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ABSTRACT

This dissertation presents the outcome of investigations which envisaged to develop
improved state and ‘combined state and parameter’ estimation algorithms for nonlinear
signal models (during the contingent situations) where the complete knowledge of

process and/or measurement noise covariance are not available.

Variants of “adaptive nonlinear estimators” capable of providing satisfactory estimation
results in the face of unknown noise covariance have been proposed in this dissertation.
The proposed adaptive nonlinear estimators incorporate adaptation algorithms with which
they can implicitly or explicitly, estimate unknown noise covariances along with

estimation of states and parameters.

Adaptation algorithms have been mathematically derived following different methods of
adaptation which include Maximum Likelihood Estimation (MLE), Covariance Matching

method and Maximum a Posteriori (MAP) method.

The adaptive nonlinear estimators which have been proposed in this dissertation are
formulated with the help of a general framework for adaptive nonlinear estimators for

both additive and non additive Gaussian noise.

The proposed new algorithms have been formulated and characterized with Monte Carlo

simulation using nontrivial plant models.

The general framework mentioned as above, is extended to formulate alternative versions
of adaptive nonlinear estimators (in the information filter form). Performance of such

adaptive nonlinear information filters are demonstrated for multiple sensor fusion.
The contribution of this work may be categorized as follows:

® Proposing general frameworks for @ adaptive and R adaptive nonlinear state
estimators (for respectively unknown process noise covariance @ and unknown
measurement noise covariance R ) and demonstrating applicability of such filters with

specific examples.

e Derivation of the nonlinear versions of adaptation algorithms for R-adaptive

nonlinear estimators following the Maximum Likelihood Estimation (MLE) method



respectively utilizing innovation and residual sequences. The latter version is

important as it automatically ensures positive definiteness of the adapted R- matrix.

Modification of the existing Maximum a Posteriori (MAP) based algorithms for
adaptive nonlinear estimators (both R-adaptive and Q-adaptive) with reasonable
simplifying assumptions which illustrate that the adaptation algorithms after
modification match well with those obtained by the MLE method and the intuitive

Covariance Matching method.

Proposing and characterizing algorithms for different versions of Q-adaptive and R-

adaptive Divided Difference filter (ADDF).

Proposing and formulation of algorithms for several new variety of Q and R adaptive
nonlinear estimators, viz. Adaptive Gauss Hermite filters (AGHF), Adaptive
Cubature Kalman filters (ACKF), Adaptive Cubature Quadrature Kalman filters
(ACQKEF).

Extending the algorithms for Adaptive Divided Difference filter to suit signal models
with non additive noise. Extension of the general framework for adaptive nonlinear
estimators with non-additive noise and its demonstration by formulating Adaptive

Cubature Kalman filter.

Formulation of alternative general framework for adaptive nonlinear estimators (in
presence of additive noise) with information filter configuration which are potentially
suitable for multiple sensor fusion. Adaptive version of Divided Difference
information filter, Gauss Hermite information filter, Cubature information filter,
Cubature Quadrature information filter have been formulated from the general

framework and validated using multi sensor estimation problems.

Adopting the square root framework for formulation of adaptive versions of Gauss
Hermite filter, Cubature Kalman filter and Cubature Quadrature Kalman filter both in

the standard error covariance form and in the information filter form.

il



ACKNOWLEDGEMENTS

I express my deepest gratitude to my supervisors, Professor (Dr.) Smita Sadhu and
Honorary Emeritus Professor (Dr.) Tapan Kumar Ghoshal, Department of Electrical
Engineering, Jadavpur University. Without their scrupulous guidance, intellectual as well
as moral support and continuing encouragement it would not be possible for me to come
to the end of this journey. I am indebted to them for their valuable advices, comments,
and suggestions during this research work and review of the manuscript at different
stages which have substantially improved the quality of this dissertation.

I am grateful to my co-worker, Ms. Manasi Das, for research co-operation, comparing
simulation results and several insightful discussions.

I thankfully acknowledge the Council of Scientific & Industrial Research (CSIR),
Ministry of Human Resource Development, for the financial support during the tenure of
this work.

I would like to thank the successive Heads of the Department of Electrical Engineering
and the Coordinators of Center for Knowledge Based System for providing research
infrastructure. I have great pleasure in expressing my thanks to all my colleagues at
National Control Law Team, Bangalore, for their encouragement. I am also thankful to
my co-worker, Mr. Nilanjan Patra, for his motivating words to keep my enthusiasm high.

Last, but not least, I would like to express my heart-felt gratitude to my parents for their

love, affection, support and encouragement.

Aritro Dey,
Jadavpur University,

July, 2016

il



%ﬁ%%%/



CONTENTS

ABSTRACT i
ACKNOWLEDGEMENTS iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
CHAPTER 1: INTRODUCTION 1
1.1 BACKGROUND AND MOTIVATION ......cuouiiiitiuiietiniitetcncitetese ettt tese st ess st s eas st s s sens st ens s sene e 1
1.2 BACKGROUND OF NONLINEAR STATE ESTIMATORS ......cuoovivitimiiitiniiiitciiieteie ettt aene e

1.3 AIMS, OBJECTIVES AND SCOPE OF THE RESEARCH ......cuvviiiiiiiiiiieieieeeeeeiiteeeeeeeeeeesvaereeeeeeesnssaesseeseessnssnnneseens

1.4 RESEARCH OBJECTIVES ..o

1.5 APPROACH AND METHODOLOGY

1.6 SALIENT CONTRIBUTIONS .....uuuiieinnnnns

1.7 PUBLICATIONS GENERATED FROM THIS WORK ....coeiiiiiiiieeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeseeeneeens
1.7.1 Peer Reviewed INternational JOUFTIALS ...............ooouuueeeeeeeeeeeieeeeeeeeeeeeeeee et ee e e e e teeeee e e e eeeeaaees
1.7.2 BOOK CRAPIET ...ttt ettt et e st et saeeneene e
1.7.3 PrOCCEAINGS Of CONETEICES. ....c.vveeeeeeiieeiieeiieeieeeieeeiteesteesiseesbeesseessbeesseesaseesnseessseesnseesnseesnseesnses

1.8 CREDIT TO CO-WORKERS........ccotttuurerieeeiieiiurereeeeeeeiiiteeseeeeeeesiteseeseeseesittasreseeseessssssesesesssssassesssessmssrsrsseess

1.9 ORGANIZATION OF THE DISSERTATION .......uuuviiiieiiiiiiiteeeeeeeeeeiiteeeeeeeeeesiusereeeeeeesssssesesesessssssssesssessmmssssesees

CHAPTER 2: LITERATURE SURVEY

2.1 CHAPTER INTRODUCTION .....oouiiiimiiiiiiniiiiitiiitiitit ettt
2.2 LITERATURE ON NONLINEAR (NON-ADAPTIVE) FILTERING
2.2.1 Unscented Kalman Filter ............cccoovoueveeinvoeenieenneennne.
2.2.2 Interpolation based filters...................
2.2.3 Gauss Hermite Filter ...........ccocueeeuenne.
2.2.4 Cubature KAIMAR FIlLET.........cccooiuiiiiiiiiiiiiiieeteeteeee ettt ettt ettt st ste e st e s abe e siaeesaree e
2.2.5 Cubature Quadrature KAlMAN Filler .............c.cccooiviiviiimiiiniiiieiieeeieeeiteeiteeeee sttt sttt
2.2.6 Nonlinear INOTMALION fIlIEFS ..........cccueviuiiiiiiiiiiiiiieeiteete ettt ettt ettt e st ate e s e saree e
2.2.6.1. Unscented INformation FIler ..........coeiiiriiiiniiiieiceesiee ettt ettt et
2.2.6.2. Central Difference Information Filter ...
2.2.6.3. Cubature Information Filter ...
2.2.64. Higher degree Cubature & Gauss Hermite Information Filter ........c...c.ccc.....
2.2.7 Nonlinear filters for non-additive noise................cccccccoevecuenvenncnns
2.2.8 Optimality of NONIINEAT ESHIMALOTS .........cc.cccueecuiriiniiiieiieeii ettt ettt
2.3 LITERATURE ON ADAPTIVE FILTERS .....ccuiitiiiiiiiiiiiiiiiiiiiiie ittt s
2.3.1 Adaptive filter with linear signal MOAELs ...................ccccoceevuiriiiniiiniiiiiiiinieeeseeeee e
2.3.1.1. Bayesian Estimation of unknown noise COVArianCe ...........co.cecueruerienienieneneenienieneneenieseeneeseesnenene
2.3.1.2. Adaptation of noise covariance using Correlation Method
2.3.1.3. Covariance Matching method of adaptation.........c..cecueverieririiininiinineeceer e
2.3.1.4. Maximum Likelihood Estimation of noise COVariance.............ccooeeiviiiiiiniiiiiiiicccceececeens
2.3.15. Expectation Maximization method of adaptation..............
2.3.1.6. Variational Bayesian approach of adaptation....................
2.3.1.7. Findings from the review on adaptive Kalman filters
2.3.2 Adaptive filter with nonlinear signal models .....................ccuc......
2.3.2.1. Adaptive Extended Kalman Filter............cccocooveniiinninnenns
2.3.2.2. Adaptive Unscented Kalman Filter ....
2.3.2.3. Adaptive Divided Difference Filter...........cc.ccoccoceevenennen.
2.3.24. Adaptive Cubature Kalman FIlter ..........coccooiiriiiiiiiiiniiieeeeceeeeeseee e
2.3.3 Application of AdQPTive fIlters ............cccccvieiiriiiiiniiiiiit ettt ettt
2.4 CONCLUSION ....oouiiiiiiiitiiti ittt sttt a b s h e b b sa b b e a et aesa b sa s en e sasens s naes

CHAPTER 3: TEST PROBLEMS 52




3.1 CHAPTER INTRODUCTION .....ccottiutttrieeeeeeiittereeeeeeeeeitaeeeeeeeeeasssaseeseessesssssesseesseasisssseseeseessssansseeeesssnsrreseeees

3.2 DESCRIPTION OF TEST PROBLEMS ......coiiiiiiiiiiiiiiiiiiiii ittt s
3.2.1 State estimation of a first order nonlinear system

3.2.2 Bearing only tracking PrODIEHL .............cc.coccuieiiiiiiiiiiiiiiteeieeete ettt ettt ettt
3.2.3 Parameter and state estimation of Van der Pol’s oSCIllator .................cccoccoeveeviecincinninicneencenene, 58
3.2.4 State estimation Of @ LOTENIZ QITACIOT ..............ccccocuuecuiecueriueneenienaeeee ettt ne e esaeene e 61
3.2.5 Object Tracking PrODIEN...............c...ccccccieiuiiiiiiiiiieiiieiieeeseeeeeee ettt 64
3.25.1. Dynamic MOAEL L.......ccuooiiriiiiiiiiieieieee ettt ettt ettt sne e 65
325.2. Dynamic MO LL......cc.eoiiriiiiiiiiieniieee ettt ettt st eae 68
3.2.6 State estimation of a fourth order NONLINEAT SYSIEML ............ccceeveevuieviiiciieiinieieceecreee et 70
3.2.7 AIrcraft TrACKING PTODIC..........c.cooiuiiiiiiiiiieiieett ettt ettt ettt ettt et e b e sare e 71
3.2.7.1. Kinematic MOdE] ...........ociiiiiiiiiii e 71
3.2.7.2. Measurement MOdE] ...........c.ccoiiiiiiiiiiie e 72
3.2.7.3. SIMUIAtion PrOCEAULE ........cccooiiiiiiiiiiiiiic e e 72
CHAPTER 4: A GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS.........ccccceceeueeee 75
4.1 CHAPTER INTRODUCTION .....ooiuiiuiiiiiiiiiiiiii ittt sttt st s 75
411 ProbDIem STATEMENT ..........ccocueieiiieiiiieiteeite ettt ettt ettt et e s e st e st e st esabeesabeesabeesabeesaseeas 76
4.1.2 Different Approaches for SOIULION ...............cccocccviiriiiiiiiiiiiiieiieiceeet ettt 77
4.2 THE SOLUTION FRAMEWORK .......cciiiiiiiiiiiiiitiiiiii ettt st s 78
G201 OVOFVIEW .ttt ettt ettt et e st e et e s et e et e e s et esab e e s a bt e e s bt e sabeeeabeenabeesabeea 78
4.2.2 Part A: Underlying Framework of Non-adaptive Nonlinear Filter ...............ccccooveevievincincecnieennnnns 79
4.2.2.1. Implementation of Bayesian FIlters ..........c.ccceoiririniniiriiiiiiiinenteseecceet et 87
4.2.3 Part B: Derivation of Adaptation AIOFitRIM..............c...ccccocievuiriinieiieiiinieiieneeseeee et 88
4.2.3.1. Adaptation of the Process Noise Covariance () .......coceeveruieierierienienieniestenieeeenieseessessessesseessesnns 88
4.2.3.2. Adaptation of the Measurement Noise Covariance (R).........cocevereeruerieneneenenieneneenreseeneeneennennns 99
4.233. Analysis of Unbiasedness of Adapted N0ise COVAIIANCE..........coeeruerrievereerieneeienieeieneerenieeeennees 108
4.2.34. ChoiCe Of WINAOW S1ZE ...ccuvieiiieiieie ettt e ettt e et e st e et e snteeseesnseeseesneeenseenn 109
4.235. Notes on Adaptation MEthOdS. ........co.eeuiririiiniiiinieienteececee ettt 110
4.3 ALGORITHMS FOR ADAPTIVE NONLINEAR FILTERS........0oeiiiiuiiieiitieeeeittieeeeteeeeeaeeeeestseseesseeeessssessssesennnns 111
4.3.1 INITTOAUCTION 10 ALGOTITRINS ..ottt ett et ste e ettt e s ae e st e e s sbeesabeesabeesnbeesnseesnseesnseennses 111
4.3.2 Conventional Error COVAFIANCE fOFML............ccccecuireuiriienieiieneeeeieeeeeeeeeeete et eae et e e esaeene e 112
4.3.3 SGUATE ROOT VEFSIOM ...ttt ettt et ae e 115
433.1. Notes on Square Root version of Adaptive Nonlinear filters ...........ccceeereereneencneenenencnecniennen. 118
4.4 DEMONSTRATION WITH ADAPTIVE UKF ..o 120
4.4.1 Choice Of SiGMA POINLS ........c.cccueecuieiieiiiiiiiecieete ettt ettt s e e 120
4.4.2 Case Study: Object Tracking Problem...................cccocevieiieniiiiiiiiniieieieecieecaeere et 122
4.5 DISCUSSIONS AND CONCLUSIONS ......ciuiiiiiiiiiniiiiiiiiiete sttt s s sne s s e e s nnes 124
CHAPTER 5: ADAPTIVE DIVIDED DIFFERENCE FILTER 125
5.1 CHAPTER INTRODUCTION .....oouiiiimiiiiiiiniiiiiiiinit ettt 125
5.2 STIRLING’S INTERPOLATION FORMULA ......coouiiiiiiiiiiiiniiiiiiii it 126
5.3 APPROXIMATION OF MEAN AND COVARIANCE OF A RANDOM VARIABLE ......ccccocoviiiiieiiiieeeciiieeeereee e 127
5.3.1 First Order APPTOXIMATION .........cccueeeuveeeeeeiieeesieesiieesteesieeesteesteessssesseessssessseasssesnssesnssesnseesnssesnsees 128
5.3.2 Second Order APPTOXIIATION. ..........ccueevueecieeeeieeeiieesteeeieeesteesieeesteeteessateestaesssaesteessseenseesnsaesnsees 129
5.4 ALGORITHM FOR ADAPTIVE DIVIDED DIFFERENCE FILTER .......ccccciiiiiiiiiiiiiiiiiiiiciciccccccce 130
5.4.1 Underlying framework of non-adaptive DD ................c.cccccoeveeiiniinienienieiieieneeseecieere e 130
5.4.2 Algortihm for Q AdAPIALION. ...........c...coeevuiiiiiiiiieiieieeieei ettt ettt s 132
5.4.3 Algortihim for R QdAPIATION ............c...coeevuiiiiieiieiiiieiiieieecieete ettt 133
5.5 NOTES ON ALGORITHM .....ooouiiuiiiiiiiiiiiiiitiitiinc ittt st er et sa s en s sa b s 134
5.6 CHARACTERIZATION OF ADAPTIVE DDF .......cccoooiiiiiiiiiiiiiiiiiic s 135
5.6.1 Validation of Q adaptive DD ..............ccoccuieioueeiiiieiieeiieeseeeseeeseeesieessveesisesssaessssessssesssesnssesseees 136
5.6.1.1. Estimation of the states of Van der Pol’s 0SCIllator.........cc.eveeieriiiienieiinieiereeceeee e 136
5.6.1.2. Object tracking PrODIEIM.......cocuiiuiriiriiiiriietertce ettt sttt sttt sbe e b 139
5.6.2 Validation of R adaptive DDIF ...............c.ccccccoviiiuimiiniiiiieiieeecee sttt 142
5.6.2.1. First order NONlinear ProBIEII...........co.eeiiriiiiiiniiierieieseeeri ettt 142
5.6.2.2. Object tracking ProbIEM...........ccoiiiiiiiiiiiii e 144

vi



5.7 DISCUSSIONS AND CONCLUSIONS ....uvvttiiieiiiiiteeeeeeeeeeiitrereeeeeeesiitaeseeeseeessissssssseessssssssessesssomsissesseessonsinees 149

CHAPTER 6: ADAPTIVE GAUSS HERMITE FILTER 151
6.1 CHAPTER INTRODUCTION .....couiiimiiiiiiniiiiiiiii ittt 151
6.2 GAUSS HERMITE QUADRATURE RULE .....cccuiiiiiiiiiieciiie ettt et e et e e et e e e eseraeestseeeensaaeeennneas 152

6.2.1 BACKGTOUNA............cooueeiiiiieiieiieieeeeee ettt et et ettt e saees 152
6.2.2 Generation of Quadrature Points and WeigRLS..............c.ccceeeeienienienienieiieieeeeneeieereecae e 153
6.2.3 Extension for Righer OTder SYSIEMLS............ccccocievuiriiriieiieieeieeee sttt ettt 154
6.3 ALGORITHM FOR ADAPTIVE GAUSS HERMITE FILTER .....c.cooiiiniiiiiiiieiieienieneeieeieerc et 155
6.4 CHARACTERIZATION OF ADAPTIVE GHE ..ot 155
6.4.1 Characterization of Q adaptive GHE..............ccccccvuieioueeeiiieiieeesieeeieeeiteesreesiteesveestvesseveseeeessaesanees 156
6.4.1.1. State and parameter estimation of Van der Pol’s 0SCIlIator...........coccouevveveirininenenieniceeeeeecnnees 156

6.4.2 Characterization of R Adaptive GHFE .............cccoccvuieieueeiieieiieesiseeieesiteesveesiteessessteessesesnssesnssessnees 158
6.4.2.1. State estimation of first order NONINEAr SYSIEIM .....c..coueveureuieiririnieietereeee ettt 158
6.4.2.2. Ballistic Object tracking Problem ..........cccoceriiiiiiiiiiiniiiieeece e 165

6.5 CHARACTERIZATION OF R ADAPTIVE SR-GHF .......cccioiiiiiieeececc e 167
6.6 DISCUSSIONS AND CONCLUSIONS .....cutieutieiieieeieeteeteereseesaeesseeneesseesseesnessaesseesseesseennessnesaeesseesseenseenneens 171

CHAPTER 7: ADAPTIVE CUBATURE KALMAN FILTER 173
7.1 CHAPTER INTRODUCTION .....couiiimiiiiiiniiiiiiiiiit it 173
7.2 SPHERICAL RADIAL CUBATURE RULE ......ooiiiiiiiiiiiiiiiiiii e 174

7. 2.1 BACKGIOUNA.......cocueeveieeii ettt ettt et e ettt e st e st e eataessseesateessseesabaesnseesabaeansaesnsaesnseennses 174
7.2.2 SPREFICAL RULE ...ttt ettt ettt et e st e et e sseessteesaseesabeessbaesabaeensaeenseesnseesnses 175
7.2.3 RAAIAL RULE. ...ttt et sttt ettt sttt 176
7.2.4 Spherical Radial Cubature RULe .................ccccocoevuieiuieiiiniiiniineeeee et 177
7.3 CUBATURE QUADRATURE RULE ......cccciiiiiiiiiieeiiiieeeiiieeeiteeestteeestveeesssaaesssseeessssseesasssesessseesasssseesnnsnes 179
7.4 ALGORITHM OF ACKF AND ACQKF ......oooiiiiiiiiiieeiie ettt e aee e st e e et e e e snraeeesreeeenssaesennneas 181
7.5 CHARACTERIZATION OF PROPOSED ESTIMATORS .....cocuteuiiruieniieiietienteeteeenesieesieeseeneenessnesaeesmeesseenseenneens 181
7.5.1 Demonstration of Q adaptive version of square root CKF ...............ccccoceveeviieciecinienieneeneeneene, 181
7.5.1.1. Ballistic object tracking ProbIEm ........cc.coieiiriiiiiinieiirieiereeeee ettt
7.5.2 Demonstration of R adaptive eSHMAIOTS ............ccc.cccuecuerierieeneenieieieee ettt
7.5.2.1. First order nOnlinear ProBIEII..........coeeiiriiiiiiniiierieientteteri ettt ettt
7.5.2.2. State estimation of Lorenz attractors
7.5.2.3. Fourth order nonlinear estimation problem..........cccecueriiiiniriiiniiniinieeneceseee e 190
7.5.3 Demonstration of R adaptive estimators in square root framework ................ccccecvevcerveenveencenncne. 192
7.6 DISCUSSIONS AND CONCLUSIONS .....ccutieutieiteieeiteteeteeresiresaeesseeseesseesseesaessaesseesseesseensessnesasesseesseesseesneens 194

CHAPTER 8: ADAPTIVE NONLINEAR FILTERS FOR NON-ADDITIVE NOISE 197
8.1 CHAPTER INTRODUCTION .....c.utiiieiiiiteiienitenttetteteetaeeusesueesseeseeneeanesanesaeesaeesseenseenseennesssesseeneeneennesnnenae 197
8.2 PROBLEM FORMULATION......c.ctiittiiiiieiiienitenttett et et eusee e sie et esnesanesanesaee st esseesneeaseemnesseesaeenneeneennesanenaee 198
8.3 GENERAL FRAMEWORK FOR ADAPTIVE FILTER WITH NON-ADDITIVE NOISE.........ccccooviiiiiininiiinicnnan, 198

8.3.1 Underlying Framework of NOn-adaptive filter ............ccoieeveeiiuieiiieeieienieesieenieesiresssessssesnsesnenees 199
8.3.2 AdAPIATION QLGOTITIINS. ..ottt ettt ettt e e tee et e st eette e aaeentaeesaeenseessaesnseen 201
8.3.2.1. Background for statistical iN@arization.............cecoeruerieieieinineneneneeetee et 201
8.3.2.2. R adaptation algorithm
8.3.2.3. Q adaptation aAlGOTItNIML......c..ccoeiiiiiiriiiicceee ettt sttt 204
8.3.3 Derivation of adaptation QlgOTitRNL ................cc.ccceviiviiiiieiirienieneneee ettt 205
8.3.3.1. Q adaptation aAlGOTItNIML......c..ccoeiiiiiiiiiiiiccee ettt sttt 205
8.3.3.2. R adaptation al@OTItRIM .......cc.eiiiiriiiiiiiieecece ettt sttt s 206
8.4 FORMULATION OF ADDF WITH NON-ADDITIVE NOISE.......coctiiitiiiiieiieneenieeieete et 208
8.4.1 Non-adaptive DDF frameWOrk ..............c.cccccocieiuiriiniiiiieiieiieeieseeseesteere ettt 208
8.4.2 Adaptation QIGOTIIAML...............cccocueiiiiiiiiiiiieii ettt ettt 211
8.4.2.1. R adaptation algOTithIm........ccociiiiiiriiniiieiiieieer ettt sttt 211
8.4.2.2. O adaptation alZOTItNINL.....c..cocuiriiiiiiiiiiie ettt b e 212
8.5 CHARACTERIZATION OF PROPOSED ESTIMATORS ......cceeuiteuiiiieieeteetenresieenieesneesteenseeneesseesieesneeneennesnnenaee 213
8.5.1 Characterization of R-Adaptive estimators for non-additive noise.................c.ccceceeeeceecencuencnennne. 214
8.5.1.1. Object Tracking ProbIem .........coeeiiiiiiiniiieniceieeseeeeeeee ettt 214

vii



8.5.1.2. Bearing Only Tracking (BOT) Problem..........cccccooiriiniiriiiiiinininienieiciceeeeestesie et 217

8.5.2 Characterization of Q adaptive DDF for non-additive NOISe ............cc.oeveeecuievceesieienreenreenveenanens 221

8.5.2.1. State estimation of Van der Pol’s 0SCIIlatOr ........cc.eiiiriiiiriiiirieieeeecee e 221

8.6 DISCUSSIONS AND CONCLUSIONS ......civiiiimiiiiiniiiiiiniitiitessi et 226
CHAPTER 9: ADAPTIVE NONLINEAR INFORMATION FILTERS FOR MULTIPLE SENSOR

FUSION 228

9.1 CHAPTER INTRODUCTION .....couiiiimiiiiiiiniiiiiiinic ittt 228

9.2 PROBLEM STATEMENT ......cooiiiiiiiiiiiiiiniiii ittt 229

9.3 FORMULATION OF ADAPTIVE NONLINEAR INFORMATION FILTER........cccoctiiiiiiiniiiiieiciie e 230

D.3.1 OVEFVIEW ..eeenveee e e eetee e ettt e ee vt e e et e e aateeeesssaee e e sseee e ssaeeaasssaeeesssaaeanssseeaanssaeeanssaaeassaaeeanssesennssees 230

9.3.2 Non-adaptive Nonlinear INformation filter ...............ccccccoecereenienienienienieiieeeeeeeeeieere e 231

9.3.3 AdaAptation QLGOTIIAMLS. ............cccocuiiiiiieiiiiiiieii ettt ettt e 233

9.3.3.1. Adaptation of Process NOiSe COVAIIANCE ......c..eerverrerieriieieniieienieeteniteteseeeesreeresieeeesseeresreesesnees 234

9.3.3.2. Adaptation of Measurement N0OiSe COVATIANCE ........cc.evueeruiriieiiriienieniieienieetenreeresreeee s sieeeennees 234

9.4 GENERAL FRAMEWORK .....c..eoiuiiiiiiiiitieitieiteeieeieete et et saee st e et eae et esaeeeaessaesaeeseesneennesanesanesaeenseenseennens 234

9.4.1 ALGOTIIRINIC STEPS ...ttt et ettt ettt ettt e eanesanesaees 235

9.4.2 Multiple SenSOr FUSIOM ...........cccocueruiiiiiiiiiiii ettt sttt ettt saees 238

9.4.3 Choice of Sigma Points and WEIGRLS ..............ccccceevuiviiiuieiiiiienieneeneeteee ettt 238

9.4.3.1. Unscented Transformation RULe..........ccooiiiiiniiiiiniiiiiniiiecc e 239

9.4.3.2. Gauss Hermite Quadrature RULE ...........oooviiiiiiiiiiiiiccee et e 240

9.4.3.3. CUDALUTE RULE ....oviiiiiieiieec ettt ettt et s sbees 240

9.4.34. Cubature QUAadrature RULE..........c..oooiuiiiiiiii ettt eae e et e e e ear e e e saae e e aaaeeeas 242

9.4.35. Divided Difference Interpolation fOrmula............ccccecieriiiiiniriiniiniinieeeceeeeeeeseee e 244

DA INOTES ..ttt ettt h e et et h e bt bt et e a e e bt bt e bt e bt et e e s baesaees 245

9.5 SQUARE ROOT VERSION .......uuiiiiiiiiiiiitreeieeeeeeeiureeeeeeeeesissereseseeesstaeseseseeesssssssssesessessssssesseessensassesseessonssnnes 245

9.5, 1 ALGOTIIRIM ...ttt et e ettt 246

9.5.2 Multiple SenSOr FUSIOM ...........cccocueieiiiiiiiiieiieeeeeeeetete ettt sttt et ettt e saees 249

D.5.3 INOTES ..ot eeee et e ettt e e ettt e e et e e et e e eessaae e e sseee e sseeeaassseeeanssaae e sbaeeeansbeeeetbaaeestaeeeannreeennnreas 249

9.6 CHARACTERIZATION OF PROPOSED ALGORITHMS ........cocuiiiiniieiieiietieteeinesieesieesseeneenesnesaeesneesseesneenneens 250

9.6.1 Ballistic Object Tracking PrODIEML..................c.ccccoceviiiiieiiiiiinienieneeiteee ettt 250

9.6.1.1. Demonstration of Q-adaptive UIF and DDIF.......c..ccccociiiiniiiiiniiiiiieceeececeesceese e 250

9.6.1.2. Demonstration of R-adaptive DDIF ..........cccccoiiiiiiiiiiniiiiceseee et 253

9.6.2 Aircraft Tracking ProbDIemi.................c.cccccoeuieiuieiiiniiiiiiiiieiieeeeeeeeeseee ettt 258

9.6.2.1. Demonstration of Q adaptive information filters ........c..ccoeveevierieiinieiiniieneecereeeeeeeen 258

9.6.2.2. Demonstration of R adaptive information filters...........ceoueveevieriinenieiiniieneeeecesceeseceeeen 263

9.6.2.3. Demonstration of square root versions of R adaptive filters ........ccocoevverieinenenicnienenecrecieeee 265

9.7 DISCUSSIONS AND CONCLUSIONS ......couiiuiiiimiiiiiiiiiiii ittt 267

CHAPTER 10: CONCLUSIONS 269

BIBLIOGRAPHY 275

viii



Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18

Figure 4.1
Figure 4.2
Figure 4.3

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

LIST OF FIGURES

Plot of measurement with respect to state

State trajectories for two different representative runs

True and estimated state for two different representative runs
Ilustration of BOT problem with a schematic diagram

Plot of position of the target for a representative run

Plot of velocity of the target for a representative run

Plot of state x; for a representative run

Plot of state x, for a representative run

Phase plane plot for a representative run

Plot of state x; for a representative run

Plot of state x; for a representative run

Plot of state x; for a representative run

Phase plane plot for a representative run

Radar tracking of a ballistic object during reentry: A schematic diagram
Plot of altitude of the object for a representative run

Plot of velocity of the object for a representative run

Plot of trajectories of aircraft for different runs

A representative run where track loss has occurred

RMSE of altitude for 1000 Monte Carlo runs
RMSE of velocity for 1000 Monte Carlo runs
RMSE of ballistic parameter for 1000 Monte Carlo runs

RMSE of state (x;) for 1000 Monte Carlo run

RMSE of state (x;) for 1000 Monte Carlo run

RMSE of friction coefficient (parameter) for 1000 Monte Carlo run
True and adapted Q(1,1) for a representative run

True and adapted Q(2,2) for a representative run

True and adapted Q(3,3) for a representative run

Phase plane plot for a representative run

RMSE of altitude for 1000 Monte Carlo run

RMSE of velocity for 1000 Monte Carlo run

RMSE of ballistic parameter for 1000 Monte Carlo run
True and adapted Q(3,3) for a representative run
RMSE of state for 10000 Monte Carlo run

RMSE of altitude for 1000 Monte Carlo run

RMSE of velocity for 1000 Monte Carlo run

RMSE of ballistic parameter for 1000 Monte Carlo run

Plot of true and adapted R for a time varying noise covariance

X

54
54
55
57
58
58
60
61
61
63
63
64
64
65
67
68
73
74

122
123
123

137
137
137
138
138
139
139
141
141
142
142
144
146
147
147
148



Figure 5.17

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10

Figure 6.11
Figure 6.12
Figure 6.13

Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19

Figure 7.1
Figure 7.2

Figure 7.3

Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9
Figure 7.10
Figure 7.11
Figure 7.12
Figure 7.13
Figure 7.14
Figure 7.15

Plot of true and adapted R for a time varying noise covariance

RMS error (friction coefficient estimation) of AGHF & GHF for 1000 MC runs
RMS error (state, x, estimation) of AGHF & GHF for 1000 MC runs

RMS error (state, x; estimation) of AGHF & GHF for 1000 MC runs

Friction coefficient estimation of AGHF & GHF for a representative run

Comparison of RMS error of AGHF (with and without re-computation step), Adaptive
UKEF and Non-adaptive GHF for 10000 MC run when Rﬁ,,e,(O):lo’3 *R e
Comparison of RMS error of AGHF (with and without re-computation step), Adaptive
UKF and Non-adaptive GHF for 10000 MC run when Rﬁ,,er(0)=103*R,me

True and estimated states for a representative run

True and adapted measurement noise covariance for a representative run
R Tracking performance for time varying measurement noise covariance

Comparison of RMS error of AGHF (with and without re-computation step), Adaptive
UKEF and Non-adaptive GHF for 10000 MC run when Rp,,.is time varying as shown in
Fig. 6.9

Comparison of RMS error (altitude estimation) of AGHF, AUKF & GHF for 1000 MC
runs

Comparison of RMS error (velocity estimation) of AGHF, AUKF & GHF for 1000 MC
runs

Comparison of RMS error (ballistic parameter estimation) of AGHF, AUKF & GHF for
1000 MC runs

R Tracking performance for time varying measurement noise covariance

Comparison of RMS error (position estimation) of AGHF & GHF for 10000 MC runs
Comparison of RMS error (velocity estimation) of AGHF & GHF for 10000 MC runs
Comparison of RMS error (turn rate estimation) of AGHF & GHF for 10000 MC runs
Plot of true and adapted value of R (1,1)
Plot of true and adapted value of R (2,2)

Comparison of RMS error (altitude estimation) of ASRCKF & SRCKEF for 1000 MC runs

Comparison of RMS error (velocity estimation) of ASRCKF & SRCKF for 1000 MC
runs

Comparison of percentage of RMS error (ballistic parameter estimation) of ASRCKF &
SRCKEF for 1000 MC runs

Plot of estimated process noise covariance (Q33) for a representative run

Comparison of RMS error of proposed filters with the existing filters for 10000 MC run
Plots of RMSE of first state of Lorentz attractor for different adaptive estimators

Plots of RMSE of second state of Lorentz attractor for different adaptive estimators
Plots of RMSE of third state of Lorentz attractor for different adaptive estimators
Plots of RMSE of 1* state for different adaptive estimators

Plots of RMSE of 2™ state for different adaptive estimators

Plots of RMSE of 3" state for different adaptive estimators

Plots of RMSE of 4™ state for different adaptive estimators

Comparison of RMS error (position estimation) of ASRCQKF, ASRGHF3 & SRCKF
Comparison of RMS error (velocity estimation) of ASRCQKF, ASRGHF3 & SRCKF
Comparison of RMS error (turn rate estimation) of ASRCQKF, ASRGHF3 & SRCKF

148

157
157
158
158

162

162

163
163
164

164

166

166

167

167
169
169
170
170
171

182
183

183

184
186
188
189
189
190
191
191
191
193
193
194



Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9
Figure 8.10
Figure 8.11
Figure 8.12
Figure 8.13

Figure 8.14
Figure 8.15
Figure 8.16
Figure 8.17

Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7

Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11

Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17

Figure 9.18

Figure 9.19

Figure 9.20

Comparison of RMS error (altitude estimation) of ADDF & DDF for 500 MC runs
Comparison of RMS error (velocity estimation) of ADDF & DDF for 500 MC runs
Comparison of RMS error (parameter estimation) of ADDF & DDF for 500 MC runs
Plot of adapted R when truth value is constant

Plot of adapted R when truth value is time varying

RMSE of position of ACKF, ADDF and non-adaptive CKF

RMSE of velocity of ACKF, ADDF and non-adaptive CKF

Plot of adapted R of ACKF 3" degree) for element R(1,1)

Plot of adapted R of ACKF (3ml degree) for element R(2,2)

Plot of adapted R of ACKF 3™ degree) for element R(3,3)

Comparison of RMS error (state, x; estimation) of ADDF & DDF for 1000 MC runs
Comparison of RMS error (state, x, estimation) of ADDF & DDF for 1000 MC runs

Comparison of RMS error (friction coefficient estimation) of ADDF & DDF for 1000
MC runs
Plot of true and adapted Q(1,1) for a typical run

Plot of true and adapted Q(2,2) for a typical run
Plot of true and adapted Q(3,3) for a typical run
Comparison of phase portrait of the DDF and ADDF estimates with that of true states

Comparison of RMSE (altitude) of AUIF, ADDIF & DDIF for 1000 MC runs
Comparison of RMSE (velocity) of AUIF, ADDIF & DDIF for 1000 MC runs
Comparison of RMSE (ballistic parameter) of AUIF, ADDIF & DDIF for 1000 MC runs
Plot of estimated process noise covariance (Q33) for a representative run

Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs
Comparison of RMS error (velocity estimation) of ADDF & DDF for 1000 MC runs

Comparison of RMS error (ballistic parameter estimation) of ADDF & DDF for 1000 MC
runs
Plot of true and adapted R for a representative run

Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs
Comparison of RMS error (velocity estimation) of ADDF & DDF for 1000 MC runs

Comparison of RMS error (ballistic parameter estimation) of ADDF & DDF for 1000 MC
runs
Plot of adapted R for the faulty measurement (for a representative run)

Comparison of RMSE (position estimation) of AGHIF & GHIF for 10000 MC runs
Comparison of RMSE (velocity estimation) of ACIF & CIF for 10000 MC runs
Comparison of RMSE (turn rate estimation) of ACQIF & CQIF for 10000 MC runs

Plot of adapted process noise co-variance (Q5,5) for a representative run

Comparison of RMS error (position estimation) of ACIF, AGHIF, ADDIF, ACQIF for
10000 MC runs

Comparison of RMS error (position estimation) of ACIF, AGHIF, ADDIF, AUIF,
AHCQIF for 10000 MC runs
Comparison of RMS error (velocity estimation) of ACIF, AGHIF, ADDIF, AUIF,
AHCQIF for 10000 MC runs

Comparison of RMS error (turn rate estimation) of ACIF, AGHIF, ADDIF, AUIF,
AHCQIF for 10000 MC runs

X1

215
216
216
217
217
218
218
219
219
220
222
223

223

223
224
224
225

251
252
252
252
254
254

254

255
256
257

257

258
261
261
261
262

262

264

264

265



Figure 9.21 = Comparison of RMS error (position estimation) of ASRCQIF, ASRGHIF, ASRCIF for

10000 MC runs 266
Figure 9.22  Comparison of RMS error (velocity estimation) of ASRCQIF, ASRGHIF, ASRCIF for
266
10000 MC runs
Figure 9.23  Comparison of RMS error (turn rate estimation) of ASRCQIF, ASRGHIF, ASRCIF for
267
10000 MC runs

Xii



Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 6.1
Table 7.1

Table 7.2
Table 9.1
Table 9.2
Table 9.3.1
Table 9.3.2
Table 9.4.1
Table 9.4.2
Table 9.5
Table 9.6
Table 9.7

LIST OF TABLES

Parameters for state estimation of Van der Pol’s oscillator

Parameters for state estimation of Lorenz attractor

Parameters for object tracking problem (SI units)

Parameters for object tracking problem (FPS units)

Percentage of track loss cases computed from 10000 Monte Carlo runs
Percentage of track loss and computation time presented for adaptive
estimators

Percentage of track loss and computation time for adaptive estimators
Selection of Sigma Points & weights

Selection of Quadrature Points & weights

Selection of Cubature Points & weights

Selection of Cubature Points & weights

Selection of Cubature Quadrature Points & weights

Selection of Cubature Quadrature Points & weights

Selection of Sigma Points & weights

Comparative study of %-age of track loss form Q adaptive information filters
Comparative study of % -age of track loss for R adaptive information filters

Xiii

60
62
67
70
165

187

194
239
240
240
241
242
243
244
263
265



Chapter 1: Introduction
1.1 Background and Motivation

Parameter and state estimation techniques find many uses in system modeling as well as in
conventional, adaptive and optimal control applications. Parameter estimation is important
for determining system parameters for yet to be modeled systems and also for systems where
system parameters are not constants but vary with time or with environmental conditions.
Apart from the uses in closed loop control as stated above, state and parameter estimation
may also play a significant role in fault detection and identification. For example, state
estimation may potentially reduce the cost of additional sensors to create analytical
redundancy [Hwang2010], which in turn, may be useful in fault detection or continued

operation in sensor failure conditions.

In our current state of knowledge, state estimation for linear signal models in presence of
noisy measurements is comparatively easy because of the availability of precise estimation
method, viz. Kalman filter [Anderson1979] which provides algebraic steps to arrive at a
provably optimal estimation solution with minimal restrictions . However, state estimation
for nonlinear system models becomes challenging primarily because analytical means to
assess the optimality of performance and convergence of any (existing or conceivable)
nonlinear filtering algorithms is not presently available. Consequently, a provable optimal
closed form or iterative state estimation solution applicable to a wide class of nonlinear
systems are not available and recourse is taken to approximate solutions. One of the earliest
approximate state estimation technique goes by the name Extended Kalman Filter (EKF)

[Brown1983].

As no nonlinear estimator has yet been reported which can guarantee optimality and/or
convergence of an iterative estimate the scope of relative improvement of estimation
accuracy compared to the already reported estimators or scope for developing an alternative

algorithm for nonlinear signal models still remains open.

Knowledge in the domain of nonlinear estimation is still evolving (as would be evident from
a literature survey, presented in a subsequent chapter) and new algorithms continue to be

contributed in the field of nonlinear state estimation. Many such state estimation methods are
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collectively known as Post Kalman filtering [Ristic2004] which includes Unscented Kalman
filter [Julier2000, Ristic2004], Divided and Central Difference filters [Ito2000,
Norgaard2000, Scheil997], Gauss Hermite filters [[to2000] and simulation based filters like
Particle filters [Ristic2004] which are performance wise superior than EKF. Subsequently,
newer filtering algorithms, e.g., Cubature Kalman filter [Arasaratnam2009], higher degree
Cubature Kalman filter [Jia2013], Cubature Quadrature Kalman filter [Bhaumik2013] and its
other version with higher degree quadrature points [Singh2015] and Fourier Hermite

[Sarmavuori2012] filters have been contributed.

It would not be out of place to mention that even for joint estimation of parameters and states
of linear systems nonlinear filters are often employed [Simon2006] where the system

dynamics is expressed in terms of parameter augmented state vector.

Usually the nonlinear estimators are empirically validated before actual deployment in real
life systems. The choice of suitable candidate from the pool of several competing algorithms
for a specific mission requires experimentation as there is no direct analytical means which
can indicate the best suited filter for the specific problem. A comparative study with respect
to the accuracy and computational intensiveness often needs to be carried out. Scrutinising
those results the designer can choose the most suitable filter for that particular class of
nonlinear estimation problems. Nonlinear filtering, therefore, necessitates substantial effort in

experimentation.

Linear as well as nonlinear estimators require prior knowledge of the system dynamics, the
measurement equations and the values of noise covariances for producing satisfactory
estimation results. Non-availability of knowledge of any of them deteriorates the
performance of the filter. Therefore, the choice of the noise covariances which may often
remain unknown in many situations is made after trial and error. This requires substantial
effort in offline tuning of the estimators. Improper choice of noise covariances yields
suboptimal estimation result and may cause even divergence for nonlinear estimation
problem. In such situations, “adaptive estimators” may be employed. Such adaptive
estimators implicitly or explicitly, estimate noise covariances (along with estimation of states

and parameters).
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Adaptive filters for linear signal models have been reported a few decades ago and validated
by a large number of researchers. Substantial publications exist wherein these techniques are

successfully employed in many real life applications.

However, Adaptive filtering for nonlinear systems is still an evolving area of knowledge
which has drawn the attention of the researchers. It has been observed from the literature
survey that there remains “knowledge gap” in the area of nonlinear filtering where one or
more noise covariances are unknown. Unlike adaptive filters with linear signal model
sufficient works on adaptive nonlinear estimator are yet to be available which have strong
theoretical foundations. Moreover depending on the degree of nonlinearity in the signal
model, the performance of adaptive nonlinear estimators may vary and choice of a suitable
underlying structure for adaptive nonlinear estimator needs experimentation in the context of
estimation accuracy and computation effort. The above discussed points motivated the

present worker to investigate in the field of adaptive nonlinear estimators.

For parameter estimation several well known classical techniques e.g., least square,
orthogonal least-squares, gradient-weighted least-squares methods exist. Apart from these
classical methods, deterministic observers and, Post Kalman state estimators have been
employed for parameter estimation as reported in previous works. For simultaneous
estimation of parameters and states, any unknown parameter is modeled as an additional state
and therefore augments the state vector. As mentioned before, the augmented state renders
estimation problem as nonlinear even with linear signal models. Therefore, joint estimation

of parameters and states essentially requires nonlinear estimators.

For the systems perturbed by unknown parameter variation the nature of the parameter
variation also remains unknown as the parameters are unknown per se. During the parameter
estimation of such systems assuming the simplest case the unknown parameters are modeled
as random walk model while in reality the parameters may vary following certain trend. The
uncertainty in the nature of parameter variation makes it difficult to assign a suitable process
noise for the augmented system. Adaptive nonlinear filters, therefore, may be suitable

estimators for parameter estimation as well apart from its use in nonlinear state estimation.
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1.2 Background of Nonlinear State Estimators

The basics of nonlinear state estimation in presence of noisy measurements (with known
process and measurement noise covariances) have been well covered in the oft referred
textbooks e.g. [Anderson1979, Brown1983, Zarchan2000, Ristic2004]. A few significant
points on nonlinear state estimation are reiterated in this section.

The estimation algorithms which are intended for nonlinear systems are usually termed as
nonlinear estimators. State estimators require knowledge of the system dynamics which may
be expressed in terms of state space models and the observation equation (alternatively
termed as measurement model). Nonlinearity of any or both of the above models, makes the
system model nonlinear by definition. The estimation algorithms can be presented in
continuous time as well as discrete time. Throughout this dissertation the present worker has
followed the approach of discrete time representation.

Usually, the system dynamics and measurement equation for a higher dimensional system in

discrete time domain may be represented as given by (1.1) and (1.2) respectively.
x, = flx,_,u,w,) (1.1)
v =glx,,v,) (1.2)
Here x, is the state vector of the system, u, is the vector of known input, w, is the vector of

random unknown input known as process noise, y, is the measurement vector and v, is the

vector for measurement noise. In the above equations noises are expressed in non-additive

form. However, for the simplest case the noises can be expressed as additive noise as below.
Xy :f(xk—l’uk)+wk (1.3)
yi =h(x,)+v, (1.4)

In this dissertation both additive and non-additive cases have been considered.

State estimators also require the knowledge mean and covariance (first two moments) of the
random noise which characterize such noise. In simplest cases the noises are assumed to be
zero mean, white and Gaussian. The noises can also be non Gaussian, coloured and there

may be correlation between process noise and measurement noise. Special treatments are
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necessary for such cases. However, such conditions have not been considered in this

dissertation.

Most of the state estimation algorithms may be expressed in the Bayesian Estimation
framework. The probability density function of the estimated state vector may be expressed
in terms of Bayesian integrals. For zero mean Gaussian noise the mean and covariance of

estimates can be computed by approximating the Bayesian integrals.

Generally the measurement noise is assumed to be zero mean white Gaussian noise sequence.
The covariance matrix of the measurement noise is generally symbolized by ‘R’ The
measurement noise for well characterized sensing systems may be obtained from the
experimental data or vendor specification. However in many situations the measurement

noise covariance may not be known at the time of designing the filter.

The process noise in the above state equation signifies several things e.g., the unknown and
random component of input which may be considered as disturbance, parametric uncertainty,
modelling error etc. Like measurement noise, the process noise also can be considered to be
zero mean, white and Gaussian for simplest case. The covariance matrix of the process noise
is generally symbolized by ‘Q’.

The objective of the nonlinear state estimation is to obtain the optimal estimate of the states
with known nominal models and known measures of process and measurement noise.
However, even with the above knowledge, no nonlinear estimator has been reported as of

now that can guarantee optimal estimation performance, as mentioned earlier.

After initialization the filters provide the state estimates recursively for the subsequent time
using noise corrupted measurements as input. To begin the process of estimation, the state
variables for the filter need to be initialised along with an initial choice of error covariance of
those states. The error covariance indicates the degree of uncertainty in the initial choice of

state.

In real life application of nonlinear state estimator situations may arise where the sensor
characterisation is partially done or not done at all. The system dynamics may also suffer
from unknown parameter variation. It becomes difficult then to assign the accurate values of
Q and R. In such a situation, adaptive estimation (where one or both noise covariances are

also estimated along with the states and parameters) may be employed. When only the

Chapter 1 5



State and Parameter Estimation for Dynamic Systems: Some Investigations

covariance R is not available the corresponding adaptive filter is often termed as R-adaptive.
Similarly, when only the process noise covariance @ is not available the corresponding
adaptive filter is often termed as @-adaptive. The adaptive filter is often termed as QR —
adaptive when both these covariances are unknown.

It may be recalled from the above discussions that adaptive estimation is required where one
or both the noise covariances are unknown. Before adaptive estimation was properly
understood and accepted (mostly in the context of linear signal models) system designers
employed “manual tuning” which required exhaustive offline studies. Adaptive estimation
obviates the need of such manual tuning.

An alternative to manual tuning of @ and or R is tuning a ‘“scale factor” [Hide2004,
Ding2007, Jwo2008]. In this approach the filter gain or error covariance matrices may be
tuned with a scaling factor to get satisfactory estimation result.

Adaptive nonlinear state estimators also appeared in recent literature. The adaptive EKF
[Busse2003, Bavdekar2011, Hajiyev2011] has been developed after Adaptive Kalman filter.
However, AEKF incorporates all the short comings [Soken2012] of non-adaptive EKF as it
happens to be the core of AEKF. Adaptive UKF [Chai2012, Hajiyev2014, Das2015] which
has been recently introduced is performance wise superior to AEKF. AUKF too needs some

tuning of parameters which control the locations and spread of sigma points.

Most of these non-linear state estimators (also known as nonlinear adaptive filters) use
adaptive mechanisms which are analogous of corresponding linear adaptive filters. Such
adaptation algorithms are based on intuitive methods without proper mathematical

derivation.
1.3 Aims, Objectives and Scope of the Research

The dissertation aims to develop novel techniques for adaptive nonlinear state estimation.
The focus is on introducing adaptive mechanisms to (non-adaptive) nonlinear estimators of
recent origin. Many such improved (non-adaptive) nonlinear estimators of recent origin have
been developed and reported in literature with the assumption that noise covariances are
accurately known. It is needless to mention that even these new generation non-adaptive state

estimators require manual tuning when the values of noise covariances remain unavailable.
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The above inadequacy in the domain of nonlinear estimation gives an intellectual challenge
to the present worker to develop improved adaptive nonlinear estimators which may be
performance wise superior to most the existing adaptive nonlinear estimators and which may
have some theoretical/analytical support or justification of the adaptation algorithms

provided in such estimation techniques.

The other aim is demonstration of performance and quantitative characterization of the

proposed nonlinear adaptive estimators in realistic situations.

State estimators had previously been employed for sensor data fusion. This prompted the

present worker to explore whether the proposed estimators can also be employed foe similar
purpose.
To keep the scope of work focused the following decisions were taken:

(1) Case studies for characterization of the proposed estimators should be chosen from
domains where previous results are available. The aerospace tracking problem

domain fitted this requirement.

(2) Signal models are to be chosen with additive zero mean Gaussian white noise model,

primarily for facilitating comparison with previous work.

(3) Siganl models with non-additive Guassian noise is to be explored separately.

1.4 Research Objectives

In the perspective of the problem addressed in this dissertation, the research objective may be

summarized as stated below:

@) Formulation of improved algorithms for adaptive estimators for estimation of

states as well as parameters of nonlinear systems.

(i1) Validation and characterization of such improved algorithms using non-trivial

signal models.

(iii))  Performance comparison of such improved algorithms with previously reported

approaches of adaptive and non-adaptive nonlinear estimator.

(iv)  Formulation of a computationally efficient alternative version of adaptive

nonlinear estimators for multiple sensor fusion.
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(v) Exploring the possibility of evolving some theoretical/analytical support or
justification of the adaptation algorithms provided in the proposed estimation

techniques

1.5 Approach and Methodology
From the research objective mentioned above it may be appreciated that the aim of this

dissertation is to provide improved solution methods for adaptive nonlinear estimators.

