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Kurzfassung

Der ursprünglich durch analoge Übertragungstechniken bedingte schmalbandige Frequenz-

bereich von Telefonsprachsignalen führt auch in den heutigen digitalen Telefonie-Systemen

noch häufig zu akustischen Einschränkungen. Er verursacht dumpf klingende Telefongesprä-

che mit verminderter Sprachverständlichkeit und -qualität. Mittels Verfahren zur künstlichen

Sprachbandbreitenerweiterung können fehlende Frequenzkomponenten geschätzt und rekon-

struiert werden. Allerdings leidet eine künstlich erweiterte Sprachbandbreite typischerweise

unter störenden Artefakten. Besonders anfällig dafür sind die aus dem Schmalbandspektrum

schwer zu schätzenden und daher mit anderen Phonemen sowie Sprachpausen leicht zu ver-

wechselnden Frikative /s/ und /z/. Diese Arbeit macht sich phonetisches A-Priori -Wissen

zu Nutze, um die Leistungsfähigkeit der künstlichen Bandbreitenerweiterung zu optimieren.

Sowohl dem vorab offline durchzuführenden Trainingsprozess als auch dem später folgenden

eigentlichen Verarbeitungsprozess sollen dadurch wichtige Phoneminformationen zur Verfü-

gung gestellt werden. Da der vorausgehende Trainingsprozess keinerlei Online-Anforderungen

stellt, kann phonetisches A-Priori -Wissen hierfür verfügbar gemacht werden. Die Verfüg-

barkeit im späteren Verarbeitungsprozess hängt jedoch von den Online-Anforderungen der

jeweiligen Anwendung ab.

In dieser Arbeit werden die beiden Hauptanwendungsfelder der künstlichen Bandbreiten-

erweiterung behandelt. Auf der einen Seite sollen existierende Telefonsprachdatenbanken

in der Bandbreite erweitert werden, um Telefonie-basierte breitbandige Sprachdialogsyste-

me damit trainieren zu können. Dabei kommt die künstliche Bandbreitenerweiterung vor

dem Spracherkennungstraining offline zum Einsatz und benötigt somit für diese Mensch-

Maschine-Anwendung (d.h. Telefongespräch mit automatischem Spracherkenner) keine Online-

Fähigkeit. Phonetisches A-Priori -Wissen kann daher nutzbar gemacht werden. Auf der ande-

ren Seite sollen schmalbandige Telefonsprachdienste künstlich bandbreitenerweitert werden,

um deren Verständlichkeit und Qualität zu verbessern. Diese Anwendung von Mensch zu

Mensch (d.h. Telefongespräch mit anderem Gesprächspartner) muss online-fähig sein. Da-

her ist eine geeignete Schätzung des phonetischen A-Priori -Wissens erforderlich. Das im

Rahmen dieser Arbeit entwickelte Verfahren zur künstlichen Bandbreitenerweiterung konnte

seine Leistungsfähigkeit im Vergleich zum Stand der Technik für beide Anwendungsfelder

erfolgreich unter Beweis stellen.
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Abstract

The narrowband frequency range of telephone speech signals originally caused by former

analog transmission techniques still leads to frequent acoustical limitations in today’s digital

telephony systems. It provokes muffled sounding phone calls with reduced speech intelligi-

bility and quality. By means of artificial speech bandwidth extension approaches, missing

frequency components can be estimated and reconstructed. However, the artificially ex-

tended speech bandwidth typically suffers from annoying artifacts. Particularly susceptible

to this are the fricatives /s/ and /z/. They can hardly be estimated based on the narrowband

spectrum and are therefore easily confusable with other phonemes as well as speech pauses.

This work takes advantage of phonetic a priori knowledge to optimize the performance of

artificial bandwidth extension. Both the offline training part conducted in advance and the

main processing part performed later on shall be thereby provided with important phoneme

information. As the preceding training part does not require online processing, phonetic a

priori knowledge can be made available. But its availability during the later processing part

depends on the online requirements of the particular application.

In this work, the two main application areas of artificial bandwidth extension are ad-

dressed. On the one hand, existing telephone speech databases shall be upgraded in band-

width to be able to train telephony-based wideband interactive voice response systems. For

this purpose, the artificial bandwidth extension takes place offline before the speech recog-

nition training and does therefore not require for this human-to-machine application (i.e.,

telephone conversation with automatic speech recognizer) any online capabilities. Conse-

quently, phonetic a priori knowledge can be exploited. On the other hand, narrowband

telephone speech services shall be artificially extended in bandwidth to enhance their intel-

ligibility and quality. This human-to-human application (i.e., telephone conversation with

another conversational partner) needs to be online-capable. Thus, an appropriate estimation

of the phonetic a priori knowledge is necessary. The artificial bandwidth extension approach

developed within the scope of this work could successfully demonstrate its abilities for both

application areas in comparison with the state of the art.
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Chapter 1

Introduction

Over decades, people have got used to conventional telephony. Did anybody complain about

the muffled sound of phone calls? In fact, many hearing-impaired persons severely suffer

from it and therefore try to avoid telephone conversations (Kepler et al., 1992). Unfortu-

nately, they cannot compensate their hearing loss by following the lip movement of their

conversational partners over the phone. Additionally, background noise makes the commu-

nication even more difficult. A volume increase to amplify the speech level directly elevates

the noise level as well. In spite of their technological progress, hearing aids and cochlear

implants are neither able to offer their users fully relaxed telephone conversations. However,

also persons with normal hearing capabilities commonly adapt their way of speaking when

having a phone call. Words that can hardly be understood without context information,

such as proper names or terms in a foreign language, are often spelled instinctively by means

of the telephone alphabet. Hence, there is a great demand for making the muffled sounding

conventional telephony brighter, and in consequence also more intelligible.

1.1 Motivation of ABE

Depending on their physiological conditions, lifestyle, and age, humans are capable of perceiv-

ing acoustic signals from 0.02 kHz up to 20 kHz (Fastl and Zwicker, 2007, Chap. 2). While

music ranges approximately between 0.04 kHz and 10 kHz, speech covers a frequency range

of about 0.1 . . . 7 kHz (Fastl and Zwicker, 2007, Fig. 2.1). The former analog speech trans-

mission has limited the acoustic bandwidth of conventional telephony up to 0.3 . . . 3.4 kHz

(Vary and Martin, 2006, Sec. 10.1). Despite the employment of digital speech transmission,

a limitation below 4 kHz is often still present nowadays, due to the commonly used sampling

rate of f 1
s “ 8 kHz. The question is how much the limited acoustic bandwidth of conventional

telephony impacts both speech intelligibility and quality.

1



2 1 Introduction

Huang et al. (2001, Sec. 9.3.1) empirically predicted for automatic speech recognition

(ASR) that a sampling rate reduction from 16 kHz – i.e., wideband (WB) speech – to 8 kHz

– i.e., narrowband (NB) speech – would lead to a relative word error rate (WER) increase

of about 25 %. This empirical prediction has been confirmed in practice, e.g., by Nadeu and

Tolos (2001) as well as Macho and Cheng (2003). Obviously, the recognition performance,

which serves as an ‘intelligibility’ measure for speech recognizers, suffers considerably from

the lack of spectral content above 4 kHz arising from the reduced sampling rate. Fun-

damental experiments on human syllable articulation performed by French and Steinberg

(1947, Fig. 12) reveal comparable results1. The portion of correctly identified contextless

syllables decreases significantly from «98 % to «90 %, when reducing the cut-off frequency

of lowpass-filtered speech from 7 kHz to 3.4 kHz. However, a cut-off frequency increase of

highpass-filtered speech from 0.1 kHz to 0.3 kHz turns out to be negligible. It can be there-

fore concluded that exclusively the missing high frequencies 3.4 . . . 7 kHz are responsible for

the impaired human speech intelligibility in conventional telephony.

Krebber (1995, Fig. 5.6) carried out speech quality tests with human subjects. The sub-

jective ratings are based on a 5-point listening-quality scale from 1 (bad) to 5 (excellent) and

averaged yielding a mean opinion score (MOS) (ITU-T P.800, 1996, Annex B). By decreasing

the cut-off frequency of lowpass-filtered speech from 7 kHz to 3.4 kHz, the resulting MOS is

reduced by about 0.75 points from «4.5 to «3.75. A further MOS reduction by about 0.55

points to «3.2 arises from bandpass filtering with high and low cut-off frequencies of 3.4 kHz

and 0.3 kHz, respectively. Hence, the limited acoustic bandwidth of conventional telephony

turns out to degrade the perceived speech quality significantly by about 1.3 MOS points. In

contrast to speech intelligibility, not only the high frequencies (ą3.4 kHz) but also the low

ones (ă0.3 kHz) have a considerable impact on speech quality.

More and more mobile as well as IP-based telephone networks support high definition

(HD) telephony – mostly promoted under the name of HD Voice2 – offering WB speech with

an acoustic bandwidth of 0.05 . . . 7 kHz (Ferraz de Campos Neto and Järvinen, 2006; Fing-

scheidt, 2012). WB telephone speech services require a sampling rate of fs “ 16 kHz and the

use of a WB speech codec3. Furthermore, the following requirements need to be fulfilled by

the users for successfully establishing an end-to-end WB call: Both conversational partners

must employ a WB-capable phone, have the same network provider, and be located in a

1For more detail information please also refer to the extensive investigations of Fletcher and Galt (1950).
2As of May 2016, 164 mobile network operators commercially launch HD Voice in 88 countries (Global

Mobile Suppliers Association, 2016).
3Today, several WB speech codecs exist, such as the sub-band adaptive differential pulse code modulation

(ADPCM) speech codec (ITU-T G.722, 1988), the transform domain speech codec for low frame-loss (ITU-T

G.722.1, 1999), the WB adaptive multi-rate (AMR) speech codec (3GPP TS 26.190, 2001), the WB embedded

pulse code modulation (PCM) speech codec (ITU-T G.711.1, 2008), and the recently standardized enhanced

voice services (EVS) speech codec (3GPP TS 26.441, 2014).
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WB-capable network of their provider. Unfortunately, an HD telephony interconnectability

between mobile and IP-based telephone networks as well as between different providers of

the mobile or IP-based telephone network is still not supported (Global Mobile Suppliers

Association, 2016). If an HD Voice call falls back into the NB mode (e.g., due to a cell

handover or roaming (Möller et al., 2009)), from experience, it will not switch over anymore

to the WB mode in practice. Obviously, the resulting number of constraints restricts the

actual number of HD telephony call setups to a great extent.

Until the complete market penetration of HD telephony, which may still take a long time

for the reasons above, artificial bandwidth extension (ABE) techniques provide a fallback

solution in order to prevent customer dissatisfaction. Implemented at the receiving side of a

terminal4 (i.e., in the loudspeaker path between speech decoder and digital-to-analog (D/A)

converter (Jax, 2002, Fig. 1.4)), the user can directly profit from ABE. It therefore provides

an important strategic advantage for terminal manufacturers over other speech enhancement

algorithms, such as noise reduction or echo compensation, that mainly represent uplink

features serving the conversational partner at the far end. Besides the terminal-specific

application, ABE techniques can be also employed inside the infrastructure of heterogeneous

telephone networks (Jax, 2002, Sec. 1.2).

From a technical point of view, ABE tries to enhance the speech intelligibility and quality

reduced by the acoustic bandwidth limitation of the conventional telephony by recovering

the lost speech bandwidth in a ‘blind’ way, i.e., only based on the NB speech data and a

priori knowledge. In contrast, other methods like bandwidth extension (BWE) or spectral

band replication (SBR) are integrated into a particular speech or audio codec (3GPP TS

26.190, 2001; 3GPP TS 26.404, 2004; 3GPP TS 26.290, 2012; Geiser et al., 2005b, 2007) to

exploit side information being additionally transmitted over the transmission channel with a

low bit rate (Vary and Martin, 2006, Sec. 10.2). This concept aims at reducing the data rate

that would be required for a transmission of full WB speech. Due to the use of additional side

information, BWE and SBR are expected to attain a better performance than ABE, but at

the expense of a strong dependency on the respective codec. To tackle this problem, digital

watermarking approaches have been developed that hide the auxiliary information inside

the NB speech signal or bit stream and therefore allow for backward compatibility (Geiser

et al., 2005a). However, this concept always requires a modification of the encoder and – for

being able to benefit from the hidden information – also of the decoder. The remainder of

this work exclusively focuses on completely codec-independent ABE techniques that do not

exploit any additionally transmitted or embedded side information.

4Amongst others, landline, mobile, digital enhanced cordless telecommunications (DECT) and voice over

IP (VoIP) phones as well as other devices like hearing aids, cochlear implants or their remote control units

could be equipped with ABE technology (Bauer et al., 2012).



4 1 Introduction

In principle, an ABE could be employed to estimate either the missing low, and/or the

missing high frequencies of band-limited speech signals. As aforementioned, the high fre-

quencies have an impact on both speech intelligibility and quality, while the low frequencies

only contribute to the speech quality. As the human ear is extremely sensitive to devia-

tions from the original spectral fine structure at low frequencies (Jax, 2002, Sec. 3.5), an

accurate reconstruction of the speaker’s fundamental frequency is indispensable to prevent

annoying artifacts (Chan and Hui, 1997). However, a robust estimation of the fundamental

frequency poses a big challenge particularly when dealing with noisy speech (Shahnaz et al.,

2007). Hence, many studies report problems regarding the extension to low frequencies

(Jax, 2002; Kalgaonkar and Clements, 2009; Thomas et al., 2010; Pulakka et al., 2012d).

Furthermore, a low-band extension appears to be less important when considering the fact

that the low cut-off frequency of conventional telephony has been further decreased by the

digital speech transmission and that the commonly small-dimensioned loudspeakers of mo-

bile phones can hardly reproduce such low frequencies anyway (at least in the speakerphone

mode). The remainder of this work exclusively deals with high-band ABE. Thus, the result-

ing ABE-enhanced speech signals are solely composed of two frequency bands: The extended

upper-band (UB) spectrum plus the available lower-band (LB) spectrum beneath.

1.2 ABE History and State of the Art

In agreement with Jax (2002, Sec. 1.3) as well as Vary and Martin (2006, Sec. 10.3.1),

one of the first ABE proposals was made by Schmidt (1933) using nonlinear distortions.

A similar concept based on full-wave rectification, bandpass filtering, and high-frequency

boosting was applied by the British Broadcasting Corporation (BBC) to improve the sound

quality of telephone contributions in broadcast programs (Croll, 1972). However, a rather

poor performance of these analog speech processing techniques was reported.

Croll (1972) already claimed that a differentiation between voiced and unvoiced sounds

would be necessary for a realistic high-band extension, but he failed in his attempts to

develop a reliable voiced/unvoiced classifier. Patrick (1983) was the first one, who exploited

a voicing discrimination (Vary and Martin, 2006, Sec. 10.3.1) and thereby made the ABE

adaptive (Jax, 2002, Sec. 1.3). In spite of this adaptation, his simple frequency-domain

shifting and scaling approach still produced synthetically sounding speech with artifacts.

Dietrich (1984) proposed another rudimentary signal processing technique for ABE. He

created high frequency components by means of filter aliasing, which can be easily combined

with a sample rate or D/A conversion (Yasukawa, 1995). However, this concept only provides

a reasonable performance for an extension of frequencies above 8 kHz (Hänsler and Schmidt,

2008, Sec. 5.4.1). Hence, it has been further developed for audio coding (Vary and Martin,
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2006, Sec. 10.3.1), e.g., by Larsen et al. (2002).

The source-filter model of human speech production (Flanagan, 1972) was increasingly

taken into account with the beginning of the nineties (Cheng et al., 1992, 1994; Carl, 1994;

Carl and Heute, 1994; Yoshida and Abe, 1994; Avendano et al., 1995; Iyengar et al., 1995).

This innovation represents a milestone in the history of ABE. It was the starting point of

the sophisticated model-based ABE algorithms, which basically all rely on two main tasks

(Carl, 1994):

1. The creation of a WB speech excitation signal, and

2. the creation of a WB speech spectral envelope.

In general, these tasks are either processed by means of a parallel or serial ABE structure

(Vary and Martin, 2006, Sec. 10.3.1).

For high-band ABE, the first task is found to be by far less critical than the second

one (Carl, 1994; Carl and Heute, 1994; Jax, 2002; Vary and Martin, 2006). There are in

principal two reasons that may explain this observation. On the one hand, the human ear

is insensitive to deviations from the original spectral fine structure in the UB spectrum

(Jax, 2002, Sec. 3.5). On the other hand, the WB speech excitation signal is assumed to be

spectrally flat, at least for unvoiced sounds. Nevertheless, different techniques extending the

NB speech excitation signal to high frequencies have been reported in literature (Pulakka,

2013, Sec. 4.5.1). Amongst others, they mainly imply nonlinear distortions (Jax, 2002,

Sec. 3.2), generation of noise and pitch harmonics (Jax, 2002, Sec. 3.1), pitch doubling (Jax,

2002, Sec. 3.4) as well as spectral duplication (Jax, 2002, Sec. 3.3).

The most difficult task for high-band ABE is to accurately estimate the UB speech spectral

envelope. Due to insufficient mutual information between the LB and UB spectrum (Nilsson

et al., 2002), this estimation represents a one-to-many relationship (Agiomyrgiannakis and

Stylianou, 2004). Several techniques have been reported in literature to extend the NB speech

spectral envelope (Pulakka, 2013, Sec. 4.5.3). The simplest ones are based on linear mapping

(Avendano et al., 1995; Nakatoh et al., 1997; Epps and Holmes, 1999; Chennoukh et al., 2001)

and codebook (CB) mapping (Carl, 1994; Carl and Heute, 1994; Yoshida and Abe, 1994;

Chan and Hui, 1997; Enbom and Kleijn, 1999; Epps and Holmes, 1999; Fuemmeler et al.,

2001; Iser and Schmidt, 2003; Unno and McCree, 2005; Kornagel, 2006). More sophisticated

approaches employ Gaussian mixture models (GMMs) (Park and Kim, 2000; Nilsson and

Kleijn, 2001; Nilsson et al., 2002; Seltzer et al., 2005; Nour-Eldin and Kabal, 2009; Pulakka

et al., 2011; Sunil and Sinha, 2012), hidden Markov models (HMMs) (Jax and Vary, 2000;

Jax, 2002; Hosoki et al., 2002; Jax and Vary, 2003; Yao and Chan, 2005; Kalgaonkar and

Clements, 2008, 2009; Sanna and Murroni, 2009; Thomas et al., 2010; Han et al., 2012; Yagli

et al., 2013), or artificial neural networks (ANNs) (Tanaka and Hatazoe, 1995; Uncini et al.,
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1999; Iser and Schmidt, 2003; Kontio et al., 2007; Pham et al., 2010; Pulakka and Alku, 2011;

Pulakka et al., 2014). Furthermore, there are combined or other methods (Cheng et al., 1992,

1994; Laaksonen et al., 2005; Yao and Chan, 2006; Ramabadran and Jasiuk, 2008; Laaksonen

and Virolainen, 2009; Kalgaonkar, 2011; Katsir et al., 2011, 2012; Pulakka et al., 2014).

Dependencies on the language, dialect, voice or on other pronunciation-specific character-

istics of the speaker as well as on the applied codec, acoustical bandwidth and superposed

noise of the NB input speech signal still remain a challenge for ABE nowadays (Pulakka,

2013, Sec. 4.7). The state-of-the-art HMM approach of Jax (2002) turned out to be relatively

robust against language and speaker variations (Bauer and Fingscheidt, 2008a,b). It forms

the initial algorithmic basis of this work.

1.3 Contribution of this Work

In order to develop the baseline ABE algorithm further, some aspects of human speech

recognition (HSR) should be considered at first. According to Allen (1994), humans recognize

speech by decoding individual speech sounds5 from the acoustic waveform and interpreting

them together via the context. This simplified process involves several cascaded recognition

layers (Allen, 1994, Fig. 6), which also serve as a motivation for the main steps of ASR

(i.e., feature extraction as well as acoustic and language modeling). The recognition level

thereby increases layer by layer from single phonemes over syllables to whole words and

sentences. When humans decode a single phoneme, its acoustic waveform is processed and

partially recognized in independent spectral articulation bands that get wider with increasing

frequency (Allen, 1994, Sec. IV). Each of them makes an additive 5 %-contribution to the

so-called articulation index (AI) (French and Steinberg, 1947, Sec. 5). For NB telephone

speech, « 15 bands are involved, whereas the remaining « 5 bands belong to the missing

high frequencies until 7 kHz (French and Steinberg, 1947, Tab. III). Hence, the potential for

ABE in terms of relative AI improvement results in about 20´15
15

“ 1
3
.

However, not all phonemes are equally important for ABE. Most of the phonemes, like

vowels, diphthongs, and sonorant consonants, possess considerably more energy in the LB

compared to the UB frequency range (Terhardt, 1998, Chap. 7). Please note that in case of

5Please note that the term speech sound either denotes a phone or phoneme (Paulus, 1998, Sec. 2.2).

Phones are the smallest acoustically distinguishable units of speech independent from a specific language and

characterized by a unique pronunciation. In contrast, phonemes are the smallest semantically distinguishable

units of speech depending on a particular language and may be pronounced in more than one way (each way

of pronunciation represents an allophone). To simplify matters, the terms phone and phoneme are often used

synonymously in speech processing literature (the same holds for the corresponding adjectives phonetic and

phonemic). This work abstains as well from a strict discrimination and prefers to utilize the term phoneme,

so that all transcription symbols are consistently written between slashes /.../.
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a negligible UB spectrum, an ABE may entail more risks than chances. Other phonemes,

such as plosives and fricatives, reveal a different spectral characteristic. Particularly the

unvoiced fricatives /s/, /f/, and /S/ (as well as their voiced counterparts /z/, /v/, /Z/),

make a significant UB frequency contribution (Terhardt, 1998, Fig. 7.12). The same holds

for the allophones of the purely German ‘ch’ sound /x/ and /C/, as well as for the unvoiced

and voiced fricatives of the purely English ‘th’ sound /T/ and /D/, respectively. While the

noise-like /f/- and /S/-sounds contain noticeable frequency components distributed over the

whole WB speech bandwidth, the sharply pronounced /s/-sound only provides a significant

spectral content above 3.4 . . . 4 kHz. In general, the ratio between the UB and LB energy is

therefore much higher for fricative /s/ (and its voiced counterpart /z/) than for the remaining

phonemes. Since the fricatives /s/ and /z/ are hardly distinguishable in the LB spectrum

from other phonemes with low energy (e.g., glottal stops or silent/distorted speech pauses),

they represent the most critical speech sounds with respect to ABE. This specific problem

exemplifies the one-to-many relationship of ABE (Agiomyrgiannakis and Stylianou, 2004)

due to the insufficient mutual information between the LB and UB spectrum (Nilsson et al.,

2002).

A small phonetic experiment in (Fingscheidt and Bauer, 2013) underlines the importance

of the fricatives /s/ and /z/. It involves the phonetically rich sentence “Those answers

will be straight forward if you think them through carefully first.” originating from the

close-talk recordings of the American English speech corpus SpeechDat-Car US (Moreno

et al., 2000). The first and third underlined letters stand for a /z/, while the remaining

ones represent an /s/. In addition to the WB and NB speech versions, this utterance has

been further manipulated by replacing the WB /s/- and /z/-sounds with those of the NB

speech signal, and vice versa. The speech quality of the resulting four files was subjectively

evaluated by eight subjects in an informal listening test. Interestingly, the NB speech file

with implanted WB /s/ and /z/ was rated only 0.12 MOS points worse than the purely WB

speech version, and 0.50 MOS points better than the purely NB speech version. Furthermore,

it outperformed the WB speech file with implanted NB /s/ and /z/ by 0.69 MOS points.

These results suggest the assumption that an appropriate extension of the fricatives /s/ and

/z/ is essential for ABE and that most of the other phonemes can more or less get along with

the bandwidth limitation. Nevertheless, the extreme case of a digitally driven hard-decision

ABE should be prevented, as it may produce audible switching effects.

The fricatives /s/ and /z/ play such an important role for ABE, because their confusion

with other phonemes is likely and may involve disturbing artifacts (Bauer et al., 2008).

On the one hand, a false rejection of /s/ or /z/ yields an underestimation, which typically

gives the undesired auditory impression of a ‘lisping’ speaker (Jax, 2002, Sec. 1.3). On the

other hand, a false acceptance of /s/ or /z/ leads to an overestimation (Nilsson and Kleijn,
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2001), which sounds differently depending on which phoneme is involved. Overestimated

voiced sounds commonly provoke ‘over-voicing’ artifacts. When overestimating unvoiced

sounds or speech pauses, ‘hissing’ artifacts are usually the consequence. It can be assumed

that these annoying under- and overestimation artifacts form the biggest obstacle for the

commercialization of ABE.

This work aims at reducing the under- and overestimation artifacts. Its main contribution

is the development of an ABE framework derived from (Jax, 2002), but exploiting phonetic

a priori knowledge. For this purpose, the ABE training and processing parts will be both

modified to make use of the phonetic support (Bauer and Fingscheidt, 2009a). These mod-

ifications take into account that the required phonetic a priori information can be made

available offline to ABE training (e.g., manually by humans or automatically via forced

Viterbi alignment), while the availability for ABE processing depends on the real-time and

latency requirements of the given application. This work considers offline as well as online

ABE applications (Bauer et al., 2014b,a), whereby the term ‘online’ is understood to mean

real-time capability with certain latency constraints. In the more challenging second case,

the ABE processing needs to be online-capable and therefore either does without phonetic

support or performs a phonetic estimation in real time. By reducing the under- and overesti-

mation artifacts, both the speech intelligibility and quality shall be improved. Preliminarily,

the speech intelligibility will be evaluated by means of automatic phoneme recognition ex-

periments (Bauer et al., 2010d,c) and human syllable articulation tests (Bauer et al., 2010b,

2012, 2013). As it has been still unclear so far, how to reliably assess ABE in terms of speech

quality, several instrumental measures and subjective listening tests will be investigated to

finally propose a reliable speech quality assessment methodology (Bauer et al., 2014c).

Please note that phonetically motivated approaches have already been used for speech

enhancement (Hansen and Pellom, 1997; Das and Hansen, 2012). In the context of ABE,

Laaksonen et al. (2005) classified speech frames into phonetic categories based on feature

comparisons and thereby selected the cubic spline parameters for spectral shaping. In (Katsir

et al., 2011), a phoneme-specific HMM is trained following (Bauer and Fingscheidt, 2009a)

and employed for frame classification to select the corresponding WB vocal tract area CB

for mapping, as inspired by (Epps and Holmes, 1999).

1.4 Outline

Until now, the main topic of this work has been introduced. The remainder of this work is

organized as follows.

In Chap. 2, the algorithmic fundamentals on ABE exploiting phonetic a priori knowledge
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are established. The formulated ABE framework is based on the state-of-the-art HMM

approach of Jax (2002) and developed further by several innovations. The most important

one is the exploitation of phonetic a priori information in support of the ABE training and

processing. While Chap. 2 assumes this phonetic support to be available, the subsequently

following two chapters demonstrate, how the proposed ABE framework can be used for

applications without and with online requirements in practice.

Probably the most intuitive offline ABE application is the spectral restoration of NB

speech material originating, e.g., from black box recordings, telephone broadcast contribu-

tions, or historical audio archives (Bauer and Fingscheidt, 2009b). Apart from that, Chap. 3

focuses on a human-to-machine ABE application, which can make use of the numerously

available NB telephone speech corpora. The idea behind this is to extend their acoustic

bandwidth offline via ABE for the ASR training of interactive voice response (IVR) systems

supporting HD telephony services. Due to the lack of WB telephone speech corpora, such

a database upgrade is valuable as it prevents expensive and time-consuming speech record-

ings. Other approaches also utilize existing NB telephone speech data to compensate for

the bandwidth mismatch in ASR training (Liao et al., 2003; Seltzer and Acero, 2005, 2007;

Karafiat et al., 2007). However, they all require modifications of the employed ASR system

affecting the feature extraction and/or acoustic model training. In contrast, the ABE frame-

work proposed in this work operates completely independent from the speech recognizer. As

neither the training nor the processing of the offline ABE demands any online requirements,

the phonetic a priori knowledge can be made available for both.

A human-to-human ABE application, for which the phonetic a priori information can

be provided offline only to ABE training, is presented in Chap. 4. It deals with an online

ABE for the enhancement of conventional NB telephone speech services. The creation of

a real-time phonetic support for online ABE processing represents the most challenging

innovation in this chapter. Further algorithmic modifications are introduced to optimize the

proposed ABE in terms of speech quality from a human point of view. This optimization

is important, as the previous chapter placed emphasis on improving ‘intelligibility’ for the

purpose of automatic speech recognizers. At the end of this chapter, a reliable speech

quality assessment methodology is developed based on the analysis of widely-used subjective

listening tests and instrumental measurements.

Finally, Chap. 5 draws conclusions from the preceding chapters and risks a look into the

future work of ABE.
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Chapter 2

ABE Framework Exploiting Phonetic

A Priori Knowledge

According to the last chapter, HSR relies on the detection of single phonemes. A limita-

tion of the acoustic bandwidth arising from the conventional telephony causes a significant

speech intelligibility and quality reduction. Phonemes with main spectral components above

4 kHz, such as the unvoiced fricatives /s/, /f/, /S/, and their voiced counterparts /z/, /v/,

/Z/, particularly suffer from NB telephone speech. Due to their small energy content below

4 kHz, /s/ and /z/ are considered as the most critical phonemes in terms of ABE. Based on

the NB spectrum, they can be easily confused with other phonemes. Thus, it is challenging

for an ABE to recognize them correctly. A misrecognition may provoke annoying under- as

well as overestimation artifacts. In order to improve speech intelligibility and quality, these

artifacts must be prevented. Hence, this chapter formulates an ABE framework after (Bauer

and Fingscheidt, 2009a), which is supported by phonetic a priori knowledge to allow for a

better recognition of critical phonemes. This phonetic support is realized by informing the

frame-wise ABE training and processing frame by frame about the current phoneme class.

The respective phoneme classes need to be identified by means of frame-aligned phonetic

transcriptions that are assumed to be available in advance. A phoneme class may represent

just single phonemes or clusters of multiple phonemes, depending on its predefined specifi-

cation. For the purpose of generalization, this chapter allows for an arbitrary phoneme class

specification. Sec. 2.1 and 2.2 explain in detail the statistical framework of phonetically

supported ABE training and processing, respectively.

11
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1st Step: Supervised CB Training

2nd Step: LDA Training

3rd Step: HMM Training
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Figure 2.1: Block diagram of ABE training exploiting phonetic a priori knowledge.

2.1 ABE Training with Phonetic Support

The employed ABE training is basically conducted in three successive steps according to

(Jax, 2002, Sec. 6.3.4). They comprise the trainings of a CB C, a linear discriminant analysis

(LDA) matrix H, and a hidden Markov model (HMM) λ. To tackle the problem of the

aforementioned ABE artifacts, the original ABE training scheme is developed further by

introducing phonetic a priori knowledge (Bauer and Fingscheidt, 2009a). Thus, relevant

speech sounds can be specifically taken into account.

Fig. 2.1 depicts the block diagram of the proposed ABE training. For each frame �,

phonetic information in terms of the phoneme class label ϕ� is explicitly exploited during

the first training step yielding a supervised CB training. Since the derived CB is essential for

the subsequent linear discriminant analysis (LDA) and HMM training, the phonetic support

implicitly influences also these remaining training steps. In addition to ϕ�, temporally aligned

WB and NB speech data sWBpnq and sNBpn1q, respectively, serve as input to the ABE

training. The sample index n thereby refers to a sampling rate of fs “ 16 kHz and n1 to

f 1
s “ 8 kHz. Both are related to the frame index via � “ tn{Nsu “ tn1{N 1

su, with Ns and

N 1
s “ Ns{2 denoting the corresponding frame shifts in samples.

Please note that signaling paths represented by single lines in Fig. 2.1 denote a sample-wise

processing, whereas a frame-wise processing is characterized by double lines1. Obviously, all

signals are processed frame by frame. The input speech samples sWBpnq and sNBpn1q therefore

need to be directly converted into frames within the cepstral UB calculation and feature

1This convention consistently applies to the remaining ABE block diagrams of this work.
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extraction blocks. This frame conversion is initially described based on (P. Bauer, 2007,

Sec. 5.1.2), before going into details of the particular ABE training steps.

2.1.1 Frame Conversion

The division of a speech signal into blocks of samples (i.e., speech frames) is typically done

by means of a window function of length Nw with the following property:

wpnq “ 0, @ n ă 0, n ě Nw. (2.1)

To include context of adjacent frames, a window overlap is used. It provides a look-back and

look-ahead by using N´ samples of the preceding frame and N` samples of the subsequent

frame, respectively. Along with the actual frame length N , the window length results in

Nw “ N´ ` N ` N`.

In case of WB speech data, a conversion into L frames is obtained by shifting sWBpnq for

each frame � with a frame shift of Ns “ N samples further and applying a multiplication

with the window function wpnq:

sWB,�pnq “ sWBpn ` �Ns ´ N´q ·wpnq, n “ 0, 1, . . . , Nw ´ 1, � “ 0, 1, . . . , L ´ 1. (2.2)

For initialization purposes, the look-back samples of the zeroth frame may be set to 0. As

windowing is expressed by a multiplication in the time domain, it represents a convolution

in the frequency domain.

Ideally, the Fourier transform of the window function is a Dirac impulse. However, this

would require an infinitely long window in the time domain (Nw Ñ 8), which is not fea-

sible for a frame-wise processing. A shortening of the window length intuitively leads to a

rectangular, so-called boxcar window

wpnq “
$&
%1, if n “ 0, 1, . . . , Nw ´ 1,

0, else.
(2.3)

Since its amplitude response over the normalized angular frequency Ω

ˇ̌
W

`
ejΩ

˘ˇ̌ “ | sinpΩNw{2q|
| sinpΩ{2q| , ´π ď Ω ď π, (2.4)

reveals relatively high side lobe levels independent from Nw, undesired spectral leakage effects

are the consequence (Proakis and Manolakis, 2007, Sec. 10.2.2). Hence, the choice of the

window function is very important.

In contrast to the boxcar window, more sophisticated window functions, such as the

Hamming, Hann, or Blackman window, do not contain abrupt discontinuities in the time
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Figure 2.2: Frame conversion of the normalized WB speech data sWBpnq.

domain and therefore provide a higher side lobe attenuation in the frequency domain. The

highest side lobe attenuation among typically employed window functions is achieved by the

Blackman window (Proakis and Manolakis, 2007, Sec. 10.2.2)

wpnq “
$&
%
0.42 ´ 0.5 · cos

´
2πn

Nw´1

¯
` 0.08 · cos

´
4πn

Nw´1

¯
, if n “ 0, 1, . . . , Nw ´ 1,

0, else.
(2.5)

In return, it provokes more smoothing in the frequency domain due to its wider main lobe.

Anyway, the width of the main lobe can be reduced by increasing Nw.

When making use of a sophisticated window function, a window overlap is recommended

to allow for an equal influence of all samples over the frames. In case of no window overlap,

samples located near the frame edges would be neglected due to the small weights of the

window at these positions.

Fig. 2.2 visualizes the frame conversion of the normalized WB speech data sWBpnq for

the first frames � “ 0, 1, 2. It involves a Blackman window (2.5) with a symmetrical 50 %

window overlap using a look-back of N´ “ 80 samples, a frame length of N “ 160 samples,

and a look-ahead of N` “ 80 samples. This results in a window length of Nw “ 320 samples.

The frame shift is set to Ns “ 160 samples equal to the frame length. Given the sampling

rate of fs “ 16 kHz, this corresponds to a frame duration of 10 ms, which is commonly used

in speech processing and recognition applications.

The frame conversion of the NB speech data sNBpn1q is done in accordance with (2.2):

sNB,�pn1q “ sNBpn1 ` �N 1
s ´ N 1

´q ·wpn1q, n1 “ 0, 1, . . . , N 1
w ´ 1, � “ 0, 1, . . . , L ´ 1. (2.6)
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It employs a downsampled version of the Blackman window (2.5)

wpn1q “
$&
%
0.42 ´ 0.5 · cos

´
2πn1

N 1
w´1

¯
` 0.08 · cos

´
4πn1

N 1
w´1

¯
, if n1 “ 0, 1, . . . , N 1

w ´ 1,

0, else.
(2.7)

The required parameters are just divided by two, i.e., N 1
´ “ N´{2 “ 40, N 1

s “ Ns{2 “ N 1 “
N{2 “ 80, N 1

` “ N`{2 “ 40, and N 1
w “ N 1

´ ` N 1 ` N 1
` “ Nw{2 “ 160. This allows for a

temporal alignment of the NB and WB speech frames / windows.

Please note that the above specified frame conversion is consistently used throughout this

work. In contrast, Jax (2002) obviously utilizes non-overlapping frames of 20 ms duration,

as stated in (Jax, 2002, p. 14 and p. 20). The explicit use of a window function is mentioned

only in (Jax, 2002, Sec. 4.1.2). Apart from that, it can be assumed that a boxcar window is

applied in (Jax, 2002).

2.1.2 Supervised CB Training (1st Step)

In the 1st step of ABE training depicted in Fig. 2.1, frame-wise UB cepstral envelope vectors

c� are calculated and fed into the well-known Linde-Buzo-Gray (LBG) algorithm for vector

quantization (VQ) (Linde et al., 1980). Thus, a CB C representing various speech sounds in

the upper frequency band is trained and utilized to quantize c�. The resulting quantization

index i defines the state s� of the HMM for the remaining training steps. As opposed to

(Jax, 2002, Sec. 6.2), both the LBG algorithm and the VQ are supervised by phonetic a

priori knowledge in terms of the frame-aligned phoneme class labels ϕ� (Bauer and Fing-

scheidt, 2009a). Hence, the obtained CB C and HMM states s� “ i are influenced by this

phonetic support. Subsequently, the cepstral UB calculation is described, followed by the

supervised LBG algorithm and VQ inspired by (Yu et al., 1990).

