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ABSTRACTABSTRACTABSTRACTABSTRACT    

 

This dissertation presents the outcome of investigations which envisaged to develop 

improved state and ‘combined state and parameter’ estimation algorithms for nonlinear 

signal models (during the contingent situations) where the complete knowledge of 

process and/or measurement noise covariance are not available. 

Variants of “adaptive nonlinear estimators” capable of providing satisfactory estimation 

results in the face of unknown noise covariance have been proposed in this dissertation. 

The proposed adaptive nonlinear estimators incorporate adaptation algorithms with which 

they can implicitly or explicitly, estimate unknown noise covariances along with 

estimation of states and parameters.  

Adaptation algorithms have been mathematically derived following different methods of 

adaptation which include Maximum Likelihood Estimation (MLE), Covariance Matching 

method and Maximum a Posteriori (MAP) method.  

The adaptive nonlinear estimators which have been proposed in this dissertation are 

formulated with the help of a general framework for adaptive nonlinear estimators for 

both additive and non additive Gaussian noise.  

The proposed new algorithms have been formulated and characterized with Monte Carlo 

simulation using nontrivial plant models.  

The general framework mentioned as above, is extended to formulate alternative versions 

of adaptive nonlinear estimators (in the information filter form). Performance of such 

adaptive nonlinear information filters are demonstrated for multiple sensor fusion.  

The contribution of this work may be categorized as follows: 

• Proposing general frameworks for Q adaptive and R adaptive nonlinear state 

estimators (for respectively unknown process noise covariance Q and unknown 

measurement noise covariance R ) and demonstrating applicability of such filters with 

specific examples. 

• Derivation of the nonlinear versions of adaptation algorithms for R-adaptive 

nonlinear estimators following the Maximum Likelihood Estimation (MLE) method 



 ii 

respectively utilizing innovation and residual sequences. The latter version is 

important as it automatically ensures positive definiteness of the adapted R- matrix.  

• Modification of the existing Maximum a Posteriori (MAP) based algorithms for 

adaptive nonlinear estimators (both R-adaptive and Q-adaptive) with reasonable 

simplifying assumptions which illustrate that the adaptation algorithms after 

modification match well with those obtained by the MLE method and the intuitive 

Covariance Matching method.  

• Proposing and characterizing algorithms for different versions of Q-adaptive and R-

adaptive Divided Difference filter (ADDF). 

• Proposing and formulation of algorithms for several new variety of Q and R adaptive 

nonlinear estimators, viz. Adaptive Gauss Hermite filters (AGHF), Adaptive 

Cubature Kalman filters (ACKF), Adaptive Cubature Quadrature Kalman filters 

(ACQKF). 

• Extending the algorithms for Adaptive Divided Difference filter to suit signal models 

with non additive noise. Extension of the general framework for adaptive nonlinear 

estimators with non-additive noise and its demonstration by formulating Adaptive 

Cubature Kalman filter. 

• Formulation of alternative general framework for adaptive nonlinear estimators (in 

presence of additive noise) with information filter configuration which are potentially 

suitable for multiple sensor fusion. Adaptive version of Divided Difference 

information filter, Gauss Hermite information filter, Cubature information filter, 

Cubature Quadrature information filter have been formulated from the general 

framework and validated using multi sensor estimation problems. 

• Adopting the square root framework for formulation of adaptive versions of Gauss 

Hermite filter, Cubature Kalman filter and Cubature Quadrature Kalman filter both in 

the standard error covariance form and in the information filter form. 
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Chapter 1: Introduction 

1.1   Background and Motivation 

Parameter and state estimation techniques find many uses in system modeling as well as in 

conventional, adaptive and optimal control applications. Parameter estimation is important 

for determining system parameters for yet to be modeled systems and also for systems where 

system parameters are not constants but vary with time or with environmental conditions. 

Apart from the uses in closed loop control as stated above, state and parameter estimation 

may also play a significant role in fault detection and identification. For example, state 

estimation may potentially reduce the cost of additional sensors to create analytical 

redundancy [Hwang2010], which in turn, may be useful in fault detection or continued 

operation in sensor failure conditions.  

In our current state of knowledge, state estimation for linear signal models in presence of 

noisy measurements is comparatively easy because of the availability of precise estimation 

method, viz. Kalman filter [Anderson1979] which provides algebraic steps to arrive at a 

provably optimal estimation solution with minimal restrictions . However, state estimation 

for nonlinear system models becomes challenging primarily because analytical means to 

assess the optimality of performance and convergence of any (existing or conceivable) 

nonlinear filtering algorithms is not presently available. Consequently, a provable optimal 

closed form or iterative state estimation solution applicable to a wide class of nonlinear 

systems are not available and recourse is taken to approximate solutions. One of the earliest 

approximate state estimation technique goes by the name Extended Kalman Filter (EKF) 

[Brown1983].  

As no nonlinear estimator has yet been reported which can guarantee optimality and/or 

convergence of an iterative estimate the scope of relative improvement of estimation 

accuracy compared to the already reported estimators or scope for developing an alternative 

algorithm for nonlinear signal models still remains open.  

Knowledge in the domain of nonlinear estimation is still evolving (as would be evident from 

a literature survey, presented in a subsequent chapter) and new algorithms continue to be 

contributed in the field of nonlinear state estimation. Many such state estimation methods are 
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collectively known as Post Kalman filtering [Ristic2004] which includes Unscented Kalman 

filter [Julier2000, Ristic2004], Divided and Central Difference filters [Ito2000, 

Norgaard2000, Schei1997], Gauss Hermite filters [Ito2000] and simulation based filters like 

Particle filters [Ristic2004] which are performance wise superior than EKF. Subsequently, 

newer filtering algorithms, e.g., Cubature Kalman filter [Arasaratnam2009], higher degree 

Cubature Kalman filter [Jia2013], Cubature Quadrature Kalman filter [Bhaumik2013] and its 

other version with higher degree quadrature points [Singh2015] and Fourier Hermite 

[Sarmavuori2012] filters have been contributed.  

It would not be out of place to mention that even for joint estimation of parameters and states 

of linear systems nonlinear filters are often employed [Simon2006] where the system 

dynamics is expressed in terms of parameter augmented state vector. 

Usually the nonlinear estimators are empirically validated before actual deployment in real 

life systems. The choice of suitable candidate from the pool of several competing algorithms 

for a specific mission requires experimentation as there is no direct analytical means which 

can indicate the best suited filter for the specific problem. A comparative study with respect 

to the accuracy and computational intensiveness often needs to be carried out. Scrutinising 

those results the designer can choose the most suitable filter for that particular class of 

nonlinear estimation problems. Nonlinear filtering, therefore, necessitates substantial effort in 

experimentation.  

Linear as well as nonlinear estimators require prior knowledge of the system dynamics, the 

measurement equations and the values of noise covariances for producing satisfactory 

estimation results. Non-availability of knowledge of any of them deteriorates the 

performance of the filter. Therefore, the choice of the noise covariances which may often 

remain unknown in many situations is made after trial and error. This requires substantial 

effort in offline tuning of the estimators. Improper choice of noise covariances yields 

suboptimal estimation result and may cause even divergence for nonlinear estimation 

problem. In such situations, “adaptive estimators” may be employed. Such adaptive 

estimators implicitly or explicitly, estimate noise covariances (along with estimation of states 

and parameters). 
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Adaptive filters for linear signal models have been reported a few decades ago and validated 

by a large number of researchers. Substantial publications exist wherein these techniques are 

successfully employed in many real life applications. 

However, Adaptive filtering for nonlinear systems is still an evolving area of knowledge 

which has drawn the attention of the researchers. It has been observed from the literature 

survey that there remains “knowledge gap” in the area of nonlinear filtering where one or 

more noise covariances are unknown. Unlike adaptive filters with linear signal model 

sufficient works on adaptive nonlinear estimator are yet to be available which have strong 

theoretical foundations. Moreover depending on the degree of nonlinearity in the signal 

model, the performance of adaptive nonlinear estimators may vary and choice of a suitable 

underlying structure for adaptive nonlinear estimator needs experimentation in the context of 

estimation accuracy and computation effort. The above discussed points motivated the 

present worker to investigate in the field of adaptive nonlinear estimators. 

For parameter estimation several well known classical techniques e.g., least square, 

orthogonal least-squares, gradient-weighted least-squares methods exist. Apart from these 

classical methods, deterministic observers and, Post Kalman state estimators have been 

employed for parameter estimation as reported in previous works. For simultaneous 

estimation of parameters and states, any unknown parameter is modeled as an additional state 

and therefore augments the state vector. As mentioned before, the augmented state renders 

estimation problem as nonlinear even with linear signal models. Therefore, joint estimation 

of parameters and states essentially requires nonlinear estimators.  

For the systems perturbed by unknown parameter variation the nature of the parameter 

variation also remains unknown as the parameters are unknown per se. During the parameter 

estimation of such systems assuming the simplest case the unknown parameters are modeled 

as random walk model while in reality the parameters may vary following certain trend. The 

uncertainty in the nature of parameter variation makes it difficult to assign a suitable process 

noise for the augmented system. Adaptive nonlinear filters, therefore, may be suitable 

estimators for parameter estimation as well apart from its use in nonlinear state estimation. 
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1.2   Background of Nonlinear State Estimators 

The basics of nonlinear state estimation in presence of noisy measurements (with known 

process and measurement noise covariances) have been well covered in the oft referred 

textbooks e.g. [Anderson1979, Brown1983, Zarchan2000, Ristic2004]. A few significant 

points on nonlinear state estimation are reiterated in this section. 

The estimation algorithms which are intended for nonlinear systems are usually termed as 

nonlinear estimators. State estimators require knowledge of the system dynamics which may 

be expressed in terms of state space models and the observation equation (alternatively 

termed as measurement model). Nonlinearity of any or both of the above models, makes the 

system model nonlinear by definition. The estimation algorithms can be presented in 

continuous time as well as discrete time. Throughout this dissertation the present worker has 

followed the approach of discrete time representation.  

Usually, the system dynamics and measurement equation for a higher dimensional system in 

discrete time domain may be represented as given by (1.1) and (1.2) respectively. 

( )kk1kk w,u,xfx
−

=         (1.1) 

( )kkk v,xgy =         (1.2) 

Here kx is the state vector of the system, ku  is the vector of known input, kw is the vector of 

random unknown input known as process noise, ky  is the measurement vector and kv  is the 

vector for measurement noise. In the above equations noises are expressed in non-additive 

form. However, for the simplest case the noises can be expressed as additive noise as below.  

( ) kk1kk wu,xfx +=
−

       (1.3) 

( ) kkk vxhy +=         (1.4) 

In this dissertation both additive and non-additive cases have been considered. 

State estimators also require the knowledge mean and covariance (first two moments) of the 

random noise which characterize such noise. In simplest cases the noises are assumed to be 

zero mean, white and Gaussian. The noises can also be non Gaussian, coloured and there 

may be correlation between process noise and measurement noise. Special treatments are 
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necessary for such cases. However, such conditions have not been considered in this 

dissertation. 

Most of the state estimation algorithms may be expressed in the Bayesian Estimation 

framework. The probability density function of the estimated state vector may be expressed 

in terms of Bayesian integrals. For zero mean Gaussian noise the mean and covariance of 

estimates can be computed by approximating the Bayesian integrals. 

Generally the measurement noise is assumed to be zero mean white Gaussian noise sequence. 

The covariance matrix of the measurement noise is generally symbolized by ‘R’ The 

measurement noise for well characterized sensing systems may be obtained from the 

experimental data or vendor specification. However in many situations the measurement 

noise covariance may not be known at the time of designing the filter. 

The process noise in the above state equation signifies several things e.g., the unknown and 

random component of input which may be considered as disturbance, parametric uncertainty, 

modelling error etc. Like measurement noise, the process noise also can be considered to be 

zero mean, white and Gaussian for simplest case. The covariance matrix of the process noise 

is generally symbolized by ‘Q’. 

The objective of the nonlinear state estimation is to obtain the optimal estimate of the states 

with known nominal models and known measures of process and measurement noise. 

However, even with the above knowledge, no nonlinear estimator has been reported as of 

now that can guarantee optimal estimation performance, as mentioned earlier. 

After initialization the filters provide the state estimates recursively for the subsequent time 

using noise corrupted measurements as input. To begin the process of estimation, the state 

variables for the filter need to be initialised along with an initial choice of error covariance of 

those states. The error covariance indicates the degree of uncertainty in the initial choice of 

state.  

In real life application of nonlinear state estimator situations may arise where the sensor 

characterisation is partially done or not done at all. The system dynamics may also suffer 

from unknown parameter variation. It becomes difficult then to assign the accurate values of 

Q and R. In such a situation, adaptive estimation (where one or both noise covariances are 

also estimated along with the states and parameters) may be employed. When only the 
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covariance R is not available the corresponding adaptive filter is often termed as R-adaptive. 

Similarly, when only the process noise covariance Q is not available the corresponding 

adaptive filter is often termed as Q-adaptive. The adaptive filter is often termed as QR – 

adaptive when both these covariances are unknown. 

It may be recalled from the above discussions that adaptive estimation is required where one 

or both the noise covariances are unknown. Before adaptive estimation was properly 

understood and accepted (mostly in the context of linear signal models) system designers 

employed “manual tuning” which required exhaustive offline studies. Adaptive estimation 

obviates the need of such manual tuning. 

An alternative to manual tuning of Q and or R is tuning a “scale factor” [Hide2004, 

Ding2007, Jwo2008]. In this approach the filter gain or error covariance matrices may be 

tuned with a scaling factor to get satisfactory estimation result. 

Adaptive nonlinear state estimators also appeared in recent literature. The adaptive EKF 

[Busse2003, Bavdekar2011, Hajiyev2011] has been developed after Adaptive Kalman filter. 

However, AEKF incorporates all the short comings [Soken2012] of non-adaptive EKF as it 

happens to be the core of AEKF. Adaptive UKF [Chai2012, Hajiyev2014, Das2015] which 

has been recently introduced is performance wise superior to AEKF. AUKF too needs some 

tuning of parameters which control the locations and spread of sigma points.  

Most of these non-linear state estimators (also known as nonlinear adaptive filters) use 

adaptive mechanisms which are analogous of corresponding linear adaptive filters. Such 

adaptation algorithms are based on intuitive methods without proper mathematical 

derivation. 

1.3   Aims, Objectives and Scope of the Research 

The dissertation aims to develop novel techniques for adaptive nonlinear state estimation. 

The focus is on introducing adaptive mechanisms to (non-adaptive) nonlinear estimators of 

recent origin. Many such improved (non-adaptive) nonlinear estimators of recent origin have 

been developed and reported in literature with the assumption that noise covariances are 

accurately known. It is needless to mention that even these new generation non-adaptive state 

estimators require manual tuning when the values of noise covariances remain unavailable.  
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The above inadequacy in the domain of nonlinear estimation gives an intellectual challenge 

to the present worker to develop improved adaptive nonlinear estimators which may be 

performance wise superior to most the existing adaptive nonlinear estimators and which may 

have some theoretical/analytical support or justification of the adaptation algorithms 

provided in such estimation techniques.  

The other aim is demonstration of performance and quantitative characterization of the 

proposed nonlinear adaptive estimators in realistic situations. 

State estimators had previously been employed for sensor data fusion. This prompted the 

present worker to explore whether the proposed estimators can also be employed foe similar 

purpose. 

To keep the scope of work focused the following decisions were taken:  

(1)  Case studies for characterization of the proposed estimators should be chosen from 

domains where previous results are available. The aerospace tracking problem 

domain fitted this requirement.  

(2)  Signal models are to be chosen with additive zero mean Gaussian white noise model, 

primarily for facilitating comparison with previous work.  

(3)  Siganl models with non-additive Guassian noise is to be explored separately. 

 

1.4   Research Objectives 

In the perspective of the problem addressed in this dissertation, the research objective may be 

summarized as stated below: 

(i) Formulation of improved algorithms for adaptive estimators for estimation of 

states as well as parameters of nonlinear systems.  

(ii) Validation and characterization of such improved algorithms using non-trivial 

signal models.  

(iii) Performance comparison of such improved algorithms with previously reported 

approaches of adaptive and non-adaptive nonlinear estimator.  

(iv) Formulation of a computationally efficient alternative version of adaptive 

nonlinear estimators for multiple sensor fusion. 
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(v) Exploring the possibility of evolving some theoretical/analytical support or 

justification of the adaptation algorithms provided in the proposed estimation 

techniques 

1.5   Approach and Methodology 

From the research objective mentioned above it may be appreciated that the aim of this 

dissertation is to provide improved solution methods for adaptive nonlinear estimators. 

Towards this goal existing literature about filters for nonlinear systems, adaptive filters for 

linear systems and previously proposed adaptive filters have been studied extensively. A 

summary of such studies is provided in the literature review section. Previously published 

ideas which have been found to be extendible to the proposed research had been closely 

examined. Similarly weaknesses of previously reported estimators were carefully studies so 

that such weaknesses are not inherited by the proposed estimators. 

The new estimation algorithms which are developed in this dissertation are evaluated and 

quantitatively characterized using test problems. This approach had to be taken because (as 

previously mentioned) optimality and convergence of nonlinear estimators cannot be 

demonstrated in the usual analytical way.  

For evaluation of consistency, convergence of the proposed algorithms and comparison of 

estimation the accuracy between different methods Monte Carlo simulations with adequate 

runs have been carried out. Each Monte Carlo run is simulated using true state trajectories 

and measurements which are obtained with random samples of process noise covariance and 

measurement noise covariance both having the correct value (truth value). However, for 

filters the covariance which remains unknown is initialized with an assumed value. In each 

Monte Carlo run this assumed value of covariance remains the same.  

During the evaluation of the proposed estimators in simulation there remains the scope to 

evaluate the performance adaptive filter without the knowledge of one of the covariances 

with the non-adaptive filter in the ideal situation where noise covarinaces are known to it. 

This study can give a measure about how far the performance of adaptive filter, even in the 

adverse situation, approach to the ideal performance. 
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1.6   Salient Contributions 

Salient contributions covered in this dissertation are: 

(i) Proposing a fairly general framework for Q-adaptive nonlinear state estimators and 

demonstrating the applicability of the framework with specific examples. 

(ii) Proposing a fairly general framework for R- adaptive nonlinear state estimators and 

demonstrating the applicability of the framework with specific examples. 

(iii)Extending the above general frameworks for the square root version of adaptive 

nonlinear estimators. 

(iv) Derivation of the nonlinear versions of adaptation algorithms for R-adaptive nonlinear 

estimators following the Maximum Likelihood Estimation (MLE) method respectively 

utilizing innovation and residual sequences. The latter version is important as it 

automatically ensures positive definiteness of the adapted R- matrix.  

(v) Modification of the existing Maximum a Posteriori (MAP) based algorithms for adaptive 

nonlinear estimators (both R-adaptive and Q-adaptive) with reasonable simplifying 

assumptions which illustrate that the adaptation algorithms after modification match 

well with those obtained by the MLE method and the intuitive Covariance Matching 

method.  

(vi) Proposing and characterizing algorithms for different versions of Adaptive Divided 

Difference filter (DDF) which include 

o Scaling factor based Q adaptive DDF 

o Q adaptive DDF using direct adaptation algorithm 

o Residual based R adaptive DDF using direct adaptation algorithm with ensured 

positive definiteness of R 

o Q & R adaptive DDF for non-additive noises 

(vii) Proposing and formulation of algorithms for several new types of adaptive nonlinear 

estimators, viz. Adaptive Gauss Hermite filters (GHF), Adaptive Cubature Kalman 

filters, Adaptive Cubature Quadrature Kalman filters.  

o Derivation and demonstrations that the said algorithms may also be derived from 

the proposed general frameworks as mentioned above. 
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o The algorithms for the said Adaptive Gauss Hermite filter include  

• Partially Q adaptive GHF  where some of the elements of Q are known 

a priori 

• R adaptive GHF based on innovation sequence 

• An alternative R adaptive GHF based on residual sequence 

• Square Root versions of R adaptive GHF 

o The algorithms for Adaptive Cubature Kalman filter comprise 

• R-adaptive Cubature Kalman Filter with 3
rd

 degree accuracy 

• R-adaptive Cubature Kalman Filter with 5
th

 degree accuracy 

• R-adaptive Cubature Quadrature Filter with 3
rd

 degree accuracy 

• R-adaptive Cubature Quadrature Filter with 5
th

 degree accuracy 

• Square root versions of adaptive Cubature Kalman Filter, adaptive 

Cubature Quadrature Kalman Filter with 3
rd

 degree accuracy.  

o Characterization of the said adaptive estimators with the help of non trivial case 

studies and Monte Carlo simulation 

(viii) Extending the algorithms for adaptive nonlinear filters to suit signal models with non-

additive noise for the following types of estimators: 

o Adaptive Divided Difference filter  

o Adaptive Cubature Kalman filter with 3
rd

 degree and 5
th

 degree accuracy 

(ix) Formulation of alternative general algorithms for adaptive nonlinear estimators with 

information filter configuration which are potentially suitable for multiple sensor 

fusion. In particular information filter versions of the following estimators have been 

formulated and characterized: 

o Q-Adaptive Divided Difference information filter (DDIF) 

o Q-Adaptive Unscented information filter (UIF) 

o R-Adaptive DDIF 

o R-Adaptive Gauss Hermite information filter (GHIF) 

o R-Adaptive Cubature information filter (CIF) 
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o R-Adaptive Cubature Quadrature information filter (CQIF) 

o Square root version of CQIF, CIF, GHIF for R adaptation. 

(x) Compilation of a comprehensive literature review for the benefit of future workers. 
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1.8   Credit to Co-workers 

The present worker is indebted to Ms. Manasi Das who first identified the knowledge gap in 

the domain of adaptive nonlinear estimation and contributed the algorithm for Adaptive UKF 
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first in [Das2013], a conference publication, and subsequently in [Das2015], a journal 

publication on adaptive UKF. Later, the algorithms for adaptive CDF and adaptive UKF with 

non-additive measurement noise have been published with joint authorship after several 

insightful discussions with Ms. Das. 

1.9   Organization of the Dissertation 

This dissertation comprises of ten chapters including the present one which have been 

arranged to maintain a continuity of discussion. A comprehensive literature survey on 

adaptive filters as well as nonlinear filtering follows this introductory chapter. The third 

chapter presents the test problems which are considered in the subsequent chapters for 

demonstration and performance analysis of proposed estimation algorithms.  

A general algorithm for adaptive nonlinear estimators is presented in chapter 4 which 

incorporates derivation of several adaptation algorithms for process and measurement noise 

covariance. Both the square root and standard error covariance approaches for adaptive 

nonlinear filter are presented here. 

In chapter 5 algorithms for Adaptive Divided Difference filter (ADDF) have been developed. 

In chapter 6 and chapter 7 respectively algorithms for Adaptive Gauss Hermite filter (AGHF) 

and Adaptive Cubature Kalman filter (ACKF) have been formulated using the general 

framework presented in chapter 4 and their performance is compared with the other 

competing algorithms. 

In chapter 8 the algorithms for adaptive nonlinear filter and Adaptive Divided Difference 

filter have been reformulated for the situations with non-additive noise. The performance of 

ADDF and ACKF with non-additive noise is also demonstrated thereafter. 

The general algorithm for adaptive nonlinear filter is extended in information filter 

configuration in chapter 9 for its possible use in multiple sensor fusion. A set of new 

algorithms of adaptive information filters are derived from this general framework and their 

relative advantage has been investigated in this chapter. 

At the end of this dissertation the concluding comments are presented in chapter 10 along 

with the scope of further work. 

 



Chapter 2:  Literature Survey 

2.1   Chapter Introduction 

A brief literature survey related to adaptive state estimation for nonlinear systems, the central 

topic of the dissertation, has been presented in this chapter. It has been explained in the 

introduction that adaptive state estimation is called for in the contingent situations where 

knowledge of noise covariances remains incomplete. Significant contributions by previous 

workers up to the year 2015 have been reviewed in the above perspective along with notes, 

where applicable, how such previous work opened the scope of further research. This review 

is organised thematically rather than in conventional chronological order for the ease of 

interpretation. As the state estimators are often called “filters” (possibly since the days of 

Kalman Filters) both these expressions would be considered as synonymous in the context of 

this survey. 

The first logical part of this chapter briefly reviews recent as well as foundational work on 

conventional (i.e non-adaptive) nonlinear state estimation, particularly, those which are 

popularly called as “Post Kalman filtering” techniques (i.e., EKF and its successors). A 

review on non-adaptive nonlinear filtering algorithms is important as these are used as the 

core of adaptive nonlinear filters. This part of the review is necessarily brief as issues of 

several nonlinear filters have been discussed rather elaborately in standard text books 

[Simon2006, Ristic2004, Zarchan2000, Brown1983, Anderson1979]. A summary of recent 

developments on nonlinear filtering after publications on Unscented Kalman filter has also 

been provided in this section. As the theme of this dissertation widely differs from the 

concept of simulation based (non-adaptive) filters like particle filter, the vast literature of 

simulation based filters have not been reviewed. 

The next logical part reviews publications on adaptive filters after due categorization. Both 

linear and non linear systems have been covered with more emphasis on the latter. Possible 

real world applications of adaptive estimation algorithms are also reviewed in this part. Note 

that recently reported adaptive filters based on artificial intelligence has not been reviewed in 

this part as these approaches do not thematically match with the approach followed to 

develop adaptive estimators.  
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2.2   Literature on nonlinear (non-adaptive) filtering 

For estimation of the states of a linear system in presence of noisy measurements Kalman 

filter has been extensively used for its optimal estimation performance even for the time 

varying signal model [Anderson1979]. The Linearized Kalman filters (LKF) and Extended 

Kalman filters (EKF) are first introduced in the solution domain of nonlinear estimation and 

have been widely reported in literature [Brown1983, Simon2006]. The LKF is implemented 

by linearizing the nonlinear system dynamics and measurement model about a nominal state 

trajectory of the system. However, EKF linearizes the system dynamics and measurement 

equation about a posteriori estimate of state of previous instant and a priori estimate of state 

of current instant respectively. Therefore, the operating point of linearization changes in each 

update cycle.  

The Extended Kalman filter which can perform satisfactorily for systems with mild 

nonlinearity suffers from some negative aspects[Merwe2004]: (i) EKF considers only first 

order term for linearization and, therefore, approximation becomes inaccurate for the systems 

with significant nonlinearity (though higher order approximations had been introduced later 

[Simon2006]) , (ii) Computation of Jacobian increases complexity for higher order systems, 

(iii) Computation of Jacobian becomes impossible for the systems with discontinuity, (iv) 

Inaccuracy due to linear approximation can lead the filter to divergence.  

The limitations of EKF reported in [Brown1983, Julier2004, Simon2006] have prepared the 

background of research on nonlinear estimation methods. One such class of nonlinear filters 

called “Sigma Point filters” [Merwe2004] can reportedly overcome the limitations of EKF by 

propagating the mean and covariance of the estimate by generating a set of “sigma points” 

and weights in a deterministic approach. These sigma point based filtering algorithms have 

been found to be performance wise superior to EKF. Despite the earlier widespread use of 

EKF [Merwe2004] the recent works on nonlinear state estimation are becoming more 

inclined to the sigma point filters. In the following subsections works on different sub types 

of sigma point filters have been reviewed and their advantages over one another are also 

reported. Many of the sigma point filters have also been called as “Linear Regression 

Kalman Filters” (LRKF) [Lefebvre 2002]. 
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2.2.1   Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) is a popular member of the family of sigma point filters 

which is based on Unscented Transformation rule. This filter was first proposed in 

[Julier1995] and established as a derivative free sigma point filter in literature by a number of 

follow up papers [Julier1996, Julier1997, Julier2000, Julier2004, Merwe2004].  

The mean and covariance of the estimates are computed as a weighted sum of a set of 

discrete points which are obtained after propagating sigma points through the nonlinear 

functions. The selection of sigma points is based on Unscented Transformation rule which is 

explained in [Julier1997]. This algorithm is consequently free from derivative calculation and 

presents superior performance compared to EKF as it incorporates second order 

approximation during mean and covariance estimation. Estimation accuracy of UKF and 

computational efficiency are also discussed in [Julier1997]. Superiority of estimation 

performance of UKF with respect to EKF is demonstrated with a case study.  

The performance of UKF can be improved with scaled version of UKF discussed in 

[Julier1999, Julier2002, Merwe2004]. The spread of deterministically chosen sigma points 

can be controlled by suitable choice of scaling parameters. In an invited paper [Julier2004] 

contributed by the same authors the motivation, formulation, uses of unscented 

transformation method (UT) has been presented in a comprehensive way. 

Reduced order UKF is proposed in [Julier1998, Julier2002] so that the computational load 

can be reduced compared to the algorithm presented in their earlier papers. Unlike the 

standard UKF which requires 2n+1 (n is the order of the system) of sigma points only n+1 

points may be sufficient for reduced order UKF. 

The square root version of UKF (scaled) was reported in [Merwe2001]. This square root 

version of UKF is numerically stable and employs three algebraic techniques e.g.; QR-

decomposition, Cholesky factor updating, and efficient least square to provide numerically 

efficient and stable filtering algorithm. The proposed method has been applied for both state 

and parameter estimation. In this work, it is reported that the SR-UKF requires the same 

computation effort as in EKF. 

In the PhD dissertation [Merwe2004] the author summarizes the previous work on nonlinear 

filtering which uses sigma points and provides a general filtering algorithms based on 
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Bayesian Estimation framework where the Bayesian integrals are numerically evaluated 

using sigma points and weights. The varieties of sigma point filters which may be obtained 

from this general algorithm includes UKF and its corresponding square root versions namely 

SR-UKF. Simulation results are provided to show that these filters are better than EKF. This 

work also discusses a hybrid version of UKF and sequential Monte-Carlo filter. 

[Wu2006] presented a general algorithm for Gaussian filters where the UKF can be obtained 

by the rule of exact monomials. There the author proposed to get a higher order UKF using 

the rule for higher precision. The author proposed to choose 5
th

 degree accuracy and name 

the algorithm as UKF5. It is demonstrated that it is performance wise superior to 

conventional UKF. This concept has similarity with the concept of [Julier2004] where the 

possibility of higher order UKF was first mentioned. 

2.2.2   Interpolation based filters 

In the family of sigma point filters some of the members are developed based on 

interpolation formula. These estimators are well known as Central Difference filters 

[Schei1997, Ito2000] and Divided Difference filter [Norgaard2000]. These algorithms are 

approximation based methods where the nonlinear function is approximated with the Taylor 

series with first and second order accuracy. However, computation of Jacobian and Hessian 

matrices are replaced by function evaluations based on interpolation formula.  

The contribution of [Schei1997] is the earliest towards such an approach of filtering. In 

[Schei1997] the author has proposed a derivative free algorithm which approximates the 

square root of the error covariance matrix by the function evaluation based on central point 

finite difference approach. The author, however, did not mention Stirling Interpolation in his 

work. This new method suggested in [Schei1997], uses deterministically chosen points 

(sigma points) to linearize the nonlinear signal model without taking any derivatives. In this 

approach linearization of nonlinear function is done by considering the first order 

approximation only and therefore has less estimation accuracy compared to UKF. 

Nevertheless, this work has developed the background for the Central Difference filter 

[Ito2000] and the Divided Difference filter. [Norgaard2000].  

Central Difference filter (CDF) proposed by [Ito2000] present a mathematically improved 

algorithm compared to [Schei1997] by considering polynomial interpolation methods for 
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selection of sigma points. Here, linearization is done with second order approximation. In the 

same year [Norgaard2000] presented an interpolation based Divided Difference filter (DDF) 

which has a close similarity with that of [Ito2000].  

The algorithm in [Norgaard2000] has been derived based on Stirling interpolation formula. 

The author of [Norgaard2000] has derived the algorithm for propagation of square root of 

error covariances of DDF and categorized the algorithm as DD1 and DD2 based on the order 

of approximation. The DD1 considers the first order terms during linearization while DD2, 

the improved algorithm, considers the second order terms also. It is understood from these 

works that the DD1 algorithm is similar to that of CDF proposed by [Schei1997] and DD2 is 

analogous to CDF [Ito2000]. The author of [Norgaard2000] presents the algorithm in a 

square root framework and the error covariance is obtained subsequently. The algorithm also 

accommodates the non-additive process and measurement noise. These features are missing 

in the algorithm of [Ito2000].  

An important parameter in these algorithms is the normalized interval length 

[Norgaard2000]. The choice of the interval length is to be carefully made. An arbitrary 

choice of this parameter may degrade the performance. For example, with the value of 

interval length equal to 1, the DD2 algorithm get reduced to DD1 as it is obvious from the 

steps of algorithm that the contribution of second order approximation becomes nil with this 

choice. In [Norgaard2000] it is suggested to choose this parameter as the square root of the 

kurtosis of the distribution (4
th

 moment) of the distribution which happens to be equal to √3 

for Gaussian noise. 

In some situations the performance of DD1 and DD2 are comparably same as reported in an 

analytical work by [Simandl2009]. It is mentioned that for the systems with high 

measurement noise covariance (with a comparatively low process noise covariance) and 

having quasi linear measurement equation performance of DD1 and DD2 are comparatively 

equal. In [Simandl2009] it is also mentioned that the performance of UKF and DD2 are 

almost same and significantly improved compared to DD1. In the PhD thesis of Merwe 

[Merwe2004] the relation between the central difference filter (CDF), divided difference 

filter (DDF) and UKF has been presented. It can be concluded from the work of 

[Simandl2009] and [Merwe2004] that DDF/ CDF are performance wise equal with UKF and 

does not need a number of tuning parameters like UKF. 
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In [Ito2000], the performance of CDF is illustrated with the help of three nonlinear 

estimation problems. A first order test problem with strong nonlinearity has been considered 

which is well known for performance evaluation of nonlinear filter because of its strong 

nonlinearity in the system dynamics and measurement equation. It has been observed from 

the results that the performance of CDF is comparable to that obtained from UKF (also called 

as Julier Uhlman filter in [Ito2000]) and far better than that from EKF. Because of the 

significant nonlinearity in the system dynamics the estimation performance of both CDF and 

UKF are not satisfactory even though they are better than EKF. However, for the other case 

studies the performance of CDF is found to be quite satisfactory.  

[Norgaard2000] demonstrated the performance of the proposed filters DD1 and DD2 with the 

help of a bench mark nonlinear estimation problem of object tracking. It is found that the 

performance of DD1 is comparable with EKF. As for DD2, it excels over DD1, EKF and 

even capable of producing better estimates compared to second order EKF.  

DDF is also extended as iterated DDF [Shi2008] in the same vein of iterated EKF 

[BarShalom2001]. The Divided Difference operators have been used in recurrence after 

getting a recent estimate in each time instant. During iteration, the current mean and the 

covariance of the divided difference filter (DDF) were used to measurement update step to 

re-compute the estimate such that more refined value may be obtained. This algorithm shows 

its superiority over the non iterated algorithm at an additional computation burden. 

2.2.3   Gauss Hermite Filter 

Gauss-Hermite filter was first reported in [Ito2000] wherein the estimation algorithm is 

developed using the Gauss-Hermite quadrature rule to numerically evaluate the Bayesian 

integrals. The integrals encountered in nonlinear Bayesian filtering approach for estimation 

of nonlinear system perturbed with additive Gaussian noise can be replaced by the weighted 

sum of the function evaluation of quadrature points generated following the Gauss Hermite 

quadrature rule. 

The Gauss Hermite quadrature rule is a special case of the Gauss quadrature rules for 

evaluating the Bayesian Integral in presence of Gaussian noise (also termed as Gaussian 

integrals in [Ito2000]). The Hermite polynomial is intended for Gaussian weighting function 

present in the integral. This rule is simplified further in [Golub1969] and followed in 
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[Ito2000] to develop GHF. A tri diagonal matrix is created in [Golub1969] from a three term 

recurrence formula using Hermite polynomial. Using this tri diagonal matrix the quadrature 

points and weights are obtained. 

Though computationally intensive compared to traditional filters like Unscented Kalman 

Filters, Divided Difference Filters, Gauss Hermite filters perform commendably well in the 

situations where there is significant nonlinearity in the system dynamics and the 

measurement equation. In [Ito2000] the filter has been evaluated using a one dimensional 

problem as mentioned before. It is observed from the result that the performance of GHF is 

comparatively better than the other sigma point filters.  

Many works contemporary with [Ito2000] seemed to be mentioning the possibility of Gauss-

Hermite filter. Subhas Challa and others [Challa1999] contributed a nonlinear filtering 

algorithm using Generalized Edgeworth Series and Gauss–Hermite Quadrature rule followed 

by the demonstration of its superiority over EKF using bearing only tracking problem. Fred 

Daum in his work [Daum2005] has reported about different way of Bayesian filtering 

techniques wherein the Gauss quadrature rule is preferred for its higher accuracy. The higher 

accuracy of GHF is also acknowledged in [Wu2006] which provided a unified numerical-

integration framework for Bayesian filtering and third order GHF is preferred for estimation 

at the disposal of sufficient computation power.  

In [Arasaratnam2007] the possibilities of Gaussian sum like parallel filters are explored to 

take care of non Gaussian noise and superiority of such filters over other nonlinear filters is 

demonstrated. It is reported in [Arasaratnam2007] that use of Gauss Hermite quadrature rule 

can provide filtering accuracy comparable to that of much more computationally intensive 

simulation based filters like Particle filters in some applications specifically with relatively 

small value of measurement noise covariance.  

The Square Root version of Gauss Hermite filter is also proposed by the same author in 

follow up paper [Arasaratnam2008] where it is observed that the performance is quite similar 

with the GHF with some additional numerical accuracy. A comprehensive description on 

Gauss Hermite quadrature rule along with necessary illustrations is provided in the in the 

master’s thesis of N. K. Singh [Singh2012] and also in [Chalasani2012]. The work of 

[Chalasani2012] investigates the performance of GHF for Bearing only tracking problem and 

also rectified the printing mistake in GH quadrature rule which appears in [Ito2000]. 
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It is realized that this sophisticated algorithm of Gauss Hermite filter suffers from the curse 

of dimensionality. The computation burden increases exponentially with the dimension of the 

system. To overcome this drawback the author of [Jia2012] proposed a sparse grid Gauss 

Hermite Filter. The filter uses weighted sparse-grid quadrature points to approximate the 

multi-dimensional integrals in the nonlinear Bayesian estimation algorithm. For this filter the 

number of sparse-grid quadrature points is a polynomial of the dimension of the system 

unlike the conventional GHF and overcomes the curse of dimensionality. 

For more accurate estimation of the systems with higher order dynamic equation a modified 

GHF is proposed by [Singh2013] and named as transformed Gauss-Hermite filter. An 

orthogonal transformation has been applied on Gauss-Hermite quadrature points in order to 

obtain the newly transformed quadrature points using which more accurate estimates of states 

are obtained. However, this algorithm also suffers from the dimensionality problem like 

ordinary GHF. 

2.2.4   Cubature Kalman Filter 

The multi variable moment integrals encountered in nonlinear Bayesian filtering algorithm 

[Ito2000, Arasaratnam2009] are needed to be approximated using numerical method for the 

implementation of filtering algorithms. In [Arasaratnam2009] the authors propose a method 

of numerical integration with the help of a spherical radial cubature rule which is less 

computationally intensive compared to GHF. The authors proposed a third degree cubature 

rule which ensures satisfactory estimation performance of the filter. The third degree rule 

being accurate up to third degree polynomial, it computes the posterior mean accurately and 

posterior error covariance with an approximate accuracy. For this algorithm the number of 

quadrature points increases linearly with increase in the dimension of the system. Therefore, 

for higher order system CKF requires much less computational effort compared to GHF 

based on Gauss Hermite quadrature rule. 

The Cubature Kalman filter algoritms resemble non scaled UKF algorithm and are claimed to 

be numerically more stable than UKF.. The square root version of CKF is also presented in 

[Arasaratnam2009] to retain the symmetry and positive definiteness of error covariance. 

However, the proposed filter cannot outperform GHF in the context of estimation accuracy. 

For example, it cannot compute exactly the Gaussian weighted integrals of such simple 
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polynomial functions as 2

2

2

1 xx , where 1x  and 2x  are two components of a Gaussian random 

vector [Jia2013a]. To increase the accuracy of CKF higher degree cubature points are 

required. 

The authors of [Jia2013a] work further on this filter to extend it for arbitrary degree such that 

3
rd

 degree cubature rule is only a subset of this higher degree filter. The general algorithm of 

higher degree cubature Kalman filter is presented in this work which shows that the 

performance of this filter is comparable with GHF but requires a lower computation effort. 

Though the authors of [Jia2013a] use the term higher degree only results for fifth degree 

CKF have been provided.  

Later a different method of higher order cubature filter is also presented in [Zhang2014].The 

authors present a new derivation of the CKFs, which easily lends itself to extension for 

higher-degree CKF compared to the method of [Jia2013a]. Three consistency conditions 

which have to be satisfied for fully symmetric cubature rules are introduced here for 

constructing desired CKFs. Additionally two different types of the fifth-degree CKFs are 

discussed in details. 

2.2.5   Cubature Quadrature Kalman Filter 

A new quadrature rule known as cubature quadrature rule has been proposed by 

[Bhaumik2013] which is published at the same time along with higher order cubature rule 

reported in [Jia2013a]. In the work of [Bhaumik2013] the author has proposed another 

version of cubature filter which increased accuracy compared to 3
rd

 degree cubature rule and 

termed as cubature quadrature rule.  

For the proposed quadrature rule the spherical integral is evaluated with 3
rd

 degree spherical 

rule as in [Arasaratnam2009]. The radial integral is approximated using Gauss Laguerre 

quadrature rule unlike the moment matching method in [Jia2013a]. For the first degree 

quadrature rule the algorithm becomes same as that 3
rd

 degree CKF given in 

[Arasaratnam2009]. The accuracy of CQKF reportedly increases with the increasing order of 

Gauss Laguerre quadrature rule The authors also extend their work in the square root 

framework [Bhaumik2014] which is also performance wise same with standard CQKF with 

its additional numerical advantages.  
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The same group of researchers also modified their work in [Singh2015] wherein the work of 

[Jia2013a] has been critically analyzed and the moment matching method followed in 

[Jia2013a] for computing the radial points and weights is reported to be analytically 

ambiguous. The authors proposed to combine higher degree spherical rule [Genz2003, 

Jia2013a] with higher order radial rule by solving higher order Chebyshev-Laguerre equation 

as mentioned in their previous paper [Bhaumik2013]. This new quadrature rule has been 

named as higher order cubature quadrature rule. The algorithm demonstrates its superiority 

over the algorithm of [Jia2013a] and [Bhaumik2013] for some numerical case studies. 

2.2.6   Nonlinear Information filters 

The nonlinear sigma point filters can also be extended with information filter configuration 

because this configuration facilitate initialization of the state, ensures positive definiteness of 

a posteriori error covariance and computationally economic with increasing number of 

measurements [Anderson1979]. 

It has been reported in literature that the Information filter variant of state estimators is 

widely recommended for multiple sensor estimation and plays a significant role in many real 

life applications (e.g. target tracking [Jia2013a], in collaborative sensor networks 

[Vercauteren2005] and decentralized guidance and control of UAV [Ragi2013]) because of 

the above mentioned advantages of the information filter configuration. [Anderson1979].  

2.2.6.1.Unscented Information Filter 

A generalized sigma point information filter algorithm was first reported in 

[Vercauteren2005] where only the performance of Unscented Information filter (UIF) was 

demonstrated for decentralized multi sensor fusion problem. The author also demonstrated 

the poor performance of Extended Information filter (EIF) as the drawbacks of EKF are also 

inherited by EIF. The sigma points are chosen using Unscented Transformation as given in 

the paper of Unscented Kalman Filter [Julier2004]. This work was also followed up in 

[Lee2008]. With the concept of unscented information filter square root unscented 

information filter was also proposed by [Liu2012] because of its enhanced numerical 

accuracy, double order precision and preservation of symmetry. 
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2.2.6.2.Central Difference Information Filter 

Another version of sigma point information filter is proposed by [Liu2011] where the sigma 

points are selected using Stirling interpolation formula and the resulting algorithm is termed 

as Central Difference Information filter (CDIF). Stirling’s interpolation formula is preferred 

over the unscented transformation as it does not require tuning parameters as in case of 

unscented information filter. Unless a careful tuning of UIF is achieved its performance may 

get deteriorated. CDIF is performance wise similar to UIF as demonstrated in [Liu2011] with 

reportedly low computation effort.  

Square Root version of the Central Difference Information filter are also formulated in 

[Liu2012] together with square root UIF. The square-root central difference information filter 

(SR-CDIF) is readily available from CDIF. The square roots of error covariance that are 

computed in the filtering algorithm are updated by QR factorization and Cholesky update. 

The square-root central difference information filter (SR-CDIF) is numerically more stable 

than square-root unscented information filter (SR-UIF) as SR-CDIF has only positive 

weights and therefore a stable Cholesky update. In case of SR-UIF during Cholesky update 

the positive-definiteness may not be guaranteed due to the negative weights. These filtering 

algorithms are validated by object tracking problem using multiple radars in [Liu2012]. 

2.2.6.3.Cubature Information Filter 

The concept of generating sigma points using spherical radial cubature rule is also extended 

for point based information filter. Cubature Information filter (CIF) is proposed in 

[Chandra2011] which has third degree accuracy as given in Cubature Kalman filter with 

standard error covariance form [Arasaratnam2009]. The performance of CIF is compared 

with UIF where it is demonstrated that the performance of CIF is comparable with the latter 

and sometimes better than that. The author has also extended CIF in the form of square root 

version of cubature information filter (SR-CIF) as the algorithm ensures numerical efficiency 

[Chandra2013]. Both CIF and SR-CIF are employed for multi-sensor state estimation. 

Cubature and Square Root information filter is also extended for correlated process and 

measurement noise by [Ge2014] and validated with a bearing only tracking problem. 
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2.2.6.4.Higher degree Cubature & Gauss Hermite Information Filter 

The performance of cubature information filter changes substantially with increase in the 

degree of the cubature rule. As reported in [Jia2013a] the higher degree cubature filter, e.g., 

fifth degree CKF provides improved estimation result compared to third degree CKF. The 

author has also extended this concept and developed a high-degree cubature information 

filter [Jia2013b]. The performance of 5
th

 degree CIF is comparable with Gauss Hermite 

Information filter and better than CIF, UIF and CDIF. Note that the Gauss Hermite 

Information filter is a sigma point information filter where the sigma points are chosen using 

Gauss Hermite quadrature rule. GHIF has not been proposed in any other previous work. The 

author has used in [Jia2013b] for performance comparison with 5
th

 degree CIF.  

2.2.7   Nonlinear filters for non-additive noise 

In literature only a few publications exist on nonlinear filters which can accommodate non-

additive process and measurement noise. The authors of [Wang2000, Merwe2004] proposed 

the augmented form of UKF which accommodate non-additive noise. In this algorithm the 

mean and covariance of noise vector are also computed with the help of sigma points as these 

cannot be computed directly algebraically as in the case of for additive noise.  

In a contemporary paper [Norgaard2000] the authors propose interpolation based DDF which 

can also take care of the non-additive noise terms. However, augmentation is not required as 

2
nd

 order approximation of the nonlinear function of process and measurement noise can be 

directly obtained using Stirling’s interpolation formula.  

The augmented form of UKF is also reported in [Sarkka2013a] and subsequently augmented 

form of GHF, CKF are also presented for non-additive process and measurement noise. Note 

that apart from [Sarkka2013a] no work exists to the best knowledge of the present worker 

where nonlinear filters with non-additive noise have been reported. 

2.2.8   Optimality of nonlinear estimators 

It may be noted from this brief survey as well as from the text and reference books cited that 

none of the nonlinear filters claim provable optimality in the general sense of the term, In 

other words estimators that can ensure optimal performance for nonlinear systems are yet to 

be developed.  However, lack of provable optimality does not appear to deter fairly 

widespread application of such sub-optimal filters in tracking and other applications. 
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2.3   Literature on Adaptive filters 

It has been discussed earlier that successful performance of the estimators (for linear as well 

as the nonlinear signal models can be ensured) requires. availability of the mathematical 

model of the system dynamics with adequate accuracy, the measurement equations and the 

prior knowledge about the distributions and covariances of the process noise and the 

measurement noise . Inappropriate assumption of any of these noise covariances can degrade 

the estimation accuracy of the filter and yields suboptimal estimation for both linear and 

nonlinear signal models [Mehra1972, Maybeck1982]. 

Process noise had been widely used to take care of modelling inaccuracy of system dynamics 

including parametric uncertainty, unknown disturbance etc [Simon2006, Zarchan2000]. The 

covariance of process noise is often unknown in many real time applications. As the 

objective of the present work includes estimation of unknown parameters along with the 

states, choice of process noise covariance becomes an important task.  

Regarding measurement, the noise covariance can be assigned correctly only after a detailed 

characterization of the sensor data. It is difficult to assign the measurement noise covariance 

accurately where the sensor characterization has been partially done or not carried out at all.  

Assignment of appropriate noise covariance requires a substantial experimentation and/or 

offline ‘tuning’ before employing a filter for real time estimation problem. Such procedures 

can be replaced by the use of adaptive filters which are capable to adapt process noise 

covariance (Q-Adaptive filters) and measurement noise covariance (R-Adaptive filters). This 

section presents the review on the existing adaptive estimators for linear as well as nonlinear 

signal models reported in literatures. 

2.3.1   Adaptive filter with linear signal models 

Adaptive filters for linear signal models have been reported in early works like [Mehra1970, 

Mehra1972, Myers1976, Maybeck1982] where the methods for adaptation of noise 

covariance have been presented. The work of [Mehra1972] is considered as a pioneer work 

in the history of adaptive filters where the methods of adaptation has been categorized into 

four categories. The rest of this section is organized on the basis of the categorization as 

mentioned in [Mehra1972] and the works on these particular methods of adaptation has been 

discussed. 
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2.3.1.1. Bayesian Estimation of unknown noise covariance 

Bayesian estimation method can be employed for estimating the unknown parameters of the 

system in addition to the states of the system. In situations when the prior knowledge of noise 

covariances remains unavailable these matrices can also be considered as unknown 

parameters and can be estimated using the Bayesian method.  

In this approach the objective is to find an optimal estimate of the unknown noise 

covariances (Q or R) such that the a posteriori probability density of the state is maximized. 

Such an approach of estimation of noise statistics (both mean and covariance of the noise) 

was first proposed by Sage and Husa [Sage1969]. The method proposed by Sage and Husa is 

one of the algorithms for adaptive Bayesian estimation with linear signal models reported in 

[Sage1969] by the same authors and has been followed later in many works on adaptive 

Kalman filtering. In the method of Sage Husa [Sage1969] the algorithms for adaptation of 

the mean and covariance of unknown process noise and measurement noise have been 

derived by maximizing the a posteriori density function of state. Therefore this method can 

also be considered as Maximum a Posteriori (MAP) estimation. Adaptive Kalman filter 

based on Maximum a Posteriori (MAP) method estimate the noise statistics (mean and 

covariance) consistently with the changes of the innovation sequence.  

