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Summary

The modern power grid is facing major challenges in the transition to a low-carbon energy

sector. The growing energy demand and environmental concerns require carefully revisiting how

electricity is generated, transmitted, and consumed, with an eye to the integration of renewable

energy sources. The envisioned smart grid is expected to address such issues by introducing

advanced information, control, and communication technologies into the energy infrastructure.

In this context, demand-side management (DSM) makes the end users responsible for improving

the efficiency, reliability and sustainability of the power system: this opens up unprecedented

possibilities for optimizing the energy usage and cost at different levels of the network.

The design of DSM techniques has been extensively discussed in the literature in the last

decade, although the performance of these methods has been scarcely investigated from the

analytical point of view. In this thesis, we consider the demand-side of the electrical network as

a multiuser system composed of coupled active consumers with DSM capabilities and we pro-

pose a general framework for analyzing and solving demand-side management problems. Since

centralized solution methods are too demanding in most practical applications due to their in-

herent computational complexity and communication overhead, we focus on developing efficient

distributed algorithms, with particular emphasis on crucial issues such as convergence speed,

information exchange, scalability, and privacy. In this respect, we provide a rigorous theoretical

analysis of the conditions ensuring the existence of optimal solutions and the convergence of the

proposed algorithms.

Among the plethora of DSM methods, energy consumption scheduling (ECS) programs allow

to modify the user’s demand profile by rescheduling flexible loads to off-peak hours. On the other

hand, incorporating dispatchable distributed generation (DG) and distributed storage (DS) into

the demand-side of the network has been shown to be equally successful in diminishing the
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peak-to-average ratio of the demand curve, plus overcoming the limitations in terms users’ in-

convenience introduced by ECS. Quite surprisingly, while the literature has mostly concentrated

on ECS techniques, DSM approaches based on dispatchable DG and DS have not attracted the

deserved attention despite their load-shaping potential and their capacity to facilitate the in-

tegration of renewable sources. In this dissertation, we fill this gap and devise accurate DSM

models to study the impact of dispatchable DG and DS at the level of the end users and on the

whole electricity infrastructure.

With this objective in mind, we tackle several DSM scenarios, starting from a determinis-

tic day-ahead optimization with local constraints and culminating with a stochastic day-ahead

optimization combined with real-time adjustments under both local and global requirements.

Each task is complemented by defining appropriate network and pricing models that enable

the implementation of the DSM paradigm in realistic energy market environments. In this re-

gard, we design both user-oriented and holistic-based DSM optimization frameworks, which

are respectively applicable to competitive and externally regulated market scenarios. Numerical

results are reported to corroborate the presented distributed schemes. On the one hand, the

users’ electricity expenditures are consistently reduced, which encourages their active and vol-

untary participation in the proposed DSM programs; on the other hand, this results in a lower

generation costs and enhances the robustness of the whole grid.



Resum

La xarxa elèctrica moderna s’enfronta a enormes reptes en la transició cap a un sector energètic

de baixa generació de carboni. La creixent demanda d’energia i les preocupacions ambientals re-

quereixen revisar acuradament com es genera, transmet, i consumeix l’electricitat, amb l’objectiu

de la integració de les fonts d’energia renovables. S’espera que el concepte de smart grid pugui

abordar aquestes qüestions mitjançant la introducció d’informació avançada, control i tecnolo-

gies de la comunicació en la infraestructura energètica. En aquest context, el concepte de gestió

de la demanda (DSM) fa que els usuaris finals siguin responsables de millorar l’eficiència, la

fiabilitat i la sostenibilitat del sistema de potència obrint possibilitats sense precedents per a

l’optimització de l’ús i el cost de l’energia en els diferents nivells de la xarxa.

El disseny de tècniques de DSM s’ha debatut àmpliament en la literatura durant l’última

dècada, tot i que el rendiment d’aquests mètodes ha estat poc investigat des del punt de vista

anaĺıtic. En aquesta tesi es considera la demanda de la xarxa elèctrica com un sistema mul-

tiusuari format per consumidors actius amb capacitats de DSM i es proposa un marc general

per analitzar i resoldre problemes de gestió. Donat que els mètodes de solució centralitzats són

excessivament exigents per a aplicacions práctiques per la seva complexitat computacional i al

inherent sobrecost de comunicació, ens centrem en el desenvolupament d’algorismes distribüıts,

amb especial èmfasi en temes crucials com la velocitat de convergència, l’intercanvi d’informació,

l’escalabilitat i la privacitat. En aquest sentit, oferim un rigorós anàlisi teòric de les condicions

que garanteixen l’existència de solucions òptimes i la convergència dels algorismes proposats.

Entre la gran quantitat de mètodes de DSM, els programes de programació del consum

d’energia (ECS) permeten modificar el perfil de la demanda dels usuaris a través de la repro-

gramació de càrregues flexibles durant hores de baix consum. D’altra banda, la incorporació

de generació distribüıda (DG) i d’emmagatzematge distribüıt (DS) ha demostrat ser igualment
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eficaç disminuint la relació entre potència de pic i mitja de la corba de demanda, evitant els

inconvenients introdüıts pel ECS als usuaris. Sorprenentment, si bè que la literatura s’ha con-

centrat sobretot en les tècniques de ECS, les tècniques de DSM basades en DG i DS no han atret

l’atenció merescuda malgrat el seu potencial de conformació de la càrrega i la seva capacitat de

facilitar la integració de les fonts renovables. En aquesta tesi, omplim aquest buit i elaborem

models precisos de DSM per estudiar l’impacte de DG i DS a nivell dels usuaris finals i de tota

la infraestructura elèctrica .

Tenint present aquest objectiu, fem front a diversos escenaris de DSM, partint d’una op-

timització sobre les previsions amb un dia d’antelació (day-ahead). Es considera des del cas

determinista amb restriccions locals fins al cas estocàstic combinat amb ajustos en temps real

i amb restriccions locals i globals. Cada tasca es complementa amb la definició de models de

xarxa i de tarifació apropiats que permetin la posada en pràctica del paradigma de DSM en

entorns realistes del mercat energètic. En aquest sentit vam dissenyar marcs d’optimització de

DSM globals i orientats als usuaris, que són respectivament aplicables a situacions de mercat

competitives i regulades externament. Els resultats numèrics reportats corroboren els esquemes

distribüıts presentats. D’una banda, les despeses d’electricitat dels usuaris es redueixen de forma

consistent, el que fomenta la seva participació activa en els programes de DSM proposats; per una

altra banda, aquesta optimització resulta en un cost de generació inferior i millora la robustesa

de tota la xarxa.



Resumen

La red eléctrica moderna se enfrenta a enormes retos en la transición hacia un sector energético de

baja generación de carbono. La creciente demanda de enerǵıa y las preocupaciones ambientales

requieren revisar cuidadosamente cómo se genera, transmite y consume la electricidad, con vista

a la integración de las fuentes de enerǵıa renovable. Se espera que el concepto de smart grid

pueda abordar estas cuestiones mediante la introducción de información avanzada, control y

tecnoloǵıas de la comunicación en la infraestructura energética. En este contexto, el concepto

de gestión de la demanda (DSM) hace que los usuarios finales sean responsables de mejorar la

eficiencia, la fiabilidad y la sostenibilidad del sistema de potencia abriéndose posibilidades sin

precedentes para la optimización del uso y el coste de la enerǵıa en los diferentes niveles de la

red.

El diseño de técnicas de DSM se ha debatido ampliamente en la literatura en la última

década, aunque el rendimiento de estos métodos ha sido poco investigado desde el punto de

vista anaĺıtico. En esta tesis se considera la demanda de la red eléctrica como un sistema mul-

tiusuario compuesto por consumidores activos con capacidades de DSM y se propone un marco

general para analizar y resolver problemas de gestión de demanda. Dado que los métodos de

solución centralizados son excesivamente exigentes para aplicaciones prácticas debido a su com-

plejidad computacional y al inherente sobrecoste de comunicación, nos centramos en el desarrollo

de algoritmos distribuidos, con especial énfasis en temas cruciales como la velocidad de conver-

gencia, el intercambio de información, la escalabilidad y la privacidad. En este sentido, ofrecemos

un riguroso análisis teórico de las condiciones que garantizan la existencia de soluciones óptimas

y la convergencia de los algoritmos propuestos.

Entre la gran cantidad de métodos de DSM, los programas de programación del consumo

de enerǵıa (ECS) permiten modificar el perfil de la demanda de los usuarios a través de la
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reprogramación de cargas flexibles durante horas de bajo consumo. Por otro lado, la incorpo-

ración de generación distribuida (DG) y de almacenamiento distribuido (DS) ha demostrado ser

igualmente eficaz disminuyendo la relación entre potencia de pico y media de la curva de de-

manda, evitando los inconvenientes introducidos por el ECS a los usuarios. Sorprendentemente,

mientras que la literatura se ha concentrado sobre todo en las técnicas de ECS, los programas

de DSM basados en DG y DS no han atráıdo la atención merecida a pesar de su potencial de

conformación de la carga y su capacidad de facilitar la integración de las fuentes renovables. En

esta tesis, llenamos este vaćıo y elaboramos modelos precisos de DSM para estudiar el impacto

de DG y DS a nivel de los usuarios finales y de toda la infraestructura eléctrica.

Teniendo presente este objetivo, hacemos frente a varios escenarios de DSM, a partir de una

optimización sobre las previsiones con un d́ıa de antelación (day-ahead). Se considera desde el

caso determinista con restricciones locales hasta el caso estocástico combinado con ajustes en

tiempo real y con restricciones locales y globales. Cada tarea se complementa con la definición

de modelos de red y de tarificación apropiados que permitan la puesta en práctica del paradigma

de DSM en entornos realistas del mercado energético. En este sentido diseñamos marcos de op-

timización de DSM globales y orientados a los usuarios, que son respectivamente aplicables a

situaciones de mercado competitivas y reguladas externamente. Los resultados numéricos repor-

tados corroboran los esquemas distribuidos presentados. Por un lado, los gastos de electricidad

de los usuarios se reducen de forma consistente, lo que fomenta su participación activa en los pro-

gramas de DSM propuestos; por otra parte, esta optimización resulta en un coste de generación

inferior y mejora la robustez de toda la red.
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Introduction

1.1 The Smart Grid

The Smart Grid is the envisioned electrical network that integrates advanced information, con-

trol, and communication technologies into the current grid infrastructure in order to guarantee

the optimized usage of its capacity. The smart grid aims at improving the interaction between

all participants in the electricity industry (providers, transmission lines, substations, distribu-

tion networks, and consumers) by means of smart metering and bidirectional communications,

encouraging active participation by all of them. These advances result in a power system that is

more secure and efficient, that ensures low losses and high quality of supply, and that facilitates

the integration of renewable energy sources [1, 2].

Today’s electrical grid is a complex network comprising several subsystems, which can be

conveniently divided into supply-side and demand-side. Typically, the supply-side consists of a

few hundred generators interconnected by a transmission network and serving several hundred

substations. The demand-side starts from each substation downwards, where the distribution

network has a simple topology and connects to a large number of consumers in a treelike structure

[3]. Since generators are not usually located close to the consumers, the transmission/distribution

of the electricity entails considerable capital investments and often yields significant energy

losses [4].

The smart grid concept, with distributed generation as one of its key elements, is expected to

reduce the distance between energy production and consumption, transforming the traditional

electrical network into a much more decentralized power system [5–7]. This becomes even more

relevant in light of the increasing penetration of small-scale power generators, individually owned

renewable resources (such as solar panels and wind turbines), and electric vehicles, which gives
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4 Introduction

rise to irregularly distributed energy sources. In this context, those who were once just electricity

consumers become buyers/sellers establishing a bidirectional power flow with the distribution

network.

A tangible consequence of distributed generation and of the related new distribution in-

frastructure is the advent of microgrids, which are localized, self-sufficient groups of electricity

generators, storage devices, and loads that are able to disconnect from the rest of the electrical

network. This practice, referred to as “islanding mode”, allows to isolate any disturbance in

the outer transmission/distribution grid. Indeed, the intentional islanding of bounded network

sectors has the potential to improve the local reliability of the electricity supply with respect to

that provided by the power system as a whole [8,9]. Despite increasing the system flexibility and

reducing losses, such transformation sensibly complicates the power flow network constraints:

this calls for the investigation of smarter energy distribution and delivery methods [4].

A fundamental principle of any power system is that electricity consumption and produc-

tion must be precisely balanced at all times, for any mismatch between the two can cause grid

instability and severe voltage fluctuation, producing power outages and blackouts. In the con-

ventional electrical network, it has always been the responsibility of the supply-side to follow

the load demanded by the consumers. For this reason, the generation and transmission capacity

is sized to meet peak demand that only occurs sporadically. Besides, this state of things favors

fast-ramping, dispatchable generation, mostly relying on fossil fuels. Undeniably, the so-called

peaking generators, which operate only during peak demand, account for a large portion of the

energy cost and carbon emissions [10]. In this respect, renewable energy sources will play an

increasingly crucial role to achieve a more sustainable energy network.

Integrating massive amounts of renewable production into the bulk power grid poses great

challenges for generation planning and system stability [11]. Therefore, under the smart grid

paradigm, the demand is encouraged to follow the available production to accommodate the

intermittent nature of the renewable resources. This represent an important breakthrough in

the future electrical network. On this matter, demand-side management (DSM) refers to the

plethora of initiatives intended to modify the timing and the amount of the energy load de-

mand [12]. DSM introduces advanced mechanisms for encouraging the end users to individually

manage their consumption schedules in a way that is beneficial for the whole grid. With smart

meters embedding intelligence into the demand-side and with the deployment of enhanced DSM

methods, the demand-side becomes the main actor in the network optimization process.

Traditionally, residential customers have always paid a fixed price per unit of electricity, which

is meant to represent an average cost of power generation over a given time interval regardless

of the actual generation cost. In this context, the end-users are shielded from making short-term

market decisions, since their actions are not affected by, and do not affect, the energy prices. In
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contrast, under price-based DSM programs, the retail prices are connected with the generation

cost and vary according to the availability of energy supplies. The concept of dynamic pricing

involves price signals that are constantly delivered to the consumers as economic incentives to

modify their demand and alleviate the pressure on the grid, with the reward of lowering their

bill [12].

The electricity market is also experiencing significant changes towards deregulation and com-

petition with the aim of improving economic efficiency [13]. In such context, providers and con-

sumers compete to exchange energy at a price set by the market, as a result of the interaction

among all of them, while maximizing their own profit/benefit. Obviously, the complexity of the

market mechanisms regulating the energy trading among competing agents increases notably

under the smart grid paradigm. This is due to the difficulty of balancing demand and supply in

the presence of decentralized generation and while dealing with the uncertainty induced by the

renewable supply.

Addressing these challenges for the smart grid involves technology that leverages a number

of emerging signal processing techniques [14]. The smart grid concept has been recognized as “a

major initiative related to the field of energy with significant signal processing content” which

requires expertise in the fields of communication, sensing, optimization, and machine learning

[15]. Indeed, there are many areas where signal processing research can contribute to pave the

way for a greener and more efficient energy grid.

1.2 State of the Art

Not surprisingly, all these premises are arousing the interest of the signal processing community.

It is hardly possible here to even summarize the huge amount of research that has been done

in the field of signal processing applied to smart grids. In fact, this topic has gained so much

popularity in the past 10 years to deserve dedicated journals and conferences, and even to

claim a relevant spot in the major existing publications in signal processing (cf. [16, 17]) and

communications (cf. [18–24]).

The first publications were mainly focused on the communication and control aspects of the

smart grid. Undoubtedly, the smart communication infrastructure is the primary ingredient of

the future power system since it allows to collect and exchange information (e.g., about energy

prices and network state) to guarantee the efficient trading and dispatch of electricity [25, 26].

The large-scale deployment of smart meters, which provide an interface between customers

and providers, requires ad-hoc machine-to-machine transmission schemes that ensure quality of

service, security, and privacy, and that can adapt to the ever-changing topology of the network

[27]. In this regard, power line communication has been intensively investigated since it exploits

the connections provided by the existing energy grid and greatly reduces the implementation
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cost [28]. Nonetheless, advanced information and communication technologies are only enablers

of the envisioned power system and, more importantly, they are not the sole aspects that can

benefit from the contribution of the signal processing community.

The smart grid is expected to provide real-time, system-wide situation awareness, and ad-

vances in state estimation via enhanced sensing and telemetry will play an important role in

attaining this goal. Responsive and robust monitoring techniques are essential to perform var-

ious important control and planning tasks such as optimizing power flows, analyzing contin-

gencies, and determining necessary corrective actions against possible failures [14,29]. However,

the process of acquiring and transmitting massive volumes of information across the network

often produces noisy or corrupted data: this could be due to several reasons including sensor

miscalibration or outright damages, as well as communication errors caused by noise, network

congestion/outages, and malicious attacks. Automated analysis and bad data detection are thus

instrumental to operate the grid reliably [30,31], especially in light of the anticipated “big data”

challenge that will inevitably pervade the energy industry [32].

Maintaining the reliability of the grid and meeting its operational requirements are crucial

tasks that are further complicated by the uncertainty associated with renewable energy gen-

eration, load demand, and energy prices. Of particular interest is the role of statistical signal

processing and machine learning in modeling and forecasting such time-varying factors [33]. For

instance, decision-making in the day-ahead energy market is characterized by a certain degree

of uncertainty in both demand- and supply-side. Therefore, some level of risk aversion or ro-

bust optimization is desirable in order to control the variability of the loss/dissatisfaction of the

market agents [34, Ch. 4.2], [35, 36].

In the following, we focus our attention on state-of-the-art DSM methods; then, we briefly

review the optimization techniques that are employed in this thesis to carry out the proposed

DSM programs.

1.2.1 Demand-Side Management

Demand-side management aims at ensuring that the demand-side users behave responsively to

the available (possibly renewable) energy production and, more generally, to the current state of

the power grid. The basic principle behind DSM is that energy-aware decisions made locally at

the demand-side will inevitably be beneficial at a global level in terms of reliability of the whole

infrastructure and overall energy costs. Some primitive forms of DSM have been considered since

the early 1980s [37] and have evolved over the past decades thanks to the activities of researchers,

power utilities, and governments designed to change the time pattern and the magnitude of the

load demand.
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A well-consolidated DSM approach is direct load control, through which the utilities can force

residential subscribers to decrease their consumption by remotely controlling the operations of

certain appliances (see, e.g., [38, 39]). However, this sort of programs involve a rather passive

role of the subscribers and have serious privacy and scalability implications [40]. In fact, there

are social and legal barriers to overcome as the customer must explicitly authorize the energy

provider to actuate directly over his household appliances. Furthermore, such centralized schemes

typically rely on large-scale algorithms that entail high computational complexity and substantial

communication overhead. In this respect, devising distributed and scalable methods, which imply

a more active role of the end users, is of paramount importance for the successful deployment

of DSM.

The smart grid paradigm promises to introduce more advanced mechanisms that permit

and encourage the active and voluntary participation of the demand-side towards a distributed

optimization of the electrical infrastructure. To this end, the smart meter surpasses the classical

metering and billing role and allows to manage the user’s energy demand by taking into account

different factors such as user convenience, grid capacity, and sustainable energy production, and

to actuate accordingly on his own intelligent appliances, generators, storage devices, etc. [5,33].

Among all, advanced smart metering enables the implementation of dynamic pricing, which

provides the demand-side with the economic incentives for a responsible energy consumption.

The generation costs at the supply-side suffer continuous variations in order to satisfy the

irregular demand over the day. Despite this, most subscribers are still charged flat-rate retail

prices for electricity, which do not reflect the actual wholesale prices. Furthermore, the fluctua-

tion between the so-called off-peak and peak hours not only induces high costs to the providers,

but also has a negative impact on the stability of the power grid [41]. The principle of dynamic

pricing is to charge the users based not only on “how much” but also on “when” electricity is

consumed, encouraging them to decrease the peak-to-average ratio (PAR) by shifting their usage

to off-peak hours. Properly designed dynamic pricing mechanisms are expected to [42]: i) flatten

the load demand curve, which enhances the robustness of the whole network and reduces the

need of peaking power plants; ii) lower generation costs, which decreases the wholesale prices

and increases the suppliers’ profit; iii) reduce the users’ electricity expenditures. The plethora

of initiatives whereby demand-side users respond to dynamic pricing signals is often referred to

as demand response [43].1

There are three main ways through which the active subscribers can exploit the incentives

given by the dynamic pricing paradigm and achieve a more flattened demand, namely: i) dis-

patchable distributed energy generation (DG), ii) distributed energy storage (DS), and iii) energy

1Note that, in this thesis, we group together the connected areas of DSM and demand response due to the close relationship
between the two.
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consumption scheduling (ECS).

i) Distributed energy resources can be classified depending on the nature of their output as non-

dispatchable (intermittent) or dispatchable (controllable) [44, Ch. 7.1]. Non-dispatchable,

renewable sources are strictly dependent on the weather conditions: such devices as solar

panels and wind turbines generate electricity at their maximum capacity whenever possible

(since they only have fixed costs) and, therefore, cannot serve the purpose of providing

energy at will. To the contrary, dispatchable sources as, e.g., internal combustion engines,

gas turbines, and fuel cells, can be required to supply a constant amount of power for a

certain time interval. Precisely, one can employ dispatchable DG to diminish his demand

from the grid whenever is convenient [45].

ii) Fast-response energy storage allows to manage the grid imbalances caused by volatile sources

and enables demand shifting in order to shave off the peak in the load demand [12,43]. Tradi-

tionally, energy storage has been a concern of the suppliers, which use large chemical batteries

to put aside the energy in excess from their solar and wind farms. However, centralized storage

of massive amounts of energy is still highly expensive and inefficient, whereas smaller-scale

DS is becoming a more attractive and viable option [46, 47]. Electric vehicles will play an

important role in increasing the DS capacity of the smart grid although, on the other hand,

they also introduce further uncertainty in the dynamics of energy consumption. A large body

of the DSM literature is devoted to the optimization of the charging/discharging schedule of

electric vehicles in terms of customer comfort and grid stability; see, e.g., [48–50] for more

details on this topic.

iii) Perhaps the most popular DSM approach in the smart grid literature is ECS (cf. [51–54]):

in this kind of methods, the user’s appliances are usually divided into flexible, i.e., with soft

scheduling constraint (such as dishwasher, clothes dryer, electric vehicles, etc.) and inflexi-

ble, i.e., with strict scheduling constraint (such as refrigerator, lighting, heating, etc.). The

purpose of ECS is thus to modify the individual demand profiles by scheduling flexible loads

to off-peak hours, which calls for intelligent and responsive appliances. The implementation

of ECS techniques has been shown to be successful in diminishing the PAR of the load curve;

however, since the users’ inconvenience must be taken into account (e.g., the rescheduling of

activities results in lost services for industrial customers [55]), ECS presents flexibility limita-

tions that can be overcome by incorporating dispatchable DG and DS into the demand-side

of the network.

By the aforementioned initiatives, the demand-side users locally pursue the minimization of

their electricity bill while maintaining certain standards of comfort. In particular, the optimal

DG, DS, or ECS strategies are calculated automatically by their smart meter, which responds

to the dynamic pricing schemes established by the market regulator. In this scenario, the users

will tend to generate, discharge their batteries, and reschedule flexible loads when the energy

is most expensive, which generally occurs during hours of peak load or shortage of renewable
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energy.

The short-term electricity market2 consists mainly of a day-ahead market, which produces

financially binding schedules for energy demand and supply before the operating day, and a

real-time market, used to balance day-ahead and real-time energy requirements [34, Ch. 1.2].

Accordingly, DSM finds concrete applications to optimize the subscribers’ demand profiles at

both temporal scales [54, 56]. Day-ahead DSM allow the supply-side to know in advance the

amount of energy to be provided to the demand-side along the time period of analysis and to

plan its production accordingly. On the other hand, by applying real-time DSM techniques, it

is possible to take into consideration the uncertainties induced by the unpredictable behavior

of renewable energy sources, contingencies in the supply-side, and the randomness of the users’

consumption [57].

1.2.2 Optimization Techniques

Optimization methods have become ubiquitous in power systems and, particularly, in DSM.

The optimization of the demand-side has been traditionally formulated from the selfish point

of view of the end user, who is interested in maximizing his own welfare regardless of the

others’ (other subscribers, utilities, etc.) [51,58]: in this context, the resulting strategies that are

individually optimal may not be socially optimal in terms of, e.g., minimum PAR of the energy

demand curve or minimum total energy cost. Nonetheless, from a social fairness perspective, it is

desirable to utilize the load shaping capacity of the individual subscribers in a way that attains

some measure of global welfare [59–61]. These two alternatives are suitable for competitive and

externally regulated market scenarios, respectively.

Most problems of practical interest can be properly formulated as constrained optimization

problems. In some cases, possibly after some mathematical manipulations, such problems can

be expressed in convex form. Convex optimization problems arise quite frequently in practical

applications and their importance stems from the fact that powerful analytical and algorithmic

tools are available for their study and solution (as, for example, the well-known interior-point

method). These solution methods are so efficient and reliable that they can be embedded in

a computer-aided design or analysis tool. Some prominent references to this topic, from both

mathematical and algorithmic perspectives, are [62–64].

In this dissertation, we attack the demand-side optimization problem from two different

perspectives, namely: a user-oriented optimization, and a holistic-based design. Therefore, in

the following, we first discuss noncooperative game theory (and the more general framework

of variational inequality theory); then, we introduce a very recent method for the distributed

2Medium- and long-term electricity trading between producers and retailers/consumers, which take place through futures
markets and bilateral contracts [34, Ch. 1.2], are not the focus of this thesis.
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optimization of nonconvex sum-utility functions (see also Section 2.1.2). Both these frameworks

are somehow related to convex optimization.

Noncooperative Game Theory and Variational Inequality

Game theory is a field of applied mathematics that describes and analyzes scenarios with inter-

active decisions. A game can be represented as a set of coupled optimization problems relying

on two basic assumptions: i) the decision makers (called players) are rational, i.e., they pursue

well defined exogenous objectives; ii) the players act strategically, i.e., they take into account

their knowledge or expectations of the other players’ behavior [65]. Game theoretical approaches

provide meaningful models for many applications where the interaction among several agents is

by no means negligible and centralized approaches are not suitable.

Game theory has strong potential for addressing several emerging issues in the smart grid,

given its heterogeneous and large-scale nature. This promising view is corroborated by the

recent results and advances in game theoretical approaches applied to communications and

networking problems (e.g., in cognitive radio systems [66] as well as in resource allocation [67]

and power control [68, 69] in wireless networks). Indeed, as a result of the deregulation of the

energy market, there has been recently a growing interest in using games to model the interaction

among smart grid participants: an overview on this topic is given in [70] (see also [71]). In

particular, the essence of DSM revolves naturally around the interactions between various entities

with specific objectives. Under the umbrella of DSM techniques, real-time and day-ahead ECS

problems have been widely studied in literature using game theoretical frameworks (for example

in [51,58,72,73]).

Noncooperative game theory is a broad branch of game theory where the players act selfishly

to optimize their own well-being. In this thesis, we deal with two categories of noncooperative

game theoretical problems: the first is the class of Nash equilibrium problems (NEPs), where

the interaction among players takes place at the level of objective functions only; the second

is the class of generalized NEPs (GNEPs), where each strategy set, i.e., the spectrum of the

choices available to each player, also depends on the actions taken by his rivals [74]. Although

GNEPs have a wider range of applicability (essentially, any case where the players share a

limited, common resource), they are much harder problems than ordinary NEPs. This is due to

the coupling in the strategy sets, which prevents the application of well-known decomposition

methods available for NEPs and sensibly complicates the design of distributed algorithms for

their solution. We refer to [75] for a detailed discussion on this topic.

The variational inequality (VI) problem constitutes a very general class of problems in non-

linear analysis, which encompasses convex optimization and bears strong connections to game

theory. The VI framework proves suitable for investigating and solving various equilibrium mod-



1.3. Thesis Structure 11

els even when classical game theory may fail. Formulating a noncooperative game as a VI problem

allows to easily study existence, uniqueness, and stability of the solutions and, more importantly,

it leads quite naturally to the derivation of implementable solution algorithms along with their

convergence properties [76]. We refer the interested reader to [74, 77–79] for a comprehensive

treatment of the subject.

As stated above, the concept of GNEP extends the classical NEP setting by assuming that

each player’s strategy set can depend on the rivals’ strategies. In its full generality, GNEPs are

almost intractable and also the VI approach is of no great help. However, for the special class of

GNEPs with jointly convex shared constraints, some solutions (termed as variational solutions)

can be studied and calculated relatively easily by using a VI approach [74, 75]. In the specific,

variational solutions can be interpreted as the solution of a NEP with pricing.

Nonconvex Sum-Utility Optimization

In some contexts, instead of adopting a noncooperative approach, it is meaningful to optimize

the “social function” given by the sum of the users’ individual objective functions. Since cen-

tralized solution methods are too demanding in most applications, the main difficulty of this

formulation lies in performing the optimization in a distributed fashion with limited signaling

among the users. When the social problem is a sum-separable convex programming, many dis-

tributed methods, e.g., based on primal and dual decomposition techniques [80, 81], have been

proposed.

Very recent results in [82,83] allow to deal with the more frequent and difficult case in which

the social function is nonconvex. Traditionally, optimization problems of this form have been

tackled by using gradient-based algorithms, which solve a sequence of convex problems by con-

vexifying the whole social function: because of that, they generally suffer from slow convergence.

By exploiting any degree of convexity that might be present in the sum-utility function, it is

possible to obtain decomposition methods that converge to stationary points of the nonconvex

social problem, resulting in the parallel solution of convex subproblems (one for each user). Since

such a procedure preserves some structure of the original objective function, it is expected to be

faster than classical gradient algorithms for nonconvex sum-utility problems.

1.3 Thesis Structure

In order to maximize the dissemination of results, a thesis by publication was chosen. Table 1.1

reports the list, in logical order, of the journal papers that compose the main body of thesis, along

with the conference papers that complement them. The PhD candidate was the first author of

all the presented papers: work planning, state of the art, methodology, analysis, and conclusions
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for each paper were performed entirely by the PhD candidate with the recommendations of

his advisors and coauthors. All the presented papers were written during the candidate’s PhD

period.

Chapter Reference

3 [84] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Demand-side
management via distributed energy generation and storage optimization,” IEEE Trans. on
Smart Grid, vol. 4, no. 2, pp. 866–876, June 2013.

4 [85] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Noncooperative
and cooperative optimization of distributed energy generation and storage in the demand-
side of the smart grid,” IEEE Trans. Signal Process., vol. 61, no. 10, pp. 2454–2472, May
2013.

[86] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Day-ahead
bidding strategies for demand-side expected cost minimization,” in IEEE Int. Conf. Smart
Grid Comm. (SmartGridComm), pp. 91–96, Nov. 2012.

[87] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Cooperative
day-ahead bidding strategies for demand-side expected cost minimization,” in IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 5224–5228, May 2013.

5 [88] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa, “Noncoopera-
tive day-ahead bidding strategies for demand-side expected cost minimization: A GNEP
approach,” IEEE Trans. Signal Process., vol. 62, no. 9, pp. 2397–2412, May 2014.

Table 1.1: List of papers related to this thesis.

1.3.1 Chapters Outline

The thesis is structured around the presented papers, with each journal paper representing a

self-contained chapter of the main body, i.e., Chapters 3, 4, and 5. The rest of the dissertation

is organized as follows; Figure 1.1 highlights the connection between the different papers and

chapters.

Chapter 2: Contribution

In Chapter 2, we provide a comprehensive summary of the theoretical results of this thesis. First

of all, we illustrate an overall smart grid model that accommodates generalized DSM methods,

and on which we build the proposed frameworks for dispatchable DG and DS optimization;

furthermore, we formally introduce the optimization techniques that are used throughout the

thesis. Then:

i) We present a deterministic day-ahead DSM framework where the users know in advance



1.3. Thesis Structure 13

Chapter 1:

Introduction

Chapter 2

Contribution

Chapter 3:

Journal Paper [84]

Conference

Paper [86]

Conference

Paper [87]

Chapter 4:

Journal Paper [85]

Chapter 5:

Journal Paper [88]

Chapter 6:

Conclusions

Main body

of the thesis

Figure 1.1: Chapters outline.

their energy consumption needs and commit to follow strictly the resulting day-ahead demand

pattern in real-time. For this scenario, we tackle the DSM problem from both noncooperative

and cooperative perspectives. The extensive description of these topics is given in Chapter 3

(cf. [84]) and in Chapter 4 (cf. [85]).

ii) We describe a stochastic DSM framework where the users’ energy consumption needs is

subject to uncertainty; then, in real-time, the users are allowed to adopt a different demand

pattern under a penalty system that discourages deviations with respect to the day-ahead

schedule. For this scenario, a noncooperative approach that accommodates global constraints

is used. The detailed discussion is given in Chapter 5 (cf. [88]).
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Chapter 3: Journal Paper [84]

Chapter 3 presents the first attempt to devise a day-ahead optimization framework where selfish

demand-side users know in advance their consumption needs and aim at minimizing their mone-

tary expense by adopting DSM strategies based on dispatchable DG and DS. We can summarize

the content of this chapter as follows:

i) We present an accurate demand-side model that constitutes a guideline for representing

realistic DSM scenarios where dispatchable DG and DS are employed.

ii) We formulate the demand-side optimization design as a NEP and, considering a standard

quadratic energy cost function, we establish that the existence of (multiple, yet equivalent)

Nash equilibria is guaranteed upon the fulfillment of local requirements by the users.

iii) We propose a distributed and iterative algorithm with synchronous update that is ensured to

converge to one of the aforementioned solutions under very mild conditions and that requires

only the knowledge of aggregate load of the demand-side, thus preserving the users’ privacy

and limiting the information exchange.

iv) Numerical results show substantial savings achieved by the users and lower PAR of the ag-

gregate demand curve, which paves the way for a more extensive deployment of dispatchable

DG and DS under the DSM paradigm.

Chapter 4: Journal Paper [85]

Chapter 4 addresses a more advanced study of the day-ahead optimization described in Chap-

ter 3. More specifically:

i) The pricing model used is completely general and includes that of Chapter 3 as a special case;

hence, the existence of optimal solutions and the convergence of the proposed algorithms not

only depend on local conditions at the user level but also restrain the choice of the grid cost

function.

ii) We attack the demand-side optimization problem from both user-oriented and holistic-based

perspectives: in the former case, we optimize each user individually by formulating the op-

timization design as a NEP, whose solution analysis is addressed building on the theory of

variational inequalities; in the latter case, we focus instead on the joint optimization of the

demand-side, allowing some cooperation among the users.

iii) For both formulations, we design distributed and iterative algorithm providing the optimal

DG and DS strategies of the users: for the first scenario, we propose a noncooperative scheme

with asynchronous update, whereas for the second we build on decomposition methods based

on partial linearizations to perform the parallel and distributed optimization of nonconvex

sum-utility functions.

iv) Interestingly, the overall results produced by the noncooperative and the cooperative ap-
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proaches happen to be equivalent in the case under exam, despite their different (sufficient)

convergence conditions, strategy update, and convergence speed that make them appealing

in different situations.

Chapter 5: Journal Paper [88]

In Chapter 5, we propose a stochastic day-ahead DSM optimization where the users do not have

perfect knowledge of their real-time consumption needs, which makes the scenario described

in the previous chapters considerably more realistic. The main contribution of this chapter is

summarized below:

i) The day-ahead optimization consists of a bidding process and, in real-time, the deviations

with respect to the day-ahead negotiated loads are penalized: therefore, the users estimate

their consumption and optimize their bidding, dispatchable DG, and DS strategies with the

objective of minimizing their individual expected monetary expense (taking into account the

aforementioned real-time penalty charges).

ii) By considering a competitive market environment with global constraints on the aggregate

bidding strategy of the users, the above bidding process is formulated as a GNEP, and we

derive the conditions guaranteeing the existence of variational solutions.

iii) We build on the game theoretical pricing-based interpretation of a GNEP to design dis-

tributed and iterative algorithms that converge to the variational solutions under some tech-

nical conditions, while preserving the users’ privacy and with limited information exchange;

notably, the proposed scheme can also accommodate ECS methods.

iv) We devise a complementary DSM procedure that allows the users to perform unilateral

adjustments on their DG and DS strategies so as to reduce the impact of their real-time

deviations with respect to the day-ahead schedule.

v) Simulations on realistic scenarios show that the proposed day-ahead DSM method consis-

tently diminishes the users’ expected monetary expenses while fulfilling the global constraints,

whereas the real-time adjustments reduce both the average value and the variance of the

user’s real-time monetary expense.

Chapter 6: Conclusions

Chapter 6 concludes by summarizing the results of this PhD thesis and presenting some future

research lines.