Calculation of UB Cepstral Envelope

The required UB cepstral envelope vectors c� are computed similarly to (Jax, 2002, Sec. 4.1.2)

via selective linear prediction (SLP) (Makhoul, 1975; Markel and Gray, 1976; Rabiner and

Schafer, 1978), as depicted in Fig. 2.3. Frequency bands can be thereby specified flexibly in

the frequency domain, which is not the case given a time-domain auto-correlation function

(ACF) (Jax, 2002, Sec. 4.1.1). In this work, the frequency band specification is done by

means of a cut-off frequency fc P p0, f 1
s{2s, which separates the lower and upper frequency

bands from each other. This results in an LB and UB frequency range of r0, fcs and pfc, fs{2s,
respectively. In the special case of fc “ f 1

s{2 “ 4 kHz, which represents the default setting

in this work, the LB frequencies range from 0 kHz to 4 kHz. This represents the maxi-
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Figure 2.3: Detailed block diagram of UB cepstral envelope calculation as part of the 1st step

in Fig. 2.1.

mum bandwidth that can be theoretically provided by NB speech according to the sampling

theorem (Rabiner and Schafer, 1978, Sec. 2.4.1).

The spectral calculations based on the WB and NB input speech samples in Fig. 2.3

imply at first a frame conversion according to (2.2) and (2.6), respectively. Afterwards,

a short-term discrete Fourier transform (DFT)2 is applied (Oppenheim and Schafer, 1989,

Sec. 8.1)

SWB,�pkq “
Nw´1ÿ
n“0

sWB,�pnq · e´j2π nk
Nw , k “ 0, 1, . . . , Nw ´ 1, (2.8)

SNB,�pk1q “
N 1

w´1ÿ
n1“0

sNB,�pn1q · e´j2π n1k1

N 1
w , k1 “ 0, 1, . . . , N 1

w ´ 1, (2.9)

yielding the WB and NB short-term power spectra

ΦWB,�pkq “ |SWB,�pkq|2 , (2.10)

ΦNB,�pk1q “ |SNB,�pk1q|2 , (2.11)

with the discrete frequency bin indices k and k1 covering the respective frequency band.

Fig. 2.3 subsequently involves a sub-band linear prediction (LP) analysis in order to

compute the UB LP filter coefficients aUB,� as well as the corresponding prediction gain factor

σUB,� (Makhoul, 1975; Markel and Gray, 1976; Rabiner and Schafer, 1978). Additionally, the

LB prediction gain factor σLB,� is computed for normalization purposes. The truncated UB

and LB ACFs required for sub-band LP analysis are derived via the short-term inverse partial

DFTs (Oppenheim and Schafer, 1989, Sec. 8.1)

φUB,�pñq “ 1

KUB

ÿ
k̃PK̃UB

ΦWB,�

´
kUBpk̃q

¯
· e

j2π ñk̃
KUB , ñ “ 0, 1, . . . , NLP(UB) , (2.12)

φLB,�pñ1q “ 1

KLB

ÿ
k̃1PK̃LB

ΦNB,�

´
kLBpk̃1q

¯
· e

j2π ñ1k̃1

KLB , ñ1 “ 0, 1, . . . , NLP(LB) , (2.13)

2In practice, the DFT can be efficiently computed via a fast Fourier transform (FFT) implementation

(Oppenheim and Schafer, 1989, Sec. 9.1).
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with the sample indices ñ and ñ1, respectively. The corresponding sub-band LP orders

are denoted by NLP(UB) ď KUB ´1 and NLP(LB) ď KLB ´1. In this work, NLP(UB) “ 8 and

NLP(LB) “ 10 are used. By means of a critical downsampling (Jax, 2002, Sec. 4.1.1), the

frequency bin indices k̃ “ 0, 1, . . . , KUB´1 and k̃1 “ 0, 1, . . . , KLB´1, which address only the

spectral components of the respective sub-band short-term power spectrum, are mapped to

the whole frequency range of 0 . . . 2π. The numbers of frequency bins are defined by KUB “
Nw ´ KLB and KLB “ 2 tN 1

w · fc{f 1
ss. For convenience, both KUB and KLB are even numbers

ensured by the nearest-integer rounding operation t · s combined with a multiplication by 2.

In the special case of fc “ f 1
s{2 “ 4 kHz, they result in KUB “ KLB “ N 1

w “ 160. To critically

downsample the sub-band short-term power spectra, two mapping functions are used. On

the one hand, the mapping function kUBp · q is applied to extract the UB power spectrum

from the WB power spectrum ΦWB,�pkq by mapping the domain K̃UB “ t0, 1, . . . , KUB ´ 1u
of frequency bins k̃ to the range KUB “ �

KLB

2
, KLB

2
` 1, . . . , Nw ´ KLB

2
´ 1

(
of frequency bins

k “ kUBpk̃q:
kUB : K̃UB ÞÑ KUB : k̃ ÞÑ kUBpk̃q “ k. (2.14)

On the other hand, the LB power spectrum is taken from the NB power spectrum ΦNB,�pk1q by

means of the mapping function kLBp · q, which maps the domain K̃LB “ t0, 1, . . . , KLB ´ 1u of

frequency bins k̃1 to the range KLB “ �
0, 1, . . . , KLB

2
´ 1, N 1

w ´ KLB

2
, . . . , N 1

w ´ 1
(

of frequency

bins k1 “ kLBpk̃1q:
kLB : K̃LB ÞÑ KLB : k̃1 ÞÑ kLBpk̃1q “ k1. (2.15)

Based on the resulting truncated ACFs φUB,� and φLB,�, the required sub-band linear pre-

dictive coding (LPC) parameters aUB,�, σUB,�, and σLB,� are derived as in a conventional LP

analysis, e.g., by efficiently solving the auto-correlation method via the well-known Levinson-

Durbin recursion (Makhoul, 1975; Markel and Gray, 1976; Rabiner and Schafer, 1978).

The last step of Fig. 2.3 comprises the recursive conversion of the obtained UB LP fil-

ter coefficients aUB,� “ raUB,�p1q, aUB,�p2q, . . . , aUB,�pNLP(UB)qsT into linear predictive cepstral

coefficients (LPCCs) c� “ rc�p0q, c�p1q, . . . , c�pNLP(UB)qsT (Makhoul, 1975; Markel and Gray,

1976; Rabiner and Schafer, 1978):

c�pnq “ aUB,�pnq `
n´1ÿ
ν“1

ν

n
· aUB,�pn ´ νqc�pνq, n “ 1, 2, . . . , NLP(UB) . (2.16)

Thus, the UB spectral envelope represented by aUB,� is transferred into the cepstral domain.

For convenience, c� is therefore referred to as UB cepstral envelope. Taking into account

(Jax, 2002, Eqs. (4.9) and (4.14)), the zeroth LPCC is defined as

c�p0q “ lnpσ2
rel,�q?
2

, (2.17)

with σrel,� “ σUB,�{σLB,� denoting the ratio between the UB and LB prediction gains. This

provokes a sub-band energy normalization adapting the level of the UB cepstral envelope.
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LBG Algo.

LBG Algo.

LBG Algo.

c�
ϕ�
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NP ´1

Cp0q

Cp1q

CpNP 1́q

CB C

Figure 2.4: Detailed block diagram of the supervised LBG algorithm as part of the 1st step

in Fig. 2.1.

Such a level adaptation is indispensable to allow for a robust ABE algorithm. Later on in

Sec. 2.2.5, the sub-band energy normalization will be compensated for by the LB prediction

gain of the NB speech frames during ABE processing. As in the LB frequency range a

mismatch between the spectral characteristics of sNBpn1q and sWBpnq can be highly expected

in practice, e.g., due to channel transmission effects, speech coding, etc., Fig. 2.3 makes use

of both speech signals. In contrast, the SLP technique in (Jax, 2002, Fig. 4.3) employs only

sWBpnq.

Supervised LBG Algorithm and VQ

Based on the calculated UB cepstral envelope vectors c� @ � “ 0, 1, . . . , L´1, the required

CB for VQ is trained via the well-known LBG algorithm (Linde et al., 1980): After each

binary split, the k-means algorithm is used to iteratively improve the CB entries. Due to

the binary splitting, the CB size always results in a power of two3.

As opposed to (Jax, 2002, Sec. 6.2), the CB training via the LBG algorithm is supervised

by frame-wise phoneme class labels ϕ� P P “t0, 1, . . . , NP ´ 1u, with the number of phoneme

classes NP ě 1 denoting the size of the phoneme class alphabet P . In principal, each

phoneme class can be devoted to a single phoneme (one-to-one mapping) or a cluster of

multiple phonemes (one-to-many mapping). In the special case, where only one phoneme

class represents all phonemes, the CB training is identical to (Jax, 2002, Sec. 6.2). While

the specific phoneme class assignment is presented in Sec. 3.2 involving various phonetically

motivated CB designs, this section focuses on the generalized concept of supervised CB

training inspired by (Yu et al., 1990).

Fig. 2.4 depicts the block diagram of the supervised LBG algorithm. For each phoneme

class ϕ P P , a conventional LBG algorithm is individually conducted yielding a sub-CB

3Please note that the k-means algorithm can basically be used also without the binary splitting steps

of the LBG algorithm. Thus, arbitrary CB sizes are feasible. However, the performance of the k-means

algorithm highly depends on the initial CB guess (Linde et al., 1980).
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VQ via CpNP 1́q
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ip1q

ipNP 1́q

s�

Figure 2.5: Detailed block diagram of the supervised VQ with index output; this is the last

operation of the 1st step in Fig. 2.1.

Cpϕq “
!
c

pipϕqq | ipϕq P Spϕq
)

of size N
pϕq
S

. Each of its entries c
pipϕqq “ E

�
c� | s� “ ipϕq

(
thus

represents a statistical expectation E t · u of all vectors c� assigned to sub-CB class ipϕq (Jax,

2002, Eq. (6.9)). The set of HMM states Spϕq “
!
N̄S

pϕq
, N̄S

pϕq ` 1, . . . , N̄S

pϕq ` N
pϕq
S

´ 1
)

is defined by the indices ipϕq of the sub-CB entries. A variable offset N̄S

pϕq “ řϕ´1

p“0 N
ppq
S

thereby allows for a correct indexing of the sub-CBs. The allocation of c� to the phoneme-

class-specific data sets is driven by ϕ�. A fusion of all sub-CBs yields the final CB C “�
Cpϕq | ϕ P P

( “ �
c

piq | i P S
(

of size NS “ ř
ϕPP N

pϕq
S

. The indices i of the CB entries

c
piq “ E tc� | s� “ iu thereby define the complete set of HMM states S “ �

Spϕq | ϕ P P
( “

t0, 1, . . . , NS ´ 1u.
By means of the trained CB C, the UB cepstral envelope vector c� is quantized frame

by frame according to Fig. 2.5. Following the supervised LBG algorithm, the VQ makes

also use of the phonetic a priori knowledge, in contrast to (Jax, 2002, Sec. 6.2). Based on

phoneme class label ϕ� P P , a VQ Q
pϕ�q is conducted via sub-CB Cpϕ�q by assigning c� to the

sub-CB entry c
pipϕ�qq P Cpϕ�q:

c
pipϕ�qq “ Q

pϕ�q rc�s . (2.18)

The resulting quantization index ipϕ�q P Spϕ�q “
!
N̄S

pϕ�q
, N̄S

pϕ�q ` 1, . . . , N̄S

pϕ�q ` N
pϕ�q
S

´ 1
)

directly corresponds to the index i of the CB entries c
piq P C and thus defines the states

s� “ i P S of the HMM. This concludes the 1st step of the ABE training procedure as

depicted in Fig. 2.1.

2.1.3 LDA Training (2nd Step)

After the supervised CB training has been performed, a linear transformation matrix H is

trained via LDA in the 2nd step of Fig. 2.1. LDA is a well-known classification method in

the field of pattern recognition (Fukunaga, 1990, Chap. 10). It is employed to reduce the

dimension of feature vector x̃� yielding a feature decorrelation. This relaxes the complexity

of the HMM, which is subsequently trained by means of the LDA-transformed feature vectors
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x� @ � “ 0, 1, . . . , L´1.

Feature vector x̃� contains static features being extracted from the NB speech data

sNBpn1q frame by frame4. Furthermore, it includes first- and second-order dynamic features

derived from the static ones. On the one hand, a derivation for online applications will be

shown spending only one frame of algorithmic delay. On the other hand, a general derivation

approach will be demonstrated being able to use more latency, which is feasible for offline

applications. Based on the composite feature vectors x̃� @ � “ 0, 1, . . . , L´1, a conventional

LDA is conducted according to (Jax, 2002, Sec. 5.2). The HMM states s� “ i P S obtained

from the supervised VQ thereby serve as classifications. Thus, the phonetic a priori knowl-

edge also influences the LDA training. The finally LDA-transformed feature vector x� serves

as an observation for the subsequent HMM training later in the 3rd step of Fig. 2.1.

Extraction of Static Features

Jax (2002, Sec. 5.4) investigated numerous static features regarding their potential for

ABE via the instrumental measures of mutual information and separability. Based on this

information-theoretical investigation, he proposed 15 static features (Jax, 2002, Sec. 5.3.5).

According to his proposal, the following static features have been selected for this work:

Ten normalized ACF coefficients x̃acf,�p1q, x̃acf,�p2q, . . . , x̃acf,�p10q as well as the zero-crossing

rate x̃zcr,�, the gradient index x̃gi,�, the spectral centroid x̃sc,�, the local kurtosis x̃lk,�, and

the normalized relative frame energy x̃rfe,�. All of these static features are put together into

feature vector x̃
stat
� “ rx̃acf,�p1q, x̃acf,�p2q, . . . , x̃acf,�p10q, x̃zcr,�, x̃gi,�, x̃sc,�, x̃lk,�, x̃rfe,�sT P R

15.

The ACF can basically be computed in the frequency domain via (2.9), (2.11), and (2.13).

In this work, it is alternatively calculated in the time domain and normalized to its zeroth

coefficient representing the NB frame energy E� “ řN 1
w´1

n1“0 psNB,�pn1qq2 (Jax, 2002, Eq. (5.23))

x̃acf,�pν 1q “ 1

E�

N 1
w´1ÿ

n1“ν1

sNB,�pn1 ´ ν 1qsNB,�pn1q, ν 1 “ 1, 2, . . . , 10, (2.19)

with ν 1 denoting the ACF index. The first ACF coefficients are commonly used for LP

analysis and therefore contain information about the spectral envelope of the underlying

speech frame. Hence, they are adequate features for ABE. The auto-correlation is higher

for short-term stationary signals (e.g., voiced speech sounds) than for nonstationary signals

(e.g., unvoiced speech sounds).

The short-term average zero-crossing rate is a well-known feature for distinction between

voiced and unvoiced speech sounds (Rabiner and Schafer, 1978, Sec. 4.3) and has been widely

4In contrast to (Jax, 2002), the feature extraction employs the NB speech data sNBpn1q instead of its

interpolated version sLBpnq to relax the computational complexity particularly for ABE processing in Sec. 2.2.
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used for speech recognition (Rabiner and Schafer, 1978, Sec. 9.3). In this work, a normalized

variant of the zero-crossing rate is computed according to (Jax, 2002, Eq. (5.16))

x̃zcr,� “ 1

N 1
w ´ 1

N 1
w´1ÿ

n1“1

1

2
|sign psNB,�pn1 ´ 1qq ´ sign psNB,�pn1qq| , (2.20)

with the sign operation being defined as (Jax, 2002, Eq. (5.17))

signpxq “

$’’’&
’’’%

`1, if x ą 0,

0, if x “ 0,

´1, if x ă 0.

(2.21)

It represents the number of zero crossings in the underlying speech frame normalized to the

maximum possible number N 1
w ´ 1. In general, unvoiced speech sounds reveal more zero

crossings than voiced speech sounds.

Another voiced/unvoiced classifier is obtained by the gradient index that analyzes changes

of the signal direction (Jax, 2002, Sec. 5.15)

x̃gi,� “ 1

10
?
E�

N 1
w´1ÿ

n1“1

|g�pn1q| · 1
2

|sign pg�pn1qq ´ sign pg�pn1 ´ 1qq| , (2.22)

with g�pn1q “ sNB,�pn1q´sNB,�pn1 ´1q denoting the signal gradient. In unvoiced speech sounds

there are generally more changes of the signal direction than in voiced speech sounds.

The spectral centroid commonly stays low for voiced speech sounds and increases for

unvoiced speech sounds. It is computed in the frequency domain via a short-term DFT

(Oppenheim and Schafer, 1989, Sec. 8.1)

SNB,�pk1q “
Ksc´1ÿ
n1“0

sNB,�pn1q · e´j2π n1k1

Ksc , k1 “ 0, 1, . . . , Ksc ´ 1, (2.23)

which involves a zero-padding of the NB speech frame in contrast to (2.9). This allows for

a DFT length of Ksc ą N 1
w being set to Ksc “ 2 rlog2pN 1

wqs, i.e., to the smallest power of

two larger than N 1
w. By means of the first Ksc{2 ` 1 non-redundant DFT coefficients, a

normalized version of the spectral centroid is obtained (Jax, 2002, Eq. (5.20))

x̃sc,� “

Ksc{2ř
k1“0

k1 · |SNB,�pk1q|
`
Ksc

2
` 1

˘ Ksc{2ř
k1“0

|SNB,�pk1q|
. (2.24)

Please note that the spectral centroid represents an important feature to detect relevant

phonemes for ABE according to Sec. 1.3, such as the critical fricatives /s/ and /z/.
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The local kurtosis is a short-term estimate of the kurtosis measure indicating how normally

distributed a signal is. Originating from higher-order statistics, it involves the forth- and

second-order moments of a speech frame (Krishnamachari et al., 2001)

E
�psNB,�pn1qq4( “ 1

N 1
w

N 1
w´1ÿ

n1“0

psNB,�pn1qq4, (2.25)

E
�psNB,�pn1qq2( “ 1

N 1
w

N 1
w´1ÿ

n1“0

psNB,�pn1qq2. (2.26)

They are put into relation via the common logarithm (Jax, 2002, Eq. (5.19))

x̃lk,� “ log10

˜
E tpsNB,�pn1qq4u

pE tpsNB,�pn1qq2uq2
¸
. (2.27)

Most of the voiced sounds reveal a local kurtosis of less than log10p3q, however, for onsets of

strong vowels and of plosives it usually increases significantly (Jax, 2002).

The frame energy E� is able to reliably distinguish voiced from unvoiced speech sounds and

to detect speech activity at least for a sufficiently high signal-to-noise ratio (SNR) (Rabiner

and Schafer, 1978, Sec. 4.2). To make this feature more robust against background noise,

the noise floor Emin,� can be eliminated. It is estimated as the minimum frame energy of the

last Lmin frames5 (Jax, 2002, Eq. (5.26))

Emin,� “ min
lPt0,...,Lmiń 1u

E�´l, (2.28)

with Lmin being set to
Y

tmin

N 1{f 1
s

U
and tmin “ 0.625 s denoting the time span in which the noise

floor can be assumed to be quasi-stationary (Martin, 1993, 2001). Furthermore, an average

frame energy Ē� can be used for normalization purposes, to reduce dependencies on long-term

speech level variations. It is determined by smoothing E� via a first-order infinite impulse

response (IIR) recursion6 (Jax, 2002, Eq. 5.25)

Ē� “ αĒ�´1 ` p1 ´ αqE�, (2.29)

with factor α “ 0.96 being set close to one. By means of Emin,� and Ē�, the normalized

relative frame energy is finally formulated as a logarithmic expression (Jax, 2002, Eq. 5.29)

x̃rfe,� “ log10pE�q ´ log10pEmin,�q
log10pĒ�q ´ log10pEmin,�q . (2.30)

5The frame energy needs to be initialized appropriately for the noise floor estimation of the first Lmin ´ 1

frames, e.g., by a large positive value.
6The average frame energy needs to be initialized appropriately for the IIR recursion of the zeroth frame,

e.g., by taking the mean of the frame energy over all NB training speech data.
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Derivation of Dynamic Features

To better capture time dependencies, the first- and second-order dynamic feature vectors

Δx̃
stat
� and ΔΔx̃

stat
� , respectively, are derived from the static features. In literature, they are

commonly known as Δ- and ΔΔ-features (Huang et al., 2001, Sec. 9.3.3). Their purpose

is to improve the detection of speech sounds with a short duration, such as plosives and

fricatives. However, a derivation in time requires the static feature vector x̃stat
� to be available

for future (and past) frames, which provokes an additional algorithmic delay. Depending on

the application, more or less algorithmic delay can be acceptable. This work focuses on

two ABE applications. On the one hand, Chap. 3 deals with an offline ABE for training

WB telephony ASR systems. On the other hand, an online ABE for enhancement of NB

telephone speech services is treated in Chap. 4. Hence, two different methods for dynamic

feature derivation are presented: While the first one involves an algorithmic delay of five

frames and is therefore only acceptable for offline ABE, the second method introducing a

latency of just one frame is suited to online ABE.

The first derivation method includes polynomial approximations of the static and first-

order dynamic feature trajectory (Young et al., 2006, Sec. 5.9)

Δx̃
stat
� “

ΘΔř
θ“1

θ ·
`
x̃

stat
�`θ ´ x̃

stat
�´θ

˘
2

ΘΔř
θ“1

θ2
“

ΘΔř
θ“´ΘΔ

θ · x̃stat
�`θ

ΘΔř
θ“´ΘΔ

θ2
, (2.31)

ΔΔx̃
stat
� “

ΘΔΔř
θ“1

θ ·
`
Δx̃

stat
�`θ ´ Δx̃

stat
�´θ

˘
2
ΘΔΔř
θ“1

θ2
“

ΘΔΔř
θ“´ΘΔΔ

θ ·Δx̃
stat
�`θ

ΘΔΔř
θ“´ΘΔΔ

θ2
, (2.32)

respectively. The polynomial orders ΘΔ “ 3 and ΘΔΔ “ 2 denote the respective number of

future/past frames to be taken into account (Bauer et al., 2014b, Eq. (1)). This results in a

total algorithmic delay of five frames (i.e., ΘΔ ` ΘΔΔ “ 5).

In contrast, the second derivation method represents simple difference equations, which

are just based on the static feature trajectory and only require a latency of one frame (Bauer

et al., 2010b)

Δx̃
stat
� “ x̃

stat
�`1 ´ x̃

stat
�´1, (2.33)

ΔΔx̃
stat
� “ `

x̃
stat
�`1 ´ x̃

stat
�

˘ ´ `
x̃

stat
� ´ x̃

stat
�´1

˘ “ x̃
stat
�`1 ´ 2x̃stat

� ` x̃
stat
�´1. (2.34)

Finally, all static and dynamic features are put together into a composite feature vector
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of dimension d̃ “ 45:

x̃� “

»
——–

x̃
stat
�

Δx̃
stat
�

ΔΔx̃
stat
�

fi
ffiffifl P R

d̃. (2.35)

LDA of Feature Vectors and Transformation

Instead of directly using the composite feature vectors x̃� as observations for the subsequent

HMM training, an LDA is employed in Fig. 2.1 to relax the complexity of the statistical

model. The LDA is a well-known classification method from the field of pattern recogni-

tion (Fukunaga, 1990, Chap. 10). It aims at reducing the dimension of feature vectors by

retaining their discriminating power to a great extent. Furthermore, the elements of the

LDA-transformed feature vectors are being mutually decorrelated. This allows for the use

of diagonal instead of full covariance matrices in Sec. 2.1.4.

In this work, the LDA is implemented according to (Jax, 2002, Sec. 5.2). By means of a

d̃ ˆ d matrix H, the composite feature vector x̃� P R
d̃ in (2.35) is linearly transformed into

a feature vector x� P R
d of reduced dimension d ă d̃ by

x� “ H
T
x̃�. (2.36)

The linear transformation matrix H is trained based on the composite feature vectors

x̃� @ � “ 0, 1, . . . , L´1 using the HMM states s� “ i P S as class labels. Due to the in-

volved eigenvalue problem, the reduced feature dimension d needs to be smaller than the

number of HMM states NS (Jax, 2002, Sec. 5.2.2), i.e., d P
”
1,mintd̃, NSu

¯
.

The training of H underlies the maximization of the separability function ςxpdq (Jax,

2002, Eq. (5.13)). It is defined as the sum of the d largest eigenvalues that derive from

the empirical separability matrix Jx̃ “ Wx̃
´1
Bx̃, with Wx̃ and Bx̃ denoting the within-

and between-class covariance matrices of the non-transformed feature vectors (Jax, 2002,

Sec. 5.2.1), respectively. This criterion assumes that the feature vectors assigned to a class

are normally distributed. By adding up the diagonal elements of Jx̃, the original separability

of the feature vectors before LDA ςx̃ can be obtained (Jax, 2002, Eq. (5.6)). It represents

the maximum achievable value of ςxpdq. The reduced feature dimension d should be high

enough, so that the LDA can preserve most of the original separability. However, a higher

separability does not necessarily lead to a better ABE performance.

Based on all 5578 phonetically rich sentences provided by the close-talk recordings of

the American English speech corpus SpeechDat-Car US (Moreno et al., 2000), the non-

transformed composite feature vectors x̃� with ‘low-delay’ derivatives (2.33)–(2.34) interest-

ingly reveal a higher value of ςx̃ than those including the dynamic features for offline ABE

(2.31)–(2.32). As expected, the lowest separability before LDA is attained by the static
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Figure 2.6: Separabilities after LDA normalized to the highest separability before LDA.

feature vectors x̃
stat
� . Fig. 2.6 illustrates the separability function ςxpdq for the transformed

feature vectors with and without dynamic features. For normalization purposes, all curves

are divided by the highest value of ςx̃. Obviously, they increase monotonically with the

reduced feature dimension and are sufficiently saturated at d “ 10. Hence, this value is used

for the LDA in the context of ABE throughout this work. This concludes the 2nd step of the

ABE training procedure as depicted in Fig. 2.1.

2.1.4 HMM Training (3rd Step)

Now let us focus on the 3rd step in Fig. 2.1, the HMM training. HMMs are commonly

used for statistical modeling of time-varying random processes, e.g., in the field of speech

recognition, and can be widely found in literature (Rabiner, 1989; Rabiner and Juang, 1993;

Huang et al., 2001). This work employs for the purpose of ABE a first-order7 HMM following

(Jax, 2002, Sec. 2.2 and 6.3). Its states s� P S are defined within training via the supervised

VQ in Sec. 2.1.2. Thus, they are influenced by phonetic a priori knowledge in terms of the

phoneme class labels ϕ�, as opposed to (Jax, 2002, Sec. 6.2).

Based on the LDA-transformed feature vectors x� from Sec. 2.1.3 and the predefined HMM

states s� “ i from Sec. 2.1.2, the training of the HMM parameters takes place, as depicted

in Fig. 2.1. On the one hand, the initial state probabilities πi “ Pps0 “ iq @ i P S as well as

the elements of the state transition probability matrix ai,j “ Pps� “ j|s�´1 “ iq @ i, j P S are

calculated by just counting the state occurrences. On the other hand, the state observation

likelihoods bjpx�q “ ppx�|s� “ jq @ j P S are approximated by GMMs, which are iteratively

trained via the well-known expectation maximization (EM) algorithm (Dempster et al.,

1977). The complete set of HMM parameters is given by λ “ tπi, ai,j, bjpxq | i, j P Su.
7In a Markov chain of order one, any state only depends on its predecessor.



26 2 ABE Framework Exploiting Phonetic A Priori Knowledge

Initial State and State Transition Probabilities

The Markov chain is characterized by the elements of the state transition probability matrix

ai,j “ Pps� “j|s�´1 “ iq @ i, j P S. To calculate them as well as the initial state probabilities

πi “ Pps0 “ iq @ i P S, the two-dimensional joint state histogram Hps� “j, s�´1 “ iq @ i, j P S

is required. It is derived by counting the numbers of transitions from state s�´1 “ i to state

s� “j for � “ 1, 2, . . . , L ´ 1. When normalizing the resulting counts by the total number of

state transitions, joint state probabilities are obtained

Pps� “j, s�´1 “ iq “ Hps� “j, s�´1 “ iq
L ´ 1

@ i, j P S, (2.37)

which meet the stochastic constraint
řNS´1

j“0

řNS´1

i“0 Pps� “ j, s�´1 “ iq “ 1. Based on these,

the initial state and state transition probabilities are computed as (Rabiner, 1989)

πi “
NS´1ÿ
j“0

Pps1 “j, s0 “ iq @ i P S, (2.38)

ai,j “Pps� “j, s�´1 “ iq
πi

@ i, j P S, (2.39)

respectively. Again, the stochastic constraints
řNS´1

i“0 πi “ 1 and
řNS´1

j“0 ai,j “ 1 @ i P S

hold.

Ergodic HMMs have the property that basically any state can be followed by any other

one, i.e., ai,j ą 0 @ i, j P S (Rabiner and Juang, 1993, Sec. 6.3.3). Due to insufficient training

data (Rabiner and Juang, 1993, Sec. 6.12.4), however, some elements of the state transition

probability matrix may turn out to be zero. This kind of sparse data problem is tackled in

Sec. 3.3.1 by introducing a state transition smoothing (Huang et al., 2001, Sec. 8.4.5).

State Observation Likelihoods

The hidden states of an HMM are not directly observable. Hence, the feature vectors x� are

used for an indirect state observation. As they are neither discrete nor vector-quantized

events in the present case, the state observation likelihoods bjpx�q @ j P S need to be

modeled by continuous probability density functions (PDFs) characterizing a continuous-

density HMM (Rabiner, 1989; Rabiner and Juang, 1993; Huang et al., 2001). A well-tried

choice is to approximate them by GMMs (Huang et al., 2001, Sec. 8.3.1). For this purpose, a

particular GMM is dedicated to each state j P S according to (Jax, 2002, Sec. 6.3.1). Thus,

the state-conditional observation likelihoods are modeled by a weighted sum of multivariate

Gaussian PDFs (Reynolds and Rose, 1995)

bjpx�q «
M´1ÿ
m“0

ρj,m N
`
x� ;μj,m ,Σj,m

˘
, (2.40)



2.1.4 HMM Training 27

with the GMM parameters of state j and mixture component m being denoted by mix-

ture weight ρj,m, mean vector μj,m and covariance matrix Σj,m. The mixture weights

ρj,m P r0, 1s thereby satisfy the stochastic constraint
řM´1

m“0 ρj,m “ 1 @ j P S (Huang et al.,

2001, Sec. 8.3.1). Each mixture density is represented by a d-dimensional normal distribution

(Reynolds and Rose, 1995, Eq. (2))

N
`
x� ;μj,m ,Σj,m

˘ “ 1

p2πqd{2 pdetΣj,mq1{2
exp

ˆ
´1

2
px� ´ μj,mqT

Σ
´1
j,m px� ´ μj,mq

˙
. (2.41)

A proper value for the GMM order, i.e., the number of mixture components, leading to a

good approximation of bjpx�q was found to be M “ 8 (Jax, 2002, Fig. 4.8).

The most commonly used way of GMM training is the maximum likelihood (ML) param-

eter estimation, which aims at finding those GMM parameters that maximize the modeled

likelihood (Reynolds and Rose, 1995, Sec. II.D). It can be iteratively conducted via the well-

known EM algorithm (Dempster et al., 1977). Due to the strictly monotonic increase of the

likelihood from iteration to iteration, the EM algorithm at least approaches a local maxi-

mum, even though a convergence to the global maximum cannot be assured (Dempster et al.,

1977). The EM algorithm employed in this work terminates, if the relative log-likelihood

increase among two iterations gets smaller than a predefined threshold of 10´6 (Jax, 2002,

Eq. (4.47)). This stop condition turned out to be more robust than, e.g., the termination

after a fixed number of iterations.

Before applying the EM algorithm, the LDA-transformed feature vectors x� need to be

assigned by means of the HMM states s� P S into NS clusters, according to (Jax, 2002,

Sec. 4.5.1). For each of these state-specific clusters, a separate GMM is trained. In order to

initialize the separately applied EM algorithms, all clusters need to be further subdivided

into M sub-clusters. In principle, this mixture-specific clustering could be done randomly,

as the EM initialization plays an inferior role (Reynolds and Rose, 1995, Sec. III.C1). In

this work, however, an LBG-based VQ of the UB cepstral envelope vectors c� is used for

initialization purposes8, according to (Jax, 2002, Sec. 4.5.1).

Due to the de-correlation of the feature vectors x� by means of the LDA transformation

in advance of the GMM training, diagonal instead of full covariance matrices are used. This

relaxes the complexity of the statistical model and also tackles the problem that covariance

matrices may become singular (i.e., not invertible) due to insufficient training data (Huang

et al., 2001, Sec. 8.4.5). If singularities still appear in spite of the diagonal structure of Σj,m,

they are removed within each EM iteration step by means of a variance limiting (Reynolds

and Rose, 1995, Sec. III.C1). A variance floor of 10´5 thereby turned out to be large enough.

This concludes the 3rd step of the ABE training procedure as depicted in Fig. 2.1.

8To simplify matters, a connection between the cepstral UB calculation block and the EM algorithm

block is not visualized in Fig. 2.1.
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Figure 2.7: Block diagram of ABE processing exploiting phonetic a priori knowledge.

2.2 ABE Processing with Phonetic Support

After the ABE parameters implying the CB C, the LDA matrix H, and the HMM λ have been

trained, the actual ABE processing can be performed. It relies on the algorithmic concept in

(Jax, 2002, Sec. 2.3), however, some crucial steps of this reference algorithm are developed

further. In particular, the exploitation of phonetic a priori knowledge corresponding to the

ABE training in Sec. 2.1 represents the most important innovation. The proposed ABE

processing is divided into two steps, as can be seen in Fig. 2.7. On the one hand, the main

ABE processing is conducted in the lower signal path. On the other hand, a vocal tract

estimation is performed in the upper signal paths by means of the pre-trained parameters

including the prepared phoneme class labels9 ϕ�.

According to Fig. 2.1, the signaling paths in Fig. 2.7 are characterized by single and double

lines to differentiate between a sample- and frame-wise processing. Obviously, the main ABE

processing is done sample by sample, whereas the vocal tract is estimated frame by frame.

The NB input speech samples sNBpn1q therefore need to be directly converted into frames

within the feature extraction and spectral calculation blocks. For this purpose, a frame

conversion is applied taking into account 50 % symmetrically overlapping Blackman windows,

as specified in Sec. 2.1.1. The way back into the sample-wise processing takes place at the

WB LP analysis and synthesis filtering blocks 1´Âpzq and p1´Âpzqq´1, respectively. There,

the estimated WB LP filter coefficients âWB,� are switched every frame � “ 0, 1, . . . , L´1 at

9For convenience, the nomenclature of ϕ� does not differentiate between ABE training and processing

throughout this work, although disjoint data sets are used. This also applies to other variables utilized twice,

such as sNBpn1q, sNB,�pn
1q, ΦNB,�pk

1q, x̃�, x�, s�, σLB,�, and L.
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sample index n “ � ·Ns.

Main ABE Processing

By interpolating the NB input speech sNBpn1q to a sampling rate of 16 kHz, an interpolated

LB speech sLBpnq is obtained. It is subject to the finite impulse response (FIR) WB LP

analysis filter 1´Âpzq modeling the spectral envelope of the inverse vocal tract. A time-

domain modulation of the resulting LB residual signal eLBpnq yields an estimated UB residual

signal êUBpnq. Depending on the modulation frequency ΩM, an IIR highpass filter may be

required to remove aliasing in the LB frequency range. In contrast to the time-domain

modulations in (Jax, 2002, Sec. 3.3), a static weight gUB P p0, 1s is used to attenuate the

UB frequencies in the residual domain. In this way, the aggressiveness of the ABE can be

controlled. A superposition of eLBpnq and êUBpnq results in the extended residual signal

êWBpnq serving as a WB excitation of the vocal tract. Within the next step, êWBpnq is

spectrally shaped via the autoregressive WB LP synthesis filter p1´Âpzqq´1 modeling the

spectral envelope of the vocal tract. In addition to (Jax, 2002, Sec. 2.3), the upper cut-off

frequency of the estimated WB output speech ŝWBpnq can finally be adapted by means of

an optional IIR lowpass postfilter to control the degree of bandwidth extension.

Please note that the transparency of the LB spectrum due to the inverse filters 1́ Âpzq and

p1´Âpzqq´1 is still preserved. This ensures that the LB frequencies remain unchanged, which

represents – as discussed in (Jax, 2002, Sec. 2.4) – an important ABE property.

Vocal Tract Estimation

The required WB LP filter coefficients âWB,� are estimated in the upper signal paths. To

reduce computational complexity, the feature extraction and spectral calculation blocks di-

rectly access the NB input speech sNBpn1q in spite of its interpolated version sLBpnq, as

opposed to (Jax, 2002, Sec. 3.3). For the sake of consistency with the ABE training, the

extraction of the composite feature vector x̃� as well as the subsequent LDA transformation

using the pre-trained LDA matrix H are conducted according to Sec. 2.1.3.

Based on the LDA-transformed feature vector x�, the pre-trained HMM λ is evaluated

to calculate a posteriori probabilities γ�. In contrast to (Jax, 2002, Sec. 6.4.1), phonetic a

priori knowledge is thereby involved in terms of the phoneme class labels ϕ�. This requires

an adaptation of the employed optimal state decoder, based on the well-known forward

algorithm (FA) or forward-backward algorithm (FBA) (Rabiner and Juang, 1993, Sec. 6.4.1),

according to (Bauer et al., 2014b). Furthermore, the HMM evaluation is augmented with the

commonly used Viterbi algorithm (VA) (Rabiner and Juang, 1993, Sec. 6.4.2), in order to

decode the optimal state sequence ps˚qL´1

0 “ ps˚
0 , s

˚
1 , . . . , s

˚
� , . . . , s

˚
L´1q following (Bauer et al.,
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ϕ�´1 ϕ� ϕ�`1

s�´1 s� s�`1

x�´1 x� x�`1

Figure 2.8: HMM dependency scheme including both feature and phonetic observations.

2014b). The use of phonetic a priori knowledge for decoding the optimal state sequence aims

at improving the performance of the HMM-based estimation process, particularly regarding

the ABE-relevant phonemes identified in Sec. 1.3.

Taking into account γ� and s˚
� , different estimation rules can be used to obtain an UB

cepstral envelope estimate ĉ� from the pre-trained CB C. The subsequent spectral conversion

into the estimated UB short-term power spectrum Φ̂UB,� is conducted according to (Jax,

2002, Eq. (6.3)), however, under a moderate cepstral interframe smoothing constraint (Bauer

and Fingscheidt, 2009a,b). This prevents in advance potential switching effects of the time-

variant WB LP filter coefficients (Schnell and Lacroix, 2008). To be consistent with the ABE

training, the NB short-term power spectrum ΦNB,� is calculated via (2.9) and (2.11). By

means of Φ̂UB,� and ΦNB,�, the estimated WB short-term power spectrum Φ̂WB,� is spectrally

assembled following (Jax, 2002, Eq. (6.5)). The LB prediction gain factor σLB,� is thereby

used to estimate the energy of the extended frequency band. It is acquired via a separate LB

LP analysis corresponding to the upper signal path in Fig. 2.3. Subsequently, another LP

analysis is performed, but this time based on Φ̂WB,� to obtain the estimated WB LP filter

coefficients âWB,�.