Towards this goal existing literature about filters for nonlinear systems, adaptive filters for
linear systems and previously proposed adaptive filters have been studied extensively. A
summary of such studies is provided in the literature review section. Previously published
ideas which have been found to be extendible to the proposed research had been closely
examined. Similarly weaknesses of previously reported estimators were carefully studies so

that such weaknesses are not inherited by the proposed estimators.

The new estimation algorithms which are developed in this dissertation are evaluated and
quantitatively characterized using test problems. This approach had to be taken because (as
previously mentioned) optimality and convergence of nonlinear estimators cannot be

demonstrated in the usual analytical way.

For evaluation of consistency, convergence of the proposed algorithms and comparison of
estimation the accuracy between different methods Monte Carlo simulations with adequate
runs have been carried out. Each Monte Carlo run is simulated using true state trajectories
and measurements which are obtained with random samples of process noise covariance and
measurement noise covariance both having the correct value (truth value). However, for
filters the covariance which remains unknown is initialized with an assumed value. In each

Monte Carlo run this assumed value of covariance remains the same.

During the evaluation of the proposed estimators in simulation there remains the scope to
evaluate the performance adaptive filter without the knowledge of one of the covariances
with the non-adaptive filter in the ideal situation where noise covarinaces are known to it.
This study can give a measure about how far the performance of adaptive filter, even in the

adverse situation, approach to the ideal performance.
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1.6 Salient Contributions

Salient contributions covered in this dissertation are:

(1) Proposing a fairly general framework for Q-adaptive nonlinear state estimators and

demonstrating the applicability of the framework with specific examples.

(1) Proposing a fairly general framework for R- adaptive nonlinear state estimators and

demonstrating the applicability of the framework with specific examples.

(111)Extending the above general frameworks for the square root version of adaptive
nonlinear estimators.

(iv)Derivation of the nonlinear versions of adaptation algorithms for R-adaptive nonlinear
estimators following the Maximum Likelihood Estimation (MLE) method respectively
utilizing innovation and residual sequences. The latter version is important as it

automatically ensures positive definiteness of the adapted R- matrix.

(v) Modification of the existing Maximum a Posteriori (MAP) based algorithms for adaptive
nonlinear estimators (both R-adaptive and Q-adaptive) with reasonable simplifying
assumptions which illustrate that the adaptation algorithms after modification match
well with those obtained by the MLE method and the intuitive Covariance Matching
method.

(vi)Proposing and characterizing algorithms for different versions of Adaptive Divided
Difference filter (DDF) which include

o Scaling factor based Q adaptive DDF

o @ adaptive DDF using direct adaptation algorithm

o Residual based R adaptive DDF using direct adaptation algorithm with ensured

positive definiteness of R
o @ & R adaptive DDF for non-additive noises

(vil) Proposing and formulation of algorithms for several new types of adaptive nonlinear
estimators, viz. Adaptive Gauss Hermite filters (GHF), Adaptive Cubature Kalman

filters, Adaptive Cubature Quadrature Kalman filters.

o Derivation and demonstrations that the said algorithms may also be derived from

the proposed general frameworks as mentioned above.
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o The algorithms for the said Adaptive Gauss Hermite filter include
e Partially Q adaptive GHF where some of the elements of  are known
a priori
e R adaptive GHF based on innovation sequence
¢ An alternative R adaptive GHF based on residual sequence
e Square Root versions of R adaptive GHF

o The algorithms for Adaptive Cubature Kalman filter comprise

° R-adaptive Cubature Kalman Filter with 31 degree accuracy

° R-adaptive Cubature Kalman Filter with 5™ degree accuracy

° R-adaptive Cubature Quadrature Filter with 3™ degree accuracy

° R-adaptive Cubature Quadrature Filter with 5t degree accuracy

° Square root versions of adaptive Cubature Kalman Filter, adaptive

Cubature Quadrature Kalman Filter with 3 degree accuracy.

o Characterization of the said adaptive estimators with the help of non trivial case

studies and Monte Carlo simulation

(viii) Extending the algorithms for adaptive nonlinear filters to suit signal models with non-

additive noise for the following types of estimators:
o Adaptive Divided Difference filter
o Adaptive Cubature Kalman filter with 34 degree and 5t degree accuracy

(ix)Formulation of alternative general algorithms for adaptive nonlinear estimators with
information filter configuration which are potentially suitable for multiple sensor
fusion. In particular information filter versions of the following estimators have been

formulated and characterized:
o @-Adaptive Divided Difference information filter (DDIF)
o @-Adaptive Unscented information filter (UIF)
o R-Adaptive DDIF
o R-Adaptive Gauss Hermite information filter (GHIF)

o R-Adaptive Cubature information filter (CIF)
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o

O

R-Adaptive Cubature Quadrature information filter (CQIF)

Square root version of CQIF, CIF, GHIF for R adaptation.

(x) Compilation of a comprehensive literature review for the benefit of future workers.

1.7 Publications generated from this work

1.7.1 Peer Reviewed International Journals

1.

A. Dey, M. Das, S. Sadhu, T. K. Ghoshal, “Adaptive Divided Difference Filter
for Parameter and State Estimation of Nonlinear Systems,” IET Signal
Processing, 2015, vol. 9, issue 4, pp. 369-376

A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Gauss Hermite Filter for Nonlinear

Systems,” IET Science Measurement and Technology, 2015, vol. 9, issue 8, pp.
1007-1015

. M. Das, A. Dey, S. Sadhu, T. K. Ghoshal, “Central Difference Filter for

Nonlinear State Estimation,” IET Science Measurement and Technology, 2015,

vol. 9, issue 6, pp. 728-735

1.7.2 Book Chapter

1.

A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Nonlinear Information Filters for

2

Multiple Sensor Fusion,” Revised Selected Papers of 12th International
Conference on Informatics in Control, Automation and Robotics, Lecture Notes
in Electrical Engineering published by Springer Verlag, 2016, vol. 383, pp.

371-390, DOI 10.1007/978-3-319-31898-1_21

1.7.3 Proceedings of Conferences

Chapter 1

1.

A. Dey, S. Sadhu, T. K. Ghoshal, “Joint Estimation of Parameters and States of
Nonlinear Systems using Adaptive Divided Difference Filter,” in the
Proceedings of 2" Michael Faraday IET India Summit, Kolkata, pp. CS.7-
CS.11, 2013.

A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Divided Difference Filter for
Nonlinear Systems with Unknown Noise,” in the Proceedings of International

Conference on Control, Instrumentation, FEnergy and Communication,

University of Calcutta, Kolkata, pp. 640-644, 2014.
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3.

A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Gauss Hermite Filter for
Parameter varying Nonlinear Systems,” in the Proceedings of International
Conference on Signal Processing and Communication, 1ISc Bangalore, , pp. 1-

5,2014.
A. Dey, M. Das, S. Sadhu, T. K. Ghoshal, “Adaptive Gauss Hermite Filter for

Parameter and State Estimation of Nonlinear Systems,” in the Proceedings of in

12" International Conference on Informatics in Control, Automation and

Robotics, Vienna, Austria, vol. 1, pp. 583-589, 2014.
A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Divided Difference Filter for

Nonlinear Systems with Non-additive Noise,” in the Proceedings of 12"

International Conference on Computer, Communication, Control and

Information Technology (C3IT), Hooghly, WB, pp. 1-5, 2015.
A. Dey, S. Sadhu, T. K. Ghoshal, “Multiple Sensor Fusion using Adaptive

Divided Difference Information Filter,” in the Proceeding of International

Conference on Informatics in Control, Automation and Robotics, Colmar,

France, vol. 1, pp. 398-406, 2015.

A. Dey, M. Das, S. Sadhu, T. K. Ghoshal, “Adaptive Unscented Information
Filter For Multiple Sensor Fusion,” in the proceeding of Michael Faraday IET
India Summit 2015, Kolkata, pp. 541-545, 2015.

M. Das, A. Dey, S. Sadhu, T. K. Ghoshal, “Adaptive Unscented Kalman Filter
at the Presence of Non-additive Measurement Noise™ in the proceeding of 12"
International Conference on Informatics in Control, Automation and Robotics,
Colmar, France, vol. 1, pp. 614-620, 2015.

M. Das, A. Dey, S. Sadhu, T. K. Ghoshal, “Joint Estimation of States and
Parameters of a Reentry Ballistic Target Using Adaptive UKF,” in the

proceeding of Fifth International Symposium on Electronic System Design

(ISED), Surathkal, pp. 99 — 103, 2014.

1.8 Credit to Co-workers

The present worker is indebted to Ms. Manasi Das who first identified the knowledge gap in

the domain of adaptive nonlinear estimation and contributed the algorithm for Adaptive UKF
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first in [Das2013], a conference publication, and subsequently in [Das2015], a journal
publication on adaptive UKF. Later, the algorithms for adaptive CDF and adaptive UKF with
non-additive measurement noise have been published with joint authorship after several

insightful discussions with Ms. Das.

1.9 Organization of the Dissertation

This dissertation comprises of ten chapters including the present one which have been
arranged to maintain a continuity of discussion. A comprehensive literature survey on
adaptive filters as well as nonlinear filtering follows this introductory chapter. The third
chapter presents the test problems which are considered in the subsequent chapters for

demonstration and performance analysis of proposed estimation algorithms.

A general algorithm for adaptive nonlinear estimators is presented in chapter 4 which
incorporates derivation of several adaptation algorithms for process and measurement noise
covariance. Both the square root and standard error covariance approaches for adaptive

nonlinear filter are presented here.

In chapter 5 algorithms for Adaptive Divided Difference filter (ADDF) have been developed.
In chapter 6 and chapter 7 respectively algorithms for Adaptive Gauss Hermite filter (AGHF)
and Adaptive Cubature Kalman filter (ACKF) have been formulated using the general
framework presented in chapter 4 and their performance is compared with the other

competing algorithms.

In chapter 8 the algorithms for adaptive nonlinear filter and Adaptive Divided Difference
filter have been reformulated for the situations with non-additive noise. The performance of

ADDF and ACKF with non-additive noise is also demonstrated thereafter.

The general algorithm for adaptive nonlinear filter is extended in information filter
configuration in chapter 9 for its possible use in multiple sensor fusion. A set of new
algorithms of adaptive information filters are derived from this general framework and their

relative advantage has been investigated in this chapter.

At the end of this dissertation the concluding comments are presented in chapter 10 along

with the scope of further work.
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Chapter 2: Literature Survey
2.1 Chapter Introduction

A brief literature survey related to adaptive state estimation for nonlinear systems, the central
topic of the dissertation, has been presented in this chapter. It has been explained in the
introduction that adaptive state estimation is called for in the contingent situations where
knowledge of noise covariances remains incomplete. Significant contributions by previous
workers up to the year 2015 have been reviewed in the above perspective along with notes,
where applicable, how such previous work opened the scope of further research. This review
is organised thematically rather than in conventional chronological order for the ease of
interpretation. As the state estimators are often called “filters” (possibly since the days of
Kalman Filters) both these expressions would be considered as synonymous in the context of

this survey.

The first logical part of this chapter briefly reviews recent as well as foundational work on
conventional (i.e non-adaptive) nonlinear state estimation, particularly, those which are
popularly called as “Post Kalman filtering” techniques (i.e., EKF and its successors). A
review on non-adaptive nonlinear filtering algorithms is important as these are used as the
core of adaptive nonlinear filters. This part of the review is necessarily brief as issues of
several nonlinear filters have been discussed rather elaborately in standard text books
[Simon2006, Ristic2004, Zarchan2000, Brown1983, Anderson1979]. A summary of recent
developments on nonlinear filtering after publications on Unscented Kalman filter has also
been provided in this section. As the theme of this dissertation widely differs from the
concept of simulation based (non-adaptive) filters like particle filter, the vast literature of

simulation based filters have not been reviewed.

The next logical part reviews publications on adaptive filters after due categorization. Both
linear and non linear systems have been covered with more emphasis on the latter. Possible
real world applications of adaptive estimation algorithms are also reviewed in this part. Note
that recently reported adaptive filters based on artificial intelligence has not been reviewed in
this part as these approaches do not thematically match with the approach followed to

develop adaptive estimators.
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2.2 Literature on nonlinear (non-adaptive) filtering

For estimation of the states of a linear system in presence of noisy measurements Kalman
filter has been extensively used for its optimal estimation performance even for the time
varying signal model [Anderson1979]. The Linearized Kalman filters (LKF) and Extended
Kalman filters (EKF) are first introduced in the solution domain of nonlinear estimation and
have been widely reported in literature [Brown1983, Simon2006]. The LKF is implemented
by linearizing the nonlinear system dynamics and measurement model about a nominal state
trajectory of the system. However, EKF linearizes the system dynamics and measurement
equation about a posteriori estimate of state of previous instant and a priori estimate of state
of current instant respectively. Therefore, the operating point of linearization changes in each

update cycle.

The Extended Kalman filter which can perform satisfactorily for systems with mild
nonlinearity suffers from some negative aspects|[Merwe2004]: (i) EKF considers only first
order term for linearization and, therefore, approximation becomes inaccurate for the systems
with significant nonlinearity (though higher order approximations had been introduced later
[Simon2006]) , (ii)) Computation of Jacobian increases complexity for higher order systems,
(iii)) Computation of Jacobian becomes impossible for the systems with discontinuity, (iv)

Inaccuracy due to linear approximation can lead the filter to divergence.

The limitations of EKF reported in [Brown1983, Julier2004, Simon2006] have prepared the
background of research on nonlinear estimation methods. One such class of nonlinear filters
called “Sigma Point filters” [Merwe2004] can reportedly overcome the limitations of EKF by
propagating the mean and covariance of the estimate by generating a set of “sigma points”
and weights in a deterministic approach. These sigma point based filtering algorithms have
been found to be performance wise superior to EKF. Despite the earlier widespread use of
EKF [Merwe2004] the recent works on nonlinear state estimation are becoming more
inclined to the sigma point filters. In the following subsections works on different sub types
of sigma point filters have been reviewed and their advantages over one another are also
reported. Many of the sigma point filters have also been called as “Linear Regression

Kalman Filters” (LRKF) [Lefebvre 2002].
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2.2.1 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a popular member of the family of sigma point filters
which is based on Unscented Transformation rule. This filter was first proposed in
[Julier1995] and established as a derivative free sigma point filter in literature by a number of

follow up papers [Julier1996, Julier1997, Julier2000, Julier2004, Merwe2004].

The mean and covariance of the estimates are computed as a weighted sum of a set of
discrete points which are obtained after propagating sigma points through the nonlinear
functions. The selection of sigma points is based on Unscented Transformation rule which is
explained in [Julier1997]. This algorithm is consequently free from derivative calculation and
presents superior performance compared to EKF as it incorporates second order
approximation during mean and covariance estimation. Estimation accuracy of UKF and
computational efficiency are also discussed in [Julierl997]. Superiority of estimation

performance of UKF with respect to EKF is demonstrated with a case study.

The performance of UKF can be improved with scaled version of UKF discussed in
[Julier1999, Julier2002, Merwe2004]. The spread of deterministically chosen sigma points
can be controlled by suitable choice of scaling parameters. In an invited paper [Julier2004]
contributed by the same authors the motivation, formulation, uses of unscented

transformation method (UT) has been presented in a comprehensive way.

Reduced order UKEF is proposed in [Julier1998, Julier2002] so that the computational load
can be reduced compared to the algorithm presented in their earlier papers. Unlike the
standard UKF which requires 2n+17 (n is the order of the system) of sigma points only n+1/

points may be sufficient for reduced order UKF.

The square root version of UKF (scaled) was reported in [Merwe2001]. This square root
version of UKF is numerically stable and employs three algebraic techniques e.g.; QR-
decomposition, Cholesky factor updating, and efficient least square to provide numerically
efficient and stable filtering algorithm. The proposed method has been applied for both state
and parameter estimation. In this work, it is reported that the SR-UKF requires the same

computation effort as in EKF.

In the PhD dissertation [Merwe2004] the author summarizes the previous work on nonlinear

filtering which uses sigma points and provides a general filtering algorithms based on
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Bayesian Estimation framework where the Bayesian integrals are numerically evaluated
using sigma points and weights. The varieties of sigma point filters which may be obtained
from this general algorithm includes UKF and its corresponding square root versions namely
SR-UKF. Simulation results are provided to show that these filters are better than EKF. This

work also discusses a hybrid version of UKF and sequential Monte-Carlo filter.

[Wu2006] presented a general algorithm for Gaussian filters where the UKF can be obtained
by the rule of exact monomials. There the author proposed to get a higher order UKF using
the rule for higher precision. The author proposed to choose 5" degree accuracy and name
the algorithm as UKFS5. It is demonstrated that it is performance wise superior to
conventional UKF. This concept has similarity with the concept of [Julier2004] where the

possibility of higher order UKF was first mentioned.
2.2.2 Interpolation based filters

In the family of sigma point filters some of the members are developed based on
interpolation formula. These estimators are well known as Central Difference filters
[Scheil997, 1to2000] and Divided Difference filter [Norgaard2000]. These algorithms are
approximation based methods where the nonlinear function is approximated with the Taylor
series with first and second order accuracy. However, computation of Jacobian and Hessian

matrices are replaced by function evaluations based on interpolation formula.

The contribution of [Scheil997] is the earliest towards such an approach of filtering. In
[Scheil997] the author has proposed a derivative free algorithm which approximates the
square root of the error covariance matrix by the function evaluation based on central point
finite difference approach. The author, however, did not mention Stirling Interpolation in his
work. This new method suggested in [Scheil997], uses deterministically chosen points
(sigma points) to linearize the nonlinear signal model without taking any derivatives. In this
approach linearization of nonlinear function is done by considering the first order
approximation only and therefore has less estimation accuracy compared to UKEF.
Nevertheless, this work has developed the background for the Central Difference filter
[1t0o2000] and the Divided Difference filter. [Norgaard2000].

Central Difference filter (CDF) proposed by [Ito2000] present a mathematically improved

algorithm compared to [Scheil997] by considering polynomial interpolation methods for
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selection of sigma points. Here, linearization is done with second order approximation. In the
same year [Norgaard2000] presented an interpolation based Divided Difference filter (DDF)
which has a close similarity with that of [1t02000].

The algorithm in [Norgaard2000] has been derived based on Stirling interpolation formula.
The author of [Norgaard2000] has derived the algorithm for propagation of square root of
error covariances of DDF and categorized the algorithm as DD1 and DD?2 based on the order
of approximation. The DDI considers the first order terms during linearization while DD2,
the improved algorithm, considers the second order terms also. It is understood from these
works that the DD1 algorithm is similar to that of CDF proposed by [Scheil997] and DD2 is
analogous to CDF [Ito2000]. The author of [Norgaard2000] presents the algorithm in a
square root framework and the error covariance is obtained subsequently. The algorithm also
accommodates the non-additive process and measurement noise. These features are missing

in the algorithm of [1to2000].

An important parameter in these algorithms is the normalized interval Ilength
[Norgaard2000]. The choice of the interval length is to be carefully made. An arbitrary
choice of this parameter may degrade the performance. For example, with the value of
interval length equal to 1, the DD2 algorithm get reduced to DD1 as it is obvious from the
steps of algorithm that the contribution of second order approximation becomes nil with this
choice. In [Norgaard2000] it is suggested to choose this parameter as the square root of the
kurtosis of the distribution (4™ moment) of the distribution which happens to be equal to V3

for Gaussian noise.

In some situations the performance of DD1 and DD2 are comparably same as reported in an
analytical work by [SimandI2009]. It is mentioned that for the systems with high
measurement noise covariance (with a comparatively low process noise covariance) and
having quasi linear measurement equation performance of DD1 and DD2 are comparatively
equal. In [SimandI2009] it is also mentioned that the performance of UKF and DD2 are
almost same and significantly improved compared to DDI1. In the PhD thesis of Merwe
[Merwe2004] the relation between the central difference filter (CDF), divided difference
filter (DDF) and UKF has been presented. It can be concluded from the work of
[Simandl2009] and [Merwe2004] that DDF/ CDF are performance wise equal with UKF and

does not need a number of tuning parameters like UKF.
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In [Ito2000], the performance of CDF is illustrated with the help of three nonlinear
estimation problems. A first order test problem with strong nonlinearity has been considered
which is well known for performance evaluation of nonlinear filter because of its strong
nonlinearity in the system dynamics and measurement equation. It has been observed from
the results that the performance of CDF is comparable to that obtained from UKF (also called
as Julier Uhlman filter in [Ito2000]) and far better than that from EKF. Because of the
significant nonlinearity in the system dynamics the estimation performance of both CDF and
UKEF are not satisfactory even though they are better than EKF. However, for the other case

studies the performance of CDF is found to be quite satisfactory.

[Norgaard2000] demonstrated the performance of the proposed filters DD1 and DD2 with the
help of a bench mark nonlinear estimation problem of object tracking. It is found that the
performance of DD1 is comparable with EKF. As for DD2, it excels over DDI1, EKF and

even capable of producing better estimates compared to second order EKF.

DDF 1is also extended as iterated DDF [Shi2008] in the same vein of iterated EKF
[BarShalom2001]. The Divided Difference operators have been used in recurrence after
getting a recent estimate in each time instant. During iteration, the current mean and the
covariance of the divided difference filter (DDF) were used to measurement update step to
re-compute the estimate such that more refined value may be obtained. This algorithm shows

its superiority over the non iterated algorithm at an additional computation burden.
2.2.3 Gauss Hermite Filter

Gauss-Hermite filter was first reported in [Ito2000] wherein the estimation algorithm is
developed using the Gauss-Hermite quadrature rule to numerically evaluate the Bayesian
integrals. The integrals encountered in nonlinear Bayesian filtering approach for estimation
of nonlinear system perturbed with additive Gaussian noise can be replaced by the weighted
sum of the function evaluation of quadrature points generated following the Gauss Hermite
quadrature rule.

The Gauss Hermite quadrature rule is a special case of the Gauss quadrature rules for
evaluating the Bayesian Integral in presence of Gaussian noise (also termed as Gaussian
integrals in [I1to2000]). The Hermite polynomial is intended for Gaussian weighting function

present in the integral. This rule is simplified further in [Golub1969] and followed in
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[1t0o2000] to develop GHF. A tri diagonal matrix is created in [Golub1969] from a three term
recurrence formula using Hermite polynomial. Using this tri diagonal matrix the quadrature

points and weights are obtained.

Though computationally intensive compared to traditional filters like Unscented Kalman
Filters, Divided Difference Filters, Gauss Hermite filters perform commendably well in the
situations where there is significant nonlinearity in the system dynamics and the
measurement equation. In [Ito2000] the filter has been evaluated using a one dimensional
problem as mentioned before. It is observed from the result that the performance of GHF is

comparatively better than the other sigma point filters.

Many works contemporary with [1to2000] seemed to be mentioning the possibility of Gauss-
Hermite filter. Subhas Challa and others [Challal999] contributed a nonlinear filtering
algorithm using Generalized Edgeworth Series and Gauss—Hermite Quadrature rule followed
by the demonstration of its superiority over EKF using bearing only tracking problem. Fred
Daum in his work [Daum2005] has reported about different way of Bayesian filtering
techniques wherein the Gauss quadrature rule is preferred for its higher accuracy. The higher
accuracy of GHF is also acknowledged in [Wu2006] which provided a unified numerical-
integration framework for Bayesian filtering and third order GHF is preferred for estimation

at the disposal of sufficient computation power.

In [Arasaratnam2007] the possibilities of Gaussian sum like parallel filters are explored to
take care of non Gaussian noise and superiority of such filters over other nonlinear filters is
demonstrated. It is reported in [Arasaratnam2007] that use of Gauss Hermite quadrature rule
can provide filtering accuracy comparable to that of much more computationally intensive
simulation based filters like Particle filters in some applications specifically with relatively

small value of measurement noise covariance.

The Square Root version of Gauss Hermite filter is also proposed by the same author in
follow up paper [Arasaratnam2008] where it is observed that the performance is quite similar
with the GHF with some additional numerical accuracy. A comprehensive description on
Gauss Hermite quadrature rule along with necessary illustrations is provided in the in the
master’s thesis of N. K. Singh [Singh2012] and also in [Chalasani2012]. The work of
[Chalasani2012] investigates the performance of GHF for Bearing only tracking problem and

also rectified the printing mistake in GH quadrature rule which appears in [Ito2000].
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It is realized that this sophisticated algorithm of Gauss Hermite filter suffers from the curse
of dimensionality. The computation burden increases exponentially with the dimension of the
system. To overcome this drawback the author of [Jia2012] proposed a sparse grid Gauss
Hermite Filter. The filter uses weighted sparse-grid quadrature points to approximate the
multi-dimensional integrals in the nonlinear Bayesian estimation algorithm. For this filter the
number of sparse-grid quadrature points is a polynomial of the dimension of the system

unlike the conventional GHF and overcomes the curse of dimensionality.

For more accurate estimation of the systems with higher order dynamic equation a modified
GHF is proposed by [Singh2013] and named as transformed Gauss-Hermite filter. An
orthogonal transformation has been applied on Gauss-Hermite quadrature points in order to
obtain the newly transformed quadrature points using which more accurate estimates of states
are obtained. However, this algorithm also suffers from the dimensionality problem like

ordinary GHF.
2.2.4 Cubature Kalman Filter

The multi variable moment integrals encountered in nonlinear Bayesian filtering algorithm
[1to2000, Arasaratnam2009] are needed to be approximated using numerical method for the
implementation of filtering algorithms. In [Arasaratnam2009] the authors propose a method
of numerical integration with the help of a spherical radial cubature rule which is less
computationally intensive compared to GHF. The authors proposed a third degree cubature
rule which ensures satisfactory estimation performance of the filter. The third degree rule
being accurate up to third degree polynomial, it computes the posterior mean accurately and
posterior error covariance with an approximate accuracy. For this algorithm the number of
quadrature points increases linearly with increase in the dimension of the system. Therefore,
for higher order system CKF requires much less computational effort compared to GHF

based on Gauss Hermite quadrature rule.

The Cubature Kalman filter algoritms resemble non scaled UKF algorithm and are claimed to
be numerically more stable than UKF.. The square root version of CKF is also presented in

[Arasaratnam2009] to retain the symmetry and positive definiteness of error covariance.

However, the proposed filter cannot outperform GHF in the context of estimation accuracy.

For example, it cannot compute exactly the Gaussian weighted integrals of such simple
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polynomial functions as x/x;, where x, and x, are two components of a Gaussian random

vector [Jia2013a]. To increase the accuracy of CKF higher degree cubature points are

required.

The authors of [Jia2013a] work further on this filter to extend it for arbitrary degree such that
3" degree cubature rule is only a subset of this higher degree filter. The general algorithm of
higher degree cubature Kalman filter is presented in this work which shows that the
performance of this filter is comparable with GHF but requires a lower computation effort.
Though the authors of [Jia2013a] use the term higher degree only results for fifth degree
CKF have been provided.

Later a different method of higher order cubature filter is also presented in [Zhang2014].The
authors present a new derivation of the CKFs, which easily lends itself to extension for
higher-degree CKF compared to the method of [Jia2013a]. Three consistency conditions
which have to be satisfied for fully symmetric cubature rules are introduced here for
constructing desired CKFs. Additionally two different types of the fifth-degree CKFs are

discussed in details.
2.2.5 Cubature Quadrature Kalman Filter

A new quadrature rule known as cubature quadrature rule has been proposed by
[Bhaumik2013] which is published at the same time along with higher order cubature rule
reported in [Jia2013a]. In the work of [Bhaumik2013] the author has proposed another
version of cubature filter which increased accuracy compared to 3™ degree cubature rule and

termed as cubature quadrature rule.

For the proposed quadrature rule the spherical integral is evaluated with 3™ degree spherical
rule as in [Arasaratnam2009]. The radial integral is approximated using Gauss Laguerre
quadrature rule unlike the moment matching method in [Jia2013a]. For the first degree
quadrature rule the algorithm becomes same as that 3™ degree CKF given in
[Arasaratnam2009]. The accuracy of CQKEF reportedly increases with the increasing order of
Gauss Laguerre quadrature rule The authors also extend their work in the square root
framework [Bhaumik2014] which is also performance wise same with standard CQKF with

its additional numerical advantages.
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The same group of researchers also modified their work in [Singh2015] wherein the work of
[Jia2013a] has been critically analyzed and the moment matching method followed in
[Jia2013a] for computing the radial points and weights is reported to be analytically
ambiguous. The authors proposed to combine higher degree spherical rule [Genz2003,
Jia2013a] with higher order radial rule by solving higher order Chebyshev-Laguerre equation
as mentioned in their previous paper [Bhaumik2013]. This new quadrature rule has been
named as higher order cubature quadrature rule. The algorithm demonstrates its superiority
over the algorithm of [Jia2013a] and [Bhaumik2013] for some numerical case studies.
2.2.6 Nonlinear Information filters

The nonlinear sigma point filters can also be extended with information filter configuration
because this configuration facilitate initialization of the state, ensures positive definiteness of
a posteriori error covariance and computationally economic with increasing number of

measurements [Anderson1979].

It has been reported in literature that the Information filter variant of state estimators is
widely recommended for multiple sensor estimation and plays a significant role in many real
life applications (e.g. target tracking [Jia2013a], in collaborative sensor networks
[Vercauteren2005] and decentralized guidance and control of UAV [Ragi2013]) because of

the above mentioned advantages of the information filter configuration. [Anderson1979].
2.2.6.1.Unscented Information Filter

A generalized sigma point information filter algorithm was first reported in
[Vercauteren2005] where only the performance of Unscented Information filter (UIF) was
demonstrated for decentralized multi sensor fusion problem. The author also demonstrated
the poor performance of Extended Information filter (EIF) as the drawbacks of EKF are also
inherited by EIF. The sigma points are chosen using Unscented Transformation as given in
the paper of Unscented Kalman Filter [Julier2004]. This work was also followed up in
[Lee2008]. With the concept of unscented information filter square root unscented
information filter was also proposed by [Liu2012] because of its enhanced numerical

accuracy, double order precision and preservation of symmetry.
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2.2.6.2.Central Difference Information Filter

Another version of sigma point information filter is proposed by [Liu2011] where the sigma
points are selected using Stirling interpolation formula and the resulting algorithm is termed
as Central Difference Information filter (CDIF). Stirling’s interpolation formula is preferred
over the unscented transformation as it does not require tuning parameters as in case of
unscented information filter. Unless a careful tuning of UIF is achieved its performance may
get deteriorated. CDIF is performance wise similar to UIF as demonstrated in [Liu2011] with

reportedly low computation effort.

Square Root version of the Central Difference Information filter are also formulated in
[Liu2012] together with square root UIF. The square-root central difference information filter
(SR-CDIF) is readily available from CDIF. The square roots of error covariance that are
computed in the filtering algorithm are updated by QR factorization and Cholesky update.
The square-root central difference information filter (SR-CDIF) is numerically more stable
than square-root unscented information filter (SR-UIF) as SR-CDIF has only positive
weights and therefore a stable Cholesky update. In case of SR-UIF during Cholesky update
the positive-definiteness may not be guaranteed due to the negative weights. These filtering

algorithms are validated by object tracking problem using multiple radars in [Liu2012].
2.2.6.3.Cubature Information Filter

The concept of generating sigma points using spherical radial cubature rule is also extended
for point based information filter. Cubature Information filter (CIF) is proposed in
[Chandra2011] which has third degree accuracy as given in Cubature Kalman filter with
standard error covariance form [Arasaratnam2009]. The performance of CIF is compared
with UIF where it is demonstrated that the performance of CIF is comparable with the latter
and sometimes better than that. The author has also extended CIF in the form of square root
version of cubature information filter (SR-CIF) as the algorithm ensures numerical efficiency
[Chandra2013]. Both CIF and SR-CIF are employed for multi-sensor state estimation.
Cubature and Square Root information filter is also extended for correlated process and

measurement noise by [Ge2014] and validated with a bearing only tracking problem.
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2.2.6.4.Higher degree Cubature & Gauss Hermite Information Filter

The performance of cubature information filter changes substantially with increase in the
degree of the cubature rule. As reported in [Jia2013a] the higher degree cubature filter, e.g.,
fifth degree CKF provides improved estimation result compared to third degree CKF. The
author has also extended this concept and developed a high-degree cubature information
filter [Jia2013b]. The performance of 5t degree CIF is comparable with Gauss Hermite
Information filter and better than CIF, UIF and CDIF. Note that the Gauss Hermite
Information filter is a sigma point information filter where the sigma points are chosen using
Gauss Hermite quadrature rule. GHIF has not been proposed in any other previous work. The
author has used in [Jia2013b] for performance comparison with 5" degree CIF.
2.2.7 Nonlinear filters for non-additive noise

In literature only a few publications exist on nonlinear filters which can accommodate non-
additive process and measurement noise. The authors of [Wang2000, Merwe2004] proposed
the augmented form of UKF which accommodate non-additive noise. In this algorithm the
mean and covariance of noise vector are also computed with the help of sigma points as these

cannot be computed directly algebraically as in the case of for additive noise.

In a contemporary paper [Norgaard2000] the authors propose interpolation based DDF which
can also take care of the non-additive noise terms. However, augmentation is not required as
2™ order approximation of the nonlinear function of process and measurement noise can be

directly obtained using Stirling’s interpolation formula.

The augmented form of UKEF is also reported in [Sarkka2013a] and subsequently augmented
form of GHF, CKF are also presented for non-additive process and measurement noise. Note
that apart from [Sarkka2013a] no work exists to the best knowledge of the present worker
where nonlinear filters with non-additive noise have been reported.
2.2.8 Optimality of nonlinear estimators

It may be noted from this brief survey as well as from the text and reference books cited that
none of the nonlinear filters claim provable optimality in the general sense of the term, In
other words estimators that can ensure optimal performance for nonlinear systems are yet to
be developed. However, lack of provable optimality does not appear to deter fairly

widespread application of such sub-optimal filters in tracking and other applications.
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2.3 Literature on Adaptive filters

It has been discussed earlier that successful performance of the estimators (for linear as well
as the nonlinear signal models can be ensured) requires. availability of the mathematical
model of the system dynamics with adequate accuracy, the measurement equations and the
prior knowledge about the distributions and covariances of the process noise and the
measurement noise . Inappropriate assumption of any of these noise covariances can degrade
the estimation accuracy of the filter and yields suboptimal estimation for both linear and

nonlinear signal models [Mehral972, Maybeck1982].

Process noise had been widely used to take care of modelling inaccuracy of system dynamics
including parametric uncertainty, unknown disturbance etc [Simon2006, Zarchan2000]. The
covariance of process noise is often unknown in many real time applications. As the
objective of the present work includes estimation of unknown parameters along with the

states, choice of process noise covariance becomes an important task.

Regarding measurement, the noise covariance can be assigned correctly only after a detailed
characterization of the sensor data. It is difficult to assign the measurement noise covariance

accurately where the sensor characterization has been partially done or not carried out at all.

Assignment of appropriate noise covariance requires a substantial experimentation and/or
offline ‘tuning’ before employing a filter for real time estimation problem. Such procedures
can be replaced by the use of adaptive filters which are capable to adapt process noise
covariance (Q-Adaptive filters) and measurement noise covariance (R-Adaptive filters). This
section presents the review on the existing adaptive estimators for linear as well as nonlinear

signal models reported in literatures.
2.3.1 Adaptive filter with linear signal models

Adaptive filters for linear signal models have been reported in early works like [Mehral970,
Mehral972, Myers1976, Maybeck1982] where the methods for adaptation of noise
covariance have been presented. The work of [Mehral972] is considered as a pioneer work
in the history of adaptive filters where the methods of adaptation has been categorized into
four categories. The rest of this section is organized on the basis of the categorization as
mentioned in [Mehral972] and the works on these particular methods of adaptation has been

discussed.

Chapter 2 26



State and Parameter Estimation for Dynamic Systems: Some Investigations

2.3.1.1. Bayesian Estimation of unknown noise covariance

Bayesian estimation method can be employed for estimating the unknown parameters of the
system in addition to the states of the system. In situations when the prior knowledge of noise
covariances remains unavailable these matrices can also be considered as unknown

parameters and can be estimated using the Bayesian method.

In this approach the objective is to find an optimal estimate of the unknown noise
covariances (Q or R) such that the a posteriori probability density of the state is maximized.
Such an approach of estimation of noise statistics (both mean and covariance of the noise)
was first proposed by Sage and Husa [Sage1969]. The method proposed by Sage and Husa is
one of the algorithms for adaptive Bayesian estimation with linear signal models reported in
[Sage1969] by the same authors and has been followed later in many works on adaptive
Kalman filtering. In the method of Sage Husa [Sage1969] the algorithms for adaptation of
the mean and covariance of unknown process noise and measurement noise have been
derived by maximizing the a posteriori density function of state. Therefore this method can
also be considered as Maximum a Posteriori (MAP) estimation. Adaptive Kalman filter
based on Maximum a Posteriori (MAP) method estimate the noise statistics (mean and

covariance) consistently with the changes of the innovation sequence.

It was admitted by the developers [Sage1969] that the algorithm for adaptation of mean and
covariance of process noise and measurement noise based on MAP based method becomes
computationally intensive with increase in the dimension of states and measurements.
Therefore, the authors have suggested comparatively simpler algorithms on the basis of a few
assumptions. However, the optimality of the estimated mean and covariances cannot be
ensured with such assumptions. In addition to this it is obvious from the algorithmic steps
that the positive definiteness of adapted Q and R cannot be ensured. In [Bavdekar2011] it is
also reported that the MAP based estimation of noise statistics often provides biased estimate
of true covariance. Expectation maximization method reportedly presents better performance

compared to MAP in [Bavdekar2011] as would be discussed in the subsequent subsection.

The work of Sage Husa is referred in several recent contributions. In [Yang2003] same
algorithm of @ and R adaptation as in [Sage1969] is used with an additional adaptation factor
which is decided on the basis of variance component. In the work of [Narasimhappa2012] the

adaptive filter using Sage Husa’s method (same as MAP based method) is used to de-noise
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the fibre optics gyro signal. Here, fading memory approach using a forgetting factor is also

incorporated in the basic MAP based algorithm.

To improve the estimation accuracy of MAP based adaptive filter, an AKF algorithm based
on MAP estimation with one-step smoothing is proposed in a recent paper by [Gao2015a]. In
the conventional MAP based algorithm an exponentially weighted fading memory approach
is also incorporated to emphasize the recent measurements. However, in all the above
referred modified MAP based estimation algorithms positive definiteness of adapted Q and R

cannot be ensured as these are based on Sage Husa approach.

Amongst the algorithms for adaptive Bayesian estimation reported in [Sage1969] the Sage
Husa method (MAP based method) of adaptive Kalman filtering has become popular and
also extended for nonlinear state estimation. Therefore, MAP based algorithms have been
emphasized during the literature review on adaptive Bayesian estimation. The other methods
of adaptive Bayesian method reported in [Sage1969] have been rarely referred in literature

later and not related to the present work. Therefore, those methods have not been reviewed.
2.3.1.2. Adaptation of noise covariance using Correlation Method

It is mentioned in [Anderson1979] that the innovation sequence from an accurately tuned
Kalman filter is zero mean, white and Gaussian. Incorrect value of the system parameters or
noise covariances results into the loss of zero mean nature and whiteness of innovation
sequence. Consequently the autocorrelation of innovation sequence no longer remains a
Kronecker delta function. The adaptation of noise covariance (Q or R) using correlation
method is developed on the basis of this concept. The correlation method was first introduced

by [Mehral970, Mehral972] and followed up [Carew1973].

In [Mehral970, Mehral972] the author proposes an estimation method for the noise
covariance using the autocorrelation function of the output of the system. Alternatively,
autocorrelation function of the innovation sequence can also be considered instead of the
output. It is mentioned in [Mehral972] that use of the innovation sequence is preferable as
the correlation method based on output becomes restrictive in some situations. The relation
between the unknown noise covariance and the autocorrelation function of the output or
innovation sequence are presented by a set of equations and are solved using least square

method for the unknown noise covariance. The above method is restricted for the unknown
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noise covariance with constant value. In [Mehral971] the author has proposed an algorithm
where the system parameters (parameters of state transition matrix) are identified using this

method.

In [Neethling1974] the authors proposed an alternative approach of estimating noise
covariance based on weighted least square method and evaluated with the help of Monte
Carlo simulation. The author also pointed out the drawbacks in the method of [Mehral970,
Carew1973] and demonstrated that this method may sometime present biased estimate of
noise covariance. The authors of [Oussalah 2000] like [Neethling1974] estimate the unknown
covariance with the help of weighted least square method instead of general least square
method presented in [Mehral970, Carew1973]. The rationale behind their proposal of using
weighted least square method is to consider the quality of the autocorrelation function of the
innovation sequence. The weights are determined using ‘Bhattacharyya distance criterion’
between the ideal probability and the distribution referring to the current first and second
order statistics of autocorrelation functions. In [Oussalah2000] the authors demonstrated the

superiority of the method proposed by them over the approach of [Mehral970].

The authors of [Odelson2006] present a constrained Autocovariance Least Squares (ALS)
method for estimation of Q and R. The method ensures the positive semi-definiteness of the
estimated noise covariance. It is mentioned in [Odelson2006] that the methods by
[Mehral970] follows a three-step procedure to compute the covariances while the method of
[Odelson2006] follows only one-step procedure which yields covariance estimates with
better accuracy compared to [Mehral970]. The unbiasedness and better convergence (to the
truth value) of adapted covariances with increase in the number of samples is demonstrated
in this work. It is also demonstrated that the approach of Mehra present biased estimate and
cannot ensure the positive definiteness of estimated noise covariance.
2.3.1.3. Covariance Matching method of adaptation

Covariance matching method which is also known as intuitive method of adaptation has been
reported in early works [Mehral972, Myers1976, Maybeck1982]. The innovation covariance
computed during filtering steps (theoretical innovation covariance) is compared with the
sample covariance of innovation estimated from the sliding window with a finite length. The

expression of unknown noise covariance is computed such that the innovation covariance to
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be consistent with its theoretical value. This method has been followed to develop the

algorithm for Q and R adaptation.

The author of [Meyers1976] presents an alternative approach of adaptation algorithm
compared to [Mehral972, Maybeck1982]. Here, both the mean and the covariance of process
noise are adapted which has broadened the scope of the application compared to
[Mehral972, Maybeck1982]. The above authors have also introduced a fading memory
weighting parameter by which recent observations are emphasized compared to the older
observations. This method, however, incorporates another window to maintain the history of
a posteriori error covariance of previous instants for use in algorithm and therefore
computationally more intensive than the method of [Mehral972, Maybeck1982]. The
expression of adapted Q@ and R presented in [Meyers1976, Mehral972] again cannot
guarantee the positive definiteness of adapted matrices. However, [Maybeck1982] presents
an alternate algorithm for R adaptation that can ensure the positive definiteness of adapted R

matrix.

Because of the unavailability of the unique solution of adapted Q reported in [Mehral972,
Maybeck1982], the scaling factor based () adaptation techniques [Hide2003a, Hide2004,
Ding2007, Almagbile2010] have also been explored for linear signal models. The work of
[Hide2004] is a follow up of previous publication [Hide2003a] where the a priori error
covariance is scaled rather than Q. This method did not turn out to be promising for
navigation problem and scaling of process noise covariance suggested to be a solution in this

situation as reported in [Hide2004].

The scaling factor based Q adaptation was pursued again in [Ding2007] where some further
modifications are made provided the measurement noise covariance is precisely known. The
same method of @ adaptation is followed in the recent work of [Almagbile2010]. The scaling
factor based method of @ adaptation does not have the straight forward proof and therefore,
needs numerical experimentation before real time application with confidence.

R adaptation algorithm, unlike @ adaptation, presents a unique solution for adapted R
[Mehral972, Maybeck1982]. Two different approaches of R adaptation have been reported
in [Maybeck1982] using the statistics of either the innovation or, the residual from filter. The
distinction between innovation and residual is nontrivial. While innovation is defined as the

difference between actual measurement and a priori measurement, residual uses a posteriori
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estimate of measurement. The expression of adapted R ensures positive definiteness when
derived using the residual sequence. However, the possibility of residual based R adaptation

for ensured positive definiteness of R is not mentioned in [Mehral972].

The use of residual sequence is recommended in [Maybeck1982] because of its ensured
positive definiteness and also preferred in [Almagbile2010]. In [Myers1976] adaptation
algorithm for R is presented based on innovation sequence only. Here also the mean of
measurement noise is adapted. However, due to innovation based adaptation positive

definiteness of R cannot be guaranteed here too.

Following the method of covariance matching, a different algorithm adaptive filtering is
presented in [Yang 2001a, 2001b, 2003, 2005]. The adaptation method although based on
Sage Husa method of adaptation proposed in these publications the use an adaptive factor
based on covariance matching method to adjust the contribution of the measurements and the
predicted states. Usually the traditional covariance matching method of adaptation performs
satisfactorily if the states and measurement errors are stable. When unstable prior states are
predicted by the filter adaptive factor can balance the weights between the measurements and
the predicted state and controls the ill effects of diverging predicted error. The choice of

adaptive factor is a crucial part of design and plays a significant role in navigation.

Two of such adaptive factors were introduced first in [Yang 2001a, 2001b]. A different
adaptive factor using the variance ratio of predicted states and observations was also
developed in [Yang2003]. These adaptive factors are mostly developed by experimentation.
Possibilities of other adaptive factors are mentioned in [Yang2005] and the influence of

various adaptive factors on the filtering algorithm is investigated there.

Adaptive Kalman filter proposed by [Jwo2008] is also based on covariance matching
method. The @ and R adaptation is done using a scaling factor. This factor is the ratio of
window estimated and theoretical innovation covariance. However, for Q adaptation author
has restricted its maximum value to be 1. The effect of Q adaptation can also be achieved by
adapting the a priori error covariance matrix. The same authors also discussed about the
scaling factor based P (a priori error covariance) adaptation in their book chapter [Jwo2009].
Basically, Zhou et al [Zhoul996] proposed this approach with the name of strong tracking
Kalman filter. The advantages of this algorithm are: (i) robustness against model

uncertainties and (ii) tracking of abrupt changes of states.
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The covariance matching Q@ and R adaptation similar to [Jwo2008] are also employed for
fault detection of the linear signal models in [Hajiyev2013a] so that acceptable estimation
performance can be obtained. Depending on the residual statistics and using the Chi square
method the choice is made between Q and R adaptation. The adaptation is done on the basis
of a scaling factor which is restricted to be less than equal to one for Q adaptation like

[Jwo02008].
2.3.14. Maximum Likelihood Estimation of noise covariance

Maximum Likelihood estimation is a well known approach and originated from Bayesian
method of estimation only. This method can also be employed for adaptation of noise
covariance. Adaptation based on Maximum Likelihood Estimation (MLE) method was first
proposed in [Mehral972] and followed up in [Maybeck1982] wherein the methods of Q and

R adaptation is elaborated and mathematically derived.

From the ML method an unbiased estimate of the required parameter can be obtained with
finite covariance using independent and identically distributed measurements. The estimates
are so obtained that the computed value can maximize the probability density function of
measurement which is expressed in terms of innovation or residual sequence. The innovation
or residual of measurement from a sliding window 1is involved to obtain the expression of
adapted Q or R with the assumptions that the elements of covariances are time invariant
within the window (epoch) length and the innovation/residuals are white (not auto-

correlated).

The method of Q adaptation based on maximum likelihood estimation is investigated in
[Mohamed1999]. While [Maybeck1982] has presented the expression of adapted @ in terms
of state residual, [Mohamed1999] has used innovation sequence. Use of innovation sequence
in place of state residual may reduce the computation cost when the dimension of state vector
1s more than that of measurement vector. Another nontrivial contribution of [Mohamed1999]
is to ensure the positive definiteness of adapted Q. As the filter reaches steady state the a
posteriori error covariance acquires a steady value (often low) and their effects can be
overruled to get an expression of the symmetric, positive definite adapted Q. This assumption
is justified and satisfactory estimation result is obtained using this approximated adaptation

algorithm that guarantees positive definiteness of Q.
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In the work of [Mohamed1999] and [Maybeck1982] two different R adaptation methods
have been derived using MLE method. Here also the residual based method is preferred as
the derived expression of adapted R automatically ensures positive definiteness of adapted R
matrix. However, the innovation based R adaptation algorithm cannot ensure the positive

definiteness of R.

The approach of MLE based adaptation is followed in [Hide2003b]. The Q and R adaptation
formula have been taken from [Mohamed1999]. The author also compared this approach
with Multiple Model Adaptive Estimation where a bank of Kalman filters is used. For
attitude estimation of a moving object the  and R adaptation techniques by [Mohamed1999]
is followed in [El-Mowaty2005]. However, the residual based @ adaptation algorithm
presented in this publication seems to be incorrect. Additionally, a Gauss-Newton iteration
method within a single epoch is employed to minimize the linearization bias in face of poor

initial estimation or large disturbances.

The MLE method was reported in an earlier paper by [Kashyap1970] where the unknown
parameters are computed using optimization techniques. Q and R can also be obtained using
MLE method where the unknown covariance is obtained following the gradient-based
numerical optimization methods so that the computed parameters maximize the likelihood
function. These optimization based methods need more computation time compared to the
other method as gradient based numerical optimisation are required to obtain the estimate of

unknown covariance after convergence.
2.3.1.5. Expectation Maximization method of adaptation

Expectation Maximization is an alternative way of parameter estimation following the
optimization based maximum likelihood estimation technique [Kashyapl970] where the
usual gradient based numerical optimization approach of maximizing the likelihood function
are replaced by iterative method as reported in [Shumway2000, MohanM.2015]. These

works have been originated from an earlier work by [Dempster1977].

The expectation maximization (EM) technique was developed by Dempster and applied for
estimation of covariance components of a linear signal models [Dempster1977]. On the
availability of the complete data likelihood function the unknown parameters are estimated

iteratively and this method does not require the derivative calculation.
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The EM method, as its name suggests, consists of expectation and maximization steps. In
EM method proposed by [Shumway2000] states are estimated using Kalman smoother with a
guessed initial value of the unknown parameters. The unknown parameters are then
estimated by Maximum Likelihood method. The above method of estimating the states with
the help of a Kalman smoother and optimizing the parameters using ML method is repeated
until the convergence of the parameters is achieved. The algorithm presents analytical
expressions for the iterations of the parameters and therefore computations of the gradient are

not required.

In a recent work by [Zagrobelny2014] the authors followed an optimization based MLE
method for adaptation of process and measurement noise covariance. The measurements are
presented with the help of a normal distribution where the variance of distribution is
expressed in terms of the unknown process and measurement noise covariances. The
likelihood function is then maximized for the optimal choice of unknown covariances using

optimization techniques.
2.3.1.6. Variational Bayesian approach of adaptation

The variational Bayesian approach of adaptive Kalman filtering is first proposed by
[Sarkka2009] which also comes under the category of Bayesian method of estimation of
noise covariance. In this work the situation has been considered where the distribution of the
measurement noise along with the noise statistics (parameters) of distribution remains
unknown. The author has proposed an algorithm of adaptive Kalman filter using variational

Bayesian approximation where joint estimation of states and the noise parameters is possible.

The method is based on variational approximation of the joint posterior distribution of states
and noise parameters which has to be considered on each time step separately. Thus a
recursive algorithm is obtained, where for every step, the state is estimated with Kalman
filter and the diagonals for the measurement noise covariance are estimated with fixed point
iteration. The m diagonals of the covariance of m-dimensional measurement noise are

assumed stochastic and follow independent dynamics.

Approximation of the joint posterior distribution of the state and the noise variances by a
“factorized free form distribution” is possible by the method reported in this work. This way

of adaptation, though widely different from the other approaches of adaptive Kalman filter,
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has similarity with the basic concept of covariance matching technique [Maybeck1982]

where the adapted covariance should remain consistent with observed innovation or residual.

Another work by the same author has been proposed in [Sarkka2013b] with nonlinear signal
models for non-additive or nonlinear noise. The author of [Gao2011] used the above concept
of estimating state and noise parameters for centralized sensor fusion where the complete
knowledge of sensor noise remains unavailable. To reduce the computational burden of

centralized fusion authors present sequential centralized fusion algorithm.