2

Contribution

In this chapter, we summarize the overall contribution of this dissertation. Since Chapters 3, 4,

and 5 are self-contained publications that do not always share the same notation, here we adopt

a general notation (yet different from that of the aforementioned chapters) in order to provide

a comprehensive view of the proposed models and algorithms. The main characteristics of the

distributed schemes presented in this thesis are provided in Table 2.1.

Chapter Reference Pricing System Noncoop./Coop. Constraints Alg. Update

3 [84] DA Noncooperative Local Synchronous

4 [85]
DA (with generalized Noncooperative

Local
Asynchronous

cost function) Cooperative Parallel

[86] DA with RT penalties Noncooperative Local Asynchronous

[87] DA with RT penalties Cooperative Local Parallel

5 [88]
DA with RT penalties

Noncooperative Local & Global Asynchronous
+ RT adjustments

Table 2.1: Distributed algorithms proposed in the main body of the thesis (DA: day-ahead, RT: real-time).

2.1 Preliminaries

2.1.1 Smart Grid Model

The smart grid model adopted in this thesis can be schematized as follows (see Figures 4.1–4.2):

17
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i) Supply-side: energy producers and providers;

ii) Central unit: regulation authority that coordinates the demand-side bidding process;

iii) Demand-side: end users.

Since our aim is to propose novel DSM methods, we focus our attention on the demand-side of

the smart grid, whereas the supply-side and the central unit are modeled as simple as possible.

Demand-side users, whose associated set is denoted by D, are divided into passive and active

users. Passive users P ⊂ D are basically energy consumers and resemble traditional demand-side

users, whereas active users N , D\P, with N , |N |, indicate those consumers participating in

the demand-side bidding process, i.e., reacting to changes in the energy price by modifying their

demand profile. In our model, each active user is connected not only to the bidirectional power

distribution infrastructure, but also to a communication infrastructure that enables two-way

communication between his smart meter and the central unit.

Let us consider a time horizon of one day divided into H time-slots, with h = 1, . . . ,H.

Demand-side users D are characterized in the first instance by the per-slot energy consumption

en(h) defined as the energy needed by user n ∈ D to supply his appliances at time-slot h: this

term also accounts for eventual renewable energy sources that the user may have. On the other

hand, the per-slot energy load ln(h) gives the energy flow between user n and the distribution

grid at time-slot h. For passive users n ∈ P, we have that ln(h) = en(h), whereas this relationship

does not necessarily hold for active users N , who can modify their demand profile by applying

DSM techniques.

In Section 2.2, we examine a preliminary scenario where en(h) is deterministic: then, the users

perform a day-ahead optimization whose resulting demand pattern coincides with the real-time

load ln(h). Subsequently, in Section 2.3, we deal with a more realistic scenario that models en(h)

as a random variable: therefore, the demand pattern resulting from the day-ahead optimization

does not necessarily coincide with the real-time load ln(h), and the difference between the two

is penalized; for this reason, a stochastic day-ahead optimization is performed and real-time

adjustments of the day-ahead strategies are allowed.

2.1.2 Optimization Framework

We consider the demand-side as a multiuser system composed of N coupled users, i.e., the

active users N . We start by providing some preliminary definitions. For each active user n ∈ N ,

Ωn ⊆ RωnH denotes the strategy set, with ωn representing the number of dimensions of the user’s

per-slot DSM strategy; user n’s objective function is given by fn(xn,x−n) and depends on all

users’ strategies, which are described by the vector x ,
(
xn
)N
n=1

, where xn ,
(
xn(h)

)H
h=1

defines

the strategy vector of user n and x−n , (xm)m∈N\{n} denotes the vector of all active users’

strategy profiles except that of user n; the joint strategy set is denoted by Ω ,
∏
n∈N Ωn ⊆ RωH ,
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with ω ,
∑

n∈N ωn, and Ω−n ,
∏
m∈N\{n}Ωm. We call a vector x feasible if xn ∈ Ωn, ∀n ∈ N .

Moreover, unless specified otherwise, each user n’s strategy set Ωn is independent of the other

users’ actions.

In this thesis, we express the demand-side optimization using three different formulations

(introduced in Section 1.2.2), namely:

A1) A Nash equilibrium problem (NEP), where each user n ∈ N is a player who aims at choosing

xn ∈ Ωn that minimizes his objective function fn(xn,x−n), given the other players’ strategies

x−n:

min
xn

fn(xn,x−n)

s.t. xn ∈ Ωn

∀n ∈ N . (2.1)

A Nash equilibrium (NE), or simply a solution of the NEP, is a feasible point x? such that

fn(x?n,x
?
−n) ≤ fn(xn,x

?
−n), ∀xn ∈ Ωn, ∀n ∈ N .

A2) A generalized NEP (GNEP), where the strategy set Ωn of each user n ∈ N depends of the

other users’ actions: we denote by Ωn(x−n) the strategy set of user n when the other users

choose x−n. Here, each user n is a player who aims at choosing xn ∈ Ωn(x−n) that minimizes

his objective function fn(xn,x−n), given the other players’ strategies x−n:

min
xn

fn(xn,x−n)

s.t. xn ∈ Ωn(x−n)

∀n ∈ N . (2.2)

A generalized Nash equilibrium (GNE), or simply a solution of the GNEP, is a feasible point

x? such that fn(x?n,x
?
−n) ≤ fn(xn,x

?
−n), ∀xn ∈ Ωn(x−n), ∀n ∈ N .

B) A sum-utility optimization problem, where the users N aim at optimizing the social function

given by the sum of their individual objective functions:

min
{xn}

U(x) =
∑

n∈N
fn(xn,x−n)

s.t. xn ∈ Ωn, ∀n ∈ N .
(2.3)

A stationary solution of the above sum-utility problem is a feasible point x? such that

∇x
∑

n∈N fn(xn,x−n) = 0.

In order to study the problems A1 and A2, they will be reformulated as (partitioned) VI

problems, whose formal definition is provided next.

Definition 2.1 ([74, Def. 4.2]). Let F(x) : Ω → RωH be a vector-valued function defined as

F(x) =
(
Fn(xn,x−n)

)N
n=1

, where Fn(xn,x−n) : Ωn → RωnH is the nth component block function

of F(x), x =
(
xn
)N
n=1

, and Ω =
∏
n∈N Ωn. Then, the VI problem, denoted by VI(Ω,F), consists
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in finding x? ∈ Ω such that

(x− x?)TF(x?) ≥ 0, ∀x ∈ Ω. (2.4)

2.2 Day-Ahead DSM

Day-ahead DSM is of paramount importance since it provides the supply-side with an estimation

of the amount of energy to be delivered to the demand-side during the time period of analysis,

so that energy suppliers can plan their production accordingly. In this section, we design a

noncooperative and a cooperative DSM optimization frameworks that apply to deterministic

day-ahead pricing models: in doing so, we summarize the theoretical analysis and algorithms of

Chapter 4, which includes the subject of Chapter 3 as a spacial case. Here, we work under the

following assumptions:

i) The per-slot energy consumption en(h) is deterministic, i.e., each demand-side user knows

exactly, and in advance, his energy requirements for each time-slot in the upcoming day;

ii) Active users N commit to follow strictly the demand pattern resulting from the day-ahead

optimization, i.e., the per-slot energy load ln(h) is determined in the day-ahead and remains

unchanged in real-time.

Lastly, we introduce the transformation vector δ ∈ Rωn defined such that δTxn(h) = ln(h).

2.2.1 Energy Cost and Pricing Model

Typically, during the day-ahead market, the different energy generators in the supply-side (each

of them characterized by a specific price curve) submit their production offers; likewise, con-

sumers and retailers submit their consumption bids. This process determines the energy prices,

i.e., the locational marginal prices [89], and the traded quantities [34, Ch. 1.2]. Since we are

particularly interested in the demand-side of the network, we can abstract this procedure by

considering a single price curve resulting from aggregating the individual curves of each gener-

ator in the supply-side; this is a well-established procedure in the smart grid literature.

With this objective in mind, let us first define the per-slot energy load at time-slot h as

L(h) ,
∑

n∈D
ln(h) = L(P)(h) +

∑

n∈N
δTxn(h) (2.5)

where L(P)(h) =
∑

n∈P ln(h) is the per-slot aggregate energy consumption associated with the

passive users. Throughout Section 2.2, the per-slot aggregate energy load in (2.5) is fixed in the

day-ahead and remains unchanged in real-time, and we work under the hypothesis that it is

always guaranteed by the supply-side.

Given the per-slot aggregate energy load L(h), let us define the grid cost function per unit of
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energy Ch
(
L(h)

)
at time-slot h. Then, Ch

(
L(h)

)
ln(h) represents the amount of money paid by

user n to purchase the energy load ln(h) from the grid (if ln(h) > 0) or, eventually, received to sell

the energy load ln(h) to the grid (if ln(h) < 0) at time-slot h. Observe that Ch(·) can represent

either the actual energy cost (as a result of energy generation, transmission, and distribution

costs among other issues) or simply a pricing function designed to incentivize load shifting by

the end users. In any case, Ch(·) varies across the day according to the energy demand and

to the availability of intermittent sources. Observe that, throughout Section 2.2, we keep the

pricing model general, whereas in Chapter 3 we analyze a particular pricing model where the

grid cost function per unit of energy is linear.

On the other hand, we denote by Wn(xn(h)) the DSM cost function, i.e., the cost incurred

by user n to shape his consumption en(h) into the energy load ln(h) via DSM programs. For

instance, this can represent the monetary cost of operating a fuel generator or a storage device,

as well as the discomfort created by the rescheduling of appliances or by a voluntary decrease

in the energy consumption.

Finally, we can write the objective function of each active user n ∈ N as

fn(xn, l−n) ,
H∑

h=1

(
Ch
(
δTxn(h) + l−n(h)

)
δTxn +Wn

(
xn(h)

))
(2.6)

where l−n ,
(
l−n(h)

)H
h=1

is the aggregate energy load vector of the other users, with

l−n(h) , L(h)− ln(h) = L(P)(h) +
∑

m∈N\{n}
δTxm(h). (2.7)

Note that, since the above objective function only depends on the aggregate energy loads, the

users are not required to know the individual strategies (and not even the individual energy

loads) of the others, which preserve the users’ privacy.

2.2.2 DSM Model

In our smart grid model, active usersN adopt dispatchable DG and DS. In this regard, gn(h) ≥ 0

represents the per-slot energy production at time-slot h. Likewise, sn(h) denotes the per-slot

energy storage at each time-slot h: we have that sn(h) > 0 when the storage device is to be

charged (implying an additional energy consumption), sn(h) < 0 when the storage device is to

be discharged (resulting in a reduction of the energy consumption), and sn(h) = 0 when the

storage device is inactive. In this context, the resulting per-slot strategy and per-slot energy
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load of user n ∈ N are given by

xn(h) ,
(
en(h), gn(h), sn(h)

)
(2.8)

ln(h) , en(h)− gn(h) + sn(h) (2.9)

with δ , (1,−1, 1). The DSM cost function Wn(xn) indicates the fuel cost for the dispatchable

generator, whereas we assume that the storage device implies no variable costs: therefore, we refer

to the objective function fn(xn, l−n) in (2.6) as cumulative monetary expense. Lastly, the strategy

set Ωn includes all the feasible dispatchable DG and DS strategies that user n can adopt. The

constraints regarding dispatchable DG and DS are illustrated in detail in Sections 3.2 and 4.2;

for the purpose of the discussion in this chapter, it is sufficient to mention that such constraints

yield compact and convex strategy sets Ωn.

2.2.3 Noncooperative Day-Ahead DSM

Here, following Approach A1 described in Section 2.1.2, we model our DSM procedure as a NEP.

Each active user is a player who competes against the others by choosing the dispatchable DG

and DS strategies (included in the strategy vector xn) that minimize his cumulative monetary

expense fn(xn, l−n) defined in (2.6), subject to the local constraints Ωn (cf. (2.1)):

min
xn

fn(xn, l−n)

s.t. xn ∈ Ωn

∀n ∈ N . (2.10)

The formal definition of the NEP is the following: G = 〈Ω, f〉, with Ω ,
∏
n∈N Ωn and f ,(

fn(xn, l−n)
)N
n=1

.

In order to analyze the existence of the Nash equilibria as well as the convergence of dis-

tributed algorithms while keeping the pricing model general, it is very convenient to reformulate

the NEP as a partitioned VI problem VI(Ω,F), which was formally defined in Definition 2.1. The

equivalence between the game theoretical and the VI formulation is established in the following

lemma.

Lemma 2.1 ([74, Prop. 4.1]). Given the NEP G = 〈Ω, f〉, suppose that, for each n ∈ N , the

following hold:

(a) The strategy set Ωn is closed and convex;

(b) For every feasible l−n (i.e., such that x−n ∈ Ω−n), the objective function fn(xn, l−n) is convex

and twice continuously differentiable in xn ∈ Ωn.

Let F(x) ,
(
∇xnfn(xn, l̃−n)

)N
n=1

. Then, the NEP is equivalent to the VI problem VI(Ω,F).

Assuming that Lemma 2.1 holds, we can formulate the NEP G as the VI problem VI(Ω,F).
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Sufficient conditions that guarantee the existence of the Nash equilibria of the NEP G , i.e., of

the solutions of the VI problem VI(Ωx,F), are derived in the next theorem.

Theorem 2.1. Given the NEP G = 〈Ω, f〉, suppose that the following hold:

(a) The strategy set Ωn is compact and convex, for each n ∈ N ;

(b) The grid cost functions per unit of energy
{
Ch(·)

}H
h=1

are increasing and convex and satisfy

C ′h(·) ≥ 1

2
ζ(min)C ′′h(·) (2.11)

where ζ(min) denotes the maximum amount of energy that can be sold to the grid by any single

user n ∈ N at any time-slot;

(c) The DSM function Wn(·) is convex and twice continuously differentiable, for each n ∈ N .

Then, the NEP has a nonempty and compact solution set.

The conditions in Theorem 2.1 are very mild and always satisfied in practice; we refer to Re-

mark 4.1 in Section 4.3.2 for more details. Furthermore, their fulfillment also implies the accom-

plishment of Lemma 2.1 (whose requirements are less stringent than those of Theorem 2.1).

Theorem 2.1 guarantees the existence of a solution of the NEP G , but not the uniqueness.

Interestingly, all Nash equilibria for this problem happen to have the same quality in terms of

optimal values of the players’ objective functions (cf. Proposition 4.1 in Section 4.3.2).

Distributed Algorithm

We are now interested in designing distributed algorithms to compute one of the (equivalent)

solutions of the NEP G . We focus on the class of totally asynchronous best-response algorithms,

where some users may update their strategies more frequently than others and they may even

use outdated information about the strategy profiles adopted by the other users. A synchronous

user-oriented scheme, which is based on a particular pricing model with linear grid cost functions

per unit of energy, is presented in Chapter 3 and is included in the following as a special case.

Let Tn ⊆ T ⊆ {0, 1, 2, . . .} be the set of times at which user n ∈ N updates his own strategy

xn, denoted by x
(i)
n at the ith iteration. We use tn(i) to denote the most recent time at which

the strategy of user n is perceived by the central unit at the ith iteration. We assume that some

standard conditions in asynchronous convergence theory (see (A1)–(A3) in Section 4.3.3), which

are fulfilled in any practical implementation, hold for Tn and tn(i), ∀n ∈ N . According to the

asynchronous scheduling, each user updates his strategy by minimizing his cumulative monetary

expense, given the most recently available value of the aggregate energy load vector of the other
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users l
(t(i))
−n ,

(
l
(t(i))
−n (h)

)H
h=1

, with

l
(t(i))
−n (h) , L(P)(h) +

∑

m∈N\{n}
l(tm(i))
m (h). (2.12)

Since all Nash equilibria are equivalent (in the sense of Proposition 4.1), we focus on proximal-

based best-response algorithms, which are guaranteed to converge to one of the Nash equilibria

even in the presence of multiple solutions. We then obtain Algorithm 2.1 below, whose conver-

gence conditions are expressed by Theorem 2.2. We refer to Section 4.3.3 for a detailed discussion

of the algorithm.

Algorithm 2.1 Asynchronous Proximal Decomposition Algorithm (PDA)

Data : Set i = 0 and the initial centroid
(
x̄n
)N
n=1

= 0. Given
{
Ch(·)

}H
h=1

,
{
ρ(i)
}∞
i=0

, τ > 0,

and any feasible starting point x(0) =
(
x

(0)
n

)N
n=1

:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n =





x?n ∈ argmin
xn∈Ωn

{
fn
(
xn, l

(t(i))
−n

)
+
τ

2
‖xn − x̄n‖2

}
, if i ∈ Tn

x
(i)
n , otherwise

End

(S.3) : If the NE is reached, then each user n ∈ N sets x
(i+1)
n ← (1− ρ(i))x̄n + ρ(i)x

(i+1)
n

and updates his centroid: x̄n = x
(i+1)
n .

(S.4) : i← i+ 1; Go to (S.1).

Theorem 2.2. Given the NEP G = 〈Ω, f〉, suppose that the conditions of Theorem 2.1 and the

following hold:

(a) The grid cost functions per unit of energy
{
Ch(·)

}H
h=1

are increasing and convex and addi-

tionally satisfy

C ′h(·) ≥ N
(
ζ(min) + ζ(max)

)
C ′′h(·) (2.13)

where N is the number of active users and where ζ(min) and ζ(max) denote the maximum

amount of energy that can be sold to or both from the grid by any single user n ∈ N at any

time-slot, respectively;

(b) The regularization parameter τ satisfies

τ > 2(N − 1) max
h

C ′h(L(max)) + 2L(max) max
h

(
max

L(min)≤x≤L(max)
C ′′h(x)

)
(2.14)

where L(min) and L(max) are the minimum and maximum aggregate energy load allowed by

the grid infrastructure, respectively;
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(c) ρ(i) is chosen so that {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm < RM < 2.

Then, any sequence
{
x

(i)
n

}∞
i=1

generated by Algorithm 2.1 converges to a Nash equilibrium of the

NEP.

Condition (2.13) in Theorem 2.2(a) provides a guideline to choose the grid cost functions per

unit of energy
{
Ch(·)

}H
h=1

, and can be also understood as a tradeoff between the minimum

demand generated by the passive users and that coming from the active users (see Remark 4.3

in Section 4.3.3). On the other hand, the regularization parameter τ determines the trade-

off between the convergence stability and the convergence speed [76]. The peculiarity of the

expression of τ provided in (2.14) is that it can be calculated by the central unit a priori

without interfering with the privacy of the users (see Remark 4.4 in Section 4.3.3); the same

consideration holds for the values of τ derived in Theorem 2.3 (cf. (2.21)) and in Theorem 2.5

(cf. (2.42)).

2.2.4 Cooperative Day-Ahead DSM

In contrast to the noncooperative approach A1 adopted in Section 2.2.3, we now follow Ap-

proach B described in Section 2.1.2 (cf. (2.3)) and consider an alternative DSM technique, in

which demand-side users collaborate to minimize the aggregate cumulative monetary expense

of the demand-side.

Let us write the aggregate cumulative monetary expense of the passive users P as

U (P)(x) ,
H∑

h=1

Ch

( ∑

n∈N
δTxn(h) + L(P)(h)

)
L(P)(h) (2.15)

which indirectly depends on the strategies adopted by the active users N through the grid cost

function per unit of energy Ch(·). We aim at solving the following social problem (c.f. (2.3))

min
{xn}

U(x) ,
∑

n∈N
f(D)
n (xn, l−n)

s.t. xn ∈ Ωn, ∀n ∈ N .
(2.16)

where f
(D)
n (xn, l−n) is defined so as to distribute the term U (P)(x) in (2.15) among the active

users N , i.e.,

f(D)
n (xn, l−n) , fn(xn, l−n) +

1

N
U (P)(x) (2.17)

with the individual cumulative expense fn(xn, l−n) given by (2.6). In fact, the common term

(equal for all users) U (P)(x) is a transferable utility and can be arbitrarily shared among the

active users (e.g., as in (2.17)) without affecting the optimal value of the social function U (D)(x).
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Distributed Algorithm

Instead of tackling problem (2.3) via classical gradient-based schemes, we build on the framework

recently proposed in [82, 83]: since each f
(D)
n (xn, l−n) is convex for any feasible l−n (under the

settings of Theorem 2.1), one can linearize only the nonconvex part, i.e.,
∑

m∈N\{n} f
(D)
m (x), and

solve the sequence of resulting optimization problems. Such a procedure preserves some structure

of the original objective function and, therefore, it is expected to be faster than classical gradient-

based schemes. A formal description of the algorithm is given next.

Let us preliminary define x(i) ,
(
x

(i)
n

)N
n=1

as the joint strategy vector at iteration i and the

resulting aggregate load as

L(i)(h) , L(P)(h) +
∑

n∈N
δTx(i)

n (h) (2.18)

where x
(i)
n (h) represents the per-slot strategy of active user n at iteration i. We can then introduce

the best-response mapping Ω 3 x(i) → x̂τ (x(i)) =
(
x̂τ,n(x(i))

)N
n=1

, where we have defined

x̂τ,n(x(i)) , argmin
xn∈Ωn

{
f(D)
n

(
xn, l

(i)
−n
)

+ πn(l
(i)
−n)Txn +

τ

2
‖xn − x(i)

n ‖2
}

(2.19)

and

πn(l
(i)
−n) ,

∑

m∈N\{n}
∇xnfm(xm, l

(i)
−m). (2.20)

Note that each individual mapping in (2.19) is strongly convex under Theorem 2.1 and, therefore,

has a unique solution; (2.19) is thus well-defined. The proposed algorithm solving the social

problem in (2.16) is formally described in Algorithm 2.2 below, whose convergence conditions

are given in Theorem 2.3. We refer to Section 4.4.1 for a detailed discussion of the algorithm.

Algorithm 2.2 Distributed Dynamic Pricing Algorithm (DDPA)

Data : Set i = 0. Given
{
Ch(·)

}H
h=1

,
{
L(P)(h)/N

}H
h=1

, τ > 0, and any feasible starting point

x(0) =
(
x

(0)
n

)N
n=1

:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n = argmin

xn∈Ωn

{
f(D)
n

(
xn, l

(i)
−n
)

+ πn(l
(i)
−n)Txn +

τ

2
‖xn − x(i)

n ‖2
}

End

(S.3) : i← i+ 1; Go to (S.1).

Theorem 2.3. Given the social problem (2.16), suppose that the conditions of Theorem 2.1 hold
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and that the regularization parameter τ satisfies

τ ≥ max
h

(
(N + 1)C ′h(L(max)) + max

L(min)≤x≤L(max)

(
C ′′h(x)x

))
(2.21)

where N is the number of active users and where L(min) and L(max) are the minimum and

maximum aggregate energy load allowed by the grid infrastructure, respectively. Then, either

Algorithm 2.2 converges in a finite number of iterations to a stationary solution of (2.16) or

every limit point of the sequence
{
x(i)
}∞
i=1

is a stationary solution of (2.16).

Algorithm 2.2 is guaranteed to converge whenever a solution to the social problem (2.16)

exists: therefore, its convergence conditions are consistently milder than those required by the

noncooperative approach based on Algorithm 2.1 and, most importantly, it does not impose

any limitation on the number of active users (which means better scalability). In addition, Al-

gorithm 2.2 is not incentive compatible, in the sense that demand-side users need to reach an

agreement in following the best-response protocol (2.19). For these reasons, the proposed method

needs to be coordinated by an external regulator in order to promote the cooperative optimiza-

tion of demand-side users. Lastly, Algorithm 2.2 differs from Algorithm 2.1 in the synchronous

(parallel) update of the users’ strategies.

2.2.5 DSM Implementation

Summarizing, the proposed day-ahead demand-side optimization based on Algorithms 2.1 and

2.2 works as follows. At the beginning of the optimization process, τ is computed, respectively

as in (2.14) or (2.21), and broadcast to each user n ∈ N , together with the grid cost functions

per unit of energy
{
Ch(·)

}H
h=1

and, only for Algorithm 2.2, the terms related to the transferable

utility
{
L(P)(h)/N

}H
h=1

. Then, at each iteration i, we have that:

1) In Algorithm 2.1, any active user who wants to update his strategy solves his own (regular-

ized) optimization problem based on the most recent values of the aggregate energy loads{
L(t(i))(h)

}H
h=1

, which are calculated by the central unit referring to the (possibly outdated)

individual demands, and communicates his new load to the central unit. When an equilibrium

in the inner loop is reached, the central unit proceeds to the next iteration.

2) In Algorithm 2.2, all active users simultaneously update their strategies by solving their own

optimization problems in (2.19) based on the aggregate energy loads
{
L(i)(h)

}H
h=1

, which

are calculated by the central unit summing up the individual demands. Then, active users

provide their new energy loads to the central unit.

This process is iterated until a suitable termination criterion imposed by the central unit is

satisfied.



28 Contribution

2.3 Day-Ahead DSM with Real-Time Penalty Charges

Pure day-ahead approaches as those presented in Section 2.2 prove incapable of accommodating

real-time fluctuations from the expected energy consumption by the demand-side users, as well

as the randomness of their renewable sources. On top of that, additional costs are incurred by

the supply-side when the consumption schedule is not correctly predicted by the users, and are

transferred to the demand-side in the form of penalty charges. In this section, we design a non-

cooperative DSM optimization framework that applies to stochastic day-ahead and real-time

pricing models and that accommodates global constraints: in doing so, we summarize the theo-

retical analysis and algorithms of Chapter 5, which includes [86] as a special case; a cooperative

method applied to an equivalent stochastic day-ahead pricing model and that neglects the global

constraints is illustrated in [87]. Here, we work under the following assumptions:

i) The per-slot energy consumption en(h) is modeled as a random variable whose pdf fen(h)(·)
is known by the corresponding demand-side user n.

ii) Active users N can deviate in real-time, although subject to penalty charges, from the de-

mand pattern resulting from the day-ahead optimization.

Therefore, we distinguish between the per-slot bid energy load l̃n(h), which gives the day-ahead

demand pattern, and the (real-time) per-slot energy load ln(h). Lastly, we introduce the trans-

formation vector δ ∈ Rωn defined such that δTxn(h) = l̃n(h).

2.3.1 Energy Cost and Pricing Model

In addition to the per-slot aggregate energy load L(h) in (2.5), we further define the per-slot

aggregate bid energy load at time-slot h as

L̃(h) , L̂(P)(h) +
∑

n∈N
δTxn(h) (2.22)

where L̂(P)(h) is the predicted per-slot aggregate energy consumption associated with the passive

users. Throughout Section 2.3, L̃(h) is determined in the day-ahead and may differ from the

real-time aggregate energy demand, which is given by L(h); we work under the hypothesis that

the latter is always guaranteed by the supply-side.

To achieve a realistic smart grid model, the per-slot aggregate bid energy load in (2.22) must

satisfy the following global constraint:

L(min)(h) ≤ L̃(h) ≤ L(max)(h), ∀h (2.23)

where L(min)(h) > 0 (resp. L(max)(h) > 0) denotes the minimum (resp. the maximum) per-slot

aggregate energy allowed by the grid infrastructure. In particular, a real-time aggregate demand

lower than L(min)(h) may imply additional costs for the supply-side if this requires turning off
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some base load power plant. On the other hand, L(max)(h) can be interpreted as the upper bound

on the per-slot aggregate bid energy load that allows to satisfy the real-time aggregate demand

with a certain outage probability. Alternatively, these boundaries can be chosen to guarantee a

certain PAR of the real-time aggregate load with high probability.

In the same way as in Section 2.2.1, given the per-slot aggregate bid energy load L̃(h), let

us define the grid cost function per unit of energy Ch
(
L̃(h)

)
at time-slot h, which remains fixed

during the day period. In particular, we adopt a linear cost function per unit of energy:

Ch
(
L̃(h)

)
= KhL̃(h). (2.24)

The overall variable costs to supply the amount L̃(h) are then given by Ch
(
L̃(h)

)
L̃(h) =

KhL̃
2(h), which corresponds to the quadratic grid cost function widely used in the smart grid

literature. In general, the grid coefficients Kh > 0 are different at each time-slot h, since the

energy production varies across the day period according to the aggregate energy demand and

to the availability of intermittent energy sources.

Each active user n ∈ N participates in a day-ahead demand-side bidding process during which

he derives his per-slot bid energy load l̃n(h) for all h in the day period. If the user attains to

his day-ahead bid l̃n(h), he simply pays KhL̃(h)l̃n(h); nonetheless, he can possibly deviate from

such strategy in real time by purchasing/selling a different amount of energy ln(h), for which he

pays/perceives KhL̂(h)ln(h), while incurring in the penalties given by ϑh
(
ln(h)− l̃n(h)

)
, where

the penalty function ϑh(·) is defined as

ϑh(x) , αh(x)+ + βh(−x)+ (2.25)

with (x)+ = max(x, 0), and where αh, βh ∈ (0, 1] are the penalty parameters for exceeding and

for falling behind l̂n(h), respectively. The parameters
{
αh, βh

}H
h=1

are established before the

day-ahead bidding process with the objective of discouraging real-time deviations from the bid

loads, either upwards or downwards, giving incentives for a more accurate demand prediction:

for instance, the central unit would choose αh > βh during hours of high expected consumption,

and αh < βh during hours of low expected consumption.

The cumulative monetary expense incurred by user n ∈ N for exchanging the energy loads{
ln(h)

}H
h=1

with the grid can be expressed as

pn(xn, l̃−n) ,
H∑

h=1

(
Kh

(
δT
nxn(h) + l̃−n(h)

)(
ln(h) +ϑh

(
ln(h)−δT

nxn(h)
))

+Wn

(
xn(h)

))
(2.26)
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where l̃−n ,
(
l̃−n(h)

)H
h=1

is the aggregate bid energy load vector of the other users, with

l̃−n(h) , L̃(h)− l̃n(h) = L̂(P)(h) +
∑

m∈N\{n}
δTxm(h) (2.27)

and where Wn(xn(h)) denotes the DSM cost function introduced in Section 2.2.1.

2.3.2 DSM Model

Let us denote by ẽn(h) the per-slot bid energy consumption, i.e., the day-ahead amount of energy

(to be optimized) that user n ∈ N commits to consume at time-slot h, which is bounded as

χ(min)
n (h) ≤ ẽn(h) ≤ χ(max)

n (h), ∀h (2.28)

where χ
(min)
n (h) and χ

(max)
n (h) denote the minimum and maximum per-slot bid energy consump-

tion at h, respectively. In addition, as in Section 2.2.2, active users N optimize their dispatchable

DG and DS strategies, with gn(h) and sn(h) representing the per-slot energy production and

the per-slot energy storage at time-slot h, respectively. In this context, the resulting per-slot

strategy, per-slot energy load, and per-slot bid energy load of user n ∈ N are given by

xn(h) ,
(
ẽn(h), gn(h), sn(h)

)
(2.29)

ln(h) , en(h)− gn(h) + sn(h) (2.30)

l̃n(h) , ẽn(h)− gn(h) + sn(h) (2.31)

with δ , (1,−1, 1). Again, the DSM cost function Wn(xn) simply indicates the fuel cost for the

dispatchable generator. We use Ω̄n to indicate the set of local constraints regulating user n’s

bidding (c.f. (2.28), dispatchable DG, and DS strategies. The constraints regarding dispatchable

DG and DS are illustrated in detail in Sections 3.2 and 4.2; for the purpose of the discussion in

this chapter, it is sufficient to mention that they are compact and convex in xn.

In our DSM procedure, the active users individually optimize their bidding, dispatchable

DG, and DS strategies at two different time granularities, i.e., day-ahead and real-time.

1) Day-ahead optimization (c.f. Section 2.3.3). In the day-ahead bidding process, the users’ goal

is to minimize their individual expected cumulative expense over the day period

fn(xn, l̃−n) , E
{
pn(xn, l̃−n)

}
(2.32)

with pn(xn, l̃−n) defined in (2.26), subject to the local and global constraints given by

Ωn(l−n). Note that, like (2.6) in Section 2.2, the objective function (2.32) only depends

on the aggregate energy loads and, hence, the users are not required to know the individual

strategies of the others (and not even their individual energy loads), which preserve the users’
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privacy.

2) Real-time optimization (c.f. Section 2.3.4). As the energy dispatch approaches, active users

have more reliable information about their energy needs, which can be exploited to alleviate

the impact of the day-ahead uncertainty. Hence, they can adjust their dispatchable DG and

DS strategies in real-time so as to reduce the deviation of the real-time strategy with respect

to the bid energy load, i.e.,
∣∣ln(h)− l̃n(h)

∣∣, and minimize their expected expense for the rest

of the day period.

After performing the day-ahead and the real-time optimization, the active users are finally billed

according to (2.26).

2.3.3 Noncooperative Day-Ahead DSM for Expected Cost Minimization

Here, following Approach A2 described in Section 2.1.2, we model our DSM procedure as a

GNEP. First of all, let us introduce some preliminary definitions. Let us rewrite the global con-

straint in (2.23) in the form of shared constraints q(x) ≤ 0, where q(x) , (q(min)(x),q(max)(x)) :

R3HN → R2H with x ,
(
xn
)N
n=1

and

q(min)(x) ,
(
L(min)(h)−

∑

n∈N
δTxn(h)− L̂(P)(h)

)H
h=1

(2.33)

q(max)(x) ,
( ∑

n∈N
δTxn(h) + L̂(P)(h)− L(max)(h)

)H
h=1

. (2.34)

Note that q(x) is convex on
∏
n∈N Ω̄xn . The strategy set of user n ∈ N can be then expressed

as

Ωn(̃l−n) ,
{
xn ∈ Ω̄n : q(xn, l̃−n) ≤ 0

}
(2.35)

whereas the joint strategy set is given by

Ω ,
{
x ∈ R3HN : xn ∈ Ω̄n,∀n ∈ N and q(x) ≤ 0

}
. (2.36)

Hence, each active user is a player who competes against the others by choosing the bidding,

dispatchable DG, and DS (included in the strategy vector xn) that minimize his cumulative

monetary expense fn(xn, l−n) defined in (2.32), subject to the local and global constraints in

Ωn(l−n) (cf. (2.2)):

min
xn

fn(xn, l̃−n)

s.t. xn ∈ Ωn(̃l−n)

∀n ∈ N . (2.37)

The formal definition of the GNEP is the following: G = 〈Ω, f〉, with Ω ,
∏
n∈N Ωn(̃l−n) and

f ,
(
fn(xn, l̃−n)

)N
n=1

.

GNEPs with shared constraints such as (2.37) are difficult problems to solve. They can
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be formulated as quasi-variational inequality (QVI) problems [77]; however, in spite of some

interesting and promising recent advancements (see, e.g., [90,91]), no efficient numerical methods

based on the QVI reformulation have been developed yet. Nevertheless, for this type of GNEPs,

some VI techniques can still be employed [74]: indeed, a solution of the GNEP can be computed

by solving a suitably defined VI problem, as stated in the next lemma.

Lemma 2.2 ([74, Prop. 4.2]). Given the GNEP G =
〈
Ω, f
〉
, suppose that the following hold:

(a) The strategy set Ωn is closed and convex, for each n ∈ N ;

(b) For every feasible l̃−n (i.e., such that x−n ∈ Ω−n), the objective function fn(xn, l̃−n) is convex

and twice continuously differentiable in xn ∈ Ωn, for each n ∈ N ;

(c) The coupling constraint q(x) is continuously differentiable and jointly convex in x ∈ Ω.

Let F(x) ,
(
∇xnfn(xn, l̃−n)

)N
n=1

. Then, every solution of the VI(Ω,F) is a solution of the GNEP.

Note that, when passing from the GNEP (2.37) to the associated VI, not all the GNEP’s solutions

are preserved: in fact, Lemma 2.2 does not state that any solution of the GNEP is also a solution

of the VI. The solutions of the GNEP that are also solutions of the VI(Θx,F) are termed as

variational solutions [74] and enjoy some remarkable properties that make them particularly

appealing in many applications. Among all, they can be interpreted as the solutions of a NEP

with pricing, as detailed next.

Consider the following augmented NEP with N + 1 players, in which the “new” (N + 1)-th

player (at the same level of the other N players) controls the price variable λ ∈ R2H
+ :

min
xn

fn(xn, l̃−n) + λTq(xn, l̃−n)

∀n ∈ N
s.t. xn ∈ Ωn

min
λ≥0

−λTq(x).

(2.38)

We can interpret λ as the overprices applied to force the users to satisfy the shared constraints

q(x). Indeed, when q(x) ≤ 0, the optimal price will be λ = 0 (there is no need to punish the

users if the constraints are already satisfied).

We can now establish the connection between the VI(Ω,F) and the augmented NEP (2.38)

[74, Lem. 4.4].