2.2.1 Phonetic Weighting of Observation Likelihoods

Based on the assumption that the phoneme class labels ϕ� in Fig. 2.7 are available for

ABE processing, they serve as additional observations along with the feature vectors x�.

Some experiments have been carried out by simply concatenating x̃� and ϕ� as a composed

feature vector before LDA. However, the resulting ABE performance could not be noticeably

improved by this early integration of phonetic information. As recommended by Lucey et al.

(2005), a later stage of information integration – namely at the HMM decoder – is therefore

used in this work. The resulting HMM dependency scheme depicted in Fig. 2.8 shows that

both feature and phonetic observations are emitted by the hidden states s�. Thus, the GMM-

based state observation likelihood bjpx�q “ ppx�|s� “jq needs to be modified. Obviously, this
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modification leads to a joint state observation likelihood bjpx�, ϕ�q “ ppx�, ϕ�|s� “jq.
In principle, a GMM could be trained modeling this conditional joint observation PDF.

However, linear correlations between x� and ϕ� should then have to be taken into account

requiring the use of full instead of diagonal covariance matrices (Jax, 2002, Sec. 6.3.2). Thus,

sparse data problems could be caused in case of insufficient training data (Huang et al., 2001,

Sec. 8.4.5). Furthermore, the complexity of the statistical model would increase significantly.

For these reasons, the joint observation PDF is split into individual terms of x� and ϕ� by

means of the chain rule (Papoulis and Pillai, 2002, Sec. 7.2)

bjpx�, ϕ�q “ ppx�, ϕ�|s� “jq

“ ppx�, ϕ�, s� “jq
Pps� “jq

“ ppx�|ϕ�, s� “jqPpϕ�|s� “jqPps� “jq
Pps� “jq

“ ppx�|ϕ�, s� “jqPpϕ�|s� “jq
« ppx�|s� “jqPpϕ�|s� “jq
“ bjpx�qPpϕ�|s� “jq.

(2.42)

Due to the tight relation between states and phoneme classes illustrated in Fig. 2.5, the

expression ppx�|ϕ�, s� “jq can be simplified to ppx�|s� “jq “ bjpx�q (Bauer and Fingscheidt,

2009a). As a result, the joint state likelihood bjpx�, ϕ�q is decomposed into the original

state observation likelihood bjpx�q, which depends on the feature observation x�, and a

conditional probability Ppϕ�|s� “ jq depending on the phonetic observation ϕ�. The latter

term Ppϕ�|s� “jq denotes the elements of an NP N̂S phoneme class probability matrix (Bauer

et al., 2014b). Following (Bauer and Fingscheidt, 2009a), the phoneme class probabilities

serve as phonetic weights and are defined as

Ppϕ�|s� “jq “

$’’’&
’’’%
1 ´ εpjq, if NP ą 1, j P Spϕ�q,

εpjq

NP´1
, if NP ą 1, j R Spϕ�q,

1, else,

(2.43)

with εpjq @ j P S being small state-specific values. Please note that a phonetic weighting is

only reasonable for more than one phoneme class. Hence, the following discussion is based

on the assumption that NP ą1.

If the observed phonetic observation ϕ� and the given HMM state s� “j fit together, i.e.,

j P Spϕ�q, the phoneme class probability is generally much higher (as expressed by the upper

weight 1´εpjq in (2.43)) than in case of a mismatch (as expressed by the middle weight εpjq

NP´1

in (2.43)). Thus, bjpx�q is phonetically weighted by Ppϕ�|s� “ jq. The phonetic weighting is
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driven by the small state-specific values

εpjq P
ˆ
0,

NP ´ 1

NP

j
@ j P S. (2.44)

They express a reliability of the underlying phonetic transcription process that has been

done either automatically by a forced Viterbi alignment or manually by humans. On the

one hand, values of εpjq @ j P S close to zero indicate reliable phoneme class labels and

therefore allow for a strong phonetic weighting. On the other hand, εpjq “ ε “ NP´1

NP
@ j P S

means that all elements of the phoneme class probability matrix result in 1
NP

yielding a

uniform distribution, i.e., there is no influence of ϕ�. Independent from the choice of εpjq,

the stochastic constraint
ř

ϕPP Ppϕ|s� “jq “ 1 @ j P S is fulfilled anyway.

An adequate parametrization of εpjq, which also takes into account the number of phoneme

classes NP ą1, can be determined via

εpjq “ 1

1 ` rpjq

NP´1

@ j P S, (2.45)

with rpjq defining the ratio between the upper and middle phonetic weight in (2.43). Please

note that (2.45) is based on the definition

rpjq “ 1 ´ εpjq

εpjq

NP´1

@ j P S. (2.46)

Assuming NP ą1, rpjq can take on values within r1,8q corresponding to the range of εpjq de-

fined in (2.44). The larger the values of rpjq are, the higher is the dependency on the a

priori knowledge, whereas for rpjq “1 there is no influence of ϕ�.

2.2.2 HMM Decoder

According to (Rabiner and Juang, 1993, Sec. 6.4) and (Huang et al., 2001, Sec. 8.2), three

basic problems of HMMs exist that are adapted as follows to the present ABE framework

exploiting phonetic a priori knowledge:

1. Evaluation problem – How can the joint production likelihood ppxL´1
0 , ϕL´1

0 |λq of the

observation sequences x
L´1
0 “ px0,x1, . . . ,xL´1q and ϕL´1

0 “ pϕ0, ϕ1, . . . , ϕL´1q given

model λ be efficiently computed?

2. Decoding problem – How can a state sequence ps˚qL´1

0 “ ps˚
0 , s

˚
1 , . . . , s

˚
L´1q be found

that optimally explains the observation sequences x
L´1
0 and ϕL´1

0 given model λ?

3. Learning problem – How can the model parameters λ “ tπi, ai,j , bjpxq | i, j P Su be

trained maximizing ppxL´1
0 , ϕL´1

0 |λq?
The learning problem has already been solved by means of an ML parameter estima-

tion via the commonly used EM algorithm in Sec. 2.1.4, according to (Rabiner and Juang,
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1993, Sec. 6.4.3). Please note that the state observation likelihoods have been modeled by

GMMs that only depend on the feature observations, whereas the phonetic observations are

introduced by means of a phoneme class probability matrix defined in Sec. 2.2.1.

Proposals to tackle both remaining problems are provided in the following two subsections.

While the evaluation problem can be solved via an FA- or FBA-based optimal state decoder

(Rabiner and Juang, 1993, Sec. 6.4.1), the answer to the decoding problem is given by a

VA-based optimal state sequence decoder (Rabiner and Juang, 1993, Sec. 6.4.2).

Optimal State Decoder

The HMM evaluation problem can be tackled via the well-known FBA (Bahl et al., 1974),

which is also known as BCJR algorithm due to its inventors Bahl, Cocke, Jelinek, and Raviv.

Being divided into a forward and backward recursion, the FBA provides the locally optimal

state. An efficient solution can be alternatively obtained by means of the FA requiring only

a forward recursion.

On the one hand, the forward recursion is defined by means of a forward variable α�piq “
ppx�

0, ϕ
�
0, s� “ i|λq that denotes the joint PDF of the partial observation sequences x

�
0 “

px0,x1, . . . ,x�q and ϕ�
0 “ pϕ0, ϕ1, . . . , ϕ�q as well as of state s� “ i given the model λ. Follow-

ing (Rabiner and Juang, 1993, Sec. 6.4.1.1), the forward recursion thereby results in

α�`1pjq “ bjpx�`1, ϕ�`1q
NS´1ÿ
i“0

ai,j α�piq

“ bjpx�`1qPpϕ�`1|s�`1 “jq
NS´1ÿ
i“0

ai,j α�piq @ j P S, � “ 0, 1, . . . , L ´ 2.

(2.47)

For initialization, the forward variable is set to α0piq “ πi bipx0, ϕ0q “ πi bipx0qPpϕ0|s0 “ iq
@ i P S. In case of using no phonetic observations, (2.47) can be simplified to

α�`1pjq “ bjpx�`1q
NS´1ÿ
i“0

ai,j α�piq @ j P S, � “ 0, 1, . . . , L ´ 2, (2.48)

with α�piq “ ppx�
0, s� “ i|λq being a forward variable that is now independent from ϕ�

0 and

thus initialized by α0piq “ πi bipx0q @ i P S.

On the other hand, the backward recursion is based on a backward variable β�piq “
ppxL´1

�`1 , ϕ
L´1
�`1 |s� “ i, λq. In contrast to the forward variable, it only involves the sequences of

future observations x
L´1
�`1 “ px�`1,x�`2, . . . ,xL´1q and ϕL´1

�`1 “ pϕ�`1, ϕ�`2, . . . , ϕL´1q. Fur-

thermore, the backward variable is conditioned by the state s� “ i in addition to the model

λ and initialized by βL´1pjq “ 1 @ j P S. Following (Rabiner and Juang, 1993, Sec. 6.4.1.2),
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the backward recursion thereby results in

β�piq “
NS´1ÿ
j“0

bjpx�`1, ϕ�`1q ai,j β�`1pjq

“
NS´1ÿ
j“0

bjpx�`1qPpϕ�`1|s�`1 “jq ai,j β�`1pjq @ i P S, � “ L ´ 2, L ´ 3, . . . , 0.

(2.49)

When using no phonetic observations, the backward variable does not depend on ϕL´1
�`1 and

is therefore defined as β�piq “ ppxL´1
�`1 |s� “ i, λq. This has no effect on the initial values

βL´1pjq “ 1 @ j P S. The simplified version of (2.49) then yields

β�piq “
NS´1ÿ
j“0

bjpx�`1q ai,j β�`1pjq @ i P S, � “ L ´ 2, L ´ 3, . . . , 0. (2.50)

Coming back to the HMM evaluation problem, the required joint production likelihood can

be efficiently calculated by definition of the terminal forward variable just via the complete

forward recursion (Rabiner and Juang, 1993, Eq. (6.21))

ppxL´1
0 , ϕL´1

0 |λq “
NS´1ÿ
j“0

ppxL´1
0 , ϕL´1

0 , sL´1 “j|λq

“
NS´1ÿ
j“0

αL´1pjq.
(2.51)

Alternatively, the forward and backward recursions can be used together to compute the

joint production likelihood at any frame � (Pfister and Kaufmann, 2008, Eqs. (104)–(105))

ppxL´1
0 , ϕL´1

0 |λq “
NS´1ÿ
i“0

ppxL´1
0 , ϕL´1

0 , s� “ i|λq

“
NS´1ÿ
i“0

ppxL´1
�`1 , ϕ

L´1
�`1 ,x

�
0, ϕ

�
0, s� “ i|λq

“
NS´1ÿ
i“0

ppxL´1
�`1 , ϕ

L´1
�`1 |x�

0, ϕ
�
0, s� “ i, λq ppx�

0, ϕ
�
0, s� “ i|λq

“
NS´1ÿ
i“0

ppxL´1
�`1 , ϕ

L´1
�`1 |s� “ i, λq ppx�

0, ϕ
�
0, s� “ i|λq

“
NS´1ÿ
i“0

β�piqα�piq @ � “ 0, 1, . . . , L ´ 1.

(2.52)

Having a look on the dependency scheme in Fig. 2.8 and taking into account (S. Walz, 2011,

Eq. (2.17)), the simplification ppxL´1
�`1 , ϕ

L´1
�`1 |x�

0, ϕ
�
0, s� “ i, λq “ ppxL´1

�`1 , ϕ
L´1
�`1 |s� “ i, λq is based

on the assumption that for the given state s� “ i the subsequent observation sequences xL´1
�`1

and ϕL´1
�`1 are conditionally independent from their preceding observation sequences x

�
0 and

ϕ�
0, respectively.
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The a posteriori probabilities γ� “ rγ�p0q, γ�p1q, . . . , γ�pNS ´ 1qsT mentioned in Fig. 2.7

can be computed either via the entire FBA using (2.47) and (2.49) (Rabiner and Juang,

1993, Eqs. (6.26)–(6.28))

γ�piq “ Pps� “ i|xL´1
0 , ϕL´1

0 , λq

“ ppxL´1
0 , ϕL´1

0 , s� “ i|λq
ppxL´1

0 , ϕL´1
0 |λq

“ α�piq β�piqřNS´1

j“0 α�pjq β�pjq @ i P S, � “ 0, 1, . . . , L ´ 1,

(2.53)

or by means of the FA just using (2.47) (Bauer et al., 2014a, Eqs. (1)–(2))

γ�piq “ Pps� “ i|x�
0, ϕ

�
0, λq

“ ppx�
0, ϕ

�
0, s� “ i|λq

ppx�
0, ϕ

�
0|λq

“ α�piqřNS´1

j“0 α�pjq @ i P S, � “ 0, 1, . . . , L ´ 1.

(2.54)

When making no use of phonetic observations, the calculation of the a posteriori probabilities

is simplified by employing the forward/backward recursions in (2.48) and (2.50). Thus, the

FBA-based equation (2.53) turns into

γ�piq “ Pps� “ i|xL´1
0 , λq

“ ppxL´1
0 , s� “ i|λq
ppxL´1

0 |λq
“ α�piq β�piqřNS´1

j“0 α�pjq β�pjq @ i P S, � “ 0, 1, . . . , L ´ 1,

(2.55)

while the FA-based equation (2.54) results in

γ�piq “ Pps� “ i|x�
0, λq

“ ppx�
0, s� “ i|λq
ppx�

0|λq
“ α�piqřNS´1

j“0 α�pjq @ i P S, � “ 0, 1, . . . , L ´ 1.

(2.56)

Please note that the stochastic constraint
řNS´1

i“0 γ�piq “ 1 is met for (2.53)–(2.56).

The aforementioned decoding problem can be already solved ‘locally’ by the FA- or FBA-

based optimal state decoder. Thus, the individually most likely state at frame � corresponds

to the maximum a posteriori (MAP) probability (Rabiner and Juang, 1993, Eq. (6.29))

s˚
� “ argmax

iPt0,...,NS´1u

γ�piq @ � “ 0, 1, . . . , L ´ 1. (2.57)

However, the sequence of ‘globally’ optimum states is thereby not obtained (Rabiner and

Juang, 1993, Sec. 6.4.2).
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Optimal State Sequence Decoder

A popular way to solve the decoding problem is the VA (Rabiner and Juang, 1993, Sec. 6.4.2.1),

which is named after its inventor Viterbi (1967). In contrast to (2.57), it derives the op-

timal state sequence ps˚qL´1

0 “ ps˚
0 , s

˚
1 , . . . , s

˚
L´1q from all possible state sequences sL´1

0 “
ps0, s1, . . . , sL´1q by means of the observation sequences xL´1

0 and ϕL´1
0 as well as the model

λ (Rabiner and Juang, 1993, Sec. 6.4.2):

ps˚qL´1

0 “ argmax
sL´1

0

PpsL´1
0 |xL´1

0 , ϕL´1
0 , λq

“ argmax
sL´1

0

PpsL´1
0 ,xL´1

0 , ϕL´1
0 |λq.

(2.58)

When making no use of phonetic observations, (2.58) turns into

ps˚qL´1

0 “ argmax
sL´1

0

PpsL´1
0 ,xL´1

0 |λq. (2.59)

The Viterbi score along the best of the partial state sequences s�´1
0 “ ps0, s1, . . . , s�´1q

ending up in state s� “ i for the observation sequences x�
0 and ϕ�

0 given the model λ is defined

as (Rabiner and Juang, 1993, Eq. (6.30))

δ�piq “ max
s�´1

0

Pps�´1
0 , s� “ i,x�

0, ϕ
�
0|λq. (2.60)

All Viterbi scores need to be recursively calculated similar to the forward recursion (2.47),

with the sum being replaced by a maximization (Rabiner and Juang, 1993, Eq. (6.33a))

δ�`1pjq “ bjpx�`1, ϕ�`1q max
iPt0,...,NS´1u

rai,j δ�piqs

“ bjpx�`1qPpϕ�`1|s�`1 “jq max
iPt0,...,NS´1u

rai,j δ�piqs @ j P S, � “ 0, 1, . . . , L ´ 2.

(2.61)

The intial Viterbi score is also initialized by δ0piq “ πi bipx0, ϕ0q “ πi bipx0qPpϕ0|s0 “ iq
@ i P S. Simultaneously, the arguments of the maximization in (2.61) are stored by a

backtracking pointer (Rabiner and Juang, 1993, Eq. (6.33b))

ψ�`1pjq “ argmax
iPt0,...,NS´1u

rai,j δ�piqs @ j P S, � “ 0, 1, . . . , L ´ 2. (2.62)

The Viterbi recursion is terminated by setting the optimum state of the last frame to

s˚
L´1 “ argmaxjPt0,...,NS´1u δL´1pjq (Rabiner and Juang, 1993, Eq. (6.34b)). Subsequently,

the optimal state sequence is decoded via a recursive backtracking procedure (Rabiner and

Juang, 1993, Eq. (6.35))

s˚
� “ ψ�`1ps˚

�`1q @ � “ L ´ 2, L ´ 3, . . . , 0. (2.63)
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In case of using no phonetic observations, the definition of the Viterbi score (2.60) yields

δ�piq “ max
s�´1

0

Pps�´1
0 , s� “ i,x�

0|λq (2.64)

and the recursive computation of the Viterbi scores in (2.61) is simplified to

δ�`1pjq “ bjpx�`1q max
iPt0,...,NS´1u

rai,j δ�piqs @ j P S, � “ 0, 1, . . . , L ´ 2, (2.65)

with δ0piq “ πi bipx0q @ i P S denoting the initial Viterbi score. Based on the adapted Viterbi

scores, the derivation of the backtracking pointers in (2.62) as well as the decoding of the

optimal state sequence in (2.63) remain unchanged.

Note that when using the VA, there is no practically feasible exact way to obtain γ�piq.

2.2.3 Estimation of UB Cepstral Envelope

As depicted in Fig. 2.7, the UB cepstral envelope ĉ� is estimated by means of the pre-trained

CB C “ �
c

piq | i P S
(
, with c

piq @ i “ 0, 1, . . . , NS ´ 1 denoting the CB entries. On the one

hand, the a posteriori probabilities γ� “ rγ�p0q, γ�p1q, . . . , γ�pNS ´ 1qsT derived from the FA

or FBA can thereby be used for maximum a posteriori (MAP) or minimum mean square

error (MMSE) estimation (Jax, 2002, Sec. 6.4.3–6.4.4). On the other hand, a Viterbi path

estimation10 can be utilized by employing the state s˚
� , which belongs to the optimal state

sequence ps˚qL´1

0 “ ps˚
0 , s

˚
1 , . . . , s

˚
� , . . . , s

˚
L´1q decoded by the VA. In the following, all three

estimators will be briefly introduced.

MAP Estimation

The MAP estimation rule selects a CB entry of C corresponding to the highest a posteri-

ori probability provided by the FA or FBA. Thus, the ‘locally’ optimum state s˚
� obtained

in (2.57) just acts as an index to the CB entries (Jax, 2002, Sec. 6.4.3)

ĉ� “ c
ps˚

�
q “ E tc� | s˚

� u . (2.66)

However, potential representations of the UB cepstral envelope are therefore limited to the

discrete CB entries.

MMSE Estimation

To allow for a continuous UB cepstral envelope estimation, the a posteriori probabilities,

which are computed by means of the FA in (2.54)/(2.56) or the FBA in (2.53)/(2.55), can

10Please refer to Yagli et al. (2013), when restricting the temporal look-ahead for Viterbi path estimation.
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serve as weights of the CB entries (Jax, 2002, Eq. (6.36))

ĉ� “
NS´1ÿ
i“0

c
piqγ�piq. (2.67)

This leads to an MMSE criterion according to (Jax, 2002, Sec. 6.4.4). Theoretically, an

infinite number of cepstral estimates can thereby be realized.

Viterbi Path Estimation

Similar to (2.66), the Viterbi path estimator selects a discrete CB entry of C, which corre-

sponds this time to the optimal state sequence decoded by the VA in (2.63)

ĉ� “ c
ps˚

�
q “ E

!
c�

ˇ̌̌
ps˚qL´1

0 “ps˚
0 , s

˚
1 , . . . , s

˚
� , . . . , s

˚
L´1q

)
. (2.68)

Thus, the UB cepstral envelope is represented by the ‘globally’ optimum CB entry compared

to the more ‘locally’ oriented MAP and MMSE estimations (2.66)–(2.67).

2.2.4 Conversion to UB Spectral Envelope

As depicted in Fig. 2.7, the estimated UB cepstral envelope ĉ� needs to be converted into an

UB short-term power spectrum Φ̂UB,�. In contrast to (Jax, 2002, Sec. 6.1.2), this spectral

conversion is conducted under a moderate cepstral interframe smoothing constraint (Bauer

and Fingscheidt, 2009a,b). Transients as well as discontinuities, which may potentially arise

from the time-variant WB LP analysis and synthesis filters provoking undesired artifacts

(Schnell and Lacroix, 2008; Välimäki, 1995; Välimäki and Laakso, 1998), will be thereby

reduced beforehand. These switching effects are empirically detected, if the LPCC-based

log-spectral distance (LSD) (Jax, 2002, Eq. (4.15)) between the estimated UB cepstral en-

velope vectors in two successive frames

LSDceps,� “ 10
?
2

ln 10
}ĉ� ´ ĉ�´1} , 0 ă � ď L´1, (2.69)

with } · } denoting the Euclidean vector norm, exceeds a predefined threshold of 30 dB. In

case of a detection LSDceps,� ą 30 dB, the estimated UB cepstral envelope vector of the

current frame is recursively smoothed by its predecessor following the redefinition

ĉ� :“ ĉ� ` ĉ�´1

2
(2.70)

until LSDceps,� ă 20 dB holds. From experience, the cepstral interframe smoothing takes

place only during hard switching effects and leads to a moderate reduction of artifacts

without interfering too much.
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The subsequent spectral conversion is done according to (Jax, 2002, Eqs. (6.2)–(6.3))

Φ̂UB,�pk̃q “ exp

˜
2�

#
ĉ�p0q?

2
`

KUB´1ÿ
ñ“1

ĉ�pñq · e´j2π ñk̃
KUB

+¸
, k̃ “ 0, 1, . . . , KUB ´ 1, (2.71)

with � t · u denoting the real part of its complex argument. When dividing the zeroth

LPCC by
?
2 and padding ĉ�pñq @ ñ “ NLP(UB) `1, NLP(UB) `2, . . . , KUB ´1 with zeros, the

argument of � t · u can be realized by a short-term DFT and efficiently computed via an

FFT implementation (Oppenheim and Schafer, 1989, Sec. 8.1 and Sec. 9.1). Considering

(2.12), Φ̂UB,� represents the estimated spectral envelope of the critically downsampled UB

short-term power spectrum with a normalized energy according to (2.17).

2.2.5 WB Spectral Assembly

Before being able to assemble the estimated WB short-term power spectrum Φ̂WB,�, the NB

short-term power spectrum ΦNB,� is consistently calculated according to (2.9) and (2.11)

based on the NB input speech samples sNBpn1q, as depicted in Fig. 2.7. For a correct

frequency bin allocation from ΦNB,�pk1q to Φ̂WB,�pkq, a mapping function kNBp · q is used.

It maps the domain K̃NB “ t0, 1, . . . , N 1
w ´ 1u of frequency bins k1 to the range KNB “!

0, 1, . . . , N
1
w

2
´ 1, Nw ´ N 1

w

2
, . . . , Nw ´ 1

)
of frequency bins k “ kNBpk1q:

kNB : K̃NB ÞÑ KNB : k1 ÞÑ kNBpk1q “ k. (2.72)

Furthermore, a LB LP analysis, as shown in Fig. 2.3, is performed by computing the first

NLP(LB) `1 ACF coefficients φLB,�pñ1q @ ñ1 P t0, 1, . . . , NLP(LB)u according to (2.13) and ap-

plying the well-known Levinson-Durbin recursion (Makhoul, 1975; Markel and Gray, 1976;

Rabiner and Schafer, 1978). As a result, the LB prediction gain factor σLB,� is obtained to

compensate for the energy normalization of the estimated UB spectral envelope Φ̂UB,�.

The spectral assembly can be thereby conducted following (Jax, 2002, Eq. (6.5))

Φ̂WB,�pkq “
$&
%Φ̂UB,�

`
k´1

UBpkq˘
· σ2

LB,�, if k P KUB,

ΦNB,�

`
k´1

NBpkq˘
, if k P KNB zKUB,

(2.73)

with k´1
UBp · q and k´1

NBp · q denoting the inverse11 of the mapping function kUBp · q in (2.14)

and kNBp · q in (2.72), respectively. Accordingly, the union KUB

Ť
KNB is equal to KWB “

t0, 1, . . . , Nw ´ 1u comprising the frequency bins of Φ̂WB,�. The intersection KUB

Ş
KNB,

however, is only empty, if the frequency bands are specified by a cut-off frequency of fc “ f 1
s{2

in Sec. 2.1.2. Hence, (2.73) generally takes into account the complement KNB zKUB, which

only comprises those frequency bins that are dedicated to the LB short-term power spectrum.

11Please note that the one-to-one mapping functions kUBp · q and kNBp · q are bijective and thus invertible.
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Focusing on (2.71), the normalization of the zeroth LPCC in (2.17) is compensated for

due to the multiplication of Φ̂UB,� by σ2
LB,� in (2.73) considering the auxiliary calculation

exp

ˆ
2�

"
ĉ�p0q?

2

*˙
“ exp

´?
2ĉ�p0q

¯
“ exp

˜
ln

˜
σ̂2

UB,�

σ2
LB,�

¸¸
“ σ̂2

UB,�

σ2
LB,�

, (2.74)

with σ̂UB,� denoting the estimated UB prediction gain factor.

2.2.6 Conversion to WB LPC Coefficients

The spectrally assembled estimated WB short-term power spectrum Φ̂WB,� finally needs to

be converted into the desired WB LP filter coefficients âWB,�. A WB LP analysis is therefore

required as depicted in Fig. 2.7. It employs a short-term inverse DFT similar to (2.12)–

(2.13), but this time based on the WB instead of a sub-band short-term power spectrum

(Oppenheim and Schafer, 1989, Sec. 8.1)

φ̂WB,�pnq “ 1

Nw

ÿ
kPKWB

Φ̂WB,�pkq · ej2π nk
Nw , n “ 0, 1, . . . , NLP(WB) , (2.75)

with the WB LP order being set to NLP(WB) “ 16, i.e., NLP(WB) ă Nw ´1. The truncated

estimated WB ACF φ̂WB,� is then fed into the well-known Levinson-Durbin recursion yield-

ing the estimated WB LP filter coefficients âWB,� “ râWB,�p1q, âWB,�p2q, . . . , âWB,�pNLP(WB)qsT
(Makhoul, 1975; Markel and Gray, 1976; Rabiner and Schafer, 1978). Additionally, the corre-

sponding reflection coefficients r̂WB,� “ rr̂WB,�p1q, r̂WB,�p2q, . . . , r̂WB,�pNLP(WB)qsT are obtained

as a by-product of the Levinson-Durbin recursion. They are used to verify the stability12 of

the autoregressive WB LP synthesis filter as follows (Vary and Martin, 2006, Sec. 6.3.1.3)

|r̂WB,�pnq| ă 1 @ n “ 1, 2, . . . , NLP(WB) . (2.76)

As the frame-wise vocal tract estimation following the upper signal paths in Fig. 2.7 is

hereby finished, the sample-wise main ABE processing based on the lower signal path is

detailed now in the remaining part of Sec. 2.2.

2.2.7 Interpolation

Before employing the estimated WB LP filter coefficients âWB,�, the NB input speech samples

sNBpn1q first need to be interpolated from f 1
s “ 8 kHz to fs “ 16 kHz, as depicted in Fig. 2.7.

The interpolation implies an upsampling of factor two and a subsequent lowpass filtering

(Oppenheim and Schafer, 1989; Rabiner and Schafer, 1978; Proakis and Manolakis, 2007).

12Please note that filter instabilities have never been encountered in our simulations with 64 bit precision.
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In a first step, the upsampling is realized by inserting after each sample a zero

sNBpnq “
$&
%2 · sNBpn1q, if n1 “ n

2
P Z,

0, else,
(2.77)

with sNBpnq denoting the upsampled version of the NB input speech sNBpn1q. To maintain

the signal energy after interpolation, the non-zero samples need to be multiplied by two.

After that, an anti-aliasing lowpass filter is applied to preserve the unmodified LB spec-

trum, while removing the undesired spectral components from the UB frequency range. The

cut-off frequency of the lowpass filter is therefore adapted to fc specifying the frequency bands

in Sec. 2.1.2. In this work, a linear-phase FIR lowpass filter of order NLB is employed. Its im-

pulse response is represented by the filter coefficients bLB “ rbLBp0q, bLBp1q, . . . , bLBpNLBqsT.

An FIR lowpass filtering of sNBpnq thereby yields the interpolated LB speech samples

sLBpnq “
NLBÿ
ν“0

bLBpνq · sNBpn ´ νq, (2.78)

with sNBpnq “ 0 @ n ă 0, i.e., the delay units (memory) of the filter are initialized by zero.

The linear phase of the FIR lowpass filter allows for a constant group delay of τLB “ NLB

2

samples. Thus, the algorithmic delay contributions in the different signal paths of Fig. 2.7

can be exactly compensated for to ensure time alignment on the basis of frames and samples,

respectively. This plays an important role, particularly for the online ABE application in

Sec. 4.

2.2.8 LP Analysis and Synthesis Filtering

Following the well-known source-filter model of human speech production (Flanagan, 1972), a

speech signal can be divided into an excitation at the glottis and a vocal tract filter neglecting

the nasal tract:

• The excitation is generated by pressuring air via the lungs through the glottis. In

case of unvoiced sounds, the vocal cords surrounding the glottis are opened, as while

breathing. The excitation is therefore noisy and spectrally flat. In contrast, the vocal

cords are almost closed and put into vibration for voiced sounds. The vibration rate

(periodicity) is thereby specified by the fundamental frequency F0, which is colloquially

called pitch. It depends on the speaker and the emotional manner of speaking. The

spectrum of the excitation therefore reveals different equidistant comb structures with

maxima at F0 and integer multiples of it (i.e., harmonics). While male and female

voices reveal fundamental frequency ranges of about 50 . . . 250 Hz and 120 . . . 500 Hz,

respectively, the highest F0 of up to 600 Hz is reached by children (Vary and Martin,

2006, Sec. 2.2).
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• Due to its resonance characteristics, the vocal tract shapes phoneme-specific spectral

envelopes. It can physically be approximated from the glottis to the lips of the mouth

by lossless acoustic tubes of equal length and different diameters (Makhoul, 1975;

Markel and Gray, 1976; Rabiner and Schafer, 1978). The number of tubes thereby

defines the order of the LP model, i.e., NLP(WB) in case of the WB LP analysis in

Sec. 2.2.6. Based on the estimated WB LP filter coefficients âWB,�, the vocal tract

is modeled by an autoregressive IIR LP synthesis filter p1´ Âpzqq´1, with Âpzq “řN
LP(WB)

ν“1 âWB,�pνq · z´ν denoting the z-transform of the predictor. Furthermore, the

same predictor coefficients model the inverse vocal tract, however, in terms of a moving-

average FIR LP analysis filter 1´Âpzq.
As depicted in Fig. 2.7, the WB LP analysis filter 1́ Âpzq is first applied to the interpolated

LB speech samples sLBpnq resulting in an interpolated LB residual signal

eLBpnq “ sLBpnq ´
N

LP(WB)ÿ
ν“1

âWB,�pνq · sLBpn ´ νq, (2.79)

which represents a band-limited excitation of the vocal tract. To cover the whole WB

frequency range, eLBpnq still needs to be extended. There are several ways to accomplish

such a residual signal extension that are briefly mentioned in the next section. The WB LP

synthesis filter p1´Âpzqq´1 finally synthesizes the extended residual signal êWBpnq to obtain

the estimated WB speech samples

ŝWBpnq “ êWBpnq `
N

LP(WB)ÿ
ν“1

âWB,�pνq · ŝWBpn ´ νq. (2.80)

The most important property of this serial ABE structure is that the WB LP analysis and

synthesis filters operate at the same sampling rate of fs “ 16 kHz, as discussed in (Jax,

2002, Sec. 2.4). Thus, they are exactly inverse to each other and the LB spectrum can pass

through them transparently.

Due to the frame-wise estimation of WB LP filter coefficients âWB,�, they are switched

for the sample-wise processing in (2.79) and (2.80) every frame � “ 0, 1, . . . , L´1 at sample

index n “ � ·Ns. The implementation of such a time-variant filter is crucial, since switching

effects – also known as filter ringing – may cause transients or discontinuities and provoke

annoying artifacts (Välimäki, 1995; Välimäki and Laakso, 1998; Schnell and Lacroix, 2008).

As discovered in (P. Bauer, 2007; Bauer and Fingscheidt, 2008a), these problems particularly

arise when using a transposed filter structure (Oppenheim and Schafer, 1989, Sec. 6.4). Due

to the transposition of the multipliers and delay units, the accumulators contain unexpected

terms involving new as well as old predictor coefficients during the transition period of a

filter coefficient switch. In contrast, these mixed coefficient terms do not appear in a filter

implementation without transposition. It is therefore highly recommended to employ a non-

transposed filter structure, such as a direct form I (Oppenheim and Schafer, 1989, Fig. 6.10).
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However, this does not completely prevent switching effects. To further counteract such

problems in advance, a moderate cepstral interframe smoothing has been introduced in

Sec. 2.2.4. Additionally, a further smoothing strategy based on the LPC reflection coefficients

will be presented in Sec. 4.2.4.

2.2.9 Residual Signal Extension

Between the WB LP analysis and synthesis filtering blocks in Fig. 2.7, the extension of

the LB residual signal eLBpnq takes place. The extended residual signal êWBpnq serves as

a WB excitation of the vocal tract. It defines the spectral fine structure of the finally

synthesized speech signal. Due to the required transparency property of the serial ABE

approach mentioned in the section before, the residual signal extension needs to leave the

LB spectrum unchanged. Furthermore, the characteristics of the original excitation for

voiced and unvoiced sounds shall be approximated as close as possible. According to (Jax,

2002, Sec. 3), there are several concepts for residual signal extension, which demand more

or less complexity to meet these requirements.

Nonlinear Distortions

As a first option, nonlinear distortions can be applied to the LB residual signal, e.g., by using

power, saturation or rectification functions (Jax, 2002, Sec. 3.2). This approach follows the

probably first ABE proposal at all that has been made by Schmidt (1933) and employs a

nonlinear processing (Vary and Martin, 2006, Sec. 10.3.1). However, the nonlinearly distorted

residual signals further need to be sophistically post-processed by spectral whitening, gain

adaptation, and band-stop filtering (Jax, 2002, Fig. 3.3).

Generation of Noise and Pitch Harmonics

Another method is an explicit generation of noise with a subsequent band-stop filter and

gain adaptation (Jax, 2002, Sec. 3.1). It is widely used in speech coding, e.g., by the

WB AMR speech codec for frequency components above 6.4 kHz (3GPP TS 26.190, 2001).

However, if the missing frequency band is wider, the finally synthesized speech signal sounds

rather noisy, particularly during voiced sounds. When using a voiced/unvoiced classifier, this

method can be restricted to unvoiced sounds and replaced for voiced sounds with a sinusoidal

generation of pitch harmonics (Jax, 2002, Sec. 3.1), based on the principle of harmonic

modeling (Carl, 1994, Sec. 4.4.1). However, an harmonic extension requires a precise pitch

estimation. Otherwise, the finally synthesized speech signal gives the auditive impression of

an additional, simultaneous speaker with a similar pitch. A noise-robust estimation of the
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pitch is still challenging (Chan and Hui, 1997; Shahnaz et al., 2007; Thomas et al., 2010;

Pulakka et al., 2012d). This fact limits also the use of other pitch-adaptive methods, such

as (Jax, 2002, Sec. 3.3.3).

Pitch Doubling

Alternatively, an harmonic extension of the residual signal without the need for estimating

the pitch is accomplished by pitch doubling, as proposed in (Jax, 2002, Sec. 3.4). After the

pitch has been doubled by downsampling and subsequent time stretching, a highpass filter

is required to remove the time-stretched spectral components from the LB spectrum of the

extended residual signal (Jax, 2002, Fig. 3.6). However, an auditive impression of a further

speaker in the background with a doubled pitch sometimes arises in the finally synthesized

speech signal.

Spectral Duplication

Spectral duplication was first proposed by Makhoul and Berouti (1979) and represents a

simple time-domain modulation (Jax, 2002, Sec. 3.3). It provides an efficient extension of

the LB residual signal by spectrally shifting the LB spectrum depending on the normalized

angular modulation frequency ΩM. This assumes the LB residual signal to be spectrally

flat, which at least holds for unvoiced sounds. However, a time-domain modulation is also

feasible for voiced sounds, based on the assumption that the human ear is rather insensitive

to deviations from the original spectral fine structure towards higher frequencies (Jax, 2002,

Sec. 3.5). These deviations may take into account spectral gaps as well as variations of the

harmonic structure. Thus, the estimated spectral envelope turns out to be more relevant

than the extended residual signal in terms of subjective speech quality for high-band ABE

(Jax, 2002, Sec. 3.5). The residual signal extension in this work is therefore restricted to the

use of an efficient time-domain modulation (Carl, 1994, Fig. 4.33).

