
 
 
 
 

ADAPTIVE EDGE-ENHANCED CORRELATION BASED 

ROBUST AND REAL-TIME VISUAL TRACKING FRAMEWORK 

AND ITS DEPLOYMENT IN MACHINE VISION SYSTEMS 

 
 

 
 

by 
 
 
 

 
Javed Ahmed 

 
 
 
 
 
 
 
 

Submitted to the Department of Electrical Engineering, 
Military College of Signals, in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy 
 

 

 

 

 

 

 

National University of Sciences and Technology 
Rawalpindi, Pakistan 

 
 

February 2008 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Approved for the Department of Electrical 
Engineering 
 
 
 
 
 
 

  
Supervisor 
 
 
 
 
 
 

  
Chairman of the Guidance & Examination 
Committee 
 
 
 
 
 
 
 

  
Head of the Department 
 

 



 iii

Abstract 

An adaptive edge-enhanced correlation based robust and real-time visual tracking 

framework, and two machine vision systems based on the framework are proposed. 

The visual tracking algorithm can track any object of interest in a video acquired from 

a stationary or moving camera. It can handle the real-world problems, such as noise, 

clutter, occlusion, uneven illumination, varying appearance, orientation, scale, and 

velocity of the maneuvering object, and object fading and obscuration in low contrast 

video at various zoom levels. The proposed machine vision systems are an active 

camera tracking system and a vision based system for a UGV (unmanned ground 

vehicle) to handle a road intersection. 

The core of the proposed visual tracking framework is an Edge Enhanced 

Back-propagation neural-network Controlled Fast Normalized Correlation (EE-

BCFNC), which makes the object localization stage efficient and robust to noise, 

object fading, obscuration, and uneven illumination. The incorrect template 

initialization and template-drift problems of the traditional correlation tracker are 

handled by a best-match rectangle adjustment algorithm. The varying appearance of 

the object and the short-term neighboring clutter are addressed by a robust template-

updating scheme. The background clutter and varying velocity of the object are 

handled by looking for the object only in a dynamically resizable search window, in 

which the likelihood of the presence of the object is high. The search window is 

created using the prediction and the prediction error of a Kalman filter. The effect of 

the long-term neighboring clutter is reduced by weighting the template pixels using a 

2D Gaussian weighting window with adaptive standard deviation parameters. The 

occlusion is addressed by a data association technique. The varying scale of the object 



 iv

is handled by correlating the search window with three scales of the template, and 

accepting the best-match region that produces the highest peak in the three correlation 

surfaces. The proposed visual tracking algorithm is compared with the traditional 

correlation tracker and, in some cases, with the mean-shift and the condensation 

trackers on real-world imagery. The proposed algorithm outperforms them in 

robustness and executes at the speed of 25 to 75 frames/second depending on the 

current sizes of the adaptive template and the dynamic search window. 

The proposed active camera tracking system can be used to get the target 

always in focus (i.e. in the center of the video frame) regardless of the motion of the 

target in the scene. It feeds the target coordinates estimated by the visual tracking 

framework into a predictive open-loop car-following control (POL-CFC) algorithm 

which in turn generates the precise control signals for the pan-tilt motion of the 

camera. The performance analysis of the system shows that its percent overshoot, rise 

time, and maximum steady state error are 0%, 1.7 second, and ±1 pixel, respectively. 

The hardware of the proposed vision based system, that enables a UGV to 

handle a road intersection, consists of three on-board computers and three cameras 

(mounted on top of the UGV) looking towards the other three roads merging at the 

intersection. The software in each computer consists of a vehicle detector, the 

proposed tracker, and a finite state machine model (FSM) of the traffic. The 

information from the three FSMs is combined to make an autonomous decision 

whether it is safe for the UGV to cross the intersection or not. The results of the actual 

UGV experiments are provided to validate the robustness of the proposed system. 

Index terms – visual tracking, adaptive edge-enhanced correlation, active camera, 

unmanned ground vehicle. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2008 Javed Ahmed 

 



 vi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To the Prophet Muhammad (Sallallahu Alaih Wa Aalihee Wasallam) 

 



 vii

Acknowledgements 

It would be an injustice if I do not thank, first of all, Allah, the creator and controller 

of the whole universe. He blessed me with the will to get into the world of research 

and guided me through ups and downs in the course of achieving my goal. I thank 

Him without any limit... 

I am grateful to my parents (who always pray for me to have a good place in 

this world and hereafter), my wife and children (for being with me even when I was 

not completely with them), and my brothers and sisters (who are my perpetual well-

wishers). 

I would like to thank my supervisor Dr. M. Noman Jafri (Professor, MCS) for 

his technical as well as managerial support during my PhD studies. I am also grateful 

to my co-supervisor Dr. Mubarak Shah (Agere Chair Profesor, University of Central 

Florida, USA), who graciously invited me to conduct the collaborative research with 

his research group at the world famous Computer Vision Lab under his guidance. The 

8-month visit provided me with the opportunity to learn many new ideas and current 

trends in the field of computer vision. 

I am grateful to Dr. Zhigang Zhu (City University of New York, USA), Dr. 

Alper Yilmaz (Ohio State University, USA), and Dr. Sohaib Ahmad Khan (Lahore 

University of Management Sciences, Pakistan) for accepting the manuscript of this 

dissertation for PhD and providing me with their positive comments and valuable 

suggestions for the further improvement. 

I would also like to thank Brig.® Dr. Muhammad Akbar (Professor, MCS), Dr. 

Saleem Akbar (Professor, MCS), and Dr. Jamil Ahmad (Professor and Dean, Iqra 



 viii

University, Islamabad Campus) for being members of my Guidance and Examination 

Committee (GEC). 

I think I am going to remember Dr. Muhammad Ali Chaudhry, Robina Ashraf, 

Lt. Col. Fahim Arif, Lt. Col. Alamdar Raza, and Lt. Cmdr. Junaid Ahmed for a long 

time for accompanying me in the same vulnerable boat. 



 ix

Table of Contents 

LIST OF FIGURES………………………………………………………………...XII 

LIST OF TABLES……………………………………………………………….XVIII 

1 INTRODUCTION..................................................................................... 1 

1.1 Chapter Overview.................................................................................................................... 1 

1.2 Visual Tracking........................................................................................................................ 1 
1.2.1 Introduction......................................................................................................................... 1 
1.2.2 Previous Work .................................................................................................................... 2 
1.2.3 Contribution of the Present Research.................................................................................. 4 

1.3 Active Camera Tracking System ............................................................................................ 7 
1.3.1 Introduction......................................................................................................................... 7 
1.3.2 Previous Work .................................................................................................................... 8 
1.3.3 Contribution of the Present Research.................................................................................. 9 

1.4 A Vision Based System for a UGV to Handle a Road Intersection.................................... 10 
1.4.1 Introduction....................................................................................................................... 10 
1.4.2 Previous Work .................................................................................................................. 11 
1.4.3 Contribution of the Present Research................................................................................ 12 

1.5 Thesis Organization ............................................................................................................... 12 

1.6 Chapter Summary.................................................................................................................. 13 

2 CORRELATION BASED OBJECT LOCALIZATION............................ 14 

2.1 Chapter Overview.................................................................................................................. 14 

2.2 Object and Its Representation .............................................................................................. 14 

2.3 Correlation Metrics................................................................................................................ 15 
2.3.1 Standard Correlation (SC)................................................................................................. 16 
2.3.2 Phase Correlation (PC) ..................................................................................................... 17 
2.3.3 Normalized Correlation (NC) ........................................................................................... 18 
2.3.4 Normalized Correlation Coefficient (NCC)...................................................................... 19 
2.3.5 Edge Enhanced BPNN-Controlled Fast Normalized Correlation (EE-BCFNC) .............. 20 

2.4 Generic Correlation Based Object Localization Algorithm............................................... 33 

2.5 Comparison among Different Correlation Techniques ...................................................... 34 

2.6 Chapter Summary.................................................................................................................. 38 

3 VISUAL TRACKING FRAMEWORK .................................................... 39 

3.1 Chapter Overview.................................................................................................................. 39 



 x

3.2 Challenges for a Visual Tracking Algorithm....................................................................... 39 

3.3 Proposed Visual Tracking Framework ................................................................................ 40 
3.3.1 Video Frame Acquisition.................................................................................................. 40 
3.3.2 Initialization of Template, Kalman Filter, and Search Window ....................................... 42 
3.3.3 Edge-enhancement of Template and Search Window ...................................................... 43 
3.3.4 Template Scaling .............................................................................................................. 43 
3.3.5 Gaussian Weighting of Template Pixels ........................................................................... 46 
3.3.6 Object Localization........................................................................................................... 47 
3.3.7 Template Updating ........................................................................................................... 48 
3.3.8 Best-Match Rectangle (BMR) Adjustment ....................................................................... 50 
3.3.9 Occlusion Handling .......................................................................................................... 58 
3.3.10 Kalman Filter .................................................................................................................... 60 
3.3.11 Search Window Updating ................................................................................................. 64 

3.4 Experimental Results............................................................................................................. 68 

3.5 Comparison with Traditional Correlation Tracker............................................................ 72 

3.6 Chapter Summary.................................................................................................................. 78 

4 ACTIVE CAMERA TRACKING SYSTEM ............................................. 80 

4.1 Chapter Overview.................................................................................................................. 80 

4.2 Problem Description .............................................................................................................. 80 

4.3 Pan-Tilt Control Algorithm .................................................................................................. 81 
4.3.1 Car-Following Control (CFC) Law................................................................................... 82 
4.3.2 Predictive Open-Loop CFC (POL-CFC) .......................................................................... 85 
4.3.3 Determining Cdpp Factor.................................................................................................... 88 
4.3.4 Performance Analysis of POL-CFC ................................................................................. 89 

4.4 Experimental Results............................................................................................................. 92 
4.4.1 Tracking a Distant and Faded Airplane ............................................................................ 93 
4.4.2 Tracking a Helicopter ....................................................................................................... 95 
4.4.3 Tracking a Crow Flying with Variable Velocity............................................................... 96 
4.4.4 Tracking a Maneuvering Kite and Handling Occlusion.................................................... 96 
4.4.5 Tracking a Person in the Shrubbery.................................................................................. 98 
4.4.6 Tracking a Car in Clutter and Occlusion........................................................................... 99 
4.4.7 Face Tracking in Uneven Illumination and Occlusion.................................................... 100 
4.4.8 Tracking a Goat amidst Multiple Goats in Clutter and Noise......................................... 102 

4.5 Chapter Summary................................................................................................................ 103 

5 A VISION BASED SYSTEM FOR A UGV TO HANDLE A ROAD 
INTERSECTION.................................................................................. 104 

5.1 Chapter Overview................................................................................................................ 104 

5.2 Problem Description ............................................................................................................ 104 

5.3 Overview of the Proposed Solution..................................................................................... 106 

5.4 Vehicle Detector ................................................................................................................... 108 

5.5 Tracker ................................................................................................................................. 109 



 xi

5.6 Finite State Machine (FSM) Model .................................................................................... 110 

5.7 Final Decision ....................................................................................................................... 112 

5.8 Experimental Results........................................................................................................... 112 

5.9 Chapter Summary................................................................................................................ 115 

6 CONCLUSION AND FUTURE DIRECTIONS ..................................... 119 

6.1 Visual Tracking Framework............................................................................................... 119 

6.2 Active Camera Tracking System ........................................................................................ 122 

6.3 A Vision Based System for a UGV to Handle a Road Intersection.................................. 123 

REFERENCES……………………………………………………………………124 

AUTHOR BIOGRAPHY.………………………………………………………...132 

 



 xii

List of Figures 

Figure 2.1 Effect of the proposed edge-enhancement operations. (a) A 240×320 gray level 

image containing a very low-contrast (faded) object, (b) Edges of the image 

without using the proposed edge-enhancement operations, (c) Result of the 

proposed edge-enhancement operations 

23 

Figure 2.2 Surface plot of G as a function of Rts and Ss , where G is the speed-gain of FFT-

SAT method of NC implementation relative to the direct method, Rts is the ratio 

of template-size to search-window-size, and Ss is the search-window-size. 

28 

Figure 2.3 The proposed architecture of the BPNN classifier, where tansig is the activation 

function used for the neurons in the hidden and the output layers [see Eqs. 

(2.16) and (2.17)]. 

29 

Figure 2.4 Tangent sigmoid activation function 31 

Figure 2.5 Surface plot showing the decisions made by the BPNN classifier when it was 

provided with various combinations of the search-window-size and the size-

ratio as 2-element input patterns. 

32 

Figure 2.6 The 21×23 templates (shown enlarged for easy view). (a) Original, (b) Edge-

enhanced. 

35 

Figure 2.7 Results of various correlation-based object localization methods. (a) SC surface, 

(b) PC surface, (c) NC surface, (d) NCC surface, (e) Proposed EE-BCFNC 

surface, and (f) Overlay of the + signs on the target coordinates (correctly found 

by NC, NCC and EE-BCFNC methods) on the search-window, where the black 

sign represents the top-left coordinates (mtl, ntl) of the best-match and the white 

sign represents its center-coordinates (mc, nc). 

36 

Figure 3.1 Flow chart of the proposed visual tracking algorithm 41 

Figure 3.2 Tracking a car going away from the camera without using template scaling 

stage. The yellow rectangle represents the best-match rectangle, and the blue 

rectangle represents the dynamic search window (discussed in Section 3.3.11). 

Since the template size is fixed and the size of the car is reducing with time, the 

background becomes more dominant than the car being tracked. As a result, the 

tracker starts tracking the background instead of the car from 75th frame. 

44 



 xiii

Figure 3.3 Illustration of the scale-handling capability of the proposed visual tracking 

algorithm. A car is being tracked successfully, even when the scale of the car is 

being reduced due to its ever-increasing distance from the camera. It can be seen 

that if the template is reduced in size with time, the dynamic search window is 

also reduced. Thus, three benefits are obtained: scale handling, more 

background clutter rejection and less processing burden on the system. 

45 

Figure 3.4 Template split into nine non-overlapping equal regions 52 

Figure 3.5 Flow chart of the voting function for obtaining the vote from a non-central 

region for expansion, shrinking, or no change of the best-match rectangle from 

the corresponding side. The μuc, μc, and μopp are the input parameters of the 

function and they are basically the mean values of the region under 

consideration, the central region, and the opposite region, respectively. 

53 

Figure 3.6 Tracking a maneuvering kite (the bird) in a test video, without using BMR 

adjustment algorithm. Yellow rectangle is the BMR and the blue rectangle is the 

dynamic search window. The current template is overlaid at the upper-right 

corner on each frame. The template is incorrectly initialized in such a way, that 

it is significantly larger than the object and the object is deviated from its center. 

It can be seen that the object is slowly going away from the center of the 

template with time. At 347th frame, the tracker has left the object of interest and 

started tracking another similar object, which was also inside the current search 

window. 

56 

Figure 3.7 Tracking a maneuvering kite (the bird) in a test video clip, when the BMR 

adjustment algorithm is performed. The current template is overlaid at the 

upper-right corner on each frame. The template is initialized incorrectly in such 

a way, that it is significantly larger than the object and the object is deviated 

from its center. The BMR adjustment algorithm reduces the size of the template 

appropriately to tightly enclose the object in every frame. As a result, the object 

does not drift away from the center of the template with time. That is, the 

template drift problem is eliminated. The size of the dynamic search window is 

smaller as compared to the one in Figure 3.6, because the template size is now 

smaller than the initial template. At 347th frame, the tracker is not misled by the 

other similar objects, because the template is now a good representative of the 

object of interest and the appropriately sized search window does not contain 

the other kites inside it. The tracking is continued robustly and persistently till 

the last (i.e. 2600th) frame of the long video clip. 

57 

Figure 3.8 Frames from seq_fast.avi [55] showing the benefit of the dynamic search 67 



 xiv

window as compared to the fixed-size search window, when the object is 

moving to and fro very fast. Upper row: When a fixed-size search window is 

used, the fast to and fro motion causes the object to get out of the search 

window; Lower row: The object is always inside the search window, when the 

proposed dynamic search window is used. Note: Search window is represented 

by a blue rectangle and the template by a yellow rectangle. 

Figure 3.9 Some frames from ShopAssistant2cor.mpg video clip from CAVIAR dataset 

[40], illustrating the robustness of the proposed visual tracking algorithm even 

in the presence of multiple similar objects, uneven illumination, clutter, object 

scaling, and occlusion. 

68 

Figure 3.10 Some frames from a shaky video sequence recorded from an unmanned aerial 

vehicle (UAV) showing a small car being tracked perfectly by the proposed 

algorithm in the presence of blur, glare, noise, and UAV motion in 6 degree-of-

freedom. The current template is shown at the top left corner of every frame. 

69 

Figure 3.11 Some frames from seq_fast.avi sequence [55], in which the proposed algorithm 

tracks the face even during its fast left and right motion. However, the mean-

shift and condensation trackers could not track the fast-moving face (see Figure 

6 in [51]). 

70 

Figure 3.12 Some frames from seq_mb.avi sequence [55]. The proposed algorithm tracks the 

face of the girl even during occlusion. However, the mean-shift and 

condensation trackers could not robustly survive the occlusion in this sequence 

(see Figure 7 in [51]). 

70 

 

Figure 3.13 Some frames from PetsD2CeT2.avi in the PETS dataset [83] showing a car 

being tracked by the proposed visual tracking algorithm in the presence of 

background clutter and variation in the scale as well as shape of the car. 

71 

Figure 3.14 The proposed visual tracking algorithm is handling occlusion and clutter while 

tracking a person’s face in a long video sequence seq45-3p-1111_cam2.avi in 

AV 16.3 v6 dataset [84]. The red rectangle indicates there is no occlusion and 

the algorithm is working in its normal tracking mode. When the algorithm 

detects and handles the occlusion, the rectangle color is changed to pink for 

demonstration. 

72 

Figure 3.15 Result of TCT (Traditional Correlation Tracker) for S1 image sequence, 

showing the template drift problem starting from Frame 150 and its failure 

starting from Frame 273 during object fading 

74 



 xv

Figure 3.16 Target trajectory (row and column coordinates) produced by TCT for S1 

sequence showing the failure from Frame 273 through the last frame of the 

image sequence. 

74 

Figure 3.17 Result of PCT (Proposed Correlation Tracker) for S1 image sequence. The 

helicopter is tracked persistently in all the frames even during the severe object 

fading in very low-contrast video without any template-drift problem. 

75 

Figure 3.18 Target trajectory (row and column coordinates) for S1 sequence produced by 

PCT. Note that the computed trajectory is perfectly matching the ground truth 

trajectory for almost all the frames. 

75 

Figure 3.19 Result of TCT algorithm for S2 image sequence. Note that the template-drift 

problem starts from Frame 90 and the failure starts from Frame 93 due to 

background clutter. 

76 

Figure 3.20 Target trajectory (row and column coordinates) produced by TCT for S2 

sequence, showing its failure starting from Frame 93. 

76 

Figure 3.21 Result of PCT for S2 image sequence, showing how persistently it tracks the 

airplane up to the last frame, even in the presence of scale change, the high 

background clutter and the low contrast between the object and the background 

in the initial part of the video, and the drastic change in the background intensity 

level in the later part of the video as compared to the first part. 

77 

Figure 3.22 Target trajectory provided by PCT for S2 sequence. It accurately follows the 

ground truth trajectory in almost all the frames. 

77 

Figure 4.1 Simplified block diagram of an active camera tracking system 81 

Figure 4.2 Demonstration of the Car-Following Control (CFC) Law 82 

Figure 4.3 Target trajectory, generated velocity, and tracking error curves in both axes, 

when a stationary object was being centralized in the video frames by the 

proposed tracking system. 

90 

Figure 4.4 Target trajectory, velocity and tracking error curves for pan motion, when a 

walking man was being tracked. 

91 

Figure 4.5 Target trajectory, velocity and tracking error curves for pan motion, when a 

flying helicopter was being tracked. 

92 

Figure 4.6 Tracking a very distant airplane robustly with the proposed tracking system 

even in the presence of incorrect template initialization, clouds, and object 

94 



 xvi

fading (obscuration) in very low contrast imagery. 