It was admitted by the developers [Sage1969] that the algorithm for adaptation of mean and 

covariance of process noise and measurement noise based on MAP based method becomes 

computationally intensive with increase in the dimension of states and measurements. 

Therefore, the authors have suggested comparatively simpler algorithms on the basis of a few 

assumptions. However, the optimality of the estimated mean and covariances cannot be 

ensured with such assumptions. In addition to this it is obvious from the algorithmic steps 

that the positive definiteness of adapted Q and R cannot be ensured. In [Bavdekar2011] it is 

also reported that the MAP based estimation of noise statistics often provides biased estimate 

of true covariance. Expectation maximization method reportedly presents better performance 

compared to MAP in [Bavdekar2011] as would be discussed in the subsequent subsection. 

The work of Sage Husa is referred in several recent contributions. In [Yang2003] same 

algorithm of Q and R adaptation as in [Sage1969] is used with an additional adaptation factor 

which is decided on the basis of variance component. In the work of [Narasimhappa2012] the 

adaptive filter using Sage Husa’s method (same as MAP based method) is used to de-noise 
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the fibre optics gyro signal. Here, fading memory approach using a forgetting factor is also 

incorporated in the basic MAP based algorithm.  

To improve the estimation accuracy of MAP based adaptive filter, an AKF algorithm based 

on MAP estimation with one-step smoothing is proposed in a recent paper by [Gao2015a]. In 

the conventional MAP based algorithm an exponentially weighted fading memory approach 

is also incorporated to emphasize the recent measurements. However, in all the above 

referred modified MAP based estimation algorithms positive definiteness of adapted Q and R 

cannot be ensured as these are based on Sage Husa approach.  

Amongst the algorithms for adaptive Bayesian estimation reported in [Sage1969] the Sage 

Husa method (MAP based method) of adaptive Kalman filtering has become popular and 

also extended for nonlinear state estimation. Therefore, MAP based algorithms have been 

emphasized during the literature review on adaptive Bayesian estimation. The other methods 

of adaptive Bayesian method reported in [Sage1969] have been rarely referred in literature 

later and not related to the present work. Therefore, those methods have not been reviewed. 

2.3.1.2. Adaptation of noise covariance using Correlation Method 

It is mentioned in [Anderson1979] that the innovation sequence from an accurately tuned 

Kalman filter is zero mean, white and Gaussian. Incorrect value of the system parameters or 

noise covariances results into the loss of zero mean nature and whiteness of innovation 

sequence. Consequently the autocorrelation of innovation sequence no longer remains a 

Kronecker delta function. The adaptation of noise covariance (Q or R) using correlation 

method is developed on the basis of this concept. The correlation method was first introduced 

by [Mehra1970, Mehra1972] and followed up [Carew1973].  

In [Mehra1970, Mehra1972] the author proposes an estimation method for the noise 

covariance using the autocorrelation function of the output of the system. Alternatively, 

autocorrelation function of the innovation sequence can also be considered instead of the 

output. It is mentioned in [Mehra1972] that use of the innovation sequence is preferable as 

the correlation method based on output becomes restrictive in some situations. The relation 

between the unknown noise covariance and the autocorrelation function of the output or 

innovation sequence are presented by a set of equations and are solved using least square 

method for the unknown noise covariance. The above method is restricted for the unknown 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 2 29 

noise covariance with constant value. In [Mehra1971] the author has proposed an algorithm 

where the system parameters (parameters of state transition matrix) are identified using this 

method. 

In [Neethling1974] the authors proposed an alternative approach of estimating noise 

covariance based on weighted least square method and evaluated with the help of Monte 

Carlo simulation. The author also pointed out the drawbacks in the method of [Mehra1970, 

Carew1973] and demonstrated that this method may sometime present biased estimate of 

noise covariance. The authors of [Oussalah 2000] like [Neethling1974] estimate the unknown 

covariance with the help of weighted least square method instead of general least square 

method presented in [Mehra1970, Carew1973]. The rationale behind their proposal of using 

weighted least square method is to consider the quality of the autocorrelation function of the 

innovation sequence. The weights are determined using ‘Bhattacharyya distance criterion’ 

between the ideal probability and the distribution referring to the current first and second 

order statistics of autocorrelation functions. In [Oussalah2000] the authors demonstrated the 

superiority of the method proposed by them over the approach of [Mehra1970]. 

The authors of [Odelson2006] present a constrained Autocovariance Least Squares (ALS) 

method for estimation of Q and R. The method ensures the positive semi-definiteness of the 

estimated noise covariance. It is mentioned in [Odelson2006] that the methods by 

[Mehra1970] follows a three-step procedure to compute the covariances while the method of 

[Odelson2006] follows only one-step procedure which yields covariance estimates with 

better accuracy compared to [Mehra1970]. The unbiasedness and better convergence (to the 

truth value) of adapted covariances with increase in the number of samples is demonstrated 

in this work. It is also demonstrated that the approach of Mehra present biased estimate and 

cannot ensure the positive definiteness of estimated noise covariance. 

2.3.1.3. Covariance Matching method of adaptation 

Covariance matching method which is also known as intuitive method of adaptation has been 

reported in early works [Mehra1972, Myers1976, Maybeck1982]. The innovation covariance 

computed during filtering steps (theoretical innovation covariance) is compared with the 

sample covariance of innovation estimated from the sliding window with a finite length. The 

expression of unknown noise covariance is computed such that the innovation covariance to 
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be consistent with its theoretical value. This method has been followed to develop the 

algorithm for Q and R adaptation.  

The author of [Meyers1976] presents an alternative approach of adaptation algorithm 

compared to [Mehra1972, Maybeck1982]. Here, both the mean and the covariance of process 

noise are adapted which has broadened the scope of the application compared to 

[Mehra1972, Maybeck1982]. The above authors have also introduced a fading memory 

weighting parameter by which recent observations are emphasized compared to the older 

observations. This method, however, incorporates another window to maintain the history of 

a posteriori error covariance of previous instants for use in algorithm and therefore 

computationally more intensive than the method of [Mehra1972, Maybeck1982]. The 

expression of adapted Q and R presented in [Meyers1976, Mehra1972] again cannot 

guarantee the positive definiteness of adapted matrices. However, [Maybeck1982] presents 

an alternate algorithm for R adaptation that can ensure the positive definiteness of adapted R 

matrix. 

Because of the unavailability of the unique solution of adapted Q reported in [Mehra1972, 

Maybeck1982], the scaling factor based Q adaptation techniques [Hide2003a, Hide2004, 

Ding2007, Almagbile2010] have also been explored for linear signal models. The work of 

[Hide2004] is a follow up of previous publication [Hide2003a] where the a priori error 

covariance is scaled rather than Q. This method did not turn out to be promising for 

navigation problem and scaling of process noise covariance suggested to be a solution in this 

situation as reported in [Hide2004].  

The scaling factor based Q adaptation was pursued again in [Ding2007] where some further 

modifications are made provided the measurement noise covariance is precisely known. The 

same method of Q adaptation is followed in the recent work of [Almagbile2010]. The scaling 

factor based method of Q adaptation does not have the straight forward proof and therefore, 

needs numerical experimentation before real time application with confidence. 

R adaptation algorithm, unlike Q adaptation, presents a unique solution for adapted R 

[Mehra1972, Maybeck1982]. Two different approaches of R adaptation have been reported 

in [Maybeck1982] using the statistics of either the innovation or, the residual from filter. The 

distinction between innovation and residual is nontrivial. While innovation is defined as the 

difference between actual measurement and a priori measurement, residual uses a posteriori 
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estimate of measurement. The expression of adapted R ensures positive definiteness when 

derived using the residual sequence. However, the possibility of residual based R adaptation 

for ensured positive definiteness of R is not mentioned in [Mehra1972]. 

The use of residual sequence is recommended in [Maybeck1982] because of its ensured 

positive definiteness and also preferred in [Almagbile2010]. In [Myers1976] adaptation 

algorithm for R is presented based on innovation sequence only. Here also the mean of 

measurement noise is adapted. However, due to innovation based adaptation positive 

definiteness of R cannot be guaranteed here too. 

Following the method of covariance matching, a different algorithm adaptive filtering is 

presented in [Yang 2001a, 2001b, 2003, 2005]. The adaptation method although based on 

Sage Husa method of adaptation proposed in these publications the use an adaptive factor 

based on covariance matching method to adjust the contribution of the measurements and the 

predicted states. Usually the traditional covariance matching method of adaptation performs 

satisfactorily if the states and measurement errors are stable. When unstable prior states are 

predicted by the filter adaptive factor can balance the weights between the measurements and 

the predicted state and controls the ill effects of diverging predicted error. The choice of 

adaptive factor is a crucial part of design and plays a significant role in navigation.  

Two of such adaptive factors were introduced first in [Yang 2001a, 2001b]. A different 

adaptive factor using the variance ratio of predicted states and observations was also 

developed in [Yang2003]. These adaptive factors are mostly developed by experimentation. 

Possibilities of other adaptive factors are mentioned in [Yang2005] and the influence of 

various adaptive factors on the filtering algorithm is investigated there. 

Adaptive Kalman filter proposed by [Jwo2008] is also based on covariance matching 

method. The Q and R adaptation is done using a scaling factor. This factor is the ratio of 

window estimated and theoretical innovation covariance. However, for Q adaptation author 

has restricted its maximum value to be 1. The effect of Q adaptation can also be achieved by 

adapting the a priori error covariance matrix. The same authors also discussed about the 

scaling factor based P (a priori error covariance) adaptation in their book chapter [Jwo2009]. 

Basically, Zhou et al [Zhou1996] proposed this approach with the name of strong tracking 

Kalman filter. The advantages of this algorithm are: (i) robustness against model 

uncertainties and (ii) tracking of abrupt changes of states.  
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The covariance matching Q and R adaptation similar to [Jwo2008] are also employed for 

fault detection of the linear signal models in [Hajiyev2013a] so that acceptable estimation 

performance can be obtained. Depending on the residual statistics and using the Chi square 

method the choice is made between Q and R adaptation. The adaptation is done on the basis 

of a scaling factor which is restricted to be less than equal to one for Q adaptation like 

[Jwo2008]. 

2.3.1.4. Maximum Likelihood Estimation of noise covariance 

Maximum Likelihood estimation is a well known approach and originated from Bayesian 

method of estimation only. This method can also be employed for adaptation of noise 

covariance. Adaptation based on Maximum Likelihood Estimation (MLE) method was first 

proposed in [Mehra1972] and followed up in [Maybeck1982] wherein the methods of Q and 

R adaptation is elaborated and mathematically derived. 

From the ML method an unbiased estimate of the required parameter can be obtained with 

finite covariance using independent and identically distributed measurements. The estimates 

are so obtained that the computed value can maximize the probability density function of 

measurement which is expressed in terms of innovation or residual sequence. The innovation 

or residual of measurement from a sliding window is involved to obtain the expression of 

adapted Q or R with the assumptions that the elements of covariances are time invariant 

within the window (epoch) length and the innovation/residuals are white (not auto-

correlated).  

The method of Q adaptation based on maximum likelihood estimation is investigated in 

[Mohamed1999]. While [Maybeck1982] has presented the expression of adapted Q in terms 

of state residual, [Mohamed1999] has used innovation sequence. Use of innovation sequence 

in place of state residual may reduce the computation cost when the dimension of state vector 

is more than that of measurement vector. Another nontrivial contribution of [Mohamed1999] 

is to ensure the positive definiteness of adapted Q. As the filter reaches steady state the a 

posteriori error covariance acquires a steady value (often low) and their effects can be 

overruled to get an expression of the symmetric, positive definite adapted Q. This assumption 

is justified and satisfactory estimation result is obtained using this approximated adaptation 

algorithm that guarantees positive definiteness of Q. 
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In the work of [Mohamed1999] and [Maybeck1982] two different R adaptation methods 

have been derived using MLE method. Here also the residual based method is preferred as 

the derived expression of adapted R automatically ensures positive definiteness of adapted R 

matrix. However, the innovation based R adaptation algorithm cannot ensure the positive 

definiteness of R. 

The approach of MLE based adaptation is followed in [Hide2003b]. The Q and R adaptation 

formula have been taken from [Mohamed1999]. The author also compared this approach 

with Multiple Model Adaptive Estimation where a bank of Kalman filters is used. For 

attitude estimation of a moving object the Q and R adaptation techniques by [Mohamed1999] 

is followed in [El-Mowafy2005]. However, the residual based Q adaptation algorithm 

presented in this publication seems to be incorrect. Additionally, a Gauss-Newton iteration 

method within a single epoch is employed to minimize the linearization bias in face of poor 

initial estimation or large disturbances. 

The MLE method was reported in an earlier paper by [Kashyap1970] where the unknown 

parameters are computed using optimization techniques. Q and R can also be obtained using 

MLE method where the unknown covariance is obtained following the gradient-based 

numerical optimization methods so that the computed parameters maximize the likelihood 

function. These optimization based methods need more computation time compared to the 

other method as gradient based numerical optimisation are required to obtain the estimate of 

unknown covariance after convergence. 

2.3.1.5. Expectation Maximization method of adaptation 

Expectation Maximization is an alternative way of parameter estimation following the 

optimization based maximum likelihood estimation technique [Kashyap1970] where the 

usual gradient based numerical optimization approach of maximizing the likelihood function 

are replaced by iterative method as reported in [Shumway2000, MohanM.2015]. These 

works have been originated from an earlier work by [Dempster1977].  

The expectation maximization (EM) technique was developed by Dempster and applied for 

estimation of covariance components of a linear signal models [Dempster1977]. On the 

availability of the complete data likelihood function the unknown parameters are estimated 

iteratively and this method does not require the derivative calculation.  
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The EM method, as its name suggests, consists of expectation and maximization steps. In 

EM method proposed by [Shumway2000] states are estimated using Kalman smoother with a 

guessed initial value of the unknown parameters. The unknown parameters are then 

estimated by Maximum Likelihood method. The above method of estimating the states with 

the help of a Kalman smoother and optimizing the parameters using ML method is repeated 

until the convergence of the parameters is achieved. The algorithm presents analytical 

expressions for the iterations of the parameters and therefore computations of the gradient are 

not required. 

In a recent work by [Zagrobelny2014] the authors followed an optimization based MLE 

method for adaptation of process and measurement noise covariance. The measurements are 

presented with the help of a normal distribution where the variance of distribution is 

expressed in terms of the unknown process and measurement noise covariances. The 

likelihood function is then maximized for the optimal choice of unknown covariances using 

optimization techniques. 

2.3.1.6. Variational Bayesian approach of adaptation 

The variational Bayesian approach of adaptive Kalman filtering is first proposed by 

[Sarkka2009] which also comes under the category of Bayesian method of estimation of 

noise covariance. In this work the situation has been considered where the distribution of the 

measurement noise along with the noise statistics (parameters) of distribution remains 

unknown. The author has proposed an algorithm of adaptive Kalman filter using variational 

Bayesian approximation where joint estimation of states and the noise parameters is possible.  

The method is based on variational approximation of the joint posterior distribution of states 

and noise parameters which has to be considered on each time step separately. Thus a 

recursive algorithm is obtained, where for every step, the state is estimated with Kalman 

filter and the diagonals for the measurement noise covariance are estimated with fixed point 

iteration. The m diagonals of the covariance of m-dimensional measurement noise are 

assumed stochastic and follow independent dynamics.  

Approximation of the joint posterior distribution of the state and the noise variances by a 

“factorized free form distribution” is possible by the method reported in this work. This way 

of adaptation, though widely different from the other approaches of adaptive Kalman filter, 
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has similarity with the basic concept of covariance matching technique [Maybeck1982] 

where the adapted covariance should remain consistent with observed innovation or residual.  

Another work by the same author has been proposed in [Sarkka2013b] with nonlinear signal 

models for non-additive or nonlinear noise. The author of [Gao2011] used the above concept 

of estimating state and noise parameters for centralized sensor fusion where the complete 

knowledge of sensor noise remains unavailable. To reduce the computational burden of 

centralized fusion authors present sequential centralized fusion algorithm. 

The variational Bayesian method is also employed in [Sun2012] to estimate the states in 

linear dynamic systems with unknown inputs. When the knowledge of noise remains 

unavailable the author considers system state, unknown inputs and time-varying noise 

parameters as hidden variables and presents an algorithm based on variational Bayesian 

method to learn the structure of hidden variables and approximate the joint posterior 

distribution of system state, unknown inputs and time-varying noise parameters. 

2.3.1.7. Findings from the review on adaptive Kalman filters  

In course of the review some significant points which are found common to several papers on 

adaptive Kalman filtering have been enumerated below.  

For Q adaptation methods presented in [Mehra1972, Maybeck1982] both the authors admit 

that the uniqueness of the adapted Q is possible only for some restricted situations. Whenever 

the number of observation is greater than or equal to the number of states or the measurement 

matrix is of full rank unique solutions for a priori state error covariance and the process 

covariance can be obtained. When the above conditions do not hold, some restrictive 

approximations, e.g., Q as a diagonal matrix may be assumed. Alternatively, the pseudo 

inverse of measurement matrix needs to be computed. Above all, the filter is considered to be 

reached steady state during the most recent estimation window. However, for R adaptation 

no such constraints have been reported. 

It is to be noted that in a few works [Myers1976, Almagbile2010] as reported above 

simultaneous adaptation of Q and R has been carried out and satisfactory results have also 

been demonstrated. A few researchers [Mehra1972, Maybeck1982, Mohamed1999] have 

admitted the drawback of simultaneous adaptation of Q and R. This indicates that even 

though acceptable results are obtained for some cases use of algorithms with simultaneous 
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adaptation of Q and R cannot be used with confidence and should be evaluated with offline 

simulations before real time application. The same comments would also be applicable for 

adaptive nonlinear filers. 

In [MohanM.2015] the author reports on the review on adaptation method that the effect of Q 

and R are conflicting in nature which is the cause of poor estimation during simultaneous 

adaptation of these two covariances. In [MohanM.2015] the author mentioned that for 

simultaneous adaptation of Q and R using optimization based MLE method consideration of 

a special cost function is necessary based on the statistics of prior, post, and smoothed state 

estimates and their covariances. Improper combination of such statistics cannot lead to 

satisfactory performance of filter as. R is over estimated while Q is under estimated and vice 

versa. The authors cite a reference [Gemson1991] where Q and R are adapted alternately. To 

bypass the problems of simultaneous adaptation, the filter gain can also be adapted in place 

of adaptation of noise covariances [Mehra1972]. This method although may ensure the 

optimal performance of filter cannot present the adapted value of noise covariance which 

may be necessary for the further analysis. 

Note also that most of the papers on AKF where the algorithm is presented using Kalman 

filters as its core have been demonstrated with nonlinear estimation problems. In that 

situation the need of linearization of the system and measurement equation is essential. 

Consequently the algorithm which is termed as AKF in the paper becomes equivalent to 

adaptive EKF during demonstration of that algorithm using nonlinear estimation problem. 

However, during review these works have been categorized as AKF following the theme of 

the paper. 

2.3.2   Adaptive filter with nonlinear signal models 

The concept of adaptive Kalman filters for linear signal models are also extended for 

nonlinear signal models using the non-adaptive nonlinear filters as the underlying 

framework. The adaptation algorithms are integrated in the non-adaptive nonlinear filtering 

algorithms so that the corresponding adaptive nonlinear filter can be formulated. In this way 

Adaptive version of EKF, UKF, DDF, CKF have been developed and reported in literature 

which are summarized in the following subsections. 
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2.3.2.1. Adaptive Extended Kalman Filter 

The adaptation algorithm for linear signal models based on different methods can be applied 

for nonlinear systems using EKF as a base. An early work by [Maybeck1981] presents a Q 

adaptive EKF based on MLE method [Mehra1972]. In [Maybeck1981] adaptation algorithm 

additionally uses a modulating factor (may be termed as forgetting factor as well) to regulate 

adaptation speed. Use of MLE based Q-Adaptive EKF is also found in [Busse2003]. In this 

work the same method of adaptation of Q [Maybeck1981, Maybeck1982] is followed and in 

the similar way a modulating factor is used which has been explained as a moving average 

method for refinement of adapted Q. The only change in adaptation algorithm is that here the 

previous history of innovation sequence is not used by making the window length equal to 1, 

i.e., it considers only the value for the current instant. However, these algorithms for Q 

adaptation may suffer from singularity problem. 

[Busse2003] also proposes R adaptive EKF based on MLE. However, the algorithm presents 

incorrect expression of adapted R. While the residual based R adaptation method (as in 

[Maybeck1982]) has been followed here the expression of adapted R presented is similar to 

that of innovation based adaptation.  

Q and R adaptive EKF is reported in [Han2009a]. MLE based approach of adaptation as in 

[Mohamed1999] has been followed to ensure the positive definiteness of adapted Q. 

However, innovation based R adaptation again may suffer from loss of positive definiteness. 

The author of [Zeng2012] has presented an algorithm of adaptive EKF combining with 

particle swarm optimization technique to deal with the state constraints. As for the adaptation 

MLE approach is followed. The adapted Q and residual based adapted R ensure the positive 

definiteness. In the paper, however, the author uses the concept of residual but coins the term 

‘innovation’ instead of ‘residual’. The adaptive EKF in [He2015] uses the Q and R 

adaptation method of [Mohahmed1999] and appropriately modify the algorithm with the help 

of the computed derivatives of system and measurement model. 

Bavdekar et al. [Bavdekar2011] follows two different approaches of adaptive EKF : (i) 

Optimization of Maximum Likelihood function, (ii) Expectation Maximization method for 

nonlinear systems based on the extended Kalman filter. In the ML based optimization 

approach the likelihood function based on the innovation sequence is directly optimized 

using a constrained nonlinear programming strategy, sequential quadratic programming. In 
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the EM method the conditional density function of the states and measurements is maximized 

to compute the next iterate of the decision variables for the optimisation problem. In this 

method derivative calculation is replaced by function evaluation for estimation of the noise 

covariances. 

Adaptive Extended Kalman filter with unknown input is proposed in [Cavusoglu2014] where 

the adaption is based on minimization of cost function which is selected as a quadratic 

function of innovation. Subsequently the computed scaling factor is obtained to tune the a 

posteriori error covariance and satisfactory state estimate is presented. 

Based on covariance matching method Q and R-adaptive EKF is developed in 

[Lippiello2007]. The adaptation method as in [Myer1976] has been followed. Note that the 

positive definiteness of adapted Q is not guaranteed here too. For R adaptation innovation 

based approach is followed and duly modified to suit for visual motion estimation. However, 

innovation based R adaptation algorithm cannot guarantee the positive definiteness of 

adapted R as said before. Note also that the apart from covariances, the mean of process and 

measurement noise are also adapted as it is recommended in [Myer1976]. 

In presence of faulty measurement, an Adaptive EKF is proposed by [Hajiyev2011] where 

the filter gain is adapted instead of noise covariances based on the evaluation of the a 

posteriori probability of fault free system. The adaptation of filter gain is carried out with the 

help of the posterior probability density of the normalized innovation sequence at the current 

estimation step. 

An adaptive EKF based on strong tracking algorithm is proposed in [Xia1999] where the a 

priori error covariances is tuned using a scaling vector. The scaling factor is computed based 

on innovation sequence. This algorithm is found to perform well in the situation when system 

dynamics is affected by unknown disturbances.  

Author of [Meng2000] has proposed both Q and R adaptive EKF where along with the 

covariances the mean of noises are also adapted. The covariance matching method 

[Myers1976] has been followed and innovation sequence is employed to obtain the 

adaptation algorithms. The speed of adaptation is regulated using a forgetting factor. 

In [Jiancheng2011] EKF algorithm is presented where window estimated innovation-

covariance is used to adapt the gain of the filter following the covariance matching method. 
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When measurement noise covariance remains unknown, gain of filter is adapted instead of 

adaptation of R. 

In [Wang2015] adaptive EKF following covariance matching method is also developed with 

a variable forgetting factor. The forgetting factor which is constrained to be less than equal to 

unity is decided on the basis of the comparison of window estimated and filter computed 

innovation covariance. 

Following the MAP based estimation of noise statistics the authors of [He2011] proposed an 

AEKF algorithm where the mean and covariance of process and measurement noise are 

adapted. Here also the speed of adaptation is regulated with a forgetting factor. 

However, the adaptive EKF suffers from the well known shortcomings of EKF. The adaptive 

filters based on sigma point filter can overcome the drawbacks of adaptive EKF as it is 

demonstrated in the papers on adaptive sigma point filter. In the following subsection the 

works on adaptive sigma point filters have been reviewed. 

2.3.2.2. Adaptive Unscented Kalman Filter 

Works on adaptive Unscented Kalman filters are plenty. These are presented below by 

categorizing them based on the different approaches of adaptation as discussed before for 

adaptive linear estimator. 

MLE based AUKF 

In [Lee2004, Lee2005] Q adaptive UKF is first proposed as one of the adaptive sigma point 

filters which has been applied on satellite attitude estimation problem. The proposed 

adaptation rule is an extension of MLE based Q-adaptation formula for linear estimation 

problem. However, the mathematical derivation of the adaptation algorithm is not carried out 

in [Lee2004, Lee2005]. 

A method for appropriate choice of window size for the innovation window is also reported 

here which is another nontrivial contribution of [Lee2004, Lee2005]. An optimization based 

technique, namely, the Powell’s method was followed for such appropriate choice of window 

size. The cost function which is a quadratic expression of innovation vector obtained from 

Monte Carlo simulation is to be minimized for the choice of appropriate window length. This 

work is followed up in [Soken2014] where the Q adaptive UKF is used for bias estimation. 

The author has also derived the mathematical expression of the adaptation algorithm 
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following Maximum Likelihood Estimation method by defining a pseudo measurement 

matrix of nonlinear observation equation. 

The complementary algorithm for R adaptation is reported in [Chai2012] which is inspired 

from the MLE based R adaptation [Mohamed1999] method for linear signal models. This 

work follows residual based R adaptation for the ensured positive definiteness of adapted R 

matrix. However, the adaptation algorithm has not been derived in this paper. The adaption 

algorithm has some errors which are pointed out in and rectified in [Das2013, Das2015] 

Covariance matching method for AUKF 

A scaling method based Q adaptive UKF by [Soken2011, Hajiyev2014] has been reported in 

the literature where the scaling method which has been reported in [Hide2004, Jwo2008, 

Hajiyev2013a] is extended for UKF framework. However, in place of innovation based 

adaptation residual based adaptation has been proposed for Q adaptation. However, there is 

no added advantage (e.g., ensured positive definiteness) of using residual in lieu of 

innovation sequence for Q adaptation. The adaptation approach is similar to intuitive 

covariance matching method and does not present a formal mathematical derivation like 

[Soken2014].  

In the same vein scaling factor based R adaptive UKF are also proposed by the same authors 

[Hajiyev2014, Soken2012, Soken2011, Soken2009]. However, for R adaptation the 

innovation sequence is introduced and the maximum value of the scaling factor is restricted 

to be 1. In most of the cases these algorithms are employed for fault detection. Depending on 

the nature of fault Q or R adaptation algorithm is to be employed and this choice of 

adaptation algorithm is made by statistical measure of innovation or residual with the help of 

Chi square test. 

Based on the covariance matching method of [Myers1976] an adaptive UKF has been 

formulated by [Jargani2009]. The Q adaptation algorithm has been modified from 

[Myers1976] with some reasonable approximation so that the expression of the adapted Q 

can assure the positive definiteness of Q. In addition to Q adaptation, both innovation and 

residual based R adaptation methods are also proposed in work. The proposed algorithm is 

demonstrated to be superior to the fading memory based AUKF.  
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In [Cao2009] the a priori error covariance (P) is scaled instead of Q to make the UKF 

adaptive in face of unknown process noise statistics. Innovation covariance is introduced to 

compute the scaling factor (may also termed as forgetting factor) which consequently tunes 

the filter gain and presents a better estimate of state.  

In [Fathabadi2009] new variety of AUKF is involved which is designed for asynchronous 

measurements. In absence of accurate dynamic model for the system a forgetting factor is 

chosen based on covariance matching method which scales a priori error covariance (P) like 

[Cao2009]. In addition to this when measurements are also uncharacterised the filter gain (K) 

is tuned by utilizing both the forgetting factor and a new scaling factor computed using 

innovation covariance. In this way the satisfactory state estimate is obtained here.  

Another Q and R scaling methods are shown in [Huy2012], where the scaling factors are 

computed using optimal Downhill Simplex search technique so that the computed scaling 

factor minimizes a cost function which is an implicit function of the measurements. This cost 

function needs to be decided based on the application.  

Strong tracking Unscented Kalman filter is proposed in [Li2010, Tao2014] for correlated 

process and measurement noise. The strong tracking filter is a kind of adaptive filter where 

the a priori error covariance is tuned with a scaling factor as mentioned before. This is useful 

when there is uncertainties in the system dynamics as discussed before. To compute the 

scaling factor estimated innovation covariance from the sliding window is used. This is also 

an intuitive method and may be categories under covariance matching method. 

An adaptive UKF has been employed in [Wanxin2011] where the scaling factor based 

adaptation algorithm has been proposed. The error covariance matrix of a priori estimate of 

measurement and the cross covariance matrix are tuned using the scaling factor which is 

derived based on covariance matching technique. 

In [Xia2014] an Adaptive UKF is proposed for both Q and R adaptation. Depending on the 

value of residual it is decided whether to increase or, decrease Q by multiplying a scaling 

factor. This algorithm tune Q or R in an ad hoc process which lacks rationale of using such 

scaling factors. The algorithm is employed for fast identification of a machine tool selected 

point temperature rise. 
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The algorithm of AUKF reported in [Chai2012] has a few errors in adaptation steps which 

have been rectified in [Das2015, Das2013]. As the adaptation algorithm in [Das2015, 

Das2013] is obtained analogous to that of the linear system without formal derivation, these 

R adaptation algorithms may also be categorized under intuition based covariance matching 

method. Both innovation and residual based adaptation methods are reported in [Das2015, 

Das2013]. Though these algorithms present comparable estimation result, the latter has an 

additional advantage of ensured positive definiteness as mentioned before. For innovation 

based R adaptation an ad hoc approach has been followed in [Das2015] before they are 

employed for nonlinear estimation. 

MAP based AUKF 

The Maximum a Posteriori method based noise statistics estimator is introduced in UKF by 

[Zhao2009] where the mean as well as covariance of process and measurement noise are 

estimated. The posterior density function is presented in terms of the innovation sequence 

which has to be maximized by correct choice of first two moments of noise. The proposed 

adaptive UKF is demonstrated to present satisfactory estimation performance by online 

adaptation of noise statistics when the measurement noise covariance varying with time. 

However, demonstration regarding Q adaptation is not found in [Zhao2009].  

Following the work of [Zhao2009], the author of [Cheng2014] demonstrated the satisfactory 

estimation performance of both Q and R adaptation algorithm in UKF framework for 

MEMS/GPS integrated navigation. However, the adaptation algorithm for Q presents an 

approximated expression of adapted Q and correctness of the expression has not been 

justified in the paper. 

For systems with time varying process and measurement noise covariance an adaptive UKF 

is proposed by [Gao2015b] which employs a random weighting technique along with Sage 

windowing approach (MAP) for estimating and tracking the unknown time varying process 

noise and measurement noise covariance. The innovation sequence is employed for deriving 

the expression of adapted noise covariances. The limitation of the windowing approach is 

that the appropriate choice of window size for adaptation of unknown time varying noise 

covariance has to be decided after experimentation. Infusing the random weighting technique 

this limitations are overcome and satisfactory tracking of time varying elements of Q and R 
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is possible with the help of such automatically chosen weighting factor. The adaptation 

methods are presented in this work with the help of theorems along with proofs. The 

satisfactory performance of the proposed algorithm is demonstrated with numerical 

problems. 

An adaptive UKF has been proposed by [Liu2009] for non white noise. The proposed 

algorithm is applied for GPS based position estimation problem where the system dynamics 

is perturbed with additive non-white Gaussian noise. The Q adaptation algorithm has been 

claimed to be derived from Sage Husa filter without derivation of the algorithm. A forgetting 

factor is also included to control the speed of adaptation. However, no further steps are 

incorporated to take care of the non white noise. 

AUKF based on MIT Rule  

The AUKF based on complex MIT adaptation rule is also found in [Jiang2007, Han2009b]. 

The implementation of this method is often impractical because of large number of partial 

derivative calculations. 

2.3.2.3. Adaptive Divided Difference Filter 

Adaptive Divided Difference Filter is first introduced along with AUKF in [Lee2004, 

Lee2005] as referred before wherein the Q adaptation was the focus of research. Adaptation 

is based on Q-Adaptive Kalman filter as reported in [Maybeck1982].  

The expression of adapted Q is modified from that of [Maybeck1982] and the modifications 

are made following Adaptive EKF [Busse2003]. In this work the final value of adapted Q of 

current instant is obtained from by the moving average of adapted Q of current instant and 

the previous instant with the help of a tuning parameter. The same idea is followed by 

[Lee2005, Lee2004] and the tuning parameter is obtained by optimization technique using 

Powell’s method. However, the work of [Lee2005] can neither assure the positive 

definiteness of adapted Q nor can it guarantee the symmetry of adapted Q. In addition to this 

the Q adaptive DDF proposed in [Lee2005] uses only first order approximation. 

A Robust Adaptive second order Divided Difference Filter is proposed by [Karlgaard2010] 

which uses the concept of adaptation of Q reported by [Myer1976] and modified this concept 

of adaptation in presence of outlier. As developed from the methods proposed by [Myer1976] 

it inherits the drawbacks of this method as reported earlier. An innovation based R adaptation 
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method based on [Myer1976] has also been presented in [Karlgaard2010]. The work of 

[Karlgaard2010] focuses on the robustness rather than adaptation. Therefore, Huber based 

Divided Difference filter is proposed for robust estimation in presence of outliers. 

Additionally when the noise covariance is unknown, they are adapted accordingly. However, 

this method is also suffers from computational burden and cannot ensure positive 

definiteness of adapted R. 

An adaptive formulation of second order DDF [Subrahmanya2009] has the emphasis on 

robustness instead of adaptation. The upper bound on error covariance matrix (P) is derived 

so that the filter can be made robust to modelling uncertainties. In the algorithm of 

[Subrahmanya2009], (i) the parametric structure of upper bound has been evaluated and one 

of its parameters is determined following adaptive fading memory approach and (ii) tuning of 

the other parameters of filter is based on a combination of on-line and off line tuning, (iii) the 

measurement equation is constrained to be linear. 

2.3.2.4. Adaptive Cubature Kalman Filter 

Adaptive nonlinear filters are also formulated using Cubature Kalman filter as the underlying 

framework which is non-adaptive per se. The non-adaptive Cubature Kalman filter is a 

derivative free sigma point filter and comparable with its other relatives like UKF, DDF as 

discussed in the section on nonlinear filters. The adaptive cubature filter has several variants 

which may be classified based on adaptation approaches e.g., strong tracking approach, 

variational Bayesian approach, Maximum a Posterior (MAP) approaches and some 

combinations of these methods.  

The adaptive CKF was first proposed in [Sarkka2013b] where the variational Bayesian 

method has been followed where the distribution of measurement noise remains unknown. 

The proposed method addresses an apparently similar estimation problem as discussed in 

AUKF, ADDF. However, in this work the distribution of the measurement noise is also 

unknown unlike the other adaptive nonlinear filters where the distribution of the 

measurement noise is assumed to be known (Gaussian). For such estimation problem a 

different solution methods has been proposed in [Sarkka2013b] based on variational 

Bayesian approach. This is basically the extension of the previous work [Sarkka2009] for 

state estimation of linear signal models. The measurement noise is adapted with the help of a 
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different dynamic model. Though the adaptive CKF has been demonstrated in [Sarkka2013b] 

possibility of obtaining AUKF, AGHF using same method has also been mentioned.  

Adaptive CKF (in square root framework) is also reported in [Ge2011] under the category of 

strong tracking filters for the situations when the system dynamics is susceptible to unknown 

parameter variations/ disturbance. In case of strong tracking filters a modulating factor is 

adaptively chosen based on innovation sequence and regulate the a priori error covariance. 

This would in turn adapt the filter gain so that satisfactory estimation performance may be 

obtained. Such an algorithm has been reported in where the adaptation algorithm is presented 

for a special situation where process and measurement noise are correlated.  

A similar work has been reported by the same author in [Ge2014] where it has also been 

considered that the measurement noise (assumed Gaussian) covariance is unknown. The 

unknown noise covariance is adapted using the variational Bayesian approach here. 

However, in this work author did not consider the correlation between process and 

measurement noise. The information filter configuration is considered as an underlying 

framework for economic computation during multiple sensor fusion.  

Adaptive CKF is also proposed in [Benzerrouk2013] which may be classified as strong 

tracking filter and applied for nonlinear state estimation with non Gaussian measurements. 

Adaptive iterated SR CKF is also proposed in [Chen2013] where for adaptation the strong 

tracking method has been applied to adapt the square root of predicted error covariance.  

In [Tang2012] a Q-adaptive CKF in square root approach is proposed where the adaptation 

steps of process noise covariance is presented which may be derived using MLE method. The 

work is a follow up of the work of [Lee2004]. The window length for adaptation has been 

automatically chosen using the simplex rule of optimization as in [Lee2004]. The estimation 

of accuracy of [Tang2012] based on square root CKF framework is expected to be 

comparable with Q adaptive UKF and improved compared to Q adaptive DDF (first order) 

[Lee2004]. Like the base paper here also derivation of the Q adaptation algorithms is not 

provided. Another adaptive CKF presented in [Xia2015] where the concept of Q adaptation 

and residual based R adaptation algorithm [Mohamed1999] has been implemented. 

In [Yu2014] an adaptive cubature filter has been proposed for the situation where the first 

two moments of both the process and the measurement noise covariances are unknown. It is 
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reported that following the Sage Husa method (MAP), the mean and covariances of the 

process and the measurement noise have been adapted. Additionally a fading memory factor 

is also been used. However, the adaptation formulae have not been derived here.  

The adaptive CKF in square root approach is presented in [Liqiang2015] where maximum a 

posterior (MAP) based approach has been followed to adapt the unknown noise covariance 

of process as well as measurement noise. The square root version has been preferred for 

ensured positive definiteness of error covariance. The mathematical derivation of adaptation 

algorithms in square root approach have also been presented in the paper. To make the filter 

robust in the face of modelling uncertainty the strong tracking method has also been adopted 

in this work.  

Convergence analysis of Cubature Kalman filter has been addressed in the work of 

[Zarei2014] where the effect of process noise covariance has been investigated and 

adaptation of process noise covariance is proposed to deal with large estimation error. For 

adaptation of process noise covariance MLE approach as in [Lee2004] is followed. It is 

demonstrated that adaptation of process noise covariance influence the convergence of the 

filter. Performance of an alternate algorithm of CKF modified with fuzzy logic is also 

compared with ACKF in the perspective of convergence by initializing a Gaussian prior 

(initial estimate) with large value of error covariance. 

A different version of adaptive filter based on cubature rule is also reported in [Chen2012]. 

The authors propose an adaptive CKF for joint estimation of parameters and states without 

augmenting parameters. Here adaptation gain is chosen based on minimizing the recursive 

weighted least squares of the prediction error. To make the filter resistant to modeling 

uncertainties risk sensitive filtering algorithm has been followed. 

2.3.3   Application of Adaptive filters 

It is observed from the literature survey that the adaptive estimators have been prevalently 

used in attitude estimation, navigation of the land vehicles and the vehicles for aerospace and 

marine applications. For integrated navigation systems sensors used are inertial 

(accelerometers and gyroscopes) as the main system with external aid provided by GPS and 

GLONASS, Galileo or Beidou receivers. This method is known as Global Navigation 

Satellite System “GNSS” solutions. At present, inertial sensors are usually low cost where 

most sensors are MEMS (Micro Electrical Mechanical Systems) based.  
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Despite their widespread use in navigation systems following drawbacks have been identified 

which need special treatments e.g., use of estimators and filtering algorithms for reliable 

navigation. The inertial sensors are prone to have biases and drifts growing with time. 

Therefore another technology of sensors (e.g., GNSS receivers) is needed to bound these 

drift/ bias. Satellite-based systems such as GNSS although provide high precision 

measurements suffer interference from the other services in the respective frequency band. 

Moreover, while used for land vehicle navigation the accuracy of GNSS may deteriorate in 

urban area with high rise buildings and under dense foliage. Vehicular navigation is often 

characterized with dynamics changes in motion and exposed to unknown disturbances. The 

accuracy of the dynamic model gets affected as a consequence. The above discussed issues 

motivated researchers to investigate the performance of adaptive estimators in navigation. 

Use of adaptive estimators for GPS/GNSS and INS fusion based navigation system is 

observed in many works including some recent papers. In [Hide2004] AKF is validated using 

a low cost Crossbow MEMS IMU integrated with carrier phase GPS integrated navigation 

system for a marine application. It was demonstrated that the time required to initialize the 

sensor errors and to align the INS has been reduced, navigation performance is improved 

using AKF. In [Hide2003b] AKF is demonstrated with the GPS and inertial data simulation 

software. A trajectory taken from a real marine trial is used to test the dynamic alignment of 

the inertial sensor errors. 

The author of [El-Mowafy2005] suggests that the attitude of a moving vehicle can be 

determined using a GNSS multi-antennae system by rigidly mounting three antennae on the 

vehicle’s external surface. Two antenna-to-antenna vectors can be used to represent the 

attitude change of the vehicle. AKF has been used by the author for the estimation of the 

attitude states. Experiments on the integrated Strap-down Inertial Navigation System/ 

Doppler Velocity Log (DVL) system for marine application have been performed in 

[Gao2015a]. It is demonstrated that the proposed AKF improves the estimation accuracy 

effectively and robustness in the presence of vigorous-maneuvers and rough sea conditions. 

In [Jiancheng2011] AEKF is applied to In Flight Alignment for the SINS/GPS integrated 

Position and Orientation measurement System (POS) with a large initial heading error. Its 

performance is demonstrated under unstable GPS measurement, including the situations of 

the changes of the statistical characteristics of the measurement noise and the existence of 
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isolated outliers. In [Meng2000] the author has used AEKF for Localization and Mapping of 

mobile robots. 

Performance improvement using Adaptive UKF is demonstrated in [Akca2012] for tightly-

coupled INS/GPS especially at the end of GPS outage periods. For indoor vehicle navigation 

integrating Wi-Fi measurements and MEMS based INS, superiority of AUKF has been 

demonstrated in [Chai2012]. The author of [Cheng2014] demonstrated MAP based AUKF in 

simulations that are conducted for MEMS/GPS integrated navigation system. The author of 

[Wanxin2011] has demonstrated the use of AUKF to improve the initial alignment accuracy 

and convergence rate of the Strap-down INS system. 

Experimental results for AUKF are presented in [Gao2015b] for observation of an unmanned 

aerial vehicle (UAV) which uses a Strap-down Inertial Navigation System/Satellite 

Positioning System integrated navigation system. The author of [Liu2009] validates AUKF 

for the GPS based position estimation problem using real satellite data. In terms of the GPS 

system error characters, the proposed AUKF builds a model of the propagation error, and 

provide online estimate of its covariance. AUKF is also recommended for magnetometer 

calibration and attitude parameter estimation in [Soken2012]. The magnetometer biases are 

estimated as well as the attitude and gyro biases using Q-adaptative UKF in [Soken2014]. 

Adaptive sensor fusion of INS/GNSS CKF is considered in [Benzerrouk2013]. In the 

circumstances when GNSS outliers supposed to occur during specific interval of time, 

innovation based adaptive approach is selected and used to adapt the covariance of CKF and 

demonstrate satisfactory estimation performance. The author of [Georges2015] proposes 

variational Bayesian based Adaptive Cubature Smoothers and recommends its use in the 

presence of colored and variational process noise. VB-ACKS is able to provide a better 

position error in the presence of dynamic variation of the vehicle and the INS sensor error 

variation. In [Tang2012] authors demonstrate the performance of ACKF in simulation with a 

spacecraft attitude estimation problem. Filter is designed for quaternion based attitude 

estimation with the quaternion normalization constraint. 

An adaptive SLAM based on the CKF method is proposed in [Yu2014] for Simultaneous 

localization and mapping of mobile robots. Maximum a Posterior (MAP) based adaptation 

method overcomes the SLAM problems, e.g., unknown and uncertain environment 

description and noise characteristics of sensors. 
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Despite the navigation application adaptive estimators are also employed for other real world 

problems to carry out estimation duty. Adaptive estimators may find application in target 

tracking. In an early work by [Maybeck1981] Q Adaptive EKF is employed for tracking of 

highly maneuverable targets. ‘Bearing only tracking’ problems are considered in [Ge2011, 

2014] for validation of adaptive sigma point filters. In [Liqiang2015] the target tracking 

model is a 5-dimensional nonlinear system, where an aircraft executes maneuvering turn in a 

horizontal plane with unknown turn rate. ACKF is used for estimation of trajectory. 

AEKF in [Busse2003] is employed for low earth orbit formation estimation. In 

[Kardgaard2010] ADDF is applied to the six-degree-of-freedom elliptical orbit rendezvous 

navigation of a satellite. Measurement data to the navigation filter are obtained from a sensor 

suite consisting of optical sensor, an inertial measurement unit (IMU), a star tracker, and a 

generic orbit sensor. In [Lee2004, Das2013] AUKF, ADDF are used for state estimation of 

the spacecraft trajectory in a low earth orbit. 

Adaptive estimators have also been employed for state estimation and control of continuous 

stirred tank reactor (CSTR) [Cao2009, Fathabadi2009, Jargani2009]. AUKF has been 

validated in simulation for state estimation of a continuous stirred tank reactor (CSTR) 

[Jargani2009]. Simulation results demonstrate that the proposed algorithm can track and 

forecast fault processes accurately. AUKF has been applied in [Fathabadi2009] for state 

estimation CSTR plants with different communication delays in their sensors. Also 

decentralized multi sensor fusion has been carried out to estimate states in presence of multi-

rate sensors.  

Apart from CSTR plants performance of adaptive estimators is also demonstrated for a 

continuous fermenter in simulation and benchmark heater mixer setup in real time 

experiments in [Bavdekar2011]. In [Odelson2006] the authors have worked with a chemical 

company to apply adaptive estimation methods to data from a gas-phase reactor. The authors 

have also demonstrated the effectiveness of the proposed estimator with the help of 

experiments on a laboratory chemical reactor. 

A recent trend of using adaptive estimators for state of charge estimation (SOC) of batteries 

is also observed. Use of AEKF for state of charge estimation of lead acid batteries is reported 

in [Han2009]. In [Chen2012], ACKF demonstrably outperforms the dual extended Kalman 

filter during state of charge estimation of a battery where the ambient temperature and the 
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load of the battery fluctuate. ACKF based SOC estimation algorithm reported in [Xia2015] 

for lithium-ion batteries in electric vehicles. 

Although adaptive estimators are not very popular for fault detection a few recent 

publications demonstrate promising performance of these estimators during fault detection: 

In [Hajiyev2011] AEKF applied for the parameter identification process of an Electro 

Mechanical Actuator. The performance of the proposed filter is tested for the different types 

of measurement faults; instantaneous abnormal measurements, continuous bias at 

measurements, measurement noise increment and fault of zero output. For fault detection and 

isolation of Lithium ion battery AEKF is also applied in [He2015]. 

For the fault-tolerant attitude estimation of the pico satellites is [Hajiyev2014] proposes use 

of AUKF algorithm, which performs correction for the process noise covariance (Q-

adaptation) or the measurement noise covariance (R-adaptation) depending on the type of the 

fault. The author of [Soken2009] tested AUKF for two different measurement malfunction 

scenarios, instantaneous abnormal measurements and continuous bias at measurements. A 

paper by the same author [Soken2011] demonstrates Q-adaptative UKF for unexpected 

events in space environment during satellite attitude determination.  

Adaptive unscented Kalman filter (AUKF)-based fault detection and isolation (FDI) scheme 

is proposed in [Das2015] for a spacecraft attitude determination (AD) system. It is 

demonstrated that the fault detection efficacy as well as fault discrimination performance of 

AUKF is noticeably better than non-adaptive filters. AUKF is also utilized for nonlinear 

process fault prognostics in [Cao2009] for CSTR plants. 

2.4   Conclusion 

The review of the works on nonlinear estimation and adaptive filtering helped the present 

worker to appreciate the development in this domain. Use of adaptive estimators for variants 

of real time applications motivated the present worker to pursue research on this particular 

category of estimators. Below are provided a few significant findings which helped the 

present worker to define the objective of this dissertation and contribute improved algorithms 

for nonlinear estimation:  
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• Investigation of nonlinear estimators revealed their efficacies as well as limitations. 

Insight developed from the critical review of all these estimators helped during selection 

of a suitable candidate as an underlying structure for adaptive nonlinear estimators. 

• The usefulness of the information filter configuration of some of sigma point filters are 

also appreciated from the literature review. Economic computation of this configuration 

encouraged the present worker to develop their adaptive versions for sensor fusion. 

• During the review of existing adaptive nonlinear filters, some drawbacks are noticed.  

o AUKF requires careful choice of tuning parameters failing which the 

performance of estimators deteriorates. ACKF although free from such tuning 

parameters cannot perform equally well with AUKF for some applications. 

o The Q and R adaptation algorithms reported for adaptive sigma point filters 

lack theoretical foundation in most of the cases. Some of the adaptation 

algorithms cannot ensure the positive definiteness of Q and R. 

o The “knowledge gap” identified during the review of adaptive nonlinear 

estimators motivated the present worker to contribute improved algorithms for 

adaptive nonlinear estimators. 

• In earlier works on adaptive filters for linear signal models [Maybeck1982] authors have 

cautioned that simultaneous adaptation of Q and R may lead to unacceptable estimation 

results as Q and R are negatively correlated and their effects are conflicting. This is also 

acknowledged by the recent workers [Karlgaard2010, MohanM2015]. Therefore, the 

present worker has refrained from implementing simultaneous Q and R adaptation 

algorithm for the adaptive nonlinear estimators. 

 



Chapter 3: Test Problems 

3.1   Chapter Introduction 

This chapter presents the description of the estimation problems which will be considered as 

test problems to evaluate the proposed estimation algorithms in the subsequent chapters. The 

estimation problems include some standard tracking problems which have been considered 

by previous workers for the validation of the estimators proposed in their works. In addition 

to these realistic tracking problems, estimation of well known nonlinear systems (viz., Van 

der Pol’s oscillator, Lorentz attractor) and some numerical estimation problems are also 

considered. Proposed algorithms are validated and their relative performance analysis has 

been carried out with the help of these estimation problems. In this chapter the following test 

problems have been elaborated.  