As depicted in Fig. 2.7, the extended residual signal êWBpnq results from a sample-wise

superposition of the LB residual signal eLBpnq and an estimated UB residual signal êUBpnq:

êWBpnq “ eLBpnq ` êUBpnq. (2.81)

The latter is obtained by modulating eLBpnq via a real-valued cosine function (Jax, 2002,

Eq. (3.2))

êUBpnq “ eLBpnq · gM cospΩMnq · gUB. (2.82)

This time-domain modulation corresponds to a spectral translation (ST) (Jax, 2002, Eq. (3.3))

ÊUB

`
ejΩ

˘ “ gM

2

“
ELB

`
ejpΩ´ΩMq

˘ ` ELB

`
ejpΩ`ΩMq

˘‰
· gUB, (2.83)
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Figure 2.9: Schematically illustrated time-domain modulations ST and SF for residual signal

extension: The LB amplitude spectrum |ELB

`
ejΩ

˘ | given Ωc “ 0.45π is dashed, whereas its

shifted halved replica |ELBpejpΩ˘ΩMqq|{2 are marked with asterisks and circles, respectively.

where two copies of the halved LB spectrum ELB

`
ejΩ

˘ { 2 are shifted by ˘ΩM. Depending

on ΩM, some spectral components may be shifted again into the LB frequency range. In

these cases, they need to be removed from êUBpnq by means of the anti-aliasing highpass

filter shown in Fig. 2.7. A low-delay IIR filter design is thereby recommended to allow for

synchronicity between the WB LP analysis and synthesis filtering. Furthermore, an energy

adaptation of the UB spectrum is required that is taken into account by the modulation gain

gM. In contrast to (Jax, 2002, Fig. 3.4), the UB residual signal is further weighted by an

additional static attenuation factor gUB “ 10
gUB,dB

20 , with the logarithmic weight gUB,dB rep-

resenting a negative value in dB. Thus, the aggressiveness of the ABE can be controlled.

Another adaptive attenuation weight to suppress the extension in noisy speech pauses, which

is driven by a robust speech pause detection (SPD), will be introduced in Sec. 4.2.3.

Fig. 2.9a schematically illustrates ST for ΩM “ Ωc, given a frequency band specification

of fc “ 3.6 kHz, i.e., Ωc “ 2πfc{fs “ 0.45π. In this case, an IIR anti-aliasing highpass filter

with a cut-off frequency equal to fc is required to remove the spectral alias components

|ELBpejpΩ`ΩMqq|{2 from the LB amplitude spectrum |ELBpejΩq|. Furthermore, a modulation

gain of gM “2 allows for an energy adaptation yielding the estimated UB amplitude spectrum

|ÊUB

`
ejΩ

˘ | “ |ELBpejpΩ´ΩMqq|. In the general case of modpΩM, 2πF0{fsq ‰ 0, with modp · q
denoting the modulo operator, the harmonic structure is not reconstructed correctly.

Spectral folding (SF) represents a special case of ST for ΩM “ π (Jax, 2002, Sec. 3.3.1).

As depicted in Fig. 2.9b, it yields a mirroring of the LB amplitude spectrum |ELBpejΩq|.
This provokes a spectral gap in the frequency range Ωc . . .ΩM ´Ωc “ 0.45π . . . 0.55π. A

correct reconstruction of the harmonic structure is neither accomplished. However, aliasing

effects are completely prevented in the LB frequency range. The estimated UB ampli-

tude spectrum |ÊUB

`
ejΩ

˘ | arises from a constructive superposition of |ELBpejpΩ´ΩMqq|{2 and

|ELBpejpΩ`ΩMqq|{2. Hence, there is no need for an anti-aliasing filter and the modulation gain
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Figure 2.10: Amplitude response of the IIR lowpass postfilter with a variable transition

range specified by the passband and stopband cut-off frequencies fc,p and fc,s, respectively.

results in gM “1. Thus, (2.82) is simplified to (Jax, 2002, Eq. (3.4))

êUBpnq “ eLBpnq · cospπnq · gUB “ eLBpnq · p´1qn · gUB. (2.84)

Potential artifacts, which originate from DC components that are spectrally folded to the

Nyquist frequency of 8 kHz, can be efficiently suppressed by the subsequent ABE postfilter.

2.2.10 ABE Postfiltering

Compared to (Jax, 2002, Sec. 2.3), the upper cut-off frequency of the estimated WB output

speech ŝWBpnq can be optionally adapted by means of a variable lowpass postfilter in the

final block of Fig. 2.7. Thus, the degree of bandwidth extension can be controlled.

Computational complexity and algorithmic delay are saved by using a fifth-order elliptic

IIR filter design with a stopband attenuation of 30 dB and a passband ripple of 0.01 dB

(Oppenheim and Schafer, 1989, App. B.3). To allow for a reasonable variation of the upper

cut-off frequency between 4 . . . 8 kHz, eight filters have been designed with a 0.5 kHz-wide

transition range being shifted in steps of 0.5 kHz. They are specified by the passband and

stopband cut-off frequencies fc,p and fc,s, respectively. Fig. 2.10 illustrates the amplitude

response of the IIR lowpass postfilter focusing on the variable transition range.

The transition range specification fc,p and fc,s of the postfilter can be adapted to the

level of background noise. This also applies to the static attenuation weight gUB of the UB

residual signal in Sec. 2.2.9. Thus, a more aggressive extension may be allowed in case of

noisy environments. Based on the assumption that the noise level is somehow correlated

with the speed of a cruising vehicle, the aggressiveness of the ABE should be automatically

controlled in automotive applications via the driving speed information on the CAN bus.
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2.3 Summary

In this chapter, a complete ABE framework exploiting phonetic a priori knowledge is for-

mulated as a further development from the state-of-the-art approach of Jax (2002). Both

ABE training and processing are thereby phonetically supported in terms of frame-wise

phoneme class labels. This innovation aims at improving speech intelligibility and quality

by a reduction of artifacts. They typically arise from ABE due to the confusion of critical

phonemes, as mentioned in the preceding chapter. By means of the phonetic support, a

supervised CB training is created, from which the subsequently trained LDA and HMM can

implicitly benefit. Within ABE processing, the phonetic information is integrated into the

HMM decoder. It thereby serves as an additional observation along with the extracted fea-

tures. This yields a modification of the observation likelihoods in terms of a novel phoneme

class probability matrix. Besides the exploitation of phonetic a priori knowledge, further

algorithmic innovations relating to (Jax, 2002) are introduced, such as a frame conversion

using non-rectangular windowing with window overlap, a VA-based optimal state sequence

decoder, a cepstral smoothing strategy, as well as an additional control over the UB energy

and cut-off frequency.

Based on these algorithmic fundamentals, the two following chapters categorize the wide

field of application into the main practice-relevant use cases. On the one hand, Chap. 3 deals

with a human-to-machine ABE application, which employs an offline ABE for the training

of WB telephony ASR systems. On the other hand, a human-to-human ABE application

is treated in Chap. 4 making use of an online ABE for the enhancement of NB telephone

speech services. In fact, phonetic a priori knowledge in support of the ABE processing is

or can be made available only for applications without online requirements. Obviously, this

condition is fulfilled in Chap. 3 but not in Chap. 4.
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Chapter 3

Human-to-Machine ABE Application:

Offline ABE for Training of

WB Telephony ASR Systems

In the previous chapter, a complete ABE framework exploiting phonetic a priori knowledge

in support of both training and processing has been presented. This chapter makes use of it

in a human-to-machine ABE application for telephony-based IVR systems. They intend to

automatically recognize human speech over the telephone by employing an ASR.

For one century, ASR has been an increasingly important field of research in human-to-

machine interaction. A toy called ‘Radio Rex’ was commercially developed in 1911 as the first

ASR machine (Cohen et al., 2004). In the fifties, the tasks were still limited to a recognition

of digits or vowels (Marill, 1961). As the computing power has been enormously increased

over the past decades, more and more demanding recognition tasks, such as a naturally

spoken conversation or dictation, have been facilitated by the use of sophisticated HMMs

and ANNs (Huang et al., 2001). According to Church and Mercer (1993), the availability

of large speech databases for training purposes is particularly important. Due to the strong

impact of the acoustic bandwidth on recognition performance as reported in Sec. 1.1, ASR

tasks with large vocabulary and noisy environments generally operate at 16 kHz sampling

rate.

However, the support of HD telephony services poses a problem for IVR systems. Despite

the large number of available speech corpora originating from conventional telephony, the

required ASR training suffers from the lack of WB telephone speech databases. This problem

will be tackled by upgrading existing NB telephone speech data via ABE. Since an ASR

training does not require online capabilities, the phoneme class labels needed for ABE can

be made available offline via phonetic transcription, i.e., either manually (by humans) or

49
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automatically (by forced Viterbi alignment), unless they are already provided along with the

respective database. Instead of improving speech intelligibility and quality from a human

point of view, such a database extension aims at increasing ASR performance. Compared

to the recording of new WB telephone speech corpora, it is less expensive in terms of time

and costs.

In this chapter, preliminary NB and WB phoneme recognition experiments identify those

phonemes, which benefit most from an acoustic bandwidth increase, to optimize the offline

ABE phoneme-specifically. Based on these findings, phonetically motivated CBs are designed

for ABE. To counteract potential phonetic over-representations caused by such CB designs,

the pre-trained state transition probabilities are modified. Further introduced modifications

aim at preventing sparse data problems and suppressing temporally smeared offsets. Finally,

large-vocabulary ASR experiments are conducted with a limited amount of simulated WB

telephone speech training data to investigate the ABE abilities for a realistic scenario in

practice.

3.1 Preliminary Phoneme Recognition Experiments

Before tackling large-vocabulary ASR tasks, this section investigates the phoneme-specific

ASR performance by means of preliminary phoneme recognition experiments. From this

investigation, the next section derives a phonetically motivated CB design for ABE. In

this context, the performance dependency on acoustic bandwidth is of particular interest.

Furthermore, the influence of telephone speech transmission characteristics is important for

the given telephony-based IVR application. For this purpose, two new derivatives of the

well-known TIMIT corpus (Garofolo et al., 1993) have been created comprising WB and

NB telephone speech data, respectively. On the one hand, WTIMIT has been derived from

the TIMIT corpus by a transmission over T-Mobile’s 3G mobile network in The Hague,

The Netherlands, employing the WB AMR speech codec at the commonly used bit rate of

12.65 kbps (Bauer et al., 2010d,c). It has been released for distribution by the Linguistic

Data Consortium (LDC) in 2010 (Bauer and Fingscheidt, 2010). On the other hand, the

complementary NB-TIMIT has been correspondingly derived from the decimated TIMIT

corpus by a transmission over T-Mobile’s 3G mobile network in Braunschweig, Germany,

employing the NB AMR speech codec at the commonly used bit rate of 12.2 kbps (Bauer

et al., 2010d,c).

Covering about 5.5 h of WB telephone speech data, the WTIMIT corpus is too small for

the purpose of large-vocabulary ASR training. Due to its phonetically balanced speech ma-

terial and manually transcribed phoneme labels, however, it is well suited for more restricted

phoneme recognition evaluations (Lee and Hon, 1989). Hence, a WB telephony phoneme
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recognition experiment is carried out on WTIMIT. In order to identify phonemes that suffer

from a limited acoustic bandwidth, another phoneme recognition experiment is performed on

the NB-TIMIT corpus providing the NB telephone speech data corresponding to WTIMIT.

In the following, the experimental setup is briefly described, focusing on the most impor-

tant aspects of the employed phoneme recognizer that is contained in the Hidden Markov

Model Toolkit (HTK) (Young et al., 2006). Subsequently, the experimental results are evalu-

ated by emphasizing the dependency of the recognition performance on acoustic bandwidth.

Please note that the remainder of this section is largely based on (Bauer et al., 2010d,c).

3.1.1 Experimental Setup

In the acoustic front end of the phoneme recognizer the feature extraction takes place. At

first, a DC offset compensation is applied to the speech files (Young et al., 2006, Sec. 5.2).

Subsequently, 12 mel-frequency cepstral coefficients (MFCCs) and a log-energy parameter

are extracted frame by frame using a Hamming window of 25 ms length and a frame shift

of 10 ms (Young et al., 2006, Sec. 3.1.5). In the WB and NB case, 26 and 23 triangular

bandpass filters being equally spaced along the mel scale are used for the involved filterbank

analysis (Young et al., 2006, Sec. 5.4), respectively. The resulting static features are subject

to a file-based cepstral mean normalization (CMN) and log-energy normalization (Young

et al., 2006, Sec. 5.6 and Sec. 5.8). Finally, 13 Δ- and 13 ΔΔ-features are derived from them

(Young et al., 2006, Sec. 5.9). Hence, the composite feature vectors reveal a dimension of 39

each.

The acoustic model training of the phoneme recognizer is performed on the predefined

training set of the respective TIMIT derivative. Based on the selected TIMIT phone alphabet

in (Lee and Hon, 1989), 48 monophone HMMs are trained (Young et al., 2006, Sec. 3.2).

Each HMM contains three states with a left-to-right topology and 16 Gaussian mixtures per

state. For initialization purposes, a flat start is used with an initial HMM prototype (Young

et al., 2006, Sec. 8.3). The global speech mean vector and diagonal covariance matrix are

thereby assigned to all Gaussian distributions.

The phoneme recognition engine operates on the predefined test set of the respective

TIMIT derivative. Instead of a language model, it simply employs a context-independent

grammar in terms of a monophone network (Lee and Hon, 1989, Fig. 3(a)). When evaluating

the phoneme recognition performance, successive instances of silence are merged. Further-

more, similar phones are clustered according to (Lee and Hon, 1989), yielding a reduced

TIMIT phone set of 39 phoneme-like classes.
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Speech dataset Front end PER [%] Relative increase of PER [%]

WTIMIT WB 39.57
40.78´39.57

39.57
· 100 « 3.06

NB-TIMIT NB 40.78

Table 3.1: PER results of HTK-based phoneme recognition on the WTIMIT and NB-TIMIT

corpora for a reduced TIMIT phone set after (Lee and Hon, 1989).

3.1.2 Experimental Results

The phoneme recognition performance is evaluated in terms of the commonly used phoneme

error rate (PER) measure (Lopes and Perdigão, 2011)

PER “ Sphn ` Iphn ` Dphn

Nphn

· 100 %, (3.1)

with Sphn, Iphn, and Dphn denoting the numbers of wrongly substituted, inserted, and deleted

phonemes, respectively, in addition to the true phoneme number Nphn. Tab. 3.1 shows the

PER results of both phoneme recognition experiments. The NB phoneme recognizer reveals

a PER of 40.78 %, which is expectedly higher than the PER of 39.57 % attained by the WB

phoneme recognizer (Bauer et al., 2010d,c). This corresponds to a relative PER increase of

about 3.06 %. The reason for such a moderate bandwidth dependency may be related to the

rather restricted phoneme recognition task compared with more demanding large-vocabulary

ASR tasks.

However, the observed overall behavior does not consistently apply to the single phonemes.

Fig. 3.1 depicts the phoneme-specific PER results of the NB relative to the WB phoneme rec-

ognizer for the reduced TIMIT phone set after (Lee and Hon, 1989). Interestingly, the recog-

nition of some phonemes even benefits from a NB telephone speech transmission (phonemes

to the right-hand side of Fig. 3.1), whereas for others it hardly depends on the bandwidth

(e.g., /m/, /sh/, /ey/, /g/, and /jh/). The mean of the phoneme-specific relative PERs

amounts to 3.91 %. In contrast to the relative PER increase of 3.06 % given in Tab. 3.1, it

does not take into account the different phoneme-specific occurrences and therefore treats

each phoneme equally. The importance of the fricatives /s/ and /z/, which has already been

stated in the context of ABE in Sec. 1.3, is explicitly demonstrated in Fig. 3.1. Due to the

bandwidth limitation, a huge PER increase of 30 % or more relative to a recognition on WB

telephone speech is provoked. Hence, the fricatives /s/ and /z/ turn out to play the most

important role in designing the phonetically motivated CB for ABE.
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Figure 3.1: Phoneme-specific PER results of the NB relative to the WB phoneme recognizer

for the reduced TIMIT phone set after (Lee and Hon, 1989).

3.2 Phonetically Motivated CB Design for ABE

Based on the general concept of supervised CB training described in Sec. 2.1.2, the specific

phoneme class mapping to single or multiple phonemes is defined in this section via a pho-

netically motivated CB design. To vary the influence of the phonetic a priori knowledge,

several ABE CBs are designed with a differing number of phoneme classes. In general par-

lance, the phonetic influence is increased, when spending more phoneme classes, and vice

versa. Before being able to finally train the phoneme-class-specific sub-CBs by means of

individual LBG algorithms according to Fig. 2.4, the respective sub-CB size still needs to

be determined. Subsequently, some of the most relevant CB designs are exemplarily pre-

sented referring to (J. Abel, 2013). The number of defined phoneme classes thereby decreases

strictly monotonically.

3.2.1 CB with Multiple Phoneme Classes

37 Phoneme Classes

The first CB design aims at providing a high number of phoneme classes. Of course, this

quantity is restricted by the size of the employed phoneme alphabet. Tab. 3.2 shows the

designed CB using the phoneme alphabet in Tab. A.1. Inspired by Lee and Hon (1989),

some similar phonemes are put into the same phoneme class. Hence, the number of phoneme
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ϕ Phonemes N
pϕq
S

ϕ Phonemes N
pϕq
S

0 /si/ 32 19 /l/ 4

1 /s/ 16 20 /j/ 4

2 /t/ 16 21 /6/ 4

3 /n/ 16 22 /aI/ 4

4 /a/, /a:/, /a„/ 16 23 /NS/ 4

5 /VN/ 16 24 /S/, /Z/ 2

6 /f/ 8 25 /x/ 2

7 /m/ 8 26 /h/ 2

8 /I/, /i:/ 8 27 /p/ 2

9 /U/, /u:/ 8 28 /b/ 2

10 /O/, /o:/, /o„/ 8 29 /g/ 2

11 /@/ 8 30 /N/ 2

12 /?/ 8 31 /Y/, /y:/ 2

13 /z/ 4 32 /9/, /2:/, /9„/ 2

14 /v/, /w/ 4 33 /E/, /E:/ 2

15 /C/ 4 34 /e:/, /e„/ 1

16 /r/ 4 35 /aU/ 1

17 /d/ 4 36 /OI/ 1

18 /k/ 4

Table 3.2: CB design with NP “ 37 phoneme classes ϕ, each with N
pϕq
S

CB entries, and a

total size of NS “235.

classes results in NP “ 37. The phoneme class labels ϕ are incremented in descending order

of the sub-CB size N
pϕq
S

.

The size N
pϕq
S

of the respective sub-CBs Cpϕq has been determined dynamically under

the constraint that a sufficient amount of training speech frames per HMM state must be

available to avoid sparse data problems. As a rule of thumb, each Gaussian mixture param-

eter should be trained at least by a minimum of 50 instances (Fingscheidt, 2014, Sec. 6.3).

Hence, 50 · p2 ·M · dq “ 50 · p2 · 8 · 10q “ 8000 instances are required for the complete GMM

training of a single HMM state j. This empirical formula takes into account a d-dimensional

mean vector μj,m and a diagonal d ˆ d covariance matrix Σj,m for each mixture component

m, whereas the scalar weight ρj,m is neglected here for the sake of convenience. Thus, the

sub-CB size N
pϕq
S

is derived from the ratio between the number of available training in-

stances for phoneme class ϕ and the required number of instances per state (i.e., 8000). To

allow for the binary splitting steps of the involved LBG algorithm, the resulting value just
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ϕ Phonemes N
pϕq
S

0 /s/, /z/ 8

1 /S/, /Z/ 8

2 /f/, /v/, /w/ 8

3 /C/, /x/, /j/ 8

4 /h/, /VN/, /NS/ 8

5 /si/ 4

6 /p/, /b/, /t/, /d/, /k/, /g/, /?/ 8

7
/r/, /m/, /n/, /N/, /l/, /I/, /i:/, /Y/, /y:/, /9/, /2:/, /9„, /E/, /E:/, /e„/,

8
/e:/, /U/, /u:/, /O/, /o„/, /o:/, /a/, /a„/, /a:/, /6/, /@/, /aI/, /aU/, /OI/

Table 3.3: CB design with NP “8 phoneme classes ϕ, each with N
pϕq
S

CB entries, and a total

size of NS “60.

needs to be rounded down to the next smaller power of two. The total size of the final CB

C “ �
Cpϕq | ϕ P t0, 1, . . . , 36u( “ �

c
piq | i P S

(
results in NS “ ř36

ϕ“0 N
pϕq
S

“ 235 and thereby

determines implicitly the number of HMM states.

Eight Phoneme Classes

The second CB design is based on the assumption that not each phoneme is equally important

for ABE, as already stated in Sec. 1.3. Hence, the number of phoneme classes is reduced

by grouping related phonemes according to their relevance. The more relevant particular

phonemes are, the less of them are grouped within a phoneme class. Tab. 3.3 shows the

designed CB comprising NP “ 8 phoneme classes.

Due to the importance of fricatives for ABE, they are involved in the phoneme classes

ϕ P t0, 1, . . . , 4u. The most important fricatives are assumed to be the unvoiced/voiced

counterparts /s/ and /z/, /S/ and /Z/, as well as /f/ and /v/. They are therefore put into

the distinct phoneme classes ϕ P t0, 1, 2u. Fricative /w/ is thereby merged with /f/ and

/v/, because of its related place of articulation. For the same reason, sonorant consonant

/j/ is folded with the fricatives /C/ and /x/ in phoneme class ϕ “ 3. As the pronunciation

of fricative /h/ is similar to breath sounds, it is put together in phoneme class ϕ “ 4 with

the distorted speech pauses labeled by /VN/ and /NS/. In contrast, the silence label /si/

that represents undistorted speech pauses is assigned to the single phoneme class ϕ “ 5. All

unvoiced and voiced plosives /p/, /t/, /k/ and /b/, /d/, /g/, respectively, as well as the

glottal stop /?/ are further combined in phoneme class ϕ “ 6, since they are supposed to be

not that relevant for ABE as the aforementioned fricatives. Even less important than the

plosives are assumed to be the remaining 29 phonemes, which consist of the last fricative
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ϕ Phonemes N
pϕq
S

0 /s/, /z/ 8 (out of 64)

1 /S/, /Z/ 8

2 /f/, /v/ 8

3 /si/ 8

4

/C/, /x/, /h/, /w/, /p/, /b/, /t/, /d/, /k/, /g/, /?/, /j/,

32
/r/, /m/, /n/, /N/, /l/, /I/, /i:/, /Y/, /y:/, /9/, /2:/,

/9„, /E/, /E:/, /e„/, /e:/, /U/, /u:/, /O/, /o„/, /o:/,

/a/, /a„/, /a:/, /6/, /@/, /aI/, /aU/, /OI/, /VN/, /NS/

Table 3.4: CB design with NP “5 phoneme classes ϕ, each with N
pϕq
S

CB entries, and a total

size of NS “64.

/r/, the sonorant consonants /m/, /n/, /N/, and /l/, as well as all 21 vowels and three

diphthongs. They are finally clustered in phoneme class ϕ “ 7.

As the number of available training instances for a particular phoneme class does not

necessarily correlate with its ABE relevance, the respective sub-CB size N
pϕq
S

is defined

empirically in contrast to the dynamic derivation of the first CB design. For example, the

size of the sub-CB representing the most frequent phoneme label /si/ is therefore reduced

from 32 to 4. The remaining sub-CB sizes are set to 8. Thus, the total size of the final CB

C “ �
Cpϕq | ϕ P t0, 1, . . . , 7u( “ �

c
piq | i P S

(
results in NS “ ř7

ϕ“0N
pϕq
S

“ 60.

Five Phoneme Classes

The third CB design exclusively focuses on the most relevant phonemes for ABE identified

in Sec. 1.3. Hence, the phoneme classes ϕ P t0, 1, 2u are assigned to the unvoiced/voiced

counterparts /s/ and /z/, /S/ and /Z/, as well as /f/ and /v/, as shown in Tab. 3.4. In

contrast to the second CB design, no specific phoneme classes are dedicated to the less

relevant, remaining fricatives or plosives. Due to the fact that undistorted speech pauses

may be easily confused with /s/ and /z/ based on NB speech, the silence label /si/ is

individually represented by phoneme class ϕ “ 3. All remaining 43 phonemes are just folded

in phoneme class ϕ “ 4.

The size of sub-CB Cp4q is empirically set to N
p4q
S

“ 32 allowing for a sufficient spectral

discrimination among the numerously assigned phonemes1. Based on some informal ABE

listening tests focusing on speech pauses, the sub-CB size for the silence phoneme class is

increased in comparison with the second CB design from 4 to 8. This size corresponds also to

1Please note that this number can also be obtained by adding the sub-CB sizes that belong to the

respective phoneme classes of the second CB design in Tab. 3.3 (i.e., N
p3q
S

` N
p4q
S

` N
p6q
S

` N
p7q
S

“ 32).
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the remaining sub-CBs. The final CB C “ �
Cpϕq | ϕ P t0, 1, . . . , 4u( “ �

c
piq | i P S

(
therefore

reveals a total size of NS “ ř4

ϕ“0N
pϕq
S

“ 64.

Another significant difference compared to the previous CB designs concerns the sub-CB

training of the phoneme class representing /s/ and /z/. It was found out in (Bauer et al.,

2008) that an underestimation of /s/ and /z/ provokes the typical lisping artifact introduced

in Sec. 1.3. However, not only wrong classifications in terms of false /s/- and /z/-rejections

are assumed to be mainly responsible for that, but also spectral reconstructions using sub-

optimally trained CB representatives. Due to the averaging property of the LBG algorithm,

the resulting UB spectral envelopes reveal two problems: They turn out to be spectrally too

flat on the one hand and suffer from insufficient energy on the other hand. A modified LBG

training was therefore proposed in (Bauer and Fingscheidt, 2009a, Sec. 4.1.2), which can be

employed by just replacing the conventional LBG algorithm for the training of sub-CB Cp0q

in Fig. 2.4. It thereby operates on those UB cepstral envelope vectors c� that correspond to

the phoneme class ϕ� “ 0 representing /s/ and /z/.

First of all, an initial sub-CB of size 64 is trained with a conventional LBG algorithm

to obtain a variety of UB spectral envelope representatives for /s/ and /z/. To tackle

the first problem of spectral flatness, all 64 representatives are sorted in decreasing order

by their LSD to the phoneme-class-specific mean UB spectral envelope. These LSDs can

be easily computed via (2.69) using the respective LPCC vectors (Jax, 2002, Eq. (4.15)).

Those foremost 8 out of 64, which have a zeroth LPCC larger than the one of the overall

mean representative, are then selected. Thus, the second problem of insufficient energy is

addressed. The resulting UB spectral envelopes finally build the required sub-CB.

Fig. 3.2 compares the UB spectral envelope characteristics between the sub-CB repre-

sentatives for phoneme class ϕ “ 0 of Tab. 3.3 and 3.4. For the purpose of comparison,

the overall mean representative is illustrated in blue. Being averaged over all /s/- and /z/-

instances, it is spectrally flat and reveals only a moderate energy. The 8 conventionally

LBG-trained sub-CB representatives of the second CB design are marked in red. Except for

the three uppermost red curves, they appear more or less like downwards shifted copies of

the overall mean representative. Hence, sharply pronounced /s/- and /z/-sounds can hardly

be reconstructed by them. This observation confirms the former assumption in (Bauer et al.,

2008) that an underestimation of /s/ and /z/ (lisping artifact) can be also caused by a sub-

optimal spectral reconstruction. As expected, the 64 temporary representatives marked in

black provide a variety of UB spectral envelopes. Obviously, 8 of them marked by the dashed

green curves serve as the sub-CB representatives of the third CB design. Due to their large

LSD to the overall mean representative, they appear much less spectrally flat. Furthermore,

they are located at a significantly higher energy level. Based on them, an adequate spectral

reconstruction of sharply pronounced /s/- and /z/-sounds turned out to be feasible (Bauer
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Figure 3.2: UB spectral envelope representatives of variously LBG-trained sub-CBs for the

phoneme class with /s/ and /z/ (the respective LPCCs are spectrally converted via (2.71)).

and Fingscheidt, 2009a; Bauer et al., 2010a).

Of course, not all /s/- and /z/-instances are pronounced in a sharp fashion. In fact,

the degree of sharpness highly depends on speaker-specific pronunciations, dialects, and

languages. In case of a moderate sharpness, a spectral reconstruction relying on the modified

LBG training would be unfavorable. Actually, it should be more spectrally flat and less

energetic. To solve this problem, a further modification is introduced, but this time with

respect to the supervised VQ in Fig. 2.5. At first, those /s/- and /z/-sounds with a zeroth

LPCC not exceeding the zero value are detected as moderately sharp. This detection is based

on the assumption that sharply pronounced /s/- and /z/-instances have more energy in the

UB than in the LB frequency range and therefore reveal – according to (2.17) – a zeroth

LPCC larger than zero. In case of a detected moderately sharp /s/- or /z/-pronunciation,

a VQ is performed using the modified CB C z Cp0q, i.e., the most appropriate UB spectral

envelope is chosen from the representatives of all phoneme-class-specific sub-CBs except for

Cp0q. In contrast, the VQ of sharply pronounced /s/- and /z/-sounds exclusively involves the

sub-CB Cp0q, as depicted in Fig. 2.5.
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ϕ Phonemes N
pϕq
S

0 /s/, /z/ 8 (out of 64)

1

/S/, /Z/, /f/, /v/, /C/, /x/, /h/, /w/, /p/, /b/, /t/,

16

/d/, /k/, /g/, /?/, /j/, /r/, /m/, /n/, /N/, /l/, /I/,

/i:/, /Y/, /y:/, /9/, /2:/, /9„, /E/, /E:/, /e„/, /e:/,

/U/, /u:/, /O/, /o„/, /o:/, /a/, /a„/, /a:/, /6/, /@/,

/aI/, /aU/, /OI/, /VN/, /NS/, /si/

Table 3.5: CB design with NP “2 phoneme classes ϕ, each with N
pϕq
S

CB entries, and a total

size of NS “24.

CB with Two Phoneme Classes

The fourth CB design is inspired by the dependency of the phoneme recognition performance

on acoustic bandwidth observed in Fig. 3.1. As shown in Tab. 3.5, only two phoneme classes

are spent, i.e., NP “ 2. While sub-CB Cp0q is dedicated exclusively to /s/ and /z/, sub-CB

Cp1q is mapped to all remaining phonemes. This assignment focuses on the outstanding role

of the fricatives /s/ and /z/. According to the preceding CB design with five phoneme

classes, the modifications of LBG training and supervised VQ are both applied to train

the sub-CB Cp0q. It therefore reveals a size of N
p0q
S

“ 8 (out of 64). The conventionally

LBG-trained sub-CB Cp1q turns out to be adequately dimensioned with an empirical size of

N
p1q
S

“ 16 (Bauer and Fingscheidt, 2009a, Sec. 4.1.2). Thus, the total size of the final CB

C “ �
Cp0q, Cp1q

( “ �
c

piq | i P S
(

results in NS “ N
p0q
S

`N
p1q
S

“ 24. The resulting UB spectral

envelope representatives of both sub-CBs are depicted in Fig. 3.3. As expected, the black

curves representing all phonemes except for /s/ and /z/ reveal more spectral flatness as well

as less energy than the /s/- and /z/-specific green curves originating from Fig. 3.2.

3.2.2 CB with One Phoneme Class

In contrast to the previous CB designs with multiple phoneme classes, the fifth CB design

involves only a single phoneme class representing all of the phonemes, i.e., NP “ 1. This

reflects the special case of a purely data-driven, unsupervised CB training without phonetic

support corresponding to (Jax, 2002, Sec. 6.2). Thus, an exploitation of phonetic a pri-

ori knowledge within ABE processing is not feasible considering (2.43). The designed CB

C “ Cp0q “ �
c

piq | i P S
(

is trained according to Fig. 2.4 by means of just one conventional

LBG algorithm. Taking into account (Jax, 2002, Sec. 6.5.1), the CB size is thereby set to

NS “ 64.
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Figure 3.3: UB spectral envelope representatives of the CB design with two phoneme classes.

3.3 Modification of State Transition Probabilities for ABE

The state transition probabilities ai,j “ Pps� “ j|s�´1 “ iq @ i, j P S derived in (2.39) highly

depend on the designed CB, which implicitly defines the HMM states. Fig. 3.4 exemplarily

illustrates the state transition probability matrix for the phonetically motivated CB design

with two phoneme classes. As specified in Tab. 3.5, the first eight states are specifically

dedicated to the critical fricatives /s/ and /z/, whereas the subsequent 16 states represent

all remaining phonemes. This showcase basically reveals three general types of problems:

1. Single elements of the state transition probability matrix become zero due to insufficient

training data (Rabiner and Juang, 1993, Sec. 6.12.4).

2. Because of the dominant main diagonal structure of the state transition probability

matrix, the HMM may tend to remain too long in a given state.

3. The over-representation of /s/- and /z/-states provokes temporal smearing effects.

These problems are tackled in Sec. 3.3.1–3.3.3 by introducing particular state transition

modifications (Bauer et al., 2014c, Sec. 2.2).
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Figure 3.4: Unmodified state transition probability matrix for the CB design in Tab. 3.5.

3.3.1 Smoothing of State Transitions (*)

An HMM is called ergodic, if it permits all mutual combinations of state transitions, i.e.,

ai,j ą 0 @ i, j P S (Rabiner and Juang, 1993, Sec. 6.3.3). However, zero entries may arise

in the joint state histogram Hps� “ j, s�´1 “ iq in case of insufficient training data (Rabiner

and Juang, 1993, Sec. 6.12.4). This sparse data problem directly affects the joint state

probabilities Pps� “ j, s�´1 “ iq in (2.37) and thereby also the state transition probabilities

Pps� “j|s�´1 “ iq in (2.39).

By means of a state transition smoothing, potential zeros in the joint state histogram are

smoothed out by just adding a small value γ (Huang et al., 2001, Sec. 8.4.5)

H˚ps� “j, s�´1 “ iq “ Hps� “j, s�´1 “ iq ` γ @ i, j P S. (3.2)

Thus, the modified joint state probabilities are computed according to (2.37)

P˚ps� “j, s�´1 “ iq “ H˚ps� “j, s�´1 “ iq
L ´ 1 ` N2

S
γ

@ i, j P S, (3.3)

with
řNS´1

j“0

řNS´1

i“0 H˚ps� “ j, s�´1 “ iq “ L ´ 1 ` N2
S
γ denoting the total number of state

transitions after smoothing. Throughout this work γ is set to one.
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3.3.2 Attenuation of State Transitions (**)

To counteract the observation that the HMM, once being in a given state, tends to stay there

too long, the main diagonal elements of the joint state probability matrix are attenuated by

a constant weighting factor g. Thus, the modified joint state probabilities result in

P˚˚ps� “j, s�´1 “ iq “ P˚ps� “j, s�´1 “ iq
1 ´ p1´gq

NS´1ř
η“0

P˚ps� “η, s�´1 “ηq
·

$&
%g, if i“j

1, else
@ i, j P S. (3.4)

For normalization purposes, the denominator takes into account the attenuated elements of

the main diagonal. A value of g“ 2
3

turned out to be adequate.

3.3.3 Boosting of State Transitions (***)

Due to the phoneme class assignment of the CB design in Tab. 3.5, /s/- and /z/-sounds are

over-represented compared to the remaining phonemes2. This over-representation provokes

temporally smeared /s/- and /z/-offsets. They can be reduced by emphasizing the transitions

from /s/- and /z/-states (i.e., s�´1 “ i ă 8) back to the others (i.e., s� “ j ě 8). Following

(Sanna and Murroni, 2009, Eq. (3)), the corresponding rectangle of the joint state probability

matrix is therefore boosted by an additive gain ξ ą 0:

P˚˚˚ps� “j, s�´1 “ iq “ 1

1`128ξ
·

$&
%P˚˚ps� “j, s�´1 “ iq`ξ, if iă8, jě8

P˚˚ps� “j, s�´1 “ iq, else
@ i, j P S. (3.5)

A value of ξ“0.1 ·N´2
S

(i.e., one-tenth of the uniform distribution) turned out to be suitable.

The denominator in (3.5) serves as stochastic constraint involving all 8 · 16 “ 128 elements of

the boosted rectangle. For the CB design with five phoneme classes in Tab. 3.4 the boosted

rectangle comprises 8 · 56 “ 448 elements. Please note that the state transition boosting is

not used for those CB designs proposed in Sec. 3.2, which do not involve the specifically

trained phoneme class ϕ “ 0 with 8 out of 64 /s/- and /z/-representatives.

3.3.4 LSD Performance Evaluation

After the modifications have been applied, the initial state and state transition probabilities

are finally recalculated based on the modified joint state probabilities according to (2.38)–

(2.39). Fig. 3.5 illustrates the resulting state transition probability matrix, which clearly

differs from its unmodified version depicted in Fig. 3.4. While the state transition smoothing

2Please note that the fricatives /s/ and /z/ represent about 8 % of all phoneme labels in the phonetically

balanced TIMIT corpus.
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Figure 3.5: Modified state transition probability matrix for the CB design in Tab. 3.5.

is hardly visible due to the small additive value, the attenuation of the main diagonal elements

as well as the boosting of the /s/- and /z/-offset rectangle are obvious.

To investigate, whether ABE benefits from the state transition modifications, a reference-

based, instrumental performance evaluation is conducted based on the sub-band LSD mea-

sure defined in (Pulakka et al., 2008; Katsir et al., 2011). Compared to the LPCC-based LSD

measure (Jax, 2002, Eq. (4.15)) exemplarily applied by the cepstral interframe smoothing in

(2.69), it derives the frame-wise distortion between a reference and modified speech signal

from the respective short-term power spectra Φref,�pkq and Φmod,�pkq:

LSDspec,� “
gffe 1

khigh ´ klow ` 1

khighÿ
k“klow

ˆ
10 log10

Φref,�pkq
Φmod,�pkq

˙2

, 0 ď � ď L´1. (3.6)

Thus, the LSD can be flexibly specified for a particular spectral band by just restricting the

frequency bins to a range k P tklow, klow`1, . . . , khighu. For instance, the LSD specifications

in (Pulakka et al., 2008; Katsir et al., 2011) focus on a restricted frequency band ranging

from 4 kHz to 7 kHz. Nevertheless, both LSD measures LSDceps,� and LSDspec,� are commonly

used for speech quality assessment of ABE systems (Pulakka, 2013, Sec. 6.2.1).