Figure 4.7 A helicopter is being tracked persistently and smoothly with the proposed 

tracking system even when the template was incorrectly initialized by the user 

and the size of the object is being reduced to about 3×3 pixels. 

95 

Figure 4.8 Tracking a crow persistently even in the presence of sudden variation in 

appearance, speed, background, and camera zoom (from 3x to 7x).  

97 

Figure 4.9 Tracking a distant kite with the proposed tracking system for long duration, 

even in the presence of its ever-changing direction and appearance, varying 

zoom level, multiple similar objects, and occlusion (Frames 1565 to 1585). 

Yellow overlaid content in Frame 1574 indicates that the tracker is working in 

its occlusion handling mode. 

98 

Figure 4.10 Tracking a man walking in the cluttered shrubbery at the highest zoom level 

(25x) of the camera used in this research, until he disappears beyond a bush. 

99 

Figure 4.11 Tracking a car in a highly cluttered scene and multiple occlusions. The yellow 

color of the overlaid content indicates the normal tracking mode and the dark 

yellow color (in Frame 250 and 341) indicates the occlusion handling mode of 

the tracking system. 

100 

Figure 4.12 Tracking the face of a person during severe illumination variation, noise, low 

detail, and occlusion. All the lights in the room were turned off in this 

experiment to create a challenging scenario. The dark yellow rectangle in Frame 

495 indicates that the tracker is currently working in its occlusion handling 

mode. 

101 

Figure 4.13 Tracking a goat amidst many other goats in a highly cluttered and noisy scene at 

about 7:26 p.m. in the evening. Initially, the front part of the goat is selected by 

the user from top of the video. The goat is then centralized and tracked until it 

disappears beyond a home. 

102 

Figure 5.1 The four way intersection scenario. All vehicles must come to a stop before 

entering the intersection. The UGV must be aware of incoming vehicles in the 

right-hand lane of each of the three roads (left, front, and right), in the regions 

indicated by the shaded boxes. 

105 

Figure 5.2 The experimental UGV is a Subaru Outback with an autopilot system and three 

cameras mounted to the roof. 

106 



 xvii

Figure 5.3 Block diagram of our proposed system. The Vehicle Detector, Tracker, and 

Finite State Machine (FSM) are run on the three on-board computers 

simultaneously for each camera view. The actual OT-MACH filters used for 

each view are also shown at the top. 

107 

 

Figure 5.4 Finite state machine (FSM) model for the state of traffic on a road. 110 

Figure 5.5 The UGV is arriving at the intersection, but another car is already waiting on the 

left road. 

116 

Figure 5.6 The UGV stops and turns on the computer vision system. The system detects 

that the car is at the intersection and commands the UGV to wait. 

116 

Figure 5.7 The car at the other road begins to pass the intersection.  117 

Figure 5.8 The car has exited the view of the left camera, although it is still visible in the 

video from the camcorder. The computer vision system is turned off because it 

will now be the UGV’s turn to cross the intersection. 

117 

Figure 5.9 Two seconds later, the UGV begins to pass the intersection automatically. 118 

 

 



 xviii

List of Tables 

Table 2.1 BPNN decision, d, and its validation, G, for some sizes of the images 33 

Table 3.1 Post-regression analysis for comparing accuracy of TCT and PCT 78 

Table 4.1 The values of K for different zoom levels of the camera to have 0% overshoot 87 

Table 4.2 Maximum steady state error of the proposed tracker at different camera zoom 

levels 

93 

Table 5.1 Detection results in uncontrolled traffic 113 

Table 5.2 Results of the actual UGV experiments under autonomous control 113 



 1

1 Introduction 

1 

Introduction 

1.1 Chapter Overview 

This chapter provides the introduction to visual tracking and its deployment in an 

active camera tracking system and a vision system for a UGV to handle a road 

intersection. It also discusses the limitations of the previous techniques, and presents 

the summary of the proposed solutions. 

1.2 Visual Tracking 

This section provides a brief introduction to visual tracking, previous work, and the 

contribution of the present research. 

1.2.1 Introduction 

Visual tracking, in general, can be defined as localizing the object of interest in 

consecutive frames of a video. Efficient tracking of the object in complex 

environments is a challenging task for the computer vision community. The complex 

environments or real-world problems include noise, object fading obscuration, clutter 

(including other similar objects in the scene), occlusion, uneven illumination, high 

computational complexity, and varying shape, orientation, scale, and velocity of the 

maneuvering object at different zoom levels of the camera. The computational 

complexity of the tracker is critical for most applications. Only a small percentage of 



 2

the system resources can be allocated for tracking and the rest is assigned to 

preprocessing stages or high-level tasks such as recognition, trajectory interpretation, 

and reasoning [6]. 

Some widely known applications of real-time visual tracking are surveillance 

and monitoring [1], perceptual user interfaces [2], smart rooms [3, 4], video 

compression [5], active camera tracking system [58], and vision-based system for a 

UGV (unmanned ground vehicle) to handle a road intersection [57]. The last two 

systems are also part of this research work. 

1.2.2 Previous Work 

Several techniques have been proposed by the researchers for target tracking in the 

consecutive video frames. Most of these are either limited to tracking specific class of 

objects [7, 8, 9, 10], or assume that the camera is stationary (and exploit back-ground 

subtraction) [41, 42]. The trackers based on the particle filter or condensation [51, 52, 

53, 54] and active contours [45, 46] do not assume constant background and they are 

reported to track the whole object instead of only the centroid or a portion of the 

object [46]. However, keeping in mind the present power of a high-end computer, 

they are computationally too expensive to be exploited for a practical real-time 

tracking application. The mean shift tracker [43, 48] has gained a significant influence 

in the computer vision community in recent years, because it is fast, general-purpose 

and does not assume static background. Mean-shift is a nonparametric density 

gradient estimator to find the image window that is most similar to the color 

histogram of the object in the current frame. It iteratively carries out a kernel-based 

search starting at the previous location of the object [50]. There are variants, e.g. [49], 

to improve its localization by using additional modalities, but the original method 

requires the object kernels in the consecutive frames to have a certain overlap. The 



 3

success of the mean-shift highly depends on the discriminating power of the 

histograms that are considered as the probability density function of the object [50]. 

Another issue in the mean shift tracker is inherent in its use of histogram, which does 

not carry the spatial information of the pixels [44]. The integral histogram based 

tracker [47] matches the color histogram of the target with every possible region in 

the whole frame; therefore, it can track even a very fast moving object. It works 

slower than the mean shift tracker, because the mean shift tracker searches for the 

target in only a small neighborhood of the previous target-position. On a P4 3.2 GHz 

machine, the integral histogram tracker works with the speed of about 18 fps (frames 

per second), and the mean shift tracker works with the speed of about 66 fps [47]. 

Since the histogram does not contain the spatial information, and there is a risk of 

picking up a wrong candidate having similar histogram as that of the target (especially 

when the search is carried out in the whole image), this tracker is not adequately 

robust. More recently, in the covariance tracking [50], the object is modeled as the 

covariance matrix of its features, and the region (in the search image) which has 

minimum covariance distance with the model is considered to be the next target 

position. The covariance matching process in [50] is carried out on a half-resolution 

grid in the search image, so the accuracy of the target coordinates found by the 

algorithm is reduced. The reported results are quite robust, but the computational 

efficiency of the algorithm is not adequate for a real-time tracking application, 

because its maximum throughput (as reported in [50]) is only 7 fps on a P4 (3.2 GHz) 

PC. 

There are also some widely used classic trackers, such as edge tracker, 

centroid tracker, and the correlation tracker. A good introduction to these trackers can 

be found in [11], where it is reported that the correlation tracker has proved to be the 



 4

most robust of the three, especially in a noisy and cluttered scene. However, the 

standard correlation tracker has some inherent problems. Firstly, it is prone to the 

template-drift problem; secondly, its performance tremendously deteriorates in the 

presence of varying illumination conditions; thirdly, if the template is kept constant 

throughout the tracking session, the detection performance declines especially when 

the object changes its shape, size, and orientation; lastly, if the user has initialized the 

template incorrectly due to the motion of the object in the streaming video, the 

tracking accuracy is not adequate. Therefore, the standard correlation tracker is not 

robust enough, if some preprocessing is not performed, the template is not adaptive, 

and above all the modification in the basic correlation formulation is not done [11, 12, 

58]. Furthermore, the correlation tracker alone does not handle the other real-world 

problems mentioned in Section 1.2.1. As far as the implementation of the correlation 

operation is concerned, it can be computationally expensive in the spatial domain, 

especially when the sizes of the search window and the template are large. In order to 

speed up the computation, the standard correlation can be implemented in the 

frequency domain using the convolution theorem of the discrete Fourier transform 

[11, 12, 13]. However, the modified correlation metrics, which are more robust than 

the standard correlation, have no direct counterparts in the frequency domain. 

Moreover, it is not necessary that the correlation in the frequency domain is always 

faster than its spatial domain implementation, as discussed in Chapter 2. 

1.2.3 Contribution of the Present Research 

The present research proposes to enhance the efficiency and robustness of the classic 

correlation tracker by addressing all of its inherent problems mentioned in the 

previous subsection and the other real-world problems mentioned in Section 1.2.1. 



 5

The core of the visual tracking module in the proposed system is the edge 

enhanced BPNN-controlled fast normalized correlation (EE-BCFNC) algorithm. The 

edge-enhancement stage in the EE-BCFNC algorithm resolves the problems of noise, 

object fading, obscuration, and varying illumination in the scene. The edge-

enhancement consists of Gaussian smoothing, gradient magnitude, normalization, and 

thresholding operations applied on the images to be correlated. The normalized 

correlation (NC) [58] makes the proposed tracker robust to the varying illumination in 

the scene and produces a normalized response in the range [0.0, 1.0]. The normalized 

response is exploited in the post processing stages, such as template updating and 

occlusion handling. The role of the BPNN (Back-Propagation Neural Network) in the 

EE-BCFNC algorithm is to predict whether the NC will be performed more efficiently 

using the direct method in the spatial domain or the FFT-SAT (fast Fourier transform 

and summed-area-table) method. The NC is then computed efficiently using the 

implementation technique suggested by the BPNN controller. The FFT-SAT method 

exploits the power of the FFT to efficiently compute the standard correlation in the 

frequency domain and the SAT [18] to normalize the resulting correlation surface 

very fast. The SAT is also known as the running-sum [16] or integral image [47, 58, 

64, 65] in the computer vision literature. It is a very efficient technique to calculate 

the sum of the elements in any rectangular section in a matrix (or image) using only 

four algebraic addition operations. 

Furthermore, an effective template updating scheme is proposed in order to 

make the tracker adaptive to the varying appearance of the object being tracked. It 

changes the template gradually with time using the history of the template and the 

current best-match. This template updating scheme also limits the template drift 

problem to some extent, and handles the short-lived neighboring background clutter. 



 6

The varying scale of the object is addressed by correlating three scales of the template 

with the search window, and selecting the scale that produces the maximum 

correlation value. The long-lived neighboring background clutter is handled by 

applying a weight on every pixel in the template using a 2D Gaussian weighting 

window with adaptive standard deviation parameters. The template drift problem is 

formally dealt with by adjusting the size of the best-match rectangle and relocating its 

position in the frame. The technique is accordingly named as the best-match rectangle 

adjustment algorithm, which also handles the incorrect template initialization by the 

user. Besides, a novel algorithm is introduced to dynamically determine the position 

and size of the search window using the prediction and the prediction-error of a 

Kalman filter. The search window is a small region (in the frame), where the 

probability of the presence of the target is high. The benefit of searching for the target 

in the small search window is that it reduces the processing burden on the system and 

it eliminates the false alarms due to the background clutter in the scene. Though the 

Kalman filter assumes a unimodal Gaussian noise distribution, the motivation behind 

its use in the present research is that it is simple and fast and offers adequate 

prediction accuracy for most of the real-world maneuvering targets (because of their 

inherent inertia). However, in order to further increase the prediction accuracy, the 

“constant acceleration with random walk model” instead of the most commonly used 

“constant velocity with random walk model” for the target dynamics is used in this 

research. It is demonstrated that the proposed visual tracking framework outperforms 

the traditional correlation tracker and, in some cases, the CONDENSATION [51, 52, 

53, 54] and the mean-shift [43, 48] trackers. 



 7

1.3 Active Camera Tracking System 

This section provides a brief introduction to the active camera tracking system, 

previous work, and the contribution of the present research. 

1.3.1 Introduction 

The active camera tracking system contains an active camera which moves 

automatically to the target using the target coordinates provided by a visual tracking 

algorithm. The motion of the camera is controlled by a pan-tilt unit (PTU) driven by a 

control algorithm. The control algorithm is responsible for generating the control 

signals for the PTU in such a way, that the target should remain precisely at the center 

of the video frame. If the PTU motion is not smooth and precise, the object in the 

video will oscillate to and fro around the center of the frame, and in the worst case the 

object may get out of the entire field of view (FOV) of the camera. 

There are many prospective applications of an active camera tracking system. 

For instance, it can be deployed for precisely tracking and viewing a celestial body 

(e.g. satellite, star, etc.) with an automatically moving telescope, remotely monitoring 

an unattended child at home, performing surveillance of the enemy region by 

mounting the tracking system on an unmanned aerial vehicle (UAV), monitoring the 

movement of the objects in the strategic buildings and industries, automatically firing 

at the target with precision when the target is locked at the predefined track-point in 

the video frame, and so on. 

Since the visual tracking algorithm has been introduced in the previous 

section, the focus of the next two subsections will be on the pan-tilt control algorithm. 



 8

1.3.2 Previous Work 

Most of the time, the algorithm used to control a plant or system is the classic 

proportional-integral-derivative (PID) controller [56]. However, its design requires a 

mathematical model of the plant or system. Besides, it necessitates a sensitive and 

rigorous tuning of its proportional, differential and integral gain parameters. The 

tuning of the three parameters is very time consuming, if they are to be optimized for 

use with all the zoom levels of the camera in a tracking application. An alternative 

approach is to use a fuzzy controller [10, 59, 60, 61] that does not require the system 

model, but choosing a set of right membership functions and fuzzy rules calibrated for 

every zoom-level of the camera is practically very cumbersome. Another alternative is 

to implement a neural network controller [25, 62], but it is heavily dependent on the 

quality and the variety of the examples in the training dataset, which can accurately 

represent the complete behavior of the controller in all possible scenarios, including 

the varying zoom-levels of the camera. Furthermore, the traditional control 

algorithms, e.g. the one used in [14], are generally implemented based on the 

difference between the center (i.e. reference) position and the current target position 

in the image. They do not account for the target velocity. As a result, there will be 

oscillations (if the object is moving slow), a lag (if it is moving with a mediocre 

speed), and loss of the object from the frame (if it is moving faster than the maximum 

pan-tilt velocity generated by the control algorithm). The most relevant work to the 

proposed approach is the car-following control (CFC) law [15], which is very easy to 

implement and offers adequate robustness and accuracy. However, the main problem 

with the CFC is that it assumes that the current pan-tilt velocities of the PTU are 

available. Unfortunately, the PTU used in the current research is an open-loop system, 



 9

i.e. it does not feedback its current pan-tilt velocities. Therefore, the CFC law can not 

be used in its existing form. 

1.3.3 Contribution of the Present Research 

Keeping in view the limitations of the various control algorithms mentioned in the 

previous subsection, a predictive open-loop car-following control (POL-CFC) 

algorithm is proposed. Although its basic idea is borrowed from the car-following 

control (CFC) strategy [15], it does not assume the availability of the current pan-tilt 

velocities of the PTU. It simply: (1) considers that the current PTU velocity is the 

previous velocity generated by itself, (2) receives the predicted target coordinates 

from the visual tracking module, (3) estimates the predicted target velocity relative to 

the currently estimated PTU velocity, (4) estimates the velocity to be added into the 

current velocity of the PTU to generate the new velocity command, and (5) sends the 

new velocity to the PTU to move the camera to follow the target accurately in real-

time. 

A software application has been developed using multi-threading technique in 

LabVIEW (a graphical programming language by National Instruments [86]). The 

visual tracking algorithm is executed in one thread, while the pan-tilt control 

algorithm and the serial communication (between the PC and the PTU, and between 

the PC and the camera) are executed in another thread. This approach exploits the 

parallel processing power available in an off-the-shelf PC (e.g. P4 Centrino 1.7 GHz, 

512 MB RAM). The visual tracking module has been actually implemented as a DLL 

(Dynamic Linked Library) using C/C++, which is invoked in one of the threads in the 

main LabVIEW application program. The camera, used in this research, is Sony FCB-

EX780BP, which offers 1x to 25x optical zoom and serial interface for PC control. 

Since the output of the camera is an analog video signal, Dazzle DVC-90 Digital 



 10

Video Creator is used to digitize the video signal into a sequence of frames. The 

maximum frame rate, that the module can output, is 30 fps. The module can send 

640×480 size frames, but it is configured to send 320×240 size frames in order to 

reduce the computational complexity without significantly sacrificing the robustness 

of the tracker. The PTU, used in this research, is Directed Perception PTU-D46 

17.5W. It is a stepper motor PTU with configurable step size. The smallest step size, 

that it offers, is 0.01285 degree/step. Its maximum speed at this step size is 77.1 

degree/second, which is enough for tracking most of the fast moving objects. 

When the object is stationary or moving with no abrupt change in its direction, 

the proposed pan-tilt control algorithm centralizes the object in the video frame with 

0% overshoot, 1.7 second rise time, and ±1 pixel maximum steady state error (at least 

for up to 6x zoom levels of the camera). These performance parameters of a control 

system are discussed in [56] and briefly defined in Section 4.3.4 for completeness. 

1.4 A Vision Based System for a UGV to Handle a Road 
Intersection 

This section provides an introduction to a machine vision system that enables a UGV 

(unmanned ground vehicle) to automatically handle a road intersection [57]. The 

previous work and the contribution of the present research are also discussed. 

1.4.1 Introduction 

Unmanned vehicles, e.g. UAVs (unmanned aerial vehicles) and UGVs (unmanned 

ground vehicles), are steadily growing in demand since they save humans from 

having to perform hazardous or tedious tasks and the equipment is often cheaper than 

the personnel. It further reduces cost to have unmanned vehicles remotely controlled 

by fewer remote operators by implementing autonomous robotics to partially assume 

the burden of control. UGVs in particular have been successfully used for 



 11

reconnaissance, inspection and fault detection, and active tasks like removal of 

dangerous explosives.  These deployments have usually required the UGV to operate 

in relative isolation. However, future uses of UGVs will require them to be more 

aware of their surroundings. Deployment in an urban environment, for example, will 

require a UGV to behave within challenging constraints in order to avoid endangering 

or interfering with humans. 

In order to foster the growth of research in practical autonomous UGVs, the 

United States defense research agency DARPA recently organized the Urban 

Challenge 2007 event, in which the participating organizations developed roadworthy 

vehicles that can navigate a mock urban obstacle course under complete autonomy. 

The original DARPA Grand Challenge event in 2005 required the UGVs to 

autonomously cross the Mojave Desert. The Urban Challenge 2007 event was more 

challenging since the UGV had to deal with a number of more difficult obstacles and 

constraints, such as parking in a confined space, following traffic laws, and avoiding 

interference with other vehicles on the same course. 

1.4.2 Previous Work 

Computer vision approaches have been successfully used in several previous UGV 

applications. For example, vision has been used to make the vehicle stay in its lane 

while driving on a road [88, 89], to detect unexpected obstacles in the road [90, 91, 

92, 93, 94], to recognize road signs [93], and to avoid collisions with pedestrians [95]. 

Some research that enables multiple agents (UGVs and UAVs) to coordinate with 

each other to accomplish a task has also been reported [96]. 