Lemma 2.3 ([74, Prop. 4.4]). Under the setting of Lemma 2.2, (x?,λ?) is a Nash equilibrium

of the NEP (2.38) if and only if x? is a solution of the VI(Ω,F), i.e., a variational solution of

the GNEP G =
〈
Ω, f
〉
, and λ? is the multiplier associated with the shared constraints q(x?) ≤ 0

in Ω.

Based on Lemma 2.3, we are now able to analyze and compute the variational solutions of
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the GNEP (2.37) as solutions of the augmented NEP (2.38).

Theorem 2.4. Given the GNEP G = 〈Ω, f〉, suppose that, for each n ∈ N , the following hold:

(a) The strategy set Ωn is compact and convex;

(b) χ
(min)
n (h) and χ

(max)
n (h) in (2.28) are chosen such that the pdf of the per-slot energy con-

sumption satisfies

fen(h)(x) ≥ 1

(αh + βh)L(min)(h)

(
αh + 1

)2

2
(2.39)

∀x ∈
[
χ

(min)
n (h), χ

(max)
n (h)

]
.

(c) The DSM function Wn(·) is convex and twice continuously differentiable, for each n ∈ N .

Then, the GNEP has variational solutions.

The conditions (a) and (c) in Theorem 2.4 are very mild and always satisfied in practice.

Regarding condition (b), when the distribution of en(h) is unimodal, condition (2.39) limits

the displacement of ẽn(h) around the mode of en(h) in order to ensure the convexity of the

objective function fn(xn, l̃−n); on the contrary, when the distribution of en(h) is multimodal,

χ
(min)
n (h) and χ

(max)
n (h) must be carefully selected to guarantee the convexity of fn(xn, l̃−n) (see

Appendix 5.B.2). These considerations also apply to condition (a.2) in Theorem 2.5. Lastly, the

fulfillment of the conditions in Theorem 2.4 also implies the accomplishment Lemma 2.2 (whose

requirements are less stringent than those in Theorem 2.4).

Distributed Algorithm

Now, we build on the game theoretical pricing-based interpretation (2.38) (c.f. Lemma 2.3) to

design distributed algorithms that converge to a variational solution of the GNEP G . As in

Section 2.2.3, we focus on the class of totally asynchronous best-response algorithms. Recalling

the definitions of Tn and tn(i), and assuming that conditions (A1)–(A3) in Section 4.3.3 hold for

Tn and tn(i), ∀n ∈ N , each user updates his strategy by minimizing his cumulative monetary

expense, given the most recently available value of the aggregate bid energy load vector of the

other users l̃
(t(i))
−n ,

(
l̃
(t(i))
−n (h)

)H
h=1

, with

l
(t(i))
−n (h) , L̂(P)(h) +

∑

m∈N\{n}
l̃(tm(i))
m (h). (2.40)

We can compute the variational solutions of the GNEP (2.37) by solving the augmented NEP

(2.38). This can be done using the recent framework in [76], which leads to the asynchronous

proximal decomposition algorithm (PDA) described in Algorithm 2.3, and whose convergence

conditions are given in Theorem 2.4. We refer to Section 5.4.2 for a detailed discussion of the

algorithm.
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Algorithm 2.3 Asynchronous PDA with Coupling Constraints

Data : Set i = 0 and the initial centroids
(
x̄n
)N
n=1

= 0 and λ̄ = 0. Given
{
Kh, αh, βh

}H
h=1

,{
ρ(i)
}∞
i=0

, τ > 0, and any feasible starting point z(0) ,
((

x
(0)
n

)N
n=1

,λ(0)
)

with λ(0) ≥ 0:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n =





x?n ∈ argmin
xn∈Ωxn

{
fn
(
xn, l̃

(t(i))
−n

)
+ (λ(i))Tq

(
xn, l̃

(t(i))
−n

)
+
τ

2
‖xn − x̄n‖2

}
, if i ∈ Tn

x
(i)
n , otherwise

End

The central unit computes λ(i+1) as

λ(i+1) = λ? ∈ argmin
λ≥0

{
− λTq(x) +

τ

2
‖λ− λ̄‖2

}

(S.3) : If the NE is reached, then each user n ∈ N sets x
(i+1)
n ← (1− ρ(i))x̄n + ρ(i)x

(i+1)
n

and updates his centroid: x̄n = x
(i+1)
n ; likewise, the central unit sets

λ(i+1) ← (1− ρ(i))λ̄+ ρ(i)λ(i+1) and updates the centroid: λ̄ = λ(i+1).

(S.4) : i← i+ 1; Go to (S.1).

Theorem 2.5. Given the GNEP G =
〈
Ω, f
〉
, suppose that the following hold:

(a.1) Conditions (a) and (c) in Theorem 2.4 are satisfied;

(a.2) χ
(min)
n (h) and χ

(max)
n (h) in (2.28) are chosen such that the pdf of the per-slot energy con-

sumption satisfies

fen(h)(x) ≥ 1

(αh + βh)L(min)(h)

((αh + 1)2

4
+N

(
max(αh, βh) + αh + βh

))
(2.41)

∀x ∈
[
χ

(min)
n (h), χ

(max)
n (h)

]
, for each n ∈ N ;

(a.3) The penalty parameters are such that αh + βh ≤ 1,∀h;

(b) The regularization parameter τ satisfies

τ >
3

2
(N − 1) max

h
Kh +

√
9

4
(N − 1)2 max

h
K2
h + 3HN (2.42)

(c) {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm < RM < 2.

Then, any sequence
{

(x(i),λ(i))
}∞
i=1

generated by Algorithm 2.3 converges to a variational solu-

tion of the GNEP.

Note that, if we omit the global constraint (2.23), the GNEP (2.37) reduces to a classical

NEP, where the coupling among the players occurs only at the level of the objective functions

(as addressed in [86]). Of course, the framework and algorithm proposed in the present paper
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contain this formulation as special case.

2.3.4 Real-Time Adjustments

After the day-ahead bidding process, the per-slot aggregate bid energy loads
{
L̃(h)

}H
h=1

are fixed

as a result of Algorithm 2.3 and, consequently, so are the energy prices per unit of energy. Then,

active users are charged in real-time based on such prices, while the differences between their

actual energy requirements and the negotiated day-ahead amounts are penalized as in (2.26).

However, at this point, it is reasonable to assert that the users know their energy consumption

en(h) for the upcoming time-slot with much less uncertainty than during the day-ahead bidding

process. In this setting, at each h, one can exploit this reduced uncertainty to independently

adjust his dispatchable DG and DS strategies
{
gn(t), sn(t)

}H
t=h

so as to minimize his expected

expense for the remaining time-slots t = h, . . . ,H. At the same time, we can guarantee the

physical constraints on the user’s individual distribution infrastructure given by

− l(min)
n ≤ ln(h) ≤ l(max)

n , ∀h (2.43)

where l
(min)
n ≥ 0 and l

(max)
n > 0 are the outgoing and the incoming capacities of user n’s energy

link, respectively. For modeling simplicity, we assume that, right before each time-slot h, each

user n ∈ N has perfect knowledge of en(h). Nonetheless, he still needs to satisfy the requirements

on his dispatchable DG and DS strategies: in this regard, if the strategies over different time-

slots are coupled (see, e.g., the constraints in Table 5.1 in Section 5.6), the user has to take into

account the strategies adopted in the previous time-slots.

Let us provide some preliminary definitions. We denote by yn(h) ,
(
gn(h), sn(h)

)
the real-

time strategy for each time-slot h, and we introduce the transformation vector δs−g , (−1, 1)

such that δT
s−gyn(h) = −gn(h) + sn(h). Moreover, Θ

(DG)
n and Θ

(DS)
n denote the dispatchable DG

and DS strategy sets, respectively, such that such strategies are feasible if
(
gn(h)

)H
h=1
∈ Θ

(DG)
n

and
(
sn(h)

)H
h=1
∈ Θ

(DS)
n . Lastly,

(
g?n(t)

)h−1

t=1
and

(
s?n(t)

)h−1

t=1
express the dispatchable DG and

DS strategies already fixed in the past time-slots t = 1, . . . , h − 1. Then, we define Θn,h as the

real-time strategy set for user n ∈ N at h:

Θn,h ,
{(

yn(t)
)H
t=h
∈ R2(H−h+1) :

((
g?n(t)

)h−1

t=1
,
(
gn(t)

)H
t=h

)
∈ Θ(DG)

n ,

((
s?n(t)

)h−1

t=1
,
(
sn(t)

)H
t=h

)
∈ Θ(DS)

n , and − l(min)
n ≤ en(h) + δT

s−gyn(h) ≤ l(max)
n ,∀h

}
(2.44)

The price paid by user n ∈ N for purchasing energy from the grid at time-slot h (conditioned

on the per-slot bid energy load l̃n(h) resulting from the day-ahead optimization) is given by

pn,h
(
yn(h) | l̃n(h)

)
, ph

(
en(h)+δT

s−gyn(h)+ϑh
(
en(h)+δT

s−gyn(h)−l̃n(h)
))

+Wn

(
yn(h)

)
(2.45)
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with ph , KhL̃(h) and ϑh(x) defined in (2.25). Likewise, the expected expense for each time-slot

t = h+ 1, . . . ,H is

fn,t
(
yn(t) | l̃n(t)

)
, ptE

{
en(t) +δT

s−gyn(t) +ϑt
(
en(t) +δT

s−gyn(t)− l̃n(t)
)}

+Wn

(
yn(t)

)
. (2.46)

Therefore, at each time-slot h, each user n ∈ N uses the value of en(h) and the reduced uncer-

tainty about
{
en(t)

}H
t=h+1

to solve

min
{yn(t)}Ht=h

pn,h
(
yn(h) | l̃n(h)

)
+

H∑

t=h+1

fn,t
(
yn(t) | l̃n(t)

)

s.t.
(
yn(t)

)H
t=h
∈ Θn,h.

(2.47)

It is straightforward to observe that pn,h
(
yn(h) | l̃n(h)

)
in (2.45) and fn,h

(
yn(h) | l̃n(h)

)
in (2.46)

are both convex in yn(h) under Theorem 2.5. Since the dispatchable DG and DS strategy sets

are known to be convex, the optimization problem (2.47) is convex in
(
yn(t)

)H
t=h

and can be

solved using efficient convex optimization techniques [62, Ch. 11].

2.3.5 DSM Implementation

Summarizing, the proposed demand-side optimization based on Algorithm 2.3 works as fol-

lows. At the beginning of the day-ahead optimization process, τ is computed as in (2.42) and

broadcast to each user n ∈ N , together with the grid coefficients and the penalty parameters{
Kh, αh, βh

}H
h=1

. Then, at each iteration i, any active user who wants to update his strategy

solves his own (regularized) augmented optimization problem given λ(i) and based on the most

recent values of the aggregate bid energy loads
{
L̃(t(i))(h)

}H
h=1

, which are calculated by the

central unit referring to the (possibly outdated) individual demands, and communicates his new

load to the central unit. At the same time, the central unit updates the price variable λ and

broadcasts it to the demand-side. When an equilibrium in the inner loop is reached, the cen-

tral unit proceeds to the next iteration. This process is iterated until a suitable termination

criterion imposed by the central unit is satisfied. In real-time, given the aggregate bid energy

loads
{
L̃(h)

}H
h=1

(fixed in the day-ahead), at each time-slot h, active users can exploit the

reduced uncertainty about their energy requirements and adjust their DG and DS strategies{
gn(h), sn(h)

}H
h=1

so as to minimize the impact of the real-time penalties.
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Demand-Side Management via Distributed Energy Generation

and Storage Optimization

Abstract—Demand-side management, together with the integration of distributed energy generation and

storage, are considered increasingly essential elements for implementing the smart grid concept and balancing

massive energy production from renewable sources. We focus on a smart grid in which the demand-side comprises

traditional users as well as users owning some kind of distributed energy sources and/or energy storage devices.

By means of a day-ahead optimization process regulated by an independent central unit, the latter users intend

to reduce their monetary energy expense by producing or storing energy rather than just purchasing their energy

needs from the grid. In this paper, we formulate the resulting grid optimization problem as a noncooperative

game and analyze the existence of optimal strategies. Furthermore, we present a distributed algorithm to be run

on the users’ smart meters, which provides the optimal production and/or storage strategies, while preserving the

privacy of the users and minimizing the required signaling with the central unit. Finally, the proposed day-ahead

optimization is tested in a realistic situation.

Index Terms—Demand-Side Management, Distributed Energy Generation, Distributed Energy Storage,

Game Theory, Proximal Decomposition Algorithm, Smart Grid.

This chapter is an exact reproduction of [84] with the exception of pagination.
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3.1 Introduction

Smart grids have an essential role in the process of transforming the functionalities of the present

energy grid in order to provide a user-oriented service and guarantee high security, quality, and

economic efficiency of the electricity supply in a market environment. In addition, smart grids

are expected to be a key enabler in the transition to a low-carbon energy sector, ensuring the

efficient and sustainable use of natural resources [92]. The production from renewable sources as,

for instance, wind and photovoltaic units is, however, intermittent in nature and there is often no

correlation between the production and the local consumption. Furthermore, since large amounts

of variable generation from renewable sources are not fully forecastable, there is an increasing

need for flexible, dispatchable, fast-ramping energy generation for balancing variations in load

and contingencies such as the loss of transmission or generation assets. Similar problems arise

at a market level, since national and local balances between supply and demand are more

complicated to manage with high levels of renewable energy generation [93].

In this regard, the concepts of demand-side management (DSM), distributed energy genera-

tion (DG), and distributed energy storage (DS) are recognized as main facilitators for the smart

grid deployment, since the challenges caused by the integration of renewable energy sources

can be minimized when dispatchable DG and DS are incorporated into the demand-side of

the electricity network and innovative DSM methods are simultaneously implemented. Indeed,

the combination of DG, DS, and DSM techniques results in a system of diverse generation

sources supplying energy across the grid to a large set of demand-side users with possibilities for

improved energy efficiency, local generation, and controllable loads. Demand-side management

refers to the different initiatives intended to modify the time pattern and magnitude of the

demand, introducing advanced mechanisms for encouraging the demand-side to participate ac-

tively in the network optimization process [94]. Therefore, demand-side users are equipped with

a control device, commonly known as smart meter, which communicates with the supply-side

and manages their energy demand.

In this paper, we propose a DSM method consisting in a day-ahead optimization process. We

focus on those demand-side users, possibly owning DG and DS devices, whose energy consump-

tion is greater than their energy production capabilities. The main objective of these end users

is to reduce their monetary expense during the time period of analysis by producing and/or

storing energy rather than just purchasing their energy needs from the grid.

Considering the selfish nature of the users, a game theoretical approach is particularly suit-

able in order to calculate their optimal production and storage strategies. For this reason, we

model the day-ahead optimization problem as a noncooperative Nash game and we analyze the

existence of the solutions, which correspond to the well-known concept of Nash equilibria, when

a practical pricing model (cf. [51, 58]) is applied. Finally, we present a distributed and iterative
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scheme based on the proximal decomposition algorithm that converges to the Nash equilibria

with minimum information exchange while safeguarding the privacy of the users.

The rest of the paper is structured as follows. In Section 3.2 we describe the overall structure

of our smart grid and, specifically, we introduce the production and storage models, as well

as the energy cost and pricing model. Section 3.3 formulates the optimization problem as a

noncooperative game and solves it by means of a specific distributed algorithm. In addition, we

derive sufficient conditions for the existence of a solution, as well as for the convergence of the

proposed algorithm. In Section 3.4 we show some illustrative numerical results obtained through

experimental evaluations. Finally, we provide some concluding remarks in Section 3.5.

3.2 Smart Grid Model

The goal of this section is to present the overall smart grid model, describe the different types

of users belonging to demand-side of the network, and introduce the adopted energy cost and

pricing mechanism.

The modern power grid is a complex network comprising several subsystems (power plants,

transmission lines, substations, distribution grids, and consumers), which can be conveniently

divided into [3, 57,95]:

(i) Supply-side: it includes the utilities (energy producers and providers) and the energy trans-

mission network;

(ii) Central unit : it is the regulation authority that coordinates the grid optimization process;

(iii) Demand-side: it incorporates the end users (energy consumers), eventually equipped with

DG and/or DS, and the energy distribution network.

Since in this paper we propose a DSM mechanism, we focus our attention only on the demand-

side of the smart grid, which is described in detail in Section 3.2.1, whereas the supply-side and

the central unit are modeled as plainly as possible.

3.2.1 Demand-Side Model

Demand-side users are characterized in the first instance by their individual per-slot energy

consumption profile en(h), defined as the energy needed by user n ∈ D to supply his appliances

at time-slot h. Accordingly, we also introduce the energy consumption scheduling vector en,

which gathers the energy consumption profiles for the H time-slots in which the time period of

analysis is divided, i.e., en ,
(
en(h)

)H
h=1

.

Our model classifies the set of all demand-side users D, with cardinality |D| = P + N ,

into the set of P passive users, denoted by P ⊂ D, and the set of N active users, denoted by



40 Journal Paper [84]

Central Unit

Distribution

Network
SM

Active User (n ∈ N )

DG

DS

HA

sn(h)

gn(h)

en(h)

ln(h)

/
bi-/unidirectional
power link

communication/
control link

Figure 5: esta es

5

Figure 3.1: Connection scheme between the smart grid and one active user consisting of: smart meter (SM), home
appliances (HA), distributed energy generation (DG), and distributed energy storage (DS).

D ⊃ N , D\P. Passive users are basically energy consumers and resemble traditional demand-

side users, whereas active users participate in the optimization process, i.e., they react to changes

in the cost per unit of energy by modifying their demand. Each active user is connected not

only to the bidirectional power distribution grid, but also to a communication infrastructure

that enables two-way communication between his smart meter and the central unit (as shown in

Figure 3.1). The main objective of each active user is to optimize his day-ahead strategy while

fulfilling his energy requirements during the time period of analysis, en. This strategy depends in

the first instance on the equipment owned by user n ∈ N , e.g., energy sources (see Section 3.2.2)

and/or storage devices (see Section 3.2.3), but is also strongly related to the strategy followed by

the rest of the active users N\{n} (see Section 3.2.4) and to the aggregate energy consumption

of the passive users connected to the grid.

Active users include two broad categories: dispatchable energy producers and energy storers.

For convenience, we use G ⊆ N to denote the subset of users possessing some dispatchable energy

source. For users n ∈ G, gn(h) ≥ 0 represents the per-slot energy production profile at time-slot

h. Likewise, we introduce S ⊆ N as the subset of users owning some energy storage device. Users

n ∈ S are characterized by the per-slot energy storage profile sn(h) at time-slot h: sn(h) > 0

when the storage device is to be charged (i.e., an additional energy consumption), sn(h) < 0

when the storage device is to be discharged (i.e., a reduction of the energy consumption), and

sn(h) = 0 when the device is inactive. It is worth remarking that G ∪ S = N , but we also

contemplate active users being both dispatchable producers and storers, i.e., G ∩ S 6= ∅.

Finally, we define the per-slot energy load profile as

ln(h) ,




en(h), if n ∈ P
en(h)− gn(h) + sn(h), if n ∈ N

(3.1)

which expresses the energy flow between user n and the distribution grid at time-slot h, where

ln(h) > 0 if the energy flows from the grid to user n and ln(h) < 0 otherwise, as shown in

Figure 3.1.
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3.2.2 Energy Production Model

Energy producers can generate energy either to power their own appliances, to charge a storage

device, or to sell it to the grid during peak hours. Let us first characterize energy producers

depending upon the type of DG they employ [96].

Non-dispatchable energy producers GR ⊂ D using, e.g., renewable resources of intermittent

nature such as solar panels or wind turbines. Having only fixed costs, they generate electricity

at their maximum available power, which implies no strategy regarding energy production.

Consequently, for users n ∈ GR, we include non-dispatchable generation within the per-slot

energy consumption profile en(h). Hence, they may have en(h) < 0 when this energy production

is greater than their energy consumption at a given time-slot h. Note that any demand-side user

can belong to GR regardless of his condition of passive or active participant in the optimization

process.

Dispatchable energy producers G ⊆ N using, e.g., internal combustion engines, gas turbines,

or fuel cells. These energy producers, beside fixed costs, have also variable production costs (e.g.,

the fuel cost) and, therefore, they are interested in optimizing their energy production strategies.

In consequence, we introduce the production cost function Wn

(
gn(h)

)
, which gives the variable

production costs for generating the amount of energy gn(h) at time-slot h, with Wn(0) = 0.

Let us now introduce our model for dispatchable energy producers. Let g
(max)
n be the max-

imum energy production capability for user n ∈ G over a time-slot. Then, the per-slot energy

production profile is bounded as

0 ≤ gn(h) ≤ g(max)
n . (3.2)

For the sake of simplicity, we consider dispatchable energy sources with a fixed instantaneous

output power level, which are operated during fractions of a time slot. Hence, g
(max)
n represents

the amount of energy produced when user n’s energy source operates during 100% of a time-slot.

Additionally, the cumulative energy production must satisfy

H∑

h=1

gn(h) ≤ γ(max)
n (3.3)

where 0 < γ
(max)
n ≤ Hg

(max)
n represents the maximum amount of energy that user n ∈ G can

generate during the time period of analysis (e.g., to prevent over-usage). Then, introducing

gn ,
(
gn(h)

)H
h=1

as the energy production scheduling vector, we define the strategy set Ωgn for

dispatchable energy producers n ∈ G, including constraints (3.2) and (3.3), as

Ωgn ,
{
gn ∈ RH+ : gn � g(max)

n 1H ,1
T
Hgn ≤ γ(max)

n

}
(3.4)

where the operator � for vectors is defined componentwise, and 1H is the H-dimensional unit
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vector.

3.2.3 Energy Storage Model

In our model, storage devices (see, e.g., [96,97] for an overview on storage technologies) of users

n ∈ S are characterized by: charging efficiency, discharging efficiency, leakage rate, capacity, and

maximum charging rate. If we express the per-slot energy storage profile as sn(h) , s
(+)
n (h) −

s
(−)
n (h), where s

(+)
n (h), s

(−)
n (h) ≥ 0 are the per-slot energy charging profile and the per-slot

energy discharging profile, respectively, the charging and discharging efficiencies 0 < β
(+)
n ≤ 1

and β
(−)
n ≥ 1 take into account the conversion losses of the storage device. For instance, if

s
(+)
n (h) is taken from the grid to be stored on the device, only β

(+)
n s

(+)
n (h) is effectively charged;

on the other hand, in order to obtain s
(−)
n (h) from the device, β

(−)
n s

(−)
n (h) is to be discharged.

The leakage rate 0 < αn ≤ 1 models the decrease in the energy level with the passage of time: if

qn(h) denotes the charge level at the end of time-slot h, then it reduces to αnqn(h) at the end of

time-slot h+ 1. The capacity cn indicates how much energy the storage device can accumulate.

Lastly, the maximum charging rate s
(max)
n is the maximum energy that can be stored during a

single time-slot.

Let us introduce the vectors sn(h) ,
(
s

(+)
n (h), s

(−)
n (h)

)T
and βn , (β

(+)
n ,−β(−)

n )T: the charge

level qn(h) is given by

qn(h) , αnqn(h− 1) + βT
nsn(h) (3.5)

where qn(h − 1) is the charge level at the previous time-slot, which gets reduced by a factor

αn during time-slot h, and βT
nsn(h) is the energy charged or discharged at h.1 Since qn(h) is

bounded above by cn and below by 0, sn(h) satisfies

−αnqn(h− 1) ≤ βT
nsn(h) ≤ cn − αnqn(h− 1). (3.6)

Moreover, since the maximum charging rate cannot be surpassed, we also have that

βT
nsn(h) ≤ s(max)

n . (3.7)

Additionally, it is convenient to include a constraint on the desired charge level at the end of

the time period of analysis. The choice of the optimal qn(H) requires, however, the knowledge

of the energy cost at time-slot H + 1, while the optimization process addressed in this paper

only takes in consideration one isolated time period of analysis. In any case, it is reasonable to

expect the storage device going through an integer number of cycles of charging to discharging

that are opposite to the daily energy demand fluctuation [47]. This implies that the final charge

1Although we do not impose charging and discharging operations to be mutually exclusive, the optimal storage strategies

obtained in Section 3.3 satisfy s
(+)
n (h)s

(−)
n (h) = 0, ∀h, whenever β

(+)
n < 1 and β

(−)
n > 1.
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level qn(H) must be approximately the same as the initial charge level qn(0), i.e., the charge

level of user n ∈ S at the beginning of time-slot h = 1. Hence, we have that

∣∣qn(H)− qn(0)
∣∣ ≤ εn (3.8)

where εn is a sufficiently small positive constant.

Now, we can relate qn(h) to the initial charge level and to the energy storage profiles at the

previous time-slots as

qn(h) = αhnqn(0) +

h∑

t=1

α(h−t)
n βT

nsn(t). (3.9)

Given the above expression, and introducing the energy storage scheduling vector sn ,((
s

(+)
n (h)

)H
h=1

,
(
s

(−)
n (h)

)H
h=1

)
, we define the strategy set for energy storers n ∈ S as Ωsn , which

combines constraints (3.6), (3.7), and (3.8):

Ωsn ,
{
sn ∈ R2H

+ : ∆β,nsn � s(max)
n 1H ,−qn(0)bn � An∆β,nsn � cn1H − qn(0)bn,

(1− αHn )qn(0)− εn ≤ aT
n∆β,nsn ≤ (1− αHn )qn(0) + εn

}
(3.10)

where ∆β,n , (β
(+)
n IH −β(−)

n IH), An is a H-dimensional lower triangular matrix with elements

[An]i,j , α
(i−j)
n , and an and bn are H-dimensional vectors defined respectively as [an]i , α

(H−i)
n

and [bn]i = αin.

Finally, it is important to remark that the optimization process analysis and the algorithm

presented in Section 3.3 hold for any production and storage models resulting in a compact and

convex strategy set as the ones in (3.4) and (3.10).

After analyzing all possible types of users in the demand-side, we summarize their strategy

sets in Table 3.1.

3.2.4 Energy Cost and Pricing Model

This section describes the cost model on which depends the price of energy. Let us define the

aggregate per-slot energy load at time-slot h as

0 < L(h) , L(P)(h) +
∑

n∈N
ln(h) (3.11)

where L(P)(h) ,
∑

n∈P en(h) is the aggregate per-slot energy consumption associated with the

passive users connected to the grid. Since we are not interested in analyzing overload conditions,

throughout the paper we assume that L(h) < L(max) at each time-slot h, where L(max) denotes

the maximum aggregate energy load that the grid can take before experiencing a blackout.

Let us define the grid cost function Ch
(
L(h)

)
indicating the price fixed by the supply-side



44 Journal Paper [84]

User subset Strategy set

P P\GR
No strategy

GR\(N ∩ GR)

N
G\(G ∩ S) = NG\S gn ∈ Ωgn

S\(G ∩ S) = NS\G sn ∈ Ωsn

G ∩ S = NG∩S (gn, sn) ∈ (Ωgn × Ωsn)

Table 3.1: Different types of demand-side users and corresponding strategy sets.

to provide the aggregate per-slot energy load L(h) at time-slot h. Then, Ch
(
L(h)

)(
ln(h)/L(h)

)

represents the amount of money paid by user n to purchase the energy load ln(h) from the grid

(if ln(h) > 0) or received to sell the energy load ln(h) to the grid (if ln(h) < 0) at time-slot h. We

adopt the quadratic grid cost function widely used in the smart grid literature (e.g., in [51,58]):

Ch
(
L(h)

)
= KhL

2(h) (3.12)

with
{
Kh

}H
h=1

> 0. In general, the grid coefficients Kh are different at each time-slot h, since

the energy production varies along the time period of analysis according to the energy demand

and to the availability of intermittent energy sources.

Finally, let fn(gn, sn) denote the cumulative expense over the time period of analysis, which

represents the cumulative monetary expense incurred by user n ∈ N for obtaining the desired

amount of energy over the time period of analysis:

fn(gn, sn) ,
H∑

h=1

(
KhL(h)

(
en(h)− gn(h) + sn(h)

)
+Wn

(
gn(h)

))
. (3.13)

Note that, in general, the amount of money paid/received by user n to purchase/sell the same

amount of energy from/to the grid is different during distinct time-slots due to the fact that

the grid cost function and the aggregate per-slot energy load are variable along the day. A sum-

mary of the principal variables introduced throughout Section 3.2, along with the corresponding

domains, is reported in Table 3.2.

3.3 Day-Ahead Optimization Problem

Once defined the overall model, in this section we focus on analyzing the proposed day-ahead

optimization problem.

First, the grid energy prices for the time period of analysis, i.e., the grid coefficients
{
Kh

}H
h=1

,
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Symbol Domain

ln(h)
ln(h) ≥ 0 if n ∈ P\GR
possibly negative if n ∈ N ∪ GR

en(h)
en(h) ≥ 0 if n ∈ N\GR
possibly negative if n ∈ GR

gn(h) gn(h) ≥ 0

sn(h)
sn(h) > 0 if charging

sn(h) < 0 if discharging

L(h) 0 < L(h) < L(max)

Table 3.2: List of important symbols and corresponding domains.

are fixed by the supply-side in the day-ahead market-clearing process [3, 47, 57]. Then, each

active demand-side user reacts to the prices provided by the central unit through iteratively

adjusting his generation and storage strategies gn and sn and, thus, his day-ahead energy demand{
ln(h)

}H
h=1

, with the final objective of minimizing his cumulative expense throughout the time

period of analysis fn(gn, sn), given the aggregate energy loads
{
L(h)

}H
h=1

.

By participating in the day-ahead optimization process, demand-side users commit to follow

strictly the resulting consumption pattern. Here, we suppose that users know exactly their

energy requirements at each time-slot in the time period of analysis in advance and we neglect

any real-time fluctuation of such demand (for an overview on real-time pricing mechanisms, we

refer to [57,94]). Additionally, we assume that energy supply follows demand precisely (cf. [95]).

One could consider to solve the previous optimization problem in a centralized fashion,

with the central unit imposing every active user how much energy he must produce, charge,

and discharge at each time-slot. However, this represents a quite invasive solution, since it

requires each user to provide detailed information about his energy production and/or storage

capabilities. Indeed, these privacy issues may discourage the demand-side users to subscribe to

the optimization process. Besides, a centralized approach is not scalable and cannot account for

an unpredictably increasing number of participants. In consequence, we are interested instead

in a fully distributed solution and, hence, a game theoretical approach is remarkably suitable

to accommodate our optimization problem (see [98] for an overview on game theory applied on

smart grids).

3.3.1 Game Theoretical Formulation

Game theory is a field of applied mathematics that describes and analyzes scenarios with inter-

active decisions [65]. Here, we model the optimization process as a (noncooperative) Nash game.
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Each active user is a player who competes against the others by choosing, given the aggregate

energy load at each iteration, the production and storage strategies gn and sn that minimize

his payoff function, i.e., his cumulative expense over the time period of analysis. Since these

individual strategies impact the grid energy price of all users, this leads to a coupled problem

where the desired solution is an equilibrium point where all users are unilaterally satisfied.

First, let us define the strategy vector and the corresponding per-slot strategy profile of a

generic user n ∈ N as

xn , (gn, sn) (3.14)

xn(h) ,
(
gn(h), sn(h)

)T
. (3.15)

For convenience, we divide the users participating actively in the optimization in three main

groups (see Table 3.1 for details):

(i) Dispatchable energy producers: NG\S , G\(G ∩ S), for whom gn ∈ Ωgn and sn = 0;

(ii) Energy storers: NS\G , S\(G ∩ S), for whom sn ∈ Ωsn and gn = 0;

(iii) Dispatchable energy producers-storers: NG∩S , G ∩ S, for whom gn ∈ Ωgn and sn ∈ Ωsn .

Taking into account the strategy sets Ωgn and Ωsn introduced in Sections 3.2.2 and 3.2.3, re-

spectively, we can now characterize the corresponding strategy set as

Ωxn ,





gn ∈ Ωgn , sn = 0, if n ∈ NG\S
gn = 0, sn ∈ Ωsn , if n ∈ NS\G
gn ∈ Ωgn , sn ∈ Ωsn , if n ∈ NG∩S

. (3.16)

It is worth pointing out that the strategy sets Ωxn are decoupled.2 Bearing in mind the pricing

model given in (3.13), the payoff function of user n is given by

fn
(
xn, l−n

)
,

H∑

h=1

(
Kh

(
l−n(h) + en(h) + δTxn(h)

)(
en(h) + δTxn(h)

)
+Wn

(
δT
g xn(h)

))
(3.17)

where l−n ,
(
l−n(h)

)H
h=1

, with l−n(h) , L(P)(h)+
∑

m∈N\{n} lm(h) being the aggregate per-slot

energy load of the other players m ∈ N\{n} at time-slot h, and where we have introduced the

auxiliary vectors δ , (−1, 1,−1)T and δg , (1, 0, 0)T.

We can now formally define the game among the active users as G = 〈Ωx, f〉, with Ωx ,∏N
n=1 Ωxn and f ,

(
fn(xn, l−n)

)N
n=1

. The final objective of each player n ∈ N , is to choose his

own strategy xn ∈ Ωxn in order to minimize his payoff function fn(xn, l−n), given the aggregate

2Due to space limitation, we neglect any physical coupling between the strategy sets of the users Ωxn (we refer to [74, Sec. 4.3]
for details).
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energy load vector of the other players l−n:

min
xn

fn(xn, l−n)

s.t. xn ∈ Ωxn

∀n ∈ N . (3.18)

Then, the solution of the game G = 〈Ωx, f〉 corresponds to the well-known concept of Nash

equilibrium, which is a feasible strategy profile x? ,
(
x?n
)N
n=1

with the property that no single

player n can profitably deviate from his strategy x?n, if all other players act according to their

optimal strategies [65].

3.3.2 Analysis of Nash Equilibria

The objective of this section is to study the existence of the Nash equilibria of the game G =

〈Ωx, f〉 in (3.18), with Ωxn given in (3.16). Sufficient conditions to guarantee the existence of

such Nash equilibria are derived in the next theorem.

Theorem 3.1. Given the game G = 〈Ωx, f〉 in (3.18), suppose that the production cost function

Wn(x) is convex in 0 ≤ x ≤ g(max)
n , ∀n ∈ G. Then, the following hold:

(a) The game has a nonempty and compact solution set;

(b) The payoff function of each player is constant over the solution set of the game, i.e., all Nash

equilibria yield the same values of the payoff functions.

Proof (a) The game G = 〈Ωx, f〉 has a nonempty and compact solution set if [74, Th. 4.1(a)]:

(i) the individual strategy sets Ωxn in (3.16) are compact and convex; (ii) the payoff functions

fn(xn, l−n) in (3.17) are convex for any feasible l−n. The first condition is immediately satisfied

since the sets Ωxn , i.e., (3.4) and (3.10), are defined as sets of linear inequalities, i.e., polyhedrons

[62, Sec. 2.2.4], and they thus form compact and convex sets. Hence, we only need to verify the

second condition. The payoff function fn(xn, l−n) is convex if its Hessian matrix H(fn), with

block elements

∇2
xn(h1)xn(h1)fn(xn, l−n) = 2Khδδ

T + δgδ
T
gW

′′
n

(
δT
g xn(h)

)

∇2
xn(h1)xn(h2)fn(xn, l−n) = 03, h1 6= h2 (3.19)

with 0a denoting the a-dimensional zero matrix, is positive semidefinite. Since
{
Kh

}H
h=1

> 0

and the matrix δδT has nonnegative eigenvalues, H(fn) is guaranteed to be positive semidefinite

if Wn(x) is convex, i.e., if W ′′n (x) ≥ 0. Nevertheless, fn(xn, l−n) must be convex ∀n ∈ N and,

therefore, this constraint must hold ∀n ∈ G. �

Proof (b) Although the Nash equilibrium is not unique, all Nash equilibria happen to have the

same quality. In fact, consider a generic user n ∈ NG∩S : given two optimal strategy vectors x?1,n 6=
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x?2,n, with x?1,n , (g1,n, s1,n) and x?2,n , (g2,n, s2,n), we have that fn
(
x?1,n, l−n

)
= fn

(
x?2,n, l−n

)

if the following H + 2 conditions hold:

H∑

h=1

Wn

(
g1,n(h)

)
=

H∑

h=1

Wn

(
g2,n(h)

)
(3.20)

s1,n(h)− g1,n(h) = s2,n(h)− g2,n(h), ∀h (3.21)

H∑

h=1

α(H−h)
n βT

ns1,n(h) =
H∑

h=1

α(H−h)
n βT

ns2,n(h) (3.22)

where the equality in (3.22) comes from the constraint in (3.8). Hence, being xn ∈ R3H and

H > 1, it follows that user n ∈ NG∩S can choose among infinitely many optimal strategy vectors

x?n, each of them giving the same value of fn
(
x?n, l−n

)
. Furthermore, since x?n produces the same{

l?n(h)
}H
h=1

, ∀n ∈ N , the aggregate loads
{
L?(h)

}H
h=1

, with L?(h) , LP +
∑H

n∈N l
?
n(h), are not

affected by the multiplicity of the Nash equilibria. Hence, any x? =
(
x?n
)N
n=1

yields the same

values of the payoff functions
{
fn
(
x?n, l−n

)}
n∈N . �

Remark 3.1. The convexity of Wn(·) required by Theorem 3.1 simply implies that the produc-

tion cost function does not tend to saturate as the per-slot energy production profile increases,

which is a very reasonable assumption.