The variational Bayesian method is also employed in [Sun2012] to estimate the states in
linear dynamic systems with unknown inputs. When the knowledge of noise remains
unavailable the author considers system state, unknown inputs and time-varying noise
parameters as hidden variables and presents an algorithm based on variational Bayesian
method to learn the structure of hidden variables and approximate the joint posterior

distribution of system state, unknown inputs and time-varying noise parameters.
2.3.1.7. Findings from the review on adaptive Kalman filters

In course of the review some significant points which are found common to several papers on

adaptive Kalman filtering have been enumerated below.

For Q adaptation methods presented in [Mehral972, Maybeck1982] both the authors admit
that the uniqueness of the adapted Q is possible only for some restricted situations. Whenever
the number of observation is greater than or equal to the number of states or the measurement
matrix is of full rank unique solutions for a priori state error covariance and the process
covariance can be obtained. When the above conditions do not hold, some restrictive
approximations, e.g., @ as a diagonal matrix may be assumed. Alternatively, the pseudo
inverse of measurement matrix needs to be computed. Above all, the filter is considered to be
reached steady state during the most recent estimation window. However, for R adaptation
no such constraints have been reported.

It is to be noted that in a few works [Myers1976, Almagbile2010] as reported above
simultaneous adaptation of Q and R has been carried out and satisfactory results have also
been demonstrated. A few researchers [Mehral972, Maybeck1982, Mohamed1999] have
admitted the drawback of simultaneous adaptation of Q and R. This indicates that even

though acceptable results are obtained for some cases use of algorithms with simultaneous
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adaptation of Q and R cannot be used with confidence and should be evaluated with offline
simulations before real time application. The same comments would also be applicable for

adaptive nonlinear filers.

In [MohanM.2015] the author reports on the review on adaptation method that the effect of Q
and R are conflicting in nature which is the cause of poor estimation during simultaneous
adaptation of these two covariances. In [MohanM.2015] the author mentioned that for
simultaneous adaptation of @ and R using optimization based MLE method consideration of
a special cost function is necessary based on the statistics of prior, post, and smoothed state
estimates and their covariances. Improper combination of such statistics cannot lead to
satisfactory performance of filter as. R is over estimated while @ is under estimated and vice
versa. The authors cite a reference [Gemson1991] where Q and R are adapted alternately. To
bypass the problems of simultaneous adaptation, the filter gain can also be adapted in place
of adaptation of noise covariances [Mehral972]. This method although may ensure the
optimal performance of filter cannot present the adapted value of noise covariance which

may be necessary for the further analysis.

Note also that most of the papers on AKF where the algorithm is presented using Kalman
filters as its core have been demonstrated with nonlinear estimation problems. In that
situation the need of linearization of the system and measurement equation is essential.
Consequently the algorithm which is termed as AKF in the paper becomes equivalent to
adaptive EKF during demonstration of that algorithm using nonlinear estimation problem.
However, during review these works have been categorized as AKF following the theme of
the paper.
2.3.2 Adaptive filter with nonlinear signal models

The concept of adaptive Kalman filters for linear signal models are also extended for
nonlinear signal models using the non-adaptive nonlinear filters as the underlying
framework. The adaptation algorithms are integrated in the non-adaptive nonlinear filtering
algorithms so that the corresponding adaptive nonlinear filter can be formulated. In this way
Adaptive version of EKF, UKF, DDF, CKF have been developed and reported in literature

which are summarized in the following subsections.
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2.3.2.1. Adaptive Extended Kalman Filter

The adaptation algorithm for linear signal models based on different methods can be applied
for nonlinear systems using EKF as a base. An early work by [Maybeck1981] presents a Q
adaptive EKF based on MLE method [Mehral972]. In [Maybeck1981] adaptation algorithm
additionally uses a modulating factor (may be termed as forgetting factor as well) to regulate
adaptation speed. Use of MLE based -Adaptive EKF is also found in [Busse2003]. In this
work the same method of adaptation of Q [Maybeck1981, Maybeck1982] is followed and in
the similar way a modulating factor is used which has been explained as a moving average
method for refinement of adapted Q. The only change in adaptation algorithm is that here the
previous history of innovation sequence is not used by making the window length equal to 1,
i.e., it considers only the value for the current instant. However, these algorithms for Q

adaptation may suffer from singularity problem.

[Busse2003] also proposes R adaptive EKF based on MLE. However, the algorithm presents
incorrect expression of adapted R. While the residual based R adaptation method (as in
[Maybeck1982]) has been followed here the expression of adapted R presented is similar to

that of innovation based adaptation.

Q and R adaptive EKF is reported in [Han2009a]. MLE based approach of adaptation as in
[Mohamed1999] has been followed to ensure the positive definiteness of adapted Q.
However, innovation based R adaptation again may suffer from loss of positive definiteness.
The author of [Zeng2012] has presented an algorithm of adaptive EKF combining with
particle swarm optimization technique to deal with the state constraints. As for the adaptation
MLE approach is followed. The adapted Q and residual based adapted R ensure the positive
definiteness. In the paper, however, the author uses the concept of residual but coins the term
‘innovation’ instead of ‘residual’. The adaptive EKF in [He2015] uses the Q and R
adaptation method of [Mohahmed1999] and appropriately modify the algorithm with the help

of the computed derivatives of system and measurement model.

Bavdekar et al. [Bavdekar2011] follows two different approaches of adaptive EKF : (i)
Optimization of Maximum Likelihood function, (i1) Expectation Maximization method for
nonlinear systems based on the extended Kalman filter. In the ML based optimization
approach the likelihood function based on the innovation sequence is directly optimized

using a constrained nonlinear programming strategy, sequential quadratic programming. In
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the EM method the conditional density function of the states and measurements is maximized
to compute the next iterate of the decision variables for the optimisation problem. In this
method derivative calculation is replaced by function evaluation for estimation of the noise

covariances.

Adaptive Extended Kalman filter with unknown input is proposed in [Cavusoglu2014] where
the adaption is based on minimization of cost function which is selected as a quadratic
function of innovation. Subsequently the computed scaling factor is obtained to tune the a

posteriori error covariance and satisfactory state estimate is presented.

Based on covariance matching method @ and R-adaptive EKF is developed in
[Lippiello2007]. The adaptation method as in [Myer1976] has been followed. Note that the
positive definiteness of adapted Q is not guaranteed here too. For R adaptation innovation
based approach is followed and duly modified to suit for visual motion estimation. However,
innovation based R adaptation algorithm cannot guarantee the positive definiteness of
adapted R as said before. Note also that the apart from covariances, the mean of process and

measurement noise are also adapted as it is recommended in [Myer1976].

In presence of faulty measurement, an Adaptive EKF is proposed by [Hajiyev2011] where
the filter gain is adapted instead of noise covariances based on the evaluation of the a
posteriori probability of fault free system. The adaptation of filter gain is carried out with the
help of the posterior probability density of the normalized innovation sequence at the current

estimation step.

An adaptive EKF based on strong tracking algorithm is proposed in [Xial999] where the a
priori error covariances is tuned using a scaling vector. The scaling factor is computed based
on innovation sequence. This algorithm is found to perform well in the situation when system

dynamics is affected by unknown disturbances.

Author of [Meng2000] has proposed both Q and R adaptive EKF where along with the
covariances the mean of noises are also adapted. The covariance matching method
[Myers1976] has been followed and innovation sequence is employed to obtain the
adaptation algorithms. The speed of adaptation is regulated using a forgetting factor.

In [Jiancheng2011] EKF algorithm is presented where window estimated innovation-

covariance is used to adapt the gain of the filter following the covariance matching method.
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When measurement noise covariance remains unknown, gain of filter is adapted instead of

adaptation of R.

In [Wang2015] adaptive EKF following covariance matching method is also developed with
a variable forgetting factor. The forgetting factor which is constrained to be less than equal to
unity is decided on the basis of the comparison of window estimated and filter computed

innovation covariance.

Following the MAP based estimation of noise statistics the authors of [He2011] proposed an
AEKF algorithm where the mean and covariance of process and measurement noise are

adapted. Here also the speed of adaptation is regulated with a forgetting factor.

However, the adaptive EKF suffers from the well known shortcomings of EKF. The adaptive
filters based on sigma point filter can overcome the drawbacks of adaptive EKF as it is
demonstrated in the papers on adaptive sigma point filter. In the following subsection the

works on adaptive sigma point filters have been reviewed.
2.3.2.2. Adaptive Unscented Kalman Filter

Works on adaptive Unscented Kalman filters are plenty. These are presented below by
categorizing them based on the different approaches of adaptation as discussed before for

adaptive linear estimator.

MLE based AUKF
In [Lee2004, Lee2005] Q adaptive UKEF is first proposed as one of the adaptive sigma point

filters which has been applied on satellite attitude estimation problem. The proposed
adaptation rule is an extension of MLE based @-adaptation formula for linear estimation
problem. However, the mathematical derivation of the adaptation algorithm is not carried out

in [Lee2004, Lee2005].

A method for appropriate choice of window size for the innovation window is also reported
here which is another nontrivial contribution of [Lee2004, Lee2005]. An optimization based
technique, namely, the Powell’s method was followed for such appropriate choice of window
size. The cost function which is a quadratic expression of innovation vector obtained from
Monte Carlo simulation is to be minimized for the choice of appropriate window length. This
work is followed up in [Soken2014] where the Q adaptive UKF is used for bias estimation.

The author has also derived the mathematical expression of the adaptation algorithm
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following Maximum Likelihood Estimation method by defining a pseudo measurement

matrix of nonlinear observation equation.

The complementary algorithm for R adaptation is reported in [Chai2012] which is inspired
from the MLE based R adaptation [Mohamed1999] method for linear signal models. This
work follows residual based R adaptation for the ensured positive definiteness of adapted R
matrix. However, the adaptation algorithm has not been derived in this paper. The adaption

algorithm has some errors which are pointed out in and rectified in [Das2013, Das2015]

Covariance matching method for AUKF
A scaling method based Q adaptive UKF by [Soken2011, Hajiyev2014] has been reported in

the literature where the scaling method which has been reported in [Hide2004, Jwo2008,
Hajiyev2013a] is extended for UKF framework. However, in place of innovation based
adaptation residual based adaptation has been proposed for Q adaptation. However, there is
no added advantage (e.g., ensured positive definiteness) of using residual in lieu of
innovation sequence for @ adaptation. The adaptation approach is similar to intuitive

covariance matching method and does not present a formal mathematical derivation like

[Soken2014].

In the same vein scaling factor based R adaptive UKF are also proposed by the same authors
[Hajiyev2014, Soken2012, Soken2011, Soken2009]. However, for R adaptation the
innovation sequence is introduced and the maximum value of the scaling factor is restricted
to be 1. In most of the cases these algorithms are employed for fault detection. Depending on
the nature of fault Q@ or R adaptation algorithm is to be employed and this choice of
adaptation algorithm is made by statistical measure of innovation or residual with the help of

Chi square test.

Based on the covariance matching method of [Myers1976] an adaptive UKF has been
formulated by [Jargani2009]. The @ adaptation algorithm has been modified from
[Myers1976] with some reasonable approximation so that the expression of the adapted Q
can assure the positive definiteness of Q. In addition to 0 adaptation, both innovation and
residual based R adaptation methods are also proposed in work. The proposed algorithm is

demonstrated to be superior to the fading memory based AUKF.
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In [Ca02009] the a priori error covariance (P) is scaled instead of Q to make the UKF
adaptive in face of unknown process noise statistics. Innovation covariance is introduced to
compute the scaling factor (may also termed as forgetting factor) which consequently tunes

the filter gain and presents a better estimate of state.

In [Fathabadi2009] new variety of AUKEF is involved which is designed for asynchronous
measurements. In absence of accurate dynamic model for the system a forgetting factor is
chosen based on covariance matching method which scales a priori error covariance (P) like
[Cao02009]. In addition to this when measurements are also uncharacterised the filter gain (K)
is tuned by utilizing both the forgetting factor and a new scaling factor computed using

innovation covariance. In this way the satisfactory state estimate is obtained here.

Another Q and R scaling methods are shown in [Huy2012], where the scaling factors are
computed using optimal Downhill Simplex search technique so that the computed scaling
factor minimizes a cost function which is an implicit function of the measurements. This cost

function needs to be decided based on the application.

Strong tracking Unscented Kalman filter is proposed in [Li2010, Tao2014] for correlated
process and measurement noise. The strong tracking filter is a kind of adaptive filter where
the a priori error covariance is tuned with a scaling factor as mentioned before. This is useful
when there is uncertainties in the system dynamics as discussed before. To compute the
scaling factor estimated innovation covariance from the sliding window is used. This is also

an intuitive method and may be categories under covariance matching method.

An adaptive UKF has been employed in [Wanxin2011] where the scaling factor based
adaptation algorithm has been proposed. The error covariance matrix of a priori estimate of
measurement and the cross covariance matrix are tuned using the scaling factor which is
derived based on covariance matching technique.

In [Xia2014] an Adaptive UKEF is proposed for both Q and R adaptation. Depending on the
value of residual it is decided whether to increase or, decrease by multiplying a scaling
factor. This algorithm tune Q or R in an ad hoc process which lacks rationale of using such
scaling factors. The algorithm is employed for fast identification of a machine tool selected

point temperature rise.
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The algorithm of AUKF reported in [Chai2012] has a few errors in adaptation steps which
have been rectified in [Das2015, Das2013]. As the adaptation algorithm in [Das2015,
Das2013] is obtained analogous to that of the linear system without formal derivation, these
R adaptation algorithms may also be categorized under intuition based covariance matching
method. Both innovation and residual based adaptation methods are reported in [Das2015,
Das2013]. Though these algorithms present comparable estimation result, the latter has an
additional advantage of ensured positive definiteness as mentioned before. For innovation
based R adaptation an ad hoc approach has been followed in [Das2015] before they are

employed for nonlinear estimation.

MAP based AUKF

The Maximum a Posteriori method based noise statistics estimator is introduced in UKF by
[Zhao2009] where the mean as well as covariance of process and measurement noise are
estimated. The posterior density function is presented in terms of the innovation sequence
which has to be maximized by correct choice of first two moments of noise. The proposed
adaptive UKF is demonstrated to present satisfactory estimation performance by online
adaptation of noise statistics when the measurement noise covariance varying with time.

However, demonstration regarding Q) adaptation is not found in [Zhao2009].

Following the work of [Zhao2009], the author of [Cheng2014] demonstrated the satisfactory
estimation performance of both @ and R adaptation algorithm in UKF framework for
MEMS/GPS integrated navigation. However, the adaptation algorithm for @ presents an
approximated expression of adapted @ and correctness of the expression has not been
justified in the paper.

For systems with time varying process and measurement noise covariance an adaptive UKF
is proposed by [Gao2015b] which employs a random weighting technique along with Sage
windowing approach (MAP) for estimating and tracking the unknown time varying process
noise and measurement noise covariance. The innovation sequence is employed for deriving
the expression of adapted noise covariances. The limitation of the windowing approach is
that the appropriate choice of window size for adaptation of unknown time varying noise
covariance has to be decided after experimentation. Infusing the random weighting technique

this limitations are overcome and satisfactory tracking of time varying elements of Q and R
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is possible with the help of such automatically chosen weighting factor. The adaptation
methods are presented in this work with the help of theorems along with proofs. The
satisfactory performance of the proposed algorithm is demonstrated with numerical

problems.

An adaptive UKF has been proposed by [Liu2009] for non white noise. The proposed
algorithm is applied for GPS based position estimation problem where the system dynamics
is perturbed with additive non-white Gaussian noise. The Q adaptation algorithm has been
claimed to be derived from Sage Husa filter without derivation of the algorithm. A forgetting
factor is also included to control the speed of adaptation. However, no further steps are

incorporated to take care of the non white noise.

AUKF based on MIT Rule
The AUKF based on complex MIT adaptation rule is also found in [Jiang2007, Han2009b].

The implementation of this method is often impractical because of large number of partial

derivative calculations.
2.3.2.3. Adaptive Divided Difference Filter
Adaptive Divided Difference Filter is first introduced along with AUKF in [Lee2004,

Lee2005] as referred before wherein the Q adaptation was the focus of research. Adaptation

is based on @Q-Adaptive Kalman filter as reported in [Maybeck1982].

The expression of adapted Q is modified from that of [Maybeck1982] and the modifications
are made following Adaptive EKF [Busse2003]. In this work the final value of adapted Q of
current instant is obtained from by the moving average of adapted Q of current instant and
the previous instant with the help of a tuning parameter. The same idea is followed by
[Lee2005, Lee2004] and the tuning parameter is obtained by optimization technique using
Powell’s method. However, the work of [Lee2005] can neither assure the positive
definiteness of adapted Q nor can it guarantee the symmetry of adapted Q. In addition to this
the Q adaptive DDF proposed in [Lee2005] uses only first order approximation.

A Robust Adaptive second order Divided Difference Filter is proposed by [Karlgaard2010]
which uses the concept of adaptation of Q reported by [Myer1976] and modified this concept
of adaptation in presence of outlier. As developed from the methods proposed by [Myer1976]

it inherits the drawbacks of this method as reported earlier. An innovation based R adaptation
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method based on [Myer1976] has also been presented in [Karlgaard2010]. The work of
[Karlgaard2010] focuses on the robustness rather than adaptation. Therefore, Huber based
Divided Difference filter is proposed for robust estimation in presence of outliers.
Additionally when the noise covariance is unknown, they are adapted accordingly. However,
this method is also suffers from computational burden and cannot ensure positive

definiteness of adapted R.

An adaptive formulation of second order DDF [Subrahmanya2009] has the emphasis on
robustness instead of adaptation. The upper bound on error covariance matrix (P) is derived
so that the filter can be made robust to modelling uncertainties. In the algorithm of
[Subrahmanya2009], (i) the parametric structure of upper bound has been evaluated and one
of its parameters is determined following adaptive fading memory approach and (ii) tuning of
the other parameters of filter is based on a combination of on-line and off line tuning, (iii) the

measurement equation is constrained to be linear.
2.3.24. Adaptive Cubature Kalman Filter

Adaptive nonlinear filters are also formulated using Cubature Kalman filter as the underlying
framework which is non-adaptive per se. The non-adaptive Cubature Kalman filter is a
derivative free sigma point filter and comparable with its other relatives like UKF, DDF as
discussed in the section on nonlinear filters. The adaptive cubature filter has several variants
which may be classified based on adaptation approaches e.g., strong tracking approach,
variational Bayesian approach, Maximum a Posterior (MAP) approaches and some

combinations of these methods.

The adaptive CKF was first proposed in [Sarkka2013b] where the variational Bayesian
method has been followed where the distribution of measurement noise remains unknown.
The proposed method addresses an apparently similar estimation problem as discussed in
AUKF, ADDF. However, in this work the distribution of the measurement noise is also
unknown unlike the other adaptive nonlinear filters where the distribution of the
measurement noise is assumed to be known (Gaussian). For such estimation problem a
different solution methods has been proposed in [Sarkka2013b] based on variational
Bayesian approach. This is basically the extension of the previous work [Sarkka2009] for

state estimation of linear signal models. The measurement noise is adapted with the help of a
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different dynamic model. Though the adaptive CKF has been demonstrated in [Sarkka2013b]
possibility of obtaining AUKF, AGHF using same method has also been mentioned.

Adaptive CKF (in square root framework) is also reported in [Ge2011] under the category of
strong tracking filters for the situations when the system dynamics is susceptible to unknown
parameter variations/ disturbance. In case of strong tracking filters a modulating factor is
adaptively chosen based on innovation sequence and regulate the a priori error covariance.
This would in turn adapt the filter gain so that satisfactory estimation performance may be
obtained. Such an algorithm has been reported in where the adaptation algorithm is presented

for a special situation where process and measurement noise are correlated.

A similar work has been reported by the same author in [Ge2014] where it has also been
considered that the measurement noise (assumed Gaussian) covariance is unknown. The
unknown noise covariance is adapted using the variational Bayesian approach here.
However, in this work author did not consider the correlation between process and
measurement noise. The information filter configuration is considered as an underlying

framework for economic computation during multiple sensor fusion.

Adaptive CKF is also proposed in [Benzerrouk2013] which may be classified as strong
tracking filter and applied for nonlinear state estimation with non Gaussian measurements.
Adaptive iterated SR CKEF is also proposed in [Chen2013] where for adaptation the strong

tracking method has been applied to adapt the square root of predicted error covariance.

In [Tang2012] a Q-adaptive CKF in square root approach is proposed where the adaptation
steps of process noise covariance is presented which may be derived using MLE method. The
work is a follow up of the work of [Lee2004]. The window length for adaptation has been
automatically chosen using the simplex rule of optimization as in [Lee2004]. The estimation
of accuracy of [Tang2012] based on square root CKF framework is expected to be
comparable with Q adaptive UKF and improved compared to Q adaptive DDF (first order)
[Lee2004]. Like the base paper here also derivation of the Q adaptation algorithms is not
provided. Another adaptive CKF presented in [Xia2015] where the concept of Q adaptation
and residual based R adaptation algorithm [Mohamed1999] has been implemented.

In [Yu2014] an adaptive cubature filter has been proposed for the situation where the first

two moments of both the process and the measurement noise covariances are unknown. It is
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reported that following the Sage Husa method (MAP), the mean and covariances of the
process and the measurement noise have been adapted. Additionally a fading memory factor

is also been used. However, the adaptation formulae have not been derived here.

The adaptive CKF in square root approach is presented in [Ligiang2015] where maximum a
posterior (MAP) based approach has been followed to adapt the unknown noise covariance
of process as well as measurement noise. The square root version has been preferred for
ensured positive definiteness of error covariance. The mathematical derivation of adaptation
algorithms in square root approach have also been presented in the paper. To make the filter
robust in the face of modelling uncertainty the strong tracking method has also been adopted

in this work.

Convergence analysis of Cubature Kalman filter has been addressed in the work of
[Zarei2014] where the effect of process noise covariance has been investigated and
adaptation of process noise covariance is proposed to deal with large estimation error. For
adaptation of process noise covariance MLE approach as in [Lee2004] is followed. It is
demonstrated that adaptation of process noise covariance influence the convergence of the
filter. Performance of an alternate algorithm of CKF modified with fuzzy logic is also
compared with ACKF in the perspective of convergence by initializing a Gaussian prior

(initial estimate) with large value of error covariance.

A different version of adaptive filter based on cubature rule is also reported in [Chen2012].
The authors propose an adaptive CKF for joint estimation of parameters and states without
augmenting parameters. Here adaptation gain is chosen based on minimizing the recursive
weighted least squares of the prediction error. To make the filter resistant to modeling
uncertainties risk sensitive filtering algorithm has been followed.
2.3.3 Application of Adaptive filters

It is observed from the literature survey that the adaptive estimators have been prevalently
used in attitude estimation, navigation of the land vehicles and the vehicles for aerospace and
marine applications. For integrated navigation systems sensors used are inertial
(accelerometers and gyroscopes) as the main system with external aid provided by GPS and
GLONASS, Galileo or Beidou receivers. This method is known as Global Navigation
Satellite System “GNSS” solutions. At present, inertial sensors are usually low cost where

most sensors are MEMS (Micro Electrical Mechanical Systems) based.
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Despite their widespread use in navigation systems following drawbacks have been identified
which need special treatments e.g., use of estimators and filtering algorithms for reliable
navigation. The inertial sensors are prone to have biases and drifts growing with time.
Therefore another technology of sensors (e.g., GNSS receivers) is needed to bound these
drift/ bias. Satellite-based systems such as GNSS although provide high precision
measurements suffer interference from the other services in the respective frequency band.
Moreover, while used for land vehicle navigation the accuracy of GNSS may deteriorate in
urban area with high rise buildings and under dense foliage. Vehicular navigation is often
characterized with dynamics changes in motion and exposed to unknown disturbances. The
accuracy of the dynamic model gets affected as a consequence. The above discussed issues

motivated researchers to investigate the performance of adaptive estimators in navigation.

Use of adaptive estimators for GPS/GNSS and INS fusion based navigation system is
observed in many works including some recent papers. In [Hide2004] AKF is validated using
a low cost Crossbow MEMS IMU integrated with carrier phase GPS integrated navigation
system for a marine application. It was demonstrated that the time required to initialize the
sensor errors and to align the INS has been reduced, navigation performance is improved
using AKF. In [Hide2003b] AKF is demonstrated with the GPS and inertial data simulation
software. A trajectory taken from a real marine trial is used to test the dynamic alignment of

the inertial sensor errors.

The author of [El-Mowafy2005] suggests that the attitude of a moving vehicle can be
determined using a GNSS multi-antennae system by rigidly mounting three antennae on the
vehicle’s external surface. Two antenna-to-antenna vectors can be used to represent the
attitude change of the vehicle. AKF has been used by the author for the estimation of the
attitude states. Experiments on the integrated Strap-down Inertial Navigation System/
Doppler Velocity Log (DVL) system for marine application have been performed in
[Gao2015a]. It is demonstrated that the proposed AKF improves the estimation accuracy

effectively and robustness in the presence of vigorous-maneuvers and rough sea conditions.

In [Jiancheng2011] AEKEF is applied to In Flight Alignment for the SINS/GPS integrated
Position and Orientation measurement System (POS) with a large initial heading error. Its
performance is demonstrated under unstable GPS measurement, including the situations of

the changes of the statistical characteristics of the measurement noise and the existence of
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isolated outliers. In [Meng2000] the author has used AEKF for Localization and Mapping of

mobile robots.

Performance improvement using Adaptive UKF is demonstrated in [Akca2012] for tightly-
coupled INS/GPS especially at the end of GPS outage periods. For indoor vehicle navigation
integrating Wi-Fi measurements and MEMS based INS, superiority of AUKF has been
demonstrated in [Chai2012]. The author of [Cheng2014] demonstrated MAP based AUKF in
simulations that are conducted for MEMS/GPS integrated navigation system. The author of
[Wanxin2011] has demonstrated the use of AUKF to improve the initial alignment accuracy

and convergence rate of the Strap-down INS system.

Experimental results for AUKF are presented in [Gao2015b] for observation of an unmanned
aerial vehicle (UAV) which uses a Strap-down Inertial Navigation System/Satellite
Positioning System integrated navigation system. The author of [Liu2009] validates AUKF
for the GPS based position estimation problem using real satellite data. In terms of the GPS
system error characters, the proposed AUKF builds a model of the propagation error, and
provide online estimate of its covariance. AUKF is also recommended for magnetometer
calibration and attitude parameter estimation in [Soken2012]. The magnetometer biases are

estimated as well as the attitude and gyro biases using Q-adaptative UKF in [Soken2014].

Adaptive sensor fusion of INS/GNSS CKF is considered in [Benzerrouk2013]. In the
circumstances when GNSS outliers supposed to occur during specific interval of time,
innovation based adaptive approach is selected and used to adapt the covariance of CKF and
demonstrate satisfactory estimation performance. The author of [Georges2015] proposes
variational Bayesian based Adaptive Cubature Smoothers and recommends its use in the
presence of colored and variational process noise. VB-ACKS is able to provide a better
position error in the presence of dynamic variation of the vehicle and the INS sensor error
variation. In [Tang2012] authors demonstrate the performance of ACKF in simulation with a
spacecraft attitude estimation problem. Filter is designed for quaternion based attitude

estimation with the quaternion normalization constraint.

An adaptive SLAM based on the CKF method is proposed in [Yu2014] for Simultaneous
localization and mapping of mobile robots. Maximum a Posterior (MAP) based adaptation
method overcomes the SLAM problems, e.g., unknown and uncertain environment

description and noise characteristics of sensors.
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Despite the navigation application adaptive estimators are also employed for other real world
problems to carry out estimation duty. Adaptive estimators may find application in target
tracking. In an early work by [Maybeck1981] Q Adaptive EKF is employed for tracking of
highly maneuverable targets. ‘Bearing only tracking’” problems are considered in [Ge2011,
2014] for validation of adaptive sigma point filters. In [Liqiang2015] the target tracking
model is a 5-dimensional nonlinear system, where an aircraft executes maneuvering turn in a

horizontal plane with unknown turn rate. ACKF is used for estimation of trajectory.

AEKF in [Busse2003] is employed for low earth orbit formation estimation. In
[Kardgaard2010] ADDF is applied to the six-degree-of-freedom elliptical orbit rendezvous
navigation of a satellite. Measurement data to the navigation filter are obtained from a sensor
suite consisting of optical sensor, an inertial measurement unit (IMU), a star tracker, and a
generic orbit sensor. In [Lee2004, Das2013] AUKF, ADDF are used for state estimation of

the spacecraft trajectory in a low earth orbit.

Adaptive estimators have also been employed for state estimation and control of continuous
stirred tank reactor (CSTR) [Cao02009, Fathabadi2009, Jargani2009]. AUKF has been
validated in simulation for state estimation of a continuous stirred tank reactor (CSTR)
[Jargani2009]. Simulation results demonstrate that the proposed algorithm can track and
forecast fault processes accurately. AUKF has been applied in [Fathabadi2009] for state
estimation CSTR plants with different communication delays in their sensors. Also
decentralized multi sensor fusion has been carried out to estimate states in presence of multi-

rate sensors.

Apart from CSTR plants performance of adaptive estimators is also demonstrated for a
continuous fermenter in simulation and benchmark heater mixer setup in real time
experiments in [Bavdekar2011]. In [Odelson2006] the authors have worked with a chemical
company to apply adaptive estimation methods to data from a gas-phase reactor. The authors
have also demonstrated the effectiveness of the proposed estimator with the help of

experiments on a laboratory chemical reactor.

A recent trend of using adaptive estimators for state of charge estimation (SOC) of batteries
is also observed. Use of AEKF for state of charge estimation of lead acid batteries is reported
in [Han2009]. In [Chen2012], ACKF demonstrably outperforms the dual extended Kalman

filter during state of charge estimation of a battery where the ambient temperature and the
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load of the battery fluctuate. ACKF based SOC estimation algorithm reported in [Xia2015]

for lithium-ion batteries in electric vehicles.

Although adaptive estimators are not very popular for fault detection a few recent

publications demonstrate promising performance of these estimators during fault detection:

In [Hajiyev2011] AEKF applied for the parameter identification process of an Electro
Mechanical Actuator. The performance of the proposed filter is tested for the different types
of measurement faults; instantaneous abnormal measurements, continuous bias at
measurements, measurement noise increment and fault of zero output. For fault detection and

isolation of Lithium ion battery AEKF is also applied in [He2015].

For the fault-tolerant attitude estimation of the pico satellites is [Hajiyev2014] proposes use
of AUKF algorithm, which performs correction for the process noise covariance (Q-
adaptation) or the measurement noise covariance (R-adaptation) depending on the type of the
fault. The author of [Soken2009] tested AUKF for two different measurement malfunction
scenarios, instantaneous abnormal measurements and continuous bias at measurements. A
paper by the same author [Soken2011] demonstrates Q-adaptative UKF for unexpected

events in space environment during satellite attitude determination.

Adaptive unscented Kalman filter (AUKF)-based fault detection and isolation (FDI) scheme
is proposed in [Das2015] for a spacecraft attitude determination (AD) system. It is
demonstrated that the fault detection efficacy as well as fault discrimination performance of
AUKEF is noticeably better than non-adaptive filters. AUKF is also utilized for nonlinear
process fault prognostics in [Ca02009] for CSTR plants.

2.4 Conclusion

The review of the works on nonlinear estimation and adaptive filtering helped the present
worker to appreciate the development in this domain. Use of adaptive estimators for variants
of real time applications motivated the present worker to pursue research on this particular
category of estimators. Below are provided a few significant findings which helped the
present worker to define the objective of this dissertation and contribute improved algorithms

for nonlinear estimation:
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® Investigation of nonlinear estimators revealed their efficacies as well as limitations.
Insight developed from the critical review of all these estimators helped during selection

of a suitable candidate as an underlying structure for adaptive nonlinear estimators.

® The usefulness of the information filter configuration of some of sigma point filters are
also appreciated from the literature review. Economic computation of this configuration

encouraged the present worker to develop their adaptive versions for sensor fusion.
¢ During the review of existing adaptive nonlinear filters, some drawbacks are noticed.

o AUKF requires careful choice of tuning parameters failing which the
performance of estimators deteriorates. ACKF although free from such tuning

parameters cannot perform equally well with AUKF for some applications.

o The @Q and R adaptation algorithms reported for adaptive sigma point filters
lack theoretical foundation in most of the cases. Some of the adaptation

algorithms cannot ensure the positive definiteness of Q and R.

o The “knowledge gap” identified during the review of adaptive nonlinear
estimators motivated the present worker to contribute improved algorithms for

adaptive nonlinear estimators.

e In earlier works on adaptive filters for linear signal models [Maybeck1982] authors have
cautioned that simultaneous adaptation of  and R may lead to unacceptable estimation
results as @ and R are negatively correlated and their effects are conflicting. This is also
acknowledged by the recent workers [Karlgaard2010, MohanM?2015]. Therefore, the
present worker has refrained from implementing simultaneous @ and R adaptation

algorithm for the adaptive nonlinear estimators.
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Chapter 3: Test Problems
3.1 Chapter Introduction

This chapter presents the description of the estimation problems which will be considered as
test problems to evaluate the proposed estimation algorithms in the subsequent chapters. The
estimation problems include some standard tracking problems which have been considered
by previous workers for the validation of the estimators proposed in their works. In addition
to these realistic tracking problems, estimation of well known nonlinear systems (viz., Van
der Pol’s oscillator, Lorentz attractor) and some numerical estimation problems are also
considered. Proposed algorithms are validated and their relative performance analysis has
been carried out with the help of these estimation problems. In this chapter the following test

problems have been elaborated.
e State estimation of a benchmark first order nonlinear system
e Bearing only tracking using a on board tracker (2" order)
e Parameter and state estimation of Van der Pol’s oscillator (3ml order)
e State estimation of a 3" order Lorentz attractor
e Tracking of a ballistic object during reentry (3™ order)
e State estimation of a benchmark fourth order nonlinear system
e Tracking of a maneuvering aircraft (5th order)

3.2 Description of test problems

3.2.1 State estimation of a first order nonlinear system
A single dimensional estimation problem is considered where system dynamics and the

measurement equation suffer from severe nonlinearity. Estimation of the state of this system
is challenging task. In many previous works this estimation problem has been considered
[1to2000, Sadhu2004, Bhaumik2013] as this problem can critically analyze the performance

of the candidate estimator and readily expose its shortcomings if any.

The process dynamics and the measurement equation are taken from [Ito2000]. The system

has two stable equilibrium points at 1,-land another unstable equilibrium at0. The

equilibrium point at the origin is unstable as the derivative of state equation is positive at
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x=0. The measurement equation has a strong bi-modal tendency and cannot decisively
distinguish between the two stable equilibrium points. The system dynamics and

measurement equation are presented below

x, = P(x,_,)+6, (3.1)
where the function @is given by

#(x)= x+52'x(1—x2) (3.2)

g, 1s an additive Gaussian noise, 6, ~ N (O,bzf)

The measurement equation is given by

e = Hx )+, (3.3)
y(x)=17(x-0.05)’ (3.4)

v, is an additive measurement noise(Gaussian), v, ~ N (0, d 22’). The parameters used to

generate the true state trajectory have the values as given below. 7=0.01sec, x,=-0.2,

b=0.5, d =0.1. For the filter, the initial values are chosen as x, =0.8, f’o =4. Note that

the measurement equation is taken from [Ito2000] and has strong bi modal tendency

compared to the measurement equation considered in [Sadhu2004, Bhaumik2013].

To illustrate the bi modal tendency of the measurement equation we present the state vs
measurement plot in Fig. 3.1. It is observed that same measurement is obtained for two
possible values of the state. Therefore, the measurement looses its uniqueness. Moreover, the
rate of change of measurements for a rate of change in state is minimum near the origin ( i.e.,
at x=0).

Fig. 2 shows two trajectories, starting from the same equilibrium point, with small process
noise. We see in Fig. 3.2 that the trajectories settle at two different steady equilibrium values.
However, the measurement values hardly changes (illustrated in Fig. 3.1) for these radically
different state trajectories.

This non uniqueness of measurement troubles the estimator to track the true state trajectory
satisfactorily. The estimate settles at the one equilibrium point while the true trajectory settles
on the other. This phenomenon may be termed as track loss. It can be said that the estimate

has lost the correct track when estimation error is more than 0.8 at 4 sec.
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It is observed from the previous works that for estimators with accurate knowledge of noise
covariance estimation performance may degrade as the estimator is susceptible to numerous
occurrence of track loss. In situations when the noise covariances are unknown and assumed
with an arbitrary value it is needless to say that estimation performance would be degraded.
Therefore, this case study may be an appropriate one for prima-facie validation of the

proposed adaptive filters in face of unknown noise covariance.

measurement

i (L
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v — — state variable in run 2

state trajectory for different runs

time (sec)

Fig. 3.2: State trajectories for two different representative runs
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Fig. 3.3: True and estimated state for two different representative runs

3.2.2 Bearing only tracking problem
Bearing only tracking (BOT) problem has been considered from [Sadhu2006, Sadhu2004]

where the system dynamics is linear but the measurement equation is nonlinear function of
states and measurement noise (i.e., noise is non additive in nature). The target is moving on
ground with a constant velocity (position and velocity are assumed to be perturbed by
Gaussian noise). The target is assumed to move in a straight line (assumed to be along the
positive direction of x-axis) in the horizontal plane. In BOT problem the target is tracked
using an on board sensor. The tracking is carried out using angle of depression (bearing
measurements) from the airborne platform (along with the sensor) moving parallel to the
target in the same direction with constant velocity. A schematic diagram is provided by Fig.
3.4 for illustration. The platform is moving at a nearly fixed altitude in the same vertical
plane. The kinematic equations of target as well as the platform are presented below. The
bearing measurement for the target is noisy and measurement is nonlinear function of states

and measurements as the platform motion noise also appears in the measurement equation.

Target motion is considered here as the process model and given by

1T i
X, = 0 1 X, + T o, (3.5)
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where, x, = [x,ﬁ x,f]T , x, is target position along x axis and x;is target velocity which is

assumed to be constant. The initial choice of state vector is x, :[SOm 1ms‘l]T The
sampling time is considered as 7=1 sec and @, is process noise with covariance
Q:O.Olmzlsec4. Values of these parameters are taken from [Sadhu2006].

The line of sight of the target from the onboard sensor is obtained from the bearing angle
measurement. The platform motion of sensor (along x and y axis) influence the bearing angle

measurement. In this context the measurement equations are presented as given below:

y,i =yl =20+ 1),1 (3.6)
y,f =x/ =4kT+v,f 3.7)
yp
y; — taIl»l l—k +UZ (38)
X =X,
1
or, y; :tan'l % +'U/3 (39)
x, —4kT -0,

First two elements of measurement vector y, =[y! y? y’[ are the platform positions along

y axis and x axis respectively. ‘k’ is the current time instant. The measurement equation

presented by (3.9) indicates that the third element of measurement vector is a nonlinear

. . 3. ..
function of state as well as the measurement noises v, and v;. However, 0} is the additive
measurement noise. Measurement noise vector therefore may be formed as », = [Ukl v, v ]T

with true covariance R, . Truth value of R, is given by:

o, 0 0
R =0 o0, O
0 0 o,

o,, 0,, and 0, are the standard deviation of three measurement noises with values of 1

meter for the first two diagonal elements and 3’ for the third respectively. Fig. 3.5 and Fig.

3.6 present the position and velocity of the target respectively for a representative run.

The tracking filters are usually initialized from first few measurements. The current bearing

measurement defines the initial position estimate and the difference of two bearing
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measurements provides the estimation of initial velocity. The way authors of [Sadhu2006]

has initialized the filter has been followed in this work.

The initial choice of position estimate and its covariance are considered from [Sadhu2006] as

given below:

3 = 4KT + -2 (3.10)

tan )’3

3 . .
Y, is the first measurement.

2

r.
P.=r +———+ .y,, r (3.11)
MO Ttan?y  sinty ”

Where y =y, —0;
As per [Sadhu2006] the initial velocity estimation is selected as %, =0 and associated

variance as P,, , = 1. The off diagonal terms p, and P, , are taken as zero.
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Fig.3.4: Tllustration of BOT problem with a schematic diagram
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Fig. 3.5: Plot of position of the target for a representative run
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Fig. 3.6: Plot of velocity of the target for a representative run

3.2.3 Parameter and state estimation of Van der Pol’s oscillator
The Van der Pol’s oscillator is a noteworthy nonlinear oscillator and has been used by many

workers for demonstration of performance of nonlinear estimators [Kandepu2008,
Besan¢con2010]. Estimation of the friction coefficient along with the states of the oscillator is

considered here as a test problem.

The dynamic equation of the Van der Pol oscillator which has been presented below exhibits
a stable Limit Cycle oscillation. The oscillator irrespective of the initial condition always
reaches the Limit Cycle and demonstrates sustained oscillations. The differential equation is

presented as

% =x, (3.12)
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% =pull=x)x, - x, (3.13)

=0 (3.14)

M represents a constant friction coefficient. The states of the oscillator are denoted by x;and

x> respectively. Estimation of both friction coefficient and the states has been considered for

this case study. The corresponding discrete state space model of the oscillator is obtained

from Euler’s approximation with a sampling time7 . The parameter (friction coefficient) is

assumed to be unknown (which may also be time varying in some situation) for the

estimators. For joint estimation the parameter is modeled as a state and augmented with the

state vector. The system states and friction coefficient are corrupted by additive Gaussian

noise with zero mean.
The discrete time model is given by:

x, = f(x_)+w, (3.15)

f(x,_,) indicates the discrete nonlinear model of the oscillator.

f () =ox,_, +G[D(x, )] (3.16)
) . 1 = 0 . "
With a matrix 6=0 1 0 with x,_, =[x, i Yol @]
0 01

G=[0 7 0], D(x_,)is defined by
D(x, )= (xZ—163 )[1 - (xZ—1€1 )2 ](XZ—162) - (ka—lel) (3.17)

where e, denotes the i unit vector for i=1,2,3.

w, indicates an additive process noise which is independent of measurement noise. The state

x,,_,1s directly available as a measurement and perturbed by a zero mean Gaussian noise v, .

The necessary parameters for simulation are provided below in table 3.1
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Table-3.1: Parameters for state estimation of Van der Pol’s oscillator

Symbols Value Description

X, 14 0 02f Initial value for true trajectories

X [0 5 4T Initialization of filter estimates.

P(0) diag ([1.4,5,4]) Initial a posteriori error covariance
Oy diag ([10'3, 10'3, 10'5]) True process noise covariance

R 107 True measurement noise covariance

N 150 Window length for adaptation

g 0.1 sec Sampling time

For the time varying friction coefficient the nature of variation is assumed follow the
equation x4, =0.5sin(wr k)+0.5 to generate the true state trajectories. The window size is
considered to be 30 time instants during the estimation of the time varying case.

In Fig. 3.7, Fig. 3.8 and Fig, 3.9 we present the state trajectories and the phase plane plot for

a representative run. Plots are presented for two different cases where the friction coefficient

is constant and for the other case when it is time varying.
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Fig. 3.7: Plot of state x, for a representative run
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Fig. 3.9: Phase plane plot for a representative run

3.2.4 State estimation of a Lorentz attractor
In this case study we have considered the Lorentz attractor named after meteorological

researcher Lorentz. The dynamics of the Lorentz attractor is significantly nonlinear which
makes the system an appropriate one to evaluate the performance of nonlinear estimators. In
many previous publications [Bhaumik2013, 1t02000] on nonlinear estimators this system has
been considered as a case study for performance assessment. We present the discrete time

three dimensional Lorentz attractor as presented in [Bhaumik2013].
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The system dynamics in discrete time is presented as
T
x, =x,_, +7lodx, —x,) Px,—x,—xx, xx,—m] +bw, (3.18)

where the state vector of system x, = [xl X, X [' . The measurement for this attractor is a

scalar and the measurement equation is

Y, STAX + x5 +x; +dv, (3.19)

Both the process and the measurement equation are perturbed with Gaussian (white) noise

and follows the distribution N (0,1').

The system has three unstable equilibrium points as given below:

o o of, WrB-1) JHB-1) (B-1)fand yH(B=1) —JrB-1) (B-1)| while

a#0 and 7(,5 —1)>0. The chosen values of these classical parameters along with other

necessary parameters are given in the table 3.2 below.

Table-3.2: Parameters for state estimation of Lorenz attractor

Symbols Values Description

o 10 Prandt]l number

Ji 28 Rayleigh number

Y 8/3 Parameter related to system dynamics
b [0 0 05] Input matrix for process noise

d 0.065 Scaling factor for measurement noise
T 0.01sec Sampling time

X, [02 -03 -05] Initial value for true trajectories

P, 0.35*diag ([1, 1, 1]) Initial updated error covariance

Xy A Gaussian prior with mean Initial choice of filter estimates.

%,=[135 -3 6, covariance P,

In Fig. 3.10, Fig. 3.11 and Fig. 3.12 below the state trajectories of the attractor are presented

for a representative run and the phase plane plot is also given in Fig. 3.13.
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Fig. 3.10: Plot of state x; for a representative run
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Fig. 3.11: Plot of state x, for a representative run
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Fig. 3.12: Plot of state x; for a representative run

Fig. 3.13: Phase plane plot for a representative run

3.2.5 Object Tracking Problem

For performance evaluation of proposed filters a standard ballistic object tracking problem
has been considered as a case study. Object tracking problems are well known tracking
problems and has significant nonlinearity in the system dynamics when the object enters
atmosphere. It is an important application area where different estimators can be employed so
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as to estimate the altitude, velocity of the object and ballistic coefficient/ballistic parameter
from radar signals. It would be interesting to assess the estimation performance of the
proposed estimators including one of such object tracking problems as a case study.
Performance evaluation of estimators using this specific problem has been carried out in
many previous works [Athans1968, Norgaard2000, Wu2006, Arasaratnam2011]. During
initial phase when the object is in exo-atmospheric zone nonlinearity is not pronounced and
the dynamics may be considered to be quasi linear. During endo-atmospheric phase the
dynamics becomes extremely nonlinear as the object enters atmosphere and experiences
drag.

The object is considered to be falling vertically in a single dimension. The tracking radar is

assumed to provide the range of the tracked object as illustrated in Fig 3.14.

| Drag
Ohbject
. -
Eange
' Gravity
Radar ® M

& (Bearing angle)

Fig 3.14: Radar tracking of a ballistic object during reentry: A schematic diagram

3.2.5.1. Dynamic Model I

The dynamic model for the object during reentry has been presented here in single dimension

as presented in [Arasaratnam2011].

X = [— x, —exp(—m)xix,+g O]T (3.20)

Chapter 3 65



State and Parameter Estimation for Dynamic Systems: Some Investigations

Where state vector x = [x1 X, X | ; represents altitude, velocity and the ballistic parameter
respectively. g is the acceleration due to gravity. The air density decays exponentially with
height with the time constant ¥ =1.49x10™* m™' [Arasaratnam2011].

The parameter to be estimated is called ballistic parameter instead of the term ballistic
coefficient as used in [Arasaratnam2011]. This may avoid confusion with the standard

definition of the term as provided in [Ristic2003].
The corresponding discretized model using Euler’s method with a sampling time 7 is given
by:

X =Xpg T Tl‘ Xi_ie; —exp(=rx_e; )(xg—lez)z(xl{—le3)+ 8 OJ+ Wi (3.21)

X, = [le Xy st]T and e; denotes the i unit vector.

w, indicates an additive process noise which is independent of measurement noise v, . Noises
are assumed to be zero mean, white (Gaussian).

g7’ /3 qt*/2 0
qt’/12 gt 0
0 0 q,T

The covariance of the process noise is given by 0- where ¢,and g, are

parameters for describing the process noise [Ristic2003].

The range of the object from radar is obtained measured in a spherical reference frame and

given by the measurement equation

Ve =M +(xTe,—H)* +v, (3.22)

Where H denotes the altitude of radar and M is the shortest horizontal distance of radar form

the flight path of the object as given in Fig. 3.14 ande, =[1 0 o .

Necessary parameters for simulation are given in the table 3.3 below.
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Table-3.3: Parameters for object tracking problem (SI units)

Symbols Values Description

Xy [61000 m 3048 ms”  4.49%10*m" Initial value for true trajectories

q, 1 m%™ A parameter of true Q

q, 10" m2™! A parameter of true Q

M 10000 m Distance of object from radar

H 1000 m Height of the radar from ground
30° m* Measurement error covariance

P, diag ([106, 104, 10'4]) Initial updated error covariance

Xy A Gaussian prior with mean Initialization of filter estimates.
%, =[62000 3400 10°] , covariance F,

N pin 3 Initial choice of window length
60 Actual window length

T 0.1sec Sampling time

For a representative run we present the altitude and velocity of the reentry object in Fig. 3.15

and Fig. 3.16.
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Fig. 3.15: Plot of altitude of the object for a representative run
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Fig. 3.16: Plot of velocity of the object for a representative run
3.2.5.2. Dynamic Model I1

The Dynamic model of the object is presented in this section above is conceptually same
with what discussed in the subsection above. Only an approximation is made in the system
dynamics. In [Athans1968] for this object tracking problem it is assumed that the effect of
gravity is negligible compared to drag force and omitted from the dynamics. This has also
been followed in the succeeding works [Norgaard2000, Wu2006]. The measurements and
necessary parameters for simulation are provided in FPS system unlike [Arasaratnam2011]

where the parameters are presented in SI system.

The dynamic model is given by

h=-V (3.23)

_ CpAp(nv?
2m

V= (3.24)

Note that in (3.24) gravity has been ignored.

The symbols used are defined as given below:
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h :height of the object (ft), V : object velocity (ft/sec), C,: drag coefficient (dimensionless),
A: reference area for drag evaluation (sq. ft), p :air density(slugh/ftS), m: mass of
object(slugh)

Air  density decays  exponentially = with  height following the relation
p(h) = pye™” with y=5x1073ft"". We define fic"z—’;”(’, a ballistic parameter as mentioned in
[Athan1968]. However, the usual definition of ballistic coefficient given in [Ristic2003] as

m . .  pog
B= ?gA and related with the ballistic parameter as & = 25

For estimation of ballistic parameter, it is augmented with state vector and assumed to be a

constant. The differential equation of object dynamics is modified as given below:

h=-V (3.25)
V=—eV (3.26)
£=0 (3.27)

The corresponding discrete state space model of object dynamics is obtained from Euler’s

approximation as presented in (3.21) for Model L.

In some case studies it is also assumed that measurements are available from multiple radars.
The radars are positioned at different locations of the atmosphere. The range only
measurements are obtained from them which are a nonlinear functions of the system states.
The interval of measurement is same as sampling interval, i.e., z sec as discussed in previous
model. The mathematical expression of the measurements obtained from the radars is

presented as

yo=r +v, :\/Mf+(x,fe1—H5)2 +v, (3.28)
for s =1,2,3where s indicate the radar at s” position.

Here,e, =[1 0 0] represents an unit vector.

H denotes the altitude of radar and M is the shortest horizontal distance from the flight path

of the object during reentry. v; indicates zero mean random noise with covariance R,.