 12

1.4.3 Contribution of the Present Research 

In this research, a new problem is highlighted and solved. That is, a UGV must be 

able to pass a street intersection regulated by a stop sign where vehicles from up to 

four directions are expected to voluntarily take turns crossing the intersection 

according to the order of their arrivals. In the DARPA Grand Challenge, the UGV 

prepared by Team UCF (University of Central Florida) was equipped with sweeping 

laser range finders to detect and avoid obstacles. However, these sensors can only 

detect objects along a single line in space, so they are ill-suited to the recovery of 

higher level information about the scene. Additionally, if the UGV travels on uneven 

roads, the laser range finders often point off-target. Cameras are preferable in this 

situation because they have a conical field-of-view (FOV). Thus, a computer vision 

system is proposed to solve the problem. The system hardware consists of three on-

board computers and three cameras (mounted on top of the UGV) looking towards the 

other three roads merging at the intersection. The software in each computer consists 

of: (1) a vehicle detector (which detects any vehicle of any color and type on the other 

road), (2) the proposed tracker (which tracks the detected vehicle), and (3) a finite 

state machine model (FSM) of the traffic (which informs the status of the traffic at the 

corresponding road). The information from the three FSMs is combined to make an 

autonomous decision whether it is safe for the UGV to cross the intersection or not. 

The results of the actual UGV experiments are provided to validate the robustness of 

the proposed system. 

1.5 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 reviews various correlation 

techniques for object localization in an image, and proposes the edge-enhanced 

BPNN-controlled fast normalized correlation (EE-BCFNC) method. The comparison 



 13

among all the correlation techniques with EE-BCFNC is also performed in this 

chapter. The proposed robust and real-time visual tracking framework to track an 

object in a video and its results are presented in Chapter 3. The proposed active 

camera tracking system (specifically the pan-tilt control algorithm to move the video 

camera) and its experimental results are presented in Chapter 4. The proposed 

machine vision system for a UGV to handle a road intersection and its experimental 

results are discussed in detail in Chapter 5. Finally, Chapter 6 concludes the thesis and 

presents the future directions. 

1.6 Chapter Summary 

Visual tracking is an important and challenging area of computer vision. There are 

many visual tracking algorithms, but they are either not robust to various real-world 

problems or they require too much computation time to be used in the practical real-

time machine vision systems. In this thesis, a robust as well as real-time visual 

tracking algorithm is proposed which has been practically deployed in two important 

machine vision systems: an active camera tracking system and a system for a UGV to 

handle a road intersection. The correlation based object localization techniques, the 

visual tracking framework, and the two machine vision systems that use the visual 

tracking framework are individually discussed in detail in the following chapters. 

 



 14

2 Correlation Based Object Localization 

2 

Correlation Based Object Localization 

2.1 Chapter Overview 

This chapter answers the following questions. What is an object? How is it 

represented in a visual tracking paradigm? What is the correlation and what are its 

types? What are the pros and cons of the traditional correlation metrics? Then, an 

edge-enhanced BPNN-controlled fast normalized correlation (EE-BCFNC) algorithm 

is proposed. After that, a generic algorithm for localizing an object in a single frame is 

described. Finally, the EE-BCFNC technique is compared with all the other 

correlation techniques. 

2.2 Object and Its Representation 

In a visual tracking scenario, an object can be defined as anything that is of interest 

for further analysis [66]. The object that may be important to track in a specific 

domain can be a boat on the sea, a fish inside an aquarium, a vehicle on a road, a 

plane in the air, a person walking on a road, a bubble in the water, etc. Objects can be 

represented by their shapes and/or appearances [66]. 

The shape based representation of the object can be a point [67], a primitive 

geometric shape (e.g. rectangle, ellipse, etc.) [43], an object silhouette and contour 

[46], an articulated shape model [66], or a skeletal model [68, 69]. 



 15

The appearance based representation of the object can be a probability density 

[43, 70, 71], a template [58, 72], or a multi-view model [73, 74, 75]. The probability 

densities of the object appearance features (e.g. color) can be computed from the 

image regions specified by the shape models (e.g. interior region of an ellipse or a 

contour). A template encodes object appearance generated from one view. Thus, it is 

suitable for tracking only the object, whose pose does not vary considerably during 

the course of tracking [66]. One limitation of multi-view appearance model is that the 

appearances of the object from all view angles are required ahead of time [66]. 

As far as the proposed correlation tracker is concerned, a rectangular template 

is used for the object representation. A template is basically a gray-level image of the 

whole (or part of the) object to be localized in the search image. An obvious 

advantage of a template is that it carries both the spatial and the appearance 

information [66]. The template is initialized by the user of the visual tracking system 

by extracting a rectangular patch from the initial frame. In order to overcome the 

limitation of the template mentioned above, it is updated according to the varying 

appearance of the object with time for robust and persistent tracking as discussed in 

Section 3.3.7. 

2.3 Correlation Metrics 

A correlation metric is used to determine the similarity of a small template of an 

object of interest with a candidate region in a search window. The search window is 

basically a small section (inside the video frame), where the likelihood of finding the 

object is high. If the expected location of the object is not already known, the whole 

frame can become the search window. Throughout the thesis, it is assumed that: 

• The template and the search window are gray-level images, 



 16

• The template is represented by a matrix t of size K×L and the search 

window by a matrix s of size M×N, 

• K and L are odd integers to have a proper center of the template, and 

• The template is smaller than or equal to the search window in size (i.e. K ≤ 

M and L ≤ N). 

There are four metrics usually used in the correlation-based tracking systems: 

standard correlation (SC), phase correlation (PC), normalized correlation (NC), and 

normalized correlation coefficient (NCC). In the following subsections, all these 

metrics are overviewed one by one with their pros and cons, and then the proposed 

edge-enhanced BPNN-controlled fast normalized correlation (EE-BCFNC) is 

introduced. 

2.3.1 Standard Correlation (SC) 

The 2D standard correlation (SC) metric in the spatial domain is given as [11, 13]: 

         
1 1

0 0
( , ) ( , ) ( , )

K L

i j
c m n s m i n j t i j

− −

= =
= + +∑∑             (2.1) 

where c(m, n) is the element of the correlation surface (i.e. matrix) at row m and 

column n, where m = 0, 1, 2, …, M – K, and n = 0, 1, 2, …, N – L. 

The SC metric can also be computed efficiently in the frequency domain as: 

       ( . )c real idft S T∗⎡ ⎤= ⎣ ⎦              (2.2) 

where S and T are the 2-D discrete Fourier transforms (DFTs) of s and t, respectively. 

The superscript (*) over T indicates its conjugate, the dot operator (.) indicates the 

element-by-element multiplication, idft(.) is the 2-D inverse discrete Fourier 

transform function, and the real(.) function extracts the real part of a complex matrix. 



 17

The real part is extracted, because the imaginary part of the resulting complex matrix 

is almost zero, since s and t are real 2-D signals. Note that s and t must be 

appropriately zero padded before getting their transforms to obtain true (linear) 

correlation instead of circular correlation [87], because of the repeated-signal 

assumption by the discrete Fourier transform [13]. The minimum size of the zero-

padded images must be P × Q, where P = M + K - 1 and Q = N + L - 1. Once the 

correlation surface, c, is obtained, the highest peak, cmax, in the surface is found. The 

position of the peak in the surface is denoted by (mtl, ntl), which indicates the location 

of the top-left corner of the best-match rectangle (BMR) in the search window. 

The main problem with the standard correlation is that it is highly sensitive to 

the illumination conditions, because it always produces cmax at the brightest spot in the 

search image. Furthermore, the correlation value is dependent on the size and content 

of the images, and is not normalized in the range [-1.0, 1.0]. Thus, an absolute 

measure of confidence is not obtained to be exploited in the later stages of the 

tracking algorithm (e.g. template updating, occlusion handling, etc). 

2.3.2 Phase Correlation (PC) 

Phase correlation (PC), also called symmetric phase-only matched filter (SPOMF), 

has also been used for registration and tracking [12, 19, 20, 21]. It is defined as: 

  .S Tc real idft
S T

∗⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

             (2.3) 

where |.| operator computes the magnitude of every complex number in its input 

matrix, and all the division and multiplication operations are computed element-by-

element. In the phase correlation technique, the transform coefficients are normalized 

to unit magnitude prior to computing correlation in the frequency domain. Thus, the 



 18

correlation is based only on the phase information and is insensitive to changes in 

image intensity. It has an interesting property that it yields a sharp peak at the best-

match position and attenuates all the other elements in the correlation surface to 

almost zero, but at the cost of being more sensitive to noise than SC [87]. Although 

this approach has proved to be successful, it has a drawback that all transform 

components are weighted equally, whereas one might expect that insignificant 

components should be given less weight [16]. It is shown in [22, 23, 58] and this 

thesis, that PC may produce false alarms and a very small peak (usually much less 

than 0.5) even at the correct position in the correlation surface. Furthermore, the value 

of the peak is highly dependent on the scene content. Therefore, it is very difficult to 

set a single threshold, which is needed to compare the peak value for template 

updating and other later stages of the tracking algorithm. The false-alarm rate can be 

reduced to some extent by phase-correlating the edge images of the search window 

and the template, rather than their gray-level images [12]. An alternative approach to 

minimize the false alarms is to modulate the gray-level images by an Extended Flat-

top Gaussian (EFG) weighting function before phase-correlating them [63]. Some 

other methods to improve the performance of the phase correlation can be found in 

[80, 81, 82]. Nevertheless, these techniques do not eliminate the problem of 

unpredictable peak value and they do not make the PC as robust to the distortion in 

the appearance, shape, brightness, contrast, etc. of the object as the normalized 

correlation metrics discussed in the next subsections. 

2.3.3 Normalized Correlation (NC) 

In order to handle the limitations of SC and PC, some researchers, e.g. [12, 58], use 

the normalized correlation (NC): 



 19

       

∑∑∑∑

∑∑
−

=

−

=

−

=

−

=

−

=

−

=

++

++
=

1

0

1

0

2
1

0

1

0

2

1

0

1

0

),(),(

),(),(
),(

K

i

L

j

K

i

L

j

K

i

L

j

jitjnims

jitjnims
nmc             (2.4) 

It may be noted that the numerator of NC is basically SC. The two 

normalizing factors are the square-roots of the energies of the candidate region [with 

its top-left position at (m, n) in the search image] and the template, respectively. This 

correlation metric has two salient features: (1) it is less sensitive to varying 

illumination conditions than SC, and (2) its values are normalized within the range 

[0.0, 1.0]. Therefore, further decision making is possible for template-updating, etc. 

However, its counterpart in the frequency domain does not exist, so it is 

computationally more intensive than SC or PC. 

2.3.4 Normalized Correlation Coefficient (NCC) 

This is the most commonly used correlation metric for object localization [11, 13, 16, 

17, 79]. It is more robust to varying illumination conditions than NC, and its values 

are normalized within the range [-1.0, 1.0]. It is defined as: 

        

∑∑∑∑

∑∑
−

=

−

=

−

=

−

=

−

=

−

=

−−++

−−++
=

1

0

1

0

2
1

0

1

0

2

1

0

1

0

]),([]),([

]),(][),([
),(

K

i

L

j
t

K

i

L

j
s

K

i

L

j
ts

jitjnims

jitjnims
nmc

μμ

μμ
          (2.5) 

where μs and μt are the mean intensity values of the candidate region [with its top-left 

coordinates at (m, n) in the search image] and the template, respectively. However, 

this metric has two disadvantages. Firstly, it requires that the intensity values of s or t 

must not be constant; otherwise, the correlation value will be infinity or 

indeterminate. However, this problem is not so serious in real-world imagery because 

of the inherent sensor noise. Secondly, its implementation in the spatial-domain is 



 20

computationally more intensive than even NC. However, there is an efficient method 

[16] to compute it using FFT and the concept of summed-area table (SAT) [18] or 

integral image [64, 65]. 

2.3.5 Edge Enhanced BPNN-Controlled Fast Normalized Correlation (EE-
BCFNC) 

It has been found out in this research that when the images to be correlated are first 

edge-enhanced, the NC metric outperforms even the NCC. The proposed EE-BCFNC 

is not a new correlation metric, but it is the combination of edge-enhancement (EE) 

and a fast implementation of NC (i.e. BCFNC). They are explained as follows. 

2.3.5.1 Edge Enhancement (EE) 

The edge enhancement operation is performed on the search window and the template 

before they are correlated. This technique makes the object localization algorithm 

robust to noise, varying lighting conditions, obscuration and object fading even in the 

low-contrast imagery. The proposed edge-enhancement process consists of four 

operations: Gaussian smoothing, gradient magnitude, normalization, and thresholding. 

2.3.5.1.1 Gaussian Smoothing 

It is a well-known fact that the video frames captured from any camera have noise in 

them – at least to some extent, especially when the ambient light around the sensor is 

low. If the frames are extracted from a compressed video clip instead of camera, they 

usually contain undesired artifacts (e.g. dim lines) in addition to noise. The smoothing 

process attenuates the sensor noise and reduces the effects of artifacts, resulting in less 

number of false edges in the subsequent operation (i.e. gradient magnitude). 

 The average filter could be used to attenuate the noise and artifacts in the 

images, but it introduces unwanted blur resulting in the loss of the fine detail of the 

object [13]. On the contrary, the Gaussian smoothing filter does the same job without 



 21

sacrificing the fine detail of the object [13]. Thus, a w× w Gaussian smoothing filter 

with standard deviation, σw, is applied on the search window and the template. It has 

been experimentally found out that w = 7 works fine in almost all scenarios. However, 

setting a value for σw is critical. If the value of σw is too low, the image pixels 

corresponding to the boundary coefficients of the Gaussian smoothing mask get too 

small weight, and the smoothing is not satisfactory. On the other hand, if the value of 

σw is too large, the image pixels corresponding to the boundary coefficients of the 

filter get too much weight, and the resulting image is too much smoothed (or blurred) 

to be acceptable. An effective formula [29] given below is exploited in this research 

for automatically calculating an optimum value of σw: 

  8.01
2

3.0 +⎟
⎠
⎞

⎜
⎝
⎛ −= w

wσ              (2.6) 

As a result, the effective coefficients for the Gaussian smoothing filter according to 

the size of the filter are obtained. Another desirable property of the resulting filter is 

that the sum of all the filter coefficients, which basically act as the weights of the 

image pixels under consideration, equals 1. 

2.3.5.1.2 Gradient Magnitude 

The edge-enhanced gray-level images instead of the actual gray-level images are used 

in this research in the correlation process, because edge-enhanced images are less 

sensitive to lighting conditions and they produce a cleaner correlation surface with 

less number of false peaks. In this regard, the standard horizontal and vertical Sobel 

masks [13, 30] are applied on the Gaussian smoothed image, and the two resulting 

images, Eh and Ev, are obtained Then, the gradient magnitude image, E, can be 

obtained as follows: 



 22

  2 2( , ) ( , ) ( , )h vE i j E i j E i j= +              (2.7) 

where i = 0, 1, 2, …, U - 1, j = 0, 1, 2, …, V - 1, where (U, V) = (K, L) for the 

template, and (U, V) = (M, N) for the search-window. Since Eq. (2.7) is computation 

intensive, its efficient approximation (given below) is actually used in this research, 

which produces almost identical result [13, 30]. 

 ( , ) ( , ) ( , )h vE i j E i j E i j= +              (2.8) 

2.3.5.1.3 Normalization 

It has been found out in this research that the dynamic range of the edge image, E, is 

often too narrow towards darker side as compared to the available pixel-value range 

[0, 255], especially in low-contrast imagery. Conventionally, the edge image is 

converted into a binary image using a predefined threshold; however, this approach 

does not work well in a template matching application, because the rich content of the 

gray-level edge-features of the object is lost in the process of binarization. In order to 

make the object localization algorithm robust to object fading and obscuration, which 

occur when the object is very far and the zoom level of the camera is set to a high 

value, the edges are enhanced using a normalization procedure given by: 

   [ ]min
max min

255( , ) ( , )nE i j E i j E
E E

⎡ ⎤
= −⎢ ⎥−⎣ ⎦

           (2.9) 

where En is the normalized edge image, 255 is the maximum value a pixel can have, 

and Emin and Emax are the minimum and maximum values in the un-normalized edge 

image, E, respectively. The normalization stage effectively tries to stretch the 

histogram of the image in the whole range [0, 255], so the contrast between the object 

and the background is enhanced. 



 23

2.3.5.1.4 Thresholding 

It has been found out through various experiments that the edges of the object in the 

normalized edge-images almost always have the values greater than 100 in any 

scenario. Nevertheless, in order to remain in the safe side and eliminate the false 

edges due to smoothed noise and artifacts, a thresholding operation is performed as: 

   
( , )   if ( , ) 50

( , )
0              otherwise

n n
nt

E i j E i j
E i j

≥⎧
= ⎨
⎩

,          (2.10) 

where Ent is the normalized and thresholded edge image. It may be noted that Ent is 

not a binary image, but an edge-enhanced gray-level image adequately containing the 

important features of the object as illustrated in Figure 2.1. Figure 2.1(a) shows a 

240×320 real-world image containing a small and dim helicopter having very low 

contrast with its background. Figure 2.1(b) is its edge image obtained by applying 

only the horizontal and vertical Sobel masks (i.e. without Gaussian smoothing, 

normalization, and thresholding). It may be noted that the edges of the object in this 

image are very weak and almost invisible, and that it contains the unwanted edges due 

to the noise and artifacts. Figure 2.1(c) illustrates how the proposed edge-

enhancement operations have enhanced the edges of the object, eliminated the edges 

due to artifacts and noise, and enhanced the contrast between the object and the 

 
             (a)           (b)      (c) 
Figure 2.1 Effect of the proposed edge-enhancement operations. (a) A 240×320 gray level image 
containing a very low-contrast (faded) object, (b) Edges of the image without using the proposed 
edge-enhancement operations, (c) Result of the proposed edge-enhancement operations 



 24

background. 

2.3.5.2 BPNN-Controlled Fast Normalized Correlation (BCFNC) 

Though NCC is the best correlation metric for the actual gray-level images, NC 

outperforms it for the edge-enhanced images according to the experiments performed 

during this research. Furthermore, computing the mean value for every candidate 

region of the search image is time-consuming in the NCC. Therefore, NC as defined 

in Eq. (2.4) is used in this research as the correlation metric for the edge-enhanced 

images, but with an efficient implementation. The technique is appropriately named 

as BPNN-Controlled Fast Normalized Correlation (BCFNC). It may be noted that the 

correlation surface yielded by BCFNC is the same as that by NC. The role of the 

BPNN is to predict whether the NC will be performed efficiently by the direct method 

described by Eq. (2.4) or by the FFT-SAT (fast Fourier transform – summed area 

table) method described in the next sub-section. 

2.3.5.2.1 Efficient Implementation of NC Using FFT-SAT Method 

This implementation of normalized correlation exploits the combined efficiency of 

FFT (Fast Fourier Transform) and SAT (Summed-Area-Table) [18]. Summed-area-

table is also known as the running sum or the integral image in the computer vision 

literature [47, 58, 64, 65].  The same method has been exploited in [16], but for 

implementing the normalized correlation coefficient described by Eq. (2.5). The idea 

is that the numerator of Eq. (2.4) is computed in the frequency domain using Eq. 

(2.2), and the second normalizing factor (i.e. the square-root of the energy of the 

template) in the denominator of Eq. (2.4) is pre-calculated only once for each video 

frame. Since the first normalizing factor in the denominator of Eq. (2.4) varies with 

(m, n), it has to be calculated for every candidate region in the search image. For 



 25

efficient computation of all the local energies of the search window, the concept of 

summed area table (SAT) [18] is exploited. 

The SAT of the M×N search window, s, is a matrix, I, of the size (M + 1) × (N 

+ 1). The elements in its 0th row and 0th column are set to 0. All the other elements are 

efficiently calculated in a recursive manner as: 

   ( , ) ( 1, 1) ( , 1) ( 1, ) ( 1, 1)I i j s i j I i j I i j I i j= − − + − + − − − − ,         (2.11) 

where i = 1, 2, …, M, and j = 1, 2, …, N. Once the SAT is computed, the sum of all 

the elements in any rectangular section in the search-window can be easily calculated 

by algebraically adding only the four corner elements of the corresponding 

rectangular section in its SAT. Specifically, in order to calculate the sum of elements 

contained in a K × L rectangular section (in the search window) with top-left element 

s(i, j), top-right element s(i, j+L-1), bottom-right element s(i+K-1, j+L-1), and bottom-

left element s(i+K-1, j), then sum of all the pixels in the rectangular section is 

computed using the SAT of the search window very efficiently as: 

   ( , ) ( , ) ( , ) ( , )sum I i K j L I i j I i K j I i j K= + + + − + − +          (2.12) 

Thus, the local energies of the search window can be determined by first 

obtaining the SAT of the square of the search window, and then computing the local 

sums of the squared search image using its SAT. The size of the resulting matrix 

containing the local energies is exactly same as that of the normalized correlation 

surface, c, in Eq. (2.4). If the square-roots of the elements in this matrix are multiplied 

with the pre-calculated “second factor in the denominator of Eq. (2.4)”, a normalizing 

matrix is obtained. Finally, if the numerator of Eq. (2.4), which was computed using 

FFT, is divided by this normalizing matrix element-by-element, the normalized 

correlation surface, c, is determined. 



