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Abstract

The interest for the intelligent vehicle field has been increased during the last years, must probably
due to an important number of road accidents. Many accidents could be avoided if a device attached
to the vehicle would assist the driver with some warnings when dangerous situations are about to
appear. In recent years, leading car developers have recorded significant efforts and support research
works regarding the intelligent vehicle field where they propose solutions for the existing problems,
especially in the vision domain. Road detection and following, pedestrian or vehicle detection,
recognition and tracking, night vision, among others are examples of applications which have been
developed and improved recently. Still, a lot of challenges and unsolved problems remain in the
intelligent vehicle domain.

Our purpose in this thesis is to design an Obstacle Recognition system for improving the road
security by directing the driver’s attention towards situations which may become dangerous. Many
systems still encounter problems at the detection step and since this task is still a work in progress in
the frame of the LITIS laboratory (from INSA), our goal was to develop a system to continue and
improve the detection task. We have focused solely on the fusion between the visible and infrared
fields from the viewpoint of an Obstacle Recognition module. Our main purpose was to investigate
if the combination of the visible-infrared information is efficient, especially if it is associated with an
SVM (Support Vector Machine)-based classification.

The outdoor environment, the variety of obstacles appearance from the road scene (considering also
the multitude of possible types of obstacles), the cluttered background and the fact that the system
must cope with the moving vehicle constraints make the categorization of road obstacles a real
challenge. In addition, there are some critical requirements that a driver assistance system should
fulfil in order to be considered a possible solution to be implemented on board of a vehicle: the
system cost should be low enough to allow to be incorporated in every series vehicle, the system has
to be fast enough to detect and then recognize obstacles in real time, it has to be efficient (to detect all
obstacles with very few false alarms) and robust (to be able to face different difficult environmental
conditions).

To outline the system, we were looking for sensors which could provide enough information to
detect obstacles (even those occluded) in any illumination or weather situation, to recognize them
and to identify their position in the scene. In the intelligent vehicle domain there is no such a perfect
sensor to handle all these concerned tasks, but there are systems employing one or many different
sensors in order to perform obstacles detection, recognition or tracking or some combination of
them. After comparing advantages and disadvantages between passive and active technologies, we
chose the proper sensors for developing our Obstacle Detection and Recognition system. Due to
possible interferences among active sensors, which could be critical for a large number of vehicles
moving simultaneously in the same environment, we concentrate on using passive sensors, which are
non-invasive, like cameras. Therefore, our proposed system employ visible spectrum and infrared
spectrum cameras, which are relatively chosen to be complementary, because the system must work
well even under difficult conditions, like poor illumination or bad-weather situations (such as dark,
rain, fog).

The monomodal systems are adapted to a single modality, either visible or infrared and even if they
provide good recognition rates on the test set, these results could be improved by the combined
processing of the visible and infrared information, which means in the frame of a bimodal system.
The bimodal systems could take different forms in function of the level at which the information is
combined or fused. Thus, we propose three different fusion systems: at the levels of features or at the
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level of SVM’s kernels, or even higher, at the level of matching-scores provided by the SVM. Each
one of these systems improves classification performances comparing to the monomodal systems. In
order to ensure the adaptation of the system to the environmental conditions, within fusion schemes
the kernels, the matching-scores and the features were weighted (with a sensor weighting coefficient)
according to the relative importance of the modality sensors. This allowed for better classification
performances. In the frame of the matching-scores fusion there is also the possibility to dynamically
perform the adaptation of the weighting coefficient to the context.

In order to represent the obstacles’ images which have to be recognized by the Obstacle Recognition
system, some features have been preferred to encode this information. These features are obtained
in the features extraction module and they are wavelet features, statistical features, the coefficients
of some transforms, and others. Generally, the features extraction module is followed by a features
selection one, in which the importance of these features is estimated and only the ones that are most
relevant will be chosen to further represent the information. Different features selection methods
are tested and compared in order to evaluate the pertinence of each feature (and of each family
of features) in relation to our objective of obstacle classification. The pertinence of each vector
constructed based on these features selection methods was first evaluated by a KNN (k Nearest
Neighbours) (with the number of neighbours k = 1) classifier, due to the simplicity in its usage: it
does not require a parameter optimization process (as the SVM does).

To increase the accuracy of the classification, but also to obtain a powerful classifier, more
parametrizable for the proposed fusion schemes, the KNN one was later (after the best features
selection method have been chosen on the training set and the most relevant features have been
selected) replaced by a SVM classifier. Because there is not known beforehand which combination of
the SVM hyper-parameters is the most appropriate for a certain classification problem, an operation
of model search, performed by 10 folds cross-validation, provides the optimized kernel for the SVM
to be used on each fusion schemes and on each feature vector we considered.

Finally, we tested our features extraction, features selection and the proposed fusion schemes for
a 4-class problem, thus discriminating between vehicles, pedestrians, cyclists and background
obstacles. The results have proven that all bimodal visible-infrared systems are better than the
monomodal ones, thus the fusion is efficient and robust since it allows for improving the recognition
rates. In addition, features selection scheme provides smaller vector comprising only the most
relevant features for the classification process. This reduction of the feature-vector dimension besides
providing higher accuracy rates, allows the reduction of the computation time which is crucial in this
type of application.

Keywords: Fusion, Infrared cameras, Features extraction, Features selection, Support Vector
Machine, Kernels, Matching-scores, Hyper-parameter optimization, Model search, 10 folds cross-
validation.
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Résumé

L’intérêt pour le domaine des véhicules intelligents a progressé au cours des dernières années, doit
probablement dû à un nombre élevé d’accidents sur la route. La plupart des accidents pourraient être
évités si les voitures étaient équipées avec un dispositif d’assistance du conducteur qui fournir des
signaux d’avertissement quand les situations dangereuses sont sur le point d’apparaître. Récemment,
les grandes entreprises constructeurs d’automobiles ont enregistré d’importants efforts et de soutien
pour la recherche et la résolution de problèmes concernant le domaine des véhicules intelligents, où
ils proposent des solutions pour les problèmes existants, en particulier dans le domaine de la vision.
La détection et le suivi de la route, la détection des piétons ou des véhicules, leur reconnaissance
et leur suivi, la vision au cours de nuit sont des exemples d’applications développées et améliorées
récemment. Toutefois, il y a encore de nombreux défis et problèmes non résolus dans le domaine des
véhicules intelligents.

Notre objectif dans cette thèse est de décrire un système de reconnaissance des obstacles pour
améliorer la sécurité routière en dirigeant l’attention du conducteur vers des situations qui peuvent
devenir dangereuses. De nombreux systèmes rencontrent encore des difficultés à l’étape de détection
et, depuis cette tâche est encore un travail en cours dans le cadre du laboratoire LITIS de l’INSA,
notre objectif était de développer un système pour poursuivre et améliorer la tâche de détection.
Nous nous sommes concentrés uniquement sur la fusion visible et infrarouge du point de vue d’un
module de reconnaissance d’obstacles. Notre but principal était de déterminer si la combinaison de
l’information visible-infrarouge est efficace, surtout si elle est associée à une classification basée sur
SVM (Séparateur a Vaste Marge, en anglais SVM - Support Vector Machine).

L’environnement extérieur, la variété de l’apparence des obstacles de la scène dans la route (en
considérant également les nombreux types possibles d’obstacles), le fond encombré apparaissant sur
ces obstacles et le fait que le système doit faire face aux contraintes de véhicule en mouvement font
la catégorisation des obstacles sur la route est un véritable défi. De plus, il existe quelques exigences
essentielles d’un système d’assistance au chauffeur pour être considéré comme une solution possible
à mettre en oeuvre à bord d’un véhicule: le coût du système devrait être suffisamment faible pour
permettre l’incorporation dans chaque véhicule de série, le système doit être suffisamment rapide
pour détecter puis reconnaître les obstacles en temps réel; il doit aussi être efficace (pour détecter
tous les obstacles avec très peu de fausses alarmes) et robuste (pour pouvoir faire face à différentes
conditions difficile de l’environnement).

Pour le système proposé ont été développé des capteurs qui peuvent fournir suffisamment
d’informations pour détecter les obstacles (même l’occlusion) dans toute situation d’illumination
ou de mauvais temps, de reconnaître et d’identifier leur position sur la scène. Dans le domain des
véhicules inteligentes il n’existe pas de tel capteur. Il existe des systèmes qui utilisent un ou plusieurs
capteurs différents pour effectuer la détection des obstacles, leur reconnaissance ou leur suivi, ou
même des combinaisons de ces fonctions. Après avoir comparé les avantages et les désavantages
des technologies actives et passives, on choisi les capteurs les plus adaptés pour le système de
détection et de reconnaissance des obstacles proposée. En raison de possibles interférences qui
peuvent survenir entre les différents capteurs actifs, les interférences qui peuvent être critiques pour
un grand nombre de véhicules qui se déplacent simultanément dans le même environnement, nous
nous sommes concentrés uniquement sur l’utilisation de capteurs passifs, non invasive, à savoir les
caméras. Ainsi, le système proposé utilise des caméras opérant dans le spectre visible et infrarouge,
choisi relativement complémentaires, car le système doit être capable de bien travailler dans diverses
conditions difficiles, tels que l’illumination pauvre ou mauvais temps (telles que l’obscurité ou nuit,
du brouillard ou de pluie).
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Les systèmes monomodaux sont adaptés à une condition particulière, que ce soit visible ou
infrarouge, et même si elles offrent bonne taux de reconnaissance sur la base de test, ces résultats
peuvent être encore améliorées par traitement de l’information combinée visible et infrarouge, ce
qui signifie dans un système bimodal. Les systèmes bimodaux peut prendre différentes formes
selon le niveau auquel l’information est combinée ou fusionnées. Ainsi, nous proposons trois
systèmes différents de fusion: au niveau de caractéristiques, au niveau de noyaux SVM, ou même
plus, au niveau de scores fournis par SVM. Chacun de ces systèmes améliore les performances
par rapport aux systèmes monomodaux. Pour assurer l’adaptation de système au l’environnement,
dans les schémas de fusion les noyaux, les scores et les caractéristiques ont été pondérés (avec
un coefficient de pondération du capteur) en fonction de l’importance relative des capteurs de
modalité. Cela permet d’obtenir des performances de classification supérieur. Dans le cas de la
fusion le score permet de réaliser une adaptation dynamique du coefficient de pondération au contexte.

Pour représenter l’information sur les obstacles qui doivent être reconnus par le système de
reconnaissance d’obstacles, ont préféré certains types de caractéristiques pour le codage des
informations contenues dans les images des obstacles. Ces caractéristiques sont obtenues dans le
module d’extraction de caractéristiques de type ondelettes, des caractéristiques statistiques, des
coefficients des transformations et d’autres. En général, le module d’extraction de caractéristiques
est suivi par un module de sélection qui ne retient que les caractéristiques les plus pertinentes
pour représenter l’information. Différentes méthodes de sélection des caractéristiques sont
testées et comparées pour évaluer la pertinence de chaque caractéristique (et chaque famille de
caractéristiques) par rapport à notre objectif de classification des obstacles. La pertinence de chaque
vecteur de caractéristiques construit sur ces méthodes de sélection a été évalué en premier avec
un classificateur PPV (Plus Proches Voisins, en anglais KNN - k Nearest Neighbours) (avec le
nombre de voisins k = 1) en raison de sa simplicité d’utilisation: il ne nécessite pas un processus
d’optimisation des paramètres tel que le classificateur SVM requis.

Pour augmenter la précision de la classification, mais aussi pour obtenir un classifieur fort, avec plus
des paramètres, pour les schemas de fusion proposé le classifieur PPV a ensuite (après avoir choisi
la meilleure méthode de sélection des caractéristiques dans l’ensemble d’apprentissage et les plus
pertinentes caractéristiques ont été sélectionnées) remplacé par un classificateur SVM. Parce qu’il
n’est pas connu à l’avance quelle combinaison des hyper-paramètres de SVM est le mieux pour un
problème de classification particulier, il a eu une recherche du modèle, réalisé grâce à une technique
de validation croisée a 10 fois, qui fournissent le noyau optimisé pour les SVM, le noyau qui va etre
utilisé pour chaque schema de fusion et chaque vecteur des caractéristiques considéré.

Enfin, nous avons testé les schemas d’extraction des caractéristiques, de leur sélection et de fusion à
un problème avec 4 classes, tel que la discrimination a été faite entre les véhicules, les piétons, les
cyclistes et les obstacles dans le fond. Les résultats ont démontré que tous les systèmes bimodaux
visible-infrarouge sont mieux que les correspondants mono-modaux. La fusion est efficace et robuste
parce qu’elle permet d’améliorer les taux de reconnaissance. De plus, la sélection des caractéristiques
offre un vecteur comprenant seulement les caractéristiques les plus pertinentes pour le processus de
classification. Cette réduction de la taille des vecteurs des caractéristiques en plus de produire le
taux de précision élevé, peut aussi réduire le temps de calcul qui est crucial dans de telles applications.

Mot clés: Fusion, Caméras infrarouges, Extraction de caractéristiques, Sélection des
caractéristiques, Séparateur a Vaste Marge, Noyau, Scores, Optimisation des hyper-paramèters,
Recherche du modèle, Validation croisée a 10 fois.
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Rezumat

Interesul pentru domeniul vehicolelor inteligente a crescut simţitor în ultimii ani, cel mai probabil
datoritǎ numǎrului mare de accidente rutiere înregistrate. Majoritatea accidentelor ar putea fi evitate
dacǎ autovehicolul ar avea ataşat un dispozitiv de asistenţǎ a şoferului care sǎ furnizeze semnale
de atenţionare atunci când intervin situaţii periculoase. Recent, marile companii de autovehicule
au înregistrat eforturi semnificative şi suport pentru cercetarea şi soluţionarea problemelor din
acest domeniu al vehicolelor inteligente, propunând soluţii pentru problemele existente, mai ales
în domeniul viziunii computerizate. Detecţia şi urmarirea drumului, detecţia pietonilor sau a
vehicolelor, recunoşterea şi urmǎrirea acestora, viziunea pe timp de noapte sunt câteva dintre
aplicaţiile dezvoltate şi îmbunǎtǎţite recent. Cu toate acestea, încǎ existǎ foarte multe provocǎri şi
probleme nerezolvate în domeniul vehicolelor inteligente.

Scopul nostru în aceastǎ tezǎ este de a descrie un sistem de recunoaştere a obstacolelor destinat
îmbunǎtǎţirii securitǎţii rutiere prin direcţionarea atenţiei şoferului înspre situaţiile posibil
periculoase. Multe sisteme încǎ întâmpinǎ dificultǎţi în pasul de detecţie şi deoarece acest pas
este încǎ în progres în cadrul laboratorului LITIS al INSA, scopul nostru a fost de a dezvolta un
sistem care sǎ continue şi sǎ îmbunǎtǎţeascǎ procesul de detecţie. Ne-am concentrat doar pe partea
de fuziune a câmpurilor vizibil şi infraroşu din punct de vedere al unui modul de recunoaştere a
obstacolelor. Obiectivul nostru principal a fost sǎ investigǎm dacǎ combinarea informaţiei vizibil-
infraroşu este eficientǎ, în special dacǎ este asociatǎ cu o clasificare pe baza SVM (Support Vector
Machine, în românǎ - maşinǎ cu suport vectorial).

Mediul exterior, multiplele posibilitǎţi de apariţie a obstacolelor în scena rutierǎ (considerând de
asemenea şi multitudinea tipurilor de obstacole posibile), fondul foarte încǎrcat pe care pot sǎ aparǎ
aceste obstacole şi faptul cǎ sistemul trebuie sǎ considere şi constrângerile de mişcare ale vehicolului
determinǎ categorizarea obstacolelor rutiere sǎ fie o adevǎratǎ provocare. In plus, existǎ câteva
cerinţe critice pe care un sistem de asistenţǎ a şoferului trebuie sǎ le îndeplineascǎ pentru a putea fi
considerat o posibilǎ soluţie de implementat la bordul unui vehicol: costul sistemului sǎ fie suficient
de scǎzut pentru a permite încorporarea lui în orice vehicol produs în serie, sistemul sǎ fie suficient
de rapid încât sǎ detecteze şi sǎ recunoascǎ obstacolele în timp real; de asemenea, el trebuie sǎ fie
eficient (sǎ detecteze toate obstacolele şi foarte puţine alarme false) şi robust (sǎ fie capabil sǎ facǎ
faţǎ la diferite condiţii de mediu dificile).

Pentru sistemul propus s-au cǎutat senzori care sǎ poatǎ furniza suficientǎ informaţie pentru a detecta
obstacolele (chiar şi cele ocluzate) în orice situaţie de iluminare sau vreme, pentru a le recunoaşte
şi a le identifica poziţia în scenǎ. În domeniul vehicolelor inteligente nu existǎ un astfel de senzor
care sǎ poatǎ rezolva singur toate aceste cerinţe. Existǎ însǎ sisteme care folosesc unul sau mai
mulţi senzori diferiţi pentru a realiza detecţia, recunoaşterea sau urmǎrirea obstacolelor, sau chiar
combinaţii ale acestor funcţii. Dupǎ compararea avantajelor şi a dezavantajelor tehnologiilor pasivǎ
şi activǎ, s-au ales senzorii cei mai potriviţi pentru sistemul de detecţie şi recunoaştere a obstacolelor
propus. Datoritǎ posibilelor interferenţe care pot apare între diferiţi senzori activi, interferenţe ce pot
fi critice pentru un numǎr ridicat de vehicole ce se mişcǎ simultan în acelaşi mediu, ne-am concentrat
doar asupra folosirii senzorilor pasivi, neinvazivi, adicǎ a camerelor video. Astfel, sistemul propus
foloseşte camere cu funcţionare în spectrul vizibil şi infraroşu, alese relativ complementare, deoarece
sistemul trebuie sǎ poatǎ funcţiona bine în diferite condiţii dificile, precum iluminare slabǎ sau vreme
proastǎ (cum ar fi întuneric, ceaţǎ sau ploaie).

Sistemele monomodale sunt adaptate la o singurǎ modalitate, fie vizibilǎ fie infraroşie şi chiar dacǎ
ele furnizeazǎ rate de recunoaştere bune pe setul de test, aceste rezultate pot fi îmbunǎtǎţite şi
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mai mult prin procesarea combinatǎ a informaţiei vizibile şi infraroşii, ceea ce înseamnǎ în cadrul
unui sistem bimodal. Sistemele bimodale pot lua diferite forme în funcţie de nivelul la care este
combinatǎ sau fuzionatǎ informaţia. Astfel, propunem trei sisteme de fuziune diferite: la nivelul
caracteristicilor, la nivelul kernelelor SVM, sau chiar la un nivel mai ridicat, la nivelul scorurilor de
potrivire furnizate de SVM. Fiecare dintre aceste sisteme îmbunǎtǎţeşte performanţele comparativ cu
sistemele monomodale. Pentru a asigura adaptarea sistemului la condiţiile de mediu, în schemele
de fuziune kernelele, scorurile de potrivire şi caracteristicile au fost ponderate (cu un coeficient de
ponderare al senzorului) în concordanţǎ cu importanţa relativǎ a senzorilor de modalitate. Aceasta
permite obţinerea unor performanţe mai ridicate la clasificare. În cadrul fuziunii scorurilor de
potrivire de asemenea existǎ posibilitatea de a realiza în mod dinamic adaptarea coeficientului de
ponderare la context.

Pentru a reprezenta informaţia despre obstacolele ce trebuie recunoscute de sistemul de recunoaştere
al obstacolelor, s-au preferat câteva tipuri de caracteristici pentru codarea informaţiei existentǎ în
imaginile obstacolelor. Aceste caracteristici sunt obţinute în modulul de extragere al caracteristicilor
şi ele sunt: caracteristici wavelet, caracteristici statistice, coeficienţii unor transformate şi altele. În
general, modulul de extragere al caracteristicilor este urmat de un modul de selecţie a acestora, în
care este estimatǎ importanţa lor şi doar acele caracteristici care sunt cele mai relevante vor fi alese
ulterior pentru a reprezenta informaţia. Diferite metode de selecţie a caracteristicilor sunt testate
şi comparate pentru a evalua pertinenţa fiecǎrei caracteristici (şi a fiecǎrei familii de caracteristici)
raportat la obiectivul nostru de clasificare a obstacolelor. Pertinenţa fiecǎrui vector de caracteristici
construit pe baza acestor metode de selecţie a fost evaluatǎ prima datǎ pe baza unui clasificator
KNN (k Nearest Neighbours, în românǎ - cei mai apropiaţi k vecini) (cu numǎrul de vecini k = 1),
datoritǎ simplitǎţii acestuia la utilizare: el nu necesitǎ un proces de optimizare a parametrilor aşa cum
necesitǎ clasificatorul SVM.

Pentru a creşte acurateţea clasificǎrii, dar şi pentru a obţine un clasificator puternic, mai parametrizabil
pentru schemele de fuziune propuse, clasificatorul KNN a fost ulterior (dupǎ ce a fost aleasǎ metoda
cea mai bunǎ de selecţie a caracteristicilor pe setul de antrenare şi cele mai relevante caracteristici
au fost selectate) înlocuit cu un clasificator SVM. Deoarece nu se cunoaşte dinainte ce combinaţie
de hiper-parametrii ai SVM este cea mai potrivitǎ pentru o anumitǎ problemǎ de clasificare, a fost
nevoie de o operaţie de cǎutare a modelului, realizatǎ printr-o tehnicǎ de validare încrucişatǎ prin
10 directoare, care sǎ furnizeze kernelul optimizat pentru SVM, kernel folosit ulterior pentru fiecare
schemǎ de fuziune şi pentru fiecare vector de caracteristici considerat.

În final, s-au testat schemele de extragere a caracteristicilor, de selecţie a acestora şi de fuziune
propuse pentru o problemǎ cu 4 clase, adicǎ s-a realizat discriminarea între vehicole, pietoni, ciclişti
şi obstacole din fond. Rezultatele au demonstrat cǎ toate sistemele bimodale vizibil-infraroşu sunt
mai bune decât cele monomodale. Fuziunea este eficientǎ şi robustǎ deoarece permite îmbunǎtǎţirea
ratelor de recunoaştere. În plus, schema de selecţie a caracteristicilor furnizeazǎ un vector cuprinzând
doar cele mai relevante caracteristici pentru procesul de clasificare. Aceastǎ reducere a dimensiunii
vectorului de caracteristici pe lângǎ faptul cǎ produce rate de acurateţe mai ridicate, permite şi
reducerea timpului de calcul care este crucial în acest tip de aplicaţii.

Cuvinte cheie: Fuziune, Camerǎ cu infraroşu, Extragere de caracteristici, Selecţie de caracteristici,
Maşina cu suport vector, Nucleu, Scoruri, Optimizare de hiper-parametrii, Cǎutare de model, Validare
încrucişatǎ cu 10 directoare.
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Thesis structure

The research presented in this dissertation advances the theory, the design and the implementation
of the proposed Obstacle Recognition component in the frame of an entire Obstacle Detection and
Recognition (ODR) system. The proposed recognition component is designed for improving the road
security by discriminating between different types of obstacles from the road and it is based on the
fused information provided by visible spectrum and infrared spectrum cameras. The present work
contains 169 bibliographical references and it is structured in five chapters as follows.

The first chapter is intended to give a motivation for why the ODR task is an important area to
be investigated, and how the work done in this thesis can contribute to an ODR system. It also
introduces the basic information necessary to understand the main characteristics and problems
of the ODR task. The fundamental requirements for developing an affordable-price, real-time,
efficient and robust system to be deployed on board of the vehicle are presented, followed by the
specific characteristics of the ODR systems from the intelligent vehicle domain. Finally, our proposed
solution and how we intend to solve all the specified requirements for the ODR system are introduced.

Chapter 2 is dedicated to the systems (and the sensors they employed) from the intelligent vehicle
field which addressed a problem similar to our, therefore it is a state of the art. Different types of
sensors are investigated and their advantages and drawbacks are presented in the frame of most cited
systems developed in the intelligent vehicle domain. The main types of sensors were examined, but
we concentrated especially on the information each type of sensor could provide. Some sensors may
have many advantages, but also some strong limitations, which make them to be not-so-properly for
the implementation of an ODR system. The chapter is mainly focused on comparing advantages
and disadvantages between the passive and active technologies and choosing the best solution for
developing an ODR system. Considering the high price and the interference problems, we chose not
to employ any active technology for the proposed system. In this chapter we motivated our choice to
use only cameras, so passive sensors operating in a non-invasive way and which in addition are also
cheaper than their counterparts, the active sensors.

In the next three chapters, our proposed system is presented.

In Chapter 3 the baseline Obstacle Recognition component is presented, in the frame of an entire
ODR system. The problems addressed here are intended to make a detailed presentation of the
functioning mode and of the components that form this base system. The Obstacle Recognition
component is more emphasized, and the following are also presented: the image database on
which the proposed schemes have been experimented, the measures by which the performances
of these schemes have been evaluated, but also how the feature vector that will characterize each
instance within the system was composed. Basic notions about the classifier used in the frame of the
developed fusion schemes, which is a SVM, are also presented. The individual or monomodal visible
and infrared systems are also illustrated, together with a first set of experiments realized with these
simple systems.

Chapter 4 is structured in two main parts, the first one is presenting a motivation for why the step
of features selection is needed and the main possibilities to accomplish this task are given. Different
features selection algorithms are presented, tested and evaluated in order to compute the most
pertinent feature vector to encode the information from the image database. Our method to perform
the features selection is described and the last part is presenting the experiments we realised in order
to perform the selection of features by the mentioned methods. Possible improvements are studied
and implemented in order to choose the best feature vector to encode the information provided by
the visible and infrared cameras. Once obtained, this feature vector could improve the accuracy of
the system, but also it could decrease the processing time needed for the system in the Obstacle
Recognition stage.
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In Chapter 5, three different fusion schemes are presented and evaluated having the main purpose
the improvement of the recognition accuracy, but also the possibility to adapt the system to different
context situations. Fusion is performed at different levels, low or high (by combining features,
respective matching scores), but also at an intermediate level: fusion at the kernel level, which is the
solution we propose for our final system. In this last chapter the monomodal systems are also brought
in discussion, but the main processing is done with bimodal systems, thus combining both visible
and infrared information. They use the bimodal information at different stages, depending on the
applied fusion scheme. A comparative study of individual visual and infrared obstacle recognizers
versus fusion-based systems is performed and the obtained results are presented and discussed.

In the last chapter, we draw the main conclusion about the proposed fusion schemes and several
potential improvements of our work are given.
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“Everything, it said, was against the travellers, every obstacle
imposed alike by man and by nature.”

Around The World In Eighty Days, Jules Verne

Chapter 1

The Obstacle Detection and Recognition
problem

Contents
1.1 Why Obstacle Detection and Recognition task? . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 What makes the ODR task so difficult to fulfil? . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 What are the main requirements for developing an efficient ODR system? . . . . . . . . . . . 3
1.4 Specific characteristics of an ODR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Our proposed solution for an ODR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Our purpose in this thesis is to design an Obstacle Detection and Recognition (ODR) system for
improving the road security by directing the driver’s attention towards situations which may become
dangerous. Any system which could prevent deaths in traffic should definitely be tested because it
could become a part of the future car.

There are some critical requirements that a driver assistance system should fulfil in order to be
considered a possible solution to be implemented on board of a vehicle: the system cost should be
low enough to allow to be incorporated in every series vehicle, the system has to be fast enough to
detect and then recognize obstacles in real time, it has to be efficient (to detect all obstacles with very
few false alarms) and robust (to be able to face different difficult environmental conditions).

Our proposed solution for developing an ODR system is to use two types of passive sensors: VISible
(VIS) and InfraRed (IR) spectrum cameras. To improve the obstacle detection and the obstacle
recognition tasks, we propose a fusion between the images provided by these types of sensors. A
fusion between the information provided by VIS and IR cameras would solve difficult complementary
situations, which any system based only on one type of camera could not solve by its own. Different
fusion schemes using information provided by visible and infrared images are proposed for road
obstacle classification and all these schemes are evaluated by an Support Vector Machine (SVM)
classifier.

This chapter is intended to give a motivation for why the ODR task is an important area to be
investigated, and how the work done in this thesis can contribute to an ODR system. It introduces the
basic information necessary to understand the main characteristics and problems of the ODR task.

Section 1.1 gives the motivation for developing an ODR system in the frame of the intelligent vehicle
field. Next, the basic problems connected with the ODR system implementation are presented in
section 1.2 in order to understand why a problem so awfully simple for humans, tends to be very
hard to be accomplished by machines. The fundamental requirements for developing an affordable-
price, real-time, efficient and robust system to be deployed on board of the vehicle are presented in
section 1.3, followed by some specific characteristics of the ODR systems in section 1.4. Finally, our
proposed solution and how we intend to solve all the requirements specified for the ODR system are
presented in section 1.5, followed by conclusion in section 1.6.

1



2 The Obstacle Detection and Recognition problem

1.1 Why Obstacle Detection and Recognition task?

The interest for the intelligent vehicle field has been increased during the last years, must probably due
to an important number of road accidents. According to a traffic report developed by the World Health
Organization (WHO) (WHO, 2004), road accidents kill more than 1.2 million people annually, and
around 50 million people are injured. If we could help to save even a part of those people by using a
driver-assistance system, it would worth any effort. The easier way to act in such unwanted situations
is their prevention. Many accidents could be avoided if a device attached to the vehicle would assist
the driver with some warnings when dangerous situations are about to appear. These occur especially
in urban traffic environments, but there are a lot of other situations: accidents can appear on rural
roads and not involving only pedestrians. In addition, any situation on the road which can generate
a human injury is a situation that such a driver-assistance system should detect and help to be avoided.

In recent years, leading car developers such as Daimler Chrysler, Volkswagen, BMW, Honda,
Renault, Valeo, among others, have recorded significant efforts and support research works regarding
the intelligent vehicle field. Their main aim is the protection of all traffic participants, from both
inside and outside the vehicle, but mainly their efforts are concentrated on the pedestrian’s safety.
Together with these companies, many research groups approached the intelligent vehicle domain,
proposing solutions for the existing problems, especially in the vision domain. Road detection and
following, pedestrian or vehicle detection, recognition and tracking, night vision, among others are
examples of applications which have been developed and improved recently. With all these, there are
still a lot of challenges and unsolved problems in the intelligent vehicle domain.

One important example of such unsolved situation could be the development of an automatic pilot
(for an autonomous vehicle) - which could therefore entirely control the vehicle at some time. For
that, beside the obstacle detection step, an important step is its recognition: the system should be
capable of recognizing the road trajectory, but also any possible obstacle which may appear outside,
near or inside the road. Also, the system should be able to imagine a proper behaviour in different
cases: when detecting an obstacle outside the road, the system should decide that it should not
represent any danger, unless it will change its direction toward the road area; in the case of detecting
an obstacle on the specific area of the road, the system should decide whether to change its trajectory
to avoid the obstacle, or to stop and let the driver (if any) to decide how to continue the remaining
road; when detecting an obstacle very closed to the road area, the system should recognize its type
in order to know if it is a fixed obstacle (e.g., a tree, a rock, a landmark, a container), therefore an
obstacle which is obviously not dangerous because it could not change its state, or it is a mobile
obstacle (e.g., a pedestrian, a cyclist, an animal, a vehicle), therefore an obstacle which any time
could change its trajectory and become dangerous. With this discrimination, a lot of accidents
due to the suicides or animals jumping in front of the vehicle on night could be avoided. In any
of these possible situations, when detecting an obstacle, it is recommended as prevention that the
vehicle reduce its speed, until no obstacle is detected near the road area. Therefore, we conclude it is
important not only to detect the obstacle, but also to identify its type. This would help the system in
making the appropriate decision in many different situations. Another unsolved issue of the existing
intelligent vehicles is their limited or non-existent ability to ensure a precise and robust functioning
to different variations of poses, sizes, types, partial occlusions of obstacles in any illumination or
weather conditions (poor light conditions or bad weather situation). This is what our system is
intended to realize: to detect and then to recognize different types of road obstacles, even they are
occluded or they present varying positions, shapes or sizes. These tasks have to be performed in any
environmental context and in real time, therefore the system has to be precise and robust.

Next, we want to see which are the main existing impediments making so difficult the ODR task
through the use of computers, while people perform it without too much efforts in normal driving
conditions. Still, in difficult conditions of traffic (urban or crowded roads), accidents are happening
even when a human is driving the vehicle.
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1.2 What makes the ODR task so difficult to fulfil?

The outdoor environment, the variety of obstacles appearance from the road scene (considering also
the multitude of possible types of obstacles), the cluttered background and the fact that the system
must cope with the moving vehicle constraints make the categorization of road obstacles a real
challenge.

In the recognition step, if a classifier is used to discriminate between different types of objects,
some new impediments could also be found: the learning-testing step, so easy to be accomplished
by humans that even children perform it in a natural way, could become a very difficult task
for the machines (computers). The main difficulty is in trying to correctly learn a diversity of
possible shapes: varying with the viewing angle, position and size, different outcomes which
describe the same object among others. Since the obstacles we are looking for almost always are
found in heavy cluttered urban environments, it is making the problem of separating them from
the background a non-trivial one. Furthermore, the fact that the host vehicle is moving increases
the complexity of the problem because the system must also consider the ego-motion matter
and the real time constraints. All the processing has to be done with very little time consumption
in order to assure enough time for the driver (or the autonomous vehicle) to make a decision and react.

Additionally, the illumination or weather conditions could also affect the well functioning of the
system, because some different extreme conditions, like low visibility (e.g. night, overcast sky, dense
fog, rain) or high visibility (e.g. the sunlight that fall on the windshield on a hot sunny day or the
headlights of an approaching car on night) must be faced too. Hence, the developed system must be
robust enough to adapt to different environmental conditions (such as sun, rain or fog) but also to
their dynamic changes (such as transitions between sun and shadow, or the entrance or exit from a
tunnel).

All the previously mentioned ideas also guided us to outline our system; therefore, the fusion between
the information provided by visible and infrared cameras (which are appropriate for day, respective
night vision) will be performed in such a way to allow the dynamic adaptation of the system to
different environmental contexts.

1.3 What are the main requirements for developing an efficient ODR system?

There are some critical aspects that a driver assistance system should fulfil in order to become a
viable solution to be implemented on-board of a vehicle:

R1. The system cost: should be low enough, since it has to be incorporated in every series
vehicle. Therefore, some less expensive sensors must be employed.

R2. The real time request: the system has to be fast enough to detect and then recognize obstacles
in real time, as an obstacle may quickly appear in front of the car and degenerate in an accident and
such a situation is imperative to be avoided.

R3. The efficiency of the system: the system should detect all the obstacles from the scene but
giving as little false alarms (ghost obstacles) as possible. Therefore, we are looking for systems
which are capable to detect all obstacles but at the same time giving as few false alarms as possible.
Later, in the verification step, false alarms are to be recognized and removed, but with each ghost
detected as being obstacle, the processing time is increased and the accuracy of the entire system
may drop; practically, the warning system will warn many times for no real reason. In addition, in the
recognition step, for the detected obstacles the system must correctly identify the class they belong to.
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R4. The robustness of the system: the system must cope with difficult environmental context in
which it has to assure a well functioning, no matter what are the illumination or weather conditions.
The system should recognize different types of obstacles, like pedestrians, vehicles, animals, among
others but it must also be capable of recognizing their variable shape, because e.g. pedestrians
may ware different outfits, accessories, bicycles or (baby-)carriages, vehicles could be of different
types: tourism cars, utility vehicles, trucks, buses and so on. Therefore, different classes of obstacles
may vary with their size, shape, viewing angle, they could be occluded or not. All these types of
obstacles transposed on the cluttered background and combined with different possible illumination
and weather situations require fast and efficient obstacle detection and classification schemes.

How we treated these requests for our driver assistance system, to be inexpensive, fast, efficient and
robust? We try to answer all these questions formulated here after we review which the specific
characteristics of an ODR system are. Our proposed solution is mentioned in section 1.5.

1.4 Specific characteristics of an ODR system

Almost all categorization systems developed by now in the intelligent vehicle field employ an
obstacle detection step followed by a recognition or a hypothesis verification module. Very often
there is also a third module in which the recognized obstacles are tracked in their trajectory until they
are no longer viewed in the scene.

The most developed systems are specific for one type of object detection, either pedestrian or vehicle.
These dedicated systems are looking for obstacles in the scenes using either an active sensor like
RAdio Detection And Ranging (radar) or Light Amplification by Stimulated Emission of Radiation
scanner (laser scanner) which will provide the distance to the respective object, or a passive one like
cameras. In this latter case, there are three main directions for searching possible obstacles in the
scenes:

(1) to look for areas presenting symmetries or textures specific to the aimed obstacles,
(2) to use sliding windows encoding an obstacle specific shape of different sizes over the entire

image or on some areas (determined from perspective constraints) from the image, or
(3) to try to detect specific parts of the proposed obstacles: pedestrian’s legs or head, the wheels,

headlights or the shadow produced by a vehicle.

In the verification step, these systems generally perform an it-is/it-is-not (the obstacle they were
looking for) verification. This verification could be based on a classifier or on some a priori
information specific to the obstacle to be checked (such as dimension constraints or ratio sizes).

When the Obstacle Detection (OD) task is limited to the localization of specific patterns
corresponding to obstacles, processing can be based on the analysis of a single still image, in
which relevant features are searched for. There are other systems in which a more general definition
of the obstacle is exploited, therefore more complex algorithmic solutions must be handled. In this
latter case of systems, all types of obstacles are searched at a time, but generally a road detection is
performed in a previous step and all the obstacles are detected as being “on the road”. Any object
that obstructs the vehicle’s driving path will be identified as an obstacle. In this case, the Obstacle
Detection assignment is reduced to identifying the area in which the vehicle should safely move
instead of recognizing specific patterns. Because here the discrimination between obstacles is more
complex, for the identification of obstacle some multi-class classifiers are needed, not as the binary
ones used for the previous type of systems. Generally, in the frame of these type of systems, the
road detection is performed by a monocular camera, but the localization of possible obstacles on
the vehicle path is realized through the use of some active sensors or by the analysis of some more
complex vision-based techniques, such as employing two cameras instead of a single one or by using
video sequences of images.
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1.5 Our proposed solution for an ODR system

Almost all developed Obstacle Detection algorithms from the intelligent vehicle field are concentrated
on detecting a specific type of obstacle: pedestrian or vehicle. Our purpose is to extend this processing
to different types of obstacles, whether they are vehicles, pedestrians, cyclists, animals, or some
others. A serious accident can occur even in a vehicle collision with a fixed obstacle, made by
nature, and can endanger the life of the driver. Therefore, our intention is to develop an algorithm
to detect and recognize any possible obstacle to the host vehicle and to decide its type, so to identify it.

Our work aims to recognize the detected obstacles, like pedestrians, cyclist, cars by the extraction of
a compact and pertinent numeric signature, followed by an efficient classification of this signature.
Both, the extraction of this signature (performed in the features extraction module, as we will see
in Chapter 3) and the classification techniques should be fast and good enough to assure real time
performances.

Our solution for developing an ODR system which fulfil the four requirements early mentioned,
is to use two types of vision sensors: visible and infrared spectrum cameras. A fusion between
these types of images would solve difficult complementary situations and will improve the obstacle
detection and recognition tasks. Though, the main advantage of such a system is that it is not as
much expensive as a system using radar or ladar, therefore the first requirement (R1) is reached.
In fact, even if we add a second visible camera in order to obtain a stereo-vision schematic for the
visible domain, it would not affect very much the price of the entire system, because we used low-
priced and low-resolution cameras (320x280 pixels per image). The second request (R2) we solved
by using a bi-level optimization technique which aims to improve both accuracy and computation
time. We used feature selection algorithms in order to decrease the number of retained features which
encode the information given as input to the classifier. In this way, the extraction time but also
the classification time is very much reduced, assuring thus the possibility of obtaining a real-time
recognition system. The third request (R3) we solved by using different decision-schemes which are
based on SVM classifier. The high performance would be ensured by the fusion of visible and infrared
domains, not only at the feature or decision level, but also at an intermediate level, i.e. at the kernel
level. The system must work well even in difficult illumination or weather situations, like dark, rain
or fog. By performing the fusion between visible and infrared domains the system will be capable
of treating complementary situations and will ensure also the functioning in difficult environmental
context; therefore, its robustness (R4) will be assured.

1.6 Conclusion

We briefly presented our solution to solve the ODR task. There are many unsolved problems in the
intelligent system domain and our focus was to check if a fusion between the visible and infrared
information would be helpful from the obstacle recognition point of view. Some key issues, such as
the robustness to vehicle’s movements and drifts in the camera’s calibration must also be handled
in the obstacle detection problem. Many systems still encounter problems at the detection step and
since this detection part is still a work in progress in the frame of the Institut National des Sciences
Appliquées (INSA) laboratory, our goal was to develop a system to continue this task. We have
focused solely on the fusion between the visible and infrared fields from the viewpoint of an obstacle
recognition module. Next, the recognition module (and hence the fusion) will be further integrated
into a complete system performing both the Obstacle Detection and the Obstacle Recognition tasks.

In the following chapter, different types of sensors are investigated and their advantages and
drawbacks are presented in the frame of the most cited systems developed in the intelligent vehicle
domain.
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“Emporte dans ta mémoire, pour le reste de ton existence, les
choses positives qui ont surgi au milieu des difficultés. Elles seront
une preuve de tes capacités et te redonneront confiance devant tous
les obstacles.”

Manuel du guerrier de la lumière, Paulo Coelho
Chapter 2

Sensors and Systems in the Intelligent Vehicle
field

Contents
2.1 What type of sensor to choose ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Proprioceptive vs exteroceptive sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Sensors classified about the radiation position in the electromagnetic spectrum . . . . . . 10
2.1.3 Active vs passive sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 What type of system is better ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Systems combining active and passive sensors . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1.1 Systems combining radars and passive sensors . . . . . . . . . . . . . . . . . . 17
2.2.1.2 Systems combining laser scanners and passive sensors . . . . . . . . . . . . . . 22
2.2.1.3 Systems combining several types of active and passive sensors . . . . . . . . . 25

2.2.2 Systems using only active sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2.1 Systems using a single type of active sensor . . . . . . . . . . . . . . . . . . . 27
2.2.2.2 Systems combining several active sensors . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Systems using only passive sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3.1 Systems using a single type of passive sensor . . . . . . . . . . . . . . . . . . . 32
2.2.3.2 Systems using a combination of different passive sensors . . . . . . . . . . . . 46

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

In this chapter, the main sensor types and their characteristics are detailed. Common sensors used
in the intelligent vehicle field are examined, but we concentrated especially on the information
each type of sensor could provide. Some sensors may have many advantages, but also some strong
limitations, which will make them to be not-so-properly for the implementation of an ODR system.
Many systems developed in the intelligent vehicle field and employing one or multiple sensors are
reviewed and their performances and drawbacks are illustrated.

To outline the system we were looking for sensors which could provide enough information to detect
obstacles (even those occluded) in any illumination or weather situation, to recognize them and to
identify their position in the scene. In the intelligent vehicle domain there is no such a perfect sensor
to handle all these concerned tasks, but there are systems employing one or many different sensors in
order to perform obstacles detection, recognition or tracking or some combination of them. Before
presenting different systems from the intelligent vehicle domain (section 2.2), first we introduce
the main types of sensors (in section 2.1) which could be employed single or combined in order to
accomplish the ODR task.

The sensors employed in the systems presented in this chapter are grouped in two main categories:
passive and active. The present chapter is mainly focused on comparing advantages and disadvantages
between these two types of technologies and choosing the best solution for developing an obstacle
detection and recognition system.
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2.1 What type of sensor to choose ?

Generally, the sensors used in the obstacle detection and recognition (ODR) field can be classified
according to different criteria. First, they can be classified by the perception about the environment,
which means according to the type of measured information they give as output, as proprioceptive and
exteroceptive. Secondary, the sensors can be classified about the spectrum position of the radiation
they use to function and third, they can be classified as active or passive sensors and this latter
classification is referring to the presence or absence of a radiation needed also in their functioning.

2.1.1 Proprioceptive vs exteroceptive sensors

The proprioceptive sensors are capable to measure an attribute regarding their own state, while the
exteroceptive sensors are capable to measure an attribute of an external object present in the scene
(Appin Knowledge Solutions, 2007).

The proprioceptive sensors perceive the position, the orientation and the speed of the object
they are mounted on. They monitor the motion of the vehicle by measuring the kinetic quantity
like acceleration and velocity. Vehicles use inertial sensors like: accelerometers to measure the
acceleration from which velocity can be calculated by integration, tilt sensors to measure inclination,
position sensors that indicate the actual position of the vehicle from which the velocity can be
calculated by derivation, odometers to indicate the distance traveled by the vehicle, speed sensors
which measure the velocity, among others.

The exteroceptive sensors give information about the surrounding environment and that information
allows the vehicle to interact with the scene to which it belongs to. Cameras working in visible or
infrared spectrum, laser scanner, microwave radars and SOund Navigation And Rangings (sonars)
are used to provide a representation of the environment (e.g. some imaging features or the distance
to the respective obstacles). Proximity sensors (sonar, radar, laser range finders or tactile sensors like
bump sensors) are used to measure the relative distance (or the range) between the sensor and the
objects from the environment. Also, to measure the distance, two stereo cameras or the projection
of a pattern on the environment followed by observations on how the pattern is distorted (markers)
can be used. In order to recognize and classify objects in the obstacle detection and classification
context, Charged Coupled Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS)
visible spectrum cameras or infrared spectrum cameras can be used as vision sensors.

External bumpers and similar sensors have been tested in the intelligent vehicle domain, but such
sensors will rather be used as reactive ones (e.g. by inflating an airbag) or as some additional sensors
to other more powerful ones (like radars, laser scanners or cameras).

2.1.2 Sensors classified about the radiation position in the electromagnetic spectrum

In order to remind where the radiation these sensors employed to function is positioned in the
electromagnetic spectrum, in the following, we recall how is the entire electromagnetic spectrum1

typically divided into its bands (Hammoud, 2009a), (B.S. Shivaram, 2010). At the very short
wavelengths, there are the gamma rays which are produced in nuclear reactions and they could
actively interact with the matters’ molecules and atoms they propagate through. Then, it follows
the X-rays which have lower energies (i.e., longer wavelengths) than the gamma rays and due to their
excellent penetration ability, they has been extensively exploited in medical imaging; the ultraviolet
spectrum consists of electromagnetic waves with frequencies higher (i.e., wavelengths shorter) than
those used by humans to identify the violet colour. The visible spectrum is the electromagnetic
radiation from a particular, very narrow frequency band (i.e., wavelengths from about 390 to 750

1The main regions of the electromagnetic spectrum are specified according to their wavelengths, from the shortest towards the
longest.
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nm, which corresponds to the extreme colours, violet and red), also called “the optical spectrum” due
to the fact that humans are able to see it in different colours. Next, just beyond the colour red in the
visible spectrum, i.e. with a wavelength longer than red colour, the infrared spectrum follows. It
represents the electromagnetic radiation with a wavelength between 0.75 and 300 micrometers. Its
name means “below red” (in terms of frequencies) and it is also referring to the visible light range.
Microwaves and millimeter waves represent the band with the wavelengths from 0.3 mm to 3 cm.
Radar uses microwave radiation to detect the range, the speed, and other characteristics of the remote
objects. Finally, at the upper bound of the electromagnetic spectrum there are the radio waves which
are mainly used for applications like: fixed and mobile radio communication, broadcasting, radar and
other navigation systems, satellite communication, computer networks and others.

2.1.3 Active vs passive sensors

In the frame of intelligent vehicle applications, to record information about the obstacles presence
on a road, one of the sensors described in the following is often used. They are grouped in two main
categories: active sensors (like radar, laser scanner or LAser Detection And Ranging (ladar) or
Light-Imaging Detection And Ranging (lidar) and sonar) and passive sensors (cameras using visible
or infrared spectrum radiation).

Active sensors - emit a signal and receive a distorted copy of the respective signal. They provide
their own energy for illumination and the objects are irradiated with artificially generated energy
sources. That energy is reflected by the target objects providing information about the surrounding
environment. In the following lines, a brief description of the most used active sensors in the
intelligent vehicle domain is given:

a) radar (Microwave Radar) - emits microwave radiation in a series of pulses from an antenna
and receives that part of the energy which is reflected back from the target. The time required for
the energy to travel to the target and return back to the sensor determines the distance or range to
the target (distance and speed of the objects are determined from multiple emissions of this type). A
two-dimensional image of the surface can be produced by recording the range and magnitude of the
energy reflected from all targets from the scene. One characteristic of radar is its possibility to be
used day or night because it provides its own energy source to register the scene. Therefore, radar
technology can operate in different environmental conditions (e.g. rain, snow, poor visibility) without
any strong limitations. Still, this characteristic could be seen as a weak one, due to the interference
problems it implies when radars are mounted on many vehicles in traffic. An important advantage of
radar is that it can be used for long range target detection. There are three primary types of radars
based on their transmitted electromagnetic wave form, but in order to offer more information using
a single system, these technologies are often integrated together (Chan & Bu, 2005): (a1) Doppler
radar - transmits a continuous wave of constant frequency and the speed of the moving obstacles is
determined using a frequency shifting (static objects can not be detected using only Doppler radar).
(a2) Microwave radars - transmit frequency-modulated or phase-modulated signals and determine the
distance to the target by the time delay of the returned signal. (a3) Ultra Wide Band radar transmits
and receives an extremely short duration burst of radio frequency, being able to detect and register
the object’s motion with centimeter precision. An important property of radar is that it offers good
accuracy in longitudinal distance measurement; this compensates the poor accuracy in the lateral
distance measurement.