The parameters necessary for simulations are presented in table 3.4 below:
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Table-3.4: Parameters for object tracking problem (FPS units)

Symbols Values Description

Xy [300000 20000 10~ ]T Initial value for true trajectories

q, 107 ft’s™ A parameter of true Q

4, 10°ft %57 A parameter of true Q

M, 100000 ft Distance of object from radar 1

H, 100000 ft Height of the radar 1from ground

M, 109540 ft Distance of object from radar 2

H, 100000 ft Height of the radar 2from ground

M, 89443 ft Distance of object from radar 3

H, 110000 ft Height of the radar 3from ground

R, 2507 noise covariance for radar 1

R, 100° noise covariance for radar 2

R, 70 ft* noise covariance for radar 3

P, diag ([106, 4><106, 10'4]) Initial a posteriori error covariance

X, Normal Random vector with Initialization of filter estimates.
mean x,, covariance P,

N o 10 Initial choice of window length

N 100 Actual window length

3.2.6 State estimation of a fourth order nonlinear system
State estimation of a nonlinear system has been considered from the work of [Singh2015]

with the dynamic equation and measurement equation as given below:

x, =20cos(x,_,)+w,

y, =41+ X x, +v,

Here, x, is the state vector ,x, € R*. w, 1is the Gaussian (white) noise, and w, € R,

Wy ~ N(04><1’I4><4)-
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¥, 1s a scalar measurement perturbed with measurement noise, v, (Gaussian white noise)
and v, ~ N(0,1)
The true state trajectories are generated with the initial choice of state vector as

X, = O.l*[l 11 l]T. The states filters are initialized with a Gaussian prior as
%, ~ N(0,,,1,,) with an initial error covariance ﬁo =1,,

3.2.7 Aircraft Tracking Problem
The performance of proposed estimators has also been evaluated using a tracking problem

where a maneuvering aircraft has to be tracked. The aircraft which is executing a
maneuvering turn with unknown time varying turn rate has been considered to be tracked by
multiple radars. This problem first appears in [BarShalom2001] and considered in many
works [Arasaratnam2009, Jia2013a, Jia 2013b] for demonstration with different
measurement equations. As the turn rate of the aircraft is considered to be unknown and time
varying the kinematic model of the system becomes significantly nonlinear. Practically an
aircraft while maneuvering with such unknown and time varying turn rate may escape radar
stations and consequently the estimators may lose the track of the aircraft as would be

explained in the following subsections.
3.2.7.1. Kinematic Model

The kinematic equation of the motion of the aircraft is presented below. The turn rate of the
aircraft being unknown it is modelled as a state and augmented with the state vector of the
kinematic model. This model appears in [BarShalom2001, Arasaratnam2009, Jia2013a,
Jia2013b]

_1 sin(wk_lr) 0 cos(wk_lr)—l O_
0 cos(w_7) 0 —sin(w,_7) O
§o=[0 e o e )5t (3.31)
0 sin(w_7) 0 cos(w_z) 0
0 0 0 0 1]

Here the state vector is &, = [p P, Vv, @ ]T; p, and p, are the position in x

X ka Yk

and y coordinate respectively; v, and v, are the corresponding velocities at the instant k.

@, is he unknown time varying turn rate. 7 indicates the time interval between two
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consecutive measurements. w, is zero mean Gaussian noise (white) which indicates the

modelling uncertainty. The process noise for this noise sequence is considered as

0.131j 0.121'2 0 0 0
0 01z 0 0 0
Q= 0 0 o= 2 (3.32)
0 0 2 01z 0
0 0 0 0 gr

Note, that the element Q, (5,5) is the noise covariance of respective augmented parameter,

1.e., turn rate of the aircraft. To generate the true state trajectories for this case study

0, (5.5) is selected as gyye.

3.2.7.2. Measurement Model

The bearing only tracking of aircraft as explained in [Jia2013b] is considered in this

dissertation as a test problem.

The trajectory of the aircraft is tracked by the fusion of the bearing angle measurements from
two tracking radars which are positioned in different locations of the atmosphere. The

measurement equations can be represented as

p, — P
6 =tan”!| =~ |+vi (=12 (3.33)
pxk - pxref
¢ indicates position of the ¢”radar. Pi-,(,f =—10*m; Pi,t,, =—10*m; p;d =10*m; Pf,(,f =10*m. The zero

mean measurement noise (Gaussian) sequences have covariances g :(Jgommd)2 and
2 . . .
R, = (1/40mmd) . The interval between two successive measurements iS, 7 =1sec.

3.2.7.3. Simulation procedure

The proposed filtering algorithms are validated with the help of Monte Carlo simulation with
10000 runs. For generation of true state trajectories an initial choice of state is made as

x, =[1000m 300ms™ 1000m Oms™ -0.05235rads| . The unknown element of @ is chosen
asg, =(1.323x107rads” ) to generate the true trajectories. The filters are initialized with a

Gaussian prior with mean x, and £, , where B, :diag([lOO 10 100 10 10“‘]).
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Further investigation revealed the fact that such aircraft tracking problems are susceptible to
track losses because of the non unique solution of the measurement equations. The possible
set of true trajectories of aircraft has been provided for illustration in Fig. 3.17 which

indicates the randomness of time varying turn rate as presented in the system equation. The

values of ¢,, are high enough to induce random variations in turn rate. At some time

instants the trajectory of the aircraft become such that the difference between the bearing
angle from two different radars may either be negligibly small or become closer to z.
Practically, at this moment the line of sight of two radars does not intersect each other and
the aircraft can not be precisely located in the atmosphere. As a consequence of such non
unique measurements the estimators fail to estimate the trajectory of the aircraft and track
loss occurs. Fig. 3.18 has been presented for illustration where track loss has occurred for a

non adaptive filter in the ideal situation with complete knowledge of noise covariances.

1.5

0.5

y position (m)
<

-0.5

'
—

-1.5

X position (m)

Fig. 3.17: Plot of trajectories of aircraft for different runs

Chapter 3 73



State and Parameter Estimation for Dynamic Systems: Some Investigations

True trajectory ”
0.8~ . BT it el B A -
--+-- Estimated trajectory
0.6 A Radar position 1

¥ Radar position 2

y position (m)

X position (m) x 10*

Fig. 3.18: A representative run where track loss has occurred

During the performance comparison of proposed estimators their performance is assessed in
the context of RMS error and their susceptibility to the occurrence of track loss (i.e.,

percentage of track loss).

Root means square error (RMSE) of position, velocity and turn rate estimation are calculated

using the formula given in [Jia2013b].

mc

RMSE = \/NLNZ((@J% - ék,,-ej)z + (‘:k,iel - ék,iel )zj

me i=1

where j=1 and [=3 for RMSE of position estimation. For RMSE of velocity estimation j=2

and /[=4. RMSE for turn rate estimation is obtained with j=5 and replacing the unit vector e,
by a zero vector.

To detect the occurrence of track loss the following condition has been considered. When the

condition H S =2V + (0, -5,

> 800m 18 true for any instant of Monte Carlo runs, it is

understood that the estimated trajectory has failed to track the true trajectory of the aircraft.
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Chapter 4: A General Framework for Adaptive Nonlinear
Filters

4.1 Chapter Introduction

This chapter presents a general framework for adaptive nonlinear filters which would be
useful to formulate variants of adaptive estimators for nonlinear signal models where the
prior knowledge of process noise covariance () or measurement noise covariance (R)
remains unavailable. The adaptation algorithms for Q and R which have been incorporated in
the proposed general framework have been mathematically derived in this chapter. The
adaptation algorithms necessitate an underlying framework of conventional (non-adaptive)
nonlinear filter wherein these algorithms have to be integrated. Therefore, for the proposed
general framework the conventional Bayesian approach of filtering (in presence of additive
Gaussian noise) has been used as the underlying framework. With the help of this general
framework a class of adaptive nonlinear filters can be formulated by approximating the

Bayesian integrals using several numerical methods.

The adaptive nonlinear estimators, in general, require statistics of the state residual or the
measurement residual for adaptation. The adaptation algorithms depend on the underlying
framework of non-adaptive nonlinear filters for the knowledge of state residual or
measurement residual. Subsequently such adaptation algorithms provide the adapted value of
the unknown noise covariance which is used by the underlying framework of non-adaptive
nonlinear filters to compute the state/measurement residuals of the next time instant. In this
way these two sets of algorithms work as the complement of one another. The general
framework is presented in terms of such complementary sections based on Bayesian filtering

algorithm and the adaptation algorithms respectively.

Adaptation algorithms which have been mathematically derived in this chapter are presented
in the format of theorems along with their proofs. The methods for adaptation are inspired
from the linear signal models and duly extended for nonlinear state estimation. Depending on
the situations with unknown process noise covariance and measurement noise covariance the
adaptation methods are broadly categorized as ‘Q adaptive’ and ‘R adaptive’ nonlinear

filters. Different approaches followed for derivation of the adaptation algorithms include:
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(1) Maximum Likelihood Estimation (MLE) based method (ii) Covariance Matching method

(i11) Maximum a Posteriori Estimation (MAP) based method.

Depending of the nature of adaptation and choice of sigma points variants of adaptive
nonlinear estimators can be formulated which would be demonstrated in the subsequent
chapters of this dissertation. In this chapter only the R adaptive UKF has been presented to
demonstrate the use of the proposed general framework. Performance of AUKF is also

illustrated with help of a case study.

4.1.1 Problem Statement
We consider a nonlinear dynamic equation of system as given below

xg = £l g)+wy (4.1)
where x, € R"is the state vector and w, is the noise term which represents modelling

uncertainties. w,is white Gaussian noise w, € R" ~ (0,0). For joint estimation of

parameters and state the state vector becomes a parameter augmented state. This implies that

apart from the n, proper states, n, unknown parameters have been augmented such that

n=n, +n,. When the dynamics of parameter variation remains unknown it is assumed that
unknown parameters vary following a simple random walk model ¢, =¢,_, +w;, where
w indicates a zero mean Gaussian noise sequence with its covariance symbolized by Q; .
The observation equation is considered as

i =8lxe) v (4.2)

¥, € R™is the observed output vector.

v is the measurement noise (Gaussian) andv, € R"” ~ (O, R) .

Situations are considered when the knowledge of the noise covariances remains incomplete,

i.e., the knowledge of process noise covariance (Q ) or, measurement noise covariance (R)

remains unavailable.
The objective of adaptive nonlinear filtering is to find the conditional expectation E(xk|Yk)

where Y, is the set of observed data, =y.;1<j< along with online adaptation o
(wh Y, is th t of ob d data, Y, =y;:l k) along with onl daptat f
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unknown noise covariances. The initial choice of the state estimate x,is considered to be a

Gaussian prior with mean x, and covariance P,.

When @ is unknown, the filter is initialized with an assumed value of @ . Alternatively, the
filter is initialized with an assumed value of R in the face of unknown R . The assumed value
of covariance has to be adapted using the proposed adaptation algorithms for obtaining

satisfactory estimation results.
4.1.2 Different Approaches for Solution

The objective of the adaptive nonlinear estimators is to provide satisfactory estimate of the
states in the face of unknown noise covariances. Formal mathematical formulation of the
estimation problem is presented in the previous section. It has been mentioned before that
depending on the unavailability of process noise covariance or measurement noise
covariance the adaptive filters are broadly classified into two classes: (i) Q adaptive filter (ii)
R adaptive filter. Q or, R matrices are adapted by the adaptation algorithms which have been

formulated with the help of three different approaches as stated below:
e Maximum Likelihood Estimation (MLE) based method
e (Covariance Matching method
e Maximum a Posteriori (MAP) method

The adaptation algorithm for @ adaptive and R adaptive nonlinear estimators has been
mathematically derived by Maximum Likelihood Estimation (MLE) based method,
Covariance matching method and Maximum a Posteriori (MAP) based method for nonlinear

signal models.

By modifying the existing MAP based algorithms for R-adaptation and Q- adaptation with
reasonable simplifying assumptions it has been shown that the modified adaptation
algorithms match well with those obtained by the MLE method and the intuitive Covariance

Matching method.

Different methods of adaptation followed in this work are presented with the help of a tree

diagram given below:
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Adaptation Methods
|
[ I
(Q-adaptation R-Adaptation
| |
| ] 1 | ] 1
Maximum Covariance Maximum a Maximum Covariance Maximum a
Likelihood Matching Method Posteriori (MAP) Likelihood Matching Method Posteriori (MAP)
Estimation (MLE) based method Estimation (MLE) based method
based method based method

Using Innovation
sequence

Using Innovation
sequence

Using Residual Using Residual
seauence seauence
With re- With re-
computation computation
Without re- Without re-
computation computation

It is to be noted from the tree diagram that the R adaptation algorithms are further classified
into two branches depending on the innovation based and residual based adaptation. The
residual based method has some advantage over the innovation based method which would
be discussed later in detail. In case of residual based adaptation, there exists a self
referencing problem. This problem can be overcome by re-computation of measurement
update steps with adapted R of current instant. The re-computation step is effective when
there is transients in the adapted value of R or, truth value of R is time varying in nature. The
residual based R-adaptation is again divided into two categories: (i) with re-computation (i)

without re-computation. The method of re-computation has been explained in 4.2.3.5.

Note that the adaptive nonlinear filtering algorithms use the structure of non-adaptive
nonlinear filters as their core. The variants of adaptation algorithms which may be derived
following the above mentioned approaches are to be integrated in the underlying structure of

non-adaptive nonlinear filtering algorithms so that their adaptive versions can be formulated.

4.2 The Solution Framework

4.2.1 Overview
The algorithm of adaptive nonlinear estimators in a general framework has been presented in

this section. The adaptive nonlinear estimators are based on two major parts: (A) underlying
framework of non-adaptive nonlinear filters which is the core for the adaptive nonlinear

estimators, (B) The proposed adaptation algorithms.
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The major steps of the proposed general framework are schematically presented below.

General Framework For Adaptive Nonlinear Estimators

Part A: Underlying framework of non-adaptive estimators

Gaussian integrals are approximated using numerical methods:
®  Unscented Transformation
¢  Gauss Hermite quadrature rule
e  Spherical Radial Cubature rule

e  Cubature quadrature rule

Part B: Adaptation algorithms

Adaptation of Process Noise Covariance Adaptation of Measurement Noise Covariance

Methods followed:
e  Maximum Likelihood Estimation based method
e  Covariance Matching method

e  Maximum a Posterior Estimation based method

In part (A) the underlying framework of non-adaptive nonlinear estimators for Gaussian
noise are presented following the Bayesian approach. The noises are considered to be
Gaussian, white and additive in nature. Therefore, the estimation algorithm is expressed with
the help of ‘Gaussian integrals’ as it is presented in many works [Sarkka2013a, 1to2000].
During implementation of these estimators such integrals are to be approximated with the
help of numerical methods. Different approximation methods exist for approximation of the
intractable integrals which would appear in the subsequent chapters of this dissertation. In
part (B) different methods for adaptation of process noise and measurement noise covariance

have been provided.
4.2.2 Part A: Underlying Framework of Non-adaptive Nonlinear Filter

The first part of the algorithm includes the non-adaptive nonlinear filtering algorithm which
is to be used as an underlying framework with some modifications to ensure the
compatibility with the adaptation portion. The adaptation methods are elaborated in the

second section which is the significant portion of this algorithm.

In probabilistic terms the system and the measurement model with additive white noise

(Gaussian) can be expressed as given by (4.1) and (4.2)

p(xk|xk—1’Yk—l): N(xk‘f(xk—l ),Q) 4.3)
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p(yk|xk’Yk):N(yk‘g(xk)’ﬁ) (4.4)

For the above described system the conditional expectation of the state of the system can be

denoted by E(xk|Yk) where Y, is the available measurements, Y, =y;;1<j<k. To obtain the

estimate of the state from the available set of measurements Gaussian approximation of
probability density function of state (conditioned by the measurements) has to be made. This
concept has been followed in previous works [Sarkka2013a, Wang2012, Arasaratnam2009,
Haug2005, [to2000] and termed as “Gaussian filters”. Here, the filtering algorithm is presented

for the continuity of the adaptation algorithms presented in the next section.

Assumptions 4.1

The a priori (predictive) probability density function of the state x, conditioned by Y, , is

assumed to be Gaussian, i.e.,
p(xk|Yk—I): N(xk;fk’l_)k)

where the first two moments, viz., a priori state estimate and corresponding error covariance

are:
X, = E(xk|Yk—1)
I_)k = E(fkflﬂyk—l)

A
Here, the a priori error of state is defined as X, =x, — X,

Through out this dissertation x ~ N (x|m,P) indicates that x is a Gaussian vector with mean

m and covariance P and the probability density function of x is expressed as

plx)= ;exp((x —m)P 7 (x - m)T)
(2z)' P

Assumptions 4.2

The a priori (predictive) probability density function of the measurement y, conditioned by

Y,_, is to be Gaussian, i.e.,

P(J’k|Yk—1): N(yk;yk’Pky)
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where the first two moments, viz., a priori estimate of measurement and corresponding error

covariance are
Y = E(yk |Yk—l)
~ ~T
Pky = E(J’k)’k |Yk—1)
- A
Here, a priori error of measurement is defined as y, =y, — y,

Assumptions 4.3

The a posteriori (updated) probability density function of the state x, conditioned by Y, is to

be Gaussian, i.e.,
p(xk|Yk): N(xk;’ek’ﬁk)

where the first two moments, i.e., a posteriori state estimate and corresponding error

covariance are:
X, = E(xk |Yk )
ﬁk = E(ik'flﬂyk—l)

A
Here, the a posteriori error of state is defined as x, =x, — X,

Lemma 4.1

If random variables x € R" and ye R™ have the Gaussian probability densities as given

below
X ~ N(x|m,P)
y~ N(y|Hx +u,R), HeR"™, Re R™"

then the joint density of x, y and the marginal distribution of y are given as

. N m P PH'
Y Hm+u| |HP HPH' +R

v ~ N|y|Hm +u, HPH" +R)
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Lemma 4.2

If the random variables x and y (x € R", y € R™) have the joint Gaussian probability density

N al|l A C

x? ~ b

Y b||C" B

ac g{n’be g{m’ AE mnxn’ Be g{mxm’ CG g{nxm

then the marginal and conditional densities of x and y are given as follows:
x|y ~ Nla+CB'(y-b),A-CB"'C")

yx~Np+C"B(x-a), B-C"A™'C)

Theorem 4.1

Considering the system dynamics given by (4.1) and (4.2) and using the assumptions from 4.1
to 4.3 and the Lemma 4.1 & 4.2 the a posteriori (also known as updated) estimate of state and

the error covariance can be obtained using the following recursive formula:

X =X + K (v =¥y ) (4.5)

P, =P, —K, P K] (4.6)

Where,

X = jf (e Il Yo My (4.7)
o

P =0+ [(f(vecs)=FF (i) =% ) pleif¥iy i “.8)

i

Vi = j glx, )p(x v, x, (4.9)

PY = R[(f(xk )% elx,) -3, ) ple, [V, ax, (4.10)

P} =R+ Rj”(g(xk )- 3 Mgl )= 3,) plx, ¥, Jix, (@.11)

K, =p> ()" 4.12)
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Proof:

The a priori probability density function can be obtained using Chapman-Kolmogorov

equation as:

p(xk |Yk—l ) = _[p(xk |xk—1 )p(xk—1|Yk—1 )dxk—1
Mt

Where, p(xk|xk_l,Yk_,)= N(xk;f(xk ),Q)

From the assumption 4.1 we have

X, = E(xk |Yk—1)

=X, = .[xkp(xk|Yk—l )ka
2

:szjxk

J { Rj ple e Dl ¥ Hx, } d,

= fk = J-f(xk)N(xk;fk—pﬁk—l)dxk—l
R

:fk=I|:

R"

kaN(xk ; f(xk—l )’Q)dxk j|p(xk—1 |Yk—1 )dxk—l

R

= fk = If(xk_l )p(xk—1|Yk—I )dxk—l

Hence, (4.7) is proved. Equation (4.7) represents the a priori (predicted) estimate of state.
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= I_)k :Q"' .[l(f(xk—l)_fk )(f(xk—l)_fk )T p(xk—1|Yk—I )dxk—l
= I_)k = Q"' j(f(xk—l)_ X )(f(xk—l)_ X )TN(xk;'f‘k—l’ﬁk—l)dxk—l

Hence, (4.8) is proved. Equation (4.8) represents the a priori (predicted) error covariance of

state.

For future reference we denote P as

I_)kf = v[(f(xk—l)_fk )(f(xk—l)_fk )Tp(xk—1|Yk—I )dxk—l

Joint distribution of y, and x, can be obtained as
P(J’k » X |Yk—1 ) = P(J’k |xk )P(xk |Yk—1 )

p(yk > X |Yk—l ) = P(.Yk|xk Y )P(xk |Yk—l)
The disappearance of the measurement history Y, _,is due to the conditional independence of

y, of the measurement history, given, x, .

The marginal distribution of y, given Y, , can be obtained by integrating the distribution

overdx, . The relation is obtained following Chapman—Kolmogorov equation as
P(.Yk |Yk—1 ): IP(J’k |xk )p(xk |Yk—1 )dxk
e

From assumption 4.2 we have
Y = E(J’k |Yk—1 )

=y, = kap(yk|Yk—l)dxk
Rn

=3 J-ykl:.[p(yk|xk )p(xk|Yk—I )dxk:ldxk
R" Rn

=y = {fykp(yklxk Jax, }p(xk ¥, Jx,

R"| R
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I ka J’k‘g x.) R)dx xk|Yk 1
=2 jg(xk )p(xk |Yk—1 )dxk

b
=3 jg(xk )N(xk;fk’l_)k yxk

2

Hence, (4.9) is proved. Equation (4.9) represents the a priori (predicted) estimate of

measurement.
Pky = E(ikik |Yk—1 )

:Pkyzj(g(xk)_yk-i_vk)(g( ) J’k""’k (yk|Yk 1)1xk

R"

Where v, is defined asv, =y, —g(x, )

=P = J‘(g(xk)_yk TV, )(g(xk )_yk +v, )T{_[P(ykhk )p(xk|Yk—1 )dxk Xy

R"

=P’ = J. J.(g(xk)_yk +V, )(g(xk)_yk +V; )Tp(yk|xk )dxk}P(kak—z }ixk

nl pr

:>Pky=J. J(g(xk)_yk+vk)(g( ) J’k""’k (.Vk|g xk R)dx:l xk|Yk—1}lxk

R"| R"

::’Pkyzj I(g(xk)_yk)(g( )-3.) (yk|g x,) I_i’)ch J.vka{N(yk|g(xk)’E}lxkj|p(xk|ykIyxk

n| pn R"

=P = J:ll(g(xk)_yk )(g(xk)_yk )T +Elp(xk|Yk—1)lxk
=P = R+ .[l(g(xk)_yk )(g(xk)_yk )Tp(xk|Yk—l }lxk

=P’ =R+ J-(g(xk)_yk)(g(xk)_yk)TN(xk;fk’I_)k},xk

Hence, (4.11) is proved.

For future reference we denote Pf as:
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I'_)kg = I(g(xk ) — Vi )(g(xk )_ Y )T p(xk |Yk—1 }lxk
ho
The cross covariance because of the correlation between y, and x, can be obtained as

P” = .[(xk =X )(g(xk )_ Yi )T P(xk |Yk—1 )dxk

xy
=P,

J-(xk — X )(g(xk)_ Y )TN(xk;fk’I_)k },xk

Ril

Hence, (4.10) is proved.

By Lemma 4.1, the joint distribution of y, and x, given Y,_, is presented by
(X, ¥, |Yk_1) = p(yk|xk )p(x, |Yk_1)

= p(xk’yk|Yk—1) :N(yk;g(xk)’E)N(xk;fk’l_)k)

X, P, P
= p(xX. W [Ye ) =N (_"N : . H (4.13)
| l: Vi (Pky)r P’

By Lemma 4.2 the conditional distribution of x, is obtained as

p(x, V) =N(x,:%,.P)

Where,
i =%, + P2 (P ) (v -5 (4.14)
ﬁk :I_)k_kay(Pky)_l(kay)T (4.15)

We define the filter gain K, as given by (4.12)

K =P>(P)'

With this expression of K, (4.14) and (4.15) can be expressed as
=% +K/(y, - ¥)

ﬁk :I_)k _Kk(Pky)(Kk)T

Hence, (4.5) and (4.6) are proved [ |
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4.2.2.1. Implementation of Bayesian Filters

For linear signal models the filtering steps can be readily deduced using the Bayesian
framework and the subsequent estimation algorithm is well known as Kalman filter.
However, for nonlinear signal models where state and observation equations are nonlinear
function of system states Bayesian integrals becomes intractable. As a consequence,
Bayesian framework for nonlinear estimation with Gaussian noise, though theoretically
justified, becomes difficult to implement in real life applications. For implementation of the
Bayesian filters with Gaussian noise, the Gaussian weighted Integrals encountered in the

filtering steps are to be evaluated with the help of numerical methods.

Consider a multi-dimensional weighted integral of the form

1(f)= Inf(x)w(x)dx (4.16)

Where f(x)is a nonlinear function of x € R". @w(x) is a Gaussian density function present

in the Gaussian weighted integral. Following the numerical methods the above intractable
integral can be computed by a weighted sum of the function evaluations. The basic concept

of numerical methods is to generate a set of points x, (usually called as sigma points) and
weights w, such that

m

I(f)zgf(xi)w,» (4.17)

Several methods are available for numerical approximation of the integrals from which a few
methods has been considered in this dissertation to formulate a class of adaptive sigma point
filters. Some discrete points (will be referred henceforth as ‘sigma points’) are generated in a
deterministic approach using Unscented Transformation rule, Gauss Hermite Quadrature
rule, Spherical Radial Cubature rule, Cubature Quadrature rule. The ‘sigma points’ selected
using these rules can be plugged in the general framework and the corresponding adaptive
estimator may be formulated. The adaptive nonlinear estimators developed using the referred
numerical approximation methods in the general framework will be characterised in sequel in

the succeeding chapters.
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4.2.3 Part B: Derivation of Adaptation Algorithm
4.2.3.1. Adaptation of the Process Noise Covariance (Q)

Maximum Likelihood Estimation (MLE) based method
Assumption 4.4

For adaptation of noise covariances a fixed-length memory (window) of innovation or,
residual sequence has to be considered. Following assumptions are to be made for the MLE

based adaptation algorithm [Mohamed1999, Maybeck1982]:

e The state vector x is independent of the adaptive parameters (noise covariances), a , i.e.,

%0

e The system dynamics f(-)and the measurement equation g(-) are time invariant and does
not depend on the adaptive parameters a

¢ The innovation sequence is a white and ergodic sequence (time average is equal with

ensemble average) within the estimation window with window length L.

The innovation, or, residual covariance matrix is dependent on adaptation parameters « . It is
with the help of window estimated innovation/residual covariance using which adapted

values of parameters are deduced.

Theorem 4.2:

For nonlinear estimators with unknown process noise covariance, the adapted Q is expressed
as

0,=K.C, K,/ (4.18)

Where C s 1s estimated innovation covariance obtained from the sliding window of length L.
Proof:

The Q adaptation steps are derived following MLE method and using innovation sequence
from a sliding window (also, known as estimation window) and. The steps for derivation of
adapted Q are inspired from the work of [Mohamed1999, Maybeck1982] for linear signal
models. The probability density function of the measurements conditioned on adaptive

parameter, @ at specific epoch & is chosen based on innovation sequence as given below. The
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objective of the MLE method is to maximize the probability density function for the choice

of adaptive parameter

P expl-137C;',) (4.19)

Va), =

e (27[)m

Cﬂ\

k

or, (P, )= —%{mln(Zﬁ)+ln‘Cﬂk‘+ 5C;8, ) (4.20)

yle),

Multiplying both sides with —2 and neglecting the constant term we get the equation

modified as
P=M[C, |+ 5 C,'s, (4.21)

The innovation sequence has been considered inside a window size L as the filter uses a fixed
length memory. The innovations inside the window will be summed. Multiplication with a
negative value inverts the maximization problem into a minimization problem. Therefore, the

Maximum Likelihood condition becomes:

min{ ZA: (1n|C 8 | +dC ;kl ¥, )} (4.22)
=i

where j,=k-L+1 and Lis the window size.

After differentiation with respect to adaptive factor ‘e’ the likelihood function in (4.22) is

expressed as:

i_tr ¢ Lo |l _gre o C"19—=0 (4.23)
i=J "\ o 7 Oay | '

‘ L[ec, ) L[oc,

> tr{c; [ o, J}‘”{Cﬂ,’ﬂj 5C, [V H =0 (4.24)
K oC,

>l [C;_’ ~-C,'9 9/ C,! ] —>1t]=0 (4.25)
- J (] i aak

The following formulae for matrix operation have been used for deriving the above steps are

presented below and also appear in [Maybeck1982, Mohamed1999].
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alnP:|P|—1M:tr[P_18_P]

ox ox ox
oP! _p-! a—PP_I
ox ox

x"PTQ Px= tr(P xxTPTQ)
The deduction of the relation between innovation covariance, C, and the process noise
J

covariance, @, necessitates the availability of the pseudo measurement matrix for the

nonlinear measurement equation which can be obtained by statistical linearization. The
concept of pseudo measurement matrix for nonlinear measurement model is introduced first

in [Lee2008] and also followed in [Chandra2011, Jia2013b, Soken2014].
The cross covariance P;” and a priori error covariance P, given by (4.10) and (4.8)

respectively are now used to define the pseudo measurement matrix, ¥, following
[Lee2008] as

v, = (B (4.26)
Using the pseudo measurement matrix the innovation covariance can be represented as
C, =R, +¥, P P which is analogous to that for linear signal model. The innovation
covariance expressed in terms of pseudo measurement matrix is approximately equal with
P’,ie., P =R, +¥ PV,

For adaptation of Q , the adaptive parameter a is chosen as a; =Q); .
Substituting this expression of innovation covariance we get:

daC,, P)

-y (P, )T
ank g ank g ¢
aC _
= =¥, ‘ (Pkf"'Qk)qlkT
ank ank
aC
S N A A
ank
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It is assumed following the work of [Mohamed1999, Maybeck1982] that the within the

estimation window the filter is in steady state and, therefore, derivative of the term I_’kf
(related with a posteriori error covariance) in the expression of P, can be neglected.

Substituting this value in the ML equation given by (4.25) we get

Y [irfles -y, 00c; ) 1) }l=0 427)
J=Jo

Alternatively,

Yl wrles -ciooe; v J=o (428)
J=Jo

> [oflrrc,w,-wic,sorc,w JH=o0 429

J=Jo
Note that using ¥, filter gain K, given by (4.12) can be expressed as K, = P¥,C, .

Substituting this expression in (4.29) we get

Zk; |oP 'K W, - P 'K 0,9'K"P " }]=0 (4.30)
J=Jo

k

>l (9,7, & 0,5 K P =0 (431)
J=Jo

From (4.5) the term K3, can also be represented as K2, = x; —X; =, . The state residual

;-
is represented by #; .
k JE— pE— —
> [P (& 2,2, -t )P =0 (4.32)
j=jo
The expression ofl_’j in (4.8) ensures that I_’j is positive definite. Therefore, above
expression vanishes only when
k JE—
> [l 2 P~ =0 433)
j:j()

Using (4.6) and (4.12) we get
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Y[o{p, -8, -nut M=o (4.34)

i=o
The matricesl_’i and I_’j becomes steady within the estimation window and therefore their

average value have not been considered.

3 [n,u] (4.35)

J=Jo

I_)k _ﬁk :%

From (4.8) expression of I_’k is substituted in (4.35)

A a1 &

P! +0, B =— 3 |un]] (4.36)
J=Jo

A1 & .

0, =ZZ[n,-n§]+Pk -p/ (4.37)

J=Jo
During steady state the term (ﬁk -P/ ) becomes often low and may negligible as it is

recommended in [Mohamed1999].

N 1 & r

0.~ DEEA (4.38)
J=Jo

A 1 k T T

0, =~ > | K0, K] | (4.39)
J=Jo

n k

Qk =~ K, % Z[ﬂj 791'T ]KkT (4.40)

J=Jo
Qk = Kkéz‘}k KkT
Hence, (4.18) is proved. [!

For parameter augmented state vector it may so happen that the noise covariance of the states
is known while the noise covariance for the parameters remains unknown. Partial adaptation
of @ is possible in this situation. For partial adaptation we use the corresponding elements of

filter gain which are related with n, parameters. We select the last n, rows from K, matrix

and define as K: . Now the noise covariance of the corresponding parameter is adapted as

)¢ =KSC? (K¢ . Note that (4.22) differentiated with respect to unknown elements only.
k k>~ k k
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As the covariance of the process noise of state vector of augmented vector is known, the
overall noise covariance of augmented vector is partially adapted and presented as

0, = {Q}f 0 } where @ is a known constant matrix which is the noise covariance of the state.
0 o

Covariance Matching method
Covariance matching method is an intuitive method where the window estimate of the

innovation or, the residual covariance is compared with its respective theoretical value
computed by the filter for obtaining the adapted value of noise covariance. When the process
or, measurement noise covariance is accurately initialized the estimated innovation
covariance from the sliding window becomes consistent with the theoretical value computed
in the filtering algorithm. However, any discrepancy between these two innovation/residual
covariances indicates improper tuning of filter. While tuning parameters, Q or R are
unknown, they can be deduced based on the comparison of window estimated and the filter
computed innovation or residual covariance. For adaptation of process noise covariance the
expression of @ is obtained comparing the window estimate of innovation covariance and the
filter computed (theoretical) innovation covariance at each time instant assuming R is known

to the filter.

Theorem 4.3: Same as theorem 4.2

Proof:

The online estimate of innovation sequence from the sliding window can be expressed as
. 1 < r
Cp =7 2 Y (@.41)
J=Jo

The filter computed innovation covariance is approximately equal to the window estimated
innovation covariance when @ is properly tuned. It is expected that with the adapted Qk

these two covariances will be consistent. Therefore we may write

A _ pY
Cﬂk—Pk

= KC, K{ =K, P/K[

From (4.6) the expression of a posteriori error covariance is obtained as
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ﬁk :I_)k _KkPkkaT

This expression can be alternatively written as

P -P = Kkéﬂk K! (4.42)
Using the expression of a priori error covariance given by (4.8) in (4.42)

I_)kf +Qk _Pk :KkéngZ

=0, = Kkéﬂk K!+P -P/ (4.43)
The expression (ﬁk -P/ ) becomes often negligible. As the filter reaches steady
state IA’k_1 beomes steady and often low for satisfactory estimation.

Therefore, the expression for adapted @ after approximation becomes

0.=K.C, K|

Hence, (4.18) is proved.

Theorem 4.4

For the adaptive nonlinear filters with unknown process noise covariance, Q can also be

adapted with the help of a scaling factor and expressed as

Qk = ﬂ’kQAk—l

tracelC s, —R

(4.45)
trace‘Pky _R)

Where CA’ﬂk is estimated innovation covariance obtained from the sliding window with

Where, the scaling factor, 4, =

window length L and P, is the innovation covariance computed in the filtering algorithm.

Proof:

According to the covariance matching method the window estimated innovation covariance

should match with the innovation covariance computed by the filtering algorithm. When
measurement noise covariance is known, i.e., R = R it can be subtracted from innovation

covariance and the remaining part is same as P," which error covariance of a priori estimate
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of measurement. P, is dependent on the a priori error covariance which subsequently
depends on process noise covariance.

As it is considered that the process inside the window is in steady state the a priori error
covariance is solely dependent of process noise covariance Q as a posteriori error covariance
often converges to a small value and does not have significant contribution. The concept
which was first introduced in the work of [Ding2007] for linear signal model has been

extended here for nonlinear systems
With these concepts in mind process noise covariance can be adapted with help of a scaling

factor which is empirically decided as Q, = 40, _,

traceiPky _R)

The square root has been considered to smooth out the changes in the scaling factor as

recommended in [Ding2007]

Maximum a Posterior (MAP) based method
Theorem 4.4

For window length L and with the consideration that the noise statistics are constant within

the window the process noise covariance can be expressed as:

JJ

0, :%ﬁl[ﬁj +K, 007K ~ P/ ] (4.46)

Proof:

The algorithm for adapted process noise covariance is derived using the concept of
Maximum a Posterior (MAP) estimation method provided in [Cheng2014, Gao2015b,
Ligiang2015]. Usually both the mean and covariance of noise is estimated with the help of
MAP noise statistic estimators reported in the above papers. In this case as zero mean

Gaussian noises are considered. Therefore, estimation the mean of noise is not necessary.

The conditional distribution of interest based on measurements is expressed as

J = p[xk’Q’R|Yk]
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As p[Yk] is not directly related to other parameters except the estimate of state, x, , the
conditional distribution is expressed as
J' = p[xk’Q’R|Yk]

y PO R Y,
P[Yk]

For this optimization problem it seems that p[Yk] is not related. Therefore, the objective is

changed to compute the maximum of the following unconditional density function
J = plx, QR Y,]

= J = p[x, |0, R] plY,|x,, 0, R] plO, R] (4.47)

Note that among the conditional parameters present in (4.47) we have not considered the
means of noise as the noises are zero mean. Here p[Q,R] may be considered as a constant

which signifies the prior information on noise statistic.

According to Gaussian distribution the condition distribution p[xk|Q, R] could be expressed

as:
plx.jo,R]= p[xo]lj plx.jo]

= plx, |0, R]=

Wexp{_%(xo -5, P, 2,)]

i1 el 4l st o s -, )|

jor 27" Q|

= plx.Jo,R]=c|p,[ "0

k
QR T PR AES o SRV ) S
j=1

The notation”u”i signifies: ||u||i =u' Au

Assuming that measurements are known for j=/,...,k and unrelated to one another

p[Yk|xk,Q,R] can be expressed as
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p[Yk|xk,Q,R]= IE_I p[yj|xk,R]

k 1 1 2
= p[Yk|xk)Q)R]: gWeXP{—EH% _g(xj X‘Rl}

k
= P[Yk|xk’Q’R] = C2|R|_k/2 exp{_%zuh - g(xj]‘i-‘ } @)
=1

Therefore the conditional distribution given by (4.47) can now be expressed using (4.48) and

(4.49) as

=J= C|Q|—k/2|R|—k/2 exp{—%{iu"j - f(xj_lm; + i“yi - g(xj 1‘; }} (4.50)

J=1

1 A _
Where, the constant, C = CXP{— E”xo X i)ofl }C1C2|Po| " plo.R]

Taking logarithm on both sides of (4.50)

2

k k
inJ == gl JniR|+1nic| =3, = 7o -5 3oy, el

For maximization of conditional density

Xjmt =X ks X=Xk

dlnJ
aQ Q:Qk

=0

After differentiation of (4.50) with respect to @ after taking logarithm the expression of

adapted 9, is obtained as

6, = L3 ey rle Neyrle, ) wsh

Jj=1
Note that an assumption is made where * -1k , X jjx are known. Moreover, in the expression

of adapted Q the smoothed estimate %, and *;; can be replaced by a posterori estimate
x,,and x; as calculation with smoothed estimate increases complexity. With this

consideration (4.51) can be expressed as
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0, = ¢ Do sle e rle ) w52

However, in [Gao2015b] it is proved that the above expression yields a biased estimate of

0, . The suboptimal estimation algorithm for 9, following [Gao2015b] can be obtained as

given below.

g W R R TR T e (4.53)

j:1 . . . . = j:1 . . (4.54)

k k
= - ,Z‘ {Kjﬂjﬂfo } =< ,Z;‘ {Pf+Q—P,} (4.55)

~.
Il
—_

Hence, (4.46) is proved. [

It has been discussed before that the filter gains and error covariance are often considered to
be steady inside the window (specifically when the filter reaches steady state). Therefore,

expression (4.46) can be modified as

~0 =k |Lyoos" k" +p P’
kK~ Tk kaljj k k k (4.56)

A

) ) L ) 57 .
As mentioned earlier, the contribution of the expression (Pk - P, ) is often low and

therefore can be neglected and (4.56) can be approximately written as

T
Kook 4.57)

Therefore, the same expression of adapted @ given by (4.18) can also be obtained from
(4.46).
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4.2.3.2. Adaptation of the Measurement Noise Covariance (R)

Maximum Likelihood Estimation (MLE) based method
Theorem 4.5.1:
For the nonlinear filters with unknown measurement noise covariance R, the adapted R at

current instant is expressed as

R, =C/ +P¢ (4.58)
Where C? is estimated residual covariance obtained from the sliding window with length L.
Proof:

The R adaptation algorithm used in the proposed algorithm is derived using MLE technique
with assumption 4.4. Derivation of adaptation algorithms for nonlinear systems are inspired
from Maximum Likelihood based R adaptation approach for linear signal models

[Mohamed1999]. The probability density function of the measurements conditioned on

adaptive parameter, « at specific epoch kis chosen based on residual sequence p, unlike

[Mohamed1999, Maybeck1982]

1 -1
B, = —\/7 expl-1pr(c2) ) (4.59)
©Jer)et]
1 T -1
or, ln(P(y‘a)k ): —E{mln(Zfr) + ln‘C,f‘ + Py (C,f) Pi } (4.60)
Multiplying both sides with —2 and neglecting the constant term we get
P =mnjct|+pl(ct) p, (4.61)

Residual sequence has been considered inside a window size Las the filter uses a fixed
length memory. The residuals inside the window will be summed. Therefore, the Maximum

Likelihood condition becomes:

mjn{zk: (m\c;\ +p7c?)'p, )} (4.62)
J=Jo
Which results in

Zk:{”{(cf' )1[255 } -rjley )Tgif }(C AN j] =0 (4.63)

J=Jo
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J=Jo

J=Jo

The formulae necessary for matrix operation have been mentioned before.

3l (5 |-l i

Sl e marer|

aCc?
day,

)]

(4.64)

(4.65)

The deduction of the relation between residual covariance, C/ and the measurement noise

covariance again necessitates the pseudo measurement matrix of the nonlinear measurement

equation. The pseudo measurement matrix has been defined before in (4.26) as

oy _1 . . . .
Y, = (kaz)l(Pk) . Using the pseudo measurement matrix the residual covariance can be

approximately represented as: Cf =R, —¥,P, % which is derived analogously to that of

linear signal model as the pseudo measurement matrix is now available. Readers are

requested to consult the proof of theorem 4.6 for more details.

For adaptation of R, the adaptive parameter « is chosen as«; = R;; . Hence,

A

p
CL _y gy OBy
oR,, oR,,
oP, 0 -

= I1-K Y, )P

oP 0 [+ —

k= [Pk -K.Y.P, ]
aRkk aRkk
o, 9
oR,, dR,,
oR,,

Using the expression of 9F
kk

ac!
R,

I+, K K'P!

Substituting this value in the ML equation given by (4.65) we get

Chapter 4
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in equation (4.66) we get

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

4.71)
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_i[ﬂ{ s ~(c2) p,orler) |+ & ke =0 4.72)
Alternatively,
Sliier) e - nafller) v i kw0 @)

J=Jo
The above equation holds only when the expression within the square bracket vanishes as the

residual covariance C7 and the expression (I +¥ K K] 'PJT) are positive definite.

Assuming ergodic residual sequence inside the window the expression of estimated

covariance of residual sequence becomes

~ 1 &
C;:’ = Z ZpJpJT 4.74)
J=Jo
. N 1 &
R, -V, PW = T > p.p; (4.75)
J=Jo
k
Or, R, = % > pp; +V. P, (4.76)
J=Jo

The term Y’kﬁk ¥!is approximately equal to ﬁkg . With the above consideration and using
(4.74) and (4.76) the expression of the adapted R becomes

R =Cp B

Hence, (4.58) is proved. [!

Theorem 4.5.2:
For the nonlinear filters with unknown measurement noise covariance R, the adapted R using

the innovation sequence can be derived as

R =C, -P¢ 4.77)

Where éﬂk is estimated innovation covariance obtained from the sliding window with

window length L.
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Proof:

The adaptation algorithm for R can also be obtained using innovation sequence. The
probability density function of the measurements conditioned on adaptive parameter, « at
specific epoch kis chosen based on innovation sequence as given in maximum likelihood

based Q adaptation method. Detailed steps are not shown to avoid repetition.

The Maximum Likelihood condition given by (4.25) is presented below:

J=Jo

dC
zk: tr [Cﬂ/’—cﬂngcl%l][a ﬂ,} =0
, ~ o "

a, 1s considered as «, = R, for adaptation of R. The innovation covariance can be expressed

in terms of pseudo measurement matrix as C, =R, +¥ P, ¥
J

oC, oC,
Therefore, | —~ |= Ll=1
aa k aR ik

The ML condition now becomes

Zk:[’rﬂcﬁ,’ -C,/9,5C 15,.']}]= 0 (4.78)

J=Jo

= i e s, —C/ 80 Cy H=o (4.79)
J=Jo

= ﬁ e 5 (C A )C;f H-o (4.80)
J=lo

As C, is non-singular the above condition holds true only when

k
= Ylrdc, -v97 =0 (481)
J=Jo
= SR, + ¥ P w55 =0 4.82)
J=Jo
SR, :% iﬂj S WP (4.83)
J

=Jo
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A

=R, =C, - P}

Hence, (4.77) is proved. [

Covariance Matching method
Theorem 4.6: Same as theorem 4.5.1 for residual based R adaptation and 4.5.2 for innovation

based R adaptation

Proof:
The adaptation algorithm for measurement noise covariance can also be obtained with the

help of covariance matching method. The concept of the intuition based covariance matching
technique has been discussed in @ adaptation method. In the same vein the adaptation
algorithm for R is derived using both innovation and residual. Online estimate of innovation

is obtained from the sliding window as given by (4.41)

k
A 1
Clgk :Z 279]19?

j=k—L+1
The theoretical innovation covariance computed in filtering step is C, =R, + Pt

With the correct value of adapted R these two innovation covariances should be consistent.

Hence the adapted R can be expressed as
R=C, —P¢.
Note that the above expression of adapted R is same as (4.77)

When the statistics of residual instead of innovation is considered the estimate of residual

covariance can be obtained as given by (4.74)

Ideally the residual covariance is given by C{ = R, — ﬁkg (4.84)

With the help of the pseudo measurement matrix the residual covariance can be represented

by (4.85) and derived in the following steps:
C’=R, -V P¥ (4.85)

where PE =¥, PV,
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The residual, p, can be expressed as

P =y —g(%,) (4.86)
= p, =glx,)+v, —g(x,) (4.87)
Alternatively with the help of the pseudo measurement matrix (4.87) can be expressed as
P = (x,)+v, P (%) (4.88)
=p =P, (x)+v, -V, (x, +K,5,)

=p, =I-P.K,)5,

=>p=[-PYK WX +(I-VK ), (4.89)
The covariance of p, is expressed as

= Elp,pl )= (1-¥, K W, E&Z W (1-¥.K,) +(1-¥.K)Ep ! NI -¥.K,)
-(r-v.k w rPw (I-v.K,) +(I-¥ K )R (I-?,K,)

Tk (I_)k _Kkylkl_)k )WIZ(I_WkKk )T +(I_qijk )Rk (I_q]kKk )T

The filter gain can be expressed using pseudo measurement matrix as Kk=(l3k'1’,f R’ )

following the expression of the gain of Kalman filter given in [Anderson1979]. Using this

expression (4.90) can be expressed as

= E(Pkpif): q’kﬁkaT _qlkﬁkq’kTKkTTkT +R, -V, (ﬁkaTRk_I)Rk —R, (Rk_lylkﬁk )'I’kT
+w, (W] R, R K] W]

= E(pkpz): Tkﬁk!IIkT _ylkﬁkq]lZKlfyllf +Rk _!Ilkﬁk!IIkT _ylkﬁkq]lz +TkﬁklIIkTKkTTIZ
= E kplf):Rk _qlkﬁkqlkT
= E kplf):Rk _qlkﬁkqlkT

C’=R -¥ PY’ (4.91)
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In the ideal situation the window estimated residual covariance é’,f should be consistent with
filter computed residual covariance for correctly adapted value of R.

Hence, using the residual covariance adapted R can be expressed as

R =C/+¥, P! (4.92)
Alternatively, with the relation ﬁkg =Y kﬁk ¥! the adapted R can be expressed as

R =C!+P¢

Note that this expression is same as (4.58).

Maximum a Posterior (MAP) based method
Theorem 4.7
For window length L and with the consideration that the noise statistics are constant within

the window length L the measurement noise covariance can be expressed as:
PO L A
R, = ;Z}[ﬁjﬂj - P¢| (4.93)
i

Proof:
The MAP based R adaptation algorithm can be derived in the same vein of @ adaptation

method. From equation (4.50) we get of conditional density, J which is to be maximized for

adapted value of R.

J = C|Q|—k/2|R|—k/2 exp{—%{i”xj - f(xj_ll‘; + i”yj - g(le‘; }
J= J=

Where, the constant, C = exp{— %”xo - X 5,071 }C 1C2|Po|_1/2P[Q,R]

Taking logarithm on both sides of (4.50)
k k R 1¢
InJ =~ 100~ In[R| + n[C] - E,Z:‘ij ~flx, ]\; _5;”3’-/' —glx )

For maximization of conditional density

dlnJg| "

=0
oR R=R,

Chapter 4 105



State and Parameter Estimation for Dynamic Systems: Some Investigations

Differentiating (4.50) with respect to R after taking logarithm the expression of adapted

R, is obtained as

ﬁﬁi[(y,- gle, Ny, -gle,, )] (4.94)

j=1
Note that an assumption is made where ¥, is known. Moreover, in the expression of

adapted R the smoothed estimate * ;. is replaced by a priori estimate X ; as calculation

with smoothed estimate increases complexity. With this consideration (4.94) can be
expressed as
k
R, = le[(y, ~g(x )y, —g(x,))] (4.95)
=
However, in [Gao2015b] it is proved that the above expression of R, is inaccurate. The
suboptimal estimation algorithm for R, is derived as given below following [Gao2015b].
k

Y|y, -2le My, gl )] Z[ v - g@ Nele J+v, -z )|

j=1

= 1Zk319119T Z[Pg+R]

k5
k
= Ro=> o8] - P]
j=1
Hence, (4.93) is proved. [!
During steady state P¥ is considered to be steady within the estimation window and
averaging of P* may not be necessary. We can take PZ out of the estimation window and
express adapted R as
=R =C, -P¢
Note that with this reasonable approximation expression of adapted R matches with (4.77)

Theorem 4.8
For window length L and with the consideration that the noise statistics are constant within

the window the measurement noise covariance can be expressed as:
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P 1& T oA
=;Z[p,-p,- + P (4.96)

Proof:
For maximization of conditional density (4.50) with respect to R we can also think of using

a posteriori estimate of state, X, in place of a priori estimate of state, X, in proof for

theorem 4.7

olnJ "™
OR

R=R,

Using this condition the expression of adapted R, is obtained as
A k ~ ~
:Z[(yj_g(xj\k) Vi _g(xj\k))Y] (4.97)
j=1

In the expression of adapted R , a posteriori estimate x; has been considered in place of

smoothed estimate ¥ ;. . Replacing smoothed estimate by a posteriori estimate # j we

present a different expression of adapted R.
. k
R =, - gle, Ny, -2, ] (4.98)
j=1

However, this adaptation algorithm again provides inaccurate estimate of R, .

Let us consider the window estimate as

g[(yj—g(fj))(yj—g(fj)ﬂ
= lele, o, (e, el o, ~sle, )]

—_

Sllste v, ~ale, + K0, Wele J+ v, ~sle, + K0, )]

Here, K; is the filter gain and 191 is the innovation.
With the help of pseudo measurement matrix %, the above expression can be simplified as
done in covariance matching method from (4.88) to equation (4.90). Then, the window

estimate can be expressed as

Chapter 4 107



State and Parameter Estimation for Dynamic Systems: Some Investigations

Zk:[(y, gz, )Ny, -¢ ]Z[R —y,Py] (4.99)

J=1

R =Yy, &l Ny, ~g#, ) +w,Bu7] (4.100)

j=1
We can represent residual as p, = (yj - g(fj )) Moreover, IA’j'*" =y J.f’jy/f . With these
considerations (4.100) becomes

k
A
:%ZL"J'/’J‘ +Pjg]
j=1
Hence, (4.96) is proved. [
During steady state ﬁkg is considered to be steady within the estimation window and

averaging of f’kg may not be necessary. We can take f’kg out of the estimation window and
express adapted R as

R =€t P

Note that with this reasonable approximation expression of adapted R matches with (4.58)

4.2.3.3. Analysis of Unbiasedness of Adapted Noise Covariance

It can be said that an unbiased estimate of noise covariance has been presented by the
adaptation algorithm when the expectation of adapted noise covariance would perfectly
match with that of actual noise covariance. Alternatively it can be said that for an unbiased
estimate the difference between the adapted value and the actual value should demonstrate a

zero mean nature of variation.

For further discussions let us consider the expression of adapted measurement noise

covariance from Theorem 4.5.2 as

ﬁk = éﬂk -

The expectation of R, can be obtained as
E(kk ): E(Czs,, _I_)kh)

Substituting the expression of window estimated innovation covariance we get
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ElR, )= E(i s 90 —Fk”j

J=o

= ER,)=2 3 E(57)-P

J=Jo
E(R, ), the expectation of R, becomes close to the true Ri.e., E(R,)— R, as the length of

estimation window, L, is increased while satisfying the assumption 4.4. Theoretically the

length may be infinite [Maybeck1982].

A larger estimation window is, therefore, recommended so long the noise statistics are
stationary and ergodic within the estimation window. However, the situation may arise when
the noise is non stationary with short time variation in covariance. In such situations, within a
large estimation window, the statistics no longer remains stationary and a biased estimate of

noise covariance is obtained.