• State estimation of a benchmark first order nonlinear system 

• Bearing only tracking using a on board tracker (2
nd

 order) 

• Parameter and state estimation of Van der Pol’s oscillator (3
rd

 order) 

• State estimation of a 3
rd

 order Lorentz attractor 

• Tracking of a ballistic object during reentry (3
rd

 order) 

• State estimation of a benchmark fourth order nonlinear system 

• Tracking of a maneuvering aircraft (5
th

 order) 

3.2   Description of test problems 

3.2.1   State estimation of a first order nonlinear system 

A single dimensional estimation problem is considered where system dynamics and the 

measurement equation suffer from severe nonlinearity. Estimation of the state of this system 

is challenging task. In many previous works this estimation problem has been considered 

[Ito2000, Sadhu2004, Bhaumik2013] as this problem can critically analyze the performance 

of the candidate estimator and readily expose its shortcomings if any. 

The process dynamics and the measurement equation are taken from [Ito2000]. The system 

has two stable equilibrium points at 1,1 − and another unstable equilibrium at 0 . The 

equilibrium point at the origin is unstable as the derivative of state equation is positive at 
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0=x . The measurement equation has a strong bi-modal tendency and cannot decisively 

distinguish between the two stable equilibrium points. The system dynamics and 

measurement equation are presented below 

( ) kkk xx θφ += −1          (3.1) 

where the function φ is given by 

( ) ( )215 xxxx −+= τφ          (3.2) 

kθ  is an additive Gaussian noise, ( )τθ 2,0~ bNk
 

The measurement equation is given by 

( ) kkk xy υγ +=          (3.3) 

( ) ( )2
05.0−= xx τγ          (3.4) 

kυ is an additive measurement noise(Gaussian), ( )τυ 2,0~ dNk . The parameters used to 

generate the true state trajectory have the values as given below. 01.0=τ sec, 2.00 −=x , 

5.0=b , 1.0=d . For the filter, the initial values are chosen as 8.0ˆ
0 =x , 4ˆ =0P . Note that 

the measurement equation is taken from [Ito2000] and has strong bi modal tendency 

compared to the measurement equation considered in [Sadhu2004, Bhaumik2013]. 

To illustrate the bi modal tendency of the measurement equation we present the state vs 

measurement plot in Fig. 3.1. It is observed that same measurement is obtained for two 

possible values of the state. Therefore, the measurement looses its uniqueness. Moreover, the 

rate of change of measurements for a rate of change in state is minimum near the origin ( i.e., 

at 0=x ).  

Fig. 2 shows two trajectories, starting from the same equilibrium point, with small process 

noise. We see in Fig. 3.2 that the trajectories settle at two different steady equilibrium values. 

However, the measurement values hardly changes (illustrated in Fig. 3.1) for these radically 

different state trajectories.  

This non uniqueness of measurement troubles the estimator to track the true state trajectory 

satisfactorily. The estimate settles at the one equilibrium point while the true trajectory settles 

on the other. This phenomenon may be termed as track loss. It can be said that the estimate 

has lost the correct track when estimation error is more than 0.8 at 4 sec.  
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It is observed from the previous works that for estimators with accurate knowledge of noise 

covariance estimation performance may degrade as the estimator is susceptible to numerous 

occurrence of track loss. In situations when the noise covariances are unknown and assumed 

with an arbitrary value it is needless to say that estimation performance would be degraded. 

Therefore, this case study may be an appropriate one for prima-facie validation of the 

proposed adaptive filters in face of unknown noise covariance. 
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Fig. 3.1: Plot of measurement with respect to state  

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4

time (sec)

s
ta

te
 t

ra
je

c
to

ry
 f

o
r 

d
if

fe
re

n
t 

ru
n

s

state variable in run 1

state variable in run 2

 

Fig. 3.2: State trajectories for two different representative runs 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 3 55 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5 4

time (sec)

T
ru

e
 a

n
d

 E
s
ti

m
a
te

d
 S

ta
te

true trajectory

estimate tracks w ell

estimate loses the track

 

Fig. 3.3: True and estimated state for two different representative runs 

 

3.2.2   Bearing only tracking problem 

Bearing only tracking (BOT) problem has been considered from [Sadhu2006, Sadhu2004] 

where the system dynamics is linear but the measurement equation is nonlinear function of 

states and measurement noise (i.e., noise is non additive in nature). The target is moving on 

ground with a constant velocity (position and velocity are assumed to be perturbed by 

Gaussian noise). The target is assumed to move in a straight line (assumed to be along the 

positive direction of x-axis) in the horizontal plane. In BOT problem the target is tracked 

using an on board sensor. The tracking is carried out using angle of depression (bearing 

measurements) from the airborne platform (along with the sensor) moving parallel to the 

target in the same direction with constant velocity. A schematic diagram is provided by Fig. 

3.4 for illustration. The platform is moving at a nearly fixed altitude in the same vertical 

plane. The kinematic equations of target as well as the platform are presented below. The 

bearing measurement for the target is noisy and measurement is nonlinear function of states 

and measurements as the platform motion noise also appears in the measurement equation. 

Target motion is considered here as the process model and given by 

k

T

k
T

T
ωxxk 







+








= −

2
1

2

10

1
        (3.5) 
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where, [ ]T
kk xx
21=kx , 1

kx is target position along x axis and 2

kx is target velocity which is 

assumed to be constant. The initial choice of state vector is [ ]Tmsm
1

0 180 −=x  The 

sampling time is considered as T=1 sec and kω  is process noise with covariance 

Q=0.01m
2
/sec

4
. Values of these parameters are taken from [Sadhu2006]. 

The line of sight of the target from the onboard sensor is obtained from the bearing angle 

measurement. The platform motion of sensor (along x and y axis) influence the bearing angle 

measurement. In this context the measurement equations are presented as given below: 

11 20 k

p

kk yy υ+==          (3.6) 

22 4 k

p

kk kTxy υ+==          (3.7) 
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=         (3.8) 

or, 3
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20
tan k
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y υ
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υ
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
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

−−

+
=        (3.9) 

First two elements of measurement vector [ ]Tkkk yyy
321=ky  are the platform positions along 

y axis and x axis respectively. ‘k’ is the current time instant. The measurement equation 

presented by (3.9) indicates that the third element of measurement vector is a nonlinear 

function of state as well as the measurement noises 1

kυ  and 2

kυ . However, 3

kυ is the additive 

measurement noise. Measurement noise vector therefore may be formed as [ ]Tkkk

321 υυυ=kυ  

with true covariance kR . Truth value of kR  is given by: 


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
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2
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2

2
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00

00

v

v

v

σ

σ

σ

kR  

1vσ , 2vσ  and 3vσ  are the standard deviation of three measurement noises with values of 1 

meter for the first two diagonal elements and o3 for the third respectively. Fig. 3.5 and Fig. 

3.6 present the position and velocity of the target respectively for a representative run. 

The tracking filters are usually initialized from first few measurements. The current bearing 

measurement defines the initial position estimate and the difference of two bearing 
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measurements provides the estimation of initial velocity. The way authors of [Sadhu2006] 

has initialized the filter has been followed in this work. 

The initial choice of position estimate and its covariance are considered from [Sadhu2006] as 

given below: 

 3
0tan

201

0 4ˆ
y

kTx +=          (3.10) 

3

0y  is the first measurement. 

s

py

x r
y

y

y

r
rP

4

2

20,11
sintan

++=         (3.11) 

Where 3

0

3

0 υ−= yy   

As per [Sadhu2006] the initial velocity estimation is selected as 0ˆ 2

0 =x  and associated 

variance as 10,22 =P . The off diagonal terms 
0,12P  and 

0,21P  are taken as zero. 
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Fig.3.4:  Illustration of BOT problem with  a schematic diagram 
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Fig. 3.5: Plot of position of the target for a representative run 
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Fig. 3.6: Plot of velocity of the target for a representative run 

 

3.2.3   Parameter and state estimation of Van der Pol’s oscillator 

The Van der Pol’s oscillator is a noteworthy nonlinear oscillator and has been used by many 

workers for demonstration of performance of nonlinear estimators [Kandepu2008, 

Besançon2010]. Estimation of the friction coefficient along with the states of the oscillator is 

considered here as a test problem. 

The dynamic equation of the Van der Pol oscillator which has been presented below exhibits 

a stable Limit Cycle oscillation. The oscillator irrespective of the initial condition always 

reaches the Limit Cycle and demonstrates sustained oscillations. The differential equation is 

presented as 

21 xx =&            (3.12) 
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( ) 12

2

12 1 xxxx −−= µ&          (3.13) 

0=µ&            (3.14) 

µ  represents a constant friction coefficient. The states of the oscillator are denoted by x1and 

x2 respectively. Estimation of both friction coefficient and the states has been considered for 

this case study. The corresponding discrete state space model of the oscillator is obtained 

from Euler’s approximation with a sampling timeτ . The parameter (friction coefficient) is 

assumed to be unknown (which may also be time varying in some situation) for the 

estimators. For joint estimation the parameter is modeled as a state and augmented with the 

state vector. The system states and friction coefficient are corrupted by additive Gaussian 

noise with zero mean. 

The discrete time model is given by: 

kkk wxfx += − )( 1          (3.15) 

)( 1−kxf indicates the discrete nonlinear model of the oscillator. 

)]([)( 111 −−− += kkk xDGxxf φ         (3.16) 

With a matrix 
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τ

φ with [ ]Tkkkk xxx 112111 −−−− = µ  

[ ]TG 00 τ= , )( 1−kxD is defined by 

( )[ ] )()()(1)( 1121

2

11311 exexexexxD
T

k

T

k

T

k

T

kk −−−−− −−=      (3.17) 

where ie denotes the i
th 

 unit vector for i=1,2,3. 

kw indicates an additive process noise which is independent of measurement noise. The state 

11 −k
x is directly available as a measurement and perturbed by a zero mean Gaussian noise kv . 

The necessary parameters for simulation are provided below in table 3.1 
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Table-3.1: Parameters for state estimation of Van der Pol’s oscillator  

Symbols Value Description 

0x  [ ]T2.001.4  Initial value for true trajectories  

0x̂  [ ]T450  Initialization of filter estimates. 

)0(P̂  diag ([1.4, 5, 4]) Initial a posteriori error covariance 

kQ  diag ([10
-3

, 10
-3

, 10
-5

]) True process noise covariance 

R 10
-3

 True measurement noise covariance 

N  150 Window length for adaptation 

τ  0.1 sec Sampling time 

 

For the time varying friction coefficient the nature of variation is assumed follow the 

equation 5.0)sin(5.0 += kk ωτµ  to generate the true state trajectories. The window size is 

considered to be 30 time instants during the estimation of the time varying case. 

In Fig. 3.7, Fig. 3.8 and Fig, 3.9 we present the state trajectories and the phase plane plot for 

a representative run. Plots are presented for two different cases where the friction coefficient 

is constant and for the other case when it is time varying. 
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Fig. 3.7: Plot of state x1 for a representative run 
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Fig. 3.8: Plot of state x2 for a representative run 
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Fig. 3.9:  Phase plane plot for a representative run 

 

3.2.4   State estimation of a Lorentz attractor 

In this case study we have considered the Lorentz attractor named after meteorological 

researcher Lorentz. The dynamics of the Lorentz attractor is significantly nonlinear which 

makes the system an appropriate one to evaluate the performance of nonlinear estimators. In 

many previous publications [Bhaumik2013, Ito2000] on nonlinear estimators this system has 

been considered as a case study for performance assessment. We present the discrete time 

three dimensional Lorentz attractor as presented in [Bhaumik2013]. 
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The system dynamics in discrete time is presented as  

( )[ ] k

T
wxxxxxxxxx bxx 1kk +−−−−+= − 321312112 γβατ     (3.18) 

where the state vector of system [ ]Txxx 321=kx . The measurement for this attractor is a 

scalar and the measurement equation is 

kk dvxxxy +++= 2

3

2

2

2

1τ         (3.19) 

Both the process and the measurement equation are perturbed with Gaussian (white) noise 

and follows the distribution ( )τ,0N . 

The system has three unstable equilibrium points as given below: 

[ ]T000 , ( ) ( ) ( )[ ]T111 −−− ββγβγ and ( ) ( ) ( )[ ]T111 −−−−− ββγβγ while 

0≠α  and ( ) 01 ≥−βγ . The chosen values of these classical parameters along with other 

necessary parameters are given in the table 3.2 below.  

 

Table-3.2: Parameters for state estimation of Lorenz attractor 

Symbols Values Description 

α  10 Prandtl number 

β  28 Rayleigh number 

γ  8/3 Parameter related to system dynamics 

b  [ ]T5.000  Input matrix for process noise 

d  0.065 Scaling factor for measurement noise 

τ  0.01sec Sampling time 

0x  [ ]T0.50.30.2 −−−  Initial value for true trajectories  

0P̂  0.35*diag ([1, 1, 1]) Initial updated error covariance 

0x̂  A Gaussian prior with mean 

[ ]T
63-1.35=0x , covariance 0P̂  

Initial choice of filter estimates. 

 

In Fig. 3.10, Fig. 3.11 and Fig. 3.12 below the state trajectories of the attractor are presented 

for a representative run and the phase plane plot is also given in Fig. 3.13. 
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Fig. 3.10: Plot of state x1 for a representative run 
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Fig. 3.11: Plot of state x2 for a representative run 
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Fig. 3.12: Plot of state x3 for a representative run 
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Fig. 3.13:  Phase plane plot for a representative run 

 

3.2.5   Object Tracking Problem 

For performance evaluation of proposed filters a standard ballistic object tracking problem 

has been considered as a case study. Object tracking problems are well known tracking 

problems and has significant nonlinearity in the system dynamics when the object enters 

atmosphere. It is an important application area where different estimators can be employed so 
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as to estimate the altitude, velocity of the object and ballistic coefficient/ballistic parameter 

from radar signals. It would be interesting to assess the estimation performance of the 

proposed estimators including one of such object tracking problems as a case study. 

Performance evaluation of estimators using this specific problem has been carried out in 

many previous works [Athans1968, Norgaard2000, Wu2006, Arasaratnam2011]. During 

initial phase when the object is in exo-atmospheric zone nonlinearity is not pronounced and 

the dynamics may be considered to be quasi linear. During endo-atmospheric phase the 

dynamics becomes extremely nonlinear as the object enters atmosphere and experiences 

drag.  

The object is considered to be falling vertically in a single dimension. The tracking radar is 

assumed to provide the range of the tracked object as illustrated in Fig 3.14.  

 

Fig 3.14: Radar tracking of a ballistic object during reentry: A schematic diagram 

 

3.2.5.1. Dynamic Model I 

The dynamic model for the object during reentry has been presented here in single dimension 

as presented in [Arasaratnam2011].  

( )[ ]T
gxxxx 0exp 3

2

212 +−−−= γx&        (3.20) 
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Where state vector [ ]Txxx 321=x ; represents altitude, velocity and the ballistic parameter 

respectively. g  is the acceleration due to gravity. The air density decays exponentially with 

height with the time constant -14 m 1049.1 −×=γ [Arasaratnam2011]. 

The parameter to be estimated is called ballistic parameter instead of the term ballistic 

coefficient as used in [Arasaratnam2011]. This may avoid confusion with the standard 

definition of the term as provided in [Ristic2003]. 

The corresponding discretized model using Euler’s method with a sampling time τ is given 

by: 

( )[ ] k3
T

1k2
T

1k1
T

1k2
T

1k1kk wexexexexxx ++−−−+= −−−−− 0))(exp( 2 gγτ    (3.21) 

[ ]T

kkk
xxx

131211 
−−−− =1kx and ie denotes the i

th 
 unit vector. 

kw indicates an additive process noise which is independent of measurement noise kv . Noises 

are assumed to be zero mean, white (Gaussian). 

The covariance of the process noise is given by 


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Q
where 1q and 2q are 

parameters for describing the process noise [Ristic2003]. 

The range of the object from radar is obtained measured in a spherical reference frame and 

given by the measurement equation 

kk vHMy +−+= 22 )( 1

T

k ex        (3.22) 

Where H denotes the altitude of radar and M is the shortest horizontal distance of radar form 

the flight path of the object as given in Fig. 3.14 and [ ]T001=1e .  

Necessary parameters for simulation are given in the table 3.3 below. 
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Table-3.3: Parameters for object tracking problem (SI units) 

Symbols Values Description 

0x  [ ]T141- m1049.4ms3048m61000 −−×  Initial value for true trajectories  

1q  1 m
2
s

−3
 A parameter of true Q 

2q  10
-12

m
−2

s
−1

 A parameter of true Q 

M  10000 m Distance of object from radar 

H  1000 m Height of the radar from ground 

R  30
2
 m

2 
Measurement error covariance 

0P̂  diag ([10
6
, 10

4
, 10

-4
]) Initial updated error covariance 

0x̂  A Gaussian prior with mean 

[ ]T510340062000 −=0x , covariance 0P̂  

Initialization of filter estimates. 

minN  3 Initial choice of window length 

N  60 Actual window length  

τ  0.1sec Sampling time 

 

For a representative run we present the altitude and velocity of the reentry object in Fig. 3.15 

and Fig. 3.16.  
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Fig. 3.15: Plot of altitude of the object for a representative run 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 3 68 

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

time (sec)

v
el

o
ci

ty
 (

m
/s

ec
)

 

Fig. 3.16: Plot of velocity of the object for a representative run 

 

3.2.5.2. Dynamic Model II 

The Dynamic model of the object is presented in this section above is conceptually same 

with what discussed in the subsection above. Only an approximation is made in the system 

dynamics. In [Athans1968] for this object tracking problem it is assumed that the effect of 

gravity is negligible compared to drag force and omitted from the dynamics. This has also 

been followed in the succeeding works [Norgaard2000, Wu2006]. The measurements and 

necessary parameters for simulation are provided in FPS system unlike [Arasaratnam2011] 

where the parameters are presented in SI system.  

The dynamic model is given by 

Vh −=&            (3.23) 

( )
m

VhAC
V D

2

2ρ
−=&          (3.24) 

Note that in (3.24) gravity has been ignored. 

The symbols used are defined as given below: 
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h :height of the object (ft), V : object velocity (ft/sec), DC : drag coefficient (dimensionless), 

A : reference area for drag evaluation (sq. ft), ρ :air density(slugh/ft
3
), m : mass of 

object(slugh) 

Air density decays exponentially with height following the relation 

( ) heh γρρ −= 0 with 5105 −×=γ ft
−1

. We define 
m

ACD

2
0ρ

ξ
∆

= , a ballistic parameter as mentioned in 

[Athan1968]. However, the usual definition of ballistic coefficient given in [Ristic2003] as 

AC

mg

D

=β  and related with the ballistic parameter as 
β

ρ
ξ

2
0 g

= .  

For estimation of ballistic parameter, it is augmented with state vector and assumed to be a 

constant. The differential equation of object dynamics is modified as given below: 

Vh −=&            (3.25) 

ξγ 2VeV h−−=&           (3.26) 

0=ξ&            (3.27) 

The corresponding discrete state space model of object dynamics is obtained from Euler’s 

approximation as presented in (3.21) for Model I.  

In some case studies it is also assumed that measurements are available from multiple radars. 

The radars are positioned at different locations of the atmosphere. The range only 

measurements are obtained from them which are a nonlinear functions of the system states. 

The interval of measurement is same as sampling interval, i.e., τ sec as discussed in previous 

model. The mathematical expression of the measurements obtained from the radars is 

presented as 

( ) s

kss

s

k

s

k

s

k vHMvry +−+=+=
22

1

T

k ex       (3.28) 

for 3,2,1=s where s  indicate the radar at ths position. 

Here, [ ]Te 0011 = represents an unit vector. 

sH denotes the altitude of radar and sM  is the shortest horizontal distance from the flight path 

of the object during reentry. s
kv  indicates zero mean random noise with covariance sR . 

The parameters necessary for simulations are presented in table 3.4 below: 
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Table-3.4: Parameters for object tracking problem (FPS units) 

Symbols Values Description 

0x  [ ]T31020000300000 −  Initial value for true trajectories  

1q  10
-5

 ft
2
s

−3
 A parameter of true Q 

2q  10
-9

ft 
−2

s
−1

 A parameter of true Q 

1M  100000 ft Distance of object from radar 1 

1H  100000 ft Height of the radar 1from ground 

2M  109540 ft Distance of object from radar 2 

2H  100000 ft Height of the radar 2from ground 

3M  89443 ft Distance of object from radar 3 

3H  110000 ft Height of the radar 3from ground 

1R  250
2
 noise covariance for radar 1 

2R  100
2
  noise covariance for radar 2 

3R  70
2
 ft

2 
noise covariance for radar 3 

0P̂  diag ([10
6
, 4×10

6
, 10

-4
]) Initial a posteriori error covariance 

0x̂  Normal Random vector with 

mean 0x , covariance 0P̂  

Initialization of filter estimates. 

minN  10 Initial choice of window length 

N  100 Actual window length  

 

3.2.6   State estimation of a fourth order nonlinear system 

State estimation of a nonlinear system has been considered from the work of [Singh2015] 

with the dynamic equation and measurement equation as given below: 

( ) k1kk wxx += −cos20         (3.29) 

kk vy ++= k

T

k xx1          (3.30) 

Here, kx  is the state vector , 4ℜ∈kx . kw  is the Gaussian (white) noise, and 4ℜ∈kw , 

( )4414~ ×× I,0wk N . 
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ky  is a scalar measurement perturbed with measurement noise, kv  (Gaussian white noise) 

and ( )1,0~ Nvk  

The true state trajectories are generated with the initial choice of state vector as 

[ ]T1111*1.0=0x . The states filters are initialized with a Gaussian prior as 

( )4414~ˆ
×× I,0x0 N  with an initial error covariance 44

ˆ
×= IP0  

3.2.7   Aircraft Tracking Problem 

The performance of proposed estimators has also been evaluated using a tracking problem 

where a maneuvering aircraft has to be tracked. The aircraft which is executing a 

maneuvering turn with unknown time varying turn rate has been considered to be tracked by 

multiple radars. This problem first appears in [BarShalom2001] and considered in many 

works [Arasaratnam2009, Jia2013a, Jia 2013b] for demonstration with different 

measurement equations. As the turn rate of the aircraft is considered to be unknown and time 

varying the kinematic model of the system becomes significantly nonlinear. Practically an 

aircraft while maneuvering with such unknown and time varying turn rate may escape radar 

stations and consequently the estimators may lose the track of the aircraft as would be 

explained in the following subsections. 

3.2.7.1. Kinematic Model 

The kinematic equation of the motion of the aircraft is presented below. The turn rate of the 

aircraft being unknown it is modelled as a state and augmented with the state vector of the 

kinematic model. This model appears in [BarShalom2001, Arasaratnam2009, Jia2013a, 

Jia2013b] 
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     (3.31) 

Here the state vector is [ ]T
kyyxxk kkkk

vpvp ωξ = ; 
kxp and 

kyp are the position in x 

and y coordinate respectively; 
kxv and 

kyv  are the corresponding velocities at the instant k. 

kω  is � he unknown time varying turn rate. τ indicates the time interval between two 
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consecutive measurements. kw  is zero mean Gaussian noise (white) which indicates the 

modelling uncertainty. The process noise for this noise sequence is considered as  


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       (3.32) 

Note, that the element ( )5,5kQ  is the noise covariance of respective augmented parameter, 

i.e., turn rate of the aircraft. To generate the true state trajectories for this case study 

( )5,5kQ is selected as qtrue. 

 

3.2.7.2. Measurement Model 

The bearing only tracking of aircraft as explained in [Jia2013b] is considered in this 

dissertation as a test problem. 

The trajectory of the aircraft is tracked by the fusion of the bearing angle measurements from 

two tracking radars which are positioned in different locations of the atmosphere. The 

measurement equations can be represented as 

2,1tan 1 =+














−

−
= − ζθ ζ

ζ

ζ

ζ
k

xx

yy

k v
pp

pp

refk

refk

      (3.33) 

ζ indicates position of the thζ radar. ;10;10 4141 mpmp
refref xy −=−= mpmp

refref xy

4242 10;10 == . The zero 

mean measurement noise (Gaussian) sequences have covariances ( )2

1 30mradR = and 

( )2

2 40mradR = . The interval between two successive measurements is, sec1=τ . 

3.2.7.3. Simulation procedure  

The proposed filtering algorithms are validated with the help of Monte Carlo simulation with 

10000 runs. For generation of true state trajectories an initial choice of state is made as 

[ ]Tx 111

0 s rad05235.0ms0m1000ms300m1000 −−− −= . The unknown element of Q is chosen 

as ( )212 s rad10323.1 −−×=trueq  to generate the true trajectories. The filters are initialized with a 

Gaussian prior with mean 0x  and 0P̂  , where [ ]( )4

0 101010010100ˆ −= diagP .  
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Further investigation revealed the fact that such aircraft tracking problems are susceptible to 

track losses because of the non unique solution of the measurement equations. The possible 

set of true trajectories of aircraft has been provided for illustration in Fig. 3.17 which 

indicates the randomness of time varying turn rate as presented in the system equation. The 

values of trueq  are high enough to induce random variations in turn rate. At some time 

instants the trajectory of the aircraft become such that the difference between the bearing 

angle from two different radars may either be negligibly small or become closer to π . 

Practically, at this moment the line of sight of two radars does not intersect each other and 

the aircraft can not be precisely located in the atmosphere. As a consequence of such non 

unique measurements the estimators fail to estimate the trajectory of the aircraft and track 

loss occurs. Fig. 3.18 has been presented for illustration where track loss has occurred for a 

non adaptive filter in the ideal situation with complete knowledge of noise covariances.  
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Fig. 3.17: Plot of trajectories of aircraft for different runs 
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Fig. 3.18: A representative run where track loss has occurred 

 

During the performance comparison of proposed estimators their performance is assessed in 

the context of RMS error and their susceptibility to the occurrence of track loss (i.e., 

percentage of track loss).  

Root means square error (RMSE) of position, velocity and turn rate estimation are calculated 

using the formula given in [Jia2013b]. 

( ) ( )∑
=






 −+−=

mcN

i

ikikikik

mcN
RMSE

1

2

,,

2

,,
ˆˆ1

lljj eξeξeξeξ  

where j=1 and l=3 for RMSE of position estimation. For RMSE of velocity estimation j=2 

and l=4. RMSE for turn rate estimation is obtained with j=5 and replacing the unit vector le  

by a zero vector. 

To detect the occurrence of track loss the following condition has been considered. When the 

condition ( ) ( ) myyxx kkkk 800ˆˆ
22

≥−+−
∞

 is true for any instant of Monte Carlo runs, it is 

understood that the estimated trajectory has failed to track the true trajectory of the aircraft. 

 



Chapter 4: A General Framework for Adaptive Nonlinear 
Filters 

4.1   Chapter Introduction 

This chapter presents a general framework for adaptive nonlinear filters which would be 

useful to formulate variants of adaptive estimators for nonlinear signal models where the 

prior knowledge of process noise covariance (Q) or measurement noise covariance (R) 

remains unavailable. The adaptation algorithms for Q and R which have been incorporated in 

the proposed general framework have been mathematically derived in this chapter. The 

adaptation algorithms necessitate an underlying framework of conventional (non-adaptive) 

nonlinear filter wherein these algorithms have to be integrated. Therefore, for the proposed 

general framework the conventional Bayesian approach of filtering (in presence of additive 

Gaussian noise) has been used as the underlying framework. With the help of this general 

framework a class of adaptive nonlinear filters can be formulated by approximating the 

Bayesian integrals using several numerical methods.  

The adaptive nonlinear estimators, in general, require statistics of the state residual or the 

measurement residual for adaptation. The adaptation algorithms depend on the underlying 

framework of non-adaptive nonlinear filters for the knowledge of state residual or 

measurement residual. Subsequently such adaptation algorithms provide the adapted value of 

the unknown noise covariance which is used by the underlying framework of non-adaptive 

nonlinear filters to compute the state/measurement residuals of the next time instant. In this 

way these two sets of algorithms work as the complement of one another. The general 

framework is presented in terms of such complementary sections based on Bayesian filtering 

algorithm and the adaptation algorithms respectively. 

Adaptation algorithms which have been mathematically derived in this chapter are presented 

in the format of theorems along with their proofs. The methods for adaptation are inspired 

from the linear signal models and duly extended for nonlinear state estimation. Depending on 

the situations with unknown process noise covariance and measurement noise covariance the 

adaptation methods are broadly categorized as ‘Q adaptive’ and ‘R adaptive’ nonlinear 

filters. Different approaches followed for derivation of the adaptation algorithms include:    
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(i) Maximum Likelihood Estimation (MLE) based method (ii) Covariance Matching method 

(iii) Maximum a Posteriori Estimation (MAP) based method. 

Depending of the nature of adaptation and choice of sigma points variants of adaptive 

nonlinear estimators can be formulated which would be demonstrated in the subsequent 

chapters of this dissertation. In this chapter only the R adaptive UKF has been presented to 

demonstrate the use of the proposed general framework. Performance of AUKF is also 

illustrated with help of a case study. 

4.1.1   Problem Statement 

We consider a nonlinear dynamic equation of system as given below 

( ) k1kk wxfx += −          (4.1) 

where n

kx ℜ∈ is the state vector and kw  is the noise term which represents modelling 

uncertainties. kw is white Gaussian noise ),(~ Q0w n

k ℜ∈ . For joint estimation of 

parameters and state the state vector becomes a parameter augmented state. This implies that 

apart from the ψn  proper states, ζn  unknown parameters have been augmented such that 

ζψ nnn += . When the dynamics of parameter variation remains unknown it is assumed that 

unknown parameters vary following a simple random walk model ζ

k1kk wζζ += − , where 

ζ

kw  indicates a zero mean Gaussian noise sequence with its covariance symbolized by ζ

kQ . 

The observation equation is considered as 

( ) kkk vxgy +=          (4.2) 

m

ky ℜ∈ is the observed output vector. 

 kv is the measurement noise (Gaussian) and )(~ R0,v m

k ℜ∈ . 

Situations are considered when the knowledge of the noise covariances remains incomplete, 

i.e., the knowledge of process noise covariance ( Q ) or, measurement noise covariance ( R ) 

remains unavailable. 

The objective of adaptive nonlinear filtering is to find the conditional expectation ( )kk YxE  

(where kY is the set of observed data, kjy j ≤≤= 1;kY ) along with online adaptation of 
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unknown noise covariances. The initial choice of the state estimate 0x̂ is considered to be a 

Gaussian prior with mean ox and covariance 0P̂ .  

When Q  is unknown, the filter is initialized with an assumed value of Q . Alternatively, the 

filter is initialized with an assumed value of R in the face of unknown R . The assumed value 

of covariance has to be adapted using the proposed adaptation algorithms for obtaining 

satisfactory estimation results.  

4.1.2   Different Approaches for Solution  

The objective of the adaptive nonlinear estimators is to provide satisfactory estimate of the 

states in the face of unknown noise covariances. Formal mathematical formulation of the 

estimation problem is presented in the previous section. It has been mentioned before that 

depending on the unavailability of process noise covariance or measurement noise 

covariance the adaptive filters are broadly classified into two classes: (i) Q adaptive filter (ii) 

R adaptive filter. Q or, R matrices are adapted by the adaptation algorithms which have been 

formulated with the help of three different approaches as stated below:  

• Maximum Likelihood Estimation (MLE) based method 

• Covariance Matching method 

• Maximum a Posteriori (MAP) method 

The adaptation algorithm for Q adaptive and R adaptive nonlinear estimators has been 

mathematically derived by Maximum Likelihood Estimation (MLE) based method, 

Covariance matching method and Maximum a Posteriori (MAP) based method for nonlinear 

signal models. 

By modifying the existing MAP based algorithms for R-adaptation and Q- adaptation with 

reasonable simplifying assumptions it has been shown that the modified adaptation 

algorithms match well with those obtained by the MLE method and the intuitive Covariance 

Matching method.  

Different methods of adaptation followed in this work are presented with the help of a tree 

diagram given below: 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 4 78 

 

It is to be noted from the tree diagram that the R adaptation algorithms are further classified 

into two branches depending on the innovation based and residual based adaptation. The 

residual based method has some advantage over the innovation based method which would 

be discussed later in detail. In case of residual based adaptation, there exists a self 

referencing problem. This problem can be overcome by re-computation of measurement 

update steps with adapted R of current instant. The re-computation step is effective when 

there is transients in the adapted value of R or, truth value of R is time varying in nature. The 

residual based R-adaptation is again divided into two categories: (i) with re-computation (ii) 

without re-computation. The method of re-computation has been explained in 4.2.3.5. 

Note that the adaptive nonlinear filtering algorithms use the structure of non-adaptive 

nonlinear filters as their core. The variants of adaptation algorithms which may be derived 

following the above mentioned approaches are to be integrated in the underlying structure of 

non-adaptive nonlinear filtering algorithms so that their adaptive versions can be formulated. 

4.2   The Solution Framework 

4.2.1   Overview 

The algorithm of adaptive nonlinear estimators in a general framework has been presented in 

this section. The adaptive nonlinear estimators are based on two major parts: (A) underlying 

framework of non-adaptive nonlinear filters which is the core for the adaptive nonlinear 

estimators, (B) The proposed adaptation algorithms.  

Adaptation Methods 

Q-adaptation R-Adaptation 

Maximum 

Likelihood 

Estimation (MLE) 

based method 

Covariance 

Matching Method 

Maximum a 

Posteriori (MAP) 
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sequence 

Using Residual 
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Using Innovation 

sequence 
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Without re-
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The major steps of the proposed general framework are schematically presented below. 

General Framework For Adaptive Nonlinear Estimators 

Part A:  Underlying framework of non-adaptive estimators 

Gaussian integrals are approximated using numerical methods: 

• Unscented Transformation 

• Gauss Hermite quadrature rule 

• Spherical Radial Cubature rule 

• Cubature quadrature rule 

Part B:  Adaptation algorithms 

Adaptation of Process Noise Covariance Adaptation of Measurement Noise Covariance 

Methods followed: 

• Maximum Likelihood Estimation based method 

• Covariance Matching method 

• Maximum a Posterior Estimation based method 

 

In part (A) the underlying framework of non-adaptive nonlinear estimators for Gaussian 

noise are presented following the Bayesian approach. The noises are considered to be 

Gaussian, white and additive in nature. Therefore, the estimation algorithm is expressed with 

the help of ‘Gaussian integrals’ as it is presented in many works [Sarkka2013a, Ito2000]. 

During implementation of these estimators such integrals are to be approximated with the 

help of numerical methods. Different approximation methods exist for approximation of the 

intractable integrals which would appear in the subsequent chapters of this dissertation. In 

part (B) different methods for adaptation of process noise and measurement noise covariance 

have been provided. 

4.2.2   Part A: Underlying Framework of Non-adaptive Nonlinear Filter 

The first part of the algorithm includes the non-adaptive nonlinear filtering algorithm which 

is to be used as an underlying framework with some modifications to ensure the 

compatibility with the adaptation portion. The adaptation methods are elaborated in the 

second section which is the significant portion of this algorithm. 

In probabilistic terms the system and the measurement model with additive white noise 

(Gaussian) can be expressed as given by (4.1) and (4.2)  

( ) ( )( )QxfxYxx kk1kkk ,, 11 −−− = Np         (4.3) 
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( ) ( )( )RxgyYxy kkkkk ,, Np =         (4.4) 

For the above described system the conditional expectation of the state of the system can be 

denoted by ( )kk YxE  where kY is the available measurements, kjy j ≤≤= 1;kY . To obtain the 

estimate of the state from the available set of measurements Gaussian approximation of 

probability density function of state (conditioned by the measurements) has to be made. This 

concept has been followed in previous works [Sarkka2013a, Wang2012, Arasaratnam2009, 

Haug2005, Ito2000] and termed as “Gaussian filters”. Here, the filtering algorithm is presented 

for the continuity of the adaptation algorithms presented in the next section.  

Assumptions 4.1 

The a priori (predictive) probability density function of the state kx conditioned by 1kY −  is 

assumed to be Gaussian, i.e., 

( ) ( )kkk1kk PxxYx ,;Np =−  

where the first two moments, viz., a priori state estimate and corresponding error covariance 

are: 

( )1kkk Yxx −= E  

( )1k

T

kkk YxxP −= ~~E  

Here, the a priori error of state is defined as kkk xxx −=
∆

~  

Through out this dissertation ( )Pm,xx N~  indicates that x  is a Gaussian vector with mean 

m  and covariance P  and the probability density function of x is expressed as 

( )
( )

( ) ( )( )T

n
p mxPmx

P
x −−= −1exp

2

1

π
 

Assumptions 4.2 

The a priori (predictive) probability density function of the measurement ky conditioned by 

1kY −  is to be Gaussian, i.e., 

( ) ( )y

kkk1kk PyyYy ,;Np =−  
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where the first two moments, viz., a priori estimate of measurement and corresponding error 

covariance are 

( )1kkk Yyy −= E  

( )1k

T

kk

y

k YyyP −= ~~E  

Here, a priori error of measurement is defined as kkk yyy −=
∆

~  

Assumptions 4.3 

The a posteriori (updated) probability density function of the state kx conditioned by kY  is to 

be Gaussian, i.e., 

( ) ( )kkkkk PxxYx ˆ,ˆ;Np =  

where the first two moments, i.e., a posteriori state estimate and corresponding error 

covariance are: 

( )kkk Yxx E=ˆ  

( )1k

T

kkk YxxP −=
((

Eˆ  

Here, the a posteriori error of state is defined as kkk xxx ˆ−=
∆

(
 

Lemma 4.1 

If random variables nx ℜ∈  and my ℜ∈  have the Gaussian probability densities as given 

below 

( )Pm,xx N~  

( ) mmm
N

×× ℜ∈ℜ∈+ RHRu,Hxyy n ,,~  

then the joint density of x, y and the marginal distribution of y are given as 























+





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

+ RHPHHP

PHP

uHm

m
yx

T

T

,~, N  

( )RHPHu,Hmyy T ++N~  
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Lemma 4.2 

If the random variables x and y ( nx ℜ∈ , my ℜ∈ ) have the joint Gaussian probability density 

mnmmnm

N

××× ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈











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













CBAba

BC

CA

b

a
yx

nn

T

,,,,

,~,
 

then the marginal and conditional densities of x and y are given as follows: 

( )( )TCCBAbyCBayx 11 ,~ −− −−+N  

( )( )CACBaxBCbxy TT 11 ,~ −− −−+N  

Theorem 4.1 

Considering the system dynamics given by (4.1) and (4.2) and using the assumptions from 4.1 

to 4.3 and the Lemma 4.1 & 4.2 the a posteriori (also known as updated) estimate of state and 

the error covariance can be obtained using the following recursive formula: 

( ) ˆ
kkkkk yyKxx −+=          (4.5) 

T
k

y
kkkk KPKPP −=ˆ           (4.6) 

Where, 

( ) ( ) 1−−−−∫= k1k1k

R

1kk dxYxxfx

n

p         (4.7) 

( )( ) ( )( ) ( ) 1k1k1kk1k

R

k1kk dxYxxxfxxfQP

n

−−−−− −−+= ∫ p
T

    (4.8) 

( ) ( ) k1kk

R

kk dxYxxgy
n

−∫= p          (4.9) 

( )( ) ( )( ) ( ) k1kk

R

kkkk

xy

k dxYxyxgxxfP
n

−∫ −−= p
T                (4.10) 

( )( ) ( )( ) ( ) k1kk

R

kkkk

y

k dxYxyxgyxgRP
n

−∫ −−+= p
T

               (4.11) 

( ) 1−
= y

k
xy

kk PPK                    (4.12) 
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Proof: 

The a priori probability density function can be obtained using Chapman–Kolmogorov 

equation as: 

( ) ( ) ( ) 111 −−−−− ∫= k

R

1kkkk1kk xYxxxYx
n

dppp  

Where, ( ) ( )( )QxfxYxx kk1kkk ,;,1 Np =−−  

From the assumption 4.1 we have 

( )1kkk Yxx −= E  

( ) k

R

1kkkk xYxxx
n

dp∫ −=⇒  

( ) ( ) kk

R

1kkkk

R

kk xxYxxxxx
nn

ddpp











=⇒ −−−−∫∫ 111  

( ) ( ) 111
ˆ,ˆ; −−−∫=⇒ kkkk

R

kk xPxxxfx
n

dN  

( )( ) ( ) 111 ,; −−−−∫ ∫











=⇒ k1kk

R R

kkkkk xYxxQxfxxx
n n

dpdN  

( ) ( ) 111 −−−−∫=⇒ k1kk

R

kk xYxxfx
n

dp  

Hence, (4.7) is proved. Equation (4.7) represents the a priori (predicted) estimate of state. 

( )1k

T

kkk YxxP −= ~~E  

( ) ( ) kk

R

1kkkk

R

T

kkk xxYxxxxxP
nn

ddpp











=⇒ −−−−∫∫ 111

~~  

( )( ) ( )∫ ∫ −−−−












=⇒

n nR

k1kk

R

kkk

T

kkk xYxxQxfxxxP 111 ,;~~ dpdN  

( )( ) ( )( )( ) ( )∫ −−−−− +−−=⇒
nR

k1kk

T

k1kk1kk xYxQxxfxxfP 11 dp  
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( )( ) ( )( ) ( )∫ −−−−− −−+=⇒
nR

k1kk

T

k1kk1kk xYxxxfxxfQP 11 dp  

( )( ) ( )( ) ( )∫ −−−−− −−+=⇒
nR

kkkk

T

k1kk1kk xPxxxxfxxfQP 111
ˆ,ˆ; dN  

Hence, (4.8) is proved. Equation (4.8) represents the a priori (predicted) error covariance of 

state. 

For future reference we denote f

kP  as  

( )( ) ( )( ) ( )∫ −−−−− −−=
nR

k1kk

T

k1kk1k

f

k xYxxxfxxfP 11 dp  

Joint distribution of ky and kx  can be obtained as 

( ) ( ) ( )1kkkk1kkk YxxyYxy −− = ppp ,  

( ) ( ) ( )1kk1kkk1kkk YxYxyYxy −−− = ppp ,,  

The disappearance of the measurement history 1kY − is due to the conditional independence of 

ky  of the measurement history, given kx, . 

The marginal distribution of ky  given 1kY −  can be obtained by integrating the distribution 

over kxd . The relation is obtained following Chapman–Kolmogorov equation as 

( ) ( ) ( )∫ −− =
n

R

dppp k1kkkk1kk xYxxyYy  

From assumption 4.2 we have 

( )1kkk Yyy −= E  

( ) k1kk

R

kk xYyyy
n

dp −∫=⇒  

( ) ( ) k

R

k1kkkk

R

kk xxYxxyyy
nn

ddpp











=⇒ ∫∫ −  

( ) ( ) k1kk

R R

kkkkk xYxxxyyy
n n

dpdp −∫ ∫











=⇒  
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( )( ) ( ) k1kk

R R

kkkkk xYxxRxgyyy
n n

dpdN −∫ ∫











=⇒ ,  

( ) ( ) k1kk

R

kk xYxxgy
n

dp −∫=⇒  

( ) ( ) k

R

kkkkk xPxxxgy
n

dN∫=⇒ ,;  

Hence, (4.9) is proved. Equation (4.9) represents the a priori (predicted) estimate of 

measurement. 

( )1k

T

kk

y

k YyyP −= ~~E  

( )( ) ( )( ) ( ) k

R

1kkkkkkkk

y

k dxYyvyxgvyxgP
n

∫ −+−+−=⇒ p
T  

Where kv is defined as ( )kkk xgyv −=  

( )( ) ( )( ) ( ) ( ) k

R R

k1kkkkkkkkkk

y

k dxxYxxyvyxgvyxgP
n n

∫ ∫ 







+−+−=⇒ − dpp

T  

( )( ) ( )( ) ( ) ( ) k1kk

R R

kkkkkkkkk

y

k dxYxxxyvyxgvyxgP
n n

−∫ ∫ 







+−+−=⇒ pdp

T  

( )( ) ( )( ) ( )( ) ( ) k1kk

R R

kkkkkkkkk

y

k dxYxxRxgyvyxgvyxgP
n n

−∫ ∫











+−+−=⇒ pdN

T
,  

( )( ) ( )( ) ( )( ) ( )( ) ( ) k1kk

R

k

R

kk

T

kk

R

kkkkkkk

y

k dxYxdxRxgyvvxRxgyyxgyxgP
n nn

−∫ ∫∫ 







+−−=⇒ pNdN

T
,,  

( )( ) ( )( )[ ] ( ) k

R

1kkkkkk

y

k dxYxRyxgyxgP
n

∫ −+−−=⇒ p
T

 

( )( ) ( )( ) ( ) k

R

1kkkkkk

y

k dxYxyxgyxgRP
n

∫ −−−+=⇒ p
T

 

( )( ) ( )( ) ( ) k

R

kkkkkkk

y

k dxPxxyxgyxgRP
n

∫ −−+=⇒ ,;N
T

 

Hence, (4.11) is proved. 

For future reference we denote g

kP  as: 
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( )( ) ( )( ) ( ) k

R

1kkkkkk

g

k dxYxyxgyxgP
n

∫ −−−= p
T

 

The cross covariance because of the correlation between ky and kx  can be obtained as 

( ) ( )( ) ( )∫ −−−=
nR

k1kkkkkk

y

k dxYxyxgxxP p
Tx  

( ) ( )( ) ( ) k

R

kkkkkkk

xy

k dxPxxyxgxxP
n

∫ −−=⇒ ,;N
T

 

Hence, (4.10) is proved. 

By Lemma 4.1, the joint distribution of ky and kx  given 1kY −  is presented by 

)()(),( 1kkkk1kkk YxxyYyx −− = ppp  

( )( ) ( )kkkkk1kkk PxxRxgyYyx ,;,;),( NNp =⇒ −  

( ) 




























=⇒ − y

k

Txy

k

xy

kk

k

k

1kkk
PP

PP

y

x
Yyx ,),( Np      (4.13) 

By Lemma 4.2 the conditional distribution of kx is obtained as 

)ˆ,ˆ;()( kkkkk PxxYx Np =  

Where, 

( ) ( )kk

y

k

xy

kkk yyPPxx −+=
−1

ˆ         (4.14) 

( ) ( )Txy

k

y

k

xy

kkk PPPPP
1ˆ −

−=         (4.15) 

We define the filter gain kK as given by (4.12) 

( ) 1−∆

= y

k

xy

kk PPK  

With this expression of kK  (4.14) and (4.15) can be expressed as 

( )kkkkk yyKxx −+=ˆ  

( )( )T

k

y

kkkk KPKPP −=ˆ  

Hence, (4.5) and (4.6) are proved � 
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4.2.2.1. Implementation of Bayesian Filters 

For linear signal models the filtering steps can be readily deduced using the Bayesian 

framework and the subsequent estimation algorithm is well known as Kalman filter. 

However, for nonlinear signal models where state and observation equations are nonlinear 

function of system states Bayesian integrals becomes intractable. As a consequence, 

Bayesian framework for nonlinear estimation with Gaussian noise, though theoretically 

justified, becomes difficult to implement in real life applications. For implementation of the 

Bayesian filters with Gaussian noise, the Gaussian weighted Integrals encountered in the 

filtering steps are to be evaluated with the help of numerical methods. 

Consider a multi-dimensional weighted integral of the form 

( ) ( ) ( ) xxxff
nR

dI ω∫=         (4.16) 

Where ( )xf is a nonlinear function of nx ℜ∈ . ( )xω  is a Gaussian density function present 

in the Gaussian weighted integral. Following the numerical methods the above intractable 

integral can be computed by a weighted sum of the function evaluations. The basic concept 

of numerical methods is to generate a set of points ix  (usually called as sigma points) and 

weights iw  such that 

( ) ( ) i

m

i

wI ∑
=

≈
1

ixff          (4.17) 

Several methods are available for numerical approximation of the integrals from which a few 

methods has been considered in this dissertation to formulate a class of adaptive sigma point 

filters. Some discrete points (will be referred henceforth as ‘sigma points’) are generated in a 

deterministic approach using Unscented Transformation rule, Gauss Hermite Quadrature 

rule, Spherical Radial Cubature rule, Cubature Quadrature rule. The ‘sigma points’ selected 

using these rules can be plugged in the general framework and the corresponding adaptive 

estimator may be formulated. The adaptive nonlinear estimators developed using the referred 

numerical approximation methods in the general framework will be characterised in sequel in 

the succeeding chapters. 
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4.2.3   Part B: Derivation of Adaptation Algorithm 

4.2.3.1. Adaptation of the Process Noise Covariance (Q) 

Maximum Likelihood Estimation (MLE) based method 

Assumption 4.4: 

For adaptation of noise covariances a fixed-length memory (window) of innovation or, 

residual sequence has to be considered. Following assumptions are to be made for the MLE 

based adaptation algorithm [Mohamed1999, Maybeck1982]: 

• The state vector x is independent of the adaptive parameters (noise covariances), α  , i.e., 

0=
∂

∂

α

x  

• The system dynamics ( )⋅f and the measurement equation ( )⋅g  are time invariant and does 

not depend on the adaptive parameters α  

• The innovation sequence is a white and ergodic sequence (time average is equal with 

ensemble average) within the estimation window with window length L. 

The innovation, or, residual covariance matrix is dependent on adaptation parameters α . It is 

with the help of window estimated innovation/residual covariance using which adapted 

values of parameters are deduced. 

Theorem 4.2:  

For nonlinear estimators with unknown process noise covariance, the adapted Q is expressed 

as  

T

kkk KCKQ
kϑ

ˆˆ =          (4.18) 

Where 
k

Cϑ
ˆ  is estimated innovation covariance obtained from the sliding window of length L. 

Proof: 

The Q adaptation steps are derived following MLE method and using innovation sequence 

from a sliding window (also, known as estimation window) and. The steps for derivation of 

adapted Q are inspired from the work of [Mohamed1999, Maybeck1982] for linear signal 

models. The probability density function of the measurements conditioned on adaptive 

parameter, α at specific epoch k is chosen based on innovation sequence as given below. The 
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objective of the MLE method is to maximize the probability density function for the choice 

of adaptive parameter  

( )
( )

( )k

T

k k

k

C
C

P ϑϑ
π

ϑ

ϑ

α
1

2
1exp

2

1 −−=
m

y
k

       (4.19) 

or, ( )( ) ( ){ }k

T

k kk
CCP ϑϑπ ϑϑα

1ln2ln
2

1
ln −++−= m

k
y

     (4.20) 

Multiplying both sides with −2 and neglecting the constant term we get the equation 

modified as 

kϑϑ ϑϑ
1ln −+=
kk

CCP T

k          (4.21) 

The innovation sequence has been considered inside a window size L as the filter uses a fixed 

length memory. The innovations inside the window will be summed. Multiplication with a 

negative value inverts the maximization problem into a minimization problem. Therefore, the 

Maximum Likelihood condition becomes: 

( )








+∑
=

−
k

jj

k

0

1lnmin ϑϑ ϑϑ kk
CC T

k
        (4.22) 

where 10 +−= Lkj  and L is the window size. 