3.3.3 Computation of Nash Equilibria

Once we have established the conditions under which the Nash equilibria of the game G = 〈Ωx, f〉
exist, we are interested in obtaining a suitable distributed algorithm to compute one of these

equilibria with minimum information exchange among the users. Since in a Nash game every

player tries to minimize his own objective function, a natural approach is to consider an iterative

algorithm where, at every iteration i, each individual user n updates his strategy by minimizing

his payoff function

fn(xn, l
(i)
−n) ,

H∑

h=1

(
Kh

(
l
(i)
−n(h) + en(h) + δTxn(h)

)(
en(h) + δTxn(h)

)
+Wn

(
δT
g xn(h)

))
(3.23)

referring to the value of the aggregate energy load vector of the other users calculated at the

iteration i, i.e., l
(i)
−n ,

(
l
(i)
−n(h)

)H
h=1

, with l
(i)
−n , L

(P)(h) +
∑

m∈N\{n} l
(i)
m (h).

Recall that, in the game (3.18), the coupling between users lies at the level of the payoff

functions fn(xn, l−n), whereas the feasible sets Ωxn are decoupled. Distributed algorithms based

on the individual best-responses of the players [74, Alg. 4.1] represent an extremely flexible

and easy-to-implement solution. The conditions ensuring the convergence of these algorithms,

however, may not be easy to fulfill: in fact, following [74, Th. 4.2], it is not difficult to show that

their convergence cannot be guaranteed in our case if the users are allowed to simultaneously
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adopt production and storage strategies.

To overcome this issue, we consider a distributed algorithm based on the proximal decom-

position [74, Alg. 4.2], which is guaranteed to converge under milder conditions on the system

specifications and some additional constraints on the parameters of the algorithm that we pro-

vide next in Theorem 3.2. Given x(i) ,
(
x

(i)
n

)N
n=1
∈ Ωx, consider the regularized game

min
xn

fn(xn, l−n) +
τ

2
‖xn − x(i)

n ‖2

s.t. xn ∈ Ωxn

∀n ∈ N . (3.24)

which, for a sufficiently large regularization parameter τ > 0, has a unique solution that can be

computed in a distributed way using the best-response algorithm [74, Cor. 4.1]. Furthermore,

the sequence generated by a proper averaging of the solution of the regularized game (3.24) and

x(i) converges to a solution of the game (3.18) (we refer to [74, Ch. 4.2.4.2] for details). This

idea is formalized in Algorithm 3.1.

Algorithm 3.1 Proximal Decomposition Algorithm

Data : Set i=0 and the initial centroid
(
x̄

(0)
n

)N
n=1

= 0. Given
{
Kh

}H
h=1

, any feasible starting

point x(0) =
(
x

(0)
n

)N
n=1

, and τ > 0:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n ∈ argmin

xn∈Ωxn

{
fn(xn, l

(i)
−n) +

τ

2
‖xn − x̄n‖2

}
(3.25)

End

(S.3) : If the NE has been reached, each user n ∈ N updates his centroid: x̄n = x
(i+1)
n .

(S.4) : i← i+ 1; Go to (S.1).

Next theorem provides sufficient conditions for the convergence of Algorithm 3.1 to a solution

of the game G = 〈Ωx, f〉.

Theorem 3.2. Given the game G = 〈Ωx, f〉 in (3.18), suppose that the following conditions

hold:

(a) The production cost function Wn(x) is convex in 0 ≤ x ≤ g(max)
n , ∀n ∈ G;

(b) The regularization parameter τ satisfies

τ > 3(N − 1) max
h

Kh. (3.26)

Then, any sequence
{
x

(i)
n

}∞
i=1

generated by Algorithm 3.1 converges to a Nash equilibrium of the

game.

Proof Algorithm 3.1 is an instance of the proximal decomposition algorithm, which is pre-



50 Journal Paper [84]

sented in [74, Alg. 4.2] for the variational inequality problem. Next, we rewrite the conver-

gence conditions exploiting the equivalence between game theory and variational inequality

(see [74, Ch. 4.2] for details). Given fn(xn, l−n) defined as in (3.17), Algorithm 3.1 converges

if the following two conditions are satisfied: (i) the Jacobian J(x) of
(
∇xnfn(xn, l−n)

)N
n=1

is

positive semidefinite ∀x ∈ Ωx [74, Th. 4.3]; (ii) the N ×N matrix ΥF,τ , ΥF + τIN , with

[ΥF]nm ,




υ

(min)
n , if n = m

−υ(max)
nm , if n 6= m

(3.27)

is a P-matrix [74, Cor. 4.1], where we have introduced

υ(min)
n , min

x∈Ωx

λmin

{
Jnn(x)

}
(3.28)

υ(max)
nm , max

x∈Ωx

∥∥Jnm(x)
∥∥ (3.29)

with λmin{·} denoting the smallest eigenvalue of the matrix argument. We can write the block

elements of J(x) as

Jnn(x) , 2∆TK∆ + ∆T
g DW ′′n (xn)∆g (3.30)

Jnm(x) ,∆TK∆, n 6= m (3.31)

where we have introduced the H-dimensional diagonal matrices DW ′′n (xn) ,

Diag
(
W ′′n (δT

g xn(1)), . . . ,W ′′n (δT
g xn(H))

)
and K , Diag(K1, . . . ,KH), and the auxiliary

matrices ∆ , (−IH IH − IH) and ∆g , (−IH 0H 0H).

We show next that conditions (a) and (b) in Theorem 3.2 imply (i) and (ii), respectively. Since{
Kh

}H
h=1

> 0, the terms in (3.31) are positive semidefinite. On the other hand, the positive

semidefiniteness of the diagonal terms in (3.30), and thereby the inequality J(x) � 0, is also

guaranteed if W ′′n (x) ≥ 0, ∀n ∈ G, as required by Theorem 3.2(a). On the other hand, considering

Jnn(x) and Jnm(x) in (3.30)–(3.31), we have that υ
(min)
n ≥ 0 and υ

(max)
nm ≤ 3 maxhKh. Then,

it follows from [74, Prop 4.3] that, if τ is chosen as in Theorem 3.2(b), the matrix ΥF,τ is a

P-matrix, which completes the proof. �

Finally, we can describe the proposed day-ahead optimization as follows. At the beginning

of the optimization process, τ is computed as in Theorem 3.2(b) and broadcast to each user

n ∈ N , together with the grid coefficients
{
Kh

}H
h=1

. Then, at each iteration i, the central unit

broadcasts a synchronization signal and all users update their centroid x̄n simultaneously. Within

each iteration, each active user computes his strategy by solving his own optimization problem in

(3.25) referring to the aggregate energy load vector of the other users l
(i−1)
−n , until equilibrium in

the inner loop in (S.2) is reached. Indeed, user n receives the aggregate energy loads
{
L(h)

}H
h=1

,

which are calculated by the central unit summing up the individual demands provided by all
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users, and he obtains l
(i−1)
−n by subtracting his own energy loads at the previous iteration i− 1.

Lastly, as indicated in (S.1) of Algorithm 3.1, the central unit finalizes the whole process when

some termination criterion is met as, for instance, when the relative modification in the energy

loads of all users between two consecutive iterations is sufficiently small: ‖l(i)− l(i−1)‖2/‖l(i)‖2 ≤
ε, where l(i) ,

((
l
(i)
n (h)

)H
h=1

)N
n=1

. Note that the individual strategies are not revealed among the

users in any case, and only the aggregate energy load, which is determined at the central unit

adding the individual day-ahead energy demands, is communicated by the central unit to each

active user.

3.4 Simulation Results

In this section, we provide some numerical results that illustrate the performance of the pro-

posed day-ahead DSM mechanism based on the proximal decomposition algorithm described

in Algorithm 3.1. Two different cases of analysis are examined: Case 1 delineates the overall

results of our optimization process, examines the convergence of Algorithm 3.1, and compares

the benefits achieved by the different types of active users, showing that they all have substan-

tially reduced their monetary expense by adopting distributed energy generation and/or storage;

Case 2 evaluates the day-ahead optimization process with different percentages of active users.

We test the performance of Algorithm 3.1 within a smart grid of 1000 demand-side users,

considering a time period of analysis of one day divided in H = 24 time-slots of one hour each.

Each demand-side user n ∈ D has a random energy consumption curve with daily average of
∑24

h=1 en(h) = 12 kWh [99], where higher consumption occurs more likely during day-time hours,

i.e., from 08:00 to 24:00, than during night-time hours, i.e., from 00:00 to 08:00, reaching its

peak between 17:00 and 23:00. Setting L(max) = N × 3 kWh, we use the quadratic grid cost

function introduced in (3.12), with

Ch
(
L(h)

)
= KhL

2(h) =




KnightL

2(h), for h = 1, . . . , 8

KdayL
2(h), for h = 9, . . . , 24

(3.32)

where Kday = 1.5Knight as in [51], and whose values are chosen in order to obtain an initial

average price per kWh of 0.1412 £/kWh [100]. Besides, we suppose that dispatchable energy

producers n ∈ G have a linear production cost function, resembling that of a combustion engine

(e.g., a biomass generator [101]) working in the linear region, given by

Wn(x) = ηnx, ηn > 0, ∀n ∈ G. (3.33)

For the sake of simplicity, we assume that all dispatchable energy producers adopt a generator

characterized by the linear production cost function in (3.33), with ηn = 0.039 £/kWh [102].
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Furthermore, we arbitrarily set g
(max)
n = 0.4 kW and γ

(max)
n = 0.8g

(max)
n × 24 h, ∀n ∈ G.

Likewise, we suppose that all energy storers use the same type of storage device, e.g., a lithium-

ion battery [103] with αn = 24
√

0.9 (which corresponds to a leakage rate of 0.9 over the 24

hours), β
(+)
n = 0.9, β

(−)
n = 1.1, cn = 4 kWh (same value used in [47]), s

(max)
n = 0.125cn/h,

qn(0) = 0.25cn, and εn = 0, ∀n ∈ S.

3.4.1 Case 1: Overall Performance

In this first case of analysis, we consider a smart grid comprising N = 180 active users, where

n = {1, . . . , 60} ∈ NG∩S , n = {61, . . . , 120} ∈ NS\G , n = {121, . . . , 180} ∈ NG\S , respectively,

and P = 820 passive users n = {181, . . . , 1000} ∈ P; this corresponds to having 18% of active

users equally distributed among dispatchable energy producers, energy storers, and dispatchable

energy producers-storers. Moreover, we arbitrarily set the daily energy consumption for each

demand-side user ranging between 8 kWh and 16 kWh. Figure 3.2(a) shows the aggregate

energy consumption
∑

n∈D en(h) together with the aggregate load L(h) at each hour h resulting

from Algorithm 3.1, while Figure 3.2(b) delineates the aggregate per-slot energy production
∑

n∈G gn(h) and storage
∑

n∈S sn(h) at each hour h. As expected, energy storers charge their

battery at the valley of the energy cost, resulting in a substantially more flattened demand

curve. Contrarily, they discharge it at peak hours, shaving off the peak of the load. Likewise,

dispatchable producers generate little energy during night-time hours, when they rather purchase

it from the grid.

The average grid price per kWh reduces to 0.1234 £/kWh (i.e., 12.6% less). Considering

the individual energy production cost for users n ∈ G, the overall price further decreases to

0.1171 £/kWh. The comparison between the initial and the final grid price at each hour h is

illustrated in Figure 3.2(c). Moreover, the total expense
∑

n∈D fn(gn, sn) reduces from 1704 £

to 1426 £ (i.e., 16.3% less). Finally, the peak-to-average ratio (PAR), calculated as PAR ,(
H maxh L(h)

)
/
(∑H

h=1 L(h)
)

decreases from 1.5223 to 1.3129 (i.e., 13.8% less) resulting in a

generally flattened demand curve.

Figure 3.3(a) plots the termination criterion ‖l(i) − l(i−1)‖2/‖l(i)‖2 ≤ 10−2 that finalizes

Algorithm 3.1, over the first 10 iterations. With the above setup, convergence is reached af-

ter i = 8 iterations. However, Figure 3.3(b) shows that active users approximately converge

to their final value of the payoff function fn(gn, sn) after just i = 2 iterations, although they

keep adjusting their strategies until the termination criterion is met. Furthermore, from Fig-

ure 3.3(b) it is straightforward to conclude that active users with more degrees of freedom (i.e,

storage/production equipment) obtain better saving percentages, although the employment of

DG and DS benefits all users in the network. In particular, the average savings obtained for each

subset of active users are: 1.0539 £ (i.e., 61.4% less) for n ∈ NG∩S , 0.8562 £ (i.e., 50.1% less)
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Figure 3.2: Case 1: (a) Aggregate per-slot initial consumption and energy loads resulting from Algorithm 3.1; (b)
aggregate per-slot energy production and storage; (c) initial and final grid prices per unit of energy.

for n ∈ NG\S , and 0.3766 £ (i.e., 22.2% less) for n ∈ NS\G . On the other hand, passive users

n ∈ P save on average 0.1718 £ (i.e., 10.1% less) each. Evidently, the saving for users n ∈ N is

greater than for users n ∈ P, i.e., all demand-side users are incentivized to directly adopt DG

and/or DS. Moreover, using both dispatchable energy sources and storage devices allows users

to further decrease their individual cumulative expenses.

3.4.2 Case 2: Comparison Between Different Percentages of Active Users

In this second case of analysis, we compare the benefits given by the day-ahead optimization

process addressed in this paper with different percentages of active users, uniformly distributed

among dispatchable energy producers, energy storers, and dispatchable energy producers-storers:
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Figure 3.3: Case 1: (a) Convergence of Algorithm 3.1 with termination criterion ‖l(i) − l(i−1)‖2/‖l(i)‖2 ≤ 10−2;
(b) average cumulative expense over the time period of analysis for each subset of active users, at each iteration
i.

n = {1, . . . , N/3} ∈ NG∩S , n = {N/3 + 1, . . . , 2N/3} ∈ NS\G , n = {2N/3 + 1, . . . , N} ∈ NG\S ,

and P = 1000−N , with N = 60, N = 120, and N = 240, which correspond to having 6%, 12%,

and 24% of active users, respectively. We assign each demand-side user n ∈ D the same energy

consumption curve, with daily average of
∑24

h=1 en(h) = 12 kWh.

Figure 3.4 compares the aggregate loads L(h) and the final grid prices resulting from Algo-

rithm 3.1 at each hour h for the aforementioned percentages of active users. From Figure 3.4(a)

we can see that, as N increases, the increment in the overall production and storage capacity

of the grid allows the demand curve to be progressively more flattened, raising the load during

valley hours and shaving off the peak of the consumption. In the specific, the PAR decreases

from its initial value 1.5253 to 1.4202 (i.e., 6.9% less) with N = 60, to 1.3591 (i.e., 10.9% less)
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Figure 3.4: Case 2: (a) Aggregate per-slot energy loads (∆PAR= decrease in the PAR); (b) initial and final grid
prices (∆Price= decrease in the grid price).

with N = 120, and to 1.2653 (i.e., 17.1% less) with N = 240. Likewise, the price curve in Fig-

ure 3.4(b) follows a similar trend, producing a more uniform price per unit of energy throughout

the 24 hours. In particular, the average grid price per kWh reduces to 0.1349 £/kWh (i.e., 4.5%

less) with N = 60, to 0.1298 £/kWh (i.e., 8.1% less) with N = 120, and to 0.1179 £/kWh (i.e.,

16.5% less) with N = 240.

3.5 Conclusions

In this paper, we propose a general grid model that accommodates distributed energy production

and storage. In particular, we formulate the day-ahead grid optimization problem, whereby each

active user on the demand-side selfishly minimizes his cumulative monetary expense for buy-

ing/producing his energy needs, using a game theoretical approach, and we study the existence

of the Nash equilibria. We describe a distributed and iterative algorithm based on the proximal

decomposition, which allows to compute the optimal strategies of the users with minimum in-

formation exchange between the central unit and the demand-side of the network. Simulations

on a realistic situation employing practical cost functions show that the demand curve resulting

from optimization is sensibly flattened, reducing the need for carbon-intensive and expensive
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peaking power plants. Finally, it is worth mentioning that the approach presented here, being

directly applicable to end users like households and small businesses, can also be extended to

larger contexts, such as small communities or cities. In fact, flattening the energy demand along

time is clearly beneficial at any layer or scale of the energy grid.
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Noncooperative and Cooperative Optimization of

Distributed Energy Generation and Storage in the

Demand-Side of the Smart Grid

Abstract—The electric energy distribution infrastructure is undergoing a startling technological evolution

with the development of the smart grid concept, which allows more interaction between the supply- and the

demand-side of the network and results in a great optimization potential. In this paper, we focus on a smart grid

in which the demand-side comprises traditional users as well as users owning some kind of distributed energy source

and/or energy storage device. By means of a day-ahead demand-side management mechanism regulated through

an independent central unit, the latter users are interested in reducing their monetary expense by producing

or storing energy rather than just purchasing their energy needs from the grid. Using a general energy pricing

model, we tackle the grid optimization design from two different perspectives: a user-oriented optimization and an

holistic-based design. In the former case, we optimize each user individually by formulating the grid optimization

problem as a noncooperative game, whose solution analysis is addressed building on the theory of variational

inequalities. In the latter case, we focus instead on the joint optimization of the whole system, allowing some

cooperation among the users. For both formulations, we devise distributed and iterative algorithms providing

the optimal production/storage strategies of the users, along with their convergence properties. Among all, the

proposed algorithms preserve the users’ privacy and require very limited signaling with the central unit.

Index Terms—Demand-Side Management, Distributed Pricing Algorithm, Game Theory, Proximal Decom-

position Algorithm, Smart Grid, Variational Inequality.

This chapter is an exact reproduction of [85] with the exception of pagination.

57
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4.1 Introduction

The term “smart grid” refers to a manifold of concepts, solutions, and products. Still, no in-

ternationally unified definition for smart grids has been adopted [5]. Energy regulators describe

the smart grid as an electricity network that can cost-efficiently integrate all users connected

to it—generators, consumers, and those who do both—in order to ensure economically-efficient,

sustainable power systems with low losses, high levels of quality and security of supply, and im-

proved safety [1]. The smart grids task force set up by the European Commission goes one step

beyond and includes smart metering and bidirectional communication capabilities as inherent

parts of smart grids [92]. Indeed, smart metering and the related smart communication infras-

tructure provide information to the different grid users (distribution system operators, retailers,

service-providers, and end users) and allow interactions among all of them. This opens up un-

precedented possibilities for optimizing the energy grid and energy usage at different network

levels.

Not surprisingly, these premises are arousing the interest of the signal processing community.

Indeed, the smart grid concept has been recognized as “a major initiative related to the field

of energy with significant signal processing content” which requires expertise in the fields of

communication, sensing, analysis, and actuation [15]. The first publications are mainly focused

on the communication aspects of the smart grid. However, these technologies are only an enabler

of the envisioned smart grid and, most importantly, they are not the sole aspects that can benefit

from the contribution of the signal processing community.1

Recently, there has been a growing interest in adopting cooperative and noncooperative game

theory to model the interaction among the smart grid users (see [70,71] for an overview on this

topic). In particular, real-time and day-ahead energy consumption scheduling (ECS) techniques,

common demand-side management (DSM) procedures that intend to modify the demand profile

by shifting energy consumption to off-peak hours, have been recently studied in literature using

game theoretical approaches (see, e.g., [51, 58, 72, 73]). However, since the users’ inconvenience2

must be taken into account, ECS presents limitations in terms of flexibility that can be overcome

by incorporating distributed generation (DG) and distributed storage (DS) in the demand-side

of the network.

In this paper, we propose a DSM method consisting in a day-ahead optimization process

that corresponds to energy production and energy storage scheduling rather than shifting energy

consumption as in ECS techniques. We associate to each demand-side user, possibly owning a

1As evidence in support of this statement, the IEEE Signal Processing Magazine published a special issue entitled “Signal

Processing Techniques for the Smart Grid” [16] during the reviewing process of the present paper.

2Note that ECS implies no monetary cost for the residential customer, but this is not the case for the industrial customer,
for whom the rescheduling of activities may result in monetary loss [55].
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DG and/or a DS device, an energy consumption vector containing his energy requirements for

each time-slot in which the time period of analysis is divided. Here, we assume that this vector

is set a priori by each user according to his needs or as the result of an ECS algorithm. In doing

so, we suppose that, by participating in the day-ahead optimization process, demand-side users

commit to follow strictly the resulting consumption pattern.3 The main objective of these end

users is to reduce their monetary expense during the time period of analysis by producing or

storing energy rather than just purchasing their energy needs from the grid.

DSM techniques have been traditionally formulated from the selfish point of view of the end

users. However, it has been demonstrated that a collaborative approach can be more beneficial

for all actors in the energy grid by minimizing, e.g., the peak-to-average ratio (PAR) of the energy

demand or the total energy cost [51]. In this paper, we attack the grid optimization problem from

two different perspectives, namely: a user-oriented optimization and an holistic-based design.

More specifically, in the first approach, we formulate the DSM design as a noncooperative game

where the end users act as players with objective functions and optimization variables given by

their individual monetary expenses and production/storage strategies, respectively. Building on

the variational inequality (VI) framework [74,76,78], we study the existence of a solution for the

proposed game, the Nash equilibrium (NE); we obtain sufficient conditions on the energy cost

functions guaranteeing the existence of Nash equilibria. Quite interestingly, we prove that all the

solutions are equivalent, in the sense that the optimal value of the players’ objective function

is constant over the set of the Nash equilibria. We then focus on distributed algorithms solving

the game; we propose a proximal-based best-response scheme and derive sufficient conditions

guaranteeing its convergence to any of the (equivalent) Nash equilibria.

The second method we propose consists in formulating the DSM design as a standard nonlin-

ear optimization problem, where one minimizes the overall expense incurred by the demand-side

of the network. This approach is more suitable for “collaborative” contexts, where the users are

willing to exchange some (limited) signaling in favor of better performance as, for example, when

an energy retailer acts as intermediary between the supply-side and a group of subscribers. To

solve the resulting nonconvex optimization problem, we build on the recent results in [82,83] and

introduce a distributed dynamic pricing-based algorithm (DDPA) that converges to a stationary

solution of the problem.

The proposed algorithms have many desired (complementary) features, which make them ap-

plicable to alternative scenarios. For instance, the DDPA i) requires essentially the same signaling

as the PDA (which is based on a noncooperative approach), ii) is proved to converge under very

mild assumptions (always satisfied in practice), and iii) has fast convergence speed (considerably

3We refer to [86] for an extended grid model that allows real-time deviations with respect to the negotiated demand, and
where the day-ahead energy requirements follow from a bidding process based on the individual consumption statistics.
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faster than the scheme presented in [51]). However, despite having the same communication cost

as the PDA, the DDPA is not incentive compatible, implying that its best-response update must

be imposed as a protocol to the demand-side users, in order to avoid selfish deviations from it.

The PDA, instead, can be implemented by selfish users; moreover, quite surprisingly, numerical

results show that it yields the same performance as the DDPA (at least for the scenarios simu-

lated in this paper), but its convergence conditions are more stringent than those of the DDPA.

Lastly, the PDA is based on a totally asynchronous update of the users’ strategies, as opposed

to the DDPA and the synchronous user-oriented DSM method presented in [84].

Notably, both approaches addressed in this paper are valid for a general energy pricing model,

which includes the energy pricing used in [84] as a special case. Furthermore, they equivalently

allow to achieve a generally flattened energy demand curve, from which both demand- and

supply-side benefit in terms of reduced energy cost and CO2 emissions, as well as overall power

plants and capital cost requirements [5].

The rest of the paper is structured as follows. In Section 4.2, we introduce the smart grid, the

production, and the storage models, as well as the energy cost and pricing model. Section 4.3

formulates the grid optimization problem as a Nash game; we then derive sufficient conditions

for the existence of a solution, propose a distributed algorithm solving the game, and study

its convergence. In Section 4.4, we present an holistic-based optimization of the system and

devise an efficient, distributed algorithm for computing its solutions. Section 4.5 shows some

experiments, whereas Section 4.6 draws the conclusions.

4.2 Smart Grid Model

The modern electric grid is a complex network comprising several subsystems, which, for our

purposes, can be conveniently divided into [3, 57,95] (see Figure 4.1):

(i) Supply-side: it incorporates the utilities (energy producers) and the energy transmission

network;

(ii) Central unit : it is the regulation authority that coordinates the grid optimization process. It

serves both as independent system operator, by maintaining the reliability of a control area

and optimally matching energy supply and demand, and as market operator, by fixing the

energy price in the day-ahead market;

(iii) Demand-side: it includes the end users (energy consumers), possibly equipped with DG

and/or DS, energy retailers, and the energy distribution network.

Since in this paper we are designing a DSM mechanism, we focus in particular on the end users,

whereas the supply-side of the smart grid and the central unit are modeled as plainly as possible.



4.2. Smart Grid Model 61

Central Unit

Distribution
Network

Smart
Meter

Supply-
side

Active User (n ∈ N )

Energy Generation

Energy Storage

Home Appliances

sn(h)

gn(h)

en(h)

ln(h)L(h) power link

communication/control link

Figure 4: adadas

4

Figure 4.1: Connection scheme between one end user and the smart grid.

4.2.1 Demand-Side Model

Demand-side users, whose associated set is denoted by D, are characterized in the first instance

by their individual per-slot energy consumption profile en(h), defined as the energy needed by

user n ∈ D to supply his appliances at time-slot h. Accordingly, we also introduce the energy

consumption vector en, which gathers the energy consumption profiles for the H time-slots in

which the time period of analysis is divided, i.e., en ,
(
en(h)

)H
h=1

. We assume that demand-side

users know exactly their energy requirements at each time-slot in the time period of analysis

in advance. A stochastic formulation that deals with the uncertainty induced by the end users’

energy consumption and renewable generation is addressed in [86].

Our demand-side model distinguishes between passive and active users. Passive users are

basically energy consumers and resemble traditional demand-side users, whereas active users

denote those consumers participating in the optimization process, i.e., reacting to changes in

the cost per unit of energy by modifying their demand. Hence, each active user is connected

not only to the bidirectional power distribution grid, but also to a communication infrastructure

that enables two-way communication between his smart meter and the central unit, as shown

in Figure 4.1. For convenience, we group the P passive users in the set P ⊂ D and the N active

users in the set ⊃ N , D\P.

Furthermore, active users include two broad categories: dispatchable energy producers and

energy storers. We use G ⊆ N to denote the subset of users possessing some dispatchable energy

generator. For users n ∈ G, gn(h) ≥ 0 represents the per-slot energy production profile at time-

slot h, to which corresponds the energy production scheduling vector gn ,
(
gn(h)

)H
h=1

. Likewise,

we introduce S ⊆ N as the subset of users owning some energy storage device. Users n ∈ S are

characterized by the per-slot energy storage profile sn(h) at each time-slot h: sn(h) > 0 when the

storage device is to be charged (implying an additional energy consumption), sn(h) < 0 when

the storage device is to be discharged (resulting in a reduction of the energy consumption), and
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Figure 4.2: Supply-side model and demand-side model including the sets of passive users P and active users N .

sn(h) = 0 when the storage device is inactive. The per-slot energy storage profiles are gathered

in the energy storage scheduling vector sn ,
(
sn(h)

)H
h=1

. It is worth remarking that G ∪ S = N ,

but we also contemplate the possibility of some active users being both dispatchable energy

producers and storers, i.e., G ∩ S 6= ∅, as shown in Figure 4.2.

Finally, let us introduce the per-slot energy load profile as

ln(h) ,




en(h), if n ∈ P
en(h)− gn(h) + sn(h), if n ∈ N

(4.1)

which gives the energy flow between user n and the grid at time-slot h, as shown schematically

in Figure 4.1. Observe that ln(h) > 0 if the energy flows from the grid to user n and ln(h) < 0

otherwise. Due to physical constraints on the user’s individual grid infrastructure, the per-slot

energy load profile is bounded as

− l(min)
n ≤ ln(h) ≤ l(max)

n (4.2)

where l
(min)
n ≥ 0 and l

(max)
n > 0 are the outgoing and the incoming capacities of user n’s energy

link, respectively. These capacities are negotiated between the users and the energy provider and

are thus known to the central unit for each user n ∈ D. The energy load profiles and capacities

for the different demand-side users are provided in Table 4.1.

4.2.2 Energy Production Model

Let us first characterize energy producers depending upon the type of DG they employ, as done

in [84].
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Non-dispatchable DG, GR ⊂ D, e.g, renewable resources of intermittent nature such as solar

panels and wind turbines. These energy producers generate electricity at their maximum capacity

whenever possible since they only have fixed costs and, therefore, they do not adopt any strategy

regarding energy production. For convenience, we consider that the per-slot energy consumption

profile en(h) already takes into account the non-dispatchable energy production of each user

n ∈ GR. Hence, for this type of users, we can have en(h) ≤ 0 when the non-dispatchable

energy production is greater than the energy consumption at a given time-slot h. Observe that

any demand-side user can belong to GR without modifying his condition of passive or active

participant in the day-ahead optimization process.

Dispatchable DG, G ⊆ N , e.g., internal combustion engines, gas turbines, or fuel cells, to

be operated mostly during high demand hours in order to lower the peak in the load curve.

These energy producers, beside fixed costs, have also variable production costs (due to, e.g., the

fuel) and they are thus interested in optimizing their energy production strategies. We introduce

accordingly the production cost function Wn

(
gn(h)

)
, which gives the variable production costs

for generating the amount of energy gn(h) at time-slot h, with Wn(0) = 0.

In the following, we provide, as an example, the dispatchable production model adopted

in [84]. It is important to remark, however, that the optimization process analysis and algorithms

provided in Sections 4.3 and 4.4 hold for any production model resulting in a compact and convex

strategy set. Dispatchable energy producers n ∈ G are characterized in [84] by their maximum

energy production capability g
(max)
n and their capacity factor requirements, i.e., the minimum

and maximum amount of energy generated during the time period of analysis, γ
(min)
n and γ

(max)
n ,

so as to remain efficient. The strategy set Ωgn for dispatchable energy producers n ∈ G is

consequently defined as (see [84, Sec. II-B] for details)

Ωgn ,
{
gn ∈ RH+ : gn � g(max)

n 1H , γ
(min)
n ≤ 1T

Hgn ≤ γ(max)
n

}
(4.3)

where the operator � for vectors is defined componentwise, and 1H denotes the H-dimensional

unit vector.

4.2.3 Energy Storage Model

Let us present, for illustration purposes, a simplified version of the energy storage model in-

troduced in [84]. Nonetheless, as pointed out in the previous section for dispatchable energy

producers, any storage model resulting in a compact and convex strategy set renders the results

in Sections 4.3 and 4.4 still valid.

We characterize storage devices by three attributes: leakage rate, capacity, and maximum
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charging rate.4 The leakage rate 0 < αn ≤ 1 models the decrease in the energy level of the storage

device with the passage of time: let qn(h) denote the charge level at time-slot h, indicating the

amount of energy contained in the storage device of user n ∈ S at the end of time-slot h, then

qn(h) gets reduced to αnqn(h) at the end of time-slot h+1. The capacity cn denotes the maximum

amount of energy that the storage device can accumulate. Lastly, the maximum charging rate

s
(max)
n represents the maximum amount of energy that can be charged into the device during a

time-slot. Observe that charging and discharging are mutually exclusive operations during the

same time-slot, which results from the leakage of the storage device. Additionally, it is convenient

to include a constraint on the desired charge level at the end of the time period of analysis qn(H).

Following the discussion in [84, Sec. II-C], we impose that

|qn(H)− qn(0)| ≤ εn (4.4)

where qn(0) denotes the initial charge level and εn is a sufficiently small constant. Finally, we

can define the strategy set Ωsn for energy storers n ∈ S as (see [84, Sec. II-C] for details)

Ωsn ,
{
sn ∈ RH : sn � s(max)

n 1H ,−qn(0)bn � Ansn � cn1H − qn(0)bn,

(1− αHn )qn(0)− εn ≤ aT
nsn ≤ (1− αHn )qn(0) + εn

}
(4.5)

where An is a H ×H lower triangular matrix with elements [An]i,j , α
(i−j)
n , and an and bn are

H-dimensional vectors with elements [an]i , α
(H−i)
n and [bn]i , α

i
n, respectively.

Now that we have gone through all possible types of users in the demand-side, we summarize

their main characteristics in Table 4.1.

4.2.4 Energy Cost and Pricing Model

This section describes the cost model on which depends the price of energy. Let us first define

the aggregate per-slot energy load at time-slot h as

L(h) , L(P)(h) +
∑

n∈N
ln(h), h = 1, . . . ,H. (4.6)

where L(P)(h) ,
∑

n∈P en(h) is the aggregate per-slot energy consumption associated with the

passive users connected to the grid. Then, we can model the supply-side as a single utility that

provides, at each time-slot h, a one-way energy flow L(h) through the transmission grid to the

demand-side (see Figures 4.1 and 4.2). We work under the hypothesis that the aggregate energy

4The storage model in [84] also takes into account charging and discharging efficiencies, which are not considered here for
clarity of presentation.
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User subset Energy load profile Outg. capacity Strategy set

P P\GR
ln(h) = en(h)

l
(min)
n = 0

No strategy
GR\(N ∩ GR) l

(min)
n ≥ 0

N
G\(G ∩ S) = NG\S ln(h) = en(h)− gn(h)

l
(min)
n ≥ 0

gn ∈ Ωgn

S\(G ∩ S) = NS\G ln(h) = en(h) + sn(h) sn ∈ Ωsn

G ∩ S = NG∩S ln(h) = en(h)− gn(h) + sn(h) (gn, sn) ∈ (Ωgn × Ωsn)

Table 4.1: Characteristics of the different types of demand-side users.

demand is always guaranteed by the supply-side5 and satisfies

L(min) ≤ L(h) ≤ L(max) (4.7)

where L(min) > 0 is the minimum aggregate energy load throughout the grid, and L(max) > 0

is the maximum aggregate energy load that the grid can take before experiencing a blackout.

Observe that both L(min) and L(max) are known to the central unit based on the actual grid in-

frastructure and on the available load statistics. A summary of the principal variables introduced

throughout Section 4.2, along with their main characteristics, is reported in Table 4.2.

Given the aggregate per-slot energy load L(h), let us now define the cost per unit of energy

Ch
(
L(h)

)
as the price for a unit of energy at time-slot h resulting from the day-ahead market

[3,43,47]. Then, Ch
(
L(h)

)
ln(h) represents the amount of money paid by user n to purchase the

energy load ln(h) from the grid (if ln(h) > 0) or received to sell the energy load ln(h) to the

grid (if ln(h) < 0) at time-slot h. Observe that Ch(·) can represent either the actual energy cost

(as a result of energy generation, transmission, and distribution costs among other issues) or

simply a pricing function designed to incentivize load-shifting by the end users [51]. In any case,

Ch(·) is generally different at each time-slot h, since the energy production changes along the

time period of analysis according to the energy demand and to the availability of intermittent

sources. For instance, the energy price can be less during the night compared to the day time

(as in the practical test case in Section 4.5). Equivalent pricing models are given in [51,51,84].