To overcome this issue it is considered that the statistics are stationary within a small
estimation window for the non stationary noises. In this way the unknown time varying noise
covariances can be tracked. However, the estimate of the time varying noise covariances
essentially becomes noisy with a choice of small window length. That is to say the difference
between the estimated noise covariance and actual noise covariance will have high variances
although the mean is zero. Sometimes the estimated covariance may also be biased (i.e., the
mean of this value is different from the truth value) as the memory of only a few instants has
been considered. Therefore, previous workers [Myers1976, Mohamed1999] have warned that
for obtaining an unbiased and smooth estimate history of adequate instances has to be

considered.

From the above discussions we can conclude that the unbiasedness of the adapted noise

covariance depends significantly on the choice of epoch length or window size.
4.2.3.4. Choice of Window Size

With the above discussions it may be appreciated that the choice of window size for adaptive
filtering is a major concern of the designer and needs experimentation. As the noise
covariance remain unknown it is not easy to get the information whether the noise covariance
is time varying. Therefore, the performance of filter needs to be investigated for different

choice of window length on trial and error basis. For non stationary noise minimum choice of
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window length should be the order of system (for @ adaptation) or, the number of
measurements (for R adaptation). Otherwise, divergence of filter cannot be over ruled

[Mohamed1999].

The situation when the noise is stationary window length may be taken as the length up to the
current time instant starting from initial time so that all the innovation/residual values of
previous instants can be considered. In this approach the sliding window concept will not be
applicable any more. This approach can initially present biased estimate of covariance when
there remains large error between the assumed choice of the unknown noise covariance and
its actual value. To converge on the truth value the adapted noise covariance may take more
time as the innovation sequence retains the memory of all previous instants and consequently
the estimation performance may get affected. In this situation the fixed length sliding

window approach of adaptation would be appropriate.

For sliding window based adaptation the noise covariance is not adapted unless the time step
index k is greater than or equal to the desired window length L. For small window length this
will not affect much. However, for large window length the noise covariance remains frozen

to the initial value for considerably long time which is not desirable.

To start adaptation early noise covariance is adapted initially based on a small window length
Lyin of innovation or, residual window. The window size is then gradually increased at each
increment of step index k until the desire window length L is achieved. Afterwards noise

covariance is adapted from sliding window.
4.2.3.5. Notes on Adaptation Methods

During the initial time steps the adapted value of process noise covariance may be less
accurate or prone to be biased depending on the system dynamics and initial choice of Q as
the @ adaptation algorithm is obtained after a few reasonable approximations. Afterwards,
when the filter gradually attains steady state the assumption holds well and the adapted value

of the process noise covariance becomes more accurate.

For R adaptation the residual sequence, instead of innovation, is preferred as residual based

adaptation algorithm automatically ensures positive definiteness of adapted R.

In case of innovation based R adaptation the adaptive filter often gets interrupted due to loss

of positive definiteness of adapted R. To avoid this singularity problem all the elements of

Chapter 4 110



State and Parameter Estimation for Dynamic Systems: Some Investigations

the R matrix are forced to be positive by taking their absolute value. A similar ad hoc
approach has been followed for innovation based R adaptation in [Almagbile2010]. In this

perspective, the residual sequence based adaptation is preferable.

During implementation of R adaptive filters diagonalization of adapted R has to be carried
out to ensure non-correlation when the measurement noises are not correlated. Otherwise,
because of the window estimation the off diagonal terms may not turn up to be zero and its

effect on the estimation may be detrimental for certain cases.

For residual based R adaptation it may be noted that the filter gain and the a posteriori error
covariance depends on the adapted R implicitly. The adapted value of R subsequently
depends on the gain and the error covariance. This self referencing problem can be
circumvented following the alternative heuristic which uses some estimated value of the

adapted measurement noise covariance. For the simplest case the adapted value of the
previous instant can be used, i.e., R = IAik_I . Use of this approximation may not induce error

in the estimate during steady state for the cases where the true value of R remains constant.
However, during transients or if the true R is time varying tracking performance of adapted
R may not be satisfactory due to the above approximation. The following iterative approach,

though computationally intensive, can improve estimation accuracy. In this approach an
intermediate variable R*is chosen as R* = Ié,’f where R i denotes the estimated value of R in
the " iteration of the k" step, and i =1, 2, 3,---,i*. In the iterative refinement R* takes the

place of R in the algorithm. If sufficient accuracy is achieved after the i* iteration further
iteration can be stopped. This method of iterative refinement has been termed as ‘re-

computation’ in the rest of the dissertation.

The similar approach of re-computation can also be followed for Q adaptation for iterative

refinement of adapted Q. However, this will also increase the computation burden.
4.3 Algorithms for Adaptive Nonlinear filters

4.3.1 Introduction to Algorithms
In this section general frameworks for adaptive nonlinear filters are presented. Two different

frameworks for adaptive nonlinear filters have been proposed. One of them is in standard

error covariance form and the other is in square root form. The motivation for the square root
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approach is also mentioned in the notes on the algorithm. With help of these frameworks a

variety of adaptive filters are formulated depending on the choice of sigma points

4.3.2 Conventional Error Covariance form
This section presents the general framework of the adaptive Gaussian filter in standard error

covariance form.

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS

(i) Initialization: Initialize £,, P, ,Q, R
(ii) Time update step:
Compute Cholesky Factor such that 2_, =§, , (5, , ] (4.101)

For the numerical method of integration select points and weights first for standard normal

distribution and modify in the algorithmic steps as

1 = ‘§k—l q;+%,, (4.102)
N

Compute X, =D f (%)W, (4.103)
i=1

and P, =@+ (f(z)-%)(f ) -%) w, (4.104)

X, 18 a priori estimate andl_’k is a priori error covariance

0 denotes the assumed value of process noise covariance Qk. In this algorithm, during Q
adaptation, @ is chosen as Q = Qk_ , for the simplest case without re-computation.

(iii) Measurement update step:

Compute Cholesky Factor such that P, = §, (§ X )T (4.105)

Select the points as x; =S, q; + X, (4.106)

The a priori estimate of measurement becomes
N

2=, 8w, (4.107)
i=1

The following covariance can be computed as -
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N

PE=) (z -%)leo-2) w (4.108)
PF=Y e~z e —z) w (4.109)

i=1
The innovation covariance can be computed as the sum of P*and R . P¥ and P;*is same as
what is denoted before by P# and P, respectively. Here, R is an approximation of adapted
measurement noise covariance IAik . In this algorithm, during R adaptation, R is chosen as the

simplest case where R = ﬁk_ ; - Re-computation may be carried out as explained in 4.2.3.5.

The filter gain K, is given by

K, =P5(PF +R)" (4.110)
=% +K, (v, -2,) @.111)
P =P -K /(PE+R)K" (4.112)

X, 18 a posteriori estimate of state and ﬁk 1S a posteriori error covariance.
(iv) Q-Adaptation Steps:

When Q is unknown, on contrary, R is known (i.e., R = R) the following steps are to be

executed:
Compute the innovation sequence as
%=V~ % (4.113)

The estimated innovation covariance can be computed from a sliding window of epoch

length L
1 k
A _ NaT ( -
Cy, —zj_kZLfk ()i (7) (4.114)

Direct adaptation algorithm for Qk
0,=K,C, K, (4.115)

Alternative algorithm for adaptation of Qk with the help of scaling factor
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Qk = ﬂ’kQAk—l 4.116)

tracelC s, —R

Where, 4, =
A traceiPky ~R)

4.117)

(v) R-Adaptation Steps:

When R is unknown, on contrary, Q is known (i.e., @ =Q) the following steps are to be
executed:

Innovation based R adaptation:

Compute the innovation sequence as

&=y~ (4.118)

The estimated innovation covariance can be computed from a sliding window of epoch

length L
. 1 <&
Cy = 20U () (4.119)
j=k=L+1
R =C, —-PF (4.120)

Residual based R adaptation:

Compute Cholesky Factor such that P, = S, (§ k)/ (4.121)

A

Select sigma points as ;2(,. =S8,q, +%, (4.122)

The a posteriori estimate of measurement and the respective error covariance becomes

4 = ﬁ:g(fa W, (4.123)
PF = Z(g(;?,. )-2, )(g(;?,. >-zk)fwi (4.124)

i=1
Compute the innovation sequence as

Pe=Yi— % (4.125)
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The estimated residual covariance can be computed from a sliding window of epoch length L

k

ér=1 Z (4.126)
L ;-2

R, =C? + PF (4.127)

(vi) Recursion: The time update and measurement update steps are repeated for estimates for

the subsequent time steps starting from k=1.

4.3.3 Square Root version
This section presents the general framework of the adaptive nonlinear filter in the square root

form.

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS IN SQUARE ROOT FORM

(i) Initialization: Initialize £,,S,,S2, S
(i) Time update step:
For the particular mean and covariance modify the selected points for standard normal
distribution as 7, =S, , q, + %,_, (4.128)
N
Compute X, = Y f (%)W, (4.129)
i=1
Compute the weighted, centered (a posteriori estimate of previous instant is subtracted off)

matrix S; such that ;" element of S;':

(s¢) = (F ) -3 W, (4.130)
for i=1,2,---,N

The estimate of the square root of a priori error covariance is obtained as

S, Trlangulanze([ r 8?2 ]) (4.131)

(iii) Measurement update step:

Select sigma points as X; =S, ¢; + X, (4.132)

The a priori estimate of measurement becomes
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7, =2 8w (4.133)

Compute the weighted, centered (a priori estimate of measurement is subtracted off) matrix

S¢ such that i" element of S/ :

() = e -z \w (4.134)
fori=12,---,N

Compute the weighted, centered (a priori estimate of state is subtracted off) matrix S; such

that i" element of S; :

(s7) =G — % )w (4.135)
for i=1,2,---,N

The cross following covariance can be computed as -

P =5s;(s:) (4.136)
The innovation covariance becomes

S;= Triangularize([S ;oSE ]) (4.132)
The filter gain is computed as

K, =P=(sz)" ()" (4.137)
The estimate of the square root of a posteriori error covariance is computed as

S, = Triangularize(|S? - K, S: K, S5*)) (4.138)
The a posteriori state estimate is given by

%, =% +K (. -z) (4.139)
(iv) Q-Adaptation Steps:

When @ is unknown, on contrary, R is known, i.e., S kR =S ,f the following steps are to be

executed to adapt S2:
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Compute the innovation sequence as

U= Ve~ % (4.140)
Compute the matrix from the innovation sequence as

S’=[(k—L+1) - &(k)] (4.141)
The adaptated square root of process noise covariance S s obtained as

$¢ = Triangularize(K, S”) (4.142)

(v) R-Adaptation Steps:

When R is unknown on contrary, Q is known, i.e., §¢ = S? the following steps are to be

executed to adapt S :

Select sigma points as ):(,. =S g T X, (4.143)
N ~A
Compute %, = ), g(%:)w, (4.144)
i=1
Compute the weighted, centered (a posteriori estimate for measurement of previous instant is

subtracted off) matrix S, such that i” element of S, :

(s7) = ez -2 N (4.145)
fori=12,---,N

Compute the residual sequence as given by

P =Y~ (4.146)
Compute the matrix from the innovation sequence as

S’ =[p(k—L+1) - p, (k)] (4.147)
The estimate of the square root of a priori error covariance is obtained as

Sk= Triangularize([S L8’ ]) (4.148)

(vi) Recursion: The time update and measurement update steps are repeated for estimates for

the subsequent time steps starting from k=1.
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4.3.3.1. Notes on Square Root version of Adaptive Nonlinear filters

The square root framework of adaptive nonlinear filters are formulated and recommended

over the standard error covariance form because of the reasons explained in [Anderson1979,

Arasaratnam2008, Liu2012]. Those points have been reiterated below along with some

significant attributes of the proposed general framework for adaptive nonlinear estimators in

square root framework.

The square root form preserves the symmetry of the error covariance matrix which is
a significant aspect of the Kalman filter and its variants. Numerical stability of the

filter is improved in the presence of the symmetric error covariance matrix.

The condition number of a matrix is square of the condition number of its square root
matrix. Because of smaller condition number of square roots, the estimates involving
square roots will have more numerical accuracy compared to the estimates with the

standard error covariance form.

In standard error covariance form, the numerical approximation error creeps in
because of the matrix square root computation in the time update and the
measurement update step of the filter. This may degrade its accuracy. On contrary, in
case of the square root approach the square root is directly updated instead of error

covariance.

In light of the above discussions it may also important to note that the results from the
square root approach in single precision is comparably same as that of standard error
covariance approach in double precision. In applications where the word length is
limited, the square root version may be appropriate compared to the standard error
covariance as it can provide estimates with improved precision compared to the error

covariance form in such situations.

The a posteriori error covariance matrix may suffer from the singularity problem for
the application with limited precision in the situation where accuracy of
measurements are high or a linear combination of state vector components is known
with better accuracy while other combinations may not be well observable. Square

root approach can overcome such singularity problems.
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e In the adaptation step, the square root of the process noise covariance and the
measurement noise covariance get adapted. Therefore, the positive definiteness of
adapted process noise covariance and the measurement noise covariance is ensured

by the square root version of adaptive nonlinear filers.

* Note that for adaptation of the square root of R matrix only residual based adaptation
approach is followed as the innovation based approach is not straightforward for the
square root framework. However, for adaptation of ) matrix innovation sequence has
been employed as the adaptation algorithm can be conveniently modified for the

square root framework.

¢ In the algorithm of adaptive filters with square root framework the matrix inversion
steps can be replaced by backward substitution symbolized by ‘/’ as the latter is
computationally economic [Arasaratnam2008]. In case of square root approach the
triangular matrix is obtained from the QR factorization unlike the standard error
covariance form. On the availability of a square upper triangular matrix we can use

the back substitution instead of matrix inversion to reduce the computational burden.

e The algorithm presented above is applicable only for the sigma point filters where the
respective weights for the sigma points are non negative. Therefore, the algorithm can
be applied with Gauss Hermite Quadrature Rule, 31 degree Cubature Rule, Cubature

Quadrature Rule, and non scaled version of Unscented Transformation Rule.

e However, the above algorithm cannot be applied with non scaled version of
Unscented Transformation Rule and 5" degree Cubature rule as some of the weights
becomes negative. In that case the “cholupdate” command has to be used as described
in [Merwe2004]. This modification, however, does not change the adaptation part.
The non-adaptive part of the above algorithm for the SR UKF (scaled) and SR
ACKEFS5 can be obtained from the work of [Merwe2004].

e [t has been reported in the dissertation of [Liu2012] that the SR UKF may also
terminate due to loss of positive definiteness for some specific runs while updating
the Cholesky matrix using “cholupdate”. This may happen under the influence of the
negative weights of SR UKF. The present worker has, therefore, avoided developing
the square root version of adaptive UKF and CKF (5" degree).
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4.4 Demonstration with Adaptive UKF

In this section we demonstrate the performance of adaptive Unscented Kalman Filter for
adaptation of unknown measurement noise covariance which has been derived using the
general framework for adaptive nonlinear estimators. For numerical approximation of the
Bayesian integrals sigma points are chosen using Unscented Transformation rule proposed in
the work of [Wan2000, Merwe2004]. For R adaptation covariance matching method
incorporating residual sequence is followed as provided in theorem 4.5.1.The algorithm of
AUKF has been discussed in details in the publications [Das2015, Das2013] by the co-
worker, Ms. Manasi Das. Demonstration of the performance of AUKF for object tracking
problem appears in a conference paper by Ms. Das with joint authorship with the present
worker which has been referred in the list of conference papers with serial number ‘9’,
section 1.7.3, chapter 1.

4.4.1 Choice of Sigma Points

We consider an n-element vector x with mean X and covariance P .

Given a known nonlinear transformation y =h(x), the mean and covariance of y can be

obtained with the help of sigma points which are deterministically chosen following
Unscented Transformation rule. The sigma points are be selected in the following way as

reported in [Wan2000, Merwe2004]:

Generate 2n+ 1/ sigma points as

X, =¥ +7, (4.149)
for i=0,---,2n
Where, X, =0;

%=+ 2)P) (4.150)

fori=0,---,n

=+ 2)P) 4.151)

=

fori=0,---,n
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Here (\/? ), denotes the i" column of the cholesky factor (matrix square root) of covariance
matrix P, n and A represent the number of state variables and scaling factor respectively.
The parameter adetermines the spread of the sigma points and A denotes the prior
knowledge about the noise distribution. The scale factor A is determined as A=a*(n+ k) —n,
where x is usually set to 0.

The weights corresponding to the sigma points are

A A 2
m _ . ¢ — 1_ 4.152
W n+/1’WO n+/1+( a +p) ( )
for i=0 and
m c 1 .
W"=W=——— for,i #0. (4.153)
2(n+ A)

Transform the sigma points as y, = h(¥,)

The mean and the covariance of the transformed vector:

y=2 hE)w" (4.154)

P, =% (n(%,)-y)(n(%,)-5) W (4.155)

The adaptive UKF can be formulated using the general framework for adaptive nonlinear
filter. The sigma points which are to be used in the general framework to obtain the
algorithm of AUKF are chosen following the method presented above. The vector which is to
be transformed through the nonlinear function is zero mean with covariance as identity

matrix. Therefore the sigma points becomes

q; =eNn+A for i=0,-,n (4.156)
q,;,=—e~Nn+A fori=0,,n (4.157)

. .th .
Here, e; is the i unit vector

The weights corresponding to the sigma points, g; are obtained from (4.152) and (4.153).
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4.4.2 Case Study: Object Tracking Problem

The object tracking problem in single dimension has been considered to illustrate the
performance of AUKF. The estimation problem is discussed in the chapter 3. The true state
trajectories of the reentry object is generated in simulation using the true values of the initial
respectively) as given in Chapter 3. In the face of

states and noise covariances (x,,Q,, & R

true true

unavailability of the measurement noise covariance both adaptive and non-adaptive filters are

initialized with an assumed value of R (R,,, =R, . x100). The tuning parameters for AUKF

filter true

are chosen as a=0.6, f=2 and x = 0. The window size for R adaptation is chosen as 60.

The performance of AUKF is compared with non-adaptive UKF when truth value of R is
unknown. The performance comparison is executed with the help of Monte Carlo Simulation
with 1000 runs.

Fig. 4.1, 4.2 and Fig.4.3 represent RMS errors of the estimates from AUKF and non-adaptive
UKEF for altitude, velocity and the ballistic parameter respectively. The RMSE performance
of AUKEF is superior to that of non-adaptive UKF when initialized with an arbitrary choice of
measurement noise covariance because of the unavailability of its accurate value. The RMS
error of AUKEF for states as well as the ballistic parameter converged to a lower steady state
value compared to the non-adaptive UKF and the time to taken by RMS error to settle down

is comparatively less in case of AUKF.
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Fig. 4.1: RMSE of altitude for 1000 Monte Carlo runs.
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Fig. 4.1: RMSE of velocity for 1000 Monte Carlo runs.
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Fig. 4.2: RMSE of ballistic parameter for 1000 Monte Carlo runs
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4.5 Discussions and Conclusions

A general framework for adaptive nonlinear estimators has been presented in this chapter.
Depending on the unavailability of the knowledge of process noise or measurement noise
covariance, the adaptation algorithms are classified and presented along with the
mathematical derivations. It is interesting to note that the adaptation algorithms which have
been derived following the method of MLE, covariance matching and MAP are closely

similar provided some simplifying and reasonable assumptions are made.

On the availability of proposed general framework the scope for formulation of a class of
adaptive nonlinear estimators remains open. Here it is demonstrated that the algorithm of
adaptive UKF can be obtained using the proposed general framework. The algorithm of
adaptive UKF is validated in simulation. The performance of R adaptive UKF is found to be
superior compared to its non-adaptive version when the measurement noise covariance
remains unknown. The same trend is expected to be followed by all the adaptive nonlinear

estimators which can be formulated from the proposed general framework.

In the subsequent chapters of this dissertation a number of @ adaptive and R adaptive
nonlinear estimators have been developed from the general framework using different
numerical methods for approximation of the Bayesian integrals other than Unscented
Transformation rule. The relative performance comparison of these competing algorithms of

adaptive estimators has also been explored with the help of a number of case studies.
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Chapter 5: Adaptive Divided Difference Filter
5.1 Chapter Introduction

In this chapter algorithms for Adaptive Divided Difference filter (ADDF) has been proposed
and validated. Adaptive Divided Difference filter is based on the underlying framework of
Divided Difference filter [Norgaard2000] which is non-adaptive on its own and formulated
based on Taylor series approximation of nonlinear signal models. The Jacobian and Hessian
matrices which appear in the Taylor series approximation are replaced by function
evaluations using Stirling’s interpolation formula. We have seen in chapter 4 that in the
proposed general framework for adaptive nonlinear filter the Bayesian integrals are
numerically approximated as summation using sigma points and weights. As non-adaptive
DDF (which is the core of ADDF) is based on Taylor series approximation the algorithmic

steps for ADDF cannot be directly derived the proposed general framework.

Non-adaptive version of Divided Difference filter (DDF) was first proposed in
[Norgaard2000] and also reported in the contemporary work of [1t02000] in the name of
Central Difference filter. Both of these algorithms are based on second order approximation
and the extended form of the Central Difference filter proposed by [Scheil997] which
incorporates only first order approximation of nonlinear signal models. In [Norgaard2000,
Ito2000] it is observed that the performance of non-adaptive DDF is demonstrably superior
compared to second order EKF, Central Difference Filter [Scheil997] and comparable with
Unscented Kalman filter. The interpolation formula used in DDF does not require careful
choice of tuning parameters as it is essential for satisfactory performance of UKF. The

adaptive versions of DDF are expected to inherit all these aspects of non-adaptive DDF.

Adaptation methods are incorporated in the algorithm of non-adaptive DDF to make
estimation successful in absence of complete knowledge of the noise covariances. With
concept of adaptation methods (discussed in chapter 4) Q and R adaptation algorithms are
developed to suit DDF framework. The covariance matrices appear in the adaptation
algorithms are computed with the help of Divided Difference interpolation formula. The
algorithm for ADDF presented in this chapter is in standard error covariance form. The

algorithm can also be expressed in the square root form by updating the square root of a
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priori and a posteriori error covariance matrix using QR factorization at the time update and
measurement update steps respectively. In this chapter performance of Q and R adaptation

algorithms are illustrated with several case studies.

Adaptive versions of DDF are seldom reported in literature. This chapter presents a set of
new algorithms of ADDF. Before presenting the algorithms and the simulation results
Stirling interpolation formula and its applicability for developing DDF have been discussed

in brief for the ease of the interpretation of the algorithmic steps.
5.2 Stirling’s Interpolation Formula

Let the multi dimensional variable y is a nonlinear vector function of x where x € R". The
vector y can be approximately expressed with the help of multi dimensional Taylor series

approximation formula presented in [Norgaard2000] as given below:
y=f(x+4x) Z,~ (5.1)

D', as presented in [Norgaard2000] is interpreted as

Dl f =M Ay o A, ) f () (5:2)

X=X
Using Stirling’s interpolation formula y can be approximated considering up to second order

terms and requirement of computation of the Jacobian and Hessian matrices is replaced by

function evaluations as presented in [Norgaard2000]. Following the interpolation formula y

is expressed as
y=f()+D,f+4DLf (5.3)

Following Stirling’s interpolation formula the Divided Difference operators are expressed as

D,f= %(Z Ax, 1,8, j f(x) (5.4)

Zszé'z £33 v, ax, (1,8, N, 8,) | £ (%) (5.5)

p=lg=1
q#p

where / denotes the interval length.
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Here, ¢, is the partial difference operator and defined as

5,f(%)=f(x+4e,)-r(e-1e,) (5.6)

The average operator, g, is defined as
w1, f(®)=1(f (% +Le,)- fx-Le,)) (5.7)
In (5.6) and (5.7) e, represents p’h unit vector.

With the linear transformation of the variable x as z=8"x , f() can be defined by

A

f(2)=f(8z)= f(x) (5.8)
Applying multi dimensional interpolation formula for f(z) we get

21,8 F(z)=Flc+he,)- flz—he,) (5.9)
(5.9) can also be expressed using (5.8) as

2.8 Flz)= f(&+hs,)- f®-hs,) (5.10)
Where s, is pth column of transformation matrix S .

5.3 Approximation of mean and covariance of a random variable

For the above discussions we now consider x as a stochastic multi dimensional variable with
_ . _ _\T .
mean, X =F [x] and covariance P =F l(x - x)(x - x) J For a transformed variable

y = f(x), its mean and covariance can be computed as

y=E[f(x)] (5.11)
P, =E|(f(x)-5)f(x)-¥)] (5.12)
P, =E|x-%)f(x)-y)] (5.13)

We introduce a new variable z = S_'x such thatS_S! = P,. The transformation matrix S is

selected as the Cholesky factor of P, chosen as triangular matrix for computational

efficiency. The elements of z are decoupled (uncorrelated) as, E l(z —Elz])z - E[z])le I.

The relation (5.8) also holds here, i.e., f(z)= f(S.z)= f(x).
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For the following subsections the following assumptions need to be considered.
We define Az =z—E [z] and Az follows a zero mean Gaussian distribution.
5.3.1 First order approximation

The nonlinear function y = f(z) is presented with first order approximation as
y=FfE+a2)=f)+ D] (5.14)
Therefore, E(y)zE(f(Z)+5Azf)=f(Z)zf(f) (5.15)

Here, the first-order moments are neglected since Az is zero mean and E(Az)=0.

~

P, =E|F&)+D.F - FONF&)+ DF - FE | (5.16)

P=E ((pzn;Azp,upé‘pJf(Z)]{(;Azp,upé‘pJf(Z)]T} (5.17)

P, =Y (1,6, F@)u,5, 7 ) (5.18)

Note that because of linear transformation the covariance of z becomes unity,

E l(Az Az )TJ= I . Now using the difference and average operators we get

P, =3 (Fle+he,)~ Fle—he, NP +he,)- Fle—ne, ) (5.19)

P = y (fGe+ns,)-fE—ns, Nf(E+ns,)-fE-ns,) (5.20)

- th
s, is the p™ column of §,

The expression for the cross covariance becomes

p,=E|x-¥N)+ 5. F -7 ] (521)
P, =E _(ZSPAZPJ{(:I Azp,upé'pJf(Z)JT} (5.22)
P, = —Zs (FE+ns,)-fl&—ns,)f (5.23)
Chapter 5

ie.,

128



State and Parameter Estimation for Dynamic Systems: Some Investigations

5.3.2 Second order approximation
The nonlinear function y = f(z) is presented with second order approximation as

~

=f(z+Az)=f(z)+ D f +iD.f (5.24)

y=Ff@) {ZAZ,,;!,, ,,J ZA2252+ZZAZ Az, (1,8, \p,0,) | F2) (5.25)

p=1g=1
q#p

The mean of transformed variable becomes
y= E{ )+ ‘(ZAZZ(SZJ } (5.26)

y=f@)+%2 252 (5.27)

0,is the covariance of arbitrary element Az,of Az and o, =1. Using the difference

operator we get

= @)+ (f (s, )- f(E—hs,) (5.28)

Note that Az being zero mean we can neglect I3Azf .

The covariance of y

P, £|B.F +35.7)D.F +1 5 | Elb.F -4 BTVl F +1 527 ) | 520
For computation of covariance with second order terms following steps are to be considered.
As per the linear transformation the transformed variable becomes uncorrelated. Therefore,

the cross differences are discarded. The following expectations (as given in [Norgaard2000])

are required to compute (5.29)

a6 a2 7 |= (62 F )62 7 ) o, (5.30)
ElazzeFlazs 7Y |= (027N 7Y o2 (531)
elazz o f el 7) = 27 Vo 7Y o (5.32)
elluzz o FNelazio 7Y = (627 o 7Y o (533
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Here, o, and o, denotes 4™ moment and 2" moment of the distribution respectively. In
[Norgaard2000] it is reported that for optimal choice of interval length 4, square of /4 should
be equal to the kurtosis of the distribution. For Gaussian distribution o, =h* and o, =1.

Using these values P, is obtained as

P, = 2,0, 7@, 0,7 @) + 25> (5,7 @677 @) o, (534)
p=1 p=l
Using the average and difference operator P, is expressed as

P,= ) (FE+ns, )~ f(—ns, N f(x+ns,)-fl&—ns,)
" (5.35)

+ 2N (fE+ns, )+ fE—hs,)-2f @ENFE+ns, )+ fE-s,)-27 )

p=1

The cross covariance P, remains the same as in the case of first order approximation.

5.4 Algorithm for Adaptive Divided Difference Filter

The algorithm for Adaptive Divided Difference filter intended for nonlinear state estimation
problem (described in chapter 4) is presented here. The algorithm is presented in two
subsections. At first the algorithm for non-adaptive DDF is presented which has been used as
the core of ADDF. The Q and R adaptation algorithms are provided in the succeeding

section.
5.4.1 Underlying framework of non-adaptive DDF

The first part of the adaptive DFF i.e., its non-adaptive part is presented in the standard error
covariance form which is an alternative form the algorithm presented in [Norgaard2000]
based on square root approach. Suitable modifications are made to make it compatible for the

adaptation algorithms described in following subsection.
(i) Filter Initialization: Initialize &,,P,,Q, R
(i1) Time Update Steps:

Given p_,,

compute the Cholesky Factor S (k—1) such that P, =§_(k-1)S” (k-1)

Propagation of a priori estimate of state:
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Fo= ot £ )+ 2 (6408, )+ 8,08, ) (5.36)
p=1

wheres, ,1s p™ column of S.(k-1)and h is the appropriately chosen interval length
(h =+/3 for Gaussian distribution).

Propagation of a priori error covariance:

The a priori error covariance becomes

P =s2mSE®) +s2m0(s2m) +0 (5.37)
S®k) and $? (k) are the first order and the second order approximation of the square root

matrix of a priori error covariance. The elements of these matrices are obtained from (5.38)

and (5.39) for i=1/,...,n and j=1,...,n.

S;ge)(k)(i,j) = ﬁ(f; ('i'k—l +h§x,j)_fi (-’Ack—1 _h§x,j )) (5-38)
Sge)(k)(i,j) = J;;? ((f; (-’ek—z +h§x,j)+fi (-’ek—z _h*ex,j)_zfi (-’ek-z )) (5-39)

Here ${)(k),, and $? (), indicate the element s; of S{/(k) and S% (k) respectively.

(iii) Measurement Update Steps:

Given P, compute the Cholesky Factor § (k) such that P, =57 (k)S, (k)

Propagation of a priori estimate of measurement:

The expression of the a priori estimate of the measurement is similar to (5.36). Only the

nonlinear measurement equation g(-) has to be used in place of dynamics equation f(-)of the

system.

yk = h;;n g(fk) + ﬁi{g(fk + hEx,p )+ g(fk - hgx,p )} (5.40)
p=1

Propagation of Innovation Covariance:

The innovation covariance is computed using the following expression

P =SY®R(SCW0) +S2m(S2m) +R (5.41)
where
SU®) ) =%le® +h5,,)-g.(F - 15,,) (5.42)
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Sf?)(k)(i,j) = \/? ((gi (fk +h§x,j )+gi ('fk _hgx,j )_ 2g; (fk )) (5.43)

S% k) and §? (k) are the first and the second order approximation of the square root matrix

of error covariance of a priori estimate of measurement. These are obtained from (5.42) to

(5.43) for i=1,...,m and j=1,...,n., and analogous to those of the time update steps.

The cross covariance is computed as

e =[5, wlls o] (5.44)
The filter gain K, becomes

K, =p2 (R (5.45)
The a posteriori estimate of state is given by

=% +K(y, -y, ) (5.46)

The expression of the a posteriori error covariance is presented by (47). The formula ensures

the positive definiteness of P,

P.=S,0S"K+K, R K] (5.47)
where S, (0 =S, (0 -K,5%” K,S? (5.48)

(iv) Recursion: Estimates for the subsequent steps is to be computed by repeating the time
update and measurement update steps as given above for the required number of time steps

starting from k =1. Note that in the non-adaptive DDF noise covariance are denoted as
Q andR . When Q is known and R is unknown, @ is replaced by trueQ and R is replaced
by ﬁk_l ,i.e., adapted R of previous instant. Reverse is the case when Q is unknown and R
is known. The adaptation algorithms are presented in the following sections.

5.4.2 Algorithm for Q adaptation

For adaptation of process noise covariance the innovation covariance needs to be estimated

from the sliding window as discussed in Q adaptation methods in chapter 4.
Computation of window estimated innovation covariance:

The innovation is defined as

&=y Vi (5.49)
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The estimated innovation covariance from sliding window with length L is obtained as

LS o) (5.50)

-
Comr A
Adaptation of process noise covariance:
Two different Q adaptation methods have been presented here.
For MLE based Q adaptation method as given by (4.18) in chapter 4 adapted Q is presented
below
0, =K. C’K! (5.51)
Following the scaling factor based @ adaptation (covariance matching method) as given by
(4.45) in chapter 4 the adaptation steps are presented below.
Compute the scaling Factor:

trace(é’ *—R )

= : 5.52
trace ([S k) S (k)] [S Yk STk ]T ) o

a,

Adapted of process noise covariance at current instant is therefore given by

0,=0, o, (5.53)
5.4.3 Algorithm for R adaptation

For adaptation of measurement noise covariance either the innovation covariance or the
residual covariance needs to be estimated from the sliding window as discussed in R
adaptation methods in chapter 4. The present worker has opted for residual based R

adaptation for its additional advantaged of ensured positive definiteness of R matrix.
Given Pk , compute the Cholesky Factor S . (k) such that such that ﬁk =S (k) S K

Propagation of a posteriori estimate of measurement:

n

Go=Tmg@) Y felk, +45,, )+ gl 18, ) (5.54)

p=l1

This step is similar to (4.40). Only the Cholesky factor of a priori error covariance is

replaced by the a posteriori one.

Propagation of error covariance of a posteriori estimate of measurement:

Chapter 5 133



State and Parameter Estimation for Dynamic Systems: Some Investigations

The elements of the error covariance of a posteriori estimate of measurement are obtained in

a similar approach like (5.42) and (5.43).

S;fe)(k)(i,j) :#(gi(j\:k +h§x,j)_gi(-’ek _hfx,j )) (5.55)
S;?(k)(i,j) = \/? ((gi (-’ek +h§x,j)+gi (-’ek _h§x,j )_ 2g; (-’ek )) (5.56)

S (k) and S (k) are the first and the second order approximation of the error covariance
of a posteriori estimate of measurement.
Computation of estimated residual covariance:

The residual is defined as the difference between the actual measurement and the a posteriori

estimate of measurement, i.e.,
P =Y = Vi (5.57)
The estimated residual covariance can be computed from a sliding window (size L) as

=13 piin™G) (5.58)

L i57a
Adaptation of measurement noise covariance:
The adapted measurement noise covariance is obtained based on the covariance matching
method and given by (4.58) in chapter 4. The adapted R is presented by (5.59) given below.
As formulated on the basis of residual sequence the expression of adapted R, ensures

positive definiteness.
R =S?®(S2m) +S?w0(S? ) +C? (5.59)
k yx yx yx yx k .

5.5 Notes on algorithm
e The algorithm is presented here in standard error covariance form. However, on
availability of the square root of the error covariances and noise covariances in the
intermediate steps of the proposed algorithm, it can be easily extended in square root
approach. In that case for updating the square root of error covariances QR
factorization method has to be followed and instead of the noise covariance its square
root has to be adapted. The square root version for ADDF may be formulated

consulting the general algorithm in square root version presented in chapter 4.
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Note that only residual based R adaptation algorithm has been presented because of
its additional advantage of ensured positive definiteness of adapted R matrix. The
innovation based R adaptation algorithm can be obtained using window estimated
innovation covariance in place of residual covariance. This covariance can be

obtained replacing y, by y, in equation (57). Then the expression of adapted R can

be obtained by subtracting S ;IE) (k)(S ;1}) (k) )T and S ;ZE) (k)(S ;? (k))T from the window
estimated innovation covariance given by (5.50).

On availability of sufficient computation power, the measurement update step and
both the time and measurement update steps can be recomputed using the adapted

value of R and Q respectively.

The algorithm of adaptive Central Difference filter can be readily obtained from the
algorithm presented here. The non-adaptive version of Central Difference filter
[Scheil997] considers only first order approximation of interpolation formula.
Therefore, for obtaining its adaptive version second order approximation terms
should be ignored from the present adaptation algorithm and also from the underlying
framework. Moreover, the length of the interval, & is to be chosen as h=1/ as in
[Scheil997]. For some estimation problem, specifically with high measurement
covariance and low process noise covariance, Central Difference filter perform
comparably same with DDF [SimandI2009]. For those cases, use of Adaptive Central
Difference filter is preferred over ADDF as it is computationally economic compared
to ADDF. The algorithm for R adaptive Central Difference filter has not been
presented here as this algorithm can be readily derived from the proposed algorithm
for ADDF with the above referred simplifying steps. Algorithmic steps for ACDF are
elaborately presented in journal paper contributed by the present worker as a co-

author.

5.6 Characterization of Adaptive DDF

The Q and R adaptive DDF algorithms are validated in this chapter using different nonlinear

estimation problems. Here two different Q and R adaptation algorithms viz., direct adaptation

and scaling factor based adaptation have been compared. Performance of scaling factor based
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Q adaptive DDF proposed in this chapter has been demonstrated and compared with the
direct Q adaptation algorithm. Performance of R adaptive DDF based on direct R adaptation
is demonstrated and also compared with scaling factor based R adaptation algorithm.
5.6.1 Validation of Q adaptive DDF
5.6.1.1. Estimation of the states of Van der Pol’s oscillator
For evaluation of scaling factor based Q adaptive DDF this case study has been considered.
States and the friction coefficient of a Van der Pol’s oscillator have to be estimated in this
problem. The friction coefficient remains unknown here. The system dynamics, measurement

equation and all the necessary parameters for simulation are provided in chapter 3.

The performance of scaling factor based Q adaptive DDF has been evaluated from the RMS
error analysis. RMS error of the proposed QA-DDF and its respective non-adaptive version
has been obtained from Monte Carlo simulation with 1000 runs. Both the filters are
initialized with an assumed value of Q (500 times higher than the truth value) because of the
unavailability of the knowledge of Q. as it remains unavailable for this problem. The higher
value of @ is chosen to induce sufficient uncertainty in initialization of Q. To generate the
true state trajectories of the oscillator, the initial kinematic states and truth value of friction
coefficient and other parameters are chosen as given in chapter 3. The measurement equation
is linear and the noise statistics is considered to be known. For adaptation the length of
sliding window is considered to be 50 time instants. Adaptation does not begin till the length

of innovation sequence is less than the desired window length.

Fig. 5.1 — 5.3 present the RMSE performance of the filters. From the plots of RMS errors it is
observed that despite improper choice of Q matrix ADDF indicates lower RMS errors that
converge within a less time while compared to non-adaptive DDF. The results also indicate
that ADDF can accommodate large error in the initial choice of Q and capable of producing

reliable estimation although initialized with wrong Q.

The adapted Q gradually approach to the truth value of Q and continues to track that after

converging on it. Fig 5.4 — 5.6 illustrates the Q adaptation performance.

In fig 5.7 a representative phase portrait of system states is illustrated where it is observed
that estimated state trajectories reaches true Limit cycle in less time in case of ADDF as

compared with non-adaptive DDF.
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5.6.1.2. Object tracking problem

The task of joint estimation of ballistic parameter and states of an object during reentry phase
using radar signal is addressed in this section. The ballistic object is considered to be falling
vertically and tracked by radar which provides the range measurements of the object tracked
by the radar. The description of system dynamics and observation equations are provided in

chapter 3. In this case study emphasis is given on the performance analysis of ADDF with
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direct Q adaptation, ADDF with scaling factor based @ adaptation. In the situation when
process noise covariance remains unavailable Q is initialized arbitrarily with an assumed
value which is five decades higher than the truth value. The window size for adaptation is
considered to be 10 time instants and adaptation does not begin till the length of innovation
sequence exceeds the desired window length. Rest of the parameters for simulation are

provided in chapter 3.

The results of Monte Carlo simulation (with 1000 runs) in terms of RMS errors of ADDF with
direct Q adaptation, ADDF with scaling factor based tuning of Q and non-adaptive DDF for all
the state variables and the ballistic parameter are presented by Fig. 5.8, Fig. 5.9, and Fig. 5.10.

The most significant finding is that the RMSE performance of the scaling factor based Q
adaptive DDF even though found to work satisfactorily for the previous case study is
considerably deteriorated while compared to ADDF with the direct Q adaptation algorithm for
this estimation problem. The parameter as well as state estimates from ADDF with scaling
factor based @ adaptation are showing a tendency of divergence while those for ADDF with

the direct Q adaptation have been adequately converged.

In presence of nonlinear measurement equation performance of scaling factor based algorithm
deteriorates because of the fact that the approximations made in the adaptation algorithmic do
not hold well for nonlinear measurement equation and consequently cannot adapt Q
satisfactorily. On contrary it is observed in case of direct  adaptation that this estimator
ensures reasonably well estimation performance by satisfactory adaptation of Q. Figure 5.11 is
presented to compare the Q adaptation performance of both the adaptive filters. Plot for an
element of adapted Q is presented for a representative run. It is illustrated for ADDF with
direct Q adaptation that the elements of Q tries to approach the corresponding truth value. For

the scaling factor based the same element of Q cannot converge on its truth value.

Although initialized with an assumed value of @ (3 decade higher than the true value)
performance of ADDF with direct adaptation algorithm is comparably closer to that of the non-
adaptive DDF in the ideal case when the process noise covariance is known to the latter. This

validates the algorithm of Q adaptive DDF with direct adaptation method.
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5.6.2 Validation of R adaptive DDF
5.6.2.1. First order nonlinear problem

A single dimensional estimation problem is considered to evaluate the performance of R
adaptive DDF in face of unknown measurement noise covariance. This estimation problem is

an effective case study which can critically judge the performance of candidate estimator in
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presence of strong nonlinearity in the system dynamics and the measurement equation. The
problem description can be found in chapter 3. Here, the performance of ADDF with direct R
adaptation is compared with ADDF with a scaling factor based R adaptation (the adaptation
method proposed in [Hajiyev2014] for linear signal models). For direct R adaptation residual
sequence has been employed. Performance of Adaptive CDF and adaptive UKF with direct R
adaptation (RA-CDF) algorithm has also been compared with proposed RA-DDF. The
underlying framework of non-adaptive CDF is taken from [Scheil997].

Performance comparison is carried out on the basis of Monte Carlo study with 10000 runs.
Due to the unavailability of measurement noise covariance it is assumed as three decades
higher than the truth value of R. The window length is taken as 100 time instants and
adaptation begins from the very first time instants with available size of residual window till
it attains the desired length. The other necessary parameters are provided in chapter 3. In Fig.
5.12 the plots of the RMS errors for the above referred estimators are presented. It is
observed the RMSE of ADDF with direct R adaptation algorithm settles to a lower value
compared to the scaling factor based algorithm. For validation of the direct R adaptive
algorithm we have also compared its performance with non-adaptive DDF in the ideal case
when the non-adaptive filter has the knowledge of R. It is observed that despite the
unavailability of the knowledge of R matrix performance RA-DDF (direct adaptation) is
closely comparable with non-adaptive DDF in the ideal case. Performance of RA-DDF, as

expected, is superior to non-adaptive DDF when R matrix remains unknown.

Performance of RA-DDF is also compared with RA-CDF, RA-UKF where all the estimators
include direct R adaptation algorithm. For this case study RA-DDF shows considerably
improved estimation performance compared to RA-CDF and RA-UKF.

Performance of all the candidate estimators is numerically compared on the basis of the
percentage of track loss. For this case study the system has 2 stable and one unstable
equilibrium points. Because of the nonlinearity in the observation equation the estimators
even with known R may fail to track the true trajectory and get settled to incorrect
equilibrium point. It is understood from the percentage of track loss that ADDF with direct R
adaptation method is less susceptible to track losses among the other alternative adaptive
filters. Percentage of track loss for RA-DDF with direct adaptation (24.26%) is a little higher
than the non-adaptive DDF with known R (24.02%) which signifies that RA-DDF without
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knowledge of R ensures estimation performance close enough to that of the non-adaptive
DDF in the ideal case. ADDF with scaling factor based R adaptation, RA-UKF and RA-CDF
with direct adaptation algorithm are observed to be more susceptible to track loss as the
percentage of track for these estimators are 30.23%, 93.91% and 36.8% respectively.
Percentage of track is observed to be quite high for RA-UKF and non-adaptive DDF without
knowledge of R (90.12%) compared to other estimators.
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ADDF (direct R adaptation)
ADDF (scaling method)
ACDF(direct R adaptation)
— — DDF (with assumed R)

— — DDF (with true R)
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Fig. 5.12 RMSE of state for 10000 Monte Carlo run
5.6.2.2. Object tracking problem

The object tracking problem is revisited for demonstration of state and parameter estimation
performance of R adaptive DDF. In the situation when measurement noise covariance
remains unavailable R is initialized arbitrarily with an assumed value which is two decades
higher than the truth value for this case study. The window length is taken as 100 time
instants and adaptation begins from the first time instants with available size of residual
window till it attains the desired length. For the performance analysis Monte Carlo
simulation is carried out with 1000 run. Fig. 5.13 — 5.15 represents the of RMS errors of RA-
DDF, RA-UKF, RA-CDF and non-adaptive DDF for all the state variables and the ballistic

parameter.
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Here also RA-DDF is validated by demonstrating that the RMSE performance of the
proposed Adaptive DDF regardless of initialized with an assumed value of measurement
noise covariance (2 decade higher than the true value) is comparable to that of the non-
adaptive DDF with known (true) value of R matrix. In the situation when the knowledge of
the measurement noise covariance is unavailable to the non-adaptive DDF the performance

of RA-DDF is substantially improved compared to non-adaptive DDF.

On the plots of RMS errors the square roots of the corresponding diagonal elements of the a
posteriori error covariance matrix have been super imposed. It is to be noted that the RMS
errors obtained from RA-DDF almost retrace the square root of the respective diagonal

elements of the a posteriori error covariance and are consistent with them.

The performance of RA-DDF while compared with a carefully tuned R adaptive UKF is
found to be nearly identical to that of the latter. RA-CDF although found to be performance
wise less accurate compared to RA-DDF in the previous case study demonstrates estimation
performance comparable with RA-DDF for this case study. In the context it may be noted
that the non-adaptive CDF is reported to present comparable estimation performance with
UKF and DDF for the systems with high measurement noise covariance (with a
comparatively low process noise covariance) and having quasi linear measurement equation
[Simandl2009]. This may be reason behind the above observations for R Adaptive versions
of DDF, UKF and CDF for this case study as the true measurement noise covariance is

considerably high compared to the process noise covariance.

The tracking performance of RA-DDF is also demonstrated for the situation with non
stationary measurement noise where the measurement noise covariance is unknown and time
varying. Here the objective is to investigate how far the adapted value of R matches to that of
the truth value of time varying R. While investigating this performance the effect of window
size is also explored. The R-adaptation performance of RA-DDF is illustrated considering
two different situations, (i) truth value of R exponentially decreases before saturating to a
steady value, and (ii) truth value of R exponentially increases before saturating to a steady
value. In all these cases the adapted R is initialized with values which are different from the
true initial values (twice of the truth value). Fig. 5.16 and Fig. 5.17 present the R-adaptation

performance of the proposed filter with the effect of different choice of window size.
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From Fig. 5.16 where the value of R is decaying it is observed that adapted R tends to be
noisy for smaller window size (N=30). With a bigger window size (N=90) the adapted value,
although smoother, takes longer time to reach the corresponding truth value. For a reasonable

choice of window size (N=60) the performance is found to be acceptable.

In Fig. 17 where the value of R is increasing till it saturates to the maximum value it is
observed that a smaller window size (N=30) speeds up the tracking performance of the
adapted R at the expense of more oscillations. On contrary, negligible oscillations are
observed for a larger window size (N=90). However, a delay of 25 sec is noted to reach the

truth value. A moderate choice of window size (N=60) shows an acceptable performance.
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Fig. 5.13: RMSE of altitude for 1000 Monte Carlo run

Chapter 5 146



State and Parameter Estimation for Dynamic Systems: Some Investigations

200
180 1
- ADDF ((R(0)=R(true)*100)
g4y oo~ AUKEF ((R(0)=R(true)*100)
2 440 - — — DDF (with assumed R)
E — - -Sqrt(P) of ADDF
< 120 — = - DDF (with true R)
= — - ACDF (R(0)=Ritrue)*100)
S 100 -
S 80 -
1] 60 |
[72]
= 40 e -~
20 T
0 T T T ﬂ = '\.—‘ = #
0 5 10 15 20 25 30
time (sec)

Fig. 5.14: RMSE of velocity for 1000 Monte Carlo run
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Fig. 5.15: RMSE of ballistic parameter for 1000 Monte Carlo run
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Fig. 5.16: Plot of true and adapted R for a time varying noise covariance
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Fig. 5.17: Plot of true and adapted R for a time varying noise covariance
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5.7 Discussions and Conclusions
In this chapter algorithms for Q and R adaptive Divided Difference filters have been

presented and exemplified. Significant findings are enumerated as follows:

In general performance of both Q and R adaptive DDF are observed to be

demonstrably superior to their non-adaptive counterparts in each case study.

The proposed algorithms of @Q and R adaptive DDF in the face of unknown noise
covariance are validated by comparing their performance with non-adaptive DDF in
the ideal situation with full knowledge of process and measurement noise covariance.
Despite the improper initial choice of noise covariance (Q or R depending on the
unavailability) ADDF performs satisfactorily and its performance is closely

comparable with non-adaptive DDF in ideal situation with known noise covariance.

Q adaptive DDF with scaling factor based adaptation shows satisfactory estimation
result for linear measurement equations. Nevertheless, it fails to produce acceptable
estimation performance with nonlinear measurement equation. Performance of
scaling factor based algorithm is compared with ADDF with direct Q adaptation
algorithm. ADDF with direct Q adaptation algorithm is found to outperform the
former and perform equally well with both linear and nonlinear measurements. For R
adaptation also direct R adaptation algorithm shows its superiority over scaling factor
based algorithm. Therefore, adaptive estimators with direct adaptation algorithms are

preferred over the scaling factor based algorithm for nonlinear state estimation.

ADDF with direct R adaptation algorithm is compared with corresponding R adaptive
version of UKF and CDF. It is found that R adaptive DDF performs considerably
better compared to other two competing estimators when system dynamics is
significantly nonlinear. However their performance is observed to be closely

comparable for another estimation problem.

It is also observed that plots of RMSE for RA-DDF (with direct adaptation method)
retrace the square root of the respective diagonal element of a posterior error
covariance. This demonstrates the consistency of the adaptive DDF. For direct R
adaptation residual sequence is employed as the residual based R adaptation

algorithm automatically ensures the positive definiteness of adapted R matrix. The
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direct R adaptation algorithm also shows its efficacy to track the time varying

measurement noise covariance.

e It is interesting to note from the previous work [Simandl2009] that for some specific
situations where the measurement noise covariance is high (with a comparatively low
process noise covariance) or the measurement equation is quasi linear adaptive CDF
may present satisfactory estimation results and its performance may be comparable
with ADDF and AUKF. In one of case studies similar results are demonstrated.
However, ACDF cannot always present acceptable estimation performance for

significantly nonlinear systems.

e Note also that although AUKF performs comparably same as ADDF in several
estimation problems it performance is attributed to careful choice of tuning of
parameters that regulate the spread of sigma points. Such discerning tuning is not
required in case of ADDF. Therefore, ADDF can be an apposite alternative of AUKF

for nonlinear state estimation.
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Chapter 6: Adaptive Gauss Hermite Filter
6.1 Chapter Introduction

In this chapter adaptive Gauss Hermite filter has been formulated from the general
framework for adaptive nonlinear filters and characterized using several estimation problems.
When the intractable Bayesian integrals present in the general framework are numerically
approximated with the help of Gauss Hermite quadrature rule [Golub1969, 1t02000] the

algorithm for adaptive Gauss Hermite filter is obtained.

The non-adaptive version of Gauss Hermite filter was first proposed in [[to2000] where it is
demonstrated that on the availability of the complete knowledge of noise covariances
performance of non-adaptive version of Gauss Hermite filter is superior compared to its
competing algorithms, viz., Divided Difference filter, Unscented Kalman filter and Extended
Kalman filter particularly during the state estimation of dynamic systems with significant
nonlinearity. Apart from high performance accuracy Gauss Hermite filter has several
advantages. Being a point based algorithm Gauss Hermite filter does not require computation
of Jacobian and Hessian matrices. Unlike the Unscented Transformation rule choice of Gauss

Hermite quadrature points does not depend on tuning parameters.