In the intelligent vehicle domain, two types of radars are often used: near range radar (for detecting
targets up to 30 m) which emits at 24 GHz and long distance radar which is emitting in the 77 GHz
for distances up to about 150 m. Radar systems offer the capability to accurately measure target
range, relative velocity, and azimuth angle of one or more object(s) inside their observation area (they
are often based on some vehicles information like velocity and steering). The really challenging
task when using radars is to distinguish between different object classes based on the received target
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signals (echoes). Most often, radar measures point targets of objects like cars, trees, traffic signs,
bicycles and human beings which present some reflections on their surface. Metallic parts of vehicles
present a higher reflectivity compared to humans, or trees (in terms of reflectivity trees are the
poorest obstacles due to the wood state of nature) and sometimes strong reflections could minimize
other poorer reflections and lead to fails in detecting all obstacles from the scene. The separation
between different types of obstacles is generally done by the evaluation of typical object-specific
reflection characteristics from the radar signals (e.g. the reflected power, the power variance over
time, the dimensions and dynamics of the obstacle). Thus, after the signals reflected by the targets
are analyzed, the next step is to generate some features from these echo signals, which should have
sufficient discriminant information to characterize different targets.

b) lidar (ladar, laser radar or laser scanner) - it uses a Light Amplification by Stimulated
Emission of Radiation (laser) to transmit a light pulse and a receiver to measure the reflected light. A
laser scanner emits laser pulses and detects the reflected ones. It uses optical or infrared technology
to detect reflections from objects and the object’s distance is determined by recording the time
between transmitted and received pulses; the traveled distance is calculated using the speed of light.
Laser scanners are used for long range target detection (in general up to 40 meters) and they use
large field of view. These types of active sensors provide precise measurement of depth and they
have a high accuracy both in lateral and longitudinal direction (Bu & Chan, 2005), (Chan & Bu,
2005). Therefore, to process the data delivered by these sensors, some procedures similar to image
processing are applied (like edge detection, segmentation, clustering and tracking).

The laser scanners used in the intelligent vehicle domain generally emit pulses in the infrared
spectrum, therefore they work independently of daylight. The range of velocity, the typical
appearance of the respective object and the object information from the past are parameters which
help in the classification step.

The ODR task is generally performed based on some information: the model of the sensing
devices, the model of the street the vehicle drives on, the dynamic model of the ego vehicle and the
cluster containing dynamic models of all objects to be identified. Different types of obstacles like
pedestrians, cyclists, cars, trucks, busses, trees, crash barriers, motorcycles, bicycles and others could
be discriminated based on the information obtained after data points coming from laser scanner are
clustered (or grouped) through the segmentation method into different objects. The segmentation
process is started by grouping all the measures of a scan, into several clusters often called segments,
according to the distances between consecutive measures. Objects classification is performed by
comparing the segment parameters (e.g. left, right and closest point to the sensor, the geometrical
center of gravity of all measurement points of the segment) of the current scan with the predicted
parameters of known objects from the former scan(s). Partial occluded objects could be detected
by the use of the laser scanner (if they have been detected in a previous scan). Also, small objects
could not be very well detected due to the limited number of scanning points provided by the
scans. Generally, a Kalman filter is used to predict the object state, including the calculation of the
longitudinal and lateral velocity of the object. The relative velocity of the object can be combined
with the motion of the vehicle in order to determine the objects’ absolute velocity. The detection of
moving objects could be improved by incorporating additional knowledge, like the dynamic behavior
of the objects (given by the tracking algorithm).

c) sonar (Ultrasonic sensor)- works very similar to radar, but instead of electromagnetic
microwave, sound waves are transmitted from an antenna. Ultrasonic sensors generate ultrasonic
waves (short wavelength, high frequency - in general outside the audible frequency) which are
reflected by the targets and by analyzing the received signal, objects are detected together with their
distance and speed. Time of flight is calculated in a similar way to detect the range to object, which
is up to 20 m. One important disadvantage of sonar refers to its sensibility to weather conditions
changing, because the speed of sound waves varies with the temperature and the pressure of the
surroundings.
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The main advantages of using active sensors like radars and laser scanners are their possibility to
measure distance and speed of the targets and the fact that they work well also in bad weather or
poor illumination conditions. Still, other issues remain: the interference problems, the difficulties in
interpreting the output signal returned by these sensors and the acquisition price which is very high
compared to that of a visible spectrum camera, for example.

Passive sensors - they just receive a signal, which could be the reflected, emitted or transmitted
electro-magnetic radiation (light or temperature) provided by natural energy sources. Thus, they
acquire data in a nonintrusive way. They are also called “vision sensors”, because they are working
similarly to human eyes: they refer to the processing of data using the electromagnetic spectrum and
produce an image. The energy provided by sun could be reflected (the visible case), or absorbed and
then reemitted (the infrared case). Thus, the cameras working in the visible spectrum are suitable just
for daytime, when the natural light is available. In contrast, the infrared cameras could work both on
day or night, as long as the amount of energy is big enough to be recorded by the sensor’s receiver.

a) Images captured by colour or gray scale cameras, working in the visible spectrum, are very
rich in content and easy to be interpreted by a person. Maybe this is the reason why the most attention
in research for the Obstacle Detection task was focused in this direction. The visible spectrum
has the main advantage comparing with the infrared one that it has been sufficiently well studied
and understood; therefore, with the advancements of the technology, the cameras working in the
visible spectrum are becoming standard and cheaper. In addition, there is a diversity in algorithms
and applications for obstacle detection and tracking by using images taken with visible spectrum
cameras. Still, the main disadvantage is that they have limitations due to the lighting conditions and
possible shadings; therefore, they are not well suited for darkness conditions.

b) In the last decade, a variety of medical, industrial, military, and remote-sensing applications
have employed the infrared spectrum. The main directions these applications are straightened
will be pointed out after we mention how the infrared spectrum is structured. The infrared band
is typically divided into multiple sub-bands but their separation is not very well defined and therefore,
their associated boundaries could overlap in different literature sources (Hammoud, 2009a), (Arnell,
2005), (Global Security, 2010):

- Near Wavelength InfraRed (NWIR) region - the wavelengths between 0.75-2.4 μm,
- Short Wavelength InfraRed (SWIR) region - the wavelengths between 0.9-3 μm,
- Medium Wavelength InfraRed (MWIR) region - the wavelengths between 3-5 μm, 2

- Long Wavelength InfraRed (LWIR) region - the wavelengths between 8-14 μm,
- Very Long Wavelength InfraRed (VLWIR) region - the wavelengths between 14-300 μm.

Two main technologies are used for night-vision surveillance applications and these are image
enhancement and thermal imaging, corresponding to the so called “reflective” and “thermal” bands
(Hammoud, 2009a). The key difference between imaging in reflective and thermal infrared bands
is that the first mentioned retains the information reflected by objects, while the latter records
temperature emitted by objects (thermal energy is emitted from objects as heat, it is not reflected by
them as it is the case of light).

The basic concept behind image enhancement is to amplify the visible light in order to enhance
visibility. Cameras working in the NWIR or SWIR regions, record the reflected energy from
illuminated objects on a scene; they register a similar content like visible spectrum cameras due to
the fact that their wavelengths are very closed to the visible one. Cameras working in the range of
0.75-5 μm are very often used for night-vision application, due to their capability to enhance the
perception of the scene when strong darkness exists. On night there is no sufficient visible light to see

2The 5-8 μm band is rarely used for imaging due to the fact that it is blocked by spectral absorption of the atmosphere, so there are
very few or none cameras using this range (FLIR Technical Note, 2008).
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the obstacles inside the observation area because there is no natural light to illuminate the scene like
during daytime. Therefore, some sort of artificial illumination sources (like infrared lasers, filtered
incandescent lamps, Light Emitting Diode (LED) type illuminators) should be applied in order to
increase the contrast of some possible objects from the scene when imaging in NWIR or SWIR
regions. Because these night-vision devices need some infrared illuminators to highlight the scene at
infrared wavelengths, they are often called “active infrared sensors”.

Thermal imaging on the other side refers to the process of capturing the heat from the scene, and
transforming it into an image that can be viewed with thermal infrared cameras. Thermal energy
is the upper part of the electromagnetic spectrum in terms of wavelengths. Both MWIR and LWIR
are good candidates for applications involving thermal radiation. Cameras working in thermal IR
band are also called “passive infrared sensors” because they need no artificial illumination sources to
function. Therefore, they capture infrared radiation given by objects as heat.In addition, a thermal
imaging camera can function optimally no matter what the surrounding lighting conditions are.

Cameras operating in the near or short IR domain involve the conversion of ambient light photons
into electrons which are then amplified by a chemical and electrical process and then converted back
into visible light (American Technologies Network (ATN) Corporation, 2010). In this manner, they
deliver much more details of the registered scene (they preserve almost the same details as visible
spectrum cameras on daytime) than offer their thermal counterparts. On the other side, the passive
infrared sensors do not send signals as active sensors do, they just wait until the infrared energy from
an object is received by the detector and then they measured it (Global Security, 2010). In addition,
as we traverse from shorter to longer wavelengths, the radiation become less susceptible to ambient
illumination or hot objects like sun, bulbs, fire, and so on. Most often, this type of infrared sensor
is used in the obstacle detection field, in order to avoid any possible infrared radiation (no active
illumination source to be used). Therefore, in the following, when we refer to infrared cameras, we
denote those infrared cameras working in the thermal band.

There are two types of thermal imaging cameras: un-cooled and cryogenically cooled, but mostly
the un-cooled ones are used in different applications. The un-cooled camera functions without an
additional cooling unit attached, which besides producing a much clearer image (with much details),
it is much more sensitive to temperature variations and also it is much more expensive than a similar
camera without the cooling unit attached.

The IR spectrum is proper for object detection and tracking because all heated objects emit IR
radiation that can be registered with an IR thermal camera. Since some classes of objects like
pedestrians and vehicles have a specific IR signature: pedestrian’s head, body and legs and vehicle’s
wheel and engine, the object identification could be made based on the received energy. But there
are a lot of heats radiators distinct from human or vehicles, so IR sensors can be used for obstacle
detection in general. The higher a body temperature, the more radiation (heat) is emitted.

The important advantage of the infrared spectrum is its ability to measure the temperature. Because
infrared sensors are independent from the light source (being passive sensors) they can register the
same or almost the same image even it is day or night. They can produce a clear high-contrast image
of the objects from the scene even in total darkness or very strong illumination conditions.

The distance (the range) one can see with a thermal imaging camera is highly dependent of different
variables. First of all, the most important ones are the cameras’ functioning parameters, like the
waveband in which the camera operates, if the camera is equipped with a cooled unit or not and the
properties of the target, such as size (i.e., the larger the object the easier it is to see), temperature
difference between the concerned object and the background (i.e., objects are better detected in
winter than in summer). Second, the atmospherical conditions are also of great importance: one can
always see further on a clear night with objects illuminated by the moon, than if it is cloudy and
overcast, or it is dense fog or rain.
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According to the International Civil Aviation Organization (ICAO), fog can be classified in four
categories I, II, IIIa and IIIc denoting the visual range of 1220, 610, 305 and 92 meters. Different
studies (Beier & Gemperlein, 2004), (FLIR Technical Note, 2008) showed that some types of fog are
not critical for some thermal cameras: i.e., only LWIR cameras are superior to the visible ones in
conditions of fog of both types I and II, while MWIR cameras could operate well only for a fog of
type I. Still, extreme atmospherical conditions, like dense fog or rain are not very well handled even
with LWIR band cameras.

The main issues of the infrared imaging are the sensitivity of the IR sensors to weather conditions
(i.e., in dense rain or dense fog) and the fact that the IR domain is not as well understood as the
visible one; thus, very few approaches have been developed to process IR images. As improvements
are made to the IR technology, these camera devices became cheaper and practical for night-vision
applications. They can easy “see” objects in night, light fog or rain while visible cameras could
not face very well such scenarios. The IR cameras price is decreasing with the advancements of
the IR technology, thus they are becoming an attractive complement for the VIS cameras, not only
for night-vision, but also for daytime functioning, in different environmental conditions, but not the
extremes ones in which neither technology can handle very well.

Different cameras configurations

An inconvenient of cameras comparing to active sensors is that they can not provide directly (as radar
or laser scanner does) either the distance of the object in the scene nor its velocity. In order to obtain
the distance information, different cameras configurations could be employed:

• The systems relying on monocular vision generally provide the objects distance based on the
calibration information of the moving vehicle and they often assume the road is flat. Thus,
they are not viable because this hypothesis is not always verified, especially due to the vertical
vibrations of the host vehicle, which could not be neglected.

• An often used possibility is that instead of employing a monocular camera configuration, to
exploit two cameras of the same type; in this manner, stereo visible or infrared images could
be acquired. Stereo vision is an effective technique to extract 3D information from 2D images,
information that can be applicable to visual guidance. Two major issues are inherently involved
in most of the conventional stereo vision methods: depth search and cameras calibration. The
depth search (also called stereo matching) is a process to find corresponding points between
two related images (a pair of images). This would require an increase of the computational
cost. The camera calibration on the other hand is a procedure to precisely determine camera
parameters including the camera 3D position and orientation with a calibration target whose 3D
shape is known. Stereo images help in establishing the region of interest (ROI) in an image, so
stereo technique can be seen as an obstacle detection or segmentation method. A vision system
with multiple perspectives, which means a stereo-vision system, will provide depth information.

• As active sensors provide the temporal information by scanning the area in front of the vehicle
at different time intervals, in the same manner, cameras could be employed to acquire images
at different moments in time in order to yield also a temporal information. By using sequences
of images (video) instead of recording a single static image, a video image or sequences of
images (single camera systems used at different time instances) will provide information about
the changing appearance of the object, i.e. the motion information. Thus, the video camera
is a system that can yield very rich information about the scene. Although a video camera
can obtain much information about the environment compared with radar or laser scanner, the
image sequences can not be used for anything directly without further interpretation. From
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radar and laser scanner, motion information is extracted directly, while from video camera some
image processing operations are required. From all these systems, using motion information
the moving objects could be extracted, together with some other important parameters, such as
distance between the camera and the respective objects and objects’ speed and direction.

Based on both depth and motion information, the processing of the whole image can be replaced
by the analysis of some specific ROIs only, in which the aimed objects are more likely to be found.
Using a perspective translation in space respective in time, the resulted depth or motion information
can be used to detect distance or time to collision of the object. If the longitudinal position of an
object is known (or estimated), the search space can be drastically reduced. This will increase the
detection rates and the speed of the processing system, because having the distance to an object and
knowing the motion parameters, the relative velocity of the respective object can be calculated. In
addition, knowing the lateral position of an object, a tracker can be initialized to follow the objects
on their trajectory.

Although at this point we have mentioned the main advantages and disadvantages of all the available
sensors and our proposed solution could be anticipated based on this information, in the following
we present the most mentioned systems from the intelligent vehicle domain, together with their main
performances and issues.

2.2 What type of system is better ?

As we earlier describe, each type of sensor has its advantages and limitations. Generally, the
developed systems tried to exploit their complementarity in order to assure an improved reliability.

There are a lot of research groups working in this area, therefore different Obstacle Detection or/and
Obstacle Recognition systems have been considered. First, in order to explicitly present systems
which accomplished the obstacles detection, the obstacles recognition or better, both mentioned tasks,
we first concentrated on different systems employing both types of technologies, active and passive
(in section 2.2.1). After presenting these powerful but very expensive systems, we focused on some
less expensive ones, i.e. systems employing one single technology: active (section 2.2.2) or passive
(section 2.2.3). Different systems could be followed here, i.e. systems employing a single type of
active sensor (section 2.2.2.1), a combination of different active sensors (section 2.2.2.2), a single
type of passive sensors (in 2.2.3.1) or a combination of different passive sensors (section 2.2.3.2). For
each type of system, we tried to verify how they fulfil the four main requirements stated in Chapter 1
at section 1.3. All these systems mentioned in the section 2.2 are grouped at the end of the section in
two tables (systems employing active sensors and systems employing only passive sensors) in order
to be better identified as belonging to one or another category of systems.

2.2.1 Systems combining active and passive sensors

There are a lot of systems using a combination between passive and active technologies, therefore
using a vision sensor combined with a distance one. They may use active sensors as radar, lidar (or
ladar) or laser scanner in order to perform or improve the detection step. This choice is to be expected
when considering that active sensors are distance providers and they could properly function in
poor illumination or bad weather conditions. Generally, for the active-passive fusion systems, in the
detection step the obstacle’s position is estimated by the active sensor and in the recognition step
these positions are marked on the image provided by the passive sensor. However, there are systems
exploiting a fusion of both passive and active sensors in order to improve the detection step. After the
obstacle is segmented, possible area containing the obstacle and called bounding box (BB) is found.
Then, it is verified and processed in the recognition step, where the false alarms are discarded and for
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each recognized obstacle its type is also determined.

In the following, systems using a combination between active sensors and cameras (functioning in
the VIS or in the IR spectrum) are presented. First, we review some systems employing radars and
cameras or laser scanners and cameras, and in the last part of this section some very powerful systems
employing multiple types of active and passive sensors, which we called “all fused” are presented.

2.2.1.1 Systems combining radars and passive sensors

Radar measurements not always coincide with the center axes of the host car as it is assumed (because
radar could detect some metallic parts of the same obstacle or some other obstacles) and in order
to increase the reliability of the system, often a fusion between radar and vision is chosen. Radar
offers good accuracy in longitudinal distance measurement, but poor accuracy in the lateral one and
vision has opposite properties. By combining vision with radar, good accuracies in both positional
measurements will be provided. Both radar and monocular vision measures 2D information from the
3D scene: radar measures velocity or distance and radar cross section (RCS), while camera retains
the objects’ width and height. The information coming from radar and vision complement each other:
whereas radar is able to tell at what distance it points echoes, but without providing the direction,
vision can give the direction in which a relevant event is detected, but do not provide the distance at
which it occurs. By fusing radar and vision the accuracy of the system is expected to be increased.

In the following, systems employing combinations of radar(s) and visible spectrum camera(s)
(monocular or stereo) are presented.

The radar employed by Handmann et al. (Handmann et al., 1998) is capable of detecting up to
three objects in front of the car and also it has the ability to track them. Besides the information
provided by a monocular CCD visible spectrum camera and a radar sensor, Handmann employed
some additional features (like feedback over the time, local variance and vehicle shadow) in order to
perform the sensor fusion process for vehicles detection. A feature vector was composed by different
information and then it was given as input to a binary classifier to decide the membership of each
pixel to a relevant segment or to the background.

In the approach of the researchers from Daimler Chrysler (Gern et al., 2000) the run of the curve is
estimated by a Kalman filter technique from the position of the leading vehicles, which have been
detected by an Adaptive Cruise Control (ACC) radar. The approach consists of three steps: first,
obstacles are detected by radar, then they are located in the image and finally they are tracked in the
image. Their vision-radar fused system is intended for highways road following, since highways are
built under the constraint of slowly changing curvatures. The run of the curve and vehicle position
parameters were determined from the relation between a point on a marking and its image point,
which was estimated assuming the pinhole-camera model and knowing the camera parameters, like
focal length, tilt angle and height-over-ground. Gern et al. employed a vision system to estimate
the road, but also to perform a visual symmetry detection for correcting the typically bad lateral
accuracy of radar targets; the longitudinal distance was provided by radar. The vision system was
composed by one monocular camera in a previous version of the implementation (Franke, 1992) and
by two stereo cameras in the current version. Gern et al. do not use all the information provided by
the vision camera (i.e., vehicles on the lateral lanes), like the systems presented in (Handmann et al.,
1998) and (Steux et al., 2002) do. Under good weather conditions, the system proposed in (Gern
et al., 2000) analyzes up to 150 search windows at a range of sight of 50 m to 70 m. The monocular
system runs at a cycle time of about 5.5 ms, while the binocular takes about l0 ms time for every
cycle. Being addressed to highways, their system allows driving comfortable autonomously with a
speed up to 160 km/h if the markings were well visible. Under good weather conditions, the range
of sight was about 50 m while under bad visibility, the range of sight was decreased to about 10-14
mand the distance to the leading cars was about 60-80 meters.
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A pedestrian detection system from a moving camera is proposed in (Milch & Behrens, 2001).
Milch and Behrens used fusion of a radar system (consisting of two individual 24 GHz radar
sensors with slightly overlapping field of view) and a monocular vision system, together with some
vehicle information like velocity and steering. The fusion is based on a two-step approach for
object detection: first, a list of potential targets (i.e., hypotheses for the presence of pedestrians) was
generated using radar; for every object distance, angle and RCS information was extracted. Then, a
filtering operation using specific constraints about speed, RCS and size was performed. In the second
step, the remained pedestrian candidates were verified in the image-processing module, where a
flexible 2D prior model of the pedestrian shape (trained from manually extracted pedestrian-instances
with a frontal view and a side view of the human body provided by video sequences) was used.

In (Steux et al., 2002) another fusion scheme of radar and a colour camera for vehicle detection
is presented, radar informing the vision system about the position of the targets, so that the ROIs
in images could be brought in attention. Unlike the most approaches found in literature, where
the vision module directly yields some obstacle-like information, in their Advanced Functions for
Environment Detection (FADE) system, four independent vision-based detection modules (using
shadow, rear lights, lines and symmetry) provided low-level information on possible targets (e.g., the
position of the left shadow of the target) and the fusion module decided the real position of the target.
A causal structure (belief network) for each target at each step of the fusion process provided a set of
hypothesis regarding the position of the target in the ground plane.

Kato et al. (Kato et al., 2002) proposed an obstacle detection method based on the fusion of
information provided by radar (a Fujitsu-Ten mechanical-scan millimeter-wave radar, with a
detection range of 100 m and a horizontally scanning angle of 14 degree) and a video camera (an
XC-7500 camera with a sampling resolution of the image of 640x480 pixels and the frame rate of 30
frames/s). The regions corresponding to objects detected by radar were transposed in the image, by
assuming a virtual vertical plane at the distance measured by the radar. Based on this assumption,
changes of motion in the image were estimated by a motion stereo technique instead of estimating the
distance from them. The feature points, whose motion was easy to track, were selected and tracked
frame by frame in the image sequence. Their system was able to detect obstacles (vehicles but also
pedestrians) up to 50 m on an urban road.

In (Sole et al., 2004) radar and vision sensors were used for a high-level fusion: a list of radar targets
and a list of vision detected vehicles were provided for the fusion process. A radar target that matches
a vision target was considered a valid target. The validation strategy was based on a high-level
sensor modality approach which assumed that each sensor had a capacity to form independent target
acquisition: matched targets were automatically validated. On the other side, the validation process
for unmatched targets was divided into a number of steps combining motion analysis with shape and
texture analysis to classify it as vehicle (moving or stationary), motorcycles, pedestrians (moving
longitudinally or laterally, or stationary). The matching process was based on objects parameters
like range, angular position, range-rate and considered such information across multiple images.
Based on the radar reflections, targets were validates as “Solid” or “Ghost” and for Solid targets the
system performed also object classification in vehicle (moving or stationary) or motorcycles. Their
system could also find pedestrians (moving longitudinally or laterally, or stationary) by detecting
non-reflecting or weak reflecting radar targets.

In (Kawasaki & Kiencke, 2004) a vehicle detection and tracking method using fusion (at the sensor
level) of a millimeter wave (MMW) radar (working at 77 GHz) and a vision video camera, by a
causal model, i.e. a Bayesian Network, is presented. The inputs to the Bayesian Network were
different target specific characteristics such as lateral position estimated by symmetry detection, the
width estimated by vertical edges computation, the center position or width estimated from a shadow
detection or a tail lamp detection, the center position of the object estimated from the tracking
function, environmental brightness from the blue sky estimation, the lateral and longitudinal position,
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and longitudinal relative velocity of the object provided by radar and the predicted object position
and width. Each detection algorithm outputed a relevance measure: e.g., the symmetry algorithm
delivered a measure of “how symmetrical the image was.” Kumon et al. (Kumon et al., 2005)
continued the work of Kawasaki and Kiencke and added a rear projection area detection function.
Target vehicle image was clipped out from the whole image using object position data provided by
radar in order to reduce the computational time for the image processing module.

A system that besides the radar and monocular information integrated also some temporal data
provided by the video camera is proposed in (Alefs et al., 2005). Their system combined the output
of a 24 GHz radar (detecting obstacles up to 20 m), single images provided by a monocular camera
and the image sequence data available from the same camera. The radar detection module used
condensation tracking which provided a model based approach for contour tracking. In the vision
system, vehicles were detected by scaled symmetry detection. For the vehicle detection, the three
modules were fused by sharing sets of hypotheses. The internal state of the system was described
by two variables: a probabilistic function, describing the occurrence of an object as function of the
distance (the range data were fused with 2D-position data from single images) and a set of hypotheses
consisting of deterministic parameters for the position and motion for vehicle candidates (spatial
object coordinates were fused with data from the image sequence). The result was a kinematic
description of the obstacle, including coordinates for the position, size and the object’s velocity.
Detected vehicles were tracked using Lucas-Kanade template matching, resulting in additional
hypotheses and including vehicles beyond the range of the radar sensor. Their results show 96%
reduction of radar phantoms by fusion between range sensing and vehicle detection modules, and a
63% increase of correct detections by fusing vehicle detection and tracking modules.

In (Schweiger et al., 2005) a particle filter implementation for fusing different sensor characteristics
coming from an ACC radar and a monocular visible spectrum camera is presented. Under the flat
world assumption, the particles were initially equally distributed in the state space. Using three
features (i.e. radar information, symmetry detection and tail lamp detection), the particle filter was
focused on the leading obstacle (in a distance of up to 50 m) within 3 to 5 frames. Even their system
employs one VIS camera and one radar, it was designed for in front vehicle detection on night-time.

In a more recent paper (Serfling et al., 2008), Serfling, Schweiger and Ritter contributes to a road
course estimation system also designed for night driving, like the system from (Schweiger et al.,
2005), by adding a digital map and considering also a particle-filter fusion scheme between radar and
visible spectrum camera. To adapt the VIS camera for night driving, they considered information
from the right road border only (gradient and orientation), which generally it is assumed to be more
homogeneously illuminated than the left one. Their system was provided with Global Positioning
System (GPS) on a digital map (asserting a course road estimation at 120 meters), a spline based
representation was calculated using the transmitted map shape points and then the GPS position
was refined in value and time using inertial vehicle data. Next, the current position of the vehicle
was matched to the nearest spline points and these spline points were transformed into each sensor
plane (camera and radar). Finally, the particle filter was applied to correct the transformed splines in
position and orientation. By using a fusion between radar and camera, the performance of the system
was increased with 25% compared to the system using only the vision module.

Bombini et al. (Bombini et al., 2006) proposed a vehicle detection system fusing data from a 77 GHz
radar and a vision system (a gray-scale visible spectrum camera). Radar data were used to locate
areas of interest on images and for each of these ROIs a vertical symmetry has been computed. Their
algorithm analyzes images on a frame-by-frame basis without any temporal correlation. To benefit
from both the radar precision on distance measurement and the vision refinement ability, radar was
used to render distance while vision provided position and width of the obstacle. In a latter paper, that
of Alessandretti et al. (Alessandretti et al., 2007), the system has been improved and tested with two
different configurations having two different types of radars. The first configuration used a radar for
long range detection (frequency at 77 GHz) which could detect multiple non-vehicle objects and for
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eliminating these false alarms, guard rail detection and a method to manage overlapping areas were
employed. The second configuration used two radars with a frequency of 24 GHz which could detect
with a precision of 0.24 m only obstacles relying at 40 m in front of the vehicle. Radar computed the
relative speed and the position of the object. The authors assert their system provided good results on
rural roads and on highways.

The system presented in (Richter et al., 2008) fuses radar, image and ego vehicle odometry data to
provide a list of objects, which were tracked in the ego vehicle coordinate system. The parameters of
the used sensors were: the gray scale camera has a resolution of 640x480 pixels, a horizontal opening
angle of 22.5 degrees and an update rate of 30 Hz, while the long range 77 GHz radar has an opening
angle of 15 degrees and an update rate of 10 Hz. Richter et al. described a multi-sensor approach for
vehicle tracking, by fusing at high level radar observations and the results of a contour-based image
processing algorithm (which were used not only to verify radar observations, but also to estimate
additional properties of the targets, i.e. width and lateral position). The states of the tracked vehicles
were estimated by a multi-object Unscented Kalman Filter. The vehicle image detection algorithm
presented was based on contour chains, which were used to find U-shape like forms, which are
typical for almost every type of vehicle. If a U-shape was confirmed, a rectangle image observation
was created and incorporated into the filter. Their system was able to fuse data from radar and image
sensor to estimate the position, direction and width of objects in front of the ego vehicle.

Because IR images are almost like visible spectrum images regarding the lateral measurements, IR
cameras provide good resolution images (thermal map) of the road scenario. Thus, a fusion between
radar and IR camera(s) will lead to good results for the OD problem. The main advantage of using
an IR camera instead of a VIS spectrum one is that the segmentation problem is simplified. Some
papers in which the sensors fusion by IR camera(s) and radar(s) is suggested are next presented.

The proposed integrated driver assistance system (part of EUCLIDE project) from (Andreone et al.,
2002), merge the functionality of radar and IR camera to support the driver in difficult situations.
After the implementation of the proposed system, (Polychronopoulos et al., 2004) described the
employed sensors: an 8-14 μm far infrared camera with a cooling unit, a 77 GHz Celsius microwave
radar and inertial sensors. The road borders tracking was performed by a Kalman filter approach,
which was used to estimate the parameters of the model that described the road geometry taking
into account data directly from the radar, the obstacle tracking module and the inertial sensors. In
situations of partly or complete objects occlusion, the tracking was stabilized by the combination of
radar and IR information. When no detections were available and neither obstacle was tracked, the
proposed system could estimate the curvature of the clothoid based on the host vehicle tracking.

In (LeGuilloux et al., 2002) data coming from radar and infrared camera were merged in order to
help the driver in detecting obstacles in the frame of the PAROTO system. The objects they were
looking for in infrared images (vehicles and pedestrians) present regional maxima (the wheels and
exhausts for the motorized vehicles or the entire human body for pedestrians) with the following
properties: strong contrasts with their neighbourhoods, thin frontiers and fair uniformity. Assuming
a very simple model for an object (mean height, width and length), the measurements allow the
computation of the object dimensions in the image at any position. By combining regional maxima
and edge detection, a simple filter (based on intrinsic region properties like internal contrast, entropy,
proportions, size) rejects erratic false detections. The remaining objects were vehicles, pedestrians
and traffic signs. LeGuilloux et al. study the motion because of two purposes: the first one was to
separate objects in “fixed in the scene” (like traffic signs) and “moving in the scene” (like vehicles).
Their second purpose was to decide if an object was dangerous or not, therefore to know if its
trajectory was conflicting with that of the host vehicle or not. In a paper continuing this work (Blanc
et al., 2004), the sensors employed for the PAROTO system implementation were: a 77 GHz radar
which detected obstacles up to a distance of 150 m along the axis of the vehicle, and an infrared
camera which saw vehicles even coming sideways, up to a distance of 75 m. The radar and infrared
observations were fed into a constant velocity Kalman filter for the tracking operation, which was
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also based on radar-IR camera fusion. The infrared processing results were obstacle image positions.
In order to recover 3D positions from 2D image positions, they have assumed that the road belongs
to a plane and a backprojection was performed. Since backprojection operation is sensitive to the
changes of pitch, they also performed motion analysis in order to refine the pitch estimate and correct
3D positions accordingly. Infrared tracks were less accurate in distance than the radar ones, and
errors on infrared measures increased with the distance; still, direction estimates were more accurate
in infrared. The error area of the dual mode track (the track obtained with the fused radar-infrared
data) was far smaller than its single sensor counterparts; therefore, once again fusion demonstrated
its benefit.

A sensor system based on an array of passive infrared sensors is presented in (Linzmeier et al., 2005b)
having the ability to detect pedestrians without illuminating the environment. These thermopiles
were used as sensors detecting objects located within their field of view and presenting a temperature
different than that of the background. An important advantage of these sensors is that they do not
need the high resolution that is offered by the infrared camera to detected pedestrians, and their
reasonable price compared to other sensor systems. Signal interpretation is the main part of these
thermopile sensors, involving computation of detection probabilities for individual sensors, which
represent an estimate of whether an observed signal change is due to a pedestrian or not. For this
purpose, all available sensorial information (like signal-voltage, gradient, velocity, steering angle and
ambient temperature) was interpreted as a pattern and the probabilities were determined through a
classification task. The detection probabilities computed for individual sensors were then fused using
the Dempster-Shafer theory, to provide a single probability of pedestrian detection. The limitations
of the system are highlighted in scenarios where pedestrians were in front of objects with similar
temperature (e.g. cars exposed to sunlight or house walls on hot days).

The same author, Linzmeier et al. proposed in (Linzmeier et al., 2005a) a system based on the
aforementioned thermopile sensor array but combined with two short range radars. Radars, integrated
in the front bumper of the test vehicle, were able to observe and track multiple targets in the ROI,
but they have difficulties to distinguish between pedestrians and other objects. Even the thermopile
system by itself was able to detect pedestrians and locate their position, the reliability of the
detection depended on the object background contrast. The target lists of the radars were independent
from each other and the maximum detection range was dependent on the target texture and it was
approximately 30 meters. Radar provided the thermopile system with useful position information
about objects within the ROI. By means of this information, small object background contrasts
causing weak probabilities of pedestrian presence were solved. In this paper of Linzmeier et al., two
architectures for the fusion of thermopiles and radars are described. The first fusion approach is at a
high level and combines processed data from the thermopile and radar system. The output signal was
interpreted whether there was a potential pedestrian within the field of view or not, and assigned a
probability to every sensor for pedestrian or no pedestrian. These probabilities were then fused (using
Dempster-Shafer combination rule) to one single probability for the respective target. The object
attributes, like position, dimensions, probability of detection and uncertainty of the decision were
inputs to the fusion module as well as the information coming from the radar system (i.e., position
information, Doppler-velocity and angle information of each target). The second fusion approach is
based on a central level fusion architecture based on an Occupancy Grid. Measurement data from
all sensors was mapped into that grid and then processed by means of probabilistic techniques.
Unlike the previous fusion approach, in this second case, the fusion was not based on existing objects
provided from both sensor systems, but the fusion processor generated objects based on the measured
data. The complementary data from thermopiles and radar enabled an accurate detection whether it
was a warm object (i.e a pedestrian) or not.

In the following, we mention how the systems previously exemplified as using radar(s) and camera(s)
fulfill the requirements specified in section 1.3.
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How are the requirements fulfilled?

The system cost (R1): the fact that these systems employ an active sensor like radar makes that the
price of such a system, even when combined with visible spectrum camera(s), to be dictated by the
active technology; in addition, interference problems are present because of radar too. Combining
radar with passive infrared spectrum camera(s), the cost of the system will be even higher due to the
camera(s). The real time request (R2) is fulfilled by these systems, even image processing sometimes
could lead to long processes, time consuming. If fast image processing algorithms are used and they
are not applied on each frame provided by the vision system, but just from time to time (like most
systems do), then we can talk about real time at camera(s) too. The efficiency of the system (R3)
is very much improved by the use of camera(s) (visible or infrared spectrum one(s)) through the
multitude of information they produce on the objects from the scene, especially when considering
the object recognition task. All mentioned systems which use a combination of radar(s) and VIS
spectrum camera(s), generally detect only vehicles and they are adapted to this specific shape in
the image processing module (in which they performed obstacle detection or recognition based on
symmetries, tail lamp, ratio constraints, and so on). These algorithms specific to vehicle shape could
be adjusted to the pedestrian shape, from the radar side, by the detection of obstacles presenting
poorer reflections (at least 5% reflectivity) and by the generalization of the aimed shape in such a way
to include even some other types of objects. All these algorithms suited for detecting vehicles are
adapted to some specific functioning time: day - for symmetry computation, or night - for tail lamp
detection. Those objects which could not be detected or recognized by the radar itself, they could be
detected or recognized with image processing techniques, therefore by using a system fusing radar
and camera(s). By this fusion, radar’s poor lateral measurement is compensated by the information
provided by camera(s). Robustness (R4) is the strongest advantage of a system employing an active
sensor like radar. During daytime, the visible spectrum camera(s) could help (or assist) radar(s),
while on night-time the infrared camera(s) could bring in its benefits by the night vision technique.
Therefore, using cameras in a specific situation, performances provided by radar(s) could be improved
even in difficult conditions.

2.2.1.2 Systems combining laser scanners and passive sensors

The excellent range accuracy and fine angular resolution make laser scanners suitable for applications
in which a high resolution image of surrounding is required. However, since they are optical sensors,
different weather conditions like fog or snow will limit their detection range.

In (Laneurit et al., 2003) an approach able to localize vehicle and obstacles on the road is presented.
Data fusion from proprioceptive and exteroceptive sensors like odometer, a wheel angle sensor, GPS,
lidar (a Laser Mirror Scanner LMS-Z210-60 which deliver 3D images for obstacle detection and
tracking), and a monocular visible spectrum camera as well as the knowledge of the road map allow
this localization. In addition, a flat world assumption was made and the estimation and updating of
the state vector were achieved by Kalman filters. The approach used a two-parts-detection-algorithm:
first the segmentation of the 3D image in regions (by a region growing algorithm) and second the
recognition of the obstacle (particularly road vehicles) among these regions were performed. The
characteristics (width, height and distance) of an obstacle were compared to the model of a car.
If the parameters of a region were close to those of the model (different obstacle models could be
used, corresponding to cars, trucks or pedestrians), the respective region was declared as an obstacle.
Furthermore, the calibration between camera and laser scanner allowed filtering obstacles in order to
retain only those that were on the road. Knowing the environment map, a road membership analysis
module was able to locate more accurately obstacles on the road. Three steps were needed to update
the vehicle localization: determine obstacle position in world reference from laser scanner data,
deduce estimated obstacles positions knowing their road membership and finally deduce vehicle
position taking into account estimated obstacle positions to be fed into the Kalman filter. Their
system is based on a multi level data fusion process: first, it was able to locate the host vehicle using
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cooperation between odometer, GPS, wheel angle sensor and road tracker based on vision and then,
after obstacles were detected, data association was done for tracking by the use of lidar.

For the obstacle detection system presented in (Labayrade et al., 2005) and (Perrollaz et al., 2006)
data fusion is performed between stereovision and laser scanner.

Labayrade et al. presented in (Labayrade et al., 2005) the obstacles detection system from the
ARCOS project, which was based on fusion between stereovision and laser scanner. The stereovision
algorithm used the “v-disparity” transform (Labayrade et al., 2002) to perform robust and generic
obstacles detection. Laser points were clustered together to build targets using Mahalanobis-like
distance. A tracking algorithm implementing belief theory was used in order to perform tracking for
each sensor. Instead of performing the tracking in the top view coordinates system for targets coming
from both laser scanner and stereovision sensor, as in (Labayrade et al., 2002), (when far targets were
not detected by the stereovision module because it was not accurate enough), in the system presented
in (Labayrade et al., 2005) the tracking process was realised directly in the image coordinates
system, and performed back-projection after the tracking process. Once the tracking was done for
both sensors, the tracks were fused together using cartesian distance, width and orientation as criteria
in the coordinates system. The final position, width, and relative velocity were the ones coming
from laser scanner. Thus, the stereovision was used to increase the certainty about the existence of
the tracks, which were confirmed when their certainty was above a threshold. The employed CCD
cameras are 8 bits grey-scale, SonyTM 8500C with a frame rate of 25 Hz and the laser scanner is
a SickTM model, having as output a set of 200 laser points, provided at each 26 ms. The range
of the system is up to 40 m. For differentiating between different targets, Labayrade et al. used
some median values for the dimensions of different targets, like pedestrian, a box, vehicles and cyclist.

In the approach presented by Perollaz et al. in (Perrollaz et al., 2006), the obstacle (i.e., pedestrian
and vehicle) detection and tracking tasks were performed with a laser scanner and a stereo vision
system mounted on the experimental vehicle from LIVIC laboratory. The stereovision was used to
confirm the detections provided by laser scanner and consisted in 4 major steps: determination of
ROIs in the stereoscopic images, application of a numerical zoom to maximize the detection range,
computation of a local disparity map in the ROIs and an evaluation of this disparity map to confirm
the existence of an obstacle. The stereoscopic sensor was composed of two 8 bits gray-scale SonyTM
8500C cameras with images grabbed every 40 ms. The laser sensor was a SickTM scanner which
measured 201 points every 26 ms, with a scanning angular field of view of 100 degree.

Scheunert et al. (Scheunert et al., 2004) and Fardi et al. (Fardi et al., 2005) developed a multi sensor
system that used an infrared camera with a laser scanner and ego motion sensors. To combine the
information from these sensors, a Kalman filter based data fusion was used.

A multi sensor system consisting of an uncooled far infrared camera and a laser scanning device
was used for the detection and localization of pedestrians in (Scheunert et al., 2004). The presented
system is described as a two level signal processing system, from which the first level performs
the detection operation and the second one the fusion task. Obstacles detection was performed
independently for each sensor and the outcome was a list of detected objects at every measuring time
for each sensor. Within the fusion level, the detection lists of the individual sensors were combined
and common object tracks were generated. Every physical object in the frame of the laser scanner
was represented by a pair of steps (the moving legs) in the signals, then the detection hypotheses were
computed by a combination of steps in the range and finally they were verified about their reflectivity.
On the other side, objects representing pedestrians in the image plane of the infrared sensor, were
identified by two features: the high brightness due to the relative high human temperature (pixel
based feature) and the orientation which was situated in the vertical range (region based feature).
A threshold method has been used to produce a binary image, followed by a grouping process for
adjacent pixels, providing a set of regions of different sizes and shapes. In the final step, only those
regions with a predefined area size were considered as hypothesis. The fusion of the data streams
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generated from individual sensors at the same time was realized using a dynamic movement model
of the observed objects in connection with estimation techniques by a Kalman filter approach.

In (Fardi et al., 2005) a multi sensor system consisting of a far infrared camera, a laser scanning
device and ego motion sensors is presented. To handle the combination of the information provided
by these sensors, a Kalman filter based data fusion was used. On the basis of the knowledge about the
precise object position (delivered by the laser scanner and the tracking algorithm) and an assumed
human height as well as the coordinate transformation, the ROI was created in the image plane for
each measurement in the host vehicle coordinate. To get a precise description of the shape of the
objects in the ROIs, a contour based segmentation method was used. They have applied the active
contour method introduced in (Kass et al., 1987). Afterwards, the extracted contour was transformed
using the Fourier transform and in order to decide if the object represented a pedestrian or not, the
Fourier descriptors were computed and compared with a reference sets using the euclidian distance.
Inspired by the work of Curio et al. (Curio et al., 2000), the optical flow was estimated using the
oriented smoothness. In the next step, time series were generated for features which were computed
using the zero and first order moments of the optical flow images. Finally, the Fourier transform was
applied to obtain the significant cycle of the walking pedestrian.

How are the requirements fulfilled?

In the following, we mention how these systems using laser scanner(s) and camera(s) obey the
four requirements from section 1.3. The system cost (R1): the fact that these systems employ an
active sensor like laser scanner, makes that the price of such a system, even when combined with
VIS camera(s), to be dictated by the active technology and to be even higher than in the case of
systems employing a radar instead of a laser scanner; in addition, interference problems are also
present because of active technology. Combining laser scanner(s) with passive IR camera(s), the
cost of the system will be increased once more due to the camera(s). The real time request (R2) is
fulfilled by these systems too, like in the case of systems using radar(s) and camera(s). Laserscanners
are able to deliver long range images with high angular resolution and the measurements of these
sensors are extremely accurate and precise. Even successful research has been made on detection of
pedestrians with laser scanners, this type of sensor is however not the ideal choice due to the fact
that even it offers excellent resolution, generally it is used only for moving (i.e. walking) humans.
This is due to the additional information about the speed of the pedestrian, which could be inserted
in the system in order to improve the laser points’ clusterization process. Even laser scanner(s)
provide good measurements, in both longitudinal and lateral directions, the efficiency of the system
(R3) could be very much improved by the use of camera(s) (visible or infrared spectrum one(s))
through the multitude of information they produce on the objects from the scene. All the mentioned
systems which use a combination of laser scanner(s) and visible spectrum camera(s), are generally
dedicated to pedestrian detection and recognition and they are adapted to this specific shape in the
image processing module (in which they performed obstacle detection or recognition based on legs
detection, human gait detection or geometric features corresponding to humans). Vehicles and other
objects (generally large-scale objects) presenting typical characteristics could also be detected by the
adaptation of the features to that specific type of object. Those objects which could not be detected
or recognized by the laser scanner itself, they could be detected or recognized with image processing
techniques; therefore, in a system fusing laser scanner(s) and camera(s), laser scanners’ measurement
is compensated by the information provided by camera(s). Robustness (R4) is also the strongest
advantage of a system employing an active sensor like laser scanner. In the same manner, as in the
case of systems employing radar instead of laser scanner, during daytime, the VIS camera(s) could
assist the active sensor, while on night-time the IR camera(s) could bring in its benefits by the night
vision technique.
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2.2.1.3 Systems combining several types of active and passive sensors

The new generation of intelligent vehicles senses the environment by a combination of different
sensors: generally, three different types of sensors, or even more; we called these types of systems
“all fused”. Where a single radar may not be enough to cover the whole interested area, a radar
network comprised of several radars with different beam designs are used.

SAVE-U was a high performance sensor platform for the active protection of Vulnerable Road
Users (VRU) such as pedestrians and cyclists (Meinecke et al., 2003), (Marchal et al., 2003), (Tons
et al., 2004). The central objective of SAVE-U was to develop a pre-impact sensor platform using
three different technologies of sensors: a radar network composed of 5 single beam 24 GHz sensors
distributed in front of the car and covering the full car width, an image system composed of a passive
infrared camera and a visible spectrum colour camera. For increasing the reliability of the object
detection task, the output of each sensor was fused in a low and high level data fusion technique.
At the detection level, the radar system and the vision system performed each the own detection
procedure: each radar sensor detects reflection points and a fusion algorithm combines all these
reflection points, while for the vision system the detections in colour and infrared domain were
fused. At the low-level fusion, radar information (radial range and speed, angle indication, rough
classification) were sent to the video detection stage to check if something could be found in the
areas of images corresponding to radar indications. This procedure was executed in addition to the
pure video method of detection in order to achieve better results. Once the low-level fusion was
done (at the pixel level since areas in sensors were put in correspondence), ROIs were sent to the
classification stage if they represented potential pedestrians or cyclists, and finally, the classification
stage indicated whether ROI contained the aimed obstacle or not. Executed in parallel, high-level
fusion consolidated obstacles detection and object tracking to get the final object characteristics (like
position, speed and signature). The multitarget tracking algorithm solved possible object association
and correspondence problems.

In March 2004, the whole world was stimulated by the “Grand Challenge” organized by Defense
Advanced Research Projects Agency (DARPA), when fifteen fully autonomous vehicles attempted
to independently navigate approximately 400 km in desert within no more than 10 hours, all
competing for a 1 million cash prize (DARPA Grand Challenge, 2004-2005). The tasks mandatory
accomplished by a vehicle to be accepted in this competition were: no human intervention (i.e. no
driver), no remote-control, just pure computer-processing and navigation resources (they could use
GPS systems). Although, even the best vehicle (i.e. the one developed by Red Team from Carnegie
Mellon University) made only seven miles, it was a very big step towards building autonomous
vehicles in the future. The second competition of the DARPA Grand Challenge was held in October,
2005 when five vehicles successfully completed the race and won the competition. The first place was
won by “Stanley” from Stanford Racing Team Stanford University, Palo Alto, California (Stanford
Racing Team, Stanford University, 2005), the second one and the third one by “Sandstorm” and
“H1ghlander” from Red Team Carnegie Mellon University, Pittsburgh, Pennsylvania (Red Team,
Carnegie Mellon University, 2005), the fourth one by “Kat-5” from Team Gray, the Gray Insurance
Company, Metairie, Louisiana (Gray Team, The Gray Insurance Company, 2005), and the fifth one
by “TerraMax” from Team TerraMax Oshkosh Truck Corporation, Oshkosh, Wisconsin (TerraMax
Team, Oshkosh Truck Corporation, 2005). To navigate, “Stanley” (Thrun et al., 2006) used 5x
SICK AG lidar units to build a 3-D map of the environment. An internal guidance system utilizing
gyroscopes, accelerometers and odometers monitored the orientation of the vehicle and also served
to supplement the GPS system. Additional guidance data was provided by a colour video camera
used to observe driving conditions out to 80 m. For long-range detection of large obstacles, “Stanley”
also employed 2x 24 GHz radar sensors, covering the frontal area up to 200 m. The sensors used by
“Sandstorm” and “H1ghlander” (RedTeam, 2005) included 3x lidar laser-ranging units, one Long
Range lidar, a radar unit, and a pair of cameras for stereo vision. Sandstorm also has a GPS and an
inertial navigation system for determining geographical position. “Kat-5” (Trepagnier et al., 2006)
uses 2x Sick LMS 291 ladar devices providing the autonomous vehicle with environmental sensing,
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together with the INS (Inertial Navigation System) or GPS module. Kat-5’s primary electrical
system, used to run the computers and drive-by-wire system, was powered by the standard electrical
system of the vehicle while the 24-volt system, used to power the ladar sensors, was powered by six
solar panels on the roof platform of the vehicle. “TerraMax” (TerraMaxTeam, 2005) was equipped
with 4x SICK LMS 221 ladars providing the distance and the location information of the obstacles
around the vehicle, a vision system consisting of 6 CCD digital colour cameras (two pairs were used
to provide forward and rear looking stereovision information and the two single cameras sensed
the terrain in front and behind the truck), 2x Eaton-Vorad radars for providing 150 m range target
tracking, and 12 ultrasonic sensors mounted around the vehicle for short range sensing. Two GPS
units provided the information for route and mapping purpose.