After differentiation with respect to adaptive factor ‘α ’ the likelihood function in (4.22) is 

expressed as: 
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The following formulae for matrix operation have been used for deriving the above steps are 

presented below and also appear in [Maybeck1982, Mohamed1999]. 
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
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( )QPxxPxPQPx TTTT tr=  

The deduction of the relation between innovation covariance, 
j

Cϑ  and the process noise 

covariance, kQ  necessitates the availability of the pseudo measurement matrix for the 

nonlinear measurement equation which can be obtained by statistical linearization. The 

concept of pseudo measurement matrix for nonlinear measurement model is introduced first 

in [Lee2008] and also followed in [Chandra2011, Jia2013b, Soken2014]. 

The cross covariance xy

kP and a priori error covariance kP  given by (4.10) and (4.8) 

respectively are now used to define the pseudo measurement matrix, kΨ  following 

[Lee2008] as 

( )Txy

k

1

kk PPΨ −=          (4.26) 

Using the pseudo measurement matrix the innovation covariance can be represented as 

T

kkkk ΨPΨRC
j

+=ϑ  which is analogous to that for linear signal model. The innovation 

covariance expressed in terms of pseudo measurement matrix is approximately equal with 

y

kP , i.e., T

kkkk

y

k ΨPΨRP +≈  

For adaptation of Q , the adaptive parameter α is chosen as iii Qα = . 

Substituting this expression of innovation covariance we get: 
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It is assumed following the work of [Mohamed1999, Maybeck1982] that the within the 

estimation window the filter is in steady state and, therefore, derivative of the term f

kP  

(related with a posteriori error covariance) in the expression of kP can be neglected. 

Substituting this value in the ML equation given by (4.25) we get 

[ ]( ){ }[ ] 0
0

=−∑
=

−−−
k

jj

jjj
tr

T1T

jj

11 IΨΨCCC
jj ϑϑϑ ϑϑ       (4.27) 

Alternatively, 

[ ]{ }[ ] 0
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=−∑
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tr ΨCCCΨ 1T
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11T

jj ϑϑϑ ϑϑ       (4.28) 

[ ]{ }[ ] 0
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=−∑
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−−−
k

jj

jjjjtr ΨCCΨΨCΨ 1T

jj

1T1T

jjj ϑϑϑ ϑϑ      (4.29) 

Note that using kΨ  filter gain kK  given by (4.12) can be expressed as 1T

kkk k
CΨPK −= ϑ . 

Substituting this expression in (4.29) we get 

{ }[ ] 0
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=−∑
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−−−
k
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jjjjjjtr
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jj

11
PKKPΨKP ϑϑ       (4.30) 
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j
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jjjjjjtr 1T

jj
1 PKKPΨKP ϑϑ       (4.31) 

From (4.5) the term jjK ϑ  can also be represented as jjjjj ηxxK =−= ˆϑ . The state residual 

is represented by jη . 

( ){ }[ ] 0

0

=−∑
=

−−
k

jj

jjjjjtr 1T
jj

1 PηηPΨKP        (4.32) 

The expression of jP  in (4.8) ensures that jP is positive definite. Therefore, above 

expression vanishes only when 

( ){ }[ ] 0

0

=−∑
=

k

jj

jjjtr T
jjηηPΨK         (4.33) 

Using (4.6) and (4.12) we get 
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( ){ }[ ] 0ˆ

0

=−−∑
=

k

jj

jjtr T

jjηηPP         (4.34) 

The matrices jP  and jP becomes steady within the estimation window and therefore their 

average value have not been considered. 

[ ]∑
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=−
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jjN
0

1ˆ T

jjkk ηηPP          (4.35) 

From (4.8) expression of kP  is substituted in (4.35) 
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=
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        (4.37) 

During steady state the term ( )f

kk PP −ˆ  becomes often low and may negligible as it is 

recommended in [Mohamed1999]. 
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jj KKQ k
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kk
L
∑
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≈
0
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TKCKQ
k kkk ϑ

ˆˆ ≈  

Hence, (4.18) is proved. � 

For parameter augmented state vector it may so happen that the noise covariance of the states 

is known while the noise covariance for the parameters remains unknown. Partial adaptation 

of Q is possible in this situation. For partial adaptation we use the corresponding elements of 

filter gain which are related with ζn  parameters. We select the last ζn  rows from kK  matrix 

and define as ζ

kK . Now the noise covariance of the corresponding parameter is adapted as 

( )Tζ

kk

ζ

k

ζ

k KCKQ ϑˆˆ = . Note that (4.22) differentiated with respect to unknown elements only. 
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As the covariance of the process noise of state vector of augmented vector is known, the 

overall noise covariance of augmented vector is partially adapted and presented as 









=

ζ

k

ψ

k

k
Q0

0Q
Q

ˆ
ˆ  where ψ

kQ is a known constant matrix which is the noise covariance of the state. 

Covariance Matching method 

Covariance matching method is an intuitive method where the window estimate of the 

innovation or, the residual covariance is compared with its respective theoretical value 

computed by the filter for obtaining the adapted value of noise covariance. When the process 

or, measurement noise covariance is accurately initialized the estimated innovation 

covariance from the sliding window becomes consistent with the theoretical value computed 

in the filtering algorithm. However, any discrepancy between these two innovation/residual 

covariances indicates improper tuning of filter. While tuning parameters, Q or R are 

unknown, they can be deduced based on the comparison of window estimated and the filter 

computed innovation or residual covariance. For adaptation of process noise covariance the 

expression of Q is obtained comparing the window estimate of innovation covariance and the 

filter computed (theoretical) innovation covariance at each time instant assuming R  is known 

to the filter. 

Theorem 4.3: Same as theorem 4.2 

Proof: 

The online estimate of innovation sequence from the sliding window can be expressed as 

T
jj

k

C ϑϑ
ϑ ∑

=

=

j

jj
L

0

1ˆ
         (4.41) 

The filter computed innovation covariance is approximately equal to the window estimated 

innovation covariance when Q is properly tuned. It is expected that with the adapted kQ̂  

these two covariances will be consistent. Therefore we may write 

T
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y
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T
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y
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ϑ

ϑ

ˆ

ˆ

 

From (4.6) the expression of a posteriori error covariance is obtained as 
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T
k

y
kkkk KPKPP −=ˆ  

This expression can be alternatively written as 

T

kkkk KCKPP
kϑ

ˆˆ =−          (4.42) 

Using the expression of a priori error covariance given by (4.8) in (4.42) 

T

kkkkk KCKPQP
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kkk PPKCKQ
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ϑ

        (4.43) 

The expression ( )f

kk PP −ˆ  becomes often negligible. As the filter reaches steady 

state 1
ˆ

−kP beomes steady and often low for satisfactory estimation.  

Therefore, the expression for adapted Q  after approximation becomes 

T

kkk KCKQ
kϑ

ˆˆ =  

Hence, (4.18) is proved.   

Theorem 4.4 

For the adaptive nonlinear filters with unknown process noise covariance, Q can also be 

adapted with the help of a scaling factor and expressed as  

1kk QQ −= ˆˆ
kλ  

Where, the scaling factor, 
( )
( )RP

RC
y

k −

−
=

trace

trace
k

k

ϑλ
ˆ

     (4.45) 

Where 
k

Cϑ
ˆ  is estimated innovation covariance obtained from the sliding window with 

window length L and y

kP  is the innovation covariance computed in the filtering algorithm. 

Proof: 

According to the covariance matching method the window estimated innovation covariance 

should match with the innovation covariance computed by the filtering algorithm. When 

measurement noise covariance is known, i.e., RR =  it can be subtracted from innovation 

covariance and the remaining part is same as h

kP  which error covariance of a priori estimate 
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of measurement. h

kP  is dependent on the a priori error covariance which subsequently 

depends on process noise covariance. 

As it is considered that the process inside the window is in steady state the a priori error 

covariance is solely dependent of process noise covariance Q as a posteriori error covariance 

often converges to a small value and does not have significant contribution. The concept 

which was first introduced in the work of [Ding2007] for linear signal model has been 

extended here for nonlinear systems 

With these concepts in mind process noise covariance can be adapted with help of a scaling 

factor which is empirically decided as 1kk QQ −= ˆˆ
kλ  

( )
( )RP

RC
y

k −

−
=

trace

trace
k

k

ϑλ
ˆ

 

The square root has been considered to smooth out the changes in the scaling factor as 

recommended in [Ding2007]   

Maximum a Posterior (MAP) based method 

Theorem 4.4 

For window length L and with the consideration that the noise statistics are constant within 

the window the process noise covariance can be expressed as: 

[ ]∑
=

−+=
k

jk 1

ˆ1ˆ f

j

T

j

T

jjjjk PKKPQ ϑϑ        (4.46) 

Proof: 

The algorithm for adapted process noise covariance is derived using the concept of 

Maximum a Posterior (MAP) estimation method provided in [Cheng2014, Gao2015b, 

Liqiang2015]. Usually both the mean and covariance of noise is estimated with the help of 

MAP noise statistic estimators reported in the above papers. In this case as zero mean 

Gaussian noises are considered. Therefore, estimation the mean of noise is not necessary. 

The conditional distribution of interest based on measurements is expressed as 

[ ]kk YRQ,,xJ p=′
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As [ ]kYp  is not directly related to other parameters except the estimate of state, kx , the 

conditional distribution is expressed as 

[ ]
[ ]

[ ]k

kk

kk

Y

YRQ,,x
J

YRQ,,xJ

p

p

p

,
=′

=′

 

For this optimization problem it seems that [ ]kYp  is not related. Therefore, the objective is 

changed to compute the maximum of the following unconditional density function 

[ ]kk YRQ,,xJ ,p=  

[ ] [ ] [ ]RQ,RQ,,xYRQ,xJ kkk ppp=⇒       (4.47) 

Note that among the conditional parameters present in (4.47) we have not considered the 

means of noise as the noises are zero mean. Here [ ]RQ,p  may be considered as a constant 

which signifies the prior information on noise statistic. 

According to Gaussian distribution the condition distribution [ ]RQ,xkp  could be expressed 

as: 
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k

j
Π

=

=
1

 

[ ]

( ) ( )

( )( ) ( )( )




















−−−×









−−−

=⇒

−
−

−
=

−

Π 1

1

1212
1

1

0212

2

1
exp

2

1

ˆˆ
2

1
exp

2

1

jj

T

jjn

k

j

T

n

p

xfxQxfx
Q

xxPxx
P

RQ,x

0000

0

k

π

π
 

[ ] ( )








−+−−×=⇒ ∑
=

−

−−

−−

k

j

jj

n
Cp

1

2

1

2221

1 11
0

ˆ
2

1
exp

QP000k xfxxxQPRQ,x  (4.48) 

The notation
2

A
u signifies: Auuu

A

T=
2

 

Assuming that measurements are known for j=1,…,k and unrelated to one another 

[ ]RQ,,xY kkp  can be expressed as 
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Therefore the conditional distribution given by (4.47) can now be expressed using (4.48) and 

(4.49) as 

( ) ( )




















−+−−=⇒ ∑∑

==
−

−−

−−

k

j

jj

k

j

jj

kk
C

1

2

1

2

1

22

11

2

1
exp

RQ
xgyxfxRQJ   (4.50) 

Where, the constant, [ ]RQ,Pxx 0P00 pCCC
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Taking logarithm on both sides of (4.50) 
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For maximization of conditional density  
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After differentiation of (4.50) with respect to Q  after taking logarithm the expression of 

adapted k
Q̂ is obtained as  
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Note that an assumption is made where kjk1j
x,x ˆˆ

−  are known. Moreover, in the expression 

of adapted Q the smoothed estimate kj 1
ˆ

−
x and kj

x̂  can be replaced by a posterori estimate 

1
ˆ −jx and jx̂  as calculation with smoothed estimate increases complexity. With this 

consideration (4.51) can be expressed as 
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However, in [Gao2015b] it is proved that the above expression yields a biased estimate of 

k
Q̂ . The suboptimal estimation algorithm for k

Q̂  following [Gao2015b] can be obtained as 

given below. 
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Hence, (4.46) is proved. �  

It has been discussed before that the filter gains and error covariance are often considered to 

be steady inside the window (specifically when the filter reaches steady state). Therefore, 

expression (4.46) can be modified as 

f

kk

T

k

T
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PPKKQ −+
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     (4.56) 

As mentioned earlier, the contribution of the expression ( )f

kk
PP −ˆ  is often low and 

therefore can be neglected and (4.56) can be approximately written as 

T

kkkk
KCKQ

ϑ
ˆˆ ≈          (4.57) 

Therefore, the same expression of adapted Q given by (4.18) can also be obtained from 

(4.46). 
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4.2.3.2. Adaptation of the Measurement Noise Covariance (R) 

Maximum Likelihood Estimation (MLE) based method 

Theorem 4.5.1:  

For the nonlinear filters with unknown measurement noise covariance R, the adapted R at 

current instant is expressed as  

g

k

ρ

kk PCR ˆˆˆ +=           (4.58) 

Where ρ
kĈ  is estimated residual covariance obtained from the sliding window with length L. 

Proof: 

The R adaptation algorithm used in the proposed algorithm is derived using MLE technique 

with assumption 4.4. Derivation of adaptation algorithms for nonlinear systems are inspired 

from Maximum Likelihood based R adaptation approach for linear signal models 

[Mohamed1999]. The probability density function of the measurements conditioned on 

adaptive parameter, α at specific epoch k is chosen based on residual sequence kρ  unlike 

[Mohamed1999, Maybeck1982] 
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or, ( )( ) ( ) ( ){ }k
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k
y

     (4.60) 

Multiplying both sides with −2 and neglecting the constant term we get 

( ) k

ρ

k

T
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k ρCρCP
1
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−

+=         (4.61) 

Residual sequence has been considered inside a window size L as the filter uses a fixed 

length memory. The residuals inside the window will be summed. Therefore, the Maximum 

Likelihood condition becomes: 
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Which results in 
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The formulae necessary for matrix operation have been mentioned before. 

The deduction of the relation between residual covariance, ρC k  and the measurement noise 

covariance again necessitates the pseudo measurement matrix of the nonlinear measurement 

equation. The pseudo measurement matrix has been defined before in (4.26) as  

( ) ( ) 1
ˆ

−

= k

xz

kk PPΨ
T

. Using the pseudo measurement matrix the residual covariance can be 

approximately represented as: T
kkkk

ρ
k ΨPΨRC ˆ−≈  which is derived analogously to that of 

linear signal model as the pseudo measurement matrix is now available. Readers are 

requested to consult the proof of theorem 4.6 for more details. 

For adaptation of R , the adaptive parameter α is chosen as iii Rα = . Hence,  
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Using the expression of 
kk

k

R

P

∂

∂ ˆ
 in equation (4.66) we get 

T
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∂
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Substituting this value in the ML equation given by (4.65) we get 
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Alternatively,  
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The above equation holds only when the expression within the square bracket vanishes as the 

residual covariance ρC j  and the expression ( )TTΨKKΨI jjjj+  are positive definite. 

Assuming ergodic residual sequence inside the window the expression of estimated 

covariance of residual sequence becomes 
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The term T

kkk ΨPΨ ˆ is approximately equal to g

kP̂ . With the above consideration and using 

(4.74) and (4.76) the expression of the adapted R becomes  

g

k

ρ

kk PCR ˆˆˆ +=  

Hence, (4.58) is proved. � 

Theorem 4.5.2:  

For the nonlinear filters with unknown measurement noise covariance R, the adapted R using 

the innovation sequence can be derived as  

g

kk PCR
k

−= ϑ
ˆˆ          (4.77) 

Where 
k

Cϑ
ˆ  is estimated innovation covariance obtained from the sliding window with 

window length L. 

 

 

 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 4 102 

Proof: 

The adaptation algorithm for R can also be obtained using innovation sequence. The 

probability density function of the measurements conditioned on adaptive parameter, α at 

specific epoch k is chosen based on innovation sequence as given in maximum likelihood 

based Q adaptation method. Detailed steps are not shown to avoid repetition. 

The Maximum Likelihood condition given by (4.25) is presented below: 
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kα is considered as kkk Rα =  for adaptation of R. The innovation covariance can be expressed 

in terms of pseudo measurement matrix as TΨPΨRC
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Therefore, I
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The ML condition now becomes 
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As 
jϑC is non-singular the above condition holds true only when  
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g

kPCR −=⇒
kk ϑ

ˆˆ  

Hence, (4.77) is proved. � 

Covariance Matching method 

Theorem 4.6: Same as theorem 4.5.1 for residual based R adaptation and 4.5.2 for innovation 

based R adaptation 

Proof: 

The adaptation algorithm for measurement noise covariance can also be obtained with the 

help of covariance matching method. The concept of the intuition based covariance matching 

technique has been discussed in Q adaptation method. In the same vein the adaptation 

algorithm for R  is derived using both innovation and residual. Online estimate of innovation 

is obtained from the sliding window as given by (4.41) 
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k
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ϑϑϑ ∑
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1ˆ  

The theoretical innovation covariance computed in filtering step is g

kk PRC +=
kϑ  

With the correct value of adapted R these two innovation covariances should be consistent. 

Hence the adapted R can be expressed as 

g

kk PCR −=
kϑ

ˆˆ . 

Note that the above expression of adapted R is same as (4.77) 

When the statistics of residual instead of innovation is considered the estimate of residual 

covariance can be obtained as given by (4.74) 
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Ideally the residual covariance is given by g

kk

ρ

k PRC ˆ−≈     (4.84) 

With the help of the pseudo measurement matrix the residual covariance can be represented 

by (4.85) and derived in the following steps:  

T
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g
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The residual, kρ  can be expressed as 

( )kkk xgyρ ˆ−=          (4.86) 

( ) ( )kkkk xgvxgρ ˆ−+=⇒          (4.87) 

Alternatively with the help of the pseudo measurement matrix (4.87) can be expressed as 
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The covariance of kρ  is expressed as 
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The filter gain can be expressed using pseudo measurement matrix as ( )1
k

T
kkk RΨPK −= ˆ  

following the expression of the gain of Kalman filter given in [Anderson1979]. Using this 

expression (4.90) can be expressed as 
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In the ideal situation the window estimated residual covariance ρ

kĈ should be consistent with 

filter computed residual covariance for correctly adapted value of R. 

Hence, using the residual covariance adapted R can be expressed as 

T

kkk

ρ

kk ΨPΨCR ˆˆˆ +=          (4.92) 

Alternatively, with the relation T

kkk

g

k ΨPΨP ˆˆ ≈  the adapted R can be expressed as  

g

k

ρ

kk PCR ˆˆˆ +=  

Note that this expression is same as (4.58). 

Maximum a Posterior (MAP) based method 

Theorem 4.7 

For window length L and with the consideration that the noise statistics are constant within 

the window length L the measurement noise covariance can be expressed as: 
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Proof: 

The MAP based R adaptation algorithm can be derived in the same vein of Q adaptation 

method. From equation (4.50) we get of conditional density, J  which is to be maximized for 

adapted value of R. 
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Taking logarithm on both sides of (4.50) 
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For maximization of conditional density  
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Differentiating (4.50) with respect to R  after taking logarithm the expression of adapted 

k
R̂ is obtained as  
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Note that an assumption is made where kj
x̂  is known. Moreover, in the expression of 

adapted R the smoothed estimate kj
x̂  is replaced by a priori estimate jx  as calculation 

with smoothed estimate increases complexity. With this consideration (4.94) can be 

expressed as 
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However, in [Gao2015b] it is proved that the above expression of kR̂ is inaccurate. The 

suboptimal estimation algorithm for kR̂  is derived as given below following [Gao2015b]. 
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Hence, (4.93) is proved. � 

During steady state gPk  is considered to be steady within the estimation window and 

averaging of gPk  may not be necessary. We can take gPk out of the estimation window and 

express adapted R as 

gPCR
k kk −=⇒ ϑ

ˆˆ  

Note that with this reasonable approximation expression of adapted R matches with (4.77) 

Theorem 4.8 

For window length L and with the consideration that the noise statistics are constant within 

the window the measurement noise covariance can be expressed as: 
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Proof: 

For maximization of conditional density (4.50) with respect to R we can also think of using 

a posteriori estimate of state, kx̂ in place of a priori estimate of state, kx  in proof for 

theorem 4.7 
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Using this condition the expression of adapted kR̂  is obtained as 
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In the expression of adapted R , a posteriori estimate jx̂  has been considered in place of 

smoothed estimate kj
x̂ . Replacing smoothed estimate by a posteriori estimate jx̂  we 

present a different expression of adapted R. 
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However, this adaptation algorithm again provides inaccurate estimate of kR̂ . 

Let us consider the window estimate as  
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Here, jK  is the filter gain and jϑ is the innovation. 

With the help of pseudo measurement matrix kΨ the above expression can be simplified as 

done in covariance matching method from (4.88) to equation (4.90). Then, the window 

estimate can be expressed as 
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We can represent residual as ( )( )
jjj xgyρ ˆ−= . Moreover, ≈gPj

ˆ T

jjj ψPψ ˆ . With these 

considerations (4.100) becomes  
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Hence, (4.96) is proved. � 

During steady state gPk
ˆ  is considered to be steady within the estimation window and 

averaging of gPk
ˆ  may not be necessary. We can take gPk

ˆ out of the estimation window and 

express adapted R as 

gρ

k PCR kk
ˆˆˆ +=⇒  

Note that with this reasonable approximation expression of adapted R matches with (4.58) 

4.2.3.3. Analysis of Unbiasedness of Adapted Noise Covariance 

It can be said that an unbiased estimate of noise covariance has been presented by the 

adaptation algorithm when the expectation of adapted noise covariance would perfectly 

match with that of actual noise covariance. Alternatively it can be said that for an unbiased 

estimate the difference between the adapted value and the actual value should demonstrate a 

zero mean nature of variation. 

For further discussions let us consider the expression of adapted measurement noise 

covariance from Theorem 4.5.2 as 

h
kk PCR

k
−= ϑ

ˆˆ  

The expectation of kR̂ can be obtained as 

( ) ( )h
EE kk PCR

k
−= ϑ

ˆˆ  

Substituting the expression of window estimated innovation covariance we get 
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
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=
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jj

h
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jj
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( )kR̂E , the expectation of kR̂  becomes close to the true kR i.e., ( ) kk RR →ˆE as the length of 

estimation window, L, is increased while satisfying the assumption 4.4. Theoretically the 

length may be infinite [Maybeck1982]. 

A larger estimation window is, therefore, recommended so long the noise statistics are 

stationary and ergodic within the estimation window. However, the situation may arise when 

the noise is non stationary with short time variation in covariance. In such situations, within a 

large estimation window, the statistics no longer remains stationary and a biased estimate of 

noise covariance is obtained.  

To overcome this issue it is considered that the statistics are stationary within a small 

estimation window for the non stationary noises. In this way the unknown time varying noise 

covariances can be tracked. However, the estimate of the time varying noise covariances 

essentially becomes noisy with a choice of small window length. That is to say the difference 

between the estimated noise covariance and actual noise covariance will have high variances 

although the mean is zero. Sometimes the estimated covariance may also be biased (i.e., the 

mean of this value is different from the truth value) as the memory of only a few instants has 

been considered. Therefore, previous workers [Myers1976, Mohamed1999] have warned that 

for obtaining an unbiased and smooth estimate history of adequate instances has to be 

considered. 

From the above discussions we can conclude that the unbiasedness of the adapted noise 

covariance depends significantly on the choice of epoch length or window size. 

4.2.3.4. Choice of Window Size 

With the above discussions it may be appreciated that the choice of window size for adaptive 

filtering is a major concern of the designer and needs experimentation. As the noise 

covariance remain unknown it is not easy to get the information whether the noise covariance 

is time varying. Therefore, the performance of filter needs to be investigated for different 

choice of window length on trial and error basis. For non stationary noise minimum choice of 
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window length should be the order of system (for Q adaptation) or, the number of 

measurements (for R adaptation). Otherwise, divergence of filter cannot be over ruled 

[Mohamed1999]. 

The situation when the noise is stationary window length may be taken as the length up to the 

current time instant starting from initial time so that all the innovation/residual values of 

previous instants can be considered. In this approach the sliding window concept will not be 

applicable any more. This approach can initially present biased estimate of covariance when 

there remains large error between the assumed choice of the unknown noise covariance and 

its actual value. To converge on the truth value the adapted noise covariance may take more 

time as the innovation sequence retains the memory of all previous instants and consequently 

the estimation performance may get affected. In this situation the fixed length sliding 

window approach of adaptation would be appropriate. 

For sliding window based adaptation the noise covariance is not adapted unless the time step 

index k is greater than or equal to the desired window length L. For small window length this 

will not affect much. However, for large window length the noise covariance remains frozen 

to the initial value for considerably long time which is not desirable. 

To start adaptation early noise covariance is adapted initially based on a small window length 

Lmin of innovation or, residual window. The window size is then gradually increased at each 

increment of step index k until the desire window length L is achieved. Afterwards noise 

covariance is adapted from sliding window. 

4.2.3.5. Notes on Adaptation Methods 

During the initial time steps the adapted value of process noise covariance may be less 

accurate or prone to be biased depending on the system dynamics and initial choice of Q as 

the Q adaptation algorithm is obtained after a few reasonable approximations. Afterwards, 

when the filter gradually attains steady state the assumption holds well and the adapted value 

of the process noise covariance becomes more accurate.  

For R adaptation the residual sequence, instead of innovation, is preferred as residual based 

adaptation algorithm automatically ensures positive definiteness of adapted R.  

In case of innovation based R adaptation the adaptive filter often gets interrupted due to loss 

of positive definiteness of adapted R. To avoid this singularity problem all the elements of 
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the R matrix are forced to be positive by taking their absolute value. A similar ad hoc 

approach has been followed for innovation based R adaptation in [Almagbile2010]. In this 

perspective, the residual sequence based adaptation is preferable. 

During implementation of R adaptive filters diagonalization of adapted R has to be carried 

out to ensure non-correlation when the measurement noises are not correlated. Otherwise, 

because of the window estimation the off diagonal terms may not turn up to be zero and its 

effect on the estimation may be detrimental for certain cases. 

For residual based R adaptation it may be noted that the filter gain and the a posteriori error 

covariance depends on the adapted R implicitly. The adapted value of R subsequently 

depends on the gain and the error covariance. This self referencing problem can be 

circumvented following the alternative heuristic which uses some estimated value of the 

adapted measurement noise covariance. For the simplest case the adapted value of the 

previous instant can be used, i.e., 1kRR −= ˆ . Use of this approximation may not induce error 

in the estimate during steady state for the cases where the true value of R  remains constant. 

However, during transients or if the true R is time varying tracking performance of adapted 

R may not be satisfactory due to the above approximation. The following iterative approach, 

though computationally intensive, can improve estimation accuracy. In this approach an 

intermediate variable #R is chosen as
#ˆ# i

kRR =  where i

kR̂  denotes the estimated value of R in 

the i
th

 iteration of the k
th

 step, and #,,3,2,1 ii L= . In the iterative refinement #R  takes the 

place of R  in the algorithm. If sufficient accuracy is achieved after the #
i  iteration further 

iteration can be stopped. This method of iterative refinement has been termed as ‘re-

computation’ in the rest of the dissertation.  

The similar approach of re-computation can also be followed for Q adaptation for iterative 

refinement of adapted Q. However, this will also increase the computation burden. 

4.3   Algorithms for Adaptive Nonlinear filters 

4.3.1   Introduction to Algorithms 

In this section general frameworks for adaptive nonlinear filters are presented. Two different 

frameworks for adaptive nonlinear filters have been proposed. One of them is in standard 

error covariance form and the other is in square root form. The motivation for the square root 
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approach is also mentioned in the notes on the algorithm. With help of these frameworks a 

variety of adaptive filters are formulated depending on the choice of sigma points 

4.3.2   Conventional Error Covariance form 

This section presents the general framework of the adaptive Gaussian filter in standard error 

covariance form.  

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS 

(i) Initialization: Initialize R,Q,P,x 00
ˆˆ  

(ii) Time update step: 

Compute Cholesky Factor such that ( )T
1k1k1k SSP −−− = ˆˆˆ     (4.101) 

For the numerical method of integration select points and weights first for standard normal 

distribution and modify in the algorithmic steps as 

 1ki1ki xqSχ −− += ˆˆˆ          (4.102) 

Compute ∑
=

=
N

i

iw
1

)ˆ( ik χfx         (4.103) 

and ( )( )∑
=

−−+=
N

i

i

T

w
1

)ˆ()ˆ( kikik xχfxχfQP      (4.104) 

kx is a priori estimate and kP is a priori error covariance 

Q denotes the assumed value of process noise covariance kQ̂ . In this algorithm, during Q 

adaptation, Q is chosen as 1kQQ −= ˆ  for the simplest case without re-computation. 

(iii) Measurement update step: 

Compute Cholesky Factor such that ( )Tkkk SSP =      (4.105) 

Select the points as kiki xqSχ +=        (4.106) 

The a priori estimate of measurement becomes 

∑
=

=
N

i

iw
1

)( ik χgz          (4.107) 

The following covariance can be computed as - 
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( )( )∑
=

−−=
N

i

i

T
w

1

)( kiki

xz

k zχgxχP        (4.108) 

( )( )∑
=

−−=
N

i

i

T

w
1

)()( kiki

zz

k zχgzχgP        (4.109) 

The innovation covariance can be computed as the sum of zz

kP and R . zz

kP  and xz

kP is same as 

what is denoted before by g

kP  and xy

kP  respectively. Here, R is an approximation of adapted 

measurement noise covariance kR̂ . In this algorithm, during R adaptation, R is chosen as the 

simplest case where 1kRR −= ˆ . Re-computation may be carried out as explained in 4.2.3.5. 

The filter gain kK  is given by  

( ) 1−
+= RPPK

zz

k

xz

kk          (4.110) 

( )kkkkk zyKxx −+=ˆ         (4.111) 

( ) T

k

zz

kkkk KRPKPP +−=ˆ         (4.112) 

kx̂ is a posteriori estimate of state and kP̂  is a posteriori error covariance. 

(iv) Q-Adaptation Steps: 

When Q is unknown, on contrary, R is known (i.e., RR = ) the following steps are to be 

executed: 

Compute the innovation sequence as 

kk zy −=kϑ           (4.113) 

The estimated innovation covariance can be computed from a sliding window of epoch 

length L  

( ) ( )∑
+−=

=
k

Lkj

T
kk jj

Lk

1

1ˆ ϑϑϑC         (4.114) 

Direct adaptation algorithm for kQ̂  

kkk KCKQ
kϑ

ˆˆ =          (4.115) 

Alternative algorithm for adaptation of kQ̂ with the help of scaling factor 
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1kk QQ −= ˆˆ
kλ           (4.116) 

Where, 
( )
( )RP

RC
y

k −

−
=

trace

trace
k

k

ϑλ
ˆ

        (4.117) 

(v) R-Adaptation Steps: 

When R is unknown, on contrary, Q is known (i.e., QQ = ) the following steps are to be 

executed: 

Innovation based R adaptation: 

Compute the innovation sequence as 

kk zy −=kϑ           (4.118) 

The estimated innovation covariance can be computed from a sliding window of epoch 

length L  

( ) ( )∑
+−=

=
k

Lkj

T
kk jj

Lk

1

1ˆ ϑϑϑC         (4.119) 

zz

kk PCR
k

−= ϑ
ˆˆ          (4.120) 

Residual based R adaptation: 

Compute Cholesky Factor such that ( )Tkkk SSP ˆˆˆ =      (4.121) 

Select sigma points as 
kiki xqSχ ˆˆˆ̂ +=        (4.122) 

The a posteriori estimate of measurement and the respective error covariance becomes 

∑
=

=
N

i

iw
1

)ˆ̂(ˆ
ik χgz          (4.123) 

( )( )∑
=

−−=
N

i

i

T

w
1

ˆ)ˆ̂(ˆ)ˆ̂(ˆ
kiki

zz

k zχgzχgP        (4.124) 

Compute the innovation sequence as 

kkk zyρ ˆ−=           (4.125) 
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The estimated residual covariance can be computed from a sliding window of epoch length L  

( ) ( )∑
+−=

=
k

Lkj

jj
L 1

1ˆ T

kk

ρ

k ρρC         (4.126) 

zz

k

ρ

kk PCR ˆˆˆ +=           (4.127) 

(vi) Recursion: The time update and measurement update steps are repeated for estimates for 

the subsequent time steps starting from k=1. 

4.3.3   Square Root version 

This section presents the general framework of the adaptive nonlinear filter in the square root 

form. 

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS IN SQUARE ROOT FORM 

(i) Initialization: Initialize R

k

Q

k00 S,S,S,x ˆˆ  

(ii) Time update step: 

For the particular mean and covariance modify the selected points for standard normal 

distribution as 1ki1ki xqSχ −− += ˆˆˆ        (4.128) 

Compute ∑
=

=
N

i

iw
1

)ˆ( ik χfx         (4.129) 

Compute the weighted, centered (a posteriori estimate of previous instant is subtracted off) 

matrix x

kS  such that th
i element of x

kS : 

( ) ( )
ii

x

k wki xχfS −= )ˆ(         (4.130) 

 for Ni ,,2,1 L=  

The estimate of the square root of a priori error covariance is obtained as 

[ ]( )Q

k

x

kk SSS izeTriangular=        (4.131) 

 

(iii) Measurement update step: 

Select sigma points as kiki xqSχ +=       (4.132) 

The a priori estimate of measurement becomes 
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∑
=

=
N

i

iw
1

)( ik χgz          (4.133) 

Compute the weighted, centered (a priori estimate of measurement is subtracted off) matrix 

z

kS  such that th
i element of z

kS : 

( ) ( )
ii

z

k wki zχgS −= )(         (4.134) 

for Ni ,,2,1 L=  

Compute the weighted, centered (a priori estimate of state is subtracted off) matrix x

kS  such 

that th
i element of x

kS : 

( ) ( )
ii

x

k wki xχS −=           (4.135) 

for Ni ,,2,1 L=  

The cross following covariance can be computed as - 

( )Tz

k

x

k SSP xz

k =          (4.136) 

The innovation covariance becomes 

[ ]( )R

k

z

k

zz

k SSS izeTriangular=        (4.132) 

The filter gain is computed as 

( ) ( ) 1−−
= zz

k

zz

k

xz

kk SSPK
T

        (4.137) 

The estimate of the square root of a posteriori error covariance is computed as 

[ ]( )R

kk

z

kk

x

kk SKSKSS −= izeTriangularˆ       (4.138) 

The a posteriori state estimate is given by 

( )kkkkk zyKxx −+=ˆ         (4.139) 

 

 (iv) Q-Adaptation Steps: 

When Q is unknown, on contrary, R is known, i.e., R

k

R

k SS =  the following steps are to be 

executed to adapt Q

kS : 
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Compute the innovation sequence as 

kk zy −=kϑ           (4.140) 

Compute the matrix from the innovation sequence as  

( ) ( )[ ]kLk kkk ϑϑϑ
L1+−=S        (4.141) 

The adaptated square root of process noise covariance Q

kŜ is obtained as 

( )ϑ
k

Q

k SKS kizeTriangularˆ =         (4.142) 

(v) R-Adaptation Steps: 

When R is unknown on contrary,  Q is known, i.e., Q

k

Q

k SS =  the following steps are to be 

executed to adapt R

kS : 

Select sigma points as kiki xqSχ ˆˆˆ̂ +=       (4.143) 

Compute ∑
=

=
N

i

iw
1

)ˆ̂(ˆ
ik χgz         (4.144) 

Compute the weighted, centered (a posteriori estimate for measurement of previous instant is 

subtracted off) matrix z

k

ˆ
S  such that th

i element of z

k

ˆ
S : 

( ) ( ) ii

z

k wki zχgS ˆ)ˆ̂(
ˆ −=          (4.145) 

for Ni ,,2,1 L=  

Compute the residual sequence as given by  

kkk zyρ ˆ−=           (4.146) 

Compute the matrix from the innovation sequence as  

( ) ( )[ ]kLk kk

ρ

k ρρS L1+−=        (4.147) 

The estimate of the square root of a priori error covariance is obtained as 

[ ]( )ρ
k

z

k

R

k SSS
ˆ

izeTriangularˆ =        (4.148) 

(vi) Recursion: The time update and measurement update steps are repeated for estimates for 

the subsequent time steps starting from k=1. 
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4.3.3.1. Notes on Square Root version of Adaptive Nonlinear filters 

The square root framework of adaptive nonlinear filters are formulated and recommended 

over the standard error covariance form because of the reasons explained in [Anderson1979, 

Arasaratnam2008, Liu2012]. Those points have been reiterated below along with some 

significant attributes of the proposed general framework for adaptive nonlinear estimators in 

square root framework. 

• The square root form preserves the symmetry of the error covariance matrix which is 

a significant aspect of the Kalman filter and its variants. Numerical stability of the 

filter is improved in the presence of the symmetric error covariance matrix. 

• The condition number of a matrix is square of the condition number of its square root 

matrix. Because of smaller condition number of square roots, the estimates involving 

square roots will have more numerical accuracy compared to the estimates with the 

standard error covariance form.  

• In standard error covariance form, the numerical approximation error creeps in 

because of the matrix square root computation in the time update and the 

measurement update step of the filter. This may degrade its accuracy. On contrary, in 

case of the square root approach the square root is directly updated instead of error 

covariance. 

• In light of the above discussions it may also important to note that the results from the 

square root approach in single precision is comparably same as that of standard error 

covariance approach in double precision. In applications where the word length is 

limited, the square root version may be appropriate compared to the standard error 

covariance as it can provide estimates with improved precision compared to the error 

covariance form in such situations. 

• The a posteriori error covariance matrix may suffer from the singularity problem for 

the application with limited precision in the situation where accuracy of 

measurements are high or a linear combination of state vector components is known 

with better accuracy while other combinations may not be well observable. Square 

root approach can overcome such singularity problems. 
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• In the adaptation step, the square root of the process noise covariance and the 

measurement noise covariance get adapted. Therefore, the positive definiteness of 

adapted process noise covariance and the measurement noise covariance is ensured 

by the square root version of adaptive nonlinear filers.  

• Note that for adaptation of the square root of R matrix only residual based adaptation 

approach is followed as the innovation based approach is not straightforward for the 

square root framework. However, for adaptation of Q matrix innovation sequence has 

been employed as the adaptation algorithm can be conveniently modified for the 

square root framework. 

• In the algorithm of adaptive filters with square root framework the matrix inversion 

steps can be replaced by backward substitution symbolized by ‘/’ as the latter is 

computationally economic [Arasaratnam2008]. In case of square root approach the 

triangular matrix is obtained from the QR factorization unlike the standard error 

covariance form. On the availability of a square upper triangular matrix we can use 

the back substitution instead of matrix inversion to reduce the computational burden. 

• The algorithm presented above is applicable only for the sigma point filters where the 

respective weights for the sigma points are non negative. Therefore, the algorithm can 

be applied with Gauss Hermite Quadrature Rule, 3
rd

 degree Cubature Rule, Cubature 

Quadrature Rule, and non scaled version of Unscented Transformation Rule.  

• However, the above algorithm cannot be applied with non scaled version of 

Unscented Transformation Rule and 5
th

 degree Cubature rule as some of the weights 

becomes negative. In that case the “cholupdate” command has to be used as described 

in [Merwe2004]. This modification, however, does not change the adaptation part. 

The non-adaptive part of the above algorithm for the SR UKF (scaled) and SR 

ACKF5 can be obtained from the work of [Merwe2004]. 

• It has been reported in the dissertation of [Liu2012] that the SR UKF may also 

terminate due to loss of positive definiteness for some specific runs while updating 

the Cholesky matrix using “cholupdate”. This may happen under the influence of the 

negative weights of SR UKF. The present worker has, therefore, avoided developing 

the square root version of adaptive UKF and CKF (5
th

 degree). 
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4.4   Demonstration with Adaptive UKF 

In this section we demonstrate the performance of adaptive Unscented Kalman Filter for 

adaptation of unknown measurement noise covariance which has been derived using the 

general framework for adaptive nonlinear estimators. For numerical approximation of the 

Bayesian integrals sigma points are chosen using Unscented Transformation rule proposed in 

the work of [Wan2000, Merwe2004]. For R adaptation covariance matching method 

incorporating residual sequence is followed as provided in theorem 4.5.1.The algorithm of 

AUKF has been discussed in details in the publications [Das2015, Das2013] by the co-

worker, Ms. Manasi Das. Demonstration of the performance of AUKF for object tracking 

problem appears in a conference paper by Ms. Das with joint authorship with the present 

worker which has been referred in the list of conference papers with serial number ‘9’, 

section 1.7.3, chapter 1. 

4.4.1   Choice of Sigma Points 

We consider an n-element vector x  with mean x  and covariance P . 

Given a known nonlinear transformation ( )xhy = , the mean and covariance of y can be 

obtained with the help of sigma points which are deterministically chosen following 

Unscented Transformation rule. The sigma points are be selected in the following way as 

reported in [Wan2000, Merwe2004]: 

Generate 2n+1 sigma points as 

ii xxx ~+=            (4.149) 

for ni 2,,0 L=  

Where, 0~
0 =x ; 

( )( )
ii n Px λ+=~           (4.150) 

for ni ,,0 L=  

( )( )
iin n Px λ+−=+

~           (4.151) 

for ni ,,0 L=  
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Here ( )iP  denotes the i
th

 column of the cholesky factor (matrix square root) of covariance 

matrix P , n and λ represent the number of state variables and scaling factor respectively. 

The parameter α determines the spread of the sigma points and β  denotes the prior 

knowledge about the noise distribution. The scale factor λ is determined as nn −+= )(2 καλ , 

where κ  is usually set to 0. 

The weights corresponding to the sigma points are 

)1(  ;
2

00 βα
λ

λ

λ

λ
+−+

+
=

+
=

n
W

n
W

cm         (4.152) 

for i=0 and 

   
)(2

1
  

λ+
==

n
WW

c

i

m

i .0 for, ≠i        (4.153) 

Transform the sigma points as ( )ii xhy ~=  

The mean and the covariance of the transformed vector: 

( )∑
=

=
n

i

m

iW
2

0

~
ixhy          (4.154) 

( )( ) ( )( )∑
=

−−=
n

i

c

i

T
W

2

0

~~ yxhyxhP iiy        (4.155) 

The adaptive UKF can be formulated using the general framework for adaptive nonlinear 

filter. The sigma points which are to be used in the general framework to obtain the 

algorithm of AUKF are chosen following the method presented above. The vector which is to 

be transformed through the nonlinear function is zero mean with covariance as identity 

matrix. Therefore the sigma points becomes 

λ+= nii eq  for ni ,,0 L=         (4.156) 

λ+−=+ niin eq  for ni ,,0 L=        (4.157) 

Here, ie  is the i
th

 unit vector 

The weights corresponding to the sigma points, iq  are obtained from (4.152) and (4.153). 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 4 122 

4.4.2   Case Study: Object Tracking Problem 

The object tracking problem in single dimension has been considered to illustrate the 

performance of AUKF. The estimation problem is discussed in the chapter 3. The true state 

trajectories of the reentry object is generated in simulation using the true values of the initial 

states and noise covariances (
truerue0 RQx &, t

 respectively) as given in Chapter 3. In the face of 

unavailability of the measurement noise covariance both adaptive and non-adaptive filters are 

initialized with an assumed value of R ( 100×= trueRR filter
). The tuning parameters for AUKF 

are chosen as α=0.6, β=2 and 0=κ . The window size for R adaptation is chosen as 60. 

The performance of AUKF is compared with non-adaptive UKF when truth value of R is 

unknown. The performance comparison is executed with the help of Monte Carlo Simulation 

with 1000 runs. 

Fig. 4.1, 4.2 and Fig.4.3 represent RMS errors of the estimates from AUKF and non-adaptive 

UKF for altitude, velocity and the ballistic parameter respectively. The RMSE performance 

of AUKF is superior to that of non-adaptive UKF when initialized with an arbitrary choice of 

measurement noise covariance because of the unavailability of its accurate value. The RMS 

error of AUKF for states as well as the ballistic parameter converged to a lower steady state 

value compared to the non-adaptive UKF and the time to taken by RMS error to settle down 

is comparatively less in case of AUKF. 
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Fig. 4.1: RMSE of altitude for 1000 Monte Carlo runs. 
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Fig. 4.1: RMSE of velocity for 1000 Monte Carlo runs. 
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Fig. 4.2: RMSE of ballistic parameter for 1000 Monte Carlo runs 
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4.5   Discussions and Conclusions 

A general framework for adaptive nonlinear estimators has been presented in this chapter. 

Depending on the unavailability of the knowledge of process noise or measurement noise 

covariance, the adaptation algorithms are classified and presented along with the 

mathematical derivations. It is interesting to note that the adaptation algorithms which have 

been derived following the method of MLE, covariance matching and MAP are closely 

similar provided some simplifying and reasonable assumptions are made. 

On the availability of proposed general framework the scope for formulation of a class of 

adaptive nonlinear estimators remains open. Here it is demonstrated that the algorithm of 

adaptive UKF can be obtained using the proposed general framework. The algorithm of 

adaptive UKF is validated in simulation. The performance of R adaptive UKF is found to be 

superior compared to its non-adaptive version when the measurement noise covariance 

remains unknown. The same trend is expected to be followed by all the adaptive nonlinear 

estimators which can be formulated from the proposed general framework. 

In the subsequent chapters of this dissertation a number of Q adaptive and R adaptive 

nonlinear estimators have been developed from the general framework using different 

numerical methods for approximation of the Bayesian integrals other than Unscented 

Transformation rule. The relative performance comparison of these competing algorithms of 

adaptive estimators has also been explored with the help of a number of case studies.  



Chapter 5: Adaptive Divided Difference Filter 

5.1   Chapter Introduction 

In this chapter algorithms for Adaptive Divided Difference filter (ADDF) has been proposed 

and validated. Adaptive Divided Difference filter is based on the underlying framework of 

Divided Difference filter [Norgaard2000] which is non-adaptive on its own and formulated 

based on Taylor series approximation of nonlinear signal models. The Jacobian and Hessian 

matrices which appear in the Taylor series approximation are replaced by function 

evaluations using Stirling’s interpolation formula. We have seen in chapter 4 that in the 

proposed general framework for adaptive nonlinear filter the Bayesian integrals are 

numerically approximated as summation using sigma points and weights. As non-adaptive 

DDF (which is the core of ADDF) is based on Taylor series approximation the algorithmic 

steps for ADDF cannot be directly derived the proposed general framework.  

Non-adaptive version of Divided Difference filter (DDF) was first proposed in 

[Norgaard2000] and also reported in the contemporary work of [Ito2000] in the name of 

Central Difference filter. Both of these algorithms are based on second order approximation 

and the extended form of the Central Difference filter proposed by [Schei1997] which 

incorporates only first order approximation of nonlinear signal models. In [Norgaard2000, 

Ito2000] it is observed that the performance of non-adaptive DDF is demonstrably superior 

compared to second order EKF, Central Difference Filter [Schei1997] and comparable with 

Unscented Kalman filter. The interpolation formula used in DDF does not require careful 

choice of tuning parameters as it is essential for satisfactory performance of UKF. The 

adaptive versions of DDF are expected to inherit all these aspects of non-adaptive DDF. 

Adaptation methods are incorporated in the algorithm of non-adaptive DDF to make 

estimation successful in absence of complete knowledge of the noise covariances. With 

concept of adaptation methods (discussed in chapter 4) Q and R adaptation algorithms are 

developed to suit DDF framework. The covariance matrices appear in the adaptation 

algorithms are computed with the help of Divided Difference interpolation formula. The 

algorithm for ADDF presented in this chapter is in standard error covariance form. The 

algorithm can also be expressed in the square root form by updating the square root of a 
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priori and a posteriori error covariance matrix using QR factorization at the time update and 

measurement update steps respectively. In this chapter performance of Q and R adaptation 

algorithms are illustrated with several case studies.  

Adaptive versions of DDF are seldom reported in literature. This chapter presents a set of 

new algorithms of ADDF. Before presenting the algorithms and the simulation results 

Stirling interpolation formula and its applicability for developing DDF have been discussed 

in brief for the ease of the interpretation of the algorithmic steps.  

5.2   Stirling’s Interpolation Formula 

Let the multi dimensional variable y  is a nonlinear vector function of x  where nRx ∈ . The 

vector y  can be approximately expressed with the help of multi dimensional Taylor series 

approximation formula presented in [Norgaard2000] as given below: 

 ( ) f∆xxfy
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=+=
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        (5.1) 
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∆xD  as presented in [Norgaard2000] is interpreted as 
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Using Stirling’s interpolation formula y  can be approximated considering up to second order 

terms and requirement of computation of the Jacobian and Hessian matrices is replaced by 

function evaluations as presented in [Norgaard2000]. Following the interpolation formula y  

is expressed as  
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Following Stirling’s interpolation formula the Divided Difference operators are expressed as 
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where h denotes the interval length. 
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Here, pδ is the partial difference operator and defined as 

( ) ( ) ( )
pp exfexfxf

22
hh

p −−+=δ        (5.6) 

The average operator, pµ  is defined as 

( ) ( ) ( )( )
pp exfexfxf

222
1 hh

p −−+=µ       (5.7) 

In (5.6) and (5.7) pe  represents p
th

 unit vector. 