We now have all the elements to introduce the cumulative expense of each group of users

in the demand-side of the network. Let p
(N )
n denote the individual cumulative expense over the

time period of analysis for user n, representing the cumulative monetary expense incurred by

5The day-ahead optimization allows the supply-side to know in advance the amount of energy to be delivered to the
demand-side over the upcoming time period of analysis in order to plan its production accordingly [86,104].
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Symbol Definition Domain

ln(h) Per-slot energy load profile
0 ≤ ln(h) ≤ l(max)

n n ∈ P\GR
−l(min)

n ≤ ln(h) ≤ l(max)
n n ∈ N ∪ GR

en(h) Per-slot energy consumption profile
en(h) ≥ 0 n ∈ D\GR
possibly negative n ∈ GR

gn(h) Per-slot energy production profile gn(h) ≥ 0 n ∈ G

sn(h) Per-slot energy storage profile
sn(h) > 0 n ∈ S (charging)

sn(h) < 0 n ∈ S (discharging)

L(h) Aggregate per-slot energy load L(min) ≤ L(h) ≤ L(max)

Table 4.2: List of important symbols with corresponding definitions and domain.

user n ∈ N for obtaining the desired amount of energy in the time period of analysis:

p(N )
n ,

H∑

h=1

(
Ch
(
L(h)

)(
en(h)− gn(h) + sn(h)

)
+Wn

(
gn(h)

))
(4.8)

where we have included the individual production costs
{
Wn

(
gn(h)

)}H
h=1

. Note that, in general,

the amount of money paid/received by user n to purchase/sell the same amount of energy

from/to the grid is different during distinct time-slots due to the fact that the grid cost function

and the aggregate per-slot energy load vary along the day. Likewise, the aggregate cumulative

expense incurred by the passive users is given by

p(P) ,
H∑

h=1

Ch
(
L(h)

)
L(P)(h) (4.9)

which indirectly depends on the strategies of the active users through the cost per unit of energy

at each time-slot Ch
(
L(h)

)
. Lastly, we introduce the aggregate cumulative expense p(D), which

expresses the overall grid expense over the time period of analysis, and which is related to the

individual cumulative expenses of the active users in (4.8) and to the aggregate cumulative

expense of the passive users in (4.9) as

p(D) ,
H∑

h=1

(
Ch
(
L(h)

)( ∑

n∈N
ln(h) + L(P)(h)

)
+
∑

n∈G
Wn

(
gn(h)

))
=
∑

n∈N
p(N )
n + p(P). (4.10)

4.2.5 Introduction to the DSM Approaches

In the rest of the paper, we focus on the optimization problems posed by our DSM mechanisms,

through which active users determine in advance their generation/storage strategies for the
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upcoming time period of analysis (corresponding usually to a day [105]). Once the grid cost

functions
{
Ch(·)

}H
h=1

are fixed in the day-ahead market, active users react to the prices provided

by the central unit by iteratively adjusting their generation and storage strategies, gn and

sn, and, thus, their day-ahead energy demands
{
ln(h)

}H
h=1

, given the aggregate energy loads{
L(h)

}H
h=1

. The final objective of the active users is either i) to individually minimize their

individual cumulative expense over the time period of analysis in (4.8) (see Section 4.3), or ii)

to jointly minimize the aggregate cumulative expense of all demand-side users in (4.10) (see

Section 4.4). In the first method, active users act selfishly to reduce their cumulative monetary

expenses without consulting or coordinating with each other. Despite the flexibility of this

approach, the second solution may be more desirable from the point of view of both the individual

users and the supply-side, since it takes into account the overall production costs and results in

a more efficient demand-side energy consumption.

One could consider to solve the aforementioned optimization problems in a centralized fash-

ion, with the central unit imposing every single user how much energy he must produce, charge,

and discharge at each time-slot. Nonetheless, such solution requires every user to provide de-

tailed information about his energy production and/or storage capabilities and this could lead to

privacy issues. Besides, a centralized approach is not scalable and cannot account for an unpre-

dictably increasing number of participants. In consequence, we adopt fully distributed solutions

for both DSM techniques in Sections 4.3 and 4.4, respectively.

4.3 Noncooperative DSM Approach

In this section, we focus on the optimization problem posed by the noncooperative DSM mech-

anism through which active demand-side users aim at individually minimizing their individual

cumulative expense over the time period of analysis introduced in (4.8).

For convenience, let us first distinguish three main groups among the users participating

actively in the optimization (see Table 4.1 for details):

(i) Dispatchable energy producers: NG\S , G\(G ∩ S), for whom gn ∈ Ωgn and sn = 0;

(ii) Energy storers: NS\G , S\(G ∩ S), for whom sn ∈ Ωsn and gn = 0;

(iii) Dispatchable energy producers-storers: NG∩S , G ∩ S, for whom gn ∈ Ωgn and sn ∈ Ωsn .

Then, we can define the strategy vector and the per-slot strategy profile of a generic active user

n ∈ N as

xn ,





gn, if n ∈ NG\S
sn, if n ∈ NS\G
(gn, sn), if n ∈ NG∩S

, xn(h) ,





gn(h), if n ∈ NG\S
sn(h), if n ∈ NS\G
(
gn(h), sn(h)

)T
, if n ∈ NG∩S

. (4.11)

In addition, taking into account the limitations on the link capacity given in (4.2), we denote
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the corresponding strategy set by

Ωxn ,





{
xn ∈ Ωgn : ∆nxn � −l(min)

n 1H − en
}
, if n ∈ NG\S

{
xn ∈ Ωsn : −l(min)

n 1H − en �∆nxn � l(max)
n 1H − en

}
, if n ∈ NS\G

{
∆g,nxn ∈ Ωgn ,∆s,nxn ∈ Ωsn :

−l(min)
n 1H − en �∆nxn � l(max)

n 1H − en
}
, if n ∈ NG∩S

(4.12)

with dimension ωxn , Hδ
T
nδn, where we have introduced the auxiliary variables ∆n , δ

T
n ⊗ IH ,

∆g,n , δ
T
g,n ⊗ IH , with

δn ,





−1, if n ∈ NG\S
1, if n ∈ NS\G
(−1, 1)T, if n ∈ NG∩S

, δg,n ,





1, if n ∈ NG\S
0, if n ∈ NS\G
(1, 0)T, if n ∈ NG∩S

(4.13)

and ∆s,n , (0T
H ⊗ 0H IH), with 0H denoting the H-dimensional zero vector. Furthermore, let

x−n ,
(
xm
)N
n6=m=1

be the vector including the strategies of the other users m ∈ N\{n}. Bearing

in mind the individual cumulative expense given in (4.8), the objective function of user n is

given by

fn(xn,x−n) , (en + ∆nxn)Tc(x) + 1T
Hwn(∆g,nxn) (4.14)

with x ,
(
xn
)N
n=1

being the joint strategy vector and the vector functions c(·) and wn(·) given

by

c(x) ,
(
Ch
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))H

h=1
(4.15)

wn(∆g,nxn) ,
(
Wn

(
δT
g,nxn(h)

))H
h=1

. (4.16)

4.3.1 Game Theoretical and VI Formulation

Here, we model our DSM procedure as a (noncooperative) Nash game. Each active user is a

player who competes against the others by choosing the production and storage strategies gn

and sn that minimize his objective function fn(xn,x−n) in (4.14), i.e., his cumulative expense

over the time period of analysis. The formal definition of the game is the following: G = 〈Ωx, f〉,
where Ωx ,

∏N
n=1 Ωxn is the ωx-dimensional joint strategy set, ωx , H

∑
n∈N (δT

nδn), and

f ,
(
fn(xn,x−n)

)N
n=1

is the vector of the objective functions. Each player n ∈ N aims at solving

the following optimization problem, given x−n:

min
xn

fn(xn,x−n)

s.t. xn ∈ Ωxn

∀n ∈ N . (4.17)
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Note that the dependence of the objective function in (4.14) on x−n lies within the argument of

the cost functions Ch(·) in (4.15), since L(h) =
∑

m∈N\{n}
(
em(h)+δT

mxm(h)
)
+en(h)+δT

nxn(h).

The solution of the game G = 〈Ωx, f〉 is given by the well-known concept of Nash equilibrium,

which is a feasible strategy profile x? with the property that no single player n can unilaterally

deviate from his strategy x?n, if all other players act according to x?−n [65], i.e.,

fn(x?n,x
?
−n) ≤ fn(xn,x

?
−n), ∀xn ∈ Ωxn , ∀n ∈ N . (4.18)

Variational inequality theory provides a general framework for investigating and solving

various optimization problems and equilibrium models, even when classical game theory may

fail. Throughout this and the next section, we refer extensively to [74]. For a detailed description

of the subject, we refer the interested reader also to [76,78,79,106] and to [77] for a comprehensive

treatment of VIs.

In order to analyze the existence of the Nash equilibria as well as the convergence of dis-

tributed algorithms while keeping the pricing model general, it is very convenient to reformulate

the game as a partitioned VI problem, which is formally defined next.

Definition 4.1 ( [77, Def. 1.1.1]). Let F(x) : Ωx → Rωx be a vector-valued function defined as

F(x) ,
(
Fn(xn,x−n)

)N
n=1

, where Fn(xn,x−n) : Ωxn → Rωxn is the nth component block function

of F(x), x ,
(
xn
)N
n=1

, and Ωx =
∏N
n=1 Ωxn. Then, the VI problem, denoted by VI(Ωx,F),

consists in finding x? ∈ Ωx such that

(x− x?)TF(x?) ≥ 0, ∀x ∈ Ωx. (4.19)

The equivalence between the game theoretical and the VI formulation is established in the

following lemma.

Lemma 4.1 ( [74, Prop. 4.1], [77, Prop. 1.4.2]). The Game G = 〈Ωx, f〉 is equivalent to the VI

problem VI(Ωx,F), with F(x) ,
(
∇xnfn(xn,x−n)

)N
n=1

, if:

(a) The strategy sets Ωxn are closed and convex;

(b) For every fixed x−n ∈ Ωx−n ,
∏
m∈N\{n}Ωxm, the objective function fn(xn,x−n) is convex

and twice continuously differentiable on Ωxn.

Since the individual strategy sets Ωxn in (4.12) are nonempty polyhedra [62, Sec. 2.2.4],

Lemma 4.1(a) is readily satisfied. On the other hand, Lemma 4.1(b) is satisfied if and only if

the gradient of fn( · ,x−n), Fn( · ,x−n) , ∇xnfn( · ,x−n), is monotone on Ωxn for any given
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x−n ∈ Ωx−n [79],6 where

Fn(xn,x−n) , ∇xnfn(xn,x−n) = ∆T
nc(x) + ∆T

nDc′(x)(en + ∆nxn) + ∆T
g,nw

′
n(∆g,nxn) (4.20)

with Dc′(x) , Diag
(
c′(x)

)
. This requirement is accomplished under the conditions of Theo-

rem 4.1 given in the next section.

Assuming that Lemma 1 holds, we can formulate the game G = 〈Ωx, f〉 as the VI problem

VI(Ωx,F), where the vector function F(x) is

F(x) =
(
∇xnfn(xn,x−n)

)N
n=1

= ∆T
(
1N⊗c(x)

)
+∆T

(
IN⊗Dc′(x)

)(
e+∆x

)
+∆T

g w′(x) (4.21)

with ∆ , Diag
(
∆1, . . . ,∆N

)
, ∆g , Diag

(
∆g,1, . . . ,∆g,N

)
, e ,

(
en
)N
n=1

, and w′(x) ,(
w′n(∆g,nxn)

)N
n=1

.

4.3.2 Nash Equilibria Analysis

Sufficient conditions on the grid cost functions per unit of energy and on the production cost

functions that guarantee the existence of the Nash equilibria of the game G = 〈Ωx, f〉, i.e., of

the solutions of the VI problem VI(Ωx,F), are derived in the next theorem.

Theorem 4.1. Given the game G = 〈Ωx, f〉, suppose that the following conditions hold:

(a) The grid cost functions per unit of energy
{
Ch(x)

}H
h=1

are increasing and convex on

[L(min), L(max)], and satisfy

C ′h(x) ≥ 1

2
ζ(min)C ′′h(x), ∀x ∈ [L(min), L(max)] (4.22)

where ζ(min) , maxn l
(min)
n denotes the maximum amount of energy that can be sold to the

grid by any single user n ∈ N at any time-slot;

(b) The production cost function Wn(x) is convex on [0, g
(max)
n ], ∀n ∈ G.

Then, the game has a nonempty and compact solution set.

Proof. See Appendix 4.A.1.

Remark 4.1. Observe that any realistic grid cost function Ch(·) is increasing as required by

Theorem 4.1(a) (see, e.g., the power price function in [107]). Actually, for non-strictly increasing

Ch(·), a game-theoretical approach may not even be necessary since the individual optimization

problems could possibly be decoupled (see details in Example 1.1(a)). The convexity of Ch(·) in

Theorem 4.1(a) and the convexity of Wn(·) in Theorem 4.1(b) simply impose that the grid cost

6We say that Fn(xn,x−n) is monotone on Ωxn when (xn − yn)T
(
Fn(xn,x−n)− Fn(yn,x−n)

)
≥ 0, ∀xn,yn ∈ Ωxn , for

every fixed x−n ∈ Ωx−n [74, Def. 4.3(i)].
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per unit of energy and the production cost function do not tend to saturate as the aggregate

energy load and the per-slot energy production profile, respectively, increase, which is a very

reasonable assumption. Still, the condition in (4.22) has to be verified case by case, although it

is not difficult to be fulfilled (see Example 1.1(d)).

Example 1.1. Suppose, for instance, that the grid cost functions are given by
{
Ch(x) =

Khx
a
}H
h=1

, with
{
Kh

}H
h=1

> 0 and a ≥ 0. Then:

(a) If a = 0, we have that
{
C ′h(x)

}H
h=1

= 0: this means that the cost per unit of energy is constant

at each time-slot h, and the resulting optimization problem for users in N does not depend

on the aggregate energy load (and, in consequence, on the strategies of the other users x−n),

but only on the energy cost at each time-slot h. In such trivial case, the game-theoretical

approach proposed in this paper is not necessary.

(b) If 0 < a < 1, the grid cost functions are not convex but concave. This is, however, unrealistic,

since energy generation becomes less efficient as the aggregate demand increases (in fact,

peaking power plants that allow to meet rapidly increasing demand are extremely expensive

to operate [108, Sec. 3.9]).

(c) If a = 1, the grid cost functions are linear (hence strictly increasing and convex), and condi-

tion (4.22) is immediately satisfied since
{
C ′′h(x)

}H
h=1

= 0. This particular case is treated in

detail in [84].

(d) If a > 1, the grid cost functions are strictly increasing and strictly convex and Theorem 4.1

guarantees the existence of the Nash equilibria of the game G = 〈Ωx, f〉 in (4.17) whenever

a ≤ 1 + 2L(h)/ζ(min). (4.23)

This is a very mild condition, since the ratio between the aggregate demand L(h) and the

maximum energy that can be individually injected into the grid ζ(min) can be very large in

practice. Alternatively, this condition can be understood as a tradeoff between the minimum

demand generated by the passive users and that coming from the active users, as in Remark

4.3.

Theorem 4.1 guarantees the existence of a solution of the game G = 〈Ωx, f〉 in (4.17), but

not the uniqueness. Interestingly, all Nash equilibria for this problem happen to have the same

quality in terms of optimal values of the players’ objective functions, as stated in the following

proposition.

Proposition 4.1. Given the game G = 〈Ωx, f〉, suppose that the conditions in Theorem 4.1 hold;

let NEG be the set of the Nash equilibria of G = 〈Ωx, f〉. Then, the following holds: fn(x(1)) =

fn(x(2)), ∀x(1),x(2) ∈ NEG and ∀n ∈ N .

Proof. See Appendix 4.A.2.
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4.3.3 Proximal Decomposition Algorithm

We focus now on distributed algorithms to compute one of the (equivalent) Nash equilibria

(see Proposition 4.1) of the game G = 〈Ωx, f〉. We consider the class of totally asynchronous

algorithms, where some users may update their strategies more frequently than others and they

may even use outdated information about the strategy profiles adopted by the other users. This

adds more flexibility and robustness with respect to the well-known Jacobi (simultaneous) and

Gauss-Seidel (sequential) schemes, as the sequential ECS algorithm proposed in [51]. To provide

a formal description of the algorithms, let Tn ⊆ T ⊆ {0, 1, 2, . . .} be the set of times at which

user n ∈ N updates his own strategy xn, denoted by x
(i)
n at the ith iteration. We use tn(i) to

denote the most recent time at which the strategy of user n is perceived by the central unit

at the ith iteration. Each individual user n updates his strategy by minimizing his cumulative

expense over the time period of analysis referring to the most recently available value of the

per-slot aggregate energy load

L(t(i))(h) = L(P)(h) +
∑

m∈N
l(tm(i))
m (h), h = 1, . . . ,H (4.24)

where l
(tn(i))
n (h) is the energy load of user n ∈ N as perceived by the central unit at time

tn(i), which can possibly be outdated when the computation occurs. Finally, to emphasize the

dependence of the strategy of user n on the aggregate energy loads of the other users, we rewrite

the objective function in (4.14) as

fn
(
xn,
{
L(t(i))(h)

}H
h=1

)
=

H∑

h=1

Ch
(
L(t(i))(h) + δT

n

(
xn(h)− x(tn(i))

n (h)
))(

en(h) + δT
nxn(h)

)

+
H∑

h=1

Wn

(
δT
g,nxn(h)

)
. (4.25)

Some standard conditions in asynchronous convergence theory, which are fulfilled in any

practical implementation, need to be satisfied by the schedule Tn and tn(i), ∀n ∈ N [78,

Sec. 1.2.2] [109, Ch. 6], namely:

(A1) 0 ≤ tn(i) ≤ i: at any given iteration i, each user n can use only the aggregate energy loads{
L(t(i))(h)

}H
h=1

resulting from the strategies adopted by the other players in the previous

iterations;

(A2) limk→∞ tn(ik) = +∞, where {ik} is a sequence of elements in Tn that tends to infinity: for

any given iteration index ik, the values of the components of
{
L(t(i))(h)

}H
h=1

generated prior

to ik are not used in the updates of the aggregate energy loads at the iteration i, when i

becomes sufficiently larger than ik;

(A3) |Tn| =∞: no player fails to update his own strategy as time i goes on.
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Since all Nash equilibria are equivalent (in the sense of Proposition 4.1), we focus next on

proximal-based best-response algorithms, whose convergence to some of the solutions is guaran-

teed even in the presence of multiple solutions. According to [74, Alg. 4.2], instead of solving the

original game, i.e., the VI problem VI(Ωx,F), one solves a sequence of regularized VI problems,

each of them given by VI
(
Ωx,F + τ(I − x(i))

)
, where I is the identity map (i.e., I : x → x),

x(i) is a fixed real vector, and τ is a positive constant. It can be shown that, under the mono-

tonicity of F(x) on Ωx, this regularized problem is strongly monotone and thus has a unique

solution [74, Th. 4.1(d)] denoted by Sτ (x(i)); such a unique solution is a nonexpansive mapping,

meaning that, starting at a given initial point x(0) ∈ Ωx, the sequence generated by a proper

averaging of Sτ (x(i)) and x(i) converges to a solution of the VI(Ωx,F), even when this is not

unique.7 Note also that, given x(i) =
(
x

(i)
n

)N
n=1
∈ Ωx, the solution Sτ (x(i)) of the regularized

VI
(
Ωx,F + τ(I − x(i))

)
coincides with the unique Nash equilibrium of the regularized game,

where each user n solves the following optimization problem:

min
xn

fn
(
xn,
{
L(t(i))(h)

}H
h=1

)
+
τ

2
‖xn − x(i)

n ‖2

s.t. xn ∈ Ωxn

∀n ∈ N . (4.26)

The solution Sτ (x(i)) can then be computed in a distributed way with convergence guarantee

using any asynchronous best-response algorithm applied to the game (4.26) [74, Cor. 4.1] (see,

e.g., [74, Alg. 4.2]). The above scheme is formalized in Algorithm 4.1 below, whose convergence

conditions are given in Theorem 4.2.

Algorithm 4.1 Asynchronous Proximal Decomposition Algorithm (PDA)

Data : Set i = 0 and the initial centroid
(
x̄n
)N
n=1

= 0. Given
{
Ch(·)

}H
h=1

,
{
ρ(i)
}∞
i=0

, τ > 0,

and any feasible starting point x(0) =
(
x

(0)
n

)N
n=1

:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n =





x?n ∈ argmin
xn∈Ωxn

{
fn
(
xn,
{
L(t(i))(h)

}H
h=1

)
+
τ

2
‖xn − x̄n‖2

}
, if i ∈ Tn

x
(i)
n , otherwise

End

(S.3) : If the NE is reached, then each user n ∈ N sets x
(i+1)
n ← (1− ρ(i))x̄n+

ρ(i)x
(i+1)
n and updates his centroid: x̄n = x

(i+1)
n .

(S.4) : i← i+ 1; Go to (S.1).

Theorem 4.2. Given the game G = 〈Ωx, f〉, suppose that the conditions of Theorem 4.1 and

the following hold:

7Replacing the exact computation of the solution of the regularized VI with an inexact solution does not affect convergence
of Algorithm 4.1, as long as the error bound goes to zero as i→∞ [74, 76,78].
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(a) The grid cost functions per unit of energy
{
Ch(x)

}H
h=1

are strictly increasing and convex in

L(min) ≤ x ≤ L(max), and additionally satisfy

C ′h(x) ≥ N
(
ζ(min) + ζ(max)

)
C ′′h(x), ∀x ∈ [L(min), L(max)] (4.27)

with N being the number of active users connected to the grid, ζ(min) , maxn∈N l
(min)
n and

ζ(max) , maxn∈N l
(max)
n denoting the maximum amount of energy that can be sold to or bought

from the grid by any single user n ∈ N at any time-slot, respectively;

(b) The regularization parameter τ satisfies

τ > 2(N − 1) max
h

C ′h(L(max)) + 2L(max) max
h

(
max

L(min)≤x≤L(max)
C ′′h(x)

)
(4.28)

where L(max) is the maximum aggregate energy load allowed by the grid infrastructure;

(c) ρ(i) is chosen so that {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm < RM < 2 [74, Th. 4.3].

Then, any sequence
{
x

(i)
n

}∞
i=1

generated by Algorithm 4.1 converges to a Nash equilibrium of the

game, for any given updating schedule of the users satisfying assumptions (A1)–(A3).

Proof. See Appendix 4.A.3.

Remark 4.2 (on Algorithm 4.1). Algorithm 4.1 can be seen as an asynchronous algorithm

with an occasional update of the individual centroids x̄n, performed simultaneously ∀n ∈ N .

Nonetheless, it is a double-loop algorithm in nature: in the inner loop, the computation of Sτ (x(i))

requires the solution of the regularized game in (4.26) via asynchronous best-response algorithms

(such as [74, Alg. 4.2]); in the outer loop, all users n ∈ N update their centroid x̄n and proceed

to solve the inner game again, until an equilibrium is reached. Observe that the update of the

centroids is performed locally by the users at the cost of no signaling exchange with the central

unit. However, since this update must be simultaneous, some sort of synchronization must be

provided by the central unit to the users (see [76] for a detailed discussion on synchronization

methods for this class of distributed algorithms). The central unit also checks whether the

termination criterion in step (S.1) is met, terminating thus the algorithm. Since the central

unit only receives the individual energy loads from each user, a practical criterion can be to

guarantee that the difference of the users’ energy loads between two consecutive iterations is

below the prescribed accuracy (c.f. Section 4.5).

Summarizing, the proposed demand-side day-ahead optimization based on Algorithm 4.1

works as follows. At the beginning of the optimization process, τ is computed as in Theo-

rem 4.2(b) and broadcast to each user n ∈ N , together with the grid cost functions per unit of

energy
{
Ch(·)

}H
h=1

. Then, in each iteration, any active user who wants to update his strategy

solves his own optimization problem in (4.26) based on the most recent values of the aggregate

energy loads
{
L(t(i))(h)

}H
h=1

, which are calculated by the central unit referring to the (possibly
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outdated) individual demands, and communicates his new load to the central unit. When an

equilibrium in the inner loop is reached, the central unit proceeds to the next iteration, and this

process is repeated until convergence is reached.

Remark 4.3 (on Theorem 4.2(a)). The interpretation of the condition (4.27) given in The-

orem 4.2(a) is twofold. First of all, it provides a guideline to choose the grid cost functions per

unit of energy
{
Ch(·)

}H
h=1

. Second, it represents a tradeoff between the minimum demand gen-

erated by the passive users and that coming from the active users, as explained next. Suppose,

for instance, that Ch(x) = Khx
a with Kh > 0 and a > 1; then (4.27) actually implies that

L(min) = L(min,P) + L(min,N ) ≥ N(a− 1)
(
ζ(min) + ζ(max)

)
(4.29)

where L(min,P) and L(min,N ) denote the minimum aggregated demand of the passive and the

active users, respectively. Observe that L(min,P) is increasing with the number of passive users

in the demand-side, whereas the right-hand side of (4.29) is not affected by it. On the other

hand, when we add new active users, the previous condition becomes more restrictive, since

the resulting increment of the right-hand side of (4.29) is always greater than the one of the

left-hand side (as the individual demand of any active user satisfies −ζ(min) ≤ ln(h) ≤ ζ(max)).

It turns out that, for any given number of passive users, (4.27) provides an upper bound on the

number of active users that can be tolerated in the demand-side of the network.

Remark 4.4 (on Theorem 4.2(b)). From the proof of Theorem 4.2(b), it follows that Al-

gorithm 4.1 can converge under a milder bound on the regularization parameter than the one

given in (4.28). However, the peculiarity of the provided expression of τ is that none of the

terms in (4.28) depends on the particular energy generation or storage equipment owned by user

n, but only on the transmission grid infrastructure. Thus, the regularization parameter can be

calculated by the central unit a priori without interfering with the privacy of the users. These

considerations apply also to the lower bound of τ provided in (4.35) for Algorithm 4.2.

4.4 Cooperative DSM Approach

In contrast to the noncooperative approach discussed in Section 4.3, we now consider an al-

ternative DSM technique, in which demand-side users collaborate to minimize the aggregate

cumulative expense over the time period of analysis introduced in (4.10).

Recalling the definitions of strategy vector, strategy set, and objective function given in

(4.11), (4.12), and (4.14), respectively (see Section 4.3), we formulate our DSM optimization

problem as

min
x

f (D)(x) =
∑

n∈N
f (D)
n (xn,x−n)

s.t. xn ∈ Ωxn , ∀n ∈ N
(4.30)
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with

f (D)
n (xn,x−n) = fn(xn,x−n) +

1

N
p(P)(x) (4.31)

where fn(xn,x−n) represents the individual cumulative expense of user n ∈ N defined in (4.14)

and where p(P)(x) denotes the aggregate cumulative expense of the passive users defined in

(4.9), where we made explicit the dependence on the strategies of the active users. Note that in

the objective function f
(D)
n (x) there is a common term (equal for all users) p(P)(x), which is the

cost associated with the aggregate load of the passive users. This cost is, in fact, a transferable

utility and can be distributed among the active users in any arbitrary manner (e.g., as we did

in (4.31)) without affecting the optimal value of the social function f (D)(x) in (4.30).

4.4.1 Distributed Dynamic Pricing Algorithm

Traditionally, optimization problems of the form of (4.30) have been tackled by using gradient-

based algorithms, which solve a sequence of convex problems by convexifying the whole social

function; because of that, they generally suffer from slow convergence. A faster algorithm can

be obtained by following the approach recently proposed in [83] (see also [82] for more details):

since each f
(D)
n (xn,x−n) is convex for any feasible x−n (under the settings of Theorem 4.1),

one can convexify only the nonconvex part, i.e.,
∑

m∈N\{n} f
(D)
m (x), and solve the sequence of

resulting optimization problems. Since such a procedure preserves some structure of the original

objective function, it is expected to be faster than classical gradient-based schemes. A formal

description of the algorithm is given next.

Let us preliminary define x(i) ,
(
x

(i)
n

)N
n=1

as the joint strategy vector at iteration i and the

resulting aggregate load as

L(i)(h) = L(P)(h) +
∑

m∈N
l(i)m (h), h = 1, . . . ,H (4.32)

where l
(i)
n (h) is the energy load of user n ∈ N at iteration i. We can then introduce the best-

response mapping Ωx 3 x(i) → x̂τ (x(i)) =
(
x̂τ,n(x(i))

)N
n=1

, where we have defined

x̂τ,n(x(i)) = argmin
xn∈Ωxn

{
f (D)
n

(
xn,
{
L(i)(h)

}H
h=1

)
+ πn

({
L(i)(h)

}H
h=1

)T
xn +

τ

2
‖xn − x(i)

n ‖2
}

(4.33)

and

πn
({
L(i)(h)

}H
h=1

)
= ∆T

n

(
C ′h
(
L(i)(h)

)(
L(i)(h)− l(i)n (h)− 1

N
L(P)(h)

))H
h=1

(4.34)

where ∆n = δT
n ⊗ IH , with δn defined as in (4.13). Note that each individual optimization

in (4.33) is strongly convex under Theorem 4.1 and, therefore, has a unique solution (see Ap-

pendix 4.B.1 for details); (4.33) is thus well-defined. The proposed algorithm solving the social

problem in (4.30) is formally described in Algorithm 4.2 below, whose convergence conditions
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are given in Theorem 4.3.

Algorithm 4.2 Distributed Dynamic Pricing Algorithm (DDPA)

Data : Set i = 0. Given
{
Ch(·)

}H
h=1

,
{
L(P)(h)/N

}H
h=1

, τ > 0, and any feasible starting point

x(0) =
(
x

(0)
n

)N
n=1

:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n = argmin

xn∈Ωxn

{
f (D)
n

(
xn,
{
L(i)(h)

}H
h=1

)
+ πn

({
L(i)(h)

}H
h=1

)T
xn +

τ

2
‖xn − x(i)

n ‖2
}

End

(S.4) : i← i+ 1; Go to (S.1).

Theorem 4.3. Given the social problem (4.30), suppose that the conditions of Theorem 4.1 hold

and that the regularization parameter τ satisfies

τ ≥ max
h

(
(N + 1)C ′h(L(max)) + max

L(min)≤x≤L(max)

(
C ′′h(x)x

))
(4.35)

where N is the number of active users connected to the grid and L(max) is the maximum aggregate

energy load allowed by the grid infrastructure. Then, either Algorithm 4.2 converges in a finite

number of iterations to a stationary solution of (4.30) or every limit point of the sequence{
x(i)
}∞
i=1

is a stationary solution of (4.30).

Proof. See Appendix 4.B.1.

Differently from Algorithm 4.1, Algorithm 4.2 is not incentive compatible, in the sense that

demand-side users need to reach an agreement in following the best-response protocol (4.33). In

addition, it differs from Algorithm 4.1 mainly in the synchronous update of the users’ strategies.

However, Algorithm 4.2 converges under consistently milder conditions on the grid cost functions

than those of Algorithm 4.1 and, most importantly, it does not impose any limitation on the

number of active users with respect to the total number of demand-side users, which means

better scalability. Lastly, the signaling required by the two algorithms is essentially the same.

Let us summarize the proposed demand-side day-ahead optimization based on Algorithm 4.2.

At the beginning of the optimization process, τ is computed as in (4.35) by the central unit and

broadcast to each user n ∈ N , together with the grid cost functions per unit of energy
{
Ch(·)

}H
h=1

and the terms related to the transferable utility
{
L(P)(h)/N

}H
h=1

. Then, at each iteration, all

users simultaneously update their strategies by solving their own optimization problems in (4.33)

based on the aggregate energy loads
{
L(i)(h)

}H
h=1

, which are calculated by the central unit

summing up the individual demands. Then, active users provide their new energy loads to the

central unit, and this process is iterated until a suitable termination criterion imposed by the
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central unit is satisfied.

4.5 Evaluation of the DSM Approaches

4.5.1 Smart Grid Setup

Let us consider a smart grid consisting of 1000 demand-side users n ∈ D, each one having a

random energy consumption curve with average daily energy consumption
∑24

h=1 en(h) = 12 kWh

[99], and ranging between 8 kWh and 16 kWh. We suppose that higher consumption occurs more

likely during day-time hours, i.e., from 08:00 to 24:00, than during night-time hours, i.e., from

00:00 to 08:00, reaching peak demand generally between 17:00 and 23:00. The energy grid cost

function per unit of energy is given by

Ch
(
L(h)

)
= KhL

2(h) =




KnightL

2(h), for h = 1, . . . , 8

KdayL
2(h), for h = 9, . . . , 24

(4.36)

where Kday = 1.5Knight as in [51] and whose values are chosen so as to obtain an initial average

price per kWh of 0.1412 £/kWh [100]. Additionally, we consider ζ(min) = 1 kWh, ζ(max) =

1.5 kWh, L(min) = 300 kWh, and L(max) = 800 kWh. With this setup, condition (4.22) is

immediately satisfied, guaranteeing that the game G = 〈Ωx, f〉 has a nonempty and compact

set of Nash equilibria. Recalling Theorem 4.2, Algorithm 4.1 is ensured to converge to one of

these Nash equilibria for any L(min) ≥ N
(
ζ(min) + ζ(max)

)
, which implies that the number of

active users should satisfy N ≤ 120, and for any τ > 4 maxhKhNL
(max). Lastly, according to

Theorem 4.3, Algorithm 4.2 converges to a stationary solution of the social problem in (4.30)

for any τ ≥ maxhKh(N + 2)L(max).

In the following, we consider N = 120 active users, with |NG\S | = |NS\G | = |NG∩S | = 40,

and P = 880 passive users. This corresponds to having 12% of active users equally distributed

among dispatchable energy producers, energy storers, and dispatchable energy producers-storers.

For the sake of simplicity, we assume that all dispatchable energy producers and energy storers

adopt generators and storage devices with the same features as in [84, Sec. IV]. In particular,

all generators employed by users n ∈ G are characterized by a linear production cost function,

resembling that of a combustion engine (e.g., a biomass generator [101]) working in the linear

region:

Wn(x) = ηnx (4.37)

with ηn = 0.039 £/kWh [102], g
(max)
n = 0.4 kW, γ

(min)
n = 0 kWh, and γ

(max)
n = 0.8g

(max)
n × 24 h.

Likewise, we suppose that all energy storage devices adopted by users n ∈ S present the following
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parameters: leakage rate αn = 24
√

0.9,8 capacity cn = 4 kWh (this value is also used in [47]

and is equivalent to the capacity of the battery of a small PHEV), maximum charging rate

s
(max)
n = 0.125cn/h, qn(0) = 0.25cn, and εn = 0.

4.5.2 Simulation Results

In this section, we provide some numerical results in order to illustrate the performance of

the proposed noncooperative and cooperative day-ahead DSM mechanisms formalized in Algo-

rithms 4.1 and 4.2, respectively. In doing so, we delineate the overall results and examine the

convergence of both schemes, comparing the benefits achieved by the different types of active

users. In particular, we show that all active users substantially reduce their monetary expense

by adopting distributed energy generation and/or storage.

Interestingly, the overall results produced by the noncooperative and the cooperative ap-

proaches happen to be equivalent in our case: beyond any doubt, this constitutes a major

strength of Algorithm 4.1. Figure 4.3 illustrates the global results obtained equivalently using

Algorithms 4.1 and 4.2. In the specific, Figure 4.3(a) shows, for each hour h, the aggregate

per-slot energy consumption
∑

n∈D en(h) together with the aggregate per-slot energy load L(h)

resulting from both approaches. Likewise, Figure 4.3(b) delineates the aggregate per-slot energy

production
∑

n∈G gn(h) and storage
∑

n∈S sn(h) at each hour h. As expected, energy storers

charge their battery at the valley of the energy cost, resulting in a substantially more flattened

demand curve. Contrarily, they discharge it at peak hours, shaving off the peak of the load. For

the sake of comparison with ECS techniques [51, 58, 72, 73], our day-ahead DSM optimization

with just |S| = 80 energy storers and the adopted storage capacities allows to shift 327 kWh

from the peak hours to the valley of the demand curve: this is equivalent to having a shiftable

load corresponding to 2.7% of the daily aggregate load among all 1000 demand-side users. On

the other hand, dispatchable energy producers generate little energy during night-time hours,

when they rather buy it from the grid. The average grid price per kWh reduces to 0.1156 £/kWh

(i.e., 20.8% less) and, considering the individual energy production costs for users n ∈ G, the

overall price further decreases to 0.1116 £/kWh. The comparison between the initial and the

final grid price at each hour h is illustrated in Figure 4.3(c). Moreover, the aggregate cumulative

expense p(D) reduces from £1705 to £1351. Finally, the peak-to-average ratio (PAR), defined as

PAR =
H maxh L(h)
∑H

h=1 L(h)
(4.38)

which expresses the ratio between the peak demand and the average energy demand calculated

along the day, decreases from 1.5254 to 1.3337 (i.e., 12.6% less) resulting in a generally flattened

8This value of αn corresponds to having a leakage rate of 0.9 over the 24 hours.
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Figure 3: (a) Initial aggregate per-slot energy consump-
tion and aggregate per-slot energy load after both DSM
optimizations at each h; (b) aggregate per-slot energy
production and storage at each h; and (c) initial and
final grid price per unit of energy at each h.
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Figure 4: (a) Convergence of Algorithm 1 (PDA) and
Algorithm 2 (DDPA) with termination criterion ‖l(i) −
l(i−1)‖2/‖l(i)‖2 ≤ 10−2; and (b) average cumulative ex-
pense over the time period of analysis for each subset of
active users, as a function of the iteration i.

energy producers, energy storers, and dispatchable energy producers-storers, with each demand-side user

n ∈ D having the same consumption curve. Interestingly, Algorithm 1 keeps performing equivalently to

Algorithm 2 even when the theoretical bound on the number of active users, N > 120, provided in Theorem

2 to ensure convergence, is not fulfilled. Furthermore, we observe that the average cumulative expense of

the active and passive users tend to the same value as the production and storage capacities increase.

