model predictions

	Discussion

	Spoofing corpus and evaluation metrics
	Introduction
	ASVspoof 2017 dataset
	Version 1.0
	Version 2.0
	Qualitative analysis of v2.0

	ASVspoof 2019
	Logical access (LA) spoofing dataset
	Physical access (PA) spoofing dataset
	Real PA dataset

	Other spoofing corpora
	ReMASC
	AVspoof

	Evaluation metrics
	Equal error rate
	Tandem detection cost function

	Summary

	Analysis of spoofing countermeasures
	Introduction
	Generalisability of hand-crafted features
	Introduction
	Experimental design and evaluation
	Analysis
	Discussion

	CNNs for spoofing detection
	Introduction
	Replicating the state-of-the-art LCNN
	Investigating alternative CNN architectures
	Effect of parameterisation on performance
	Discussion

	Analysing spoofing countermeasure performance under varied conditions
	Introduction
	Experimental design
	Evaluation
	Analysis
	Discussion

	Explaining CNN predictions
	Introduction
	Experimental design and evaluation
	Explaining predictions using SLIME
	Interventions to test the significance of explanations
	Discussion

	A deeper look at the ASVspoof 2017 dataset
	Introduction
	Experimental design and evaluation
	Understanding the influence of dataset artefacts
	Manipulating model decisions
	Discussion

	Summary

	Design of novel spoofing countermeasures
	Introduction
	Ensemble models for spoofing detection
	Introduction
	Models in the proposed ensemble
	Dataset and proposed partitions
	Evaluation
	Interventions on the PA tasks
	Discussion

	Overcoming the impact of dataset artefacts
	Introduction
	Proposed method
	Experimental setup and evaluation
	Discussion

	Subband analysis for spoofing detection
	Introduction
	Proposed method
	Experimental design
	Evaluation
	Discussion

	Deep VAEs for spoofing detection
	Introduction
	Proposed method
	Experimental setup
	Evaluation
	Discussion

	Summary

	Conclusions and future work
	Summary
	Analysis of countermeasures
	Design of novel countermeasures

	Future work

	Appendices
	Deep model architectures