 26

2.3.5.2.2 Efficiency Comparison of FFT-SAT Method with Direct Method 

Let tf be the time (in ms) taken by the FFT-SAT method to compute NC between an 

M × N search window and a K × L template, and td be the time (in ms) taken by the 

direct method for the same operation as described by Eq. (2.4). Then, the speed gain 

of the FFT-SAT method relative to the direct method can be calculated as: 

d

f

tG
t

=             (2.13) 

Furthermore, let St, Ss, and Rts be defined as: 

     
s

t
tsst S

SRMNSKLS ===  and  ,  ,           (2.14) 

and assume that the numbers of rows and columns of the zero-padded images are 

integers greater than or equal to P and Q (defined in Section 2.3.1), respectively. It 

has been observed that G is a nonlinear function of St and Rts, as illustrated in the 

surface plot shown in Figure 2.2. The surface plot has been obtained by 

experimentally acquiring the speed gain for Ss = 40, 80, 120, …, 600, and Rts = 0.025, 

0.05, 0.075, …, 1.0 for every value of Ss. If P and Q, individually, comes out to be 

power of 2, or if they individually contain only small prime factors (e.g. 2, 3, or 5), 

then the FFT computation becomes very efficient, and the speed gain is drastically 

increased as illustrated by various peaks in the surface plot. For example, when St is 

153 and Ss is 360, Rts becomes 0.425, and the size of the zero-padded images becomes 

600×600. It may be noted that the integer 600 contains small prime factors: 2, 2, 2, 3, 

5, and 5. In this example, td is 2629.6 ms, while tf is only 66.2 ms. Thus, the speed 

gain (G) of the FFT-SAT method over the direct method is 39.72 (as illustrated by the 

highest peak in the middle of the surface plot and mentioned in Table 2.1). The flat 

valley (with the darkest blue color) in the surface plot in Figure 2.2 indicates G ≤ 1.0, 



 27

while all the higher regions in the surface plot indicate G > 1. It shows that the FFT-

SAT method can be sometimes slower than the direct method for computing NC. 

(This finding is contrary to the common notion that the FFT based correlation is 

always faster than the spatial domain correlation as the sizes of the images are 

increased). The reason behind this phenomenon is explained as follows. 

In this research, the valid correlation of size ( 1) ( 1)M K N L− + × − +  is 

performed as mentioned in Eq. (2.1), instead of the full correlation of size 

( 1) ( 1)M K N L+ − × + − , because the object is expected to be inside the search image 

(and not outside it). If the correlation is performed in the frequency domain, the 

search image and the template has to be zero-padded to the size at least 

( 1) ( 1)M K N L+ − × + −  before computing their FFTs, regardless of full or valid 

correlation. If the zero-padding of the images is not performed, the undesired wrap-

around effect will be obtained in the correlation result. Therefore, when template size 

is too large, the FFT computation of the two large zero-padded matrices becomes time 

consuming. On the contrary, the correlation performed in the spatial domain works 

directly on the original (i.e. M N×  and K L× ) images and it has to find the matching 

score only at ( 1) ( 1)M K N L− + × − +  positions. Thus, the spatial domain NC 

becomes faster than the FFT-SAT based NC, when the ratio of the template size to the 

search window size is large (near 1.0).  

In order to get the best from the two approaches, the proposed method does 

not use a single approach for all cases, but switches between the two implementations 

according to the decision of a Back-propagation Neural Network (BPNN) controller. 

 

 



 28

2.3.5.2.3 BPNN Controller 

A table of decisions (when to use direct or FFT-SAT implementation) could be made 

from the data that was used to generate the surface plot shown in Figure 2.2, but the 

table could not provide the decisions for the arbitrary sizes of the template and the 

search window. Similarly, some analytical function could be obtained to provide the 

decision, but it was difficult to find a good analytical function, because the FFT 

function in OpenCV library [29] (which was being used in all the experiments) does 

not exploit a single approach to compute FFT for all sizes of the images. Thus, in this 

research, the two implementations of the NC were considered as black boxes, the 

actual time taken by each implementation was listed in a table for some sizes of the 

images (as discussed in the previous subsection), and a BPNN controller was trained 

on the observations. As a result, the BPNN could predict which implementation of 

NC will perform faster for the current sizes of the images at hand, before actually 

computing the correlation. A question may arise at this point. Why the BPNN was 

 
Figure 2.2 Surface plot of G as a function of Rts and Ss , where G is the speed-gain of FFT-SAT 
method of NC implementation relative to the direct method, Rts is the ratio of template-size to 
search-window-size, and Ss is the search-window-size. 



 29

used instead of other neural networks? The answer is that the BPNN can easily learn a 

non-linear multi-dimensional classification/approximation problem, while others may 

not [25, 26, 7, 8]. 

The neural network was trained on the experimental data, which was used to 

generate the non-linear surface plot in Figure 2.2. It may be noted, that the surface 

plot was generated using only three parameters (i.e. Ss, Rts, and G), and that the pixels 

of the images were not used for creating the surface plot or for training the neural 

network. The architecture of the designed BPNN is shown in Figure 2.3. It contains 

an input layer, a hidden layer, and an output layer. The input layer has only two nodes 

(i.e. m0 = 2), because the input pattern p consists of only two scalar elements, as 

described in Eq. (2.15). The output layer has one neuron (i.e. m2 = 1), because the 

BPNN is supposed to output a single binary decision (either a positive or a negative 

value). The number of neurons in the hidden layer depends on the difficulty level of 

the mapping or classification problem at hand. The problem at hand was satisfactorily 

solved using only 20 hidden neurons (i.e. m1 = 20). The activation function of the 

neurons in the hidden layer and the output layer was chosen to be the tangent-sigmoid 

 
Figure 2.3 The proposed architecture of the BPNN classifier, where tansig is the activation 
function used for the neurons in the hidden and the output layers [see Eqs. (2.16) and (2.17)]. 



 30

function. This activation function was used, because it is non-linear and it supports 

negative as well as positive values [24, 25, 26]. The non-linearilty requirement is 

necessary to solve a non-linear classification problem. The support of positive and 

negative values in the activation function speeds up the learning process of the neural 

network [26]. The training of the BPNN was carried out using the efficient scaled-

conjugate gradient learning algorithm [27]. This algorithm is far more efficient for 

training a BPNN than any of the conventional learning algorithms, e.g. gradient 

descent method [24]. The proposed neural network architecture accepts a pattern (p) 

as its input, defined as: 

,
600

T
s

ts
S R⎡ ⎤= ⎢ ⎥⎣ ⎦

p            (2.15) 

where the Ss is normalized by 600, which is the maximum value of Ss in the 

experimental data. The normalization is necessary, since the input layer of the neural 

network assumes that the values in the input pattern are in the range [0.0, 1.0]. Thus, 

the maximum size of the search window, that the designed BPNN can support is 

600×600 pixels. This constraint is not of much significance, because the video frame 

is of size 320×240 pixels only, and the search window is normally much smaller than 

even the frame. Since the training was performed in a supervised manner, the ideal 

output for each example was provided in the training dataset. The ideal output was a 

scalar value: either +0.8 or -0.8. The scalar values ±1 could be used instead of ±0.8, 

respectively, but that approach would have caused slow learning [26], because the 

tansig(.) activation function is saturated at ±1, as shown in Figure 2.4. 

Once the training is completed, the neural network is ready to be a fast 

decision maker. The decision output, d, of the trained BPNN is easily determined as: 



 31

   ( )21 10 1 2tansig .tansig .d ⎡ ⎤= + +⎣ ⎦W W p b b           (2.16) 

where W10, b1, W21, and b2 are the m1×m0, m1×1, m2× m1, and m2×1 matrices, 

respectively. Each row of W10 contains the learnt synaptic weights of its 

corresponding neuron in the hidden layer. The elements of the row vector W21 are the 

synaptic weights of the output neuron. The column vector b1 contains the bias weights 

of the neurons in the hidden layer, and b2 is the bias weight of the output neuron. All 

these synaptic weights are adapted and optimized according to the training dataset 

during the learning phase of the neural network. The tansig(.) function, as defined in 

Eq. (2.17) and illustrated in Figure 2.4, is basically a fast approximation of the well-

known tanh(.) function [28]. 

      1-
1

2)(tansig 2n-e
n

+
=            (2.17) 

The output of the BPNN (i.e. d) will be either a positive or a negative value. If 

d > 0, the FFT-SAT method of computing NC will be faster than its direct method; 

and vice versa, if d < 0. The response of the BPNN has been tested with all the 

patterns from its training dataset, and the resulting surface plot is shown in Figure 2.5. 

 tansig(n) 

n

 
Figure 2.4 Tangent sigmoid activation function 

 



 32

If the surface plots in Figures 2.2 and 2.5 are compared with each other, it can 

be observed that all the darkest blue regions at the valley (where Gp ≤ 1) in Figure 2.2 

corresponds to all the blackish regions (where d < 0) in Figure 2.5. Similarly, all the 

higher regions (where Gp > 1) in Figure 2.2 correspond to all the whitish regions 

(where d > 0) in Figure 2.5. Thus, the BPNN controller has produced the correct 

decisions in all cases. In fact, the BPNN is well generalized, because it can produce 

the right decisions, even for those input patterns, which were not included in its 

training dataset. This is, because the mean square error of 0.01 (which is quite high) 

was used as the error goal during the training phase of the BPNN, so the BPNN did 

not over-fit to the training dataset. The BPNN decisions and their validations for some 

examples of the sizes of the images are listed in Table 2.1. It may be noted that td is 

the time taken by the optimally coded function for direct method of NC available in 

OpenCV b4 [29] and tf is the time taken by the FFT-SAT implementation of NC. The 

 
Figure 2.5 Surface plot showing the decisions made by the BPNN classifier when it was provided 
with various combinations of the search-window-size and the size-ratio as 2-element input patterns. 



 33

value of Gp is machine independent, because it is a ratio of the two elapsed times and 

both of the implementations are executed on the same machine. The downward arrow 

(↓) and the upward arrow (↑) indicate d < 0 and d > 0, respectively. The testing was 

carried out on a PC having P4 Centrino 1.7 GHz processor and 512 MB RAM. The 

value of Gp, for every case listed in Table 2.1, validates the corresponding decision 

(d) of the BPNN. At first sight, it may seem that the direct spatial-domain 

implementation is applied rarely. However, it is the one, which is applied frequently, 

especially when the template size is small in case of distant object tracking, or when 

the template size is very large in case of nearby smoothly moving object. 

2.4 Generic Correlation Based Object Localization Algorithm 

No matter which correlation technique is used, the basic algorithm for localizing an 

object (or target) in a frame is the same in every case. It is described in the following 

simple steps. 

Step 1 Prepare the search window (i.e. s) and the template of the target (i.e. t). 

Step 2 Compute the correlation surface, c, using SC, PC, NC, NCC, or the proposed 

Table 2.1 BPNN decision, d, and its validation, G, for some sizes of the images 

M×N K×L Rts d td (ms) Tf (ms) G 
50×50 30×30 0.6000 ↓ 0.8 3.2 0.25 
75×75 25×25 0.33 ↓ 4 8.81 0.45 

320×240 10×10 0.036 ↓ 28.68 82.28 0.35 
320×240 51×51 0.18 ↑ 260 80 3.25 
320×240 75×75 0.27 ↑ 450 90 5 
320×240 100×100 0.3610 ↑ 601.8 100.4 5.99 
320×240 125×125 0.44 ↑ 681 100 6.81 
320×240 300×200 0.884 ↓ 135.2 282.4 0.48 
360×360 153×153 0.4250 ↑ 2629.6 66.2 39.72 
512×512 60×30 0.0820 ↑ 776.34 317 2.45 
512×512 205×205 0.4 ↑ 7631 390 19.56 
640×480 400×300 0.6245 ↑ 10111 701 14.42 

 



 34

EE-BCFNC. 

Step 3 Locate the peak value cmax in the correlation surface, and denote its position by 

(mtl, ntl), where mtl and ntl are the row and the column coordinates of the top-

left position of the best-match rectangle (BMR) in the search-window, 

respectively. 

Step 4 Locate the center of the BMR using: 

    
1 1( ,  ) ,  

2 2c c tl tl
K Lm n m n− −⎛ ⎞= + +⎜ ⎟

⎝ ⎠
          (2.18) 

Step 5 Let the position of the top-left pixel of the search window in the frame be (xs, 

ys), where xs and ys are the column (i.e. horizontal) and row (i.e vertical) 

coordinates relative to the frame origin (0, 0), respectively. Then, locate the 

center of the BMR with respect to the frame origin, as: 

( )( ,  ) ,  s c s cx y x n y m= + + ,           (2.19) 

where (x, y) is the center of the target in the current frame, assuming that the 

target is at the center of the BMR. If the object is to be searched for in the 

whole frame instead of a small search window, then (xs, ys) = (0, 0) and (x, y) 

= (nc, mc). 

2.5 Comparison among Different Correlation Techniques 

In this section, the performance of different correlation-based template matching 

techniques (discussed in this chapter) is compared. A challenging search image as 

shown in Figure 2.1(a) is selected as test image, because it contains a very distant and 

dim object (a helicopter) in a hazy scene. The objective is to determine the location of 

the object in the search image. A 21×23 template of the object is shown in Figure 



 35

2.6(a). The correct top-left position of the object in the search image is at (mtl, ntl) = 

(169, 224). The correlation technique, which produces a clean peak exactly at this 

location in the resulting correlation surface, will be considered the best one. 

Figure 2.7(a) illustrates the correlation surface obtained, when the original 

template was correlated with the original search image using SC given by Eq. (2.1) or 

Eq. (2.2). This method failed to locate the correct position of the object, because it 

produced the highest peak of 8,871,601 value at (10, 11) instead of (169, 224). 

Additionally, it has produced many other (false) peaks at all those spots, which were 

brighter than the object in the search window. In fact, the correlation value is lower 

(i.e. 8,226,021) at (169, 224) position, where the object actually lies, since the object 

is darker than the background. Moreover, the correlation values are not normalized in 

the range [0.0, 1.0] or [-1.0, 1.0]. 

Figure 2.7(b) shows the correlation surface obtained, when the original 

template was correlated with the original search image, using PC described in Eq. 

(2.3). The method failed to locate the correct location of the object, because it 

produced the highest peak at (10, 11) instead of (169, 224). It may be noted, that the 

highest peak value is only 0.14, and there are also some other lower peaks (including 

the true peak illustrating the location of the target). 

  
     (a)      (b) 

Figure 2.6 The 21×23 templates (shown enlarged for easy view). (a) Original, (b) Edge-enhanced. 



 36

Figure 2.7(c) illustrates the correlation surface, which is the result of matching 

the original template with the original search image using NC given by (2.4). The 

object is located correctly at (169, 224), and the highest peak has value of 1.0. 

However, if the surface is observed closely, it can be found that the minimum 

correlation value in the whole surface is also too high, i.e. 0.9945. This behavior of 

  
      (a)     (b) 

  
      (c)                (d) 

  
                                   (e)      (f) 

 
Figure 2.7 Results of various correlation-based object localization methods. (a) SC surface, (b) PC 
surface, (c) NC surface, (d) NCC surface, (e) Proposed EE-BCFNC surface, and (f) Overlay of the 
+ signs on the target coordinates (correctly found by NC, NCC and EE-BCFNC methods) on the 
search-window, where the black sign represents the top-left coordinates (mtl, ntl) of the best-match 
and the white sign represents its center-coordinates (mc, nc). 



 37

NC with original gray level images may result in the detection of a wrong target 

instead of the true target in cluttered environment. It will be seen at the end of this 

section, that this problem with the NC is eliminated, if the images are edge-enhanced 

before they are correlated with each other. 

Figure 2.7(d) depicts the correlation surface obtained, when the original 

template was correlated with the original search-window, using NCC given by Eq. 

(2.5). This method also detects the correct position of the target at (169, 224) with the 

peak correlation value of 1.0. There are various other positive and negative peaks 

within the range [-1.0, 1.0], but their values are not near the highest peak value, as 

they were in the NC approach in case of original images. 

Finally, Figure 2.7(e) illustrates a nice and clean correlation surface resulting 

from the proposed EE-BCFNC method, in which the edge-enhanced template shown 

in Figure 2.6(b) is correlated with the edge-enhanced search image shown in Figure 

2.1(c). It is clearly shown in the surface, that there is only one peak with the 

correlation value of 1.0 exactly at (169, 224) position and all the other values in the 

surface are zero or well below the highest peak value. 

Figure 2.7(f) shows the exact location of the helicopter detected by NC, NCC 

and EE-BCFNC. The position of the top-left corner of the BMR is shown by the black 

cross-hair at (mtl, ntl) = (169, 224), while the position of the center of the BMR is 

indicated by the white cross-hair at (mc, nc) = (179, 235). 

The comparison analysis has validated the earlier discussion that the best 

correlation surface is produced by the proposed EE-BCFNC algorithm. 



 38

2.6 Chapter Summary 

An object can be represented by its shape (e.g. ellipse) or appearance (e.g. template). 

Correlation based object localization technique looks for a region in the search image, 

which matches best with the template of the object. The template matching process 

can be performed using any of various correlation metrics, such as standard 

correlation (SC), phase correlation (PC), normalized correlation (NC), and normalized 

correlation coefficient (NCC). Every metric has its own pros and cons. In order to 

address the limitations of these metrics, an edge-enhanced BPNN-controlled fast 

normalized correlation (EE-BCFNC) technique is proposed. The algorithm for 

localizing an object in a single frame is quite generic, regardless of the choice of the 

correlation technique used for the matching process. The results of the comparison 

among these correlation techniques validate that the proposed EE-BCFNC technique 

outperforms all the other methods by efficiently producing a clean normalized 

correlation surface with a dominant peak at the object location. The next chapter 

discusses the proposed visual tracking framework, which can track an object of 

interest in the consecutive frames of a video, and handles the real-world problems, 

such as incorrect template initialization, template-drift, occlusion, varying shape of 

the object, etc. 



 39

3 Visual Tracking Framework 

3 

Visual Tracking Framework 

3.1 Chapter Overview 

This chapter discusses the proposed visual tracking framework and tests it on various 

videos obtained from the public datasets, such as CAVIAR, PETS, and AV16.3. 

Additionally, for some other public test videos, the results of the proposed tracker are 

compared with those of the CONDENSATION [52, 53, 54] and the mean-shift [43, 

48] trackers reported in [51]. The proposed correlation tracker is also compared with 

the traditional correlation tracker at the end of the chapter. 

3.2 Challenges for a Visual Tracking Algorithm 

Visual tracking can be simply defined as the problem of estimating the trajectory of 

an object of interest as it moves around the scene in a video [66]. It is a very complex 

problem for the computer vision community, because of the: 

• Loss of information due to the projection of the 3D world on a 2D image, 

• Noise in images due to sensor noise and low illumination conditions, 

• Background clutter due to other similar or different objects in the scene, 

• Complex object motion (slow, fast, linear, and nonlinear), 

• Object fading due to high-zoom operation of the moving camera in cloudy 

environment, 



 40

• Obscuration of the object due to smoke, dust, or fog, 

• Intermittent occlusions due to other objects hiding the target, 

• Complex object shape variations during its maneuvering, 

• Change in the object scale due to its varying distance from the camera or 

varying zoom level of the camera, 

• Uneven scene illumination, and 

• Real time processing requirements. 