With the linear transformation of the variable x  as xSz 1−=  , ( )⋅f
~

can be defined by 

( ) ( ) ( )xfSzfzf ==
∆~

         (5.8) 

Applying multi dimensional interpolation formula for ( )zf
~

we get 

( ) ( ) ( )
pp ezfezfzf hhpp −−+=

~~~
2 δµ       (5.9) 

(5.9) can also be expressed using (5.8) as 

( ) ( ) ( )
pp sxfsxfzf hhpp −−+=

~
2 δµ       (5.10) 

Where ps is p
th

 column of transformation matrix S . 

5.3   Approximation of mean and covariance of a random variable 

For the above discussions we now consider x  as a stochastic multi dimensional variable with 

mean, [ ]xx E=  and covariance ( )( )[ ]T
E xxxxPx −−= . For a transformed variable 

( )xfy = , its mean and covariance can be computed as 

( )[ ]xfy E=           (5.11) 

( )( ) ( )( )[ ]T
E yxfyxfPy −−=        (5.12) 

( ) ( )( )[ ]T
E yxfxxPxy −−=         (5.13) 

We introduce a new variable xSz x

1−=  such that xxx PSS =T . The transformation matrix xS  is 

selected as the Cholesky factor of xP  chosen as triangular matrix for computational 

efficiency. The elements of z  are decoupled (uncorrelated) as, [ ]( ) [ ]( )[ ] Izzzz =−−
T

EEE . 

The relation (5.8) also holds here, i.e., ( ) ( ) ( )xfzSfzf x ==
~

. 
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For the following subsections the following assumptions need to be considered. 

We define [ ]zzz E−=∆  and z∆ follows a zero mean Gaussian distribution. 

5.3.1   First order approximation 

The nonlinear function ( )zfy
~

=  is presented with first order approximation as 

( ) ( ) fzfzzfy z

~~~~
∆+=∆+= D         (5.14) 

Therefore, ( ) ( )( ) ( ) ( )xfzffzfy z ==+= ∆

~~~~
DEE      (5.15) 

Here, the first-order moments are neglected since z∆  is zero mean and ( ) 0z =∆E . 
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Note that because of linear transformation the covariance of z  becomes unity, i.e., 

( )( )[ ] Izz =∆∆
T

E . Now using the difference and average operators we get 

( ) ( )( ) ( ) ( )( )∑
=

−−+−−+=
n

p

T

h
hhhh

1
4

1
~~~~

2 ppppy ezfezfezfezfP    (5.19) 

( ) ( )( ) ( ) ( )( )∑
=

−−+−−+=
n

p

T

h
hhhh

1
4

1
2 ppppy sxfsxfsxfsxfP    (5.20) 

ps  is the p
th

 column of xS  

The expression for the cross covariance becomes 

( ) ( ) ( )( )[ ]T

DE zffzfxxP zxy

~~~~
−+−= ∆       (5.21) 

( )















































= ∑∑

==

T
n

p

ppp

n

p

p ∆z∆zE zfsP pxy

~

11

δµ       (5.22) 

( ) ( )( )∑
=

−−+=
n

p

T

h
hh

1
2

1
pppx,xy sxfsxfsP       (5.23) 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 5 129 

5.3.2   Second order approximation 

The nonlinear function ( )zfy
~

=  is presented with second order approximation as 
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The mean of transformed variable becomes 
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2σ is the covariance of  arbitrary element p∆z of ∆z  and 12 =σ . Using the difference 

operator we get 
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Note that ∆z  being zero mean we can neglect fz

~~
∆D . 

The covariance of y  

( )( )[ ] ( )[ ] ( )[ ]TT

DDEDDEDDDDE ffffffffP zzzzzzzzy

~~~~~~~~~~~~~~~~ 2

2
12

2
12

2
12

2
1

∆∆∆∆∆∆∆∆ ++−++=  (5.29) 

For computation of covariance with second order terms following steps are to be considered. 

As per the linear transformation the transformed variable becomes uncorrelated. Therefore, 

the cross differences are discarded. The following expectations (as given in [Norgaard2000]) 

are required to compute (5.29) 
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Here, 4σ  and 2σ  denotes 4
th

 moment and 2
nd

 moment of the distribution respectively. In 

[Norgaard2000] it is reported that for optimal choice of interval length h , square of h  should 

be equal to the kurtosis of the distribution. For Gaussian distribution 2

4 h=σ  and 12 =σ . 

Using these values yP  is obtained as 
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Using the average and difference operator yP  is expressed as 
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The cross covariance xyP  remains the same as in the case of first order approximation. 

5.4   Algorithm for Adaptive Divided Difference Filter 

The algorithm for Adaptive Divided Difference filter intended for nonlinear state estimation 

problem (described in chapter 4) is presented here. The algorithm is presented in two 

subsections. At first the algorithm for non-adaptive DDF is presented which has been used as 

the core of ADDF. The Q and R adaptation algorithms are provided in the succeeding 

section. 

5.4.1   Underlying framework of non-adaptive DDF 

The first part of the adaptive DFF i.e., its non-adaptive part is presented in the standard error 

covariance form which is an alternative form the algorithm presented in [Norgaard2000] 

based on square root approach. Suitable modifications are made to make it compatible for the 

adaptation algorithms described in following subsection. 

(i) Filter Initialization: Initialize R,Q,P,x 00
ˆˆ  

(ii) Time Update Steps: 

Given 
1kP −
,compute the Cholesky Factor 1)(k −xS  such that 1)(k1)(k −−= T

xxk SSP  

Propagation of a priori estimate of state: 
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where px,ŝ is p
th

 column of 1)(kˆ −xS and h  is the appropriately chosen interval length 

( 3=h for Gaussian distribution). 

Propagation of a priori error covariance: 

The a priori error covariance becomes 
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(k)ˆ

(1)

xxS  and (k)ˆ

(2)

xxS  are the first order and the second order approximation of the square root 

matrix of a priori error covariance. The elements of these matrices are obtained from (5.38) 

and (5.39) for i=1,…,n and j=1,…,n. 

( ) ( )( ( ))
jx,1kijx,1kiji,

(1)

xx sxfsxfS ˆˆˆˆ(k)
2
1

ˆ hh
h

−−+= −−
     (5.38) 

( ) ( )( ( ) ( ))(
1kijx,1kijx,1kiji,

(2)

xx xfsxfsxfS −−−
− −−++= ˆ2ˆˆˆˆ(k) 2

2

2

1
ˆ hh

h

h     (5.39) 

Here ( )ji,

(1)

xxS (k)ˆ
 and 

( )ji,

(2)

xxS (k)ˆ
 indicate the element ijs  of (k)ˆ

(1)

xxS  and (k)ˆ

(2)

xxS  respectively. 

(iii) Measurement Update Steps: 

Given 
kP ,compute the Cholesky Factor (k)xS  such that (k)(k) x

T

xk SSP =  

Propagation of a priori estimate of measurement: 

The expression of the a priori estimate of the measurement is similar to (5.36). Only the 

nonlinear measurement equation ( )⋅g  has to be used in place of dynamics equation ( )⋅f of the 

system. 
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Propagation of Innovation Covariance: 

The innovation covariance is computed using the following expression  
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(k)(1)

xyS  and (k)(2)

xyS  are the first and the second order approximation of the square root matrix 

of error covariance of a priori estimate of measurement. These are obtained from (5.42) to 

(5.43) for i=1,…,m and j=1,…,n., and analogous to those of the time update steps.  

The cross covariance is computed as  

[ ][ ]T(k)(k) (1)

xyx

xy

k SSP =          (5.44) 

The filter gain kK becomes 

( ) 1−
= y

k

xy

kk PPK           (5.45) 

The a posteriori estimate of state is given by  

( ) ˆ
kkkkk yyKxx −+=          (5.46) 

The expression of the a posteriori error covariance is presented by (47). The formula ensures 

the positive definiteness of kP̂  

T

kkk

T

yyk KRKSSP += (k)(k)ˆ         (5.47) 

where [ ](2)

xyk

(1)

xykxy SKSKSS −= (k)(k)       (5.48) 

 (iv) Recursion: Estimates for the subsequent steps is to be computed by repeating the time 

update and measurement update steps as given above for the required number of time steps 

starting from k =1. Note that in the non-adaptive DDF noise covariance are denoted as 

Q and R . When Q is known and R  is unknown, Q is replaced by true Q and R is replaced 

by 1kR −
ˆ , i.e., adapted R of previous instant. Reverse is the case when Q is unknown and R  

is known. The adaptation algorithms are presented in the following sections. 

5.4.2   Algorithm for Q adaptation 

For adaptation of process noise covariance the innovation covariance needs to be estimated 

from the sliding window as discussed in Q adaptation methods in chapter 4. 

Computation of window estimated innovation covariance: 

The innovation is defined as  

kkk yy −=ϑ           (5.49) 
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The estimated innovation covariance from sliding window with length L is obtained as 

∑
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Adaptation of process noise covariance: 

Two different Q adaptation methods have been presented here.  

For MLE based Q adaptation method as given by (4.18) in chapter 4 adapted Q is presented 

below 

T

kkkk KCKQ ϑˆˆ =          (5.51) 

Following the scaling factor based Q adaptation (covariance matching method) as given by 

(4.45) in chapter 4 the adaptation steps are presented below. 

Compute the scaling Factor: 
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Adapted of process noise covariance at current instant is therefore given by 

kα1-kk  QQ ˆˆ =          (5.53) 

5.4.3   Algorithm for R adaptation 

For adaptation of measurement noise covariance either the innovation covariance or the 

residual covariance needs to be estimated from the sliding window as discussed in R 

adaptation methods in chapter 4. The present worker has opted for residual based R 

adaptation for its additional advantaged of ensured positive definiteness of R matrix. 

Given kP̂ , compute the Cholesky Factor (k)ˆ
xS  such that such that (k)ˆ(k)ˆˆ T

xx SSPk =  

Propagation of a posteriori estimate of measurement: 
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This step is similar to (4.40). Only the Cholesky factor of a priori error covariance is 

replaced by the a posteriori one. 

Propagation of error covariance of a posteriori estimate of measurement: 
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The elements of the error covariance of a posteriori estimate of measurement are obtained in 

a similar approach like (5.42) and (5.43). 
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(k)ˆ
(1)

xyS  and (k)ˆ
(2)

xyS  are the first and the second order approximation of the error covariance 

of a posteriori estimate of measurement. 

Computation of estimated residual covariance: 

The residual is defined as the difference between the actual measurement and the a posteriori 

estimate of measurement, i.e.,  

kkk yyρ ˆ−=           (5.57) 

The estimated residual covariance can be computed from a sliding window (size L ) as 

∑
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Lkj
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Adaptation of measurement noise covariance: 

The adapted measurement noise covariance is obtained based on the covariance matching 

method and given by (4.58) in chapter 4. The adapted R is presented by (5.59) given below. 

As formulated on the basis of residual sequence the expression of adapted kR̂  ensures 

positive definiteness. 

( ) ( ) ρ

k
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xy
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xy
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xy
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xyk CSSSSR ˆ(k)(k)(k)(k)ˆ
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TT
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5.5   Notes on algorithm 

• The algorithm is presented here in standard error covariance form. However, on 

availability of the square root of the error covariances and noise covariances in the 

intermediate steps of the proposed algorithm, it can be easily extended in square root 

approach. In that case for updating the square root of error covariances QR 

factorization method has to be followed and instead of the noise covariance its square 

root has to be adapted. The square root version for ADDF may be formulated 

consulting the general algorithm in square root version presented in chapter 4. 
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• Note that only residual based R adaptation algorithm has been presented because of 

its additional advantage of ensured positive definiteness of adapted R matrix. The 

innovation based R adaptation algorithm can be obtained using window estimated 

innovation covariance in place of residual covariance. This covariance can be 

obtained replacing kŷ by ky in equation (57). Then the expression of adapted R can 

be obtained by subtracting ( )T(k)(k) (1)

xy

(1)

xy SS and ( )T(k)(k) (2)

xy

(2)

xy SS from the window 

estimated innovation covariance given by (5.50). 

• On availability of sufficient computation power, the measurement update step and 

both the time and measurement update steps can be recomputed using the adapted 

value of R and Q respectively. 

• The algorithm of adaptive Central Difference filter can be readily obtained from the 

algorithm presented here. The non-adaptive version of Central Difference filter 

[Schei1997] considers only first order approximation of interpolation formula. 

Therefore, for obtaining its adaptive version second order approximation terms 

should be ignored from the present adaptation algorithm and also from the underlying 

framework. Moreover, the length of the interval, h is to be chosen as h=1 as in 

[Schei1997]. For some estimation problem, specifically with high measurement 

covariance and low process noise covariance, Central Difference filter perform 

comparably same with DDF [Simandl2009]. For those cases, use of Adaptive Central 

Difference filter is preferred over ADDF as it is computationally economic compared 

to ADDF. The algorithm for R adaptive Central Difference filter has not been 

presented here as this algorithm can be readily derived from the proposed algorithm 

for ADDF with the above referred simplifying steps. Algorithmic steps for ACDF are 

elaborately presented in journal paper contributed by the present worker as a co-

author.  

5.6   Characterization of Adaptive DDF 

The Q and R adaptive DDF algorithms are validated in this chapter using different nonlinear 

estimation problems. Here two different Q and R adaptation algorithms viz., direct adaptation 

and scaling factor based adaptation have been compared. Performance of scaling factor based 
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Q adaptive DDF proposed in this chapter has been demonstrated and compared with the 

direct Q adaptation algorithm. Performance of R adaptive DDF based on direct R adaptation 

is demonstrated and also compared with scaling factor based R adaptation algorithm. 

5.6.1   Validation of Q adaptive DDF 

5.6.1.1. Estimation of the states of Van der Pol’s oscillator 

For evaluation of scaling factor based Q adaptive DDF this case study has been considered. 

States and the friction coefficient of a Van der Pol’s oscillator have to be estimated in this 

problem. The friction coefficient remains unknown here. The system dynamics, measurement 

equation and all the necessary parameters for simulation are provided in chapter 3.  

The performance of scaling factor based Q adaptive DDF has been evaluated from the RMS 

error analysis. RMS error of the proposed QA-DDF and its respective non-adaptive version 

has been obtained from Monte Carlo simulation with 1000 runs. Both the filters are 

initialized with an assumed value of Q (500 times higher than the truth value) because of the 

unavailability of the knowledge of Q. as it remains unavailable for this problem. The higher 

value of Q is chosen to induce sufficient uncertainty in initialization of Q. To generate the 

true state trajectories of the oscillator, the initial kinematic states and truth value of friction 

coefficient and other parameters are chosen as given in chapter 3. The measurement equation 

is linear and the noise statistics is considered to be known. For adaptation the length of 

sliding window is considered to be 50 time instants. Adaptation does not begin till the length 

of innovation sequence is less than the desired window length.  

Fig. 5.1 – 5.3 present the RMSE performance of the filters. From the plots of RMS errors it is 

observed that despite improper choice of Q matrix ADDF indicates lower RMS errors that 

converge within a less time while compared to non-adaptive DDF. The results also indicate 

that ADDF can accommodate large error in the initial choice of Q and capable of producing 

reliable estimation although initialized with wrong Q.  

The adapted Q gradually approach to the truth value of Q and continues to track that after 

converging on it. Fig 5.4 – 5.6 illustrates the Q adaptation performance. 

In fig 5.7 a representative phase portrait of system states is illustrated where it is observed 

that estimated state trajectories reaches true Limit cycle in less time in case of ADDF as 

compared with non-adaptive DDF. 
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Fig. 5.1: RMSE of state (x1) for 1000 Monte Carlo run 
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Fig. 5.2: RMSE of state (x2) for 1000 Monte Carlo run 
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Fig. 5.3: RMSE of friction coefficient (parameter) for 1000 Monte Carlo run 
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Fig. 5.4: True and adapted Q(1,1) for a representative run 
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Fig. 5.5: True and adapted Q(2,2) for a representative run 
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Fig. 5.6: True and adapted Q(3,3) for a representative run 
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Fig. 5.7: Phase plane plot for a representative run 

 

5.6.1.2. Object tracking problem 

The task of joint estimation of ballistic parameter and states of an object during reentry phase 

using radar signal is addressed in this section. The ballistic object is considered to be falling 

vertically and tracked by radar which provides the range measurements of the object tracked 

by the radar. The description of system dynamics and observation equations are provided in 

chapter 3. In this case study emphasis is given on the performance analysis of ADDF with 
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direct Q adaptation, ADDF with scaling factor based Q adaptation. In the situation when 

process noise covariance remains unavailable Q is initialized arbitrarily with an assumed 

value which is five decades higher than the truth value. The window size for adaptation is 

considered to be 10 time instants and adaptation does not begin till the length of innovation 

sequence exceeds the desired window length. Rest of the parameters for simulation are 

provided in chapter 3. 

The results of Monte Carlo simulation (with 1000 runs) in terms of RMS errors of ADDF with 

direct Q adaptation, ADDF with scaling factor based tuning of Q and non-adaptive DDF for all 

the state variables and the ballistic parameter are presented by Fig. 5.8, Fig. 5.9, and Fig. 5.10.  

The most significant finding is that the RMSE performance of the scaling factor based Q 

adaptive DDF even though found to work satisfactorily for the previous case study is 

considerably deteriorated while compared to ADDF with the direct Q adaptation algorithm for 

this estimation problem. The parameter as well as state estimates from ADDF with scaling 

factor based Q adaptation are showing a tendency of divergence while those for ADDF with 

the direct Q adaptation have been adequately converged.  

In presence of nonlinear measurement equation performance of scaling factor based algorithm 

deteriorates because of the fact that the approximations made in the adaptation algorithmic do 

not hold well for nonlinear measurement equation and consequently cannot adapt Q 

satisfactorily. On contrary it is observed in case of direct Q adaptation that this estimator 

ensures reasonably well estimation performance by satisfactory adaptation of Q. Figure 5.11 is 

presented to compare the Q adaptation performance of both the adaptive filters. Plot for an 

element of adapted Q is presented for a representative run. It is illustrated for ADDF with 

direct Q adaptation that the elements of Q tries to approach the corresponding truth value. For 

the scaling factor based the same element of Q cannot converge on its truth value.  

Although initialized with an assumed value of Q (3 decade higher than the true value) 

performance of ADDF with direct adaptation algorithm is comparably closer to that of the non-

adaptive DDF in the ideal case when the process noise covariance is known to the latter. This 

validates the algorithm of Q adaptive DDF with direct adaptation method. 
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Fig. 5.8: RMSE of altitude for 1000 Monte Carlo run 
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Fig. 5.9: RMSE of velocity for 1000 Monte Carlo run 
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Fig. 5.10: RMSE of ballistic parameter for 1000 Monte Carlo run 
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Fig. 5.11: True and adapted Q(3,3) for a representative run 

 

5.6.2   Validation of R adaptive DDF 

5.6.2.1. First order nonlinear problem  

A single dimensional estimation problem is considered to evaluate the performance of R 

adaptive DDF in face of unknown measurement noise covariance. This estimation problem is 

an effective case study which can critically judge the performance of candidate estimator in 
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presence of strong nonlinearity in the system dynamics and the measurement equation. The 

problem description can be found in chapter 3. Here, the performance of ADDF with direct R 

adaptation is compared with ADDF with a scaling factor based R adaptation (the adaptation 

method proposed in [Hajiyev2014] for linear signal models). For direct R adaptation residual 

sequence has been employed. Performance of Adaptive CDF and adaptive UKF with direct R 

adaptation (RA-CDF) algorithm has also been compared with proposed RA-DDF. The 

underlying framework of non-adaptive CDF is taken from [Schei1997]. 

Performance comparison is carried out on the basis of Monte Carlo study with 10000 runs. 

Due to the unavailability of measurement noise covariance it is assumed as three decades 

higher than the truth value of R. The window length is taken as 100 time instants and 

adaptation begins from the very first time instants with available size of residual window till 

it attains the desired length. The other necessary parameters are provided in chapter 3. In Fig. 

5.12 the plots of the RMS errors for the above referred estimators are presented. It is 

observed the RMSE of ADDF with direct R adaptation algorithm settles to a lower value 

compared to the scaling factor based algorithm. For validation of the direct R adaptive 

algorithm we have also compared its performance with non-adaptive DDF in the ideal case 

when the non-adaptive filter has the knowledge of R. It is observed that despite the 

unavailability of the knowledge of R matrix performance RA-DDF (direct adaptation) is 

closely comparable with non-adaptive DDF in the ideal case. Performance of RA-DDF, as 

expected, is superior to non-adaptive DDF when R matrix remains unknown. 

Performance of RA-DDF is also compared with RA-CDF, RA-UKF where all the estimators 

include direct R adaptation algorithm. For this case study RA-DDF shows considerably 

improved estimation performance compared to RA-CDF and RA-UKF.  

Performance of all the candidate estimators is numerically compared on the basis of the 

percentage of track loss. For this case study the system has 2 stable and one unstable 

equilibrium points. Because of the nonlinearity in the observation equation the estimators 

even with known R may fail to track the true trajectory and get settled to incorrect 

equilibrium point. It is understood from the percentage of track loss that ADDF with direct R 

adaptation method is less susceptible to track losses among the other alternative adaptive 

filters. Percentage of track loss for RA-DDF with direct adaptation (24.26%) is a little higher 

than the non-adaptive DDF with known R (24.02%) which signifies that RA-DDF without 
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knowledge of R ensures estimation performance close enough to that of the non-adaptive 

DDF in the ideal case. ADDF with scaling factor based R adaptation, RA-UKF and RA-CDF 

with direct adaptation algorithm are observed to be more susceptible to track loss as the 

percentage of track for these estimators are 30.23%, 93.91% and 36.8% respectively. 

Percentage of track is observed to be quite high for RA-UKF and non-adaptive DDF without 

knowledge of R (90.12%) compared to other estimators. 
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Fig. 5.12 RMSE of state for 10000 Monte Carlo run 

 

5.6.2.2. Object tracking problem 

The object tracking problem is revisited for demonstration of state and parameter estimation 

performance of R adaptive DDF. In the situation when measurement noise covariance 

remains unavailable R is initialized arbitrarily with an assumed value which is two decades 

higher than the truth value for this case study. The window length is taken as 100 time 

instants and adaptation begins from the first time instants with available size of residual 

window till it attains the desired length. For the performance analysis Monte Carlo 

simulation is carried out with 1000 run. Fig. 5.13 – 5.15 represents the of RMS errors of RA-

DDF, RA-UKF, RA-CDF and non-adaptive DDF for all the state variables and the ballistic 

parameter.  
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Here also RA-DDF is validated by demonstrating that the RMSE performance of the 

proposed Adaptive DDF regardless of initialized with an assumed value of measurement 

noise covariance (2 decade higher than the true value) is comparable to that of the non-

adaptive DDF with known (true) value of R matrix. In the situation when the knowledge of 

the measurement noise covariance is unavailable to the non-adaptive DDF the performance 

of RA-DDF is substantially improved compared to non-adaptive DDF. 

On the plots of RMS errors the square roots of the corresponding diagonal elements of the a 

posteriori error covariance matrix have been super imposed. It is to be noted that the RMS 

errors obtained from RA-DDF almost retrace the square root of the respective diagonal 

elements of the a posteriori error covariance and are consistent with them. 

The performance of RA-DDF while compared with a carefully tuned R adaptive UKF is 

found to be nearly identical to that of the latter. RA-CDF although found to be performance 

wise less accurate compared to RA-DDF in the previous case study demonstrates estimation 

performance comparable with RA-DDF for this case study. In the context it may be noted 

that the non-adaptive CDF is reported to present comparable estimation performance with 

UKF and DDF for the systems with high measurement noise covariance (with a 

comparatively low process noise covariance) and having quasi linear measurement equation 

[Simandl2009]. This may be reason behind the above observations for R Adaptive versions 

of DDF, UKF and CDF for this case study as the true measurement noise covariance is 

considerably high compared to the process noise covariance. 

The tracking performance of RA-DDF is also demonstrated for the situation with non 

stationary measurement noise where the measurement noise covariance is unknown and time 

varying. Here the objective is to investigate how far the adapted value of R matches to that of 

the truth value of time varying R. While investigating this performance the effect of window 

size is also explored. The R-adaptation performance of RA-DDF is illustrated considering 

two different situations, (i) truth value of R exponentially decreases before saturating to a 

steady value, and (ii) truth value of R exponentially increases before saturating to a steady 

value. In all these cases the adapted R is initialized with values which are different from the 

true initial values (twice of the truth value). Fig. 5.16 and Fig. 5.17 present the R-adaptation 

performance of the proposed filter with the effect of different choice of window size. 
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From Fig. 5.16 where the value of R is decaying it is observed that adapted R tends to be 

noisy for smaller window size (N=30). With a bigger window size (N=90) the adapted value, 

although smoother, takes longer time to reach the corresponding truth value. For a reasonable 

choice of window size (N=60) the performance is found to be acceptable. 

In Fig. 17 where the value of R is increasing till it saturates to the maximum value it is 

observed that a smaller window size (N=30) speeds up the tracking performance of the 

adapted R at the expense of more oscillations. On contrary, negligible oscillations are 

observed for a larger window size (N=90). However, a delay of 25 sec is noted to reach the 

truth value. A moderate choice of window size (N=60) shows an acceptable performance.  
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Fig. 5.13: RMSE of altitude for 1000 Monte Carlo run 
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Fig. 5.14: RMSE of velocity for 1000 Monte Carlo run 
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Fig. 5.15: RMSE of ballistic parameter for 1000 Monte Carlo run 
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Fig. 5.16: Plot of true and adapted R for a time varying noise covariance 
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Fig. 5.17: Plot of true and adapted R for a time varying noise covariance 
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5.7   Discussions and Conclusions 

In this chapter algorithms for Q and R adaptive Divided Difference filters have been 

presented and exemplified. Significant findings are enumerated as follows: 

• In general performance of both Q and R adaptive DDF are observed to be 

demonstrably superior to their non-adaptive counterparts in each case study. 

• The proposed algorithms of Q and R adaptive DDF in the face of unknown noise 

covariance are validated by comparing their performance with non-adaptive DDF in 

the ideal situation with full knowledge of process and measurement noise covariance. 

Despite the improper initial choice of noise covariance (Q or R depending on the 

unavailability) ADDF performs satisfactorily and its performance is closely 

comparable with non-adaptive DDF in ideal situation with known noise covariance. 

• Q adaptive DDF with scaling factor based adaptation shows satisfactory estimation 

result for linear measurement equations. Nevertheless, it fails to produce acceptable 

estimation performance with nonlinear measurement equation. Performance of 

scaling factor based algorithm is compared with ADDF with direct Q adaptation 

algorithm. ADDF with direct Q adaptation algorithm is found to outperform the 

former and perform equally well with both linear and nonlinear measurements. For R 

adaptation also direct R adaptation algorithm shows its superiority over scaling factor 

based algorithm. Therefore, adaptive estimators with direct adaptation algorithms are 

preferred over the scaling factor based algorithm for nonlinear state estimation. 

• ADDF with direct R adaptation algorithm is compared with corresponding R adaptive 

version of UKF and CDF. It is found that R adaptive DDF performs considerably 

better compared to other two competing estimators when system dynamics is 

significantly nonlinear. However their performance is observed to be closely 

comparable for another estimation problem. 

• It is also observed that plots of RMSE for RA-DDF (with direct adaptation method) 

retrace the square root of the respective diagonal element of a posterior error 

covariance. This demonstrates the consistency of the adaptive DDF. For direct R 

adaptation residual sequence is employed as the residual based R adaptation 

algorithm automatically ensures the positive definiteness of adapted R matrix. The 
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direct R adaptation algorithm also shows its efficacy to track the time varying 

measurement noise covariance. 

• It is interesting to note from the previous work [Simandl2009] that for some specific 

situations where the measurement noise covariance is high (with a comparatively low 

process noise covariance) or the measurement equation is quasi linear adaptive CDF 

may present satisfactory estimation results and its performance may be comparable 

with ADDF and AUKF. In one of case studies similar results are demonstrated. 

However, ACDF cannot always present acceptable estimation performance for 

significantly nonlinear systems. 

• Note also that although AUKF performs comparably same as ADDF in several 

estimation problems it performance is attributed to careful choice of tuning of 

parameters that regulate the spread of sigma points. Such discerning tuning is not 

required in case of ADDF. Therefore, ADDF can be an apposite alternative of AUKF 

for nonlinear state estimation. 

 



Chapter 6: Adaptive Gauss Hermite Filter 

6.1   Chapter Introduction 

In this chapter adaptive Gauss Hermite filter has been formulated from the general 

framework for adaptive nonlinear filters and characterized using several estimation problems. 

When the intractable Bayesian integrals present in the general framework are numerically 

approximated with the help of Gauss Hermite quadrature rule [Golub1969, Ito2000] the 

algorithm for adaptive Gauss Hermite filter is obtained. 

The non-adaptive version of Gauss Hermite filter was first proposed in [Ito2000] where it is 

demonstrated that on the availability of the complete knowledge of noise covariances 

performance of non-adaptive version of Gauss Hermite filter is superior compared to its 

competing algorithms, viz., Divided Difference filter, Unscented Kalman filter and Extended 

Kalman filter particularly during the state estimation of dynamic systems with significant 

nonlinearity. Apart from high performance accuracy Gauss Hermite filter has several 

advantages. Being a point based algorithm Gauss Hermite filter does not require computation 

of Jacobian and Hessian matrices. Unlike the Unscented Transformation rule choice of Gauss 

Hermite quadrature points does not depend on tuning parameters.  

The above advantages of Gauss Hermite filter motivate the present worker to formulate its 

adaptive version using the proposed general framework. It is expected that this new 

algorithm will inherit all the advantages of non-adaptive Gauss Hermite filter along with its 

essential aspect of adaptation. However, the adaptive Gauss Hermite filter suffers from the 

curse of dimensionality like its non-adaptive counterpart. The number of quadrature points 

rises exponentially with the order of the system to be estimated. Therefore, this newly 

proposed adaptive filter demands sufficient computation effort. 

In this chapter the Gauss Hermite quadrature rule is briefly discussed. The quadrature points 

and weights which are computed using the quadrature rule can be directly plugged into the 

general framework to formulate the adaptive Gauss Hermite filter. The square root version of 

adaptive Gauss Hermite filter is also formulated in this chapter from the general framework 

in square root approach as the Gauss Hermite quadrature rule ensures non negative weights. 
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The superiority of the proposed algorithm is demonstrated in simulation with the help of non 

trivial case studies. 

6.2   Gauss Hermite Quadrature Rule 

6.2.1   Background 

In this section we provide the basic concepts of Gauss Hermite quadrature rule with which 

the Bayesian integrals of the general framework can be numerically approximated. The 

Gauss Hermite quadrature rule is a special form of Gaussian quadrature rules where 

weighting function is a unit Gaussian function. In case of Gaussian quadrature rules the 

weights and sigma points are chosen in such a way that with a suitable polynomial integrand 

the approximation becomes exact. The Hermite polynomial is chosen in case of the Gaussian 

weighting function. For evaluation of one dimensional integral with standard Gaussian 

weighting function, the integral can be expressed as  

( ) ( ) ( )∫∫
∞

∞−

−
∞

∞−

= dxexgdxNxg
x 22

1,0        (6.1) 

To evaluate the above integral with Gauss Hermite quadrature rule, the thp  order Hermite 

polynomial is obtained as  

( ) ( ) ( )22

1 z

p

p
zp

p e
dx

d
ezH

−−=          (6.2) 

where 2zx = . 

Following the definition of ( )zH p  the polynomials can be found in a recursive way as given 

below: 

 ( ) ( ) ( )zHpzzHzH ppp 11 −+ −=         (6.3) 

The quadrature points, iξ  , for Gauss Hermite quadrature rule are the roots of p
th

 order 

Hermite polynomial, ( )zH p , i.e., ( ) 0=ipH ξ . The weights are computed using the formula 

( )[ ]2
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w
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=          (6.4) 
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Note that the thp  order Hermite polynomial ( )zH p  makes the quadrature rule exact for 

polynomials up to 12 −p degree, i.e., the integration is exact for the linear combination of 

monomials n

nxxx
ααα

L21

21 with total degree up to  12 −p . 

6.2.2   Generation of Quadrature Points and Weights 

The selection of quadrature points and the weights as explained above can be done in a 

simpler alternative way which was first reported in [Golub1969] and followed in [Ito2000] 

wherein the algorithm of Gauss Hermite filter appears for the first time. A tri-diagonal matrix 

is formed from a three term recurrence formula as reported in [Golub1969]. The recurrence 

formula which can be obtained for any orthogonal polynomial is expressed as 

( ) ( ) ( ) ( )xPcxPbxaxP jjjjjj 21 −− −+=        (6.5) 

for Nj ,,2,1 L=  with 0>ja and 0>jc . Given that ( ) 01 =− xP and ( ) 10 =xP . 

The above formula can also be expressed as 

( ) ( ) ( ) ( ) NeTpp xpaxxx NN1+=        (6.6) 

Where ( ) ( ) ( ) ( )[ ]TN xpxpxpx L10=p and Ne is N
th

 unit vector. 

Now, ( ) 0=λNp  when ( ) ( )λλλ pTp =       (6.7) 

Alternatively, the condition can be written as the roots of the above equation to be equal with 

the eigen values of tri-diagonal matrix T . If the polynomials are not orthonormal, matrix 

T is not symmetric. The matrix T  can be made symmetric by diagonal similarity 

transformation as 
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Depending on the choice of quadrature rule the values of ia , ib , ic  varies. For Gauss 

Hermite quadrature rule, 2=ia , 0=ib , ici 2= . Using these value we get 0=iα and 

2ii =β . 

Steps for selection of quadrature points and respective weights are listed below: 

• Compute J , a symmetric tri-diagonal, defined as 0, =iiJ  and
21,
i

ii =+J  for 

11 −≤≤ Ni for N -quadrature points. 

• The quadrature points are chosen as ii xq 2= where ix are the eigen values of J  

matrix. 

• The corresponding weights ( iw ) of iq is computed as ( ) 2

1iv where ( )
1iv is the first 

element of the i
th

 normalized eigenvector of J  

 

6.2.3   Extension for higher order systems 

The above described quadrature rule is appropriate only for the single dimensional integral. 

This needs modification to apply for higher order integration space. The single dimensional 

quadrature rule can be extended for approximating higher order integral of Gaussian filters 

with the help of product rule. The n
th

 order Gaussian integral 
( )

( )
dssFI
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2
1

22
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~ −

∫= e
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n
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π
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==
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Where we generate multi-dimensional weights as the products of one-dimensional weights as 

nn iiiii wwww L
L 211 ,, = and generate multi-dimensional unit sigma points as Cartesian product 

of the one-dimensional unit sigma points as 
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In order to evaluate NI  for n
th

 order system with the help of Gauss Hermite quadrature rule, 

n
N  number of quadrature points and weights are required. This indicates that the number of 

quadrature points rises exponentially with the order of system. A comprehensive description 

on Gauss Hermite quadrature rule along with necessary illustrations is provided in the in the 

master’s thesis of N. K. Singh [Singh2012]. 

6.3   Algorithm for Adaptive Gauss Hermite Filter 

Algorithm for Adaptive Gauss Hermite filter can be obtained plugging in the method of 

sigma point selection in the general algorithm for adaptive nonlinear filters in chapter 4. The 

Q adaptive and the R adaptive GHF can be formulated using this general algorithm. Apart 

from the method of sigma point generation rest of the algorithm is same as that of the general 

framework for adaptive nonlinear filter. The algorithm has, therefore, not been reproduced 

again. 

The root version of adaptive GHF can also be obtained using the general framework in 

Square Root approach presented in chapter 4 because of its additional advantages compared 

to the standard error covariance form. The usefulness of Square Root approach has already 

been discussed there. It is to be noted that all the weights in case of Gauss Hermite 

quadrature rule are non negative. Therefore, the algorithm of Adaptive Square Root Gauss 

Hermite Filter can be formulated directly using the general algorithm presented without 

further modifications. 

6.4   Characterization of Adaptive GHF 

The performance of proposed algorithms of adaptive Gauss Hermite filter has been evaluated 

with different case studies in this section. A partially Q adaptive GHF is demonstrated using 

an estimation problem where a time varying parameter has to be estimated along with the 

states of nonlinear system. R adaptive GHF has also been demonstrated with two case studies 

and its performance has been compared with the competing algorithms. The R adaptive GHF 

in square root framework is also validated with a non trivial case study. 
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6.4.1   Characterization of Q adaptive GHF 

6.4.1.1. State and parameter estimation of Van der Pol’s oscillator 

Q adaptive GHF is validated with the help of an estimation problem where the states and the 

unknown, time varying friction coefficient of a Van der Pol’s oscillator have to be estimated. 

As the friction coefficient is unknown and also time varying the system model suffers from 

parametric uncertainty. The parameter cannot be modeled correctly as the dynamics of the 

parameter variation remains unknown to the designer. In presence of such unknown time 

varying parameters some elements of the process noise covariance of the system (modeled in 

terms of parameter augmented states) become unknown. Here it is assumed that only the 

element of Q related to friction coefficient is unknown. Therefore, this estimation problem is 

appropriate to evaluate the applicability of partially Q adaptive GHF. As the elements of Q 

related to the parameter remains unknown only that element needs to be adapted. The known 

elements of Q remain frozen to their respective truth values. The concept of partial Q 

adaptation is presented in chapter 4. For generation of true state trajectories the true friction 

coefficient is assumed to vary following the equation 

5.0)sin(5.0
600

+= kk
πµ         (6.12) 

The details of system dynamics, measurement equation and necessary parameters are 

provided in chapter 3. For adaptation window length is considered to be 30 time instants. 

Adaptation does not begin till the length of innovation sequence is less than the desired 

window length. As the element of Q related to the friction coefficient remains unknown both 

the adaptive and non-adaptive GHF is initialized with Q with that particular element assumed 

arbitrarily as 0.5. A comparative study of the RMS error of the proposed adaptive GHF with 

that of a non-adaptive GHF has been presented from Monte Carlo study with 1000 runs. The 

results of Monte Carlo simulation have been presented in Fig. 6.1 – 6.3.  It is observed that 

the RMS error of AGHF for both parameters and states is lower than that of non-adaptive 

GHF. This indicates that the partially Q adaptive GHF is capable of tuning Q to track 

satisfactorily the unknown time varying parameter. For a representative run the parameter 

estimation performance of Q adaptive GHF is provided in Fig. 6.4 which supports the above 

statement.  It is also important to note that although the elements of process noise covariance 

is known the RMSE of state estimates for non-adaptive GHF is higher than that of AGHF. 

This is because of the implicit effect of inadequately estimated parameter. 
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Fig. 6.1: RMS error (friction coefficient estimation) of AGHF & GHF for 1000 MC runs 
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Fig. 6.2: RMS error (state, x2 estimation) of AGHF & GHF for 1000 MC runs 
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Fig. 6.3: RMS error (state, x1 estimation) of AGHF & GHF for 1000 MC runs 
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Fig. 6.4: Friction coefficient estimation of AGHF & GHF for a representative run 

 

6.4.2   Characterization of R adaptive GHF 

6.4.2.1. State estimation of first order nonlinear system 

A single dimensional estimation problem described in chapter 3 and also considered in 

chapter 5 is revisited again to evaluate the performance of the proposed filter in face of 

severe nonlinearity in the system dynamics and the measurement equation. In this particular 

problem tracking of the state of the system is a difficult task and such a problem can readily 

expose the shortcoming of the estimator involved specifically when the measurement noise 
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covariance is unknown to the estimator. Therefore, the case study may be an appropriate one 

to evaluate the performance of the proposed filter. 

As the measurement noise covariance, ( filterR ) is unknown to the filter we assume a value of 

measurement noise arbitrarily. The Monte Carlo study is executed initializing different 

assumed value of ( )0filterR  to judge the performance of proposed filter. For adaptation the 

length of the sliding window length is chosen to be equal to 100. Adaptation initiated from 

the beginning with available window size. When desired length is achieved the sliding 

window concept becomes appropriate. 

It has been discussed in chapter 4 that the recomputation of measurement update step with 

adapted value of R at a particular time instant improves the estimation accuracy of the 

adaptive filter. This is also demonstrated with this case study. 

The RMS errors of AGHF (with and without re-computation steps), and non-adaptive GHF 

have been compared with the help of Monte Carlo study with 10,000 runs. Both adaptive and 

non-adaptive GHF are based on 5 quadrature points. The performance of AGHF is also 

compared with AUKF with tuning parameters mentioned in [Das2015]. As stated before the  

unknown measurement noise covariance is initialized with an assumed value as 

truefilter RR ∗= λ10)0(  where λ  is chosen as a positive or negative real number depending on 

the case where a higher value or a lower value of )0(filterR  compared to the truth value is 

considered respectively. In each set of MC simulation the assumed value of )0(filterR  remains 

the same. For each of the candidate estimators same sequence of noises are considered in 

each Monte Carlo run by appropriate seeding. The observations from the simulation are 

enumerated below.  

Fig. 6.5 indicates that the RMSE of adaptive Gauss Hermite filter is low compared to its non-

adaptive version for the choice of truefilter RR ∗= −310)0(  i.e., where the filter overweighs the 

measurements. It is also observed from the Fig. 6.5 that the RMSE of AGHF is lower than 

that of Adaptive UKF and non-adaptive GHF for this assumed value of )0(filterR . This 

indicates that AGHF is performance wise superior compared AUKF when there is significant 

nonlinearity in the system dynamics. Additionally, it is interesting to note that the RMSE of 

AGHF with re-computation step is lower compared to AGHF without re-computation. 
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The similar profiles of RMS errors like Fig. 6.5 are observed in Fig. 6.6 for the choice of 

truefilter RR ∗= 310)0(  where the filter overweighs the measurements. RMSE of AGHF with 

and without re-computation step is observed to be lower compared to AUKF and non-

adaptive GHF for this assumed value of )0(filterR . 

Monte Carlo simulations are also carried out with other assumed initial choices of )0(filterR  

such that the filter underweighs or overweighs the measurements. Mathematically it can be 

represented as, truefilter RR ∗= λ10)0(  with 2,1,1,2 −−=λ . Because of the similar trend of the 

profiles of RMSE for these batches of MC simulations plots are not included. However, their 

performance has been analysed in Table-6.1. 

For a representative run the estimation performance of AGHF, AUKF and non-adaptive GHF 

is illustrated in Fig. 6.7. It is observed that despite initializing with an assumed value of 

)0(filterR  with large error, the proposed AGHF can satisfactorily track the true trajectory and 

settle at the true equilibrium point ( 1−=x ). However, the non-adaptive GHF fails to keep 

the track and settles at one of the other equilibrium points ( 1=x ). The AUKF also loses the 

track and settles at 0=x .  

Percentage of track loss is computed from MC study for each of the candidate estimators, 

where track loss is said to occur when estimation error is more than 0.8 at 4 sec. Table -6.1 

presents a comparative study of the percentage of track loss for each estimators. A number of 

batches of Monte Carlo simulations are carried out for various assumed value of )0(filterR  as 

has been discussed before. It is observed from the table that AGHF with the re-computation 

steps shows the lowest percentage of track loss compared to the other estimators. Here we 

have also presented the percentage of for the R adaptive GHF based on innovation sequence. 

The performance of innovation based GHF is found to be comparable with that of residual 

based AGHF with out re-computation. However, the innovation based algorithm encountered 

the singularity problem during simulation. Therefore, the simulation is carried out after 

considering the absolute values of the elements of adapted R matrix. 

The plots of the adapted measurement noise covariance obtained from the adaptive GHF are 

presented in Fig. 6.8 when the truth value of measurement noise covariance is constant. It is 

observed that despite such assumed initial choice of )0(filterR  the adapted measurement noise 
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covariance converges on the truth value (in about 0.1 sec) and subsequently tracks the value. 

Hence, it may be inferred that the proposed filter can accommodate a wide range of 

uncertainty while initializing )0(filterR . 

Another situation is considered when the truth value of the measurement noise covariance is 

time varying. For this situation also proposed filter can also perform satisfactorily as 

demonstrated in Fig. 6.9. It has been observed that for such a time varying measurement 

noise covariance the proposed filter can successfully track the truth value of the measurement 

noise covariance by online adaptation. To investigate the consequence of different choice of 

sliding window length for adaptation, the window length (L) is chosen as 25, 50 and 100. For 

L=25 the adapted R tracks the truth value but tend to overshoot the truth value. For a 

relatively high window length, L=100, a smoothly varying value of adapted R is obtained. 

However, for L=100 adapted R cannot track the short term variation satisfactorily. For a 

choice of window length L=50, tracking of truth value R has been observed to be 

satisfactory. 

Fig. 6.10 illustrates the RMS errors of AGHF (with and without re-computation steps), 

AUKF and non-adaptive GHF for the case when truth value of R is time varying. The nature 

of variation of R is already presented in Fig. 6.5. For this case study the window length for 

the adaptive filters are considered as L=50 which shows a satisfactory tracking in Fig. 6.5. It 

is also observed that for time varying measurement noise covariance the RMSE of AGHF 

with re-computation is lower compared to AGHF without re-computation and the other 

candidate estimators. In this case the percentage of track loss for AGHF with re-computation 

is 12.39% which is the lowest compared to AGHF without re-computation (percentage of 

track loss is 16.24%) , AUKF (percentage of track loss is 93.12 %) and non-adaptive GHF 

(percentage of track loss is 36.01%). 
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Fig. 6.5: Comparison of RMS error of AGHF (with and without re-computation 

step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when 

Rfilter(0)=10
-3

*Rtrue. 
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Fig. 6.6: Comparison of RMS error of AGHF (with and without re-computation 

step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when 

Rfilter(0)=10
3
*Rtrue. 
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Fig. 6.7: True and estimated states for a representative run 
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Fig. 6.8: True and adapted measurement noise covariance for a representative run 
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Fig. 6.9: R Tracking performance for time varying measurement noise covariance 

(truth value of R  is rising with time) 
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Fig. 6.10: Comparison of RMS error of AGHF (with and without re-computation 

step), Adaptive UKF and Non-adaptive GHF for 10000 MC run when Rtrue.is 

time varying as shown in Fig. 6.9 
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Table-6.1: Percentage of track loss cases computed from 10000 Monte Carlo runs 

AGHF 

Initial value of 
( )( )0filterfilter RR  

Re-

computation 

with 2 

iterations 

Re-

computation 

with 1 

iteration  

Without re-

computation 

Innovation 

based R 

adaptation 

Non-

adaptive 

GHF 

AUKF 

trueR∗−3
10  14.94% 15.11% 17.88% 21.54% 54.71% 93.91% 

trueR∗−2
10  14.07% 15.15% 17.77% 21.34% 50.50% 93.88% 

trueR∗−1
10  13.62% 14.80% 17.25% 21.13% 49.65% 93.87% 

trueR∗1
10  14.87% 15.37% 20.12% 23.51% 35.10% 93.85% 

trueR∗2
10  14.92% 15.86% 24.62% 24.75% 94.60% 93.87% 

trueR∗3
10  15.15% 15.42% 22.65% 23.73% 94.32% 93.91% 

 

6.4.2.2. Ballistic Object tracking Problem 

The ballistic object tracking problem in single dimension described in chapter 3 and 

considered in chapter 5 is also addressed here to illustrate the performance of the proposed 

filter for joint estimation of parameters and states. The ballistic object is considered to be 

falling vertically and tracked by radar which provides the range of the tracked object. The 

dynamics of the ballistic object is dependent on aerodynamic drag and gravity during reentry 

phase. As the object enters atmosphere and experiences drag, the dynamics becomes highly 

nonlinear. The RMS error of position, velocity and ballistic parameters estimation obtained 

from the RA-GHF (residual based adaptation), RA-UKF and non-adaptive GHF from 1000 

Monte Carlo run are presented below. The unknown measurement noise covariance is 

assumed to be two decades higher than the truth value to underweight the measurement. 

Rests of the parameters are specified in chapter 3. 

RMS errors of RA-GHF, RA UKF and non-adaptive GHF for the estimates of altitude, 

velocity of the object and the ballistic parameter have been presented in Fig. 6.11, Fig. 6.12, 

and Fig. 6.13 respectively. The plots indicate that the RMSE performance of RA GHF is 

superior to that of non-adaptive GHF for each estimate. The RMS error of AGHF for states 

as well as the parameter converged quickly (in about 7 sec) to a lower steady state value 

compared to the non-adaptive GHF.  

For this specific case study performance of RA GHF, although not superior to RA UKF, is 

found to be comparably same to that of competing algorithm of adaptive UKF for all the 

states (including the ballistic parameter). 
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It has been observed from simulation that for a single run an average computation time for 

AUKF is 32.635% of that for AGHF. The simulations are carried out using MATLAB 

(version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 

GHz, 2 GB RAM. 

For this object tracking problem the noise covariance of the radar measurement is also 

considered to be time varying to demonstrate the R tracking performance of AGHF. Fig. 6.14 

illustrates the plots of adapted R for different choice of window length (L). The plots indicate 

that a moderately high value of window length (L=90) is appropriate for a smoothed estimate 

of R while for tracking of short term changes a small length (L=30) is appropriate. For this 

case the satisfactory performance of AGHF is obtained for L=60. 
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Fig. 6.11: Comparison of RMS error (altitude estimation) of AGHF, AUKF & 

GHF for 1000 MC runs 
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Fig. 6.12: Comparison of RMS error (velocity estimation) of AGHF, AUKF & 

GHF for 1000 MC runs 
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Fig. 6.13: Comparison of RMS error (ballistic parameter estimation) of AGHF, 

AUKF & GHF for 1000 MC runs 
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Fig. 6.14: R Tracking performance for time varying measurement noise covariance 

(truth value of R  is decaying with time) 

 

6.5   Characterization of R Adaptive SR-GHF 

The algorithm for adaptive nonlinear filters in standard error covariance form may suffer 

from loss of positive definiteness of error covariance for some specific estimation problems. 

For such estimation problems the R adaptive GHF in square root form has been formulated in 

this chapter. The algorithm of R adaptive SR-GHF is validated using an aircraft tracking 

problem. The aircraft which is executing a maneuvering turn is tracked using bearing only 

measurements from two tracking radars as described in chapter 3. In the face of 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 6 168 

unavailability of complete knowledge of R it is assumed that R(2,2) is unknown. Therefore, 

R(2,2)  is assumed arbitrarily as 5 times more than the truth values of R(2,2). For adaptation 

the window length is assumed as 25 time instants. Rest of the necessary parameters are 

provided in chapter 3. 

From Monte Carlo simulation with 10000 run RMS error performance of R adaptive SR-

GHF has been compared with its non-adaptive versions in two different situations: (i) when 

R(2,2) remains unknown for both adaptive and non-adaptive filter, (ii) R(2,2) is known to the 

non-adaptive filter only. It has been investigated from this case study that the non-adaptive 

estimators even with the true knowledge of noise covariance cannot always successfully 

track the maneuvering aircraft because of the non uniqueness of measurement equation as 

discussed before in chapter 3. Consequently the estimator loses the track of the aircraft. The 

performance of adaptive and non-adaptive estimators is also compared on the basis of 

percentage of track loss. 

From the RMSE of position, velocity and the turn rate estimation presented by Fig. 6.15, Fig. 

6.16, Fig. 6.17 respectively it has been observed that the R adaptive SR-GHF is superior 

compared to its non-adaptive version in face of unknown measurement noise covariance. 

Note that the RMSE are presented excluding the cases where track loss occurs. The RMSE of 

RA-SR-GHF which is lower compared to non-adaptive SR-GHF excluding track loss case 

indicates the superiority of RA-SR-GHF  over its non-adaptive version irrespective of the 

cases of track loss. Also the percentage of track loss is significantly low for RA-SR-GHF 

(percentage of track loss is 1.34%) compared to its non-adaptive version (percentage of track 

loss is 45.46%). 

It is also observed that the adaptive version without the knowledge of R(2,2) can perform 

nearly close to the non-adaptive version in ideal case with known R(2,2). However 

percentage of track loss is less for the non-adaptive version in ideal case (percentage of track 

loss is 1.14%). This also validates the satisfactory performance of RA-SR-GHF. 