The present performance evaluation relies on two sub-band LSD measurements LSD
p1q
spec,�

and LSD
p2q
spec,� @ � “ 0, 1, . . . , L´1. For both of them, all WB speech files originating from the

predefined test set of the WTIMIT corpus serve as reference. However, the modified speech

signals represent different ABE versions. While the first one makes use of all three state
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Figure 3.6: Phoneme-specific sub-band LSD improvement attained by an ABE with state

transition modifications compared to an unmodified ABE for the reduced TIMIT phone set

after (Lee and Hon, 1989).

transition modifications (LSDp1q
spec,�), the second one utilizes none of them (LSDp2q

spec,�). Apart

from that, the remaining ABE parametrizations are equal3. Moreover, both ABE versions

share the same training carried out on the predefined training sets of the NB-TIMIT and

WTIMIT corpus. Corresponding to the involved WB reference speech files, the predefined

test set of the NB-TIMIT corpus is subject to ABE processing. For both LSD
p1q
spec,� and

LSD
p2q
spec,�, the sub-band frequency bin edges klow and khigh are adapted to a spectral range of

4.4 . . . 6.4 kHz. This excludes the spectral gap arising from ABE between about 3.6 kHz and

4.4 kHz because of the SF-based residual signal extension shown in Fig. 2.9b. Furthermore,

the WB AMR speech codec at the bit rate of 12.65 kbps used for the creation of the WTIMIT

corpus has an internal sampling rate of 12.8 kHz and therefore only provides relevant spectral

content up to 6.4 kHz (3GPP TS 26.190, 2001; Bauer et al., 2010d,c).

Fig. 3.6 depicts the phoneme-specific sub-band LSD improvement due to the state tran-

sition modifications for ABE. It is characterized by the difference between LSD
p2q
spec,� and

3Amongst others, they involve a CB design with two phoneme classes (Tab. 3.5), a phonetic weighting of

the state observation likelihoods with rpjq “ 3 @ j P S in (2.43), an FA-based MMSE estimation of the UB

cepstral envelope in (2.67), and a residual signal extension by means of SF (Fig. 2.9b).
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LSD
p1q
spec,� taking the mean over single phonemes. Obviously, there is no phoneme that suffers

from the state transition modifications. In total, a mean LSD improvement of 0.07 dB is

achieved. Particularly, the critical fricatives /s/ and /z/ take profits, but also others, like

/f/, /th/ as well as the silence label, which tend to be confused with /s/ and /z/. Informal

listening tests have also confirmed an improved ABE performance.

3.4 Large-Vocabulary ASR Experiments with ABE

After having initially demonstrated the dependency of the phoneme recognition performance

on acoustic bandwidth in Sec. 3.1, this section finally shows the practice-relevant large-

vocabulary ASR experiments. The experimental investigations for this purpose have been

made in the context of a 2.5 years project funded by the German Research Foundation (DFG)

under grant no. FI 1494/4-1 in cooperation with the European Media Laboratory GmbH in

Heidelberg, Germany, aiming at the transfer of knowledge obtained from the preceding two

years basic research project with grant no. FI 1494/2-1. All crucial decisions concerning the

experimental design are therefore made from a practice-oriented point of view in agreement

with the project partner, who kindly provided his complete ASR training and test processing

chain (Fischer and Kunzmann, 2013). It largely relies on the RWTH Aachen University Open

Source Speech Recognition Toolkit (Rybach et al., 2001).

The following investigations are largely reported in (Bauer et al., 2014b; J. Abel, 2013).

First of all, the setup of the large-vocabulary ASR experiments is described. Before dealing

with the ABE-based ASR experiments, practice-relevant ASR baseline results are obtained

serving as reference. Finally, the experimental results are discussed to develop a recommen-

dation for offline ABE to upgrade telephone speech databases in bandwidth.

3.4.1 Setup of Large-Vocabulary ASR Experiments

In the following, an overview of the experimental setup is given. To allow for a large-

vocabulary recognition task, the ASR training and test process require a large amount of

speech data. This also applies to ABE. Hence, an extensive speech database needs to be

selected and adequately divided into the respective subsets. Due to the lack of WB telephone

speech corpora, realistic telephone speech transmission characteristics have to be simulated

by means of a standardized data preprocessing. Thereafter, the most important aspects of

the employed ASR framework are briefly described.
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Verbmobil subsets Data amount Relative portion Purpose

ABEtrain 7 h 10 % ABE training

ASRtrain 14 h 20 % ASR training

ABEproc 42 h 60 % ABE processing, ASR training (!)

ASReval 7 h 10 % ASR evaluation

Table 3.6: Shares of data and purposes of the employed Verbmobil subsets.

Definition of Speech Database Subsets

The WTIMIT corpus (Bauer and Fingscheidt, 2010; Bauer et al., 2010d,c) is – to the best

of the author’s knowledge – the only published WB telephone speech database. Its ap-

proximately 5.5 h of American English speech material is by far not sufficient for training

of a large-vocabulary recognition task. Furthermore, German was chosen as ASR target

language in the DFG project. Hence, the WTIMIT corpus is used only for the more re-

stricted preliminary phoneme recognition evaluations in Sec. 3.1. The German part of the

Verbmobil spontaneous speech corpus (Wahlster, 2000) is considered to be large enough

for large-vocabulary ASR investigations. It covers 39,935 transcribed dialog turns uttered

by 802 speakers resulting in about 70 h of 16 kHz-sampled, uncoded speech data. Being

recorded over close-talk and room microphones4, it still needs to be preprocessed to simulate

a realistic telephone speech transmission.

The selected speech data is randomly divided into four speaker-disjoint subsets under the

constraint that the gender and age of the speakers are balanced over all subsets. Furthermore,

the subset proportions are designed in agreement with the project partner to allow for a

practice-oriented scenario. Tab. 3.6 specifies the data amount, relative portion and purpose

of the defined Verbmobil subsets. The first subset called ABEtrain is spent for ABE training.

It includes 7 h (i.e., 10 %) of speech data. The typical use case that there is much less WB

than NB telephone speech data available for acoustic model training of telephony-based IVR

systems is reflected by the subsets ASRtrain and ABEproc. They comprise 14 h (i.e., 20 %)

and 42 h (i.e., 60 %) of speech data, respectively. The corresponding data ratio of one third

aims at investigating realistic effects of imbalanced data sets for WB and NB ASR training

in practice. When applying the ABE processing to subset ABEproc, a huge amount of WB

telephone speech data can be acquired in addition to subset ASRtrain. The last subset

denoted as ASReval is finally dedicated to ASR evaluation and contains the remaining 7 h

(i.e., 10 %) of speech data.

4Please note that the small portion of available Verbmobil NB telephone speech recordings has been

excluded from this study, as the required WB counterparts do not exist.
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Preprocessing of Speech Data

To simulate realistic NB and WB mobile telephone speech, the originally 16 kHz-sampled

speech data of the defined Verbmobil subsets is adequately preprocessed taking into account

the transmission characteristics of the sending terminal including the speech codec. As

the ASR is assumed to operate directly on the decoded signal, the acoustic transmission

characteristics of the receiving terminal are excluded. In the NB case, an ABE processing

is additionally performed. This leads to the following mobile telephony conditions: NB,

ABE, and WB. Any algorithmic delay that may be caused by the involved preprocessing

steps is exactly compensated for to preserve the original time alignment.

A flat bandpass filtering to the frequency range of about 0.2 . . . 3.6 kHz is applied to model

the sending frequency characteristics of NB-capable mobile terminals. It is accomplished by

combining the mobile station input (MSIN) highpass filter in (ITU-T G.191, 2009) with a

lowpass filter derived from the so-called FLAT1 filter in (ITU-T G.191, 2009). The bandpass-

filtered speech signals are decimated to a sampling rate of f 1
s “ 8 kHz. This implies a high-

quality lowpass filtering and subsequent downsampling of factor two. After decimation, a NB

mobile telephony call is simulated by applying the NB AMR speech codec at the commonly

used bit rate of 12.2 kbps (3GPP TS 26.090, 1999). The resulting NB condition directly

serves as input for ABE processing. Thus, the ABE-enhanced NB telephony condition

ABE is obtained. Alternatively, an interpolation to fs “ 16 kHz takes place based on the

NB condition. This implies an upsampling of factor two and subsequent high-quality lowpass

filtering. An interpolated NB telephony condition NBÒ2 is thereby provided for the purpose

of the ASR baseline experiments in Sec. 3.4.2.

In contrast, the sending frequency characteristics of WB-capable mobile terminals is mod-

eled by a flat bandpass filtering to the frequency range of about 0.05 . . . 7.0 kHz. It is con-

ducted by means of the send-side P.341 weighting filter mask (ITU-T P.341, 2011) in (ITU-T

G.191, 2009). To simulate a WB mobile telephony call, the WB AMR speech codec is applied

at the commonly used bit rate of 12.65 kbps (3GPP TS 26.190, 2001). In addition to the

resulting WB condition, a correspondingly decimated WB telephony condition WBÓ2 is

created for the ASR baseline experiments in Sec. 3.4.2.

Description of ASR Framework

The employed ASR framework (Fischer and Kunzmann, 2013), which has been kindly pro-

vided by the project partner, largely relies on the RWTH Aachen University Open Source

Speech Recognition Toolkit (Rybach et al., 2001). In the following, a brief description is

given focusing on the acoustic front end, acoustic model training, and speech recognition

process (Bauer et al., 2014b, Sec. 3). For further details please refer to (Lööf et al., 2007;
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Rybach et al., 2009, 2011).

The acoustic front end of the ASR framework extracts MFCC features using a Hamming

window of 25 ms length and a frame shift of 10 ms (Welling et al., 1997). A filterbank analysis

is thereby employed consisting of triangular bandpass filters equally spaced along the mel

scale. For speech signals sampled at 16 kHz, 16 MFCCs are extracted using 20 bandpass

filters. In case of 8 kHz-sampled speech signals, the higher NB frequency components are

slightly accentuated by a first-order FIR pre-emphasis filter in advance of the filterbank

analysis. Furthermore, only 15 bandpass filters are used and the number of MFCCs is

reduced to 12. The resulting MFCC features are subject to a file-based CMN. To capture

the temporal dynamics, nine successive feature vectors centered around the current speech

frame are concatenated and an LDA transformation is applied reducing the dimension of the

composite feature vector to 45 (Lööf et al., 2007, Sec. 2.1).

The acoustic model training of the ASR framework largely follows (Rybach et al., 2009,

Sec. 3), however, vocal tract length normalization (VTLN) as well as constrained maxi-

mum likelihood linear regression (CMLLR) for speaker adaptive training (SAT) (Rybach

et al., 2009, Sec. 3.3) have deliberately not been used in our work to focus more on the

acoustic signal properties. For initialization purposes, a flat start is applied to obtain

context-independent single-state HMMs. Subsequently, a phonetic decision tree for state

tying is trained via classification and regression tree (CART) estimation (Rybach et al.,

2009, Sec. 3.1). Two iterations of CART and LDA training are used for the creation of 6000

context-dependent triphone HMMs with a strict left-to-right topology. The transition prob-

abilities are defined independently from the HMM state for the loop, forward, skip, and exit

transitions. GMMs with a single, globally pooled diagonal covariance matrix are trained to

model the emission probabilities of the HMM states. The GMM parameters are iteratively

estimated by means of the well-known EM algorithm. A mixture splitting step between the

third and seventh training iteration finally increases the acoustic resolution of the GMM

by introducing small perturbations to the mean vectors (Rybach et al., 2009, Fig. 1). This

results in a total number of approximately 700,000 45-dimensional GMM densities.

A stochastic trigram language model as well as a pronunciation lexicon organized as a

prefix tree have been provided by the project partner to be used together with the trained

acoustic models for the speech recognition process (Rybach et al., 2009, Sec. 5). Thus,

a time-synchronous beam search algorithm is employed by the speech recognizer (Nolden

et al., 2010). On the one hand, the language model is derived from the Verbmobil subset

ASRtrain by a modified Kneser-Ney smoothing and contains about 100,000 n-grams. To

parametrize the weighting exponent of the language model, some preliminary experiments

have been carried out. On the other hand, the pronunciation lexicon originates from all

defined Verbmobil subsets in Tab. 3.6 to not unnecessarily restrict the large-vocabulary task
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Figure 3.7: Generic block diagram of ASR baseline experiments.

and to prevent out-of-vocabulary effects. It comprises roughly 11,400 words and 12,500

pronunciations.

3.4.2 ASR Baseline Experiments

Based on the defined Verbmobil subsets and the preprocessed telephony conditions, practice-

oriented ASR baseline experiments are designed without making use of ABE. They are

schematically depicted in terms of the generic block diagram in Fig. 3.7 and serve as reference

for the ABE-based ASR experiments in the next section. At the top of Fig. 3.7, the ASR

training process takes place to obtain the required HMM-based acoustic models. Either both

subsets ABEproc and ASRtrain or only one of them can be used for ASR training. This

flexible design is characterized by the dotted signaling paths. At the bottom of Fig. 3.7,

the trained ASR models are evaluated via the commonly used WER measure (Huang et al.,

2001, Eq. (9.3))

WER “ Swrd ` Iwrd ` Dwrd

Nwrd

· 100 %, (3.7)

with Swrd, Iwrd, and Dwrd denoting the numbers of wrongly substituted, inserted, and deleted

words, respectively, in addition to the true word number Nwrd. For this purpose, the ASR

test process employs the subset ASReval.

Design of ASR Baseline Experiments

The specific design of the ASR baseline experiments is shown in the left part of Tab. 3.7. It

assigns the telephony conditions WB, WBÓ2, NB, and NBÒ2 to the respective Verbmobil

subsets ABEproc, ASRtrain, and ASReval. The first two ASR baseline experiments serve as



70
3 Human-to-Machine ABE Application:

Offline ABE for Training of WB Telephony ASR Systems

No.
Verbmobil subsets

WER [%]
% WER relative to

ABEproc ASRtrain ASReval I II III IV /V

I WB WB WB 36.83 ˘0.0 ´6.9 ´14.0 ´7.8

II NB NB NB 39.58 `7.5 ˘0.0 ´7.6 ´0.9

III – WB WB 42.83 `16.3 `8.2 ˘0.0 `7.2

IV NB WBÓ2 WBÓ2 39.95 `8.5 `0.9 ´6.7 ˘0.0

V NBÒ2 WB WB 39.95 `8.5 `0.9 ´6.7 ˘0.0

Table 3.7: Design and results of ASR baseline experiments.

reference for the upper-bound performance in the pure WB and NB case. All three Verbmobil

subsets thereby incorporate the telephony condition WB and NB, respectively. However,

experiment I and II do not meet all of the following constraints, which are considered to be

of high practical relevance:

• Due to the lack of WB telephone speech data for ASR training purposes in practice,

the larger training subset ABEproc must do without the WB condition. It can be

only used for the smaller training subset ASRtrain comprising one quarter of training

data (this does not apply for experiment I ).

• Based on the assumption that an HD Voice call is being established, WB telephone

speech is received by the IVR system and needs to be recognized somehow. This

means that the WB condition – or at least its decimated version WBÓ2 in case of an

additional decimation5 – must be assigned to the ASReval subset (this does not apply

for experiment II ).

In fact, these constraints are met by the remaining ASR baseline experiments. Basically,

experiment III is based on I, except that three quarters of the training data represented

by subset ABEproc are just omitted. However, it still provides a match between the WB

telephone speech data involved by the subsets ASRtrain and ASReval. To keep that data

match as far as possible and to exploit the large amount of NB telephone speech training data

from subset ABEproc, experiment IV simply uses the decimated WB telephony condition

WBÓ2 for the other subsets ASRtrain and ASReval. The last ASR baseline experiment

is based on the third one, i.e., both subsets ASRtrain and ASReval adopt the WB condi-

tion, but it additionally includes the interpolated NB telephony condition NBÒ2 in subset

ABEproc. Obviously, a mismatch thereby arises from the different speech bandwidths.

5Please note that the WBÓ2 condition significantly deviates from the NB condition because of the

different transmission characteristics and speech codecs simulated by the data preprocessing in Sec. 3.4.1.
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Results of ASR Baseline Experiments

The results of the ASR baseline experiments are given in the right part of Tab. 3.7. The re-

sulting WERs range between 36.83 % and 42.83 %. This indicates that the large-vocabulary

ASR task is demanding6. As expected, the first ASR baseline experiment, which includes

the WB condition in all subsets, attains the best performance. When omitting three quar-

ter of the involved training data as reflected by experiment III, an absolute WER increase

of 6.0 % is caused. This explicitly demonstrates the severe problem being created by the

limited amount of WB telephone speech data for ASR training. Instead of the absolute

WERs, relative WER results are presented in the following to focus in detail on the mutual

differences among the ASR baseline experiments.

The WER resulting from experiment II is increased by 39.58´36.83
36.83

· 100 % « 7.5 % relative

to the first experiment. This expected degradation can only be explained by the reduced

speech bandwidth, as both experiments exploit all 56 h of training data with matching

telephony conditions. By reducing the training data to 14 h in the third experiment, the

WER is degraded by 16.3 % and 8.2 % relative to experiment I and II, respectively. The

second degradation indicates that the gain in speech bandwidth is overcompensated by the

lack of training data. Hence, the last experiments try to complement the training data again

at the expense of a bandwidth limitation (experiment IV ) or data mismatch (experiment V ).

Due to the increase of training data, the WER resulting from the fourth ASR baseline

experiment is reduced by 6.7 % relative to the third experiment, despite the bandwidth

limitation. Apart from the small data mismatch between the NB and WBÓ2 condition in

experiment IV producing a slight WER increase of 0.9 % relative to experiment II, both NB

ASR baseline experiments perform consistently. Surprisingly, the last experiment attains

exactly the same performance as the fourth one, although it implies a strong data mismatch

due to the different speech bandwidths of the involved NBÒ2 and WB condition. In return,

an additional decimation prior to the recognition is not required by experiment V, which

represents an advantage over experiment IV.

3.4.3 ABE-Based ASR Experiments

Instead of just interpolating additional NB telephone speech data for WB ASR training,

as done in experiment V, an ABE can be applied aiming at a reduction of the bandwidth

mismatch. The block diagram of the corresponding ABE-based ASR experiments is depicted

in Fig. 3.8. It is vertically divided into four processes: ABE training and test as well as ASR

6Please note that the WER results reported, e.g., in (Welling et al., 1999; Finke et al., 1997) are con-

siderably lower, however, a direct comparison between the Verbmobil 1996 evaluation set of 43 min length

employed there and the test subset ASReval with a duration of 7 h used in this work cannot be drawn.
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Figure 3.8: Block diagram of ABE-based ASR experiments.

training and test. At the top of Fig. 3.8, the ABE training takes place based on subset

ABEtrain to obtain the required ABE models7. It is followed by an ABE processing of

subset ABEproc using the trained ABE models. Thus, the limited speech bandwidth of the

employed NB condition is artificially extended. The resulting estimated WB speech data

is directly fed into the ASR training process together with subset ASRtrain in terms of the

WB condition. At the bottom of Fig. 3.8, the trained ASR models are finally evaluated by

means of subset ASReval that also incorporates the WB condition.

In the context of this offline ABE application, phonetic a priori knowledge in terms of

frame-wise phoneme class labels ϕ� is used for both ABE training and processing, as ex-

plained in Chap. 2. It is provided by the project partner, who carried out a forced Viterbi

alignment on the file-based phonetic transcriptions that are already contained in the Verb-

mobil corpus relying on the extended German speech assessment methods phonetic alphabet

(SAMPA) in Tab. A.1. Furthermore, an algorithmic delay of five frames is introduced by

deriving the first- and second-order dynamic features from the static ones via (2.31)–(2.32).

The interpolation required for ABE processing according to Sec. 2.2.7 makes use of a linear-

phase FIR lowpass filter being specified by a stopband cut-off frequency of fc, a transition

7Please note that the NB telephony condition is thereby used along with the unmodified Verbmobil speech

data sampled at 16 kHz (direct WB condition). The conceptual decision to perform the ABE training process

without using the WB telephony condition accommodates the lack of WB telephone speech data in practice.
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WER [%]
% WER relative to

I II III IV /V

38.05 `3.3 ´3.9 ´11.2 ´4.8

Table 3.8: Result of the ASR experiment with upper-bound ABE performance.

range of 100 Hz, a stopband attenuation of 100 dB, and a passband ripple of 0.1 dB. For

the residual signal extension described in Sec. 2.2.9, a static weight of gUB,dB “ ´3 dB is ap-

plied to attenuate the estimated UB residual signal. All remaining ABE parameters, which

have not been fixed yet, are investigated by the subsequent ASR experiments, except for the

optional ABE postfilter described in Sec. 2.2.10 being still neglected here.

ASR Experiment With Upper-Bound ABE Performance

To evaluate the potential of ABE for the given ASR training application, a cheat8 experiment

is conducted reflecting the upper-bound ABE performance. As the estimations of the UB

residual signal and WB spectral envelope are considered to be the main issues of ABE

processing according to Fig. 2.7, this cheat experiment directly accesses the original UB

residual signal eUBpnq and WB LP filter coefficient vector aWB,� instead of using the estimated

ones (êUBpnq and âWB,�). They are obtained by means of an LP analysis based on the original

WB speech signal sWBpnq. This actually means that that the UB frequencies are perfectly

reconstructed. However, the LB spectrum still reveals a mismatch compared with the original

signal due to the applied transmission characteristics and speech codec simulating a NB-

instead of a WB-capable terminal.

Tab. 3.8 shows the result of the ASR experiment with upper-bound ABE performance.

Obviously, it outperforms all ASR baseline experiments except for the first one having ac-

cess to the complete training data in terms of the WB condition. The resulting performance

degradation of 3.3 % relative to experiment I can be explained by the aforementioned spec-

tral mismatch in the LB frequency range. Nevertheless, a significant performance gain of

3.9 . . . 11.2 % WER relative to the other experiments II -V can be observed. Based on the

assumption that the ABE performance is lower-bounded by a simple interpolation (NBÒ2,

experiment V ) and upper-bounded by a perfect UB reconstruction (cheat experiment), a rel-

ative WER gap of (only) 4.8 % arises. In the following, this potential is tried to be exploited

as far as possible by investigating several impacts on ABE performance.

8Throughout this work, the term cheat shall be understood as a trick instead of a deception.
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ABE parametrization WER [%]
% WER relative to

I II III IV /V

FA
SF

fc “ 4.0 kHz 39.30 `6.7 ´0.7 ´8.2 ´1.6

fc “ 3.6 kHz 39.56 `7.4 ´0.1 ´7.6 ´1.0

ST fc “ 3.6 kHz 39.75 `7.9 `0.4 ´7.2 ´0.5

FBA
SF

fc “ 4.0 kHz 39.25 `6.6 ´0.8 ´8.4 ´1.8

fc “ 3.6 kHz 39.93 `8.4 `0.9 ´6.8 ´0.1

ST fc “ 3.6 kHz 39.76 `8.0 `0.5 ´7.2 ´0.5

VA
SF

fc “ 4.0 kHz 39.31 `6.7 ´0.7 ´8.2 ´1.6

fc “ 3.6 kHz 39.07 `6.1 ´1.3 ´8.8 ´2.2

ST fc “ 3.6 kHz 39.08 `6.1 ´1.3 ´8.8 ´2.2

Table 3.9: Impact of residual signal extension and frequency band specification on decoder-

specific ABE performance. The smallest WER for each HMM decoder is marked in bold.

Impact of Residual Signal Extension and Frequency Band Specification on ABE

To analyze the influence of the residual signal extension and frequency band specification

on ABE performance, the SF and ST techniques described in Sec. 2.2.9 are compared for

a cut-off frequency of fc P t3.6 kHz, 4 kHzu specifying the LB and UB frequency range in

Sec. 2.1.2. Independent from the choice of fc, a spectral gap between about 3.6 kHz and

4.4 kHz is caused by SF. In contrast, ST can manage a residual signal extension without

interruption for fc “ 3.6 kHz by adapting the modulation frequency to ΩM “ 2π · 3.6 kHz{fs

and the modulation gain to gM “ 2. Of course, this assumes the upper cut-off frequency of

the NB telephone speech to be 3.6 kHz, according to Sec. 3.4.1. An 80th-order IIR highpass

filter with a cut-off frequency of 3.6 kHz is finally used for ST to prevent aliasing.

The impact of SF and ST in combination with fc is evaluated for the FA- and FBA-based

optimal state decoders using the MMSE estimation (2.67) as well as for the VA-based optimal

state sequence decoder using the Viterbi path (2.68). By setting the phonetic weighting ratio

defined in (2.46) to rpjq “1 @ j P S, the phonetic a priori knowledge is still neglected. This

evaluation furthermore employs the CB design with two phoneme classes in Sec. 3.2.1 as

well as all modifications of the state transition probabilities according to Sec. 3.3.

The corresponding evaluation results are given in Tab. 3.9. Obviously, the lower-bound

ABE performance represented by experiment V is consistently exceeded. All HMM decoders

attain the highest performance, when using the SF technique. Hence, it can be concluded

that a moderate spectral gap around 4.0 kHz is not critical for ASR training purposes.

While the FA- and FBA-based decoders perform better with a frequency band specification

of fc “4.0 kHz, a cut-off frequency of fc “3.6 kHz turns out to be more suitable for the VA-
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ABE parametrization WER [%]
% WER relative to

I II III IV /V

FA

r “ 1 39.30 `6.7 ´0.7 ´8.2 ´1.6

r “ 3 39.21 `6.5 ´0.9 ´8.5 ´1.9

r “ 5 39.42 `7.0 ´0.4 ´8.0 ´1.3

r “ 7 39.84 `8.2 `0.7 ´7.0 ´0.3

FBA

r “ 1 39.25 `6.6 ´0.8 ´8.4 ´1.8

r “ 3 39.24 `6.5 ´0.9 ´8.4 ´1.8

r “ 5 39.19 `6.4 ´1.0 ´8.5 ´1.9

r “ 7 39.29 `6.7 ´0.7 ´8.3 ´1.7

VA

r “ 1 39.07 `6.1 ´1.3 ´8.8 ´2.2

r “ 3 38.95 `5.8 ´1.6 ´9.1 ´2.5

r “ 5 38.83 `5.4 ´1.9 ´9.3 ´2.8

r “ 7 39.28 `6.7 ´0.8 ´8.3 ´1.7

Table 3.10: Impact of phonetic a priori knowledge on decoder-specific ABE performance.

The smallest WER for each HMM decoder is marked in bold.

based decoder. These ABE parametrizations are kept for the remaining ASR experiments.

Impact of Phonetic A Priori Knowledge on ABE

Based on the preceding evaluation, the influence of the phonetic a priori knowledge is investi-

gated by varying the phonetic weighting ratio rpjq defined in (2.46). This parameter variation

is done independently from the HMM state by fixing rpjq “ r @ j P S with r P t1, 3, 5, 7u.
Tab. 3.10 shows the results of this investigation. Obviously, the performance without using

phonetic a priori knowledge (r “ 1) can be consistently exceeded by all HMM decoders.

While the FA-based HMM decoder performs best at a ratio of r “ 3, the FBA- and VA-

based decoders reveal the highest performance for r “ 5. When further increasing the

phonetic influence and thus trusting more in the phoneme class labels ϕ�, the results degrade

again. Hence, it can be concluded that phonetic a priori knowledge helps to improve the

performance only to a certain extent. This observation could be explained by the restricted

reliability of the phonetic transcription process, which has been carried out automatically via

a forced Viterbi alignment. Apart from that, the VA-based HMM decoder outperforms the

FA- and FBA-based HMM decoders for every single ratio. This indicates that the optimal

state sequence is superior to the optimal states. For the remaining ASR experiments, the

VA-based HMM decoder is therefore employed using a phonetic weighting ratio of r“5.
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CB design WER [%]
% WER relative to

I II III IV /V

NP “ 37 39.63 `7.6 `0.1 ´7.5 ´0.8

NP “ 8 39.61 `7.5 `0.1 ´7.5 ´0.9

NP “ 5 39.04 `6.0 ´1.4 ´8.8 ´2.3

NP “ 2 38.83 `5.4 ´1.9 ´9.3 ´2.8

NP “ 1 39.02 `5.9 ´1.4 ´8.9 ´2.3

Table 3.11: Impact of CB design on ABE performance using the VA-based HMM decoder.

The smallest WER is marked in bold.

Impact of CB Design on ABE

The evaluation of the phonetically motivated CB designs in Sec. 3.2 is based on the pre-

viously found ABE parametrizations, i.e., SF with fc “ 3.6 kHz as well as VA with r “ 5.

According to (2.43), phonetic a priori knowledge is not exploited in case of the CB design

with one phoneme class defined in Sec. 3.2.2. Moreover, the boosting modification of the

state transition probabilities is only used for the CB designs with two and five phoneme

classes, as explained in Sec. 3.3.3.

The corresponding evaluation results are given in Tab. 3.11. Obviously, the CB design

with two phoneme classes attains the best performance resulting in a WER of 38.83 %.

This yields a WER improvement of 2.8 % relative to the lower-bound ABE performance

represented by experiment V. Interestingly, the WER degrades consistently, when further

increasing the number of phoneme classes. In contrast, the purely data-driven CB design

with NP “ 1 turns out to perform only slightly worse than the phonetically motivated CB

design with NP “2. In fact, only the phoneme class representing /s/ and /z/ turns out to be

beneficial, which confirms the results of the preliminary phoneme recognition experiments

in Fig. 3.1.

3.4.4 Discussion

The conducted ASR baseline experiments point out the problem of insufficient WB tele-

phone speech data to train IVR systems supporting HD Voice services in practice. This

lack of training data provokes in the given showcase a relative WER degradation of 16.3 %

(cf. Tab. 3.7, experiment III vs. I ). When additionally making use of NB telephone speech

data for WB ASR training, this relative WER degradation is at least reduced to 8.5 %

(cf. Tab. 3.7, experiment IV /V vs. I ). This indicates that the statement “more data are

better data” of Church and Mercer (1993, pp. 18–19) is true. To appropriately adapt the
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differing sampling rates, either a decimation prior to the recognition or an interpolation of

the added training data is required. Assuming that an interpolation represents the most

rudimentary form of ABE, it defines the lower-bound ABE performance. In contrast, a per-

fect UB reconstruction provides the upper-bound ABE performance. The latter reduces the

relative WER degradation to 3.3 % (cf. Tab. 3.8, cheat experiment vs. experiment I ). The po-

tential for ABE can be expressed by directly relating the upper to the lower ABE performance

bound. Thus, a (not very large) relative WER gap of 4.8 % arises (cf. Tab. 3.8, cheat experi-

ment vs. experiment V ). After the employed ABE has been parametrized with respect to the

residual signal extension, frequency band specification, phonetic a priori knowledge, HMM

decoder, and CB design, more than half of this gap, i.e., 2.8 %, is bridged (cf. Tab. 3.11, best

ABE experiment vs. experiment V ). Moreover, the abovementioned relative WER degrada-

tion of 16.3 % due to insufficient training data decreases to only 5.4 % (cf. Tab. 3.11, best

ABE experiment vs. experiment I ). The additional use of NB telephone speech data for WB

ASR training via ABE results in a relative WER improvement of 9.3 % (cf. Tab. 3.11, best

ABE experiment vs. experiment III ). Please note that comparable results are achieved by

Seltzer and Acero (2007, Fig. 4) assuming a WB-to-NB training data ratio of one quarter.

However, their utilized feature- and model-based ABE techniques require modifications of

the employed ASR system affecting the feature extraction and acoustic model training, re-

spectively. In contrast, the ABE approach presented in this work just operates at a speech

data level prior to the ASR training and is therefore completely independent from the speech

recognizer.

3.5 Summary

In this chapter, the introduced ABE framework exploiting phonetic a priori knowledge is

utilized to upgrade NB telephone speech data for the purpose of WB ASR training. This

human-to-machine ABE application tackles the problem of insufficient WB telephony train-

ing data in practice. As it does not require any online capabilities, the employed ABE is

performed offline. Hence, the phoneme class labels in support of both ABE training and

processing are (or just can be made) available. Based on preliminary phoneme recognition

experiments, the important role of the fricatives /s/ and /z/ is demonstrated. It is taken into

account for a phonetically motivated CB design. By means of specifically trained CB rep-

resentatives, underestimation artifacts that typically arise from ABE are reduced. However,

the involved over-representation of /s/- and /z/-states provokes temporal smearing effects.

This problem is, amongst others, addressed by modifications of the state transition prob-

abilities. In the context of a practice-oriented scenario, large-vocabulary ASR experiments

finally point out the ability of the further developed ABE for the given application.
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After having treated this human-to-machine ABE application, which particularly aims at

improving the ‘intelligibility’ for the purpose of an automatic speech recognizer, the next

chapter deals with a human-to-human ABE application. It focuses on the enhancement of

telephone speech intelligibility and quality from a human perspective. As the employed ABE

thereby needs to be performed online, the phonetic a priori knowledge is actually available

only for ABE training.



Chapter 4

Human-to-Human ABE Application:

Online ABE for Enhancement of

NB Telephone Speech Services

This chapter employs the ABE framework developed in Chap. 2 to enhance the speech

intelligibility and quality of NB calls from a human point of view. The ABE processing

thereby needs to meet the online requirements of the telephone speech services. In contrast

to the last chapter, phonetic a priori knowledge is therefore only available for the offline

ABE training process.

In comparison with HD telephony, NB calls suffer from a reduced speech intelligibility

and quality because of their limited acoustic bandwidth, according to Sec. 1.1. Hence, the

telephone alphabet is often utilized instinctively to spell words without context informa-

tion, such as proper names. Particularly, conversations held in a foreign language raise the

mental load of the conversational partners. In case of an in-car telephone call, the driver

could thereby be distracted considerably. Any driver distraction can immediately impair the

driving safety. This problem is specifically addressed in (Bauer et al., 2010b) by integrating

ABE into the hands-free system of an automobile. Apart from that, the automotive context

is also taken into account for the general investigations on the given human-to-human ABE

application presented in this chapter.

At first, the influence of ABE on speech intelligibility is analyzed via subjective listening

tests with contextless syllables. This analysis somehow corresponds to the instrumental

phoneme recognition experiments in Sec. 3.1. To further optimize the ABE with respect

to speech quality, several innovations are introduced focusing basically on the reduction of

artifacts. Finally, the ability of ABE for speech quality enhancement is assessed subjectively

and instrumentally to find out, how to evaluate ABE systems in practice.

79
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4.1 Preliminary Syllable Articulation Tests with ABE

Subjective listening tests with contextless syllables are conducted to examine the impact

of ABE on human speech intelligibility, as inspired by French and Steinberg (1947) (see

Sec. 1.1). The syllable articulation tests involve the ABE framework, which has been further

developed in Chap. 3 to improve ASR performance. It is trained on the phonetically balanced

TIMIT corpus1 (Garofolo et al., 1993) and employs the phonetically motivated CB design

with two phoneme classes in Sec. 3.2.1 as well as all state transition modifications in Sec. 3.3.

Due to the missing phonetic a priori knowledge for ABE processing, the phonetic weighting

ratio (2.46) results in rpjq “ 1 @ j P S. To allow for an online-capable ABE processing,

algorithmic delay contributions are kept low as far as possible. Hence, the first- and second-

order dynamic features are obtained by the ‘low-delay’ derivation method (2.33)–(2.34).

Since FBA and VA typically require additional delay, the FA-based optimal state decoder

is applied using the MMSE estimation (2.67). According to Tab. 3.9, an SF-based residual

signal extension is therefore selected in combination with a frequency band specification of

fc “ 4.0 kHz. By attenuating the estimated UB residual signal following Sec. 2.2.9 with a

static weight of gUB,dB “´9 dB and applying the lowpass postfilter with a transition range of

5.5 . . . 6.0 kHz defined in Sec. 2.2.10 to the estimated WB output speech, the aggressiveness

of the ABE is controlled.

Before describing the setup of the syllable articulation tests, the preprocessing of the em-

ployed speech data is explained. An NB, ABE-enhanced, and WB telephone speech trans-

mission including two automotive (near-end) background noise levels is thereby simulated.

The main objective of the test results is to find out, whether ABE is capable of improving

NB telephone speech intelligibility. Apart from the dependency on speech bandwidth, the

influence of language and hearing ability is investigated by involving native and non-native,

as well as normal-hearing and hearing-impaired listeners.

4.1.1 Experimental Setup

Syllable articulation is tested via three subjective listening tests using vowel-consonant-vowel

(VCV) logatomes. They consist of single onset/offset vowels and single center consonants.

The emphasis is thereby put on the center consonants, which represent relevant phonemes

in the context of ABE according to Sec. 1.3. Amongst them, the involved subjects have to

acoustically recognize the correct ones. To get used to the test setup, the subjects first get an

initial instruction and familiarization, where a comfortable sound level can be individually

adjusted.

1The preprocessing of the NB and WB speech data used for ABE training largely follows Fig. 4.1, however,

a noise addition is not included.
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Figure 4.1: Data preprocessing for the syllable articulation tests simulating realistic NB,

ABE-enhanced and WB telephony conditions in an automotive near-end listening environ-

ment.

Several influences on the syllable articulation are investigated. All listening tests are based

on the subsequently explained data preprocessing. It simulates NB, ABE-enhanced and WB

telephony conditions in an automotive near-end listening environment at 20 dB and 0 dB

SNR. The first listening test serves as reference for the remaining ones, as it deploys normal-

hearing listeners, who are native speakers with respect to the pronunciation of the employed

syllables. In the second listening test, the language dependency is analyzed by involving

normal-hearing listeners, who are non-native speakers with respect to the pronunciation

of the employed syllables. The impact of hearing ability is finally examined by the third

listening test that engages hearing-impaired listeners, who are native speakers with respect

to the pronunciation of the employed syllables.

Preprocessing of Speech Data

Fig. 4.1 illustrates the preprocessing of the employed WB logatome data. It simulates real-

istic NB, ABE-enhanced and WB telephony conditions taking into account the transmission

characteristics of the sending and receiving terminal including the speech codec. Further-

more, an automotive near-end listening environment is simulated by adding WB car noise

with 20 dB and 0 dB SNR. To obtain temporally synchronized telephony conditions, the

algorithmic delay of the individual preprocessing steps is exactly compensated for.

In contrast to the preprocessing for the large-vocabulary ASR experiments in Sec. 3.4.1,

the send-side modified intermediate reference system (MIRS) weighting filter mask (ITU-T

P.830, 1996, Annex D) in (ITU-T G.191, 2009) is utilized instead of the MSIN-/FLAT1-
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based flat bandpass filtering to model the sending frequency characteristics of NB-capable

mobile terminals. The MIRS-filtered speech signals are subject to a decimation of factor

two, followed by an application of the NB AMR speech codec at the commonly used bit rate

of 12.2 kbps (3GPP TS 26.090, 1999). On the one hand, the resulting speech signals serve as

input for ABE processing. On the other hand, they are interpolated to fs “ 16 kHz for the

NB telephony condition. The P.341 weighting filter mask (ITU-T P.341, 2011) in (ITU-T

G.191, 2009) is employed to model the receiving frequency characteristics of WB-capable

mobile terminals. This allows for a fair comparison with the WB telephony condition, while

a receive-side MIRS weighting would unnecessarily degrade the syllable articulation of the

NB and particularly the ABE-enhanced telephony condition.