Besides, as illustrated in Figure 5(b), the total saving of all (active and passive) users in the smart grid

raises in inverse proportion with the decreasing PAR, which diminishes almost linearly as the percentage

of active users increases. Note that, as the PAR approaches 1 with N = 540 (54%), its value raises

unexpectedly when N = 600 (60%). This is due to the lower coefficients Kh adopted during h = 1, . . . , 8,

23

Figure 4.3: (a) Initial aggregate per-slot energy consumption and aggregate per-slot energy load after both DSM
optimizations at each h; (b) aggregate per-slot energy production and storage at each h; and (c) initial and final
grid price per unit of energy at each h.

demand curve.

We employ
{
ρ(i)
}∞
i=0

= 0.8 for Algorithm 4.1, whereas the termination criterion used to fi-

nalize both algorithms is ‖l(i)− l(i−1)‖2/‖l(i)‖2 ≤ 10−2. Figure 4.4(a) plots this measure over the

first 10 iterations. With the above setup, Algorithm 4.1 converges after 8 iterations and Algo-

rithm 4.2 after just 2 iterations. In this regard, Figure 4.4(b) shows how the average cumulative

expenses over the time period of analysis for each type of active users, as well as that of the

passive users, converge to their final value: this further highlights the faster convergence of Al-

gorithm 4.2, since the final values of the objective functions are approximately reached after the

first iteration, although active users keep adjusting their production and storage strategies until

the above termination criterion is satisfied. From this figure it is also straightforward to conclude

that active users with more degrees of freedom (i.e, both generation and storage equipment) ob-
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Figure 3: (a) Initial aggregate per-slot energy consump-
tion and aggregate per-slot energy load after both DSM
optimizations at each h; (b) aggregate per-slot energy
production and storage at each h; and (c) initial and
final grid price per unit of energy at each h.
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Figure 4: (a) Convergence of Algorithm 1 (PDA) and
Algorithm 2 (DDPA) with termination criterion ‖l(i) −
l(i−1)‖2/‖l(i)‖2 ≤ 10−2; and (b) average cumulative ex-
pense over the time period of analysis for each subset of
active users, as a function of the iteration i.

energy producers, energy storers, and dispatchable energy producers-storers, with each demand-side user

n ∈ D having the same consumption curve. Interestingly, Algorithm 1 keeps performing equivalently to

Algorithm 2 even when the theoretical bound on the number of active users, N > 120, provided in Theorem

2 to ensure convergence, is not fulfilled. Furthermore, we observe that the average cumulative expense of

the active and passive users tend to the same value as the production and storage capacities increase.

Besides, as illustrated in Figure 5(b), the total saving of all (active and passive) users in the smart grid

raises in inverse proportion with the decreasing PAR, which diminishes almost linearly as the percentage

of active users increases. Note that, as the PAR approaches 1 with N = 540 (54%), its value raises

unexpectedly when N = 600 (60%). This is due to the lower coefficients Kh adopted during h = 1, . . . , 8,

23

Figure 4.4: (a) Convergence of Algorithm 4.1 (PDA) and Algorithm 4.2 (DDPA) with termination criterion
‖l(i)− l(i−1)‖2/‖l(i)‖2 ≤ 10−2; and (b) average cumulative expense over the time period of analysis for each subset
of active users, as a function of the iteration i.

tain better saving percentages, although the employment of distributed energy production and

storage benefits all users in the smart grid. In particular, the average savings obtained for each

subset of active users are: £1.3225 (i.e., 79.3% less) for users n ∈ NG∩S , £0.8717 (i.e., 52.3%

less) for users n ∈ NG\S , and £0.7348 (i.e., 40.9% less) for users n ∈ NS\G . On the other hand,

passive users n ∈ P save on average £0.2695 (i.e., 15.8% less) each. Evidently, the saving for

users n ∈ N is greater than for users n ∈ P, i.e., all demand-side users are incentivized to

directly adopt distributed energy generation and/or storage. Moreover, users n ∈ NG∩S save

more than users n ∈ NG\S ∪NS\G : this means that using both dispatchable energy sources and

storage devices allows to further decrease the individual cumulative expense over the time period

of analysis.

In Figure 4.5(a) we plot the average cumulative expense over the time period of analysis for
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Figure 5: (a) Average cumulative expense over the time period of analysis for each subset of users as a function
of the percentage of active users; and (b) total percentage saving and PAR as functions of the percentage of active
users. The active users are equally distributed among dispatchable energy producers, energy storers, and dispatchable
energy producers-storers.

as stated in (38): in fact, once a perfectly flattened demand curve is achieved, active users naturally keep

lowering the aggregate load during the last 16 hours when the price is higher in favor of the first 8 hours

in which the price is lower.

Lastly, Figure 6 depicts the number of iterations needed for the convergence of Algorithms 1 and 2 as a

function of the percentage of active users, using the same termination criterion ‖l(i)−l(i−1)‖2/‖l(i)‖2 ≤ 10−2.

In the first instance, the former always requires more iterations than the latter, not to mention that each

iteration in the proximal decomposition algorithm implies solving a (regularized) Nash game. Moreover,

it is evident that the convergence speed of the proximal decomposition algorithm is substantially more

related to the number of active participants than that of the distributed dynamic pricing algorithm, which

emphasizes the better scalability properties of the latter.

6 Conclusions

In this paper, we propose a general grid model that accommodates distributed energy production and

storage, and a day-ahead DSM mechanism. In particular, we formulate the resulting grid optimization

problem using a noncooperative method and a more classical nonlinear programming approach. In the

first case, each active user on the demand-side selfishly minimizes his cumulative monetary expense for

buying/producing his energy needs. We use noncooperative game theory and, building on the general

framework of variational inequality, we derive (sufficient) conditions on the generalized cost functions that

guarantee the existence of (multiple, yet equivalent) optimal strategies, as well as the convergence of the

proposed asynchronous proximal decomposition algorithm. As for the second approach, we devise a dis-

tributed scheme based on the distributed dynamic pricing algorithm. Both methods allow to compute
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Figure 5: (a) Average cumulative expense over the time period of analysis for each subset of users as a function
of the percentage of active users; and (b) total percentage saving and PAR as functions of the percentage of active
users. The active users are equally distributed among dispatchable energy producers, energy storers, and dispatchable
energy producers-storers.

as stated in (38): in fact, once a perfectly flattened demand curve is achieved, active users naturally keep

lowering the aggregate load during the last 16 hours when the price is higher in favor of the first 8 hours

in which the price is lower.

Lastly, Figure 6 depicts the number of iterations needed for the convergence of Algorithms 1 and 2 as a

function of the percentage of active users, using the same termination criterion ‖l(i)−l(i−1)‖2/‖l(i)‖2 ≤ 10−2.

In the first instance, the former always requires more iterations than the latter, not to mention that each

iteration in the proximal decomposition algorithm implies solving a (regularized) Nash game. Moreover,

it is evident that the convergence speed of the proximal decomposition algorithm is substantially more

related to the number of active participants than that of the distributed dynamic pricing algorithm, which

emphasizes the better scalability properties of the latter.

6 Conclusions

In this paper, we propose a general grid model that accommodates distributed energy production and

storage, and a day-ahead DSM mechanism. In particular, we formulate the resulting grid optimization

problem using a noncooperative method and a more classical nonlinear programming approach. In the

first case, each active user on the demand-side selfishly minimizes his cumulative monetary expense for

buying/producing his energy needs. We use noncooperative game theory and, building on the general

framework of variational inequality, we derive (sufficient) conditions on the generalized cost functions that

guarantee the existence of (multiple, yet equivalent) optimal strategies, as well as the convergence of the

proposed asynchronous proximal decomposition algorithm. As for the second approach, we devise a dis-

tributed scheme based on the distributed dynamic pricing algorithm. Both methods allow to compute
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Figure 4.5: (a) Average cumulative expense over the time period of analysis for each subset of users as a function
of the percentage of active users; and (b) total percentage saving and PAR as functions of the percentage of
active users. The active users are equally distributed among dispatchable energy producers, energy storers, and
dispatchable energy producers-storers.

each subset of demand-side users versus different percentages of active users equally distributed

among dispatchable energy producers, energy storers, and dispatchable energy producers-storers,

with each demand-side user n ∈ D having the same consumption curve. Interestingly, Algo-

rithm 4.1 keeps performing equivalently to Algorithm 4.2 even when the theoretical bound on

the number of active users, N > 120, provided in Theorem 4.2 to ensure its convergence, is

not fulfilled. Furthermore, we observe that the average cumulative expense of the active and

passive users tend to the same value as the production and storage capacities increase. Besides,

as illustrated in Figure 4.5(b), the total saving of all (active and passive) users in the smart grid

raises in inverse proportion with the decreasing PAR, which diminishes almost linearly as the

percentage of active users increases. Note that, as the PAR approaches 1 with N = 540 (54%),
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Figure 4.6: Number of iterations required for the convergence of Algorithm 4.1 (PDA) and Algorithm 4.2 (DDPA),
with termination criterion ‖l(i) − l(i−1)‖2/‖l(i)‖2 ≤ 10−2, as a function of the percentage of active users.

its value raises unexpectedly when N = 600 (60%). This is due to the lower coefficients Kh

adopted during h = 1, . . . , 8, as stated in (4.36): in fact, once a perfectly flattened demand curve

is achieved, active users naturally keep lowering the aggregate load during the last 16 hours

when the price is higher in favor of the first 8 hours during which the price is lower.

Lastly, Figure 4.6 depicts the number of iterations needed for the convergence of Algo-

rithms 4.1 and 4.2 as a function of the percentage of active users, using the same termination

criterion ‖l(i) − l(i−1)‖2/‖l(i)‖2 ≤ 10−2. In the first instance, the former always requires several

more iterations than the latter, not to mention that each iteration in the proximal decomposition

algorithm implies solving a (regularized) Nash game. Moreover, it is evident that the convergence

speed of the proximal decomposition algorithm is substantially more related to the number of

active participants than that of the distributed dynamic pricing algorithm, which emphasizes

the better scalability properties of the latter.

4.6 Conclusions

In this paper, we propose a general grid model that accommodates distributed energy produc-

tion and storage, and a day-ahead DSM mechanism. In particular, we formulate the resulting

grid optimization problem using a noncooperative method and a more classical nonlinear pro-

gramming approach. In the first case, each active user on the demand-side selfishly minimizes

his cumulative monetary expense for buying/producing his energy needs. We use noncooper-

ative game theory and, building on the general framework of variational inequality, we derive

(sufficient) conditions on the generalized energy cost functions that guarantee the existence of

(multiple, yet equivalent) optimal strategies, as well as the convergence of the proposed asyn-

chronous proximal decomposition algorithm. As for the second approach, we devise a distributed
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scheme based on the distributed dynamic pricing algorithm. Both methods allow to compute the

optimal strategies of the users in a distributed fashion and with limited information exchange

between the central unit and the demand-side of the network. Simulations on a realistic situation

employing practical energy cost functions show that, despite their different (sufficient) conver-

gence conditions, the two algorithms achieve equivalent overall results, sensibly flattening the

demand curve and reducing the need for carbon-intensive and expensive peaking power plants.

Regardless, the two approaches present different characteristics in terms of strategy update and

convergence speed that favor the employment of one over the other according to the situation.

Finally, it is worth mentioning that the DSM techniques presented in this paper, being directly

applicable to end users like households and small businesses, can also be extended to larger

contexts, such as small communities or cities, by means of energy aggregators. In fact, flattening

the energy demand along time is clearly beneficial at any layer of the energy grid.

4.A Noncooperative DSM Approach

4.A.1 Proof of Theorem 4.1

In this appendix, we derive the conditions on the cost functions per unit of energy
{
Ch(·)

}H
h=1

and on the production cost functions
{
Wn(·)

}
n∈G that guarantee the existence of the Nash

equilibria of the game G = 〈Ωx, f〉 in (4.17).

Recalling Lemma 4.1, the VI problem VI(Ωx,F), with F(x) =
(
∇xnfn(xn,x−n)

)N
n=1

, is

equivalent to the game G = 〈Ωx, f〉 if the objective function fn(xn,x−n) in (4.14) is convex on

Ωxn for any x−n ∈ Ωx−n , ∀n ∈ N ; note that the individual strategy sets Ωxn in (4.12) are closed

and convex. The convexity of each objective function is equivalent to the monotonicity of the

associated mapping function Fn(xn,x−n) in (4.20) on Ωxn , for every given x−n ∈ Ωx−n [79], i.e.,

(xn − yn)T
(
Fn(xn,x−n)− Fn(yn,x−n)

)
≥ 0, ∀xn,yn ∈ Ωxn . (4.39)

Next, we derive the conditions for Fn(x) to satisfy (4.39). We rewrite the left-hand side of

(4.39) as
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(xn−yn)T
(
Fn(xn,x−n)− Fn(yn,x−n)

)

=
H∑

h=1

(
Ch
(
L−n(h) + lxn(h)

)
+ C ′h

(
L−n(h) + lxn(h)

)
lxn(h)

)(
lxn(h)− lyn(h)

)
(4.40)

−
H∑

h=1

(
Ch
(
L−n(h) + lyn(h)

)
+ C ′h

(
L−n(h) + lyn(h)

)
lyn(h)

)(
lxn(h)− lyn(h)

)
(4.41)

+
H∑

h=1

(
W ′n
(
δT
g,nxn(h)

)
−W ′n

(
δT
g,nyn(h)

))
δT
g,n

(
xn(h)− yn(h)

)
(4.42)

where L−n(h) = L(P)(h)+
∑

m∈N\{n} lm(h), lxn(h) = en(h)+δT
nxn(h), and lyn(h) is accordingly

defined. Observe, then, that the term in (4.42) is nonnegative if Wn(x) is convex, i.e., if W ′n(x)

is monotone:

W ′′n (x) ≥ 0, 0 ≤ x ≤ g(max)
n (4.43)

since, under this condition, each element in the summation is nonnegative itself.

In addition, the sum of the terms in (4.40) and (4.41) is nonnegative if the function Ch(x) +

C ′h(x)
(
x− L−n(h)

)
is increasing in L(min) ≤ x ≤ L(max) for any time-slot h or, equivalently, if

2C ′h(x) + C ′′h(x)
(
x− L−n(h)

)
≥ 0, L(min) ≤ x ≤ L(max). (4.44)

Assuming that for any time-slot h the grid cost function Ch(x) is convex, i.e., C ′′h(x) ≥ 0, we

can distinguish between two cases:

(i) When C ′′h(x) = 0, the inequality in (4.44) is satisfied if C ′h(x) ≥ 0, which forces Ch(x) to be

increasing;

(ii) When C ′′h(x) > 0, it holds that

2C ′h(x) + C ′′h(x)
(
x− L−n(h)

)
≥ 2C ′h(x)− C ′′h(x)l(min)

n ≥ 0 (4.45)

where maxn l
(min)
n represents the maximum amount of energy that can be sold to the grid by

any single user n ∈ N at any time-slot. Hence, (4.44) is verified if C ′h(x) > 0, i.e., if Ch(x) is

strictly increasing and, additionally, for any time-slot h it holds

C ′h(x) ≥ 1

2
l(min)
n C ′′h(x), L(min) ≤ x ≤ L(max). (4.46)

So far, we have proved that Fn(xn,x−n) is monotone on xn, for any given x−n ∈ Ωx−n ,

when the production cost function Wn(x) is convex and the cost functions per unit of energy{
Ch(x)

}H
h=1

are increasing and convex and satisfy (4.46). Nevertheless, this must be verified

∀n ∈ N and, therefore, constraint (4.46) becomes

C ′h(x) ≥ 1

2

(
max
n∈N

l(min)
n

)
C ′′h(x) =

1

2
ζ(min)C ′′h(x) (4.47)
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whereas the condition on the production cost function in (4.43) must be satisfied ∀n ∈ G. Now

that Lemma 4.1 holds, the solution set of G = 〈Ωx, f〉 is nonempty and compact [74, Th. 4.1(a)],

since the strategy sets Ωxn are bounded ∀n ∈ N . This concludes the proof of Theorem 4.1. �

4.A.2 Proof of Proposition 4.1

Theorem 4.1 provides the conditions that guarantee the existence of the Nash equilibria of the

game G = 〈Ωx, f〉 in (4.17). Although the solution is not unique, all Nash equilibria yield the

same values of the objective functions in (4.14). In fact, consider a generic user n ∈ NG∩S : given

two optimal strategy vectors x?1,n 6= x?2,n, with x?1,n , (g1,n, s1,n) and x?2,n , (g2,n, s2,n), we have

that fn
(
x?1,n,x−n

)
= fn

(
x?2,n,x−n

)
if the following H + 2 conditions hold (see the strategy sets

(4.3) and (4.5) for details):

H∑

h=1

Wn

(
g1,n(h)

)
=

H∑

h=1

Wn

(
g2,n(h)

)
(4.48)

s1,n(h)− g1,n(h) = s2,n(h)− g2,n(h), h = 1, . . . ,H (4.49)

H∑

h=1

α(H−h)
n s1,n(h) =

H∑

h=1

α(H−h)
n s2,n(h). (4.50)

Since in any realistic situation H > 2, and being xn ∈ R2H for n ∈ NG∩S , it follows that 2H >

H + 2, implying that user n ∈ NG∩S can choose among infinitely many optimal strategy vectors

x?n, each of them giving the same value of the objective function fn
(
x?n,x−n

)
. We can extend

the previous considerations to all users: since all x?n produce the same
{
l?n(h)

}H
h=1

, ∀n ∈ N ,

the aggregate demands
{
L?(h)

}H
h=1

, with L?(h) = LP +
∑H

n∈N l
?
n(h), are not affected by the

multiplicity of the Nash equilibria. Hence, any x? =
(
x?n
)N
n=1

leads to the same values of the

objective functions
{
fn
(
x?n,x−n

)}
n∈N . �

4.A.3 Proof of Theorem 4.2

It follows from [74, Th. 4.3] that the sequence generated by the proximal decomposition algo-

rithm described in Algorithm 4.1 converges to a solution of the game G = 〈Ωx, f〉 if the following

conditions are satisfied: (a) the mapping function F(x) is monotone on Ωx; and (b) the regu-

larization parameter τ is such that the mapping F(x) + τ(IN − x(i)) is strongly monotone on

Ωx, for any given x(i) ∈ Ωx. Both conditions are proven next in Appendices 4.A.3.1 and 4.A.3.2,

respectively.
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4.A.3.1 Proof Theorem 4.2(a)

In this appendix, we derive additional conditions on the grid cost functions per unit of en-

ergy
{
Ch(·)

}H
h=1

that guarantee the monotonicity of F(x) =
(
∇xnfn(xn,x−n)

)N
n=1

on Ωx, with

fn(xn,x−n) defined in (4.14). We assume next that the requirements given by Theorem 4.1 are

satisfied.

The mapping F(x) is monotone on Ωx if and only if the Jacobian matrix JF(x) satisfies [74,

eq. (4.8(i))]
1

2
zT
(
JF(x) + JFT(x)

)
z ≥ 0, ∀x ∈ Ωx, ∀z ∈ Rωx . (4.51)

Given Fn(xn,x−n) in (4.20), the partial Jacobian matrices of F(x) are

JxnFn(xn,x−n) = 2∆T
nDc′(x)∆n (4.52)

+ ∆T
nDiag

(
Dc′′(x)(en + ∆nxn)

)
∆n + ∆T

g,nDw′′n(∆g,nxn)∆g,n (4.53)

JxmFn(xn,x−n) = ∆T
nDc′(x)∆m + ∆T

nDiag
(
Dc′′(x)(en + ∆nxn)

)
∆m, n 6= m (4.54)

where Dc′(x) = Diag
(
c′(x)

)
, Dc′′(x) = Diag

(
c′′(x)

)
, and Dw′′n(∆g,nxn) = Diag

(
w′′n(∆g,nxn)

)

are H ×H diagonal matrices. By defining J(x) = 1
2(JF(x) + JFT(x)) and decomposing vector z

as z =
(
zn
)N
n=1

, where zn =
(
zn(1), . . . , zn(δT

nδnH)
)
, we can rewrite the left-hand side of (4.51)

as

zTJ(x)z =
∑

n∈N
(∆nzn)TDc′(x)(∆nzn) +

∑

n∈G
(∆g,nzn)TDw′′n(∆g,nxn)(∆g,nzn) (4.55)

+
∑

n,m∈N
(∆nzn)T

(
Dc′(x) +

1

2
Diag

(
Dc′′(x)(en + em + ∆nxn + ∆mxm)

))
(∆mzm).

(4.56)

Observing the first term in (4.55), we are already in the position to state that, as long as

NG∩S 6= ∅, J(x) cannot even be positive definite: in fact, we can have that ∆nzn = 0 with zn 6= 0

for n ∈ NG∩S , whereas we cannot guarantee Wn(x) to be strictly convex (i.e., W ′′n (x) > 0) for

these users.9 Hence, let us now introduce

z̃n(h) = [∆nzn]h =





−zn(h), if n ∈ NG\S
zn(h), if n ∈ NS\G
(
− zn(h) + zn(h+H)

)
, if n ∈ NG∩S

(4.57)

9Recall that best-response algorithms such as [74, Alg. 5.1] converge under sufficient conditions that imply the strict

monotonicity of F(x) on Ωx. It is not difficult to show that such requirement forces NG∩N = ∅, which is too restrictive
and cannot be guaranteed.
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so that we can express the left-hand side of (4.51) as

zTJ(x)z =
H∑

h=1

∑

n∈N
C ′h
(
L(h)

)
z̃2
n(h) +

H∑

h=1

∑

n∈G
W ′′n
(
gn(h)

)
z̃2
n(h) (4.58)

+
H∑

h=1

∑

n∈N

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)
ln(h)

)(
z̃n(h)

∑

m∈N
z̃m(h)

)
. (4.59)

Let us now concentrate on the term in (4.56). Note that, under condition (4.22) in Theo-

rem 4.1(a), C ′h(L(h)) + C ′′h(L(h))ln(h) ≥ 0 at any time-slot h, ∀n ∈ N . Then, it follows that

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)
ln(h)

)(
z̃n(h)

∑

m∈N
z̃m(h)

)

≥





(
C ′h
(
L(h)

)
− ζ(min)C ′′h

(
L(h)

))∣∣z̃n(h)
∑

m∈N z̃m(h)
∣∣, if n ∈ N+

−
(
C ′h
(
L(h)

)
+ ζ(max)C ′′h

(
L(h)

))∣∣z̃n(h)
∑

m∈N z̃m(h)
∣∣, if n ∈ N−

(4.60)

where we have defined ζ(min) = maxn∈N l
(min)
n , ζ(max) = maxn∈N l

(max)
n , and the sets

N+ =
{
n ∈ N : z̃n(h)

∑

m∈N
z̃m(h) ≥ 0

}
, N− =

{
n ∈ N : z̃n(h)

∑

m∈N
z̃m(h) < 0

}
. (4.61)

Then, assuming for instance that
∑

m∈N zm(h) ≥ 0 and recalling the inequality in (4.60), we

have that

∑

n∈N

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)
ln(h)

)(
z̃n(h)

∑

m∈N
z̃m(h)

)

≥
(
C ′h
(
L(h)

)
− ζ(min)C ′′h

(
L(h)

)) ∑

n∈N+

z̃n(h)
( ∑

m∈N
z̃m(h)

)

−
(
C ′h
(
L(h)

)
+ ζ(max)C ′′h

(
L(h)

)) ∑

n∈N−

∣∣z̃n(h)
∣∣
( ∑

m∈N
z̃m(h)

)
(4.62)

≥ −
(
ζ(min) + ζ(max)

)
C ′′h
(
L(h)

)( ∑

n∈N+

z̃n(h)
∑

m∈N
z̃m(h)

)
(4.63)

where in (4.63) we have used

∑

n∈N+

∣∣z̃n(h)
∣∣ =

∑

n∈N+

z̃n(h) ≥
∑

n∈N−

∣∣z̃n(h)
∣∣ = −

∑

n∈N−
z̃n(h). (4.64)

On the other hand, when
∑

m∈N z̃m(h) < 0, we know that

∑

n∈N+

∣∣z̃n(h)
∣∣ = −

∑

n∈N+

z̃n(h) <
∑

n∈N−

∣∣z̃n(h)
∣∣ =

∑

n∈N−
z̃n(h) (4.65)
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and, following similar steps, we obtain

∑

n∈N

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)
ln(h)

)(
z̃n(h)

∑

m∈N
z̃m(h)

)

≥ −
(
ζ(min) + ζ(max)

)
C ′′h
(
L(h)

)( ∑

n∈N−
z̃n(h)

∣∣ ∑

m∈N
z̃m(h)

∣∣
)
. (4.66)

Let us consider the lower bound in (4.63): the term in (4.56) satisfies

H∑

h=1

∑

n∈N

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)
ln(h)

)(
z̃n(h)

∑

m∈N
z̃m(h)

)

≥ −
(
ζ(min) + ζ(max)

) H∑

h=1

C ′′h
(
L(h)

)( ∑

n∈N+

z̃n(h)
∑

m∈N
z̃m(h)

)
(4.67)

≥ −
(
ζ(min) + ζ(max)

) H∑

h=1

C ′′h
(
L(h)

)( ∑

n∈N+

z̃n(h)
)2

(4.68)

and, by substituting back in (4.56), it holds that

zTJ(x)z ≥
H∑

h=1

C ′h
(
L(h)

)( ∑

n∈N
z̃2
n(h)

)
+

H∑

h=1

∑

n∈G
W ′′n
(
gn(h)

)
z̃n(h)2

−
(
ζ(min) + ζ(max)

) H∑

h=1

C ′′h
(
L(h)

)( ∑

n∈N+

z̃n(h)
)2
. (4.69)

Then, invoking the Cauchy-Schwartz Inequality [110, eq. (3.2.9)]:

∑

n∈N+

z̃2
n(h) ≥ 1

|N+|
( ∑

n∈N+

z̃n(h)
)2
≥ 1

N

( ∑

n∈N+

z̃n(h)
)2

(4.70)

it follows that

zTJ(x)z ≥
H∑

h=1

(
C ′h
(
L(h)

)
−N

(
ζ(min) + ζ(max)

)
C ′′h
(
L(h)

))( ∑

n∈N+

z̃2
n(h)

)

+

H∑

h=1

(
C ′h
(
L(h)

) ∑

n∈N−
z̃2
n(h)

)
+

H∑

h=1

∑

n∈G
W ′′n
(
gn(h)

)
z̃2
n(h) (4.71)

≥
H∑

h=1

(
C ′h
(
L(h)

)
−N

(
ζ(min) + ζ(max)

)
C ′′h
(
L(h)

))( ∑

n∈N
z̃2
n(h)

)
. (4.72)

The result in (4.72) can be equivalently obtained by considering the lower bound in (4.66), which

simply corresponds to swapping N+ and N− in (4.67)–(4.71). Finally, the inequality in (4.51)

is satisfied as long as

C ′h(x) ≥ N
(
ζ(min) + ζ(max)

)
C ′′h(x), L(min) ≤ x ≤ L(max). (4.73)
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Therefore, F(x) is monotone on Ωx if (4.73) is satisfied, and this completes the proof of Theo-

rem 4.2(a). �

4.A.3.2 Proof of Theorem 4.2(b)

Here, we derive the condition on the regularization parameter τ for the convergence of Algo-

rithm 4.1 to one of the Nash Equilibria of the game G = 〈Ωx, f〉. By [74, Cor. 4.1], it is sufficient

to choose τ large enough such that the matrix ΥF,τ = ΥF + τIN is a P-matrix , where

[ΥF]nm =




υ

(min)
n , if n = m

−υ(max)
nm , if n 6= m

(4.74)

with

υ(min)
n = min

x∈Ωx

λmin

(
JxnFn(xn,x−n)

)
, υ(max)

nm = max
x∈Ωx

‖JxmFn(xn,x−n)‖ (4.75)

where JxmFn(xn,x−n) is the partial Jacobian matrix defined in (4.52)–(4.54), and

λmin

(
JxnFn(xn,x−n)

)
denotes the smallest eigenvalue of JxnFn(xn,x−n).

In Appendix 4.A.3.1, we have shown that, under the conditions of Theorem 4.1, Fn(xn,x−n)

is monotone on xn, for any given x−n ∈ Ωx−n , implying that JxnFn(xn,x−n) � 0 [74, eq. (4.8(i))],

∀xn ∈ Ωxn , ∀n ∈ N . Hence, we have that υ
(min)
n ≥ 0.

Now, let us examine υ
(max)
nm for n ∈ NG\S ∪ NS\G , for whom ∆T

n∆m = IH if n,m ∈ NG\S or

if n,m ∈ NS\G and ∆T
n∆m = −IH otherwise. Considering the first and worst case, we have:

υ(max)
nm = max

x∈Ωx

‖Dc′(x) + Diag
(
Dc′′(x)(en + ∆nxn)

)
‖ (4.76)

≤ max
x∈Ωx

λmax

(
Dc′(x) + Diag

(
Dc′′(x)(en + ∆nxn)

))
(4.77)

≤ max
h

(
max
x∈Ωx

C ′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))

+ max
h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
))(

en(h) + δT
nxn(h)

))
(4.78)

≤ max
h

C ′h(L(max)) + l(max)
n max

h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))

.

(4.79)

On the other hand, for n ∈ NG∩S , we have that, for any H×H matrix Q, it holds ∆T
nQ∆n =



4.A. Noncooperative DSM Approach 91

(2I2 − J2)⊗Q, where J2 denotes the 2-dimensional unit matrix, and hence

λmin(∆T
nQ∆n) ,





2λmin(Q), if λmin(Q) < 0

0, otherwise
(4.80)

λmax(∆T
nQ∆n) ,





2λmax(Q), if λmax(Q) > 0

0, otherwise
. (4.81)

Summing up the previous results, we can state that

υ(min)
n ≥ 0 (4.82)

υ(max)
nm ≤ 2 max

h
C ′h(L(max))

+ 2l(max)
n max

h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))

(4.83)

where we have considered the worst case of N = NG∩S .

Then, ΥF,τ is a P-matrix if the following condition is fulfilled [74, Prop. 4.3]:

∑

m∈N\{n}

(
υ

(max)
nm

υ
(min)
n + τ

)
(4.84)

≤ 2

τ

∑

m∈N\{n}

(
max
h

C ′h(L(max))

+ l(max)
n max

h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
))))

(4.85)

≤ 2(N − 1)

τ
max
h

C ′h(L(max))

+
2L(max)

τ
max
h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))

< 1. (4.86)

Evidently, the previous inequality is verified for any regularization parameter τ satisfying

τ > 2(N − 1) max
h

C ′h(L(max)) + 2L(max) max
h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))

.

(4.87)

Finally, note that

max
h

(
max
x∈Ωx

C ′′h
(
L(P)(h) +

∑

m∈N

(
em(h) + δT

mxm(h)
)))
≤ max

h

(
max

L(min)≤x≤L(max)
C ′′h(x)

)
. (4.88)

In consequence, we can substitute the term on the left-hand side with the term on the right-hand

side of (4.88), maintaining the validity of the inequality in (4.87). This completes the proof of

Theorem 4.2(b). �
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4.B Cooperative DSM Approach

4.B.1 Proof of Theorem 4.3

By [83, Th. 2], Algorithm 4.2 converges to a stationary solution of the social problem in (4.30)

if the following conditions are satisfied: (a) the objective function f
(D)
n (xn,x−n) in (4.31) is

convex on Ωxn for any x−n ∈ Ωx−n , ∀n ∈ N ; and (b) the regularization parameter τ satisfies

τ ≥ Lf/2−minn∈N
(
υ

(min)
n

)
, where Lf denotes the Lipschitz constant of ∇xf

(D)(x) on Ωx and

υ
(min)
n is defined in (4.75). Recall that the individual strategy sets Ωxn in (4.12) are closed and

convex and that the set Ωx is bounded.

Condition (a) is satisfied under the setting of Theorem 4.1. Therefore, we just need to prove

that (4.35) implies condition (b) above. Recalling that f (D)(x) =
∑

n∈N f
(D)
n (xn,x−n), with

f
(D)
n (xn,x−n) defined as in (4.31), and the definitions of the partial Jacobian matrices of F(x) =(
∇xnfn(xn,x−n)

)N
n=1

given in (4.52)–(4.54), the previous statement comes readily from the

following:

Lf ,
∥∥H(x)

∥∥
∞ = max

i

∑

j

∣∣Hij(x)
∣∣ (4.89)

≤ max
h

max
x∈Ωx

(
δT
nδn

(
2C ′h

(
L(h)

)
+ C ′′h

(
L(h)

)(
ln(h) +

L(P)(h)

N

))
(4.90)

+
∑

m∈N\{n}
δT
mδm

(
C ′h
(
L(h)

)
+ C ′′h

(
L(h)

)(
lm(h) +

L(P)(h)

N

)))
(4.91)

≤ 2 max
h

max
x∈Ωx

(
(N + 1)C ′h

(
L(h)

)
+ C ′′h

(
L(h)

)
L(h)

)
(4.92)

≤ 2 max
h

(
(N + 1)C ′h(L(max)) + max

L(min)≤x≤L(max)

(
C ′′h(x)x

))
(4.93)

with H(x) denoting the Hessian of f (D)(x) and δn defined as in (4.13). This concludes the proof

of Theorem 4.3.
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Noncooperative Day-Ahead Bidding Strategies for

Demand-Side Expected Cost Minimization with Real-Time

Adjustments - A GNEP Approach

Abstract—The envisioned smart grid aims at improving the interaction between the supply- and the demand-

side of the electricity network, creating unprecedented possibilities for optimizing the energy usage at different

levels of the grid. In this paper, we propose a distributed demand-side management (DSM) method intended

for smart grid users with load prediction capabilities, who possibly employ dispatchable energy generation and

storage devices. These users participate in the day-ahead market and are interested in deriving the bidding,

production, and storage strategies that jointly minimize their expected monetary expense. The resulting day-

ahead grid optimization is formulated as a generalized Nash equilibrium problem (GNEP), which includes global

constraints that couple the users’ strategies. Building on the theory of variational inequalities, we study the main

properties of the GNEP and devise a distributed, iterative algorithm converging to the variational solutions of the

GNEP. Additionally, users can exploit the reduced uncertainty about their energy consumption and renewable

generation at the time of dispatch. We thus present a complementary DSM procedure that allows them to perform

some unilateral adjustments on their generation and storage strategies so as to reduce the impact of their real-time

deviations with respect to the amount of energy negotiated in the day-ahead. Finally, numerical results in realistic

scenarios are reported to corroborate the proposed DSM technique.

Index Terms—Day-Ahead/Real-Time Demand-Side Management, Game Theory, Generalized Nash Equi-

librium Problem, Proximal Decomposition Algorithm, Smart Grid, Variational Inequality.

This chapter is an exact reproduction of [88] with the exception of pagination.
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5.1 Introduction

The electricity distribution infrastructure is facing a profound transformation with the devel-

opment of the smart grid concept, which improves the interaction between the supply- and

the demand-side of the network by means of demand-side management (DSM) techniques. In-

deed, taking advantage of information and communication technologies, DSM methods introduce

advanced mechanisms for encouraging the demand-side to participate actively in the network

optimization process [12]. Furthermore, DSM, properly integrated with distributed energy gen-

eration (DG) and distributed storage (DS), is considered an increasingly essential element for

implementing the smart grid paradigm and balancing massive energy production from renewable

sources. These concepts allow for an immense opportunity for optimizing the energy grid and

energy usage at different levels of the network.

The short-term electricity market1 consists mainly of a day-ahead market, which produces

financially binding schedules for energy supply and demand before the operating day, and a

real-time market, used to balance day-ahead and real-time energy requirements [34, Ch. 1.2].

In line with the time granularity of the energy trading process, day-ahead and real-time DSM

methods are successfully employed in a complementary fashion in practical situations [105]. In

particular, a day-ahead demand-side optimization allows energy users to efficiently manage their

electricity consumption and provides the supply-side with an estimation of the amount of energy

to be delivered over the upcoming day, so that the production can be planned accordingly [104].

Nonetheless, when the consumption schedule is not correctly predicted by the users, the supply-

side incurs additional costs that are transferred to the demand-side in the form of penalty

charges [111, 112]. On the other hand, real-time DSM techniques bring the grid optimization

process to a finer time scale, allowing to take into consideration possible contingencies in the

supply-side and reducing the uncertainties induced by the renewable energy sources and by the

randomness of the users’ consumption (see, e.g., [57, 94]).