The third competition of the DARPA Grand Challenge, also known as the “Urban Challenge”
(DARPA Grand Challenge, 2007), took place in November, 2007 and it involved a 96 km urban
area course, to be completed in less than 6 hours. The most important rules included: the vehicles
had to obey all traffic regulations while negotiating with other traffic and obstacles and merging
into traffic, and they also had to be entirely autonomous, using only the information they detected
with their sensors and navigation signals such as GPS. Also, the vehicles had to operate in rain
and fog, with GPS blocked. From a number of 53 teams registered for this competition, DARPA
qualified only 11 teams in the final race, due to safety reasons (real humans and DARPA officials
scoring robot performance were expected to be situated near the robots in the traffic scene). The
2 million winner was the vehicle called “Boss” (Tartan Racing team, Carnegie Mellon University,
2007) of the Tartan Racing team, a collaboration between Carnegie Mellon University and General
Motors Corporation. Coming in the second place and earning the 1 million prize was the Stanford
Racing Team with their “Junior” vehicle (Stanford Racing team, Stanford University, 2007). The
third place was won by the team Victor Tango from Virginia Tech winning the 500,000 prize
with “Odin” (Victor Tango team, Virginia Tech, 2007). MIT (Cambridge, Massachusetts) with
“Talos” (MIT team, 2007a) placed 4th, and “Little Ben” (Ben Franklin Racing team, University of
Pennsylvania/Lehigh University, 2007) and “Skynet” (Cornell team, Cornell University, 2007) from
University of Pennsylvania/Lehigh University and Cornell University also completed the course.
“Boss”, the Tartan Racing vehicle, for sensing the environment it used a combination of sensors, like:
SICK LMS 291-S05/S14 lidar, Velodyne HDL-64 lidar, Continental ISF 172 lidar, IBEO Alasca
XT lidar, Ma/Com radar, Continental ARS 300 radar, a vision system and GPS positioning. The
Stanford Racing vehicle, “Junior”, estimated its location, orientation and velocity by Applanix POS
LV 420 Navigation system (three GPS antennae) and some odometers. For external sensing, “Junior”
employed a Velodyne HD lidar laser range finder, an omni-directional Ladybug camera which
comprised six CMOS video cameras and two long-range radar sensors, complementing thus the laser
data. A coordinated pair of IBEO Alasca XT fusion laser rangefinders, a single IBEO Alasca A0
unit with a range of 80 meters were used to detect vehicles behind “Odin”, the vehicle of the Victor
Tango team, and navigate in reverse. In addition, two imaging source colour monocular cameras
were used to supplement the IBEO classification software, while two SICK LMS 291 ladars detected
sharp changes in the level road. Other two side-mounted SICK LMS 291 single plane rangefinders
were used as simple “bumpers” to cover the side blind spots of the vehicle and ensured 360-degree
coverage. For “Talos”, the MIT vehicle, the perception system design incorporated many inexpensive
lidars, radars, and cameras: twelve SICK LMS291 lidars, twelve Delphi ACC3 automotive radars,
and ten Point Gray Firefly MV cameras. “Little Ben” was equiped with a variety of 2D and 3D
ladars (a Velodyne HD ladar and a set of forward and rear facing SICK 2D LMS-291 ladar) as
well as VIS stereo cameras. For navigation, GPS was used. In the frame of the “Skynet” vehicle,
a suite of sensors, like LMS-291 lidars, IBEO(s) ALASCA and Delphi radars, a MobilEye VIS
vision system (a mono camera and a pair of stereo cameras), GPS, and inertial sensors were employed.

While the 2004 and 2005 events were more physically challenging for the vehicles, the robots
operated in isolation and did not encounter other vehicles on their course. Other than previous
autonomous vehicle efforts that focused on structured situations such as highway driving with little
interaction between the vehicles, this competition operated in a more cluttered urban environment
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and required the cars to perform sophisticated interactions with each other, such as maintaining
precedence at a 4-way stop intersection.

How are the requirements fulfilled?

In the following, we mention how these powerful systems using all types of technologies, passive
and active together, obey the four requirements from section 1.3. The system cost (R1): the fact that
these systems employ multiple active and passive sensors makes that the price of such a system,
even its performances are good, to not allow the implementation on some commercial vehicles even
in the near future when it is expected that the technology will evolve and the production cost will
decrease. In addition, interference problems are still present because of active technology. The real
time request (R2) is fulfilled by these systems, as their use in DARPA competition has proved. By
using a multitude of different types of active and passive sensors, the efficiency of the system (R3) is
the best from all the systems presented in this chapter. Vehicles, pedestrians and other objects have
been detected by these systems, and in addition their automatic navigation on the road was performed
solely by the use of sensors (there was no driver). Robustness (R4) is also very much increased in the
frame of these systems; they could be able to navigate, detect and recognize obstacles on daytime, or
even on night-time and in difficult conditions.

After presenting very powerful systems using both passive and active sensors and saw which their
strengths but also their disadvantages are, we look toward some less expensive systems, so those
employing only one type of technology: either active or passive. Next, we detail systems presented
in literature which addressed the intelligent vehicle domain by the use of only active sensors.

2.2.2 Systems using only active sensors

There are many systems using just a single type of sensor in order to solve the ODR task, but we
believe their performances are not very remarkable compared to those of systems which may employ
a combination of two or many sensors and perform the same task. Some systems using a single type
of active sensor, like radar or laser scanner are first presented; then, systems which choose to combine
different types of active technology in the frame of one single system are mentioned.

2.2.2.1 Systems using a single type of active sensor

In the following, we present the most important systems from the literature which approached the
intelligent vehicle domain by the use of a single type of active sensor like radar or laser scanner.

Radar

The main advantages of radar sensors are their possibility to detect obstacles and to provide their
distance and velocity. Generally, a network of radar sensors is used to get the full coverage area in
front of the vehicle, but there are also systems using a single powerful radar sensor.

An 76.5 GHz radar with the image resolution 32x115 pixels and a scan rate of 5 Hz was used
in (Meis & Schneider, 2003). The object segmentation has been performed by clustering colour
connected components in the preprocessed radar data, which previously were filtered according
to some intensity noise floor. The obtained clusters leaded to estimation of objects’ position and
dimensions (width and length) and provide their relative velocity on longitudinal and lateral axes,
together with their alignment. By using this type of radar, the detection of objects up to a distance of
120 meters was possible. The authors have performed also road course detection and estimation.

In (Gavrila et al., 2001) Gavrila et al. describe three sensor technologies: radar, laser scanner and
vision, all intended to be used in the Preventive Safety for Unprotected Road User (PROTECTOR)
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project for pedestrian detection from a moving vehicle. They showed that in the case of radars, the
power spectral density (PSD) values for a pedestrian and a vehicle differ both in signal amplitude
(vehicle’s PSD is 40 times higher) and in shape (the vehicle signal is larger in width and more
structured) and this information conduct them to the conclusion that some other possible obstacles
could also be recognized based on their received specific signals provided by radar.

To discriminate between different types of obstacles, Kruse et al. (Kruse et al., 2004) developed
a target recognition technique based on two different 24 GHz radar systems: (1) first, they used a
sensor network composed from four 24 GHz High Range Resolution (HRR) pulse radars, capable
of detecting targets up to 20 m and (2) as a second system they considered a single Universal
Multimode Range Resolution (UMRR) radar of 24 GHz, able to detect targets up to 60 m. After a
target has been detected by one of these two systems, the echo signal of each target was analyzed
and described by a set of 10 to 15 different features enclosed in a feature vector. The discrimination
between some possible obstacles like car, cyclist, pedestrian, tree, traffic sign and group of persons
has been performed by the use of this feature vector extracted from the radar echoes. The calculation
of different features was depending on the physical properties of the object classes, like: RCS,
geometrical properties and velocity. As classification scheme, a polynomial classifier was used to
evaluate the features influence in the decision process where about 2,000 samples were used per
object class.

In the frame of systems employing active sensors, the obstacles could also be tracked: an αβ tracker
was used in (Meis & Schneider, 2003) together with the known relative radial velocity for predicting
the objects’ velocity in longitudinal direction.

Laser scanner

Laser range finder or laser scanner is another possible viable solution for obstacle detection.

The Kalman filter is independently applied to every hypotheses of detected obstacle also for tracking
reasons in (Ewald & Willhoeft, 2000), (Fuerstenberg et al., 2002), (Fuerstenberg & Dietmayer,
2004), (Mendes et al., 2004).

In order to improve the pedestrian recognition task, there are authors using also the pedestrian typical
movement or gait to differentiate between e.g. a tree and a pedestrian (Fuerstenberg & Dietmayer,
2004), (Mendes et al., 2004). Legs detection have been performed by observing a sequence of scans,
followed by the searching for alternation of one and two small objects separated by a distance less
than 50 cm, which were assumed to represent the legs (Mendes et al., 2004).

Ewald et al. (Ewald & Willhoeft, 2000) have used a Ladar Digital A AF which is a laser emitting
pulses in the near infrared spectrum. Its scanning range covers areas in front of the car up to 150 m
for targets such as traffic signs, but other objects having at least 5% reflectivity (almost all possible
targets) could be detected in a reduced range: up to 40 m, with a scan frequency of 10 Hz. The
objects’ size, position, but also their velocity and acceleration (obtained from two successive scans)
are available for all the detected obstacles after 300-500 ms from the moment of their detection. The
laser scanner they used is also able to track obstacles using a Kalman filter.

In the paper of Gavrila, (Gavrila et al., 2001), obstacles in a range up to 40 m could be detected by
the IBEO laser scanner which covers the area in front of the vehicle, having a field of view of 180
degree, a scan frequency of 20 Hz and a precise measurement of depth (±5 cm).

In (Fuerstenberg et al., 2002) the typical appearance of objects, the history of the tracked object
with respect to previous classification results and the estimation of its absolute velocity were used
to classify target objects. The approach from (Fuerstenberg & Dietmayer, 2004) uses as additional
information the objects reflectivity, measured also by the laser scanner. In (Fuerstenberg et al., 2002)
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LadarDigital MultiLayer (LD ML) laser scanner was used with a range up to 50 m, a field of view
up to 270 degree, variable scan area and frequency: 5 to 40 Hz (but generally used at 10 Hz). Later,
the same author in (Fuerstenberg & Dietmayer, 2004) employed an ALASCA laser scanner having
an horizontal field of view up to 240 degree and a 10 Hz scan frequency. Some processing time are
given in this latter paper: the pedestrian is classified 0.3 s after its detection in a distance of 66 m,
which means approximately 6 s before the pedestrian and the test vehicle reach each other.

The experimental system used in (Mendes et al., 2004) was a four wheel-drive electrical vehicle
called “Robucar”, equipped with a LMS200-Sick laser scanner which was setup with an angular
range of 180 degree, length range of 8 m and a scan rate up to 37.5 Hz, and was developed to be
integrated in a Cybercar vehicle.

Sadou et al. (Sadou et al., 2004) presented an obstacle detection algorithm that considered the
possibility of occlusions along the navigation path in order to reduce the search for obstacles to only
the essential regions. The obstacle detection algorithm has been implemented on-board of a mobile
robot. The sensors used are a fiber-optic gyrometer, a dual axis inclinometer and the laser range
finder (SICK OPTICS). Given the platform tilt angle, as measured by the inclinometer, the system
could adjust the inclination of the sensor to distinguish an obstacle from a hill or a ditch on the
trajectory of the vehicle.

Several different sensors were selected for further experimental test and review in (Bu & Chan,
2005). The sensors include an IBEO laser scanner, an Eaton VORAD EVT-300 radar (Doppler
radar), a microwave radar MS SEDCO SmartWalk 1800 and an IRIS people counter (infrared based
sensor), among others.

How are the requirements fulfilled?

How the systems previously exemplified as using a single type of active sensor fulfil the requirements
specified early in section 1.3? The first requirement was about the system cost (R1): the fact that
these systems employ active sensors makes that this first requirement to not be met due to the high
cost of these technologies; even using a single type of active sensor, the cost of the system does not
allow its implementation on some comercial vehicles. In addition, when several vehicles are equipped
with such sensors, the possibility of appearing interference problems is high. The real time request
(R2) which states that the system has to be fast enough to detect and then recognize obstacles in real
time is fulfilled by these systems, both radars and laser scanners, and distances at which obstacles are
detected in urban streets are up to 40 m. The efficiency of the system (R3) is partially fulfilled by the
systems employing radars because radar is not very efficient in detecting non-metallic obstacles and
not-moving obstacles. From the recognition point of view, comparing radar and laser scanner, radar is
lossing this time too because its discriminant power in the lateral measurements is much smaller than
the laser one. Still, both types of sensors (radar and laser scanner) often fail to detect small objects
or occluded ones. Robustness (R4) states that the system must cope with difficult context in which it
has to assure a well functioning, no matter what are the illumination or weather conditions. This is
the strongest advantage of active sensors, their possibility to assure a well functioning also in difficult
conditions of weather or illumination.

2.2.2.2 Systems combining several active sensors

In order to exploit the advantages of multiple active technologies, the sensors’ information could
be fused in a sensor fusion process. In this way, some complementary regions could be covered by
different active sensors working together for the same purpose: the road obstacle detection.

Radar and laser scanner have features which complement each other. Laserscanner have a larger field
of view than the radar, and its side and longitudinal resolution are better than the radar ones; therefore,
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the recognition obstacle degree is higher for laser scanner. On the other side, radar is insensitive to
atmospheric changes. To conclude, radar offers good accuracy in longitudinal distance measurement,
but poor accuracy in the lateral one and because laser scanner offers a good accuracy also in the lateral
one, some systems may combine radar and laser scanner to increase the reliability of the entire system.

An example of such a system is the one developed by Mobus et al. (Mobus & Kolbe, 2004) which
combines a 77 GHz ACC radar (having a limited lateral range of ± 3.4 degrees, but a longitudinal
one of 150 meters) with an infrared laser sensor (capable of scanning an area of about 20 degrees up
to 80 meters). Radar and laser scanner are fused by a Kalman filter probabilistic data association at
the sensor level. By using this configuration, complementary regions added up to a more complete
range ahead the car, increasing the performances of the entire detection and tracking system.

A data fusion module developed and integrated in two different systems is presented in (Blanc et al.,
2004). The first one, is the PAROTO system which combines infrared imagery with radar to perform
obstacle avoidance (this system is presented at the radar-infrared camera fusion, in the following
section, 2.2.1). Blanc et al. have also developed the VELAC system, which combines radar and lidar
tracking to improve the environment interpretation. The 3D-Laser Mirror Scanner LMS-Z210-60 is
a surface imaging system based upon accurate distance measurement. The radar used is working
at 77 GHz and it is aimed for long range target detection (up to 150 m). For the obstacle detection
task, a two-step algorithm is used: first the segmentation of the 3D image in regions and second
the recognition of the obstacle (particularly road vehicles) among these regions is performed. The
characteristics provided by the laser scanner are then compared to a car model. After detecting
different obstacles, the system is able to track them in consecutives frames using a Kalman filter.

How are the requirements fulfilled?

After we saw how the systems using a single type of active sensor succeed or fail in fulfilling the four
requirements, we want to see if their combination in systems using both radars and laser scanners
bring in some benefits. The requirement about the system cost (R1) is in fact even worst than in
the previous case, because combining multiple active sensors makes the cost to be even higher; the
level of interferences will be increased too. The real time request (R2) is not affected in the negative
way by this combination of sensors, but it is possible that more objects to be faster detected and
recognized by these fused systems. The efficiency of the system (R3) could be improved by the
use of both radars and laser scanners due to the high accuracy provided by the laser scanner in the
lateral measurement. Robustness (R4) is still the strongest advantage of active sensors, and their
possibility to assure a well functioning also in difficult conditions is making their combination even
more powerful in such situations.

As we mentioned at the begining of this section, all reviewed systems using an active technology are
summarised in table 2.1. They are grouped in different categories, based on the sensors they have
employed to accomplish the ODR task. There are systems using a single type of active sensor, or
a combination of several active sensors or even a combination between passive and active sensors.
Therefore, all the systems exemplified in this chapter and which use an active sensor would be found
in this table, together with the specific type of sensor(s) they employed in their functioning.

From those presented so far, the sensors we preffered for the implementation of our ODR system can
be foreseen. The major disadvantages of active sensors, to lead to possible interferences when these
sensors are mounted on multiple vehicles in a cluttered traffic, and their acquisition price (especially
that of laser scanners) comparing to that of vision cameras, convinced us that a system formed only
by passive sensors is the best solution for our objective. Even the main problem with vision systems
is the detection task, fortunately, we have several possibilities to accomplish it solely based on vision.
These will be highlighted in the next section, dedicated only to passive sensors.



2.2 What type of system is better ? 31
Ta

bl
e

2.
1:

Sy
st

em
su

si
ng

on
e

or
m

ul
tip

le
ty

pe
so

fa
ct

iv
e

se
ns

or
s

TY
PE

S
O

F
A

C
TI

V
E

SE
N

SO
R

S
R

A
D

A
R

LA
SS

ER
SC

A
N

N
ER

RADAR

(G
av
ri
la
et
al
.,
20
01
)

→
24

G
H

z;
(M
ei
s&

Sc
hn
ei
de
r,
20
03
)

→
76

.5
G

H
z;

(K
ru
se
et
al
.,
20
04
)

→
2x

24
G

H
z

H
R

R
;

(K
ru
se
et
al
.,
20
04
)

→
1x

24
G

H
z

U
M

R
R

;
(B
u
&
C
ha
n,
20
05
)

→
Ea

to
n

V
O

R
A

D
EV

T-
30

0;
(B
u
&
C
ha
n,
20
05
)

→
M

S
SE

D
C

O
Sm

ar
tW

al
k

18
00

;

LASER SCANNER

(M
ob
us
&
K
ol
be
,2
00
4)

→
77

G
H

z
+

IR
LS

;
(G
av
ri
la
et
al
.,
20
01
)

→
IB

EO
;

(B
la
nc
et
al
.,
20
04
)

→
77

G
H

z
+

3D
-L

M
S-

Z2
10

-6
0;

(E
w
al
d
&
W
ill
ho
ef
t,
20
00
)

→
LD

A
A

F;
(P
ie
tz
sc
h
et
al
.,
20
08
)

→
24

G
H

z
+

IB
EO

A
LA

SC
A

;
(F
ue
rs
te
nb
er
g
et
al
.,
20
02
)

→
LD

M
L

(F
ue
rs
te
nb
er
g
&
D
ie
tm
ay
er
,2
00
4)

→
A

LA
SC

A
;

(M
en
de
se
ta
l.,
20
04
)

→
LM

S
20

0
SI

C
K

LS
;

(S
ad
ou
et
al
.,
20
04
)

→
SI

C
K

O
PT

IC
S;

(B
u
&
C
ha
n,
20
05
)

→
IB

EO
;

VIS CAMERA

(H
an
dm
an
n
et
al
.,
19
98
)

→
77

G
H

z
+

m
on

o;
(L
an
eu
ri
te
ta
l.,
20
03
)

→
3D

-L
M

S-
Z2

10
-6

0
+

m
on

o;
(F
ra
nk
e,
19
92
),
(G
er
n
et
al
.,
20
00
)

→
77

G
H

z
+

m
on

o
/

st
er

eo
;

(L
ab
ay
ra
de
et
al
.,
20
05
)

→
SI

C
K

TM
+

st
er

eo
;

(M
ilc
h
&
B
eh
re
ns
,2
00
1)

→
2x

24
G

H
z
+

m
on

o;
(P
er
ro
lla
z
et
al
.,
20
06
)

→
SI

C
K

TM
+

st
er

eo
;

(S
te
ux
et
al
.,
20
02
)

→
77

G
H

z
+

m
on

o;
(M
on
te
ir
o
et
al
.,
20
06
)

→
LR

F
+

m
on

o;
(K
at
o
et
al
.,
20
02
)

→
77

G
H

z
+

st
er

eo
;

(S
ol
e
et
al
.,
20
04
)

→
77

G
H

z
+

m
on

o;
(K
aw
as
ak
i&

K
ie
nc
ke
,2
00
4)
,(
K
um
on
et
al
.,
20
05
)

→
77

G
H

z
+

m
on

o;
(A
le
fs
et
al
.,
20
05
)

→
24

G
H

z
+

m
om

o;
(S
ch
w
ei
ge
r
et
al
.,
20
05
),
(S
er
fli
ng
et
al
.,
20
08
)

→
77

G
H

z
+

m
on

o;
(B
om
bi
ni
et
al
.,
20
06
),
(A
le
ss
an
dr
et
ti
et
al
.,
20
07
)

→
77

G
H

z,
2x

24
G

H
z
+

m
on

o;
(R
ic
ht
er
et
al
.,
20
08
)

→
77

G
H

z
+

m
on

o;

IR CAMERA

(L
eG
ui
llo
ux
et
al
.,
20
02
),
(B
la
nc
et
al
.,
20
04
)

→
77

G
H

z
+

m
on

o;
(S
ch
eu
ne
rt
et
al
.,
20
04
),
(F
ar
di
et
al
.,
20
05
)

→
LS
+

m
on

o;
(A
nd
re
on
e
et
al
.,
20
02
),
(P
ol
yc
hr
on
op
ou
lo
se
ta
l.,
20
04
)

→
77

G
H

z
+

m
on

o;
(L
in
zm
ei
er
et
al
.,
20
05
b)

→
2x

24
G

H
z
+

th
er

m
op

ile
IR

;

ALL FUSED

(M
ei
ne
ck
e
et
al
.,
20
03
),
(T
on
se
ta
l.,
20
04
)

→
5x

24
G

H
z

ra
da

r+
m

on
o

V
IS

co
lo

rc
am

er
a
+

m
on

o
IR

ca
m

er
a

(S
AV

E-
U

)
(T
at
sc
hk
e,
20
06
)

→
SR

R
+

LR
R

ra
da

rs
+

la
se

rs
ca

nn
er
+

m
on

o
FI

R
ca

m
er

a;
D
A
R
PA
05
-“
St
an
le
y”
(T
hr
un
et
al
.,
20
06
)

→
2x

24
G

H
z

ra
da

rs
+

5x
SI

C
K

A
G

lid
ar
+

a
co

lo
rv

id
eo

V
IS

ca
m

er
a

D
A
R
PA
05
-“
Sa
nd
st
or
m
”,
“H
1g
hl
an
de
r”
(R
ed
Te
am
,2
00
5)

→
a

ra
da

r+
3x

lid
ar

s+
1

LR
lid

ar
+

a
pa

ir
of

st
er

eo
V

IS
ca

m
er

as
;

D
A
R
PA
05
-“
K
at
-5
”(
Tr
ep
ag
ni
er
et
al
.,
20
06
)

→
2x

Si
ck

LM
S

29
1

lid
ar

s;
D
A
R
PA
05
-“
Te
rr
aM
ax
”
(T
er
ra
M
ax
Te
am
,2
00
5)

→
2x

Ea
to

n-
Vo

ra
d

ra
da

r+
4x

SI
C

K
LM

S
22

1
la

da
r+

6
C

C
D

ca
m

er
as

(2
pa

irs
st

er
eo
+

2
m

on
o)
+

12
ul

tra
so

ni
c;

D
A
R
PA
07
-“
B
os
s”
(T
ar
ta
n
R
ac
in
g,
20
07
)

→
M

a/
C

om
,C

.A
R

S3
00

ra
da

rs
+

SI
C

K
LM

S2
91

-S
05
/S

14
,V

el
od

yn
e

H
D

L-
64

,I
SF

17
2,

IB
EO

X
T

lid
ar

s+
a

V
is

io
nS

ys
te

m
;

D
A
R
PA
07
-“
Ju
ni
or
”
(S
ta
nf
or
d
R
ac
in
g
te
am
,2
00
7)

→
Ve

lo
dy

ne
H

D
lid

ar
LR

F
+

6x
C

M
O

S
vi

de
o

ca
m

er
as
+

2x
lo

ng
-r

an
ge

ra
da

rs
;

D
A
R
PA
07
-“
O
di
n”
(V
ic
to
r
Ta
ng
o
te
am
,2
00
7)

→
4x

SI
C

K
LM

S
29

1
la

da
rs

,2
xI

B
EO

A
la

sc
a

X
T

Fu
si

on
LR

F,
an

IB
EO

A
la

sc
a
+

2x
m

on
o

ca
m

er
as

;
D
A
R
PA
07
-“
Ta
lo
s”
(M
IT
te
am
,2
00
7b
)

→
12

xD
el

ph
iA

C
C

3
au

to
m

ot
iv

e
ra

da
rs
+

12
x

SI
C

K
LM

S
29

1
lid

ar
s+

10
x

ca
m

er
as

;
D
A
R
PA
07
-“
L
itt
le
B
en
”
(B
en
Fr
an
kl
in
R
ac
in
g
te
am
,2
00
7)

→
a

Ve
lo

dy
ne

H
D

an
d

a
se

to
fS

IC
K

2D
LM

S-
29

1
la

da
rs
+

V
IS

st
er

eo
ca

m
er

as
;

D
A
R
PA
07
-“
Sk
yn
et
”
(C
or
ne
ll
te
am
,2
00
7)

→
D

el
ph

ir
ad

ar
s+

LM
S-

29
1,

IB
EO

A
LA

SC
A

lid
ar

s+
a

M
ob

ilE
ye

V
IS

vi
si

on
sy

st
em

(a
m

on
o

an
d

a
pa

ir
of

st
er

eo
);

A
l
l
t
h
e
s
y
s
t
e
m
s
f
r
o
m
t
a
b
l
e
2
.
1
a
r
e
u
s
i
n
g
o
n
e
o
r
m
u
l
t
i
p
l
e
a
c
t
i
v
e
s
e
n
s
o
r
s



32 Sensors and Systems in the Intelligent Vehicle field

2.2.3 Systems using only passive sensors

Like in the case of systems employing only an active sensor in order to solve the ODR task, there is
also a multitude of systems employing a single type of camera, VIS or IR to accomplish the same
task. Here too, we believe their performances could be overcomed by the systems employing both
types of cameras, VIS and IR by the use of fusion. Systems using a single type of passive sensor are
first presented and they are followed by systems which choose to combine VIS and IR technology in
the frame of one single system.

2.2.3.1 Systems using a single type of passive sensor

Generally, when the detection of obstacles from the road is the task to be solved, but mainly when
image processing techniques are involved, the used criteria depends on the definition of what the
obstacle is. In some systems, the detection of obstacles is limited to the localization of some specific
shape corresponding to certain types of obstacles (like vehicles, pedestrians, cyclists), which is based
on a search for specific patterns, such as shape, symmetry, edges, pedestrian’s head or vehicle’s lights.
This search for patterns common to multiple obstacle classes generally lead to the determination of a
BB. After potential obstacles are found, an obstacle validation process is carried out. By exploiting
strong characteristics discriminating that respective obstacle from some other type of obstacles (as
those belonging to background) false detections can be usually removed. When OD task is limited to
the localization of specific patterns, processing can be based on the analysis of a single still image, in
which relevant features are searched for. Unfortunately, the pattern-based approach is not successful
when an obstacle does not match the respective model (later we will show that this model could be a
static or a moving one).

A more general definition of an obstacle, which leads to more complex algorithmic solutions,
identifies as an obstacle any object that obstructs the path the host vehicle is driving on. In this case,
instead of recognizing specific patterns, the OD task is reduced to identifying the area in which
the vehicle can safely move and anything rising out significantly from the road surface would be
considered as obstacle. Due to the general applicability of this definition, the problem is using more
complex techniques, like those based on the processing of two or more images, which are: the
analysis of optical flow field or the processing of nonmonocular (i.e. stereo) images.

The optical flow-based technique requires the analysis of a sequence of two or more images: a
two-dimensional (2-D) vector is computed, encoding the horizontal and vertical components of the
velocity of each pixel. The obtained motion information can be used to compute ego-motion 3 and
moving obstacles can be detected and/or tracked in the scene by analyzing the difference between the
expected and real velocity fields and by removing background changes.

On the other hand, the processing of stereo images requires identifying correspondences between
pixels in a pair of left and right images. In the case of optical flow-based approaches, the obstacle
presence is indirectly derived from the analysis of the velocity field, while in the stereo-based
approaches, this information is extracted directly from the depth information. Moreover, when both
host-vehicle and obstacles have small or null speeds, the optical flow-based approach fails while the
stereo one can still detect obstacles.

Many different approaches have been developed to address the processing of shape detection, pattern
analysis, stereo vision, and tracking and sometimes systems even combined them to improve the
ODR task. The most principal trends in research will be discussed below to give a broad view on
this highly developing field. Therefore, in the following, we present which these methods aimed
to Obstacle Detection (OD) and/or Obstacle Recognition (Obstacle Recognition (OR)) task are and
how they were implemented in the existing systems. Different systems based solely on vision (from

3There are systems in which the ego-motion information is directly extracted from odometry.
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which some have used only VIS spectrum sensors, some only IR spectrum sensors and others have
combined the two technologies) are presented.

Overviews on various systems from the intelligent vehicle field performing the OD and/or OR task
can be found in (Bertozzi et al., 2002a), (Sun et al., 2006b), (Gandhi & Trivedi, 2006), (Enzweiler &
Gavrila, 2009).

Almost all systems reported in the literature follow two basic steps: 1) Hypothesis Generation
(HG) where the locations of possible obstacles in an image are hypothesized and 2) Hypothesis
Verification (HV) where different tests are performed to verify the presence of obstacles in the
locations previously obtained. The objective of the HG step is to find possible obstacle locations
in the image for further exploration. The majority of developed systems have used in the HG step
one of the following three methods: 1) knowledge-based, 2) motion based, or 3) stereo-based.
Knowledge-based methods employ a priori knowledge about the obstacle to hypothesize its locations
in the image. Motion-based methods detect obstacles using optical flow. Stereo-based approaches
generally use an v-disparity method or Inverse Perspective Mapping (IPM) to estimate the locations
of obstacles in images. The hypothesized locations from the HG module constitute the input to the
HV step, where different tests are generally performed to verify the correctness of the hypotheses.
(Sun et al., 2006b)

1) Knowledge-based methods

We review below some representative approaches which employ a priori knowledge to hypothesize
obstacle locations in images. These methods are based on a specific shape of the obstacle to be
detected, so from the beginning of the process, the system knows what kind of shape is looking for.
This section is referring to the pedestrian and vehicle classes of objects, because they are more likely
to occur on the road in front of the host vehicle; but this discussion could be generalized to some
other specific types of obstacles, like animals, trees, bushes and so on. All the methods considering
knowledge about a specific shape of obstacle, would fall in one of the following categories:

• methods applicable both to pedestrians and vehicles; two different directions can be found:

– search for features like symmetry, horizontal or vertical edges, texture, colour, contour
corresponding to the aimed obstacles

– template matching with the obstacle’s contour, provided as an image or as a set of features
extracted from that obstacle image and describing its shape. This method could employ an
image of the obstacle as a template and that pattern to be shifted (and sometimes rescaled)
over the entire image in which obstacles are searched. Another possibility is to extract some
features from the image containing the pattern and the matching with different locations
from the scene image to be performed by a classifier at the feature-level.

• methods specific only to pedestrian or only to vehicle class (which cannot be generalized to
some other types of obstacles), such as geometrical features: corners, headlamps, shadow or
edges produced by vehicles or legs or head detection for pedestrian 4.

Next, we will see in detail the main characteristics of the systems which could be included in the
previous mentioned categories.

4Although some systems detecting pedestrians’ legs or even the specific information for their moving - human gait - fit these systems
to the methods based on moving, we consider them here. Even the moving information is used, these systems are reported to a particular
object type, the pedestrian shape, of which gait has been study and assigned to a specific object: the pedestrian; therefore, the pattern
of moving legs is very specific to this class of objects.
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a. Common specificities to the pedestrian and vehicle classes:

a1. Search for features like symmetry, horizontal or vertical edges, texture, colour, contour

When detecting vehicles or pedestrians on the road, many systems guided the search by some
observations, like:

- an image containing a vehicle inside presents strong edges on all sides where the image
changes from the vehicle to the background and the contour formed by the edges, generally can
be approximated by a rectangle;

- an image enclosing a pedestrian is presenting strong vertical symmetry and high density of
vertical edges.
Most systems assume that the size and position at which the obstacles appear in images follow a
typical distribution.

Symmetries:
At the University of Parma, Bertozzi et al. (Bertozzi et al., 2000) and Broggi et al. (Broggi et al.,
2000b) have developed a real-time vision system, implemented on the ARGO vehicle, for the
detection and localization of vehicles on the highway exploiting their symmetric characteristic.
The perception of the environment was performed through the processing of images acquired from
the stereo vision system installed on board of the vehicle, but the leading vehicle was localized
and tracked using a single monocular visible spectrum image sequence. The authors guided the
implemented vehicle detection algorithm by the following considerations: a vehicle is generally
symmetric, characterized by a rectangular BB which satisfies specific aspect ratio constraints, and
being on a highway, it should be placed in a specific region of the image (the assumption of a flat road
was made). First, a ROI was identified on the basis of road position and perspective constraints and
this area was searched for possible symmetries: a symmetry map was computed as a combined sum
(the coefficients being determined experimentally) of four different symmetries (i.e., grey-level, edge,
horizontal edges and vertical edges symmetries). Once the symmetry position and width have been
detected, a new search was started, aimed at the detection of the two bottom corners of a rectangular
BB. Finally, the top horizontal limit of the vehicle was also searched for, and the preceding vehicle
was localized. Knowing the calibration of the two cameras, a pattern enclosed into the BB from the
left image was searched on the right image, and a triangulation method allowed the computation
of vehicle distance. The detected and localized vehicle was tracked in the image sequence by a
correlation method.

In the frame of the same research group where Bertozzi belong at the University of Parma, Broggi et
al. described in (Broggi et al., 2004b) an improved version of the algorithm presented in (Bertozzi
et al., 2000). Their aim in this new version was to find horizontal lines located below an area
with sufficient amount of edges. Besides this, in order to speed up computation, the new algorithm
considers three different ROIs for the detection of vehicles situated at 3 different distances: far,
medium and close. Compared to the algorithm from (Bertozzi et al., 2000), in this paper authors used
only binarized edges for the symmetry computation, droping the grey level symmetry processing
(the authors assert this was very time consuming and did not provide more information compared
to edges symmetry). The Sobel operator was used to find edges module and orientation, then three
images were built: one with binarized Sobel modules, one with vertical edges and one with horizontal
edges. The symmetry was computed for every column of the three images, on different sized BBs
whose height matches the image height and with a variable width ranging from 1 to a predetermined
maximum value. Also for improving the first version of the algorithm, the authors were searched
for the shadow under the car in order to find the box base. In the HV step, distance and size of
vehicles were computed based on image calibration. The algorithm deleted all the BBs which were
too large, too small, or too far from the camera in order to decrease the number of false positives.
The algorithm analyzed images on a frame by frame basis, without using the temporal correlation.
Trucks were also detected since their square shape matches the algorithm assumptions. The problem
of misaligned vehicles (like overtaking vehicles or vehicles coming from the opposite direction) is
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asserted to be the most critical aspect of this method. The algorithm does not always detect oblique
vehicles, and when it does, vehicle width may not be precise. Problems arise when a large number
of vehicles overlap or in urban scenes, where road infrastructures, road signs and shadows make
the scene too complex. The reported execution time was 120 ms with an Athlon XP 1.8 GHz. To
conclude, computing the symmetry on the whole image is very time consuming, since the authors
assert that 75% of the time was used for symmetry computation.

The pedestrian detection algorithm detailed in (Bertozzi et al., 2002b) is actually an adaptation of the
vehicle detection algorithm presented in (Bertozzi et al., 2000). The areas considered as pedestrian
candidates were rectangular BBs presenting a strong vertical symmetry and a high density of vertical
edges and their projection in the image was obtained from the size and distance of the pedestrian
in the 3D world combined with simple perspective considerations and the camera calibration
parameters. To be validated in the HV step, the BBs were then checked against a human shape
model, taking into account the contour of the object they enclosed by an Ant Colony Optimization
algorithm. For the detection step, the columns of the image were considered as possible symmetry
axes for BBs. Then, for each symmetry axis, different BBs were evaluated scanning a specific range
of distances from the camera and a reasonable range of heights and widths for a pedestrian. A
pre-attentive filter aimed at the selection of the areas with a high density of edges was applied. For
each of the remaining axes the best candidate area was selected among the BBs which share that
symmetry axis, while having different position and size. The selection of the best BB was based on
maximizing a linear combination of two symmetry measures (i.e., on the gray-level values and on
the gradient values), masked by the density of edges in the box. In the HV step, different edges were
selected and connected in order to form a contour representing the shape of the pedestrian body. The
process consists in adapting a deformable coarse model to the BBs. The model adjustment was done
through an evolutionary approach with a number of independent pixel-sized agents (ants) acting as
edge trackers. This method allows the identification of pedestrians in various poses, positions and
clothing, and it is asserted to be not limited to walking people. It detected pedestrians in a range of
10 to 30 meters, but these preliminary experiments were performed mainly on synthetic images.

In (Bertozzi et al., 2003b) and (Bertozzi et al., 2003a), Bertozzi et al. have also considered the
possibility of using an infrared camera for the pedestrian detection task. They utilize the fact
that humans from most view points are also symmetrical in IR images and use the size and aspect
ratio of a full standing human to separate pedestrians from other objects in the scene. The HG step
was adapted from the visible one presented in (Bertozzi et al., 2002b) and (Bertozzi et al., 2003c).
The algorithm was divided into the following parts: first, the localization of ROIs (attentive vision)
and generation of possible candidates based on symmetry (on the input and vertical edges images)
was performed; then, candidates were filtered out based on specific aspect-ratio and size constraints
(the size of a pedestrian was considered to be 180 cm +/- 10% height and 60 cm +/- 10% width)
and finally, candidates were validated on the basis of a match with a simple morphological model
of a pedestrian. The approach does not use the temporal information, which probably would have
made their system more accurate. The major problems with the system are: (1) in the presence of a
complex background artefacts or objects other than pedestrians were detected, (2) the detection of
pedestrians was not missed but the algorithm miscalculates the exact position or size of the BB, and
(3) walking pedestrians were sometimes not detected due to aspect ratio constraints.

In (Broggi et al., 2004a) the improvements of the system described in (Bertozzi et al., 2003b)
and (Bertozzi et al., 2003a) for the detection of pedestrians in far IR images were presented.
Differently-sized BBs were placed in different positions in the image and the presence of a pedestrian
inside those BBs was checked for at close and far away distance. In the HV step a match with a set
of 3D models encoding shape and thermal patterns of pedestrians was used to remove candidates
that did not present a human shape. The 3D models represent different postures and viewing angles
of the human shape and were generated from different points of view. A set of 72 configurations
were chosen by combining 8 different points of view with 9 positions (one standing and 8 walking).
These configurations have also considered the actual viewing angle, orientation, and height of the
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camera on the test vehicle. A cross-correlation function was used for the match and the result was a
percentage rating the quality of the match. The system has been tested on a 1.8 GHz Athlon XP (FSB
266 MHz) with 512 MBytes DDR 400 MHz; the time required for the whole processing was asserted
at 127 ms. Some assumptions have been made: the pedestrians were not occluded, the complete
shape of the pedestrian appears in the image, a number of pedestrians appear simultaneously in the
image but they do not occlude each other. The authors mentioned that the localization of pedestrians
was difficult in some situations such as bikers, running people, or when the BB was not precise.

Also based on symmetry, but used for vehicle detection is the system presented in (Toulminet et al.,
2006). It is the result of the collaboration between INSA and University of Parma and it comprised
a stereo vision system for the detection and distance computation of the preceding vehicle. The 3-D
vertical edges corresponding to obstacles were extracted in a first step; then, a symmetry operator
investigated 4 images: the one containing the 3-D features previously computed, the grey level image
and the images of horizontal and vertical edges. A match against a simplified model of a vehicle’s
rear shape allowed the detection of a preceding vehicle and the computation of its distance. The
presence of two corners representing the bottom of the BB around the vehicle was checked by a
pattern matching technique. In addition, size constraints were used to speed up the search.

Vertical/Horizontal Edges
In (Broggi et al., 2000a) a method implemented on the ARGO vehicle for detecting the pedestrian
shape was performed by the processing of images acquired from a vision system installed on board
of the vehicle: the analysis of a monocular visible spectrum image delivers a first coarse detection,
while a distance refinement was performed with a stereo vision technique. Pedestrians were detected
through a search for objects featured by specific characteristics, like: mainly vertical edges with
a strong symmetry, size and aspect ratio satisfying specific constraints, and generally placed in a
specific region. First a ROI was identified based on perspective constraints and the vertical edges
were extracted. After eliminating the objects belonging to the background from the vertical edges
map by a logical bitwise “and” with a binary mask (obtained from the application of a positive
threshold to the signed difference between the left image and a properly shifted version of the right
image), the areas which present high vertical symmetry were considered. Too uniform areas were
discarded by evaluating the edges’ entropy, while for the remaining candidates a rectangular BB
was determined by finding the object’s lateral and bottom boundaries and localizing by a simple
correlation function the head matched with a binary pattern representing pedestrian’s head and
shoulders at different sizes. Distance assessment was then performed: the evaluation deriving
from the position of the BB’ bottom border was refined by the stereo vision technique. Finally the
pedestrian candidates were filtered: only the ones satisfying specific constraints on the size and
aspect ratio and presenting non uniform composition were selected and labelled as pedestrians.
Temporal correlation was taken into account in certain steps by using the results from the previous
frame to correct and validate the current ones. The algorithm requires the whole pedestrian to be
present in the image (even if it has proven to work also when the pedestrian is partly occluded by
other pedestrians), at a distance ranging from 10 to 40 meters.

Betke et al. (Betke et al., 2000) have used a colour video camera for driving on a highway. Their
system used a combination of colour, edge and motion information to detect and track two types
of vehicles on the highways: distant cars detected by edges and recognized by matching templates
(described in the following) and passing cars detected by temporal differencing and tracked based
on motion parameters typical for cars (described in the next subsection). The authors asserted that
vehicles at the far distance, usually appearing as rectangular objects, showed very little relative
motion between themselves and the host vehicle, therefore any method based only on differencing
image frames failed to detect these types of vehicles. They proposed a coarse-to-fine search method
looking for rectangular objects by evaluating horizontal and vertical edges in the images. The
horizontal and vertical edge maps were defined by a finite-difference approximation of the brightness
gradient. The coarse search checked the whole image to see if a refined search was necessary, and a
refined search was activated only for small regions of the image, suggested by the coarse search. The
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coarse search looked through the whole edge maps for prominent edges, such as long uninterrupted
edges. Whenever such edges were found, the refined search process was started in that region. In the
HV step, in order to verify that the potential object was a vehicle, an objective function was evaluated:
first, the aspect ratio of the horizontal and vertical sides of the potential object was computed to
check if it was between 0.7 and 1.4 (considered to be potential aspect ratios for vehicles). Then the
vehicle template was correlated with the potential object marked by four corner points in the image.
If the correlation yields a high value, the object was recognized as a vehicle. The system outputs
the fact that a vehicle was detected, its location in the image, and its size. In addition to correlating
the tracked image portion with a previously stored or cropped template, the system also checks for
the portion’s left-right symmetry by correlating its left and right image halves. Highly symmetric
image portions with typical vehicle features indicate that a vehicle was tracked correctly. Betke et al.
detected also the rear lights of the vehicles to provide additional information for the identification of
the object as a vehicle (detailed at the section corresponding to vehicle lights).

Parts detection or boosting-based approaches
There are systems performing a division of the image containing the obstacle into subregions, in
order to separates the broad class into smaller pieces, easier to manage. The basic idea of this
division is to reduce the variability of the respective class before training. The separation is done by
manually clustering the training data into a number of mutually exclusive sets, where each cluster of
data represents a certain pose and illumination. The early paper we found treating this subject was
one to which Papageorgiou has contributed, (Mohan et al., 2001) and their pedestrian recognition
algorithm was inspired by papers treating the face detection problem. Shashua et al. (Shashua et al.,
2004) also introduce a division of the pedestrian class into subregions, while Dellaert et al. (Dellaert,
1997) have performed a search for image rows and columns that might contain edges of a car.

Mohan et al. (Mohan et al., 2001) introduce a new hierarchical classification architecture called
Adaptive Combination of Classifiers, composed of distinct example-based component classifiers
trained to detect different object parts (i.e., heads, legs, left and right arms). The combination
classifier took the output of the component classifiers as its input and classified the entire pattern
under examination as either a “person” or a “nonperson”. The candidate regions were first processed
by the component detectors by applying the Haar wavelet transform and then the resultant data
vector was classified. The component classifiers were quadratic SVMs which were trained prior to
be used in the detection process. The highest component score for each component was fed into the
combination classifier which was a linear SVM. This process of classifying patterns was repeated
at all locations in an image by shifting the 128x64 pixel window in all possible locations from the
image. The image itself was processed at several sizes, ranging from 0.2 to 1.5 times its original size.
This allowed the system to detect various sizes of people at any location in an image, but the paid
price was that the extensive search made the system to function not quite in real-time.

Shashua et al. (Shashua et al., 2004) have designed a pedestrian detection system based on boosted
learning and the pedestrian class was divided into 9 sub-regions and 4 combinations of regions.
First, candidate regions were generated by filtering out areas that did not contain enough texture.
Then, a single frame classification algorithm was applied on the ROI and finally, a multi-frame
approval technique was used to verify the content of the surviving candidates. Dynamic patterns
such as gait and inward motion were used. To represent the objects, orientation histograms (stated
to be shift-invariant) have been used as features and they were extracted from each sub-region. The
extracted features were each considered as weak learners and they were boosted together with an
AdaBoost algorithm.

Arnell (Arnell, 2005) have the idea to divide the candidate window into regions, by the use of layers:
each area in the image was included in many of the subregions; 10 subregions were first used and
each subregion was further subdivided into 4 parts; in that way, 40 subregions resulted. The principal
gradient direction of each of these 40 subregions was used as feature representation. The shape
descriptor Arnell have used is based on the horizontal and vertical component of the gradient image.
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These features have been introduced by Oren et al. in (Oren et al., 1997), and were also used by
Grubb (Grubb et al., 2004). Arnell have improved the shift invariance by processing the gradient
image components in bins. To classify a feature vector as being provided by a pedestrian, the output
decisions were encoded as 1’s and 0’s and combined with the feature vector extracted from the
candidate window into a longer feature vector which was fed into the second stage classifier. They
have evaluated a SVM as a second stage classifier, but more promising results they expected by the
combination of the classifiers through boosting.

Dellaert et al. from Carnegie Mellon University in the frame of NavLab project, presented in
(Dellaert, 1997) a Candidate Selection and Search (CANSS) algorithm, which was able to detect in
real time vehicles on highways based on contours. The algorithm uses a Hough Transform on the
image gradient and a classifier initialized by training. The classifier, based on a kernel regression
method was used to candidate image rows and columns that might contain edges of a car. A
combinatorial search was then performed for the BB most probably (in the Bayes sense) generated
by a car. In (Dellaert & Thorpe, 1997), Dellaert et al. proposed an approach for vehicle tracking,
in which the 3D position and motion of a vehicle were estimated by tracking a 2D BB in the video
stream, based on the CANSS model-based vehicle detection system. One year later, in (Dellaert
et al., 1998) Dellaert et al. integrated the 3D vehicle tracking approach with a lane following module,
called Rapidly Adapting Lateral Position Handler (RALPH), obtaining a hybrid vision system that
tracks both road and vehicles with higher accuracy than each of the two systems taken individually.
Based on a flat world assumption, RALPH takes into account information about the yaw or lateral
offset of the ego-vehicle, providing a curvature estimate. The information provided by the two
systems separately was combined using an extended Kalman filter.

a2. Template matching with the obstacle’s contour

This type of approach is very much employed when only monocular image is available for the
detection step. Systems that can detect pedestrians in static images by employing a template
matching process are described in (Papageorgiou & Poggio, 1999) and (Gavrila, 2000).

Papageorgiou et al. have presented versions of a pedestrian detection system in a number of
publications (Oren et al., 1997), (Papageorgiou et al., 1998), (Papageorgiou & Poggio, 1999),
(Papageorgiou & Poggio, 2000), (Mohan et al., 2001). They used a brute force method to detect
pedestrians: a search window was shifted over all possible locations in a given image. The method, as
a first approach, was computationally expensive, not quite in real-time because it required 20 minutes
per examined frame. In a second approach, after removing the use of colour information, reducing
the amount of wavelet features (to only 29 features) and adding stereo to locate ROIs, their system
operates at 10 Hz (it was implemented on Daimler Chrysler Urban Traffic Assistant (UTA)). The
approach was based on shape because wavelets were used for feature representation. The features
encoded local intensity differences vertically, horizontally and diagonally. The wavelets extracted
important features of a pedestrians using, e.g., intensity and colour. The method of Papageorgiou et
al. do not use the temporal information, and it was expected that adding such information to yield
better performance (with the inconvenience of slowing down the system). The faster version of
the system, the one operating at 10 Hz, was integrated in the obstacle detection, recognition, and
tracking system UTA (Franke et al., 1999), which was able to recognize traffic signs, traffic lights and
walking pedestrians, but also the lane, zebra crossings and stop lines. It used stereo vision to detect
and segment obstacles and provided an estimate of the distance to each obstacle. This information
was employed as a focus of attention mechanism for the people detection system developed by
Papageorgiou et al. Using the knowledge of the location and approximate size of the obstacle allowed
them to target the people detection system to process relatively small regions for just a few sizes of
people, instead of the entire image for all scales of people. Papageorgiou and Poggio pioneered the
use of Haar-wavelet features in combination with SVM and their pedestrian recognition approach
was subsequently adapted by Elzein et al. (Elzein et al., 2003) and others. Grubb et al. (Grubb
et al., 2004) also inspired by the approach of Papageorgiou et al., but instead of using wavelets as
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features, they employed vertical and horizontal Sobel edge detectors and they have replaced the SVM
classifier with two SVMs, one for front-rear pose and the other for side poses of pedestrians.

Gavrila et al. (Gavrila, 2000), (Gavrila & Giebel, 2002) working with the UTA system (Franke et al.,
1999), have developed a pedestrian detection system based on template matching between models of
pedestrian and an image transformed by Chamfer distance. The matching was made using a technique
called the distance transform (detailed in (Gavrila, 2000)), which was applied to an edge detected
version of the image. In the first step, contour features were used in a hierarchical template matching
approach to find candidate solutions by a combined coarse-to-fine approach in shape and parameter
space. Templates were build-up in a hierarchy with general templates near the root and more specific
templates at leaf level. The hierarchical clustering was automatically built off-line from the available
models of pedestrians (Gavrila & Giebel, 2001) and by its use the process of mapping was speed
up. Then, follows a verification step where the positively matched candidates were run through a
Radial Basis Function (RBF) network, based on an intensity feature representation. Tracking also
was added in later versions of this system (Gavrila & Giebel, 2002): they used an alpha-beta tracker
(which is a simplified Kalman filter) to estimate the object state parameters. The pedestrian module
was at that time a recent addition to UTA. If the pedestrian module was used separately (the flat
world assumption was made), the system ran at approximately 1 Hz on a dual-Pentium 450 MHz
with MMX, but in the alternate mode of operation, the stereo-module in UTA was used to provide a
ROI for the Chamfer System and enabled a processing speed of about 3 Hz. The main drawbacks
of the system are: it does not detect pedestrians in low contrast, partial or complete occlusion and it
generates false alarms in areas of the image where scene presents strong texture.