The above advantages of Gauss Hermite filter motivate the present worker to formulate its
adaptive version using the proposed general framework. It is expected that this new
algorithm will inherit all the advantages of non-adaptive Gauss Hermite filter along with its
essential aspect of adaptation. However, the adaptive Gauss Hermite filter suffers from the
curse of dimensionality like its non-adaptive counterpart. The number of quadrature points
rises exponentially with the order of the system to be estimated. Therefore, this newly

proposed adaptive filter demands sufficient computation effort.

In this chapter the Gauss Hermite quadrature rule is briefly discussed. The quadrature points
and weights which are computed using the quadrature rule can be directly plugged into the
general framework to formulate the adaptive Gauss Hermite filter. The square root version of
adaptive Gauss Hermite filter is also formulated in this chapter from the general framework

in square root approach as the Gauss Hermite quadrature rule ensures non negative weights.
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The superiority of the proposed algorithm is demonstrated in simulation with the help of non

trivial case studies.
6.2 Gauss Hermite Quadrature Rule

6.2.1 Background

In this section we provide the basic concepts of Gauss Hermite quadrature rule with which
the Bayesian integrals of the general framework can be numerically approximated. The
Gauss Hermite quadrature rule is a special form of Gaussian quadrature rules where
weighting function is a unit Gaussian function. In case of Gaussian quadrature rules the
weights and sigma points are chosen in such a way that with a suitable polynomial integrand
the approximation becomes exact. The Hermite polynomial is chosen in case of the Gaussian
weighting function. For evaluation of one dimensional integral with standard Gaussian

weighting function, the integral can be expressed as
[g(IN(O1)dx = [ g(x)e™ " ax (6.1)

To evaluate the above integral with Gauss Hermite quadrature rule, the p” order Hermite

polynomial is obtained as

H (z)=(-1)¢" dpp (e) (6.2)
dx

where x=z/2 .
Following the definition of H p(z) the polynomials can be found in a recursive way as given
below:

H,(z)=zH,(z)-pH, (2) (6.3)

The quadrature points, & , for Gauss Hermite quadrature rule are the roots of p™ order

Hermite polynomial, H, (z),ie., H » (fl): 0. The weights are computed using the formula

P (6.4)
Wi: .
p2 Hp—l(é:i) ’
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Note that the p” order Hermite polynomial H » (z) makes the quadrature rule exact for
polynomials up to 2p —1degree, i.e., the integration is exact for the linear combination of

monomials x/"x;> ---x" with total degree upto 2p—1.

6.2.2 Generation of Quadrature Points and Weights
The selection of quadrature points and the weights as explained above can be done in a
simpler alternative way which was first reported in [Golub1969] and followed in [1to2000]
wherein the algorithm of Gauss Hermite filter appears for the first time. A tri-diagonal matrix
is formed from a three term recurrence formula as reported in [Golub1969]. The recurrence

formula which can be obtained for any orthogonal polynomial is expressed as

P,(x)=(a,x+b,)P,(x)~c, P, (x) (6.5)

for j=12,---,N with a, >(0and c; > (. Given that P_l(x)=0and Po(x)zl.

The above formula can also be expressed as

xp(x)=Tp(x)+(1/aN )pN (x)eN (6.6)
Where p(x)= [p0 (x) D (x) - Dy (x)]T and e, is N™ unit vector.
Now, p,(4)=0 whenA p(1)=T p(1) (6.7)

Alternatively, the condition can be written as the roots of the above equation to be equal with
the eigen values of tri-diagonal matrix T . If the polynomials are not orthonormal, matrix
T is not symmetric. The matrix 7 can be made symmetric by diagonal similarity

transformation as

o B 0 0
poa, P, 0
J=DID"' =0 B, @, 0 (6.8)
0 - pB, 0
| o .- ... IBn—l a, |
12
b, Cini
Where, o, =—— and S, :(—] (6.9)
a; a;di,,
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Depending on the choice of quadrature rule the values of a,, b,, ¢, varies. For Gauss
Hermite quadrature rule, a, =2, b, =0, ¢, =2i. Using these value we get o, =0and
B = \/l/_z ‘
Steps for selection of quadrature points and respective weights are listed below:
e ComputeJ, a symmetric tri-diagonal, defined asJ;;=0 andJ,;,, =,+ for
1<i< N-1for N -quadrature points.
e The quadrature points are chosen as ¢, =+/2x, where x,are the eigen values of J
matrix.
e The corresponding weights (w;) of ¢;is computed as | | where (v;),is the first

element of the /" normalized eigenvector of J

6.2.3 Extension for higher order systems

The above described quadrature rule is appropriate only for the single dimensional integral.
This needs modification to apply for higher order integration space. The single dimensional

quadrature rule can be extended for approximating higher order integral of Gaussian filters

with the help of product rule. The n™ order Gaussian integral I = .[ F(s) VI gs can

1
(2z)-

be equivalently expressed as

0=l 1

Il
—

I, zi iﬁ(qq G reer Gy W Wy o, (6.10)

Where we generate multi-dimensional weights as the products of one-dimensional weights as

w, . =w,w, ---w, and generate multi-dimensional unit sigma points as Cartesian product

|7IREEN i T,

of the one-dimensional unit sigma points as
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Sioi =] 6.11)
¢

In order to evaluate I, for n™ order system with the help of Gauss Hermite quadrature rule,

N" number of quadrature points and weights are required. This indicates that the number of
quadrature points rises exponentially with the order of system. A comprehensive description
on Gauss Hermite quadrature rule along with necessary illustrations is provided in the in the

master’s thesis of N. K. Singh [Singh2012].
6.3 Algorithm for Adaptive Gauss Hermite Filter

Algorithm for Adaptive Gauss Hermite filter can be obtained plugging in the method of
sigma point selection in the general algorithm for adaptive nonlinear filters in chapter 4. The
Q adaptive and the R adaptive GHF can be formulated using this general algorithm. Apart
from the method of sigma point generation rest of the algorithm is same as that of the general
framework for adaptive nonlinear filter. The algorithm has, therefore, not been reproduced
again.

The root version of adaptive GHF can also be obtained using the general framework in
Square Root approach presented in chapter 4 because of its additional advantages compared
to the standard error covariance form. The usefulness of Square Root approach has already
been discussed there. It is to be noted that all the weights in case of Gauss Hermite
quadrature rule are non negative. Therefore, the algorithm of Adaptive Square Root Gauss
Hermite Filter can be formulated directly using the general algorithm presented without

further modifications.
6.4 Characterization of Adaptive GHF

The performance of proposed algorithms of adaptive Gauss Hermite filter has been evaluated
with different case studies in this section. A partially Q adaptive GHF is demonstrated using
an estimation problem where a time varying parameter has to be estimated along with the
states of nonlinear system. R adaptive GHF has also been demonstrated with two case studies
and its performance has been compared with the competing algorithms. The R adaptive GHF

in square root framework is also validated with a non trivial case study.
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6.4.1 Characterization of Q adaptive GHF
6.4.1.1. State and parameter estimation of Van der Pol’s oscillator

Q adaptive GHF is validated with the help of an estimation problem where the states and the
unknown, time varying friction coefficient of a Van der Pol’s oscillator have to be estimated.
As the friction coefficient is unknown and also time varying the system model suffers from
parametric uncertainty. The parameter cannot be modeled correctly as the dynamics of the
parameter variation remains unknown to the designer. In presence of such unknown time
varying parameters some elements of the process noise covariance of the system (modeled in
terms of parameter augmented states) become unknown. Here it is assumed that only the
element of Q related to friction coefficient is unknown. Therefore, this estimation problem is
appropriate to evaluate the applicability of partially  adaptive GHF. As the elements of Q
related to the parameter remains unknown only that element needs to be adapted. The known
elements of @ remain frozen to their respective truth values. The concept of partial Q
adaptation is presented in chapter 4. For generation of true state trajectories the true friction

coefficient is assumed to vary following the equation
M, =0.5sin(Z5 k) +0.5 (6.12)

The details of system dynamics, measurement equation and necessary parameters are
provided in chapter 3. For adaptation window length is considered to be 30 time instants.
Adaptation does not begin till the length of innovation sequence is less than the desired
window length. As the element of Q related to the friction coefficient remains unknown both
the adaptive and non-adaptive GHF is initialized with Q with that particular element assumed
arbitrarily as 0.5. A comparative study of the RMS error of the proposed adaptive GHF with
that of a non-adaptive GHF has been presented from Monte Carlo study with 1000 runs. The
results of Monte Carlo simulation have been presented in Fig. 6.1 — 6.3. It is observed that
the RMS error of AGHF for both parameters and states is lower than that of non-adaptive
GHF. This indicates that the partially Q adaptive GHF is capable of tuning Q to track
satisfactorily the unknown time varying parameter. For a representative run the parameter
estimation performance of Q adaptive GHF is provided in Fig. 6.4 which supports the above
statement. It is also important to note that although the elements of process noise covariance
is known the RMSE of state estimates for non-adaptive GHF is higher than that of AGHF.

This is because of the implicit effect of inadequately estimated parameter.
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Fig. 6.1: RMS error (friction coefficient estimation) of AGHF & GHF for 1000 MC runs
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Fig. 6.4: Friction coefficient estimation of AGHF & GHF for a representative run

6.4.2 Characterization of R adaptive GHF
6.4.2.1. State estimation of first order nonlinear system
A single dimensional estimation problem described in chapter 3 and also considered in
chapter 5 is revisited again to evaluate the performance of the proposed filter in face of
severe nonlinearity in the system dynamics and the measurement equation. In this particular
problem tracking of the state of the system is a difficult task and such a problem can readily
expose the shortcoming of the estimator involved specifically when the measurement noise
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covariance is unknown to the estimator. Therefore, the case study may be an appropriate one

to evaluate the performance of the proposed filter.
As the measurement noise covariance, (R g, ) is unknown to the filter we assume a value of

measurement noise arbitrarily. The Monte Carlo study is executed initializing different

assumed value of Rg,,(0) to judge the performance of proposed filter. For adaptation the

length of the sliding window length is chosen to be equal to 100. Adaptation initiated from
the beginning with available window size. When desired length is achieved the sliding

window concept becomes appropriate.

It has been discussed in chapter 4 that the recomputation of measurement update step with
adapted value of R at a particular time instant improves the estimation accuracy of the

adaptive filter. This is also demonstrated with this case study.

The RMS errors of AGHF (with and without re-computation steps), and non-adaptive GHF
have been compared with the help of Monte Carlo study with 10,000 runs. Both adaptive and
non-adaptive GHF are based on 5 quadrature points. The performance of AGHF is also
compared with AUKF with tuning parameters mentioned in [Das2015]. As stated before the
unknown measurement noise covariance is initialized with an assumed value as
R, (0)=10* xR

where A is chosen as a positive or negative real number depending on

true

the case where a higher value or a lower value of R, (0) compared to the truth value is
considered respectively. In each set of MC simulation the assumed value of R, (0) remains

the same. For each of the candidate estimators same sequence of noises are considered in
each Monte Carlo run by appropriate seeding. The observations from the simulation are

enumerated below.
Fig. 6.5 indicates that the RMSE of adaptive Gauss Hermite filter is low compared to its non-

adaptive version for the choice of R 4, (0) = 107 = R, , i.e., where the filter overweighs the

true
measurements. It is also observed from the Fig. 6.5 that the RMSE of AGHF is lower than
that of Adaptive UKF and non-adaptive GHF for this assumed value of Rg,, (0). This
indicates that AGHF is performance wise superior compared AUKF when there is significant
nonlinearity in the system dynamics. Additionally, it is interesting to note that the RMSE of

AGHF with re-computation step is lower compared to AGHF without re-computation.
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The similar profiles of RMS errors like Fig. 6.5 are observed in Fig. 6.6 for the choice of
R, (0)=10*R

.. where the filter overweighs the measurements. RMSE of AGHF with
and without re-computation step is observed to be lower compared to AUKF and non-

adaptive GHF for this assumed value of R, (0).

Monte Carlo simulations are also carried out with other assumed initial choices of R, (0)

such that the filter underweighs or overweighs the measurements. Mathematically it can be

represented as, R, (0) = 10**R,_ with 1 =2,1,—1,—2. Because of the similar trend of the

ue

profiles of RMSE for these batches of MC simulations plots are not included. However, their

performance has been analysed in Table-6.1.

For a representative run the estimation performance of AGHF, AUKF and non-adaptive GHF
is illustrated in Fig. 6.7. It is observed that despite initializing with an assumed value of

R, (0) with large error, the proposed AGHF can satisfactorily track the true trajectory and

settle at the true equilibrium point (x = —1). However, the non-adaptive GHF fails to keep
the track and settles at one of the other equilibrium points (x =1). The AUKF also loses the

track and settlesat x =0.

Percentage of track loss is computed from MC study for each of the candidate estimators,
where track loss is said to occur when estimation error is more than 0.8 at 4 sec. Table -6.1
presents a comparative study of the percentage of track loss for each estimators. A number of

batches of Monte Carlo simulations are carried out for various assumed value of R, (0) as

has been discussed before. It is observed from the table that AGHF with the re-computation
steps shows the lowest percentage of track loss compared to the other estimators. Here we
have also presented the percentage of for the R adaptive GHF based on innovation sequence.
The performance of innovation based GHF is found to be comparable with that of residual
based AGHF with out re-computation. However, the innovation based algorithm encountered
the singularity problem during simulation. Therefore, the simulation is carried out after

considering the absolute values of the elements of adapted R matrix.

The plots of the adapted measurement noise covariance obtained from the adaptive GHF are
presented in Fig. 6.8 when the truth value of measurement noise covariance is constant. It is

observed that despite such assumed initial choice of R, (0) the adapted measurement noise
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covariance converges on the truth value (in about 0.1 sec) and subsequently tracks the value.

Hence, it may be inferred that the proposed filter can accommodate a wide range of

uncertainty while initializing R 5, (0) .

Another situation is considered when the truth value of the measurement noise covariance is
time varying. For this situation also proposed filter can also perform satisfactorily as
demonstrated in Fig. 6.9. It has been observed that for such a time varying measurement
noise covariance the proposed filter can successfully track the truth value of the measurement
noise covariance by online adaptation. To investigate the consequence of different choice of
sliding window length for adaptation, the window length (L) is chosen as 25, 50 and 100. For
L=25 the adapted R tracks the truth value but tend to overshoot the truth value. For a
relatively high window length, L=100, a smoothly varying value of adapted R is obtained.
However, for L=100 adapted R cannot track the short term variation satisfactorily. For a
choice of window length L=50, tracking of truth value R has been observed to be

satisfactory.

Fig. 6.10 illustrates the RMS errors of AGHF (with and without re-computation steps),
AUKEF and non-adaptive GHF for the case when truth value of R is time varying. The nature
of variation of R is already presented in Fig. 6.5. For this case study the window length for
the adaptive filters are considered as L=50 which shows a satisfactory tracking in Fig. 6.5. It
is also observed that for time varying measurement noise covariance the RMSE of AGHF
with re-computation is lower compared to AGHF without re-computation and the other
candidate estimators. In this case the percentage of track loss for AGHF with re-computation
1s 12.39% which is the lowest compared to AGHF without re-computation (percentage of
track loss is 16.24%) , AUKF (percentage of track loss is 93.12 %) and non-adaptive GHF
(percentage of track loss is 36.01%).
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Fig. 6.5: Comparison of RMS error of AGHF (with and without re-computation
step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when
Ryiter(0)=10"*Ripe.
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Fig. 6.6: Comparison of RMS error of AGHF (with and without re-computation
step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when
Ryiter(0)=10"*Ripe.
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Fig. 6.10: Comparison of RMS error of AGHF (with and without re-computation
step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when Ry,.is
time varying as shown in Fig. 6.9
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Table-6.1: Percentage of track loss cases computed from 10000 Monte Carlo runs

AGHF

Initial value of Re- . Re- . . Innovation Nog-
R (R s 0) computation computation Withoutre-  based R  adaptive AUKF

with 2 with 1 computation  adaptation GHF

iterations iteration
107 # Ry 14.94% 15.11% 17.88% 21.54% 54.71% 93.91%
107 Ry 14.07% 15.15% 17.77% 21.34% 50.50% 93.88%
107 R,y 13.62% 14.80% 17.25% 21.13% 49.65% 93.87%
10" # Ry, 14.87% 15.37% 20.12% 23.51% 35.10% 93.85%
10 # Ry, 14.92% 15.86% 24.62% 24.75% 94.60% 93.87%
10° # Ry 15.15% 15.42% 22.65% 23.73% 94.32% 93.91%
6.4.2.2. Ballistic Object tracking Problem

The ballistic object tracking problem in single dimension described in chapter 3 and
considered in chapter 5 is also addressed here to illustrate the performance of the proposed
filter for joint estimation of parameters and states. The ballistic object is considered to be
falling vertically and tracked by radar which provides the range of the tracked object. The
dynamics of the ballistic object is dependent on aerodynamic drag and gravity during reentry
phase. As the object enters atmosphere and experiences drag, the dynamics becomes highly
nonlinear. The RMS error of position, velocity and ballistic parameters estimation obtained
from the RA-GHF (residual based adaptation), RA-UKF and non-adaptive GHF from 1000
Monte Carlo run are presented below. The unknown measurement noise covariance is
assumed to be two decades higher than the truth value to underweight the measurement.

Rests of the parameters are specified in chapter 3.

RMS errors of RA-GHF, RA UKF and non-adaptive GHF for the estimates of altitude,
velocity of the object and the ballistic parameter have been presented in Fig. 6.11, Fig. 6.12,
and Fig. 6.13 respectively. The plots indicate that the RMSE performance of RA GHF is
superior to that of non-adaptive GHF for each estimate. The RMS error of AGHF for states
as well as the parameter converged quickly (in about 7 sec) to a lower steady state value

compared to the non-adaptive GHF.

For this specific case study performance of RA GHF, although not superior to RA UKEF, is
found to be comparably same to that of competing algorithm of adaptive UKF for all the

states (including the ballistic parameter).
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It has been observed from simulation that for a single run an average computation time for
AUKEF is 32.635% of that for AGHF. The simulations are carried out using MATLAB
(version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8

GHz, 2 GB RAM.

For this object tracking problem the noise covariance of the radar measurement is also

considered to be time varying to demonstrate the R tracking performance of AGHF. Fig. 6.14

illustrates the plots of adapted R for different choice of window length (L). The plots indicate

that a moderately high value of window length (L=90) is appropriate for a smoothed estimate

of R while for tracking of short term changes a small length (L=30) is appropriate. For this

case the satisfactory performance of AGHF is obtained for L=60.

RMSE (Altitude) (m)

100

——AGHF e
— - - AUKF P
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Fig. 6.11: Comparison of RMS error (altitude estimation) of AGHF, AUKF &

RMSE (Velocity) (m/sec)

GHEF for 1000 MC runs
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Fig. 6.12: Comparison of RMS error (velocity estimation) of AGHF, AUKF &
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Fig. 6.13: Comparison of RMS error (ballistic parameter estimation) of AGHF,
AUKF & GHF for 1000 MC runs
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Fig. 6.14: R Tracking performance for time varying measurement noise covariance
(truth value of R is decaying with time)

6.5 Characterization of R Adaptive SR-GHF

The algorithm for adaptive nonlinear filters in standard error covariance form may suffer
from loss of positive definiteness of error covariance for some specific estimation problems.
For such estimation problems the R adaptive GHF in square root form has been formulated in
this chapter. The algorithm of R adaptive SR-GHF is validated using an aircraft tracking
problem. The aircraft which is executing a maneuvering turn is tracked using bearing only

measurements from two tracking radars as described in chapter 3. In the face of
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unavailability of complete knowledge of R it is assumed that R(2,2) is unknown. Therefore,
R(2,2) is assumed arbitrarily as 5 times more than the truth values of R(2,2). For adaptation
the window length is assumed as 25 time instants. Rest of the necessary parameters are

provided in chapter 3.

From Monte Carlo simulation with 10000 run RMS error performance of R adaptive SR-
GHF has been compared with its non-adaptive versions in two different situations: (i) when
R(2,2) remains unknown for both adaptive and non-adaptive filter, (i1) R(2,2) is known to the
non-adaptive filter only. It has been investigated from this case study that the non-adaptive
estimators even with the true knowledge of noise covariance cannot always successfully
track the maneuvering aircraft because of the non uniqueness of measurement equation as
discussed before in chapter 3. Consequently the estimator loses the track of the aircraft. The
performance of adaptive and non-adaptive estimators is also compared on the basis of

percentage of track loss.

From the RMSE of position, velocity and the turn rate estimation presented by Fig. 6.15, Fig.
6.16, Fig. 6.17 respectively it has been observed that the R adaptive SR-GHF is superior
compared to its non-adaptive version in face of unknown measurement noise covariance.
Note that the RMSE are presented excluding the cases where track loss occurs. The RMSE of
RA-SR-GHF which is lower compared to non-adaptive SR-GHF excluding track loss case
indicates the superiority of RA-SR-GHF over its non-adaptive version irrespective of the
cases of track loss. Also the percentage of track loss is significantly low for RA-SR-GHF
(percentage of track loss is 1.34%) compared to its non-adaptive version (percentage of track

loss is 45.46%).

It is also observed that the adaptive version without the knowledge of R(2,2) can perform
nearly close to the non-adaptive version in ideal case with known R(2,2). However
percentage of track loss is less for the non-adaptive version in ideal case (percentage of track

loss is 1.14%). This also validates the satisfactory performance of RA-SR-GHF.

In Fig. 6.18 and Fig. 6.19 plot of the adapted value of the R has been presented. It is found
from Fig. 6.19 that despite improper initial choice with large error the square of the adapted
value of the square root of R converged to its corresponding truth value and continues to

keep it in track. Fig. 6.18 demonstrates that R(1,1) which is known and initialized with the
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truth value is satisfactorily adapted by RA-SR-GHF to hold on to the truth value. One may

opt to keep R(1,1) frozen at its known truth value instead of adapting it.
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Fig. 6.15: Comparison of RMS error (position estimation) of AGHF & GHF for 10000 MC runs
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Fig. 6.16: Comparison of RMS error (velocity estimation) of AGHF & GHF for 10000 MC runs
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Fig. 6.17: Comparison of RMS error (turn rate estimation) of AGHF & GHF for 10000 MC runs

Chapter 6

1.00E-03 T T T T
20 40 60 80 100
—True R (1,1)
—e— Adapted R (1,1)
:1.00E—04 E
[
o
3 R
o M
1]
o
< 1.00E-05
1.00E-06
time (sec)

Fig. 6.18: Plot of true and adapted value of R (1,1)
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Fig. 6.19: Plot of true and adapted value of R (2,2)

6.6 Discussions and Conclusions

In this chapter the algorithm of adaptive Gauss Hermite filter is presented and exemplified. It

is illustrated that this algorithm can be readily formulated from the general framework for

adaptive nonlinear filter using the Gauss Hermite quadrature points and corresponding

weights. The estimation performance of both Q and R adaptive GHF are validated using

different case studies. The significant observations are listed below.

The superiority of Q adaptive GHF is demonstrated with the help of the case study which
concerns the state and parameter estimation of parameter varying nonlinear system. By
satisfactory adaptation (partial Q adaptation) of the unknown element of Q) the unknown
time varying parameter is observed to be estimated satisfactorily. The RMSE from the
Monte Carlo studies are also demonstrably superior for Q adaptive AGHF compared to

its non-adaptive version.

R adaptive GHF is validated with a number of case studies. From the first order
estimation problem with strong nonlinearity it is found that estimation performance of R
adaptive GHF is substantially improved over its non-adaptive version for widely
uncertain choice of unknown R matrix. The superiority of R adaptive GHF over the non-

adaptive counterpart is also demonstrated in the context of joint estimation of parameters
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and states with the help of ballistic object tracking problem. Another important finding
from these simulation results is that the performance of the proposed adaptive GHF is

superior to the adaptive UKF for signal models with strong nonlinearity.

e It has also been observed from the above case studies that the proposed adaptive GHF
can successfully adapt the unknown measurement noise covariance and converge on its
truth value when it is constant. Furthermore, the adapted R is capable of tracking a time

varying truth value of R.

e Advantage of considering re-computation for residual based R adaptive GHF is also
demonstrated for both constant and time varying R. With a few cycle of re-computation

estimation performance of the proposed estimator is substantially improved.

e It is also found that performance of innovation as well as residual based R adaptive GHF
is comparably same. However, innovation based algorithm suffers from singularity

problem and needs an ad hoc method to over come the issue.

e The algorithm of adaptive GHF in square root framework is also formulated in this
chapter which is observed to present satisfactorily estimation results and outperforms its

non-adaptive version.

However, it is also demonstrated that the algorithm of adaptive GHF provides improved
estimation accuracy at the cost of high computation effort specifically for higher order
systems. Therefore, adaptive Gauss Hermite filter along with its square root versions are
recommended for nonlinear estimation in the face of unknown noise covariance on

availability of sufficient computation power.

To overcome the curse of dimensionality adaptive nonlinear filters can also be formulated
using spare grid GH quadrature rule [Jia2012] which the present worker has left as his future
work. However, in the following chapters other point based adaptive filters are also
formulated which are found to be performance wise comparable with AGHF at a lower

computation effort.
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Chapter 7: Adaptive Cubature Kalman Filter
7.1 Chapter Introduction

In this chapter several versions of adaptive cubature filters have been formulated from the
general framework for adaptive nonlinear filter and characterized using non trivial case
studies. Bayesian integrals appear in the general algorithm for adaptive nonlinear filter can be
numerically approximated with the help of spherical radial cubature rule. Adaptive versions
of Cubature Kalman filter, higher degree Cubature Kalman filter, Cubature Quadrature
Kalman filter and higher degree Cubature Quadrature Kalman filter are formulated from the
general framework when the intractable Bayesian integrals are numerically approximated
with help of variants of spherical radial cubature rule proposed in recent publications

[Arasaratnam?2009, Jia2013a, Bhaumik2013, Singh2015].

The accuracy of the Cubature Kalman filter (CKF) varies depending on the degree of the
spherical rule and the order of radial rule. Third degree and fifth degree Cubature rules have
been reported in literature by [Arasaratnam2009] and [Jia2013a] respectively with which the
Bayesian integrals are numerically approximated. However, possibility of higher degree

(higher than 5" degree) Cubature rule is also reported in [Jia2013a].

A variant of Cubature rules are also proposed and renamed as Cubature Quadrature rule in
[Bhaumik2013, Singh2015]. This new Cubature rule is different from that of [Jia2013a] in
perspective of the approximation of radial integrals. While in higher degree cubature rule
[Jia2013a] emphasis is on increasing the degree of accuracy of spherical rule, Cubature
Quadrature rule attempts to improve the accuracy by increasing the order of radial rule with
the spherical rule of 31 degree accuracy. Cubature Quadrature rule Kalman filter (CQKF) is
presented with 3™ degree spherical rule and higher order radial rule in [Bhaumik2013]. Later
the authors of [Bhaumik2013] also extended their work in [Singh2015] with higher degree

(5™ degree) spherical rule.

However, performance of these advanced cubature point based estimators deteriorates in face
of the common problem of unknown noise covariance. Performance of their adaptive
versions is needed to be investigated in such contingent situations. In this chapter the

spherical radial cubature rule has been briefly discussed. Following the 3™ and 5" degree
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cubature rule and cubature quadrature rule cubature/quadrature points and their
corresponding weights are selected and used in the general framework of adaptive nonlinear
filter to develop the corresponding adaptive versions of CKF and CQKF. These new
algorithms have been validated with the help of different case studies and the relative
advantages of these newly proposed estimation algorithms over the competing algorithms are

also investigated.

7.2 Spherical Radial Cubature Rule

7.2.1 Background

Cubature rule reported in [Jia2013a, Arasaratnam2009] can numerically approximate an
integral represented by (7.1) using a set of cubature points and the corresponding weights.
The d" degree cubature rule accurately approximates a nonlinear function g(x) which is

linear combination of monomials with total degree up to d or less.

[gle)fx)dr =D wg(x) .1

R" i=1

Where xe R"and @(x)is the weighting function. The above expression is accurate for 4"
degree rule when g(x) is defined as g(x)=ax™ +a,x?* +---+a,x“ i.e., linear combination
of monomials x/"x;*---x" with total degree up to d. Here, @,,@,,...,&, are nonnegative

integers, a,,d,,...,a, are real values such thatzn:ai <4 - It is to be noted that accuracy of
i=1

solution is dependent on the degree, d. For cubature rule with higher accuracy, degree of

polynomial should be increased.

For Gaussian weighting function, i.e., @(x)= exp(— xTx) , the integral is expressed as
1(g)= jg(x)exp(— xTx)dx (7.2)
o

To convert it in a spherical radical integration form it is assumed that x =rs with s's =1

and r=+x"x for r= [0,oo) . Then (7.2) will be transformed in the spherical radial coordinate

system as
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]i j g rs exp )dd(s )dr (7.3)

Here, U, = {s eER":s's= 1} and o) is the spherical circle measure or the area element on

U

The equation (7.3) consists of two integrals, (i) the radial integral (ii) spherical integral.

These two integrals can be numerically approximated and combining these two

approximation methods the spherical radial cubature rule can be obtained.

The N, point radial rule is approximated as

o

J-g,( exp( )dr = ZW g (7.4)

0

The N, point spherical rule is approximated as

N.S‘

[2,(s)do(s)=~ > w, g,(s;) (7.5)

U, i=1

Combining the spherical radial approximation rule I(g) can be expressed as

= ZZwri wsig(risi) (7.6)

i=1 i=1

r, and w, are points and weights for approximation of radial integral and s, and w, are

points and weights for approximation of spherical integral. The total number of points for

computation of I(g) is N,N, when r,#0 and N, (N, —1)+1 if one of the r. is zero. The
proof has been provided in [Jia2013a].
7.2.2 Spherical Rule

The spherical rule is used to numerically approximate the spherical integral as represented in
(7.5). The numerical approximation method for spherical integral with arbitrary degree is
presented in the work of [Genz2003] and also followed by [Jia2013a]. In [Jia2013a]
following the method of [Genz2003] 3™ degree and 5™ degree spherical rules have been

derived.

From the 3™ degree spherical rule the spherical integration can be approximated as
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o) =522 (e o)+, (-e.) .7

A, N

Where e, is the i"" unit vector and the weight W = o with A, = F( )
n n
2

Following the 5t degree spherical rule the spherical integration can be approximated as

1 g =— S (7). 57 )+ 2,67+ g, 57)

n(n+2) i=1 (4 )An (7.8)
_n n
+——1>"(g,(e;)+g,(—e,
2n(n+2);(gs(et) gs( el))
where s, and s; are selected as
A
{s:}:{\/g(ek+el):k<l, k,l:1,2,~--,n} (7.9)

{s;}i{@(ek—e,):kd, k=12 } (7.10)

7.2.3 Radial Rule

The radial rule is used to numerically approximate the radial integral as represented in

(7.4).The radial integral is transformed with ¢=r’so that it can be approximated using

Generalized Gauss Laguerre quadrature (GGLQ)rule as given below

o o

J.g, (r)r"‘1 exp(— r’ )dr =J.g,~, (t)t%_1 exp(— t)dt (7.11)

0 0

where g. (t) =g, (\/;)

The GGLQ rule can now be applied on the right hand side of (7.11). Therefore, (7.11) can be

approximated as

o N,

J-g;. (t)t%_1 exp(—1)dr = ZWg’_g,(rg’i) (7.12)

0 i=1
Because of the transformation ¢ = 7 the points and weights are obtained by
=4

with weights w, =w, /2 (7.13)

i
,
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However, in [Jia2013a] the author has followed an alternative method of moment matching
for computing the points and weights. Using the moment matching method the author of
[Jia2013a] has presented the points and weights for 31 degree and 5t degree radial rule as
provided below. It has been reported in [Jia2013a] that the number of points are less for
moment matching method compared to the GGLQ approach when m is even for the radial
rule with (2m+1) degree accuracy. On contrary, when m is odd, the radial rule gives same
points and weight as obtained from GGLQ rule. Therefore, for 3" degree radial rule both

these approach provide same points and weights as

n= \/% and the corresponding weight w, = Llo2) (7.14)

2
For 5™ degree radial rule the author of [Jia2013a] presents less number of points and weights

which are generated using moment matching method as mentioned below.

— : : _ T(#/2)
=0 and the corresponding weight w, = De2) (7.15)

n+2

r, =4/ +1 and the corresponding weight w, = %Z/zz ) (7.16)

—

7.2.4 Spherical Radial Cubature Rule

Combining the spherical and the radial rule presented above the 31 degree and 5t degree

spherical radial cubature are obtained as given below.

Using 3" degree rule the integral is approximated using 2n number of points and weights as
[geW(x:0.0)=£ D [eln e )+ gl-Ve,) (7.17)
R" i=1

Using 5™ degree rule the integral is approximated using (2n’+1) number of points and

weights as

I
S
+
[\®)

=
+

LIy
S
+
[\]
Q

jg (x:0,1) =725 8(0)+ 52

g( n+2 s;)+g(—\/n+2si+)] (7.18)

The derivations in details have been provided in [Jia2013a].

Notes:
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The cubature rules with third degree and fifth degree of accuracy have been considered for

numerical approximation of intractable Gaussian integrals. The merits and demerits of these

two cubature rules are provided below:

It is evident from the 3™ degree cubature rule that it is a special case of Unscented
Transformation (UT) rule. 3" degree cubature rule uses 2z number of points for n” order
system whereas UT rule uses 2n+1 number of points. The non scaled version of
Unscented Transformation [Simon2006] with zero weight for the mean about which the

sigma points are selected is exactly matches with 3™ degree cubature rule.

However, the accuracy of the UT rule can be improved compared to 3™ degree cubature
rule with careful choice of tuning parameters with which the spread of sigma points can
be controlled. Because of the scaling the weights of UT rule becomes negative for some
cases. For example, with the scaling parameter, k¥ =3—n suggested in [Julier2000] the
weights become negative when applied for higher order the integration space. This may
increase the tendency to loss of positive definiteness of error covariance and reduce the
stability of the filtering algorithm. The 3™ degree cubature rule having non negative

weights is more stable and ensures the positive definiteness of error covariance.

It has been reported in [Arasaratnam2009, Jia2013a] that the accuracy of Cubature rule
can be improved with rise in degree of the cubature rule. The number of cubature points

increases polynomially with increase in degree. For the 5" order cubature rule the

required number of cubature points is found to be 2n° +1.

However, like UT rule, there exists stability issue regarding the 5™ order cubature rule.
With increase in the dimension of the integration space the weights of 5t degree cubature
become negative unlike 3™ degree cubature rule. For 5" degree cubature rule sigma

points which are same as that for 3 degree cubature rule have weights selected as,

4-n
2(n+2)

. Therefore for the dimension of the integration space greater than 4 this weight

becomes negative. However, for n — oo, the negative weight of UT rules tends to —oo
whereas the negative weight of 5t degree cubature rule tends to zero. Consequently, 5t

degree cubature rule is relatively more stable than UT rule as reported in [Jia2013a].

1 - - ’ th
The n™ degree Cubature rule is exact for monomials up to n" order whereas n" order

GHQ rule has (2n—1 )’h order accuracy [Sarkka2013]. It is, therefore, well understood that
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the accuracy of 3™ degree cubature rule is lower than that of 31 degree Gauss Hermite
quadrature rule. On contrary the 5t degree cubature rule has same accuracy of 3" order

GHQ rule.

7.3 Cubature Quadrature Rule

A variant of cubature rule known as cubature quadarture rule has been formulated and
reported in [Bhaumik2013], contemporary work of [Jia2013a] which proposes higher order
cubature rule. In the work of [Bhaumik2013] the author has proposed another version of
cubature filter which has increased accuracy compared to 31 degree cubature rule and termed
as cubature quadrature rule. For the proposed quadrature rule the spherical integral is
evaluated with 3™ degree spherical rule only. The radial integral is approximated using
Generalized Gauss Laguerre quadrature (GGLQ) rule with accuracy of #n™ order by solving

n"" order Chebyshev-Laguerre equation. The approximation method is stated below:

2nn’

jg (x:0,1) Zg (7.19)

R"

Where &, =,/24; e, (7.20)
A; is the solution of n™ order Chebyshev-Laguerre polynomial witha = n/2—1:

=2 =20 +a) ™ + 2 @) +a 1) = =0 (7.21)

The weights corresponding to the above sigma points are obtained as

_ 1 a(a+n'+1)
2nI(n/2) 4 [Lff(/lj)]z

(7.22)

Here, i=1,2,....2nn", j=12,...,n and k =1,2,...,2n

The quadrature points and weights are obtained by combining the 31 degree spherical rule

" order radial rule where n’ radial points are selected and the solution is accurate for

and n
(2n'—1) degree. The work of [Bhaumik2013] differs from [Jia2013a] on the perspective of
the numerical approximation method of radial integral. The authors of [Bhaumik2013]
follows GGLQ rule where as [Jia2013a] follows moment matching method.

The authors of [Bhaumik2013] has also extended their work in [Singh2015] wherein the

work of [Jia2013a] has been critically analyzed and the moment matching method followed
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in [Jia2013a] for computing the radial points and weights is reported to be analytically
ambiguous. The authors proposed to combine higher degree spherical rule [Genz2003,
Jia2013a] with higher order radial rule by solving n™ order Chebyshev-Laguerre equation as
mentioned [Bhaumik2013]. This new cubature rule has been named as higher order cubature
quadrature rule. The steps for generation of higher order cubature quadrature points and
corresponding weights are enumerated in [Singh2015]. Below we present only the steps for
computing cubature quadrature points based on 5t degree spherical rule which has been
presented in (7.23) and (7.24)

Rjng(x (0.0)=54,5 Slelen2z)rgl-e2z ),

j=l =1
n n(n-1)/2

+ g A Z Z [g( 24 )+g(— s;\/ 24 )]77/ (7.23)
n n(n-1)/2
+ e A Z Z lo( s Si 24 ) gls 24, )]77;
Where A, = 2\/F / 1"(%) and A, is the solution of n™ order Chebyshev-Laguerre polynomial
witha =n/2—1 as given below:
= ()T N ) @) D)= =0 (7.24)
The corresponding weights are obtained as

1 n'T(a+n"+1)

a;= 2\/; 4 [Lf (/1/‘ )]2

Notes:

(7.25)

e [t has been observed by the present worker while implementing the non-adaptive
version of higher degree Cubature Quadrature Kalman filter that the 3™ degree CQKF
is more stable than 5 degree CQKF as negative weights do not appear for the
former. 5™ degree CQKF having negative weights like 5t degree cubature filter

[Jia2013a] may not always guarantee the positive definiteness of error covariance.

e [t is also to be noted from the simulation results in [Singh2015] that the performance
of higher degree CQKF (5™ degree) is improved over the higher degree CKF (5"
degree) and CQKF(3" degree) for higher order systems. However, during
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performance comparison with CQKF [Bhaumik2013] it is observed that the
performance is not substantially improved for higher degree CQKF (5™ degree) with

its additional computation effort.
7.4 Algorithm of ACKF and ACQKF

For numerical approximation of integrals with unit Gaussian weighting function the methods
using spherical radial cubature rule has been presented in previous sections. Using these
approximation methods the integrals can be expressed as weighted sum of sigma points.
After computation of sigma points and corresponding weights they can be directly plugged
into the General framework of adaptive nonlinear filters to formulate adaptive cubature filters
and adaptive Cubature Quadrature Kalman filters. Using 3" and 5" degree cubature rule and
cubature quadrature rule and depending on the nature of adaptation (i.e., Q or, R adaptation)
different algorithms can be formulated with the help of general framework given in chapter
4. The algorithmic steps are not repeated in this chapter as those are the same as that of

general framework.
7.5 Characterization of proposed estimators

The adaptive Cubature filters are validated using different case studies. At first the algorithm
of @ Adaptive CKF (3™ degree) in square root framework is validated using ballistic object
tracking problem. The other case studies are considered to illustrate the superiority of R
Adaptive versions of CKF (5th degree) and CQKF (both 3" and 5™ degree). The R adaptive
versions CQKF (3" degree) and CKF (3" degree) in square root framework are also
validated using a case study and their performance is compared with R adaptive square root
GHF(3" degree).
7.5.1 Demonstration of Q adaptive version of square root CKF

7.5.1.1. Ballistic object tracking problem

The ballistic object tracking problem as described in chapter 3 is considered for validation of
the algorithm of Q Adaptive version of Square root CKF with 31 degree accuracy (QA-SR-
CKF 3" degree). This case study has been used before for validation of ADDF and AGHF.
We consider the same case study again for validation of QA-SR-CKF (3™ degree). The

algorithm can be obtained using the general framework with square root approach presented
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in chapter 4 as the weights for 3™ degree cubature rule are non negative. When the process
noise covariance is unknown and the measurement noise covariance is known performance
of QA-SR-CKF (3" degree) is compared with non-adaptive SR-CKF (3" degree). Q being
unknown has been assigned arbitrarily with 5 decades higher than the truth value. The
window length is considered to be 10 time instants. RMSE of states and the ballistic
parameter obtained from 1000 Monte Carlo run are presented from Fig. 7.1 — 7.3. The plots
indicates that the performance of QA-SR-CKF (34 degree) in face of unknown Q, is superior
to its non-adaptive version as expected. The RMSE of QA-SR-CKF is low and its
convergence is better. However, for the non-adaptive SR-CKF with unknown Q RMSE for
states are high. In Fig. 7.3 it is observed that RMSE of parameter for non-adaptive SR-CKF
tends to diverge.

The performance of QA-SR-CKF (without the knowledge of Q) is also compared with its
non-adaptive version when Q is known (an ideal situation). It is observed also from the plots
of RMSE that the RMSE for non-adaptive version is lower than that of the adaptive version
in the ideal case. However, RMSE of QA-SR-CKF shows a tendency to come close to that of
the ideal case during the steady state.

The adapted Q gradually settles on the actual value. But it takes some time takes time to
converge. This is the reason behind the initial mismatch of RMSE of QA-SR-CKF (unknown
Q) and non-adaptive SR-CKF (known Q in ideal situation). In Fig. 7.4 we provide the plot of

an element of adapted Q for a representative run.
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Fig. 7.1: Comparison of RMS error (altitude estimation) of ASRCKF & SRCKEF for 1000 MC runs
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Fig. 7.2: Comparison of RMS error (velocity estimation) of ASRCKF & SRCKEF for 1000 MC runs
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Fig. 7.3: Comparison of percentage of RMS error (ballistic parameter estimation) of ASRCKF & SRCKEF for

1000 MC runs
10 20 30 40 50 60
1.00E-02 - e Qtrue(3,3)
— =— Qadapted(3,3)
o
(3]
G 1.00E-05 - M
2 | W
B oo,
3 1 f 1] \
o 1.00E-08 -
: » P
o 4 - on
£ IliJ rli h\ﬂ M
1.00E-11 4 Lt
I: \ T Wy ‘[| Sl Wi P
1 ‘~\|‘.\‘ ‘ 1" » "'l
1.00E-14

time (sec)

Fig. 7.4: Plot of estimated process noise covariance (Q33) for a representative run

7.5.2 Demonstration of R adaptive estimators
7.5.2.1. First order nonlinear problem

The first order nonlinear estimation problem which has been considered in chapter 5 and 6 is
employed once again for a comparative study of R adaptive versions of CKF, CQKF and the
previously proposed R adaptive filtering algorithms. It is assumed that the process noise

covariance is known to the filter where as the knowledge of measurement noise covariance is
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unavailable. Because of the unavailability of the measurement noise covariance it is assumed
arbitrarily with a value three decades lower than the truth value. Window size is chosen as

100 time instants.

It is observed earlier that due to strong bi modal tendency of the measurement equation the
state estimate may settle on a wrong equilibrium point. Even non-adaptive filters with
complete knowledge of noise covariances may lose the track. The susceptibility of track loss
increases when noise covariances are initialized with inaccurate knowledge of noise
covariance. The performance of adaptive CKF and CQKF are analyzed with other adaptive
nonlinear filters with respect to the percentage of track loss. The RMS error from Monte
Carlo study with 10000 run is also furnished in addition to this. Note that in each Monte

Carlo run same noise sequences have been considered for all the candidate estimators.

It has been observed from the simulation results (see Table 7.1) that percentage of track loss
in case of R adaptive CKF (5" degree) is less compared to R adaptive CKF (3™ degree), R
adaptive UKF. It is also important to note that almost same percentage of track loss is
observed for RA-CKF (Sth degree) and RA-GHF (3“]1 order). However, track loss percentage
for RA-GHF (5" order) is lower compared to RA-CKF (5™ degree).

Performance of R adaptive CQKF based on 3" degree cubature rule and 2™ order radial rule,
denoted as RA-CQKF (3" degree, 2" order) and adaptive higher degree CQKF based on 5t
degree cubature rule and 3" order radial rule, denoted as RA-CQKF (5th degree, 3 order) is
also assessed using this case study. It is demonstrated that the RA-CQKF (3" degree, 2™
order) performs equally well as compared with computationally intensive RA-GHF (5™
order). The percentage of track loss for RA-CQKF (3" degree, 2" order) is significantly less
as compared to RA-CKF (5" degree) and the computational cost of RA-CQKF(3™ degree,
2" order) is also less than that of RA-CKF (5" degree) and RA-GHF (5" order) as the former

uses less number of quadrature points compared to the other two estimators.

Performance of the RA-CQKF (5th degree, 31 order) is also found comparable with
RA+CQKF (3" degree, 2" order) and RA-GHF (5™ order). But percentage of track loss of
this estimator is slightly higher than other tow. Moreover, as applied for a first order system

the number of points for this estimator is more compared to all other estimator.
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For each of the candidate estimators in addition to the percentage of track loss, number of
points required and the computation time are also presented in Table 7.1 for comparison on

the basis of computation time.

The effect track loss is reflected in the RMS error performance presented in Fig. 7.5. RMSE
of RA-CKF (5" degree) retrace that of RA-GHF (3™ order) as it is expected from the
percentage of track loss. RMSE of RA-CKF (5" degree) is lower than that of RA-CKF (3™
degree) but higher than RA-GHF (5™ order). RMSE of RA-CQKF (3™ degree, 2" order) and
RA-CQKEF (5™ degree, 3" order) almost retrace the RMSE of RA-GHF(5™ order).

To demonstrate how the performance of non-adaptive filter degrades in the face of unknown
R, RMSE of non-adaptive CQKF (3" degree, 2™ order) is also presented along with the plots
of RMS error of R adaptive filters. The RMSE of non-adaptive CQKF (3" degree, 2" order)
despite its higher accuracy cannot resist numerous occurrences of track loss (55.36%) with
improper choice of R matrix. Consequently, the RMSE for this case is the higher compared

to all the adaptive nonlinear estimators.
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Fig. 7.5: Comparison of RMS error of proposed filters with the existing filters for 10000 MC run

Chapter 7 186



State and Parameter Estimation for Dynamic Systems: Some Investigations

Table-7.1: Percentage of track loss and computation time presented for adaptive estimators

Adaptive estimators Pirr(;irllit?f:s()f Cor'rlliﬁ?;a;tlon 1;;}120 Expression*
ACKF(5"™ degree) 24.78% 83.4% 3 1+2n*
ACKF(3" degree) 36.48% 48.9% 2 2n
AUKF 91.85% 82.5% 3 2n+1
AGHF(3" order) 24.79% 84.8% 3 3"
AGHE(5" order) 14.64% 100% 5 5"
ACQKF(3" degree, 2™ order) 14.65% 94.2% 4 2nn,
AHCQKEF (5™ degree, 3" order) 14.72% 113.4% 6 2n*n,

* Expression of number of points required for n™ order system and n,” degree radial rule

# The computation time for each estimator is expressed as a percentage of that for AGHF (5™ order). The simulation are
carried out using MATLAB (version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz,
2 GB RAM.

7.5.2.2. State estimation of Lorenz attractors

The Lorenz attractors are a special class of chaotic system with nonlinear signal models
which are considered in [Ito2000, Bhaumik2013] for evaluation of nonlinear estimators.
System dynamics of a third order Lorenz attractor and the respective observation equation
have been provided in chapter 3.

In the face of unknown measurement noise covariance RA-CKF (5th degree), RA-GHF (3rd
order), RA-CQKF (5th degree, 31 order) and RA-UKF have been employed to estimate the
states of Lorenz system. The estimation accuracy of the estimators is illustrated with the help
of RMSE plot for each state. Following [Bhaumik2013] Monte Carlo simulation with 100
runs has been carried out with same set of noise sequences for each estimator.

Form Fig. 7.6 and Fig. 7.7 it is observed that the RMSE plot of RA-CKF (5" degree) almost
retrace that of RA-GHF (3“]l order) for state 1 and state 2. It is also important to note here that
the RMSE for these two estimators is considerably low compared to than that for RA-UKF.
For this case study performance of RA-CQKEF (5™ degree, 3™ order) is also compared with
RA-CKF (5" degree). For this specific case study it is observed that its performance does not

seem to be promising as per the expectation from its performance of the previous case study.
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RMSE of this estimator for both the states is higher than RA-CKF (5" degree). Nevertheless,
its performance is comparable with that of RA-UKF.

Superiority of none of the adaptive estimators can be inferred from the RMSE for state 3. All

the RMSE profiles are comparable as observed in Fig. 7.8.

During the performance comparison the non-adaptive CKF (5" degree) is also considered
which shows that performance of non-adaptive CKF (5th degree) degrades drastically with
inaccurately chosen R. The assumed value of R is 3 decades lower than the truth value for

this case study. Window size for adaptation is taken as 100 time instants.
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Fig. 7.6: Plots of RMSE of first state of Lorentz attractor for different adaptive estimators
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Fig. 7.8: Plots of RMSE of third state of Lorentz attractor for different adaptive estimators
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7.5.2.3. Fourth order nonlinear estimation problem

This case study has been considered to demonstrate the superiority of R adaptive higher order
CQKEF over its competing algorithms. This numerical problem has been used by [Singh2015]
for the validation of non-adaptive version of higher order CQKF. We have considered it to
demonstrate the superiority of its adaptive version. Here performance of RA-CQKF (5™
degree, 3" order) has been compared with RA-CQKF (3" degree, 3" order) and RA-CKF
(5™ degree). R is chosen with large error compared to the truth value (two decades lower than
the truth value) for this case study. Window size for adaptation is taken as 100 time instants.
Plots for RMS error of four states from 1000 Monte Carlo run are presented from Fig. 7.9 —
7.12. It is observed that for all four states RMS error for RA-CQKF (Sth order, 3™ degree) is
marginally lower compared to that for the other estimators. However, computation effort for
RA-CQKEF (5™ order, 3™ degree) is also higher compared to the other estimators is more as it
incorporates higher number of points. Note that for this case study computation time for RA-
CKF (5™ degree), RA-CQKF (3™ degree, 3™ order) are 36.55% and 29.75% of that for RA-
CQKEF (5™ degree, 3™ order) respectively. Simulation is carried out using MATLAB (version
7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB
RAM.
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Fig. 7.9: Plots of RMSE of 1% state for different adaptive estimators

Chapter 7 190



State and Parameter Estimation for Dynamic Systems: Some Investigations

18
ACKF5(Rfilter(0)=100"Rtrue)
—a— ACQKF(Rifilter(0)=100"Rtrue)
- —— AHCQKF(Riilter(0)=100*Rtrue)

RMSE (state-2)
>

5 15 25 35 45 55 65 75 85 95
time step

Fig. 7.10: Plots of RMSE of 2™ state for different adaptive estimators

ACKF5(Rfilter(0)=100"Rtrue)
—+— ACQKF (Rifilter(0)=100*Rtrue)
—— AHCQKF (Rfilter(0)=100"Rtrue)

RMSE (state-3)
o

13 T T T T T T T T
5 15 25 35 45 55 65 75 85 95

time step

Fig. 7.11: Plots of RMSE of 3™ state for different adaptive estimators
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Fig. 7.12: Plots of RMSE of 4" state for different adaptive estimators
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7.5.3 Demonstration of R adaptive estimators in square root
framework

Here we consider an aircraft tracking problem which has been used to validate adaptive
Gauss Hermite filter in square root framework. The states and turn rate of an aircraft
executing a maneuvering turn with an unknown and time varying turn rate has to be
estimated. The adaptive versions of cubature filter and Cubature Quadrature Kalman filters in
square root framework which are formulated in this chapter have been validated using this

case study.