In case of the WB telephony condition, the P.341 weighting filter mask (ITU-T P.341,

2011) in (ITU-T G.191, 2009) is utilized twice to model both the sending and receiving

frequency characteristics of WB-capable mobile terminals. In between, the WB AMR speech

codec is applied at the commonly used bit rate of 12.65 kbps (3GPP TS 26.190, 2001).

To simulate an automotive near-end listening environment, the resulting P.341-filtered

speech signals of all telephony conditions are superposed by WB car noise according to

(ITU-T P.56, 2011). For this purpose, the active speech levels are consistently adjusted via

(ITU-T G.191, 2009) to ´26 dBov, while the car noise is scaled via (ITU-T G.191, 2009)

to root mean square (RMS) levels of ´26 dBov and ´46 dBov. A superposition of the

corresponding speech and noise signals finally provides the telephony conditions NB, ABE,

and WB with SNRs of 0 dB and 20 dB.

First Test with Native, Normal-Hearing Listeners at 20 dB and 0 dB SNR

The first subjective syllable articulation test is performed in our own laboratories by means

of an RME Fireface 400 external sound card, high-quality AKG K 271 MK II headphones,

and a laptop using a MATLAB GUI software (Bauer et al., 2013). It is based on contextless

VCV logatomes following the German SAMPA. They are pronounced in German by two

male and two female native speakers and originate from (Bellanova et al., 2010, 2011, 2012).

The VCV combinations included in the test combine the single onset/offset vowels /a/,

/I/ and /U/ with the single center consonants /s/, /f/, /S/, /x/ and /C/. The latter

ones characterize those fricatives that turn out to be the most relevant unvoiced German

phonemes for ABE following Sec. 1.3. Please note that /x/ and /C/ are allophones of a

single phoneme (the purely German ‘ch’ sound) and thus denote actually the same center

consonant. The velar fricative /x/ (as in ‘Nacht’ or ‘Flucht’) is thereby paired only with the

open front vowel /a/ and close back vowel /U/, while the palatal fricative /C/ (as in ‘Licht’)

is paired only with the close front vowel /I/ (Wiese, 2010). The remaining fricatives /s/,
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/f/, and /S/ are paired with all vowels /a/, /I/ and /U/. This results in a total of 12 VCV

combinations.

Taking into account the 12 VCV combinations from all four speakers as well as the three

preprocessed2 telephony conditions NB, ABE, and WB, 144 logatome files are available for

the test. Every listener has to recognize the correct center consonants of all these logatome

test files in an individually randomized order. For both SNRs, a separate test is conducted,

each with 12 predominantly non-expert German listeners having a mean age below 30 years

and a normal hearing ability. Hence, all of them can be considered as native (with respect to

the German syllable pronunciations) and normal-hearing. The audio samples are presented

to the listeners in a diotic manner over the headphones.

Second Test with Non-native, Normal-Hearing Listeners at 20 dB and 0 dB SNR

The setup of the second subjective syllable articulation test is exactly based on the first one,

except for the following deviations (Bauer et al., 2010b).

In contrast to the first test, contextless VCV logatomes pronounced in British English

by eight male and eight female native speakers are employed following the English SAMPA.

They originate from the training subset of the Interspeech 2008 Consonant Challenge corpus

(Cooke and Scharenborg, 2008).

This time, 24 VCV combinations are included in the test combining the single onset/offset

vowels /V/ (corresponding to the German /a/), /I/, and /U/ with the unvoiced fricatives

/s/, /f/, /S/, and /T/ as well as their voiced counterparts /z/, /v/, /Z/, and /D/. Besides

the addition of the corresponding voiced fricatives, the exclusively German allophones /x/

and /C/ are replaced by /T/ (and /D/) denoting the purely English unvoiced (and voiced)

‘th’ sound. The fricatives characterizing the single center consonants turn out to be the most

relevant English phonemes for ABE following Sec. 1.3. This results in a total of 24 VCV

combinations.

Taking into account the 24 VCV combinations from all 16 speakers as well as the three

preprocessed3 telephony conditions NB, ABE, and WB, 1152 logatome files are available for

the test. To allow for an adequate test duration, three VCV combinations per speaker (with

at most twice the same consonant) are provided to every listener in all telephony conditions.

This results in 144 unique logatome files per listener. Every listener has to recognize the

correct center consonants of all his logatome test files in an individually randomized order.

For both SNRs, a separate test is conducted, each with 8 predominantly non-expert German

listeners having a mean age below 30 years and a normal hearing ability. Hence, all of them

2Prior to the preprocessing a decimation from 44.1 kHz to 16 kHz sampling rate is required.
3Prior to the preprocessing a decimation from 25 kHz to 16 kHz sampling rate is required.
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can be considered as non-native (with respect to the English syllable pronunciations) and

normal-hearing. In this way, the language dependency is analyzed.

Third Test with Native, Hearing-Impaired Listeners at 20 dB and 0 dB SNR

The setup and task of the third subjective syllable articulation test is exactly based on the

first one, apart from the following differences (Bauer et al., 2012).

For both SNRs, a separate test is conducted, each with 12 predominantly non-expert

German listeners having this time a mean age of 62 years and a monaural hearing impair-

ment. Hence, all of them can be considered as native (with respect to the German syllable

pronunciations) and hearing-impaired. In this way, the impact of hearing ability is exam-

ined. To compensate for their moderate-sloping hearing loss, the listeners are monaurally

fitted by high-end, commercially available behind-the-ear (BTE) hearing aids employing the

NAL-NL2 formula (Keidser et al., 2011). The test is therefore carried out in the laborato-

ries of Siemens Audiologische Technik GmbH (now: Sivantos GmbH) by means of an RME

Multiface external sound card, a high-quality Genelec free-field loudspeaker, and a laptop

using the Oldenburg Measurement Applications (OMA) software from HörTech gGmbH.

4.1.2 Experimental Results

Fig. 4.2 depicts the absolute PER results of the subjective syllable articulation tests with na-

tive, normal-hearing listeners (a), non-native, normal-hearing listeners (b) as well as native,

hearing-impaired listeners (c) for 20 dB and 0 dB SNR on the left and right, respectively. Due

to the simple test design providing a predefined choice of VCV answers, the resulting PERs

only depend on the respective number of phoneme substitutions Sphn, i.e., Iphn “Dphn “0 in

(3.1). For all telephony conditions, total and phoneme-specific PERs are given, each with a

95 % confidence interval (CI) being defined according to App. B.1. By ignoring the voicing

discrimination for the evaluation of the second test, (b) can be compared better to (a) and

(c). Following (Bauer et al., 2013), all results are derived without taking into account a

correction for guessing (Frary, 1988). Hence, there is a 25 % chance to guess the answers

right, which corresponds to a PER of 75 %.

As expected, the PER levels increase consistently in all tests, when reducing the SNR from

20 dB to 0 dB. Since the English VCV pronunciations do not match the native language of

the listeners in the second test, the PERs in (b) rise drastically compared with (a) for both

SNRs. Due to the hearing impairment of the listeners in the third test, (c) also reveals a

remarkably increased PER in relation to (a), particularly for 0 dB SNR.

Interestingly, the lowest PERs are not always attained by the WB condition. In case of
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(c) Third test: Native, hearing-impaired listeners (Bauer et al., 2012).

Figure 4.2: Total and phoneme-specific PER results of the syllable articulation tests.
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Figure 4.3: Influence of P.341 and MIRS weighting with and without active speech level

normalization on the mean periodogram of the German VCV logatomes (Bauer et al., 2013).

the first and third test at 0 dB SNR, WB even performs worse than both ABE and NB.

This phenomenon is caused by the (correct) use of the P.341 and MIRS weighting filter masks

in Fig. 4.1 to simulate the different sending frequency characteristics of WB- and NB-capable

mobile terminals. Their influence on the mean periodogram of the German VCV logatomes

is illustrated in Fig. 4.3. Compared with the flat frequency response of the P.341 weighting

between 0.05 kHz and 7.0 kHz used for the WB condition (ITU-T P.341, 2011), the MIRS

weighting applied to the NB and ABE conditions provokes an attenuation below 1.5 kHz

and above 3.5 kHz (ITU-T P.830, 1996, Annex D), as demonstrated by the dashed curves in

Fig. 4.3. The low frequencies providing the highest energy contributions are therefore fully

preserved only in the P.341-filtered signal. However, this leads to a stronger attenuation,

when finally normalizing the active speech levels to ´26 dBov for the listening environment

preparation in Fig. 4.1. Thus, the normalized, P.341-filtered signal is significantly attenuated

in the frequency range of about 1.0 . . . 4.0 kHz relative to the normalized, MIRS-filtered

signal, as demonstrated by the solid curves in Fig. 4.3. This scaling effect is particularly

relevant for the syllable articulation in the 0 dB SNR case, when the added car noise masks

the frequencies below 1.0 kHz to a great extent because of its lowpass characteristics. Please

note that the poor performance of the WB condition at 0 dB SNR is related to all fricatives

except for /s/, which is predominant above 4.0 kHz (Hughes and Halle, 1956; Li and Allen,

2011).

These observations are confirmed by Fig. 4.4. It depicts for all telephony conditions the

spectrogram of the concatenated German VCV logatomes pronounced by one exemplary male

speaker. Obviously, the aforementioned spectral components between 1.0 kHz and 4.0 kHz

are substantially attenuated in case of the WB condition (c) compared to the NB and
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Figure 4.4: Spectrograms of the German VCV logatomes pronounced by a male speaker.
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ABE conditions (a, b). In general, the frequencies above 4.0 kHz are hardly masked by

the added car noise as opposed to the frequencies below 1.0 kHz. This explains the good

performance of the WB condition with respect to fricative /s/ in spite of the scaling effect.

Apart from that, the spectrogram of the ABE condition (b) is similar to the one of the

WB condition (c) in the UB frequency range. This indicates that the ABE performs well.

Now let us come back to the absolute PER results depicted in Fig. 4.2. The first test

(a) at 20 dB SNR reveals a very low PER level for all telephony conditions. The lowest

total PER of 5.90 % is obtained by the WB condition, while NB and ABE both attain

8.68 %. Because of the language match and the normal hearing ability of the listeners, there

is not enough potential for ABE to improve the performance of the NB condition. When

reducing the SNR to 0 dB, the PERs of the fricatives /x/, /C/ and /s/ increase drastically

by about 30 percentage points in case of the NB condition, whereas the remaining fricatives

/f/ and /S/ do not suffer. The ABE condition provokes a comparable behavior except for

fricative /s/. Its PER rises only by about 15 percentage points. This overcompensates the

10 percentage points higher PER of fricative /f/. Thus, the total PER of the NB condition

is slightly improved via ABE from 21.70 % to 20.49 %. Due to the aforementioned scaling

effect, the highest total PER of 27.08 % results from the WB condition.

Because of the language mismatch, the second test (b) offers a huge potential for ABE

to improve the NB condition at 20 dB SNR, in contrast to the first test (a). All fricatives

except for /S/, /Z/ benefit from the ABE condition. This results in a total PER reduction

from 37.50 % to 32.81 %. The WB condition still performs even better with 26.04 %. Mainly

responsible for these improvements are the fricatives /T/, /D/ and /s/, /z/. At 0 dB SNR,

the PER level of the fricatives /T/, /D/ and /f/, /v/ increases for all telephony conditions to

about 60 %. This means that the listeners more or less try to guess them right. In contrast,

the fricatives /S/, /Z/ are still recognized well. The PER of the fricatives /s/, /z/ varies

most among the telephony conditions. Here, the ABE and WB conditions outperform the

NB condition by 7.30 % and 29.17 %, respectively. The total PERs result in 45.57 % for

NB, 43.75 % for ABE, and 39.58 % for WB.

As opposed to the first test (a), the hearing impairment of the listeners in the third test (c)

also provides a remarkable potential for ABE to improve the NB condition at 20 dB SNR.

However, fricative /s/ is exclusively responsible for that, whereas the remaining fricatives

turn out to be recognized well. Compared to the NB condition, ABE and WB significantly

reduce the PER of fricative /s/ by about 30 and 40 percentage points, respectively. In

return, ABE degrades the PER of fricative /f/ only by about 10 percentage points. Thus,

the total PER of the NB condition is improved via ABE from 23.09 % to 18.06 %. A further

decrease to 13.37 % is attained by the WB condition. At 0 dB SNR, fricative /s/ is tried

to be guessed right by the hearing-impaired listeners in the NB condition. Once again,
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Syllable articulation tests

% total PER relative to NB

20 dB SNR 0 dB SNR

ABE WB ABE WB

Native, normal-hearing listeners ˘0.00 ´32.00 ´5.60 `24.80*

Non-native, normal-hearing listeners ´12.50 ´30.56 ´4.00 ´13.14

Native, hearing-impaired listeners ´21.80 ´42.11 ´10.68 `3.85*

Table 4.1: Total PER results relative to the NB condition (*: These relative PER degrada-

tions are due to the scaling effect as explained in Fig. 4.3 and 4.4).

its PER turns out to be considerably improved based on the ABE and WB conditions by

about 20 percentage points. As the ABE still degrades the PER of fricative /f/ only by

about 10 percentage points similar to the 20 dB SNR case, the total PER is reduced by the

ABE condition from 40.63 % to 36.28 %. The WB condition causes the highest total PER

of 42.19 % due to the aforementioned scaling effect, like in case of the first test (a) at 0 dB

SNR.

Tab. 4.1 finally presents the total PER results of the ABE and WB conditions relative

to the NB condition for all subjective syllable articulation tests. Except for the first and

third test at 0 dB SNR, the WB condition provides the best performance revealing relative

PER reductions between 13.14 % and 42.11 %. Obviously, ABE is capable of improving

the syllable articulation compared to the NB condition in all cases involving low SNR,

language mismatch, and hearing impairment. The ABE condition thereby attains relative

PER improvements ranging from 4.00 % to 21.80 %. These results indicate that ABE is able

to significantly narrow the fricative intelligibility gap between NB and WB speech.

4.2 ABE Optimization for Speech Quality Enhancement

Despite the encouraging effect of ABE on syllable articulation, the enhancement of telephone

speech quality still poses a big challenge. Telephony users have got accustomed to muffled

sounding phone calls over decades. It is therefore difficult to convince them suddenly of a

brighter sound. According to Sec. 1.1, a higher speech intelligibility does not necessarily

enhance the subjectively perceived quality. Already a few under- and overestimation arti-

facts, which typically arise from ABE as described in Sec. 1.3, can easily destroy the positive

auditive impression. Hence, it is of particular importance that the employed ABE strictly

avoids to produce artifacts. From this point of view, several innovations are developed to

further optimize the ABE algorithm for the purpose of enhancing telephone speech quality.

In the following, an overview of the ABE optimizations is given.
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Figure 4.5: Block diagram of optimized ABE processing to enhance telephone speech quality.

4.2.1 Overview

The ABE framework exploiting phonetic a priori knowledge in Fig. 2.7 is developed further

aiming at a prevention of artifacts. Fig. 4.5 illustrates the block diagram of the optimized

ABE processing. Besides the introduction of the blocks filled in black, the serial ABE

processing in the lower signal path is replaced by a parallel structure (Vary and Martin,

2006, Fig. 10.5). The coarse ABE postfiltering method being optionally applied at the end

of Fig. 2.7 is not required anymore due to novel strategies preventing artifacts in a more

sophisticated way. Thus, the upper cut-off frequency reduction yielding a more conservative

ABE is eliminated.

Most of the innovations affect the vocal tract estimation part of Fig. 4.5. First of all, two

ANN classifier blocks are introduced having access to the composite feature vector x̃� before

LDA transformation. They shall support the HMM-based estimation process and thus tackle

specific problems leading to artifacts. On the one hand, an ANN-based classification of /s/-

and /z/-sounds provides the required phoneme class labels ϕ� that are not available for ABE

processing in the given online telephony application. They can be used for the approved

phonetically motivated CB design with two phoneme classes defined in Tab. 3.5. Confusions

of the critical fricatives /s/ and /z/ shall be thereby minimized. On the other hand, the

energy of the estimated UB spectral envelope is adapted in the cepstral domain via an

energy class label ϑ�. It serves to correct the zeroth LPCC in case of overestimations. Please

note that the UB energy estimation also plays an important role in other ABE approaches



4.2.2 ANN-Based HMM Support 91

(Pulakka, 2013, Sec. 4.5.4). Both ANN classifiers are detailed in Sec. 4.2.2.

Another innovation focuses on the bandwidth extension of speech pauses. Due to their

low energy, they can be easily confused with the fricatives /s/ and /z/, when relying on

NB speech. These confusions also provoke overestimation artifacts. To tackle this problem,

the speech pause extension is suppressed by means of a robust SPD based on the calculated

NB power spectrum ΦNB,�. The SF-based residual signal extension is thereby provided

with an adaptive weighting factor gSPD,�. Due to the parallel ABE structure, it only affects

the estimated UB residual signal êUBpnq. Sec. 4.2.3 presents the SPD-based speech pause

extension.

The last block filled in black temporally smooths the estimated WB LP filter coeffi-

cients âWB,� during the first samples after a frame transition. Transients and discontinuities

(Välimäki, 1995, Sec. 3.5), which may arise from the time-varying LP analysis and synthesis

filtering, shall be thereby reduced (Välimäki and Laakso, 1998). Although they may be

hardly audible, they are clearly visible in the spectrogram. The temporal LPC smoothing

is actually applied to the corresponding reflection coefficients r̂WB,�. Thus, the stability

can be verified. A commonly used recursive conversion, which is part of the well-known

Levinson-Durbin recursion (Makhoul, 1975; Markel and Gray, 1976; Rabiner and Schafer,

1978), subsequently reveals the temporally smoothed, estimated WB LP filter coefficients
¯̂aWB,�,n. As they depend on sample index n, the LP analysis and synthesis filters there-

fore adopt them sample-wise. Further details on the temporal LPC smoothing are given in

Sec. 4.2.4.

The last innovation is related to the lower signal path and benefits from its parallel

ABE structure. As opposed to Fig. 2.7, the optional anti-aliasing filter is not required in

Fig. 4.5 for residual signal extension purposes, due to the use of SF. It may be used instead

for an IIR highpass filtering of the distorted LB spectrum, after the estimated UB speech

ŝUBpnq has been synthesized. Sec. 4.2.5 demonstrates by means of spectrograms where these

alias distortions come from and why such an anti-aliasing therefore makes sense.

4.2.2 ANN-Based HMM Support

According to Sec. 1.3, the most severe artifact typically arising from ABE approaches is

the underestimation of /s/ and /z/. It provokes an annoying lisping sound and originates

either from a spectral reconstruction using sub-optimally trained CB representatives or from

a wrong classification given by false /s/- and /z/-rejections (Bauer et al., 2008).

The phonetically motivated CB design with two phoneme classes defined in Tab. 3.5

already tackles the first problem of the sub-optimal spectral reconstruction. It exclusively

discriminates between the fricatives /s/, /z/ and all remaining phonemes. For this purpose,
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phonetic a priori knowledge in terms of the phoneme class labels ϕ� is provided to the

ABE training, as explained in Sec. 2.1. However, this phonetic support is not available

for ABE processing in the given online telephony application. Since there is not sufficient

mutual information between the LB and UB frequency range with respect to a one-to-one

mapping (Nilsson et al., 2002; Agiomyrgiannakis and Stylianou, 2004), particularly /s/-

and /z/-sounds may be misclassified. These misclassifications result in the second problem

mentioned above.

This problem can be addressed by detecting the critical fricatives /s/ and /z/ in real time.

For this purpose, numerous pattern recognition approaches basically come into consideration

(Reif et al., 2014; Fukunaga, 1990). The most promising ones already need to be provided

during their training process with the ‘ground truth’ information to allow for a supervised

learning. Amongst others, support vector machines (SVMs) are widely used (Smola and

Schölkopf, 2004), however, the number of required support vectors is not determinable prior

to the training4. In contrast, the computational complexity of ANNs can be already deter-

mined during the design phase (Hagan et al., 1996). Despite a relatively complex training,

the decoding process of an ANN is in general less complex than an HMM decoder, when as-

suming comparable topologies. Similar to HMMs, ANNs are commonly applied to phoneme

recognition, as exemplarily demonstrated by the TIMIT task (Hinton et al., 2012; Lopes and

Perdigão, 2011, Tab. 1, resp. 9). To obtain the required phoneme class labels ϕ� in support

of the HMM-based estimation process following Sec. 2.2, this work therefore adopts an effi-

cient feed-forward ANN classifier (Bauer et al., 2014a, Sec. 3.2). Please note that ANNs are

already successfully utilized in the context of ABE for high-band frequency estimation, too

(Pulakka and Alku, 2011; Kontio et al., 2007; Iser et al., 2008).

Due to the reduction of /s/- and /z/-underestimations, however, a contrary artifact is

stimulated. Some phonemes – particularly the fricatives /f/, /v/, /S/, /Z/, /x/, /C/, /T/,

and /D/, plosives as well as speech pauses – are thereby overestimated. These overestima-

tions provoke undesired hissing and over-voicing artifacts according to Sec. 1.3.

To tackle this problem, Nilsson and Kleijn (2001) augmented their GMM-based ABE

algorithm with an asymmetric cost function penalizing underestimations less than overesti-

mations. Alternatively, Pulakka and Alku (2011) used for their ANN-based ABE training an

asymmetric error measure. Instead of that, this work employs a second feed-forward ANN

classifier to identify high UB energy by means of an energy class label ϑ�. In case of an

overestimation, it serves to adapt the energy of the estimated UB spectral envelope in the

cepstral domain (Bauer et al., 2014a, Sec. 3.3). As overestimations basically imply a higher

energy in the UB than LB frequency range, they are related to the zeroth LPCC in (2.17).

4The computational complexity estimated by some informal SVM experiments on /s/- and /z/-

classification was found to be by far too high for the given online ABE application.
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Hence, the adaptive UB energy correction is done via ĉ�p0q.

Imbalanced Two-Class Problems

Both classification problems involve two classes. On the one hand, the first two-class problem

distinguishes the critical fricatives /s/ and /z/ denoted by a phoneme class label of ϕ� “ 0

from all remaining phonemes characterized by ϕ� “ 1. On the other hand, the second two-

class problem differentiates between high UB energy indicated by an energy class label of

ϑ� “1 and low UB energy represented by ϑ� “0.

Furthermore, the phoneme and energy classes are imbalanced. While the critical fricatives

/s/ and /z/ belong to the minority class with ϕ� “ 0, all remaining phonemes are part of

the majority class with ϕ� “1. In the phonetically balanced TIMIT corpus only about 8 %

of all phoneme labels represent /s/ and /z/. Correspondingly, the cases of high UB energy

expressed by the energy class with ϑ� “ 1 are outnumbered compared to the occurrences of

ϑ� “0 implicating less energy in the UB than the LB spectrum.

Randomized sampling methods on the data level can be applied to reduce these class im-

balances (He and Garcia, 2009, Sec. 3.1). Thus, balanced data distributions are obtained by

either oversampling the minority class or undersampling the majority class. However, this

may provoke an overfitting of the oversampled data or information loss of the undersampled

data (He and Garcia, 2009, Sec. 3.1.1). Please note that informed sampling methods are

used to counteract these effects. For instance, an informed undersampling can be realized by

combining several randomly undersampled majority class subsets with the minority class to

develop partial classifiers that are finally aggregated (He and Garcia, 2009, Sec. 3.1.2). This

procedure underlies the principle of ensemble learning (Opitz and Maclin, 1999) forming the

basis of the popular ensemble methods boosting (Schapire, 1990) and bootstrap aggregating

(bagging) (Breiman, 1996). Other state-of-the-art methods involving cost-sensitive, kernel-

based, active and one-class learning (He and Garcia, 2009, Sec. 3.2–3.4) handle the class

imbalance problem on the algorithmic level. However, all of these specialized pattern recog-

nition approaches widely used in the field of machine learning have not been utilized within

the scope of this work. As opposed to those classification problems having an absolute class

imbalance, the present speech processing application just reveals relative class imbalances,

i.e., there is sufficient training speech data available to reasonably model the minority classes

(He and Garcia, 2009, Sec. 2).

In case of imbalanced classes, conventional accuracy or error rate measures generally

evaluate the classification performance in favor of the majority class. A more differentiated

evaluation results from Tab. 4.2 (He and Garcia, 2009, Fig. 9). It illustrates the confusion

matrices of the phoneme and energy classification problem on the left and right, respectively.
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Predicted phoneme class Predicted energy class

ϕ� “ 0 ϕ� “ 1 ϑ� “ 1 ϑ� “ 0
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em
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cl
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s

ϕ
1 �

“
0 ϑ

1� “
1

T
rue

energy
class

true acceptance false rejection true acceptance false rejection

of /s/, /z/ of /s/, /z/ of high UB energy of high UB energy

ϕ
1 �

“
1 ϑ

1� “
0

false acceptance true rejection false acceptance true rejection

of /s/, /z/ of /s/, /z/ of high UB energy of high UB energy

Table 4.2: Confusion matrices for performance evaluation of both two-class problems.

The true classes are thereby assigned in vertical direction, while the predicted classes are

arranged horizontally. Please note that the true phoneme and energy class labels are denoted

by ϕ1
� and ϑ1

�, respectively. In total, the following four cases arise from each of the two-class

problems: True and false acceptance as well as true and false rejection. First of all, the

accuracy can be thereby expressed as

ACC “ NTA ` NTR

NTA ` NFR ` NFA ` NTR

, (4.1)

with NTA, NFR, NFA, and NTR denoting the numbers of cases involving a true acceptance,

false rejection, false acceptance, and true rejection, respectively. Based on the accuracy, the

error rate results in

ER “ 1 ´ ACC “ NFA ` NFR

NTA ` NFR ` NFA ` NTR

. (4.2)

When specifically focusing on the cause of each two-class problem, however, false rejection

rate (FRR) and false acceptance rate (FAR) measures are more suitable

FRR “ NFR

NFR ` NTA

, (4.3)

FAR “ NFA

NFA ` NTR

. (4.4)

On the one hand, the FRR captures well the misclassification problem caused by false /s/-

and /z/-rejections considering solely the true minority class ϕ1
� “0 in Tab. 4.2. On the other

hand, a false acceptance of high UB energy is responsible for the overestimation problem. It

exclusively arises from the true majority class ϑ1
� “0 in Tab. 4.2 and is therefore adequately

covered by the FAR.
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To treat the respective classes of a two-class problem equally despite its class imbalance,

the corresponding FRR and FAR measures can be calibrated by an equal error rate (EER):

FRR “ FAR “ EER. (4.5)

Compared with this EER measure, the conventional error rate generally favors the majority

class due to its larger amount of data.

Topology and Training of ANN Classifiers

Currently, deep recurrent ANNs are very popular in the field of ASR (Weng et al., 2014;

Graves et al., 2013; Hinton et al., 2012). Due to their multiple hidden layers being connected

in forward and (at least partially) in backward direction, however, the introduced computa-

tional complexity may become too high for practical ABE purposes. Hence, a more efficient

feed-forward ANN is designed with one hidden layer (Hagan et al., 1996). The 45-dimensional

composite feature vector x̃� serves as its input. Furthermore, a single-neuron output layer

is used with a saturating linear transfer function to obtain a scalar ANN classifier output in

the range of r0, 1s.
The remaining parameters have been determined by means of a preliminary full factorial

experiment involving the following parameter variations (Bauer et al., 2014a; J. Jones, 2013):

• N p1q P t15, 30, 45, 60u neurons in the hidden layer,

• a saturating linear, log-sigmoid, hyperbolic tangent sigmoid or radial basis transfer

function of the hidden layer,

• a resilient or scaled conjugate gradient (SCG) backpropagation training,

• a data ratio between training and validation of 50{50, 70{30 or 90{10.
Based on the resulting 96 ANNs, the best classification performance has been attained by a

combination of 45 hidden layer neurons, a saturating linear hidden layer transfer function,

an SCG backpropagation training, and a training-to-validation data ratio of 90{10 (Bauer

et al., 2014a; J. Jones, 2013). This parametrization is therefore fixed for both ANN classifiers.

Their topology is depicted in Fig. 4.6.

As denoted by the dot and dash lines in the hidden layer, the feature elements x̃�pνq @ ν P
t1, 2, . . . , 45u of the input vector x̃� are weighted by the elements wp1q

ν,μ PR @ ν P t1, 2, . . . , 45u,
μ P �

1, 2, . . . , N p1q
(

of a hidden layer weight matrix W
p1q. All products of each hidden layer

neuron are then added together with the corresponding element bp1q
μ PR @ μ P �

1, 2, . . . , N p1q
(

of a hidden layer bias vector bp1q. Finally, the resulting elements ip1q
μ PR @ μ P �

1, 2, . . . , N p1q
(

of the hidden layer net input vector ip1q are mapped via a saturating linear transfer function

f p1q to the elements o
p1q
μ PR @ μ P �

1, 2, . . . , N p1q
(

of a hidden layer net output vector o
p1q.
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Figure 4.6: Topology of the designed ANN classifiers (here: Hidden layer with N p1q neurons).

The following equations mathematically describe the hidden layer:
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fi
ffiffiffiffiffifl , (4.6)

op1q
μ “f p1q

`
ip1q
μ

˘ “

$’’’&
’’’%
0, if i

p1q
μ ă 0,

i
p1q
μ , if 0 ď i

p1q
μ ď 1,

1, if i
p1q
μ ą 1,

@ μ P �
1, 2, . . . , N p1q

(
. (4.7)

Compared to the hidden layer, the output layer contains only a single neuron. Hence, the

elements o
p1q
μ @ μ P �

1, 2, . . . , N p1q
(

of the hidden layer net output vector o
p1q are weighted

by the elements w
p2q
μ,1 P R @ μ P �

1, 2, . . . , N p1q
(

of an output layer weight vector w
p2q and

subsequently added together with an output layer bias b
p2q
1 PR. The resulting output layer

net input ip2q
1 PR is finally mapped via a saturating linear transfer function f p2q to the output

layer net output o
p2q
1 P R. A mathematical description of the output layer is given by the
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following equations:

i
p2q
1 “

»
—————–

w
p2q
1,1

w
p2q
2,1

...

w
p2q

Np1q,1

fi
ffiffiffiffiffifl

T

·

»
—————–

o
p1q
1

o
p1q
2

...

o
p1q

Np1q

fi
ffiffiffiffiffifl ` b

p2q
1 , (4.8)

o
p2q
1 “f p2q

´
i

p2q
1

¯
“

$’’’&
’’’%
0, if i

p2q
1 ă 0,

i
p2q
1 , if 0 ď i

p2q
1 ď 1,

1, if i
p2q
1 ą 1.

(4.9)

For each ANN classifier, the parameters
!
W

p1q, bp1q, wp2q, b
p2q
1

)
are separately trained

on the predefined training set of the TIMIT corpus (Garofolo et al., 1993) being split into

the required training and validation subset5. They are thereby adapted to minimize the

mean square error (MSE) between the true class labels and the ANN output (J. Jones, 2013,

Sec. 2.2.3). ANN training is performed via the neural network toolbox nntraintool of

MATLAB R2012a and automatically terminated as soon as anyone of the following constraints

is met:

• 12 successive validations with increasing performance (to prevent overfitting),

• a gradient ď 10´6,

• 12, 000 training iterations,

• 48 h elapsed time.

ANN evaluation takes place on the predefined TIMIT test set5. For both training and test,

the employed speech data is preprocessed following Sec. 4.3 to simulate a NB telephony

condition. Furthermore, all composite feature vectors x̃� are element-wise normalized to a

unified range for a faster gradient convergence within training (J. Jones, 2013, Sec. 3.2.2).

ANN for /s/- and /z/-Classification

To allow for a supervised learning, the training of the phonetic ANN classifier is provided

with the true phoneme class labels

ϕ1
� “

$&
%0, if ϕ̄� “0 ^ c�p0qą0,

1, if ϕ̄� “1 _ c�p0qď0.
(4.10)

They rely on the original phoneme class labels ϕ̄� Pt0, 1u deriving from the manual phonetic

transcriptions of the TIMIT corpus (Garofolo et al., 1993). Moderately sharp /s/- and

/z/-pronunciations, which do not reveal more energy in the UB than LB frequency range

5Please note that the ‘SA’ sentences to identify the American dialect region are thereby neglected.
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Figure 4.7: DET curve of the ANN-based /s/- and /z/-classifier.

following Sec. 3.2.1, i.e., c�p0qď0, are assigned to the true majority class ϕ1
� “1. Thus, only

the sharply pronounced /s/- and /z/-sounds with c�p0qą0 are included in the true minority

class ϕ1
� “ 0. Since underestimations are created by false /s/- and /z/-rejections according

to Tab. 4.2, they only arise from the true minority class. An EER optimization criterion is

therefore used for the training of the phonetic ANN classifier to put emphasis on the FRR

measure. For this purpose, the class imbalance within the training and validation subset is

removed by randomly oversampling the composite feature vectors x̃� belonging to ϕ1
� “0.

In order to map the real-valued net output o
p2q
1 P r0, 1s of the ANN output layer to the

discrete phoneme class label ϕ� Pt0, 1u, a classification threshold ΦPr0, 1s is used

ϕ� “
$&
%0, if o

p2q
1 ăΦ,

1, if o
p2q
1 ěΦ.

(4.11)

The classification performance can be adequately evaluated by a detection error tradeoff

(DET) curve (Martin et al., 1997). As an alternative to the commonly used receiver oper-

ating characteristic (ROC), it plots the FRR against the FAR. Thus, the value on the main

diagonal directly reveals the EER. The closer it is to the origin, the higher is the classification

performance. Fig. 4.7 depicts the DET curve of the phonetic ANN classifier, which attains a

respectable EER of 7.46 % for Φ“0.42. Hence, this classification threshold is fixed. A curve

close to the dashed line in Fig. 4.7 would have indicated a randomly guessing classifier.

For ABE processing, the acquired phoneme class labels ϕ� serve to compute the NPˆNS

phoneme class probability matrix Ppϕ�|s� “ jq in Sec. 2.2.1 with NP “ 2 and NS “ 24. As

recommended in Tab. 3.106, a phonetic weighting ratio of rpjq “ r “ 3 @ j P S is thereby

6The FA-based HMM decoder is used for the given online ABE application, since the FBA and VA

generally involve too much algorithmic delay.
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ER [%] EER [%]

Without phonetic ANN classifier 6.00 13.17

With phonetic ANN classifier 5.46 10.06

Table 4.3: Performance of HMM-based /s/- and /z/-classifier.

utilized yielding εpjq “ ε “ 1
4

@ j P S according to (2.45). Hence, (2.43) simplifies to

Ppϕ�|s� “jq “
$&
%1 ´ εpjq, if pϕ� “0 ^ j PS0q _ pϕ� “1 ^ j PS1q,
εpjq, if pϕ� “0 ^ j PS1q _ pϕ� “1 ^ j PS0q,

@ ϕ� P P , j P S. (4.12)

Prior to the extensive subjective and instrumental speech quality assessment in Sec. 4.3,

the impact of the phonetic ANN classifier on ABE processing is quickly evaluated by in-

vestigating the HMM performance in terms of /s/- and /z/-classification. The sum of the

a posteriori probabilities derived in (2.54) for those states representing /s/ and /z/, i.e.,ř
iPS0

γ�piq, thereby serves as classifier. Tab. 4.3 shows the respective results depending on the

support of the phonetic ANN classifier. As the HMM training is performed on imbalanced

data with respect to the /s/- and /z/-classification problem, it underlies a conventional error

rate optimization criterion. Due to the use of the phonetic ANN classifier, the error rate is

reduced from 6.00 % to 5.46 % (for minimum error rate, the classification thresholds of 0.45

and 0.6 have been applied, respectively). Focusing on the EER to equally treat the minority

and majority class, the classification performance is improved by the phonetic ANN classifier

support from 13.17 % to 10.06 %. The corresponding classification thresholds of 0.02 and

0.01 are relatively low because of the mismatch between optimization criterion and evalua-

tion measure. Nevertheless, the HMM turns out to significantly benefit from the phonetic

ANN classifier in terms of /s/- and /z/-classification.

ANN-Based UB Energy Adaptation

The training of the ANN-based UB energy classifier requires for a supervised learning the

true energy class labels

ϑ1
� “

$&
%1, if pc�p0q´1.0qą0,

0, if pc�p0q´1.0qď0.
(4.13)

Based on the original zeroth LPCC c�p0q in (2.17), they classify the UB energy into high

and low relative to the LB energy. High UB energies turn out to be robustly identified via a

conservative thresholding7 of pc�p0q´1.0qą0 and are assigned to the minority class ϑ1
� “1. In

7Please note that a robust UB energy identification was found to be advantageously conducted by sub-

tracting from c�p0q a constant value of 1.0 before applying a threshold of 0. Thus, only UB energies of

c�p0qą1.0 are assumed to be high, which represents a more conservative thresholding than c�p0qą0.
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Figure 4.8: DET curve of the ANN-based UB energy classifier.

contrast, pc�p0q́ 1.0qď0 indicates low UB energies to be included in the majority class ϑ1
� “0.

As overestimation artifacts are provoked by a false acceptance of high UB energy according

to Tab. 4.2, they originate only from the true majority class and are therefore captured

well by the FAR measure. Hence, the class imbalance is preserved, i.e., no randomized

sampling methods are applied. The ANN-based UB energy classifier is thus trained under a

conventional error rate optimization criterion promoting the majority class.

By using a classification threshold of ΘP r0, 1s, the real-valued net output o
p2q
1 P r0, 1s of

the ANN output layer is mapped to the discrete energy class label ϑ� Pt0, 1u

ϑ� “
$&
%1, if o

p2q
1 ąΘ,

0, if o
p2q
1 ďΘ.

(4.14)

The DET curve of the ANN-based UB energy classifier depicted in Fig. 4.8 points out a

respectable classification performance. For Θ“0.5, it reveals an error rate of 4.89 %. Hence,

this classification threshold is fixed. As requested, the FRR is thereby increased in favor of

the FAR compared to the EER operation point in Fig. 4.7.