Fleischer et al. (Fleischer et al., 2002) reported a model-based approach which uses 3D object
models and a priori knowledge about typical positions of traffic signs and vehicles on the road in
order to detect and track such objects within image sequences. The method was integrated into Driver
Assistance using Realtime Vision for INnercity areas (DARVIN), a machine-vision-based system
equipped with stereo CCD cameras, used to track lane boundaries and lamp posts located next to
road borders. The geometric models of traffic signs and vehicles were projected into the image plane
of the camera (the pinhole model of the internally and externally calibrated cameras rigidly attached
to the testvehicle was used for this projection) in order to detect image features. Based on a position
estimate of the host vehicle with respect to the scene coordinate system (resulting from a GPS-based
initialization step or a previous road tracking step) the model line segments of the road on which the
host vehicle was driving were projected into the image planes of the divergent binocular camera setup.
These projected model lines were then matched to some extracted edge elements (obtained from the
greyvalue images using a gradient based method) that were likely to correspond to the image features
of road borders and lane markings. Expected edge features of an object were defined by an object
model that comprises bordering line segments of a set of polygonal patches used to approximate the
3D shape of a vehicle or the flat shape of traffic signs. If the coverage of a projected traffic sign or
vehicle model by extracted edges exceeds a specified threshold, the estimated position resulting from
the detection step and the object model were used to start a tracking process based on Kalman filtering.

b. Characteristics specific only to pedestrian or vehicle class:

Vehicle Lights
In (Betke et al., 2000), rear-light detection was performed for vehicle recognition purposes: the
algorithm searched for bright spots (i.e. it was looking for a pair of bright pixel regions in the
tracking window that exceeded a certain threshold) in image regions that were most likely to contain
rear lights. To find the centroid of each light, the algorithm exploited the symmetry of the rear lights
with respect to the vertical axis of the tracking window, which means that the algorithm found either
rear lights (if turned on) or rear break lights (when used). In order to reduce the search time, only the
red component of each image frame was analyzed. Using additional information like the rear lights
of a tracked object could be very helpful in particular situations, such as reduced visibility driving
(e.g., in a tunnel, at night, in snowy conditions).
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Legs detection or human gait detection
Methods based on gait recognition show a higher robustness, but they require the analysis of multiple
frames; generally, they are applied only to pedestrians crossing the street in the path of the vehicle,
where the alternating movement of legs is more obvious. Generally, the human motion is exploited in
the recognition phase of the obstacles, but there are also authors employing human gait as a method
of pedestrian detection.

The visual interpretation of biological motion has been first investigated by Hoffman and
Flinchbaugh, in (Hoffman & Flinchbaugh, 1982), where anatomical constraints on how the limbs
of animals typically move during ambulation were exploited in order to develop an interpretation
scheme based on the assumption of planar motion. The biological motion of humans has been the
subject of multiple papers, like (Viola & Jones, 2001),(Viola et al., 2003), (Curio et al., 2000),
(Cutler & Davis, 2000), (Heisele & Wohler, 1998), (Wöhler & Anlauf, 1999) which were inspired by
the work of Hoffman.

The dynamic pedestrian detector built by Viola et al. in (Viola et al., 2003) is an extension of the
rectangle filters presented in (Viola & Jones, 2001) used for the static face detection problem. Viola
et al. extended the filters to act on motion pairs: the idea they employed was to extract a mask
displacement, i.e. a succession of boundaries from a sequence of images and then to analyze those
masks. The features were extracted from two successive images and the information taken into
account was not only the movement but also the intensity of the images; thus, the system integrated
image intensity information with motion information. The differences between region averages at
various scales, orientations, and aspect ratios were measured by evaluating the motion filters as well
as appearance filters using an integral image. The set of filters allowed the comparison of the values
of the pixels in each image and the observation of the spatial and temporal evolution of the pixels.
The filters were set to correspond to possible movements of the pedestrians.

The system developed by Viola et al. works directly with images extracting short term patterns of
motion, as well as appearance information, to detect all instances of potential moving pedestrians.
The training process uses an AdaBoost classifier to select a subset of features, i.e. a linear
combination of the selected features. The resulting classifier employed intensity and motion
information in order to maximize detection rates by a cascade architecture which make the detector
extremely efficient: simpler detectors (with a small number of features) were placed earlier in the
cascade, while complex detectors (with a large number of features) were placed later in the cascade.
The method used by Viola et al. demonstrates that it is possible to detect pedestrians with low
computation time (about 0.25 seconds to detect all pedestrians in a 360 x 240 pixel image on a 2.8
GHz P4 processor) based on simple characteristics. The combination filter and cascade classifier
was effective and it was asserted to solve the problem of moving pedestrian detection. In addition,
the stated results were good and they promised real-time applications. However, this method can
only work on fixed cameras, and two successive images must be taken under the same conditions of
acquisition. This limitation does not allow us to consider an vehicle on-board embedded application.
Moreover, as the author points out, this method does not solve the problem of possible occlusions
and either the static pedestrians were detected.

An interesting and different piece of work is that of Curio et al. (Curio et al., 2000) which combined
texture, contour matching, and IPM information into a temporal dynamic activation field in which
a final decision about a reliable ROI was made using an activation threshold. The initial detection
of pedestrians was performed by combining three information cues: first, the local image entropy
(texture information) was calculated to reduce the search space only to structured regions and
secondly models were matched based on contour information. To increase the detection performance
for the short distance field, beside a monocular camera, a binocular vision system was employed.
Using the IPM and the camera geometry, the estimation of object scales in the image has been
done. They restricted the detection of pedestrians to the lower part of their body (i.e., hip and
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legs), therefore the model resembles a down-faced V form in different deformations corresponding
to the various phases of a gait, which were generated by sampling the synthetic kinematic model
equidistantly in time. Different phases of the walking sequence were matched to given contour
features using the Hausdorff-Distance as a measure of similarity. To reduce the search space between
successive frames (i.e., for prediction of the new search region), a Kalman filter with an underlying
simple accelerated movement model was used.

A drawback of the method employed by Curio et al. is that the detection is delayed, since several
frames were needed to establish a walking pattern. The interesting part of this work is the utilization
of a walking model, which indeed represented a strong cue when detected, but the approach had to
be combined with other methods, since this cue only recognize pedestrians whose legs were visible
and only when moving lateral in the scene.

Periodicity of the human gait could be also recognized with traditional methods like the Fourier
transform. Some systems performed a frequency analysis of the changes of candidate patterns over
time and then selected those that show the frequency spectrum characteristic of human gait. As
an example, Cutler and Davis (Cutler & Davis, 2000) used a short-time Fourier transform with a
Hanning windowing function to analyze the signals obtained by correlation of the pattern of detected
objects. The system developed by Cutler et al. (Cutler & Davis, 2000) measured periodicity directly
from the tracked images and it worked even on low resolution and poor quality images, as stated by
the authors. The algorithm measured periodicity and it was comprised by two parts: first, the motion
was segmented and the objects were tracked in the foreground; then, each object was aligned along
the temporal axis (using the object’s tracking results) and the object’s self-similarity as it evolved in
time was computed (the tracking step). For periodic motions, the self-similarity metric was periodic
and they applied time-frequency analysis to detect and characterize the periodicity. Cutler et al.
stated that their method for detecting and analyzing periodic motion of humans can be used for both
static and moving camera.

Another system employing the analysis of motion by the Fourier Transform is the one developed by
Heisele and Wohler (Heisele & Wohler, 1998). Their system recognized pedestrians using colour
images provided by a moving CCD camera. The images were segmented using a colour/position
feature space into region-like image parts. In order to determine if a cluster belonged to the legs of a
pedestrian a quadratic polynomial classifier checked for periodicity in the temporal shape variation
of a cluster. To extract the dominant frequency, a Fast Fourier Transform with a time window of
fixed size was applied to the signal. The regions were normalized in size and finally classified
by a Time Delay Neural Network (TDNN) with spatio-temporal receptive fields. The input data
of the TDNN were temporal sequences of gray valued image regions selected by the polynomial
classifier. In the system developed by Heisele et al., pedestrians were approximately 100 pixels in
height. These image qualities and resolutions are typically not found in surveillance applications,
where low-resolution cameras are employed. Another drawback of their system is that because the
segmentation is based on colour, accurate segmentation methods are needed to isolate the foreground
and background information. A system which continues the work of Heisele et al. is that of Wohler et
al., but here the detection was based on a stereo camera system. After the objects were detected, they
cropped the lower half of the ROI delivered by the stereo algorithm, which contained the pedestrian’s
legs, and normalized it to a size of 24x24 pixels. They replaced the TDNN with an adaptable TDNN
algorithm, and the time-delay parameters of the network were learned from the training examples
instead of being determined by manual adaptation.

Conclusion to knowledge-based methods: From the presented algorithms applicable to both
pedestrian and vehicle shape (case a), we believe the most promising results could be obtained from
the representation of objects on the basis of a vector of features extracted from the obstacle image,
and not by a matching correlation with the entire model of the obstacle due to possible occlusions.
Also, we believe methods performing a division of the obstacles in sub-regions are very promising,
because they do not only serve to simplify the representation, but they can also be used to detect
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partially occluded pedestrians. If only the upper regions are classified as pedestrian, the respective
pedestrian detected may be classified as an occluded one instead of being rejected as not-pedestrian.
Due to the presence of symmetries or edges of objects, the methods employing symmetry or edges
detection in the HG step, do not limit the detection to only moving objects; still, the objects do not
have to present strong occlusions (maybe not more than 25% from the object to be hidden) in order
to match the obstacle model. Approaches based on a specific characteristic of objects (case b) are
generally employed when a single type of object is searched for or when the recognition of different
types of objects presenting different characteristics is desired. The methods based on human gait
detection or recognition are a little bit slower than some other approaches because multiple frames
are needed to be processed until the system decision is provided.

Even the approaches presented by now (which employ some knowledge about the obstacle to be
detected) use a single image (or a sequence of images for the gait recognition) to perform the
detection, we believe some of them have limited employability. Systems employing local symmetry,
corners, or texture information for HG are effective in relatively simple environments with no or little
clutter; employing these methods in complex environments (e.g., when driving in dense city traffic),
would introduce many false positives. Utilizing horizontal and vertical edges for HG is probably the
most promising knowledge-based approach reported in the literature. An important inconvenience
is that it depends on a number of parameters (e.g. the thresholds for the edge detection step, the
thresholds for choosing the most important vertical and horizontal edges) that could affect system
performance and robustness; a set of parameter values might work well under certain conditions,
however, they might fail in other situations. If some characteristics of the obstacles presented in
the case a could be generalized on all classes of objects aimed to be detected and recognized by
the system, and in addition if a relationship between the set of correctly operating parameters and
different possible situations of day and night could be identified, then these approaches represent a
possible solution for our obstacle detection system.

On the other side, using specific characteristics of a certain object type (case b) would not be very
useful for an obstacle detection module, but multiple benefits could be added to the recognition
module. By identifying some characteristics of certain classes of objects, a better discrimination
between different types of objects could be obtained, much improved than using a general
characterization of all types of objects. Employing shadow information, vehicle lights, legs or human
gait detection for HG have been exploited in a limited number of studies. An important drawback of
approaches based on legs or human gait detection is their inability to correctly classify still persons
as pedestrians, because they can detect only moving obstacles. On the other hand, shape-based
approaches are more sensitive to false positives and thus they need a good detection phase; at least,
they correctly recognize even stationary people. Under perfect weather conditions, HG using these
type of information can be very successful, but in bad weather or poor illumination conditions, when
road pixels could become quite dark, this method is very possible to fail.

2)Motion-based methods

All the cues discussed so far used spatial features to distinguish between obstacles and background.
Another cue that can be employed is the relative motion obtained via the calculation of optical
flow. Pixels on the images appear to be moving due to the relative motion between the sensor and
the scene. The vector field of this motion is referred to as optical flow. Optical flow can provide
strong information for HG. To take advantage of these observations in obstacle detection, the image
is first subdivided into small subimages and an average speed is estimated in every sub-image.
Sub-images with a large speed difference from the global speed estimation are labelled as possible
obstacles. Most of these methods compute temporal and spatial derivatives of the intensity profiles
and, therefore, they are referred to as differential techniques.

The system developed by Betke et al. (Betke et al., 2000) evaluates several consecutive image frames
and employs the tracking capabilities to recognize passing vehicles. Large brightness changes over
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small numbers of frames were detected by differencing the current image frame from an earlier
frame and checking if the sum of the absolute brightness differences exceeded a threshold in an
appropriate region of the image. If large brightness changes were detected in consecutive images, a
gray-scale template of a size corresponding to the hypothesized size of the passing car was created
from a model image and it was correlated with the image region that was hypothesized to contain a
passing car. The normalized sample correlation coefficient was used as a measure of how well the
region and the template image correlate or match eachother. Generally, when multiple frames are
processed, immediate recognition from only two images is very difficult and only works robustly
under cooperative conditions (e.g., enough brightness contrast between vehicles and background).

Demonceaux et al. (Demonceaux & Kachi-Akkouche, 2004) propose an approach to OD based
on three steps (road detection, road motion estimation and detection of road obstacles). The
road motion estimation was performed using wavelets analysis of the optical flow equation. To
detect the obstacles which have small speed, they modelized the road velocity by a quadratic
model. Then, to achieve a robust algorithm, a fast bayesian modelization was used instead of a
simple threshold between the expected and real velocity fields. Their system was able to detect all
types of obstacles in the presence of shadows, occlusions and even in the case of illumination changes.

The method proposed by Elzein et al. (Elzein et al., 2003) was also based on the principle of optical
flow and it was searching for image areas containing motion. Compared to the method presented by
Viola et al. (Viola et al., 2003), the processing were a bit more expensive, since the goal was not
to extract features, but to define a ROI. Their main focus was the calculation of different relative
velocities of objects in the scene, followed by an algorithm for pattern recognition which was applied
to determine the presence or absence of a pedestrian in the ROI. To detect moving objects in the
video sequences, Elzein et al. used the correlation-based optical flow estimation method of which
goal was to place a BB around clusters of pixels that presented significant motion. To find such
a BB, they first computed the difference between successive frames and retained only those pixels
that shared a relatively large difference. For each computed BB, the overcomplete Haar wavelet
transform was computed and a feature vector was constructed. The method used is the same proposed
by Papageorgiou et al. in (Papageorgiou & Poggio, 1999). The authors assert that the overall
computation time was about 95 seconds per frame: the computation time for motion detection was
55 seconds per frame (of which roughly 35 seconds was due to computing the optical flow) and the
classification required about 10 seconds for each scale checked (4 scales were used). To these values,
the computation of the wavelet features was added, and the resulted time was 336 seconds.

An approach to segment moving objects from images taken with a moving camera was presented
by Arnell and Petersson in (Arnell & Petersson, 2005). The segmentation algorithm was based on
a different representation of optical flow: the u-disparity was used to indirectly find and mask the
background flow in the image, by approximating it with a quadratic function. The Sum of Squared
Differences (SSD) was used to compute the optical flow. The algorithm was stated to provide
excellent results at lower speeds (under 40 km/h); it successfully segmented moving pedestrians with
few false positive, which were due to poles and organic structures, such as trees. The algorithm was
intended to be used as a component in a detection/classification framework and the complementary
use of stereo segmentation was proposed. Occluded objects presented no problem, since no
assumptions were made about the objects shape.

Conclusion to motion-based methods: Generally, motion-based methods can detect objects based
on relative motion information. In the presence of shocks and vibrations, caused by mechanical
instability of the camera, a high frequency noise is introduced to the intensity profile; in general,
errors introduced by shocks and vibrations are small if the camera is mounted on high quality
antivibrating platforms and the vehicle is moving along usual roads. Motion-based approaches use
temporal information and have proved to be quite reliable if one wants only to find a moving object
and not its precise velocity. Unfortunately, it does not detect standing pedestrians or any static
obstacle in general and needs to analyze a sequence of a few frames before giving a response.
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3) Stereo-based methods

Another important contribution to vision-based OD, beside the use of shape or motion information,
is provided by stereo vision. It computes depth by triangulation of matched image features in a left
and right camera image. Generally, stereo vision is used as a HG method, but there are systems
employing it only to provide the size/scale of the objects to be checked in the verification stage (i.e.,
HV step).

The stereo vision system was designed according to the model of human perception, because humans
have the ability to perceive the environment visually, by locating objects in space. Using a pair of
cameras two types of information can be extracted: the visual information describing the object and
the objects’ position in the real world coordinates. The depth information is obtained by calculating
the disparity: for a given pixel, the difference in position between the right and the left images are
computed. By using the stereo vision technique, it is possible to define precisely the position of the
objects observed in the scene. Being a method based on distance, it is possible to remove background
objects by defining regions that can distinguish different objects based on their distance from the
camera.

The work of Zhao and Thorpe (Zhao & Thorpe, 2000) in the pedestrian detection domain by the use
of stereo has been a source of inspiration for many authors. Their system is aimed at transit buses
in urban scenes and besides the use of stereo to make foreground/background separation, it is using
Neural Networks (NNs) for classification. The system first separated the image into sub-areas by the
stereo information, and each depth in the image got its own BB. The BBs were preprocessed by the
size ratio of a human. Small areas close to each other with similar disparity values were grouped
if their combined size complies with the human ratio. Large areas were searched with a window of
human size; if nothing was found the respective area remained unchanged. The pre-processed regions
were then fed into a three-layer feed forward NN trained with the back-propagation algorithm. Zhao
and Thorpe report a high detection rate (without using any motion cue), and their system runs at 3 to
12 Hz, depending on how many pedestrians were present in the scene. Zhao and Thorpe’s approach
is today somewhat outdated, but their work has been a corner stone in the development of a robust
pedestrian detection system.
In (Bertozzi et al., 2003c) a stereo refinement method was used to improve the pedestrian detection
algorithm presented in (Bertozzi et al., 2002b). This stereo technique was used to refine the computed
BBs: for each BB from the list generated in the HG step, starting from a rough estimation of the
distance, a portion of the other image was searched for areas exhibiting a content similar to the one
included in the BB by means of a correlation measure. Once that this correspondence was found, a
triangulation was used to determine the distance to the vision system. As concerning the HG step,
the list of the candidate BBs was obtained in the same manner as in (Bertozzi et al., 2002b), by
maximizing a linear combination of two symmetry measures masked by the density of edges in the
box. Due to the knowledge of the system’s extrinsic parameters together with a flat scene assumption,
the search for possible pedestrians was limited to a reduced portion of the image. To filter out some
false detected pedestrians, aspect constraints filters were used: a pedestrian was supposed to have an
average height of 1.70 m with a standard deviation of 0.1 m, and a width correlated to the height by a
weighted value of 0.3. A Kalman filter has been used in the final stage of the algorithm to reconstruct
an interpretation of the pedestrians positions in the scene (Bertozzi et al., 2004).

Grubb et al. (Grubb et al., 2004) have presented a pedestrian detection system that also utilizes
stereo in the HG step. The disparity map was processed with v-disparity, where height and width
of objects that “stand out” in the scene were estimated. The candidates found by the mechanism
were pre-filtered also based on a human ratio. On the surviving candidates, feature extraction was
performed using wavelet transform. Pedestrians from the side and front/rear pose were classified
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using SVMs, one for each pose, both inspired by Papageorgiou et al.(Papageorgiou & Poggio,
1999). Temporal analysis was added in the form of a path prediction and target tracking. The system
of Grubb et al. operated at 23 Hz and reached detection rates of up to 83% with false positives at 0.4%.

Thermography (thermal imaging) is mainly used in military and industrial applications but the
technology is reaching the public market in the form of infrared cameras mounted on-board of
vehicles due to the massively reduced production costs. Evidences of this affirmation are the systems
presented in what follows.

Honda has developed an intelligent night vision system (Honda, n.d.) using two far infra-red cameras
which were installed in the front bumper of the vehicle. The target distance was acquired by the
stereo infra-red vision system composed from two calibrated IR cameras. This system is intended to
provide some visual and audio cautions (when it detects pedestrians in or approaching the vehicle’s
path) for the driver in order to help him during the night driving. When implementing the same
system but using visible spectrum cameras, the information retained is expected to be much more
reduced. An important number of accidents are happened during night, maybe due to the driver’s
possible fatigue, difficulties to see obstacles on time (to react and avoid them) or even difficulties to
see them on night (people wearing dark clothes or not-signalized vehicles or carriages).

Another recent innovation to help drivers see better at night and in the most diverse weather
conditions, is the “BMW Night Vision” system (FLIR Application Story, 2009). Due to its long
range detection capability (up to 300 m for a human being, more than 800 m for a 2.3x2.3 m object),
BMW Night Vision provides a time gain of about 5 seconds at a speed of 100 km/h compared to high
beam headlights. This means that drivers have more time to react and can avoid accidents.

In the case of the last two systems, the IR cameras have been utilized directly for the visualization,
their main purpose being to detect and highlight pedestrians close to the road and bring them to the
driver attention.

Conclusion to stereo-based methods: The main inconvenient with the stereo methods is that they
are computationally complex and they are sensitive to vehicle movements and possible vibrations
of the cameras. Still, they can detect all types of objects, even the occluded ones, static or moving,
based on their distance with respect to the system.

How are the requirements fulfilled?

In the following, we mention how the systems using a single type of passive camera (which could be
based on knowledge, motion or stereo information) obey the four requirements from section 1.3. The
system cost (R1): the fact that these systems employ a single type of passive sensors makes that the
price of such a system, especially in the case of the visible spectrum camera to be the lowest possible
from all the systems we presented. Using the infrared spectrum technology instead of the visible
one, the system cost will be increased, but still it will be lower than any other system using the active
technology. When the system is equipped with a stereo configuration, the system cost (especially
when the IR technology is employed) will be increased once again. In addition, the interference
problems are no longer a drawback of the system due to the use of passive technology. The real time
request (R2) is fulfilled by almost all these systems, but possible problems could appear when stereo
or motion information is used and the processing (the respective algorithms) are not optimized. By
using a single type of camera, the efficiency of the system (R3) is not as good as in the previous
case, for example, but still satisfactory results could be obtained. Robustness (R4) is also decreasing
comparing with the previous systems due to the limited possibility of these systems to function;
they could be able to provide useful information only in specific cases, i.e. the visible camera(s) on
daytime, while the infrared camera on night.

As we mentioned at the begining of this section, all reviewed systems using only passive technology
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are summarised in table 2.2. They are grouped about the used information and how is the hypothesis
generated and verified is mentioned in the last two columns.

2.2.3.2 Systems using a combination of different passive sensors

There are situations that a system based just on the infrared information could not handle very well,
for example: during a hot sunny day, it will highlight almost the entire image, so it will provide a lot
of hot areas or objects (in this case even the pavement will be seen as emitting heat). Therefore, we
could conclude that none of these two individual systems would perform very well in all situations.
But, if they would be combined in the frame of a VIS-IR fused system, so a system having a VIS
spectrum camera and an IR one, then much more complementary situations will be faced and solved.

Even the components of our system are easily anticipated in this step, in the following, we detail
some characteristics of the visible and infrared cameras in order to show that these two sensors share
many complementary features. Visible and infrared images differ especially because the visible
spectrum camera registers the obstacle’s reflected light while the infrared camera registers their heat
emitted in the scene. In an IR image, bright regions correspond to heat, while in VIS images bright
regions correspond to the amount of the reflected light. The complementary characteristics of VIS
and IR cameras make them to be proper for the bimodal VIS-IR fusion. Many times, the use of one
single sensor is not very useful for an ODR system, because neither VIS nor IR sensor provides
enough information about the surroundings in any poor illumination or bad weather conditions.

In (Bertozzi et al., 2006) a tetra-vision (4 cameras) system for the detection of pedestrians by the
means of the simultaneous use of one far infra-red and one visible cameras stereo pairs is presented.
The two stereo flows were independently processed and then the results were fused together. The
main idea of the authors was to exploit both the advantages of far infra-red and visible cameras trying
at the same time to benefit from the use of each system. The system has proven to be able to detect
more than 95% of pedestrians up to 45 m and more than 89% up to 75 m. The system knows the
dimensions and distances of every obstacle detected, so other possible processing (e.g., aspect ratio
verification) based on this information are also possible.

How are the requirements fulfilled?

By combining both, VIS and IR cameras in a single system, many benefits could be added to the
systems presented in the previous case. The system cost (R1) will be a little bit higher than in the
previous case, but still will be below the cost of a system employing an active technology. Still, the
interference issues are no longer present. The real time request (R2) is fulfilled as in the case of the
previous case of systems, because parallel processing is possible. The efficiency of the system (R3)
will be very much improved compared to that of the systems employing a single type of camera,
because by using the complementary VIS and IR information the systems will present a higher
possibility to correctly detect and then recognize obstacles from the road. Robustness (R4) is also
very much increased by the use of this information because such a system will be able to work even
it is day or night. Therefore, many complementary situations could be covered and handled by such a
system.

2.3 Conclusion

After we have reviewed several examples of systems using solely active or passive sensors, or a
combination of them (through the active-passive fusion) and notice which their performances and
disadvantages are, we can draw the following conclusions:
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Active sensors:

1A. Active sensors are well suited for working in difficult weather conditions or lighting;
2A. Because they are distance providers, they are mainly used in the detection step (for detecting

moving or sometimes even static objects). Still, almost all active sensors cannot detect occluded and
small obstacles, due to the reduced number of measurement points provided by the sensor.

3A. They are not very well adapted for the obstacle recognition task, because objects belonging
to different classes present characteristics very much alike (the active sensors information is not as
rich in the lateral measurements as vision). However, as we saw in the systems listed earlier, many
systems succeed in achieving discrimination between different objects detected. Radars are not as
accurate as laser scanners in their measurements (especially in the lateral one), but similarly to laser
scanners, they can provide the distance to the object, its speed, and could assure a well functioning
even at night or in difficult weather conditions.

4A. Still, both radars and laser scanners are suffering the same drawbacks: possible interferences
and high purchase price (although radars are not so expensive as laser scanners).

Passive sensors:

1P. On the other side, by means of image processing algorithms based on extracting the shape
of pedestrians or vehicles, good results have been achieved with the vision systems from literature.
However, image processing is computationally intensive and in critical situations like night, fog,
or heavy rain these systems struggle with the same problems as the driver. Infrared cameras are
also suitable for pedestrian detection or even some other types of obstacle detection. They offer the
additional advantage of being able to detect and classify objects by their temperature even in night or
difficult weather conditions. However, they are a little bit expensive than ordinary cameras.

2P. The main inconvenience of the cameras working in the visible spectrum is mainly related to
their low power of detection, but this issue some research groups have solved it by using a stereo
system, or by some other methods (optical flow, matching by correlation). A disadvantage of this
solution based solely on vision is that a system that uses only cameras functioning in the visible
spectrum will not be able to properly work at night, as active sensor would do. To solve this drawback,
an infrared sensor is needed to assure the operation in difficult conditions and at night. The advantage
of using an IR camera instead of a VIS one is that the first one is able from its specific functioning
mode to provide possible areas of interest, such as blobs in the case of pedestrians or the area of
engine or wheels in the case of vehicles. Compared with cameras operating in the visible spectrum,
IR cameras are not that sensitive to the change of lighting conditions. The advantage of a passive
infra-red sensor is the ability to detect pedestrian without illuminating the environment. Pedestrians
are bright and sufficiently contrasted with respect to the background in IR images. Because there are
other “non-human” objects (vehicles, motorcycle, houses) which actively radiate heat, they have a
similar behaviour. However, people, vehicles and animals can be recognized thanks to their shape
and aspect ratio even in this type of images.

3P. Passive sensors are often used not only for detection, but for the recognition of objects;
this is due to their discrimination information, which is higher than in the active sensors case: the
information from the lateral measurements is much richer in the case of passive sensors.

4P. An important advantage would be that there are no interferences when using these types
of sensors and either the acquisition price would be as increased as in the case of using active sensors.

The main problem in using active sensors for the implementation of the ODR task is represented by
the possible interferences among sensors of the same type, which could be critical for a large number
of vehicles moving simultaneously in the same environment. Therefore, we concentrate on using
passive sensors like cameras in order to develop the ODR system.
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We detailed different systems from literature which addressed a problem similar to ours. Thus,
vision-based systems have been detailed and we tried to highlight the most important aspects of
image processing in this field. Although extremely complex and highly demanding image processing
algorithms, computer vision remains a powerful tool for sensing the environment. It has been widely
employed for a large number of tasks in the automotive field, thanks to the great deal of information
it can deliver. Imaging beyond the visible spectrum is another powerful process by which obstacles
could be detected in difficult illumination conditions. These possibilities lead us to the idea of
employing visible and infrared spectrum cameras for our system.

In the remaining part of this thesis, our proposed system is presented. As we concluded here, two
types of passive sensors are aimed to be combined, the visible and infrared spectrum cameras, in
order to cover complementary situation which either system employing just a single type of passive
camera could not handle. In Chapter 3 the baseline Obstacle Recognition System is presented, in the
frame of an entire ODR system. This is the base system from which we started our processing and here
the individual or monomodal VIS and IR systems are discussed. Next, in Chapter 4, some possible
improvements are studied and implemented in order to choose the best feature vector to encode the
information provided by the VIS and IR cameras. Once obtained, this feature vector could improve
the accuracy of the system, but also it could decrease the processing time needed for the system in
the obstacle recognition stage. Different features selection algorithms are tested and evaluated for
the computation of this pertinent feature vector and finally, our proposed scheme is presented. In
Chapter 5, three different fusion schemes are presented and evaluated having the main purpose the
improvement of the recognition accuracy, but also the possibility to adapt the system to different
context situations. Fusion is performed at different levels, low or high (by combining features,
respective matching scores), but also at an intermediate level: fusion at the kernel level, which is
the solution we propose for our final system. In this last chapter the monomodals systems are also
brought in discussion, but the main processing is done with bimodal systems, thus combining both
visible and infrared information, which uses the bimodal information at different stages, depending
on the applied fusion scheme.
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“Quand on veut une chose, tout l’Univers conspire à nous
permettre de réaliser notre rêve.”

L’Alchimiste, Paulo Coelho

Chapter 3

Baseline Obstacle Recognition System
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Like it was mentioned in the previous chapter, some systems may use active sensors as radar, lidar
(or ladar) or laser scanner in order to perform or improve the detection of an obstacle. Considering
the high price and the interference problems, we chose not to employ any active technology for the
proposed ODR system. As mentioned in the previous chapter, the system we proposed is using only
cameras, so passive sensors operating in a non-invasive way and which in addition are also cheaper
than their counterparts, the active sensors. Still, it has to be considered that combining information
from different sources contributes to forming a more complete image of an object to be detected
or recognized in a road scene. Therefore, our proposed system employ passive sensors, which are
relatively chosen to be complementary (visible spectrum and infrared spectrum cameras) because
the system must work well even under difficult conditions, like poor illumination or bad-weather
situations (such as dark, rain, fog). The high performance and robustness of the system will be
assured by the use of these two types of information, but also by the classification with a powerful
SVM classifier.

At the beginning of this chapter we present the proposed architecture for our entire Obstacle Detection
and Recognition system (section 3.1). The problems addressed here are intended to make a detailed
presentation of the functioning mode and of the components that form the ODR system. In the second
section 3.2, the Obstacles Recognition component is more emphasized, and here the following are also
presented: the image database on which the proposed schemes have been experimented, the measures
by which the performances of these schemes have been evaluated, but also how the feature vector
that will characterize/define each instance within the system was composed. Basic notions about the
classifier used in the frame of the developed fusion schemes, which is an SVM, are also presented.
Finally, experimental results are given in section 3.3 and the chapter’s conclusion in section 3.4.
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3.1 System Architecture

As previously mentioned, the purpose of this study was to determine if the combined use of the visible
and infrared information is suitable in terms of a detection system, but especially from the viewpoint
of an Obstacle Recognition module. From the development of the detection and recognition modules
to their testing in the context of an intelligent vehicle running on the road, other challenges remain.
For the intelligent vehicle to sense the course of the road, generally some exteroceptive sensors are
used (like speedometers, odometers, gyrometers) in addition to the cameras. Many developed systems
are making the assumption that the road is flat, but this assumption is not always valid, therefore other
solutions for road detection and following, but also for calibrating the system are searched for. Most
systems developed in this area, equipped with sensors and tested on the road, were produced by close
collaboration between large research teams or university laboratories and car manufacturers (like
Volkswagen, Daimler Chrysler, Honda, and others).

3.1.1 The obstacle detection and recognition system

The multiple difficulties (besides the financial ones) in developing such an intelligent vehicle
equipped and ready to run on the road, made us to appeal to the images already registered by such
a system. The system we point at was developed in collaboration between University of Parma and
the U.S. Army, and it was intended for human shape localization with the infrared and visible light
cameras. This system is a tetravision one and consists in an experimental vehicle equipped with two
CCD cameras and two un-cooled infrared cameras working in the 7-14 μm spectrum. The image
database we employed in our processing was registered by this system and it was provided by the
Artificial Vision and Intelligent Systems Laboratory (VisLab) of the University of Parma. For more
details about the aspects of the video acquisition module and the procedure used to calibrate the
cameras, please refer to (Hammoud, 2009b) and (Bertozzi et al., 2006).

Although the tetravision system provides four images, two stereo visible and two stereo infrared,
we used in our processing for the Obstacle Recognition task only a pair of images: one visible and
one infrared. However, in order that also the detection part be robust, we propose a system using
two visible cameras, so a stereo system for the daytime vision and a single infrared camera for
the night-vision. We believe it is not necessary to have also a stereo IR system, because stereo is
generally used in the segmentation stage, and by the IR spectrum images nature itself they provide
also a way to segment objects from the background based on thermal information. In addition, we do
not support the idea of a stereo IR system because cameras operating in the IR spectrum are more
expensive than the VIS ones. On the VIS domain, stereo is desired because the segmentation is hard
or even impossible using monocular visible spectrum vision in the context of a cluttered background.
The fact that we employ stereo for the VIS spectrum does not increase the system’s costs, but stereo
IR would double the cost of the entire vision system. Therefore, for the system we propose (a
combination of two components: one stereo VIS and one monomodal IR), the implementation costs
will not be very high, in contrast to the expected system’s performances. In this thesis we consider
only the recognition step since the detection one was already treated in the frame of our laboratory
by (Toulminet et al., 2006), (Cabani, 2007), (Li, 2010) and others and it is still a work in progress.

As shown in the previous chapter, an object categorization system implies two steps:

1) in the detection step, a rectangular region of interest (ROI) also called bounding box (BB) is
found and it is associated with a potential obstacle;

2) the recognition or verification process follows, where the false alarms are removed and the
object type is determined. Figure 3.1 is illustrating these two steps in an infrared-visible pair of images
from the database we employed in our processing. These steps are widely described in subsection
3.1.4.
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Figure 3.1: Obstacle Detection in the frame of an ODR system

Generally, the existing obstacle detection systems provide many false alarms when detecting all
possible obstacles from the scene. Only in the Laboratoire d′Informatique, de Traitement de
l′Information et des Systèmes (LITIS) laboratory, three VIS stereo-based obstacle detection systems
(Toulminet et al., 2006), (Cabani, 2007), (Li, 2010) have been developed in the last few years and
they also have registered some false alarms in the detection process. Possible examples of detected
BBs, including some unwanted false alarms, are presented in figure 3.1. The main component of
an ODR system is the detection module, but because it has not yet reach a robust and acceptable
accuracy when working alone in an autonomous system, almost all existing systems from the
literature provide a second component, the recognition module. The main purpose of the recognition
module is to identify the type or class of the detected obstacle, and to eliminate false alarms, so to
reject them. Therefore, it helps to consider only those BBs that truly represent obstacles. Thus, the
entire processing time of an ODR system will be reduced and the system will not be “strangled” with
ghost obstacles which otherwise have to be taken into account when running on the road.

In the figure 3.2 is presented a scheme showing how the Obstacle Detection (OD) and Obstacle
Recognition (OR) steps are arranged in the frame of an ODR system. The main purpose of the
obstacle detection component is to provide the scene objects BBs, but real systems also generate
some false alarms or ghost objects, as it could be seen in the figure (the BB from the left margin and
the BB from the right margin). It is therefore necessary a second step, of the recognition, in which
the false alarms are eliminated, and for the detected objects their class membership are provided.

For the obstacle detection task a stereo vision system has been developed in the LITIS laboratory
from INSA, Rouen, France (Bensrhair et al., 2002) and our efforts aim to continue this work. Our
main purpose is to develop approaches to reduce the number of false alarms and to recognize the
detected obstacles (like cars, pedestrians, cyclists) by the extraction of a compact and pertinent
numeric signature, followed by an SVM classification. Since the OD task has been achieved in the
frame of the LITIS laboratory by stereovision, we have focused on a further processing, namely the
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Figure 3.2: Main steps performed by an ODR system:
Obstacle Detection and Obstacle Recognition

recognition of the detected obstacles. Our main purpose was not to develop a system on the whole,
but only the recognition module which was intended to be based on fusion in order to exploit the
complementary information of VIS and IR cameras. Therefore, in our work we intended to verify
if it worth to perform the fusion, so if a fusion will bring in benefits from the recognition point of
view, besides the advantages it implies in the detection step. Most current detection systems fail to
detect all obstacles in a scene, probably because they are based on only one modality, either VIS
or IR. By the fusion of the information provided by two modalities, we believe that the detection
results will be improved as concerns this task. Only after this study (of fusion between VIS and IR
information) will be finished we expect to integrate our module into a unified system performing both
Obstacle Detection and Recognition. Although the categorization of road obstacles seems to be a
trivial problem, the variety of appearance of the obstacles and the cluttered background in the frame
of the outdoor environment make it a true challenge.

3.1.2 How will the proposed ODR system function?

The situation in which the system is at a time, i.e. the context, could be decided by an illumination
coefficient estimated by the system. So when both information are available (the stereo information
from the VIS system and the information from the thermal IR sensor), the final decision could be
based on the VIS or/and IR information in a more powerful or weak way, depending on the situation
or the context in which the system is running at that respective moment.

For instance, in situations where the IR camera would act poorly (one hot summer day in which all
objects, even the pavement, seem very hot), we enable only the stereo VIS system to provide useful
information (therefore we assign more or even the whole credibility to the VIS system); in contrast,
when a strong dark situation is reached, so the VIS system would not perform very well, we yield
more or even all the importance to the IR sensor. In most situations (meaning those that are not
extremes), we hope the fusion will demonstrate its contributions, as both systems VIS and IR will
provide useful information. In these cases, the importance will be assigned in a different manner: the
two systems (or to be more specific, the information provided by the two systems) will be weighted
with different coefficients, experimentally determined.

Our system could be envisioned as having a set of values that specifies the system functioning mode
for several possible situations, i.e. different environmental contexts. Therefore, depending on the
context in which the system is intended to work (e.g. an early evening, it is still daytime but the
sky is overcast and soon it will be dark), a set of operating parameters, determined a priori, will be
selected. In order to calculate the adaptation coefficients, there should be a great database to succeed
in capturing different lighting and weather conditions. Therefore, we should have images for different
multiple situations: hot sunny days, almost-night situation, dense fog or strong darkness, and so on.
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3.1.3 How is the context determined?

For our system, the context in which the system is functioning at a certain moment of time is
determined based on the information taken from both VIS and IR images. For example, if the scene
registered by the VIS camera(s) is dark (and here we suppose the camera(s)’ functioning parameters
were previously adapted to the lighting conditions in order that cameras provide trustful images),
we know that we are dealing with a situation of night, so in this case the system will function more
based on the IR camera. Unlike this situation, if all pixels from the IR scene are highlighted, it is
almost sure we are in a hot-summer day situation: all objects will emit heat in a strong manner,
and so the system will have to rely more on the VIS part, but still keeping into account the IR
information. Therefore, from the information provided by both types of images, VIS and IR, a
parameter determining the context (i.e. an illumination coefficient) will be computed and depending
on its value a set of operating parameters will be chosen for a given lighting or weather situation.

Let us to suppose we have recorded images for three different situations: day, night and light fog.
Therefore, we need to have more examples of images taken in these three different situations;
basically, we have three different image databases (in terms of image intensity, so the content of
the images is different, not their structure or their registration process). Each such database will be
defined by an associated context value and each such database will have to go through a validation
step and determine the best model to be used in that respective situation or that respective context.

For the Obstacle Recognition task, depending on the context, a weighting parameter between the
VIS and IR information will be established. This weighting parameter between the two modalities
will be determined in the system validation stage, when the search for the proper classifier model
will be performed. Its determination could be done by evaluating the performances of the system
when tests with different weighting values in the [0,1] domain are realized. The illumination
coefficient computed in a certain lighting or weather situation is in close correlation with the
weighting parameter between the modalities. For example, in a situation of night, when it is almost
sure that the illumination coefficient will decide a context situation in which the processing should
be based entirely or almost entirely on the IR camera, we expect that from the validation step, the
weighting parameter value calculated between the two modalities to be more inclined towards the
IR than towards the VIS domain. We propose a method to automatically find the adaptation or
weighting parameter (between the VIS and IR information) the most suitable one for the respective
environmental context.

From the viewpoint of the system adaptation to different weather and lighting conditions, one
possible problem within the database we use is that there are no extreme lighting/weather situations
in the scenes registered with the system and therefore our proposed solutions could not be tested
under realistic conditions of night or bad weather.

Images provided by the three cameras will be correlated before the testing stage, and from the way the
cameras are mounted on the host vehicle and by using markers, the correspondence between image
pixels in different images can be acquired. An inherent problem is that after covering long distances,
which are not always on a flat road, some problems of miscalibration of cameras could be reached,
and therefore the images will be no more correlated each other. In these situations, a system involving
a perfect correlation between the visible and the infrared images (as in the case of a system combining
VIS and IR information at the base level, i.e. in which the fusion is performed at the lowest level,
like data or pixel fusion) will be no longer trustful. For this reason, we propose in Chapter 5 different
fusion schemes where fusion is performed at higher levels, like those of features, kernels or matching-
scores. These proposed fusion schemes will present minor drawbacks when cameras are not perfectly
correlated, so they will be not very much affected if there is no perfect correlation between the two
types of cameras.
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3.1.4 Problems and setup

As figure 3.1 shows, an obstacle detection and recognition system supposes the existence of two
modules:

1) the detection module (called also the segmentation stage because here objects are segmented
from the background) - within potential obstacles are detected and assigned as “interest zones” or
ROIs or BBs and

2) the recognition module - in which all BBs previously determined will be labeled as belonging
to one or another possible classes and the false alarms will be removed. The classifier decision
depends to a large extent on the information given as input to the classifier and on the database to be
learnt, but also on the functioning parameters, which have to be determined a priori in the validation
step.

1) In the frame of our system, the segmentation will be realized by one of the following possibilities:
- by using only two VIS spectrum cameras, so a stereo system - for performing the detection in

daytime or hot sunny days,
- by using only the IR spectrum camera - for the detection during night-time or in days with strong

dark or dense fog,
- all intermediate situations could be treated by performing the segmentation in parallel, for each

modality; after obtaining the BBs from both VIS and IR domains, these could be fused in order to
increase the detection accuracy.

Therefore, our system is designed for intermediate situations, but not leaded to extremes, where
neither humans would perform well. By employing an IR camera, the proposed system is able to
see beyond humans can. By the fact we propose the use of cameras functioning in two different
spectrums, VIS and IR, our system will always could be seen as a bimodal one and it would be
superior to a monomodal one (i.e. a system using a single type of camera).

For the detection part, as we noted above, a VIS stereo vision system has been developed in the LITIS
laboratory of INSA and the detection algorithm was applied to detect both vehicles and pedestrians.
In addition, also the information provided by the IR sensor could be used to perform the detection in
a parallel way. So there is the possibility that at the detection level too, the VIS and the IR individual
detections to be fused for obtaining better results for the entire ODR system. Instead of not detecting
all obstacles from a scene, it is better to detect all obstacles and some false alarms, because these
ghost objects could be eliminated in the recognition step. Therefore, we can deduce two possibilities
of achieving detection:

- detection could be done either in one modality only (the most credible for that lighting situation)
and for the BBs detected in one image its correspondent in the other image will be searched for (based
on the correlation information between the two types of images), or

- detection could be performed on each modality, the results to be then fused and the BBs position
in the two images could be slightly adjust, depending on the images correlation.

2) Once the system would be able to detect certain areas that are likely to contain obstacles, the next
step is their recognition. Generally, classifier-based methods involve two steps: one of training or
learning the system, in which the operating parameters of the system are also determined, and a
second step, the test one, in which the system is tested with some new, unknown data, and is using
the validation parameters previously obtained. To evaluate the proposed solutions, an SVM classifier
was chosen, because in many applications it demonstrated efficiency, robustness and rapidity. In
the training stage of the system, there is a learning module which has to be trained on a database
of images, which means that the system must know beforehand some instances for each class to be
detected or recognized. This step represents the training or learning phase of the system, and here
the classifier will be defined together with its optimal functioning parameters. This means we have
at our disposal a model that previously was capable to learn several instances of the aimed classes,
for both modalities VIS and IR (correlated among themselves) and the number of instances learnt
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is great enough to find examples in the model-validation step for any situation in which the vehicle
can be at a given moment. Once the system was learnt, it could be used to test some other objects,
unknown and this will be the testing stage.

Figure 3.3 is showing an inside view of an ODR system: training and testing stages and their
modules. In this figure, if we exclude the detection module, all what remains can be framed in the
recognition module.

Figure 3.3: Training and testing steps in the frame of an Obstacle Recognition system

In figure 3.3 one can notice that in the frame of an Obstacle Recognition system, there are two main
steps. The first one is the training step in which the database with different BBs enclosing possible
obstacles (manually annotated) from the road is used. On this image database, a first module of
pre-processing is noticed (within some general image processing operations are applied). The second
step, the testing one comprises the same pre-processing module, but this is applied on the test image
provided by the detection module, because here the system runs on-line. After the pre-processing
module, in the training step it follows a features extraction and selection module which together with
the last module (the learning one) has the main purpose the parameterization and validation of the
system. This operation of parameterization and validation of the system consists in choosing the most
pertinent features to compute a feature vector which will best characterize the data from the training
database, but also in establishing the classifier which will best learn the instances of this training
database. In the testing step, the feature vector used to characterize the test data will comprise the
same features determined as being relevant in the training step by the parameterization and validation
process. The learning module from the training step is used to learn the categories and the model of
the proper classifier scheme which will be further used in the testing step to classify new test images
within the classification module.
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From what has been seen by now, our ODR system belongs to that category of systems based on
pattern recognition and consists of three main modules:

- sensors (visible and infrared cameras) that gather the observations to be classified or described;
here it could be included also the pre-processing module,

- a features extraction mechanism (often attended by a features selection operation) that computes
a numeric or symbolic information from the observations, and

- a classification or description scheme that does the actual job of classifying or describing
observations, relying on the selected extracted features.

3.2 Obstacle Recognition component

3.2.1 Introduction

In a classical scheme of an ODR system, the sensors module is usually framed in the detection
module; in the recognition stage, there is also information provided by the sensors, but here it takes
the form of a training and/or testing database. Therefore, in the OR component the main parts of the
module are represented by the features extraction and the learning/classification steps.

Applications based on pattern recognition aims to classify data (also called patterns) based either on
a priori knowledge or on some statistical information extracted from the patterns. The patterns to be
classified are usually groups of measurements or observations. Acts of pattern recognition are related
with the ease with which humans recognize objects (or even sounds, letters, characters) from the real
world, e.g. decide whether an obstacle from the road is a car, a motorcycle, a cyclist or a pedestrian.
Not the same ease is reached when computers are aimed to perform this task. The classification
scheme is usually based on the availability of a set of patterns or instances that have already been
learnt and this set of patterns/instances is usually termed the training set. The resulting learning
strategy is characterized as supervised learning, but learning can also be unsupervised, in the sense
that the system is not provided with the labeling of patterns/instances; instead, it itself establishes the
classes based on some intrinsic properties of the patterns to be classified (also called clusters in this
case). How well computers succeed in recognizing patterns depend on a multitude of factors: how
comprehensive is the training set (Does it cover all possible situations in which objects can appear?);
How efficient is the classifier to be used (Does it succeed in learning well all the objects from the
training set and then tests performed on the test set are leaded to high accuracies? What about the
classification time? Is its value satisfactory from the viewpoint of a real time system?). In the frame
of our system, we tried to develop an OR module to give affirmative responses to all these questions.

A wide range of algorithms can be applied for pattern recognition, from naive Bayes classifiers
and neural networks (NN) to k Nearest Neighbors (kNN) or Support Vector Machines (SVM). The
classification scheme usually uses some statistical (also called decision theoretic) or syntactic (also
called structural) approaches. Statistical approaches are based on statistical characterizations of
patterns, assuming that the patterns/instances are generated by a probabilistic system, while the
syntactical (or structural) ones are based on the structural relationships between features. Given a
number of “training” examples (also called samples, instances, patterns or observations) associated
with desired targets (or classes), the machine learning process consists in finding the relationship
between the patterns and the targets using only the training examples. This is also the case of our
application: the system must learn different classes of objects (pedestrian, cyclist, vehicle) from
several available examples, and then it should be able to recognize similar examples in new images,
unknown. Therefore, the system goal is to predict the unknown target for new “test” examples and
the resulting performance on the test data is showing how well the system is capable to generalize
over new data. The training examples are used to select an optimum set of parameters.