Performance comparison of R adaptive versions of square root GHF with 3™ order accuracy
(RA-SR-GHF), square root CKF with 3™ degree accuracy (RA-SR-CKF) and square root
CQKF (based on 3" degree spherical rule, 2" order radial rule and denoted as RA-SR-
CQKEF) have been carried out for the above estimation problem where the measurement noise

covariance of one of the radar remains unknown.

The candidate filters are evaluated with the help of a Monte Carlo study with 10000 Monte
Carlo runs. The element of measurement noise covariance, R(2,2) is considered to be
unknown as in chapter 6. The unknown element R(2,2) is assumed with an arbitrary value
which is 5 times less than the truth value for this case study. The RMS error of position,
velocity estimation and also the RMS error of estimated turn rate are presented for all three
filters. In addition to the plots of RMS errors the percentage of track loss is also provided for
each estimator. The track loss occurs because of non uniqueness of the measurements as

explained in chapter 3 and chapter 6. The RMSE are presented excluding the track loss cases.

From the Fig. 7.13 — 7.15 RMSE for all three estimators are found comparably same.
However, in Fig. 7.13 the RMSE of RA-SR-CKF is marginally higher than the other two
plots. Therefore, the performance of these estimators cannot be analyzed on the basis of
RMSE only. In this perspective percentage of track loss gives us a cue to judge the
performance of these competing algorithms. It is to be noted that the percentage of track loss
for RA-SR-GHF 1is considerably low compared to RA-SR-CKF and RA-SR-CQKEF.
However, percentage of track loss for RA-SR-CQKF is lower than RA-SR-CKF. It is
interesting to note that RA-SR-CQKF is performance wise as good as RA-SR-GHF at a less

computation effort. Table 6.2 is provided in support of the above statements.
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Fig. 7.13: Comparison of RMS error (altitude estimation) of ASRCQKF, ASRGHF3 & SRCKF
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Fig. 7.14: Comparison of RMS error (velocity estimation) of ASRCQKF, ASRGHF3 & SRCKF
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Fig. 7.15: Comparison of RMS error (turn rate estimation) of ASRCQKF, ASRGHF3 & SRCKF

Table-7.2: Percentage of track loss and computation time for adaptive estimators

Estimators Percentage of track loss ~ Computation time*  Points for n=5, n,=2
RA-SR-CKF 1.55% 6.30% 10 (2n)
RA-SR-CQKF 1.44% 8.13% 20 (2nn,)
RA-SR-GHF 1.34% 100% 243 (3"

* Computation time is presented as the percentage of the computation time of RA-SR-GHF. Simulation is carried out using
MATLARB (version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM.

7.6 Discussions and Conclusions

In this chapter adaptive versions of Cubature filters (3" degree and 5™ degree) and Cubature
Quadrature Kalman filters (3rGl degree and 5t degree) have been formulated from the general
framework. Relative performance comparison with previously reported adaptive nonlinear
filters is carried out with the help of several nonlinear state estimation problems. Simulation
results from all the case studies indicate that the performance of adaptive CKF (5™ degree) is
demonstrably better than Adaptive CKF (3" degree) and AUKF. Performance of ACQKF
(3™ degree and 5™ degree) is found to comparable with ACKF (5" degree) and sometimes

superior to it. Below we present in detail the significant findings from the case studies.

e () adaptive CKF (3" degree) in square root framework is found to outperform its non-
adaptive version in the face of unknown noise covariance. When the filters reaches steady

state performance of the proposed filter without knowledge of Q is observed to be
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comparable with that of its non-adaptive version in the ideal situation when it has the

complete knowledge of Q.

R adaptive version of CKF and CQKF are demonstrated using a number of case studies.
For the first order estimation problem it is observed that the performance of RA-CKF (5"
degree) has the same level of accuracy with that of RA-GHF (3rCl order). However, RA-
CQKF (3" degree, 2" order) is performance wise superior to RA-CKF (5" degree) and
have equivalent accuracy of RA-GHF (5™ order) at less computational cost. Performance
of adaptive higher order Cubature Quadrature Kalman filter, RA-CQKF (5" degree, 3™
order) is comparable with RA-CQKF (3" degree, 2™ order). However, the computation
cost of the higher degree version of RA-CQKF is more in presence of higher number of
cubature points. Performance of all other adaptive estimators excels over RA-UKF for

this specific case study where system dynamics suffers from significant nonlinearity.

In the second case study the superiority of RA-CKF (5™ degree) over RA-UKF is
exhibited using RMSE analysis of the state estimates of the Lorenz attractor. However,
for this estimation problem RA-CQKF (5™ degree, 3" order) could not show improved
performance compared to RA-CKF (5" degree). Nevertheless, its performance is

comparable with RA-UKF.

To demonstrate the superiority of adaptive version of higher order Cubature Quadrature
Kalman filter, RA-CQKF (5™ degree, 3" order), over the competing algorithms of RA-
CKF (5" degree) and RA-CQKF (3™ degree, 3™ order) a fourth order estimation problem
is considered. It is observed from the RMS error analysis that RA-CQKF (5" degree, 3™
order) can present marginally improved estimation performance compared to the other

competing algorithms at the cost of additional computation effort.

R adaptive versions GHF (3" order), CKF (3™ degree), CQKF (3™ degree, 2™ order) in
the square root framework is also formulated in this chapter and validated using aircraft
tracking problem. Superiority of RA-SR-CQKF and RA-SR-GHF over RA-SR-CKEF is
demonstrated. It is interesting to note that RA-SR-CQKF can present satisfactory
estimation performance (performance is nearly close to RA-SR-GHF) at significantly less
computational burden compared to RA-SR-GHF. The square root version of other

adaptive nonlinear filters viz. AUKF, ACKF (5™ degree) and ACQKF (5™ degree) have
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not been formulated due to presence of the negative weights for some of the points. These
algorithms cannot be formulated directly from the proposed general framework in
chapter4 as the presence of negative weights demand modifications in the algorithm. This

work may be considered as the future scope of this dissertation.

From the above findings it may be concluded that Adaptive CKF (5™ degree) and Adaptive
CQKEF are strong candidates during estimation of multi dimensional systems with significant
nonlinearity for their better accuracy and economic computation (compared to the
computationally intensive Adaptive GHF). The square root version of Adaptive CQKF (3"
degree) is also recommended for the estimation problems where their standard error

covariance forms may terminate due to loss of positive definiteness.
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Chapter 8: Adaptive Nonlinear Filters for Non-additive
Noise

8.1 Chapter Introduction

This chapter presents a general framework for adaptive nonlinear filters to suit nonlinear signal
models where the system dynamics and observation equations are nonlinear function of states
as well as noise. Situations have been considered where knowledge of the covariance of non-
additive noise remains unavailable. For state estimation of the systems with such signal models
the proposed algorithms for adaptive nonlinear filter with additive noise no longer remain
appropriate. The adaptation algorithms for the additive noise derived in chapter 4 necessitate
substantial modifications for non-additive noise. In addition to this the underlying framework

of non-adaptive nonlinear filters also needs to be modified to suit non-additive noise.

The redesigning of the adaptation algorithms which are essential for non-additive noise have
been presented in this chapter and subsequently a new general framework for adaptive
nonlinear filters with non-additive noise has been developed. The derivation of the adaptation
algorithms are based on Maximum Likelihood Estimation (MLE) method. The general
framework proposed in this chapter uses the non-adaptive nonlinear filters with the
“augmented form” as its core. In this particular form the process noise and measurement noise
are augmented with the state vector in time update steps and measurement update steps
respectively to make the estimation algorithm suitable for the state and the observation
equations which are nonlinear function of states and the noise terms. The non-adaptive
nonlinear filtering algorithm has been reported in [Sarkka2013a]. The same algorithm is

considered here as an underlying framework.

The general framework includes algorithms for adaptation of the covariance of process noise as
well as the measurement noise which are non-additive in nature. With the help of general
framework proposed in this chapter formulation of variants of @ adaptive and R adaptive
sigma point filters for non-additive noise may be possible following different methods of sigma
point selection discussed in the previous chapters. For illustration R adaptive estimators have
been derived from the general framework incorporating sigma points and weights which are

chosen following 3™ degree and 5™ degree cubature rule. The derived algorithms are validated
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in simulation using a realistic estimation problem where the measurement equation is indeed a

nonlinear function of states and measurement noise.

Additionally algorithms for adaptive Divided Difference filter (ADDF) with non-additive
process and measurement noise are also formulated. These algorithms, although conceptually
same, cannot be directly obtained using the proposed general framework. This is because of the
fact that non-adaptive DDF is based on Taylor series approximation and uses Stirling’s
interpolation formula to replace Jacobian and Hessian matrices present in the Taylor series
approximation. On the other hand the general framework includes Bayesian integrals which
need to be approximated by numerical methods. The proposed algorithms based on DDF are
validated with the help of different case studies where the noises are considered to be non-

additive in nature.
8.2 Problem Formulation

We consider nonlinear dynamic equations of a system as given below

x, = f(x.0,) (8.1)

i =8(x.0) (8.2)
where x, € R"is a state vector, y, € R”is output vector. The zero mean process and

measurement noises (assumed Gaussian) are denoted as 6, € EK’]~(0,Q), v, €R" ~ (0, Rk).

The system dynamics and the observation equation are considered as the nonlinear function
of the noise and state vectors. Consequently the noises are non-additive in nature. During the
unavailability of the knowledge of covariance of process or the measurement noise it needs
to be adapted at every instant of time. For joint estimation of parameters and states

parameters has to be augmented with state vector as explained before in chapter 4.

For the above described estimation problem, the general frameworks for Adaptive nonlinear
filters and algorithms for Adaptive Divided Difference filter are presented below which can

adapt the unknown noise covariance of non-additive process or measurement noise.
8.3 General framework for adaptive filters with non-additive noise

In this section a general framework for adaptive nonlinear filters with non-additive noise is

proposed. The general framework presented here is conceptually similar to that presented in
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chapter 4 for adaptive nonlinear filters with additive noise. However, in the presence of non-
additive noise, the “augmented form” (the noise vector is augmented with the state vector) of
non-adaptive nonlinear filtering algorithm [Wan2000, Sarkka2013a] is considered as an
underlying framework. A detailed discussion on the non-adaptive framework is provided in
above referred publications. The adaptation algorithms which have been designed for the

non-additive noises are to be incorporated in the underlying framework.

8.3.1 Underlying Framework of Non-adaptive filter
In this section we present the algorithm of non-adaptive nonlinear filter with non-additive noise
as given in [Wan2000, Sarkka2013]. This algorithm is used as underlying framework for the
proposed general framework. The adaptation algorithms which have to be integrated in the
underlying framework have been designed in the succeeding subsection.
Initialization: Tnitialize %,,P,,Q,, R,
Time update step:

For the numerical method of integration select n no. of points (&') and weights (w,) for

standard normal distribution and modify in the algorithmic steps as provided below. For

selection of the modified sigma points use augmented vector concatenating state and process

noise vector (i.e., [x 6] ) as
T =+ PEE (8.3)
Where a, =[%,_, 0] and P’ = diag(f’k_l,gk)

These points are propagated through nonlinear dynamic equation as f ()?,’;”‘,)?,’;"’) where
7i* is the first n, elements of vector 7i linked with states and 7;? is the rest of the elements

of 7i leaving the first n, elements of vector y;. The vector 7;?is linked with the process

noise.

The a priori estimate of state is obtained as
% =2 fl@t a (8.4)
i=1

The respective a priori error covariance becomes
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D N ~ix i = ~ix =i, =Y
szzwi(f(lk’ ’qu)_xk)(f(lk ’qu)_xk) (8.5)
i=1
Measurement update step:
Select the sigma points using augmented vector concatenating state and measurement noise
vector (i.e., [x o[ )as
Ti =B+ P& (3.6)
Where g, =[7, 0f and P’ = diag(P, .R,)

The a priori estimate of measurement is given by
¥o=2 el 2w (8.7)
i=1

where .~ is the first n, elements of vector y. and x," is the rest of the elements of

v

leaving the first n, elements of vector Jx;.The vector x,” is linked with the measurement

noise.

The innovation covariance is obtained as

P} = 2wi(g&i’*,zi’")— 5 sl zt)-5.f (8:8)
The cross covariance is given by

Py = Zw (7o - % ez 7). (8.9)
The filter gain K, can be computed using

K, =pr>(P)' (8.10)

Having computed the gain K, the a posteriori estimate of the state and the error covariance

can be obtained by (8.11) and (8.12) respectively.

R =% + K (v - ) 8.11)
P,=P -K,P'K] (8.12)

Chapter 8 200



State and Parameter Estimation for Dynamic Systems: Some Investigations

8.3.2 Adaptation algorithms

The adaptation algorithms for the covariance of non-additive noise necessitate substantial
modification of the algorithms that are derived for cases of additive noise. Matrix
approximations of the nonlinear function of noises are required for obtaining the adapted
value of process or the measurement noise covariance. To derive the matrix approximation of
the nonlinear function the method of statistical linearization has been followed instead of
differentiation. The concept of statistical linearization is reported in [Geist2010, Sarkka2011]
and has not been elaborated here. Only a few significant points are reiterated as a background

for statistical linearization for the ease of interpretation of adaptation algorithms.
8.3.2.1. Background for statistical linearization

The system dynamics and the measurement equations are expressed as the nonlinear function
of the vectors of system states and noise. About a particular operating point this nonlinear

relation can be expressed in terms of the linearized relation as presented in (8.13).

Let us consider the nonlinear system dynamicsx, = f(x, ,.6,) as given by (8.1). The

A

linearlized model of (8.1) about a nominal point (J%k_ ,,Bk) is expressed as
Xy :f(-’ek—l’ék )+%Axk—1 +%A0k (8.13)

In the same vein the linearlized model of the observation equation given by (8.2) can also be

presented about a nominal point, (fk ,0, ) , as
Y :g(fk’ﬁk)+%mk+%Avk (8.14)

Here the ‘A’ linked terms are perturbation of state and noise vectors about the nominal point.
However, for the sigma point based filtering algorithms the Jacobians matrices indicated in
the above expressions cannot be obtained as they readily appear in EKF. Therefore the
matrix approximations are done on the basis of statistical linearization. The matrices obtained
by the statistical linearization [Geist2010] can be referred as ‘pseudo matrix” and this concept
is also introduced in [Lee2008]. These matrices are obtained by executing the following steps
using statistical linearization [Geist2010] and accordingly used in the algorithm. Below we
present the basic steps of statistical linearization which have been used to derive the

adaptation algorithms.
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Let us consider a vector which is nonlinear function of two vectors following Gaussian

distribution as

y:f(x,w), yeR", xeR", weR" (8.15)
where x ~ N(m,,P,) and w ~ N(m,,P,). We can express the nonlinear relation in (8.15)
by the linear approximation as

fle,w)=f(m, m,)+®d&+ Q6w (8.16)
where

@ and Q are matrix approximation of f(x,w) with respect to x and w respectively. @

and Q are obtained as

& =E|(f(x,m,)~ f(m,,m,))&" |p" (8.17)
and
Q=E|(f(m,,w)- fm,,m,)5" [P’ (8.18)

For the situations with zero mean unity variance noise vector i.e., when w ~ N (0,1 ) , £ can

be expressed as
2=E|(fm,,w)- f(m,,m,)ow"| (8.19)
Alternatively, we can also write

Q0" = E|(f(m,.,w)- f (m,.m, )\ (m,,w)~ f(m,,m,)) |

Therefore, £ can also be obtained as

Q = Cholesky factorization(E|(f (m_,w)- £ (m_,m,))(f(m,,w)~ fm,,m,) ]} 8.20)

The advantage of the above approach is that the approximated matrix is always a square
matrix and does not require matrix pseudo inverse when matrix inversion is required. This

approach is followed in the adaptation algorithm as presented in the next subsection.

8.3.2.2. R adaptation

For R adaptation replace R, with adapted IAik_l of previous instant in (8.6) of the

measurement update step. The expression of adapted R can be obtained as follows. Only for
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k=1 the value of ﬁk_l has to be assumed arbitrarily. Here we propose residual based R

adaptation algorithm in the following steps.

Select the sigma points using augmented random variable [x o] as

Zi=po P (8.21)

Where B, =[%, 0] and P/ = diag (ﬁk ,ﬁk_l) where 7;*is the first n, elements of vector

Zi and %} is the rest of the elements of %} linked with the measurement noise.

The a posteriori estimate of measurement is obtained by

$o=2sla zit (8:22)
i=1

The residual is obtained as

P =Y~V (8.23)

The residual covariance from a sliding window is computed as

P r

C,=— 2.l (8.24)

L j=j-L+

Select another set of sigma points using augment random variable as

X =vit P& (8.25)
Where y, =[%, 0] and P/ =diag(f’k ,I)

Note that here we introduce a dummy variable which is following a standard normal
distribution. Augmentation of this dummy variable in (8.25) enables us to obtain the matrix
approximation of the nonlinear function of noise following (8.26) and (8.28).

Transform the sigma points through the function g(-) as g(.fk , )?,’(”) and g()?,';’x,O) where z;*
is the first n elements of vector y; and x,”consists rest of the elements. This indicates that

for the first case the sigma points are used only for the matrix approximation of the nonlinear

function with respect to the measurement noise keeping the state vector constant at X, . For

the second case the reverse has been done, i.e., sigma points are used only for the matrix

approximation of the nonlinear function with respect to state estimate keeping the
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measurement noise vector constant at its mean value. Using this two differently transformed

set of sigma point we get the following equations

= gle. 7w, (8.26)
i=1

57 =gz 0w, (827)
i=1

To calculate the matrix approximation of the nonlinear function of measurement noise, first
compute the matrix as given below. It is to be noted here that (8.18) and (8.20) have been
used for statistical linearization.
DV = A —ip AX A —ip A~z Y
Py :Z(g(xk’)fk )_.Vk )(g(xk’)fk )_.Vk) w; (8.28)
i=1
Now find the required matrix approximation as the Cholesky factor of I3k" such

that B? = §7(S: f (8.29)

The error covariance of a posteriori estimate of measurement is obtained using

Pt = 2(g(2:;”‘,0)— 57 Ngei=.0)- 97 w, (8.30)

The adapted measurement noise covariance is obtained using the following relation

R =(8:]'(€,+e8) (8] (8.31)
8.3.2.3. Q adaptation

For Q adaptation replace @, with adapted Qk_l of previous instant in (8.3) of time update

step. The expression of adapted Q can be obtained as follows. Only for k=1 the value of Qk—l
has to be assumed arbitrarily.

Find the innovation sequence as
% =Y — Vi (8.32)

The innovation covariance from a sliding window is computed as

R J
C/ :% > B (8.33)

j=j-L+1
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Select another set of sigma points using the steps given below

2=0,+P¢ (8.34)
Where 8, =[%,_, 0] and P’ = diag(ﬁk_l,l)

Following the same approach of R adaptation here also we introduce a dummy variable
which is following a standard normal distribution.

Transform the sigma points through the function f(-) as f (.fk_ I )?,’;’0) and f ()?,';’x,O). These

are similar steps as explained in the R adaptation algorithm. For the first case the sigma
points are used only for the matrix approximation of the nonlinear function with respect to
the process noise keeping the state vector constant at x,_,. For the second case the reverse
has been done, i.e., sigma points are used only for the matrix approximation of the nonlinear
function with respect to state estimate keeping the process noise vector constant at its mean
value. However, for Q adaptation the second set of sigma points is not necessary. Using only

the first set of sigma point we get the following equations.
#=2 2 (8.35)
i=1

To calculate the matrix approximation of the nonlinear function of process noise, first
compute the matrix as given below using (8.18) and (8.20) for statistical linearization

B =Y (£ (8 20)- ) (& 2i0)- £ w, (8.36)
i=1

Now find the required matrix approximation by taking the matrix square root of I3k0 by

Cholesky factorization as P’ = S (§ 4 )l (8.37)

The adapted process noise covariance is then obtained using the following relation

=i

0, = (8! 'k, C,k7 (57) (838)

8.3.3 Derivation of adaptation algorithm
8.3.3.1. Q adaptation algorithm

On the availability of the matrix approximations of nonlinear function with respect to the

noise terms the adaptation algorithms can be derived as follows.
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For derivation of the innovation based Q adaptation algorithm following MLE method refer
equation (4.35) in chapter 4. We have derived already derived the relation in (4.35) by MLE

method as presented below:

— ” 1 &
P, - P, :KkZZ[ﬂjﬂf ]KkT (8.39)

=
where j,=k-L+1
The expression of a priori estimate of P, is gets modified with the matrix approximation by
statistical linearization. If S‘,f , the matrix approximation of the nonlinear function with

respect to the process noise vector is available the expression of P, becomes

7 =3 (i 0)-22 ) G 0)- 22w+ 87 0,(87) (8.40)
P -B, =Yz 0)- 2 ) (2= 0)- 22w~ B, +870,(80] (8.41)

Here,ffzzn:f(ii’x,O)«vi. Note that the expression i(f(i,’;’xﬂ)—ﬁf)(f()?,';‘x,O)—ff)Twi is
i=1

i=1
equivalent to the matrix P,/ referred in chapter 4. It is mentioned earlier in chapter 4 that
during the steady state reached by the filter the difference between P/ and Pk are

negligible. Therefore, both the terms can be ignored from (8.41) leaving only the

term S 4 Qk (S 4 )r . Therefore, the expression in (8.39) can be represented as
Ap A (A 1 &
500.8¢) =k, [o, 07 K (8.42)
J=o
Hence the adapted Q matrix is obtained as

-7

A A -1 A A
0. =8¢ ] K,.C.K (5¢) (8.43)
8.3.3.2. R adaptation algorithm

For derivation of the residual based R adaptation algorithm using MLE method refer
equation (4.73) in chapter 4. We have already derived the relation in (4.73) by MLE method

as presented below:
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Y|l ler-pprlics) r+w x ke =0 (8.44)

Jj=o

where j,=k-L+1

For non-additive measurement noise with the availability of S + » the matrix approximation of

nonlinear function with respect to the measurement noise, (4.73) gets changed and

represented as

zk:{ tr{ () [cr-p,7](c? )’1(1 +¥ K S} (S;YK_,TW_{) } } =0 (8.45)

J=Jo
The expression (1 +¥ K jﬁ,f (S‘,f)IKJT'PITj being positive definite, the above expression

becomes zero only when

k
>lez-ppp]=0 (8.46)
J=Jo
A 1 & r
Cl=—2.p,p; (8.47)
L J=Jo

If the nonlinear function of measurement noise is approximated by the approximated matrix

S . the residual covariance can be presented as
A A . ' A A Ao
C;=S/R, (S,f)l —P¢# | alternatively, C; = S R, (S,f)l -¥Y.PY, .
See the derivation of (4.91) in chapter 4 for reference. The matrix ﬁkg , error covariance of a
posteriori estimate of state, is equivalent to Y’klsk‘l’,f where ¥, is the matrix approximation

of the nonlinear measurement equation with respect to state estimate. Note also that Pkg is

equivalent to the matrix ﬁkg referred in chapter 4. Here, Pkg is expressed in the algorithm by
(8.30).
From (4.91) in chapter 4 we have already obtained the relation
k
Sk (S:) - v Bl = Y ] (8.48)
=

This can now be expressed as
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Gv D Go D 1 : T

SkRk(Sk)r —P§ =Zzpjpj (8.49)
J=Jo

A A A k A

SR (8] = % S ppt+BE (8.50)

Jj=Jo
Finally the adapted R can be derived as
~ ~ %1 k A~ Ao YT
R =(8;) (Z PP +Pk“”](SJ (8.51)
J=Jo
As formulated on the basis of residual sequence the expression of adapted R, ensures
positive definiteness.
It can be noted from the expression of adapted Q and R matrix that the matrix approximation

of nonlinear function of noise which is obtained using statistical linearization has been used

along with the window estimated state/measurement residual covariance matrix.
8.4 Formulation of ADDF with Non-additive Noise

The algorithm of non-adaptive Divided Difference filter is based on Taylor series
approximation where the Jacobian and Hessian matrices are replaced with function
evaluations with the help of Strings interpolation formula. In the work of [Norgaard2000] the
algorithm for non-adaptive Divided Difference filter with non-additive noises has been
presented. As the algorithm has been formulated on the basis of Taylor series approximation
it is therefore not required to augment noises with state vector as done in the general
framework presented above which is based on Bayesian approach. The steps for adaptive
Divided Difference filter are different from that of general framework although the basic

concept of filtering remains the same. The algorithmic steps are provided below.
8.4.1 Non-adaptive DDF framework
Initialization: Tnitialize %,, P,,0,, R,

Time update step:

Given P,_,, compute the Cholesky Factor §_(k—1) such that
P, =S (k-DSTk-1) (8.52)
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Given @, , compute the Cholesky Factor S, (k) such that
0=5,KS, K (8.53)

Propagation of a priori estimate of state:

The expression of a priori state is

% =2 fe W)+ Y (e, 08w, )+ £(&, — 05,9, )
(8.54)

n,
+ ﬁz{f(ﬁkfl > Wk + h‘ew,p )+ f(’fjkfl ’ Wk - h§w,p )}
p=l1

w, » the mean of the process noise is zero for the consideration of a zero mean noise. §, ,is p"

column of § k-1) , §, ,is p™ column of S,(and h is the appropriately chosen interval
length (7 =3 for Gaussian distribution [Norgaard2000]).

Propagation of a priori error covariance:

The a priori error covariance become
P, =SU)SL ) +S20ASZW) +SDEASLE) +S2EASLE) 859

SPk), $”k) ands?k),S? (k) are the first order and the second order approximation of the

square root matrix of a priori error covariance. The elements of these matrices are obtained

from (8.56) to (8.59) for i=1,...,n and j=1,...,n.

SLK) = oy + 18, )- £ (8, — 15,59, ) (8.56)
SPM)y =L (£, (&, + 08,0, )+ £, (5, =18, 9, ) -2, (%, 9,) (8.57)
S =2 i (B W, + 18, ) £, (8, 9, = 1S, ) (8.58)
SP My =2 ((f, Ry, + 58, )4 £, (& — 1S, )-2£, (R, 7,)) (8.59)

Measurement update step:

Given P, , Compute the Cholesky Factor S _ (k)
such that P, =S (k) S (k) (8.60)
Compute S, (k) such that R, , =S, (k) ST (k) (8.61)

The a priori estimate of measurement:
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The expression of the a priori estimate of the measurement is

Vi = i g(xk,vk)+ o Z{g(xk +hs,,.V )+g( /s ””vk)}
— (8.62)

+71122{g(fk, v, + hsv’p)+ g(fk, v, —hs,, )}
p=1

v, , the mean of the measurement noise is zero for the consideration of a zero mean Gaussian
noise.
Propagation of Innovation Covariance:

The innovation covariance is computed using the following expression
P2 = SUSL0)] + S22 + 526N 20N + 522 k)) (8.63)
SPk) ,SP k) and S?(k), S? (k) are the first and second order approximation of the square

root matrix of innovation covariance. These elements are obtained from (8.64) to (8.67) for

i=1,....,pand j=1,....n

SV =2 5 +45,,.7,)-g,(%, ~15,,.7,) (8.64)
S0, =L (g, (® +5,,7 )+ 8, (& - 15,7, )-28,(%,.7,)) (8.65)
SO, =2 (e (F 7 + 1, ) -2, (%7, ~s,,)) (8.66)

SPM) ., = (g, 7y 7, + s, )+ 8, (5,7, s, ;) 28, (%,.7, ) (8.67)

The cross covariance is computed as
> =[5, w]lsewf (8.68)

In [Norgaard2000] it has been demonstrated that the cross covariance of second order DDF is

same as that for first order DDF.

The filter gain K, becomes

K, =p>(p)' (8.69)
The a posteriori estimate of state is given by
X =% +K, (J’k =i ) (8.70)

The a posteriori error covariance given by (8.70) ensures the positive definiteness
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P, =S,1087 (k) (8.71)
where
S, =[5,00-K, 8% K, S2 KS\ K2 (8.72)

8.4.2 Adaptation algorithm
8.4.2.1. R adaptation algorithm

For R adaptation replace R, with adapted ﬁk_l of previous instant in (8.61) of the

measurement update step. The algorithms for R adaptation are provided in the following

steps.
Given the a posteriori error covariance P,, compute the Cholesky Factorization §_(k) as
P, =5,(k)S87 K (8.73)

The a posteriori estimate of measurement is obtained as

n
2
A h”—n-n,

Ye =2 g(-‘?k’vk)“'ﬁz{g(’ek +h§x,p"7k)+g(£k _h§x,p"7k)}
= (8.74)

+ ﬁi{g(@nfk + h§x,p )+ g(ik’v" _h§x’p )}
p=l1

This step is similar to the step for a priori estimate of measurement. v, is the mean of the
measurement noise which is zero for the consideration of a zero mean noise.
The error covariance of a posteriori estimate of measurement is obtained in a similar

approach for computation of P;.

S;?(k)(i,j) :TI;l(gi (fk +h§x,j’l7k )_gi (fk _hﬁx,j’ik )) (8.75)
Sf\?)(k)(i,j) = Igh_l ((gi ('i'k +h§x,j"7k )+gi (-’ek _h§x,j"7k )_2gi ('i'kik )) (8.76)

S (k) and §% (k) are first and second order approximations of the error covariance of a
posteriori estimate of measurement respectively.

Residual is defined as the difference between the actual measurement and the a posteriori

estimate of measurement and expressed as
P =Y = Vi (8.77)

Estimated residual covariance can be computed from a sliding window (size L) as
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+1

Ct == X pip') (8.78)

Compute the Divided Difference operator G; , from equation (8.79) as

G, , = Cholesky Factor of (s DE)(SL®) +S2Mw(S2 (k))T) (8.79)
where

S;?(k)(i,j) :TI;l(gi (fkjk +hej)_gi (ﬁk’gk —he; )) (8.30)
S;?(k)(i,j) = @ ((gi (fk Vi +hej)+gi (’Qk Vi _hej)_zgi (#,.7,)) (8.81)

. 1 .
e; is the /" unit vector.

The divided difference operator G, is basically the matrix approximation of the nonlinear

measurement equation with respect to the measurement noise component. The above steps
are similar with the matrix approximation of the nonlinear function of noise. The similar
approach is followed for the matrix approximation as explain before. Here also we need to
introduce a dummy variable following a standard normal distribution with zero mean unity
covariance. First the square of the approximated matrix is computed using the steps of DDF.

Subsequently the Cholesky factorization is taken. Alternatively, the square matrix can also be

obtained by matrix triangularization as G;, = Triangularize([S ;? k) S ;? (k)]).

The adapted measurement noise covariance is finally derived following (8.31) as

R, =G4 (s aols o) +s2a(s2ao) +¢z ez, ) (8.82)
8.4.2.2. 0 adaptation algorithm

For Q adaptation replace Q, with adapted Qk_l of previous instant in (8.53) of the time
update steps. The expression of adapted Q is provided in the following steps.

Consider the innovation sequence defined before as

O=y, - (8.83)

Estimated innovation covariance can be computed from a sliding window (size L) as

z 8.7 (8.84)
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Computation of Divided Difference operators of the nonlinear function of process noise:

Compute the Divided Difference operator Fy, from equation (8.85)

F.., = Cholesky Factor of [S? (0($ 2 (0) +S@w0(s2w) ) (8.85)
where

S%} &) = ﬁ(f; ("ek—l Wy +he; )_ fi (ﬁk—l Wy, —he; )) (8.86)
S.g?)(k)(i,j) = @ ((fz ("ek—l W, +he; )+ fi ('i'k—l Wy —he; )_ 2f; (-’ek W) (8.87)

. .th .
e; is the j unit vector.

The divided difference operator Fy, is basically the matrix approximation of the nonlinear

process equation with respect to the process noise component. The above steps are similar
with the matrix approximation of the nonlinear function of noise. Here also we need to
introduce a dummy variable following a standard normal distribution with zero mean unity
covariance. First the square of the approximated matrix is computed using the steps of DDF.

Subsequently the Cholesky factorization is taken. Alternatively, the square matrix can also be

obtained by matrix triangularization method as F,, = Triangularize([SQk)  $2(K))).
The adapted measurement noise covariance is finally derived following (8.38) as

Qk ZFW_,;c KkéﬂkKZ (FWT,k )_1 (8.88)
8.5 Characterization of proposed estimators

Algorithms for adaptive estimators for non-additive noise which are proposed in this chapter
have been demonstrated in this section. The R adaptive DDF for non-additive noise has been
validated with the help of two tracking problems. In the first case study a single dimensional
object tracking problem is considered with a measurement equation which is nonlinear
function of state and measurement noise. Note that such a measurement equation may not be
a realistic one. Nevertheless, we have considered this as a toy problem to validate the
performance of R adaptive DDF for non-additive process noise The other one is a bearing
only tracking problem where an object moving with a constant velocity and tracked by
bearing only measurement from an on board sensor perturbed by platform disturbance. For

the second tracking problem the performance of R adaptive DDF has been compared with R
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adaptive CKF (both 3™ degree and 5™ degree accuracy) which has been formulated using the
proposed general framework. This estimation problem demonstrates that the measurement

equation may be nonlinear function of noise in reality.

The performance of Q adaptive DDF for non-additive process noise is demonstrated with the
help of another estimation problem where the states and the friction coefficient of Van der
pol’s oscillators are to be estimated. The system noise is considered to be non-additive in
nature only for one of the states of the oscillator. Note also that such a system dynamics may
not be a realistic one. Nevertheless, we have considered this again as a toy problem to
validate the performance of Q adaptive DDF for non-additive process noise.
8.5.1 Characterization of R-Adaptive estimators for non-additive noise
8.5.1.1. Object Tracking Problem

In this section, the performance of proposed filter has been evaluated using the object
tracking problem described in chapter 3 for the situation when measurement noise covariance

remains unknown and the noise is non-additive in nature. The equation for range

measurement presented by (3.22) in chapter 3 is changed as y, =\/M *(xje,+v,—H) .

However, process noise statistics is considered to be known and additive. With the help of
Monte Carlo study with 500 runs the RMS error for parameter and state estimates from the
proposed R adaptive Divided Difference filter for the non-additive measurement noise has
been presented. The performance comparison between the adaptive and non-adaptive version
of DDF is carried out in the situations when (a) both filters do not have the knowledge of R,
(b) ADDF does not have the knowledge of R while the non-adaptive DDF have knowledge
of R as in the ideal situation. For the case when R is unknown both the filters are initialized
with an assumed value of R. This value is chosen as 100 times of true R to induce sufficient
uncertainty in the choice of R. For sliding window based adaptation the window length is

chosen as 30 time instants.

To generate the true state trajectories of target, the truth value of initial kinematic states and
truth value of ballistic parameter are chosen as specified in chapter 3. Each filter has also

been initialized with Gaussian prior as an initial state vector.

Fig. 8.1, Fig. 8.2, Fig. 8.3 are provided to illustrate the RMS error for the state and the
parameter estimation obtained from ADDF and the non-adaptive DDF. When the
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measurement noise covariance is unknown performance of ADDF is significantly better than
the non-adaptive DDF as the RMSE for parameter and the states settle down to a lower
steady state value. ADDF can also accommodate an initial choice of R with a large error and

can make the adapted value of R to converge on the truth value.

It is also important to note that during steady state the RMSE performance of ADDF with
assumed R is comparably similar with DDF with known R (ideal situation). The initial
mismatch between the RMSE of ADDF and DDF with known R (ideal case) is because of
the time taken by the adapted R to converge on the truth value. This can be verified from Fig.

8.4.

Fig. 8.5 demonstrates the tracking performance of Adapted R when the truth value is time
varying. It can also be demonstrated from this observation that the satisfactory tracking of
unknown time varying R is also ensured by the algorithm of ADDF even when the

measurement equation is a nonlinear function of noise.

300

ADDF(R_filter=100"R_true)
250 - - - .DDF(R filter=100*R_true)
— - - DDF(R filter=R_true)

RMSE-altitude (m)

20 25 30

Fig. 8.1: Comparison of RMS error (altitude estimation) of ADDF & DDF for
500 MC runs
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Fig. 8.2: Comparison of RMS error (velocity estimation) of ADDF & DDF for
500 MC runs
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Fig. 8.3: Comparison of RMS error (parameter estimation) of ADDF & DDF
for 500 MC runs
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Fig. 8.5: Plot of adapted R when truth value is time varying
8.5.1.2. Bearing Only Tracking (BOT) Problem

The bearing only tracking problem which is described in chapter 3 demonstrates the situation
where the measurement noise becomes non-additive in nature. The non-additive noise is
approximated as an additive noise in the previous work [Sadhu2006]. This case study also
gives a scope to validate the R adaptive DDF and CKF with non-additive noise when the
measurement noise covariance remains unknown. The R is unknown and therefore has to be
assumed arbitrarily. Here, for simulation R for the filter is chosen as a value two decades
higher than the truth value of R to induce uncertainty in the initial choice. However, truth

value of R is used to simulate the true measurements. Both the adaptive and the non-adaptive
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filter are initialized with the assumed value of measurement noise covariance 1i.e.,

R, (0)=100%R,,, - The performances of the filters are evaluated on the basis of percentage of

track loss and the RMS errors. The track loss case is defined as the situation when the

estimation error of position at the time instant 20 is greater than 15 meter [Sadhu2006]. The

track loss cases are excluded from Monte Carlo runs during the calculation of RMS errors.

30

25

20 -

15 4

RMSE (position)

10 A

—— CKEF (Rfilter=100*Rtrue)
—e— ADDF (Rfilter(0)=100*Rtrue)
— - - ACKF5 (Rfilter(0)=100*Rtrue)

ACKF (Rfilter(0)=100*Rtrue)
CKEF (Rfilter=Rtrue)

10 15 20

time (sec)

Fig. 8.6: RMSE of position of ACKF, ADDF and non-adaptive CKF

0.6

RMSE (velocity)
o
~

0.5

0.4

0.3

ACKF (Rfilter(0)=100"Rtrue)
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—e— ADDF (Rifilter(0)=100"Rtrue)
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Fig. 8.7: RMSE of velocity of ACKF, ADDF and non-adaptive CKF
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Fig. 8.8: Plot of adapted R of ACKF (3™ degree) for element R(1,1)
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Fig. 8.9: Plot of adapted R of ACKF (3™ degree) for element R(2,2)
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Fig. 8.10: Plot of adapted R of ACKF 3™ degree) for element R(3,3)

It has been observed from the simulation results that the percentage of track loss is
significantly lower in case of R adaptive Cubature Kalman filter with 3™ degree accuracy
(RA-CKF 3™ degree) compared to its non-adaptive version when R remains unknown. The
RMSE (excluding the track loss cases) for the proposed filter converged to lower values
within lesser time compared to non-adaptive filter as shown in Fig. 8.6 and Fig. 8.7 for
position and velocity estimation respectively. This indicates that even when the track loss
cases are excluded from the non-adaptive filter cannot provide satisfactory estimation results
for other cases when track loss does not occur. As the track loss cases are excluded the
RMSE did not start from the same initial points in the respective figures.

The performance of RA-CKF (3" is compared with R adaptive Cubature Kalman filter with
5™ degree accuracy (RA-CKF 5" degree) and R adaptive DDF. Their RMSE (excluding the
track loss cases) are found comparable.

During the analysis of track loss cases it has been observed that the percentage of track loss
is 0.36% for RA-CKF (3™) while that for its non-adaptive version is 2.32%. The percentage
of track loss for RA-CKF (5™) is 0.34% which is comparably same with that for RA-CKF
(3"). The track loss percentage for R adaptive DDF with non-additive noise is found as 0.4%
which is slightly higher than RA-CKF (both 3 5™ degree).
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The performance of the RA-CKF (3™) with unknown noise covariance is also compared with
the non-adaptive filter in the ideal situation when the R is known. This comparison is carried
out to investigate how close the adaptive filter (with unknown R) can perform compared to
the non-adaptive filter in ideal situation with knowledge of R. It is found that the track loss
has not occurred at all for non-adaptive filter in ideal situation with known R. Note also that
the non-adaptive estimators (UKF and EKF) with known R reported in [Sadhu2006] track
loss has occurred as the additive approximation of measurement noise has been made. The
track loss cannot be overruled also for the proposed adaptive estimators with non-additive
noise. However, susceptibility of track loss is less for the adaptive estimators. So it may be
said that proposed adaptive filter without knowledge of R try to perform as good as the non-

adaptive filter in the ideal situation.

The plots of adapted R is presented in Fig. 8.8 to Fig. 8.10 where it has been observed that
the diagonal elements of adapted R converged to the corresponding truth values staring from
the assumed value and continue to track that value for the subsequent times. To investigate
the effect of the assumed initial choice of R on the adaptation performance of the proposed

RA-CKF (3"), R, (0)is chosen deliberately with higher and lower values with large errors

such as R, (0)=10**R,,, andRg, (0)=107*R,,, respectively. Although the assumed

values have a large error the adapted R has converged to the truth value. This indicates that

the proposed filters may accommodate a wide range of uncertainty in the initial choice of R.

The Bearing only tracking problem has been considered in a publication (mentioned in the
list of conference papers with serial number ‘8’, section 1.7.3, chapter 1) of the co worker,
Ms. Manasi Das wherein the present worker is a co-author. Adaptive UKF with non-additive
measurement noise has been proposed in that work and its performance has been compared
with Adaptive DDF for the non-additive measurement noise. More discussions on AUKF for
non-additive measurement noise are provided in the referred paper.
8.5.2 Characterization of Q adaptive DDF for non-additive noise
8.5.2.1. State estimation of Van der Pol’s oscillator

The Q adaptive DDF for non-additive process noise is validated with an estimation problem
wherein the states and the friction coefficient of Van der Pol’s oscillator are to be estimated.

The process noise is assumed to be unknown and also non-additive in nature. Instead of
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considering the noise term added directly with the state vector, square of the noise terms are
considered to be added with the 2™ state (x(2)) of the augmented state vector (x). This makes
the system dynamics a nonlinear function of process noise. This consideration may not be
realistic. Because of the paucity of the realistic model of systems with non-additive process
noise, such a model is considered as a toy problem for the validation of Q adaptive DDF with
non-additive noise. In reality the process noise are often non-additive in nature which are

difficult to model mathematically and therefore approximated as additive noise. The process
noise covariance is considered as Q,,, = diag([lO_4 10° 10° ) to simulate the true state
trajectories. The process noise covariance being unknown to the filter it is initialized here

with an assumed value for the filter. For this case study Q 4, is chosen as Q 4, = 10°xQ,..

5 10 15 20 — ADDF| 30
—DDF

0.1 1

RMSE- x1

time (sec)

0.01

Fig. 8.11: Comparison of RMS error (state, x; estimation) of ADDF & DDF for 1000 MC runs
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Fig. 8.12: Comparison of RMS error (state, x, estimation) of ADDF & DDF for 1000 MC runs
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Fig. 8.13: Comparison of RMS error (friction coefficient estimation) of ADDF & DDF for 1000 MC runs
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Fig. 8.17: Comparison of phase portrait of the DDF and ADDF estimates with that of true states

From the simulation results it is found that RMS error for both the states and the parameter
obtained from Adaptive DDF is much lower than its non-adaptive version. Fig. 8.11 — 8.13

are provided for illustration.

It is also observed that the tracking performance of Q is less accurate compared to the R
adaptive filters. The elements of adapted @ tend to converge on the corresponding truth
value, however, cannot track truth value satisfactorily. Fig. 8.14 — 8.16 are presented to
support the above statement.

In Fig. 8.17 the phase plane plot for a representative run is provided. It is found that the
estimate of ADDF although initialized with a point outside the limit cycle gradually
converges and retraces the limit cycle of the true state trajectory. The non-adaptive DDF, on

contrary, cannot converge on the actual limit cycle and shows a diverging tendency.
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8.6 Discussions and Conclusions

In this chapter algorithms for adaptive nonlinear filters have been proposed where the system

dynamics or the measurements are nonlinear function of states and noise with unknown noise

covariance. The adaptation algorithms for non-additive noise have been derived after

substantial modifications of the adaptation algorithm for additive noise. Proposed algorithms

are validated in simulation. Significant finding are enumerated below:

R adaptive DDF for non-additive measurement noise proposed in this chapter has
been validated with the object tracking problem in the presence of non-additive
measurement noise. RA-DDF is found to outperform its non-adaptive version when
the knowledge of the measurement noise covariance remains unavailable. During
steady state the performance of RA-DDF without knowledge of R is found to be
nearly comparable with non-adaptive DDF in the ideal situation where accurate value

of R is known only to the non-adaptive filter.

Performance of RA-DDF also has been compared with R Adaptive CKF (both 3" and
5" degree) which are formulated from the proposed general framework for adaptive
nonlinear filter with non-additive noise. The performance comparison is carried out
for the bearing only tracking problem where the measurement equation is indeed a
nonlinear function of state and measurement noise. It is observed that for this case
study that the performance of RA-CKF (both 3™ and 5™ degree) is comparable with
that RA-DDF on the basis of RMSE and percentage of track loss.

Q adaptive DDF for non-additive process noise proposed in this chapter is validated
with the estimation problem of Van der Pol’s oscillator. QA-DDF also found to

outperform its non-adaptive version in the face of unknown process noise covariance.

It has been observed from the simulation results that the adapted value of unknown
measurement noise covariance satisfactorily converges on the truth value and
continues to track it for subsequent time for non-additive measurement noise.
However, for non-additive process noise accuracy of Q tracking performance is not
satisfactory. Approximations made while deriving adaptation algorithms for Q may

be the reason behind such inaccuracy in the Q tracking performance. Nevertheless,

Chapter 8 226



State and Parameter Estimation for Dynamic Systems: Some Investigations

QA-DDF is better than non-adaptive DDF while compared on the basis of estimation

performance.

From the above observations it may be concluded that these newly designed adaptive
nonlinear filters for non-additive noise demonstrate superior estimation performance
compared to their non-adaptive counterpart and may be recommended as a suitable candidate
for estimation when noises are non-additive in nature and the noise covariance remain

unknown.
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Chapter 9: Adaptive Nonlinear Information Filters for
Multiple Sensor Fusion

9.1 Chapter Introduction

In this chapter a general filtering algorithm for adaptive nonlinear information filters is
proposed which is an extension of general framework for adaptive nonlinear estimators
presented in chapter 4. The Information filter variant of state estimators is widely
recommended for multiple sensor estimation as this particular variant of estimators is
computationally economic, supports decentralized sensor fusion, and easy to initialize

[Anderson1979, Whyte2008].

Sensor fusion is a conventional process where measurements from multiple sensors are
integrated to obtain sufficiently reliable and enriched estimate of the unmeasured states of the
system. Formulation of an estimation problem and its solution is one of the central aspects of
successful sensor fusion. Publications on non-adaptive nonlinear filters with information
filter configuration for nonlinear state estimation are plenty and indicate continued interest in
this form of filter ( e.g. Unscented information filters [Lee2008], Central Difference
information filters [Liu2011], Cubature information filters [Chandra2011]). More discussions

have been provided in the literature survey.

However, like other nonlinear filters with standard error covariance form, successful
performance of multiple sensor data fusion using information filters presupposes complete
knowledge of the covariance of the sensor noise and the system noise. An inaccurately
chosen initial value of noise covariance degrades the performance of the filter and the

estimates of state get deteriorated even after multiple sensor fusion.

The information filter configuration for adaptive nonlinear filters has not yet received much
attention. Formulation of adaptive information filtering techniques for nonlinear signal
models is, therefore, an evolving area of knowledge as it is mentioned in a recent review
paper on sensor fusion [Khalegi2013]. Only a few works exists in literature where adaptive
versions of nonlinear information filters have been reported. Among them, adaptive Cubature
Information filters [Tao2014, Ge2014] are noteworthy as discussed in the chapter on

literature survey.
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In this chapter the general framework of adaptive nonlinear filter in standard error covariance
form has been extended with information filter configuration. The same concept for
adaptation of process or measurement noise covariance as discussed in chapter 4 has been
followed here. The adaptation algorithms are integrated in the information filter algorithms
so that the unknown noise covariances can be adapted and the sensor fusion may become
successful. With this general framework a number of adaptive nonlinear information filters
have been formulated which include adaptive versions of (i) Divided Difference information
filter, (ii) Cubature information filter (3" & 5™ degree), (iii) Unscented information filter,
(iv) Gauss Hermite information filter, (v) Cubature Quadrature information filter (3rd & 5
degree).

Performances of these newly proposed algorithms have been validated with the help of multi
sensor estimation problem in contingent situations where the system (process) noise
covariance remains unknown; system dynamics suffers from unknown parameter variations.
Alternatively, situations are also considered where the knowledge of the noise covariances of
some of the sensors remains unavailable where the sensor characterization has been partially
done. During characterization of these estimators, parameter as well as state estimation

performance of the proposed estimators has been demonstrated.

The adaptive information filtering algorithms in square root framework are also proposed in
this chapter. The advantages of square root approach have already been explained in chapter
4 and are also applicable in case of information filters. With the R adaptation algorithms the
square root versions of (i) adaptive Cubature Quadrature information filters (RA-SR-CQIF),
(i1) adaptive Cubature information filters (RA-SR-CQF) and (iii) adaptive Gauss Hermite
information filters (RA-SR-GHIF) are demonstrated.

9.2 Problem Statement

We consider an augmented nonlinear dynamic system as given below

X =f (X)) +wy 9.1)
yi=85(x, )+vi 9.2)

Here x, € ®"is an augmented state vector, By the term augmented state vector, it is meant

that the unknown parameters have been concatenated with the state vector such that
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dimension of the augmented state vector is n. The difference equations corresponding to

unknown parameters @, are considered to obey the random walk model, i.e., 6, =6, , +w; ,
where w is the noise term. w, € R" ~ (0,0, ) indicates zero mean process noise (Gaussian

white noise). y: € R” is the measurement available from the ;*sensor among M different
sensors where ¢ =1,---, M . The measurement noise of each sensor is also considered to be

white (Gaussian) and denoted as, v € X" ~ (O,R;).

In the situation when the system dynamics suffers from modeling uncertainties or unknown
parameter variation complete knowledge of the process noise covariance often remains

unavailable. Some of the elements of @, remain unknown and therefore need to be adapted.

In some situations the noise covariances of some of the sensors may remain unavailable
where noise characterization has not been carried out. When Rf of { sensor among the

available M sensors remians unknown, adaptation of R becomes necessary for satisfactory

estimation.
9.3 Formulation of Adaptive Nonlinear Information Filter

9.3.1 Overview

Information filter for linear signal models is the inverse covariance form of Kalman filter
where the information vector and information matrix are propagated instead of state estimate
and its error covariance. The information matrix (Also known as Fisher’s information matrix)
is the inverse of the error covariance matrix. This specific form of estimation algorithm is
characterised by information matrix and information vector (termed as canonical parameters
in [Liu2012]). With the help of matrix inversion identities [Anderson1979] the information
filter variants of Kalman filter and Extended Kalman filter can be readily obtained. However,
the information filter form of the sigma point filter cannot be obtained using such matrix
inversion identities. The algorithms for information filters using sigma points are reported in
literature [Vercauteren2005, Lee2008] where some significant modifications of the algorithm

are essential.

Unlike the sigma point filters in standard error covariance form information filter variants

require availability of matrix approximation of nonlinear measurement equation which is not

Chapter 9 230



State and Parameter Estimation for Dynamic Systems: Some Investigations

readily available with nonlinear signal models other than Extended information filter (EIF).
Therefore, [Lee2008] has recommended computation of a pseudo measurement matrix with
the help of Statistical Linearization which enables to formulate the information filter variants
of nonlinear filters. In the following section algorithm of non-adaptive nonlinear information

filters has been presented.
9.3.2 Non-adaptive Nonlinear Information filter

The algorithm for non-adaptive nonlinear information filter has been provided this section.
Theorem 4.1 provided in chapter 4 regarding the non-adaptive nonlinear filter in standard
error covariance form has been considered again to derive the information filter variant of
estimator. The matrix inversion identities from [Anderson1979] are provided below and have

been used for obtaining the information filter variant of nonlinear estimators.