Additionally, there is a severe problem of template-drift, if the tracking is 

performed using a basic correlation method. Due to this problem, the object tends to 

drift away from the template with time. Ultimately, it gets out of the template and the 

tracking becomes a complete failure. 

The basic object localization algorithm, given in Section 2.4, is for localizing 

an object in only a single frame when a good template of the object is already present. 

It can not solve the practical problems listed above. Therefore, an efficient visual 

tracking algorithm is proposed to explicitly address all of these problems. 

3.3 Proposed Visual Tracking Framework 

A simplified flowchart of the proposed visual tracking algorithm is shown in Figure 

3.1. The individual blocks of the flowchart are discussed in the following sub-

sections. 

3.3.1 Video Frame Acquisition 

If the tracking is performed off-line on an image sequence or the video frames coming 

from a digital video camera, the individual frames can be acquired easily in the 

software. However, if the tracking is performed on the video coming from a live 

analog camera, the digital frames can be acquired using a digitizer module, such as 



 41

Dazzle DVC-90. The video camera used in the present research is Sony FCB-

EX780BP. The Dazzle DVC-90 module can digitize the video into a frame sequence 

each of size 640×480, but it is configured to provide each frame of size 320×240 in 

order to: (1) reduce the computational complexity for real-time processing of the 

 

Figure 3.1 Flow chart of the proposed visual tracking algorithm 



 42

frame without significantly sacrificing the robustness of the tracker, and (2) efficiently 

encode the processed frame for video recording purpose. The DVC-90 module can 

digitize the analog video with a maximum frame rate of 30 fps, which is quite 

adequate for tracking a physical object moving with significant velocity and 

maneuvering. Each frame is an RGB color image, but it is converted into gray-level 

image in order to further reduce the computational burden on the system. 

3.3.2 Initialization of Template, Kalman Filter, and Search Window 

At the start of the tracking session, the template, the Kalman filter, and the search 

window are initialized as described in the following sub-subsections. 

3.3.2.1 Template Initialization 

The template is initialized by the user of the tracking system by selecting any object 

of interest (or its salient part) appearing in the video. In order to have a long and good 

tracking session, the traditional trackers require that: 

• The object should be well centered in the extracted template, if full object 

is selected, or 

• The template should be extracted from the middle region of the object, if a 

part of the object is to be tracked. 

However, it is usually difficult for the user to extract a good template during the 

motion of the maneuvering object in the streaming video coming directly from a 

camera. In order to eliminate the above-mentioned requirements, a best match 

rectangle (BMR) adjustment algorithm is proposed in Section 3.3.8. 



 43

3.3.2.2 Kalman Filter Initialization 

The center of the region, from where the template is extracted, is used to initialize the 

target coordinates in the frame, (x, y), where x represents the column index and y the 

row index of the matrix representing the frame. The measurement vector (defined in 

Section 3.3.10) of the Kalman filter is initialized with these target coordinates instead 

of (0, 0). This strategy is exploited to reduce the initial error of the Kalman filter and 

expedite the convergence of the filter to the trajectory of the target. Further detail of 

the filter, including its benefits in the proposed tracker, is given in Section 3.2.10. 

3.3.2.3 Search Window Initialization 

The center of the initial search window is considered to be at the initial target 

coordinates, and the size of the window is initialized to be three times that of the 

initial template to accommodate the unknown velocity of the target at the start of the 

tracking session. After the convergence of the Kalman filter, the search window will 

be appropriately updated using Kalman prediction and its error, as discussed in 

Section 3.3.11. 

3.3.3 Edge-enhancement of Template and Search Window 

The edge enhancement operation is proposed to be performed on the search window 

and the template before correlating them. This technique makes the object localization 

algorithm robust to noise, varying lighting conditions and object fading even in the 

low-contrast imagery. The detail of this operation is given in Section 2.3.5.1.  

3.3.4 Template Scaling 

The moving object can get larger (or smaller) with time in the video frames, when the 

object comes nearer to (or goes farther from) the camera, or when the zoom level of 

the camera is increased (or decreased). If the template size is kept constant throughout 



 44

the tracking session, it may create two problems: (1) when the object gets smaller, the 

background pixels will invade into the fixed-size template and the template will 

represent the background more than the object, and (2) when the object gets larger, 

the fixed-size template will be representing only a very small part of the object, and it 

will not contain adequate pixels of the object to make it distinctive from the other 

objects in the background clutter. Due to these problems, the template can match with 

clutter more than it does with the actual object. As a result, the false alarm rate will be 

high, resulting in the failure of the tracking session. This situation is illustrated in 

Figure 3.2, in which a car is moving away from the camera, so it becomes smaller 

with time. Since the template size is fixed throughout the tracking session, the 

contribution of the car in the template becomes less significant than that of the 

background as the time progresses. As a result, the tracking algorithm starts tracking 

the background (instead of the car) from 75th frame and lets the car go out of the 

template in the subsequent frames. 

   
     Frame 1    Frame 50             Frame 75 

   
   Frame 100    Frame 125            Frame 150 

Figure 3.2 Tracking a car going away from the camera without using template scaling stage. The 
yellow rectangle represents the best-match rectangle, and the blue rectangle represents the dynamic 
search window (discussed in Section 3.3.11). Since the template size is fixed and the size of the car 
is reducing with time, the background becomes more dominant than the car being tracked. As a 
result, the tracker starts tracking the background instead of the car from 75th frame. 



 45

In order to handle the varying scale of the object, a fact about the highest peak 

in the correlation response is exploited. That is, the correlation peak is high if the 

scale of the object in the template is same as that of the object in the search window; 

otherwise, the peak is low. Thus, the search window is correlated with three scales of 

the template: 110%, 100%, and 90%. The 100% scale of the template is the original 

one, which comes from the previous iteration. As a result, three correlation surfaces 

with the corresponding three peaks are obtained. The best-match rectangle (BMR) 

corresponding to only that template scale, which produces the highest of the three 

peaks, is accepted. Thus, the template scale for the next iteration is updated according 

to the current scale of the object and the tracking becomes persistent. It may be noted 

that the minimum and the maximum size limits on the template are applied in order to 

have robust tracking and decrease the computational complexity, respectively, as 

discussed in Section 3.3.8. Figure 3.3 shows how the varying scale of the car in the 

same video shown in Figure 3.2 is handled appropriately to have a persistent tracking 

   
       Frame 1   Frame 50         Frame 75 

   
     Frame 100   Frame 200         Frame 300 

Figure 3.3 Illustration of the scale-handling capability of the proposed visual tracking algorithm. 
A car is being tracked successfully, even when the scale of the car is being reduced due to its 
ever-increasing distance from the camera. It can be seen that if the template is reduced in size 
with time, the dynamic search window is also reduced. Thus, three benefits are obtained: scale 
handling, more background clutter rejection and less processing burden on the system. 



 46

session. It may be noted that this scale handling technique can work with any 

correlation metric or/and actual gray-level images. 

3.3.5 Gaussian Weighting of Template Pixels 

The background clutter, which is far from the object in the scene, is handled by 

looking for the object only inside a small search window (see Section 3.3.11) instead 

of the whole frame. However, the search window does not handle the neighboring 

clutter, which may be present immediately around the object inside the template. 

There are two kinds of neighboring clutter: short-term and long-term. In order 

to clarify the difference between them, suppose there is a big picture hanging on a 

wall in the video and there is a person (whose head is the target of interest) appearing 

from the right side of the video and walking towards left. If the person passes the 

picture without standing in front of it, the content of the picture appearing around the 

head of the person will behave as a short-term neighboring clutter, because the 

content can be part of the template only for a very short duration. However, if the 

person stands in front of the picture for a long duration, the content of the picture 

appearing around the head of the person will behave as a long-term neighboring 

clutter, because the content will be part of the template for a long duration. 

The effect of the short-term neighboring clutter is efficiently diminished by 

temporally smoothing the template (discussed in Section 3.3.7), but the long-term 

clutter is not handled by the filter. Therefore, the effect of the long-term neighboring 

clutter is decreased by assuming that the object is at the center of the template (due to 

the best-match rectangle adjustment algorithm discussed in Section 3.3.8) and 

applying a weight on every pixel in the template. The farther the pixel from the center 

of the template, the lower the weight it gets. Specifically, a 2D Gaussian weighting 

function with standard deviation parameter as a function of the size of the template is 



 47

used. This way, the object pixels, which are assumed to be at or near the center of the 

template, will take part in the correlation process more actively as compared to the 

long-term neighboring clutter pixels, which are assumed to be far from the center of 

the template. The appropriate values for the two standard deviation parameters of the 

2D Gaussian function are calculated using Eq. (2.6). 

3.3.6 Object Localization 

Once the three scales of the edge-enhanced template are obtained, the corresponding 

2D Gauussian weighting window is applied individually on every scaled template, 

and the search window is edge-enhanced, the object is localized in the frame very 

efficiently using the BPNN-controlled fast normalized correlation (BCFNC) proposed 

in Section 2.3.5.2. It may be noted, that the search window is correlated individually 

with every scale of the template. As a result, three correlation surfaces and the three 

corresponding highest peaks in those surfaces are obtained. The values of the three 

correlation peaks are then compared with one another, and the surface which provides 

the highest peak is selected. The location of the peak in the selected surface 

determines the location of the top-left vertex of the best-match rectangle (BMR) in the 

search window. The BMR has the width and height equal to those of the template, 

which the selected correlation surface belongs to. Finally, the target coordinates, (x, 

y), with respect to the origin of the frame are determined using Eqs. (2.18) and (2.19). 

These coordinates will be further adjusted by the best-match rectangle adjustment 

algorithm proposed in Section 3.3.8, in order to deal with the possible incorrect 

template initialization and the template drift. Furthermore, the highest peak value in 

the selected correlation surface, i.e. cmax, will work as the normalized confidence level 

of the object localization process in the later stages of the tracker. 



 48

3.3.7 Template Updating 

The shape and orientation of the object being tracked may change during its motion in 

the video. Therefore, a constant template can not work for a long and good tracking 

session. It must be adapted with time according to the change in the appearance and 

orientation of the object in the video. This section describes some conventional 

template updating schemes as well as the proposed one. In all cases, let bn be the best-

match section in the current search window, and let tn and tn+1 be the current and the 

updated templates, respectively. The cmax is the peak value in correlation surface, as 

previously defined. Finally, let τt be some threshold, such that 0 < τt < 1. Satisfactory 

results have been obtained by permanently setting τt  =  0.84 for every scenario. 

3.3.7.1 Simple Template Updating Method 

In this scheme, the template can be updated by just replacing the current template 

with the best-match region, if the correlation peak is greater than the threshold; 

otherwise the template is not updated. This approach is mathematically described as: 

max
1

         if 
        otherwise

n t
n

n

b c τ
t

t+
>⎧

= ⎨
⎩

.            (3.1) 

This approach assumes that the best-match provided by the correlation is always the 

true target. On the contrary, sometimes the nearby clutter can produce a higher 

correlation value than the actual object does. Thus, the template is corrupted by the 

clutter in the simple template updating method and the object quickly walks off it. 

3.3.7.2 α-Tracker Template Updating Method 

In order to resolve the limitation of the simple template updating method, some 

researchers use α-tracker template updating method [11, 31, 32, 85]. It is given as: 



 49

   
( ) max

1
   if 

                      otherwise
n n n t

n
n

t b t c τ
t

t
α

+
⎧ + − >⎪= ⎨
⎪⎩

.            (3.2) 

A larger value of α (close to 1.0), will cause a greater change in the template than a 

smaller value. If α = 0, the template will not be updated at all. In [31, 32], a small 

constant value for α (e.g. 0.02) is used, which reduces the effect of short-lived noise 

or neighboring object by smoothing the update of the template over time. However, if 

the tracked object is rapidly changing its shape, α should be large so as to avoid 

stagnation on the previous appearance of the object. 

3.3.7.3 The Proposed Template Updating Method 

In order to eliminate the problems of the conventional template updating schemes 

mentioned in the previous sections, a robust template updating scheme is proposed. It 

uses a low-pass IIR (Infinite Impulse Response) filter [33, 34] with adaptive 

coefficients, λcmax and (1-λcmax): 

         
( )max max max

1
1    if 

                                       otherwise
n n t

n
n

c b c t c τ
t

t
λ λ

+
⎧ + − >⎪= ⎨
⎪⎩

,           (3.3) 

The value of λ should be low in the range (0.0, 0.3], so that the bn can have less 

weight as compared to that of tn, and the short-term clutter and the noise can be 

eliminated from the template. Typically, if the frame rate is adequately high (e.g. 25 

fps), a reasonable value of λ is 0.16. In fact, the updated template is a weighted-sum 

of the current best-match and the current template (and the weights are adaptively 

changing). The current template itself is not the previous best-match, but weighted-

sum of the previous best-match and the previous template. Thus, the proposed 

approach uses the history of the template, and it does not quickly assign the best-

match as the new template. The amount of change to be introduced in the updated 



 50

template is determined by the quality of the correlated object. A stronger match is a 

good candidate for being the next template, so it introduces a larger weight to the 

best-match, when the peak correlation value is large. When the camera is moving and 

tracking an object, the neighboring background pixels are continuously changing 

randomly. Therefore, these pixels will not become the dominant part of the template 

due to the low value of λcmax. On the contrary, the pixels belonging to the object do 

not change as rapidly, so their effect will become more and more dominant in the 

template with time. As a result, the template will contain only the object and not the 

neighboring clutter. Thus, the proposed template updating method also handles the 

short-lived neighboring clutter. This method also decreases, to some extent, the 

tendency of the object to drift away from the template. Nevertheless, the template-

drift problem is also handled formally by the best-match rectangle adjustment 

algorithm presented in the next section. 

3.3.8 Best-Match Rectangle (BMR) Adjustment 

Regardless of the correlation metric used in the template matching process, there are 

two main concerns that should be addressed properly for precise and persistent 

correlation tracking. Firstly, the human operator is usually unable to initialize (or 

extract) a good template of the object of interest, while the object is moving and 

maneuvering in the video. As a result, the extracted template is usually larger or 

smaller than the object, or the object is significantly deviated from the center of the 

template. Secondly, the object tends to drift away from the center of the template 

slowly with time in a typical correlation tracking session, especially when the object 

being tracked is rotating in the video. The proposed template updating method 

discussed in Section 3.3.7 reduces the template-drift to some extent, but the technique 

does not completely eliminate the problem. The incorrect template initialization and 



 51

the template-drift severely deteriorate the performance of the correlation tracker in 

two ways. Firstly, they make the background pixels invade into the template, and the 

visual tracking algorithm starts assuming that it has to track the background clutter 

instead of the desired object, resulting in a total failure of the tracking session. 

Secondly, the object remains deviated from the center of the frames in the resulting 

video, even if the pan-tilt control algorithm itself is very efficient and precise. 

These two problems are solved by introducing a best-match rectangle (BMR) 

adjustment algorithm, which is used after the BMR is obtained from the object 

localization process (Section 3.3.6) and the template is updated by Eq. (3.3). The 

algorithm analyzes the content of the template and resizes and/or relocates the BMR, 

so that it can have more of the object and less of the background inside it. As a result, 

the object remains always at the center of the template as well as the frame (if the 

camera is moved by the pan-tilt control algorithm to compensate the object motion). 

The BMR adjustment algorithm consists of two main stages: template analysis and 

resizing / relocation of the BMR. 

3.3.8.1 Template Analysis 

The template analysis stage is started with the splitting of the updated edge-enhanced 

template (obtained from Section 3.3.7) into nine non-overlapping equal regions, each 

of size (K/3)×(L/3), as shown in Figure 3.4. Then, the mean value of the pixels inside 

every region is computed. The mean value is denoted by μi, where i = 1, 2, 3, …, 9. 

Then, a vote from every non-central region (i.e. the region other than R5) is obtained 

for whether the BMR should be same, expanded, or shrunk from the corresponding 

side. The flow chart of the voting function is illustrated in Figure 3.5. Each of the four 

side regions, i.e. R2, R4, R6, and R8, will provide a single vote to move the 

corresponding side of the BMR. However, each of the four corner regions will 



 52

provide three votes to move the corresponding horizontal side, vertical side, or both 

the sides of the BMR. Thus, if the region under consideration (from which the vote is 

to be obtained) is R2, R4, R6, or R8, its mean value is compared with the mean values 

of the central region (i.e. R5) and the opposite region (i.e. R8, R6, R4, or R2, 

respectively), as shown in Figure 3.4. As a result, there are four votes: v2, v4, v6, and 

v8. However, if the region under consideration is in the corner (e.g. R1, R3, R7, or R9), 

its mean value is compared with the mean values of the regions in the corresponding 

horizontal, vertical, and diagonal directions to get the vote for moving the 

corresponding horizontal side, vertical side, or both sides, respectively. For instance, 

if the corner region under consideration is R1, its mean value is compared with the 

mean values of R2 and R3 (i.e. the regions in the corresponding horizontal direction), 

then R4 and R7 (i.e. the regions in the corresponding vertical direction), and then R5 

and R9 (i.e. the regions in the corresponding diagonal direction), as shown in Figure 

3.4. As a result, there are twelve more votes: v1h, v1v, v1d, v3h, v3v, v3d, v7h, v7v, v7d, v9h, 

v9v, and v9d, where the subscripts h, v, and d represent horizontal, vertical, and 

R3

R5

R7 R8 R9

R6R4

R1 R2

L

K

L / 3 L / 3L / 3

K / 3

K / 3

K / 3

 

Figure 3.4 The rectangular template split into nine non-overlapping equal regions 



 53

diagonal, respectively. Thus, there are sixteen votes in total. 

If the vote, v, in the voting function shown in the flow chart in Figure 3.5 is 

negative, the BMR will be shrunk from the corresponding side. If it is positive, the 

Primary Tolerances
a = 0.85;
b = 1.40; 

Input Mean Values
μuc, μc, μopp

Secondary Tolerances
c = 2 – a;
d = 2 – b;

(μuc ≥ aμc)
OR

(μuc ≥ bμopp)

v = -0.5
(Shrink)

Y (μc > cμuc)
OR

(μopp > dμuc)

N

v = +0.5
(Expand)

Y

N

v = 0
(No Change)

End
 

Figure 3.5 Flow chart of the voting function for obtaining the vote from a non-central region for 
expansion, shrinking, or no change of the best-match rectangle from the corresponding side. The 
μuc, μc, and μopp are the input parameters of the function and they are basically the mean values of 
the region under consideration, the central region, and the opposite region, respectively.  



 54

BMR will be expanded from the corresponding side. If it is zero, the BMR will 

remain same at the corresponding side. The magnitude of the vote defines the step 

size of the movement of the corresponding side of the BMR. It is set to 0.5 in order to 

have smooth resizing and relocation of the BMR. If the values of the primary 

tolerances (i.e. a and b) are increased, the BMR will be reluctant to resize/relocate. 

However, if their values are decreased, the BMR will expand and shrink freely. 

Satisfactory results have been obtained by setting their values as mentioned in the 

flow chart shown in Figure 3.5. 