For ABE processing, the acquired energy class labels ϑ� serve to adaptively correct the

energy of the estimated UB cepstral envelope ĉ� in Sec. 2.2.3. For this purpose, the zeroth

LPCC is redefined as

ĉ�p0q :“

$’’’&
’’’%
ĉ�p0q, if ϑ� “1,

ĉ�p0q´1.0, if ϑ� “0 ^ pĉ�p0q´1.0qă0,

pĉ�p0q´1.0q ·
´
o

p2q
1

¯ρ

, if ϑ� “0 ^ pĉ�p0q´1.0qě0,

(4.15)

with ρ P R
` being a positive exponent of the real-valued ANN output o

p2q
1 . To simplify

matters, the additional use of op2q
1 for UB energy adaptation along with ϑ� is not specifically

illustrated in Fig. 4.5 (see cepstral UB estimation block). According to (4.14), op2q
1 P r0, Θs

holds for ϑ� “0 with Θ“0.5.
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Figure 4.9: ANN-based adaptive UB energy correction for ϑ� “0, according to (4.15).

Fig. 4.9 aims at visualizing the redefinition of ĉ�p0q in (4.15) for ϑ� “0. In case of ϑ� “1,

the true UB energy is assumed to be high. An overestimation is therefore not expected.

Hence, no adaptation of ĉ�p0q is undertaken. When assuming the true UB energy to be

low, which applies to ϑ� “ 0, an overestimation may potentially occur. Hence, an adaptive

correction takes place depending on the estimated UB energy.

On the one hand, the estimated UB energy characterized by pĉ�p0q´1.0q ă 0 is low, like

the expected one. In this case, ĉ�p0q is just slightly diminished by a constant subtrahend of

1.0 yielding the black solid line in Fig. 4.9.

On the other hand, pĉ�p0q´1.0q ě 0 indicates that a high UB energy is estimated. The

resulting mismatch between the expected low and estimated high UB energy represents a false

acceptance according to Tab. 4.2. Thus, an overestimation is identified. In order to reduce

it, the real-valued ANN output o
p2q
1 P r0, Θ“0.5s is involved. It is assumed to specify the

reliability of the classification ϑ� “0 in (4.14). Based on this assumption, a high confidence

is expressed by values of op2q
1 close to zero, whereas the highest level of uncertainty is reached

at o
p2q
1 “ Θ “ 0.5. An overestimation is therefore most probable in case of op2q

1 “ 0. Hence,

o
p2q
1 is predestined to serve as an adaptive attenuation weight in addition to the constant

subtraction ĉ�p0q ´ 1.0 in (4.15). The blue solid lines in Fig. 4.9 exemplarily show UB

energy adaptations for different ANN outputs o
p2q
1 P t0.0, 0.1, 0.2, 0.3, 0.4, 0.5u and ρ“ 0.5.

Obviously, the adaptive attenuation rises with decreasing o
p2q
1 , i.e., when overestimations are

more likely. A further adjustment can be done by means of the positive exponent ρ within



102
4 Human-to-Human ABE Application:

Online ABE for Enhancement of NB Telephone Speech Services

the range between the red and green dashed lines. A value of ρ “ 0.5 resulting in
b
o

p2q
1

turned out to be adequate.

Prior to the extensive subjective and instrumental speech quality assessment that will

be presented in Sec. 4.3, the ability of the ANN-based UB energy adaptation for reducing

overestimation artifacts could be verified by several informal listening tests.

4.2.3 SPD-Based Speech Pause Extension

In general, speech pauses are characterized by a low energy. According to Sec. 1.3, ABE

approaches therefore tend to confuse them with the critical fricatives /s/ and /z/, when

relying on the NB speech signal. Overestimations in terms of undesired hissing artifacts

are the consequence. If the ANN-based UB energy classifier described in Sec. 4.2.2 fails, an

enhanced extension of speech pauses can be still achieved by means of a robust SPD (Bauer

et al., 2014a). According to Fig. 4.5, the speech pause extension is thereby suppressed in

the residual domain by an adaptive weighting factor

gSPD,� “
$&
%0, if SPD� “1,

1, if SPD� “0,
(4.16)

with SPD� Pt0, 1u denoting the hard SPD decision. Obviously, the value of gSPD,� is zero in

case of a detected speech pause (i.e., SPD� “1) and one for speech presence (i.e., SPD� “0).

Robust SPD

The employed SPD (Fodor and Fingscheidt, 2012, Sec. 4) relies on the frequency-dependent,

three-state voice activity detection (VAD)8 versions (Suhadi, 2012, Sec. 2.2.1) and (Setiawan,

2009, Sec. 4.1.1) for noise power spectral density (PSD) estimation. It detects a speech pause,

if both the frame counter �SPD, which specifies the number of frames since the last speech

presence has finished, is larger than LSPD “10 and the smoothed energy ĒSPD,� of the current

frame does not exceed an SPD threshold ΘSPD,�

SPD� “
$&
%1, if �SPD ąLSPD ^ ĒSPD,� ď ΘSPD,�,

0, else.
(4.17)

The smoothed frame energy is derived from the averaged, pre-emphasized NB power

spectrum Φ̄NB,�pk1q by the sum over k1 “k1
low, k

1
low`1, . . . , k1

high´1

ĒSPD,� “
k1
high´1ÿ

k1“k1
low

Φ̄NB,�pk1q, (4.18)

8In contrast to the SPD, a VAD primarily aims at detecting speech activity.
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with k1
low and k1

high denoting the frequency bins 0.1 kHz
f 1
s{2

·N 1
w{2 “ 2 and 4.0 kHz

f 1
s{2

·N 1
w{2 “ 80,

respectively. Thus, noise components being usually high at low frequencies are not taken

into account until 0.1 kHz. A first-order IIR recursion with a smoothing factor of αSPD “0.5

is utilized to smooth the NB power spectrum ΦNB,�pk1q for k1 “0, 1, . . . , N 1
w´1

Φ̄NB,�pk1q “ αSPD · Φ̄NB,�´1pk1q ` p1´αSPDq ·ΦNB,�pk1q |HHPpk1q|2 . (4.19)

To counteract the lowpass characteristics of the NB speech signal, the higher frequency com-

ponents are slightly accentuated by pre-emphasizing ΦNB,�pk1q via the frequency response

HHPpk1q of a first-order FIR highpass filter with the coefficients bHP “ r1,´0.8sT. The av-

eraged, pre-emphasized NB power spectrum is initialized by Φ̄NB,0pk1q“ΦNB,0pk1q |HHPpk1q|2
@ k1 “0, 1, . . . , N 1

w´1.

The SPD threshold is computed frame by frame using an adaptive noise floor signal

Eflr,� as well as the constant parameters Mflr “9.6 and Aflr “2.5

ΘSPD,� “ Mflr ·Eflr,� ` Aflr. (4.20)

Only in case of an enduring speech absence, which can be assumed when �SPD is larger than

LSPD as well as ĒSPD,� does not exceed twice a control signal Vctr,�, the noise floor signal will

be updated by ĒSPD,�

Eflr,� “
$&
%βSPD ·Eflr,�´1 ` p1´βSPDq · ĒSPD,�, if �SPD ąLSPD ^ ĒSPD,� ď 2Vctr,�,

Eflr,�´1, else.
(4.21)

This update is conducted via a first-order IIR recursion with a smoothing factor of βSPD

βSPD “
$&
%0.5, if ĒSPD,� ď Eflr,�´1,

0.9375, else.
(4.22)

If Eflr,�´1 is smaller than ĒSPD,�, the smoothing factor is close to one and Eflr,� therefore highly

depends on Eflr,�´1. Otherwise, the updated noise floor signal results from the average of

Eflr,�´1 and ĒSPD,�. The control signal tracks the valleys of the smoothed frame energy and

is steadily raised by the constant factor Mctr “1.025 during speech activity

Vctr,� “

$’’’&
’’’%
ĒSPD,�, if ĒSPD,� ă Vctr,�´1,

Mctr ·Vctr,�´1, if ĒSPD,� ą 2Vctr,�´1,

Vctr,�´1, else.

(4.23)

Thus, a suddenly beginning and then stationary noise signal will not be detected as speech

presence after a transition time. For initialization purposes, the control and floor signals are

set to Vctr,0 “ ĒSPD,0 and Eflr,0 “2ĒSPD,0, respectively.
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After having implemented and parameter-optimized the SPD, it has been extensively

tested to ensure noise robustness. The tests involved stationary and instationary noise types

for different SNRs in combination with two commonly used noise reduction algorithms9.

Residual-Domain SPD Weighting

The adaptive weighting factor gSPD,� derived via (4.16) from the SPD decision SPD� in

(4.17) is applied to the SF-based residual signal extension, as depicted in Fig. 4.5. Thus, the

sample-wise estimation of the UB residual signal in (2.84) is modified as follows

êUBpnq “ eLBpnq · p´1qn · gUB · gSPD,�. (4.24)

To suppress the extension of speech pauses, gSPD,� adaptively weights the UB residual signal

jointly with the static attenuation factor gUB. Please note that gSPD,� is thereby renewed

every frame � “ 0, 1, . . . , L´1 at the sample indices n “ � ·Ns.

4.2.4 Temporal LPC Smoothing

According to (Välimäki, 1995; Schnell and Lacroix, 2008), transients and discontinuities

may arise from the time-variant LP analysis and synthesis filtering. In order to reduce these

switching effects, Sec. 2.2.4 performs a moderate cepstral interframe smoothing (2.69)–(2.70)

and Sec. 2.2.8 recommends the use of a non-transposed LP analysis and synthesis filter

structure in (2.79)–(2.80). However, the introduced problems are thereby not completely

solved yet.

Inspired by (Välimäki and Laakso, 1998), the estimated WB LP filter coefficients âWB,� are

therefore temporally smoothed during the first Nt samples after a frame transition. For

the purpose of stability verification following (2.76), this temporal smoothing is actually

conducted based on the corresponding reflection coefficients r̂WB,�´1 and r̂WB,� of the previous

and current frame, respectively:

¯̂rWB,�,n “
$&
%

´
1´ n´�Ns

Nt

¯
· r̂WB,�´1 ` n´�Ns

Nt
· r̂WB,�, if �Ns ď n ď �Ns`Nt´1,

r̂WB,�, if �Ns`Nt ď n ď p�`1qNs´1.
(4.25)

The resulting reflection coefficients ¯̂rWB,�,n are thereby averaged sample by sample to smoothly

switch over from r̂WB,�´1 to r̂WB,�. Hence, they depend on sample index n. After Nt samples,

the smooth coefficient switch is practically finished. It turns out that Nt “NLP(WB) samples

9Both of them derive the noise PSD via minimum statistics (Martin, 2001) and perform a decision-directed

a priori SNR estimation (Ephraim and Malah, 1984). The weighting rules are based on a Wiener filter

(Scalart and Filho, 1996) and super-Gaussian joint MAP estimator (Lotter and Vary, 2005), respectively.
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provides a good trade-off between smoothness and accurateness of ¯̂rWB,�,n. The temporally

smoothed reflection coefficients for �“0 are initialized by ¯̂rWB,0,n “ r̂WB,0 @ n“0, 1, . . . , Nś 1.

After the stability of ¯̂rWB,�,n @ n“�Ns, �Ns`1, . . . , p�`1qNs´1 has been verified success-

fully10, a commonly used recursive conversion into the corresponding temporally smoothed

estimated WB LP filter coefficients ¯̂aWB,�,n takes place, being part of the well-known Levinson-

Durbin recursion (Makhoul, 1975; Markel and Gray, 1976; Rabiner and Schafer, 1978). In

contrast to (2.79)–(2.80), the resulting filter coefficients ¯̂aWB,�,n are adapted for LP analysis

and synthesis filtering at every sample n because of their dependency on sample index n

eLBpnq “ sLBpnq ´
N

LP(WB)ÿ
ν“1

¯̂aWB,�,npνq · sLBpn ´ νq, (4.26)

ŝUBpnq “ êUBpnq `
N

LP(WB)ÿ
ν“1

¯̂aWB,�,npνq · ŝUBpn ´ νq. (4.27)

Due to the parallel ABE structure in Fig. 4.5, the LP synthesis filter is only applied in (4.27)

to the estimated UB residual signal êUBpnq and thus computes the estimated UB speech

ŝUBpnq, while the LB speech sLBpnq is bypassed.

Fig. 4.10 (a) and (b) depict the UB speech spectrograms of an English utterance without

and with temporal LPC smoothing, respectively. When comparing both of them with the

LB speech spectrogram in (c), a reliable ABE suppression during speech absence via the

SPD-based speech pause extension in Sec. 4.2.3 becomes obvious. Please note further that

the switching effects caused by the time-variant LP analysis and synthesis filtering are clearly

visible in the LB frequency range of (a). Fortunately, they are significantly reduced by the

temporal LPC smoothing in (b). The remaining alias distortions below about 1.0 kHz do

not originate from the time-varying filter coefficients and are addressed in the next section.

4.2.5 Anti-Aliasing of LB Spectrum

The cause of the remaining low-frequency alias distortions in Fig. 4.10b is based on the

spectral characteristic of the employed WB speech for ABE training. It reveals both an

increase of energy towards low frequencies (spectral tilt), which is typical for speech signals,

and a strong decrease of energy for frequencies above 7.0 kHz (ITU-T P.341, 2011). The

latter is modeled by the UB cepstral envelopes for CB training in Sec. 2.1.2 and therefore

influences the shape of the UB spectral envelope estimated within ABE processing. When

assembling the estimated WB power spectrum in Sec. 2.2.5, the low-frequency energy gain is

merged with the high-frequency energy drop. Hence, the estimated WB LP filter coefficients

imply both. First of all, the LP analysis filter applies to sLBpnq the spectrally inverted

10Please note that the temporal LPC smoothing did never produce instabilities within this work.
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(a) ŝUBpnq without temporal LPC smoothing.
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(b) ŝUBpnq with temporal LPC smoothing.
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(c) sLBpnq.

Figure 4.10: UB and LB speech spectrograms of the following utterance (NTT-AT, 1994):

“Two blue fish swam in a tank, her purse was full of useless trash.”
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envelope, i.e., the low frequencies are attenuated and the high frequencies amplified. As

the UB spectrum in sLBpnq does not have an infinitely high stopband attenuation, the weak

spectral components above 7.0 kHz are thereby emphasized in eLBpnq. Due to the SF-based

residual signal extension in Fig. 4.5, they are spectrally mirrored to the frequency range below

1.0 kHz in êUBpnq. Finally, the LP synthesis filter amplifies these alias components again,

but this time by means of the low-frequency energy gain. Thus, the LB alias distortions in

ŝUBpnq originate from a twofold amplification combined with a spectral mirroring.

The introduced distortions can be reduced by anti-aliasing the LB spectrum in ŝUBpnq.
The optional anti-aliasing filter in Fig. 2.7, which is not required by the SF-based residual

signal extension, is therefore applied to ŝUBpnq in Fig. 4.5. For this purpose, it is redesigned as

a fifth-order, elliptic IIR highpass filter with a stopband attenuation of 100 dB, a passband

ripple of 0.1 dB, and a transition range of 1.0 . . . 4.0 kHz (Oppenheim and Schafer, 1989,

App. B.3). This filter design is of low computational complexity and algorithmic delay.

Please note that the LB spectrum anti-aliasing benefits from a decomposition of ŝUBpnq and

sLBpnq due to the parallel ABE structure. If such an anti-aliasing was conducted after

LP synthesis filtering in the serial ABE structure of Fig. 2.7, the transparency of the LB

spectrum in ŝWBpnq would be completely destroyed.

For the purpose of comparison, the UB speech spectrogram with temporal LPC smoothing

of Fig. 4.10b is illustrated again in Fig. 4.11a. Obviously, its alias distortions below about

1.0 kHz are completely removed by the LB spectrum anti-aliasing in Fig. 4.11b. According to

Fig. 4.5, the undistorted ŝUBpnq is therefore superposed with sLBpnq yielding the ABE speech

spectrogram in Fig. 4.11c. It implies all ABE optimizations proposed in Sec. 4.2 aiming at

the reduction of artifacts. In the following, a subjective and instrumental evaluation is

conducted to extensively assess the ABE performance in terms of speech quality.

4.3 Speech Quality Assessment

After the ABE has been optimized to reduce different kinds of artifacts, i.e., under- as well

as overestimations, filter switching effects, and alias distortions, this section investigates the

resultant impact on speech quality. For the purpose of speech quality evaluation, commonly

used subjective and instrumental assessment methods are involved. The subjective speech

quality perception is assumed to represent the ground truth for the given human-to-human

ABE application and needs to be predicted as accurately as possible by the instrumental

measurements. Two main objectives are therefore pursued. On the one hand, it shall be

clarified, whether ABE is capable of enhancing NB telephone speech quality, apart from the

attained speech intelligibility improvement demonstrated in Sec. 4.1. On the other hand, it

shall be found out, how to reliably assess ABE systems in practice.
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(a) ŝUBpnq with temporal LPC smoothing but without LB spectrum anti-aliasing.
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(b) ŝUBpnq with both temporal LPC smoothing and LB spectrum anti-aliasing.
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(c) ŝWBpnq with both temporal LPC smoothing and LB spectrum anti-aliasing.

Figure 4.11: UB and ABE speech spectrograms of the following utterance (NTT-AT, 1994):

“Two blue fish swam in a tank, her purse was full of useless trash.”
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4.3.1 Subjective Speech Quality Tests

Following (ITU-T P.800, 1996, Sec. 6), either conversation-opinion or listening-opinion tests

come into consideration to subjectively assess ABE systems in terms of speech quality. Ac-

cording to (Pulakka, 2013, Sec. 6.1.4), conversational evaluations of ABE have been only

conducted in (Laaksonen et al., 2011; Pulakka et al., 2012a,b,c). Compared to listening-only

tests, they better reflect telephone conversations. However, their sensitivity may be lower,

since the participating conversational partners do not only have to focus on the ratings

but also on the respective conversations. Furthermore, the arrangement of conversation-

opinion tests is even more complex (ITU-T P.800, 1996, Annex A). Hence, listening-opinion

tests are commonly used instead (Pulakka, 2013, Sec. 6.1.1–6.1.2). Preference and similar-

ity tests are their simplest representatives (Pulakka, 2013, Sec. 6.1.2). ITU-R BS.1534-1

(2003) recommends a more sophisticated multi-stimulus test with hidden reference and an-

chor (MUSHRA). It principally aims at assessing audio codecs, but has also been sporadically

used for ABE evaluation (Pulakka, 2013, Sec. 6.1.1). Its high-resolution continuous quality

scale (CQS) requires expert listeners, who are experienced in detecting small impairments

but not aware of the test purposes. The majority of listening-only tests for ABE evaluation,

however, rely on the much coarser absolute category rating (ACR), degradation category

rating (DCR), and comparison category rating (CCR) scales (Pulakka, 2013, Sec. 6.1.1).

They are recommended by (ITU-T P.800, 1996, Annex B, D–E) mainly for the purpose of

speech codec assessment (ITU-T P.830, 1996). For instance, the standardization process

of the WB AMR speech codec included ACR and DCR listening tests in the qualification

(pre-selection) phase, while the (final) selection phase consisted of ACR, DCR, and CCR

listening tests (3GPP S4/SMG11, 2000; 3GPP S4, 2000; 3GPP SA WG4, 2000).

Inspired by the two-stage speech codec qualification and selection, a methodology for the

subjective speech quality assessment of ABE systems is proposed in (Bauer et al., 2014c).

It first of all involves the qualification phase in terms of an ACR listening test. Potential

ABE candidates that have thereby qualified for the selection phase are finally compared with

each other by means of a CCR listening test. As ABE systems do (hopefully) not degrade

the speech quality of their input signals in contrast to speech codecs, DCR listening tests

are completely excluded. The resulting two-stage subjective ABE evaluation process slightly

refined in (Bauer et al., 2014a, Sec. 4) serves as the basis for the remainder of this section.

Preprocessing of Speech Data

The subjective speech quality tests include two female and two male German voices. For

each of these speakers, four utterances of about 8 s are provided. This results in a total of

16 speech signals sampled at 16 kHz. They originate from the German part of the NTT-AT
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Figure 4.12: Data preprocessing for the subjective speech quality tests simulating realistic

NB, ABE-enhanced and WB telephony conditions as well as MNRU-based reference anchors.

multi-lingual speech database for telephonometry (NTT-AT, 1994) and are preprocessed ac-

cording to Fig. 4.12. Realistic NB, ABE-enhanced and WB telephony conditions are thereby

simulated taking into account the transmission characteristics of the sending and receiving

terminal including the speech codec. In total, one NB, six ABE and three WB conditions

are created. Furthermore, six MNRU conditions serve as reference anchors for the ACR

test to fully exploit the dynamic range of the 5-point listening-quality scale introduced in

Sec. 1.1 (ITU-T P.800, 1996, Annex B). They imply different ratios of speech to modulated

noise power adjusted via MNRU (ITU-T P.810, 1996). All algorithmic delay contributions in

Fig. 4.12 are exactly compensated for to ensure a temporal synchronization of the telephony

conditions.

Following (Pulakka and Alku, 2011), a flat highpass filter with a cut-off frequency of

about 0.2 kHz is applied at first to each speech file via MSIN (ITU-T G.191, 2009). It

models the input characteristics of both NB and WB mobile terminals fulfilling the P.341

hands-free sending sensitivity/frequency mask (ITU-T P.341, 2011, Fig. 9). Furthermore, the

file-based active speech levels are consistently scaled via (ITU-T G.191, 2009) to ´26 dBov

(ITU-T P.56, 2011). The normalized WB speech files form the basis of all 16 telephony

conditions. Thus, the scaling effect arising from Fig. 4.3 due to the preprocessing in Sec. 4.1.1

is prevented.

In the upper part of Fig. 4.12, a flat lowpass filter with a cut-off frequency of about 3.6 kHz

completes the modeled sending frequency characteristics of NB-capable mobile terminals, ac-

cording to the data preparation for the large-vocabulary ASR experiments in Sec. 3.4.1. It

is derived from the so-called FLAT1 filter in (ITU-T G.191, 2009). The lowpass-filtered

speech signals are decimated to a sampling rate of f 1
s “ 8 kHz. By applying the NB AMR
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speech codec at the commonly used bit rate of 12.2 kbps (3GPP TS 26.090, 1999), a NB

mobile telephony call is simulated. The resulting speech signals are subject to an interpola-

tion of factor two in parallel with ABE processing. The latter takes into account six ABE

candidates:

1a: Original ABE implementation after (Jax, 2002) revealing the best baseline ABE per-

formance in (Bauer et al., 2014c, Fig. 1: ABE1b)11.

2a: Interim ABE implementation used for the syllable articulation tests in Sec. 4.1, i.e.,

without including any ABE optimization of Sec. 4.2.

2b: Interim ABE implementation further developed from 2a revealing the best overall ABE

performance in (Bauer et al., 2014c, Fig. 1: ABE2C )12.

3a: Final ABE implementation further developed from 2a including all ABE optimizations

of Sec. 4.213 except for the ANN-based UB energy adaptation in Sec. 4.2.2.

3b: Final ABE implementation further developed from 2a including all ABE optimizations

of Sec. 4.213 except for the ANN-based /s/- and /z/-classification in Sec. 4.2.2.

3c: Final ABE implementation further developed from 2a including all ABE optimizations

of Sec. 4.213.

Please note that ABE candidate 1a forms the basis of the remaining ABE candidates. It

therefore serves as the reference ABE implementation for the subsequent ACR and CCR

listening tests. Among the proposed ABE implementations 2a–3c, the one with the best

ACR test performance joins the CCR test as well. Each ABE candidate is trained on all 5578

phonetically rich sentences available for the close-talk channel of the American English speech

corpus SpeechDat-Car US (Moreno et al., 2000). This amounts to approximately 4.0 h of NB

and WB speech data being preprocessed largely following Fig. 4.12. The introduced language

mismatch between ABE training and processing poses a challenge all ABE candidates have

to cope with.

In the lower part of Fig. 4.12, the WB AMR speech codec is applied using three bit

rates (3GPP TS 26.190, 2001): 8.85 kbps, 12.65 kbps, and 23.85 kbps. They simulate a WB

mobile telephony call with low, sufficient, and high quality, respectively. Apart from that,

the reference anchors are prepared via MNRU (ITU-T P.810, 1996) adjusting six ratios of

speech to modulated noise power: 8 dB (i.e., clean), 45 dB, 35 dB, 25 dB, 15 dB, and 5 dB.

Finally, the receiving frequency characteristics of WB-capable mobile terminals is equally

modeled for all 16 speech conditions. Similar to (Pulakka and Alku, 2011), it is simulated

by a flat bandpass filtering to the frequency range of about 0.2 . . . 7 kHz, which fulfills the

P.341 hands-free receiving sensitivity/frequency mask (ITU-T P.341, 2011, Fig. 10).

11For specific details on implementation and parametrization please refer to (Bauer et al., 2014c, Sec. 2.1).
12For specific details on implementation and parametrization please refer to (Bauer et al., 2014c, Sec. 2.2).
13According to Sec. 4.2.1, the optional ABE postfiltering of Sec. 2.2.10 is not used here anymore.
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ACR Test Setup

At first, an ACR listening test is conducted largely following (ITU-T P.800, 1996, Annex B).

It engages eight female as well as sixteen male German students of age under 30 years, and

with normal hearing abilities. All 24 predominantly non-expert listeners are compensated

for participation by a service charge of 10 e for about 30 min instruction, familiarization,

and actual test. They are assigned to two listening panels providing three test sessions each,

i.e., always four subjects participate together in a test session. Before each test session, the

listeners are briefly instructed according to (ITU-T P.800, 1996, Annex B). One utterance

per speaker is spent to individually familiarize the listeners of each test session with the test

procedure. Based on all 64 preprocessed speech files deriving from these four utterances, the

familiarizations consider each telephony condition only once. The remaining three utterances

per speaker result in totally 192 preprocessed speech files and are dedicated to the actual

test. They are equally divided into both listening panels allowing for a balanced occurrence

of speaker-specific utterances and telephony conditions.

Each test session begins with an instruction and a familiarization phase followed by the

actual test. The respective speech files for familiarization and test are concatenated in

randomized order. It is assured that two successive speech files do not originate from the same

utterance. After each appended file, a silence sequence of 5 s is inserted to provide enough

time for rating. The active speech level of the concatenated files is scaled via (ITU-T G.191,

2009) to ´26 dBov (ITU-T P.56, 2011) and interpolated to 48 kHz sampling rate. Finally,

48 kHz-sampled car noise scaled via (ITU-T G.191, 2009) to an RMS level of ´66 dBov

is added to adjust an SNR of 40 dB (ITU-T P.56, 2011). This carefully masks the idle

noise arising from the NB AMR speech codec. In total, six concatenated familiarization

and actual test files are thereby created. The resulting files are diotically presented in

a quiet room via four high-quality AKG K 271 MK II headphones using a laptop with an

RME Fireface 400 external sound card and a SAMSON S-phone multichannel headphone

amplifier. A comfortable sound level can be individually adjusted during the familiarization

phase. Each test session lasts about half an hour for instruction, familiarization, and actual

test.

ACR Test Results

For all telephony conditions of the ACR listening test, an MOS with 95 % CI following

App. B.1 is illustrated in Fig. 4.13. As expected, the MNRU-based reference anchors 11–

16 almost fully exploit the dynamic range of the listening-quality scale from 1 (bad) to 5

(excellent). When increasing the ratio of speech to modulated noise power, the MOS value

rises consistently. Hence, the highest MOS is attained by the clean reference anchor with
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Figure 4.13: Condition-specific MOS with 95 % CI resulting from the subjective ACR lis-

tening test (the absolute numeric values are recapitulated later on in Tab. 4.7).

8 dB, followed by the low-noise MNRU condition with 45 dB. Somewhat lower rated are

the WB conditions 8–10. The lowest WB AMR bit rate turns out to be outperformed by the

higher ones, which interestingly reveal a similar performance. Obviously, there is a remark-

able speech quality gap of more than one MOS point between the WB and NB conditions

9 and 1, despite the comparable, widely-used WB and NB AMR bit rates of 12.65 kbps and

12.2 kbps, respectively. This offers a potential for speech quality improvement to ABE.

As expected, the MOS values attained by the ABE conditions 2–7 are below those of

the WB conditions. However, they are all superior to the NB condition. The absolute and

relative MOS gains of the ABE conditions compared to the NB condition are shown in

Tab. 4.4. On the one hand, the reference ABE implementation 1a reveals a slight speech

quality improvement over NB of 0.07 MOS points absolute and 2.41 % relative. On the

other hand, the proposed ABE implementations 2a–3c are able to improve the speech qual-

ity of the NB condition by 0.14 . . . 0.19 MOS points absolute and 4.82 . . . 6.51 % relative.

By combining the ANN-based /s/- and /z/-classification with the ANN-based UB energy

adaptation, the proposed ABE implementation 3c attains the highest speech quality gains

of 0.19 MOS points absolute and 6.51 % relative compared to the NB condition.
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ABE conditions Absolute MOS gain vs. NB Relative MOS gain vs. NB

1a `0.07 `2.41 %

2a `0.16 `5.54 %

2b `0.15 `5.06 %

3a `0.14 `4.82 %

3b `0.17 `6.02 %

3c `0.19 `6.51 %

Table 4.4: Absolute and relative MOS gains of the ABE conditions compared to NB.

To statistically analyze the significance of the ACR test results concerning the NB and

ABE conditions, a commonly used t-test is conducted following (ITU-T G.729EV, 2005,

Annex C.3.1-2), as described in App. B.1. It shall be thereby investigated, which MOS

result of the ABE conditions is significantly better than the one of the NB condition,

taking into account confidence levels (CLs) of 95 % and 99 %. Tab. 4.5 shows the results of

this t-test. As expected, all ABE conditions turn out to be not worse than NB for both

CLs. The hypothesis of being better than the NB condition is fulfilled in case of a 95 %

CL by all ABE conditions except for the reference ABE implementation 1a. Given a CL of

99 %, however, exclusively the proposed ABE implementation 3c is found to be significantly

better than the NB condition.

CCR Test Setup

The subsequently conducted CCR listening test largely follows (ITU-T P.800, 1996, Annex

E). In addition to the proposed ABE candidate 3c revealing the best ACR test performance as

well as the reference ABE candidate 1a, it includes a NB and WB condition. By selecting

the commonly used bit rates 12.2 kbps and 12.65 kbps for the NB AMR and WB AMR

speech codec, they serve as a realistic lower and upper telephone speech quality bound,

respectively. The mutual comparisons of all four telephony conditions, which result in six

CCR test combinations, are rated by means of a 7-point listening-quality scale from ´3

(much worse) to `3 (much better) and averaged yielding a comparison mean opinion score

(CMOS) (ITU-T P.800, 1996, Annex E).

Six female as well as ten male German students with a mean age below 30 years and

normal hearing abilities take part in the CCR listening test. All 16 predominantly non-

expert listeners are compensated for participation by a service charge of 10 e for about

45 min instruction, familiarization, and actual test. Two listening panels with eight test

sessions each are organized, where the subjects are separately assigned to. Before each test

session, the listeners are briefly instructed according to (ITU-T P.800, 1996, Annex E).
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t-test hypotheses CL
ABE conditions

1a 2a 2b 3a 3b 3c

Not worse than 95 % � � � � � �

NB condition 99 % � � � � � �

Better than 95 % � � � � � �

NB condition 99 % � � � � � �

Table 4.5: Statistical t-test analysis of MOS results to check, which of the ABE conditions

is not worse or even better than the NB condition for a 95 % and 99 % CL.

For familiarization purposes, the same four utterances as in the ACR listening test are

spent involving all six CCR test combinations. From the resulting 24 pairwise file compar-

isons twelve are taken for every listener. It is thereby assured that each file pair is assigned

to eight different listeners and each CCR test combination is considered twice per listener.

All 72 pairwise file comparisons deriving from the remaining twelve utterances and six

CCR test combinations are dedicated to the actual test. They are equally divided into both

listening panels allowing for a balanced occurrence of speaker-specific utterances and CCR

test combinations. To prevent order effects, all file pairs of the actual test are randomly

presented in both orders.

For each test session, the respective speech files of the familiarization phase and actual

test are extracted file by file from the concatenated signals of the ACR listening test. Thus,

exactly the same file-based SNR is provided in the CCR listening test. The resulting files

are diotically presented in a quiet room via high-quality AKG K 271 MK II headphones us-

ing a laptop with a MATLAB GUI software and an RME Fireface 400 external sound card. A

comfortable sound level can be individually adjusted during the familiarization phase. Fur-

thermore, the listeners are allowed to repeat single files before giving their vote. Empirically,

the test sessions do not take longer than 45 min for instruction, familiarization, and actual

test.

CCR Test Results

Tab. 4.6 shows the overall CMOS results of the CCR listening test, each with a 95 % CI

being defined according to App. B.1. The WB condition expectedly outperforms the other

telephony conditions. The proposed ABE condition 3c is rated 1.54 CMOS points worse,

whereas the reference ABE condition 1a and the NB condition reveal a performance degra-

dation of 1.75 and 2.16 CMOS points, respectively. In direct comparison, ABE condition

3c performs 0.34 CMOS points better than ABE condition 1a. Obviously, both ABE condi-

tions are superior to the NB condition. On the one hand, ABE 1a achieves an improvement
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CCR test combinations CMOS with 95 % CI

NB@12.2 kbps WB@12.65 kbps ´2.16 (˘0.11)

ABE 1a WB@12.65 kbps ´1.75 (˘0.11)

ABE 3c WB@12.65 kbps ´1.54 (˘0.13)

ABE 3c ABE 1a `0.34 (˘0.10)

ABE 1a NB@12.2 kbps `0.88 (˘0.11)

ABE 3c NB@12.2 kbps `1.01 (˘0.13)

Table 4.6: CMOS results of the subjective CCR listening test: A positive CMOS indicates

that the first column is rated better than the second one, and vice versa.

of 0.88 CMOS points. On the other hand, ABE 3c is capable of improving the speech quality

compared to the NB condition by 1.01 CMOS points, which is almost half as much as the

gain of 2.16 CMOS points attained by the WB condition. The proposed ABE candidate

3c is therefore selected as the final recommendation of this work.

4.3.2 Instrumental Speech Quality Measurements

In contrast to the subjective speech quality perception serving as the ground truth for

the given human-to-human ABE application, a speech quality prediction via instrumen-

tal measurements saves time and costs. Intrusive (i.e., reference-based) assessment methods

requiring both the modified and reference signals generally attain higher accuracies than

non-intrusive (i.e., reference-free) ones (Pulakka, 2013, Sec. 6.2.2). They commonly rely

on simple distance measures or more sophisticated models predicting the speech quality as

perceived by humans (Pulakka, 2013, Sec. 6.2).

Among the numerous distance measures (Iser et al., 2008, Sec. 3.4), the LSD has been

widely used for evaluation of ABE systems (Pulakka, 2013, Sec. 6.2.1). In this work, a

WB LSD based on (3.6) is employed by adapting klow and khigh to the frequency range of

0 . . . 8 kHz. Thus, it aims at accurately predicting the subjectively perceived speech quality

based on the full bandwidth.

Instrumental assessment methods that explicitly model the human speech quality percep-

tion are basically divided into two types. On the one hand, the overall perceptual speech

quality can be predicted by combining several quality dimensions (Pulakka, 2013, Sec. 6.2.3).

They may include the coloration, noisiness, discontinuity, and loudness, such as in case of

the diagnostic instrumental assessment of listening quality (DIAL) measure being developed

from the telecommunication objective speech quality assessment (TOSQA) core model (Côté,

2011). It has been utilized in the context of ABE evaluation in (Möller et al., 2013). On
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the other hand, a direct prediction of the overall perceptual speech quality can be attained

via the well-known perceptual evaluation of speech quality (PESQ) (ITU-T P.862, 2001)

adopting an MOS-listening quality objective (LQO) mapping (ITU-T P.862.1, 2003; ITU-T

P.800.1, 2006) as well as a WB extension (ITU-T P.862.2, 2007). WB PESQ has been widely

applied for ABE evaluation purposes (Pulakka, 2013, Sec. 6.2.2). Furthermore, its successor

perceptual objective listening quality assessment (POLQA) can be employed (ITU-T P.863,

2011). Compared to WB PESQ, it is also capable of evaluating super-WB and fullband

speech signals with a sampling rate until 48 kHz and includes some further innovations. WB

PESQ and POLQA have been jointly investigated for the purpose of ABE evaluation in

(Möller et al., 2013; Bauer et al., 2014c). They were found to capture ABE somewhat better

than DIAL by (Möller et al., 2013) and are therefore employed in this work. Please note that

WB PESQ is applied by activating the WB mode and setting the sampling rate to 16 kHz

(ITU-T P.862.2, 2007). For POLQA, the super-WB mode is activated and no fixed active

speech level used (ITU-T P.863, 2011; ITU-T P.863.1, 2013).

WB PESQ, POLQA and WB LSD Measurement Results

Tab. 4.7 recapitulates the subjective ACR test results. Furthermore, it shows the respective

instrumental predictions resulting from the WB PESQ, POLQA and WB LSD measure-

ments averaged over the single telephony conditions. For all intrusive assessments, the

MNRU condition at 8 dB provides the corresponding reference signals. Please note that

the MOS unit of the subjective ACR test results has been complemented in Tab. 4.7 by the

specification listening quality subjective (LQS) to better distinguish them from the MOS-

LQO measurements according to (ITU-T P.800.1, 2006). Apart from that, the WB LSD

results characterize a distortion measured in dB.