Matrix Inversion Identity 9.1:

(A+BD7Cc) =A"-A"B(D+CcA”'B) cA™
where Ae R, Be R™",Ce R, De R

Matrix Inversion Identity 9.2:

(A+BDC)'BD" =A"'B(D+CA'B)"
where Ae R, Be R™",Ce R, De R

From Theorem 4.1 given in chapter 4 we have:

X =X + Ky (v i) (9.3)

P, =P, -K, P’ K} (9.4)

where

X = If(xk—l )P(xk—1|Yk—1 )dxk—1 9.5)
R

P =0+ I(f(xk—1)—fk )(f(xk—l)_fk )T P(xk—1|Yk—1 )dxk—1 9.6)

R

Ve = [ 8l ple ¥, Jx, 9.7)

R

Chapter 9 231



State and Parameter Estimation for Dynamic Systems: Some Investigations

P” = I(f(xk )- X, )(g(xk )- Vi )Tp(xk‘Yk—I )dxk 9.8)
P = R+ J.(g(xk )_ Vi )(g(xk )_ Vi )Tp(xk|Yk_1 hxk 9.9)
K =p” ()" (9.10)

Here, we consider the pseudo measurement matrix of the nonlinear measurement equation as
defined in [Lee2008, Liu2011, Chandra2011] following the method of Statistical

Linearization. The pseudo measurement matrix ¥, is defined as

v, =B (9.11)
Using ¥,, P” and P; can be expressed as:

PY =P ! (9.12)
P! =R+¥. P Y, (9.13)

Therefore, the expression of filter gain becomes similar to that of Kalman filter, i.e.,

K, =p>(p )" (9.14)
K, =P ¥ [R+w B ) 9.15)
We have

The a posteriori error covariance , P, = P, - K, P? K , which can alternatively presented as
ﬁk:Fk_kay(Pky)il(kay)T (9.16)
It can also be expressed in terms of ¥, as

P,=P.-PY[R+¥Pv)'VpP, 9.17)

Z, =P (9.18)

=2, =B -Pv[R+wPv)' VB | 9.19)
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Using matrix inversion identity 9.1, the expression P, —P, ¥’ (R+%,P,%’) ¥ P, can be

written as (P, +¥/R™'¥,)" and Z, becomes

A

Z, =z +v'R'w,) (9.20)

Where z, indicates a priori information matrix,

Z, =P’ 9.21)

—z2, =P +¥'R'Y )%, +K, (y, -7, ))

=z =P +¥'R'Y )%, +(P+¥'R'P K (y, -7, )

=z, =P 'x +P' RV x, +(P'+P¢'R'Y)P¥Y R+¥.P ¥ )'(y,-5,)

=z, =P 'x, +P' RV x +(P +P'R'P P +¥'R'", )P R (y, -y, )
=2, =7, +VY/R'P,x, +P R 'y, -V/R'y,

Therefore, a posteriori information vector is obtained as

2, =7, +P/R'(y, -y,+V,X,) (9.22)

where z, , the a priori information vector is defined as z, = Z, x, (9.23)

The algorithm of non-adaptive information filter is presented (9.5) from (9.23) considering
g()=g ()
9.3.3 Adaptation algorithms

The methods of adaptation for process noise covariance and measurement noise covariance
have been presented in detail in chapter 4. The same adaptation algorithms can be reproduced

with the following considerations.
For the derivation of adaptation algorithms all the available measurements are to be
augmented to get an augmented measurement vector as y, =[y. y2 ... y“| with order

mM. Therefore, the corresponding measurement noise covariance becomes

R, =diag(R.,R?,....,R") and the augmented pseudo measurement matrix would appear as
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¥, =diag(¥.,¥?2,....w) ). Now, employing the innovation or residual sequence the following

adaptation steps can be derived in the same way as presented in chapter 4. In this chapter we
present only the adaptation algorithms instead of re-deriving them to avoid repetition.

9.3.3.1. Adaptation of Process Noise Covariance
The process noise covariance can be adapted using the window estimate of the state residual

where the state residual is defined as 5, = X, — X, or, §, = 2;'%, — Z,'%,

The adapted process noise covariance, after some approximation, becomes

0=t ¥lnai] ©.24)

Jj=k—L+1
9.3.3.2. Adaptation of Measurement Noise Covariance

The measurement noise covariance as discussed in chapter 4 can be adapted incorporating
innovation sequence as well as the residual sequence. However, the latter is preferred

because of its additional advantage of ensured positive definiteness. The innovation or, the
residual sequence for ¢ measurement is used for adaptation of {” measurement noise

covariance.

The adaptation step for measurement noise covariance using innovation sequence can be

presented as

se_ 1< ;( 4)7 P,
Ri=— 250 ~wPy, (9.25)

j=k—L+1
Where the innovation is defined as & = y; — y&

Alternatively, for residual based R adaptation the expression of the adapted measurement

noise covariance can be presented as

1 & R
R,f=z WATHER A (9.26)

j=k—L+1

where the residual is defined as p; = y; — y;

9.4 General Framework
The algorithm for adaptive nonlinear information filters is presented below in a general

framework so that different methods of sigma point and weight selection can be applied and
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subsequently the respective adaptive information filtering algorithm can be formulated.

Following the numerical methods sigma points are generated which are represented as ¢; and

w; in the algorithm where N denotes the number of points.

9.4.1 Algorithmic steps

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR INFORMATION FILTER

(i) Initialization: Initialize %,, P, ,Q, R}
(ii) Time update step (propagation):
Compute Cholesky Factor such that P_, =S, , (S‘ k1 )T

The points selected for propagation of mean and covariance are given below as

Xi =84, %,

Compute a priori estimate of state as

N
X = Z S ow,

i=1
and respective a priori error covariance is obtained as
_ _ N
P =0+Ylr@o-%)r@o-x) w

i=l

The a priori information matrix is obtained as

Z, =

-1
k

~

The a priori information vector becomes zZ, = Z, X,
(iii) Measurement update step:

Compute the Cholesky Factor such that P, = S, (§ X )T

Select sigma points as x; =S, ¢; + X,

The a priori estimate of measurement becomes
£\ e
yi=>.8" T w,
i=1

The cross covariance can be computed as

Chapter 9
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N
B =2 -5 e -5 w (9.36)

The pseudo measurement matrix becomes

vi=(p)' P” 9.37)

The a posteriori of information matrix is

Z, =P (9.38)
Where P =P + (¢ ) (RE )" wé (9.39)

The a posteriori estimate of information vector is obtained as

b=+ (0 (RE) i - 3f +9ix,) (9.40)
Therefore, the a posteriori estimate of state becomes

%, =217, (9.41)

(iv) Q-Adaptation Steps:

When @ is unknown, on contrary, R is known, i.e., R = R; the steps for Q adaptation have
to be executed after replacing Q = Qk_l in (9.30) of the time update steps

Compute the state residual sequence as

=X, —-X, (9.42)

The estimated residual covariance can be computed from a sliding window of length L

N k
Cl=— > n(iu () (9.43)

1
L;
The adaptation step for Qk is given by

A

0,=C} (9.44)

(v) R-Adaptation Steps:

When noise covariance of ¢ ™ sensor is unknown, on contrary, @ is known, i.e., (_2 =Q the
steps for R adaptation are to be executed replacing R/ = IAi,f_ ; 10 (9.39) and (9.40)

Innovation based R adaptation:
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Compute the innovation sequence as
%=y - (9.45)

The estimated residual covariance can be computed from a sliding window of length L

Amﬁ% AN AN (9.46)

Jj=k—-L+1

The expression of adapted R is given by

R =C, - P} (9.47)

where

=g N

PE=> (G- Nef -5 w, (9.48)
i=1

Residual based R adaptation:

Compute the residual sequence as

P =yi—Ji ©.49)
where
N A
:ch(xi )Wi (950)
i=1

The estimated residual covariance can be computed from a sliding window of length L

=— > ot (of () (9.51)

/k —L+1

The expression of adapted R

R =C! + P} (9.52)
EZZ@“” N zo-5 w (9.54)

(vi) Recursion: The time update and measurement update steps are repeated for obtaining the

estimates for the subsequent time steps starting from k=1.
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9.4.2 Multiple Sensor Fusion
Estimation using multiple measurements is preferred for obtaining a reliable estimate using

the algorithm of adaptive information filter. Information filters supports decentralized
approach of multiple sensor estimation which does not require central processing unit and

increases the reliability of sensor fusion even in face of sensor failures.

The updated information vector and information matrix after fusion is obtained as a linear

combination of the local information contribution terms as given by:

M
to=z 4> of (9.55)
¢=1
R _ M
2,=Z,+) ®f (9.56)
¢=1

Here, for ¢ ™ sensor, the local contribution for information vector and information matrix are

obtained from the above algorithm as

of =) (&) (0 iz (9.57)

of =(wf) (R)'wf (9.58)
Finally the updated estimates of systems state and error covariance matrix after multi sensor

data fusion are obtained as

%, = ZAI:,zAk (9.59)
where,
ﬁk =7 h (9.60)

9.4.3 Choice of Sigma Points and Weights

In this section the possible set of sigma points and weights are presented which can be
selected based on numerical methods. These sigma points and weights can be applied in the
general algorithm to formulate variants of adaptive sigma point information filters.
Depending on the choice of sigma points and weights, the general algorithm presents
adaptive versions of (i) Unscented Information filter (ii) Divided Difference Information
filter (iii) Gauss Hermite Information filters and (iv) Cubature Information filter (3“]1 degree
and 5" degree) (v) Cubature Quadrature Information filter (3rd degree and 5t degree).

Adaptive sigma point filters developed in standard error covariance have been presented in

Chapter 9 238



State and Parameter Estimation for Dynamic Systems: Some Investigations

the previous chapters where the numerical methods for selection of sigma points have been

discussed in detail. Here we present only the steps for selection of the sigma point using

different approaches.

94.3.1. Unscented Transformation Rule

Following the unscented transformation rule [Julier2004], 2rn+1 number of sigma points and

the corresponding weights can be generated as given below. We select the points for a

Gaussian distribution with zero mean and unity covariance. These points will undergo a scale

change and origin shift to suit the steps of general algorithm.

TABLE-9.1: SELECTION OF SIGMA POINTS & WEIGHTS

Steps for generation of sigma points:

FOI‘ l=0, q0 :0;
q; =e,—\/m fori=1,---,n
4oy e FE for i=Loom

. .th :
Here, e, is the /" unit vector,

Where (i) 4= (0{2 - 1)n ,a=0.6, f=2 [Merwe2003]or (ii) A =3—n [Julier2000]

Steps for weight selection:

The weights corresponding to the sigma points, g; are
m ﬂ‘ . c ﬂ‘

. 1
W= e = +d-a’+pB) and w'" =w =——— for,i=0.
" n+ A n+A ( p) 2(’“‘/1)

Where (i) A= (0{2 - l)n ,a=0.6, f=2 [Merwe2003]or (ii) A =3—n [Julier2000]
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9.4.3.2. Gauss Hermite Quadrature Rule

Gauss Hermite quadrature rule as in [[to2000] is presented in Table 9.2.

TABLE-9.2: SELECTION OF QUADRATURE POINTS & WEIGHTS

Steps for generation of quadrature Points:

ComputeJ, a symmetric tri-diagonal, defined asJ,; =0 andJ,,,, = \/% for 1<i< N —1for

i,i+1

N -quadrature points.

The quadrature points are chosen as g, = \/Exl. where x, are the eigen values of J matrix.

Steps for weight selection:

The corresponding weights (w,) of g, 1s computed as |(vl. )l|2where (V; )1 is the first element of
the i normalized eigenvector of J

For multi dimensional system the quadrature points and weights are obtained with the help of

direct tensor product rule as mentioned in chapter 6.

9.4.3.3. Cubature Rule

The third degree cubature rule as in [Arasaratnam2009] is presented in Table 9.3.1.

TABLE-9.3.1: SELECTION OF CUBATURE POINTS & WEIGHTS

Steps for generation of cubature points:

2n number of cubature points have been selected as
q; :ei\/; fori=1,---,n
q,.: =—ei\/; fori=1,---,n

. .th .
Here, e, is the /" unit vector

Steps for weight selection:

The weights of the corresponding cubature points are considered as

w, =i for,i # 0.
2n

The above points are selected based on cubature rule with third degree accuracy.
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We can also get the points from the fifth degree cubature rule following [Jia2013] as given in

Table 9.3.2.

TABLE 9.3.2: SELECTION OF CUBATURE POINTS & WEIGHTS

Cubature Points (g;)

Weights (w;)

’ wy = for n=0
+n
e;Nn+2 An '
For each case w, = - fori=1, ..., n
2(2+n)
siln+2
—s;n+2 1 ‘ o
For each case w, =—— i=1,---,75
s7An+2 (2+n)
s;Vn+2

are generated as
s; :\/%(ei +e,): j<l jl=1
Si :\/%(ei_el):j<l’j,l:1""

,n
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9.4.3.4. Cubature Quadrature Rule

Cubature Quadrature rule (third degree accuracy) as in [Bhaumik2013] can be employed to

obtain points and weights as given in Table 9.4.1.

TABLE-9.4.1: SELECTION OF CUBATURE QUADRATURE POINTS & WEIGHTS

Steps for generation of cubature points:

2nn’ number of cubature quadrature points are to be selected as

Where ¢; =,/24; e,

The cubature points located at the intersection of the unit hyper-sphere and its axes.

For 3" degree approximation rule e, can be obtained as:

e.=¢, fork=1, ..., nand e, =—e, for k=n+1, ..., 2n where e, is the k" unit vector.
A; is the solution of n™ order Chebyshev-Laguerre polynomial witha =n/2—1:
=2 =2 + o)™ + 2 @) +a—1)A 2 = =0

Here, i =1,2,...,2nn", j=1,2,...,n"and k=1,2,...,2n

Steps for weight selection:

The corresponding weights are obtained as
oo 1 W'C(a+n+1)
i ° o D
2n0(n/2) - 4, |i(a,)
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Cubature Quadrature rule (with fifth degree accuracy) as in [Singh2015] can be employed to

obtain points and weights as given in Table 9.4.2.

TABLE-9.4.2: SELECTION OF CUBATURE QUADRATURE POINTS & WEIGHTS

Intermediate Points (g, ) Intermediate Weights (w,)
e, —e; For each case w! :M fori=1, ..., nwhere A = 2\/;
2n(n+2 " ()
+ +
§; 5 —8; s An . n(n=-1) _ 2N 7"
For each case w = i=1,---,/5~ where A = -
s;, =S, n(n+2) F(E)
s; and s; are generated as
s; =\/§(e,. +e,):j<l,j,l=1,--~,n
S; =\/%(ei —e,):j<l,j,l=1,--~,n
Cubature Quadrature Points (&, ) Weights (@, )
€24, . —e. 24, W, @,

s:m,—s:m W, @,
s{\/27/1j,—s{\/27/1j w, @,

A; is the solution of n™ order Chebyshev-Laguerre polynomial withar =n/2—-1.

=2 =2 + o) + 2 @) + 1) = =0

And the corresponding weights are obtained as

1 n'T(a+n"+1)

N0

Here, i=1:+2n% j=Ln’ and k=1 2nn

@'J.:Z
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9.4.3.5. Divided Difference Interpolation formula

The Divided Difference filter is based on Taylor series approximation of nonlinear functions

using Stirling’s Divided Difference Interpolation formula. Therefore the algorithmic steps are

different from that of the Bayesian approach where the integrals are numerically

approximated. Nevertheless the concept of Divided Difference filter has similarity with the

Bayesian approach. The algorithm based on Divided Difference rule cannot be obtained

directly from the general algorithm presented above. However, the algorithm of DDF can be

adjusted and expressed in terms of points and weights as presented in [Liu2012] which

partially matches with the general algorithm apart from the step for the computation of error

covariance. The step for the propagation of covariance should be followed as stated below.

TABLE-9.5: SELECTION OF SIGMA POINTS & WEIGHTS

Sigma Points and weights for computation of Mean

Sigma Points (g,) Weights (w,)
2 —
0 w0=hh2n for n=0
he;
W, =— fori=1, ... ,n
— he, 2h

Sigma Points and weights for computation of Covariance

Sigma Points (g,) Weights (w,)

5! =g(f+h\/?ei)—g(f—h\/?ei) w! =1/4h*

52 =gl +Pe )+ gl¥ - /Pe, - 26 (%) w? = 1)/ 4’

A random variable with mean X and covariance P when propagated through a nonlinear
function g(-) the covariance is obtained after transformation using the step (different from

general algorithm) as given by, P = Zn: wst(s!) + Zn: w2s2(s2)
i=1 i=1

These steps are to be used in the general algorithm while computing the error covariances.

The mean on contrary can be obtained using the formula given in general approach.
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9.4.4 Notes

The general framework for adaptive nonlinear information filter is suitable for
Unscented Transform, Gauss Hermite quadrature rule, Cubature rule, Cubature
quadrature rule which are for numerical approximation of Gaussian integrals
encountered in general framework developed on the basis of Bayesian approach. The
Divided Difference interpolation formula, on contrary, follows the approach of Taylor
series approximation and therefore differs in the algorithmic steps from that of the
other methods. In the chapter on adaptive divided difference filter estimation
algorithms for the standard error covariance form have been presented individually.
However, in this chapter we have included the algorithm of adaptive divided
difference information filter in the general algorithm with some significant

modification in the step for computation of the error covariances.
It is to be noted that the adaptation of measurement noise covariance is to be executed
separately (ﬁf ,¢ =1,---,M) for each sensors when the noise covariance of all of the

sensors are unavailable. However, when the designer has the knowledge of the noise
covariances of some of the sensors, adaptation steps for those sensors need not to be

executed and only those covariances which are unknown should be adapted.

9.5 Square Root version

The square root approach for conventional error covariance form has been proposed in

chapter 4. In this section general framework for adaptive nonlinear information filters in the

square root framework has been proposed. Use of square root approach ensures positive

definiteness of error covariance and adapted noise covariances. The rationale for following

the square root approach has been discussed before and also applicable for the information

filter configuration. The algorithmic steps are provided below.
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9.5.1 Algorithm

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS IN SQUARE ROOT FORM

(i) Initialization: Tnitialize %,,S,, 2, (S*f
(ii) Time update step:
For the particular mean and covariance modify the selected points for standard normal
distribution as 7, =S, , q, + %,_, (9.61)
N
Compute X, = Zf(f(,- W, (9.62)
i=1
Compute the weighted, centred (a posteriori estimate of previous instant is subtracted off)

matrix S, such that for i=1,2,---,N, i" element of S, becomes

(s:) =(r G- 2w 9.63)
The estimate of the square root of a priori error covariance is obtained as

S, :Triangularize([S,f S2 ]) (9.64)
The information vector can be obtained as

7, =878 'x, (9.65)
The square root of the a priori information matrix is obtained as

Sl = Triangularize(§ k_ l) (9.66)

(iii) Measurement update step:

Select sigma points as x; =S, ¢; + X, (9.67)

The a priori estimate of measurement becomes
N

i =28 w, (9.68)
i=1

Compute the weighted, centred (a priori estimate of measurement is subtracted off) matrix

S! such that fori=1,2,---,N, i" element of S, becomes

(s7) =(e G- yE)Ww (9.69)
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Compute the weighted, centred (a priori estimate of state is subtracted off) matrix S, such

that for i =1,2,---,N i" element of S ,f becomes

(s7) =z - % w (9.70)

The cross covariance can be computed as follows

xz o x Y
(=) =sglsyf 0.71)
Define the matrix, A,f as
—_ o — — T
A4 =575 (P F 5] 9.72)
The a posteriori estimate of information vector is obtained as
_ 1 _ . _
L =7 +A£[(S:)4} (ylf_ylf-i_[(Pk ){]’Zk) (9.73)
The square root of the a posteriori estimate of information matrix becomes
$? = cholupdate(S, , A +) (9.74)

The square root of the corresponding error covariance matrix
A . . Yl
S, = Triangularize (Sk ) (9.75)
Hence the a posteriori estimate of state becomes
%, =S,2, (9.76)
(iv) Q-Adaptation Steps:
When Q is unknown, on contrary, R is known, i.e.,S¥ =SX, replace S2 by S2, (the

adapted standard deviation of Q of previous instant) in (9.64). Then the following steps are to

be executed for adaptation of square root of process noise covariance.

Compute the state residual sequence as

N, =X, -X 9.77)
Compute the matrix from the state residual sequence as

St=VL [ k=L+1) - 5 (k)] 9.78)
where L denotes the window length.

The adapted square root of process noise covariance S is obtained as
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$2 = Triangularize(S ) (9.80)
(v) R-Adaptation Steps:

When R is unknown, on contrary, Q is known, i.e., S2 =82 replace SF by SX, (the

adapted standard deviation of R of previous instant) in (9.72) and (9.73). Then the following

steps are to be executed for adaptation of the square root of measurement noise covariance.
Select sigma points as 77 = S, g, + £, (9.81)

Compute a posteriori estimate of measurement as
¢ N ¢
N A+
ye=>.8GHw, (9.82)
i=1

Compute the weighted, centered (a posteriori estimate of measurement is subtracted off)

matrix (S,;v )4 such that for i =1,2,---, N, i" element of (S ,f )4 becomes

(9% =(ef -5 W (9.83)
Compute the residual sequence as given by

i = -5 ©.84
Compute the matrix from the residual sequence as

(se¥ =L lpfle—2+1) - pf(k) (9.85)

where L denotes the window length.

The estimate of the square root of measurement noise covariance is obtained as
Sk = Triangularize(l(S J )4 (S g )gl) (9.86)

(vi) Recursion: The time update and measurement update steps are repeated for obtaining the

estimates for the subsequent time steps starting from k=1.
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9.5.2 Multiple Sensor Fusion

The information contribution of {” sensor is denoted as
_ 1
¢£=Aﬂ@ff}fﬁ—ii+bffr@j 9.87)

The contributions of all the sensors starting from ¢ =1,---,M are fused to obtain a more

reliable estimate as
M

=z + ) (9.88)
=l

The information matrix contribution for the {” sensor is A . After multiple sensor fusion

the square root of the a posteriori information matrix is obtained as
$7 = cholupdate(S, , [4! - A"]+) (9.89)
9.5.3 Notes

In the algorithm of adaptive information filters in square root approach the matrix inversion
steps may be replaced by backward substitution symbolized by ‘/° as the latter is
computationally economic. Unlike the standard error covariance form in case of square root
approach the triangular matrix is obtained from the QR factorization. On the availability of
the square upper triangular matrix one can follow the method of back substitution instead of

matrix inversion to reduce the computational burden.

Note that only residual based R adaptation algorithm is presented in the square root approach
as it supports adaptation of the standard deviation of R by ‘triangularization’. This cannot be
done for innovation based R adaptation as ‘cholupdate’ is required for subtraction. The

intuition of the present worker says that here also the singularity problems cannot be avoided.

The algorithm provided above is for the sigma point rule which have non negative weights
like, Gauss Hermite quadrature rule, 31 degree Cubature rule, Cubature quadrature rule.
However, for scaled Unscented transformation rule, 5t degree cubature rule this algorithm
cannot be applied and a modification using the “cholupdate” has to be incorporated for the
negative weights. In this dissertation square root version for UT rule and 5™ degree cubature
rule are not presented as these algorithm may suffer from the loss of positive definiteness in

some situations [Liu2012].
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9.6 Characterization of proposed algorithms

The proposed filtering algorithms have been evaluated with the help of two different multiple
sensor estimation problems in simulation. The situations have been considered where either
noise covariances of some sensors are unavailable or the process noise covariance
unavailable due to modelling uncertainty or unknown parameter variation. In the first case a
ballistic object tracking problem has been considered which is to be tracked by multiple
radars. In second case a tracking problem is considered where a maneuvering aircraft has to

be tracked using measurements from multiple tracking radars.

9.6.1 Ballistic Object Tracking Problem

The tracking of a ballistic object during re-entry phase has been described in chapter 3. Q
adaptive versions of UIF, DDIF and R adaptive DDIF have been evaluated considering this
problem where the object is being tracked by multiple tracking radars at different locations in
the atmosphere. Only range measurements have been considered to be available from these
radars. The simulation results illustrate that the proposed adaptive information filters work
satisfactorily and make sensor fusion successful in the face of unknown process noise

covariance.
9.6.1.1. Demonstration of Q adaptive UIF and DDIF

To generate the true state trajectories of object, the truth value of initial kinematic states and
the ballistic parameter are chosen following [Norgaard2000] as specified in chapter 3. The

necessary parameters for the filters are also provided in same table. The process noise
covariance is considered to be unknown in this problem. Therefore Q0 is initialized
arbitrarily with an assumed value with large error.

The plots of RMS values of estimation errors of altitude, velocity and ballistic parameter of
the object have been compared for ADDIF, AUIF and non-adaptive UIF from Fig. 9.1, Fig.

9.2 and Fig. 9.3 respectively. Because of the assumption of unavailability of process noise
covariance both the filters are initialized with a value of Q0 with a large error compared to
the true Q as mentioned above. Specifically, for this case study initial value of Q is chosen as
Q0 =10’xQ,,, . For adaptive filters choice of sliding window length is considered to be 10

time instants. From the Monte Carlo simulation it has been found that for all three cases
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convergence of the RMS errors of AUIF is better compared to its non-adaptive version and
the steady state value is also lower for the proposed AUIF. The performance of ADDIF is
comparably same with AUIF. ADDIF like AUIF presents satisfactory estimation and capable

of online adaptation of unknown noise process covariance.

For a representative run, Fig. 9.4 shows the plot of Q,.,, (3,3)and Qk (3,3) for AUIF. It is
observed that even though Q is initialized with an arbitrary initial choice with large error,
(Qo =10’xQ,,, ), the Adapted Qk (3,3) converges on the truth value and continues to track it.
However, time for this convergence is considerably high, near about 30 sec.

Note that the RMSE of adaptive information filters are also compared with Non-adaptive
UIF in the ideal situation when Q is accurately known. It is observed that the plots of RMSE
for adaptive information filters become comparable with those for non-adaptive UIF after 30
sec. The delay in convergence of adapted Q is the reason for the initial mismatch in the plots

of RMSE.

The initial rise in the RMSE about 10 sec is because of the influence of the drag during
reentry. As the object enters the atmosphere it experiences drag and system nonlinearity
becomes pronounced. As a consequence, the RMSE of all the filters (both adaptive and non-

adaptive) tend to rise temporarily before they finally settle down to a lower value.

10000
—— AUIF(unknown Q)
e — — UIF(unknown Q)
£ 1000 - —-—-- UIF(known Q)
§ ——— ADDIF(unknown Q)
T 100 | e e e
e SYWrredey
) T
%’ __________________________
o 10 1
1 T T T T T

0 10 20 30 40 50 60

time (sec)

Fig. 9.1: Comparison of RMSE (altitude) of AUIF, ADDIF & DDIF for 1000 MC runs
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Fig. 9.3: Comparison of RMSE (ballistic parameter) of AUIF, ADDIF & DDIF for 1000 MC runs
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Fig. 9.2: Comparison of RMSE (velocity) of AUIF, ADDIF & DDIF for 1000 MC runs

time (sec)

1

10

20 30 40 50 6

e AUIF (unknown Q)
— — UIF(unknown Q)
—-—--UIF(known Q)
- ADDIF(unknown Q)

— 01 -

£

3 0.01

[}

E

s

g 0001

S

& 0.0001

[72]

=

T 0.00001
0.000001

time (sec)

1.00E-02 ; : ‘ ‘ ‘
10 20 30 40 50 60
[—atrue33) |
& 1.00E-05 | | —Qadapted(3,3)
L)
o
o
2
g
3 1.00E-08 -
<
©
c
[
)
= 1.00E-11 n
q
1.00E-14
time (sec)

Fig. 4: Plot of estimated process noise covariance (Q33) for a representative run
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9.6.1.2. Demonstration of R- Adaptive DDIF

In this section the performance of R adaptive DDIF is presented. The object tracking problem
is considered again and assumed that it is assumed that some sensor remains uncharacterised
and their noise covariances remain unknown. When the measurement noise covariance of

any of the sensors remains unknown, that particular Rf is initialized arbitrarily with an
optimistic choice of R . The term optimistic choice signifies the initialization of the filter
with a sufficient low value of R} so that the measurement of that particular sensor may not

get underweighted. This optimistic choice, however, may affect the estimation performance

when there is sufficient discrepancy between the true value of R{ and the optimistic choice of
R,f (Rfiier) for filter initialization. However, initialization of R (Rfitrer) with a higher value

will not always deteriorate the estimation performance during multi sensor estimation as this
choice underweights that particular measurement and consequently ignore that measurement.
It is, therefore, not recommended to initialize the unknown covariance with a higher value as
such a choice contradicts the concept of the reliability of sensor fusion underweighting those

measurements.

The Ryiyer for the unknown sensor noise covariance is assigned with a sub multiple of ten so
that the choice is an optimistic one. For this particular case study Rpy. for radar 1 is
considered to be two decade lower than the true R. Window length is chosen as 100. For this
case study an initial stop time equal with window length is set. The justification for this stop
time is given below. Initially (during first 10 second of the descend) the object remains in
exo atmospheric zone. In this zone the influence of drag is negligible and the ballistic
parameter, therefore, cannot be estimated satisfactorily. Consequently the residual or
innovation from filter loses the whiteness and adaptation may not be accurate. A stop time in
adaptation may therefore be suggested for ballistic object tracking problem. Otherwise
because of fading memory due to sliding window based adaptation, this error can it will
affect detrimentally the adapted value. An alternative way is to choose a low window size so

that the memory gets faded quickly.
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Fig. 9.5: Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs
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Fig. 9.8: Plot of true and adapted R for a representative run

The plots of RMS values of estimation errors of altitude, velocity and ballistic parameter of
the object have been compared for both adaptive and non-adaptive DDIF. From 1000 Monte
Carlo simulation it has been found that the RMSE of ADDIF has converged to a lower value
compared to that of non-adaptive DDIF. Both the filter have been initialized with
measurement noise covariance different from that of the truth value. Fig. 9.5 — 9.7 are

presented in support of the above statement.

In case of multiple sensor fusion problem situations may arise when the noise covariances of
one or more sensors remain unknown. The above results are presented for the case when the
noise covariance of only one of the measurements is unknown. In this context it can be
inferred from the observation that the non-adaptive DDIF cannot present satisfactory
estimation performance even when the measurement noise covariance of only one of the
measurements is unknown and initialized with an assumed choice of R. This limitation can
be overcome by employing ADDIF which can adapt the unknown noise covariance and

ensures satisfactory estimation.

The same study may be repeated for the situation when prior knowledge about measurement
noise covariances for more than one measurement remains unavailable. In those situations it

would be observed that ADDIF excels over non-adaptive DDIF.

For a representative run the true and adapted measurement noise covariance for the particular

measurement has been presented by Fig. 9.8 to demonstrate that even though initialized with
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an assumed choice of R, the Adapted R converges on the truth value and tracks it for

subsequent times.

The ballistic object tracking problem is considered again to characterize ADDIF in presence
of a biased measurement. Here also it would be shown that ADDIF outperforms non-adaptive
DDIF. A level bias of 10000 ft has been introduced in the measurement received from the
second radar at the instant of 20 sec. The performance of the filter is presented by the Fig. 9.9
to Fig. 9.12.

It is observed from Fig. 9.9- 9.11 that the RMSE of ADDIF is at a lower value than that of
non-adaptive DDIF. It is also to be noted from Fig. 9.12 that when the bias is introduced in
the measurement at the instant of 20 sec the adapted R corresponding to the biased
measurement rises to a higher value so that the biased measurement gets under weighted until
the bias present in that measurement. Thus ADDIF always ensures improved estimation
performance ignoring the biased measurement. The non-adaptive version cannot underweight

that measurement as the scope of R adaptation is not present there.
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Fig. 9.9: Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs
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Fig. 9.12: Plot of adapted R for the faulty measurement (for a representative run)

9.6.2 Aircraft Tracking Problem
9.6.2.1. Demonstration of Q adaptive information filters

The aircraft tracking problem described in chapter 3 has been considered as a case study for
evaluation of @ adaptive information filers. The situation is considered where an aircraft
maneuvering with an unknown time varying turn rate has to be tracked with multiple radars.
The unknown variation of turn rate cannot be modelled appropriately and therefore induces
parametric uncertainty in the system dynamics. It may also be considered that element of the
process noise covariance associated with turn rate remains unknown for this situation. Q
adaptive information filers are employed for successful sensor fusion in this case study. As
the other elements of @ are known, only the unknown element needs to be adapted while
other should remain same as the truth value. This may be executed by the partial adaptation

of Q which has also been illustrated in chapter 6. For this case study Q(5,5)is adapted. The
0(5,5) being unknown, it is arbitrarily initialized as 20 times of (0 (5,5). The window size
is taken as 10.

From the Monte Carlo simulation with 10000 runs, performance of Q adaptive versions of
GHIF, CQIF, CIF and DDIF is compared with that of their non-adaptive version in the
situation when the turn rate of the aircraft is unknown. In each case it is observed that

estimation performance of adaptive filter is superior compared to the non-adaptive version.
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RMSE plots for different estimators are presented for illustration. Note that the RMSE plots
are presented excluding the cases where track loss occurs. The occurrence of track loss has
been explained and demonstrated in chapter 3. During tracking of the aircraft which is
executing a maneuvering turn the estimators are susceptible to lose the track for bearing only
measurements in some cases. Note that track losses cannot be over ruled even for the ideal
situations when the filter is properly tuned with prior knowledge of all the noise covariances.
The percentage of track losses helps to analyze the performances of the filters in a
quantitative way. Lesser the tendency of track loss more accuracy the estimator has. Table

9.7 presents the percentage of track losses for the above estimators.

It has been observed from Fig. 9.13, Fig. 9.14, Fig. 9.15 that the performance of adaptive
information filters are substantially superior to that of non-adaptive counter parts as the
RMSE for all three states converged to a lower steady state value within reasonably less time.
Fig. 9.13 presents RMSE of adaptive and non-adaptive GHIF for position estimation. Fig.
9.14 presents the RMSE of adaptive and non-adaptive CIF (3rd degree) for velocity
estimation and Fig. 9.15 depicts the RMSE of adaptive and non-adaptive CQIF for turn rate
estimation. It is important to note that although the elements of Q related to position and
velocity are known RMSE of position and velocity for the non-adaptive filters are
deteriorated because of the implicit effect of inadequately estimated turn rate.

As the proposed filters are validated in simulation, it is also possible to compare the RMSE
performance of proposed filters with their non-adaptive counterpart in the ideal situation
where O, (5,5) is known only to the non-adaptive version. This comparison illumines how
far the performance of adaptive filters (without complete knowledge of Q) is close to that of
conventional non-adaptive filter in ideal situation with known Q. It is demonstrated that the
RMSE of adaptive filters for all the states are nearly comparable to the nature of RMSE of
non-adaptive filter in ideal condition. The initial mismatch in RMSE is because of the time
taken for adapted element of Q to converge on the truth value which has been shown in Fig.
9.16.

Fig. 9.16 illustrates the Q adaptation performance of the adaptive filters. For all of the

proposed information filters the adapted value of Q,,,, (5,5) converged to the truth value even
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though initialized with an erroneous assumed value. The adapted value converges with 30 sec

approximately and continues to track the truth value.

The performance comparison of the proposed Q adaptive information filters, viz., QA-DDIF,
QA-CIF (3rd degree), QA-GHIF, and QA-CQIF (3rd degree) has been carried out on the

basis of RMS errors and percentage of track loss out of 10000 Monte Carlo runs.

It has been observed from the RMSE plot of position estimation in Fig. 9.17 (excluding the
track loss case) that the RMSE of proposed adaptive filters are performance wise
comparable. Same trend is observed for velocity and turn rate estimation and are not
presented to avoid repetition. However, on the basis of track loss performance given by Table
9.6 it may be commented that AGHIF and ACQIF are better alternatives than ADDIF and
ACIF as they indicate less percentage of track loss. It is also to be noted here that although
AGHIF and ACQIF are performance wise equivalent the latter is computationally less
expensive as it uses comparatively less number of quadrature points. It is mentioned in the
previous chapters that the quadrature points for AGHIF rises exponentially with the system
dimension. On contrary, the quadrature points for ACQIF rises linearly with the system

dimension.
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Fig. 9.13: Comparison of RMSE (position estimation) of AGHIF & GHIF for 10000 MC runs
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Fig. 9.14: Comparison of RMSE (velocity estimation) of ACIF & CIF for 10000 MC runs
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Fig. 9.15: Comparison of RMSE (turn rate estimation) of ACQIF & CQIF for 10000 MC runs
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TABLE-9.6 : Comparative study of %-age of track loss form Q adaptive information filters

Percentage of track loss for

Underlying — :
framework ~ Adaptive filter — Non-adaptive Non-adaptive filter with known Q
used with unknown filter with (ideal)
0 unknown Q
CIF 1.02% 4.10% 0.91%
DDIF 1.14% 4.17% 0.97%
GHIF 0.84% 3.67% 0.64%
CQIF 0.86% 3.69% 0.64%
9.6.2.2. Demonstration of R adaptive information filters

The aircraft tracking problem has also been considered where the knowledge of noise
covariance of the bearing measurement from one of the tracking radar remains unavailable.
The filter is initialized with Rpgyer (an optimistic choice of R is made as discussed before).
Ryieer for radar 1 is considered as 20 times lower than the truth value and the window size is

taken as 25. Rest of the parameters remain the same as given in chapter 3.

In this case study we have compared the performance of R adaptive sigma point information
filters, viz., RA-DDIF, RA-UIF, RA-GHIF, RA-CIF (5" degree) and RA-HCQIF (5"
degree). The performance is compared on the basis of and percentage of track loss. RMSE

are presented in Fig. 9.18 -9.20 excluding the cases where track losses had occurred.

It has been observed from the RMSE of position and velocity that the RMSE of RA-DDIF
and RA-UIF are performance wise equivalent. However, RMSE of RA-GHIF, RA-CIF (Sth
degree) and RA-CQIF (5" degree) is slightly less than that for other filters for both position
and velocity. Nevertheless RMSE the plots are found comparable from the figures for all the
estimators. The performance accuracy of the estimators can therefore be compared on the
basis of percentage of track loss given in Table 9.7. The percentage of track loss for RA-
GHIF, RA-CQIF (5™ degree) and RA-CIF (5" degree) are comparably same and significantly
less than that for RA-UIF and RA-DDIF among 10000 Monte Carlo runs.

It is also to be noted that among RA-GHIF, RA-HCQIF (5th degree) and RA-CIF (5th degree)
the latter is computationally less expensive as it uses less number of points compared to the

other two estimators. For a single run an average computation time for RA-CIF (5" degree)
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and RA-HCQIF (5" degree) are 26.13% and 64.71% of the average computation time for
RA-GHIF respectively. The simulations are carried out using MATLAB (version 7.9.0.529)
in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM.
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Fig. 9.18: Comparison of RMS error (position estimation) of ACIF, AGHIF,
ADDIF, AUIF, AHCQIF for 10000 MC runs
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Fig. 9.19: Comparison of RMS error (velocity estimation) of ACIF, AGHIF,
ADDIF, AUIF, AHCQIF for 10000 MC runs
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Fig. 9.20: Comparison of RMS error (turn rate estimation) of ACIF, AGHIF,
ADDIF, AUIF, AHCQIF for 10000 MC runs

TABLE-9.7 : Comparative study of % -age of track loss for R adaptive information filters

Estimation algorithms Percentage of track loss
ADDIF 5.56%
AUIF 6.10%
ACIF (5™ degree) 2.11%
AHCQIF (5™ degree) 2.26%
AGHIF (3" order) 2.17%
9.6.2.3. Demonstration of square root versions of R adaptive filters

The aircraft tracking problem is considered again to validate the square root versions of
GHIF, CIF3" degree), CQIF (3" degree) for R adaptation. The performance of the
algorithms has been compared in the same vein as discussed before. It has been observed
from Fig. 9.21-9.23 that the RMSE of RA-SR-CQIF(3™ degree) and RA-SR-GHIF are
comparably same and sometimes slightly less than RA-SR-CIF (3" degree). The track loss
cases have been excluded from the RMSE.

The percentage of track loss for RA-SR-CIF (3" degree), RA-SR-CQIF(3" degree) and RA-
SR-GHIF are 2.47%, 2.07% and 2.06% respectively. The percentage track loss for RA-SR-
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CQIF(3™ degree) and RA-SR-GHIF, as expected, are comparable and low compared to that
for RA-SR-CIF (3" degree).

The number of points required for RA-SR-CQIF(3™ degree) is less compared to RA-SR-
GHIF and computation cost for the former is also less as a consequence. For a single run an
average computation time for RA-SR-CIF (3" degree) and RA-SR-CQIF (34 degree) are
9.83% and 4.48% of the average computation time for RA-SR-GHIF respectively. The
simulations are carried out using MATLAB (version 7.9.0.529) in a computer with

specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM.
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Fig. 9.21: Comparison of RMS error (position estimation) of ASRCQIF,
ASRGHIF, ASRCIF for 10000 MC runs
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Fig. 9.22: Comparison of RMS error (velocity estimation) of ASRCQIF,
ASRGHIF, ASRCIF for 10000 MC runs
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Fig. 9.23: Comparison of RMS error (turn rate estimation) of ASRCQIF,
ASRGHIF, ASRCIF for 10000 MC runs

9.7 Discussions and Conclusions

In this chapter a class of @ and R adaptive sigma point information filters have been
formulated from the proposed general algorithm and demonstrated with the help of case
studies based on multi sensor estimation problems. The newly proposed adaptive nonlinear
information filters are found to produce satisfactory estimation results in following
contingent situations when (i) one or more sensor noise covariances are unknown, (ii) one of
the sensors provides biased measurement, (iii) the system dynamics suffers from unknown
parameter variation and the knowledge of process noise covariance remains incomplete as a

consequence. A few significant findings have been enumerated below.

e The proposed @ adaptive nonlinear information filters are observed to present
satisfactory estimation performance by online adaptation of () where the complete
knowledge of @ remains unavailable. For each of the proposed adaptive filters it is
observed that the adapted value of the unknown element of Q converges on its truth value

and subsequently tracks it.

¢ The results from Monte Carlo study demonstrate that the RMSE of each of the proposed
filters settles down to a lower value compared to the respective non-adaptive counterpart.

Another important finding for  adaptive information filters is that for each filter the
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RMSE is closely comparable with that of non-adaptive filters in ideal situation with full

knowledge of Q.

® The performance comparison of alternative ( adaptive information filters revealed that
the estimation performance of QA-CQIF and QA-GHIF is superior to QA-DDIF and QA-
CIF. Although the estimation performance of QA-CQIF and QA-GHIF are comparably
same use of the former is preferable as it uses less number of sigma points and supposed

to be computationally economic.

e Superiority of R adaptive DDIF is demonstrated over its non-adaptive versions in
presence of bias in one of the measurements and also in face of unknown measurement
noise covariance. Relative performance comparison of variants of R adaptive information
filters has also been carried out. R adaptive versions of GHIF, CQIF (5th degree) and CIF
(5th degree) demonstrate superiority over the competing algorithms of RA-DDIF and
RA-UIF.

¢ For the aircraft tracking problem considered in this chapter performance of RA-GHIF,
RA-CQIF (5th degree) and RA-CIF (5th degree) are found to be comparably same. Note
that RA-CQIF (5th degree) and RA-CIF (5th degree) are computationally economic
compared to RA-GHIF.

e The square root versions of R adaptive CQIF, CIF (3" degree) and GHIF have also been
formulated and validated with the same tracking problem. Following the same trend RA-
SR-GHIF and RA-SR-CQIF (3rd degree) are found to outperform RA-SR-CIF (3rd
degree).

Considering the above findings adaptive nonlinear information filters are advocated for

multiple sensor fusion because of their dual aspect of information filter configuration and

adaptation performance.
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Chapter 10: Conclusions

10.1 Concluding comments

The objective of the present work had been to develop improved estimation methods for state

as well as parameter estimation of nonlinear systems. Towards this overall objective the

present work focused on Adaptive state estimation for nonlinear signal models. The findings

of this dissertation and the concluding comments are presented below.

1.

Algorithms for a class of adaptive state estimators for plants with nonlinear dynamics
have been proposed and their characteristics have been evaluated. Such a set of
adaptive estimators include a fair number of adaptive filters, viz. Adaptive Divided
Difference filters, Adaptive Gauss Hermite filters, Adaptive Cubature Kalman filters,

Adaptive Cubature Quadrature Kalman filters.

The proposed nonlinear state estimators have been found to be superior to their
corresponding non-adaptive versions in every case where process or measurement

noise covariance remains unknown, demonstrating successful adaptation.

Regarding the performance of the proposed filter, the numerical simulations for all
the case studies indicate that the performances of the adaptive filters without the
knowledge of any one of the noise covariances (viz. Q or R) are comparable to that of
their respective non-adaptive nonlinear filter in the ideal situation where the noise
covariances are accurately known. This indicates that the proposed adaptive nonlinear
filters may be strong candidates for state estimation with nonlinear signal models in

the face of unknown noise covariance.

A general framework for nonlinear state estimators had been proposed and it is
demonstrated that algorithms for most of the proposed state estimators can be

deduced from this general framework.
Regarding the @-adaptive Divided Difference filters the following specific

concluding comments apply:

® A new algorithm for Q adaptive second order Divided Difference filter developed
for the joint estimation of parameters and states of nonlinear dynamic systems

with unknown process noise covariance was found to outperform the non-
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adaptive version as evident from the Monte Carlo simulation of an object tracking

problem.

A variant of Q adaptive Divided Difference filter which is based on the method of
automatic tuning of @ with the help of a scaling factor is also observed to be
providing satisfactory estimation results for some specific estimation problems

with linear measurement equations.

Performance of the QA-DDF with direct adaptation algorithm was found to be
superior compared to the scale factor based QA-DDF for the same object tracking

problem where the measurement equation is nonlinear.

6. Regarding the R-adaptive Divided Difference filters the following specific

concluding comments apply:

Chapter 10

The new algorithm for R adaptive Divided Difference filter for joint estimation of
parameters and states of nonlinear signal models has been demonstrated in
situations when prior knowledge of the measurement noise covariance remains

unavailable.

It has been theoretically established and also validated in simulation that the filter

guarantees positive definiteness of adapted R matrix.

It has been possible to demonstrate that the estimation performance of this filter is
superior to non-adaptive filters even for the assumed initial values of R matrix

with large errors.

The estimation performance of direct R-Adaptation is found to be superior to the

scaling factor based R adaptation for some specific case studies.

The R adaptive DDF (with direct R-Adaptation) had been found to perform
satisfactorily for unknown time varying R. The adapted R adequately converged
to the truth value of R and subsequently tracked the time varying truth value of R

in all the cases considered in this case study.

The R adaptive Central Difference filter which is a subset of the above algorithm
is also validated. Although this algorithm cannot perform as well as R adaptive
DDF on the ground of estimation accuracy it may be advocated for its economic

computation and less complexity.
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7. Regarding the joint estimation of states and parameters , the following specific

concluding comments apply:

It is fairly well known that during the joint estimation of states and parameters,
assigning appropriate process noise covariance corresponding to the parameters to
be estimated requires substantial effort in tuning and experimentation. This is
further exacerbated when such unknown parameters are time-varying. Assuming
that the elements of the Q matrix corresponding to the states are known, one
needs to adapt only the terms of Q which corresponds to the unknown parameters.
It has been shown that the so-named partially Q-adaptive filters may be employed

for such cases.

8. Novel algorithms viz. Q and R adaptive Gauss Hermite filters have been developed

by using Gauss Hermite quadrature rule for numerical approximation of the Bayesian

Integrals (present in the general algorithm for nonlinear filter). A few variants of such

filters have been developed which provide improved estimation performance over

their non-adaptive versions (when evaluated with the help of benchmark estimation

problems).Regarding adaptive Gauss Hermite state estimators/filters, the following

specific concluding comments apply:

Algorithm for partially adaptive GHF have been formulated and it has been
shown that such filters satisfactorily estimate and track unknown time varying

parameters successfully.

Both innovation based and residual based R-adaptive GHF are observed to
provide improved estimation performance in the face of unknown R. However,
use of residual based R adaptation algorithm is recommended for the ensured

positive definiteness of adapted R matrix.

For improved numerical accuracy and ensured positive definiteness of error

covariance Square Root versions of R Adaptive GHF is formulated and validated.

9. Algorithms for adaptive nonlinear filters are also formulated using the Spherical

Radial Cubature rule (third and fifth degree) and Spherical Radial Cubature

Quadrature rule (third and fifth degree) for numerical evaluation of Bayesian

integrals. Regarding such proposed adaptive versions of state estimators which are

Chapter 10
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based on recently proposed (non-adaptive) quadrature-cubature KF family, the

following specific concluding comments apply:

e The third degree R-adaptive Cubature filter (RA-CKF), as expected, is found to
be superior to its non-adaptive version. However, RA-CKF (third degree) could

not excel RA-UKF or RA-GHF with respect to performance accuracy.

e The R adaptive version of higher degree cubature filter (fifth degree accuracy) is
found to be comparable in performance with R adaptive GHF (third order) and
computationally economic compared to the latter. RA-CKF (fifth degree) is also

performance wise superior to RA-UKF.

e The performance comparison of R adaptive Cubature Quadrature Kalman filter
(3" degree) with the above adaptive filters revealed that this estimator
outperforms many of the above cited estimators and its performance is found to
be comparable with R adaptive GHF (fifth order) for some estimation problems.
Although performance wise equivalent, the RA-CQKF requires less
computational effort compared to RA-GHF (5™ order). It is observed from the
case studies that RA-CQKF (5" degree) can present marginally improved
estimation performance compared to RA-CQKF (3™ degree) and the other

competing algorithms at the cost of additional computation effort.

e The square root version of R adaptive CQKF, which guarantees positive

definiteness of error covariance, has also been developed and characterized.

10. Algorithms for adaptive nonlinear filters are also validated for non-additive noise
models. Q and R adaptive DDF for non-additive noise are found to be demonstrably
superior to the respective non-adaptive versions. R adaptive CKF (3™ and 5™ degree)
for non-additive measurement noise is derived from the general framework extended
for non-additive noise and its performance is also compared with R adaptive DDF.
Their performance has been found to be equivalent for the bearing only tracking

problem.

o In the case of non-additive noise models the tracking performance of the
proposed R-adaptive filters were found to be satisfactory whereas the

same for the Q adaptive versions is not so.
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11. Several new algorithms for  and R adaptive nonlinear information filters are

formulated and their use in multiple sensor fusion for nonlinear signal models has
been demonstrated. The efficacy of these algorithms over their corresponding non-
adaptive information filters are demonstrated in presence of parametric uncertainty,
biased measurements or unavailability of the knowledge of any of the sensor noise

covariance.

e Like adaptive nonlinear filters their information filter configurations with
inaccurately assumed value of noise covariance is comparably equal with that of
their non-adaptive version in ideal situation when the non-adaptive version have
the knowledge of the all the noise covariances. This has been demonstrated for the

case of Q adaptive version of information filters.

e Information filter versions viz. AGHIF (3" order), ACQIF (3" degree and 5™
degree) and ACIF (5" degree) demonstrate an improved performance over the

competing algorithms.

e The square root versions of several nonlinear adaptive information filters viz.
CQIF, CIF (3" degree) and GHIF (3™ order) have also been formulated and

characterized with the help of case studies..

10.2 Scope for future work

The possibilities for further work which have been recognized during the entire tenure of this

research work are enumerated below:

With the help of the general algorithm for adaptive nonlinear estimator new
algorithms of adaptive nonlinear filters can be formulated considering non-adaptive
versions of sparse grid Gauss Hermite filter, modified Cubature filter and Fourier
Hermite filter as an underlying framework. It would be interesting to carry out a
relative performance analysis of these estimators with the existing ones which have

been presented in this dissertation.

Like nonlinear filters nonlinear smoothers also require the knowledge of noise

covariance for their satisfactory performance. The general algorithm may also be
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extended for nonlinear smoother which may result a set of novel adaptive nonlinear

smoothers.

e In this dissertation the noises are restricted to be Gaussian white noise. The

redesigning of adaptation algorithms for the colour noise is yet to be explored.

® Moreover, there also remains a scope of investigation in formulating adaptive
nonlinear filters for non Gaussian noise by extending the general algorithm for

Gaussian sum noise.

¢ Nevertheless, the scope of mathematical analysis for the optimality and convergence
of adaptive nonlinear filters always remains open as this work has not attempted in

this dissertation as well as in the works reported in literature as of now.
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