This type of systems’ learning in the image processing domain requires an additional step, namely:
the extraction of some relevant information (features) from images, so that the characterization of
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an image to be made with as less features as possible; this is necessary to shorten the computing
time required by the system to learn and then to recognize the objects’ images. A simple calculation
can show us how important is this stage: an image of 128× 128 pixels would have a number of
16,384 features if we choose to select as features each pixel intensity, compared with 171 features
which uses our system to describe the same image. However, this operation of features extraction
is a very sensitive one because it has to select a number of features great enough to assure a proper
characterization of images, but also low enough to obtain a low processing time.

There are three aspects to be considered when one has to implement a recognition system based
on image processing: (1) features extraction, (2) the definition of the evaluation criteria (e.g. a
relevance index or the predictive power), but in our case the evaluation is based on the accuracy of
the classification and the classification time and (3) the estimation of the evaluation criterion (or the
assessment method) which is performed using a classifier, an SVM in our case.

From figure 3.3 one can notice that in the training stage, realized off-line, there is an image-database
on which the system will be validated, that means to seek to build a model which should succeed
in learning best the instances of this image-database, and then, in the test step, the same model
to be used for the categorization of new images, unknown to the system. In the test stage, the
used images may come also from an image-database called the test database, or they may come
on-line, when the system runs on the street. In the first case, a manual annotation of images was
performed, as was done for the images belonging to the image database from the training stage. In
the second case, when the system runs on-line, the detection module will realize the segmentation of
the objects from the road scene and will provide the BBs necessary in the next steps of the processing.

After obtaining the BBs (in both cases, the training and the test stages), it follows a pre-processing
module in which generally various adjustments to the images are performed. In our case, a resize
operation was carried out, to bring all the BBs to the same scale. This operation was necessary
because we chose to extract features as wavelets which require that the image to be a square one.

After this pre-processing step (which in some applications can be missing) it follows a module within
the feature vector characterising an object is obtained. In this module, generally two important
operations are made: features extraction and features selection. The first operation extracts certain
features or characteristics from the images fitting the object, so from the BBs, generally being
adapted to the application and having the main purpose to retain specific characteristics to the object
shape. As it could be seen in subsection 3.2.4, we have opted for the extraction of 171 features, which
are general and fast to compute, in order to characterize an object in one modality (VIS or IR). The
second operation (i.e. features selection) is used to reduce the size of the feature vector previously
obtained, in order to reach an optimal Feature Vector (FV) in terms of accuracy and consumed time
in the classification stage. By this selection of features, only the most relevant ones (for realising the
discrimination between the different classes of objects) are retained and here there are several ways
to accomplish this task (we will see in detail in Chapter 4). The applied features selection scheme
and the most relevant features that will be retained after performing the features selection step will
be decided in the training phase. In the test phase, the feature vector for the test objects will be
established after the same steps and methods used in the training stage.

After forming the final FV, in the training phase all the characteristics specific to objects from the
validation database will be learnt and many SVM classifier models will be constructed. A model
selection is then performed, which means that from all these classifier models (obtained from
different combinations of the SVM parameters, i.e. the hyper-parameters), the best model will be
selected based on a 10-folds cross-validation method and having as classification criteria the accuracy
and time (i.e. a bi-level optimisation). From two models that provide the same accuracy, the one
providing a shorter classification time will be therefore chosen. This winner model (i.e. learned
objects’ categories and model) of the SVM classifier will be used next in the test step.
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In order to improve the performances of the system, but also to adapt the system to various weather
or illumination situations, different fusion schemes combining VIS and IR information are proposed
in Chapter 5. A first fusion scheme is proposing the fusion to be performed at the features level,
therefore at a low-level. This fusion would be obtained in the frame of the module which realise the
features extraction and features selection operations, and for this reason, it could be performed in two
possible ways: between the two modules of features extraction and features selection or after both
of them. Another proposed fusion scheme is a high level one, being realised at the outputs of the
VIS and IR classifiers, therefore it combines matching-scores. Two possible ways could be reached
here too: a not-adaptive fusion and an adaptive fusion. The last proposed fusion scheme realizes the
combination of the VIS and IR information at an intermediate level, i.e. at the SVM kernels.

In this chapter, the processing noted on figure 3.3 (image pre-processing, features extraction and
features selection, learning or classification) will be realised on each individual modality, which
means on the VIS and IR images separately. It is like there were two independent systems process
the information in parallel. Thus, we will call them monomodal or unimodal systems.

Next, the main modules of the Obstacle Recognition (OR) component are detailed, together with their
main purpose. In this section, the features extraction module (together with a widely evaluation of
the proposed features that will be incorporated in a FV) and the learning scheme are detailed. Other
considerations involved in the development of the recognition system will be also specified: the used
image database is described (to better understand the classification problem) and the measures by
which the performances of the classification process were evaluated.

3.2.2 Database we use

Most systems detailed in the literature addresses the subject of obstacles detection or classification
from the viewpoint of a particular type of obstacle: pedestrian or vehicle detection/recognition
is performed based on specific position, shape or features exploited by these classes of objects.
Generally, these systems perform a binary classification in the recognition step: it is or it is not the
object they were looking for. Still, there are documents referring to the term “obstacle” in general,
and the systems described there most often were intended to detect any possible obstacle which
obstruct the host vehicle path. To our knowledge there are few systems dealing with the problem of
detection and classification of different types of obstacles, like pedestrian/ cyclist/ vehicle and others.
This is the task we propose our OR component to solve.

In a first attempt, the developed processing schemes have been tested on two un-correlated databases:
the first one was taken from the internet, but most of the images were provided from the free available
Caltech database. A lot of indoor and outdoor images containing different objects could be found on
this database, but we take just a few of them, mean images containing cars or pedestrians in different
arbitrary poses. Details about the used database and the results obtained on it could be reached in
(Apatean et al., 2007) and (Apatean et al., 2008c). The second database has been obtained after we
have engaged in the Robin competition, where we try to test and compare the developed features
extraction and selection algorithms in both types of images, visible and infrared, separately. Details
about the processing but also on the image database could be reached in (Apatean et al., 2008b)
and (Apatean et al., 2008a). Both databases were not tailored for our purpose, mainly because
images from the VIS and IR databases were not correlated each other. Therefore, immediately after
we obtained the third database, about we mentioned in the beginning of the subsection 3.2.1, we
dropped the other two. The third, which is the last image database we employed in our processing
was provided by the Artificial Vision and Intelligent Systems Laboratory (VisLab) of the University
of Parma and the VIS and IR images were correlated each other. The image database has been
registered with a tetravision system, but in our obstacle recognition module we employed only one
pair of visible-infrared images. All the results obtained in this thesis are based on this image database.
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Figure 3.4: Examples of objects from the visible-infrared database

Some information about the structure of the dataset must be provided for understanding how the
performance of the system was estimated. Our system performs a multi-class classification task,
because three types of obstacles are aimed: pedestrians, vehicles and cyclists. To these three types of
obstacles, a fourth one was added in order to anticipate the false detections provided by the obstacle
detection module. This fourth type of obstacle considered in this thesis is the background class.
When complex scenes are to be reached by the system, it is expected that the system provide some
false alarms, like parts of some objects belonging to the background, traffic signs, barriers, or simply
part of the scene-image which have no particular significance. It is inappropriate to say that there
is a background object type, because in fact there are different types of objects belonging to this
background class, they having different meanings; for the sake of simplicity they were grouped in a
single class. Therefore, the class background was introduced precisely to anticipate these detections
and to help in recognizing those types of objects when they appear as detections. Examples of objects
belonging to the four classes are provided in figure 3.4.

In the provided tetravision database was noticed that the objects were almost all the time identically
between the frame t and the frame t+ 1, t+ 2, and so on. A subjectivity has been introduced in the
annotation process, because the human operator 1 has to select a frame t to be annotated and the
next frame to be annotated could be the t + n one for example. It was depending on the moment
when some objects’ position, pose or size was changed. Multiple objects of the same size/pose and
position are for no help in the learning and classification process and this is what we tried to avoid by
the manual annotation. Therefore, we tried to assure a variability of the objects from the annotated
database, so the 1164 annotated objects are quite different.

Excepting the background class, all the other three classes of objects have been annotated with the
following sub-classes: a first indicator F/L is showing the position of the obstacle regarding to the
camera: frontal (F) or lateral (L), while a second indicator E/O/G is mentioning if the object is
entirely seen in the image (E), or if it is occluded (O) or if there are multiple objects belonging to the
same class very close to each other, so they will be taken as a group (G). Examples of annotation
for the class pedestrian are showed in figure 3.5. Even the image database has been annotated
with the first indicator F/L (therefore one can know if the object is seen from the frontal or from
the lateral position considering the vision camera) this information has not been utilized in the
training/classification stage. Still, it allows a detailed analysis of the obtained results.

1The tetravision image database was not previously annotated, therefore the author of this thesis have annotated it with a script
developed in MATLAB.
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Figure 3.5: Examples of annotations for the class pedestrian

Since the image database was not annotated, we realized a manual annotation of 1164 objects, which
were further randomly divided in two sets: the train set, which contains 932 objects and the test set
that includes 232 objects. Objects were annotated as belonging to 8 different classes, as can be seen
in figure 3.6: pedestrian entire (PE), pedestrian occluded (PO), pedestrian group (PG), vehicle entire
(VE), vehicle occluded (VO), vehicle group (VG), cyclist (C) and background (B). The class cyclist
(C) is also containing different poses, like occluded, group or entire, as in the case of the pedestrian
and vehicle classes, but because very few cyclists have been found in the scenes we have annotated,
we grouped all these in a single class of objects. From figure 3.6 one can notice the distribution
of objects on these 8 classes is preserved between the train and test sets, but unfortunately between
different types of objects there is not a balanced distribution of instances. For example, the class PE
(pedestrian entire) is having a number of 206 instances at the train (a percent of 22% from the whole
train set), but the class PG (pedestrian group) is reaching only 50 instances (5%) in the same train set.
In this manner, the distribution of the objects per each class of objects pedestrian entire, pedestrian
occluded, pedestrian group, vehicle entire, vehicle occluded, vehicle group, cyclist and background,
briefly noted (PE, PO, PG, VE, VO, VG, C, B) will be (206, 65, 50, 133, 131, 65, 45, 237) in the
training set and (51, 16, 12, 34, 33, 16, 11, 59) in the test set.

Figure 3.6: Objects distribution at train and test for the database with 8 classes

The same instances have been grouped in only 4 classes of objects (figure 3.7): pedestrian (P),
vehicle (V), cyclist (C) and background (B). The distribution of the objects per each class (P, V, C, B)
will be (321, 329, 45, 237) in the training set and (79, 83, 11, 59) in the test set. Thus, in both cases
(the classification problem with 8 classes of objects and the classification problem with 4 classes
of objects) a ratio of approximated 4 is obtained between the number of objects from the train and
test sets, so we can say the instances are well balanced between the two training and testing sets.
Both classification problems (with 8 and 4 classes of objects) will be addressed in this chapter and
the classification results are provided in the section (3.3), where the experiments results are presented.
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Figure 3.7: Objects distribution at train and test for the database with 4 classes

Images containing cyclists are very few: 5% from the entire database, for all the subclasses, which
are cyclist entire (CE), cyclist occluded (CO) and cyclist group (CG). This means that the cyclist
class will have high intra-class variability and thus it will be a class very hard to be learnt and then
to be recognized by the classifier. All the other classes of objects, if we refer to the classification
problem with 4 classes of objects, will have a high intra-class variability because three types of poses
(entire (E), occluded (O) and group (G)) are comprised in a single class, pedestrian (P) or vehicle (V).
In the frame of the class background (B), one can notice the existence of different types of elements
from the road, like traffic signs, fences, barriers, and so on (i.e. signalling or infrastructure elements,
but also pieces from the image which have no particular meaning). Here, in the class background,
there are a lot of different images stated as “background”, even they could be interpreted as obstacles
(e.g. crossing barriers) because when multiple images for the same type of object will be reached in
this class, the database could be refined and new classes of obstacles to be constructed in order to be
individually recognised. From all these aspects, we conclude that even the database is a small one, it
is also a very difficult one. Therefore, the learning and testing process will not be a trivial one. The
existence of obstacles from the type occluded or group generally is due to the imperfect detection
module. Ideally, if the obstacles appear entirely in the scene, the detection module will provide BBs
enclosing the entire shape of those objects. However, most OD systems provide only parts of those
objects in the BBs, even they are entirely seen in the scene. In a similar way, when multiple objects
are close to each other, the existing OD systems provide a single BB instead of many BBs each
enclosing a single obstacle. In addition, objects can appear even occluded or grouped in the scene: a
pedestrian could be occluded by a tree, or many pedestrians could walk in group, very closed to each
other. Therefore, we adapt our database to the obstacles types detected or provided by the detection
module.

3.2.3 Performance evaluation measures

The performances of the classification are analysed by several performance measures, borrowed from
the information retrieval domain. They are utilised in order to evaluate the quality of the obtained
feature vectors (when a kNN was used) or the quality of the obstacle recognition process (when an
SVM was utilised). These measures are detailed in the following lines.

Classification measures

In order to better explain the performance measures used in our experiments, let us consider a
binary classification problem, in which the outcomes (the targets) are labelled either as positive
(belonging to class y+) or negative (belonging to class y−) and the experiment has P positive instances
and N negative instances. For the binary classification problem there are four possible outcomes
formulated in a 2×2 contingency table or confusion matrix. The confusion matrix Fi j = Mi j/m may
be constructed for each feature and it represents the joint probability of predicting sample from class
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yi when the true class is y j :

F(true, predicted) =
1
m

[
M++ M+−
M−+ M−−

]
=

1
m

[
TP FN
FP TN

]
(3.1)

where m is the number of samples (Guyon et al., 2006). The outcomes and their associated
terminology are:

• M++ is the number of hits in the y+ class, or true (“accurate”) positives (TP) - the outcome from
a prediction is positive and the actual state or the state of nature is also positive;

• M−− is the number of correct rejections or true negatives (TN) - the outcome from a prediction
is negative and the state of nature is also negative;

• M−+ is the number of false (“invalid”) alarms, or false positives (FP) - the outcome from a
prediction is positive, while the actual state of nature is negative (for example, a background
object predicted as being a pedestrian, when the positive state means to detect pedestrians);

• M+− is the number of misses, or false negatives (FN) - the outcome from a prediction is negative,
while the actual state of nature is positive (for example, pedestrian predicted as background);

Confusion matrix has only two independent entries because each row has to sum to F+ j+F− j = P(y j),
which is the a priori class probability (it estimates the fraction of all samples that belong to the class
y j).

Class accuracy or conditional probability that given a sample from class y it will be really classified
as class y is usually called recall, sensitivity or true positive rate (TPR) (also called detection rate or
hit rate):

S + =
F++
P(y+)

= F(y+|y+) or TPR =
TP
P
=

TP
TP+FN

. (3.2)

The specificity (or true negative rate (TNR)) measures the proportion of negative instances which
were correctly identified as being negatives 2:

S − =
F−−
P(y−)

= F(y−|y−) or TNR =
TN
N
=

TN
TN +FP

. (3.3)

In order to better explain sensitivity and specificity, we transpose the binary classification problem
to the one of recognizing pedestrians from different possible background obstacles. The diagonal
elements of the conditional confusion matrix F(yi|yi) reflect the type of errors that the predictor
makes, in the following manner: sensitivity shows how well pedestrians (class y = +) are correctly
recognized, while specificity shows how well background objects (class y = −) are recognized as
background by the same test. An ideal predictor should achieve 100% sensitivity (i.e. predict all
pedestrians as pedestrians) and 100% specificity (i.e. not predict any background object as being
pedestrian). There are situations in which the cost of not recognizing a pedestrian (low sensitivity)
may be much higher than the cost of detecting a background object as being a pedestrian, therefore
finding a ghost object (low specificity). In our application, this choice is crucial: it is better to warn
the driver for a ghost object than to ignore a pedestrian from the road. In these cases, F−+ type of
errors (false negative) are α times more important than F+− type of errors (false positive). Thus,
instead of just summing the number of errors, the total misclassification cost will be calculated after
the relation E(α) = αF−+ +F+−.

2Generalization to the K-class case is obvious.
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The false positive rate (FPR) is the proportion of negative instances that were erroneously reported
as being positive:

S +− =
F+−
P(y−)

= F(y+|y−) or FPR =
FP
N
=

FP
TN +FP

= 1−TNR. (3.4)

Positive predictive value (PPV) (which is also known as Precision) and negative predictive value
(NPV) are defined as:

PPV =
TP

TP+FP
and NPV =

TN
TN +FN

. (3.5)

Standard classifier accuracy (Acc) is obtained as a trace of the F(yi,y j) matrix:

Acc =
K∑
i
F(yi|yi)P(yi) =

TP+TN
P+N

=
1
2

( TP
TP+FN

+
TN

TN +FP

)
. (3.6)

The arithmetic average of class accuracies F(yi|yi) is called a balanced accuracy (bAcc) and it is a
particularly useful evaluation measure for unbalanced datasets:

bAcc =
1
K

K∑
i
F(yi|yi) =

1
K

K∑
i
TPR(i) (3.7)

where K is the number of classes of objects.

Because the data used in our experiments are not balanced in classes (e.g. we have 36% vehicles and
only 5% cyclists), as has been shown in the previous subsection, we chose to use in the performances
calculation an arithmetic average of the class accuracies (i.e., a balanced accuracy bAcc), instead of
a weighted one (Acc). Next, we present an example for the classification problem with 4 classes of
objects, previously mentioned, in order to motivate the choice of bAcc instead of Acc. Let us suppose
a certain classifier will provide the confusion matrix from table 3.1.

Table 3.1: An example of the confusion matrix obtained
for the classification problem with 4 classes of objects

P V C B
P 283 17 0 21
V 20 282 0 27
C 20 25 0 0
B 27 24 0 186

For this confusion matrix, the recall or TPR will be computed for each of the four classes
as: TPR = TP

TP+FN . Therefore, for the class pedestrian we obtain TPR(P) = 283/321 = 0.882,
for the class vehicle we have TPR(V) = 282/329 = 0.857, and so on. The value Acc will be
computed after the formulae Acc = TP+TN

P+N and it will be: Acc = (283 + 282 + 0 + 186)/932.
In order to illustrate that it is a weighted average of class accuracies, it could be also written:
Acc = (283

321 ∗ 321+ 282
329 ∗ 329+ 0

45 ∗ 45+ 186
237 ∗ 237)/932. Finally, for Acc the obtained value will be:

Acc = 751/932 = 0.806.

On the other side, if the bAcc will be computed after the formulae bAcc = 1
K
∑K
i TPR(i), we will

have: bAcc = (0.882+0.857+0+0.785)/4 = 0.631.
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Because the class C (cyclist) has not been recognized at all, therefore there is a problem at this
classification (so the classifier was not able to correctly learn the C class) we preferred bAcc instead
of Acc. Unlike the value 0.806 obtained for Acc, the value for bAcc of 0.631 is showing that
something has gone wrong at the classification. The best way to follow the results of a classification
is to note the TPR or recall for each individual class of objects, but because we followed a single
criteria for the classifier performance evaluation, we choose to employ an arithmetic average value
rather than a weighted one for these individual class accuracies (or recall rates).

The confusion matrix F(y1,y2) for the two-class problems can also be used to derive the weighted
harmonic mean of recall and precision, which is called the F-measure (van Rijsbergen, 1979):

Fα(X) =
1

1
α+1

(
α

recall +
1

precision

) = (α+1)recall · precision
recall+α · precision (3.8)

where α = 1 in the case of F1-measure or simply F-measure. It is also called F-score and it can be
interpreted as a weighted average of the precision and recall. An F-score reaches its best value at 1
and worst score at 0. The F-measure can be used as a single measure of performance of the test and
as in the case of class accuracies, we prefer the arithmetic average F-measure of individual classes
instead of the weighted one.

3.2.4 Features extraction

In the frame of our application, the image visual content represents the only available source
of information. To describe the content of an image, usually some numerical measures with
different ways of representing the information could be used. Next, the discussion is centred on the
representation of images using their numerical signature, which means the representation via some
extracted features (also called attributes). First, we present the attributes used to represent images in
a digital or numeric format. These signatures could be then modified in order to reduce the size of
the image space representation by a features selection procedure. If this step of selecting the most
relevant features from all the features representing an image is performed, the classifier evaluation
step could be less time consuming. Numerical attributes generally describe the colorimetric and/or
the geometric properties of the images or of some regions of images. The choice of these attributes
influences the classification results and the obstacles recognition process. Transforming the visual
information (which humans observe easily in images) in some numerical values, features or attributes
of low level (primitives) is not an easy thing. For computing the features, we opted for the choice of
different families, which then will be combined to ensure a wide representation of the image content.
Considering the relatively large size of the resulting vector, we took into account the selection of the
most relevant features by the features selection operation.

Generally, different types of attributes capture different information from the images (even attributes
belonging to the same family). Considering several types of attributes, there is the advantage of
storing their possible complementarities. Thus, by using many types of attributes, combined with
algorithms of features space reduction, the pertinence of each attribute can be evaluated in relation
with the classification operation on different modalities (or even in relation to each object class).
Once the most relevant attributes were selected, the system will have to extract only those attributes
from the images. There are no studies indicating that a particular type of attribute is good (i.e. it
succeed in capturing the most relevant information) in any object recognition system. Also, there is
no research to indicate types of feature families to be used on different modalities (i.e. in the visible
and the infrared domains). In order to adapt to a new base of images using a variety of attributes, the
system should re-evaluate the importance of the attributes to differentiate between the new classes of
objects (belonging to different modalities). Generally, to represent the image content, some intuitive,
generic and low level features are used, such as colour, texture and shape.
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Colour is a commonly used feature in the objects recognition domain, especially of those from
nature, due to the multitude of colours that can represent different objects and therefore can assist in
the segmentation or classification process. In the context of our application, where IR images are
represented by different gray levels, and visible images also suffer a reduction of information due
to the existence of situations like fog, night (where many white-gray-black pixels are present, so no
colour) we choose to represent images on a single channel (in gray levels). Thus, the absence of
colour information on most of the images used in our application, led us to believe that this feature,
the colour, is not adapted for capturing the images content in our case of road obstacles. In addition,
our application is aimed for the outdoor scenes, which are much more complex than the indoor ones,
and objects can have a multitude of colours, shapes; therefore, we think this type of colour feature
will not help much in the recognition process. Besides, by removing the three colour channels and
by considering just a single one (gray levels) the time consumed by the application will be reduced
with about two thirds.

Shape attributes are very useful for representing objects when some a priori information is known
about the shape of the object. For example, there are a multitude of applications that use shape
features specific to the pedestrian class (it is known that a pedestrian should have a roughly circular
area representing his head; also a pedestrian must fall into certain patterns concerning the ratio
height/width). These applications, which are based on shape features, are very limited from the
viewpoint of the type of objects to be classified. They will be able to perform only a binary
classification of the type pedestrian/non-pedestrian. Since our application is aimed for the detection
and classification of several classes of obstacles from the road and not to only one type, we did not
choose to use this type of shape-specific features. Our proposed method by extracting some features
that characterize objects is more robust than other methods proposed in the literature, for example
those based on shape (symmetry, snakes, template matching) in which all shape of the object must be
included in the BB in order to be recognized by the recognition module. By the fact that we extract
some features from the BBs enclosing the objects, the contain of the BB is better preserved than
using some other methods, for example as those which use explicit shape features.

Since features extraction is desired to be fast for real-time constraints, the performances of the entire
system depend heavily on the chosen features. We choose to extract obstacle shape independent but
fast to compute features, so we have concentrated on different texture-based features. We did not
select symmetries or edges because they are slower and it might not work very well for obstacles
with arbitrary poses. Therefore, we retained a number of 171 texture-based features for VIS and
respectively IR images, denoted in the following as VIS 171 and IR171 feature vectors.

In the context of our application for road obstacle recognition by the fusion of information provided
by VIS and IR images, for the image representation we choose the visual attributes described below.

• Width and height of the initial BB enclosing the object were chosen to be part of the FV because
some of the applied transformations deform the image by a resize operation. Therefore, in
order to preserve the initial size of the BB, we retain width and height (denoted in the following
w and h). At a first sight, one might say we are cheating by considering these features, because
if they would be extracted only from objects like pedestrians or vehicles, they would present
a great power of discrimination. It is obvious that a vehicle will have a height approximately
equal to the width, or even lower, while for a pedestrian these characteristics would be exactly
the opposite. However, considering that in the image-database we used there are also cyclists
and backgrounds, and objects could be occluded (so not the entire shape of the object will
be comprised in the BB), or grouped (so there will be more objects belonging to the same
class in a single BB), it can be said that unfortunately these 2 features will loose from their
discrimination power.
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• The mean, median, mode, variance, standard deviation, skewness and kurtosis are the 7 statistic
features (denoted stat in our experiments) we have used. If X denote a random variable
representing the gray levels of an image, the first-order histogram P(X) is defined as the number
of pixels with gray level X divided by the total number of pixels from the image. Let N be
the number of possible gray levels. The mean value or the expected value of X is defined as
stat1 = E(X) = x̄ = 1

N
∑N
i=1 xi where E(X) = μ if X is normally distributed with parameters μ (the

mean) and σ (the standard deviation). The median (stat2) is the gray level from the image at
which half of the rest of the gray values are below and half are above. The mode is the third
stat3 feature and it represents the most likely gray level from the image. The variance (stat4)
is a measure of the histogram width, that is, a measure of how much the gray levels differ from
the mean. It is also interpreted as the second order moment on the image gray levels, and it
is defined as: stat4 = Var(X) = E((X − μ)2) = 1

N
∑N
i=1 (xi− x̄)2, where the standard deviation is

defined as the square root of the variance: σ(X) =
√
Var(X). The standard deviation of the

zero mean (also called the L2 norm) is the stat5 feature: stat5 = L2norm(X) =
√∑N

i=1 (x2
i ). The

skewness or the third order moment, which is stat6 is a statistical measure of the degree of
histogram asymmetry around the mean, or the degree of deviation from symmetry about the
mean. Generally, it is computed with the formulae: stat6 = 1

N
∑N
i=1( xi−x̄

σ
)3. The fourth-order

moment denotes the kurtosis of an image and it is the last statistical feature we have used. It is
a measure of the degree of the histogram sharpness, i.e. a measure of the flatness or peakedness
of a curve. It is computed by the relation: stat7 = 1

N
∑N
i=1( xi−x̄

σ
)4.

• From the Haar wavelet we obtained a number of 64 features (haar1, ...,haar64) from each
modality, VIS and IR. In order to obtain these features, we used two-dimensional wavelets and
corresponding scaling functions obtained from one-dimensional wavelets by tensorial product.
The Discrete Wavelet Transform (DWT) of a signal is calculated by passing it through a series of
filters (high and low pass filters) and then downsampled. At each level, the signal is decomposed
into low and high frequencies, and this decomposition halves the resolution since only half the
number of samples are retained to characterize the entire signal (Mallat, 1998). The DWT
leads to a decomposition of approximation coefficients at level j+ 1 in four components: the
approximation components and the detail components in three orientations (horizontal, vertical,
and diagonal). Due to successive downsampling by 2, the signal length must be a power of 2, or
a multiple of a power of 2, and the length of the signal determines the maximum levels in which
the signal can be decomposed. The algorithm retains the even indexed columns respectively
rows. For the extraction of wavelet coefficients from the VIS and IR images, we used in our
experiments the Daubechies family of wavelets with the order one, which is the same as Haar
wavelet. In order to apply the wavelet decomposition, a resize operation was need. Because the
objects’ images have very small size (the size of the whole scene was 320×240 pixels, therefore
the objects within these images were much lower, especially in VIS, as it can be seen from the
examples given in figure 3.1), we choose to resize the VIS BB images at 16×16 pixels and the
IR ones at 32×32 pixels. Thus, the wavelet decomposition was chosen to be performed at level
one (for VIS BB images) or level two (for IR BB images), and finally we obtained a number of
8× 8 wavelet coefficients for both types of images. Studies have been performed in (Apatean
et al., 2008d) regarding the wavelet family and the level of decomposition for the application of
the wavelet transform. If the objects’ image resolution were better, a higher level at which to
apply the wavelet decomposition could be used, and thus to obtain 16×16 or 32×32 coefficients
or even more.

• Next, besides features like Haar wavelet (64 coefficients), the Gabor (32 coefficients) wavelet
(denoted gbr1, ...,gbr32) have been also considered, because both types of wavelets offer
complementary information about the pattern to be classified and have proved good performance
in other systems (Sun et al., 2006a). Let g(x,y) be the mother Gabor wavelet; then a dictionary
of filters obtained by the dilation and rotation of this mother function results: gmn = a−mG(x′,y′),
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where G(x′,y′) is the Fourier transform of the function g(x,y) and the factor a−m assures
that the energy is not depending on m. In this relation, a > 1, m,n ∈ N, m ∈ {0, ...,K − 1},
n ∈ {0, ...,S − 1}, x′ = a−m(x · cosθ + y · sinθ), y′ = a−m(−x · sinθ + y · cosθ), θ = nπ/K, m, n
are the orientation and the filter scales, and K, S are the total number of orientation and the
total number of scales. In our experiments, we used four orientations K = 4, and four scales
S = 4, obtaining thus a decomposition in 16 levels. The mean μmn and the standard deviation
σmn of the magnitude of the Gabor transform coefficients were used, resulting in a number of
4× 4× 2 = 32 features. These were arranged in the following manner in the feature vector:
[μ00,σ00,μ01,σ01, ...,μ33,σ33]. The method is described in (Manjunath & Ma, 1996) and later
applied in (Florea, 2007).

• The Discrete Cosine Transform (DCT) tends to concentrate information, being intensively used
for image compresion applications. The two-dimensional DCT is a separable linear transform
and it is defined as: Bp,q = αpαq

∑M−1
m=0
∑N−1
n=0 Am,ncos

x(2m+1)p
2M cos x(2n+1)q

2N , with 0 ≤ p ≤ M − 1,

0 ≤ q ≤ N − 1, αp =
{

1/
√
M, p = 0,√

2/M, 1 ≤ p ≤ M−1
, αq =

{
1/
√
N, q = 0,√

2/N, 1 ≤ q ≤ N −1
, where A is the

input image and B is the output image and M and respective N are the row and respectively
the column size of A. If the DCT is applied to real data, the result will be also real. The first
nine DCT coefficients are suggested to be used as texture features in (Ng et al., 1992), (Ngo,
1998), (Ngo et al., 2001), but it is also proposed to ignore the base component. Therefore, as in
(Florea, 2007) we obtained a number of 8 dct features.

• For our grayscale images, the co-occurrence matrix characterizes the texture of the image and
the generated coefficients are often called Haralick features, after the author of (Haralick et al.,
1973). They are in number of 7, but in (Cocquerez & S.Philipp-Foliguet, 1995) only four
of them are proposed to be used: the homogeneity, entropy, contrast and correlation, because
they seemed to be the most important ones. The Gray Level Co-occurrence Matrix (GLCM)
is used to explore the spatial structure of the texture and it captures the probability that some
pixels appear in pairs with the same level of gray but with different orientations. Therefore,
we concentrated on the 4 features proposed in (Cocquerez & S.Philipp-Foliguet, 1995) and we
performed the computation in 4 different directions: 0◦, 45◦, 90◦ and 135◦ as it is proposed in
(Florea, 2007). In this manner, we obtained a number of 16 features, denoted cooc1, ...,cooc16.

• The Run Length Encoding (RLE) method works by reducing the physical size of a repeating
string of characters, i.e. sequences in which the same data value occurs in many consecutive
data elements are stored as a single data value and counted. Galloway proposed the use of
a run length matrix for the extraction of texture features in (Galloway, 1975). For a given
image, the proposed method defines a run-length matrix as number of runs (i.e. the number of
pixel segments having the same intensity) starting from each location of the original image in a
predefined direction. The direction (in our case 0◦ and 90◦) and the number of gray levels (8 in
our case) have to be mentioned because the value contained in the matrix’s (l,n) square is equal
to the number of segments of length l and gray level n . This implies that the matrix’s number of
columns is dynamic, being determined by the length of the longest segment. Short run emphasis,
long run emphasis, gray-level distribution, run-length distribution and run percentage are the five
features proposed by Galloway. Two supplementary measures (low gray-level run emphasis and
high gray-level run emphasis) proposed in (Chu & Greenleaf, 1990), have been also considered.
Thus, a set of 7 rle features obtained in one direction have been chosen. We performed the
computation at 0◦, 90◦ and we obtained a number of 14 features, denoted rle1, ...,rle14.

• Some signal processing techniques are based on texture filtering and analyze the frequency
contents in the spatial domain. Laws have suggested a set of 5 convolution masks for feature
extraction based on texture in (Laws, 1980). From these 5 masks, a set of 25 two-dimensional
masks have been further obtained and based on these 2D masks, 14 features called laws in
our processing are reached. These 14 features are reported to the elements from the first
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diagonal, in the following manner: the first 10 features are normalized with the first element
from the diagonal, and the rest of 4 features are normalized with the remaining 4 (from the set
of 5) diagonal elements. To these 14 features, the mean and the standard deviation have been
applied as it is suggested in (Pratt, 2001) and (Florea, 2007), resulting thus a number of 28 laws
features.

Therefore, a number of 171 features have been extracted from each modality VIS and IR. These
coefficients, grouped in families of features are summarized in table 3.2. Due to the fact that the
information is extracted individually from the VIS and IR images, the provided FVs are called
monomodals, therefore they are extracted from a single modality, VIS or IR. These FVs can be seen
as input vectors to two different and independent systems: one specialized on the VIS image and the
other specialized on the IR image. In the following, the importance of these coefficients but also the
individual performance of each family of features will be evaluated.

To maximize the performance of individual descriptors, new vectors have been formed as
combinations of feature families. Thus, we have combined the texture descriptors in a single FV
of texture (abbreviated “Text”). It summarizes all texture feature-families (haar, dct, cooc, gbr, rle,
laws) and includes 162 characteristics for the VIS and IR monomodal systems case. Adding the 7
statistical moments, a new vector called (StatText) is obtained. If in addition, we add the 2 geometrical
features geom, the maximum size vectors (denoted “AllFeatures”) of 171 features will be obtained.

Table 3.2: Feature vectors (FVs) for monomodal systems

Features No. of att Vector structure

FE
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U
R

E
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M
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IE
S

M
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FV

s

Geometric features geom 2 [w,h]

Visible features (v)
Statistical moments statVIS 7 [statv1 . . . statv7]
Haar wavelet haarVIS 64 [haarv1 . . . haarv64]
Gabor wavelet gbrVIS 32 [gbrv1 . . . gbrv32]
DCT coefficients dctVIS 8 [dctv1 . . . dctv8]
Coocurence matrix coocVIS 16 [coocv1 . . . coocv16]
Run Length Encoding rleVIS 14 [rlev1 . . . rlev14]
Laws features lawsVIS 28 [lawsv1 . . . lawsv28]
Infrared features (i)
Statistical moments statIR 7 [stati1 . . . stati7]
Haar wavelet haarIR 64 [haari1 . . . haari64]
Gabor wavelet gbrIR 32 [gbri1 . . . gbri32]
DCT coefficients dctIR 8 [dcti1 . . . dcti8]
Coocurence matrix coocIR 16 [cooci1 . . . cooci16]
Run Length Encoding rleIR 14 [rlei1 . . . rlei14]
Laws features lawsIR 28 [lawsi1 . . . lawsi28]

C
O
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B
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FE
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al
FV

s

Texture from VIS TextVIS 162 [haarv , dctv , coocv , gbrv , rlev , lawsv]

Texture from IR TextIR 162 [haari , dcti , cooci , gbri , rlei , lawsi]

Statistical and Texture from VIS S tatTextVIS 169 [statv , haarv , dctv , coocv , gbrv , rlev , lawsv]

Statistical and Texture from IR S tatTextIR 169 [stati , haari , dcti , cooci , gbri , rlei , lawsi]

Geometrical and geom 2 [w,h,
Statistical and Texture from VIS S tatTextVIS 169 statv , haarv , dctv , coocv , gbrv , rlev , lawsv]
All features from VIS AllFeaturesVIS 171 [w,h , statv , txtv]

Geometrical and geom 2 [w,h,
Statistical and Texture from IR S tatTextIR 169 stati , haari , dcti , cooci , gbri , rlei , lawsi]
All features from IR AllFeaturesIR 171 [w,h , stati , txti]
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3.2.5 Features evaluation

As we saw in the previous section, different families of features were considered to be extracted from
the VIS and IR images. Different algorithms of features extraction provide different characteristics
(as we already mentioned, grouped in feature-families) which can be combined in different FVs,
representing the inputs into the classifier. The accuracy of the classifier depends on how well these
features succeed in representing the information and it is not necessary proportional with their
number (or FV dimension). Is it possible that the same features extraction algorithm applied on the
VIS and on the IR domains to deliver distant results, i.e. to exist some features better suited for the
VIS domain and others better suited for the IR domain. Also, their combination can bring in some
improvements from the viewpoint of the recognition performance, depending on how complementary
they are when representing the information. There are features extraction algorithms consuming
less time than others at the extraction of these features from images. There are also families of
features that can be separable (when calculating the coefficients of a family, they can be calculated
individually, and do not need to be calculated all if we do not need all of them) and this will influence
the extraction time of those coefficients.

To assess the performance representation of the numerical attributes, in this section we present a
first experiment in which we tested, using a simple classifier kNN the representation ability of the
visual content of each family of attributes. The kNN algorithm (Cover & Hart, 1967) is a method for
classifying objects based on closest training examples in the feature space. The kNN classifier is a
type of instance-based learning where the function is only approximated locally and it is amongst the
simplest of all machine learning algorithms. The value k is a positive integer, typically small (k = 1
or k = 3). The training phase of the algorithm consists only of storing the FVs and class labels of the
training samples. In the classification stage, the test sample (whose class is not known) is represented
as a vector in the feature space. Distances from the new vector to all stored vectors are computed
and k closest samples are selected. The test object is classified by a majority vote of its neighbours,
with the object being assigned to the class most common amongst its k nearest neighbours. 3 In our
processing, the case k = 1 was chosen, where the object is simply assigned to the class of its nearest
neighbour.

In this stage of features evaluation, we opted for the use of a kNN classifier instead of the powerful
SVM because the kNN is much simple. It does not need a model-selection stage, as the SVM does,
because it is not having multiple parameters which have to be optimized before the usage. Still,
because SVM is more parametrizable and therefore better adapted to any classification problem, it
is expected that the recognition rates to be higher by the use of the SVM. In the frame of our final
system we employed an SVM classifier (where a model validation stage will be performed to find
the proper hyper-parameters to be used for a specific FV), but in this section, just for the sake of
simplicity, we prefer the kNN. Our purpose in this section is not to optimize the classifier on each
family or combination of feature-families, but to evaluate their importance.

Few questions are foreseen here:

1. Are several features better adapted for VIS and other better adapted for IR ? Or, if a family is
behaving well on VIS, it will be also good on IR?

2. The number of features of one family influences the classification rate? A family with many
features will provide a greater recognition rate compared to another family having less features?

3. Are the chosen features pertinent for the learning process? Or they will suffer of overfitting (will
provide good results on the training set, but they would not predict very well the test data)?

3The kNN method used in our experiments is the one implemented in Weka, and we call it from MATLAB; the Euclidean distance
was selected in the frame of the IBk algorithm and the number of neighbours was k = 1.
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In order to answer these questions, we used all the vectors comprising families or combination of
feature-families from the table 3.2 and we performed 2 experiments for the classification problems
with 4 and 8 classes of objects previously mentioned in subsection 3.2.2. In a first experiment we
considered only the training dataset (932 objects), where by the 10 folds cross-validation (denoted
10f-CV) procedure the results from tables 3.3 and 3.4 have been obtained.

In the second experiment, we concentrated on the results obtained when the system is learnt with
the data from the training dataset and is tested with the data from the test set (232 objects). The
classification results for the second experiment were denoted LT and they are summarized in figures
3.8(a) and 3.8(b) and figures 3.9(a) and 3.9(b). Because the final FV is chosen on the training
database, the most important accuracies are the ones obtained in the 10f-CV case, but in order to
illustrate that the chosen features are also pertinent for tests, we have retained also the accuracies for
the LT case. The values obtained in these two experiments and illustrated in the tables and figures
previously mentioned are the recognition rates of 4 classes and respective 8 classes of objects by the
bAcc (balanced accuracy) criteria.

Table 3.3: Performance representation of monomodal FVs obtained using 10f-CV on the training set
for the classification problem with 4 classes of objects

Input vector Accuracy using 10f-CV Inputs arranged by decreasing value of the bAcc for VIS
Attributes Number of attributes for the 1-NN classifier Input vector Accuracy for the 1-NN classifier

name VIS, IR VIS IR VIS IR
geom 2 47.5 47.5 haar 77.0 79.6
stat 7 59.0 66.0 gbr 72.6 81.6

Te
xt

ur
e

haar 64 77.0 79.6 laws 67.4 69.8
gbr 32 72.6 81.6 dct 65.7 75.0
dct 8 65.7 75.0 stat 59.0 66.0

cooc 16 54.2 66.1 cooc 54.2 66.1
rle 14 43.0 55.0 geom 47.5 47.5

laws 28 67.4 69.8 rle 43.0 55.0
Text 162 83.8 87.1

StatText 169 83.5 87.9
AllFeatures 171 83.7 88.0

Table 3.4: Performance representation of monomodal FVs obtained using 10f-CV on the training set
for the classification problem with 8 classes of objects

Input vector Accuracy using 10f-CV Inputs arranged by decreasing value of the bAcc for VIS
Attributes Number of attributes for the 1-NN classifier Input vector Accuracy for the 1-NN classifier

name VIS, IR VIS IR VIS IR
geom 2 39.5 39.5 haar 66.2 70.7
stat 7 40.9 44.5 gbr 61.9 72.2

Te
xt

ur
e

haar 64 66.2 70.7 dct 52.8 59.7
gbr 32 61.9 72.2 laws 51.2 47.6
dct 8 52.8 59.7 cooc 43.2 54.9

cooc 16 43.2 54.9 stat 40.9 44.5
rle 14 29.2 34.8 geom 39.5 39.5

laws 28 51.2 47.6 rle 29.2 34.8
Text 162 73.8 78.5

StatText 169 73.3 79.4
AllFeatures 171 73.9 79.3

From the viewpoint of the accuracies obtained for the two problems of classification (with 4 and
respectively 8 classes of objects) one can notice from all the three sets of representations 4 that the

4the best visualization could be performed on the figures with bars, 3.8(a) and 3.8(b)
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accuracies obtained for the classification with 4 classes of objects is with approximately 10% higher
than those obtained for the classification problem with 8 classes of objects. Therefore, the higher
the number of classes from the classification, the lower the recognition rates (supposing the same
dimension of the database from the validation and test stages). In our case, these low accuracies
obtained for the 8-class classification problem are due to the reduced number of instances per each
object class.

It can be easily seen from tables 3.3 and 3.4, but also from the figures previously mentioned, that
from VIS and IR vector types, the accuracies for the VIS FVs are lower than those of the IR FVs.
It is possible that this happens because the VIS image resolution is lower than its IR counterpart.
For all the 10 vectors (with the exception of the geom vector which is the same vector for the two
situations VIS and IR), the accuracies obtained with the IR FVs has overperformed the accuracies
obtained with the VIS FVs.

1. Are several features better adapted for VIS and other better adapted for IR? Or, if a family is
behaving well on VIS, it will be also good on IR?

The interpretation of the tables 3.3 and 3.4 must be realized in two steps, because they are
structured in two parts:
- the first part (or the first half) of the tables, which contains the first 4 columns and where the
FVs are arranged in the same order as in table 3.2, and
- the second half of the tables, which is containing the last three columns; its content is nothing
more than the first part of the table, but arranged in a decreasing order of the bAcc obtained
on the VIS domain. We performed this arrangement of the vector families in order to verify if
the order of the families’ importance from the VIS and IR domains is the same. Therefore, we
intend to verify if the families’ behaviour from the VIS is maintained also on the IR domain; in
this manner, we try to answer the first question formulated earlier.

For the classification problem with 4 classes of objects, one can notice from table 3.3 that the
order (in the sense of a decreasing bAcc) from the VIS domain is as follows: haar, gbr, laws,
dct, stat, cooc, geom, rle, while the order from the IR domain (the last column from the table
followed also by decreasing values for the accuracies) is gbr, haar, dct, laws, cooc, stat, rle,
geom; therefore, comparing the two lists, we can conclude all the families from the VIS have
been reversed in pairs of two to obtain the family order from the IR list.

Unlike this inversion scheme, for the classification problem with 8 classes of objects (table
3.4), only the first families (haar and gbr) and (laws and cooc) have changed their order, all the
rest of the families remaining in the same order as on the VIS, which is: haar, gbr, dct, laws,
cooc, stat, geom, rle.

The importance of the features from the VIS is not exactly the same as with the importance of
the features from the IR domain, but there are features better than others. The obtained results
indicate that a finer selection process has to be performed, at the features level not at their
families. Therefore, in Chapter 4 we return to this idea.

In the first parts of the two tables 3.3 and 3.4 it can be seen that for both classification problems
(with 4 classes and 8 classes of objects), the higher accuracies on the 10f-CV procedure
are obtained for the families combinations comprising most of the features. Thus, the best
accuracies are obtained for all texture features comprised in a vector, therefore the Text vector,
or combined with the stat features by the vector StatText, or all features grouped in a single
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FV called AllFeatures. It can be seen that the difference between the performances obtained
with these three FVs is very small. It was expected that the higher value for the accuracy to
be obtained for the vector comprising all the features (AllFeatures) in all the four cases (VIS
and IR for the problem with 4 classes and VIS and IR for the problem with 8 classes), but as it
can be noticed, this is not always true: in the case of the classification problem with 4 classes
of objects, the maximum accuracy is reached for the vector Text in the VIS case and for the
classification problem with 8 classes, the maximum is obtained for the vector S tatText in the
IR case. In order to not remove an entire family of features from the very beginning, we choose
to perform the features selection operation on the vector comprising all the features. This is
done in order to consider their complementarities (we will detail this idea in the next chapter
dedicated to features selection mechanism).

From the results obtained in the 10f-CV process, as can be seen in tables 3.3 and 3.4, the
families order in terms of decreasing accuracies will be: for the problem with 4 classes, on the
VIS: haar, gbr, laws, dct, stat, cooc, geom, rle, and on the IR we have: gbr, haar, dct, laws,
cooc, stat, rle, geom ; for the classification problem with 8 classes of objects, on the VIS we
have: haar, gbr, dct, laws, cooc, stat, geom, rle, and on the IR we have: gbr, haar, dct, cooc,
laws, stat, geom, rle.

For the values obtained in the LT procedure (they were not given explicitly, as were those from
the 10F-CV in tables 3.3 and 3.4) 5, the following order will be obtained: for the classification
problem with 4 classes of objects, on the VIS we will have gbr, haar, laws, dct, stat, cooc,
geom, rle, while on the IR gbr, haar, dct, laws, cooc, stat, rle, geom, and for the classification
problem with 8 classes of objects, for the VIS: haar, gbr, laws, dct, geom, cooc, stat, rle, and
for the IR: haar, gbr, dct, cooc, laws, stat, rle, geom.

From the analysis of the two cases (the classification problem with 4 classes and the
classification problem with 8 classes of objects) we can not conclude that there is a certain
order of the feature families importance, but we could perform a grouping to obtain pairs of
families, and then we could say that on both 10f-CV and LT the following order is maintained:
the wavelet feature pair (haar and gbr) is the first one, followed by the pair laws-dct and then
cooc-stat and finally the geom-rle characteristics pair. There are two exceptions, on the LT
for the problem of classification with 8 classes: on IR the laws and the cooc features have
interchanged, and on VIS the geom and the stat have also changed their position between them.

Also, for the obtained results we could generalize that the families haar, gbr, laws and dct are
better than stat, cooc, geom and rle. However, the first group of families (with the exception
of dct) has the largest number of features, therefore the increased accuracies could be of that
reason. In the following, we want to verify this affirmation but also to answer the question
number 2.

2. The number of features of one family influences the classification rate? A family with many
features will provide a greater recognition rate compared to another family having less features?

To better compare the results for 10f-CV and LT for all feature vectors (comprising individual
families and/or combinations of families) from the table 3.2, we plotted the accuracy values in
another form (figures 3.8(a) and 3.8(b)), where on the x-axis it is specified the name of different
family/family combinations together with the proportion they represent within the maximum
size vector, which is “AllFeatures” from the table 3.2).

5the best visualization could be performed on the figures 3.9(a) and 3.9(b)
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(b) Accuracy obtained for different FVs (comprising families and combinations of families of
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classification problem with 8 classes of objects

Figure 3.8: Accuracy obtained for different FVs (comprising families and combinations of families
of features) using 1-NN for the classification problem with a) 4 classes and b) 8 classes of objects

Thus, each group represents a family or a family combination, and within each group the first
two values are the accuracies (for VIS and IR) obtained in the cross-validation (CV) stage, and
the last two are obtained for the LT stage. On the x-axis we have chosen to represent each
feature vector from the tables 3.3 and 3.4 together with the percentage they represent in the
frame of the maximum-size vector with 171 features. The results obtained at 10f-CV are the
first two, represented in blue in figures 3.9(a) and 3.9(b), and the results from LT are the next
two, represented in red in each group.

For example, the Haar wavelets family comprise a number of 64 coefficients (features) from
a total of 171 coefficients. The percent obtained in this case is approximately 38%. Similarly,
we obtain the size percentage for all families represented in this figure. We choose to represent
in the results this manner in order to better show the accuracy provided by a certain family
reported to the number of coefficients used to obtain that accuracy rate.