3.3.8.2 Resizing / Relocation of the BMR 

Once all the sixteen votes are obtained in the template analysis stage, the changes to 

be introduced in the coordinates of the BMR are calculated. Since every vote from a 

corner region has its own importance in moving the corresponding sides of the BMR, 

the changes are computed by taking weighted sums of the votes, as: 

                                 

1 4 7 1 7

1 2 3 1 3

3 6 9 3 9

7 8 9 7 9

( )
( )
( )
( )

,
,
,
,

TL d d d d s h s h

TL d d d d s v s v

BR d d d d s h s h

BR d d d d s v s v

x round w v v w v w v w v
y round w v v w v w v w v
x round w v v w v w v w v
y round w v v w v w v w v

Δ = + + + +
Δ = + + + +
Δ = + + + +
Δ = + + + +

           (3.4) 

where the function round(.) simply rounds a number to its nearest integer, wd is the 

weight applied on the votes obtained from the diagonal regions and ws is the weight 

applied on the votes obtained from the horizontal or vertical regions. The values for 

these weights are set experimentally as: wd = 0.250 and ws = 0.375. It may be noted 

that wd < ws, because the distance between the centers of two diagonally connected 

regions is larger than that between the centers of two horizontally or vertically 

connected regions. Thus, the nearer the regions, the more weighted their votes. The 

ΔxTL and ΔyTL are the changes to be introduced in the x and y coordinates of the top-



 55

left vertex of the BMR, respectively. Similarly, the ΔxBR and ΔyBR are the changes to 

be introduced in the x and y coordinates of the bottom-right vertex of the BMR, 

respectively. Finally, the coordinates of the adjusted BMR are determined as: 

                                    
( ) ( )
( ) ( )

0 0

0 0

,  

,  

,  
,  

TL TL TL TL TL TL

BR BR BR BR BR BR

x y x x y y

x y x x y y

= −Δ −Δ

= + Δ + Δ
            (3.5) 

where (xTL0, yTL0) and (xTL, yTL) are the coordinates of the top-left vertices of the 

original and the adjusted BMRs, respectively. Similarly, (xBR0, yBR0) and (xBR, yBR) are 

the coordinates of the bottom-right vertices of the original and the adjusted BMRs, 

respectively. If the magnitude of the vote, v, in the voting function is set to 0.5 as 

suggested previously, the maximum change in the width and/or height of the BMR 

will be of two pixels per iteration, and it can be confirmed by putting the suggested 

values of the weights and all positive (or negative) votes in Eqs. (3.4) and (3.5). 

It may be noted, that the correlation operation may provide false alarms, if the 

template is extremely small. On the contrary, the correlation operation can be 

computation intensive, if the template is extremely large. In order to address these 

situations, some limit on the new BMR size is applied. If the new coordinates are 

making the BMR smaller than Kmin×Lmin or larger than Kmax×Lmax, the new BMR is not 

accepted in that particular iteration. However, if the new coordinates are only 

relocating (and not resizing) the BMR, the new BMR is accepted. In this research, the 

values of these limits are permanently set as: Kmin = Lmin = 21, Kmax = Lmax= 41. 

The BMR adjustment algorithm analyzes the updated edge-enhanced 

template, but adjusts the BMR. One important question may arise at this point. What 

difference does it make to the template itself, which will be actually used in the next 

iteration of the tracking loop? The answer to this question is that we: 



 56

• Replace the pixels of the search window at the rectangular section 

represented by the original BMR with the updated template pixels 

obtained in Section 3.3.7, and 

• Extract a rectangular patch from the resulting search window using the 

coordinates of the adjusted BMR. 

The patch will serve as an appropriately updated and adjusted template ready 

for use in the next iteration. Moreover, the target coordinates, which were obtained 

from the object localization process (discussed in Section 3.3.6), will have to be 

replaced by the center coordinates of the adjusted BMR in the frame. 

Figure 3.6 shows, that a maneuvering kite (the bird) of interest is not tracked 

successfully in the test video, due to the incorrect template initialization, the template 

drift phenomenon, and the presence of other kites. However, Figure 3.7 illustrates that 

   
     Frame 1   Frame 85          Frame 160 

 

   
     Frame 330   Frame 346          Frame 347 

Figure 3.6 Tracking a maneuvering kite (the bird) in a test video, without using BMR adjustment 
algorithm. Yellow rectangle is the BMR and the blue rectangle is the dynamic search window. The 
current template is overlaid at the upper-right corner on each frame. The template is incorrectly 
initialized in such a way, that it is significantly larger than the object and the object is deviated 
from its center. It can be seen that the object is slowly going away from the center of the template 
with time. At 347th frame, the tracker has left the object of interest and started tracking another 
similar object, which was also inside the current search window.  



 57

the same object in the same test video is tracked successfully up to the last frame, 

even if the template is initialized incorrectly. This is because the BMR adjustment 

algorithm continuously adjusts the BMR, so that it can enclose the object of interest 

tightly. Due to the adjusted BMR, the template is reduced in size and contains more of 

the object and less of the background. Therefore, the dynamic search window is also 

appropriately small, which does not let the other objects invade inside it. As a result, 

the computational complexity is reduced, the tracking accuracy is increased, and the 

   
       Frame 1   Frame 85          Frame 160 

   
      Frame 330   Frame 346          Frame 347 

   
      Frame 415   Frame 460          Frame 2600  

Figure 3.7 Tracking a maneuvering kite (the bird) in a test video, when the BMR adjustment is 
performed. The current template is overlaid at the upper-right corner on each frame. The template 
is initialized incorrectly in such a way, that it is significantly larger than the object and the object is 
deviated from its center. The BMR adjustment algorithm reduces the size of the template 
appropriately to tightly enclose the object in every frame. As a result, the object does not drift away 
from the center of the template with time. That is, the template drift problem is eliminated. The size 
of the dynamic search window is smaller as compared to the one in Figure 3.6, because the 
template size is now smaller than the initial template. At 347th frame, the tracker is not distracted 
by the other kites, because the template is now a good representative of the kite of interest and the 
appropriately sized search window does not contain the other kites inside it. The tracking is 
continued robustly and persistently till the last (i.e. 2600th) frame of the long test video. 



 58

tracker is not distracted by the other objects in the scene even if they are very similar 

to the object being tracked. Due to the visual tracking accuracy, the object will be 

exactly at the center of the frame and the moving camera will point precisely at the 

object if the pan-tilt control algorithm is controlling its motion, as discussed in 

Chapter 4. 

The BMR adjustment algorithm can work with any correlation metric or/and 

gray-level images, as far as the template is first edge-enhanced before it is analyzed. 

For example, in [100], the technique has been used with NCC and gray-level images 

to have persistent and precise tracking results. 

3.3.9 Occlusion Handling 

A target is said to be (partially or completely) occluded when it is (partially or 

completely) hidden due to the appearance of another object between the camera and 

the target. Before handling the occlusion, the tracker has to sense when an occlusion 

has occurred. In order to sense the occurrence of an occlusion, a fact about the 

correlation process is exploited. That is, when the object being tracked is suddenly 

occluded by another object, the peak correlation value is dropped below the threshold 

(τt). This threshold is the same which is also used for updating the template in Eq. 

(3.3). When the correlation peak value is dropped, the proposed tracker goes to its 

occlusion handling mode, as described by the following steps: 

1. Assume that the target coordinates provided by the correlation process are not 

correct and that the target is at the coordinates predicted by the Kalman filter 

in the previous iteration. 

2. Update the Kalman filter in the current iteration with its own prediction made 

in the previous iteration. 



 59

3. Stop updating the template in order to prevent it from being distorted by the 

appearance of the occluding object. 

4. Slightly reduce the threshold to be used in the next frame, iteratively, as: 

, 1 , 0.0005t n t nτ τ+ = −              (3.6) 

if τt,n ≥ τt_min, where τt_min is the minimum threshold that can be used safely 

without increasing the risk of having false alarms (it is set to 0.65 in this 

research). Furthermore, n is the current frame index. The threshold is 

iteratively decreased in order to allow the object to slightly change its 

appearance with time during its occlusion. 

5. Gradually expand the dynamic search window for the next frame by iteratively 

increasing the value of the border parameter κ in Eq. (3.24), as: 

                1 2n nκ κ+ = +              (3.7) 

This is done in order to compensate for the uncertainty in the speed and 

direction of the object during occlusion. This approach, effectively, enlarge 

the search window by 4 rows and 4 columns per iteration during the occlusion, 

because of the addition of 2 (i.e. the half of 4). If this value is increased, the 

search window will be expanded accordingly in larger steps. 

6. If the correlation peak in the next iteration reaches above the current threshold 

value, assume that the object has come out of the occlusion, and that the 

coordinates provided by the correlation process are now correct. At this point, 

the values of τt and κ should be reset to their initial default values (i.e. 0.84 and 

19 respectively) for normal correlation tracking. 



 60

3.3.10 Kalman Filter 

The Kalman filter [7, 77] in the proposed tracker estimates (or predicts) the position 

of the target in the next frame. The predicted position is exploited to: 

• Search for the object of interest in the next frame only around the 

predicted position (see Section 3.3.11), so that the probability of picking-

up a similar object moving in a different direction can be minimized, 

• Create a dynamic search window of optimal size (see Section 3.3.11.2), so 

that the tracker can track the object even in the presence of complex object 

motion and there can be less amount of background in the search window 

without losing the track of the object, 

• Make the motors of PTU ready, one step ahead of time, to start moving the 

camera to follow the target without any delay (see Chapter 4). 

3.3.10.1 Dynamic Model for the Motion of the Target 

The dynamic model for the target motion normally used for Kalman filter in the 

literature of trackers is “constant velocity with random walk” [43], but in this research 

a 2-D “constant-acceleration with random walk [36]” model with six states [see Eqs. 

(3.8) - (3.15)] is used, because it provides better accuracy in case of slow as well as 

accelerating target. The target state equation and the observation equation, 

respectively, are given as [7, 77]: 

        nnn UΦXX +=+1 ,             (3.8) 

         nnn VMXY += ,             (3.9) 

where Xn is the proposed state vector containing six states (position, velocity, and 

acceleration in x and y direction), defined as: 



 61

   
. .. . .. T

n n n n n n nx x x y y y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

X ,          (3.10) 

where the single dot and the double dot over a variable represent single derivative and 

double derivative with respect to time, respectively. The state transition matrix, Φ, is 

defined as in Eq. (3.11), where T is the sampling time (which is simply the inverse of 

the frame rate). It may be noted, that the xn and yn are expressed in terms of 2nd order 

approximation of their Taylor expansions, respectively [36]. 

           

2

2

1 0 0 0
2

0 1 0 0 0
0 0 1 0 0 0

0 0 0 1
2

0 0 0 0 1
0 0 0 0 0 1

TT

T

TT

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ .          (3.11) 

Un in Eq. (3.8) is the system noise vector, given by: 

          0 0 0 0
T

n xn ynu u⎡ ⎤= ⎣ ⎦U ,          (3.12) 

where uxn and uyn are the assumed uncorrelated zero-mean Gaussian noise elements 

with variances 2
uxσ and 2

uyσ , respectively. They account for the small uncertainty in 

the acceleration of the object. For simplicity, the values of these variances can be set 

to unity. Yn in Eq. (3.9) is the measurement vector given by: 

[ ]Tn n nx y=Y ,           (3.13) 

where xn and yn are the noisy target-coordinates. They are obtained from the 

correlation based object localization algorithm at time step n. M in Eq. (3.9) is the 

observation matrix given by: 



 62

   ⎥
⎦

⎤
⎢
⎣

⎡
=

001000
000001

M ,           (3.14) 

and Vn in Eq. (3.9) is the observation noise vector given by: 

          
T

n xn ynv v⎡ ⎤= ⎣ ⎦V ,           (3.15) 

where vxn and vyn are the assumed uncorrelated zero-mean Gaussian noise elements 

with variances 2
vxσ  and 2

vyσ , respectively. If the variances are set to high values, the 

Kalman filter will give the predicted coordinates high importance as compared to the 

measurement coordinates, during its updating (or correcting) phase after the arrival of 

the new measurement [37]. For simplicity, the values of these variances can be set to 

unity. 

3.3.10.2 Kalman Filter Updating 

Once the Kalman filter receives the new measurement (i.e. the pixel coordinates of 

the target), it is updated to correct its last prediction error if any. The filter is updated 

as [36, 37, 38]:         

     ( )| | 1 | 1n n n n n n n n
∗ ∗ ∗

− −= + −X X K Y MX ,          (3.16) 

where the subscript “n|n-1” means the prediction made in the previous iteration, and 

“n|n” means the updated (or corrected) versions of the previous prediction. Kn in Eq. 

(3.16) is the Kalman gain matrix defined as [36, 37, 38]: 

            
1

| 1 | 1
T T

n n n n n n
−∗ ∗

− −⎡ ⎤= +⎣ ⎦K S M R MS M ,          (3.17) 

where | 1n n
∗

−S is the predictor error covariance computed in the previous iteration as: 



 63

                | 1 | 1 1| 1( ) T
n n n n n n nCOV∗ ∗ ∗

− − − −= = +S X ΦS Φ Q ,                  (3.18) 

where 1| 1n n
∗
− −S  is the covariance of the updated estimate computed in the previous 

iteration as: 

   [ ]1| 1 1| 1 1 1| 2( )n n n n n n nCOV∗ ∗ ∗
− − − − − − −= = −S X I K M S .         (3.19) 

The Qn in Eq. (3.18) is the noise covariance matrix of the dynamic model. It is given 

as: 

                                 ( ) [ ]T
n n n nCOV E= =Q U U U ,           (3.20) 

and Rn in Eq. (3.17) is the observation noise covariance defined as: 

          ( ) [ ]T
n n n nCOV E= =R V V V ,           (3.21) 

where E[.] is the “expected value of” operator [36]. 

3.3.10.3 Prediction by Kalman Filter 

The predicted estimate of the state vector is given by the state transition or prediction 

equation given as under [36, 37, 38]: 

                 1| |n n n n
∗ ∗
+ =X ΦX ,            (3.22) 

where the superscript (*) indicates, that the state vector has been estimated by the 

Kalman filter, and is not the actual measurement obtained from the object localization 

algorithm. |n n
∗X  is the updated (or corrected) estimate of the state vector coming from 

Eq. (3.16). Finally, the position of the target in the next frame is predicted as: 



 64

       
*

1| *
1|*

1|

n n
n n

n n

x

y

+
+

+

⎡ ⎤
⎢ ⎥ =
⎢ ⎥
⎣ ⎦

MX .           (3.23) 

The predicted target position will be used for generating the dynamic search window 

for the next iteration (Section 3.3.11), occlusion handling (Section 3.3.9) in the next 

iteration, and generating the pan-tilt control signals in the current iteration (Chapter 4) 

for efficient and accurate target tracking with moving camera. 

3.3.11 Search Window Updating 

The target is usually looked for in a small search window instead of the whole frame. 

This is done in order to save CPU time and get rid of the false alarms due to the 

clutter possibly present in the background. However, the search window should not be 

too small, because there will be a risk of losing the target if it is moving fast [11]. 

3.3.11.1 Traditional Fixed-Size Search Window 

Conventionally, the size of the search window is set to be constant throughout the 

tracking session and its center is updated with the center of the last best-match 

rectangle (BMR) [39] or the predicted position [11]. These approaches have some 

drawbacks: (1) If the search window size is fixed and small, and the target is moving 

and maneuvering very fast, it may go out of the search window. (2) If the search 

window size is fixed and large, and the target is moving and maneuvering very slow, 

the redundant background in the search window may contain some clutter. As a result, 

the clutter may create false alarms and the large size of the search window will make 

the correlation process slow. 

3.3.11.2 Proposed Dynamic Search Window 

In order to eliminate the problems of the fixed-size search window highlighted above, 

the location and the size of the search window are proposed to be dynamically 



 65

updated using the prediction and the prediction-error of the Kalman filter explained as 

follows. 

Assuming that K (template-height) and L (template-width) are odd integers, 

the top-left and the bottom-right co-ordinates, i.e. (xtl, ytl) and (xbr, ybr) respectively, of 

the search window in the frame are determined by Eq. (3.24), where * *
1| 1|( ,  )n n n nx y+ +  

are the future target-coordinates estimated by Kalman filter. 

        

*
1|

*
1|

*
1|

*
1|

1 ,
2

1 ,
2

1 ,
2

1 ,
2

tl n n tx x

tl n n ty y

br n n bx x

br n n by y

Lx x a

Ky y a

Lx x a

Ky y a

κ ε

κ ε

κ ε

κ ε

+

+

+

+

−⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

−⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

−⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

−⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

          (3.24) 

The first three terms in case of every coordinate in Eq. (3.24) make a 

minimum-size search window of size (K+2κ) × (L+2κ), where κ is the minimum width 

of the border around K×L area centered at the predicted position. The value of κ  is 

experimentally set to 19. Furthermore, εx and εy in Eq. (3.24) are the prediction 

errors, defined as: 

                  
*
| 1

*
| 1

,

,

x n n n

y n n n

x x

y y

ε

ε

−

−

= −

= −
           (3.25) 

where * *
| 1 | 1( ,  )n n n nx y− −  is the target position predicted by Kalman filter in the 

previous iteration. Furthermore, (xn, yn) is the target position provided by the 

correlation process in the current iteration. It may be noted, that in the first iteration 

these coordinates are initialized with the actual target coordinates, from where the 

template was extracted by the user. 



 66

The atx, aty, abx, and aby parameters in Eq. (3.24) are the scaling factors, which 

compensate for the possible prediction errors in case of a sudden maneuvering of the 

object. If any of the scaling factors is positive, the minimum-size search-window will 

be expanded further in the direction of the object motion proportional to the 

corresponding prediction error. If it is negative, the minimum-size search-window will 

be contracted from opposite direction of the object motion proportional to the 

corresponding prediction error. The scaling factors are given as: 

       ( )    
otherwise   ) ,(

0 if   ) ,(
,

12

x21

⎩
⎨
⎧ ≥

=
aa
aa

aa bxtx

ε
          (3.26) 

       ( )    
otherwise   ) ,(

0 if   ) ,(
,

12

y21

⎩
⎨
⎧ ≥

=
aa

aa
aa byty

ε
                   (3.27) 

where a1 = -0.25 and a2 = +1.25 in this research to contract/expand the search window 

from the the corresponding opposite sides by 25% of the error. If their magnitude is 

increased, the contraction/expansion will occur in larger steps.  

For example, if the prediction error in x-axis is εx = +8, the actual target 

position (determined by the correlation process) is to the right of the predicted 

position, thus the minimum-size search window will be contracted by 2 pixels from 

left (using atx = -0.25), and expanded towards right side by 10 pixels (using abx = 

1.25). Thus, the search window is dynamically created in every frame according to the 

nature of the motion of the maneuvering object. If the object is moving smoothly, 

there will be no prediction error, so the search window will be of minimum size. If the 

object is moving with abrupt maneuvering, the search window will be expanded 

towards the object motion and contracted from the opposite side. The resulting search 

window is large enough to get the target always inside the window, and small enough 

to reduce the background clutter and the computational complexity. 



 67

Figure 3.8 shows some frames from a short test video seq_fast.avi [55], in 

which a person is moving his head left and right very fast. The frames in the upper 

row is the result of a fixed-size search window of size (60 + K) × (60 + L) pixels 

centered at the predicted position. It can be seen in 21st frame that more than half of 

the object has got out of the search window (i.e. blue rectangle) and the tracking is 

lost, when the head is moved suddenly towards right. On the contrary, if the proposed 

dynamic search window is used, it is dynamically resized to compensate for the 

prediction error and the object is always inside it, as shown in the frames in the lower 

row in Figure 3.8. In both cases, if the search window happens to go out of the frame, 

it is cropped from the corresponding side. It is shown in Figure 6 in [51] that the mean 

shift [43, 48] and the condensation [51, 52, 53, 54] trackers could not track the fast 

moving face in this image sequence. However, the proposed tracker is able to track it 

without any difficulty as demonstrated. The tracking algorithm proposed in [51] 

exploits a particle filter using an appearance model based on Spatial-color Mixture of 

Gaussians (SMOG). Its results are comparative to those of the proposed tracker, but it 

    
 

    
             Frame 15          Frame 17          Frame 19   Frame 21 

Figure 3.8 Frames from seq_fast.avi [55] showing the benefit of the dynamic search window as 
compared to the fixed-size search window, when the object is moving to and fro very fast. Upper 
row: When a fixed-size search window is used, the fast to and fro motion causes the object to get 
out of the search window; Lower row: The object is always inside the search window, when the 
proposed dynamic search window is used. Note: Search window is represented by a blue rectangle 
and the template by a yellow rectangle. 



 68

is not a real-time tracker. 

3.4 Experimental Results 

The proposed visual tracking algorithm has been tested on numerous real-world 

image sequences, but due to space constraint only some of them are presented for 

evaluation. 

Figure 3.9 shows how the proposed tracker persistently tracks a person in the 

presence of other persons in the test video ShopAssistant2cor.mpg from CAVIAR 

dataset [40], until the person goes out of the scene. In Frame 200, it can be seen that 

the target person is partially occluded by another person; even then the tracking is 

continued. 