In Fig. 6.18 and Fig. 6.19 plot of the adapted value of the R has been presented. It is found 

from Fig. 6.19 that despite improper initial choice with large error the square of the adapted 

value of the square root of R converged to its corresponding truth value and continues to 

keep it in track. Fig. 6.18 demonstrates that R(1,1) which is known and initialized with the 
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truth value is satisfactorily adapted by RA-SR-GHF to hold on to the truth value. One may 

opt to keep R(1,1) frozen at its known truth value instead of adapting it. 
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Fig. 6.15: Comparison of RMS error (position estimation) of AGHF & GHF for 10000 MC runs 
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Fig. 6.16: Comparison of RMS error (velocity estimation) of AGHF & GHF for 10000 MC runs 
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Fig. 6.17: Comparison of RMS error (turn rate estimation) of AGHF & GHF for 10000 MC runs 
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Fig. 6.18: Plot of true and adapted value of R (1,1) 
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Fig. 6.19: Plot of true and adapted value of R (2,2) 

 

6.6   Discussions and Conclusions 

In this chapter the algorithm of adaptive Gauss Hermite filter is presented and exemplified. It 

is illustrated that this algorithm can be readily formulated from the general framework for 

adaptive nonlinear filter using the Gauss Hermite quadrature points and corresponding 

weights. The estimation performance of both Q and R adaptive GHF are validated using 

different case studies. The significant observations are listed below. 

• The superiority of Q adaptive GHF is demonstrated with the help of the case study which 

concerns the state and parameter estimation of parameter varying nonlinear system. By 

satisfactory adaptation (partial Q adaptation) of the unknown element of Q the unknown 

time varying parameter is observed to be estimated satisfactorily. The RMSE from the 

Monte Carlo studies are also demonstrably superior for Q adaptive AGHF compared to 

its non-adaptive version. 

• R adaptive GHF is validated with a number of case studies. From the first order 

estimation problem with strong nonlinearity it is found that estimation performance of R 

adaptive GHF is substantially improved over its non-adaptive version for widely 

uncertain choice of unknown R matrix. The superiority of R adaptive GHF over the non-

adaptive counterpart is also demonstrated in the context of joint estimation of parameters 
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and states with the help of ballistic object tracking problem. Another important finding 

from these simulation results is that the performance of the proposed adaptive GHF is 

superior to the adaptive UKF for signal models with strong nonlinearity. 

• It has also been observed from the above case studies that the proposed adaptive GHF 

can successfully adapt the unknown measurement noise covariance and converge on its 

truth value when it is constant. Furthermore, the adapted R is capable of tracking a time 

varying truth value of R.  

• Advantage of considering re-computation for residual based R adaptive GHF is also 

demonstrated for both constant and time varying R. With a few cycle of re-computation 

estimation performance of the proposed estimator is substantially improved. 

• It is also found that performance of innovation as well as residual based R adaptive GHF 

is comparably same. However, innovation based algorithm suffers from singularity 

problem and needs an ad hoc method to over come the issue. 

• The algorithm of adaptive GHF in square root framework is also formulated in this 

chapter which is observed to present satisfactorily estimation results and outperforms its 

non-adaptive version.  

However, it is also demonstrated that the algorithm of adaptive GHF provides improved 

estimation accuracy at the cost of high computation effort specifically for higher order 

systems. Therefore, adaptive Gauss Hermite filter along with its square root versions are 

recommended for nonlinear estimation in the face of unknown noise covariance on 

availability of sufficient computation power. 

To overcome the curse of dimensionality adaptive nonlinear filters can also be formulated 

using spare grid GH quadrature rule [Jia2012] which the present worker has left as his future 

work. However, in the following chapters other point based adaptive filters are also 

formulated which are found to be performance wise comparable with AGHF at a lower 

computation effort.  



Chapter 7: Adaptive Cubature Kalman Filter 

7.1   Chapter Introduction 

In this chapter several versions of adaptive cubature filters have been formulated from the 

general framework for adaptive nonlinear filter and characterized using non trivial case 

studies. Bayesian integrals appear in the general algorithm for adaptive nonlinear filter can be 

numerically approximated with the help of spherical radial cubature rule. Adaptive versions 

of Cubature Kalman filter, higher degree Cubature Kalman filter, Cubature Quadrature 

Kalman filter and higher degree Cubature Quadrature Kalman filter are formulated from the 

general framework when the intractable Bayesian integrals are numerically approximated 

with help of variants of spherical radial cubature rule proposed in recent publications 

[Arasaratnam2009, Jia2013a, Bhaumik2013, Singh2015]. 

The accuracy of the Cubature Kalman filter (CKF) varies depending on the degree of the 

spherical rule and the order of radial rule. Third degree and fifth degree Cubature rules have 

been reported in literature by [Arasaratnam2009] and [Jia2013a] respectively with which the 

Bayesian integrals are numerically approximated. However, possibility of higher degree 

(higher than 5
th

 degree) Cubature rule is also reported in [Jia2013a]. 

A variant of Cubature rules are also proposed and renamed as Cubature Quadrature rule in 

[Bhaumik2013, Singh2015]. This new Cubature rule is different from that of [Jia2013a] in 

perspective of the approximation of radial integrals. While in higher degree cubature rule 

[Jia2013a] emphasis is on increasing the degree of accuracy of spherical rule, Cubature 

Quadrature rule attempts to improve the accuracy by increasing the order of radial rule with 

the spherical rule of 3
rd

 degree accuracy. Cubature Quadrature rule Kalman filter (CQKF) is 

presented with 3
rd

 degree spherical rule and higher order radial rule in [Bhaumik2013]. Later 

the authors of [Bhaumik2013] also extended their work in [Singh2015] with higher degree 

(5
th

 degree) spherical rule.  

However, performance of these advanced cubature point based estimators deteriorates in face 

of the common problem of unknown noise covariance. Performance of their adaptive 

versions is needed to be investigated in such contingent situations. In this chapter the 

spherical radial cubature rule has been briefly discussed. Following the 3
rd

 and 5
th

 degree 
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cubature rule and cubature quadrature rule cubature/quadrature points and their 

corresponding weights are selected and used in the general framework of adaptive nonlinear 

filter to develop the corresponding adaptive versions of CKF and CQKF. These new 

algorithms have been validated with the help of different case studies and the relative 

advantages of these newly proposed estimation algorithms over the competing algorithms are 

also investigated. 

7.2   Spherical Radial Cubature Rule 

7.2.1   Background 

Cubature rule reported in [Jia2013a, Arasaratnam2009] can numerically approximate an 

integral represented by (7.1) using a set of cubature points and the corresponding weights. 

The d
th

 degree cubature rule accurately approximates a nonlinear function g(x) which is 

linear combination of monomials with total degree up to d or less. 

( ) ( ) ( )
i

m

i

iwd xgxxxg
nR

∑∫
=

≈
1

ω         (7.1) 

Where nRx ∈ and ( )xω is the weighting function. The above expression is accurate for d
th

 

degree rule when ( )xg  is defined as ( ) n

nnxaxaxa
ααα

+++= L21

2211xg i.e., linear combination 

of monomials n

nxxx
ααα

L21

21 with total degree up to d. Here, nααα ,,, 21 K  are nonnegative 

integers, naaa ,,, 21 K  are real values such that d
n

i

i ≤∑
=1

α . It is to be noted that accuracy of 

solution is dependent on the degree, d. For cubature rule with higher accuracy, degree of 

polynomial should be increased.  

For Gaussian weighting function, i.e., ( ) ( )xxx T−= expω  , the integral is expressed as 

( ) ( ) ( ) xxxxgg
nR

dI
T

∫ −= exp         (7.2) 

To convert it in a spherical radical integration form it is assumed that sx r=  with 1=ssT  

and xxT
r = for [ ),0 ∞=r . Then (7.2) will be transformed in the spherical radial coordinate 

system as 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 7 175 

( ) ( ) ( ) ( )drdrrrI n

U n

ssgg σ21

0

exp −= −

∞

∫ ∫       (7.3) 

Here, { }1: =∈= ssRs Tn

nU  and ( )⋅σ  is the spherical circle measure or the area element on 

nU .  

The equation (7.3) consists of two integrals, (i) the radial integral (ii) spherical integral. 

These two integrals can be numerically approximated and combining these two 

approximation methods the spherical radial cubature rule can be obtained. 

The rN  point radial rule is approximated as 

( ) ( ) ( )∫ ∑
∞

=

− ≈−
0 1

21 exp
r

i

N

i

irr

n

r rwdrrrr gg       (7.4) 

The sN  point spherical rule is approximated as 

( ) ( ) ( )∑∫
=

≈
s

i

n

N

i

ss

U

s wd
1

isgssg σ         (7.5) 

Combining the spherical radial approximation rule ( )gI  can be expressed as 

( ) ( )∑∑
= =

≈
r s

ii

N

i

N

i

iisr srwwI
1 1

gg         (7.6) 

ir  and 
ir

w  are points and weights for approximation of radial integral and is  and 
isw  are 

points and weights for approximation of spherical integral. The total number of points for 

computation of ( )gI  is rs NN  when 0≠ir  and ( ) 11 +−rs NN  if one of the ir  is zero. The 

proof has been provided in [Jia2013a]. 

7.2.2   Spherical Rule 

The spherical rule is used to numerically approximate the spherical integral as represented in 

(7.5). The numerical approximation method for spherical integral with arbitrary degree is 

presented in the work of [Genz2003] and also followed by [Jia2013a]. In [Jia2013a] 

following the method of [Genz2003] 3
rd

 degree and 5
th

 degree spherical rules have been 

derived. 

From the 3
rd

 degree spherical rule the spherical integration can be approximated as 
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Where ie is the i
th

 unit vector and the weight 
n

An
i

2
=ω  with 

( )
2

2
n

n

nA
Γ

=
π

 

Following the 5
th

 degree spherical rule the spherical integration can be approximated as 
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where +

is and −

is are selected as 

{ } ( ){ }nlklk ,,2,1,,:
2
1

L=<+=
∆

+

lki ees       (7.9) 

{ } ( ){ }nlklk ,,2,1,,:
2
1

L=<−=
∆

−

lki ees       (7.10) 

 

7.2.3   Radial Rule 

The radial rule is used to numerically approximate the radial integral as represented in 

(7.4).The radial integral is transformed with 2
rt = so that it can be approximated using 

Generalized Gauss Laguerre quadrature (GGLQ)rule as given below 

( ) ( ) ( ) ( )∫∫
∞

−
∞

− −=−
0

1
~

0

21 expexp 2 dttttdrrrr
n

r

n

r gg       (7.11) 

where ( ) ( )tt rr gg =~  

The GGLQ rule can now be applied on the right hand side of (7.11). Therefore, (7.11) can be 

approximated as 

( ) ( ) ( )∑∫
=

∞
−

=−
r

i

n
N

i

igrgr rwdtttt
1

,

0

1
~

~exp2 gg        (7.12) 

Because of the transformation 2
rt =  the points and weights are obtained by 

igi rr ,=  with weights 2
ii gr ww =        (7.13) 
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However, in [Jia2013a] the author has followed an alternative method of moment matching 

for computing the points and weights. Using the moment matching method the author of 

[Jia2013a] has presented the points and weights for 3
rd

 degree and 5
th

 degree radial rule as 

provided below. It has been reported in [Jia2013a] that the number of points are less for 

moment matching method compared to the GGLQ approach when m is even for the radial 

rule with (2m+1) degree accuracy. On contrary, when m is odd, the radial rule gives same 

points and weight as obtained from GGLQ rule. Therefore, for 3
rd

 degree radial rule both 

these approach provide same points and weights as  

21
nr =  and the corresponding weight 

( )
2

2

1

n

rw
Γ

=      (7.14) 

For 5
th

 degree radial rule the author of [Jia2013a] presents less number of points and weights 

which are generated using moment matching method as mentioned below. 

01 =r  and the corresponding weight 
( )

2

2

1 +

Γ
=

n

n

rw      (7.15) 

1
22 += nr  and the corresponding weight 

( )
( )22

2

2 +

Γ
=

n

nn

rw     (7.16) 

7.2.4   Spherical Radial Cubature Rule 

Combining the spherical and the radial rule presented above the 3
rd

 degree and 5
th

 degree 

spherical radial cubature are obtained as given below. 

Using 3
rd

 degree rule the integral is approximated using 2n number of points and weights as 

( ) ( ) ( ) ( )[ ]∑∫
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−+=
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     (7.17) 

Using 5
th

 degree rule the integral is approximated using (2n
2
+1) number of points and 

weights as 
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  (7.18) 

The derivations in details have been provided in [Jia2013a]. 

Notes: 
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The cubature rules with third degree and fifth degree of accuracy have been considered for 

numerical approximation of intractable Gaussian integrals. The merits and demerits of these 

two cubature rules are provided below: 

• It is evident from the 3
rd

 degree cubature rule that it is a special case of Unscented 

Transformation (UT) rule. 3
rd

 degree cubature rule uses 2n number of points for n
th

 order 

system whereas UT rule uses 2n+1 number of points. The non scaled version of 

Unscented Transformation [Simon2006] with zero weight for the mean about which the 

sigma points are selected is exactly matches with 3
rd

 degree cubature rule.  

• However, the accuracy of the UT rule can be improved compared to 3
rd

 degree cubature 

rule with careful choice of tuning parameters with which the spread of sigma points can 

be controlled. Because of the scaling the weights of UT rule becomes negative for some 

cases. For example, with the scaling parameter, n−= 3κ  suggested in [Julier2000] the 

weights become negative when applied for higher order the integration space. This may 

increase the tendency to loss of positive definiteness of error covariance and reduce the 

stability of the filtering algorithm. The 3
rd

 degree cubature rule having non negative 

weights is more stable and ensures the positive definiteness of error covariance. 

• It has been reported in [Arasaratnam2009, Jia2013a] that the accuracy of Cubature rule 

can be improved with rise in degree of the cubature rule. The number of cubature points 

increases polynomially with increase in degree. For the 5
th

 order cubature rule the 

required number of cubature points is found to be 12 2 +n . 

• However, like UT rule, there exists stability issue regarding the 5
th

 order cubature rule. 

With increase in the dimension of the integration space the weights of 5
th

 degree cubature 

become negative unlike 3
rd

 degree cubature rule. For 5
th

 degree cubature rule sigma 

points which are same as that for 3
rd

 degree cubature rule have weights selected as, 

( )2
22

4

+

−

n

n . Therefore for the dimension of the integration space greater than 4 this weight 

becomes negative. However, for ∞→n , the negative weight of UT rules tends to ∞−  

whereas the negative weight of 5
th

 degree cubature rule tends to zero. Consequently, 5
th

 

degree cubature rule is relatively more stable than UT rule as reported in [Jia2013a]. 

• The n
th

 degree Cubature rule is exact for monomials up to n
th

 order whereas n
th

 order 

GHQ rule has (2n−1)
th

 order accuracy [Sarkka2013]. It is, therefore, well understood that 
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the accuracy of 3
rd

 degree cubature rule is lower than that of 3
rd

 degree Gauss Hermite 

quadrature rule. On contrary the 5
th

 degree cubature rule has same accuracy of 3
rd

 order 

GHQ rule. 

7.3   Cubature Quadrature Rule 

A variant of cubature rule known as cubature quadarture rule has been formulated and 

reported in [Bhaumik2013], contemporary work of [Jia2013a] which proposes higher order 

cubature rule. In the work of [Bhaumik2013] the author has proposed another version of 

cubature filter which has increased accuracy compared to 3
rd

 degree cubature rule and termed 

as cubature quadrature rule. For the proposed quadrature rule the spherical integral is 

evaluated with 3
rd

 degree spherical rule only. The radial integral is approximated using 

Generalized Gauss Laguerre quadrature (GGLQ) rule with accuracy of th
n′  order by solving 

th
n′  order Chebyshev-Laguerre equation. The approximation method is stated below: 

( ) ( ) ( )∑∫
′

=

=
nn

i

iwN
2

1

; i

R

ξgI0,xxg
n

        (7.19) 

Where ki eξ jλ2=          (7.20) 

jλ  is the solution of th
n′  order Chebyshev-Laguerre polynomial with 12 −= nα : 

( ) ( ) ( )( ) 01 2
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!1
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nnnnnn

n nnnL λααλαλα    (7.21) 

The weights corresponding to the above sigma points are obtained as 
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Γ
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Here, nni ′= 2,,2,1 K , nj ′= ,,2,1 K and nk 2,,2,1 K=  

The quadrature points and weights are obtained by combining the 3
rd

 degree spherical rule 

and th
n′  order radial rule where n′  radial points are selected and the solution is accurate for 

( )12 −′n  degree. The work of [Bhaumik2013] differs from [Jia2013a] on the perspective of 

the numerical approximation method of radial integral. The authors of [Bhaumik2013] 

follows GGLQ rule where as [Jia2013a] follows moment matching method. 

The authors of [Bhaumik2013] has also extended their work in [Singh2015] wherein the 

work of [Jia2013a] has been critically analyzed and the moment matching method followed 
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in [Jia2013a] for computing the radial points and weights is reported to be analytically 

ambiguous. The authors proposed to combine higher degree spherical rule [Genz2003, 

Jia2013a] with higher order radial rule by solving th
n′  order Chebyshev-Laguerre equation as 

mentioned [Bhaumik2013]. This new cubature rule has been named as higher order cubature 

quadrature rule. The steps for generation of higher order cubature quadrature points and 

corresponding weights are enumerated in [Singh2015]. Below we present only the steps for 

computing cubature quadrature points based on 5
th

 degree spherical rule which has been 

presented in (7.23) and (7.24) 
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Where ( )
2

2 nn

nA Γ= π  and jλ  is the solution of th
n′  order Chebyshev-Laguerre polynomial 

with 12 −= nα  as given below: 
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The corresponding weights are obtained as 
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Notes: 

• It has been observed by the present worker while implementing the non-adaptive 

version of higher degree Cubature Quadrature Kalman filter that the 3
rd

 degree CQKF 

is more stable than 5
th

 degree CQKF as negative weights do not appear for the 

former. 5
th

 degree CQKF having negative weights like 5
th

 degree cubature filter 

[Jia2013a] may not always guarantee the positive definiteness of error covariance. 

• It is also to be noted from the simulation results in [Singh2015] that the performance 

of higher degree CQKF (5
th

 degree) is improved over the higher degree CKF (5
th

 

degree) and CQKF(3
rd

 degree) for higher order systems. However, during 
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performance comparison with CQKF [Bhaumik2013] it is observed that the 

performance is not substantially improved for higher degree CQKF (5
th

 degree) with 

its additional computation effort. 

7.4   Algorithm of ACKF and ACQKF 

For numerical approximation of integrals with unit Gaussian weighting function the methods 

using spherical radial cubature rule has been presented in previous sections. Using these 

approximation methods the integrals can be expressed as weighted sum of sigma points. 

After computation of sigma points and corresponding weights they can be directly plugged 

into the General framework of adaptive nonlinear filters to formulate adaptive cubature filters 

and adaptive Cubature Quadrature Kalman filters. Using 3
rd

 and 5
th

 degree cubature rule and 

cubature quadrature rule and depending on the nature of adaptation (i.e., Q or, R adaptation) 

different algorithms can be formulated with the help of general framework given in chapter 

4. The algorithmic steps are not repeated in this chapter as those are the same as that of 

general framework.  

7.5   Characterization of proposed estimators 

The adaptive Cubature filters are validated using different case studies. At first the algorithm 

of Q Adaptive CKF (3
rd

 degree) in square root framework is validated using ballistic object 

tracking problem. The other case studies are considered to illustrate the superiority of R 

Adaptive versions of CKF (5
th

 degree) and CQKF (both 3
rd

 and 5
th

 degree). The R adaptive 

versions CQKF (3
rd

 degree) and CKF (3
rd

 degree) in square root framework are also 

validated using a case study and their performance is compared with R adaptive square root 

GHF(3
rd

 degree). 

7.5.1   Demonstration of Q adaptive version of square root CKF 

7.5.1.1. Ballistic object tracking problem 

The ballistic object tracking problem as described in chapter 3 is considered for validation of 

the algorithm of Q Adaptive version of Square root CKF with 3
rd

 degree accuracy (QA-SR-

CKF 3
rd

 degree). This case study has been used before for validation of ADDF and AGHF. 

We consider the same case study again for validation of QA-SR-CKF (3
rd

 degree). The 

algorithm can be obtained using the general framework with square root approach presented 
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in chapter 4 as the weights for 3
rd

 degree cubature rule are non negative. When the process 

noise covariance is unknown and the measurement noise covariance is known performance 

of QA-SR-CKF (3
rd

 degree) is compared with non-adaptive SR-CKF (3
rd

 degree). Q being 

unknown has been assigned arbitrarily with 5 decades higher than the truth value. The 

window length is considered to be 10 time instants. RMSE of states and the ballistic 

parameter obtained from 1000 Monte Carlo run are presented from Fig. 7.1 – 7.3. The plots 

indicates that the performance of QA-SR-CKF (3
rd

 degree) in face of unknown Q, is superior 

to its non-adaptive version as expected. The RMSE of QA-SR-CKF is low and its 

convergence is better. However, for the non-adaptive SR-CKF with unknown Q RMSE for 

states are high. In Fig. 7.3 it is observed that RMSE of parameter for non-adaptive SR-CKF 

tends to diverge. 

The performance of QA-SR-CKF (without the knowledge of Q) is also compared with its 

non-adaptive version when Q is known (an ideal situation). It is observed also from the plots 

of RMSE that the RMSE for non-adaptive version is lower than that of the adaptive version 

in the ideal case. However, RMSE of QA-SR-CKF shows a tendency to come close to that of 

the ideal case during the steady state.  

The adapted Q gradually settles on the actual value. But it takes some time takes time to 

converge. This is the reason behind the initial mismatch of RMSE of QA-SR-CKF (unknown 

Q) and non-adaptive SR-CKF (known Q in ideal situation). In Fig. 7.4 we provide the plot of 

an element of adapted Q for a representative run. 
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Fig. 7.1: Comparison of RMS error (altitude estimation) of ASRCKF & SRCKF for 1000 MC runs 
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Fig. 7.2: Comparison of RMS error (velocity estimation) of ASRCKF & SRCKF for 1000 MC runs 
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Fig. 7.3: Comparison of percentage of RMS error (ballistic parameter estimation) of ASRCKF & SRCKF for 

1000 MC runs 
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Fig. 7.4: Plot of estimated process noise covariance (Q3,3) for a representative run 

 

7.5.2   Demonstration of R adaptive estimators 

7.5.2.1. First order nonlinear problem 

The first order nonlinear estimation problem which has been considered in chapter 5 and 6 is 

employed once again for a comparative study of R adaptive versions of CKF, CQKF and the 

previously proposed R adaptive filtering algorithms. It is assumed that the process noise 

covariance is known to the filter where as the knowledge of measurement noise covariance is 
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unavailable. Because of the unavailability of the measurement noise covariance it is assumed 

arbitrarily with a value three decades lower than the truth value. Window size is chosen as 

100 time instants. 

It is observed earlier that due to strong bi modal tendency of the measurement equation the 

state estimate may settle on a wrong equilibrium point. Even non-adaptive filters with 

complete knowledge of noise covariances may lose the track. The susceptibility of track loss 

increases when noise covariances are initialized with inaccurate knowledge of noise 

covariance. The performance of adaptive CKF and CQKF are analyzed with other adaptive 

nonlinear filters with respect to the percentage of track loss. The RMS error from Monte 

Carlo study with 10000 run is also furnished in addition to this. Note that in each Monte 

Carlo run same noise sequences have been considered for all the candidate estimators. 

It has been observed from the simulation results (see Table 7.1) that percentage of track loss 

in case of R adaptive CKF (5
th

 degree) is less compared to R adaptive CKF (3
rd

 degree), R 

adaptive UKF. It is also important to note that almost same percentage of track loss is 

observed for RA-CKF (5
th

 degree) and RA-GHF (3
rd

 order). However, track loss percentage 

for RA-GHF (5
th

 order) is lower compared to RA-CKF (5
th

 degree). 

Performance of R adaptive CQKF based on 3
rd

 degree cubature rule and 2
nd

 order radial rule, 

denoted as RA-CQKF (3
rd

 degree, 2
nd

 order) and adaptive higher degree CQKF based on 5
th

 

degree cubature rule and 3
rd

 order radial rule, denoted as RA-CQKF (5
th

 degree, 3
rd

 order) is 

also assessed using this case study. It is demonstrated that the RA-CQKF (3
rd

 degree, 2
nd

 

order) performs equally well as compared with computationally intensive RA-GHF (5
th

 

order). The percentage of track loss for RA-CQKF (3
rd

 degree, 2
nd

 order) is significantly less 

as compared to RA-CKF (5
th

 degree) and the computational cost of RA-CQKF(3
rd

 degree, 

2
nd

 order) is also less than that of RA-CKF (5
th

 degree) and RA-GHF (5
th

 order) as the former 

uses less number of quadrature points compared to the other two estimators.  

Performance of the RA-CQKF (5
th

 degree, 3
rd

 order) is also found comparable with 

RA+CQKF (3
rd

 degree, 2
nd

 order) and RA-GHF (5
th

 order). But percentage of track loss of 

this estimator is slightly higher than other tow. Moreover, as applied for a first order system 

the number of points for this estimator is more compared to all other estimator.  
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For each of the candidate estimators in addition to the percentage of track loss, number of 

points required and the computation time are also presented in Table 7.1 for comparison on 

the basis of computation time. 

The effect track loss is reflected in the RMS error performance presented in Fig. 7.5. RMSE 

of RA-CKF (5
th

 degree) retrace that of RA-GHF (3
rd

 order) as it is expected from the 

percentage of track loss. RMSE of RA-CKF (5
th

 degree) is lower than that of RA-CKF (3
rd

 

degree) but higher than RA-GHF (5
th

 order). RMSE of RA-CQKF (3
rd

 degree, 2
nd

 order) and 

RA-CQKF (5
th

 degree, 3
rd

 order) almost retrace the RMSE of RA-GHF(5
th

 order). 

To demonstrate how the performance of non-adaptive filter degrades in the face of unknown 

R, RMSE of non-adaptive CQKF (3
rd

 degree, 2
nd

 order) is also presented along with the plots 

of RMS error of R adaptive filters. The RMSE of non-adaptive CQKF (3
rd

 degree, 2
nd

 order) 

despite its higher accuracy cannot resist numerous occurrences of track loss (55.36%) with 

improper choice of R matrix. Consequently, the RMSE for this case is the higher compared 

to all the adaptive nonlinear estimators.  
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Fig. 7.5: Comparison of RMS error of proposed filters with the existing filters for 10000 MC run 
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Table-7.1: Percentage of track loss and computation time presented for adaptive estimators 

Adaptive estimators 
Percentage of 

track loss 

Computation 

time 
#
 

No. of 

points 
Expression

*
 

ACKF(5
th

 degree) 24.78% 83.4% 3 1+2n
2
 

ACKF(3
rd

 degree) 36.48% 48.9% 2 2n 

AUKF 91.85% 82.5% 3 2n+1 

AGHF(3
rd

 order) 24.79% 84.8% 3 3
n
 

AGHF(5
th

 order) 14.64% 100% 5 5
n
 

ACQKF(3
rd

 degree, 2
nd

 order) 14.65% 94.2% 4 2nnr 

AHCQKF (5
th

 degree, 3
rd

 order) 14.72% 113.4% 6 2n
2
nr 

* Expression of number of points required for nth order system and nr
th degree radial rule 

# The computation time for each estimator is expressed as a percentage of that for AGHF (5th order). The simulation are 

carried out using MATLAB (version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 

2 GB RAM. 

 

7.5.2.2. State estimation of Lorenz attractors 

The Lorenz attractors are a special class of chaotic system with nonlinear signal models 

which are considered in [Ito2000, Bhaumik2013] for evaluation of nonlinear estimators. 

System dynamics of a third order Lorenz attractor and the respective observation equation 

have been provided in chapter 3.  

In the face of unknown measurement noise covariance RA-CKF (5
th

 degree), RA-GHF (3
rd

 

order), RA-CQKF (5
th

 degree, 3
rd

 order) and RA-UKF have been employed to estimate the 

states of Lorenz system. The estimation accuracy of the estimators is illustrated with the help 

of RMSE plot for each state. Following [Bhaumik2013] Monte Carlo simulation with 100 

runs has been carried out with same set of noise sequences for each estimator. 

Form Fig. 7.6 and Fig. 7.7 it is observed that the RMSE plot of RA-CKF (5
th

 degree) almost 

retrace that of RA-GHF (3
rd

 order) for state 1 and state 2. It is also important to note here that 

the RMSE for these two estimators is considerably low compared to than that for RA-UKF.  

For this case study performance of RA-CQKF (5
th

 degree, 3
rd

 order) is also compared with 

RA-CKF (5
th

 degree). For this specific case study it is observed that its performance does not 

seem to be promising as per the expectation from its performance of the previous case study. 
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RMSE of this estimator for both the states is higher than RA-CKF (5
th

 degree). Nevertheless, 

its performance is comparable with that of RA-UKF. 

Superiority of none of the adaptive estimators can be inferred from the RMSE for state 3. All 

the RMSE profiles are comparable as observed in Fig. 7.8. 

During the performance comparison the non-adaptive CKF (5
th

 degree) is also considered 

which shows that performance of non-adaptive CKF (5th degree) degrades drastically with 

inaccurately chosen R. The assumed value of R is 3 decades lower than the truth value for 

this case study. Window size for adaptation is taken as 100 time instants.  
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Fig. 7.6: Plots of RMSE of first state of Lorentz attractor for different adaptive estimators 
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Fig. 7.7: Plots of RMSE of second state of Lorentz attractor for different adaptive estimators 
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Fig. 7.8: Plots of RMSE of third state of Lorentz attractor for different adaptive estimators 
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7.5.2.3. Fourth order nonlinear estimation problem 

This case study has been considered to demonstrate the superiority of R adaptive higher order 

CQKF over its competing algorithms. This numerical problem has been used by [Singh2015] 

for the validation of non-adaptive version of higher order CQKF. We have considered it to 

demonstrate the superiority of its adaptive version. Here performance of RA-CQKF (5
th

 

degree, 3
rd

 order) has been compared with RA-CQKF (3
rd

 degree, 3
rd

 order) and RA-CKF 

(5
th

 degree). R is chosen with large error compared to the truth value (two decades lower than 

the truth value) for this case study. Window size for adaptation is taken as 100 time instants. 

Plots for RMS error of four states from 1000 Monte Carlo run are presented from Fig. 7.9 – 

7.12. It is observed that for all four states RMS error for RA-CQKF (5
th

 order, 3
rd

 degree) is 

marginally lower compared to that for the other estimators. However, computation effort for 

RA-CQKF (5
th

 order, 3
rd

 degree) is also higher compared to the other estimators is more as it 

incorporates higher number of points. Note that for this case study computation time for RA-

CKF (5
th

 degree), RA-CQKF (3
rd

 degree, 3
rd

 order) are 36.55% and 29.75% of that for RA-

CQKF (5
th

 degree, 3
rd

 order) respectively. Simulation is carried out using MATLAB (version 

7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB 

RAM. 
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Fig. 7.9: Plots of RMSE of 1
st
  state for different adaptive estimators 
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Fig. 7.10: Plots of RMSE of 2
nd

  state for different adaptive estimators 
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Fig. 7.11: Plots of RMSE of 3
rd

  state for different adaptive estimators 
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Fig. 7.12: Plots of RMSE of 4
th

  state for different adaptive estimators 
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7.5.3   Demonstration of R adaptive estimators in square root 

framework 

Here we consider an aircraft tracking problem which has been used to validate adaptive 

Gauss Hermite filter in square root framework. The states and turn rate of an aircraft 

executing a maneuvering turn with an unknown and time varying turn rate has to be 

estimated. The adaptive versions of cubature filter and Cubature Quadrature Kalman filters in 

square root framework which are formulated in this chapter have been validated using this 

case study. 

Performance comparison of R adaptive versions of square root GHF with 3
rd

 order accuracy 

(RA-SR-GHF), square root CKF with 3
rd

 degree accuracy (RA-SR-CKF) and square root 

CQKF (based on 3
rd

 degree spherical rule, 2
nd

 order radial rule and denoted as RA-SR-

CQKF) have been carried out for the above estimation problem where the measurement noise 

covariance of one of the radar remains unknown. 

The candidate filters are evaluated with the help of a Monte Carlo study with 10000 Monte 

Carlo runs. The element of measurement noise covariance, R(2,2) is considered to be 

unknown as in chapter 6. The unknown element R(2,2) is assumed with an arbitrary value 

which is 5 times less than the truth value for this case study. The RMS error of position, 

velocity estimation and also the RMS error of estimated turn rate are presented for all three 

filters. In addition to the plots of RMS errors the percentage of track loss is also provided for 

each estimator. The track loss occurs because of non uniqueness of the measurements as 

explained in chapter 3 and chapter 6. The RMSE are presented excluding the track loss cases. 

From the Fig. 7.13 – 7.15 RMSE for all three estimators are found comparably same. 

However, in Fig. 7.13 the RMSE of RA-SR-CKF is marginally higher than the other two 

plots. Therefore, the performance of these estimators cannot be analyzed on the basis of 

RMSE only. In this perspective percentage of track loss gives us a cue to judge the 

performance of these competing algorithms. It is to be noted that the percentage of track loss 

for RA-SR-GHF is considerably low compared to RA-SR-CKF and RA-SR-CQKF. 

However, percentage of track loss for RA-SR-CQKF is lower than RA-SR-CKF. It is 

interesting to note that RA-SR-CQKF is performance wise as good as RA-SR-GHF at a less 

computation effort. Table 6.2 is provided in support of the above statements.  
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Fig. 7.13: Comparison of RMS error (altitude estimation) of ASRCQKF, ASRGHF3 & SRCKF  
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Fig. 7.14: Comparison of RMS error (velocity estimation) of ASRCQKF, ASRGHF3 & SRCKF  



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 7 194 

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100

time (sec)

R
M

S
E

 t
u

rn
 r

a
te

RA-SR-CKF

RA-SR-CQKF

RA-SR-GHF

 

Fig. 7.15: Comparison of RMS error (turn rate estimation) of ASRCQKF, ASRGHF3 & SRCKF  

 

Table-7.2: Percentage of track loss and computation time for adaptive estimators 

Estimators Percentage of track loss Computation time* Points for n=5, nr=2 

RA-SR-CKF 1.55% 6.30% 10 (2n) 

RA-SR-CQKF 1.44% 8.13% 20 (2nnr) 

RA-SR-GHF 1.34% 100% 243 (3
n
) 

* Computation time is presented as the percentage of the computation time of RA-SR-GHF. Simulation is carried out using 

MATLAB (version 7.9.0.529) in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM. 

 

7.6   Discussions and Conclusions 

In this chapter adaptive versions of Cubature filters (3
rd

 degree and 5
th

 degree) and Cubature 

Quadrature Kalman filters (3
rd

 degree and 5
th

 degree) have been formulated from the general 

framework. Relative performance comparison with previously reported adaptive nonlinear 

filters is carried out with the help of several nonlinear state estimation problems. Simulation 

results from all the case studies indicate that the performance of adaptive CKF (5
th

 degree) is 

demonstrably better than Adaptive CKF (3
rd

 degree) and AUKF. Performance of ACQKF 

(3
rd

 degree and 5
th

 degree) is found to comparable with ACKF (5
th

 degree) and sometimes 

superior to it. Below we present in detail the significant findings from the case studies.  

• Q adaptive CKF (3
rd

 degree) in square root framework is found to outperform its non-

adaptive version in the face of unknown noise covariance. When the filters reaches steady 

state performance of the proposed filter without knowledge of Q is observed to be 
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comparable with that of its non-adaptive version in the ideal situation when it has the 

complete knowledge of Q. 

• R adaptive version of CKF and CQKF are demonstrated using a number of case studies. 

For the first order estimation problem it is observed that the performance of RA-CKF (5
th

 

degree) has the same level of accuracy with that of RA-GHF (3
rd

 order). However, RA-

CQKF (3
rd

 degree, 2
nd

 order) is performance wise superior to RA-CKF (5
th

 degree) and 

have equivalent accuracy of RA-GHF (5
th

 order) at less computational cost. Performance 

of adaptive higher order Cubature Quadrature Kalman filter, RA-CQKF (5
th

 degree, 3
rd

 

order) is comparable with RA-CQKF (3
rd

 degree, 2
nd

 order). However, the computation 

cost of the higher degree version of RA-CQKF is more in presence of higher number of 

cubature points. Performance of all other adaptive estimators excels over RA-UKF for 

this specific case study where system dynamics suffers from significant nonlinearity. 

• In the second case study the superiority of RA-CKF (5
th

 degree) over RA-UKF is 

exhibited using RMSE analysis of the state estimates of the Lorenz attractor. However, 

for this estimation problem RA-CQKF (5
th

 degree, 3
rd

 order) could not show improved 

performance compared to RA-CKF (5
th

 degree). Nevertheless, its performance is 

comparable with RA-UKF. 

• To demonstrate the superiority of adaptive version of higher order Cubature Quadrature 

Kalman filter, RA-CQKF (5
th

 degree, 3
rd

 order), over the competing algorithms of RA-

CKF (5
th

 degree) and RA-CQKF (3
rd

 degree, 3
rd

 order) a fourth order estimation problem 

is considered. It is observed from the RMS error analysis that RA-CQKF (5
th

 degree, 3
rd

 

order) can present marginally improved estimation performance compared to the other 

competing algorithms at the cost of additional computation effort. 

• R adaptive versions GHF (3
rd

 order), CKF (3
rd

 degree), CQKF (3
rd

 degree, 2
nd

 order) in 

the square root framework is also formulated in this chapter and validated using aircraft 

tracking problem. Superiority of RA-SR-CQKF and RA-SR-GHF over RA-SR-CKF is 

demonstrated. It is interesting to note that RA-SR-CQKF can present satisfactory 

estimation performance (performance is nearly close to RA-SR-GHF) at significantly less 

computational burden compared to RA-SR-GHF. The square root version of other 

adaptive nonlinear filters viz. AUKF, ACKF (5
th

 degree) and ACQKF (5
th

 degree) have 
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not been formulated due to presence of the negative weights for some of the points. These 

algorithms cannot be formulated directly from the proposed general framework in 

chapter4 as the presence of negative weights demand modifications in the algorithm. This 

work may be considered as the future scope of this dissertation. 

From the above findings it may be concluded that Adaptive CKF (5
th

 degree) and Adaptive 

CQKF are strong candidates during estimation of multi dimensional systems with significant 

nonlinearity for their better accuracy and economic computation (compared to the 

computationally intensive Adaptive GHF). The square root version of Adaptive CQKF (3
rd

 

degree) is also recommended for the estimation problems where their standard error 

covariance forms may terminate due to loss of positive definiteness. 



Chapter 8: Adaptive Nonlinear Filters for Non-additive 
Noise 

8.1   Chapter Introduction 

This chapter presents a general framework for adaptive nonlinear filters to suit nonlinear signal 

models where the system dynamics and observation equations are nonlinear function of states 

as well as noise. Situations have been considered where knowledge of the covariance of non-

additive noise remains unavailable. For state estimation of the systems with such signal models 

the proposed algorithms for adaptive nonlinear filter with additive noise no longer remain 

appropriate. The adaptation algorithms for the additive noise derived in chapter 4 necessitate 

substantial modifications for non-additive noise. In addition to this the underlying framework 

of non-adaptive nonlinear filters also needs to be modified to suit non-additive noise. 

The redesigning of the adaptation algorithms which are essential for non-additive noise have 

been presented in this chapter and subsequently a new general framework for adaptive 

nonlinear filters with non-additive noise has been developed. The derivation of the adaptation 

algorithms are based on Maximum Likelihood Estimation (MLE) method. The general 

framework proposed in this chapter uses the non-adaptive nonlinear filters with the 

“augmented form” as its core. In this particular form the process noise and measurement noise 

are augmented with the state vector in time update steps and measurement update steps 

respectively to make the estimation algorithm suitable for the state and the observation 

equations which are nonlinear function of states and the noise terms. The non-adaptive 

nonlinear filtering algorithm has been reported in [Sarkka2013a]. The same algorithm is 

considered here as an underlying framework. 

The general framework includes algorithms for adaptation of the covariance of process noise as 

well as the measurement noise which are non-additive in nature. With the help of general 

framework proposed in this chapter formulation of variants of Q adaptive and R adaptive 

sigma point filters for non-additive noise may be possible following different methods of sigma 

point selection discussed in the previous chapters. For illustration R adaptive estimators have 

been derived from the general framework incorporating sigma points and weights which are 

chosen following 3
rd

 degree and 5
th

 degree cubature rule. The derived algorithms are validated 
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in simulation using a realistic estimation problem where the measurement equation is indeed a 

nonlinear function of states and measurement noise. 

Additionally algorithms for adaptive Divided Difference filter (ADDF) with non-additive 

process and measurement noise are also formulated. These algorithms, although conceptually 

same, cannot be directly obtained using the proposed general framework. This is because of the 

fact that non-adaptive DDF is based on Taylor series approximation and uses Stirling’s 

interpolation formula to replace Jacobian and Hessian matrices present in the Taylor series 

approximation. On the other hand the general framework includes Bayesian integrals which 

need to be approximated by numerical methods. The proposed algorithms based on DDF are 

validated with the help of different case studies where the noises are considered to be non-

additive in nature. 

8.2   Problem Formulation 

We consider nonlinear dynamic equations of a system as given below 

( )k1kk θxfx ,−=          (8.1) 

( )kkk υxgy ,=          (8.2) 

where n

kx ℜ∈ is a state vector, p

ky ℜ∈ is output vector. The zero mean process and 

measurement noises (assumed Gaussian) are denoted as ( )Q0,θk ~
qℜ∈ , ( )k

m

k R0,υ ~ℜ∈ . 

The system dynamics and the observation equation are considered as the nonlinear function 

of the noise and state vectors. Consequently the noises are non-additive in nature. During the 

unavailability of the knowledge of covariance of process or the measurement noise it needs 

to be adapted at every instant of time. For joint estimation of parameters and states 

parameters has to be augmented with state vector as explained before in chapter 4. 

For the above described estimation problem, the general frameworks for Adaptive nonlinear 

filters and algorithms for Adaptive Divided Difference filter are presented below which can 

adapt the unknown noise covariance of non-additive process or measurement noise. 

8.3   General framework for adaptive filters with non-additive noise 

In this section a general framework for adaptive nonlinear filters with non-additive noise is 

proposed. The general framework presented here is conceptually similar to that presented in 
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chapter 4 for adaptive nonlinear filters with additive noise. However, in the presence of non-

additive noise, the “augmented form” (the noise vector is augmented with the state vector) of 

non-adaptive nonlinear filtering algorithm [Wan2000, Sarkka2013a] is considered as an 

underlying framework. A detailed discussion on the non-adaptive framework is provided in 

above referred publications. The adaptation algorithms which have been designed for the 

non-additive noises are to be incorporated in the underlying framework.  

8.3.1   Underlying Framework of Non-adaptive filter 

In this section we present the algorithm of non-adaptive nonlinear filter with non-additive noise 

as given in [Wan2000, Sarkka2013]. This algorithm is used as underlying framework for the 

proposed general framework. The adaptation algorithms which have to be integrated in the 

underlying framework have been designed in the succeeding subsection.  

Initialization: Initialize kk00 R,Q,P,x ˆˆ  

Time update step: 

For the numerical method of integration select n no. of points ( iξ ) and weights ( iw ) for 

standard normal distribution and modify in the algorithmic steps as provided below. For 

selection of the modified sigma points use augmented vector concatenating state and process 

noise vector (i.e., [ ]Tθx ) as 

iα

kk

i

k ξPαχ +=~          (8.3) 

Where [ ]T0xα 1kk −= ˆ and ( )kk

α

k QPP ,ˆ
1−= diag  

These points are propagated through nonlinear dynamic equation as ( )qi

k

xi

k χχ ,, ~,~f  where 

xi
kχ
,~ is the first xn  elements of vector i

kχ
~  linked with states and qi

kχ
,~  is the rest of the elements 

of i
kχ

~  leaving the first xn  elements of vector i
kχ

~ . The vector qi
kχ
,~ is linked with the process 

noise. 

The a priori estimate of state is obtained as 

( ) i

n

i

wf∑
=

=
1

,, ~,~ qi

k

xi

kk χχx          (8.4) 

The respective a priori error covariance becomes 
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( )( ) ( )( )T
n

i

i ffw k

qi

k

xi

kk

qi

k

xi

kk xχχxχχP −−=∑
=

,,

1

,, ~,~~,~      (8.5) 

Measurement update step: 

Select the sigma points using augmented vector concatenating state and measurement noise 

vector (i.e., [ ]Tυx ) as 

iβ
kk

i
k ξPβχ +=          (8.6) 

Where [ ]T0xβ kk = and ( )kk

β

k RPP ,diag=  

The a priori estimate of measurement is given by 

( ) i

n

i

wg∑
=

=
1

,, , υi

k

xi

kk χχy          (8.7) 

where xi

kχ
, is the first xn  elements of vector i

kχ  and υi

kχ
,  is the rest of the elements of i

kχ  

leaving the first xn  elements of vector i

kχ .The vector υi

kχ
,  is linked with the measurement 

noise. 

The innovation covariance is obtained as 

( )( ) ( )( )T
n

i

i ggw k
υi

k
xi

kk
υi

k
xi

k
y

k yχχyχχP −−=∑
=

,,

1

,, ,,       (8.8) 

The cross covariance is given by 

( ) ( )( )T
n

i

x

i gw k

υi

k

xi

kk

i

k

xy

k yχχxχP −−=∑
=

,,

1

,
,       (8.9) 

The filter gain kK  can be computed using 

( ) 1−
= y

k

xy

kk PPK          (8.10) 

Having computed the gain kK  the a posteriori estimate of the state and the error covariance 

can be obtained by (8.11) and (8.12) respectively. 

( )kkkkk yyKxx −+=ˆ          (8.11) 

T

kKPKPP
y

kkkk −=ˆ          (8.12) 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 8 201 

8.3.2   Adaptation algorithms 

The adaptation algorithms for the covariance of non-additive noise necessitate substantial 

modification of the algorithms that are derived for cases of additive noise. Matrix 

approximations of the nonlinear function of noises are required for obtaining the adapted 

value of process or the measurement noise covariance. To derive the matrix approximation of 

the nonlinear function the method of statistical linearization has been followed instead of 

differentiation. The concept of statistical linearization is reported in [Geist2010, Sarkka2011] 

and has not been elaborated here. Only a few significant points are reiterated as a background 

for statistical linearization for the ease of interpretation of adaptation algorithms. 

8.3.2.1. Background for statistical linearization 

The system dynamics and the measurement equations are expressed as the nonlinear function 

of the vectors of system states and noise. About a particular operating point this nonlinear 

relation can be expressed in terms of the linearized relation as presented in (8.13). 

Let us consider the nonlinear system dynamics ( )k1kk θxfx ,−=  as given by (8.1). The 

linearlized model of (8.1) about a nominal point ( )k1k θx ˆ,ˆ
−  is expressed as 

( )
kθ

f

1kx

f

k1kk θxθxfx ∆+∆+=
∂

∂

−∂

∂

−
ˆ,ˆ        (8.13) 

In the same vein the linearlized model of the observation equation given by (8.2) can also be 

presented about a nominal point, ( )kk υx , , as  

( ) kυ

g

kx

g

kkk υxυxgy ∆+∆+=
∂

∂

∂

∂
,         (8.14) 

Here the ‘ ∆ ’ linked terms are perturbation of state and noise vectors about the nominal point. 

However, for the sigma point based filtering algorithms the Jacobians matrices indicated in 

the above expressions cannot be obtained as they readily appear in EKF. Therefore the 

matrix approximations are done on the basis of statistical linearization. The matrices obtained 

by the statistical linearization [Geist2010] can be referred as ‘pseudo matrix’ and this concept 

is also introduced in [Lee2008]. These matrices are obtained by executing the following steps 

using statistical linearization [Geist2010] and accordingly used in the algorithm. Below we 

present the basic steps of statistical linearization which have been used to derive the 

adaptation algorithms. 
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Let us consider a vector which is nonlinear function of two vectors following Gaussian 

distribution as 

( ) nnm ℜ∈ℜ∈ℜ∈= wxywx,fy ,,,       (8.15) 

where ( )xx P,mx N~  and ( )ww P,mw N~ . We can express the nonlinear relation in (8.15) 

by the linear approximation as 

( ) ( ) wΩxΦm,mfwx,f wx δδ ++=        (8.16) 

where  

Φ  and Ω  are matrix approximation of ( )wx,f  with respect to x  and w  respectively. Φ  

and Ω  are obtained as 

( ) ( )( )[ ] 1−−= x

T

wxw Pxm,mfmx,fΦ δE       (8.17) 

and 

( ) ( )( )[ ] 1−−= w

T

wxx Pwm,mfw,mfΩ δE       (8.18) 

For the situations with zero mean unity variance noise vector i.e., when ( )I0,w N~  , Ω  can 

be expressed as  

( ) ( )( )[ ]T

wxx wm,mfw,mfΩ δ−= E        (8.19) 

Alternatively, we can also write 

( ) ( )( ) ( ) ( )( )[ ]T

wxxwxx m,mfw,mfm,mfw,mfΩΩ −−= E
T  

Therefore, Ω  can also be obtained as 

( ) ( )( ) ( ) ( )( )[ ]( )T

wxxwxx m,mfw,mfm,mfw,mfΩ −−= EionfactorizatCholesky   (8.20) 

The advantage of the above approach is that the approximated matrix is always a square 

matrix and does not require matrix pseudo inverse when matrix inversion is required. This 

approach is followed in the adaptation algorithm as presented in the next subsection. 

 

8.3.2.2. R adaptation 

For R adaptation replace kR  with adapted 1
ˆ

−kR  of previous instant in (8.6) of the 

measurement update step. The expression of adapted R can be obtained as follows. Only for 
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k=1 the value of 1
ˆ

−kR  has to be assumed arbitrarily. Here we propose residual based R 

adaptation algorithm in the following steps. 

Select the sigma points using augmented random variable [ ]Tυx as 

iβ

kk

i

k ξPβχ ˆˆˆ +=          (8.21) 

Where [ ]T0xβ kk
ˆˆ = and ( )1

ˆ,ˆˆ
−= kk

β

k RPP diag  where xi

kχ
,ˆ is the first xn  elements of vector 

i

kχ̂  and υi

kχ
,ˆ  is the rest of the elements of i

kχ̂  linked with the measurement noise. 

The a posteriori estimate of measurement is obtained by 

( ) i

n

i

wg∑
=

=
1

,, ˆ,ˆˆ υi

k

xi

kk χχy          (8.22) 

The residual is obtained as 

kkk yyρ ˆ−=           (8.23) 

The residual covariance from a sliding window is computed as 

∑
+−=

=
j

LjjL 1

1ˆ T

kkρ ρρC          (8.24) 

Select another set of sigma points using augment random variable as 

iγ

kk

i

k ξPγχ +=
(

          (8.25) 

Where [ ]T0xγ kk
ˆ= and ( )IPP k

γ

k ,ˆdiag=  

Note that here we introduce a dummy variable which is following a standard normal 

distribution. Augmentation of this dummy variable in (8.25) enables us to obtain the matrix 

approximation of the nonlinear function of noise following (8.26) and (8.28). 