78 Baseline Obstacle Recognition System

40

50

60

70

80

90

100

Ac
cur

acy
 (%

)

w_h_1%
stm_4%

wav_38%
dct_5%

coc_9%
gbr_19%

rle_8%
law_16%

VIS
CV

IR
CV

VIS
LT

IR
LT

(a) Accuracy obtained for different FVs (comprising only families of features) from visible
(circle) and infrared (line) domains, evaluated by 1-NN using 10f-CV (blue) and LT (red) for
the classification problem with 4 classes of objects

20

30

40

50

60

70

80

Ac
cur

acy
 (%

)

w_h_1%
stm_4%

wav_38%
dct_5%

coc_9%
gbr_19%

rle_8%
law_16%

VIS
CV

IR
CV

VIS
LT

IR
LT

(b) Accuracy obtained for different FVs (comprising only families of features) from visible
(circle) and infrared (line) domains, evaluated by 1-NN using 10f-CV (blue) and LT (red) for
the classification problem with 8 classes of objects

Figure 3.9: Accuracy obtained for different FVs (comprising only families of features) using 1-NN
for the classification problem with a) 4 classes and b) 8 classes of objects

From the figures 3.8(a) and 3.8(b), one can notice that although the Haar wavelet coefficients
are most numerous, they are exceeded in their performance by Gabor features which are only
half as concerning their number. From the viewpoint of the performance, after gbr and haar
features, on the 3rd and 4th positions are laws and dct features, accounting 16%, respectively
5% of the total vector, followed by cooc and stat, and finally rle and geom. The geom features
do not have to be ignored, because with only 1% of the features, they succeed to obtain an
accuracy of about 50%-60%.

Therefore, the conclusion is that the number of features of one family does not necessary
influences the classification rate, because there are families with fewer features providing a
greater recognition rate than another family having more features (e.g. gbr and haar).
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3. Are the chosen features pertinent for the learning process? Or they will suffer of overfitting
(will provide good results on the training set, but they would not predict very well the test
data)?

The danger of “overfitting” is to find features that “explain well” the training data, but have
no real relevance or no predictive power (for the test set). Generally, one can notice that the
accuracies obtained in the LT stage overperformed (or are very closed to) the values obtained
using the 10f-CV procedure, so our data is not presenting overfitting. Therefore, we can say we
have chosen some general features, which are capable to retain the pertinent information from
both VIS and IR individual domains.

By now, we have discussed methods of features extraction from the point of view of the accuracy
and we saw which are the performances given by different feature-families or combinations of
feature-families. Next, we want to see these issues also in terms of their extraction time. In table 3.5
we plotted the average extraction time of the FVs from the table 3.2 for one object (obtained through
mediation on the training set). This extraction time, together with the time required to test/classify
the vector from the test set within the system are the ones that most affect the performances of a real
time system from the recognition point of view.

From table 3.5 it can be seen that generally the time for the extraction of various vectors including
families or combinations of families is smaller on VIS than on the IR domain (the only exception
is on rle). The objects’ image on the IR domain (the BBs) were greater in size than those from the
VIS, so in the pre-processing step, at the resize operation, the ones from the VIS have been resized
to 16× 16 pixels, and the ones from the IR to 32× 32 pixels. Therefore, when double the size on x
and y axis has turned into a total of four times number of pixels; for this reason, the time necessary
to extract the features is higher in the IR case. It can also be noticed that the time required for the
extraction of geom coefficients is zero, so if these coefficients would help from the viewpoint of the
accuracy, the time would not be a criteria for their rejection.

Table 3.5: Mean extraction time for different FVs for one object

Number of attributes Mean Extraction time [msec]
Attributes name Monomodal systems for 1 object

VIS, IR VIS IR
geom 2 0.0 0.0
stat 7 1.2 2.5

Te
xt

ur
e

haar 64 2.2 4.0
gbr 32 9.2 17.2
dct 8 1.9 2.1

cooc 16 0.9 1.2
rle 14 7.3 6.4

laws 28 2.1 2.5
Text 162 23.6 33.5

StatText 169 24.8 36.1
AllFeatures 171 24.8 36.1

If we assume that the proper vector used to characterize the data from the image database is the one
comprising all the 171 features, i.e. “AllFeatures” and no parallel processing is implied, then the
average time required for the extraction of the features corresponding to a single test object (i.e. one
BB) will be:

- approximately 25 milliseconds if we have a monomodal VIS system,
- about 36 milliseconds if the system is a monomodal IR one or if the system is a bimodal VIS-IR

one capable to process the VIS and IR information simultaneously,
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- nearly 61 milliseconds in the case we have a bimodal VIS-IR system which cannot process the
VIS and IR information in a parallel way 6.

In addition to this features extraction time, there is the time required by the classifier to provide the
estimated class for the respective test object. This classification time depends to a large extent by the
parameters of the classifier (i.e. the SVM) chosen in the training stage of the system, but generally
it cannot exceed a few tens of milliseconds for a single test object. If we consider a very pessimistic
scenario, we could say that the time needed for the OR module to recognize the type of a single
test object is maximum 100 milliseconds. This value is not a favourable one, considering that the
proposed detection system is a stereo one (therefore a time consuming one). As it is specified in
(Toulminet et al., 2006) the detection time for one object is also approximately 100 milliseconds.
Therefore, the detection and classification processes (which can not be paralelized because they are
dependent) require for a single BB a time of almost 200 milliseconds in the worst case. At a first
sight it does not seem to be much, but when considering that in a scene-image almost never appears
a single BB detected, then it may become an unhappy scenario. Considering a number of 10 objects
per scene (which is a quite frequently number in a cluttered environment) this amount of time become
a significant one 7.

In order to decrease this large time, at least from the recognition point of view, we propose to encode
the information with a feature-vector as smaller as possible. Decreasing the number of features which
compose the FV, it is possible to decrease also the time in which these features are extracted from
the image, if we consider that some feature-families are separable (i.e. we can compute only some
features from that family, not all of them if we do not need all of them). As a consequence, the time
required by the classification to provide the class for the test object will be also decreased. In the
next chapter, we propose to decrease the dimension of the FV by performing the features selection
operation. Thus, the features will be individually evaluated and those which will be assessed as being
not-relevant, could be discarded from the final FV.

Next, when running the experiments with the SVM classifier, we have focused on the feature vector
AllFeatures, incorporating all the 171 features, because only after the features selection process
(detailed in the next chapter) we will drop some features if they will not help in the classification
process, i.e. if they will be found as being not relevant.

3.2.6 Classification with SVM

Support vector machines (SVMs) are supervised kernel based learning methods, used for
classification and regression. A specific characteristic of SVMs is that they map the input
vectors to a higher dimensional space where a maximal separating hyper-plane is constructed.

Suppose the training data as a set of instance-label pairs (xi,yi), i= 1, ...,mwhere xi ∈Rn represents the
input vector and yi ∈ {−1,+1} the output label associated to the corresponding item xi. The parameter
n represents the input vector dimension, where xi corresponds to (x1

i , x
2
i , ..., x

n
i ). These vectors will

be mapped into a feature space using a kernel function K, which defines similarities between pairs
of data, with K(x,z) = 〈x,z〉 , ∀x,z ∈ Rn (Boser et al., 1992), (Vapnik, 1998), (Cristianini & Shawe-
Taylor, 2000). In order to use this kernel function for an SVM classifier, one has to solve the following
optimization problem:

max
a∈Rm

m∑
i=1
ai−

1
2

m∑
i, j=1

aia jyiy jK(xi, x j) (3.9)

6in today’s systems, most processing implies pipeline to speed up the computation; therefore, this assumption in rarely met.
7the reported execution time was obtain on an Intel(R) Core(TM)2Duo CPU at 2.00GHz
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under the constraints
∑m
i=1 aiyi = 0, 0 ≤ ai ≤ C, ∀i ∈ 1,2, ...,m, where K(xi, x j) represents the kernel

function and a ∈ Rm denotes the vector with components ai, with ai the Lagrange coefficients. The
coefficient C > 0 is the penalty parameter that controls the trade off between maximizing the margin
and classifying without errors. The optimal separating hyper-plane is used to classify the un-labelled
input data xk using the following decision function:

yk = sign

⎛⎜⎜⎜⎜⎜⎜⎝
∑
xi∈S
aiyiK(xi, xk)+b

⎞⎟⎟⎟⎟⎟⎟⎠ (3.10)

where S is the set of support vector items xi and the offset value b is calculated based on vector a and
the training set.

The basic kernels used in the literature are the linear (LIN), the polynomial (POL) and the radial basis
function RBF ones:

• LIN : KLin(xi, x j) = xTi x j

• POL : KPol(xi, x j) = (xTi x j)
d,d > 0

• RBF : KRBF(xi, x j) = exp(−γ||xi− x j||2),γ > 0

In our experiments the POL kernel has a degree d ∈ {1,2, ...,15} (with d = 1 for the linear kernel) and
the RBF kernel has the bandwidth γ, of the form γ = q · 10t with q ∈ {1,2, ...,9} and t ∈ (−5,−1). In
(Hsu et al., n.d.) is suggested that the parameter C, which is the penalty parameter, to be chosen in
the range C ∈ {2−5,2−3,2−1 . . . ,2+15}. Larger values of C might lead to linear functions with smaller
margin, allowing to classify more examples correctly with strong confidence. The results found
in literature indicate that these discrete spaces of parameters are the most suitable for an efficient
classification. A proper choice of these parameters is crucial for SVM to achieve good classification
performance. The values C and d or γ are tuneable hyper-parameters which need to be determined
by the user. They are usually chosen by optimising a validation measure (such as the k-fold cross
validation error) on a grid of values (e.g. uniform grid in the (C,d) or (C,γ) space).

The SVMs classification performances depend on the chosen kernel, the penalty parameter C and
the parameters γ,d corresponding to that certain type of kernel. All these parameters are called
hyper-parameters.

Due to the fact that we envisioned the use of a complex kernel, also called a multiple kernel in
Chapter 5, in the following, when processing the information through the SVM by the use of classical
kernels, we denoted those kernels as single kernels (SKs).

Because the kernel functions from the two modalities VIS and IR (S KVIS and S KIR) could be of
different types, and could work with different hyper-parameters, for the kernel type we choose the
LIN, POL and RBF cases, which have less than two parameters to optimize. Because the linear SVM
is a particular case of the polynomial SVM, it can be concluded that the single kernel (SK) could be
either a radial basis function or a polynomial one:

S K ∈ {RBF,POL}. (3.11)

3.3 Classification Experiments and Results

Because there is not known beforehand which combination of the SVM hyper-parameters is the most
appropriate for a certain classification problem, in almost all applications involving the use of an
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SVM, an operation of searching for the proper combination is performed. This search is generally
called parameter search or model-selection.

Generally, the kernel and hyper-parameters selection task is performed by training the classifier
with different functions (acquired with different kernels and hyper-parameter values chosen from
a discrete set which is fixed a priori) and choosing the one corresponding to the best performance
measure. This choice is realised based on a procedure of k-folds cross-validation which implies an
average of the results of multiple splitting.

Each data set corresponding to a multi-class classification problem (as we mentioned in section 3.2.2,
we defined 2 classification problems: with 4 and respectively 8 classes of objects) was manually
annotated, and further they were randomly divided into two sub-sets: training sub-set (80%) and
testing sub-set (20%), but considering a ratio of almost 4 between the number of objects belonging to
each class from the training and testing sets. Averaging the results of multiple splitting (or the “cross-
validation” technique) performed on the training data is a commonly used technique to decrease the
variance of the performance estimator. Therefore, to perform the 10 folds cross-validation (10f-CV)
procedure, the learning sub-set was randomly partitioned into learning (9/10) and validation (1/10)
parts. In figure 3.10 is depicted this partitioning of the dataset.

Figure 3.10: Partitioning of the dataset

Therefore, after obtaining the training part as 80% of the entire set of data, it was divided again in:
a learning sub-set (used by the SVM algorithm in order to learn the model that performs the class
separation) and a validation sub-set (used in order to optimise the values of the hyper parameters).
The SVM model, which is learnt in this manner, classifies (or labels) the unseen examples from the
test set, which is disjoint to the training one.

A new set of experiments were performed by using the SVM-based model. The C-SVM algorithm,
provided by LIBSVM (Chang & Lin, 2001), with an RBF or POL kernel is actually used in this
second experiment. The parameters of the SVM model (the penalty for miss-classification C and the
kernel parameters) are optimized on the validation set. The cross-validation framework is utilised
in order to avoid the over fitting problems. Thus, we automatically adapt the SVM classifier to the
problem, actually the recognition of road obstacles.

Having in mind that it is not known beforehand which parameters for the SVM classical kernels (C
and γ or d) gives the best solution for one problem, there must be done a model selection (parameter
search) that could identify good C, γ or d values (for SKs). For our problem, the kernel functions
SKs could be of different types (POL or RBF), and could work with different hyper-parameters.
A grid search was performed for every type of kernel, with the kernel parameter and the penalty
parameter C representing the values to optimize (different values among a discrete set were used).
When the optimization process is ending, a winner kernel is chosen on each modality: S K∗VIS and
S K∗IR (with the corresponding hyper-parameters (S Ktype,C,S Kparameter)) for the optimization of
the monomodal systems.
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In our experiments, the optimisation of the kernel type and hyper-parameters is performed by a
parallel grid search method in the following ranges:

- the tuning coefficient C ∈ {2−5,2−3,2−1 . . . ,2+15} range;
- the bandwidth of the RBF kernel γ ∈ {2−25,2−23, . . . ,2−11};
- the degree of the POL kernel is chosen among d ∈ {1,2, ...,7}.

For each combination of these two parameters, a 10-fold cross-validation is performed during the
training phase, the quality of a combination being computed as the average of the accuracy rates
estimated for each of the 10 divisions of the data set. Therefore, on the training set, 10-folds
cross-validation has been performed in order to optimize: the hyper-parameters set (C,γ) or (C,d)
and the kernel type: POL or RBF for SKs and the best combination was indicated by the best
balanced accuracy rate. The result of the parameter selection process is that the classifier will be able
to predict accurately the unknown data.

In table 3.6 the results obtained for the visible monomodal system and for the infrared monomodal
system are provided. In these cases the input vector is the one corresponding to the respective
domain: VIS 171 or IR171 and here no-fusion scheme is applied. For the two datasets mentioned in
section 3.2.2 (i.e. where the object instances were assigned to one of the 4 classes or 8 classes) we
computed 3 different classification problems:

- the first one is considering the classification in 4 classes: pedestrian, vehicle, cyclist and
background, denoted (P, V, C, B) and it is based on the inputs corresponding to the 4 classes of
objects. To remind, the objects’ distribution in classes is: (321, 329, 45, 237) for the training set and
(79, 83, 11, 59) for the test set.

- the second classification problem is considering the classification in 8 classes of objects
pedestrian entire, pedestrian occluded, pedestrian group, vehicle entire, vehicle occluded, vehicle
group, cyclist and background, briefly noted (PE, PO, PG, VE, VO, VG, C, B) and starts from the
data corresponding to the 8 classes, where the distributions are: (206, 65, 50, 133, 131, 65, 45, 237)
in the training data set, and (51, 16, 12, 34, 33, 16, 11, 59) in the test set.

- the last classification problem starts from the data corresponding to 8 classes of objects, classifies
the test data in 8 classes, but then it merges the results in 4 classes. In this manner, objects recognized
as pedestrian entire, pedestrian occluded, pedestrian group (PE, PO, PG) will all be classified as
belonging to class pedestrian (P) and objects recognized as vehicle entire, vehicle occluded, vehicle
group (VE, VO, VG) will all be classified as belonging to class vehicle (V).

To these 3 classification problems, we will refer in the following part of this thesis, as: Clasi f Pb4cls,
Clasi f Pb8cls and Clasi f Pb8cls→4cls.

The results obtained in the 10f-CV process are important for the optimization process, because on
each modality the maximum balanced accuracy will be searched for on the training set. As we
mentioned before, in our experiments two types of kernels are possible for the SVM SKs, and they are
RBF or POL. From all the balanced accuracies obtained in the 10f-CV step for both types of kernels,
the maximum one has been picked for each modality on the training set and the corresponding kernel
has been called the “winner” one. For these winner SKs, the system is trained with all the data from
the training set and tested with the test data, therefore the LT procedure is performed. The accuracies
obtained on the training set are also presented in table 3.6, but they are mentioned only to see that
data are not suffering from overfitting.

From table 3.3, we have for the classification problem with 4 classes Clasi f Pb4cls a balanced
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Table 3.6: Single kernel (SK) optimization based on accuracies provided by different FVs
and obtained for different classification problems

Method Classification problem Performance
Pb. Input bAcc winner SK

vector [%] S K∗(S Ktype,C,S Kparam.)
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accuracy of 83.7 for the vector comprising all the features from the visible domain VIS 171 and
bAcc = 88.0 for the vector comprising all the features from the infrared domain IR171. For the
classification problem with 8 classes Clasi f Pb8cls from table 3.4, we have bAcc = 73.9 for VIS 171
and bAcc = 79.3 for IR171. When comparing these values with the ones from table 3.6 corresponding
to the same classification problems but rendered by the SVM classifier, it can be noticed that in all
cases the SVM provides better results, at least with 2% higher than those obtained with the kNN.
Therefore, our choice for the SVM is motivated by the obtained results. In addition, it has to be
mentioned that the SVM is more parametrizable and thus better suited for the fusion schemes we
propose.

Next, it can be noticed that when comparing the results obtained for the classification problem
with 4 classes Clasi f Pb4cls with the ones acquired for the classification problem with 8 classes
Clasi f Pb8cls, the first set is better with at least 10% than the second one. Even when considering
a classification in 8 classes and than the results further adapted to 4 classes (Clasi f Pb8cls→4cls),
the results are better than the ones obtained with 8 classes (Clasi f Pb8cls) with at least 10%. When
comparing the classification problems Clasi f Pb8cls→4cls and Clasi f Pb4cls, the later one provide
higher accuracies. Therefore, when analyzing these situations, we decided to perform all the
processing from the next part of this thesis with a single classification problem, the one providing
best results, i.e. the classification problem with 4 classes of objects: pedestrian, vehicle, cyclist and
background. The other 2 classification problems are not well suited due to the small number of
objects per class (too few instances per class of objects). When a greater database will be available,
i.e. with more instances for each class, we will return to these classification problems because they
could provide even better results than the classification problem with 4 classes due to their smaller
intra-class variability.

Even the accuracies are not very distant, i.e. the ones obtained for the FV VIS 171 are just a little bit
smaller than ones provided by the FV IR171, means that the objects have not always been assigned
to the same classes in both modalities. In order to study this problem in a more profound manner
and take into account the VIS-IR complementarity, we intend to approach the classifier outputs at an
early level, i.e. at the scores level, not directly at that of classes. In this manner, we believe a fusion
of this information (i.e. the matching scores) will provide better results than each of the monomodal
VIS or IR system. We believe that even the fusion at some other levels, i.e. the features or kernels,
could provide improved results.
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As we have noticed in section 3.2.5, the computation time from the Obstacle Recognition module
could be decreased by reducing the dimension of the FV. We propose to analyze this problem in the
next chapter, dedicated to the features selection. Even the SVM classifier have been proven to be
better than the kNN one on the FV comprising 171 features, we have to analyze if it will provide also
good results on the vector obtained after performing the features selection.
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3.4 Conclusion

For our system, different global texture features have been extracted from the visible and infrared
images in order to compute feature vectors (FVs) for both types of data, VIS and IR. Even the
number of features in our case is not very high for an object, when considering all the objects within
an image, it has to be reduced to render a real-time system. Therefore, the number of features
could be decreased in order to obtain a new FV containing only the most relevant features for our
classification problem. This process of data reduction is needed for time reduction purposes, whether
it is a features extraction time, or a system learning time, or the time needed to classify obstacles.
All these values for the time will be reduced once the FV dimension is decreasing. Therefore, we
envisioned the reduction of the feature vector in order to obtain the smaller time as possible in the
obstacle recognition module, and thus to help the entire ODR system to perform the detection and
the classification of obstacles in real time. In the next chapter (chapter 4) we will see which is
the proposed solution to perform this reduction of the FV dimension, i.e. the use of some features
selection procedures, without decreasing classification performances.

From the features extraction module, a numeric description, including different types of features
(wavelets, statistical features, coefficients of some transforms, among others) has been obtained for
each object image. We choose to extract features as rich and diverse as possible in order to have the
advantage of some sort of complementarity concerning them. We do not have to ignore the possibility
of some redundant information which therefore will have to be eliminated. This elimination of
redundant features would be performed in a features selection step (described in the next chapter)
which main purpose would be to find a set or a sub-set of features more compact and more relevant
for the classification task. This step could be also seen as a reduction of the learning complexity.

The systems analyzed by now, are adapted to a single modality, therefore they are monomodal
systems; even if they provide global recognition rates on the entire test set very closed on the two
modalities, we will show that these results could be improved by the combined processing of the
VIS and IR information, which means in the frame of a bimodal system. The bimodal systems could
take different forms in function of the level at which the information is combined or fused. Thus, we
propose three different fusion systems: at the levels of features or SVM’s kernels, or even higher, at
the level of matching-scores provided by the SVM. Each one of these systems could render improved
results comparing to the monomodal systems. We intend to analyze this in what follows, in chapter
5. In addition, even the performances obtained with the monomodal systems are very good (above
90%), we aim higher ones. It has to be considered that these results have been obtained in privileged
conditions: they were registered during daytime and there were not too much objects captured in a
scene-image (there was not quite urban cluttered environments). As well, the detection phase has
been realized by providing the BBs manually annotated. All these, will be further degraded when
real conditions of functioning will be reached. This is the reason why we aim even a higher accuracy
rate for the recognition module. In addition to all these motivations, the monomodal systems do not
allow the adapted functioning to the context. By using a fused VIS-IR system this issue can also be
solved. Therefore, we envisioned a bimodal system which dynamically adapts to new environmental
situation.
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In the previous chapter it was noted that in order to represent the obstacles’ images which have to
be recognized by the ODR system, some features have been preferred to represent this information.
These features are obtained in the features extraction module and they can be wavelet features,
statistical features, the coefficients of some transforms, or others, the more varied, the better as they
can retain much complementary information. Generally, the features extraction module is followed
by a features selection one, in which the importance of these features is estimated and only the ones
that are most relevant will be chosen to represent the information. In this chapter different Features
Selection (FS) methods are tested and compared in order to evaluate the pertinence of each feature
(and of each family of features) in relation to our objective of obstacle classification.

This chapter is structured in two main parts, the first one is presenting a motivation for why this
step of features selection is needed (section 4.1), and then the main possibilities to accomplish
this task (section 4.2) are given. For the FS step there are multiple criteria, concentrated on two
fundamental directions which differ mostly by their evaluation method: filters and wrappers. For
any filter method an attribute evaluator (applied for individual features (subsection 4.2.2) or subset of
features (subsection 4.2.3)) and a search method (detailed in subsection 4.2.1) should be mentioned.
Our method to perform the features selection is described in section 4.3 and the last part is presenting
the experiments we realised in order to perform the selection of features by the methods previously
mentioned (section 4.4). The chapter is ending with conclusion in section 4.5.
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4.1 Motivation for Features Selection

In many supervised learning tasks the input data are represented by a large number of features, but
only a few of them are relevant for predicting the outcome or the target label. The main issue is
that even the best classification algorithms cannot assure a well functioning in situations where the
information is represented by a large number of weakly relevant or irrelevant features. In addition,
besides the low accuracy rate, even the classification time could be very much increased compared to
a situation in which a small set of relevant features is used to represent the same information. On the
other hand, once a good small set of features has been chosen, even the most basic classifiers (e.g.
kNN) can achieve high-level performances. Therefore, the FS process (i.e. the task of choosing a
smaller subset of features which is adequate to predict the target labels) is decisive/essential for the
implementation of an efficient learning/testing system.

Although the FS step is generally performed to select a subset of relevant features to further describe
the same information, it can have other motivations, including:
- performance improvement, to gain in predictive accuracy, especially when redundant data are
present before appling the FS step;
- data understanding, to simply understand or visualize the data or the process that generates the data.

In the literature there are many systems in which the feature construction stage does not consider
the FS operation, but only the features extraction one. As it can be seen from figure 3.3, we applied
the FS step after the features extraction operation and in the following we will demonstrate that the
performances from both viewpoints (accuracy of the classification and processing consumed time)
are improved by this FS operation.

Two main problems can appear in the stage of feature vector construction, and the first one refers to
the impossibility of the algorithm to generalize over the entire data set. Even if it will provide very
good results on data belonging to the learning and validation set, it would not accurately predict the
test set (this stands for the overfitting problem). As we saw in the previous chapter, data obtained
after the features extraction step are not overfitted, therefore we will demonstrate that also after the
FS step they are still proper for the classification process. The second problem which can appear
is regarding the consumption time during the entire classification process (including the tasks of
features extraction, features selection, fusion and classification). From this point of view, the FS step
will help in obtaining a lower processing time in the test stage. After passing through a FS module,
the accuracy could be increased - if in the initial feature vector there were some features contradicted
one eachother and these were rejected in the FS step, or the accuracy could be decreased if too few
features have been retained and there is not enough information to characterize the data.

The features selection step is very important and it has to be done before the classification stage itself.
The experiments have proved us that finding a convenient set or ensemble of features is as important
as finding the best classifier to be used on that set of data. If we do not reach a compact and pertinent
numeric representation of data, even the most performant classifier would not succeed to compensate
the deficit. As mentioned in Chapter 3, two operations are important for a classification problem:
(1) finding the proper FV and (2) finding the best classiffier to process the respective FV. These two
main issues were addressed also in this chapter as follows: both choosing the proper FV (through the
operation of features selection) and choosing the best classifier (on the training set) for the previously
obtained FV. The results are presented in the experiments section. As in the previous chapter, the FV
was constructed from the results provided by different features extraction algorithms. Next, a new FV
provided by the application of the FS method was constructed. On the obtained FV, comprising only
the selected features, the choice for the best SK for the SVM has been performed in the same manner
as it was realised in the previous chapter for the monomodal vectors comprising all 171 features.
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4.2 Methods for Features Selection

For the features selection step there are multiple classification criteria, concentrated on two
fundamental directions which differ mostly by the evaluation criteria:
(a) Filters - these methods select a set or a subset of features by the evaluation of the general

properties of data (the entire ensemble of data is filtered in order to provide the most promising
subset of features), independent of the classification stage. Filters use criteria not involving any
learning machine, e.g. a relevance index based on correlation coefficients or test statistics, and
others.

(b) Wrappers - use the performance of a learning machine trained using a given feature subset. The
respective learning machine is included (or wrapped) in the selection procedure as a “black box”
to score subsets of features according to their predictive power.

The wrapper methods (especially when using the cross-validation method for the evaluation) are
much more time consumers, therefore we choose not to use these type of feature selection methods
in the frame of our system. Even if the learning step of the system is performed off-line, there are
multiple loops in its optimization and where is possible, we choose to use rapid algorithms instead of
slow ones.

Filters provide the cheapest approach to the evaluation of feature relevance, because they select
features without optimizing the performance of a predictor and they provide a complete order of
the features using a relevance index. Methods for computing ranking indices include correlation
coefficients (which assess the degree of dependence of individual variables with the target), or other
statistics (Chi-squared, T-test, F-test among others). Therefore, in the following, we will concentrate
only on filter methods, which include more possible approaches:

i) Single-attribute evaluators - the evaluation of the importance of each feature is done by
considering only the individual predictive capacities of each feature. These approaches provide
a ranked list of the importance of each feature assessed by the used criteria.

ii) Attribute subset evaluators perform the evaluation of the importance of each subset of features.
Filter (but also wrapper) methods can make use of search strategies to explore the space of all
possible feature combinations that is usually too large to be explored exhaustively. Search methods
traverse the attribute space to find a good subset, while the quality is measured by the chosen attribute
evaluator. Therefore, for any filter method we employed an attribute evaluator (applied for individual
features i) or subset of features ii)) and a search method should be mentioned.

For the search methods working with subset evaluators ii) there are two possible selection procedures:
ascending or forward selection where features are added progressively and descending or backward
selection where features are discarded progressively. In a forward selection method one starts with
an empty set and progressively adds features yielding to the improvement of a performance index.
In a backward elimination procedure one starts with all the features and progressively eliminates the
least useful ones. These selection procedures may lead to different subsets and, depending on the
application and the objectives, one approach may be preferred over the other one. In the experiments
we choose the forward direction, because it is the method most used in practice.

In the following, we will detail the search methods and the attributes evaluators used in the FS step.

4.2.1 Search methods

Search methods get through the attribute space to find a good subset, but the quality of the respective
subset is measured by an attribute subset evaluator. The most utilised search methods are presented
and briefly described in the following:
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4.2.1.1 Best First

The Best First method search the features space by greedy hill climbing combined with a backtracking
facility. This method explores the entire space of features, without being interrupted by any stopping
criteria. It does not stop when the performance is reduced, but it has a parameter that specify how
many consecutive nonimproving nodes must be encountered before the system backtracks. Therefore,
a Best First search will explore the entire search space and involves limiting the number of fully
expanded subsets that result in no improvement. It can search forward from the empty set of
attributes, backward from the full set, or start at an intermediate point and search in both directions
by considering all possible single-attribute additions and deletions (Witten & Frank, 2005).

4.2.1.2 Linear Forward

This search method takes a restricted number of k attributes into account. Fixed-set selects a fixed
number k of attributes, whereas k is increased in each step when fixed-width is selected. The search
uses either the initial ordering to select the top k attributes, or performs a ranking (with the same
evaluator the search uses later on). The search direction can be forward, or floating forward selection
(with optional backward search steps) (M. Gütlein, 2006).

4.2.1.3 Genetic Search

This method uses a simple genetic algorithm described in (Goldberg, 1989). In order to select
the important features, the Genetic Search is inspired from the genomics evolution. Like the
genomic characterize an individual, also some selected features from an entire set of features could
characterize the data set. The algorithm makes that a population randomly initialized by some
crossovers and mutations to evolve by the elimination of the individuals which minimize the weights.
This expensive search is very sensitive to the parametrization, but it provides a global solution, unlike
the Greedy Stepwise method which is more a local-optimal one (Witten & Frank, 2005).

There are some other searching methods (e.g. Exhaustive Search, Random Search) but generally,
they offer poorer results and they are much time consumers. For example, Random Search randomly
searches the space of attribute subsets. If an initial set is supplied, it searches for subsets that improve
on (or equal) the starting point and have fewer (or the same number of) attributes. Otherwise, it
starts from a random point and reports the best subset found (Liu & Setiono, 1996). Exhaustive
Search is another possible method, which searches starting from the empty set, and reports the
best subset found. If an initial set is supplied, it searches backward from this starting point and
reports the smallest subset with a better (or equal) evaluation (Witten & Frank, 2005). Like the Best
First method, there is the Greedy Stepwise one, which may progress forward from the empty set
or backward from the full set1. This Greedy Stepwise method searches greedily through the space
of attribute subsets, selecting an descriptor in each iteration. Unlike Best First method, it does not
backtrack, but terminates as soon as adding or deleting the best remaining attribute decreases the
evaluation metric. In (Guyon & Elisseeff, 2003) it is mentioned that this method is not optimal,
because there are features showing a great discrimination power only in the presence of some
other features. Rank Search - This method sorts attributes using a single-attribute evaluator and
then ranks promising subsets using an attribute subset evaluator. It starts by sorting the attributes
with the single-attribute evaluator and then evaluates subsets of increasing size using the subset
evaluator-the best attribute, the best attribute plus the next best one, and so on. This procedure has
low computational complexity: the number of times both evaluators are called is linear in the number
of attributes. Using a simple single-attribute evaluator, the selection procedure is very fast. We did
not use this scheme because the results are the same as in the case of Ranker, which is described next.

1Because the Greedy stepwise method has provided identic results with Best First (in some cases maybe one or two features were
different, but all the rest were the same), we decided to replace it with the Linear Forward Selection, which is an extension of BestFirst.
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In the experiments results section, three from the previous mentioned search methods (i.e. Best
First, Linear Forward and Genetic Search) would be used in combination with an attribute subset
evaluator ( ii) ) and the number of selected features will be determined by the combination of these
two procedures.

Finally we describe the Ranker method, which is not a search method for attribute subsets, but a
ranking scheme for individual attributes.

4.2.1.4 Ranker

It sorts attributes by their individual evaluations and must be used in conjunction with one of the
single-attribute evaluators ( i) ) and not with an attribute subset evaluator ( ii) ). Ranker not only
ranks attributes but also performs attribute selection by removing the lower-ranking ones. A cut-off
threshold (below which attributes are discarded) or the number of attributes to be retained could be
mentioned.

4.2.2 Single-attribute evaluators

Single-attribute evaluators (i) are used with the Ranker search method to generate a ranked list of
features from which Ranker discards a given number. In the same manner, they can be used in the
Rank Search method. In the case of single-attributes evaluators the main idea is to order the features
regarding to a weight value (the feature importance) determined from a criteria. There are many
criteria which could be used and they are briefly reviewed in the following.

4.2.2.1 Chi2 (χ2)

Chi Squared attribute evaluator computes the chi-squared statistic with respect to the target. χ2(y, x)
measures the dependence (or independence) between the attribute y and the target x. If the attribute y
and the class x are independent, then χ2(y, x) is nul. Generally, the following weight is used

χ2(y, x) =
N[P(y, x)P(¬y,¬x)−P(y,¬x)P(¬y, x)]2

P(y)P(¬x)P(y)P(¬x) , (4.1)

where P(y, x) is the probability that the attribute y would have an influence on the target x, P(¬y, x) is
the probability that the absence of the attribute y have an influence on class x. N represents the number
of examples (images in our case) from the training set (on which the main selection statistics are
calculated). Finally, when the results are averaged above all the classes (M), the weight corresponding
to the selection of attribute y will be:

χ2(y) =
M∑
k=1
P(x)χ2(y, x). (4.2)

4.2.2.2 Information Gain and Information Gain Ratio

Information theory indices are most frequently used for feature evaluation: information Gain or “the
Kullback-Leibler divergence” evaluates attributes by measuring their information gain with respect
to the class or the target. This method ranks features according to the mutual information between
each feature and the labels. Recall that the mutual information between two random variables X, Y is
defined as I(X,Y) =

∑
x,y p(x,y)log[p(x,y)/(p(x)p(y))]. Information (entropy) contained in the class

distribution could be written as: H(Y) = −∑Ki=1P(yi)log2P(yi), where P(yi) = mi/m is the fraction of
samples x from class yi, i = 1...K. The same formula is used to calculate information contained in the
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discrete distribution of feature X values: H(X) = −∑i P(xi)log2P(xi).

Information contained in the joint distribution of classes and features, summed over all classes, gives
an estimation of the importance of the feature and it could be written:

H(Y,X) = −
∑
i

K∑
j=1
P(y j, xi)log2P(y j, xi) (4.3)

where P(y j, xi), j= 1...K is the joint probability (density for continuous features) of finding the feature
value X = xi for vectors x that belong to some class y j and P(xi) is the probability (density) of finding
vectors with feature value X = xi. Low values of H(Y,X) indicate that vectors from a single class
dominate in some intervals, making the feature more valuable for prediction. Information is additive
for the independent random variables. The difference MI(Y,X)=H(Y)+H(X)−H(Y,X) may therefore
be taken as “mutual information” or “information gain”. Mutual information is equal to the expected
value of the ratio of the joint to the product probability distribution, that is to the Kullback-Leibler
divergence:

MI(Y,X) = −
∑
i, j
P(y j, xi)log2

P(y j, xi)
P(xi)P(y j)

= DKL(P(y j, xi)|P(y j)P(xi)) (4.4)

where the Kullback-Leibler divergence is defined as:

DKL((P(X)||(P(Y)) =
∑
i
PY(yi)log

PY (yi)
PX(xi)

≥ 0, (4.5)

A feature is more important if the mutual information MI(Y,X) between the target and the feature
distributions is larger. Decision trees use closely related quantity called “information gain” IG(Y,X).
In the context of feature selection this gain is simply the difference IG(Y,X) = H(Y)−H(Y |X) between
information contained in the class distribution H(Y), and information after the distribution of feature
values is taken into account, that is the conditional information H(Y |X). This is equal to MI(Y,X)
because H(Y |X) = H(Y,X)−H(X). A standard formula for the information gain is easily obtained
from the definition of conditional information:

IG(Y,X) = MI(Y,X) = H(Y)−H(Y |X)
= H(Y)+

∑
i j
P(y j, xi)log2P(y j|xi) = H(Y)−

∑
i j
P(xi)[−P(y j|xi)log2P(y j|xi)] (4.6)

where the last term is the total information in class distributions for subsets induced by the feature
values xi, weighted by the fractions P(xi) of the number of samples that have the feature value X = xi.

Various modifications of the information gain have been considered in the literature on decision trees
(J.R. Quinlan, 1993), aimed at avoiding bias towards the multivalued features. These modifications
include information gain ratio (described in the following) and symmetrical uncertainty (described in
subsection 4.2.2.5).

Gain Ratio attribute evaluator computes the worth of the attributes by measuring their gain ratio
with respect to the class. Its computation consists in dividing the information gain by the associated
entropy,

IGR(Y,X) =
MI(Y,X)
H(X)

=
H(Y)−H(Y |X)

H(X)
=
H(X)+H(Y)−H(X,Y)

H(X)
. (4.7)

Like the information gain, the information gain ratio is a low-consumption time criteria.
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4.2.2.3 ReliefF - Recursive Elimination of Features

ReliefF attribute-evaluator is an instance-based technique: it samples instances randomly and checks
neighbouring instances of the same and different classes. It operates on discrete and continuous
class data. Parameters specify the number of instances to sample, the number of neighbors to check,
whether to weight neighbors by distance, and an exponential function that governs how rapidly
weights decay with distance.

The Relief algorithm was first proposed by (Kira & Rendell, 1992), and then analyzed in (Guyon
et al., 2006). The algorithm holds a weight vector over all features and updates this vector according
to the sample points presented. The Relief feature selection algorithm was shown to be very efficient
for estimating features quality, Kira & Rendell proving that under some assumptions, the expected
weight is large for relevant features and small for irrelevant ones.

Relief was initially designed to treat the binary classification problems: in each step of the algorithm’s
loop, one vector from the training set is considered together with its closest neighbors. The importance
of each such vector is updated in the following manner:
• if the vector has the same class as its neighbour, the weights of the features having different

values in these two vectors will be decreased (the respective features does not illustrate the fact that
the two vectors belong to the same class).
• if the vector has a different class compared by its neighbour, the weights of the features having

different values in these two vectors will be increased (the respective features will surely illustrate
the fact that the two vectors belong to some different classes).

Relief was extended to deal with multi-class problems by (Kononenko, 1995) and the new version is
called Relief-F. Instead of using the distance to the nearest point with an alternative label, ReliefF
looks at the distances to the nearest instance of any alternative class and takes the average.

The Relief method is a classical example of multivariate filter. The so-called “multivariate” methods
take into account feature dependencies and potentially achieve better results because they do not make
simplifying assumptions of variable/feature independence. Most multivariate methods rank subsets
of features rather than individual features. The ranking index derived from the Relief algorithm is:

C( j) =
∑m
i=1
∑K
k=1 |xi, j− xMk(i), j|∑m

i=1
∑K
k=1 |xi, j− xHk(i), j|

. (4.8)

The algorithm is based on the K-nearest-neighbors from the same class, and the same number of
vectors from different classes. To evaluate the index, for each example xi, the K closest examples
of the same class xHk(i), k = 1...K (nearest hits) and the K closest examples of a different class xMk(i)
(nearest misses) are identified in the original feature space (all features are used to compute the closest
examples). Then, in projection on feature j, the sum of the distances between the examples and their
nearest misses is compared to the sum of distances to their nearest hits. In equation 4.8, the ratio of
these two quantities was used to create an index independent of feature scale variations.

4.2.2.4 Significance

It evaluates the worth of an attribute by computing the Probabilistic Significance as a two-way
function, like attribute-class and class-attribute association. If an attribute is significant, then there
is a strong possibility that elements with complementary sets of values for this attribute will belong to
complementary sets of classes, and alternatively, given that the class decisions for two sets of elements
are different, it is expected that the significant attribute values for these two sets of elements should
also be different (Ahmad & Dey, 2005).



94 Features selection

4.2.2.5 Symmetrical Uncertainty

This method evaluates the worth of an attribute by measuring the symmetrical uncertainty with respect
to the class. One possibility to discard the redundant features is to choose a subset of individual
features correlated with the target, but having a low correlation between eachother. The correlation
between 2 features A and B could be measured using the symmetrical uncertainty

SU(Y,X) = 2∗ gain
H(X)+H(Y)

= 2
MI(Y,X)

H(X)+H(Y)
= 2∗ H(X)+H(Y)−H(X,Y)

H(X)+H(Y)
∈ [0,1] (4.9)

where H(X,Y) is the entropy function of A and B, and it is calculated starting from the common
probabilities of each combinations of values A and B. The symmetric uncertainty always lies between
0 and 1. The symmetrical uncertainty coefficient seems to be particularly useful due to its simplicity
and low bias for multi-valued features (Hall, 1999a).

The inconvenient with these methods is that the result is a list of ranked features, from which someone
would have to choose the number of features to retain. The winner features could be decided by an
integer number specifying the number of features to retain or by a threshold specifying the value
above which the features are retain. In the next section (at the experimental results) we will see
the thresholds that have been considered together with the values illustrating their efficiency (by the
accuracy measure).

4.2.3 Attribute subset evaluators

Subset evaluators take a subset of attributes and return a numeric measure that guides the search.
The approaches combining a feature search method and a feature-subset evaluator measures the
quality of a descriptor by considering a context: the other attributes. These approaches generate some
candidate solutions by the subset searching method and evaluate the performance with the evaluator,
which asses a weight to the generated subset of features. Also, the evaluator allows a comparative
analysis between all the generated subsets of features in order to conduct the search and finally
choose the winner subset of features.

Generally, one of the two following methods are used as an attribute subset evaluator.

4.2.3.1 CFS (Correlation-based feature subset evaluator)

Correlation-based Feature subset Evaluator (CFS) subset evaluator assesses the predictive ability of
each attribute individually and the degree of redundancy among them (Hall, 1999b). The weight
associated to a subset of features is calculated by the correlation matrix. Generally, subsets of
features having low intercorrelation but highly correlated with the class are preferred. CFS subset
evaluator imposes a ranking on feature subsets in the search space of all possible feature subsets.
A forward selection, which begins with no features and greedily adds one feature at a time until no
possible single feature addition results in a higher evaluation was used in the frame of this thesis.
The search will terminate if five consecutive fully expanded subsets show no improvement over the
current best subset.

If a group of k features has already been selected, correlation coefficients may be used to estimate
correlation between this group and the class, including inter-correlations between the features.
Relevance of a group of features grows with the correlation between features and classes, and
decreases when inter-correlation grows. The CFS algorithm is based on equation 4.10, calculating
average correlation coefficients between features and classes and between different features. Denoting
the average correlation coefficient between these features and the output variables as rky and the
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average between different features as rkk the group correlation coefficient measuring the relevance of
the feature subset is defined :

J(Xk,Y) =
krky√

k+ (k−1)rkk
. (4.10)

It is usually thought that feature correlation (or anticorrelation) means feature redundancy, but this is
not true: there are examples in which a perfect separation is achieved using two features while each
individual feature provides a poor separation.

4.2.3.2 CSE (Consistency-based feature subset evaluator)

It evaluates the worth of a subset of attributes by the level of consistency in the class values when
the training instances are projected onto the subset of attributes. The method implies the taking
out of 10% from the total number of instances (the training data), run the algorithm and check the
inconsistency criterion based on its selected features on the remaining 90% of the data. Then, add
those patterns causing inconsistencies to the training data and re-run the algorithm. This process
continues until the number of inconsistencies is below a tolerable value.

The Consistency-based feature Subset Evaluator (CSE) method evaluates the value of a subset of
features, the purpose being to find the smallest subset of features which best identify the examples
of a class with the same consistency as the complete set (Liu & Setiono, 1996). The inconsistency
phenomenon appears when two or more vectors with the same subset of feature values are associated
with different classes. The inconsistency count is equal to the number of samples with identical
features, minus the number of such samples from the class to which the largest number of samples
belong. Summing over all inconsistency counts and dividing by the number of samples the
inconsistency rate for a given subset is obtained. This rate is an interesting measure of feature subset
quality, being monotonic (it decreases when the feature subsets increases).

A feature is relevant if it contains some information about the target. Relevance indices discussed in
the previous sections treat each feature as independent (with the exception of Relief algorithm and
the CFS coefficient), allowing for feature ranking. Those features that have relevance index below
some threshold are filtered out as being not useful. There are limitations to individual feature ranking,
because of the underlying feature independence assumptions made by “univariate” methods: features
that are not individually relevant may become relevant in the context of others, and features that are
individually relevant may not all be useful because of possible redundancies (Guyon et al., 2006).

To conclude, by selecting a single-attribute evaluator (like ChiSquared, GainRatio and others)
accompanied by the ranker method, a potentially faster but less accurate approach is reached. It
evaluates the attributes individually and sort them, discarding attributes that fall below a chosen
cut-off point. On the other side, by combining one attribute subset evaluator (like CFS or CSE) with
one search method (like Best first, Greedy among others) attribute selection is normally done by
searching the space of attribute subsets.

The ensemble attribute evaluators (i) provide an ordered list of features according to the importance
given by the use criteria. On this list of features, generaly some threshold criteria are used, in order to
select only a part of it. On the other side, the individual attribute evaluators (ii) select a fixed subset
of features using some methods of searching and generation of ensembles of features. Both methods
were selected to be tested in the following, and all the methods we employed in our processing are
summarized in table 4.1.
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4.3 Our proposed method for Features Selection (FS)

In this section we will see how the features selection methods described by now are generally applied
and we will next present our proposed method for performing the features selection. Generally, the
FS methods are applied directly, on the entire set of data from the training, but we propose also the
application by a cross-validation procedure, due to the advantages it implies.

Cross-validation is generally used for model selection (e.g. find the best classifier or kernel, find
the best regularization hyperparameters), but it could be also applied for features selection, since
cross-validation provides an estimate of the generalization ability of models. Actually, the prediction
ability of models depends both on the features used and on the complexity of the model. We have
considered to use the cross-validation process in the FS stage too, and indeed the time needed for
the algorithm to perform the selection process is much more increased compared to the situation in
which no cross-validation process is applied. Still, the obtained benefits are both from the accuracy
of the recognition and the classification time. It is essential to estimate the computational burden of
algorithms for features selection problems, because the computational time is essentially conducted
by the search strategy and by the evaluation criteria. The evaluation criteria may also be expensive
as it may involve training a classifier or comparing every pairs of examples or features. The fact
that this processing of FS performed in the cross-validation loop takes much more time than another
one not using the cross-validation process is not critical for our system, because the FS operation is
performed off-line, when the system is not running on the road, therefore no real-time operating is
required in this stage.

In order to understand how the FS methods described in the previous section were applied in the
frame of our experiments, we grouped all of them in table 4.1. There are two sets of methods, the first
set is comprising the methods noted with FS1→FS6 and the second set contains the other 6 methods,
denoted FS7→FS12. This last set is further divided in two groups, depending on the procedure the
features selection methods has been applied2:

- by a cross-validation technique - the FS method was applied on each individual fold, therefore
there is a number equal to the number of folds for the application of the respective FS method; in our
case a number of 100 folds have been chosen and we denote this situation 100f-CV, or

- on the entire training set of data - when the FS method was applied only once. This situation is
denoted FullTS.

The attribute selection method for the cases FS1→FS6 was applied using the full training set which
means that the FS method was applied on all the data from the training set at a time. Therefore, a
list of ranked features will be obtained as result for these methods. The first attribut from this list
would have the greater importance, the second one from the list would have a lower importance and
so forth, the importance being decreased as we go further to the end of the list.

Unlike this, for the methods FS7→FS12 if the FS method would be applied directly on the full
training set, the result would be an ensemble of features (in the same manner as the two methods
CFS and CSE have been previously described), provided ordered, in function of features’ name.
Therefore, no information about the importance of the features in the subset will be given. In
addition, the number of features selected is very small. As we previously mentioned, we considered
to perform the FS for the cases FS7→FS12 through the cross-validation process because of 2 reasons:
(1) the result will be a list of features containing more attributes than in the case of the application of
the same method on the full training set and, in addition, (2) each feature will be accompanied by a
value showing in how many folders (from the total number of k = 100 folders) the respective feature
has been selected as being relevant. Therefore, values different from zero will indicate features
important or relevant in a specific degree or rank (discretized values with the step of 1 in the domain

2In both cases the same data set, i.e. the training one, is used when applying the FS method.
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Table 4.1: Features Selection (FS) methods

(i)Single-attribute Evaluators (ii) Subset-attribute Evaluators
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[0;100]).

By including the FS process in the cross-validation loop, the number of selected features will be
determined as the number of elements of the reunion of all sets selected in each of 100 folders of the
cross-validation loops. Therefore, to produce the final FV, it is taken into account all set of training
data, but it is comprised in the 100 folds. The FS process may be repeated for many sub-samples of
the training data and the union of the subsets of features selected may be taken as the final “stable”
subset. An index of relevance of individual features can be created considering how frequently
they appear in the selected subsets. This manner to apply the FS operation, by the cross-validation
procedure would be very helpful (by creating this index of relevance for each feature) especially in
the cases in which the FS method does not provide such information. In our situation, these are the
FS methods based on Search, i.e. FS7→FS12. As in the case of methods FS1→FS6 exists such an
index of relevance (provided directly by the FS method), also in the case of methods FS7→FS12 it
will be available by the application of the FS method by a cross-validation procedure. Using this
index of relevance, the features would be easier evaluated individually.

Because it is not known beforehand which method of FS will provide best results, instead of selecting
a single FS method from the very beginning, we propose to evaluate multiple FS methods, to evaluate
their results and only after this step to choose the proper one for our problem.

If two FS methods will provide two different FVs but with the same accuracy rate, the FV having a
smaller number of coefficients should be chosen as the winner one. A smaller number of features
could lead to the elimination of some entire families of features (especially if the reduction is a severe
one) and in this case the time to compute the new FV will be smaller. Another possibility to reduce
the extraction time is that when discarded the features, some of them to be separable ones. The best
scenario will be that when before ending the FS process if a majority of features from a family is
retained or discarded, then all the features from that family to be retained or discarded by the moment
when that FS operation will be stopped.