A common DSM procedure is energy consumption scheduling (ECS) [51,72,73], which modi-

fies the demand profile by shifting flexible energy consumption to off-peak hours. The implemen-

tation of ECS techniques has been shown to be successful in diminishing the peak-to-average

ratio (PAR) of the energy demand curve, from which both demand- and supply-side benefit in

terms of reduced energy cost, CO2 emissions, and overall power plants requirements [5]. However,

since the users’ inconvenience must be taken into account (e.g., the rescheduling of activities

results in lost services for industrial customers [55]), ECS presents flexibility limitations that can

be overcome by incorporating dispatchable DG and DS into the demand-side of the network. The

combined day-ahead optimization of dispatchable DG and DS has been studied in [84,85] assum-

1Medium- and long-term electricity trading between producers and retailers/consumers, which take place through futures
markets and bilateral contracts [34, Ch. 1.2], are not the focus of the present paper.
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ing deterministic consumption profiles. However, this approach cannot accommodate potential

real-time deviations from the users’ expected energy consumption, neither the randomness of

their renewable sources.

Additionally, to achieve a realistic smart grid model, some global requirements, e.g., lower

and upper bounds on the aggregate load at specific time intervals [113], must be imposed to

comply with the physical constraints of both the supply and the power grid. Besides, the energy

price curve, derived by combining the production offers of the individual energy generators in

the supply-side of the network, is only valid within a certain range. These limits can be also

established so as to force the desired shaping of the aggregate load, e.g., in order to reduce the

PAR. By all means, such global constraints result in a coupling between the strategies of the

users that has not been addressed in the literature yet.

The main contribution of this paper is to fill the gap in considering the above global grid

requirements and to propose a novel DSM method that consists in a day-ahead optimization in

the presence of coupling constraints among smart grid users, followed by a real-time optimization.

More specifically, the DSM is carried out through (see Fig. 5.2): i) a day-ahead bidding process

where demand-side users with DG, DS, and additional load prediction capabilities minimize

their expected monetary expense in a competitive market environment; ii) successive real-time

adjustments of the generation and storage strategies that exploit the reduced uncertainty about

the users’ energy consumption at the time of dispatch.

During the day-ahead bidding process, the subscribers’ consumption and renewable genera-

tion are still uncertain: these quantities are thus modeled as random variables. Based on the cor-

responding probability distributions, the users individually calculate their bidding, dispatchable

production, and storage strategies in a distributed fashion with the objective of minimizing their

expected monetary expense. Given the selfish nature of the users and the global requirements on

their aggregate load, we formulate the bidding process as a generalized Nash equilibrium prob-

lem (GNEP) [74].2 Building on the variational inequality (VI) framework [74,77,78], we analyze

the existence of variational solutions of the GNEP. However, the coupling constraints prevent

the application of well-known game theoretical decomposition methods, making the design of

distributed algorithms a difficult task. In order to deal with the coupling in a distributed way,

we propose a pricing-based, iterative scheme that converges to the variational solutions under

some technical conditions. Indeed, this paper is the first attempt towards the solution of such a

problem in the smart grid literature. Interestingly, we also show that the proposed framework

can be easily adapted to incorporate ECS to the optimization of the bidding strategies.

Once the day-ahead bidding process has taken place, and as the dispatch time approaches,

users gain a better knowledge about their energy needs and renewable generation. Based on

2A cooperative method applied to the same framework and that neglects the coupling constraints has been addressed in [87].
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this coming information, we also devise a real-time method for repeatedly recalculating the

production and storage strategies throughout the day period to alleviate the impact of real-time

deviations with respect to their day-ahead bid loads.

The problem of deriving the optimal bidding strategies of energy generators and retailers

in the sequence of different trading markets has been addressed in a number of works in the

power systems literature (a good summary is given in [114]). In such context, the involved

agents determine the most profitable combination of buying/selling offers, while dealing with

the uncertainty associated with the forecast energy prices [113]. The present paper tackles a

substantially different problem: under the smart grid paradigm, energy prices directly depend

on the demand-side users’ strategies and, therefore, our stochastic formulation rather refers to

the uncertainty induced by the end users’ energy consumption and renewable generation.

The rest of the paper is structured as follows. Sections 5.2 and 5.3 introduce the overall

smart grid framework and the proposed DSM method. Section 5.4 describes the day-ahead DSM

approach with coupled strategies of the users. Section 5.5 presents a real-time procedure to adjust

the users’ production and storage strategies. Section 5.6 illustrates the proposed methods and

algorithms through experimental evaluations and comparisons with ECS approaches. Finally,

we provide some conclusions in Section 5.7.

Notation. The following notation is used throughout the paper. Lowercase and uppercase bold-

face denote vectors and matrices, respectively. The operator � (�) for vectors is defined compo-

nentwise, while for matrices it refers to the positive (semi) definiteness property. The matrix Ia

is the a-dimensional identity matrix, while 0 is the zero vector. By (a, b) we denote the vertical

concatenation of the scalar or vector arguments a and b,
(
xa
)A
a=1

represents the vertical concate-

nation of scalar or vector arguments xa ordered according to the index a, and {xa}a∈A indicates

the set of elements xa with indices a ∈ A. The operator Diag(·) results in a diagonal matrix

with elements given by the the vector argument or in a block-diagonal of the matrix arguments,

whereas ⊗ denotes the Kronecker product. Lastly, the operator (·)+ , max(·, 0) extracts the

positive part of the scalar argument.

5.2 Smart Grid Model

The modern power grid is a complex network that can be conveniently divided into [3, 57]: i)

supply-side (energy producers and providers); ii) central unit (regulation authority that coordi-

nates the proposed demand-side bidding process); iii) demand-side (end users). In this paper, we

focus our attention on the demand-side of the smart grid, which is introduced in Section 5.2.1

and further refined in Sections 5.2.2 and 5.3.1, whereas the supply-side and the central unit are

modeled as simply as possible.
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Figure 2: Caption.
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Figure 5.1: Connection scheme between the smart grid and one active user consisting of: home appliances (HA),
renewable energy source (RES), dispatchable distributed generation (DG) and distributed storage (DS).

5.2.1 Demand-Side Model

Demand-side users, whose associated set is denoted by D, are characterized in the first place

by the individual per-slot net energy consumption en(h) indicating the energy needed by user

n ∈ D to supply his appliances at time-slot h in the time period of analysis, which corresponds

to a day. This term also accounts for eventual non-dispatchable (renewable) energy resources

that the user may have.3 In order to tackle with the uncertainties related to the future load

demands and to the renewable sources, en(h) is modeled as a random variable with pdf fen(h)(·)
and cdf Fen(h)(·).

Our model distinguishes between passive and active users. Passive users are basically energy

consumers and resemble traditional demand-side users, whereas active users indicate those con-

sumers participating in the demand-side bidding process, i.e., reacting to changes in the cost per

unit of energy by modifying their day-ahead bidding strategies. For convenience, we group the

P passive users into the set P ⊂ D and the N active users into the set N , D\P. We suppose

that each active user can derive his individual load and renewable production statistics from his

energy consumption history and data measurements, i.e., we suppose that fen(h)(·) and Fen(h)(·)
are known. Furthermore, in order to participate in the optimization process, active users are

connected not only to the power distribution grid, but also to a communication infrastructure

that enables bidirectional communication between their smart meter and the central unit [12]

(see Fig. 5.1). Lastly, we conveniently divide the day period into H time-slots.

5.2.2 Energy Generation and Storage Model

Let us use G ⊆ N to denote the subset of users possessing dispatchable DG (e.g., internal

combustion engines, gas turbines, or fuel cells). For users n ∈ G, gn(h) ≥ 0 represents the per-

3Non-dispatchable sources, having only fixed costs, imply no strategy regarding energy production, unlike dispatchable
generators (see Section 5.2.2).
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Figure 5.2: Schematic representation of the proposed DSM method, consisting of day-ahead bidding process and
real-time adjustments.

slot energy production profile at time-slot h. Introducing the energy production scheduling vector

gn ,
(
gn(h)

)H
h=1

, we have that gn ∈ Ωgn , where Ωgn is the strategy set for dispatchable energy

producer n ∈ G (see Section 5.6). Moreover, the production cost function Wn

(
gn(h)

)
gives the

variable production costs (e.g., the fuel costs) incurred by user n ∈ G for generating the amount

of energy gn(h) at time-slot h, with Wn(0) = 0.

Likewise, we use S ⊆ N to denote the subset of users owning DS devices. Users n ∈ S are

characterized by the per-slot energy storage profile sn(h) at time-slot h: we have sn(h) > 0 when

the storage device is to be charged, sn(h) < 0 when the storage device is to be discharged,

and sn(h) = 0 when the device is inactive. Introducing the energy storage scheduling vector

sn ,
(
sn(h)

)H
h=1

, it holds that sn ∈ Ωsn , being Ωsn the strategy set for energy storer n ∈ S (see

Section 5.6).4

Let us now introduce the individual per-slot energy load

ln(h) , en(h)− gn(h) + sn(h) (5.1)

which gives the real-time energy flow between user n ∈ N and the grid at time-slot h, with

ln(h) > 0 when user n purchases energy from the grid and ln(h) < 0 when user n sells energy

to the grid, as shown schematically in Fig. 5.1.

4Energy storage bears implicit costs related to the intrinsic inefficiency of the storage device, e.g., eventual leakage (see

Section 5.6) or non-ideal charging/discharging efficiencies (cf. [84]), rather than direct variable costs as dispatchable
generation.
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5.3 DSM Model

We are now ready to introduce the proposed demand-side optimization model along with the

DSM approach by which active users determine their bidding, production, and storage strategies

at two different time granularities (see Fig. 5.2). The procedure described in the following is

consistent with the actual functioning of electricity markets (see, e.g., [34, Ch. 1] for more

details) allowing multi-round auctions [115].

5.3.1 Energy Load Bidding Model

Let us denote by ẽn(h) the per-slot bid net energy consumption, i.e., the day-ahead amount of

energy (to be optimized) that user n ∈ N commits to consume at time-slot h. The corresponding

bidding strategy vector is ẽn ,
(
ẽn(h)

)H
h=1

, and the bidding strategy set Ωẽn can be expressed

as

Ωẽn ,
{
ẽn ∈ RH : χ(min)

n (h) ≤ ẽn(h) ≤ χ(max)
n (h), ∀h

}
(5.2)

with χ
(min)
n (h) and χ

(max)
n (h) denoting the minimum and maximum per-slot bidding consump-

tion, respectively.

Let us define the per-slot bid energy load of user n ∈ N as

l̃n(h) , ẽn(h)− gn(h) + sn(h) (5.3)

and the strategy vector as xn ,
(
xn(h)

)H
h=1

, with

xn(h) ,
(
ẽn(h), gn(h), sn(h)

)
. (5.4)

Taking into account the bidding strategy set Ωẽn in (5.2), and the sets Ωgn and Ωsn introduced

in Section 5.2.2, the overall strategy set for a generic user n ∈ N is given by

Ωxn ,
{
xn ∈ R3H : ẽn ∈ Ωẽn ,gn ∈ Ωgn , sn ∈ Ωsn

}
(5.5)

with gn = 0 if n /∈ G and sn = 0 if n /∈ S.

5.3.2 Energy Cost and Pricing Model

This section introduces the cost model regulating the energy prices. Typically, during the day-

ahead market, the different energy generators in the supply-side (each of them characterized by

a specific price curve) submit their production offers; likewise, consumers and retailers submit

their consumption bids. This process determines the energy prices and the traded quantities

[34, Ch. 1.2]. Since in the present paper we are particularly interested in the demand-side of

the network, we can abstract this procedure by considering a single price curve resulting from
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aggregating the individual curves of each generator in the supply-side; this is a well-established

procedure in the smart grid literature (c.f. [51, 94,114]).

With this objective in mind, let Ch(·) be the function indicating the cost per unit of energy

at time-slot h. Within the day-ahead bidding process, demand-side users induce the per-slot

aggregate bid energy load L̃(h) and thus determine the price per unit of energy Ch
(
L̃(h)

)
, which

remains fixed during the day period. In this paper, we adopt a linear cost function per unit of

energy:

Ch
(
L̃(h)

)
= KhL̃(h). (5.6)

The overall variable costs to supply the amount L̃(h) are then given by Ch
(
L̃(h)

)
L̃(h) =

KhL̃
2(h), which corresponds to the quadratic grid cost function widely used in the smart grid

literature (e.g., in [51,94]). In general, the grid coefficients Kh > 0 are different at each time-slot

h, since the energy production varies along the day period according to the aggregate energy

demand and to the availability of intermittent energy sources.

Let L̂(P)(h) denote the predicted per-slot aggregate energy consumption associated with the

passive users: then, the per-slot aggregate bid energy load L̃(h) can be expressed as

L̃(h) , L̂(P)(h) +
∑

n∈N
l̃n(h) (5.7)

which depends on the users’ strategies through l̃n(h) in (5.3), and is subject to the following

global constraint.

Constraint 1 (on the per-slot aggregate bid energy load). The per-slot aggregate bid

energy load in (5.7) must satisfy

L(min)(h) ≤ L̃(h) ≤ L(max)(h), ∀h (5.8)

where L(min)(h) > 0 (resp. L(max)(h) > 0) denotes the minimum (resp. the maximum) per-

slot aggregate energy load within which Ch
(
L̃(h)

)
resembles the energy price curve obtained

by aggregating the production costs of the individual energy generators in the supply-side. In

particular, a real-time aggregate demand lower than L(min)(h) may imply additional costs for

the supply-side if this requires turning off some base load power plant [113]. On the other hand,

L(max)(h) can be interpreted as the upper bound on the per-slot aggregate bid energy load that

allows to satisfy the real-time aggregate demand with a certain outage probability. Alternatively,

these boundaries can be chosen to guarantee a certain PAR of the real-time aggregate load with

high probability. We suppose that the central unit can set L(min)(h), L(max)(h) and predict

L̂(P)(h) based on the available past statistics; an overview on load forecasting techniques can be

found in [33].
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Each active user n ∈ N derives his bid energy load vector l̃n ,
(
l̃n(h)

)H
h=1

during the

day-ahead demand-side bidding process. At a given time-slot h, if the user attains to his day-

ahead bid l̃n(h), he simply pays KhL̃(h)l̃n(h); otherwise, he can possibly deviate from l̃n(h) by

purchasing/selling a different amount of energy ln(h), for which he pays/perceives KhL̃(h)ln(h),

while incurring in the following penalties:

αhKhL̃(h)
(
ln(h)− l̃n(h)

)
, if ln(h) > l̃n(h) (5.9)

βhKhL̃(h)
(
l̃n(h)− ln(h)

)
, if ln(h) < l̃n(h) (5.10)

where αh, βh ∈ (0, 1] are the penalty parameters for exceeding and for falling behind the nego-

tiated load l̃n(h), respectively.

Given the bid energy loads
{
l̃n(h)

}H
h=1

, the cumulative monetary expense incurred by user

n ∈ N for exchanging the energy loads
{
ln(h)

}H
h=1

with the grid (including the aforementioned

penalties for deviations and taking into account the amount of produced energy
{
gn(h)

}H
h=1

)

can be expressed as5

p(N )
n (̃ln, l̃−n) ,

H∑

h=1

Kh

(
l̃−n(h) + l̃n(h)

)(
ln(h) + ϑh

(
ln(h)− l̃n(h)

))
+

H∑

h=1

Wn

(
gn(h)

)
(5.11)

where l̃−n ,
(
l̃−n(h)

)H
h=1

is the aggregate bid energy load vector of the other users, with

l̃−n(h) , L̃(h)− l̃n(h) = L̂(P)(h) +
∑

m∈N\{n}
l̃m(h) (5.12)

and where we have introduced the penalty function

ϑh(x) , αh(x)+ + βh(−x)+. (5.13)

The penalty parameters
{
αh, βh

}H
h=1

are established before the day-ahead bidding process with

the objective of discouraging real-time deviations from the bid loads, either upwards or down-

wards. For instance, the central unit would choose αh > βh during hours of high expected

consumption, and αh < βh during hours of low expected consumption.

The proposed pricing model does not explicitly deal with the billing of passive users, as our

DSM method is not thereby affected. However, in order to encourage demand-side participation

in the bidding process, passive users may be penalized with respect to the active ones by applying

an overprice to the purchased energy; see Appendix 5.A.1 for more details.

5 In light of the described penalty system, L(min)(h) in (5.8) also prevents the active users from intentionally decreasing the

aggregate bid energy load L̃(h) to the level below which the penalties given by αh are insufficient to compensate for the
additional generation costs of the upward real-time deviations.
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5.3.3 Proposed DSM Approach

In our DSM procedure, the active users individually optimize their bidding, production, and

storage strategies at two different time granularities, i.e., day-ahead and real-time, as illustrated

in Fig. 5.2. Before going into the detailed description, let us summarize the temporal sequence

of the proposed DSM method.

Day-ahead optimization (c.f. Section 5.4). In the day-ahead bidding process, the users’ goal

is to minimize their individual expected cumulative expense over the day period

fn(xn, l̃−n) , E
{
p(N )
n (∆xn, l̃−n)

}
(5.14)

where ∆ , (IH ⊗ δ)T and δ , (1,−1, 1), so that δTxn(h) = l̃n(h) and ∆xn = l̃n. The expected

cumulative expense in (5.14) is obtained in closed-form as given in Lemma 5.1, where we have

introduced the following notation:

φen(h)

(
xn(h)

)
, E

{
ln(h) + ϑh

(
ln(h)− δTxn(h)

)}
(5.15)

= (1 + αh)ēn(h)− gn(h) + sn(h)− αhẽn(h)

+ (αh + βh)
(
ẽn(h)Fen(h)

(
ẽn(h)

)
−Gen(h)

(
ẽn(h)

))
(5.16)

Gen(h)(x) ,
∫ x

−∞
tfen(h)(t)dt (5.17)

ēn(h) , E{en(h)}, and δg , (0, 1, 0).

Lemma 5.1 (Expected Cumulative Expense). Given the per-slot bid energy loads l̃n, the

expected cumulative expense fn(xn, l̃−n) in (5.14) is given by

fn(xn, l̃−n) =

H∑

h=1

Kh

(
l̃−n(h) + δTxn(h)

)
φen(h)

(
xn(h)

)
+

H∑

h=1

Wn

(
δT
g xn(h)

)
.

Proof. See Appendix 5.A.2.

The grid coefficients
{
Kh

}H
h=1

and the penalty parameters
{
αh, βh

}H
h=1

are fixed before the day-

ahead bidding process [3, 57] and broadcast to the demand-side users. Then, each active user

reacts to the prices
{
KhL̃(h)

}H
h=1

provided by the central unit through iteratively adjusting his

per-slot bid energy load vector l̃n. Here, his goal is to minimize his expected cumulative expense,

subject to both local and global requirements given by Ωxn and Constraint 1, respectively. This

optimization problem, however, is not convex and calls for a centralized optimization, which

would lead to non-scalable solution algorithms and privacy issues (see [85] for details). For this

reason, in this paper we focus on more appealing distributed system designs, as described in

Section 5.4.

Real-time optimization (c.f. Section 5.5). Once the day-ahead bidding process finalizes, the
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prices per unit of energy
{
KhL̃(h)

}H
h=1

remain fixed. However, as the dispatch time-slot ap-

proaches, active users have more reliable information about their energy needs. Hence, they can

exploit this coming information to adjust their production and storage strategies gn and sn in

real-time. In doing so, they aim at reducing the deviation of the real-time strategy with respect

to the bid energy load, i.e.,
∣∣ln(h)− l̃n(h)

∣∣, so as to minimize their expected expense for the rest

of the day period.

After performing the day-ahead and the real-time optimization, the active users are finally

billed according to (5.11).

5.4 Day-Ahead DSM for Expected Cost Minimization

In this section, we formulate the day-ahead bidding system introduced in Section 5.3 as a gen-

eralized Nash equilibria problem (GNEP). To this end, we first introduce some preliminary

definitions. Let us rewrite Constraint 1 in the form of shared constraints q(x) ≤ 0, where

q(x) , (q(min)(x),q(max)(x)) : R3HN → R2H with x ,
(
xn
)N
n=1

and

q(min)(x) ,
(
L(min)(h)−

∑

n∈N
δTxn(h)− L̂(P)(h)

)H
h=1

(5.18)

q(max)(x) ,
( ∑

n∈N
δTxn(h) + L̂(P)(h)− L(max)(h)

)H
h=1

.

Note that q(x) is convex in x ∈ Ωx ,
∏
n∈N Ωxn . The strategy set of user n ∈ N can be then

expressed as (c.f. (5.5))

Θxn (̃l−n) ,
{
xn ∈ Ωxn : q(xn, l̃−n) ≤ 0

}
(5.19)

whereas the joint strategy set is given by

Θx ,
{
x ∈ R3HN : xn ∈ Ωxn , ∀n ∈ N and q(x) ≤ 0

}
. (5.20)

We formulate the system design as the GNEP G =
〈
Θx, f

〉
, with Θx given in (5.20), f ,(

fn(xn, l̃−n)
)N
n=1

, and fn(xn, l̃−n) defined in (5.18). Here, each user is a player who aims at

minimizing his expected cumulative expense subject to both individual and global constraints

(c.f. (5.19)):

min
xn

fn(xn, l̃−n)

s.t. xn ∈ Θxn (̃l−n)

∀n ∈ N . (5.21)

The GNEP G =
〈
Θx, f

〉
is the problem of finding a feasible strategy profile x? ,

(
x?n
)N
n=1

such

that fn(x?n, l̃
?
−n) ≤ fn(xn, l̃

?
−n), ∀xn ∈ Θxn (̃l?−n), for all players n ∈ N [79]. The solution of the

GNEP is called (generalized) Nash equilibrium. We refer to [74, Sec. 4.3] for a detailed overview
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on GNEPs.

5.4.1 Variational Solutions

GNEPs with shared constraints such as (5.21) are difficult problems to solve. They can be formu-

lated as quasi-variational inequality (QVI) problems [77]; however, in spite of some interesting

and promising recent advancements (see, e.g., [90,91]), no efficient numerical methods based on

the QVI reformulation have been developed yet. Nevertheless, for this type of GNEPs, some VI

techniques can still be employed [74].

Definition 5.1 ( [77, Def. 1.1.1]). Given the vector-valued function F : Θx → R3HN with Θx

defined in (5.20), the VI problem VI(Θx,F) consists in finding a point x? ∈ Θx such that

(x− x?)TF(x?) ≥ 0, ∀x ∈ Θx. (5.22)

Indeed a solution of the GNEP can be computed by solving a suitably defined VI problem,

as stated in the next lemma, whose proof is based on standard techniques [74, 116, 117]; see

Appendix 5.B.1 for more details.

Lemma 5.2. Given the GNEP G =
〈
Θx, f

〉
, suppose that the following conditions are satisfied:

for all n ∈ N ,

(a) The strategy sets Ωgn and Ωsn are closed and convex;

(b) The production cost function Wn(x) is convex, ∀n ∈ G;

(c) χ
(min)
n (h) and χ

(max)
n (h) in (5.2) are chosen such that the pdf of the per-slot net energy

consumption satisfies

fen(h)(x) ≥ 1

(αh + βh)L(min)(h)

(
αh + 1

)2

2
(5.23)

∀x ∈
[
χ

(min)
n (h), χ

(max)
n (h)

]
.

Let F(x) ,
(
∇xnfn(xn, l̃−n)

)N
n=1

. Then, every solution of the VI(Θx,F) is a solution of the

GNEP.

Remark 5.1 (on Lemma 5.2). (a) Given Ωẽn in (5.2), the closeness and convexity of Ωgn and

Ωsn ensure the same properties for the strategy set Ωxn in (5.5). For instance, the dispatchable

production and storage models adopted in [84] and evoked in Section 5.6 enjoy such properties.

(b) The convexity of Wn(·) simply implies that the production cost function does not tend to

saturate as gn(h) increases [84, Remark 1.1]. (c) When the distribution of en(h) is unimodal,

condition (5.23) limits the displacement of ẽn(h) around the mode of en(h) in order to ensure the

convexity of the objective function fn(xn, l̃−n). On the contrary, when the distribution of en(h)

is multimodal, χ
(min)
n (h) and χ

(max)
n (h) must be carefully selected to guarantee the convexity of
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fn(xn, l̃−n). A heuristic procedure to deal with such cases is presented in Appendix 5.B.2. These

considerations also apply to condition (5.26) given in Theorem 5.1(a.2).

Note that, when passing from the GNEP (5.21) to the associated VI, not all the GNEP’s

solutions are preserved: Lemma 5.2 in fact does not state that any solution of the GNEP is also

a solution of the VI (see [75] for further details and examples). The solutions of the GNEP that

are also solutions of the VI(Θx,F) are termed as variational solutions [74, 75] and enjoy some

remarkable properties that make them particularly appealing in many applications. Among all,

they can be interpreted as the solutions of a Nash equilibrium problem (NEP) with pricing, as

detailed next.

Consider the following augmented NEP with N + 1 players, in which the “new” (N + 1)-th

player (at the same level of the other N players) controls the price variable λ ∈ R2H
+ :

min
xn

fn(xn, l̃−n) + λTq(xn, l̃−n)

∀n ∈ N
s.t. xn ∈ Ωxn

min
λ≥0

−λTq(x).

(5.24)

We can interpret λ as the overprices applied to force the users to satisfy the shared constraints

q(x). Indeed, when q(x) ≤ 0, the optimal price will be λ = 0 (there is no need to punish the

users if the constraints are already satisfied).

We can now establish the connection between the VI(Θx,F) and the augmented NEP (5.24)

[74, Lem. 4.4].

Lemma 5.3. Under the setting of Lemma 5.2, (x?,λ?) is a Nash equilibrium of the NEP (5.24) if

and only if x? is a solution of the VI(Θx,F), i.e., a variational solution of the GNEP G =
〈
Θx, f

〉
,

and λ? is the multiplier associated with the shared constraints q(x?) ≤ 0 in Θx.

Based on Lemma 5.3, we are now able to analyze and compute the variational solutions of

the GNEP (5.21) as solutions of the NEP (5.24), building on recent results in [76]. The following

is a standard existence result of variational solutions, based on solution analysis of VIs [77].

Lemma 5.4. Given the GNEP G =
〈
Θx, f

〉
, suppose that the conditions in Lemma 5.2 are

satisfied and that the strategy sets Ωgn and Ωsn are additionally bounded. Then, the GNEP has

variational solutions.

In the next section, we build on the game theoretical pricing-based interpretation (5.24)

(c.f. Lemma 5.3) to design distributed algorithms that converge to a variational solution of the

GNEP.
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5.4.2 Distributed Algorithms

We focus on the class of totally asynchronous best-response algorithms, where some users may

update their strategies more frequently than others and they may even use outdated information

about the strategy profiles adopted by the other users. Let Tn ⊆ T ⊆ {0, 1, 2, . . .} be the set of

times at which user n ∈ N updates his own strategy xn, denoted by x
(i)
n at the ith iteration. We

use tn(i) to denote the most recent time at which the strategy of user n is perceived by the central

unit at the ith iteration. We assume that some standard conditions in asynchronous convergence

theory (see (A1)–(A3) in [85, Sec III-C]), which are fulfilled in any practical implementation,

hold for Tn and tn(i), ∀n ∈ N .

According to the asynchronous scheduling, each user updates his strategy by minimizing his

cumulative expense over the day period, given the most recently available value of the per-slot

aggregate bid energy load

L̃(t(i))(h) , L̂(P)(h) +
∑

m∈N
l̃(tm(i))
m (h) (5.25)

that considers the bid energy loads of the other users as perceived by the central unit, which can

possibly be outdated when computation occurs. Each user n then obtains l̃
(t(i))
−n ,

(
l̃
(t(i))
−n (h)

)H
h=1

,

with l̃
(t(i))
−n (h) , L̃(t(i))(h)− l̃(tn(i))

n (h).

We can compute the variational solutions of the GNEP (5.21) by solving the augmented NEP

(5.24). This can be done using the recent framework in [76], which leads to the asynchronous

proximal decomposition algorithm (PDA) described in Algorithm 5.1, and whose convergence

conditions are given in Theorem 5.1.

Theorem 5.1. Given the GNEP G =
〈
Θx, f

〉
, suppose that:

(a.1) Conditions (a)–(b) in Lemma 5.2 are satisfied;

(a.2) χ
(min)
n (h) and χ

(max)
n (h) in (5.2) are chosen such that the pdf of the per-slot net energy

consumption satisfies

fen(h)(x) ≥ 1

(αh + βh)L(min)(h)

((αh + 1)2

4
+N

(
max(αh, βh) + αh + βh

))
(5.26)

∀x ∈
[
χ

(min)
n (h), χ

(max)
n (h)

]
, for all n ∈ N ;

(a.3) The penalty parameters are such that αh + βh ≤ 1,∀h;

(b) The regularization parameter τ satisfies

τ >
3

2
(N − 1) max

h
Kh +

√
9

4
(N − 1)2 max

h
K2
h + 3HN (5.27)

(c) {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm < RM < 2.
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Algorithm 5.1 Asynchronous PDA with Coupling Constraints

Data : Set i = 0 and the initial centroids
(
x̄n
)N
n=1

= 0 and λ̄ = 0. Given
{
Kh, αh, βh

}H
h=1

,{
ρ(i)
}∞
i=0

, τ > 0, and any feasible starting point z(0) ,
((

x
(0)
n

)N
n=1

,λ(0)
)

with

λ(0) ≥ 0:

(S.1) : If a suitable termination criterion is satisfied: STOP.

(S.2) : For n ∈ N , each user computes x
(i+1)
n as

x(i+1)
n =





x?n ∈ argmin
xn∈Ωxn

{
fn
(
xn, l̃

(t(i))
−n

)
+ (λ(i))Tq

(
xn, l̃

(t(i))
−n

)
+
τ

2
‖xn − x̄n‖2

}
, if i ∈ Tn

x
(i)
n , otherwise

End

The central unit computes λ(i+1) as

λ(i+1) = λ? ∈ argmin
λ≥0

{
− λTq(x) +

τ

2
‖λ− λ̄‖2

}

(S.3) : If the NE is reached, then each user n ∈ N sets x
(i+1)
n ← (1− ρ(i))x̄n + ρ(i)x

(i+1)
n

and updates his centroid: x̄n = x
(i+1)
n ; likewise, the central unit sets

λ(i+1) ← (1− ρ(i))λ̄+ ρ(i)λ(i+1) and updates the centroid: λ̄ = λ(i+1).

(S.4) : i← i+ 1; Go to (S.1).

Then, any sequence
{

(x(i),λ(i))
}∞
i=1

generated by Algorithm 5.1 converges to a variational solu-

tion of the GNEP.

Proof. See Appendix 5.B.3.

Remark 5.2 (on Algorithm 5.1). Algorithm 5.1 is a double-loop algorithm in nature. The

inner loop requires the solution of the regularized game in (S.3) via asynchronous best-response

algorithms. In the outer loop, all users n ∈ N and the central unit, which acts as the (N + 1)-th

player, update the centroids {x̄n}n∈N , λ̄ and proceed to solve the inner game again, until an

equilibrium is reached. Observe that the update of {x̄n}n∈N is performed locally by the users

at the cost of no signaling exchange with the central unit.

Remark 5.3 (on Theorem 5.1). The regularization parameter τ determines the trade-off be-

tween the convergence stability and the convergence speed [76]. The peculiarity of the expression

of τ provided in (5.27) is that it can be calculated by the central unit a priori without interfering

with the privacy of the users.

At the beginning of the optimization process, τ is computed as in (5.27) and broadcast,

together with the grid coefficients and the penalty parameters
{
Kh, αh, βh

}H
h=1

, to the demand-

side. At each iteration, any active user can update his strategy by minimizing his objective func-

tion (5.18) based on the most recent values of the aggregate bid energy loads
{
L̃(t(i))(h)

}H
h=1

,
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which are calculated by the central unit referring to the (possibly outdated) individual de-

mands. At the same time, the central unit updates the price variable λ and broadcasts it to

the demand-side. When the equilibrium in (S.3) is reached, the central unit initiates a new

iteration. Observe that it is not necessary to compute the Nash equilibrium in the inner loop

exactly; indeed, inexact solutions do not affect the convergence of Algorithm 5.1 as long as the

error bound goes to zero as the number of iterations grows [74,78]. This process is repeated until

some convergence criterion established by the central unit is fulfilled.

Note that, if we omit Constraint 1, the GNEP (5.21) reduces to a classical NEP, where the

coupling among the players occurs only at the level of the objective functions (as addressed

in [86]). Of course, the framework and algorithm proposed in the present paper contain this

formulation as special case.

5.5 Real-Time Adjustments of the Production and Storage Strategies

In real-time, active users reasonably know the values of their net energy consumption en(h) for

the upcoming time-slot with much less uncertainty than during the day-ahead bidding process.

In this section, we describe how the users can profit from this fact and perform real-time ad-

justments to the calculated production and storage strategies in order to reduce the impact of

the day-ahead uncertainty.

After the day-ahead bidding process, the prices per unit of energy
{
ph = KhL̃(h)

}H
h=1

are

fixed as a result of the energy bid loads of the active users obtained with Algorithm 5.1. Then,

active users are charged in real-time based on such prices, while the differences between their

actual energy requirements and the negotiated day-ahead amounts are subject to the penalties

described in Section 5.3.2 (c.f. (5.11)). In this setting, at each h, active user n ∈ N can exploit

the reduced uncertainty about his net energy consumption en(h) to independently adjust his

production and storage strategies
{
gn(t), sn(t)

}H
t=h

so as to minimize his expected expense for the

remaining time-slots t = h, . . . ,H. At the same time, we can guarantee the following individual

constraints on the per-slot energy load.

Constraint 2 (on the per-slot energy load). Due to physical constraints on the user’s

individual distribution infrastructure, the per-slot energy load ln(h) in (5.1) is bounded as

− l(min)
n ≤ ln(h) ≤ l(max)

n , ∀h (5.28)

where l
(min)
n ≥ 0 and l

(max)
n > 0 are the outgoing and the incoming capacities of user n’s energy

link, respectively.

For modeling simplicity, we assume that, right before each time-slot h, each user n ∈ N
has perfect knowledge of en(h). Nonetheless, he still needs to satisfy the requirements given
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by his production and storage strategy sets Ωgn and Ωsn : in this regard, if the strategies over

different time-slots are coupled (see, e.g., the constraints in Table 5.1), the users have to take

into account the strategies adopted in the previous time-slots. With this objective in mind, let

yn(h) ,
(
gn(h), sn(h)

)
denote the real-time strategy for each time-slot h, and let

(
g?n(t)

)h−1

t=1

and
(
s?n(t)

)h−1

t=1
express the production and storage strategies already fixed in the past time-slots

t = 1, . . . , h− 1. Then, the real-time strategy set for user n ∈ N at h is defined as

Ωyn,h
,
{(

yn(t)
)H
t=h
∈ R2(H−h+1) :

((
g?n(t)

)h−1

t=1
,
(
gn(t)

)H
t=h

)
∈ Ωgn ,

((
s?n(t)

)h−1

t=1
,
(
sn(t)

)H
t=h

)
∈ Ωsn , and − l(min)

n ≤ en(h)− gn(h) + sn(h) ≤ l(max)
n ,∀h

}
(5.29)

Hence, the price paid by user n ∈ N for purchasing energy from the grid at time-slot h

(conditioned on the bid load l̃n(h)) is given by

p
(N )
n,h

(
yn(h) | l̃n(h)

)
, ph

(
en(h) + δT

s−gyn(h)

+ ϑh
(
en(h) + δT

s−gyn(h)− l̃n(h)
))

+Wn

(
δT
g yn(h)

)
(5.30)

where ϑh(x) is defined in (5.13), δs−g , (−1, 1), and where we have conveniently redefined

δg , (1, 0). Likewise, the expected expense for each time-slot t = h+ 1, . . . ,H is

fn,t
(
yn(t) | l̃n(t)

)
, ptE

{
en(t) + δT

s−gyn(t)

+ ϑt
(
en(t) + δT

s−gyn(t)− l̃n(t)
)}

+Wn

(
δT
g yn(t)

)
(5.31)

which can be easily calculated in closed-form using Lemma 5.1. Therefore, at each time-slot h,

each user n ∈ N uses the value of en(h) and the reduced uncertainty about
{
en(t)

}H
t=h+1

to

solve

min
{yn(h)}Ht=h

p
(N )
n,h

(
yn(h) | l̃n(h)

)
+

H∑

t=h+1

fn,t
(
yn(t) | l̃n(t)

)

s.t.
(
yn(t)

)H
t=h
∈ Ωyn,h

.

(5.32)

It is straightforward to observe that p
(N )
n,h

(
yn(h) | l̃n(h)

)
in (5.30) and fn,h

(
yn(h) | l̃n(h)

)
in

(5.31) are both convex in yn(h), while Wn(·) is convex under the assumptions of Lemma 5.2.