Transform the sigma points through the function ( )⋅g  as ( )υi

kk χxg ,,ˆ
(

 and ( )0χg xi

k ,,(
 where xi

kχ
,(

 

is the first n elements of vector i

kχ
(

 and υi

kχ
,(

consists rest of the elements. This indicates that 

for the first case the sigma points are used only for the matrix approximation of the nonlinear 

function with respect to the measurement noise keeping the state vector constant at kx̂ . For 

the second case the reverse has been done, i.e., sigma points are used only for the matrix 

approximation of the nonlinear function with respect to state estimate keeping the 
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measurement noise vector constant at its mean value. Using this two differently transformed 

set of sigma point we get the following equations 

( )∑
=

=
n

i

iw
1

,ˆ
,ˆˆ υi

kk

x

k χxgy
(

         (8.26) 

( )∑
=

=
n

i

iw
1

, ,ˆ 0χgy xi

kk

(υ          (8.27) 

To calculate the matrix approximation of the nonlinear function of measurement noise, first 

compute the matrix as given below. It is to be noted here that (8.18) and (8.20) have been 

used for statistical linearization. 

( )( ) ( )( )∑
=

−−=
n

i

i

T

w
1

ˆ,ˆ, ˆ,ˆˆ,ˆˆ x

k

υi

kk

x

k

υi

kk

υ

k yχxgyχxgP
((

      (8.28) 

Now find the required matrix approximation as the Cholesky factor of υ

kP̂ such 

that ( )Tυ

k

υ

k

υ

k SSP ˆˆˆ =          (8.29) 

The error covariance of a posteriori estimate of measurement is obtained using 

( )( ) ( )( )∑
=

−−=
n

i

i

T

w
1

,, ˆ,ˆ,ˆ υυ
k

xi

kk

xi

k

g

k y0χgy0χgP
((

       (8.30) 

The adapted measurement noise covariance is obtained using the following relation 

( ) ( ) ( ) T
υ

k

g

kρ

υ

kk SPCSR
−−

+= ˆˆˆˆˆ
1

        (8.31) 

8.3.2.3. Q adaptation 

For Q adaptation replace kQ  with adapted 1
ˆ

−kQ  of previous instant in (8.3) of time update 

step. The expression of adapted Q can be obtained as follows. Only for k=1 the value of 1
ˆ

−kQ  

has to be assumed arbitrarily. 

Find the innovation sequence as 

kkk yy −=ϑ           (8.32) 

The innovation covariance from a sliding window is computed as 

∑
+−=

=
j

LjjL 1

1ˆ T

kkkC ϑϑϑ          (8.33) 
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Select another set of sigma points using the steps given below 

iδ

kk

i

k ξPδχ +=
)

         (8.34) 

Where [ ]T0xδ 1kk −= ˆ and ( )IPP 1k

δ

k ,ˆ
−= diag  

Following the same approach of R adaptation here also we introduce a dummy variable 

which is following a standard normal distribution. 

Transform the sigma points through the function ( )⋅f  as ( )θi

k1k χxf ,,ˆ
)

−  and ( )0χf xi

k ,,)
. These 

are similar steps as explained in the R adaptation algorithm. For the first case the sigma 

points are used only for the matrix approximation of the nonlinear function with respect to 

the process noise keeping the state vector constant at 1kx −
ˆ . For the second case the reverse 

has been done, i.e., sigma points are used only for the matrix approximation of the nonlinear 

function with respect to state estimate keeping the process noise vector constant at its mean 

value. However, for Q adaptation the second set of sigma points is not necessary. Using only 

the first set of sigma point we get the following equations.  

( )∑
=

−=
n

i

iw
1

,ˆ
,ˆˆ θi

k1k

x

k χxfx
)

        (8.35) 

To calculate the matrix approximation of the nonlinear function of process noise, first 

compute the matrix as given below using (8.18) and (8.20) for statistical linearization 

( )( ) ( )( )∑
=

−− −−=
n

i

i

T

w
1

ˆ,ˆ, ˆ,ˆˆ,ˆˆ x

k

θi

k1k

x

k

θi

k1k

θ

k xχxfxχxfP
))

      (8.36) 

Now find the required matrix approximation by taking the matrix square root of θ

kP̂  by 

Cholesky factorization as ( )Tθ

k

θ

k

θ

k SSP ˆˆˆ =       (8.37) 

The adapted process noise covariance is then obtained using the following relation 

( ) ( ) T
θ

k

T

kk

θ

kk SKCKSQ
−−

= ˆˆˆˆ
1

ϑ         (8.38) 

8.3.3   Derivation of adaptation algorithm 

8.3.3.1. Q adaptation algorithm 

On the availability of the matrix approximations of nonlinear function with respect to the 

noise terms the adaptation algorithms can be derived as follows.  
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For derivation of the innovation based Q adaptation algorithm following MLE method refer 

equation (4.35) in chapter 4. We have derived already derived the relation in (4.35) by MLE 

method as presented below: 

[ ] TT

jjkk KKPP k

k

jj

k
L
∑
=

=−
0

1ˆ ϑϑ        (8.39) 

where 10 +−= Lkj  

The expression of a priori estimate of kP is gets modified with the matrix approximation by 

statistical linearization. If θ

kŜ , the matrix approximation of the nonlinear function with 

respect to the process noise vector is available the expression of kP  becomes 

( )( ) ( )( ) ( )T
n

i

i

T

w
θ

kk

θ

k

θ

k

xi

k

θ

k

xi

kk SQSx0χfx0χfP ˆˆˆˆ,ˆ,
1

,, +−−=∑
=

))     (8.40) 

( )( ) ( )( ) ( )Tθ

kk

θ

kk

θ

k

xi

k

θ

k

xi

kkk SQSPx0χfx0χfPP ˆˆˆˆˆ,ˆ,ˆ

1

,, +−−−=− ∑
=

n

i

i

T

w
))    (8.41) 

Here, ( ) i

n

i

w∑
=

=
1

, ,ˆ 0χfx xi

k

θ

k

)
. Note that the expression ( )( ) ( )( )∑

=

−−
n

i

i

T

w
1

,, ˆ,ˆ, θ

k

xi

k

θ

k

xi

k x0χfx0χf
))  is 

equivalent to the matrix f

kP  referred in chapter 4. It is mentioned earlier in chapter 4 that 

during the steady state reached by the filter the difference between f

kP  and kP̂  are 

negligible. Therefore, both the terms can be ignored from (8.41) leaving only the 

term ( )Tθ

kk

θ

k SQS ˆˆˆ . Therefore, the expression in (8.39) can be represented as 

( ) [ ] TT

jj

T
θ

kk

θ

k KKSQS k

k

jj

k
N
∑
=

=
0

1ˆˆˆ ϑϑ        (8.42) 

Hence the adapted Q matrix is obtained as 

( ) ( ) T
θ

k

T

kk

θ

kk SKCKSQ
−−

= ˆˆˆˆ
1

ϑ         (8.43) 

8.3.3.2. R adaptation algorithm 

For derivation of the residual based R adaptation algorithm using MLE method refer 

equation (4.73) in chapter 4. We have already derived the relation in (4.73) by MLE method 

as presented below: 
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( ) [ ] ( ) ( ){ }[ ] 0
0

11
=+−∑

=

−−
k

jj

jjjjjjjtr TTρT

jj

ρρ ΨKKΨICρρCC      (8.44) 

where  10 +−= Lkj  

For non-additive measurement noise with the availability of υ

kŜ , the matrix approximation of 

nonlinear function with respect to the measurement noise, (4.73) gets changed and 

represented as 

( ) [ ]( ) ( ) 0ˆˆ

0

11
=











 





 +−∑

=

−−
k

jj

jjjjjjjtr TT
T

υ

k

υ

k

ρT

jj

ρρ ΨKSSKΨICρρCC    (8.45) 

The expression ( ) 




 + TT

T
υ

k

υ

k ΨKSSKΨI jjjj
ˆˆ  being positive definite, the above expression 

becomes zero only when 

[ ] 0
0

=−∑
=

k

jj

j

T

jj

ρ
ρρC          (8.46) 

∑
=

=
k

jjL
0

1ˆ T

jj

ρ

k ρρC          (8.47) 

If the nonlinear function of measurement noise is approximated by the approximated matrix 

υ

kŜ  the residual covariance can be presented as 

( ) g

k

T
υ

kk

υ

k

ρ

k PSRSC ˆˆˆ −=  , alternatively, ( ) T

kkk

T
υ

kk

υ

k

ρ

k ΨPΨSRSC ˆˆˆ −= .  

See the derivation of (4.91) in chapter 4 for reference. The matrix g

kP̂ , error covariance of a 

posteriori estimate of state, is equivalent to T

kkk ΨPΨ ˆ where kΨ is the matrix approximation 

of the nonlinear measurement equation with respect to state estimate. Note also that g

kP̂  is 

equivalent to the matrix g

kP̂  referred in chapter 4. Here, g

kP̂  is expressed in the algorithm by 

(8.30). 

From (4.91) in chapter 4 we have already obtained the relation  

( ) ∑
=

=−
k

jjL
0

1ˆˆˆˆ T

jj

T

kkk

T
υ

kk

υ

k ρρΨPΨSRS        (8.48) 

This can now be expressed as 
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( ) ∑
=

=−
k

jjL
0

1ˆˆˆˆ T

jj

g

k

T
υ

kk

υ

k ρρPSRS        (8.49) 

( ) g

k

T

jj

T
υ

kk

υ

k PρρSRS ˆ1ˆˆˆ

0

+= ∑
=

k

jjL
        (8.50) 

Finally the adapted R can be derived as 

( ) ( ) T
υ

k

g

k

T

jj

υ

kk SPρρSR
−

=

−











+= ∑ ˆˆ1ˆˆ

0

1
k

jjL
       (8.51) 

As formulated on the basis of residual sequence the expression of adapted 
kR̂  ensures 

positive definiteness. 

It can be noted from the expression of adapted Q and R matrix that the matrix approximation 

of nonlinear function of noise which is obtained using statistical linearization has been used 

along with the window estimated state/measurement residual covariance matrix. 

8.4   Formulation of ADDF with Non-additive Noise 

The algorithm of non-adaptive Divided Difference filter is based on Taylor series 

approximation where the Jacobian and Hessian matrices are replaced with function 

evaluations with the help of Strings interpolation formula. In the work of [Norgaard2000] the 

algorithm for non-adaptive Divided Difference filter with non-additive noises has been 

presented. As the algorithm has been formulated on the basis of Taylor series approximation 

it is therefore not required to augment noises with state vector as done in the general 

framework presented above which is based on Bayesian approach. The steps for adaptive 

Divided Difference filter are different from that of general framework although the basic 

concept of filtering remains the same. The algorithmic steps are provided below. 

8.4.1   Non-adaptive DDF framework 

Initialization: Initialize 
0000 R,Q,P,x ˆˆ  

Time update step: 

Given 
1kP −

ˆ , compute the Cholesky Factor 1)(kˆ −xS  such that  

1)(kˆ1)(kˆˆ −−= T

xxk SSP         (8.52) 
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Given 
kQ , compute the Cholesky Factor (k)wS  such that  

(k)(k)
T

ww SSQ =          (8.53) 

Propagation of a priori estimate of state: 

The expression of a priori state is 

( ) ( ){ }

( ) ( ){ }∑

∑

=

−−

=

−−−

−−

−+++

−+++=

w

w

n

p

wwh

n

p
hh

nnh

hh

hh

1
2

1

1
2

1

ˆ,ˆˆ,ˆ

ˆˆˆˆˆ

2

22

2

p,k1kp,k1k

kpx,1kkpx,1kk1kk

swxfswxf

w,sxfw,sxf)w,xf(x

   (8.54) 

kw , the mean of the process noise is zero for the consideration of a zero mean noise. px,ŝ is p
th

 

column of 1)(kˆ −xS  , pw,ŝ is p
th

 column of (k)ˆ
wS and h  is the appropriately chosen interval 

length ( 3=h for Gaussian distribution [Norgaard2000]). 

Propagation of a priori error covariance: 

The a priori error covariance become 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )T(2)

xw

(2)

xw

T(1)

xw

(1)

xw

T(2)

xx

(2)

xx

T(1)

xx

(1)

xxk SSSSSSSSP kkkkkkkk ˆˆˆˆ +++=  (8.55) 

(k)ˆ
(1)

xxS , (k)(1)

xS w
 and (k)ˆ

(2)

xxS , (k)(2)

xS w
 are the first order and the second order approximation of the 

square root matrix of a priori error covariance. The elements of these matrices are obtained 

from (8.56) to (8.59) for i=1,…,n and j=1,…,n. 

( ) ( )( ( ))
kjx,1kikjx,1kiji,

(1)

xx wsxfwsxfS ,ˆˆ,ˆˆ(k)
2
1

ˆ hh
h

−−+= −−
     (8.56) 

( ) ( )( ( ) ( ))(
k1kikjx,1kikjx,1kiji,

(2)

xx wxfwsxfwsxfS ,ˆ2,ˆˆ,ˆˆ(k) 2

2

2

1
ˆ −−−

− −−++= hh
h

h   (8.57) 

( ) ( )( ( ))
j,k1kij,k1kiji,

(1)

x swxfswxfS wwhw hh ˆ,ˆˆ,ˆ(k)
2
1 −−+= −−

     (8.58) 

( ) ( )( ( ) ( ))(
k1kij,k1kij,k1kiji,

(2)

x wxfswxfswxfS ,ˆ2ˆ,ˆˆ,ˆ(k) 2

2

2

1
−−−

− −−++= wwh

h
w hh   (8.59) 

Measurement update step: 

Given
kP , Compute the Cholesky Factor (k)xS   

such that (k)(k) T

xxk SSP =          (8.60) 

Compute (k)vS  such that (k)(k)ˆ T

vv1k SSR =−
       (8.61) 

The a priori estimate of measurement: 
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The expression of the a priori estimate of the measurement is  

( ) ( ){ }

( ) ( ){ }∑

∑

=

=

−−

−+++

−+++=

v

v

n

h

n

p
hh

nnh

hh

hh

1p

pv,kkpv,kk

kpx,kkpx,kkkk

sv,xgsv,xg

vsxgvsxgvxgy

2

22

2

2

1

1
2

1 ,,),(

    (8.62) 

kv , the mean of the measurement noise is zero for the consideration of a zero mean Gaussian 

noise. 

Propagation of Innovation Covariance: 

The innovation covariance is computed using the following expression 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )T
kkkkkkkk (2)

yv

(2)

yv

T(1)

yv

(1)

yv

T(2)

xy

(2)

xy

T(1)

xy

(1)

xy

y

k SSSSSSSSP +++=   (8.63) 

(k)(1)

xyS  , (k)(1)

yvS  and (k)(2)

xyS , (k)(2)

yvS  are the first and second order approximation of the square 

root matrix of innovation covariance. These elements are obtained from (8.64) to (8.67) for 

i=1,…,p and j=1,…,n. 

( ) ( )( ( ))kjx,kikjx,kiji,

(1)

xy vsxgvsxgS ,,(k)
2
1 hh
h

−−+=      (8.64) 

( ) ( )( ( ) ( ))( kkikjx,kikjx,kiji,

(2)

xy vxgvsxgvsxgS ,2,,(k)
2

1
2

−−++= − hh
h

h    (8.65) 

( ) ( )( ( ))jv,kkijv,kkiji,

(1)

yv svxgsvxgS hh
h

−−+= ,,(k)
2
1      (8.66) 

( ) ( )( ( ) ( ))( kkijv,kkijv,kkiji,

(2)

yv vxgsvxgsvxgS ,2,,(k)
2

1
2

−−++= − hh
h

h    (8.67) 

The cross covariance is computed as  

[ ][ ]T(k)(k) (1)

xyx

xy

k SSP =          (8.68) 

In [Norgaard2000] it has been demonstrated that the cross covariance of second order DDF is 

same as that for first order DDF. 

The filter gain 
kK becomes 

( ) 1−
= y

k

xy

kk PPK           (8.69) 

The a posteriori estimate of state is given by 

( ) ˆ
kkkkk yyKxx −+=          (8.70) 

The a posteriori error covariance given by (8.70) ensures the positive definiteness 
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(k)(k)ˆ T

yyk SSP =          (8.71) 

where 

[ ])(

yk

)(

yk

(2)

xyk

(1)

xykxy SKSKSKSKSS
21

(k)(k) vv−=      (8.72) 

8.4.2   Adaptation algorithm 

8.4.2.1. R adaptation algorithm 

For R adaptation replace kR  with adapted 1
ˆ

−kR  of previous instant in (8.61) of the 

measurement update step. The algorithms for R adaptation are provided in the following 

steps.  

Given the a posteriori error covariance
kP̂ , compute the Cholesky Factorization (k)ˆ

xS  as 

(k)ˆ(k)ˆˆ T

xk SSP x=           (8.73) 

The a posteriori estimate of measurement is obtained as 

( ) ( ) ( ){ }

( ) ( ){ }∑

∑

=

=

−−

−+++

−+++=

n

p
h

n

p
hh

nnh v

1
2

1

1
2

1

ˆˆˆˆ

ˆˆˆˆˆˆ

2

22

2

px,kkpx,kk

kpx,kkpx,kkkk

shv,xgshv,xg

v,shxgv,shxgv,xgy

   (8.74) 

This step is similar to the step for a priori estimate of measurement. 
kv  is the mean of the 

measurement noise which is zero for the consideration of a zero mean noise. 

The error covariance of a posteriori estimate of measurement is obtained in a similar 

approach for computation of y

kP . 

( ) ( )( ( ))kjx,kikjx,kiji,

(1)

xy vsxgvsxgS ,ˆˆ,ˆˆ(k)
2
1

ˆ hh
h

−−+=      (8.75) 

( ) ( )( ( ) ( ))( kkikjx,kikjx,kiji,

(2)

xy vxgvsxgvsxgS ,ˆ2,ˆˆ,ˆˆ(k)
2

1
ˆ

2

−−++= − hh
h

h    (8.76) 

(k)ˆ

(1)

xyS  and (k)ˆ
(2)

xyS  are first and second order approximations of the error covariance of a 

posteriori estimate of measurement respectively.  

Residual is defined as the difference between the actual measurement and the a posteriori 

estimate of measurement and expressed as 

kkk yyρ ˆ−=           (8.77) 

Estimated residual covariance can be computed from a sliding window (size L) as 
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∑
+−=

=
k

Lkj

(j)(j)
L 1

1ˆ  ρρC Tρ

k
         (8.78) 

Compute the Divided Difference operator 
kvG ,

from equation (8.79) as 

( ) ( )( )TT
(k)(k)(k)(k) ofFactor Cholesky ,

(2)

vy

(2)

vy

(1)

vy

(1)

vykv SSSSG +=     (8.79) 

where 

( ) ( )( ( ))jkkijkkiji,

(1)

vy evxgevxgS hh
h

−−+= ,ˆ,ˆ(k)
2
1       (8.80) 

( ) ( )( ( ) ( ))( kkijkkijkkiji,

(2)

vy vxgevxgevxgS ,ˆ2,ˆ,ˆ(k)
2

12

−−++= − hh
h

h     (8.81) 

je  is the j
th

 unit vector.  

The divided difference operator kvG , is basically the matrix approximation of the nonlinear 

measurement equation with respect to the measurement noise component. The above steps 

are similar with the matrix approximation of the nonlinear function of noise. The similar 

approach is followed for the matrix approximation as explain before.  Here also we need to 

introduce a dummy variable following a standard normal distribution with zero mean unity 

covariance. First the square of the approximated matrix is computed using the steps of DDF. 

Subsequently the Cholesky factorization is taken. Alternatively, the square matrix can also be 

obtained by matrix triangularization as [ ]( )(k)(k),

(2)

vy

(1)

vykv SSG izeTriangular= . 

The adapted measurement noise covariance is finally derived following (8.31) as 

( ) ( )( )( ) 1

,ˆˆˆˆ,
ˆ(k)(k)(k)(k)ˆ −− ++= T

kv

ρ

k

(2)

xy

(2)

xy

(1)

xy

(1)

xy

1

kvk GCSSSSGR
TT

    (8.82) 

8.4.2.2. Q adaptation algorithm 

For Q adaptation replace kQ  with adapted 1
ˆ

−kQ  of previous instant in (8.53) of the time 

update steps. The expression of adapted Q is provided in the following steps. 

Consider the innovation sequence defined before as 

kkk yy −=ϑ           (8.83) 

Estimated innovation covariance can be computed from a sliding window (size L) as 

∑
+−=

=
k

LkjL 1

1ˆ  C T

jjk ϑϑϑ          (8.84) 
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Computation of Divided Difference operators of the nonlinear function of process noise: 

Compute the Divided Difference operator ,kwF from equation (8.85) 

( ) ( )( )T

wxwx

T

wxwx (k)(k)(k)(k) ofFactor Cholesky (2)(2)(1)(1)

k,w SSSSF +=      (8.85) 

where 

( ) ( ) ( )( )jkkijkkiji,

)(
exexS hwfhwf

hwx −−+= −− ,ˆ,ˆ(k) 112
11      (8.86) 

( ) ( )( ( ) ( ))( wfhwfhwf
h

h
wx ,ˆ2,ˆ,ˆ(k) 112

12

kijkkijkkiji,

(2) xexexS −−++= −−
−     (8.87) 

je  is the j
th

 unit vector. 

The divided difference operator k,wF is basically the matrix approximation of the nonlinear 

process equation with respect to the process noise component. The above steps are similar 

with the matrix approximation of the nonlinear function of noise. Here also we need to 

introduce a dummy variable following a standard normal distribution with zero mean unity 

covariance. First the square of the approximated matrix is computed using the steps of DDF. 

Subsequently the Cholesky factorization is taken. Alternatively, the square matrix can also be 

obtained by matrix triangularization method as [ ]( )(k)(k) (2)(1)

k,w SSF wxwxizeTriangular= . 

The adapted measurement noise covariance is finally derived following (8.38) as 

( ) 1T

k,w

T

kk

1

k,wk FKCKFQ
k

−−= ϑ
ˆˆ         (8.88) 

8.5   Characterization of proposed estimators 

Algorithms for adaptive estimators for non-additive noise which are proposed in this chapter 

have been demonstrated in this section. The R adaptive DDF for non-additive noise has been 

validated with the help of two tracking problems. In the first case study a single dimensional 

object tracking problem is considered with a measurement equation which is nonlinear 

function of state and measurement noise. Note that such a measurement equation may not be 

a realistic one. Nevertheless, we have considered this as a toy problem to validate the 

performance of R adaptive DDF for non-additive process noise The other one is a bearing 

only tracking problem where an object moving with a constant velocity and tracked by 

bearing only measurement from an on board sensor perturbed by platform disturbance. For 

the second tracking problem the performance of R adaptive DDF has been compared with R 
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adaptive CKF (both 3
rd

 degree and 5
th

 degree accuracy) which has been formulated using the 

proposed general framework. This estimation problem demonstrates that the measurement 

equation may be nonlinear function of noise in reality. 

The performance of Q adaptive DDF for non-additive process noise is demonstrated with the 

help of another estimation problem where the states and the friction coefficient of Van der 

pol’s oscillators are to be estimated. The system noise is considered to be non-additive in 

nature only for one of the states of the oscillator. Note also that such a system dynamics may 

not be a realistic one. Nevertheless, we have considered this again as a toy problem to 

validate the performance of Q adaptive DDF for non-additive process noise. 

8.5.1   Characterization of R-Adaptive estimators for non-additive noise  

8.5.1.1. Object Tracking Problem 

In this section, the performance of proposed filter has been evaluated using the object 

tracking problem described in chapter 3 for the situation when measurement noise covariance 

remains unknown and the noise is non-additive in nature. The equation for range 

measurement presented by (3.22) in chapter 3 is changed as 22 )( HvMy kk −++= 1

T

k ex . 

However, process noise statistics is considered to be known and additive. With the help of 

Monte Carlo study with 500 runs the RMS error for parameter and state estimates from the 

proposed R adaptive Divided Difference filter for the non-additive measurement noise has 

been presented. The performance comparison between the adaptive and non-adaptive version 

of DDF is carried out in the situations when (a) both filters do not have the knowledge of R, 

(b) ADDF does not have the knowledge of R while the non-adaptive DDF have knowledge 

of R as in the ideal situation. For the case when R is unknown both the filters are initialized 

with an assumed value of R. This value is chosen as 100 times of true R to induce sufficient 

uncertainty in the choice of R. For sliding window based adaptation the window length is 

chosen as 30 time instants. 

To generate the true state trajectories of target, the truth value of initial kinematic states and 

truth value of ballistic parameter are chosen as specified in chapter 3. Each filter has also 

been initialized with Gaussian prior as an initial state vector. 

Fig. 8.1, Fig. 8.2, Fig. 8.3 are provided to illustrate the RMS error for the state and the 

parameter estimation obtained from ADDF and the non-adaptive DDF. When the 
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measurement noise covariance is unknown performance of ADDF is significantly better than 

the non-adaptive DDF as the RMSE for parameter and the states settle down to a lower 

steady state value. ADDF can also accommodate an initial choice of R with a large error and 

can make the adapted value of R to converge on the truth value. 

It is also important to note that during steady state the RMSE performance of ADDF with 

assumed R is comparably similar with DDF with known R (ideal situation). The initial 

mismatch between the RMSE of ADDF and DDF with known R (ideal case) is because of 

the time taken by the adapted R to converge on the truth value. This can be verified from Fig. 

8.4. 

Fig. 8.5 demonstrates the tracking performance of Adapted R when the truth value is time 

varying. It can also be demonstrated from this observation that the satisfactory tracking of 

unknown time varying R is also ensured by the algorithm of ADDF even when the 

measurement equation is a nonlinear function of noise. 
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Fig. 8.1: Comparison of RMS error (altitude estimation) of ADDF & DDF for 

500 MC runs 
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Fig. 8.2: Comparison of RMS error (velocity estimation) of ADDF & DDF for 

500 MC runs 
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Fig. 8.3: Comparison of RMS error (parameter estimation) of ADDF & DDF 

for 500 MC runs 
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Fig. 8.4: Plot of adapted R when truth value is constant 
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Fig. 8.5: Plot of adapted R when truth value is time varying 

 

8.5.1.2. Bearing Only Tracking (BOT) Problem 

The bearing only tracking problem which is described in chapter 3 demonstrates the situation 

where the measurement noise becomes non-additive in nature. The non-additive noise is 

approximated as an additive noise in the previous work [Sadhu2006]. This case study also 

gives a scope to validate the R adaptive DDF and CKF with non-additive noise when the 

measurement noise covariance remains unknown. The R is unknown and therefore has to be 

assumed arbitrarily. Here, for simulation R for the filter is chosen as a value two decades 

higher than the truth value of R to induce uncertainty in the initial choice. However, truth 

value of R is used to simulate the true measurements. Both the adaptive and the non-adaptive 
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filter are initialized with the assumed value of measurement noise covariance i.e., 

( ) truefilter RR ∗=1000 . The performances of the filters are evaluated on the basis of percentage of 

track loss and the RMS errors. The track loss case is defined as the situation when the 

estimation error of position at the time instant 20 is greater than 15 meter [Sadhu2006]. The 

track loss cases are excluded from Monte Carlo runs during the calculation of RMS errors. 
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Fig. 8.6: RMSE of position of ACKF, ADDF and non-adaptive CKF 
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Fig. 8.7: RMSE of velocity of ACKF, ADDF and non-adaptive CKF 
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Fig. 8.8: Plot of adapted R of ACKF (3
rd

 degree) for element R(1,1) 
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Fig. 8.9: Plot of adapted R of ACKF (3
rd

 degree) for element R(2,2) 
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Fig. 8.10: Plot of adapted R of ACKF (3
rd

 degree) for element R(3,3) 

 

It has been observed from the simulation results that the percentage of track loss is 

significantly lower in case of R adaptive Cubature Kalman filter with 3
rd

 degree accuracy 

(RA-CKF 3
rd

 degree) compared to its non-adaptive version when R remains unknown. The 

RMSE (excluding the track loss cases) for the proposed filter converged to lower values 

within lesser time compared to non-adaptive filter as shown in Fig. 8.6 and Fig. 8.7 for 

position and velocity estimation respectively. This indicates that even when the track loss 

cases are excluded from the non-adaptive filter cannot provide satisfactory estimation results 

for other cases when track loss does not occur. As the track loss cases are excluded the 

RMSE did not start from the same initial points in the respective figures. 

The performance of RA-CKF (3
rd

) is compared with R adaptive Cubature Kalman filter with 

5
th

 degree accuracy (RA-CKF 5
th

 degree) and R adaptive DDF. Their RMSE (excluding the 

track loss cases) are found comparable. 

During the analysis of track loss cases it has been observed that the percentage of track loss 

is 0.36% for RA-CKF (3
rd

) while that for its non-adaptive version is 2.32%. The percentage 

of track loss for RA-CKF (5
th

) is 0.34% which is comparably same with that for RA-CKF 

(3
rd

). The track loss percentage for R adaptive DDF with non-additive noise is found as 0.4% 

which is slightly higher than RA-CKF (both 3
rd

 5
th

 degree). 
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The performance of the RA-CKF (3
rd

) with unknown noise covariance is also compared with 

the non-adaptive filter in the ideal situation when the R is known. This comparison is carried 

out to investigate how close the adaptive filter (with unknown R) can perform compared to 

the non-adaptive filter in ideal situation with knowledge of R. It is found that the track loss 

has not occurred at all for non-adaptive filter in ideal situation with known R. Note also that 

the non-adaptive estimators (UKF and EKF) with known R reported in [Sadhu2006] track 

loss has occurred as the additive approximation of measurement noise has been made. The 

track loss cannot be overruled also for the proposed adaptive estimators with non-additive 

noise. However, susceptibility of track loss is less for the adaptive estimators. So it may be 

said that proposed adaptive filter without knowledge of R try to perform as good as the non-

adaptive filter in the ideal situation. 

The plots of adapted R is presented in Fig. 8.8 to Fig. 8.10 where it has been observed that 

the diagonal elements of adapted R converged to the corresponding truth values staring from 

the assumed value and continue to track that value for the subsequent times. To investigate 

the effect of the assumed initial choice of R on the adaptation performance of the proposed 

RA-CKF (3
rd

), ( )0filterR is chosen deliberately with higher and lower values with large errors 

such as ( ) truefilter RR ∗= 2100  and ( ) truefilter RR ∗= −2100  respectively. Although the assumed 

values have a large error the adapted R has converged to the truth value. This indicates that 

the proposed filters may accommodate a wide range of uncertainty in the initial choice of R. 

The Bearing only tracking problem has been considered in a publication (mentioned in the 

list of conference papers with serial number ‘8’, section 1.7.3, chapter 1) of the co worker, 

Ms. Manasi Das wherein the present worker is a co-author. Adaptive UKF with non-additive 

measurement noise has been proposed in that work and its performance has been compared 

with Adaptive DDF for the non-additive measurement noise. More discussions on AUKF for 

non-additive measurement noise are provided in the referred paper. 

8.5.2   Characterization of Q adaptive DDF for non-additive noise 

8.5.2.1. State estimation of Van der Pol’s oscillator 

The Q adaptive DDF for non-additive process noise is validated with an estimation problem 

wherein the states and the friction coefficient of Van der Pol’s oscillator are to be estimated. 

The process noise is assumed to be unknown and also non-additive in nature. Instead of 
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considering the noise term added directly with the state vector, square of the noise terms are 

considered to be added with the 2
nd

 state (x(2)) of the augmented state vector (x). This makes 

the system dynamics a nonlinear function of process noise. This consideration may not be 

realistic. Because of the paucity of the realistic model of systems with non-additive process 

noise, such a model is considered as a toy problem for the validation of Q adaptive DDF with 

non-additive noise. In reality the process noise are often non-additive in nature which are 

difficult to model mathematically and therefore approximated as additive noise. The process 

noise covariance is considered as [ ]( )664 101010 −−−= diagtrueQ  to simulate the true state 

trajectories. The process noise covariance being unknown to the filter it is initialized here 

with an assumed value for the filter. For this case study filterQ is chosen as truefilter QQ ×= 510  

 

0.01

0.1

1

0 5 10 15 20 25 30

time (sec)

R
M

S
E

- 
x
1

ADDF

DDF

 

Fig. 8.11: Comparison of RMS error (state, x1 estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 8.12: Comparison of RMS error (state, x2 estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 8.13: Comparison of RMS error (friction coefficient estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 8.14: Plot of true and adapted Q(1,1) for a typical run 
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Fig. 8.15:  Plot of true and adapted Q(2,2) for a typical run 
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Fig. 8.16: Plot of true and adapted Q(3,3) for a typical run 
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Fig. 8.17: Comparison of phase portrait of the DDF and ADDF estimates with that of true states 

From the simulation results it is found that RMS error for both the states and the parameter 

obtained from Adaptive DDF is much lower than its non-adaptive version. Fig. 8.11 – 8.13 

are provided for illustration. 

It is also observed that the tracking performance of Q is less accurate compared to the R 

adaptive filters. The elements of adapted Q tend to converge on the corresponding truth 

value, however, cannot track truth value satisfactorily. Fig. 8.14 – 8.16 are presented to 

support the above statement. 

In Fig. 8.17 the phase plane plot for a representative run is provided. It is found that the 

estimate of ADDF although initialized with a point outside the limit cycle gradually 

converges and retraces the limit cycle of the true state trajectory. The non-adaptive DDF, on 

contrary, cannot converge on the actual limit cycle and shows a diverging tendency. 
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8.6   Discussions and Conclusions 

In this chapter algorithms for adaptive nonlinear filters have been proposed where the system 

dynamics or the measurements are nonlinear function of states and noise with unknown noise 

covariance. The adaptation algorithms for non-additive noise have been derived after 

substantial modifications of the adaptation algorithm for additive noise. Proposed algorithms 

are validated in simulation. Significant finding are enumerated below: 

• R adaptive DDF for non-additive measurement noise proposed in this chapter has 

been validated with the object tracking problem in the presence of non-additive 

measurement noise. RA-DDF is found to outperform its non-adaptive version when 

the knowledge of the measurement noise covariance remains unavailable. During 

steady state the performance of RA-DDF without knowledge of R is found to be 

nearly comparable with non-adaptive DDF in the ideal situation where accurate value 

of R is known only to the non-adaptive filter. 

• Performance of RA-DDF also has been compared with R Adaptive CKF (both 3
rd

 and 

5
th

 degree) which are formulated from the proposed general framework for adaptive 

nonlinear filter with non-additive noise. The performance comparison is carried out 

for the bearing only tracking problem where the measurement equation is indeed a 

nonlinear function of state and measurement noise. It is observed that for this case 

study that the performance of RA-CKF (both 3
rd

 and 5
th

 degree) is comparable with 

that RA-DDF on the basis of RMSE and percentage of track loss.  

• Q adaptive DDF for non-additive process noise proposed in this chapter is validated 

with the estimation problem of Van der Pol’s oscillator. QA-DDF also found to 

outperform its non-adaptive version in the face of unknown process noise covariance. 

• It has been observed from the simulation results that the adapted value of unknown 

measurement noise covariance satisfactorily converges on the truth value and 

continues to track it for subsequent time for non-additive measurement noise. 

However, for non-additive process noise accuracy of Q tracking performance is not 

satisfactory. Approximations made while deriving adaptation algorithms for Q may 

be the reason behind such inaccuracy in the Q tracking performance. Nevertheless, 
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QA-DDF is better than non-adaptive DDF while compared on the basis of estimation 

performance. 

From the above observations it may be concluded that these newly designed adaptive 

nonlinear filters for non-additive noise demonstrate superior estimation performance 

compared to their non-adaptive counterpart and may be recommended as a suitable candidate 

for estimation when noises are non-additive in nature and the noise covariance remain 

unknown. 



Chapter 9: Adaptive Nonlinear Information Filters for 
Multiple Sensor Fusion 

9.1   Chapter Introduction 

In this chapter a general filtering algorithm for adaptive nonlinear information filters is 

proposed which is an extension of general framework for adaptive nonlinear estimators 

presented in chapter 4. The Information filter variant of state estimators is widely 

recommended for multiple sensor estimation as this particular variant of estimators is 

computationally economic, supports decentralized sensor fusion, and easy to initialize 

[Anderson1979, Whyte2008].  

Sensor fusion is a conventional process where measurements from multiple sensors are 

integrated to obtain sufficiently reliable and enriched estimate of the unmeasured states of the 

system. Formulation of an estimation problem and its solution is one of the central aspects of 

successful sensor fusion. Publications on non-adaptive nonlinear filters with information 

filter configuration for nonlinear state estimation are plenty and indicate continued interest in 

this form of filter ( e.g. Unscented information filters [Lee2008], Central Difference 

information filters [Liu2011], Cubature information filters [Chandra2011]). More discussions 

have been provided in the literature survey. 

However, like other nonlinear filters with standard error covariance form, successful 

performance of multiple sensor data fusion using information filters presupposes complete 

knowledge of the covariance of the sensor noise and the system noise. An inaccurately 

chosen initial value of noise covariance degrades the performance of the filter and the 

estimates of state get deteriorated even after multiple sensor fusion. 

The information filter configuration for adaptive nonlinear filters has not yet received much 

attention. Formulation of adaptive information filtering techniques for nonlinear signal 

models is, therefore, an evolving area of knowledge as it is mentioned in a recent review 

paper on sensor fusion [Khalegi2013]. Only a few works exists in literature where adaptive 

versions of nonlinear information filters have been reported. Among them, adaptive Cubature 

Information filters [Tao2014, Ge2014] are noteworthy as discussed in the chapter on 

literature survey.  
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In this chapter the general framework of adaptive nonlinear filter in standard error covariance 

form has been extended with information filter configuration. The same concept for 

adaptation of process or measurement noise covariance as discussed in chapter 4 has been 

followed here. The adaptation algorithms are integrated in the information filter algorithms 

so that the unknown noise covariances can be adapted and the sensor fusion may become 

successful. With this general framework a number of adaptive nonlinear information filters 

have been formulated which include adaptive versions of (i) Divided Difference information 

filter, (ii) Cubature information filter (3
rd

 & 5
th

 degree), (iii) Unscented information filter, 

(iv) Gauss Hermite information filter, (v) Cubature Quadrature information filter (3
rd

 & 5
th

 

degree).  

Performances of these newly proposed algorithms have been validated with the help of multi 

sensor estimation problem in contingent situations where the system (process) noise 

covariance remains unknown; system dynamics suffers from unknown parameter variations. 

Alternatively, situations are also considered where the knowledge of the noise covariances of 

some of the sensors remains unavailable where the sensor characterization has been partially 

done. During characterization of these estimators, parameter as well as state estimation 

performance of the proposed estimators has been demonstrated. 

The adaptive information filtering algorithms in square root framework are also proposed in 

this chapter. The advantages of square root approach have already been explained in chapter 

4 and are also applicable in case of information filters. With the R adaptation algorithms the 

square root versions of (i) adaptive Cubature Quadrature information filters (RA-SR-CQIF), 

(ii) adaptive Cubature information filters (RA-SR-CQF) and (iii) adaptive Gauss Hermite 

information filters (RA-SR-GHIF) are demonstrated. 

9.2   Problem Statement 

We consider an augmented nonlinear dynamic system as given below 

k1kk wxfx += − )(          (9.1) 

ζ

kk

ζζ

k v)(xgy +=          (9.2) 

Here n

kx ℜ∈ is an augmented state vector, By the term augmented state vector, it is meant 

that the unknown parameters have been concatenated with the state vector such that 
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dimension of the augmented state vector is n . The difference equations corresponding to 

unknown parameters kθ are considered to obey the random walk model, i.e., θ

k1kk wθθ += − , 

where θ

kw  is the noise term. ),(~ k

n

k Q0w ℜ∈  indicates zero mean process noise (Gaussian 

white noise). mζ

ky ℜ∈  is the measurement available from the thζ sensor among M different 

sensors where M,,1 L=ζ . The measurement noise of each sensor is also considered to be 

white (Gaussian) and denoted as, )(~
ζmζ

k R0,v kℜ∈ . 

In the situation when the system dynamics suffers from modeling uncertainties or unknown 

parameter variation complete knowledge of the process noise covariance often remains 

unavailable. Some of the elements of 
kQ  remain unknown and therefore need to be adapted. 

In some situations the noise covariances of some of the sensors may remain unavailable 

where noise characterization has not been carried out. When ζ
kR of thζ  sensor among the 

available M sensors remians unknown, adaptation of ζ
kR becomes necessary for satisfactory 

estimation. 

9.3   Formulation of Adaptive Nonlinear Information Filter 

9.3.1   Overview 

Information filter for linear signal models is the inverse covariance form of Kalman filter 

where the information vector and information matrix are propagated instead of state estimate 

and its error covariance. The information matrix (Also known as Fisher’s information matrix) 

is the inverse of the error covariance matrix. This specific form of estimation algorithm is 

characterised by information matrix and information vector (termed  as canonical parameters 

in [Liu2012]). With the help of matrix inversion identities [Anderson1979] the information 

filter variants of Kalman filter and Extended Kalman filter can be readily obtained. However, 

the information filter form of the sigma point filter cannot be obtained using such matrix 

inversion identities. The algorithms for information filters using sigma points are reported in 

literature [Vercauteren2005, Lee2008] where some significant modifications of the algorithm 

are essential. 

Unlike the sigma point filters in standard error covariance form information filter variants 

require availability of matrix approximation of nonlinear measurement equation which is not 
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readily available with nonlinear signal models other than Extended information filter (EIF). 

Therefore, [Lee2008] has recommended computation of a pseudo measurement matrix with 

the help of Statistical Linearization which enables to formulate the information filter variants 

of nonlinear filters. In the following section algorithm of non-adaptive nonlinear information 

filters has been presented. 

9.3.2   Non-adaptive Nonlinear Information filter 

The algorithm for non-adaptive nonlinear information filter has been provided this section. 

Theorem 4.1 provided in chapter 4 regarding the non-adaptive nonlinear filter in standard 

error covariance form has been considered again to derive the information filter variant of 

estimator. The matrix inversion identities from [Anderson1979] are provided below and have 

been used for obtaining the information filter variant of nonlinear estimators. 

Matrix Inversion Identity 9.1: 

( ) ( )
nnmnnmmm ××××

−−−−−−−

ℜ∈ℜ∈ℜ∈ℜ∈

+−=+

DCBA

CABCADBAACBDA 1111111

,,, where
 

Matrix Inversion Identity 9.2: 

( ) ( )
nnmnnmmm ××××

−−−−−−

ℜ∈ℜ∈ℜ∈ℜ∈

+=+

DCBA

BCADBABDCBDA
111111

,,, where
 

 

From Theorem 4.1 given in chapter 4 we have: 

( ) ˆ
kkkkk yyKxx −+=          (9.3) 

T
k

y
kkkk KPKPP −=ˆ          (9.4) 

where  

( ) ( ) 1−−−−∫= k1k1k

R

1kk dxYxxfx

n

p         (9.5) 

( )( ) ( )( ) ( ) 1k1k1kk1k

R

k1kk dxYxxxfxxfQP

n

−−−−− −−+= ∫ p
T     (9.6) 

( ) ( ) k1kk

R

kk dxYxxgy
n

−∫= p         (9.7) 
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( )( ) ( )( ) ( ) k1kk

R

kkkk

xy

k dxYxyxgxxfP
n

−∫ −−= p
T       (9.8) 

( )( ) ( )( ) ( ) k1kk

R

kkkk

y

k dxYxyxgyxgRP
n

−∫ −−+= p
T      (9.9) 

( ) 1−
= y

k
xy

kk PPK           (9.10) 

Here, we consider the pseudo measurement matrix of the nonlinear measurement equation as 

defined in [Lee2008, Liu2011, Chandra2011] following the method of Statistical 

Linearization. The pseudo measurement matrix kΨ is defined as 

( )Txy

k

1

kk PPΨ −=           (9.11) 

Using kΨ , xy
kP  and y

kP can be expressed as: 

T
kΨPP k

xy
k =           (9.12) 

T
kk ΨPΨRP k

y
k +=          (9.13) 

Therefore, the expression of filter gain becomes similar to that of Kalman filter, i.e., 

( ) 1−
= y

k
xy

kk PPK           (9.14) 

( ) 1−
+= T

kk
T
k ΨPΨRΨPK kkk         (9.15) 

We have  

The a posteriori error covariance , T

k

y

kkkk KPKPP −=ˆ , which can alternatively presented as 

( ) ( )Txy

k

y

k

xy

kkk PPPPP
1ˆ −

−=         (9.16) 

It can also be expressed in terms of kΨ  as 

( ) kkkkk PΨΨPΨRΨPPP k

T

kk

T

k

1ˆ −
+−=        (9.17) 

The a posteriori (updated) information matrix corresponding to kP̂ is given by 

1

kk PZ −= ˆˆ           (9.18) 

( )( ) 11ˆ
−−

+−=⇒ kkkkk PΨΨPΨRΨPPZ k

T

kk

T

k
      (9.19) 
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Using matrix inversion identity 9.1, the expression ( ) kkkk PΨΨPΨRΨPP k

T

kk

T

k

1−
+−  can be 

written as ( ) 111 −−− + k

T

kk ΨRΨP   and  
kẐ  becomes 

( )k

T

k ΨRΨZZ kk

1ˆ −+=          (9.20) 

Where 
kZ  indicates a priori information matrix, 

 1

kk PZ −=           (9.21) 

The a posteriori information vector is derived as presented below: 

k

1

kk xPz ˆˆˆ −=  

( ) ( )( ) ˆ 11

kkkkk yyKxΨRΨPz −++=⇒ −−
k

T

kk
 

( ) ( ) ( ) ˆ 1111

kkkkk yyKΨRΨPxΨRΨPz −+++=⇒ −−−−
k

T

kkk

T

kk
 

( ) ( ) ( ) ˆ
11111

kkkkkkk yyΨPΨRΨPΨRΨPxΨRΨxPz −++++=⇒
−−−−− T

kk

T

kk

T

kkk

T

kk
 

( )( ) ( ) ˆ 11111111

kkkkk yyRΨΨRΨPΨRΨPxΨRΨxPz −++++=⇒ −−−−−−−− T

kk

T

kkk

T

kkk

T

kk
 

kkkkk yRΨyRΨxΨRΨzz 111ˆ −−− −++=⇒ T

k

T

kk

T

k
 

Therefore,  a posteriori information vector is obtained as 

( )kkkkk xΨyyRΨzz k

T

k +−+= −1ˆ        (9.22) 

where kz , the a priori information vector is defined as kkk xZz =    (9.23) 

The algorithm of non-adaptive information filter is presented (9.5) from (9.23) considering 

( ) ( )⋅=⋅ gg ζ  

9.3.3   Adaptation algorithms 

The methods of adaptation for process noise covariance and measurement noise covariance 

have been presented in detail in chapter 4. The same adaptation algorithms can be reproduced 

with the following considerations.  

For the derivation of adaptation algorithms all the available measurements are to be 

augmented to get an augmented measurement vector as [ ]Tkkkk yyyy M
K

21=  with order 

mM. Therefore, the corresponding measurement noise covariance becomes 

( )M
diag kkkk RRRR ,,, 21

K=  and the augmented pseudo measurement matrix would appear as 
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( )Mdiag kkkk ΨΨΨΨ ,,, 21
K= . Now, employing the innovation or residual sequence the following 

adaptation steps can be derived in the same way as presented in chapter 4. In this chapter we 

present only the adaptation algorithms instead of re-deriving them to avoid repetition. 

9.3.3.1. Adaptation of Process Noise Covariance 

The process noise covariance can be adapted using the window estimate of the state residual 

where the state residual is defined as  kkk xxη −= ˆ  or, k

1

kk

1

kk zZzZη −− −= ˆˆ  

The adapted process noise covariance, after some approximation, becomes 

[ ]∑
+−=

=
k

Lkj

T

k
L 1

1ˆ
kkηηQ          (9.24) 

9.3.3.2. Adaptation of Measurement Noise Covariance 

The measurement noise covariance as discussed in chapter 4 can be adapted incorporating 

innovation sequence as well as the residual sequence. However, the latter is preferred 

because of its additional advantage of ensured positive definiteness. The innovation or, the 

residual sequence for thζ measurement is used for adaptation of thζ  measurement noise 

covariance. 

The adaptation step for measurement noise covariance using innovation sequence can be 

presented as 

( ) T

kkk

k

1kj

Tζ

j

ζ

j

ζ

k ψPψR −= ∑
+−= LL

ϑϑ
1ˆ        (9.25) 

Where the innovation is defined as ζ

k

ζ

k

ζ

k yy −=ϑ  

Alternatively, for residual based R adaptation the expression of the adapted measurement 

noise covariance can be presented as 

( ) T

kkk

Tζ

j

k

1kj

ζ

j

ζ

k ψPψρρR ˆ1ˆ += ∑
+−= LL

       (9.26) 

where the residual is defined as ζ

k

ζ

k

ζ

k yyρ ˆ−=  

9.4   General Framework 

The algorithm for adaptive nonlinear information filters is presented below in a general 

framework so that different methods of sigma point and weight selection can be applied and 
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subsequently the respective adaptive information filtering algorithm can be formulated. 

Following the numerical methods sigma points are generated which are represented as qi and 

wi in the algorithm where N denotes the number of points. 