We have at our disposal the methods provided in table 4.1, from which some of them are capable to
provide an index of relevance directly (these are the methods FS1→FS6), while some of them can
give such an index only indirectly, by the use of the cross-validation procedure (these methods are
FS7→FS12). In the following, we propose to evaluate the methods given in table 4.1.
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If in the case of the methods FS1→FS6 we chose to use thresholds, we will have at our disposal also
the possibility to apply some thresholds for the methods FS7→FS12, because both types of methods
will provide rank values. These thresholds will be employed to select more or less features from the
ones already rendered by the FS method.

4.4 Experiments and results

From the previous chapter, we recall figure 3.3 where the feature construction module was comprising
a features extraction and a features selection (FS) steps. In this chapter, we consider two types of FVs,
which we called monomodal and bimodal. The monomodal FV is the one obtained on the VIS or IR
modality individually, therefore it could be seen as a type of FVs dedicated to monomodal system
(i.e. systems processing a single type of data). Unlike these systems, are the bimodal ones, which
are capable of processing two types of information (in our case VIS and IR). The benefits are from
both sides: first, the monomodal ones are not so constrained as regarded the processing time, because
they can manage the data in a parallel way; still, performances are higher in the case of the bimodal
systems. By referring to figure 3.3, the FS step could be performed:

- imediately after the individual vectors have been obtained from the features extraction step, and
we would have monomodal FVs to which the FS operation will be applied (they will be referred with
an “i” at the power index, showing that the FS operation has been applied on VIS and IR vectors
individually) or

- after the extracted features have been combined in a bimodal FV and in this case we would have
a concatenated FV (it will be denoted with an “c” at the power index, because the FS operation has
been applied on the concatenated VISIR vector) on which the FS will be applied.

These individual or concatenated FVs will be introduced in this chapter and they can be reached in
tables 4.3, 4.4, 4.5 and 4.6 but their specific use will be described widely in the next chapter, when
we detail the proposed fusion schemes. Because these two types of FVs are needed in the fusion
processings, but their purchase is very much influenced by the mode the FS scheme has been applied,
we choose to describe also these bimodal FVs in this chapter.

Table 4.2: Different notations for the used FVs

Input FVs Obtained FVs
Application Bimodal systems Monomodal systems

Without the FS step (VIS IR) (VIS ) (IR)
With the FS step

(FS (VIS IR)) (sVIS IRc) (sVIS c) (sIRc)
(FS (VIS )FS (IR)) (sVIS IRi) (sVIS i) (sIRi)

In table 4.2 it was noted (VIS ) (respective (IR)) the monomodal vector containing the features
extracted from the VIS image (respective from the IR one). The notation (VIS IR) is refering to the
vector which contains both the features extracted from the VIS image and the features extracted
from the IR one. When the notation FS (VIS ) (respective FS (IR) or FS (VIS IR)) is used, we are
refering to the fact that the FS has been performed on the vector mentioned in the paranthesis. The
use of the expresion FS (VIS )FS (IR) is refering to the use of the FS method individually, on the
VIS and IR domain. The difference between the notations FS (VIS IR) and FS (VIS )FS (IR) is that
in the first case the FS was applied on the concatenated FV VIS IR, while in the second case the
selection has been realised separately, on each individual FV of the two domains. It was denoted
(sVIS IRc) the bimodal vector which contains the features from both domains, VIS and IR, after
the FS operation has been performed on the concatenated vector VIS IR. By the separation of the
features in monomodal vectors, the FVs denoted (sVIS c) and (sIRc) has been obtained. In the case
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the selection scheme is applied on the individual monomodal vectors, the FVs obtained could be
(sVIS i) and (sIRi), and they will be combined in the bimodal vector (sVIS IRi).

For the results presented in this chapter, the selection has been realised at the level of vector
AllFeatures coresponding to the respective modality and mentioned in table 3.2. Recall that the
vector AllFeatures is having a dimension of 171 features in the monomodal case and 340 features for
the bimodal case. If the selection has been applied on the monomodal FVs, it means the respective
method has been applied on VIS and IR separately, the vectors sVIS i and sIRi have been obtained
and then, by their combination the vector sVIS IRi was acquired (the VIS and IR features have been
rearranged in the new FV in function of their importance). If the selection has been realised on the
bimodal vector VISible and InfraRed concatenated (VISIR), then the FS method has been applied
on this vector, obtaining sVIS IRc and then by the identification of features belonging to the VIS or
IR domains, the vectors sVIS c and sIRc have been formed (in which the VIS and IR features are
arranged by their importance).

A critical aspect of feature selection is to properly assess the quality of the selected features. This
section reviews some aspects of the experimental design. The obtained FVs after the FS process will
be evaluated and compared with the ones from the table 3.3. Therefore, we will consider only the
classification problem with 4 classes of objects (because the results are higher than those obtained
for the classification problem with 8 classes of objects).

When performing the FS by the classical methods from the literature or by the method we propose, it
has to be noticed that the obtained processing time (which includes the features extraction time and
the classification time) at the test stage should be decreased, as fewer features will composed the FV.
Thus, besides the evaluation criteria of the accuracy, the time required to extract the features which
compute the FV will be also considered.

The classifier used in this first part of the chapter, is also a kNN, with k = 1 for the same reason it was
employed in the previous chapter: the simplicity in its usage, because it does not require a parameter
optimization process (as the SVM does). In addition, the main purpose in this step was to optimize
the FV, not the classifier hyper-parameters. The performance criterion of the 1-NN classifier is
the balanced accuracy (bAcc) obtained on the training dataset, when a 10 folds cross-validation
procedure is performed.

Next, the performances obtained by the 1-NN when using 10f-CV for the FVs obtained after the
application of different FS methods will be compared. This means that first, the FS method has been
applied on the data from the training set and new FVs have been obtained. Next, with the information
encoded by these FVs an 1-NN classifier has been tested by a 10f-CV procedure on the same training
data set.

We are interested in selecting the most pertinent FS methods (also for computing the average rank
value needed for our proposed FS method) after the criteria: accuracy obtained on each modality VIS
and IR has to be above a specified value for both of them in order that the respective FS method to
be retained. An important question is: how we should establish the respective value which should
be overcome, in order that only the best methods to be provided by this criteria? As the FS methods
start from the AllFeatures FVs, we will compare the accuracies provided after the FS step with the
accuracies obtained in the previous chapter for the vectors AllFeatures. If after the FS process the
obtained accuracies (for both the modalities VIS and IR) will be at least as high as the ones obtained
with the initial FV, the respective method will be selected.

To emphasize the best obtained accuracies, we use italic for the accuracy values which overcome the
value 100% * Accmax (where Accmax is the accuracy obtained for the FV having the maximum size,
i.e. the one with 171 features for the monomodal cases or the one with 340 features from the bimodal
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case) obtained for the same vectors in the features extraction step.

In order to exemplify, on the columns sVIS i and sVIS c the accuracy values have been compared
with the accuracy values obtained in the table 3.3, therefore with the vector comprising the maximum
number of features. Where such values are reached, it means that even a FV comprise less features
than the maximum-size one, it reaches a good accuracy, sometimes even better (when the value is
italicized) with the help of the FS operation. Where the accuracy value is with bold, it means that the
respective FV has provided a value overcoming 97% from Accmax, thus even after the reduction of
the FV dimension, the remaining features are able to provide good results.

Once we have described the input FVs, the classification problem and the evaluation criteria, we can
start by presenting the obtained results. First, in order to construct the average rank value (needed
by our FS method) we will evaluate the methods from the table 4.1. In the following we want to see
which one provides the best results based on the criteria previously mentioned.

The methods based on the individual selection of features (FS1→FS6) provide only an arranged list
of features, in function of the importance the criteria is asserting to each attribute, and it does not
perform a real reduction of the FV as it is happening in the case of the methods which select subsets
of features (FS7→FS12).
In the case of methods of individual selection of features, the reduction of the FV has to be realised
by the retaining from the arranged FV of the best features, the most important ones, and by ignoring
the others. For the begining, in the table 4.3 the results obtained for these FV methods (from the
table 4.1) are presented. Thus, at the individual selection of attributes there are 6 methods FS1→FS6
in table 4.3 but they are grouped in two halves because for each method two possibilities of selecting
features (denoted a) and b) ) have been considered.

In each of the half it could be noticed there is a first line where on the column denoted the name of
the FS method it is specified AllFeatures and this line is followed by the 6 methods, each comprising
three values for the threshold. In fact, the 3 methods which have associated a threshold value start
from the ranked list provided by the application of the respective FS method on the full training set
and select features as the threshold specifies. Therefore, it should be mentioned a fourth method in
each of these category of 3 methods, the one applied on the FullTS.

Considering that all the methods from this table use a Ranker selection method which does not select
a subset of features, but it just arrange the features in the order of their importance, it could be
mentioned that all 6 methods will provide the same number of features, i.e. the maximum number
of features from each modality. In fact, these methods do not discard any feature, so they provide
the same set of features as no FS method has been performed at all. It is not reducing the size of the
feature vector, therefore the accuracy obtained with these vectors is the same as the one obtained for
the vectors AllFeatures. This is the reason we did not specify a fourth method, but we consider a
single one for all the 6 FS methods3 at the beginning of each half from the table.

Because each of the 6 methods only provide a ranked list of features, we are expected that all the
features (or at least the majority of them) to present a rank value strict positive. By the normalisation
of this rank value in the domain [0,100], the selection thresholds could be chosen equally distributed
in the specified domain of the rank values. Thus, in order to select only the most important attributes
from the ranked list provided by the algorithms, 3 values of threshold have been fixed (the methods
FSn_Thr, where n ∈ [1;6] and Thr ∈ {25,50,75}). The application of the three mentioned thresholds
has been considered in two different manners:

- case a) in which the threshold values 25, 50, 75 are refering to the percentage of attributes
3The order in which the features are ranked by each of the 6 methods is different and it is provided by each method individually.
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(denoted nbFeat) desired to be selected from the entire set. Therefore, for a threshold of 25, only the
most important features from the ranked list will be selected, until their number is reaching a 25%
from the entire feature set. The dimension of the entire feature set could be 171 or 340 (is depending
if the method has been applied on the individual or concatenated FVs) and the selected features in
the case of the threshold at the value of 25, a number of 43 or 85 features will be selected (first half
of the table).

- case b) in which the threshold values are refering to a rank value (denoted rankThr) which has
to be overcome in order that a feature to be selected. For example, the method using the threshold at
the value of 75 will select a smaller number of features than the method using a threshold of 50, and
this latter will select a number of features even smaller than the one employing a threshold of 25. In
this last case, all the features having a rank value higher than 25 will be selected (second half of the
table).

The first indicator from the table 4.3 (the one preceeded by the sign→) is showing the dimension of
each vector after the application of the respective features selection method. The second indicator
(the one after the sign→) is showing the balanced accuracy obtained with the 1-NN classifier when
using the 10f-CV procedure applied on the training set. The data from the training set has been
characterized only by the features retained after the application of the respective FS operation.

For the Ranker methods (FS 1 → FS 6) the best results are obtained for the FS methods with a
threshold value of 75 (from the first half of the table) and for the methods from the second half of the
table having a threshold of 25. Still, it is important to notice that the values Accmax are sometimes
overcome by these FVs from which some features have been rejected, which is suggesting that there
are features contradicting others and these FS algorithms have succeeded in their elimination from the
final FV. Good recognition rates (above 97%* Accmax) are also obtained for FVs with fewer features,
even for the methods which have selected a number of almost 1/2 or 3/4 from the entire number
of features. We can exemplify with the FVs from the individual selection: FS1a_75, FS2a_50,
FS2a_75, FS3a_50 and so on, or from the concatenated selection: FS1a_50, FS1a_75, FS2a_75,
FS3a_75 and others. All these FS methods provide good results, even if not all of them meet the
criteria to select the FS method, criteria outlined earlier: to overcome Accmax on both modalities
VIS and IR. However, they give results close to those obtained with the whole set of features. For
example, the method FS4a_50 with only half features obtains all results above 97%*Accmax, and it
even overcome the value Accmax for the vector obtained on the IR domain.

From the table 4.3 it could be noticed there are FVs which has succeeded in overcoming the
value Accmax, and they also meet our selection criteria, i.e. to fulfill the requirement that this
should happened on both modalities in order that the respective FS method to be retained. In this
manner, few FS methods have been selected: for the individual selection: FS2a_75 (it succeed to
overcome even all the 3 accuracies from the VIS, IR and VISIR domains) and FS6a_75, while for
the concatenated selection we have: FS2a_75, FS5a_75, FS6a_75 and FS5b_25 (they are also with
dark gray value on the table 4.3).

For the selected FS methods, in table 4.4 we showed the percentage variation for the accuracy and
the dimension of the FV. Thus, almost all selected methods have a number of features of 75% on
each modality in the individual selection case. The improvements from the accuracy point of view
are higher on the VIS than on the IR modality (above 3.5% compared to not much above 1%). On the
VISIR FV there is a smaller improvements for the case FS2a_75 or even a negative one for FS6a_75.
As concerning the FS methods obtained when using the concatenated selection, there is a single
method (FS5b_25) selecting almost all features (96% from VIS, 99% from IR and 98% from VISIR)
and still it does not provide very much improved accuracies. In the following, we will not consider
this FS method as being selected, because neither it provides good accuracies (compared with the rest
of the selected methods), nor the number of retained features is small. The other three methods are
much better because with almost 75% of the initial data they give accuracies higher with 1.5% on VIS.
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Table 4.3: Accuracy obtained with the features selected by the Ranker methods (FS1→FS6)
using a 10f-CV procedure applied on the training set of data and using a 1-NN classifier

Features selection No. of selected features→ bAcc obtained with 1-NN and 10f-CV
methods for the resulted FV containing the selected features

FS method threshold sVIS i sIRi sVIS IRi sVIS c sIRc sVIS IRc

AllFeatures nbFeat 171→ 83.7 171→ 88.0 340→ 94.4 171→ 83.7 171→ 88.0 340→ 94.4
FS1a_25 ≥ 25 43 → 79.9 43 → 82.5 85 → 89.0 30 → 74.7 56 → 84.5 85 → 88.0
FS1a_50 ≥ 50 86 → 81.0 86 → 85.0 170→ 92.5 81 → 81.7 90 → 85.9 170→ 92.0
FS1a_75 ≥ 75 128→ 86.4 128→ 87.3 255→ 94.0 121→ 84.8 135→ 87.9 255→ 91.9
FS2a_25 ≥ 25 43 → 81.0 43 → 82.2 85 → 88.9 30 → 79.5 56 → 84.7 85 → 87.1
FS2a_50 ≥ 50 86 → 82.8 86 → 85.4 170→ 92.5 80 → 81.9 91 → 85.9 170→ 91.4
FS2a_75 ≥ 75 128→ 86.6 128→ 88.6 255→ 94.7 124→ 85.2 132→ 88.3 255→ 92.2
FS3a_25 ≥ 25 43 → 81.1 43 → 83.1 85 → 91.8 35 → 82.3 50 → 84.2 85 → 91.3
FS3a_50 ≥ 50 86 → 82.2 86 → 86.4 170→ 92.7 88 → 82.2 83 → 86.3 170→ 90.6
FS3a_75 ≥ 75 128→ 85.0 128→ 85.5 255→ 93.9 122→ 82.8 134→ 88.4 255→ 92.8
FS4a_25 ≥ 25 43 → 80.7 43 → 86.3 85 → 89.7 36 → 76.2 49 → 86.8 85 → 90.4
FS4a_50 ≥ 50 86 → 82.1 86 → 89.9 170→ 92.8 69 → 81.0 101→ 86.7 170→ 93.3
FS4a_75 ≥ 75 128→ 83.1 128→ 86.3 255→ 94.7 113→ 82.6 143→ 87.4 255→ 93.8
FS5a_25 ≥ 25 43 → 79.4 43 → 81.7 85 → 88.9 38 → 79.0 48 → 82.6 85 → 89.5
FS5a_50 ≥ 50 86 → 83.0 86 → 87.4 170→ 92.2 87 → 82.3 84 → 86.3 170→ 91.5
FS5a_75 ≥ 75 128→ 85.3 128→ 87.9 255→ 93.0 124→ 85.0 132→ 88.2 255→ 92.6
FS6a_25 ≥ 25 43 → 79.6 43 → 82.3 85 → 87.3 31 → 80.0 55 → 84.2 85 → 87.9
FS6a_50 ≥ 50 86 → 82.7 86 → 86.1 170→ 92.6 84 → 82.3 87 → 86.9 170→ 92.4
FS6a_75 ≥ 75 128→ 87.0 128→ 88.9 255→ 94.0 122→ 85.0 134→ 89.3 255→ 94.1
AllFeatures rankThr 171→ 83.7 171→ 88.0 340→ 94.4 171→ 83.7 171→ 88.0 340→ 94.4
FS1b_25 ≥ 25 110→ 85.0 77 → 86.3 186→ 92.0 64 → 80.5 77 → 86.2 140→ 92.3
FS1b_50 ≥ 50 41 → 80.5 33 → 82.7 74 → 88.7 5 → 48.9 33 → 82.7 38 → 83.6
FS1b_75 ≥ 75 11 → 64.5 9 → 75.2 20 → 81.5 0 → 0.0 9 → 75.2 9 → 75.2
FS2b_25 ≥ 25 115→ 84.2 71 → 87.6 185→ 93.0 60 → 80.6 71 → 87.6 130→ 91.3
FS2b_50 ≥ 50 46 → 80.8 33 → 82.7 79 → 87.6 2 → 50.1 33 → 82.7 35 → 85.0
FS2b_75 ≥ 75 9 → 62.3 8 → 74.0 17 → 80.9 0 → 0.0 8 → 74.0 8 → 74.0
FS3b_25 ≥ 25 127→ 85.0 113→ 86.4 239→ 93.4 104→ 83.8 113→ 86.4 216→ 91.7
FS3b_50 ≥ 50 54 → 81.4 45 → 82.7 99 → 91.0 25 → 73.6 45 → 82.7 70 → 89.3
FS3b_75 ≥ 75 9 → 68.5 17 → 77.3 26 → 84.5 1 → 31.6 17 → 77.3 18 → 76.9
FS4b_25 ≥ 25 129→ 83.0 128→ 86.3 255→ 94.7 88 → 81.9 121→ 87.0 209→ 93.7
FS4b_50 ≥ 50 46 → 81.6 31 → 84.0 77 → 88.7 12 → 65.8 22 → 83.1 34 → 86.5
FS4b_75 ≥ 75 11 → 61.7 5 → 76.2 16 → 79.0 0 → 0.0 6 → 73.8 6 → 73.8
FS5b_25 ≥ 25 167→ 83.6 169→ 88.7 334→ 93.8 165→ 84.0 169→ 88.7 332→ 93.3
FS5b_50 ≥ 50 118→ 85.5 86 → 87.4 203→ 93.4 93 → 82.6 86 → 86.7 178→ 91.8
FS5b_75 ≥ 75 34 → 77.9 26 → 82.7 60 → 88.8 5 → 48.9 26 → 82.7 31 → 84.2
FS6b_25 ≥ 25 129→ 86.3 85 → 85.5 213→ 94.2 81 → 83.4 85 → 85.5 165→ 91.2
FS6b_50 ≥ 50 65 → 81.3 38 → 81.9 103→ 89.3 6 → 59.4 38 → 81.9 44 → 82.6
FS6b_75 ≥ 75 16 → 66.7 13 → 77.9 29 → 81.7 0 → 0.0 13 → 77.9 13 → 77.9

Table 4.4: Percentage variation for the accuracy and size of the FVs comprising the features selected
by the Ranker methods (FS1→FS6) (reported to the accuracy and size corresponding

to the maximum size FV - AllFeatures); accuracy was obtained with 1-NN through 10f-CV

Features selection FV size percentage variation→ Variation of the bAcc obtained with 1-NN and 10f-CV
methods compared to the ones of the vector AllFeatures for the FS methods selected in table 4.3

FS method threshold sVIS i sIRi sVIS IRi sVIS c sIRc sVIS IRc

FS2a_75 ≥ 75 75% → 3.53% 75% → 0.68% 75% → 0.24% 73% → 1.76% 77% → 0.31% 75% → -2.41%
FS5a_75 ≥ 75 75% → 1.91% 75% → -0.17% 75% → -1.48% 73% → 1.55% 77% → 0.28% 75% → -1.96%
FS6a_75 ≥ 75 75% → 3.94% 75% → 1.05% 75% → -0.48% 71% → 1.55% 78% → 1.48% 75% → -0.34%
FS5b_25 ≥ 25 98% → -0.12% 99% → 0.82% 98% → -0.69% 96% → 0.39% 99% → 0.77% 98% → -1.19%
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In the case of methods selecting a subset of features (methods FSn_Thr from table 4.5, where
n ∈ [7;12]) we maintained the same threshold values, but their significance will be different. Here we
have 2 posibilities to apply the original method of FS. The first possibility is to apply it exactly in the
same manner as in the preceeding case (on the full training set (FullTS), but the number of selected
attributes will be very small (last line, method FSnTS , where n ∈ [7;12]), or we could apply it by a
100 folds cross-validation (100f-CV) procedure. In this second posibility, to the list obtained by the
application on the FullTS, some other possible important features will be added (the results are on
the first line from the table, the method FSnCV , where n ∈ [7;12]).

Table 4.5: Accuracy obtained with the features selected by the Search methods (FS7→FS12)
using a 10f-CV procedure applied on the training set of data and using a 1-NN classifier

Features selection No. of selected features→ bAcc obtained with 1-NN and 10f-CV
methods for the resulted FV containing the selected features

FS method threshold sVIS i sIRi sVIS IRi sVIS c sIRc sVIS IRc

AllFeatures nbFeat 171→ 83.7 171→ 88.0 340→ 94.4 171→ 83.7 171→ 88.0 340→ 94.4
FS7CV > 0 65 → 85.1 62 → 88.9 126→ 93.3 51 → 82.2 53 → 88.0 103→ 91.8
FS7_25 ≥ 25 49 → 82.6 43 → 85.4 91 → 91.5 35 → 81.0 43 → 83.2 77 → 91.4
FS7_50 ≥ 50 44 → 81.3 41 → 85.2 84 → 92.0 31 → 80.5 41 → 83.2 71 → 90.8
FS7_75 ≥ 75 38 → 81.8 39 → 83.5 76 → 90.5 27 → 81.0 38 → 83.9 64 → 89.6
FS7TS alg 43 → 82.0 39 → 84.0 81 → 92.2 31 → 80.5 41 → 83.2 71 → 90.8
FS8CV > 0 47 → 80.7 57 → 84.9 103→ 90.1 50 → 81.2 35 → 84.0 84 → 88.4
FS8_25 ≥ 25 30 → 78.2 39 → 79.8 68 → 87.6 32 → 78.1 19 → 81.5 50 → 86.9
FS8_50 ≥ 50 27 → 78.0 37 → 81.2 63 → 86.5 26 → 77.6 19 → 81.5 44 → 85.5
FS8_75 ≥ 75 23 → 77.7 33 → 79.3 55 → 86.9 22 → 77.4 18 → 80.5 39 → 86.3
FS8TS alg 28 → 77.7 37 → 81.2 64 → 87.3 27 → 77.3 19 → 81.5 45 → 87.8
FS9CV > 0 169→ 83.6 171→ 88.0 338→ 94.4 169→ 83.6 171→ 88.0 338→ 94.4
FS9_25 ≥ 25 143→ 84.6 105→ 87.1 247→ 92.8 119→ 83.7 132→ 86.9 250→ 94.6
FS9_50 ≥ 50 82 → 84.2 78 → 87.7 159→ 91.6 75 → 84.6 91 → 89.3 165→ 93.5
FS9_75 ≥ 75 29 → 79.4 41 → 83.7 69 → 89.7 28 → 81.4 38 → 80.9 65 → 90.3
FS9TS alg 88 → 84.1 77 → 88.4 164→ 93.0 78 → 82.8 92 → 84.3 170→ 91.0
FS10CV > 0 59 → 81.9 66 → 84.3 123→ 89.5 54 → 80.8 24 → 78.6 76 → 87.5
FS10_25 ≥ 25 11 → 77.1 10 → 75.2 20 → 85.5 6 → 67.7 5 → 76.3 10 → 85.6
FS10_50 ≥ 50 6 → 67.3 8 → 74.7 14 → 81.7 3 → 50.4 2 → 64.6 5 → 79.1
FS10_75 ≥ 75 5 → 65.9 6 → 79.4 11 → 84.0 1 → 36.9 2 → 64.6 3 → 73.1
FS10TS alg 8 → 71.5 9 → 73.7 17 → 79.9 5 → 57.8 4 → 73.4 8 → 83.4
FS11CV > 0 41 → 75.7 43 → 76.9 82 → 84.0 41 → 75.7 2 → 47.5 41 → 75.7
FS11_25 ≥ 25 14 → 66.0 17 → 67.0 29 → 75.5 14 → 66.0 2 → 47.5 14 → 66.0
FS11_50 ≥ 50 10 → 64.3 8 → 60.4 17 → 71.0 10 → 64.3 2 → 47.5 10 → 64.3
FS11_75 ≥ 75 5 → 53.9 3 → 48.1 7 → 59.0 5 → 53.9 2 → 47.5 5 → 53.9
FS11TS alg 11 → 63.4 12 → 65.5 22 → 73.6 11 → 63.4 2 → 47.5 11 → 63.4
FS12CV > 0 23 → 77.3 38 → 79.5 61 → 90.1 25 → 77.8 29 → 80.6 54 → 87.8
FS12_25 ≥ 25 22 → 76.3 22 → 77.4 44 → 86.5 25 → 77.8 29 → 80.6 54 → 87.8
FS12_50 ≥ 50 22 → 76.3 22 → 77.4 44 → 86.5 16 → 71.0 22 → 76.8 38 → 85.4
FS12_75 ≥ 75 22 → 76.3 22 → 77.4 44 → 86.5 1 → 38.0 1 → 43.3 2 → 44.5
FS12TS alg 22 → 76.3 22 → 77.4 44 → 86.5 16 → 71.0 22 → 76.8 38 → 85.4

Table 4.6: Percentage variation for the accuracy and size of the FVs comprising the features selected
by the Search methods (FS7→FS12) (reported to the accuracy and size corresponding

to the maximum size FV - AllFeatures); accuracy was obtained with 1-NN through 10f-CV

Features selection FV size percentage variation→ Variation of the bAcc obtained with 1-NN and 10f-CV
methods compared to the ones of the vector AllFeatures for the FS methods selected in table 4.5

FS method threshold sVIS i sIRi sVIS IRi sVIS c sIRc sVIS IRc

FS7CV > 0 38% → 1.73% 36% → 1.08% 37% → -1.16% 30% → -1.73% 31% → -0.06% 30% → -2.83%
FS9_50 ≥ 50 48% → 0.66% 46% → -0.37% 47% → -2.99% 44% → 1.11% 53% → 1.53% 49% → -0.98%
FS9TS alg 51% → 0.48% 45% → 0.40% 48% → -1.51% 46% → -0.99% 54% → -4.20% 50% → -3.63%
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Using 100f-CV, in the same manner as in the case of Ranker we could obtain some rank values
or indexes of relevance for the features. The rank values will be obtained as being the number of
folders (from a total number of 100) in which a certain feature has been chosen as being relevant (it
was selected in the winner subset). The selected attributes using cross-validation are more than (and
includes) the ones which should be selected by the application of the method on the all training set
(the case FSnTS ). Due to the fact that in the cases FSn_Thr from the Ranker methods (table 4.3) the
rank values could have discrete values in the range [0,100] with a step of 1, we have chosen the same
three thresholds, equaly distributed on this interval: 25, 50, 75.

The same criteria for the selection of best FS methods was applied as in the case of the Ranker
methods: the accuracy from both modalities VIS and IR should be equal or greater than the ones
obtained with the FVs AllFeatures. In this case of Search methods, fewer FS methods have been
selected by the previous mentioned criteria: two FS methods for the individual selection (FS7CV
and FS9TS ) and one for the concatenated case: (FS9_50). For these selected FS methods, the
percentage variation of the FV size and the obtained accuracy compared to the ones of the initial FVs
AllFeatures are provided in table 4.6.

From this table, compared to the one corresponding to the Ranker methods (table 4.4) it can be
noticed that the Search methods are able to accomplish the criteria based on which a FS method is
selected with a much smaller number of features than their Ranker counterparts. The size of the FVs
is reduced with at least 25% in these cases and these FVs are still able to provide accuracies which
overcome the ones obtained with the vectors VIS 171 and IR171. It has to be noticed the dramatic
reduction of the FV size in the case of the method FS 7CV , which with only 38% respective 36%
features on VIS, respectively IR domains provides accuracies higher with at least 1% than those
rendered by the vectors AllFeatures.

In the figure 4.1, the features’ rank values for the vectors obtained when applying the FS method
on individual vectors are represented on top of the figure, while the ones obtained when the FS
method was applied on the concatenated vector VISIR are on bottom. In the first half (of each
of the two representation) being the VIS features and in the last half the IR ones. As concerning
the total number of selected methods for the individual selection, a number of 4 FS methods were
retained, from which the first 2 are with the Ranker method (FS2a_75 and FS6a_75), and the last
two are with the Search methods (FS7CV and FS9TS ). On the concatenated selection, a number of
3 Ranker methods (FS2a_75, FS5a_75 and FS6a_75) and one Search method (FS9_50) were selected.

It can be noticed from all the selected FS methods from figure 4.1 that in the case of the Ranker
methods, they are using thresholds reported to the number of features (the case a) ). Thus, this
modality to retain features based on a percent relative to the total number of features is better than
the one which retain features considering a threshold relative to their rank value (case b) ). This latter
type of Ranker method has been selected in a first step (FS5b_25) but it was rejected because of the
great number of selected features. Also, it could be noticed that for the Search methods, both types
of application have been retained: when the FS method was applied once on the full training set (one
case from 3), and when the 100f-CV method was used (2 times, one with the entire set selected - CV
and one with the threshold 50).

Also, it could be observed that from all the 5 Ranker methods selected, 2 cases are for the Information
Gain single-attribute evaluator, other 2 cases are for the Symmetrical Uncertainty and one is for
Significance. From all the 6 possible single-attribute evaluators from table 4.1, these are the ones
which provided good results for our classification problem.

For the Search methods, all the 3 methods selected are based on the correlation-based attribute subset
evaluator and as a search method, for 2 cases it was a Genetic Search and for one case a Best First
search.



4.4 Experiments and results 105

Figure 4.1: Rank scores for the retained FS methods: individual (top) and concatenated (bottom)

Another remark considering the figure 4.1 is that the features selected by the Ranker methods
(FS 1→ FS 6) are presenting more colors. This is due to the fact that there are much many features
selected and they are having different rank values. For the Search methods, one can notice that the
one which does not use thresholds and perform the selection of features on the full training set (i.e.
the one from the individual application, FS 9TS ) presents only white/black zones. This is due to
the fact that here features are retained or not, i.e. they have a corresponding rank value either 100
or 0. In addition, also for the Search methods but for those performing the selection based on the
cross-validation procedure (even if they use or not thresholds), the colors are also improved, as in
the case of Ranker methods. For all the the selected FS methods (with the exception of FS 9TS )
discretized rank values in the range [0;100] with the step 1 exist. The features from these selected
FVs will have a higher or a lower rank value, as the FS method provided for them, but there will be
features having a rank value 0, and this will be happened for the ones that were discarded from these
FVs.

Also, it could be observed that the features selected on the VIS domain are differing from the ones
selected on the IR domain. In both cases, individual (figure from top) and concatenated (bottom) it
can be observed that on the IR domain, the areas corresponding to gbr family are the most selected
ones. Like this, on the VIS domain, such zone highlighted by the strong selection of features could
be the one corresponding to the rle family. It could be noticed that here the first features from the rle
family seems to be selected by the FS methods, for the individual case (figure from top), and in the
case of the concatenated one (bottom), rle and gbr families present such highlighted areas.

In table 4.7 the first features from each of the selected methods from figure 4.1 are illustrated. For a
better visualization of the importance of each features, it is suggested to follow figures 4.1. Here all
the selected features can be found, not only the first ones.
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In table 4.7 only the first few of the selected features (presented in figure 4.1) are mentioned. There
is only one selected FS method which was obtained by the application of the respective FS procedure
on the full training set at once and this is FS 9TS . The difference from all the rest of the selected
methods comprised in this table is that the FS 9TS is the only one which does not contain any
information about the importance or relevance (i.e. the rank value) of the selected features in the
retained set. Therefore, for the FS method FS 9TS the features are provided ordered by the family
and the index inside the respective family. It could be noticed that besides the first feature (widi01)
all the rest are from the Haar wavelet family from the VIS domain, ordered by an increased index.
For all the rest of the methods presented in this table, the features are provided ordered by their
importance, which is specified by their rank value. For example, the first method selected, from the
individual set, FS2a_75 presents as the most relevant feature the lawsv17 and if we search this feature
on the corresponding representation from the figure 4.1, it can be noticed it has the most highlighted
area from all the features of the respective vector. Other features from the laws family from the VIS
domain are mentioned in the table, i.e. lawsv with the index 04,10,12,14,16,18,20,22 and this is also
verified with multiple highlighted areas (i.e. having high rank values) for the laws family from the
VIS domain on the figure 4.1.

Table 4.7: The first features selected for the retained FS methods

FSmethod No. of att First features from the VISIR vectors obtained by the application of the FS method
on the individual VIS and IR vectors

FS2a_75 255 [lawsv17, stmi03, lawsv12, lawsv14, gabi15, dcti03, stmi05, rlev01, lawsv18, gabi01, gabi11, rlev05,
rlev02, lawsv04, rlev07, gabi08, gabi16, rlev14, rlev10, lawsv10, gabi13, gabi23, gabi04, gabi19, gabv31,
rlev04, dcti01, gabi14, lawsi03, lawsv20, widi01, rlev03, stmi01, gabi21, gabi12, gabv23, lawsv16, . . . ]

FS6a_75 255 [lawsv14, stmi03, lawsv12, lawsv04, lawsv18, gabi15, lawsv17, stmi05, rlev14, rlev10, rlev07, gabi16,
rlev01, gabi11, rlev04, rlev03, lawsv03, dcti03, rlev05, rlev02, gabi13, lawsv10, gabi01, dcti01, gabi04,
gabi08, lawsv20, gabi14, gabi12, lawsi03, gabv23, stmi01, gabv31, gabi23, stmv03, lawsi02, gabi19, . . . ]

FS7CV 126 [widi01, haarv19, haarv20, haarv21, haarv22, haarv27, haarv28, haarv29, haarv30, haarv36, haarv48,
haarv50, haarv51, haarv52, haarv55, haarv56, haarv58, haarv60, gabv15, gabv30, rlev04, rlev14,
lawsv03, lawsv04, lawsv12, lawsv13, lawsv14, lawsv17, lawsv18, haari01, haari11, haari12, haari20, . . . ]

FS9TS 164 [widi01, haarv03, haarv04, haarv06, haarv07, haarv09, haarv11, haarv14, haarv15, haarv19, haarv20,
haarv22, haarv24, haarv25, haarv26, haarv28, haarv29, haarv30, haarv38, haarv39, haarv40, haarv42,
haarv45, haarv46, haarv47, haarv48, haarv50, haarv51, haarv52, haarv56, haarv57, haarv59, haarv60, . . . ]

FSmethod No. of att First features from the VISIR vectors obtained by the application of the FS method
on the concatenated VISIR vector

FS2a_75 255 [stmi03, gabi15, dcti03, stmi05, gabi01, gabi11, gabi08, gabi16, gabi13, gabi23, gabi04, gabi19, dcti01,
gabi14, lawsi03, stmi01, gabi21, gabi12, lawsi02, lawsi11, gabi07, gabi24, rlei10, dcti04, gabi22, gabi20,
lawsi10, lawsv17, gabi03, rlei03, gabi06, gabi09, gabi18, lawsv12, lawsv14, gabi05, gabi29, gabi26, . . . ]

FS5a_75 255 [stmi03, gabi15, gabi01, gabi16, stmi05, lawsv14, gabi11, gabi04, gabi13, dcti03, gabi08, dcti01, gabi14,
lawsi11, lawsv12, lawsi03, gabi10, gabi02, lawsv18, gabi12, gabi07, gabi24, stmi01, lawsi02, lawsv17,
gabi06, lawsv04, lawsi10, gabi19, gabi23, rlei10, gabv32, lawsv03, rlei03, gabi17, rlev04, gabi20, . . . ]

FS6a_75 255 [stmi03, gabi15, stmi05, gabi16, gabi11, dcti03, gabi13, gabi01, dcti01, gabi04, gabi08, gabi14, gabi12,
lawsi03, stmi01, gabi23, lawsi02, gabi19, lawsi11, gabi21, gabi07, gabi24, lawsi10, gabi20, rlei10, gabi10,
dcti04, gabi22, rlei03, gabi03, gabi06, gabi09, lawsv14, gabi18, lawsv12, gabi17, lawsv04, lawsv18, . . . ]

FS9_50 165 [gabi16, gabi15, gabi25, cocv13, stmi05, gabi20, haari36, haarv55, cocv11, haarv21, lawsv05, gabi01, gabi04,
haarv50, haari07, gabi19, haari46, haari51, stmi07, haarv28, haari53, gabi11, gabi14, rlei12, cocv08, dcti05,
rlei13, haarv19, haarv60, coci12, gabi03, haarv61, haarv63, lawsv04, haari55, gabi18, cocv16, gabv09, . . . ]

In table 4.8 and figure 4.2 the selection percentages on each family of features in function of the
retained FS method are represented. At the top of each the table and the figure are the values
obtained for the retained FVs after the application of the respective FS method on the individual
vectors from the VIS and IR domains, while on the bottom side of each representation are the values
corresponding to the application of the respective FS method on the concatenated vector VISIR.



4.4 Experiments and results 107

Table 4.8: Selection-percentage on each family of features for retained FS methods
applied on the individual (top) and concatenated (bottom) FVs

FS No. of features selected Selection-percentage on each family [% from the number of features per each family ]
method VIS IR VISIR 2wh 7stmv 64haarv 8dctv 16coocv 32gbrv 14rlev 28lawsv
FS 2a75 128 128 255 50.0 85.7 71.9 75.0 87.5 100.0 100.0 75.0
FS 6a75 128 128 255 50.0 100.0 71.9 75.0 93.8 100.0 100.0 75.0
FS 7CV 65 62 126 50.0 28.6 35.9 0.0 25.0 43.8 64.3 42.9
FS 9TS 88 77 164 50.0 71.4 51.6 50.0 43.8 46.9 64.3 50.0
FS No. of features selected Selection-percentage on each family [% from the number of features per each family ]
method VIS IR VISIR 7stmi 64haari 8dcti 16cooci 32gbri 14rlei 28lawsi
FS 2a75 128 128 255 - 28.6 46.9 100.0 75.0 100.0 85.7 67.9
FS 6a75 128 128 255 - 28.6 43.8 100.0 75.0 100.0 85.7 67.9
FS 7CV 65 62 126 - 14.3 40.6 62.5 18.8 50.0 42.9 14.3
FS 9TS 88 77 164 - 14.3 46.9 75.0 43.8 65.6 50.0 14.3

FS No. of features selected Selection-percentage on each family [% from the number of features per each family ]
method VIS IR VISIR 2wh 7stmv 64haarv 8dctv 16coocv 32gbrv 14rlev 28lawsv
FS 2a75 124 132 255 50.0 71.4 51.6 75.0 81.3 100.0 100.0 71.4
FS 5a75 124 132 255 50.0 57.1 50.0 75.0 87.5 100.0 100.0 75.0
FS 6a75 122 134 255 50.0 42.9 51.6 75.0 81.3 100.0 100.0 71.4
FS 950 75 91 165 50.0 85.7 43.8 25.0 50.0 43.8 35.7 39.3
FS No. of features selected Selection-percentage on each family [% from the number of features per each family ]
method VIS IR VISIR 7stmi 64haari 8dcti 16cooci 32gbri 14rlei 28lawsi
FS 2a75 124 132 255 - 57.1 56.3 100.0 87.5 100.0 100.0 82.1
FS 5a75 124 132 255 - 42.9 57.8 100.0 87.5 100.0 100.0 82.1
FS 6a75 122 134 255 - 71.4 56.3 100.0 87.5 100.0 100.0 85.7
FS 950 75 91 165 - 42.9 48.4 75.0 37.5 68.8 78.6 39.3

The values specified in the table 4.8 show which is the percentage a specific family of features has
been selected by a FS method. Each value from the table is showing how many features corresponding
to the respective family have been selected as being relevant by the respective method on the VIS or
IR domains. For example, in the case of the first FS method from the individual application, FS2a_75
for the statistical moments family on the IR domain it is specified a value of 28.6, which means that
from the number of 7 stmi features, it was selected a number of (28.6 ∗ 7)/100 = 2 features. In the
same manner, one can notice that in the case of the first two selection methods from the individual
application, all the features from the gbr and rle families have been retained in the VIS domain, and
all the stm, gbr and rle features have been selected in the IR domain. Also, it has to be mentioned
that for the third selected method from the individual application, FS 7CV , the dct family have been
entirely discarded (i.e. no dct feature have been selected as being relevant) on the VIS domain, even
other FS methods, i.e those from the concatenated application, selected all the features from this
family.

All the values mentioned in table 4.8 could be followed on the figure 4.2, where each combination
between a FS method and a family of features is represented by a color showing how relevant that
family was assigned to be for the respective FS method. The lighter the color, the most relevant the
entire family of features, i.e. more features have been selected as being relevant from that family.

In the previous chapter, each family of features has been evaluated by the use of a kNN classifier
and it has been noticed that some families could be more relevant than others (for example wavelet
families compared to geometrical features). In this case, the analysis is much more detailed, because
here each feature could be evaluated by the use of the FS methods. In this way, the relevance of
the features-families could be evaluated by a degree, i.e. the selection-percentage from table 4.8, or
even more, we could see exactly which features are more often selected by the proposed FS methods
(table 4.7).
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Figure 4.2: Selection percentages of all families of features: individual (top) and concatenated (bottom)

From the total number of selected FS methods for the individual case, where 2 methods were for
the Ranker (FS2a_75 and FS6a_75), and 2 for the Search (FS 7CV and FS 9TS ) and from the ones
with the concatenated selection (3 Ranker methods FS2a_75, FS5a_75 and FS6a_75 and one Search
FS9_50), we choose to select only methods applied on the individual selection in order to take into
account the most important information from both domains, separately. In the case of the individual
application of the FS method, the differences between the accuracies obtained on VIS and the
accuracies obtained on IR domains is smaller than the corresponding ones obtained on a concatenated
application of the FS method. In addition, the accuracies obtained on the VISIR domain, thus for
the bimodal vector comprising both sets of features, for both types of application (individual and
concatenated) is almost the same.

Thus, from the methods obtained by the application of the FS procedure on the individual vectors,
only 2 FS methods have been selected in the following in order to perform the comparation with
the initial feature vector AllFeatures. We choose one with the best accuracies (i.e. the one which
overcome both the modalities but also the VISIR domain) and one with the best number of selected
features (i.e. the smallest number of features selected on each modality). Thus, FS2a_75 from the
Ranker and FS 7CV from the Search, both for the individual selection have been considered. The
number of features of these FVs is VIS 128 and IR128 and VIS 65 and IR62.

In table 4.9 balanced obtained for the FVs provided by different feature selection schemes are
presented and compared with the ones obtained for the vectors AllFeatures.

By now, in this chapter, the selected FVs have been evaluated by the use of the kNN classifier with
k = 1. This has been chosen due to the necessity of evaluating the relevance of the features, not the
performance of the classifier. Once the FVs have been established, the next step could be performed
and this is represented by the choice of the proper SVM classifier on these computed FVs.

Like in the previous chapter, we consider the vectors to comprise only monomodal features, i.e.
either VIS or IR features will compute a FV. On these monomodal FVs, the SVM hyper-parameters
should also be optimized like in the case of the initial FVs (those which have a maximum size of 171
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features) denoted AllFeatures (i.e. VIS 171 and IR171).

For the optimization of the SVM hyperparameters, the same procedure as in the previous case will be
followed: for all the hyper-parameters combinations, the maximum accuracy is searched for when the
training set and the 10f-CV procedure are used. The difference, when comparing with the processing
from the previous chapter, is that here the data are characterized only by the features retained as
being relevant, not by all 171 features from one modality. The best bAcc will provide the winner SK,
i.e. the optimized one (SK*) with the corresponding parameters: (S Ktype,C,S Kparameter).

Table 4.9: SK optimization based on accuracies provided by different FVs
obtained before or after the FS step

for the classification problem with 4 classes of objects

Method Classification problem Performance
Pb. Input bAcc winner SK
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As it was previously mentioned, two different FS methods have been chosen for the application
of the FS methods (a Ranker one FS2a_75 and a Search one FS 7CV , coresponding to those FS
methods which provided the best accuracies or the best nomber of features). On each of these FVs
the optimization process has been realised, in the same manner as in the case of the FVs obtained
without the application of any FS methods, which were optimised in the previous chapter.

As it can be noticed when comparing table 3.6 with table 4.9 the values of the bAcc obtained for the
FVs after the FS operation have been applied are better than the ones provided by the initial FVs
VIS 171 and IR171. In addition, the number of the features retained by the FVs obtained after the
application of the FS methods is smaller. Thus, besides the accuracy, the classification time will be
also improved by the use of these vectors incorporating only the most relevant features.

Even the number of features provided by the FS method FS2a_75 is higher than that of the method
FS 7CV , the latter provide higher accuracy rates.

Another remark is that the SKs obtained after the optimization process are not the same in the two
experiments. There are some winner SKs for the classification problem with 171 features and there
are other winner SKs for the classification problem with the vectors obtained after applying the FS
methods.
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4.5 Conclusion

In this chapter different FS methods have been tested and compared in order to evaluate the pertinence
of each feature (and of each family of features) in relation to our objective of obstacle classification.
The experiments we developed in this chapter tried to verify which is the FS method that gives the
best solution to our problem. Besides the methodology in which these FS methods are applied in
literature (i.e. on the whole training set once - the case FullTS), we have also proposed an original
manner to apply them: to repeat the respective FS method for multiple sub-samples of the training
data by including it in a cross-validation loop - the case 100f-CV. From the search methods and their
evaluators described in the first part of this chapter, a number of 66 possible FS methods have been
constituted. There were 36 FS methods using a Ranker searching (we have employed 6 types of
single-attribute evaluators combined with 3 possibilities to retain the ranked features and 2 ways to
choose the selection thresholds) and 30 methods using a Best First, Linear Forward or Genetic Search
(each of this search methods have been combined with 2 possible subset attribute evaluators and for
each, 5 ways to apply and retain the features have been considered). All these 66 FS methods have
been tested on two types of vectors; the first one was obtained by the application of the FS method
on the individual FVs and the second one by the application of the FS method on the concatenated FV.

The main difference between the two ways to apply the FS method, on the individual vectors VIS
and IR or on the concatenated one VISIR, is that in the first case the most relevant features will be
considered on each domain, separately and they will be further combined together. In the case of
a concatenated application of the FS method, when the complementarity of VIS and IR domains
is considered, the VIS domain will be disadvantaged, although the final results obtained with the
bimodal vector VISIR will be as good as the ones obtained with the bimodal vector from the
individual application. Moreover, if the individual application is selected, the chosen FS method
could be applied in a parallel way, on VIS and IR domains. Thus, once that each set of VIS and IR
features have been extracted from the corresponding images, they could be processed separately, to
gain in the computation time.

The pertinence of each vector constructed based on these FS methods was first evaluated by a simple
kNN classifier. From all the FS methods evaluated by the 1-NN classifier, only two of them have
been chosen for further processing: a Ranker one (FS2a_75 and a Search one (FS 7CV), i.e. that FS
methods providing the higher accuracies on the training set considering all the 3 domains VIS, IR
and VISIR and the smallest number of features selected on each modalities. The Ranker FS method
FS2a_75 is using Information Gain as a single-attribute evaluator), while the Search method FS 7CV
combines Best First search with a subset evaluator based on correlation. Both selected methods were
obtained on individual FVs.

In order to increase the accuracy of the classification, but also to obtain a powerful classifier, the
kNN was later (after the best FS methods have been chosen on the training set) replaced by the
SVM. The SVM’s hyper-parameters optimization has also been realised for each FV obtained with the
retained FS methods. The results demonstrated that FS methods improve the recognition rates for the
monomodal systems employing the vectors previously evaluated. Also, it was noticed that the use of
the SVM classifier assures improved results compared to the kNN. Still, the monomodal systems used
in this chapter are not proper for our ODR system. They are all dedicated to the processing of either
VIS or IR information and they could not perform the adaptation to different environmental context
as we intend our ODR system does. Thus, in the next chapter we propose three fusion schemes which
all could accomplish this task and hopefully will even increase once again the obstacle classification
accuracy obtained by now.
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From what has been seen in the previous chapters, the ODR system we propose in a first step it
extracts different features by which the obstacles’ images are described. In order to see which of
these features are indeed relevant for the classification process, but also to decrease the processing
time required by the obstacle recognition task, we opted for the application of some features selection
schemes. Although the results are promising up to this point, we choose also to apply some fusion
schemes in order to verify which is the additional contribution which could be added from the
accuracy point of view. Still, the major objective when integrating fusion was to assure the robustness
of the ODR system to function well, even in different environmental conditions. Therefore, we want
to check if it is worth to perform the fusion between VIS and IR images.

The fusion process is the main idea of this thesis. We tried to address and develop different fusion
schemes which combine visible and infrared information for road obstacle categorization based on
SVM classification. In this thesis we want to formally compare various fusion-based solutions before
the system is implemented. This would help in choosing the best solution for a given scenario. For
example, we have to decide if it is better to fuse data and then to detect/recognize obstacles with the
fused data (low-level fusion) or to detect/recognize obstacles in each image separately and then to
fuse the decisions (high level fusion).