Hence, the optimization problem (5.32) is convex in
(
yn(t)

)H
t=h

and can be solved using efficient

convex optimization techniques [62, Ch. 11].

5.6 Numerical Results and Discussions

In this section, we illustrate numerically the performance of the DSM mechanisms described in

Sections 5.4 and 5.5.
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Constraints Parameters{
gn(h) ≤ g(max)

n

}H
h=1

g
(max)
n = 0.4 kW∑H

h=1 gn(h) ≤ γ(max)
n γ

(max)
n = 7.2 kWh

{
sn(h) ≤ max

(
s
(max)
n , cn − qn(h)

)}H
h=1

s
(max)
n = 0.5 kW

cn = 4 kWh{
sn(h) ≥ ξnqn(h− 1)

}H
h=1

ξn = 24
√

0.9

qn(0) = qn(H) qn(0) = 1 kWh

Table 5.1: Dispatchable energy generation and storage models adopted in Section 5.6 (also extensively described
in [84]).

We consider a smart grid of N = 100 active users and P = 900 passive users over a day

period of H = 24 time-slots of one hour each. With the same setup of [86], all demand-side

users n ∈ D have randomly generated average energy consumption curves with daily average of
∑24

h=1 ēn(h) = 12 kWh, with higher consumption during day-time hours (from 08:00 to 24:00)

than during night-time hours (from 00:00 to 08:00) and reaching its peak between 16:00 and

24:00. The grid coefficients are chosen such that
{
Kh

}8

h=1
= Knight and

{
Kh

}24

h=9
= Kday,

with Kday = 1.5Knight as in [51, 84–86], so as to obtain an initial price of 0.15 e/kWh when

real-time penalties are neglected. Furthermore, we set
{
αh
}8

h=1
= 0.2 and

{
αh
}24

h=9
= 0.9,

with
{
βh = 1 − αh

}24

h=1
: this choice penalizes overconsumption during day-time hours and

underconsumption during night-time hours.

We model en(h) as a normal random variable with mean ēn(h) and standard deviation σn(h),

and we choose χ
(min)
n (h) and χ

(max)
n (h) to satisfy Theorem 5.1(a.2). For the sake of simplicity, we

assume that all active users are subject to the same dispatchable production and storage models

summarized in Table 5.1. Here, g
(max)
n denotes the maximum energy production capability and

γ
(max)
n represents the maximum amount of energy that user can generate during the period

of analysis; as for the energy storage model, s
(max)
n indicates the maximum charging rate, ξn

represents the leakage rate, cn denotes the storage capacity, and qn(h) expresses the charge level

at time-slot h, with qn(0) being the initial charge level. Furthermore, all dispatchable generators

are characterized by the production cost function Wn(x) = ηnx, resembling a combustion engine

working in the linear region, with ηn = 0.039 e/kWh.6 Lastly, we consider Constraint 1 with{
L(min)(h)

}H
h=1

= 385 kWh and
{
L(max)(h)

}H
h=1

= 600 kWh.

6The benefit of employing DG and DS is strictly related to the specific parameters of the adopted dispatchable source

and storage device. A comparison of the impact produced by DG, DS, and a combination of the two is given in [84, 85];
furthermore, [86] provides some insight on the relative effect of the bidding strategies with respect to DG and DS strategies.
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Figure 5.3: Results of Algorithm 5.1: (a) Difference between average consumption and bid consumption for a
generic user with three different σn(h); (b) Aggregated average consumption and bidding, production, and storage
strategies.

5.6.1 Day-Ahead DSM for Expected Cost Minimization

Here, we evaluate the performance of the Day-Ahead DSM method proposed in Section 5.4. For

Algorithm 5.1, we impose ‖l(i) − l(i−1)‖2/‖l(i)‖2 ≤ 10−2 and the fulfillment of Constraint 1 as

termination criteria in (S.1), and
{
ρ(i)
}∞
i=0

= 1.

Let us first analyze the results produced by Algorithm 5.1. Fig. 5.3(a) illustrates the per-

slot bid net consumptions ẽn(h) with respect to the average per-slot net consumptions ēn(h)

for a generic active user, using three different standard deviations. Predictably, ẽn(h) is greater

than ēn(h) when αh > βh since the user is more likely to avoid severe penalties for surpassing

the agreed load, and vice versa. Evidently, such displacement becomes greater as the standard

deviation (i.e., the uncertainty) increases. Using σn(h) = 0.75
∣∣ēn(h)

∣∣, Fig. 5.3(b) plots the ag-

gregate bidding, production, and storage strategies obtained from Algorithm 5.1. As expected,

the storage devices are charged at the valley of the energy cost and are discharged at peak hours;

likewise, the dispatchable production is concentrated during day-time hours when the grid prices

are higher.

Now, let us compare Algorithm 5.1 with the PDA in [86, Alg. 2], which is equivalent to

the former but only considers local constraints. From Fig. 5.4(a), it is evident that the aggre-

gate load produced by the PDA does not satisfy Constraint 1 during several hours (namely,

h = 3, . . . , 5, 17, . . . , 23). Let us examine the resulting average expected cumulative expense:

from Fig. 5.4(b), it is straightforward to see that active users achieve consistent savings using
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Figure 5.4: Comparison between [86, Alg. 2] (PDA) and Algorithm 5.1 (PDA with Coupling) with L(min) =
385 kWh and L(max) = 600 kWh, ∀h: (a) Aggregated bid energy loads; (b) Average per-slot expected expenses.

Algorithm 5.1. In particular, the average expected cumulative expense decreases from the initial

value of e2.33 to e1.14 (51.1% less). However, these savings are predictably lower than those

produced by [86, Alg. 2] due to the enforcement of Constraint 1. This is shown clearly by Fig. 5.5,

which compares the convergence of the two algorithms. The PDA in [86, Alg. 2] converges after

just 3 iterations; on the other hand, choosing the starting point z(0) =
(
x?,λ(0)

)
, where x? is

the optimal strategy profile calculated through [86, Alg. 2],7 Algorithm 5.1 converges after 29

iterations. In this respect, we can observe as the average expected cumulative expense increases

after about 7 iterations as a result of the imposition of Constraint 1.

Comparison with ECS Approaches. Algorithm 5.1 is designed to be applied specifically to

the pricing model in Section 5.3.2. Although it cannot be compared with alternative existing

schemes other than [86, Alg. 2] (of which Algorithm 5.1 is a nontrivial generalization), it can be

easily adjusted to accommodate other DSM approaches within said pricing model: this adapt-

ability represents a remarkable feature of our framework. In particular, we extend Algorithm 5.1

to incorporate ECS, perhaps the most popular among the plethora of DSM techniques (see,

e.g., [51,72,73]), into the day-ahead bidding process. In the following, we provide a comparison

between ECS and DS: the former consists in shifting flexible load to off-peak hours (as discussed

in Section 5.1), whereas the latter allows to store cheap energy during off-peak hours for later

use.

7This can be easily implemented by forcing the value of τ in [86, Th. 4(b.1)] and λ(i) = 0 until the optimal strategies
without Constraint 1 are reached.
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Figure 5.5: Comparison between [86, Alg. 2] (PDA) and Algorithm 5.1 (PDA with Coupling) with L(min) =
385 kWh and L(max) = 600 kWh, ∀h: Convergence in terms of average expected expense.

Again, we consider N = 100 active users and P = 900 passive users with the same average

consumption curves used above; furthermore, we impose Constraint 1 with
{
L(min)(h)

}H
h=1

=

415 kWh and
{
L(max)(h)

}H
h=1

= 675 kWh. We assume that ECS enables each active user to shift

4 kWh from peak-hours, i.e., during h = 16, . . . , 24, to other time-slots; on the other hand, we

consider the same setup in Table 5.1 for the energy storage (note that the amount of shiftable

load and the storage device’s capacity are the same). Observing Fig. 5.6(a), it is evident that

Algorithm 5.1 allows to achieve similar aggregate load curves with ECS and DS. Nonetheless,

from Fig. 5.6(b), it emerges that the expected expense obtained with ECS is slightly lower than

that resulting from DS (23.6% and 16.9%, respectively, less than when no DSM approach is

used). This difference can be mainly ascribed to the leakage of the storage device, which is only

partially compensated by the fact that the stored energy can be sold to the grid during peak

hours. On the other hand, the discomfort produced by the rescheduling of activities and the

capital costs associated to controllable appliances and storage devices have not been considered

here, although they are important issues to be taken into account when comparing the two

methods.

5.6.2 Real-Time Adjustments of the Production and Storage Strategies

After implementing the day-ahead optimization based on Algorithm 5.1, we test the real-time

adjustments of the production and storage strategies described in Section 5.5. Here, the less

uncertainty about the users’ consumption corresponds to a reduced standard deviation with

respect to that characterizing the day-ahead optimization. The standard deviation perceived

by user n at each hour h for the upcoming time-slots t = h + 1 . . . H is thus modeled as

σn,h(t) = 0.75
√

(t− h)/H
∣∣ēn(t)

∣∣, with h = 0 corresponding to the day-ahead.
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Figure 5.6: Algorithm 5.1 (PDA with Coupling) applied to ECS and DS, with L(min) = 415 kWh and L(max) =
675 kWh, ∀h: (a) Aggregated bid energy loads; (b) Average per-slot expected expenses.

We use the Monte Carlo method and simulate 1000 normally distributed random consump-

tion curves of a generic active user. Hence, in Fig. 5.7 we plot the histogram of the cumulative

expenses obtained through the real-time adjustments and we compare these results with the

case where the user simply follows his day-ahead production and storage strategies. In this case,

the average expense decreases from e1.07 to e0.96 (i.e., 10.3% less); on the other hand, the as-

sociated variance (i.e., the risk intended as a dispersion measurement [34, Ch. 4.3.1]), decreases

from 0.114 to 0.088 (i.e., 22.8% less). Observe that this procedure can be even more beneficial

in a practical case, where the consumption statistics are estimated by the user and they do not

accurately match the actual distribution.

5.7 Conclusions

In this paper, we propose a noncooperative DSM mechanism based on a pricing model with

real-time penalties, which optimizes the users’ bidding, production, and storage strategies at two

different time granularities, i.e., day-ahead and real-time. In the day-ahead, we consider coupling

constraints on the aggregate load: the grid optimization is thus formulated as a generalized

Nash equilibrium problem and its main properties are studied using the general framework of

variational inequality. We devise a distributed algorithm that allows to compute the variational

solutions of the GNEP with limited information exchange between the central unit and the

demand-side of the grid. Furthermore, in real-time, the users exploit the reduced uncertainty

about their energy consumption and renewable generation to adjust their strategies, alleviating
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Figure 5.7: Histogram of the cumulative expenses of a generic user: (a) With day-ahead strategies from Algo-
rithm 5.1; (b) With additional real-time adjustments.

the impact of their real-time deviations with respect to the day-ahead schedule. Numerical results

show that our day-ahead DSM method consistently diminishes the users’ expected monetary

expenses while fulfilling the global constraints. On the other hand, the real-time adjustments

reduce both the average value and the variance of the user’s actual monetary expense.

5.A Energy Cost and Pricing Model

5.A.1 Energy Pricing for Passive Users

In order to stimulate the demand-side users to participate in the day-ahead bidding process,

passive users may be penalized with respect to the active ones by paying an overprice κh on the

purchased energy as

p(P)
n ,

H∑

h=1

κhKhL̃(h)ln(h), n ∈ P (5.33)

where ln(h) > 0 for users n ∈ P, since we assume that only active users are allowed to sell

energy to the grid.

A procedure to calculate the overprice parameter κh is to guarantee that E
{
p

(P)
n

}
is greater

than the expected cumulative expense when user n ∈ P resembles an active user who simply

bids his expected loads
{
l̄n(h)

}H
h=1

. It is not difficult to show that this condition holds whenever

κh > 1 + αh + βh. (5.34)
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5.A.2 Expected Cost Minimization: Proof of Lemma 5.1

The expected cumulative expense of active user n ∈ N , with per-slot bid energy loads l̃n, is

given by (5.18), where φen(h)

(
xn(h)

)
is defined in (5.15) and developed as

φen(h)

(
xn(h)

)
= ēn(h)− gn(h) + sn(h)

+ αh

∫ ∞

ẽn(h)

(
t− ẽn(h)

)
fen(h)(t)dt+ βh

∫ ẽn(h)

−∞

(
ẽn(h)− t

)
fen(h)(t)dt (5.35)

with ēn(h) = E{en(h)}. Finally, using Gen(h)(x) defined in (5.17) and observing that

∫ ∞

x
tfen(h)(t)dt = ēn(h)−Gen(h)(x) (5.37)

the expression for φen(h)

(
xn(h)

)
in (5.16) readily follows. �

5.B Day-Ahead DSM for Expected Cost Minimization

5.B.1 Proof of Lemma 5.2

The lemma follows from the application of the results in [74, 116, 117] to the specific GNEP

G =
〈
Θx, f

〉
in (5.21). More specifically, a solution of the VI(Θx,F) is a solution of the GNEP

if the following conditions hold [74, Lem. 4.2], [116]: (a) the strategy sets Ωxn in (5.5) are closed

and convex; (b) the objective functions fn(xn, l̃−n) in (5.18) are convex on Ωxn for any feasible

l̃−n; (c) the coupling function q(x) is (jointly) convex in x. Condition (a) is immediately satisfied

if the sets Ωgn and Ωsn are closed and convex (note that Ωẽn in (5.2) is convex by definition).

Likewise, condition (c) is also fulfilled for q(min)(x) and q(max)(x) defined as in (5.18). Hence,

we only need to verify (b), i.e., the convexity of fn(xn, l̃−n).

Observe that its Hessian matrix Hnn(x) is obtained as

Hnn(x) = Diag
(
Hnn

(
x(h)

))H
h=1

(5.38)

with block elements Hnn

(
x(h)

)
, ∇2

xn(h)xn(h)fn(xn, l̃−n) given by

Hnn

(
x(h)

)
= Kh




2φ′en(h)

(
ẽn(h)

)
+ L̃(h)φ′′en(h)

(
ẽn(h)

)
−φ′en(h)

(
ẽn(h)

)
− 1 φ′en(h)

(
ẽn(h)

)
+ 1

−φ′en(h)

(
ẽn(h)

)
− 1 2 +W ′′n

(
gn(h)

)
−2

φ′en(h)

(
ẽn(h)

)
+ 1 −2 2




(5.39)



5.B. Day-Ahead DSM for Expected Cost Minimization 117

with φen(h)(x) defined in (5.16), and

φ′en(h)(x) ,
dφen(h)(x)

dx
= (αh + βh)Fen(h)(x)− αh (5.40)

φ′′en(h)(x) ,
d2φen(h)(x)

dx2
= (αh + βh)fen(h)(x). (5.41)

Hence, fn(xn, l̃−n) is convex if the partial Hessian matrices
{

Hnn

(
x(h)

)}H
h=1

are positive semidef-

inite. Assuming that Wn(x) is convex, i.e., that W ′′n (x) ≥ 0, the smallest eigenvalue of Hnn(x(h))

(disregarding the null eigenvalue) is given by

Kh

2

(
2φ′en(h)

(
ẽn(h)

)
+ L̃(h)φ′′en(h)

(
ẽn(h)

)
+ 4
)
− Kh

2

(
2
(
2φ′en(h)

(
ẽn(h)

)
+ 2
)2

+
(
2φ′en(h)

(
ẽn(h)

)
+ L̃(h)φ′′en(h)

(
ẽn(h)

)
− 4
)2)1/2

. (5.42)

It thus follows that Hnn

(
x(h)

)
� 0 if

2L̃(h)φ′′en(h)

(
ẽn(h)

)
≥
(
φ′en(h)

(
ẽn(h)

)
− 1
)2
. (5.43)

Finally, since −αh ≤ φ′en(h)(x) ≤ βh and L̃(h) ≥ L(min)(h) (see Constraint 1), (5.43) is satisfied

whenever χ
(min)
n and χ

(max)
n are chosen as in Lemma 5.2(c). �

5.B.2 Bidding Strategy Set for Multimodal Distributions

When the pdf of the per-slot net energy consumption is multimodal, there may be multiple

intervals in which Lemma 5.2(c) is satisfied. In this appendix, we present a heuristic method to

determine the best values of χ
(min)
n (h) and χ

(max)
n (h), while guaranteeing the convexity of the

bidding strategy sets.

Let us assume that user n ∈ N is a price taker, i.e., his load profile does not significantly affect

the resulting energy prices [114]. Under this premise, the only variable term in fn(xn, l−n) in

(5.18) is given, at each time-slot h, by φen(h)(x) in (5.16), where we have omitted the production

and storage strategies. It is straightforward to see that φen(h)(x) is convex ∀x and has a minimum

at ẽ
(0)
n (h), where ẽ

(0)
n (h) is such that Fen(h)

(
ẽ

(0)
n (h)

)
= αh/(αh + βh). At this point, we either

have that: i) fen(h)

(
ẽ

(0)
n (h)

)
satisfies condition (5.23), and χ

(min)
n (h) and χ

(max)
n (h) are chosen as

the limit points around ẽ
(0)
n (h) that fulfill (5.23); or ii) fen(h)

(
ẽ

(0)
n (h)

)
does not satisfy condition

(5.23), and χ
(min)
n (h) and χ

(max)
n (h) can be found heuristically by searching intervals in the

neighborhood of ẽ
(0)
n (h) such that (5.23) holds. In this case, when ēn(h) ≥ 0, it can be easily

shown that fn(xn, l−n) increases for any ẽn(h) ≥ ẽ(0)
n (h) and, hence, it is always better to chose

the interval on the right-hand side of ẽ
(0)
n (h). Unfortunately, when ēn(h) < 0, we do not have

such clue.
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5.B.3 Proof of Theorem 5.1

The proof of the convergence of Algorithm 5.1 is based on the connection between the augmented

NEP (5.24) and VIs, and on recent results on monotone VIs [76]. Next, we first establish the

connection with VIs, and then we prove the theorem.

In the setting of Lemma 5.2, the NEP (5.24) is equivalent to the partitioned VI(Θx,λ,Fλ),

with Θx,λ ,
∏N
n=1 Ωxn × R2H

+ and Fλ(x,λ) defined as

Fλ(x,λ) ,

(
F(x) + λT∇xq(x)

−q(x)

)
. (5.44)

Solving the NEP is then equivalent to solving the VI(Θx,λ,Fλ). Since, in the above setup, the

VI(Θx,λ,Fλ) is monotone, we can hinge on distributed regularization techniques for monotone

partitioned VIs [76]. More specifically, instead of solving the original VI directly, one can more

easily solve, in a distributed fashion, a sequence of regularized strongly monotone VIs in the form

VI
(
Θx,λ,Fλ+τ(I−z(i))

)
with z(i) , (x(i),λ(i)). In fact, Algorithm 5.1 is an instance of the PDA

algorithm in [86, Alg. 1] applied to the aforementioned sequence of strongly monotone regularized

VIs. According to [74, Th. 4.3], its convergence is guaranteed if the following conditions are

satisfied: (a) the mapping function Fλ(x,λ) in (5.44) is monotone on Θx,λ; (b) the regularization

parameter τ is chosen such that the (N + 1)× (N + 1) matrix

ῩF,τ ,

(
ΥF + τIN −w

−wT τ

)
(5.45)

is a P-matrix [74, Cor. 4.2], where ΥF is given by

[ΥF]nm ,




υ

(min)
n , if n = m

−υ(max)
nm , if n 6= m

(5.46)

υ(min)
n , min

x∈Ωx

λmin

{
J̄nn(x)

}
(5.47)

υ(max)
nm , max

x∈Ωx

∥∥J̄nm(x)
∥∥ (5.48)

where λmin{·} denotes the smallest eigenvalue of the matrix argument, J̄nn(x) and J̄nm(x)

are the partial Jacobian matrices defined next in (5.50) and (5.51), respectively, and w ,(
supzn∈Ωxn

‖∇xnqn(zn)‖2
)N
n=1

; (c) ρ(i) is chosen such that {ρ(i)} ⊂ [Rm, RM ], with 0 < Rm <

RM < 2.

Proof of Theorem 5.1(a): The mapping function Fλ(x,λ) is monotone on Θx,λ if F(x) is so

on Ωx [74, Prop. 4.4].

We have that F(x) is monotone on Ωx if the symmetric part of its Jacobian JF(x) is positive
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semidefinite on Ωx, i.e., 1
2

(
JF(x)+JFT(x)

)
� 0, ∀x ∈ Ωx. We write the symmetric part of JF(x)

as

J̄(x) ,
1

2

(
JF(x) + JFT(x)

)
=
(
J̄nm(x)

)N
n,m=1

(5.49)

with block elements given by

J̄nn(x) , ∇2
xnxn

fn(xn, l̃−n) = Diag
(
Hnn

(
x(h)

))H
h=1

(5.50)

J̄nm(x) ,
1

2

(
∇2

xnxm
fn(xn, l̃−n) +∇2

xmxn
fm(xm, l̃−m)T

)
= Diag

(
J̄nm

(
x(h)

))H
h=1

, n 6= m (5.51)

where Hnn

(
x(h)

)
is given in (5.39) and J̄nm

(
x(h)

)
is defined as

J̄nm
(
x(h)

)
,
Kh

2




φ′en(h)

(
ẽn(h)

)
+ φ′em(h)

(
ẽm(h)

)
−φ′en(h)

(
ẽn(h)

)
− 1 φ′en(h)

(
ẽn(h)

)
+ 1

−φ′em(h)

(
ẽm(h)

)
− 1 2 −2

φ′em(h)

(
ẽm(h)

)
+ 1 −2 2


 .

(5.52)

In order to guarantee that zTJ̄(x)z ≥ 0,∀z ∈ R3HN , we decompose the vector z as z ,
(
z(h)

)H
h=1

,

where R3N 3 z(h) ,
(
zn(h)

)N
n=1

and zn(h) ,
(
zẽ,n(h), zg,n(h), zs,n(h)

)
; then, we can write

zTJ̄(x)z as

zTJ̄(x)z =

H∑

h=1

zT(h)J̄
(
x(h)

)
z(h) (5.53)

with J̄
(
x(h)

)
,
(
J̄nm

(
x(h)

))N
n,m=1

. Now, the proof reduces to ensuring that z(h)TJ̄
(
x(h)

)
z(h) ≥

0, ∀z(h) ∈ R3N , ∀h.

For the sake of notation, in the following we omit the time-slot index h in the components

of the auxiliary variable z(h). After some manipulations, it holds that

(
1/Kh

)
zT(h)J̄

(
x(h)

)
z(h)

=
( ∑

n∈N
zgs,n

)2
+
∑

n∈N

(
L̃(h)φ′′en(h)

(
ẽn(h)

)
− 1

4

(
φ′en(h)

(
ẽn(h)

)
− 1
)2)

z2
ẽ,n

+
( ∑

n∈N

(
φ′en(h)

(
ẽn(h)

)
+ 1
)
zẽ,n

)( ∑

m∈N
zgs,m

)
+
( ∑

n∈N
φ′en(h)

(
ẽn(h)

)
zẽ,n

)( ∑

m∈N
zẽ,m

)

+
∑

n∈N

(1

2

(
φ′en(h)

(
ẽn(h)

)
+ 1
)
zẽ,n + zgs,n

)2
+
∑

n∈N
W ′′n
(
gn(h)

)
z2
g,n (5.54)

where we have introduced zgs,n , zs,n− zg,n. Recall that, under Lemma 5.2(b), W ′′n
(
gn(h)

)
≥ 0,

∀n ∈ G, so that the term
∑

n∈N W
′′
n

(
gn(h)

)
z2
g,n ≥ 0 can be ignored.
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Now, observe that −αh ≤ φ′en(h)(x) ≤ βh, which implies
∣∣φ′en(h)(x)

∣∣ ≤ 1, and let us define

ϕ(min)
n (h) , min

χ
(min)
n (h)≤x≤χ(max)

n (h)

φ′en(h)(x) ≥ −αh (5.55)

ϕ(max)
n (h) , max

χ
(min)
n (h)≤x≤χ(max)

n (h)

φ′en(h)(x) ≤ βh (5.56)

ϕ(abs)
n (h) , max

(∣∣ϕ(min)
n (h)

∣∣,
∣∣ϕ(max)
n (h)

∣∣) (5.57)

and the sets N+ ,
{
n : zẽ,n

(∑
m∈N zgs,m

)
≥ 0

}
and N− ,

{
n : zẽ,n

(∑
m∈N zgs,m

)
< 0

}
.

Hence, it holds that

( ∑

n∈N

(
φ′en(h)

(
ẽn(h)

)
+ 1
)
zẽ,n

)( ∑

m∈N
zgs,m

)

≥
(
ϕ(min)
n (h) + 1

)( ∑

n∈N+

zẽ,n

)∣∣∣
∑

m∈N
zgs,m

∣∣∣−
(
ϕ(max)
n (h) + 1

)( ∑

n∈N−
|zẽ,n|

)∣∣∣
∑

m∈N
zẽ,m

∣∣∣ (5.58)

≥
(
ϕ(min)
n (h)− ϕ(max)

n (h)
)( ∑

n∈N
|zẽ,n|

)∣∣∣
∑

m∈N
zẽ,m

∣∣∣ (5.59)

and

( ∑

n∈N
φ′en(h)

(
ẽn(h)

)
zẽ,n

)( ∑

m∈N
zẽ,m

)
≥ −ϕ(abs)

n (h)
( ∑

n∈N
|zẽ,n|

)∣∣∣
∑

m∈N
zẽ,m

∣∣∣ (5.60)

≥ −ϕ(abs)
n (h)

( ∑

n∈N
|zẽ,n|

)2
. (5.61)

Now, if
∣∣∣
∑

n∈N zgs,n
∣∣∣ ≤

∑
n∈N |zẽ,n|, we obtain

(
1/Kh

)
zT(h)J̄

(
x(h)

)
z(h)

≥
( ∑

n∈N
zgs,n

)2
+
∑

n∈N

(
L̃(h)φ′′en(h)

(
ẽn(h)

)
− 1

4

(
φ′en(h)

(
ẽn(h)

)
− 1
)2

−N
(
ϕ(abs)
n (h) + ϕ(max)

n (h)− ϕ(min)
n (h)

))
z2
ẽ,n +

∑

n∈N

(1

2

(
φ′en(h)

(
ẽn(h)

)
+ 1
)
zẽ,n + zgs,n

)2
.

(5.62)

Consequently, zT(h)J̄
(
x(h)

)
z(h) ≥ 0 if

L̃(h)φ′′en(h)

(
ẽn(h)

)
≥ 1

4

(
ϕ(min)
n (h)−1

)2
+N

(
ϕ(abs)
n (h)+ϕ(max)

n (h)−ϕ(min)
n (h)

)
, ∀n ∈ N . (5.63)
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Otherwise, if
∣∣∣
∑

n∈N zgs,n
∣∣∣ >

∑
n∈N

∣∣zẽ,n
∣∣, we have that

(
1/Kh

)
zT(h)J̄

(
x(h)

)
z(h)

≥
∑

n∈N

(
L̃(h)φ′′en(h)

(
ẽn(h)

)
− 1

4

(
φ′en(h)

(
ẽn(h)

)
− 1
)2 −Nϕ(abs)

n (h)
)
z2
ẽ,n

+
(
1− ϕ(max)

n (h)− ϕ(min)
n (h)

)( ∑

n∈N
zgs,n

)2
+
∑

n∈N

(1

2

(
φ′en(h)

(
ẽn(h)

)
+ 1
)
zẽ,n + zgs,n

)2
(5.64)

and, therefore, zT(h)J̄
(
x(h)

)
z(h) ≥ 0 if both the following conditions are fulfilled, ∀n ∈ N :

L̃(h)φ′′en(h)

(
ẽn(h)

)
≥ 1

4

(
ϕ(min)
n (h)− 1

)2
+Nϕ(abs)

n (h) (5.65)

ϕ(max)
n (h)− ϕ(min)

n (h) ≤ 1. (5.66)

Note that condition (5.63) is more restrictive than (5.65) and, since L̃(h) ≥ L(min)(h) (from

Constraint 1), we readily obtain the lower bound in (5.26). On the other hand, the condition in

Theorem 5.1(a.3) comes from substituting the definitions (5.55)–(5.57) into (5.66). �

Proof of Theorem 5.1(b): Here, we determine the value of τ that ensures the P-matrix prop-

erty of ῩF,τ in (5.45).

In Appendix 5.B.1, we have shown that, under the conditions of Lemma 5.2, fn(xn, l̃−n) is

convex on Ωxn : this implies that J̄nn(x) � 0, ∀xn ∈ Ωxn and ∀n ∈ N . Hence, we can already

state that υ
(min)
n ≥ 0 (c.f. (5.47)). Let us thus examine υ

(max)
nm = maxx∈Ωx

∥∥J̄nm(x)
∥∥, with

J̄nm(x) = Diag
(
J̄nm

(
x(h)

))H
h=1

and J̄nm
(
x(h)

)
defined as in (5.52): it holds that

max
x∈Ωx

∥∥J̄nm(x)
∥∥ ≤ max

h

(
max
x∈Ωx

λmax

{
J̄nm

(
x(h)

)})
(5.67)

where λmax{·} denotes the largest eigenvalue of the matrix argument. Hence, we have that

λmax

{
J̄nm

(
x(h)

)}
= Kh

(
1 +

1

4

(
φ′en(h)

(
ẽn(h)

)
+ φ′em(h)

(
ẽm(h)

))

+
1

4

(
φ′en(h)

(
ẽn(h)

)2
+ φ′em(h)

(
ẽm(h)

)2
+ 10φ′en(h)

(
ẽn(h)

)
φ′em(h)

(
ẽm(h)

)
+ 24

)1/2)
(5.68)

with φ′en(h)(x) defined in (5.40), and, using (5.56)–(5.57), we obtain

(5.68) ≤Kh

(
1 +

1

4

(
ϕ(max)
n (h) + ϕ(max)

m (h)
)

+
1

4

(
ϕ(abs)
n (h)2 + ϕ(abs)

m (h)2 + 10ϕ(abs)
n (h)ϕ(abs)

m (h) + 24
)1/2)

(5.69)

≤ Kh

(
1 +

αh
2

+

√
3

2

(
max(αh, βh)2 + 2

)1/2)
< 3Kh. (5.70)
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Therefore, combining the previous results, we have that

υ(min)
n ≥ 0 (5.71)

υ(max)
nm < 3

(
max
h

Kh

)
. (5.72)

Now, observe that
(
− q(min)(x)

)+ ⊥
(
− q(max)(x)

)+
, where a ⊥ b means aTb = 0, with

q(min)(x) and q(max)(x) defined as in (5.18). Now, let us introduce ω , (−ω(min),ω(max)) ⊗ δ,

where ω(min) and ω(max) are H-dimensional vectors with elements

[ω(min)]h ,





0 if
[
q(min)(x)

]
h
≤ 0

1 if
[
q(min)(x)

]
h
> 0

(5.73)

[ω(max)]h ,





0 if
[
q(max)(x)

]
h
≤ 0

1 if
[
q(max)(x)

]
h
> 0.

(5.74)

Since ω(min) ⊥ ω(max), we have that [w]n =
√
ωTω ≤

√
3H. Hence, we can state that ῩF,τ �

Υ̃F,τ , where

[
Υ̃F

]
nm
,





τ, if n = m

−3 maxhKh, if n 6= m and n,m 6= N + 1

−
√

3H, otherwise.

(5.75)

By [74, Prop. 4.3], the matrix Υ̃F,τ , and thus ῩF,τ , is a P-matrix if, for some w > 0, the following

conditions hold:

τ > 3(N − 1) max
h

Kh + w
√

3H (5.76)

τ > N
1

w

√
3H. (5.77)

Evidently, the value of w that minimizes τ satisfies

3(N − 1) max
h

Kh + w
√

3H = N
1

w

√
3H. (5.78)

and, substituting the obtained w back into (5.76), the value of τ in (5.27) follows, as stated in

Theorem 5.1(b). �



6

Concluding Remarks

This dissertation has focused on the analytical evaluation of DSM methods in smart grid con-

texts where the demand-side is a multiuser system of interacting active consumers. Particular

emphasis has been placed on DSM approaches based on dispatchable DG and DS, for which

the current literature does not provide adequate theoretical insights. In contrast to invasive

and onerous centralized solution methods, we have developed efficient distributed schemes, with

an eye to key issues such as convergence speed, information exchange, scalability, and privacy.

Analytical studies of these approaches from an optimization perspective have determined the

conditions ensuring the existence of optimal solutions and the convergence of the proposed algo-

rithms. Lastly, numerical results are reported to corroborate the outlined DSM methodologies

in practical situations, providing concrete incentives for the active and voluntary participation

of the end users in the optimization of the demand-side.

6.1 Summary of Results

Let us give a detailed summary of the main results contained in this PhD thesis.

i) We have devised accurate demand-side models that constitute a guideline for representing

realistic DSM scenarios where dispatchable DG and DS are employed and for studying their

impact at the level of the end users and on the whole electricity infrastructure: this will

hopefully pave the way for a more extensive deployment of dispatchable DG and DS under

the DSM paradigm.

ii) For competitive market environments, we have tackled the demand-side optimization from

a user-oriented perspective: we have formulated the DSM optimization problem using non-

cooperative game theory (NEPs and GNEPs), whose solution analysis has been addressed

123
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building on the more general variational inequality framework.

iii) For externally regulated market environments, we have adopted a holistic-based design, allow-

ing some cooperation among the end users: the objective of the whole demand-side has been

expressed as a nonconvex sum-utility function and its solution analysis has been addressed

building on decomposition methods based on partial linearizations.

iv) The distributed algorithms resulting from both approaches do not require each user to know

the individual strategies of the others, thus preserving the privacy and limiting the overall

communication overhead; furthermore, despite being specifically designed for optimizing the

dispatchable DG and DS strategies, they are very general and can accommodate other DSM

techniques (such as ECS).

v) The noncooperative schemes can be totally asynchronous, can incorporate global constraints,

but generally require slightly more restrictive (sufficient) convergence conditions than the

cooperative ones; the latter, in turn, allow to achieve a better, or at least equal, performance

but are characterized by a parallel strategy update and need to be externally regulated so as

to avoid selfish deviations by the users.

vi) We have defined and examined deterministic day-ahead and stochastic day-ahead/real-time

energy market models. For both formulations, we have used specific energy cost functions,

whereas the former has also been analyzed under a generalized pricing model.

vii) Simulations on realistic scenarios have shown that the proposed day-ahead DSM mechanisms

consistently diminish the users’ (actual or expected) monetary expenses while fulfilling the

relative (local and global) constraints: at a higher level, this results in a flattened load curve,

which lowers the generation costs and enhances the robustness of the whole network; on the

other hand, the real-time DSM methods reduce both the average value and the variance of

the user’s real-time monetary expense.

6.2 Future Research Lines

The signal processing community has already made a great research effort towards the accom-

plishment of the envisioned smart grid by investigating DSM and fomenting its implementation.

Still, there are many open issues that need further investigation. This dissertation illustrates

just some of many challenging problems related to DSM paradigm that call for advanced signal

processing and distributed optimization techniques. In the following, we list some future research

lines that would complement nicely the presented work.

i) This thesis, as most works in the smart grid literature, assumes that the real-time energy

demand is always guaranteed by the supply-side. Neglecting this simplification, i.e., imposing

that the demand must follow the supply precisely, means involving global constraints on the

real-time aggregate load that are constantly changing (so as to follow the actual availability

of renewable energy production) and that must be rapidly satisfied in order to comply with
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the real-time market requirements.

ii) Including risk-aversion (e.g., by minimizing measures such as variance, value-at-risk,

conditional value-at-risk, etc.) in energy trading problems in order to avoid high

losses/dissatisfaction of the grid agents (both on the demand- and supply-side) is quite a

common practice. Nonetheless, the uncertainty in the day-ahead bidding process affects the

users’ feasible sets the same way it does their objectives. Therefore, a further step would be

to consider day-ahead DSM problems with stochastic strategy sets, with the users aiming at

obtaining a day-ahead strategy that is also feasible in real-time with a certain probability, in

order to limit the extent of eventual real-time adjustments.

iii) After thoroughly investigating day-ahead DSM approaches, the evolution of energy trading

suggests focusing more on real-time market scenarios. In such context, the prices of electricity

change rapidly and are not fully predictable even shortly before the dispatch time, thus

introducing a further degree of uncertainty in the demand-side optimization. In addition,

depending on the time granularity of the price updates, the amount of signaling can be

significant and the users might receive corrupted price signals from the market regulator with

high probability. These issues call for risk-averse and robust real-time DMS mechanisms that

adequately exploit the responsive properties of dispatchable DG and DS devices.
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