Both WB PESQ and POLQA attain meaningful rank orders of the MNRU and WB con-

ditions. By increasing the ratio of speech to modulated noise power or the WB AMR bit

rate, higher MOS-LQO values are obtained. Please note that the highest possible MOS-LQO

of both WB PESQ and POLQA is expectedly obtained by the MNRU condition at 8 dB

serving as reference. In contrast, the MNRU condition at 5 dB performs worst. Despite the

correct rankings, there are sometimes relatively high absolute deviations from the MOS-LQS

results. In case of the MNRU condition at 35 dB, e.g., WB PESQ and POLQA drastically

overestimate the ground truth by 0.68 and 1.26 MOS points, respectively. Moreover, they

underestimate the gap between the WB condition at 12.65 kbps and the NB condition

at 12.2 kbps considerably and therefore dedicate less potential for speech quality improve-

ment to ABE. When focusing only on the NB and ABE conditions, neither WB PESQ

nor POLQA meets the rank order of the subjective test results correctly. On the one hand,

WB PESQ rates the NB condition slightly better than the ABE conditions 2a and 3a.
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Telephony conditions
ACR test WB PESQ POLQA WB LSD

[MOS-LQS] [MOS-LQO] [MOS-LQO] [dB]

NB 12.2 kbps 2.88 (˘0.15) 3.03 3.51 15.70

ABE

1a 2.95 (˘0.13) 3.15 3.66 12.12

2a 3.04 (˘0.13) 2.99 3.65 11.96

2b 3.03 (˘0.14) 3.18 3.70 12.63

3a 3.02 (˘0.13) 2.99 3.67 10.84

3b 3.06 (˘0.12) 3.11 3.68 11.66

3c 3.07 (˘0.14) 3.08 3.70 11.60

WB

8.85 kbps 3.63 (˘0.12) 3.29 3.79 8.47

12.65 kbps 4.01 (˘0.13) 3.64 4.15 7.94

23.85 kbps 4.00 (˘0.13) 3.83 4.45 7.35

MNRU

8 dB 4.39 (˘0.11) 4.64 4.70 0.00

45 dB 4.15 (˘0.12) 4.08 4.66 5.90

35 dB 3.10 (˘0.14) 3.78 4.36 6.83

25 dB 2.09 (˘0.10) 2.75 2.76 8.63

15 dB 1.54 (˘0.09) 1.57 1.44 11.37

5 dB 1.05 (˘0.04) 1.15 1.18 15.28

Table 4.7: Intrumental predictions of the subjective ACR test results (the 95 % CIs specified

in brackets are not being predicted) using WB PESQ, POLQA and WB LSD measurements.

Additionally, it judges ABE 2b as the best ABE candidate, followed by ABE 1a, ABE 3b,

and the actual winner ABE 3c. On the other hand, the NB condition is indeed consistently

ranked worse than all ABE conditions by POLQA, however, the ranking among the ABE

candidates is wrong. At least, the ABE condition 3c reveals the best performance along

with ABE 2b, being followed by ABE 3b, ABE 3a, ABE 1a, and ABE 2a. Obviously, the

ABE conditions are predicted by POLQA more than half MOS-LQO point higher than

by WB PESQ, with WB PESQ approximating the absolute MOS-LQS values much better.

Furthermore, the POLQA predictions of all ABE candidates lie within a relatively small

range between 3.65 and 3.70 MOS-LQO.

The WB LSD measurement results in dB are not directly comparable with the absolute

MOS-LQS and MOS-LQO values. Nevertheless, they reversely reflect the same rank orders of

the MNRU and WB conditions as WB PESQ and POLQA. As expected, the MNRU con-

dition at 8 dB reveals a WB LSD of 0.00 dB, since the modified and reference signals for

the intrusive distance computation are equal in this case. Interestingly, the NB condition

is outperformed by all other telephony conditions. Hence, the WB LSD measure punishes

the lack of UB frequencies stronger than WB PESQ and POLQA, which capture the human
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Correlation analysis WB PESQ POLQA WB LSD

Over all telephony

conditions

RMSE [MOS points] 0.29 0.59 -

Pearson correlation `0.95 `0.95 ´0.68

Spearman rank corr. `0.90 `0.96 ´0.76

Over all

MNRU conditions

RMSE [MOS points] 0.40 0.63 -

Pearson correlation `0.97 `0.96 ´0.93

Spearman rank corr. `1.00 `1.00 ´1.00

Over all NB and

WB conditions

RMSE [MOS points] 0.28 0.40 -

Pearson correlation `0.92 `0.90 ´0.97

Spearman rank corr. `0.80 `0.80 ´0.80

Over all ABE conditions

RMSE [MOS points] 0.11 0.65 -

Pearson correlation ´0.32 `0.51 ´0.22

Spearman rank corr. ´0.26 `0.46 ´0.31

Over all ABE conditions

as well as NB@12.2 kbps

and WB@12.65 kbps

RMSE [MOS points] 0.17 0.61 -

Pearson correlation `0.93 `0.98 ´0.82

Spearman rank corr. `0.33 `0.78 ´0.71

Table 4.8: RMSE, Pearson correlation, and Spearman rank correlation between instrumental

measurements and subjective ACR test results for different sets of telephony conditions.

speech quality perception in this respect better. This offers to ABE a relatively big potential

for speech quality improvement. Although, it is exploited best by the finally optimized ABE

implementations 3a–3c, the rank order does not match with the subjective test results and

the rankings of the other ABE conditions neither agree.

Correlation Analysis of Instrumental and Subjective Results

By means of the correlation analysis described in App. B.2, the instrumental measurements

are systematically compared with the subjective ACR test results taking into account a root

mean square error (RMSE), Pearson correlation, and Spearman rank correlation. Tab. 4.8

shows the corresponding results for different sets of telephony conditions.

Due to the mismatch between dB and MOS, the RMSE is not evaluated in case of the

WB LSD measure. WB PESQ obviously attains a lower RMSE than POLQA for all sets of

telephony conditions. The corresponding RMSEs based on all telephony conditions result in

0.29 and 0.59 MOS points, respectively. When focusing on the ABE conditions, WB PESQ

outperforms POLQA by 0.54 MOS points. This absolute RMSE difference slightly shrinks

to 0.44 MOS points, if the NB condition at 12.2 kbps and the WB condition at 12.65 kbps

are also included. Hence, WB PESQ outperforms POLQA in terms of RMSE. Moreover, it
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is a disadvantage of the WB LSD measure that the MOS results are not directly predictable.

The Pearson correlation over all ABE conditions is very low both for WB PESQ and

POLQA. While POLQA at least provides a value of `0.51, WB PESQ even reveals a negative

correlation of ´0.32. However, the correlation results significantly improve to `0.98 and

`0.93, respectively, when adding the NB condition at 12.2 kbps and the WB condition at

12.65 kbps. The correlations for all remaining sets of telephony conditions neither fall below

`0.90. Hence, it is assumed that the Pearson correlation is not fully capable of evaluating

the reliability of the instrumental measurements exclusively for the ABE conditions. This

assumption is also confirmed by the correlation results of the WB LSD measure. Please

note that their negative signs correctly reflect the reverse meaning of a distortion in dB

and a quality prediction in MOS. Again, the ABE conditions yield the worst correlation of

´0.22, which is enormously improved to ´0.82 through the inclusion of the NB condition at

12.2 kbps and the WB condition at 12.65 kbps. For the NB plus WB conditions as well as

for the MNRU conditions, the correlation is lower than ´0.90. When taking into account

all telephony conditions, however, it is degraded to ´0.68 unlike in case of WB PESQ and

POLQA. As expected, the WB LSD measure turns out to be less reliable in predicting the

subjective ACR test results.

A perfect Spearman rank correlation is attained by all instrumental assessment methods

for the MNRU conditions. In fact, this would also hold for the NB plus WB conditions,

if the misleading ACR test rankings of the WB conditions at 12.65 kbps and 23.85 kbps

according to Tab. 4.7 were corrected. Based on all telephony conditions, the WB LSD

measure reveals a worse rank correlation than WB PESQ and POLQA. The rank order of

the ABE conditions is poorly predicted by all instrumental assessment methods. WB PESQ

even yields a negative rank correlation of ´0.26. In contrast, POLQA performs better with

`0.46 followed by WB LSD with ´0.31. Furthermore, only POLQA and WB LSD rank the

NB condition at 12.2 kbps and the WB condition at 12.65 kbps correctly in relation to the

ABE conditions. Taken as a whole, POLQA turns out to provide superior rank correlations

than both WB PESQ and WB LSD.

4.3.3 Discussion

As mentioned at the beginning of this section, the presented speech quality assessment aims

at investigating the ability of ABE for speech quality enhancement and the reliability of

instrumental measurements compared to subjective listening tests for ABE evaluation.

In Sec. 4.3.1, a two-stage subjective assessment methodology is specifically developed to

find out, whether ABE is capable of enhancing speech quality. Inspired by typical speech

codec standardization efforts, it consists of a qualification and selection phase. These two
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phases are successively realized by an ACR and CCR listening test. A significant improve-

ment of 0.19 MOS points absolute and 6.51 % relative compared to the NB telephone speech

quality is attained in the ACR test by the proposed ABE implementation 3c, which includes

all ABE optimizations of Sec. 4.2. According to a statistical t-test analysis, it is found to

be significantly better given a CL of 99 %. Comparable speech quality gains obtained from

ACR listening tests have been rarely reported in literature so far (Ramabadran and Jasiuk,

2008; Bauer et al., 2014c; Pulakka et al., 2014). This may be explained by a relatively low

ACR test sensitivity14 with respect to ABE. Due to the successive presentation of single files,

the listeners seem to individually rate each speech signal based on a balanced weighting of

all perceived positive and negative impressions. This specifically means for ABE that intro-

duced artifacts counteract the extended bandwidth (Bauer et al., 2014c). In general, a CCR

test is expected to provide more sensitive results (Möller, 2000). Despite potential ABE

artifacts, listeners are assumed to be biased by a direct file comparison towards the higher

bandwidth (Bauer et al., 2014c). This assumption is confirmed by the CCR test results given

in Tab. 4.6. They certify the reference ABE implementation 1a a remarkable gain of 0.88

CMOS points over the NB telephone speech quality, although the ACR test reveals only a

negligible benefit of 0.07 MOS points following Tab. 4.4. The proposed ABE implementa-

tion 3c even points out a superior CCR test performance. It outperforms the reference ABE

implementation 1a by 0.34 CMOS points and improves the NB telephone speech quality by

1.01 CMOS points. The latter improvement bridges almost half of the gap between the NB

and WB telephone speech quality amounting to 2.16 CMOS points. Thus, the proposed

ABE implementation 3c demonstrates a significant speech quality enhancement in the ACR

and CCR test. Both are considered to be relevant for telephony scenarios in practice: While

successive calls in a single NB, ABE, or WB mode are better captured by the ACR test, the

CCR test simulates handover calls switching between these modes (Bauer et al., 2014c).

Sec. 4.3.2 investigates, whether subjective listening tests for ABE evaluation can be re-

liably replaced by instrumental measurements to save time and costs. In addition to the

simple distance measure WB LSD, the more sophisticated models WB PESQ and POLQA

predicting the overall perceptual speech quality are involved. They are systematically com-

pared with the ACR test results serving as ground truth by means of an extensive correlation

analysis. It takes into account the RMSE, Pearson correlation, and Spearman rank corre-

lation. Since the WB LSD is measured in dB and does therefore not directly predict MOS

results, it is not evaluated by an RMSE. Apart from that, WB PESQ outperforms POLQA

in terms of RMSE. Focusing on the Pearson correlation, the WB LSD measure turns out

to be less reliable than WB PESQ and POLQA. However, the correlation results point out

inconsistencies, when restricting the evaluation exclusively to ABE results. This special case

14Please note that Pulakka et al. (2014) successfully used a 9-point instead of the 5-point listening-quality

scale for rating to obtain more sensitive ACR test results.
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is captured better by the Spearman rank correlation. All instrumental assessment methods

have problems in predicting the correct rank order of the ABE candidates. Nevertheless,

POLQA provides a superior rank correlation than WB PESQ and WB LSD. Taking into

account the complete correlation analysis, WB PESQ and POLQA expectedly turn out to

be more reliable than the WB LSD measure. However, neither WB PESQ nor POLQA can

fully replace the use of subjective listening tests. This conclusion confirms the findings in

(Möller et al., 2013; Fingscheidt and Bauer, 2013; Bauer et al., 2014c).

4.4 Summary

In this chapter, the ABE framework exploiting phonetic a priori knowledge is further de-

veloped to enhance NB telephone speech services. Due to the online requirements of this

human-to-human ABE application, phoneme class labels are only available for offline ABE

training.

Even without phonetic support of the ABE processing, the preliminary syllable articula-

tion tests in Sec. 4.1 reveal that ABE is capable of significantly improving the NB telephone

speech intelligibility in all cases involving a low SNR, language mismatch, and hearing im-

pairment, according to Tab. 4.1. Among the tested critical fricatives, the phonemes /s/ and

/z/ particularly benefit from the use of ABE.

Before investigating the impact of ABE on the NB telephone speech quality, under- and

overestimation artifacts need to be suppressed. For this purpose, Sec. 4.2 introduces the ABE

optimizations highlighted in Fig. 4.5. By means of a phonetic ANN classifier, phoneme class

labels of the crucial /s/- and /z/-sounds are obtained in real time to support the HMM-based

estimation process. A reduction of underestimation artifacts is thereby achieved, however,

at the expense of overestimating some other phonemes. Hence, a second ANN classifier is

employed to adaptively correct the overestimated UB energy in the cepstral domain. In case

of a failure during speech pauses, which can be easily confused with /s/- and /z/-sounds

based on the LB spectrum, a robust SPD serves to suppress overestimations in the residual

domain. Apart from that, transient and discontinuity artifacts may arise from the time-

variant LP analysis and synthesis filtering. They are hardly audible but clearly visible in the

spectrograms of Fig. 4.10. These switching effects are reduced by temporally smoothing the

estimated WB LP filter coefficients after frame transitions. Furthermore, the alias distortions

visualized in the spectrograms of Fig. 4.11 are removed by means of an anti-aliasing highpass

filter. For this purpose, a conversion of the serial into a parallel ABE structure is required,

as depicted in Fig. 4.5.

The final speech quality assessment in Sec. 4.3 points out that the optimized ABE algo-
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rithm is capable of significantly enhancing the NB telephone speech quality. This is proven

by ACR and CCR listening tests in the context of a specifically developed two-stage sub-

jective assessment methodology, following Tab. 4.4–4.6. Instrumental measurements based

on WB PESQ, POLQA, and WB LSD are also conducted to investigate, whether they can

replace the time-consuming and cost-intensive subjective listening tests. However, a sys-

tematic correlation analysis including the RMSE, Pearson correlation, and Spearman rank

correlation reveals in Tab. 4.8 that none of the instrumental assessment methods is able to

reliably predict the ACR test results serving as ground truth.
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Chapter 5

Conclusions and Outlook

In this work, a statistical framework for high-band ABE based on the state-of-the-art HMM

approach of Jax (2002) has been formulated. Moreover, it has been developed further by

several algorithmic innovations with the objective of improving speech intelligibility and

quality. An exploitation of phonetic a priori knowledge in support of both ABE training and

processing thereby represents the most important innovation. It aims at reducing artifacts

that typically arise from ABE due to the confusion of critical phonemes. The phonetic a

priori knowledge is provided in terms of frame-wise phoneme class labels. They allow for a

supervised CB training and thereby implicitly support also the subsequently trained LDA as

well as HMM. Within ABE processing, the frame-wise phoneme class labels are integrated

into the HMM decoder by means of a novel phoneme class probability matrix modifying

the observation likelihoods. Further innovations comprise an integration of the following

techniques into the ABE framework: A non-rectangular windowing with window overlap,

a VA-based optimal state sequence decoder, a cepstral smoothing strategy, as well as an

additional control over the UB energy and cut-off frequency.

After the corresponding technological fundamentals have been established, the two main

ABE use cases in practice are addressed. On the one hand, the use of ABE for the training

of WB telephony ASR systems reflects a human-to-machine ABE application without online

requirements. On the other hand, the use of ABE for the enhancement of NB telephone

speech services represents a human-to-human ABE application with online requirements.

Offline ABE for Training of WB Telephony ASR Systems

Recognition performance benefits from an utilization of more speech data for ASR training,

particularly when dealing with challenging recognition tasks (Church and Mercer, 1993). IVR

systems supporting HD telephony services therefore need to be trained on huge amounts of

WB telephone speech material. However, there is a lack of WB telephone speech corpora.
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This problem is tackled by making use of existing NB telephone speech databases. In order

to prepare them for the training of WB telephony ASR systems, they can be upgraded in

speech bandwidth via high-band ABE. Expensive and time-consuming speech recordings

are thereby prevented. Furthermore, such an ABE-based speech database upgrade works

completely independent from the employed automatic speech recognizer, i.e., no changes of

the ASR system are required. As this human-to-machine ABE application does not demand

any online requirements, the phonetic a priori information is or can be made available offline

for both ABE training and processing.

Interestingly, the phoneme recognition performance turns out to hardly depend on the

speech bandwidth for most of the phonemes. In case of a larger speech bandwidth, exclusively

the fricatives /s/ and /z/ reveal a considerable gain in recognition rate. Thus, they need to

be taken more into account by ABE than the remaining phonemes. Based on these findings,

several phonetically motivated CBs for ABE have been designed using diversified phoneme

classes. The improved spectral reconstruction with specifically trained CB representatives

mainly aims at reducing lisping artifacts that typically arise from ABE due to an underesti-

mation of /s/- and /z/-sounds. However, this comes along with HMM over-representations

of /s/- and /z/-states. They particularly affect other fricatives, such as /f/ and /th/, as

well as speech pauses, which – based on the LB spectrum – can be easily confused with /s/

and /z/. These phonetic confusions provoke temporal smearing effects. To suppress them,

a three-stage modification of the state transition probability matrix has been developed. It

involves an appropriate smoothing, attenuation and boosting of the HMM state transitions.

From these modifications, the fricatives /s/, /z/, /f/, and /th/ as well as the speech pauses

significantly benefit. Moreover, none of the remaining phonemes suffers.

To investigate the usability of the ABE-based speech database upgrade for WB telephony

ASR training, practice-relevant large-vocabulary recognition experiments have been con-

ducted. Before applying the ABE, relevant ASR baseline results have been simulated for the

purpose of comparison. In the given showcase, the WER increases by 6 % absolute, when

quartering the amount of WB telephone speech training data. By filling up the missing

three quarters of training data with interpolated NB speech, the absolute WER increase of

6 % decreases to 3.12 %. This ASR baseline result reflects a lower ABE performance bound,

assuming interpolation to be the most rudimentary form of ABE. It is reduced by 1.9 %

absolute via an ideal ABE taking the excitation and spectral envelope from the original WB

speech signal which is, however, not available in practice. Anyway, the further developed

offline ABE proposed in this work attains a respectable WER reduction of 1.12 % (instead of

1.9 %) absolute. All in all, it turns out to minimize the absolute WER distance between the

WB ASR baselines with full amount and one quarter of training data from 6 % to only 2 %.

This leads to the conclusion that an offline ABE upgrade of NB telephone speech databases
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is recommendable in case of insufficient training data for WB telephony ASR systems.

Online ABE for Enhancement of NB Telephone Speech Services

Network- as well as provider-specific restrictions and incompatibilities are still the reason why

phone calls are oftentimes established in NB mode. Due to its limited acoustic bandwidth,

NB telephony reveals a reduced speech intelligibility and quality. High-band ABE aims at

enhancing both by estimating and reconstructing the missing upper frequency components.

But it tends to confuse particularly the fricatives /s/ and /z/ with other phonemes in case of

ambiguous spectral characteristics based on the NB frequency range. Annoying under- and

overestimation artifacts are thereby provoked. As mentioned before, these problems can be

tackled by means of phonetic a priori knowledge. However, this information is or can be made

available offline only for ABE training, since the underlying human-to-human application

requires an online ABE processing without any access to phonetic a priori knowledge.

It has already been shown that the further developed ABE can be successfully employed

offline for ASR training purposes with the objective of increasing speech recognizer perfor-

mance. To investigate, whether human speech intelligibility can be improved online by ABE,

extensive syllable articulation tests have been performed. Based on the test results it can

be concluded that hearing-impaired as well as non-native listeners benefit from online ABE

particularly during /s/- and /z/-sounds. Native, normal-hearing listeners turn out to profit,

too, but only in noisy environments. Nevertheless, severe artifacts were partially noticeable

in the syllable articulation tests. It became thereby clear that the online ABE needs to be

further optimized, when trying to enhance telephone speech quality from a human point of

view.

Several optimizations have been developed addressing the under- and overestimation arti-

facts. An ANN-based real-time classification of the crucial /s/- and /z/-sounds represents the

most challenging innovation. It provides the missing phonetic a priori knowledge required

for online ABE processing. Underestimation artifacts are thereby successfully reduced at the

expense of additional overestimation artifacts. A second ANN classifier is therefore employed

to adaptively correct the overestimated UB energy in the cepstral domain. Due to the fact

that speech pauses can be easily confused with /s/- and /z/-sounds based on the LB spec-

trum, a robust SPD is applied to suppress overestimations in the residual domain. During

frame transitions, transients as well as discontinuities potentially arising from time-variant

LP analysis and synthesis filtering are removed by temporally smoothing the estimated WB

LP filter coefficients. Finally, a serial-to-parallel conversion of the ABE structure has been

done to eliminate alias distortions in the LB spectrum of the estimated UB speech signal via

anti-aliasing highpass filtering.
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The ability of the optimized online ABE for enhancing telephone speech quality from a

human perspective has been extensively assessed by widely recognized subjective listening

tests and instrumental measurements. Inspired by typical speech codec standardization

efforts, a two-stage subjective assessment methodology has been developed. It involves an

initial qualification phase realized by an ACR listening test and a subsequent selection phase

represented by a CCR listening test. The ACR test results point out that the proposed ABE

improves the NB telephone speech quality by 0.19 MOS points absolute and 6.51 % relative,

respectively. By means of a statistical t-test analysis, the significance of this improvement

has been successfully confirmed given a 99 % CL. The CCR test results reveal a remarkable

quality gain of 1.01 CMOS points, when enhancing the NB telephone speech by the proposed

ABE. It bridges almost half of the gap between the NB and WB telephone speech quality.

The instrumental measurements based on WB PESQ, POLQA, and WB LSD have not been

able to reliably predict the subjective results of the ACR test. This has been confirmed by

means of a systematic correlation analysis including the RMSE, Pearson correlation, and

Spearman rank correlation. Hence, time-consuming and cost-intensive subjective listening

tests can still not be replaced by instrumental measurements at least for ABE assessment

purposes.

The overall test results lead to the conclusion that the online ABE proposed in this work

is capable of significantly enhancing NB telephone speech services in terms of human speech

intelligibility and quality. Due to its moderate algorithmic delay of about 25 ms (including

the frame length N “ 10 ms) and computational complexity around 35 MFLOPS (i.e., for

the worst observed frame), it can be employed for online applications in practice (Bauer

et al., 2010b).

Future Challenges of ABE

Beyond the scope of this work, several challenges are still to be met by ABE research in the

future. Amongst others, the latest advancements in the field of deep and recurrent ANNs

may yield further improvements on high-band ABE performance. However, this requires the

possibility of time- and cost-efficient ABE evaluation. A reliable instrumental ABE measure

therefore needs to be developed to get finally rid of extensive subjective listening tests.

The phonetic dependencies of ABE should be thereby taken into account, as proposed in

(Fingscheidt and Bauer, 2013). Apart from that, low-band ABE still bears a great potential

for further speech quality enhancements. Until now, it could not be fully exploited due

to the partially inaccurate pitch estimation and reconstruction during noisy speech parts

provoking severe artifacts. Although HD Voice services reach a more and more complete

market penetration, at least in mobile telephony, ABE will still play a role, e.g., for the

purpose of WB to super-WB extension.
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Phoneme Alphabet SAMPA-D-VMlex

Phoneme group Phoneme
Example

Word Phonetic transcription

Fricatives

/s/ das /d a s/

/z/ sein /z aI n/

/S/ Schein /S aI n/

/Z/ Etage /E t a: Z @/

/f/ fast /f a s t/

/v/ was /v a s/

/w/ Januar /j a n w a: r/

/C/ richtig /r I C t I k/

/x/ noch /n O x/

/h/ Herr /h E 6/

/r/ Reise /r aI z @/

Plosives

/p/ Urlaub /u: r l aU p/

/b/ bis /b I s/

/t/ ist /? I s t/

/d/ der /d E 6/

/k/ Zug /t s u: k/

/g/ gleich /g l aI C/

Sonorant consonants

/j/ jetzt /j E t s t/

/m/ mir /m i: r/

/n/ endlich /E n t l I C/

/N/ Dank /d a N k/

/l/ verplant /f E r p l a: n t/
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Vowels

/I/ innerhalb /I n 6 h a l p/

/i:/ ziehen /t s i: @ n/

/Y/ müssen /m Y s @ n/

/y:/ über /? y: b 6/

/9/ könnte /k 9 n t @/

/2:/ können /k 2: n @ n/

/9„/ Parfüm /p a f 9„ m/

/E/ schlecht /S l E C t/

/E:/ beträgt /b @ t r E: k t/

/e:/ ewig /? e: v I C/

/e„/ Teint /t e„ n/

/U/ und /? U n t/

/u:/ Uhr /? u: 6/

/O/ Ordnung /? O 6 t n U N/

/o:/ Montag /m o: n t a: k/

/o„/ Saison /s E: s o„ n/

/a/ was /v a s/

/a:/ Donnerstag /d O n 6 s t a: k/

/a„/ Restaurant /r E s t o: r a /

/6/ für /f y: 6/

/@/ fahren /f a: r @ n/

Diphthongs

/aI/ bei /b aI/

/aU/ auch /? aU x/

/OI/ neun /n OI n

Glottal stop /?/ The-ater /t E ? a: t 6/

Silent/distorted speech pauses

/si/ - -

/VN/ - -

/NS/ - -

Table A.1: Phoneme alphabet SAMPA-D-VMlex with phoneme group assignments and ex-

emplary phonetic transcriptions according to (J. Abel, 2013, App. A).



Appendix B

Statistical Analysis

The following confidence and correlation analysis plays an important role to statistically

analyze the significance of results obtained in this work. For generalization purposes, two

random samples x1, x2, . . . , xN and y1, y2, . . . , yN of size N are defined. They are assumed to

arise from normal distributions with unknown expectations μx, μy and unknown variances

σ2
x, σ

2
y . The respective arithmetic means μ̂x, μ̂y and standard deviations σ̂x, σ̂y can be derived

from both random samples as follows (Ross, 2006, Sec. 2.3):

μ̂x “ 1

N

Nÿ
i“1

xi, σ̂x “
gffe 1

N ´ 1

Nÿ
i“1

pxi ´ μ̂xq2, (B.1)

μ̂y “ 1

N

Nÿ
i“1

yi, σ̂y “
gffe 1

N ´ 1

Nÿ
i“1

pyi ´ μ̂yq2. (B.2)

B.1 Confidence Analysis

According to (Ross, 2006, Sec. 7.3.1), the unknown expectations of the underlying normal

distributions are assumed to lie in between the following confidence intervals depending on

a confidence level of CLPp0, 1q and N´1 degrees of freedom:

μ̂x ´ σ̂x?
N

· tCL,N´1 ă μx ă μ̂x ` σ̂x?
N

· tCL,N´1, (B.3)

μ̂y ´ σ̂y?
N

· tCL,N´1 ă μy ă μ̂y ` σ̂y?
N

· tCL,N´1. (B.4)

The corresponding t-value tCL,N´1 needs to be taken from a look-up table of the two-sided

Student’s t-distribution, e.g., in (Federighi, 1959). For the sake of convenience, the 95 %

CIs in Fig. 4.2, Fig. 4.13, and Tab. 4.6 have been computed by setting t0.95,N´1 “1.96. This

approximation is valid due to the numerous degrees of freedom involved (i.e., N´1 ě 95).
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To investigate, whether an ABE condition performs significantly better than the NB con-

dition regarding the subjective ACR listening test in Sec. 4.3.1, the widely spread t-tests have

been conducted following (ITU-T G.729EV, 2005, Annex C.3.1-2). For this purpose, random

sample x1, x2, . . . , xN shall represent the speaker- as well as listener-specific MOS results of

the NB condition, and y1, y2, . . . , yN those of a particular ABE condition. As the common

standard deviations σ̂x and σ̂y only depend on their respective random sample, the simple

detection of an overlap between the CIs in Eqs. (B.3)–(B.4) does not necessarily disprove a

potentially significant difference between μx and μy (e.g., between the NB condition 1 and

the ABE condition 7 in Fig. 4.13). A pooled standard deviation is therefore specified taking

both random samples into account (ITU-T G.729EV, 2005, Annex C.3.1)

σ̂x´y “
gffe 1

N ´ 1

Nÿ
i“1

ppxi ´ yiq ´ μ̂x´yq2, (B.5)

with the arithmetic mean of the pairwise MOS differences given by

μ̂x´y “ 1

N

Nÿ
i“1

pxi ´ yiq. (B.6)

The applied paired t-tests are assumed to benefit from this random sample pooling. On the

one hand, the null hypothesis μy ě μx (i.e., the expected MOS of the ABE condition is

not worse than the one of the NB condition) can be verified by means of a one-sided t-test.

A confirmation of the null hypothesis is attained, if the following inequation holds (ITU-T

G.729EV, 2005, Annex C.3.1)

μ̂y ě μ̂x ´ σ̂x´y?
N

· tCL,N´1. (B.7)

On the other hand, the null hypothesis μy ą μx (i.e., the expected MOS of the ABE condi-

tion is better than the one of the NB condition) can be verified by another one-sided t-test.

This time, the null hypothesis is confirmed in case of the inequation (ITU-T G.729EV, 2005,

Annex C.3.2)

μ̂y ą μ̂x ` σ̂x´y?
N

· tCL,N´1. (B.8)

Due to the combination of 4 speakers and 24 listeners, the t-test results based on CLs of

CL P t0.95, 0.99u in Tab. 4.5 consider N´1 “ 4 · 24´1 “ 95 degrees of freedom. Following

(Federighi, 1959), the t-values have been therefore set to t0.95,95 “ 1.661 and t0.99,95 “ 2.366,

respectively.

B.2 Correlation Analysis

To evaluate, how reliable the instrumental measurements predict the subjectively perceived

speech quality, a correlation analysis has been conducted in Sec. 4.3.2. For this purpose,
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random sample x1, x2, . . . , xN shall represent the file-based instrumental measurement results

(i.e., MOS-LQO for PESQ and POLQA, respectively, or WB LSD in dB). Furthermore,

MOS-LQS results of the subjective ACR listening test are obtained by averaging all listener-

specific ratings per file to serve as random sample y1, y2, . . . , yN .

According to (ITU-T P.1401, 2012), the MOS-based results have been compared (i.e.,

MOS-LQO vs. MOS-LQS) by means of the commonly used RMSE measure (Côté, 2011)

RMSE “
gffe 1

N

Nÿ
i“1

pxi ´ yiq2. (B.9)

Unfortunately, it is not applicable to the WB LSD results because of the mismatching units

dB and MOS. Furthermore, the RMSE implies a relatively simple error criterion. To avoid

these restrictions, two more sophisticated correlation measures have been employed. Com-

pared to the RMSE, the well-known Pearson correlation yields a dimensionless coefficient

normalized to the interval r´1, 1s (ITU-T P.862, 2001, Sec. 7.1)

CORRPearson “

Nř
i“1

pxi ´ μ̂xq pyi ´ μ̂yqd
Nř
i“1

pxi ´ μ̂xq2
Nř
i“1

pyi ´ μ̂yq2
. (B.10)

A Pearson correlation of 0 indicates that the involved random samples do not linearly depend

on each other at all. Minor modifications of Eq. (B.10) directly lead to the Spearman rank

correlation that focuses on the ranking of the random samples. Its coefficient is defined as

(Iser et al., 2008, Sec. 6.1.3)

CORRSpearman “

Nř
i“1

`
rankpxiq ´ rankx

˘ `
rankpyiq ´ ranky

˘
d

Nř
i“1

`
rankpxiq ´ rankx

˘2 Nř
i“1

`
rankpyiq ´ ranky

˘2 , (B.11)

with rankpxiq, rankpyiq denoting the respective rank of xi, yi. Averaging over all ranks of

the respective random sample yields rankx, ranky.

Please note that all three measures can be flexibly applied to certain groups of telephony

conditions, as shown in Tab. 4.8. This only requires that exactly those file-based instrumental

and subjective results belonging to these grouped telephony conditions are considered for

the computations in Eqs. (B.9)–(B.11).
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List of Symbols

n, n1 sample indices

�, �SPD frame indices

k, k1, k1
low, k1

high frequency bin indices

L, LSPD numbers of frames

Ns, N frame shift/length (in samples)

N´, N` frame look-back/-ahead (in samples)

Nt frame transition (in samples)

Nw window length (in samples)

f , Ω frequencies (Ω “ 2π f

fs
)

fs, f 1
s sampling frequencies

F0 fundamental frequency

fc, Ωc, fc,p, fc,s cut-off frequencies

ΩM, gM modulation frequency/gain

sNBpn1q, sLBpnq, ŝUBpnq, sWBpnq speech data

wpnq, wpn1q window functions

SNB,�pk1q, SWB,�pkq short-term DFT spectra

ΦNB,�pk1q, Φ̂UB,�pk̃q, ΦWB,�pkq short-term DFT power spectra

φLB,�pñ1q, φUB,�pñq, φ̂WB,�pnq ACFs

KLB, KUB, Ksc DFT lengths

kNB, kLB, kUB mapping functions

KNB, KLB, KUB, KWB, K̃NB, K̃LB, K̃UB sets of DFT indices

aUB,�, aWB,� LP filter coefficient vectors

NLP(LB) , NLP(UB) , NLP(WB) LP filter orders

r̂WB,� LP reflection coefficients

Âpzq z-transform of LPC predictor

eLBpnq, eUBpnq, êWBpnq residual signals

σLB,�, σUB,�, σrel,� LP prediction gains

gUB, gSPD,� static/adaptive residual weighting factor

x̃acf,� p · q, x̃zcr,�, x̃gi,�, x̃rfe,�, x̃lk,�, x̃sc,� features
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x̃
stat
� , Δx̃

stat
� , ΔΔx̃

stat
� , x̃�, x� feature vectors

d̃, d feature dimensions

g�(n’) signal gradient

E�, Ē�, Emin,�, Eflr,�, ĒSPD,� frame energies

sign p · q, rank p · q, E t · u sign/rank/expectation operators

H LDA transformation matrix

Bx̃, Wx̃ between-/within-class covariance matrix

Jx̃, ςx̃, ςx p · q LDA separability measures

Mflr, Aflr, Vctr,�, Mctr, ΘSPD,� SPD parameters

bLB, NLB FIR interpolation filter coefficients/order

bHP first-order FIR pre-emphasis filter coefficients

α, αSPD, βSPD first-order IIR smoothing factors

ϕ�, ϕ̄�, ϕ1
� phoneme class labels

ϑ�, ϑ̄�, ϑ1
� energy class labels

Φ, Θ classification thresholds

P phoneme class alphabet

NP size of phoneme class alphabet

ρ positive exponent

W
p1q, bp1q, ip1q, f p1q, op1q ANN parameters of hidden layer

w
p2q, bp2q

1 , ip2q
1 , f p2q, op2q

1 ANN parameters of output layer

s�, s˚
� HMM states

λ set of HMM parameters

S, Spϕq sets of HMM states

NS , N pϕq
S

numbers of HMM states

ρj,m, μj,m, Σj,m GMM parameters

M number of GMM mixture components

N p · q normal distribution

P p · q, P˚ p · q, P˚˚ p · q, P˚˚˚ p · q probability mass functions

p p · q PDF

πi initial state probabilities

ai,j state transition probabilities

γ�piq a posteriori probabilities

ε, r phonetic weighting parameters

δ�`1pjq, ψ�`1pjq Viterbi score / backtracking pointer

bjpx�q state observation likelihood

α�piq, β�piq forward/backward variable of FBA

H p · q, H˚ p · q histogram functions

g, ξ, γ state transition modification parameters
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C cepstral CB

c
piq ith CB entry

c�, ĉ� cepstral vectors
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List of Abbreviations

ABE artificial bandwidth extension

ACF auto-correlation function

ACR absolute category rating

ADPCM adaptive differential pulse code modulation

AI articulation index

AMR adaptive multi-rate

ANN artificial neural network

ASR automatic speech recognition

bagging bootstrap aggregating

BBC British Broadcasting Corporation

BCJR Bahl-Cocke-Jelinek-Raviv

BTE behind-the-ear

BWE bandwidth extension

CAN controller area network

CART classification and regression tree

CB codebook

CCR comparison category rating

CI confidence interval

CL confidence level

CMLLR constrained maximum likelihood linear regression

CMN cepstral mean normalization

CMOS comparison mean opinion score

CQS continuous quality scale

D/A digital-to-analog

DC direct current

DCR degradation category rating

DECT digital enhanced cordless telecommunications

DET detection error tradeoff

DFG German Research Foundation

DFT discrete Fourier transform
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DIAL diagnostic instrumental assessment of listening quality

EER equal error rate

EM expectation maximization

EVS enhanced voice services

FA forward algorithm

FAR false acceptance rate

FBA forward-backward algorithm

FFT fast Fourier transform

FIR finite impulse response

FRR false rejection rate

GMM Gaussian mixture model

HD high definition

HMM hidden Markov model

HSR human speech recognition

HTK Hidden Markov Model Toolkit

IIR infinite impulse response

IP internet protocol

IVR interactive voice response

LB lower-band

LBG Linde-Buzo-Gray

LDA linear discriminant analysis

LDC Linguistic Data Consortium

LP linear prediction

LPC linear predictive coding

LPCC linear predictive cepstral coefficient

LQO listening quality objective

LQS listening quality subjective

LSD log-spectral distance

MAP maximum a posteriori

MFCC mel-frequency cepstral coefficient

MIRS modified intermediate reference system

ML maximum likelihood

MMSE minimum mean square error

MNRU modulated noise reference unit

MOS mean opinion score

MSE mean square error

MSIN mobile station input

MUSHRA multi-stimulus test with hidden reference and anchor
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NB narrowband

OMA Oldenburg Measurement Applications

PCM pulse code modulation

PDF probability density function

PER phoneme error rate

PESQ perceptual evaluation of speech quality

POLQA perceptual objective listening quality assessment

PSD power spectral density

RMS root mean square

RMSE root mean square error

ROC receiver operating characteristic

SAMPA speech assessment methods phonetic alphabet

SAT speaker adaptive training

SBR spectral band replication

SCG scaled conjugate gradient

SF spectral folding

SLP selective linear prediction

SNR signal-to-noise ratio

SPD speech pause detection

ST spectral translation

SVM support vector machine

TOSQA telecommunication objective speech quality assessment

UB upper-band

VA Viterbi algorithm

VAD voice activity detection

VCV vowel-consonant-vowel

VoIP voice over IP

VQ vector quantization

VTLN vocal tract length normalization

WB wideband

WER word error rate
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