Three types of fusion are detailed in this chapter: a low level feature-based fusion, an intermediate
level kernel-based fusion and a high level matching-score fusion. These fusion techniques are
compared for a road-obstacles SVM-based classification problem. The feature-level fusion we present
in section 5.2.1 yields a feature vector integrating both visual and infrared information and this vector
will be used as input to an SVM classifier, while the matching-score fusion from the section 5.2.2
combines matching scores of individual obstacle recognizers in order to improve the system’s final
decision. The fusion at the SVM’s kernel level we present in this chapter at the section 5.3 could
be considered as an intermediate level of fusion because the kernels are components of the SVM
classifiers and they are applied to different vectors of information (one kernel from the VIS and
another kernel from the IR domain). In order to ensure the adaptation of the system to different
weather and illumination conditions, features, kernels or matching-scores could be weighted (with a
sensor weighting coefficient) according to the importance of the sensor in a specific environmental
situation. A comparative study of individual visual and infrared obstacle recognizers versus fusion-
based systems is performed in this chapter in section 5.4, where some experiment results are given
and finally, we draw the conclusion in section 5.5.

111
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5.1 Our Fusion Schemes for an OR Component

The fusion process is the main idea of this chapter. We tried to address and develop different fusion
schemes which combine visible (VIS) and infrared (IR) information for a road obstacles SVM-based
classification. We concentrate on VIS and IR sensors because they seem to be a good solution
compared to some other technologies (like radar, laser, etc) considering the price and the lack of
interference problems. We chose these two complementary vision sensors because the system must
work well even under difficult conditions, like poor illumination or bad-weather situations (dark,
rain, fog). The high performance and robustness of the system will be assured by the fusion of these
two types of information, weighted in such a manner to allow the adaptation of the system to the
environmental conditions.

A comparative study of individual visual and infrared obstacle recognizers versus fusion-based
systems is performed in this chapter. We propose a framework for fusion of features, kernels and
matching-scores in an obstacle categorization system based on an SVM classification scheme. In the
following, the three methods we propose for performing the fusion are detailed.

Nowadays, there are a lot of sources of information that can be considered in a complex system. The
fusion process combines different type of information (like sensor inputs, data or even algorithms)
together in order to provide a complementary perspective and to increase the system’s performances.
Sanderson et al (Sanderson & Paliwal, 2002), referring to a biometric matching system, classified the
fusion types in two main classes:

- fusion prior to matching (or early fusion, which is the low-level fusion we previously mentioned)
and

- fusion after matching (or late fusion, which stands for the high-level fusion case).

Data fusion and feature fusion belong to the first category, while from the second type we have
matching-score fusion and decision level fusion.

Which one of these proposed fusion schemes will be chosen for the implementation of the final
system? Criteria by which we chose the final fusion scheme are the accuracy of the recognition but
also the time in which this operation can be accomplished. Also, of great importance are the required
conditions for the scheme to be implemented in the entire ODR system.

Even the cameras are supposed to be mounted in a fixed frame on the vehicle, when multiple hills
and holes come upon the road, it is for sure that the cameras will be no more calibrated and a new
calibration process would be needed (this operation is under investigation in the frame of multiple
research groups and their main purpose is to perform the calibration in an online fashion).

Once the detection step has provided the BBs in the two types of images, our proposed fusion
schemes could be realised, even there is not a perfect correlation between the two types of images
(even from a reason or another the cameras have been easily decalibrated). For example, if the
fusion is performed at the scores level, even if the two types of cameras (VIS and IR) would suffer
a slight mis-calibration, this would not affect too much the outcome of the system. If we transpose
the same situation in the case of a fusion at the image pixels level, this might introduce errors
because the pixels of the two images would be totally decorrelated. The lower the level at which
the fusion scheme is applied, the higher the sensitivity of the system to the errors introduced by the
mis-calibration of cameras. Therefore, we have not proposed a fusion scheme at the pixel level, but
we focused on the higher levels: the ones of features, kernels and matching-scores. So in the case of
our proposed fusion schemes, the most sensitive to the mis-calibration of cameras is the one which
accomplish the fusion at the features level.
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Different types of systems are defined by the information which is fused in (Jain et al., 2008):
(a) A multi-sensor vision system, used to extract diverse information about the same object. In the

frame of our application, the two-dimensional texture content of a person’s body could be recorded
using a VIS camera, while a second vision sensor (e.g. a far-infrared Far InfraRed (FIR) camera)
could be used to measure the temperature of that person’s body. Besides improving the accuracy of
the system, the availability of these multi-sensor data converging to a single trait can also assist the
obstacle detection process.

(b) A multi-algorithm system can be considered either any system which uses multiple forms to
represent data (e.g. different types of features) provided by the same sensor, or any system which
uses multiple processing schemes which operates on the same type of information (using the same
feature sets).

A system that retains different poses of an obstacle in order to correctly learn the obstacle
possibilities of appearance is (c) a multi-sample system. Such a system could be very useful for an
obstacle recognition task because the pedestrian form is very likely to change: pedestrians may use
different outliers, different clothes, they can appear in different positions, occluded or not.

Therefore, it could be said that we defined a multi-sensor vision system (because it uses both visible
spectrum and infrared sensors), which is actually also a multi-algorithm system due to the fact that
we extracted different information by different algorithms to characterize an object (as shown in
section dedicated to the feature extraction task) and which is also a multi-sample system because it
uses multiple instances of the class vehicle, pedestrian and cyclist to classify a new obstacle in one
of these possible classes.

From all types of fusion we mentioned by now, we chose to use only three of them (fusion at the
feature level, at the kernel level and at the matching scores level) and not to consider the extreme
cases: data-fusion and decision fusion.

In (Apatean et al., 2009) we have used for comparation purposes a data-level fusion, performed at
the pixel level. Besides these types of methods performed at the pixel level, others based on region
processing (like filtering technique or the fusion ones operating in the transformation domain, such as
those based on discrete wavelet transform, cosine transform, laplacian or gradient pyramid, principal
component analysis or independent component analysis) are intensively used for computing a single
image by fusing two or more images. The major inconvenient with these data-level fusion techniques
is that a perfect correlation between the images is required before performing the fusion itself. If the
images are not well correlated, this misregistration could lead to errors in the image fusion process.
In the frame of our application, possible problems in correlating images provided by cameras are
inherent due to the cameras’ calibration issues and the fact that the vehicle is moving.

To the classical scheme of an ODR system (presented in figure 3.1), which was followed in
developing our system, we added the fusion part. Both stages (training and testing) require that the
information provided as input to the entry of the classifier from each stage to be encoded in the same
way. This information can take one of the following forms: a) monomodal features, i.e. the VIS and
IR information corresponding to possible obstacles enclosed in BBs is comprised in two different
vectors, one VIS and another one IR, and thus there is one classifier for each type of data (for
monomodal systems or systems including a matching-score fusion) or b) bimodal features, where the
VIS and IR information will be merged in the frame of the same vector (denoted VISIR) and thus a
single classifier will be used to process this type of data (for the systems including a feature-based
fusion or a kernel-based fusion). The proposed fusion schemes are conducted at three possible levels:
features, SVM kernels and matching scores and they are presented in what follows.

Besides the three fusion schemes we mentioned, there is another possible situation, when no
fusion scheme is applied. This is valid for monomodal systems, where no fusion, at either stage
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is considered. In figure 5.1 one VIS and one IR monomodal systems are presented and as it could
be remarked from this figure, each system process its own monomodal vector of information. This
information is extracted from each type of image (i.e. each modality) and it will be processed
individually by an SVM classifier. The class to which the test object will be assigned is decided on
each modality separately.

Figure 5.1: Visible and infrared monomodal systems - no fusion scheme is applied

The three fusion schemes we propose are realized at the following modules reported to the ones from
figure 5.1:
- at the Features extraction and Selection Module the first fusion scheme we propose, i.e. fusion
at the feature-level, is realized. Thus, the output of the fusion module will be a combined, i.e. fused
feature vector, enclosing both VIS and IR information, which is provided as inputs to the fusion
module. In this way, at the entrance of the classifier used in this fusion scheme (to evaluate the
performances of the fused system), a bimodal feature vector will be provided;
- at theClassifier Module1, the other two fusion schemes we propose will be realized in the following
manner:

- inside the classifier module, but at the component which compute the SVM kernel; therefore, the
decision about the objects’ class will be taken based on a combined kernel which process the bimodal
VISIR information - this is valid for the kernel-fusion scheme we propose;

- inside the classifier module, but after the VIS and IR information has been processed individually
by the SVM kernel, therefore two kernels (inside of two different classifiers), one dedicated to the
monomodal VIS vector and the other for the monomodal IR vector have to exist; the decision about
the class of the object will be taken based on a combined information (i.e. a probability or a score)
provided by the two SVM kernels - this is valid for the matching score fusion we propose.

The two types of vectors previously mentioned, monomodals or bimodals, could be the ones obtained
immediately after the features extraction step (i.e. VIS 171, IR171 or VIS IR340) or they could be
the ones obtained after also the features selection scheme has been applied (i.e. sVISm, sIRn or
sVIS IRm+n), where m is the number of features selected on the VIS domain and n is the number of
features selected on the IR domain).

In order to evaluate the proposed fusion schemes, the situation of monomodal systems has also to be
considered and the obtained results will be compared with the ones provided by the proposed fusion
schemes at the experiments section.

1We have considered that in the frame of the SVM classifier also the decision of the class to which the test object is assigned is
taken.
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5.2 Low and high level fusion

In this section we treat two types of fusion: the fusion at a low level (i.e. feature fusion) and the
fusion at the high level (i.e. matching score fusion). We choose to discuss them together because
they have been already addressed in literature in the field of the VIS and IR images. To our
knowledge, the fusion scheme applied to the level of the SVM kernels in VIS and IR images has
not been addressed so far in literature, therefore it will be discussed separately in the next section.
However, from both viewpoints (the data from the input of the fusion schemes and the method used
to optimize the SVM model in the training stage of the system) these two fusion schemes are different.

In the case of the features-fusion, where the fusion takes place at an early stage, i.e. the data is already
combined when it reaches the classifier, bimodal vectors (obtained by the combination of VIS and IR
information) will be employed.

5.2.1 Feature fusion

In order to compute the bimodal (i.e. fused) feature vector VIS IR340, denoted AllFeatures in table
3.2, which will be the input to a bimodal system, the information extracted from the VIS and IR
images is combined together by the following rule: we retained width and height from the VIS
domain, followed by 169 features (64 haar wavelet haar, 32 gbr, 7 stm, 8 dct, 16 cooc, 14 rle and
28 laws) corresponding also to the VIS domain and we added the similar 169 features from the IR
domain. In this case of feature-fusion, the feature sets extracted from the VIS and IR images has
been fused in order to create a new feature set which will represent each object:

(x1, ..., xp)VIS IR = (x1, ..., xm, xm+1, ..., xp)VIS IR
= (x1, ..., xm)VIS , (xm+1, ..., xp)IR

(5.1)

where p = 340, m = 171, n = 169 and m+ n = p for the vector obtained imediately after the features
extraction step and denoted AllFeatures. For the case of the vectors obtained after performing also
the features selection step, m, n and p will have lower values and they will depend on the number of
retained features from both modalities VIS and IR.

In figures 5.2 and 5.3 the module of the features extraction, which could also imply a features
selection stage, it is presented and here two possible situations can be noticed:

- if the fusion is performed imediately after the features extraction stage (figure 5.2), then from the
monomodal vectors VIS and IR by concatenation (equation 5.1) the bimodal feature vector VIS IR
will be computed. If a second step of features selection (FS) follows, then on the VIS IR vector the
FS operation will be applied and a new vector sVIS IRc will be obtained, from which the monomodal
vectors sVIS c and sIRc could be computed. These last vectors could be used when the performances
of the fused FVs are to be compared with the performances of some vectors wich does not imply any
type of fusion, i.e. when bimodal vectors are to be compared with the monomodal vectors;

- if in a first step the feature selection operation is realized, and only after that the fusion is
performed above the results (figure 5.3), it means that the FS operation is applied on the monomodal
VIS and IR vectors and only after obtaining the selected features sVIS i and sIRi, they will be
combined in the fused bimodal vector sVIS IRi.

The first case, when features selection is applied on the concatenated FVs is the one from chapter 4,
from the right side of the tables 4.3, 4.4, 4.5 and 4.6, and the second case, when the features selection
operation is applied directly on the individual vectors, is the one from the same tables, but the left
side. From the previous chapter, after analyzing the results obtained for both possibilities: to apply
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the FS scheme to the individual vectors VIS and IR or to apply it to the concatenated vector VISIR,
we decided to use the individual one. This is also motivated by the choice to consider the most
relevant information on each domain, but also by a possible processing of the data in a parallel way.
Also, from the previous chapter we have obtained two FS methods giving better results than their
AllFeatures counterparts. Therefore, when we will refer to vectors obtained after the application of
the FS procedure, we will denote those vectors sVIS im, sIRin or sVIS IRip.

Figure 5.2: Feature-fusion before the Feature Selection step

Figure 5.3: Feature-fusion after the Feature Selection step

The advantage of this fusion scheme (i.e. at the feature level) is, as we will see in the section
dedicated to the experimental results, that provides very good results, i.e. good recognition rates.
Still, it has a strong disadvantage: because the fusion process is realised at a low level, this fusion
scheme requires a good correlation of VIS and IR data. Therefore, in cases when host vehicle is
moving on a road with ditch, holes, bumps, it is possible that cameras to be moved from their initial
position and thus to produce images not correlated eachother. Even if this case of fusion is not that
sensitive to the images decorrelation as the data-fusion case, still some possible errors caused by the
movement of the vehicle could appear.

All three types of vectors, obtained before (VIS 171, IR171 and VIS IR340) but also after (sVIS im,
sIRin and sVIS IRip) the application of the FS operation will be evaluated also by an SVM with
classical kernel, i.e. SK, in order to compare their performances (in section 5.4). Even the kernel
type is the same (an SK) at this fusion scheme and at the monomodal systems, it is possible
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that after the SVM kernel optimization process, performed on the validation set, the optimised
SK obtained on the bimodal VISIR vector to be different from those obtained on VIS or IR
domain. In this case of features-fusion, the model of the SVM will be determined by the kernel
hyperparameters: (S KtypeVIS IR,CVIS IR,S KparameterVIS IR). To compute the bimodal FV, the
features provided by the VIS and IR images will be combined in a single vector VISIR. For this new
vector, the accuracy is computed by the 10f-CV procedure, and the maximum value of the accuracy
obtained on the training set will determine the value of the winner (i.e. optimized) S K∗ to be retained.

5.2.2 Matching-score fusion

Within the fusion of scores, where the fusion is performed in a later stage, i.e. after the classification
process is already addressed on the two VIS and IR domains separately, the monomodal vectors will
be used as inputs for the classifier, as it can be seen from figure 5.4.

Figure 5.4: Matching score-fusion

For a matching-score fusion, multiple classifiers output a set of matching scores which represent the
probabilities that one object belongs to different possible classes, based on different modalities. The
matching scores generated by the classifiers from the VIS and IR modalities for a given test object
s can be combined by the weighted parameter α in order to obtain a new match score which is then
used to make the final decision:

H∗(s) = argmaxNi=1P
α
VIS (Hi, s) ·P1−α

IR (Hi, s), (5.2)
where PVIS is the score from the visible subsystem, PIR is the score from the infrared subsystem,
α is a weighting factor which varied between 0 and 1, N is the number of classes in which objects
could be classified and H∗(s) is the retained classification hypothesis for object s. The scores of each
subsystems are in fact the output probabilities from the corresponding classifier: SK from VIS or SK
from IR for the i-th class hypothesis. By using the weight defined by the system, the normalized
scores from both subsystems are fused using equation (5.2) and a new, bimodal score is obtained.

In order to calculate the optimal weight, α∗, two methods have been considered here: a static
Adaptive Fusion of Scores (sAFScores) and an dynamic Adaptive Fusion of Scores (dAFScores).

In the case of sAFScores, the weight α is fixed in the range [0;1]. It is obtained by knowing the
matching scores and the real class for each object from the validation database.

The weight for the dAFScores scheme is dynamic, being adapted correspondingly to the quality of
the current input (test image) instead of using the optimum weight that is estimated from the available
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training set. The weighted factor from the VIS domain, which could be different for an object s, is
computed as a function of the VIS and IR scores dispersions:

α(s) =
σVIS (s)

σVIS (s)+σIR(s)
, (5.3)

where the VIS and IR scores dispersions are computed as a mean:

σu∈{VIS ,IR}(s) =

N∑
i, j=1,i� j

|Pu(Hi, s)−Pu(Hj, s)|

C2
N

. (5.4)

This second approach is more advantageous especially when the system is implemented in uncertain
environment conditions or it is crossing some different extreme situations (e.g. when the vehicle
passes through a tunnel). The dAFScores approach directly validates the quality of the incoming
test image so as to adaptively change the weighting factor for fusion of both subsystems scores. It
is important to priory check the monomodal systems because unreliable data give incorrect scores
hence affect the accuracy of the total scores of the fusion systems.

SVMs are excellent tools for classification, novelty detection, and regression but they do not provide
probabilities. They only provide the estimated class for the test object. From Libsvm, which is
the implementation we addopt in our processing, the well known C-svc formulation has been used,
and it also supports class-probabilities output. If one choose to use the probability model defined
in Libsvm, the output probabilities will contain the parameters of the sigmoid fitted on the decision
values. The name of the formulation is coming from the parameter C, which is the cost of constraints
violation and a constant of the regularization term in the Lagrange formulation. The output of a
classifier should give the possibility to provide the posterior probability in order to enable different
post-processing. Standard SVMs do not provide such probabilities, but Platt (Platt, 1999) among
others proposed a solution to create probabilities by training the SVM and then to train the parameters
of an additional sigmoid function to map the SVM outputs into probabilities. This implementation
yields probabilities of comparable quality to the regularized maximum likelihood kernel method. As
H.-T. Lin, the creator of Libsvm, stated in (Lin et al., 2007), the Libsvm probability output is the
implementation of Platt’s algorithm, described in (Platt, 1999) and it is just a monotonic transform of
regular output of SVM by a sigmoid function.

The system adaptation to the context:

The main advantage of these fusion schemes is that the level at which they are computed does not
require a strong correlation of VIS and IR images. Because these two types of data are processed at a
high level, therefore, after the classification process began, also the time required by the system could
be very much decreased by the processing of the data in a parallel way. The only problem which could
appear in these types of fusion is that of contradicted scores between multiple classes of objects. For
example, from the VIS modality the probability scores will state that the test object is a pedestrian
with a probability of 0.9, but from the IR modality the probability scores will mentioned that the same
test object is a background object with the same 0.9 probability. Which one will be more credible in
this situation? Even for such situations, the adapted weighted parameter α demonstrates its main
scope, i.e. to give more or less credibility to one of the two modalities, based on some information
about the environmental conditions in which the system is at that moment of time. Therefore, the α
parameter aims to strengthen the decision provided by one or another modality.
Each simple kernel is involved with a weight that represents its relative importance for the
classification process. The kernel selection process, with the optimization of the hyper-parameters is
described in what follows.
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The static-adaptive fusion of scores (sAFScores) requires that in the validation stage, by knowing the
matching scores and the real class for each object from the validation database, the accuracy to be
computed using the SVMs from the VIS and IR domains which were previously determined as being
the optimised ones on the monomodal systems. Before computing the accuracy, the matching scores
are also weighted with all possible values of an weighted coefficient, α, established in the domain
[0;1]. From all computed accuracies by the 10f-CV procedure, the maximum one obtained in the
validation stage will be chosen and thus the optimised α∗ to be used on the test set is found. This
static-adaptive fusion scheme will assure that the α parameter used to combine the matching scores
for all the objects from the test database to be the same value.

The dynamic-adaptive scheme (dAFScores) implies a dynamic adaptation of the parameter α to the
context. The parameter α adapts to each object from the test set, and may have different values from
one test object to another. The value of α is calculated based on the scores dispersion of each test
object.

5.3 MKs for kernel-fusion

The SVM formulation is based on kernel functions, that have already proven to be suited for complex
classification problem from the real world in many types of applications. These kernel-methods
represent the data by means of a kernel function, which defines similarities between pairs of items.
Kernel methods have been intensively used in the frame of pattern classification problems also
because the kernel function takes relationships that are implicit in the data and makes them explicit.
Each kernel function has a specific functioning: it extracts a specific type of information from a
given data set, and provides a partial description of the respective data by mapping the original data
in a new hyperspace. Generally, classical kernel-based classifiers use only a single kernel (SK), but
more and more applications from the real world prefer a combination of kernels in order to perform a
better adaptation to the heterogeneous and multi-sensorial data. Our goal in the kernel-fusion case is
to find a multiple kernel (multiple kernel (MK)) that best represents all of the information available
for the two types of images.

The intermediate-level fusion scheme we propose is the one based on the SVM’s kernels. Each
type of information which will compute the bimodal vector given as input to the system, will be
processed by the corresponding kernel. This fusion scheme takes place inside the SVM classifier, as
it is presented in the figure 5.5.

Figure 5.5: Kernel-fusion

Recent applications (Lanckriet et al., 2004) based on SVMs have shown that using multiple kernels
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(MK) instead of a single one can help in the interpretation of the decision function and improve the
classifier performance. Given two kernels K1 and K2, inducing the embeddings Φ1(x) and Φ2(x),
respectively, it is possible to the kernel K = K1+K2, inducing the embedding Φ(x) = [Φ1(x);Φ2(x)],
but even of greater interest, is to use a parameterized combinations of kernels. A common
approach is to consider that the kernel function K(xi, x j) is a linear combination of the basic kernels
(Rakotomamonjy et al., 2007) and this is:

K(xi, x j) =
D∑
d=1
αdKd(xi, x j) (5.5)

with αd ≥ 0,
∑
dαd = 1, where D is the total number of kernels. Each basis kernel Kd may either use

the full set of variables describing xi or only a subset of these variables. The choice of weights αd is
another problem of data representation through the multiple kernel (MK) formalism.

Choosing D = 2 in (5.5), the obtained MK will be the sum of two independent kernels, each one
corresponding to one modality VIS or IR and weighted with a value αd representing the context. We
propose for the VIS-IR kernel-fusion case a MK learned as a linear combination of two kernels:

MK(xi, x j) =α ·S KVIS (x1,k
i , x

1,k
j )

+ (1−α) ·S KIR(xk+1,n
i , xk+1,n

j )
(5.6)

where the single kernels S KVIS and S KIR could be any simple kernel with similar or different
hyper-parameters. In (5.6) the SKs represent simple kernels, like those used by the classical SVMs,
where a single kernel function is used for all the components of a vector which represents an object
in the SVM hyperplane. These SK functions could be of different types and could have different
hyper-parameters in (5.6), therefore one could chose one SK for the VIS domain and another SK for
the IR domain. The value α, respective 1−α represents the weight assigned to the VIS kernel, and
IR respectively. The values x1,k

i , x1,k
j are the first k components of the feature vectors xi, respectively

x j which retain the information from the VIS domain, while the values xk+1,n
i , xk+1,n

j are the last n− k
components which retain the information from the IR domain. The calculated weighted sum from
(5.6) represents the value of the proposed MK (which is a distance, in fact).

As we already mentioned in chapter 3 at section 3.2.6, the single kernel could be either RBF, or
Polynomial: S K ∈ {RBF,POL}.
Our MK solution uses a linear combination of simple kernels for different types of feature vectors
VIS IR, revealing thus different combinations referred as: Rb f Pol(VIS IR), PolRb f (VIS IR),
Rb fVIS Rb fIR(VIS IR) and PolVIS PolIR(VIS IR). From all these possible combinations we concluded
that our MK has the following parameters: the kernel type (RBF or POL), the context adjustment
value α, the penalty parameter C and the kernel specific parameters, according to the kernel type: the
bandwidth γ and the order d (for the MK having different types of kernels), γVIS and γIR (for the MK
having two SKs of type RBF but with different hyperparameters) and dVIS and dIR (for the MK with
two different POL kernels). The parameters of the SK from the VIS domain will be denoted pVIS ,
while the parameters of the SK corresponding to the IR domain will be pIR. Thus, our MK is entirely
described by the parameter set: (MKtype, C, MKparameterVIS , MKparameterIR, α).

The system adaptation to the context:

For the idea of the adaptation to the system context, we propose two possible solutions: the first
one is to automatically determine the context and to have a battery of classifiers for each possible
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context from which the proper one to be chosen. Therefore, every time the database is changing,
all possible systems have to be learned again in the training step and from all those to pick up
the best one. If the determined context is not found in the battery of classifiers, we propose to
choose the closest classifier in terms of the context parameter value. The second possible solution
is to use a weighted parameter. But in this case the inconvenient is that this solution is valid only
for the case of a fusion of scores, so the scheme cannot be applied to any level we proposed the fusion.

The weighted parameter which establishes the importance of each modality in a specific context,
could be determined on the training set, as in the case of feature-fusion, kernel-fusion and sAFScores
schemes, or it could be adapted on the test set (as in the case of the dAFScores scheme), or even both
combined (one fixed value to be determined on the test set and a dynamic value to contribute to this
first one, this latter being determined on-line on the test set).

The optimal model of SVM for a given problem corresponds to the configuration that generates
the best classification performance using the 10-folds cross-validation (10f-CV) technique. Each
simple kernel is involved with a weight that represents its relative importance for classification. The
kernel selection process, with the optimization of the hyper-parameters, but also of the weighting
value α is performed in the validation stage, by using the 10f-CV procedure. The accuracies for all
possible combinations of the SVM hyperparameters, also combined with the weighted coefficient α
are computed and the higher value will determine the optimised set of MK’s parameters: (MKtype,
C, MKparameterVIS , MKparameterIR, α).

5.4 Experiments and results

In Weka there is a collection of machine learning algorithms, but there is no algorithm to treat the
fusion problem. Thus, we implemented our fusion schemes, starting from a similar toolbox (libsvm)
of classification integrated for MATLAB (Chang & Lin, 2001).

For these four possibilities for the system to function (one where no fusion scheme is applied and the
three proposed fusion schemes), the methodology of choosing the classifier is differrent and depends
on the system functioning scheme. For the SVM model selection task, performed in the validation
stage, the methodology could be:

• if we consider the case of the monomodal systems VIS and IR cases, so where no fusion
is applied, then the model selection task consists in choosing the best model, i.e. the SK
for the SVM classifier on the VIS domain and on the IR domain with the corresponding
hyperparameters: (S KtypeVIS ,CVIS ,S KparameterVIS ) and (S KtypeIR,CIR,S KparameterIR)
(where S Kparameter could be the order d for the POL kernel or the bandwidth γ for the
RBF kernel) determined by a 10 folds cross-validation procedure. In this case, the monomodal
systems are able to process a single type of information , either the one extracted from the VIS
image or the one extracted from the IR image.

• if we are in the case of a feature-fusion, where bimodal vectors should be considered as inputs
to the system, in the same manner as for the monomodal systems we have to act for the selection
of the SVM model. Therefore, the model of the SVM which is also an SK, will be determined by
(S KtypeVIS IR,S KparameterVIS IR,CVIS IR). The only difference is that instead of monomodal
FVs (VIS and IR) some bimodal FVs (VISIR) will be employed. To compute the bimodal FV,
the features provided by the VIS and IR images will be combined in the frame of the same vector.
For the bimodal vector and for each combination of the SK hyper-parameters, the accuracy is
computed by the 10f-CV procedure, and the maximum value of the accuracy will determine on
the training set the value of the hyper-parameters coresponding to the optimized S K∗. Finally,
for the test objects, the features from the VIS and IR domains will be combined in the same
manner as in the training stage in the frame of the bimodal feature vector. Therefore, in the
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case of a fetaure-fusion scheme, some bimodal vectors should be considered as inputs to the
classifier and in the same manner as for the monomodal systems we have to act for the selection
of the proper SVM model. Therefore, the model of the SVM will be also an SK and it will be
optimized also by a 10f-CV procedure.

• if we consider the case of a fusion of SVM kernels, a MK will be used instead of a SK one
for the SVM classifier to discriminate between different objects. In this case the information
provided to the fusion system will be also a bimodal one, as int he case of the feature-fusion
scheme. In the validation stage of the system, by using the 10f-CV procedure, the accuracies for
all possible combinations of the SVM hyper-parameters corresponding to the MK and combined
with a weighted coefficient α will be computed and the higher one will determine the optimised
value of α to be used on the test set. So in this case, the searched parameters are those of a MK:
(MKtype, C, MKparameterVIS , MKparameterIR, α);

• if we consider the case of a fusion of scores, in the validation stage, we act in the same manner as
in the case of monomodal systems: the winner SVMs determined on the VIS and IR modality
separately, with the corresponding hyperparameters will be used. The static-adaptive fusion
scheme requires that in the validation stage, by knowing the matching scores and the real class
for each object from the validation database, the accuracy to be computed using the SVMs
from the VIS and IR domains which were previously determined as being the winners on the
monomodal systems. Before computing the accuracy, the matching scores are also weighted
with all possible values of an weighted coefficient, α, established in the domain [0;1] with the
step of 0.1. From all computed accuracies by the 10f-CV procedure, the maximum one will be
chosen and thus the optimised α∗ to be used on the test set is found. This static-adaptive fusion
scheme will assure that the α parameter used to combine the matching scores for all the objects
from the test database to have the same value. Unlike this scheme, the dynamic-adaptive one
implies a dynamic adaptation of the parameter α to the context. The parameter α adapts to each
object from the test set, and may have different values from one test object to another. The value
of α is calculated based on the scores dispersion of each test object.

Because it is not known beforehand which parameters for the SVM kernels (even SKs or MKs
gives the best solution for one problem, as we stated in chapter 3 at section 3.2.6) there must be
done a model selection (a parameter search) that could identify appropriate hyper-parameters but
also the α weighted value (for the proposed fusion schemes). When this optimization process is
finished, a winner kernel, i.e. an optimised one is chosen on each modality: S K∗VIS and S K∗IR for the
optimization of the monomodal systems and a single winner kernel S K∗VIS IR for the optimization of
the bimodal system (or the feature-fusion case).

The optimization of the MK’s parameters set (MKtype, C, MKparameterVIS , MKparameterIR, α)
for the kernel-fusion case has been performed in the following manner: for each combination of
kernel type, C, pVIS , pIR and α parameters, the accuracy is computed. The best accuracy denotes the
winner multiple kernel MK∗VIS IR and it’s hyper-parameters. Combination of kernels which process
combinations of features can be revealed by the use of the MK formalism.

The score-based fusion system uses raw scores from the visible and from the infrared subsystems
combined by the weighted exponential fusion rule. For the static-adaptive fusion systems, the
optimum weight has been chosen by the 10f-CV optimization process. First, sAFScores the winner
SKs from the monomodal systems, S K∗VIS and S K∗IR have been used to provide the scores for each
modality; then, combining these scores with all the possible values for α, the best accuracy denotes
the winner α∗. For the second case, in the dynamic-adaptive fusion dAFScores approach, the optimal
α could be a different value for each object from the test set.

In table 5.1 the results of the proposed fusion schemes are presented, together with the results
obtained when no fusion scheme was applied. An accuracy (or recognition rate in the frame of our
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classification problem) of 94.7% was achieved for the visible monomodal system and 94.9% for the
infrared monomodal system. In these cases, when no-fusion scheme was applied, the input vector
was the one corresponding to the respective domain: VIS 171 or IR171.

The accuracies for the proposed fusion schemes are presented for different types of FVs, obtained
imediately after the features extraction step (the first group of results, denoted AllFeatures) or even
after the application of the FS method on the individual vectors VIS 171 and IR171 (the next 2 groups
of results, denoted FS 7CV and FS2a_75).

Performance of the system using the feature-fusion scheme, is observed to be better than any of the
monomodal systems or the system employing a MK approach, but it is worse when comparing to the
fusion of scores situation. One reason for obtaining higher accuracies with the bimodal vectors is
that the input vector was containing all the features from both visible and infrared domains, therefore
a double dimension (and include also some complementary features) of the FV.

It could be noticed that in all situations when comparing the results obtained with the monomodal
systems (where no fusion scheme was employed) with the ones using fusion, the first set is worst
than each of the set provided by the proposed fusion schemes. Therefore, all the proposed fusion
schemes demonstrated efficiency at the classification with the SVM.

For the MK (or kernel-fusion) case the obtained maximum accuracy is higher than the ones
corresponding to the monomodal systems for all three types of FVs we used, but it is below the
accuracy of the bimodal system (or of the matching-score fusion), even the MK system and the
bimodal system use the same input vector. Therefore, our MK solution could be used in this case just
to improve the monomodal decisions. But for the database we employed it has to be considered that
there are no multiple situations for the illumination or weather. Therefore, when such a database will
be available, some improved results are expected. In addition, the dimension of the database is small,
therefore there is not enough data for a correct validation of this case of kernels fusion.

In both cases of scores-fusion, the obtained accuracy values are the best (compared with all the
situations not using scores), even compared with the one corresponding to the bimodal vector.
When using the fusion of scores, the input vector of each classifier is the one corresponding to the
monomodal case (and for this reason the column “winner SK” is missing from the table in the case
of scores-fusion). The scores were provided individually, for each monomodal vector VIS or IR, but
in the scores-combination process the information from both types of features (i.e., the scores) was
fused at the scores-level.

Another remark is that the SKs obtained after the optimization process are not the same in the
experiments developed before or after the application of ths FS process. There are some winner SKs
for the classification problem with 171 features and there are other winner SKs for the classification
problem with the vectors obtained after applying the FS methods. Therefore, for each problem it
must be performed an individual step of validation, where the hyper-parameters of the SK or MK to
be determined together with the proper weighted value α for that respective context.
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5.5 Conclusion

From the previous chapter, two methods of FS have been selected: one combining a Ranker search
and an Information gain single-attribute evaluator (FS2a_75) and the other one combining a Best
First search with a Correlation subset evaluator (FS 7CV). Both methods have provided on both
modalities VIS and IR higher accuracies than their AllFeatures counterparts at the evaluation with
kNN (with k = 1) and SVM classifiers. In this manner, the FS methods have proved efficiency
from the accuracy point of view, as well as concerning the number of features used to encode the
information about the objects from the database. Therefore, using FS methods, the computation time
was significantly reduced, even it was the vector computation time (i.e. the time required to extract
all the features characterizing the object image) or it was the object classification time (i.e. the time
needed to classify a new test object).

In this chapter, different fusion schemes performed at different levels: low-level, high-level, but also
an intermediate-level are presented. The low-level fusion is also called feature-level fusion, the high-
level one is a matching-score fusion and the intermediate-level fusion we used is performed at the
SVM’s kernel level. All these three types of fusion were compared for our road-obstacles SVM-based
classification problem. A comparative study of individual visual and infrared obstacle recognizers
(i.e. monomodal systems) versus fusion-based systems (i.e. bimodal systems) was performed in
this chapter. For each type of system we defined the inputs as being monomodal or bimodal feature
vectors. The monomodal vectors are for the use with the monomodal systems (i.e. systems capable
to process a single type of information, either VIS or IR) or for the systems employing a matching-
scores fusion. The bimodal vectors are proper for the systems using a feature-fusion scheme or a
kernel-based fusion. In the previous chapter, it has been mentioned that we preferred the FS method
to be performed on the individual vectors, on each modality separately, in order to select the most
relevant features on each specific domain. There, the evaluation of these vectors (provided by the
selected FS methods) has been considered in the frame of the monomodal systems. In this chapter,
the proposed fusion schemes have been evaluated by the use of the same FS methods and the results
were compared with the ones previously obtained. The AllFeatures FVs (i.e. those comprising all
the features, VIS 171, IR171 and VIS IR340) have also been evaluated by the fusion systems we propose.

From the analysis of the obtained results, it has been noticed that all the proposed fusion schemes
are better than the monomodal systems, either they were evaluated with reduced FVs on which it
was applied a FS operation or they were evaluated with AllFeatures FVs on which no FS operation
was applied. Comparing all the fusion schemes we propose, best results are obtained for the
matching-scores fusion schemes, followed by the ones which employ a feature-fusion scheme and
finally the ones rendered by the kernel-fusion based systems. Even the kernel-based fusion scheme
(which we believe is the most proper one for our problem of road-obstacle recognition) have not
provided the best results from all the fusion schemes we employed, we believe that a greater and
better balanced database could render much better results. In the case of the database we use for the
evaluation of the fusion schemes, there are not multiple illumination or weather contexts registered
and in addition the dimension of the database was very small. It contained too few instances for the
classes which have to be learned by a multiple kernel. When using a MK instead of a SK one for
the SVM, it is expected that the second one to learn better the instances of a small database, because
there are not so many different combinations of hyper-parameters to be optimized as in the case of
a MK. Therefore, when a complex database will be available, we believe the results render by the
kernel-fusion scheme to be much improved when comparing with the ones provided by the other two
fusion schemes.

In order to ensure the adaptation of the system to the environmental conditions, within fusion schemes
the features, the kernels and respectively the matching-scores were weighted (with a sensor weighting
coefficient) according to the relative importance of the modality sensors. This allowed for better
classification performances.
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Conclusion and Final Considerations
The aim of the present PhD thesis was to investigate the fusion of the visible-infrared information in
the frame of an Obstacle Recognition system.

Several fusion schemes, at different levels and employing a SVM have been developed in the present
work and their application has been performed in the frame of a 4-class road obstacle classification
problem. The purpose of the proposed fusion schemes is besides improving the recognition rates,
the possibility to adapt the system to different environmental contexts, based on weighted schemes
between the visible and infrared information provided by cameras. There are three main contributions
resulting from this effort.

The first contribution is concerning the problem of representing the information enclosed in the
images of the obstacles to be discriminated. As concerning the features extraction operation, we
propose the use of some general and fast to compute features which could be used to compute some
monomodal or bimodal vectors. Each family of features has been evaluated in order to estimate the
benefit it was added to the final feature vector. We proposed the use of a combination of different
families of features in order to encode the information about the obstacles to be classified.

In the frame of the features selection, we proposed a different manner to apply and evaluate the
features selection methods. The selection of the most relevant features could be performed by the
use of Ranker or Search methods, and for each of these we propose the use of thresholds with
different meaning in order to retain the features to be comprised in the selected feature vector.
The criteria used to select these features was based on the accuracy of the classification and it was
considered that on each modality, visible and infrared, the resulted feature vector should overcome
the results obtained with the initial vectors, i.e. which does not use such a features selection operation.

For the fusion schemes we propose the features, kernels or matching scores to be combined
in order to improve the performances of the recognition system. These could also be weighted
before their combination in order to assure the system adaptability to different environmental contexts.

Further work will concern the improvement of the signature used by now to encode the information
about the available database with some other types of features, besides the ones we employed. For
example, some edge-based features, the coefficient of other transforms (such as PCA, SURF points),
features considering geometric properties such as area, or even some dynamic features (like the ones
based on active contours) among others. These complementary features would contribute to better
encode the information about the objects when a complex database registered in real conditions will
be available.

Moreover, a new FS method adapted to this problem of ODR systems is under development. We
aim the use of multiple FS methods and their results to be combined in an average rank value or
an average index of relevance available for each feature. A new method to constructs an average
rank value for each feature and based on a bi-level criteria (accuracy of the classification and time
required to extract those features) to select only the most relevant features in order to compute the
final FV. In this manner, we could control the length of the final FV and thus we could decide how
many features to be comprised in the final FV. Features which could be separable within their family
could be individually computed in order to gain in the computation time.

Relative to the fusion problem, some other methods to perform the fusion of the VIS-IR information
could be implemented and evaluated. We also aim to address some other levels at which to perform
the fusion, such as: data-level, rank level and decision level. All these schemes could be compared
and could improve the results obtained by now. Data-level has already been study but because it was
sensitive to the calibration problems, we chose not to consider it as a final fusion scheme. Still, if its
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usage in the frame of an entire ODR system could improve the results (if its results will be considered
just as a part of the final decision, therefore to be performed in parallel with some other powerful
fusion schemes), it could be considered. Also, we envisioned to improve the feature-fusion scheme
we proposed by the use of some weighted schemes regarding each feature or each family of feature,
besides the weighted at the modality level. Thus, we propose to enhance the SVM learning with
weighted features. Regarding the decision level fusion, multiple classifiers are aimed to contribute to
the decision about the class of the test objects based on a majority vote for example. All the fusion
methods we considered in this thesis treat the information using probabilities, while other based on
possibilities, like the ones using Dempster-Shafer theory are also available. We propose to compare
our fusion schemes with these ones. As further improvements, we intend to integrate these fusion
schemes in an entire obstacle-detection and classification system.

We also propose as further improvements a method to determine the weighted parameter based on
both sets of data, the training and the test one. In order to establish the importance of each modality
in a specific context, this parameter could be determined on the training set, as a fixed value, but it
also could be adapted on the test set, as a dynamic value. Thus, the contribution of both values (the
fixed one but also the dynamic one) will be considered.

All these possible improvements have to be evaluated on a greater, complex and balanced database,
with multiple contexts registered in order to test the proposed schemes in real conditions. This
will also help the MK solution we propose, because when enough data will be available, the MK
could better learn each instance. When multiple hyper-parameters are used to compute the kernel,
also much many instances should be available in order to best learn the kernel with that respective
database. Different types of kernels with different values for the hyper-parameters could be tested in
order to enlarge the searching space and to find the best global solution for our problem.

Finally, we propose the recognition module (and hence the fusion) will be further integrated into a
complete system performing the ODR task.
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Rakotomamonjy, Alain, Bach, Francis, Canu, Stéphane, & Grandvalet, Yves. 2007. More efficiency
in multiple kernel learning. Pages 775–782 of: Icml ’07: Proceedings of the 24th international
conference on machine learning. New York, NY, USA: ACM. 120

Red Team, CarnegieMellon University. 2005. Pittsburgh, Pennsylvania. "http://www.cs.cmu.
edu/~red/Red/". 25

RedTeam. 2005. DARPA Grand Challenge Technical Paper. "http://www.darpa.mil/
grandchallenge04/TeamTechPapers/RedTeamFinalTP.pdf". 25, 31

Richter, E., Schubert, R., & Wanielik, G. 2008 (June, 4-6). Radar and Vision based Data Fusion-
Advanced Filtering Techniques for a Multi Object Vehicle Tracking System. Pages 120–125 of:
IEEE Intelligent Vehicles Symposium. 20, 31

138



Sadou, M., Polotski, V., & Cohen, P. 2004. Occlusions in obstacle detection for safe navigation.
IEEE International Symposium on Intelligent Vehicles, 716–721. 29, 31

Sanderson, C., & Paliwal, K.K. 2002. Information fusion and person verification using speech and
face information. Tech. rept. IDIAP-RR 02-33. IDIAP Research Report. 112

Scheunert, U., Cramer, H., Fardi, B., & Wanielik, G. 2004. Multi sensor based tracking of
pedestrians: a survey of suitable movement models. Pages 774–778 of: Procs. IEEE International
Symposium on Intelligent Vehicles. 23, 31

Schweiger, R., Neumann, H., & Ritter, W. 2005 (June, 6-8). Multiple-cue data fusion with particle
filters for vehicle detection in night view automotive applications. Pages 753–758 of: Procs. IEEE
Intelligent Vehicles Symposium. 19, 31

Serfling, M., Schweiger, R., & Ritter, W. 2008 (June, 4-6). Road course estimation in a night
vision application using a digital map, a camera sensor and a prototypical imaging radar system.
Pages 810–815 of: Procs. IEEE Intelligent Vehicles Symposium. 19, 31

Shashua, A., Gdalyahu, Y., & Hayun, G. 2004. Pedestrian detection for driving assistance systems:
Single-frame classification and system level performance. Pages 1–6 of: Procs. IEEE International
Symposium on Intelligent Vehicles. 37, 47

Sole, A., Mano, O., Stein, G.P., Kumon, H., Tamatsu, Y., & Shashua, A. 2004. Solid or not solid:
Vision for radar target validation. IEEE International Symposium on Intelligent Vehicles, 819–8824.
18, 31

Stanford Racing team. 2007. Stanford Robotic Vehicle Junior: Interim Report. "http://www.
darpa.mil/grandchallenge/TechPapers/Stanford.pdf". 31

Stanford Racing Team, Stanford University. 2005. Palo Alto, California. "http://cs.
stanford.edu/group/roadrunner//old/index.html". 25

Stanford Racing team, Stanford University. 2007. Palo Alto, California. "http://cs.
stanford.edu/group/roadrunner/". 26

Steux, B., Laurgeau, C., Salesse, L., & Wautier, D. 2002 (June). Fade: a vehicle detection and
tracking system featuring monocular color vision and radar data fusion. Pages 632–639 of: Procs.
IEEE Intelligent Vehicles Symposium, vol. 2. 17, 18, 31

Sun, Z., Bebis, G., & Miller, R. 2006a. Monocular Precrash Vehicle Detection: Features and
Classifiers. Pages 2019–2034 of: IEEE Transactions on Image Processing, vol. 15. 70

Sun, Z., Bebis, G., & Miller, R. 2006b. On-road Vehicle Detection: A Review. Pages 694–711 of:
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28. 33

Tartan Racing. 2007. A Multi-Modal Approach to the DARPA Urban Challenge. "http://www.
darpa.mil/grandchallenge/TechPapers/Tartan_Racing.pdf". 31

Tartan Racing team, CarnegieMellonUniversity. 2007. Pittsburgh, Pennsylvania. "http://www.
tartanracing.org/". 26

Tatschke, T. 2006 (June). Early sensor data fusion techniques for collision mitigation purposes.
Pages 445–452 of: Procs. IEEE Intelligent Vehicles Symposium. 31

TerraMax Team, Oshkosh Truck Corporation. 2005. Oshkosh, Wisconsin. "http://www.
terramax.com/". 25

139



TerraMaxTeam. 2005. Oshkosh Truck Corporation, DARPA Grand Challenge Technical
Paper. "http://www.darpa.mil/grandchallenge04/TeamTechPapers/TerraMaxFinalTP.
pdf". 26, 31

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J.,
Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband,
S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., & Mahoney,
P. 2006. Winning the DARPA Grand Challenge. Journal of Field Robotics. "http://robots.
stanford.edu/papers/thrun.stanley05.html". 25, 31

Tons, M., Doerfler, R., Meinecke, M.M., & Obojski, M.A. 2004 (June). Radar sensors and sensor
platform used for pedestrian protection in the EC-funded project SAVE-U. Pages 813–818 of: Procs.
IEEE International Symposium on Intelligent Vehicles. 25, 31

Toulminet, Gwenaelle, Bertozzi, Massimo, Mousset, Stephane, Bensrhair, Abdelaziz, Broggi,
Alberto, & Member, Senior. 2006. Vehicle Detection by Means of Stereo Vision-Based Obstacles
Features Extraction and Monocular Pattern Analysis. Pages 2364–2375 of: IEEE Transactions on
Image Processing, vol. 15. 36, 54, 55, 80

Trepagnier, P.G., Nagel, J., Kinney, P.M., Koutsougeras, C., & Dooner, M. 2006. KAT-5: Robust
systems for autonomous vehicle navigation in challenging and unknown terrain. Journal of Field
Robotics, 509–526. "www2.selu.edu/Academics/Faculty/ck/paps/JFR.pdf". 25, 31

van Rijsbergen, C. 1979. Information Retrieval, Second Edition. Butterworths. 68

Vapnik, V.N. 1998. Statistical learning theory. New York, USA: Adaptive and Learning Systems
for Signal Processing, Communications, and Control. John Wiley and Sons. 80

Victor Tango team. 2007. DARPA Urban Challenge-Technical Paper. "http://www.darpa.mil/
grandchallenge/TechPapers/Victor_Tango.pdf". 31

Victor Tango team, Virginia Tech. 2007. Blacksburg, Virginia. "http://www.me.vt.edu/
urbanchallenge/". 26

Viola, P.A., & Jones, M.J. 2001. Rapid object detection using a boosted cascade of simple features.
Pages 511–518 of: IEEE Computer Vision and Pattern Recognition (CVPR). 40

Viola, P.A., Jones, M.J., & Snow, D. 2003. Pedetrian using patterns of motions and appearance.
Pages 734–741 of: In IEEE Int. Conf on Computer Vision. 40, 43, 47
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ABSTRACT 

To continue and improve the detection task which is in progress at INSA laboratory, we focused on 

the fusion of the information provided by visible and infrared cameras from the viewpoint of an 

Obstacle Recognition module, thus discriminating between vehicles, pedestrians, cyclists and 

background obstacles. Bimodal systems have been proposed to fuse the information at different levels: 

of features, SVM's kernels, or SVM’s matching-scores. These were weighted according to the relative 

importance of the modality sensors to ensure the adaptation (fixed or dynamic) of the system to the 

environmental conditions. To evaluate the pertinence of the features, different features selection 

methods were tested by a KNN classifier, which was later replaced by a SVM. An operation of model 

search, performed by 10 folds cross-validation, provides the optimized kernel for the SVM. The results 

have proven that all bimodal VIS-IR systems are better than their corresponding monomodal ones.  

Keywords: Fusion, Infrared cameras, Features extraction, Features selection, Support Vector 

Machine, Kernels, Matching-scores, Hyper-parameter optimization, Model search, 10 folds cross- 

validation. 

 

RÉSUMÉ 

Afin de poursuivre et d'améliorer la tâche de détection qui est en cours à l'INSA, nous nous sommes 

concentrés sur la fusion des informations visibles et infrarouges du point de vue de reconnaissance des 

obstacles, ainsi distinguer entre les véhicules, les piétons, les cyclistes et les obstacles de fond. Les 

systèmes bimodaux ont été proposées pour fusionner l'information à différents niveaux: des 

caractéristiques, des noyaux SVM, ou de scores SVM. Ils ont été pondérés selon l'importance relative 

des capteurs modalité pour assurer l'adaptation (fixe ou dynamique) du système aux conditions 

environnementales. Pour évaluer la pertinence des caractéristiques, différentes méthodes de sélection 

ont été testés par un PPV, qui fut plus tard remplacée par un SVM. Une opération de recherche de 

modèle, réalisée par 10 fois validation croisée, fournit le noyau optimisé pour SVM. Les résultats ont 

prouvé que tous les systèmes bimodale VIS-IR sont meilleurs que leurs correspondant monomodale. 

Mot clés: Fusion, Caméras infrarouges, Extraction des caractéristiques, Sélection des caractéristiques, 

Séparateur a Vaste Marge, Noyau, Scores, Optimisation des hyper-paramèters, Recherche du modèle, 

10 fois validation croisée. 
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