 

   
      Frame 100   Frame 150           Frame 200 

   
      Frame 250   Frame 550          Frame 725 

Figure 3.9 Some frames from ShopAssistant2cor.mpg video clip from CAVIAR dataset [40], 
illustrating the robustness of the proposed visual tracking algorithm even in the presence of 
multiple similar objects, uneven illumination, clutter, object scaling, and occlusion. 



 69

Figure 3.10 depicts the robust tracking of a car moving along the road in a 

low-contrast, noisy and shaky video sequence recorded from an unmanned aerial 

vehicle (UAV). The whole scene (including the car) is rotating and translating 

simultaneously due to the motion of the UAV in 6 degree-of-freedom. Furthermore, in 

Frame 375, there is a glare effect (uneven illumination). Never-the-less, the proposed 

algorithm tracks the car persistently. Figure 3.11 illustrates some frames from the 

sequence seq_fast.avi obtained from [55]. Here, a person moves his face right and left 

very fast (with slight rotation). The same frames are shown in Figure 6 in [51] and it 

is reported that the mean shift [43, 48] and the condensation [51, 52, 53, 54] trackers 

could not track the fast moving face in this sequence. However, the proposed tracker 

is able to track it without any difficulty as shown in Figure 3.11. The tracking 

algorithm proposed in [51] exploits a particle filter using an appearance-model based 

on spatial-color Mixture of Gaussians (SMOG). Its results are comparative to those of 

the proposed tracker, but it is not a real-time tracker. 

        
 Frame 1        Frame 70 

       
Frame 150     Frame 375 

Figure 3.10 Some frames from a shaky video sequence recorded from an unmanned aerial vehicle 
(UAV) showing a small car being tracked perfectly by the proposed algorithm in the presence of 
blur, glare, noise and UAV motion in 6 degree-of-freedom. The current template is shown at the 
top left corner of every frame. 



 70

Figure 3.12 shows some frames from the sequence seq_mb.avi obtained from 

[55], in which the face of a girl is being occluded slowly with that of another person. 

In Figure 7 in [51], it is shown that the mean shift tracker [43, 48] and the 

condensation [52, 53, 54] trackers could not robustly track the face of the girl during 

and after this occlusion. However, the tracker presented in [51] could track it robustly. 

The proposed tracker has also successfully survived the occlusion with the results 

comparative to those of the tracker presented in [51], with the additional benefit of 

speed. The edge-enhanced template is shown at the top-right corner of each frame, 

and it can be observed how smoothly and robustly it is being updated without 

introducing significant effects due to the occluding face. Interestingly, during this 

occlusion, the correlation peak value did not drop below the threshold, and the formal 

occlusion handling method was not invoked, that is why the template is being updated 

smoothly during the occlusion. This kind of phenomenon occurs, when the object of 

interest is being occluded gradually. 

     
             Frame 1                Frame 8               Frame 12   Frame 20      Frame 25 

Figure 3.11 Some frames from seq_fast.avi sequence [55], in which the proposed algorithm tracks 
the face even during its fast left and right motion. However, the mean-shift and condensation 
trackers could not track the fast-moving face (see Figure 6 in [51]). 

     
        Frame 1           Frame 31            Frame 40              Frame 53   Frame 74 

Figure 3.12 Some frames from seq_mb.avi sequence [55]. The proposed algorithm tracks the face 
of the girl even during occlusion. However, the mean-shift and condensation trackers could not 
robustly survive the occlusion in this sequence (see Figure 7 in [51]). 

 



 71

Figure 3.13 depicts some frames from PetsD2CeT2.avi in the PETS dataset 

[83] showing a car being successfully tracked by the proposed visual tracking 

algorithm in the presence of background clutter and variation in the scale as well as 

the shape of the car. 

Figure 3.14 illustrates some frames from a long and challenging video 

sequence seq45-3p-1111_cam2.avi (containing more than 1000 frames) in AV16.3 

dataset [84]. In this image sequence, the face of a person with white shirt is being 

tracked persistently even in the presence of clutter and intermittent occlusions by the 

faces of the other two persons. 

         
     Frame 295                Frame 330 

         
     Frame 365               Frame 395 

Figure 3.13 Some frames from PetsD2CeT2.avi in the PETS dataset [83] showing a car being 
tracked by the proposed visual tracking algorithm in the presence of background clutter and 
variation in the scale as well as shape of the car. 



 72

3.5 Comparison with Traditional Correlation Tracker 

In this section, the proposed correlation tracker (PCT) is compared with a traditional 

correlation tracker (TCT). The TCT uses normalized correlation coefficient (NCC) for 

object localization in original gray-level frames, α-tracker template updating scheme, 

and a search window of size 3K×3L centered at the previous target position. In both 

the trackers, the initial template of size 19×25 is selected from the same position in 

the initial frame, and the threshold for the correlation peak τt is set to 0.84. The 

trackers are evaluated on two challenging image sequences S1 and S2. The sequence 

S1, containing 300 frames, shows a flying helicopter. During the recording of this 

   
   Frame 349                Frame 374            Frame 414 

   
   Frame 447                Frame 452            Frame 458 

   
   Frame 459                Frame 534            Frame 1003 

Figure 3.14 The proposed visual tracking algorithm is handling occlusion and clutter while 
tracking a person’s face in a long video sequence seq45-3p-1111_cam2.avi in AV 16.3 v6 dataset 
[84]. The red rectangle indicates there is no occlusion and the algorithm is working in its normal 
tracking mode. When the algorithm detects and handles the occlusion, the rectangle color is 
changed to pink for demonstration. 



 73

video, the handy-cam was continuously and randomly moved very fast to create 

random and fast motion of the helicopter in the video frames. Since the zoom level of 

the camera was high at the time of recording, the object was suddenly faded for a 

short time period as usual. The S2 sequence contains 390 frames, in which an F-16 

aircraft is taking-off, during which its size is varying, the background is cluttered with 

trees and small buildings, and there is an abrupt change in the background when the 

airplane is flying above the trees and buildings [35]. In order to evaluate the tracking 

accuracy of the algorithms, the ground truth containing true target-coordinates was 

generated manually for every frame in both the sequences. 

Figure 3.15 is the result of TCT for S1 sequence. The updated template is 

overlaid at the upper-left corner in every frame. The frame index, correlation value, 

and the (x, y) coordinates of the target location are also shown at the top of every 

frame. It can be observed that the white target sign slowly keeps drifting away from 

the helicopter and the track is lost when the helicopter is suddenly faded in Frame 

273. It may be noted that the helicopter is almost invisible during the fading. The 

resulting trajectory of the helicopter is illustrated in Figure 3.16, in which the 

template-drift and the track-loss are observable starting from Frame 273. 

Figures 3.17 and 3.18 show the robustness of the PCT that keeps a very good 

track of the target in the same video. It can be observed, that there is no template-drift 

or track-loss even during the severe and sudden fading of the object in the presence of 

fast and random object-motion in the low contrast imagery. 

Figure 3.19 shows some frames from the image sequence S2, when TCT is 

tested on it. It can be seen that the target sign is exactly at the middle of the airplane in 

Frame 1, but it slowly drifts backward in the subsequent frames. Furthermore, the 

track is lost in Frame 93, because the white roof of the building appears suddenly 



 74

above the airplane in the image and this white portion is not included in the current 

template. The complete trajectory of the airplane provided by TCT is compared with 

   
         Frame 50   Frame 150         Frame 250 

    
        Frame 270   Frame 273         Frame 274 

   
         Frame 280   Frame 285         Frame 290 

Figure 3.15 Result of TCT (Traditional Correlation Tracker) for S1 image sequence, showing the 
template drift problem starting from Frame 150 and its failure starting from Frame 273 during 
object fading. 

 
Figure 3.16 Target trajectory (row and column coordinates) produced by TCT for S1 sequence 
showing the failure from Frame 273 through the last frame of the image sequence. 



 75

the true trajectory in Figure 3.20, which illustrates the failure of the algorithm starting 

from Frame 93. However, Figures 3.21 and 3.22 show the robustness of the PCT that 

   
      Frame 50            Frame 150         Frame 250 

   
     Frame 270            Frame 273     Frame 274 

   
      Frame 280            Frame 285     Frame 290 

Figure 3.17 Result of PCT (Proposed Correlation Tracker) for S1 image sequence. The 
proposed algorithm successfully tracks the helicopter in all the frames even during the severe 
object fading in very low-contrast video without any template-drift problem. 

 
Figure 3.18 Target trajectory (row and column coordinates) for S1 sequence produced by our A2 
algorithm. Note that the computed trajectory is perfectly matching the ground truth trajectory for 
almost all the frames. 



 76

keeps a good track of the airplane with negligible template drift even during the 

sudden appearance of the white roof of the building, the surrounding clutter, drastic 

change in the intensity of the background, and varying scale. 

In order to evaluate the accuracy of both the algorithms for both the image 

sequences, a post regression analysis [24] is carried out that provides R-value (the 

   
         Frame 1   Frame 50      Frame 90 

   
        Frame 92   Frame 93      Frame 96 

Figure 3.19 Result of TCT for S2 image sequence. Note that the template-drift problem starts 
from Frame 90 and the failure starts from Frame 93 due to background clutter. 

 
Figure 3.20 Target trajectory (row and column coordinates) produced by TCT for S2 sequence, 
showing its failure starting from Frame 93. 



 77

correlation coefficient between the true and the calculated coordinates), and the best-

   
         Frame 1   Frame 50      Frame 90 

   
         Frame 92   Frame 93      Frame 95 

   
         Frame 250   Frame 300      Frame 389 

Figure 3.21 Result of PCT for S2 image sequence, showing how persistently it tracks the airplane 
up to the last frame, even in the presence of scale change, the high background clutter and the low 
contrast between the object and the background in the initial part of the video, and the drastic 
change in the background intensity level in the later part of the video as compared to the first part. 

 
Figure 3.22 Target trajectory provided by PCT for S2 sequence. It accurately follows the ground 
truth trajectory in almost all the frames. 



 78

fit linear equation between them consisting of a slope (m) and intercept (C). If the 

trajectory provided by the tracker and the ground truth trajectory are exactly similar, 

then R = 100%, m = 1.0, and C = 0. The results of the analysis are summarized in 

Table 3.1, which shows that PCT outperforms TCT in tracking accuracy for both the 

test sequences. 

One might think at this point that the TCT might have performed better than 

PCT, if the images were edge-enhanced for both the trackers. In order to address the 

query, another set of experiments were performed where TCT was also using the 

edge-enhanced versions of the template as well as the search window for the S1 and S2 

image sequences. It was found out that the edge-enhanced TCT did not show any 

significant improvement over the original TCT. That is, it failed at the same instant in 

the videos at which the original TCT did. 

3.6 Chapter Summary 

A visual tracking algorithm needs to address various practical problems, while it is 

tracking an object of interest in complex situations. The problems that cause those 

situations are loss of information, noise in images, background clutter, complex object 

motion, object fading, obscuration, partial and full occlusions, real-time processing 

requirements, variation in the shape and the scale of the object, and uneven brightness 

in the scene. Additionally, there is a severe problem of template-drift if the tracking is 

Table 3.1 Post-regression analysis for comparing accuracy of TCT and PCT 

Tracker S1 Sequence S2 Sequence 
 x y x y 
 R 

 (%) 
m C R 

 (%)
m C R 

 (%)
m C R 

 (%) 
m C 

TCT 94.8 1 -1.3 94.5 1 7.6 34.6 0.6 -0.8 -0.16 -0.4 258
PCT 99.8 1 -0.2 99.7 1 0.4 97.4 0.95 8.9 99.3 1 0.4 

 



 79

performed using a simple correlation tracker. A correlation tracking framework has 

been proposed that addresses almost all of these problems very efficiently. Various 

experimental results have been presented to demonstrate the robustness and 

performance of the proposed tracker. The proposed tracker has also been compared 

with the mean-shift and the condensation trackers for some real-world publicly 

available test sequences and it has been shown that the proposed tracker outperforms 

them in robustness to the occlusion and the fast to-and-fro motion of the object. A 

comparison of the proposed correlation tracker (PCT) has also been performed with a 

traditional correlation tracker (TCT). The results of the post-regression analysis show 

that the proposed tracker is more robust and accurate than TCT. The next two 

chapters discuss the design, implementation, and analysis of the machine vision 

systems in which the proposed tracker is deployed. 



 80

4 Active Camera Tracking System 

4 

Active Camera Tracking System 

 

4.1 Chapter Overview 

This chapter discusses the design, implementation, and analysis of an active camera 

tracking system that exploits the proposed visual tracking framework as an integrated 

module. Various experimental results, that validate the robust and accurate 

performance of the system, are also shown at the end of the chapter. 

4.2 Problem Description 

An active camera tracking system tracks an object of interest automatically with a 

pan-tilt-zoom (PTZ) video camera. The system, in its simplest form, is illustrated 

using a block diagram shown in Figure 4.1. It consists of a video camera, a visual 

tracking algorithm, a pan-tilt control algorithm, and a pan-tilt unit (PTU). Every frame 

acquired from the video camera is analyzed by the visual tracking algorithm, which 

localizes the object of interest inside the image in pixel-coordinates. The coordinates 

are then sent to a pan-tilt control algorithm, which generates the pan-tilt motion 

control signals to rotate the PTU according to the motion of the object in the scene. 

Since the camera is securely attached to the PTU, it also rotates in synchronization 



 81

with the PTU. Thus, the tracked object is always projected at the center of the video 

frames regardless of the nature of the motion of the object. 

Since the visual tracking algorithm has been already discussed in Chapter 3, 

only the pan-tilt control algorithm is designed and analyzed in the following section. 

4.3 Pan-Tilt Control Algorithm 

Most of the time, the algorithm used to control a plant or system is the classic 

proportional-integral-derivative (PID) controller [56]. However, its design requires a 

mathematical model of the plant or system. Besides, it necessitates a sensitive and 

rigorous tuning of its proportional, differential and integral gain parameters. The 

tuning of the three parameters is very time consuming, if they are to be optimized for 

use with all the zoom levels of the camera in a tracking application. An alternative 

approach is to use a fuzzy controller [10, 59, 60, 61] that does not require the system 

model, but choosing a set of right membership functions and fuzzy rules calibrated for 

every zoom-level of the camera is practically very cumbersome. Another alternative is 

Visual Tracking
Algorithm

Pan-Tilt Control 
Algorithm

Video Frame

(x, y)
Target Position

Pan-Tilt
Unit

Video 
Camera

Pan-Tilt Control Signals

Field of View

 

Figure 4.1 Simplified block diagram of an active camera tracking system 



 82

to implement a neural network controller [25, 62], but it is heavily dependent on the 

quality and the variety of the examples in the training dataset, which can accurately 

represent the complete behavior of the controller in all possible scenarios, including 

the varying zoom-levels of the camera. Furthermore, the traditional control 

algorithms, e.g. the one used in [14], are generally implemented based on the 

difference between the center (i.e. reference) position and the current target position 

in the image. They do not account for the target velocity. As a result, there will be 

oscillations (if the object is moving slow), a lag (if it is moving with a mediocre 

speed), and loss of the object from the frame (if it is moving faster than the maximum 

pan-tilt velocity generated by the control algorithm). In order to address the 

limitations of the traditional control algorithms, a “Predictive Open-Loop Car 

Following Control (POL-CFC)” is proposed. Its basic idea has been obtained from 

“Car-Following Control (CFC)” law [15]. 

4.3.1 Car-Following Control (CFC) Law 

Suppose a car, F, is moving with a velocity VF and is following another car, L, 

moving with a velocity VL, as shown in Figure 4.2. The letters ‘F’ and ‘L’ in the 

subscript stands for “follow” and “lead”, respectively. Let the positional error 

between the cars be denoted by e. Then, the basic Car-Following Control (CFC) law 

is simply defined as [15]: 

 
Figure 4.2 Demonstration of the Car-Following Control (CFC) law 

 



 83

     [ ] ( )F LV new V f e= + ,             (4.1) 

where f(e) is a function of the positional error. The control law states that “the new 

velocity of the follow car should be set to the velocity of the lead car plus a velocity 

adjustment based upon the positional error between them”. This simple control 

strategy has some desirable characteristics [15]: 

• When the lead car stops, the f(e) term still drives F to a proper steady state. 

• Direction reversal of L can result in proper control of F. 

• By attempting to match the lead velocity, the follow car can maintain smooth 

tracking, while the lead car is in transit. This is not the case for “bang-bang” 

control laws (e.g. [14]), that generate the control signals based upon only the 

positional error (e) and causes the undesirable oscillations. 

• The function f(e) can use closed forms to determine what correction term is 

required to minimize e, within a given time bound and given current 

velocities. 

4.3.1.1 Proposed Implementation of CFC 

Given a servo-motor PTU and a moving object in the video frames, the velocity of the 

object relative to that of the PTU in terms of PTU degree/second has two components: 

relative pan velocity (vrp,n) and relative tilt velocity (vrt,n), where n represents the time 

step. These velocity components can be approximated as: 

        
1

,

1
,

,

,

n n
rp n dpp dpp

n n
rt n dpp dpp

x xxv C C
t T

y yyv C C
t T

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

−Δ= =
Δ

−Δ= =
Δ

            (4.2) 

where T is the sampling time, which is the inverse of the frame rate, and Cdpp is the 

conversion factor, which converts the units of the velocities from pixels/second into 



 84

degrees/second. The value of Cdpp for every zoom level of the camera is obtained by a 

simple and effective camera calibration procedure discussed in Section 4.3.3. It may 

be noted, that xn and yn are the target coordinates coming from the visual tracking 

algorithm at time step n. The new pan and tilt velocities of the PTU (i.e. the follow 

velocities) can then be estimated as: 

      
( )

( ) ( )
, 1 , ,,

, 1 , ,,

,

,

p n rp n x nfp n

t n rt n y nft n

v v v Ke

v v v Ke

+

+

⎡ ⎤
⎢ ⎥⎣ ⎦

= + − +

= + + −
            (4.3) 

where vfp,n and vft,n are the current pan and tilt velocities of the PTU motors fed back 

by speed sensors, and K is the proportional gain parameter, which can be 

experimentally set for every zoom level. Furthermore, ex and ey in Eq. (4.3) are the 

positional errors in x and y axes, respectively. These errors are computed as: 

            
,,

,,

e r xx n x n

e r yy n y n

= −

= −
             (4.4) 

where rx and ry are the coordinates of the reference point (or track-point), which is 

normally the center of the video frame. The CFC law described by Eq. (4.3) 

commands the PTU to move the camera towards the object, so that the object remains 

always at the track-point. The first two terms in each equation in Eq. (4.3) represent 

the absolute lead velocity, while the last term represents the f(e) function (or 

approaching velocity), as mentioned in Eq. (4.1). The plus and the minus signs in 

Eqs. (4.3)-(4.4) compensate the difference between the directions in the pixel 

coordinate system and the PTU coordinate system. It is assumed that the pan velocity 

is positive, if the PTU is moving towards left, and the tilt velocity is positive, if the 

PTU is moving downwards. However, the x coordinate of an object in an image 



 85

increases when the object moves towards right, and its y coordinate increases when 

the object moves downwards. 

4.3.2 Predictive Open-Loop CFC (POL-CFC) 

The basic CFC law implemented by Eq. (4.3) assumes that the current pan-tilt 

velocities (i.e. vfp,n and vft,n) of the PTU are fed back to the control algorithm through 

some velocity sensors. But, unfortunately, the PTU used in the current research is a 

stepper-motor mechanism instead of a servo-mechanism. Therefore, its does not feed 

back its current pan-tilt velocities. In control theory, such a system is referred to as 

“open-loop” system. The proposed POL-CFC algorithm eliminates the requirement of 

the current velocities. It simply replaces these velocities with the previously generated 

pan-tilt velocities, and uses an η factor to smooth the amount added to the previously 

generated velocities to compute the new velocities. Furthermore, it uses the predicted 

position of the target in the image rather than its current position. The predicted 

position is estimated by the Kalman filter, discussed in Section 3.3.10. The predicted 

position is exploited so that the PTU can be ready one step ahead of time to accurately 

reach the angular position corresponding to the 3-D position of the target at the same 

time when the target is supposed to reach there. The proposed POL-CFC algorithm 

generates the new pan-tilt velocities as: 

           
( )

( )
* *

, 1 , , 1| , 1|

* *
, 1 , , 1| , 1|

,

,

p n p n rp n n x n n

t n t n rt n n y n n

v v v Ke

v v v Ke

η

η

+ + +

+ + +

⎡ ⎤= + − +⎢ ⎥⎣ ⎦
⎡ ⎤= + + −⎢ ⎥⎣ ⎦

            (4.5) 

where the positive and the negative signs compensate for the difference between the 

image pixel coordinate system and the PTU coordinate system, as mentioned 

previously. Furthermore, η is a positive constant such that 0.0 < η < 1.0, which 

controls the amount of velocity added to the previously generated velocity command. 