9.4.1   Algorithmic steps 

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR INFORMATION FILTER 

(i) Initialization: Initialize ζ

k00 R,Q,P,x ˆˆ  

(ii) Time update step (propagation): 

Compute Cholesky Factor such that ( )T
1k1k1k SSP −−− = ˆˆˆ     (9.27) 

The points selected for propagation of mean and covariance are given below as  

1ki1ki xqSχ −− += ˆˆˆ          (9.28) 

Compute a priori estimate of state as 

∑
=

=
N

i

iw
1

)ˆ( ik χfx          (9.29) 

and respective a priori error covariance is obtained as 

( )( )∑
=

−−+=
N

i

i

T
w

1

)ˆ()ˆ( kikik xχfxχfQP       (9.30) 

The a priori information matrix is obtained as 

1−= kk PZ           (9.31) 

The a priori information vector becomes kkk xZz =      (9.32) 

(iii) Measurement update step: 

Compute the Cholesky Factor such that ( )Tkkk SSP =     (9.33) 

Select sigma points as kiki xqSχ +=       (9.34) 

The a priori estimate of measurement becomes 

∑
=

=
N

i

iw
1

)( i

ζζ

k χgy          (9.35) 

The cross covariance can be computed as  
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( )( )∑
=

−−=
N

i

i

T
w

1

)( ζ

ki

ζ

ki

xy

k yχgxχP        (9.36) 

The pseudo measurement matrix becomes 

( ) xy

k

1

k

ζ

k PPΨ
−

=          (9.37) 

The a posteriori of information matrix is  

1
kk PZ −= ˆˆ            (9.38) 

Where ( ) ( ) ζ

k

1ζ

k

ζ

k

1

k

1

k ΨRΨPP
−−− +=

Tˆ        (9.39) 

The a posteriori estimate of information vector is obtained as 

( ) ( ) ( )k

ζ

k

ζ

k

ζ

k

1ζ

k

ζ

kkk xΨyyRΨzz +−+=
−T

ˆ       (9.40) 

Therefore, the a posteriori estimate of state becomes  

k
1

kk zZx ˆˆˆ −=           (9.41) 

(iv) Q-Adaptation Steps: 

When Q is unknown, on contrary, R is known, i.e., ζ

k

ζ

k RR =  the steps for Q adaptation have 

to be executed after replacing 1
ˆ

−= kQQ  in (9.30) of the time update steps 

Compute the state residual sequence as 

kkk xxη −= ˆ           (9.42) 

The estimated residual covariance can be computed from a sliding window of length L  

( ) ( )∑
+−=

=
k

LkjL 1

1ˆ jηjηC
T

kk

η

k         (9.43) 

The adaptation step for kQ̂  is given by 

η

kk CQ ˆˆ =           (9.44) 

(v) R-Adaptation Steps: 

When noise covariance of thζ  sensor is unknown, on contrary, Q is known, i.e., QQ =  the 

steps for R adaptation are to be executed replacing ζ

1k

ζ

k RR −= ˆ  in (9.39) and (9.40) 

Innovation based R adaptation: 
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Compute the innovation sequence as 

ζ

k

ζ

k

ζ

k yy −=ϑ           (9.45) 

The estimated residual covariance can be computed from a sliding window of length L  

( ) ( )( )∑
+−=

=
k

LkjL 1

1ˆ Tζ

k

ζ

k jjC
k

ϑϑϑ         (9.46) 

The expression of adapted R is given by 

g

k

ζ

k PCR −=
kϑ

ˆˆ          (9.47) 

where 

( )( )∑
=

−−=
N

i

i

T
w

1

)()( ζ

ki

ζζ

ki

ζg

k yχgyχgP       (9.48) 

Residual based R adaptation: 

Compute the residual sequence as 

ζ

k

ζ

k

ζ

k yyρ ˆ−=           (9.49) 

where 

∑
=

=
N

i

iw
1

)ˆ(ˆ
i

ζζ

k χgy          (9.50) 

The estimated residual covariance can be computed from a sliding window of length L  

( ) ( )( )∑
+−=

=
k

Lkj

T

jj
L 1

1ˆ ζ

k

ζ

k

ρ

k ρρC         (9.51) 

The expression of adapted R 

g

k

ρ

k

ζ

k PCR ˆˆˆ +=           (9.52) 

( )( )∑
=

−−=
N

i

i

T
w

1

ˆ)ˆ(ˆ)ˆ(ˆ ζ

ki

ζζ

ki

ζg

k yχgyχgP       (9.54) 

(vi) Recursion: The time update and measurement update steps are repeated for obtaining the 

estimates for the subsequent time steps starting from k=1. 
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9.4.2   Multiple Sensor Fusion 

Estimation using multiple measurements is preferred for obtaining a reliable estimate using 

the algorithm of adaptive information filter. Information filters supports decentralized 

approach of multiple sensor estimation which does not require central processing unit and 

increases the reliability of sensor fusion even in face of sensor failures.  

The updated information vector and information matrix after fusion is obtained as a linear 

combination of the local information contribution terms as given by: 

∑
=

+=
M

1ζ

ζ

kkk φzẑ           (9.55) 

∑
=

+=
M

1ζ

ζ

kkk ΦZẐ          (9.56) 

Here, for thζ  sensor, the local contribution for information vector and information matrix are 

obtained from the above algorithm as 

( ) ( ) ( )k

ζ

k

ζ

k

1ζ

k

ζ

k

ζ

k xΨRΨφ +=
−

ϑ
T         (9.57) 

( ) ( ) ζ

k

1ζ

k

ζ

k

ζ

k ΨRΨΦ
−

=
T

         (9.58) 

Finally the updated estimates of systems state and error covariance matrix after multi sensor 

data fusion are obtained as 

k

1

kk zZx ˆˆˆ −=           (9.59) 

where, 

1

kk ZP
−= ˆˆ           (9.60) 

9.4.3   Choice of Sigma Points and Weights 

In this section the possible set of sigma points and weights are presented which can be 

selected based on numerical methods. These sigma points and weights can be applied in the 

general algorithm to formulate variants of adaptive sigma point information filters. 

Depending on the choice of sigma points and weights, the general algorithm presents 

adaptive versions of (i) Unscented Information filter (ii) Divided Difference Information 

filter (iii) Gauss Hermite Information filters and (iv) Cubature Information filter (3
rd

 degree 

and 5
th

 degree) (v) Cubature Quadrature Information filter (3
rd

 degree and 5
th

 degree). 

Adaptive sigma point filters developed in standard error covariance have been presented in 
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the previous chapters where the numerical methods for selection of sigma points have been 

discussed in detail. Here we present only the steps for selection of the sigma point using 

different approaches. 

9.4.3.1. Unscented Transformation Rule 

Following the unscented transformation rule [Julier2004], 2n+1 number of sigma points and 

the corresponding weights can be generated as given below. We select the points for a 

Gaussian distribution with zero mean and unity covariance. These points will undergo a scale 

change and origin shift to suit the steps of general algorithm.  

TABLE-9.1: SELECTION OF SIGMA POINTS & WEIGHTS 

Steps for generation of sigma points: 

For i=0, 0q0 = ; 

λ+= nii eq  for ni ,,1L=  

λ+−=+ niin eq  for ni ,,1L=  

Here, ie  is the i
th

 unit vector,  

Where (i) ( )n12 −= αλ , 6.0=α , 2=β  [Merwe2003]or (ii) n−= 3λ  [Julier2000] 

Steps for weight selection: 

The weights corresponding to the sigma points, iq  are 

)1(  ;
2

00 βα
λ

λ

λ

λ
+−+

+
=

+
=

n
w

n
w

cm  and
( )

0.i for,   
2

1
  ≠

+
==

λn
ww c

i
m
i  

Where (i) ( )n12 −= αλ , 6.0=α , 2=β  [Merwe2003]or (ii) n−= 3λ  [Julier2000] 
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9.4.3.2. Gauss Hermite Quadrature Rule 

Gauss Hermite quadrature rule as in [Ito2000] is presented in Table 9.2. 

TABLE-9.2: SELECTION OF QUADRATURE POINTS & WEIGHTS 

Steps for generation of quadrature Points: 

Compute J , a symmetric tri-diagonal, defined as 0, =iiJ  and 21,
i

ii =+J  for 11 −≤≤ Ni for 

N -quadrature points. 

The quadrature points are chosen as ii xq 2= where ix are the eigen values of J  matrix. 

Steps for weight selection: 

The corresponding weights ( iw ) of iq is computed as ( ) 2

1iv where ( )
1iv is the first element of 

the i
th

 normalized eigenvector of J  

For multi dimensional system the quadrature points and weights are obtained with the help of 

direct tensor product rule as mentioned in chapter 6. 

9.4.3.3. Cubature Rule 

The third degree cubature rule as in [Arasaratnam2009] is presented in Table 9.3.1. 

TABLE-9.3.1: SELECTION OF CUBATURE POINTS & WEIGHTS 

Steps for generation of cubature points: 

2n number of cubature points have been selected as 

nii eq =  for ni ,,1L=  

niin eq −=+  for ni ,,1L=  

Here, ie  is the i
th

 unit vector 

Steps for weight selection: 

The weights of the corresponding cubature points are considered as 

.0 for,   
2

1
  ≠= i

n
wi  

The above points are selected based on cubature rule with third degree accuracy.  
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We can also get the points from the fifth degree cubature rule following [Jia2013] as given in 

Table 9.3.2. 

TABLE 9.3.2: SELECTION OF CUBATURE POINTS & WEIGHTS 

Cubature Points ( )iq  Weights ( )iw  

0  
n

w
+

=
2

2
0  for n=0 

2+nie  

2+− nie  

For each case 
( )2
22

4

n

n
wi

+

−
=  for i=1, … , n 

2++ nis  

2+− + nis  

2+− nis  

2+− − nis  

For each case 
( )2
2

1

n
wi

+
=  

( )
2

1
,,1

−= nn
i L  

+
is  and −

is  are generated as 

( ) nljlj ,,1,,:
2
1

L=<+=+
lii ees  

( ) nljlj ,,1,,:
2
1

L=<−=−
lii ees  
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9.4.3.4. Cubature Quadrature Rule 

Cubature Quadrature rule (third degree accuracy) as in [Bhaumik2013] can be employed to 

obtain points and weights as given in Table 9.4.1.  

 

TABLE-9.4.1: SELECTION OF CUBATURE QUADRATURE POINTS & WEIGHTS 

Steps for generation of cubature points: 

nn ′2  number of cubature quadrature points are to be selected as  

Where ii eξ jλ2=  

The cubature points located at the intersection of the unit hyper-sphere and its axes. 

For 3
rd

 degree approximation rule ke  can be obtained as: 

ki ee =  for k=1, …, n and ki ee −=  for k=n+1, …, 2n where ke  is the k
th

 unit vector. 

jλ  is the solution of th
n′  order Chebyshev-Laguerre polynomial with 12 −= nα : 

( ) ( ) ( )( ) 01 2

!2

11

!1
=−−+′+′++′−= −′−′′−′′′
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n nnnL λααλαλα  

Here, nni ′= 2,,2,1 K , nj ′= ,,2,1 K and nk 2,,2,1 K=  

Steps for weight selection: 

The corresponding weights are obtained as 
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Cubature Quadrature rule (with fifth degree accuracy) as in [Singh2015] can be employed to 

obtain points and weights as given in Table 9.4.2.  

 

TABLE-9.4.2: SELECTION OF CUBATURE QUADRATURE POINTS & WEIGHTS 

Intermediate Points ( )iq  Intermediate Weights ( )iw  

ie , ie−  For each case
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9.4.3.5. Divided Difference Interpolation formula 

The Divided Difference filter is based on Taylor series approximation of nonlinear functions 

using Stirling’s Divided Difference Interpolation formula. Therefore the algorithmic steps are 

different from that of the Bayesian approach where the integrals are numerically 

approximated. Nevertheless the concept of Divided Difference filter has similarity with the 

Bayesian approach. The algorithm based on Divided Difference rule cannot be obtained 

directly from the general algorithm presented above. However, the algorithm of DDF can be 

adjusted and expressed in terms of points and weights as presented in [Liu2012] which 

partially matches with the general algorithm apart from the step for the computation of error 

covariance. The step for the propagation of covariance should be followed as stated below. 

 

TABLE-9.5: SELECTION OF SIGMA POINTS & WEIGHTS 

Sigma Points and weights for computation of Mean 

Sigma Points ( )iq  Weights ( )iw  

0  
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Sigma Points and weights for computation of Covariance 
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( ) ( ) ( )xgePxgePxgs iii 22 −−++= hh  ( ) 422 41 hhwi −=  

A random variable with mean x  and covariance P when propagated through a nonlinear 

function ( )⋅g  the covariance is obtained after transformation using the step (different from 

general algorithm) as given by, ( ) ( )∑∑
==

+=
n

i

T

i

n

i

T

i ww
1

222

1

111ˆ
iiii ssssP  

These steps are to be used in the general algorithm while computing the error covariances.  

The mean on contrary can be obtained using the formula given in general approach. 
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9.4.4   Notes 

• The general framework for adaptive nonlinear information filter is suitable for 

Unscented Transform, Gauss Hermite quadrature rule, Cubature rule, Cubature 

quadrature rule which are for numerical approximation of Gaussian integrals 

encountered in general framework developed on the basis of Bayesian approach. The 

Divided Difference interpolation formula, on contrary, follows the approach of Taylor 

series approximation and therefore differs in the algorithmic steps from that of the 

other methods. In the chapter on adaptive divided difference filter estimation 

algorithms for the standard error covariance form have been presented individually. 

However, in this chapter we have included the algorithm of adaptive divided 

difference information filter in the general algorithm with some significant 

modification in the step for computation of the error covariances. 

• It is to be noted that the adaptation of measurement noise covariance is to be executed 

separately ( M,,1,ˆ L=ζζ

kR ) for each sensors when the noise covariance of all of the 

sensors are unavailable. However, when the designer has the knowledge of the noise 

covariances of some of the sensors, adaptation steps for those sensors need not to be 

executed and only those covariances which are unknown should be adapted. 

9.5   Square Root version 

The square root approach for conventional error covariance form has been proposed in 

chapter 4. In this section general framework for adaptive nonlinear information filters in the 

square root framework has been proposed. Use of square root approach ensures positive 

definiteness of error covariance and adapted noise covariances. The rationale for following 

the square root approach has been discussed before and also applicable for the information 

filter configuration. The algorithmic steps are provided below. 
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9.5.1   Algorithm 

 

GENERAL FRAMEWORK FOR ADAPTIVE NONLINEAR FILTERS IN SQUARE ROOT FORM 

(i) Initialization: Initialize ( )ζR

k

Q

k00 S,S,S,x ˆˆ  

(ii) Time update step: 

For the particular mean and covariance modify the selected points for standard normal 

distribution as 1ki1ki xqSχ −− += ˆˆˆ        (9.61) 

Compute ∑
=

=
N

i

iw
1

)ˆ( ik χfx         (9.62) 

Compute the weighted, centred (a posteriori estimate of previous instant is subtracted off) 

matrix x

kS  such that for Ni ,,2,1 L= , th
i element of x

kS  becomes 

( ) ( )
ii

w1
ˆ)ˆ( −−= ki

x

k xχfS          (9.63) 

The estimate of the square root of a priori error covariance is obtained as 

[ ]( )Q

k

x

kk SSS izeTriangular=        (9.64) 

The information vector can be obtained as 

kk xSSz 1−−= k

T

k          (9.65) 

The square root of the a priori information matrix is obtained as 

( )1izeTriangular −= k

Z

k SS         (9.66) 

(iii) Measurement update step: 

Select sigma points as kiki xqSχ +=       (9.67) 

The a priori estimate of measurement becomes 

∑
=

=
N

i

iw
1

)( i

ζζ

k χgy          (9.68) 

Compute the weighted, centred (a priori estimate of measurement is subtracted off) matrix 

Y

kS  such that for Ni ,,2,1 L= , th
i element of Y

kS  becomes 

( ) ( )
ii

w
ζ

ki

ζY

k yχgS −= )(          (9.69) 
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Compute the weighted, centred (a priori estimate of state is subtracted off) matrix x

kS  such 

that for Ni ,,2,1 L= th
i element of x

kS  becomes 

( ) ( )
ii

wki

x

k xχS −=           (9.70) 

The cross covariance can be computed as follows 

( ) ( )TY

k

x

k

xz

k SSP =
ζ

         (9.71) 

Define the matrix, ζ

kΛ  as 

( ) ( )[ ] TζR

k

ζxz

k

1

k

T

k

ζ

k SPSSΛ
−

−−=         (9.72) 

The a posteriori estimate of information vector is obtained as 

( )[ ] ( )[ ] 





 +−+=

−

k

Tζxz

k

ζ

k

ζ

k

1ζR

k

ζ

kkk zPyySΛzẑ       (9.73) 

The square root of the a posteriori estimate of information matrix becomes 

( )+= ,,cholupdateˆ ζ

kk

Z

k ΛSS         (9.74) 

The square root of the corresponding error covariance matrix 

( ) 




=

−1
ˆizeTriangularˆ Z

kSSk         (9.75) 

Hence the a posteriori estimate of state becomes 

kk zSx ˆˆˆ
k=           (9.76) 

(iv) Q-Adaptation Steps: 

When Q is unknown, on contrary, R is known, i.e., R

k

R

k SS = , replace Q

kS  by Q

1kS −
ˆ  (the 

adapted standard deviation of Q of previous instant) in (9.64). Then the following steps are to 

be executed for adaptation of square root of process noise covariance. 

Compute the state residual sequence as 

kkk xxη −= ˆ           (9.77) 

Compute the matrix from the state residual sequence as  

( ) ( )[ ]kLkL kk

η

k ηηS L11 +−=       (9.78) 

where L denotes the window length. 

The adapted square root of process noise covariance Q

kŜ is obtained as 
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( )ηkQ

k SS izeTriangularˆ =         (9.80) 

(v) R-Adaptation Steps: 

When R is unknown, on contrary, Q is known, i.e., Q

k

Q

k SS =  replace R

kS  by R

1kS −
ˆ  (the 

adapted standard deviation of R of previous instant) in (9.72) and (9.73). Then the following 

steps are to be executed for adaptation of the square root of measurement noise covariance.  

Select sigma points as kiki xqSχ ˆˆˆ +=+       (9.81)  

Compute a posteriori estimate of measurement as 

∑
=

+=
N

i

iw
1

)ˆ(ˆ
i

ζζ

k χgy          (9.82) 

Compute the weighted, centered (a posteriori estimate of measurement is subtracted off) 

matrix ( )ζy

kS
ˆ

 such that for Ni ,,2,1 L= , th
i element of ( )ζy

kS
ˆ

 becomes 

( ) ( )
ii

w
ζ

ki

ζζy

k yχgS ˆ)ˆ(
ˆ

−= +          (9.83) 

Compute the residual sequence as given by  

ζ

k

ζ

k

ζ

k yyρ ˆ−=           (9.84) 

Compute the matrix from the residual sequence as  

( ) ( ) ( )[ ]kLkL ζ

k

ζ

k

ζρ

k ρρS L11 +−=       (9.85) 

where L denotes the window length. 

The estimate of the square root of measurement noise covariance is obtained as 

( ) ( )[ ]( )ζρ

k

ζy

k

R

k SSS
ˆ

izeTriangularˆ =        (9.86) 

(vi) Recursion: The time update and measurement update steps are repeated for obtaining the 

estimates for the subsequent time steps starting from k=1. 
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9.5.2   Multiple Sensor Fusion 

The information contribution of thζ  sensor is denoted as 

( )[ ] ( )[ ] 





 +−=

−

k

Tζxz

k

ζ

k

ζ

k

1ζR

k

ζ

k

ζ

k zPyySΛφ       (9.87) 

The contributions of all the sensors starting from M,,1L=ζ  are fused to obtain a more 

reliable estimate as  

∑
=

+=
M

1

ˆ
ζ

ζ

kkk φzz          (9.88) 

The information matrix contribution for the thζ  sensor is ζ

kΛ . After multiple sensor fusion 

the square root of the a posteriori information matrix is obtained as 

[ ]( )+= ,,cholupdateˆ M

k

1

kk

Z

k ΛΛSS L       (9.89) 

9.5.3   Notes 

In the algorithm of adaptive information filters in square root approach the matrix inversion 

steps may be replaced by backward substitution symbolized by ‘/’ as the latter is 

computationally economic. Unlike the standard error covariance form in case of square root 

approach the triangular matrix is obtained from the QR factorization. On the availability of 

the square upper triangular matrix one can follow the method of back substitution instead of 

matrix inversion to reduce the computational burden. 

Note that only residual based R adaptation algorithm is presented in the square root approach 

as it supports adaptation of the standard deviation of R by ‘triangularization’. This cannot be 

done for innovation based R adaptation as ‘cholupdate’ is required for subtraction. The 

intuition of the present worker says that here also the singularity problems cannot be avoided.  

The algorithm provided above is for the sigma point rule which have non negative weights 

like, Gauss Hermite quadrature rule, 3
rd

 degree Cubature rule, Cubature quadrature rule. 

However, for scaled Unscented transformation rule, 5
th

 degree cubature rule this algorithm 

cannot be applied and a modification using the “cholupdate” has to be incorporated for the 

negative weights. In this dissertation square root version for UT rule and 5
th

 degree cubature 

rule are not presented as these algorithm may suffer from the loss of positive definiteness in 

some situations [Liu2012].  



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 9 250 

9.6   Characterization of proposed algorithms 

The proposed filtering algorithms have been evaluated with the help of two different multiple 

sensor estimation problems in simulation. The situations have been considered where either 

noise covariances of some sensors are unavailable or the process noise covariance 

unavailable due to modelling uncertainty or unknown parameter variation. In the first case a 

ballistic object tracking problem has been considered which is to be tracked by multiple 

radars. In second case a tracking problem is considered where a maneuvering aircraft has to 

be tracked using measurements from multiple tracking radars. 

9.6.1   Ballistic Object Tracking Problem 

The tracking of a ballistic object during re-entry phase has been described in chapter 3. Q 

adaptive versions of UIF, DDIF and R adaptive DDIF have been evaluated considering this 

problem where the object is being tracked by multiple tracking radars at different locations in 

the atmosphere. Only range measurements have been considered to be available from these 

radars. The simulation results illustrate that the proposed adaptive information filters work 

satisfactorily and make sensor fusion successful in the face of unknown process noise 

covariance. 

9.6.1.1. Demonstration of Q adaptive UIF and DDIF 

To generate the true state trajectories of object, the truth value of initial kinematic states and 

the ballistic parameter are chosen following [Norgaard2000] as specified in chapter 3. The 

necessary parameters for the filters are also provided in same table. The process noise 

covariance is considered to be unknown in this problem. Therefore 0Q̂ is initialized 

arbitrarily with an assumed value with large error. 

The plots of RMS values of estimation errors of altitude, velocity and ballistic parameter of 

the object have been compared for ADDIF, AUIF and non-adaptive UIF from Fig. 9.1, Fig. 

9.2 and Fig. 9.3 respectively. Because of the assumption of unavailability of process noise 

covariance both the filters are initialized with a value of 0Q̂  with a large error compared to 

the true Q as mentioned above. Specifically, for this case study initial value of Q is chosen as 

true0 QQ ×= 510ˆ . For adaptive filters choice of sliding window length is considered to be 10 

time instants. From the Monte Carlo simulation it has been found that for all three cases 
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convergence of the RMS errors of AUIF is better compared to its non-adaptive version and 

the steady state value is also lower for the proposed AUIF. The performance of ADDIF is 

comparably same with AUIF. ADDIF like AUIF presents satisfactory estimation and capable 

of online adaptation of unknown noise process covariance. 

For a representative run, Fig. 9.4 shows the plot of ( )3,3trueQ and ( )3,3ˆ
kQ  for AUIF. It is 

observed that even though Q is initialized with an arbitrary initial choice with large error, 

( true0 QQ ×= 510ˆ ), the Adapted ( )3,3ˆ
kQ  converges on the truth value and continues to track it. 

However, time for this convergence is considerably high, near about 30 sec.  

Note that the RMSE of adaptive information filters are also compared with Non-adaptive 

UIF in the ideal situation when Q is accurately known. It is observed that the plots of RMSE 

for adaptive information filters become comparable with those for non-adaptive UIF after 30 

sec. The delay in convergence of adapted Q is the reason for the initial mismatch in the plots 

of RMSE. 

The initial rise in the RMSE about 10 sec is because of the influence of the drag during 

reentry. As the object enters the atmosphere it experiences drag and system nonlinearity 

becomes pronounced. As a consequence, the RMSE of all the filters (both adaptive and non-

adaptive) tend to rise temporarily before they finally settle down to a lower value. 

 

1

10

100

1000

10000

0 10 20 30 40 50 60

time (sec)

R
M

S
 e

rr
o

r-
a
lt

it
u

d
e
 (

ft
)

AUIF(unknown Q)

UIF(unknown Q)

UIF(known Q)

ADDIF(unknown Q)

 
Fig. 9.1: Comparison of RMSE (altitude) of AUIF, ADDIF & DDIF for 1000 MC runs 
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Fig. 9.2: Comparison of RMSE (velocity) of AUIF, ADDIF & DDIF for 1000 MC runs 
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Fig. 9.3: Comparison of RMSE (ballistic parameter) of AUIF, ADDIF & DDIF for 1000 MC runs 
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Fig. 4: Plot of estimated process noise covariance (Q3,3) for a representative run 
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9.6.1.2. Demonstration of R- Adaptive DDIF 

In this section the performance of R adaptive DDIF is presented. The object tracking problem 

is considered again and assumed that it is assumed that some sensor remains uncharacterised 

and their noise covariances remain unknown. When the measurement noise covariance of 

any of the sensors remains unknown, that particular ζ
kR  is initialized arbitrarily with an 

optimistic choice of ζ
kR . The term optimistic choice signifies the initialization of the filter 

with a sufficient low value of ζ
kR  so that the measurement of that particular sensor may not 

get underweighted. This optimistic choice, however, may affect the estimation performance 

when there is sufficient discrepancy between the true value of ζ
kR and the optimistic choice of 

ζ

kR (Rfilter) for filter initialization. However, initialization of ζ
kR (Rfilter) with a higher value 

will not always deteriorate the estimation performance during multi sensor estimation as this 

choice underweights that particular measurement and consequently ignore that measurement. 

It is, therefore, not recommended to initialize the unknown covariance with a higher value as 

such a choice contradicts the concept of the reliability of sensor fusion underweighting those 

measurements. 

The Rfilter  for the unknown sensor noise covariance is assigned with a sub multiple of ten so 

that the choice is an optimistic one. For this particular case study Rfilter  for radar 1 is 

considered to be two decade lower than the true R. Window length is chosen as 100. For this 

case study an initial stop time equal with window length is set. The justification for this stop 

time is given below. Initially (during first 10 second of the descend) the object remains in 

exo atmospheric zone. In this zone the influence of drag is negligible and the ballistic 

parameter, therefore, cannot be estimated satisfactorily. Consequently the residual or 

innovation from filter loses the whiteness and adaptation may not be accurate. A stop time in 

adaptation may therefore be suggested for ballistic object tracking problem. Otherwise 

because of fading memory due to sliding window based adaptation, this error can it will 

affect detrimentally the adapted value. An alternative way is to choose a low window size so 

that the memory gets faded quickly. 
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Fig. 9.5:  Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 9.6:  Comparison of RMS error (velocity estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 9.7:  Comparison of RMS error (ballistic parameter estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 9.8:  Plot of true and adapted R  for a representative run 

 

The plots of RMS values of estimation errors of altitude, velocity and ballistic parameter of 

the object have been compared for both adaptive and non-adaptive DDIF. From 1000 Monte 

Carlo simulation it has been found that the RMSE of ADDIF has converged to a lower value 

compared to that of non-adaptive DDIF. Both the filter have been initialized with 

measurement noise covariance different from that of the truth value. Fig. 9.5 – 9.7 are 

presented in support of the above statement. 

In case of multiple sensor fusion problem situations may arise when the noise covariances of 

one or more sensors remain unknown. The above results are presented for the case when the 

noise covariance of only one of the measurements is unknown. In this context it can be 

inferred from the observation that the non-adaptive DDIF cannot present satisfactory 

estimation performance even when the measurement noise covariance of only one of the 

measurements is unknown and initialized with an assumed choice of R. This limitation can 

be overcome by employing ADDIF which can adapt the unknown noise covariance and 

ensures satisfactory estimation. 

The same study may be repeated for the situation when prior knowledge about measurement 

noise covariances for more than one measurement remains unavailable. In those situations it 

would be observed that ADDIF excels over non-adaptive DDIF.  

For a representative run the true and adapted measurement noise covariance for the particular 

measurement has been presented by Fig. 9.8 to demonstrate that even though initialized with 
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an assumed choice of R, the Adapted R converges on the truth value and tracks it for 

subsequent times.  

The ballistic object tracking problem is considered again to characterize ADDIF in presence 

of a biased measurement. Here also it would be shown that ADDIF outperforms non-adaptive 

DDIF. A level bias of 10000 ft has been introduced in the measurement received from the 

second radar at the instant of 20 sec. The performance of the filter is presented by the Fig. 9.9 

to Fig. 9.12. 

It is observed from Fig. 9.9- 9.11 that the RMSE of ADDIF is at a lower value than that of 

non-adaptive DDIF. It is also to be noted from Fig. 9.12 that when the bias is introduced in 

the measurement at the instant of 20 sec the adapted R corresponding to the biased 

measurement rises to a higher value so that the biased measurement gets under weighted until 

the bias present in that measurement. Thus ADDIF always ensures improved estimation 

performance ignoring the biased measurement. The non-adaptive version cannot underweight 

that measurement as the scope of R adaptation is not present there. 
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Fig. 9.9: Comparison of RMS error (altitude estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 9.10: Comparison of RMS error (velocity estimation) of ADDF & DDF for 1000 MC runs 
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Fig. 9.11: Comparison of RMS error (ballistic parameter estimation) of ADDF & DDF for 1000 MC runs 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 9 258 

1000

10000

100000

1000000

10000000

100000000

0 10 20 30 40 50 60

time (sec)

 A
d

a
p

te
d

 R

Adapted R

True R

 
Fig. 9.12: Plot of adapted R  for the faulty measurement (for a representative run) 

 

9.6.2   Aircraft Tracking Problem 

9.6.2.1. Demonstration of Q adaptive information filters 

The aircraft tracking problem described in chapter 3 has been considered as a case study for 

evaluation of Q adaptive information filers. The situation is considered where an aircraft 

maneuvering with an unknown time varying turn rate has to be tracked with multiple radars. 

The unknown variation of turn rate cannot be modelled appropriately and therefore induces 

parametric uncertainty in the system dynamics. It may also be considered that element of the 

process noise covariance associated with turn rate remains unknown for this situation. Q 

adaptive information filers are employed for successful sensor fusion in this case study. As 

the other elements of Q are known, only the unknown element needs to be adapted while 

other should remain same as the truth value. This may be executed by the partial adaptation 

of Q which has also been illustrated in chapter 6. For this case study ( )5,5Q is adapted. The 

( )5,5Q  being unknown, it is arbitrarily initialized as 20 times of ( )5,5trueQ . The window size 

is taken as 10. 

From the Monte Carlo simulation with 10000 runs, performance of Q adaptive versions of 

GHIF, CQIF, CIF and DDIF is compared with that of their non-adaptive version in the 

situation when the turn rate of the aircraft is unknown. In each case it is observed that 

estimation performance of adaptive filter is superior compared to the non-adaptive version. 
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RMSE plots for different estimators are presented for illustration. Note that the RMSE plots 

are presented excluding the cases where track loss occurs. The occurrence of track loss has 

been explained and demonstrated in chapter 3. During tracking of the aircraft which is 

executing a maneuvering turn the estimators are susceptible to lose the track for bearing only 

measurements in some cases. Note that track losses cannot be over ruled even for the ideal 

situations when the filter is properly tuned with prior knowledge of all the noise covariances. 

The percentage of track losses helps to analyze the performances of the filters in a 

quantitative way. Lesser the tendency of track loss more accuracy the estimator has. Table 

9.7 presents the percentage of track losses for the above estimators. 

It has been observed from Fig. 9.13, Fig. 9.14, Fig. 9.15 that the performance of adaptive 

information filters are substantially superior to that of non-adaptive counter parts as the 

RMSE for all three states converged to a lower steady state value within reasonably less time. 

Fig. 9.13 presents RMSE of adaptive and non-adaptive GHIF for position estimation. Fig. 

9.14 presents the RMSE of adaptive and non-adaptive CIF (3rd degree) for velocity 

estimation and Fig. 9.15 depicts the RMSE of adaptive and non-adaptive CQIF for turn rate 

estimation. It is important to note that although the elements of Q related to position and 

velocity are known RMSE of position and velocity for the non-adaptive filters are 

deteriorated because of the implicit effect of inadequately estimated turn rate. 

As the proposed filters are validated in simulation, it is also possible to compare the RMSE 

performance of proposed filters with their non-adaptive counterpart in the ideal situation 

where ( )5,5trueQ  is known only to the non-adaptive version. This comparison illumines how 

far the performance of adaptive filters (without complete knowledge of Q) is close to that of 

conventional non-adaptive filter in ideal situation with known Q. It is demonstrated that the 

RMSE of adaptive filters for all the states are nearly comparable to the nature of RMSE of 

non-adaptive filter in ideal condition. The initial mismatch in RMSE is because of the time 

taken for adapted element of Q to converge on the truth value which has been shown in Fig. 

9.16. 

Fig. 9.16 illustrates the Q adaptation performance of the adaptive filters. For all of the 

proposed information filters the adapted value of ( )5,5trueQ  converged to the truth value even 
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though initialized with an erroneous assumed value. The adapted value converges with 30 sec 

approximately and continues to track the truth value. 

The performance comparison of the proposed Q adaptive information filters, viz., QA-DDIF, 

QA-CIF (3rd degree), QA-GHIF, and QA-CQIF (3rd degree) has been carried out on the 

basis of RMS errors and percentage of track loss out of 10000 Monte Carlo runs. 

It has been observed from the RMSE plot of position estimation in Fig. 9.17 (excluding the 

track loss case) that the RMSE of proposed adaptive filters are performance wise 

comparable. Same trend is observed for velocity and turn rate estimation and are not 

presented to avoid repetition. However, on the basis of track loss performance given by Table 

9.6 it may be commented that AGHIF and ACQIF are better alternatives than ADDIF and 

ACIF as they indicate less percentage of track loss. It is also to be noted here that although 

AGHIF and ACQIF are performance wise equivalent the latter is computationally less 

expensive as it uses comparatively less number of quadrature points. It is mentioned in the 

previous chapters that the quadrature points for AGHIF rises exponentially with the system 

dimension. On contrary, the quadrature points for ACQIF rises linearly with the system 

dimension. 
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Fig. 9.13: Comparison of RMSE (position estimation) of AGHIF & GHIF for 10000 MC runs 

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

time (sec)

R
M

S
E

 -
 v

e
lo

c
it

y
 (

m
/s

e
c
)

ACIF

CIF (Q known)

CIF (Q unknown)

 
Fig. 9.14: Comparison of RMSE (velocity estimation) of ACIF & CIF for 10000 MC runs 
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Fig. 9.15: Comparison of RMSE (turn rate estimation) of ACQIF & CQIF for 10000 MC runs 
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Fig. 9.16: Plot of estimated process noise co-variance (Q5,5) for a representative run 
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Fig. 9.17: Comparison of RMS error (position estimation) of ACIF, AGHIF, ADDIF, ACQIF for 10000 

MC runs 
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TABLE-9.6 : Comparative study of %-age of track loss form Q adaptive information filters 

 

Percentage of track loss for 
Underlying 

framework 

used 

Adaptive filter 

with unknown 

Q 

Non-adaptive 

filter with 

unknown Q 

Non-adaptive filter with known Q 

(ideal) 

CIF 1.02% 4.10% 0.91% 

DDIF 1.14% 4.17% 0.97% 

GHIF 0.84% 3.67% 0.64% 

CQIF 0.86% 3.69% 0.64% 

 

9.6.2.2. Demonstration of R adaptive information filters 

The aircraft tracking problem has also been considered where the knowledge of noise 

covariance of the bearing measurement from one of the tracking radar remains unavailable. 

The filter is initialized with Rfilter (an optimistic choice of R is made as discussed before). 

Rfilter for radar 1 is considered as 20 times lower than the truth value and the window size is 

taken as 25. Rest of the parameters remain the same as given in chapter 3. 

In this case study we have compared the performance of R adaptive sigma point information 

filters, viz., RA-DDIF, RA-UIF, RA-GHIF, RA-CIF (5
th

 degree) and RA-HCQIF (5
th

 

degree). The performance is compared on the basis of and percentage of track loss. RMSE 

are presented in Fig. 9.18 -9.20 excluding the cases where track losses had occurred. 

It has been observed from the RMSE of position and velocity that the RMSE of RA-DDIF 

and RA-UIF are performance wise equivalent. However, RMSE of RA-GHIF, RA-CIF (5
th

 

degree) and RA-CQIF (5
th

 degree) is slightly less than that for other filters for both position 

and velocity. Nevertheless RMSE the plots are found comparable from the figures for all the 

estimators. The performance accuracy of the estimators can therefore be compared on the 

basis of percentage of track loss given in Table 9.7. The percentage of track loss for RA-

GHIF, RA-CQIF (5
th

 degree) and RA-CIF (5
th

 degree) are comparably same and significantly 

less than that for RA-UIF and RA-DDIF among 10000 Monte Carlo runs.  

It is also to be noted that among RA-GHIF, RA-HCQIF (5
th

 degree) and RA-CIF (5
th

 degree) 

the latter is computationally less expensive as it uses less number of points compared to the 

other two estimators. For a single run an average computation time for RA-CIF (5
th

 degree) 
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and RA-HCQIF (5
th

 degree) are 26.13% and 64.71% of the average computation time for 

RA-GHIF respectively. The simulations are carried out using MATLAB (version 7.9.0.529) 

in a computer with specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM. 
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Fig. 9.18: Comparison of RMS error (position estimation) of ACIF, AGHIF, 

ADDIF, AUIF, AHCQIF for 10000 MC runs 
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Fig. 9.19: Comparison of RMS error (velocity estimation) of ACIF, AGHIF, 

ADDIF, AUIF, AHCQIF for 10000 MC runs 
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Fig. 9.20: Comparison of RMS error (turn rate estimation) of ACIF, AGHIF, 

ADDIF, AUIF, AHCQIF for 10000 MC runs 

 

TABLE-9.7 : Comparative study of % -age of track loss for R adaptive information filters 

Estimation algorithms Percentage of track loss 

ADDIF 5.56% 

AUIF 6.10% 

ACIF (5
th

 degree) 2.11% 

AHCQIF (5
th

 degree) 2.26% 

AGHIF (3
rd

 order) 2.17% 

 

9.6.2.3. Demonstration of square root versions of R adaptive filters 

The aircraft tracking problem is considered again to validate the square root versions of 

GHIF, CIF(3
rd

 degree), CQIF (3
rd

 degree) for R adaptation. The performance of the 

algorithms has been compared in the same vein as discussed before. It has been observed 

from Fig. 9.21-9.23 that the RMSE of RA-SR-CQIF(3
rd

 degree) and RA-SR-GHIF are 

comparably same and sometimes slightly less than RA-SR-CIF (3
rd

 degree). The track loss 

cases have been excluded from the RMSE. 

The percentage of track loss for RA-SR-CIF (3
rd

 degree), RA-SR-CQIF(3
rd

 degree) and RA-

SR-GHIF are 2.47%, 2.07% and 2.06% respectively. The percentage track loss for RA-SR-
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CQIF(3
rd

 degree) and RA-SR-GHIF, as expected, are comparable and low compared to that 

for RA-SR-CIF (3
rd

 degree). 

The number of points required for RA-SR-CQIF(3
rd

 degree) is less compared to RA-SR-

GHIF and computation cost for the former is also less as a consequence. For a single run an 

average computation time for RA-SR-CIF (3
rd

 degree) and RA-SR-CQIF (3
rd

 degree) are 

9.83% and 4.48% of the average computation time for RA-SR-GHIF respectively. The 

simulations are carried out using MATLAB (version 7.9.0.529) in a computer with 

specifications Intel®, Core (TM) 2 Duo CPU, 2.8 GHz, 2 GB RAM. 
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Fig. 9.21: Comparison of RMS error (position estimation) of ASRCQIF, 

ASRGHIF, ASRCIF for 10000 MC runs 
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Fig. 9.22: Comparison of RMS error (velocity estimation) of ASRCQIF, 

ASRGHIF, ASRCIF for 10000 MC runs 
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Fig. 9.23: Comparison of RMS error (turn rate estimation) of ASRCQIF, 

ASRGHIF, ASRCIF for 10000 MC runs 

 

9.7   Discussions and Conclusions 

In this chapter a class of Q and R adaptive sigma point information filters have been 

formulated from the proposed general algorithm and demonstrated with the help of case 

studies based on multi sensor estimation problems. The newly proposed adaptive nonlinear 

information filters are found to produce satisfactory estimation results in following 

contingent situations when (i) one or more sensor noise covariances are unknown, (ii) one of 

the sensors provides biased measurement, (iii) the system dynamics suffers from unknown 

parameter variation and the knowledge of process noise covariance remains incomplete as a 

consequence. A few significant findings have been enumerated below. 

• The proposed Q adaptive nonlinear information filters are observed to present 

satisfactory estimation performance by online adaptation of Q where the complete 

knowledge of Q remains unavailable. For each of the proposed adaptive filters it is 

observed that the adapted value of the unknown element of Q converges on its truth value 

and subsequently tracks it.  

• The results from Monte Carlo study demonstrate that the RMSE of each of the proposed 

filters settles down to a lower value compared to the respective non-adaptive counterpart. 

Another important finding for Q adaptive information filters is that for each filter the 
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RMSE is closely comparable with that of non-adaptive filters in ideal situation with full 

knowledge of Q. 

• The performance comparison of alternative Q adaptive information filters revealed that 

the estimation performance of QA-CQIF and QA-GHIF is superior to QA-DDIF and QA-

CIF. Although the estimation performance of QA-CQIF and QA-GHIF are comparably 

same use of the former is preferable as it uses less number of sigma points and supposed 

to be computationally economic. 

• Superiority of R adaptive DDIF is demonstrated over its non-adaptive versions in 

presence of bias in one of the measurements and also in face of unknown measurement 

noise covariance. Relative performance comparison of variants of R adaptive information 

filters has also been carried out. R adaptive versions of GHIF, CQIF (5th degree) and CIF 

(5th degree) demonstrate superiority over the competing algorithms of RA-DDIF and 

RA-UIF.  

• For the aircraft tracking problem considered in this chapter performance of RA-GHIF, 

RA-CQIF (5th degree) and RA-CIF (5th degree) are found to be comparably same. Note 

that RA-CQIF (5th degree) and RA-CIF (5th degree) are computationally economic 

compared to RA-GHIF. 

• The square root versions of R adaptive CQIF, CIF (3
rd

 degree) and GHIF have also been 

formulated and validated with the same tracking problem. Following the same trend RA-

SR-GHIF and RA-SR-CQIF (3
rd

 degree) are found to outperform RA-SR-CIF (3
rd

 

degree).  

Considering the above findings adaptive nonlinear information filters are advocated for 

multiple sensor fusion because of their dual aspect of information filter configuration and 

adaptation performance. 



Chapter 10: Conclusions 

10.1   Concluding comments 

The objective of the present work had been to develop improved estimation methods for state 

as well as parameter estimation of nonlinear systems. Towards this overall objective the 

present work focused on Adaptive state estimation for nonlinear signal models. The findings 

of this dissertation and the concluding comments are presented below. 

1. Algorithms for a class of adaptive state estimators for plants with nonlinear dynamics 

have been proposed and their characteristics have been evaluated. Such a set of 

adaptive estimators include a fair number of adaptive filters, viz. Adaptive Divided 

Difference filters, Adaptive Gauss Hermite filters, Adaptive Cubature Kalman filters, 

Adaptive Cubature Quadrature Kalman filters. 

2. The proposed nonlinear state estimators have been found to be superior to their 

corresponding non-adaptive versions in every case where process or measurement 

noise covariance remains unknown, demonstrating successful adaptation. 

3. Regarding the performance of the proposed filter, the numerical simulations for all 

the case studies indicate that the performances of the adaptive filters without the 

knowledge of any one of the noise covariances (viz. Q or R) are comparable to that of 

their respective non-adaptive nonlinear filter in the ideal situation where the noise 

covariances are accurately known. This indicates that the proposed adaptive nonlinear 

filters may be strong candidates for state estimation with nonlinear signal models in 

the face of unknown noise covariance. 

4. A general framework for nonlinear state estimators had been proposed and it is 

demonstrated that algorithms for most of the proposed state estimators can be 

deduced from this general framework.  

5. Regarding the Q-adaptive Divided Difference filters the following specific 

concluding comments apply: 

• A new algorithm for Q adaptive second order Divided Difference filter developed 

for the joint estimation of parameters and states of nonlinear dynamic systems 

with unknown process noise covariance was found to outperform the non-
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adaptive version as evident from the Monte Carlo simulation of an object tracking 

problem.  

• A variant of Q adaptive Divided Difference filter which is based on the method of 

automatic tuning of Q with the help of a scaling factor is also observed to be 

providing satisfactory estimation results for some specific estimation problems 

with linear measurement equations.  

• Performance of the QA-DDF with direct adaptation algorithm was found to be 

superior compared to the scale factor based QA-DDF for the same object tracking 

problem where the measurement equation is nonlinear.  

6. Regarding the R-adaptive Divided Difference filters the following specific 

concluding comments apply:  

• The new algorithm for R adaptive Divided Difference filter for joint estimation of 

parameters and states of nonlinear signal models has been demonstrated in 

situations when prior knowledge of the measurement noise covariance remains 

unavailable. 

• It has been theoretically established and also validated in simulation that the filter 

guarantees positive definiteness of adapted R matrix.  

• It has been possible to demonstrate that the estimation performance of this filter is 

superior to non-adaptive filters even for the assumed initial values of R matrix 

with large errors. 

• The estimation performance of direct R-Adaptation is found to be superior to the 

scaling factor based R adaptation for some specific case studies. 

• The R adaptive DDF (with direct R-Adaptation) had been found to perform 

satisfactorily for unknown time varying R. The adapted R adequately converged 

to the truth value of R and subsequently tracked the time varying truth value of R 

in all the cases considered in this case study. 

• The R adaptive Central Difference filter which is a subset of the above algorithm 

is also validated. Although this algorithm cannot perform as well as R adaptive 

DDF on the ground of estimation accuracy it may be advocated for its economic 

computation and less complexity.  
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7. Regarding the joint estimation of states and parameters , the following specific 

concluding comments apply: 

• It is fairly well known that during the joint estimation of states and parameters, 

assigning appropriate process noise covariance corresponding to the parameters to 

be estimated requires substantial effort in tuning and experimentation. This is 

further exacerbated when such unknown parameters are time-varying. Assuming 

that the elements of the Q matrix corresponding to the states are known, one 

needs to adapt only the terms of Q which corresponds to the unknown parameters. 

It has been shown that the so-named partially Q-adaptive filters may be employed 

for such cases.  

8. Novel algorithms viz. Q and R adaptive Gauss Hermite filters have been developed 

by using Gauss Hermite quadrature rule for numerical approximation of the Bayesian 

Integrals (present in the general algorithm for nonlinear filter). A few variants of such 

filters have been developed which provide improved estimation performance over 

their non-adaptive versions (when evaluated with the help of benchmark estimation 

problems).Regarding adaptive Gauss Hermite state estimators/filters, the following 

specific concluding comments apply: 

• Algorithm for partially adaptive GHF have been formulated and it has been 

shown that such filters satisfactorily estimate and track unknown time varying 

parameters successfully.  

• Both innovation based and residual based R-adaptive GHF are observed to 

provide improved estimation performance in the face of unknown R. However, 

use of residual based R adaptation algorithm is recommended for the ensured 

positive definiteness of adapted R matrix. 

• For improved numerical accuracy and ensured positive definiteness of error 

covariance Square Root versions of R Adaptive GHF is formulated and validated.  

9. Algorithms for adaptive nonlinear filters are also formulated using the Spherical 

Radial Cubature rule (third and fifth degree) and Spherical Radial Cubature 

Quadrature rule (third and fifth degree) for numerical evaluation of Bayesian 

integrals. Regarding such  proposed adaptive versions of state estimators which are 
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based on recently proposed (non-adaptive) quadrature-cubature KF family, the 

following specific concluding comments apply: 

• The third degree R-adaptive Cubature filter (RA-CKF), as expected, is found to 

be superior to its non-adaptive version. However, RA-CKF (third degree) could 

not excel RA-UKF or RA-GHF with respect to performance accuracy. 

• The R adaptive version of higher degree cubature filter (fifth degree accuracy) is 

found to be comparable in performance with R adaptive GHF (third order) and 

computationally economic compared to the latter. RA-CKF (fifth degree) is also 

performance wise superior to RA-UKF. 

• The performance comparison of R adaptive Cubature Quadrature Kalman filter 

(3
rd

 degree) with the above adaptive filters revealed that this estimator 

outperforms many of the above cited estimators and its performance is found to 

be comparable with R adaptive GHF (fifth order) for some estimation problems. 

Although performance wise equivalent, the RA-CQKF requires less 

computational effort compared to RA-GHF (5
th

 order). It is observed from the 

case studies that RA-CQKF (5
th

 degree) can present marginally improved 

estimation performance compared to RA-CQKF (3
rd

 degree) and the other 

competing algorithms at the cost of additional computation effort. 

• The square root version of R adaptive CQKF, which guarantees positive 

definiteness of error covariance, has also been developed and characterized. 

10. Algorithms for adaptive nonlinear filters are also validated for non-additive noise 

models. Q and R adaptive DDF for non-additive noise are found to be demonstrably 

superior to the respective non-adaptive versions. R adaptive CKF (3
rd

 and 5
th

 degree) 

for non-additive measurement noise is derived from the general framework extended 

for non-additive noise and its performance is also compared with R adaptive DDF. 

Their performance has been found to be equivalent for the bearing only tracking 

problem.  

o In the case of non-additive noise models the tracking performance of the 

proposed R-adaptive filters were found to be satisfactory whereas the 

same for the Q adaptive versions is not so. 
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11. Several new algorithms for Q and R adaptive nonlinear information filters are 

formulated and their use in multiple sensor fusion for nonlinear signal models has 

been demonstrated. The efficacy of these algorithms over their corresponding non-

adaptive information filters are demonstrated in presence of parametric uncertainty, 

biased measurements or unavailability of the knowledge of any of the sensor noise 

covariance.  

• Like adaptive nonlinear filters their information filter configurations with 

inaccurately assumed value of noise covariance is comparably equal with that of 

their non-adaptive version in ideal situation when the non-adaptive version have 

the knowledge of the all the noise covariances. This has been demonstrated for the 

case of Q adaptive version of information filters. 

• Information filter versions viz. AGHIF (3
rd

 order), ACQIF (3
rd

 degree and 5
th

 

degree) and ACIF (5
th

 degree) demonstrate an improved performance over the 

competing algorithms.  

• The square root versions of several nonlinear adaptive information filters viz. 

CQIF, CIF (3
rd

 degree) and GHIF (3
rd

 order) have also been formulated and 

characterized with the help of case studies.. 

10.2   Scope for future work 

The possibilities for further work which have been recognized during the entire tenure of this 

research work are enumerated below: 

• With the help of the general algorithm for adaptive nonlinear estimator new 

algorithms of adaptive nonlinear filters can be formulated considering non-adaptive 

versions of sparse grid Gauss Hermite filter, modified Cubature filter and Fourier 

Hermite filter as an underlying framework. It would be interesting to carry out a 

relative performance analysis of these estimators with the existing ones which have 

been presented in this dissertation. 

• Like nonlinear filters nonlinear smoothers also require the knowledge of noise 

covariance for their satisfactory performance. The general algorithm may also be 



State and Parameter Estimation for Dynamic Systems: Some Investigations 

Chapter 10 274 

extended for nonlinear smoother which may result a set of novel adaptive nonlinear 

smoothers. 

• In this dissertation the noises are restricted to be Gaussian white noise. The 

redesigning of adaptation algorithms for the colour noise is yet to be explored. 

• Moreover, there also remains a scope of investigation in formulating adaptive 

nonlinear filters for non Gaussian noise by extending the general algorithm for 

Gaussian sum noise. 

• Nevertheless, the scope of mathematical analysis for the optimality and convergence 

of adaptive nonlinear filters always remains open as this work has not attempted in 

this dissertation as well as in the works reported in literature as of now. 
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