 86

The value of η is set to 0.145 to have smooth change in the PTU velocity. K is the 

proportional gain parameter, which is tuned for every zoom level as given in Table 

4.1 to have 0% overshoot [defined in Eq. (4.9)] to track the target without any  

oscillation effect. Moreover, *
, 1|x n ne +  and *

, 1|y n ne +  are the predicted errors in both 

the axes, which are defined as: 

          

* *
, 1| 1|

* *
, 1| 1|

,

,

x n n x n n

y n n y n n

e r x

e r y

+ +

+ +

= −

= −
             (4.6) 

where *
1|n nx +  and *

1|n ny +  are the predicted coordinates of the target in the image 

estimated by Kalman filter in Eq. (3.23). The *
, 1|rp n nv +  and *

, 1|rt n nv +  in Eq. (4.5) are 

the predicted velocities of the target relative to those of the PTU in degree/second. 

They are approximated as: 

      

* *
1| | 1*

, 1|

* *
1| | 1*

, 1|

,

.

n n n n
rp n n dpp

n n n n
rt n n dpp

x x
v C

T

y y
v C

T

+ −
+

+ −
+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

−
=

−
=

            (4.7) 

It may be noted that vp,n and vt,n in Eq. (4.5) are the pan and tilt velocities 

generated by the POL-CFC controller in its previous iteration, and they are only the 

approximations of the actual current velocities of the PTU. The reason for saying that 

they are approximation is that it is not necessary that the PTU has attained the 

previously generated velocity within a small sampling time, T, due to the practical 

limitations (e.g. the motor response, the inertia of the PTU and the camera, etc). For 

example, if an object is captured from a region, which is far from the center of the 

frame, the control algorithm will go on increasing the velocity very quickly, since the 



 87

motors take some time to start from stand-still. Before the motors start moving, the 

algorithm-generated velocity will be increased up to the saturation point, and there 

can be an unacceptable overshoot. In order to control this phenomenon, the following 

limit conditions are applied on vp,n+1 and vt,n+1 after they are computed by Eq. (4.5): 

           
max

11

max 1 max

      if 12
12

                 if 12 and 
n

n

vK
n

Kv
v n v v

+

+

≤
=

> >

⎧ ⎛ ⎞
⎪ ⎜ ⎟

⎝ ⎠⎨
⎪⎩

           (4.8) 

where the time step n is initialized to 1 at the start of the tracking session, K1 and K 

are the proportional gain parameters for the 1× zoom level and the current zoom level 

of the camera, respectively, vmax is the maximum velocity of the pan-tilt unit (which is 

Table 4.1  The values of K for different zoom levels of the camera to have 0% overshoot 

Zoom Level K 
1 12 
2 6 
3 5 
4 4.4 
5 3.4 
6 2.8 
7 1.8 
8 1.4 
9 1.2 
10 1 
11 0.9 
12 0.9 
13 0.9 
14 0.9 
15 0.9 
16 0.8 
17 0.7 
18 0.7 
19 0.6 
20 0.6 
21 0.6 
22 0.5 
23 0.4 
24 0.3 
25 0.3 



 88

77.1 degrees/second for the PTU used in this research as specified in its specification 

sheet), and the constant number is set to the smallest value (i.e. 12 in this research) 

which can result in zero overshoot and efficient target following behavior of the 

tracking system. 

4.3.3 Determining Cdpp Factor 

This section briefly describes the calibration method for obtaining the conversion 

factor Cdpp used in the proposed pan-tilt control algorithm. The subscript “dpp” stands 

for “degrees per pixel”, which indicates that the conversion factor is basically a ratio 

of the degrees, that the PTU must traverse to cause an object to move by one pixel in 

the video frame. The Cdpp is determined as described in the following steps. 

Step 1: Find a stationary object having a sharp vertical edge in the video. 

Step 2: Move the PTU towards right, so that the sharp edge of the object 

reaches the left edge of the video frame. 

Step 3: Note the step index of the current pan position of the PTU, i.e. sl. 

Step 4: Note the index of the left-most column of the video frame, i.e. xl. 

Step 5: Move the PTU towards left, so that the same sharp edge of the object 

reaches the right edge of the frame. 

Step 6: Note the step index of the current pan position of the PTU, i.e. sr. 

Step 4: Note the index of the right-most column of the frame, i.e. xr. 

Step 5: Let rptu, having unit of degree/step, be the resolution of the PTU. 

Then, calculate the value of the Cdpp as: 



 89

   l r
dpp ptu

l r

s sC r
x x
−

=
−

           (4.9) 

The resolution of the stepper-motor PTU and the frame size used in the 

present research are 0.01285 degree/step and 320×240 pixels, 

respectively. Therefore, rptu = 0.01285, xl = 0 and xr = 319. Thus, Eq. 

(4.9) can be simplified as: 

0.01285
319
r l

dpp
s sC −=            (4.10) 

For example, when the camera was operating in its first zoom level, the pan step-

indices were: sl = 3353 and sr = 128. Thus, for this zoom level, Cdpp = 0.1299 

degree/pixel. Similarly, the conversion factors for the higher zoom levels of the 

camera were determined very easily using Eq. (4.10). 

4.3.4 Performance Analysis of POL-CFC 

In order to evaluate the performance of the POL-CFC algorithm, a stationary object 

was selected from the top-left section of the live video from the camera and the 

algorithm was let to generate the appropriate pan-tilt velocities to move the camera to 

centralize the object in the video frames. Figure 4.3 shows the instantaneous position 

of the object in the video frame, the instantaneous control action (velocity) generated 

by the proposed controller and the instantaneous positional error in both the axes, 

while the object was being centralized. It is again reminded, that the PTU moves to 

the left, if vp > 0, and upwards, if vt < 0. The curves illustrate that initially the 

controller generates a constant velocity using Eq. (4.8) to start the motors from rest. 

When the controller senses that the positional error is not reduced adequately, it starts 

increasing the speed after about 0.4 second. As a result, the object starts coming 

closer and closer to the center of the frame, i.e. (160, 120), efficiently, within the time 



 90

span between 0.5 to 1.5 seconds, as shown in Figure 4.2(a). When the error is reduced 

significantly and the current PTU velocity is greater than it should be for the current 

position of the object, the control algorithm reduces the velocity smoothly until the 

object approaches the center of the video frame. It can be observed that there is 0% 

overshoot, 1.7 second rise time, and zero steady state error. The percent overshoot 

and rise-time are the parameters which describe a system in its transient period. The 

percent overshoot is defined as [56]: 

    
r

rpOS )(100% −×=            (4.11) 

where p is the peak value and r is the reference (or track-point). The rise time is 

referred to as the time taken by the system to rise from 10% to 90% of the reference 

0 1 2 3 4 5 6 7 8 9 10

50

100

150

200

Time (s)

x 
(p

ix
el

s)

rx

x

0 1 2 3 4 5 6 7 8 9 10

50

100

150

Time (s)

y 
(p

ix
el

s)

ry

y

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20

Time (s)

v p (d
eg

/s
)

0 1 2 3 4 5 6 7 8 9 10
-20

-15

-10

-5

0

5

Time (s)

v t (d
eg

/s
)

 
         (a) Target trajectory in the video frames            (b) Velocity generated by the POL-CFC 

 

1 2 3 4 5 6 7 8 9 10

0

50

100

Time (s)

e x (p
ix

el
s)

1 2 3 4 5 6 7 8 9 10

0

50

100

Time (s)

e y (p
ix

el
s)

 
(c) Tracking error with respect to center of the frame 

Figure 4.3 Target trajectory, generated velocity, and tracking error curves in both axes, when a 
stationary object was being centralized in the video frames by the proposed tracking system. 



 91

(or track-point) [56]. The steady state error is the deviation of the target coordinates 

from the track-point, after the transient period of the system has passed. Thus, the 

stationary target selected from a position farthest from the center of the frame is 

perfectly centralized within 3 seconds. 

The performance of the system was also tested for various moving objects 

such as helicopters, airplanes, vehicles, walking and running persons, etc. in real-

world scenarios. In Figure 4.4, the results for a person with varying walking speed are 

presented. Since there was no significant motion in the tilt axis in this example, the 

results are shown only for the pan axis. It can be observed that the object is perfectly 

centralized within 2 seconds and then it remains centralized accurately regardless of 

the increasing velocity of the object. The small vibration in the curves is due to the 

jerky motion of the walking person. This kind of vibration does not occur, when the 

object being tracked is moving smoothly, e.g. airplane, helicopter, etc. In order to 

validate the statement, the target trajectory in x-axis, the pan velocity, and the tracking 

error in x-axis for the case of a flying helicopter are shown in Figure 4.5. In this 

scenario, the helicopter was captured from the position (x, y) = (192, 118) in the frame 

as shown by the initial point in the trajectory curve. Since the helicopter was moving 

fast towards right and the camera was initially stationary, the helicopter in the video 

0 2 4 6 8 10 12 14 16 18 20
120

140

160

180

Time (s)

x 
(p

ix
el

s)
rx

x

 
0 2 4 6 8 10 12 14 16 18 20

2

3

4

5

6

Time (s)

v p (d
eg

/s
)

 

0 2 4 6 8 10 12 14 16 18 20
-20

0

20

40

60

Time (s)

e x (p
ix

el
s)

 
Figure 4.4 Target trajectory, velocity and tracking error curves for pan motion, when a walking 
person was being tracked. 



 92

moved further towards right. This is shown by the initial upward bulge above x = 192 

in the trajectory curve. The PTU motion catches up with the helicopter motion after 

about 0.4 second. Then, the control algorithm starts centralizing the helicopter very 

efficiently. It can be seen in the curves that the helicopter is finally centralized by 

about 1.4 seconds and it remains at the center of the frames afterwards with the 

maximum steady state error of only ±1 pixel. This experiment was performed, when 

the camera was operating at 5x zoom level, and some frames from the resulting video 

are shown in Figure 4.7. 

The pan-tilt control algorithm has been calibrated for 1x to 25x zoom levels of 

the video camera. The maximum steady-state errors of the proposed tracking system 

at different zoom levels for the target moving without abrupt change in its direction 

are listed in Table 4.2. These errors are negligible because of the very small size of 

one pixel in a 320×240 pixel frame. 

4.4 Experimental Results 

The active camera tracking system has been tested rigorously for at least a whole year 

in numerous real-world and complex scenarios. Some of the results are shown and 

discussed as follows. 

0 5 10 15 20 25
140

160

180

200

220

Time (s)

x 
(p

ix
el

s)
 

 
rx

x

 
0 5 10 15 20 25

-6

-4

-2

0

Time (s)

v p (d
eg

/s
)

 

0 5 10 15 20 25
-60

-40

-20

0

20

Time (s)
e x (p

ix
el

s)
 

Figure 4.5 Target trajectory, velocity and tracking error curves for pan motion, when a flying 
helicopter was being tracked.  



 93

4.4.1 Tracking a Distant and Faded Airplane 

Figure 4.6 shows some frames from the tracking session, in which a very distant and 

dim airplane is being tracked very smoothly with the proposed tracking system. The 

white target sign (i.e. the circle with a constant radius and the four line segments) 

shows the object localization result produced by the visual tracking module. In fact, 

the center of the best-match rectangle (BMR) is the same as that of the circle. The 

white dot at the center of every frame represents the line-of-sight of the camera. It is 

overlaid in order to validate the accuracy of the pan-tilt control algorithm. The small 

image at the bottom-right of every frame is the current edge-enhanced, updated and 

adjusted template. The text overlaid at the top of every frame shows the current 

correlation peak value (cmax), BMR center coordinates (x, y), zoom level of the 

camera, W (showing that the search of the target is being carried out in a small 

dynamic search window instead of the whole frame), and the generated pan-tilt 

velocities of the PTU, i.e. (vp, vt). The text overlaid at the bottom of every frame 

shows the date and time when the tracking was performed. It can be observed that the 

user has initialized the template incorrectly (as shown in Frame 1) due to the motion 

of the airplane in the video, such that the template is much larger than the object and 

the object is not at the center of the template. The BMR adjustment algorithm in the 

proposed visual tracking module resizes/relocates the BMR very efficiently. As a 

Table 4.2 Maximum steady state error of the proposed tracker at different camera zoom levels 

Camera Zoom Level Maximum Steady State Error (in pixels) 
1x to 6x ±1 
7x to 15x ±2 
16x to 19x ±3 
20x to 25x ±4 

 



 94

result, the target is tightly enclosed by the BMR and the template in a few initial 

iterations. The pan-tilt control algorithm initially centralizes the airplane in the video 

and then the airplane remains always at the center of the video with only ±1 pixel 

maximum steady state error, even when the zoom level of the camera is varying from 

10x to 17x. This steady state error at high zoom levels is well below the maximum 

steady state error reported in Table 4.2. The tracking is continued robustly, even when 

the object is very small in the cloudy scene and there is object fading and obscuration 

     
        Frame 1           Frame 60 

     
       Frame 112          Frame 400 

    
        Frame 800         Frame 1227 

Figure 4.6 Tracking a very distant airplane robustly with the proposed tracking system even in the 
presence of incorrect template initialization, clouds, and object fading (obscuration) in very low 
contrast imagery. 



 95

resulting in very low contrast between the object and the background. The robustness 

of the proposed tracker to the object fading is due to the proposed EE-BCFNC 

algorithm, discussed in Section 2.3.5. The tracking is stopped, only when the airplane 

is completely vanished from the scene after Frame 1227. 

4.4.2 Tracking a Helicopter 

Figure 4.7 illustrates some frames from the video, which was recorded while tracking 

a helicopter. Due to the motion of the helicopter, the user has again selected the initial 

     
         Frame 1           Frame 20 

     
        Frame 40           Frame 300 

     
        Frame 385           Frame 520 

Figure 4.7 A helicopter is being tracked persistently and smoothly with the proposed tracking 
system even when the template was incorrectly initialized by the user and the size of the object is 
being reduced to about 3×3 pixels. 



 96

template incorrectly as shown in Frame 1. The overlaid white rectangle is the best-

match rectangle (BMR). The BMR adjustment algorithm in the proposed visual 

tracking module resizes/relocates the BMR very efficiently. As a result, the helicopter 

is tightly enclosed by the BMR within 35 frames. The pan-tilt control accurately 

centralizes the target within 40 frames (≈ 1.6 s), and this is even below the 1.7 second 

rise time of the pan-tilt control system as mentioned in Section 4.3.4. After the initial 

target centralization, the camera is always pointing precisely to the helicopter 

regardless of its ever decreasing size and varying shape. The tracking is stopped only 

when the helicopter disappears beyond a hill. 

4.4.3 Tracking a Crow Flying with Variable Velocity 

A crow flies with abrupt variation in its speed.  Its appearance is always varying due 

to the up and down motion of its feathers. Figure 4.8 shows how efficiently the 

proposed system is persistently tracking it, until it disappears beyond a building. 

Initially, due to the fast motion of the crow, the template is initialized incorrectly by 

the user, as shown in the template at the bottom-right of Frame 1. The BMR 

adjustment algorithm automatically resizes/relocates the template to tightly enclose 

the crow. Furthermore, the tracker is not disturbed, even when the zoom level of the 

camera is varied from 3x through 7x in this example. The pan-tilt control algorithm 

centralizes the target in the frame efficiently within only the first 1.47 seconds. Later 

on, the crow remains mostly at the center of the frame. However, sometimes the crow 

moves slightly away from the center of the frame due to the abrupt change in its 

direction of motion. 

4.4.4 Tracking a Maneuvering Kite and Handling Occlusion 

Figure 4.9 depicts some frames from a tracking session, in which a kite (a highly 

maneuvering bird) is being tracked by the proposed system. It may be noted that the 



 97

appearance, the speed and the motion direction of the kite changes continuously. The 

current template is shown at the bottom-left of every frame in the figure. It can be 

observed in the frame sequence that: (1) it is very far from the camera and it looks 

very small even at the zoom level from 8x through 25x, and (2) there are multiple 

similar kites in the scene and one of them is occluding the kite of interest in Frames 

1565 through 1585 (only Frame 1574 is shown due to space constraint). Even then, 

the proposed tracking system is tracking the kite of interest robustly without any 

problem or distraction. The yellow color of the overlaid content in Frame 1574 

     
         Frame 1            Frame 47 

    
      Frame 395          Frame 725 

     
       Frame 755          Frame 810 

Figure 4.8 Tracking a crow persistently even in the presence of sudden variation in appearance, 
speed, background, and camera zoom (from 3x to 7x). 



 98

indicates that the correlation peak value has dropped below the threshold, τt, and the 

tracker is working in its occlusion handling mode (discussed in Section 3.3.9), during 

which the template is not updated. Normal tracking is resumed from Frame 1586, 

when the correlation peak value rises above the current dynamic threshold calculated 

in Eq. (3.6) during the occlusion handling mode of the tracker. 

4.4.5 Tracking a Person in the Shrubbery 

Figure 4.10 shows how the proposed system tracks a man walking in the cluttered 

     
           Frame 1            Frame 45 

     
       Frame 1564           Frame 1574 

     
       Frame 1586          Frame 3974 

Figure 4.9 Tracking a distant kite with the proposed tracking system for long duration, even in the 
presence of its ever-changing direction and appearance, varying zoom level, multiple similar 
objects, and occlusion (Frames 1565 to 1585). Yellow overlaid content in Frame 1574 indicates 
that the tracker is working in its occlusion handling mode. 



 99

scene and it is not distracted by the shrubs. The zoom level of the camera in this 

example is continuously at 25x, which is the maximum zoom level of the camera. 

This much zoom level is challenging for any pan-tilt control, because the field of view 

(FOV) is significantly reduced, and a very small angular motion of the camera reflects 

a very large motion of the object in the video. However, the proposed control 

algorithm moves the camera smoothly to follow the target accurately even in this 

situation. The tracking is stopped, only when the man disappears beyond a dense 

bush. 

4.4.6 Tracking a Car in Clutter and Occlusion 

Figure 4.11 shows some frames from a successful tracking video, in which a car is 

being tracked in the presence of a highly cluttered scene (i.e. houses, trees, shrubs, 

etc) and two occlusions (once by a motorcycle as shown in Frame 250 and another 

time by a big bulb on the gate of a home as shown in Frame 348). The yellow color of 

     
          Frame 1          Frame 110 

    
        Frame 440          Frame 724 

Figure 4.10 Tracking a man walking in the cluttered shrubbery at the highest zoom level (25x) of 
the camera used in this research, until he disappears beyond a bush. 



 100

the overlaid content represents normal tracking mode and the dark yellow color 

represents the occlusion handling mode of the tracking system. It may be observed 

that the scale (i.e. size) of the car is increasing in the video frames, but the template is 

not expanded by the BMR adjustment algorithm or the scale handling method. This is 

because the initial template is already larger than the maximum size limit of the 

template (see Section 3.3.8). 

4.4.7 Face Tracking in Uneven Illumination and Occlusion 

Figure 4.12 illustrates how efficiently the proposed system tracks the face of a person, 

who is walking in a room with all the lights turned off. The only light, that was 

available in the room, was coming from the blinds shown in the frames. This natural 

   
     Frame 1   Frame 196             Frame 250 

   
   Frame 260   Frame 335             Frame 348           

   
   Frame 365   Frame 500             Frame 613 

Figure 4.11 Tracking a car in a highly cluttered scene and multiple occlusions. The yellow color of 
the overlaid content indicates the normal tracking mode and the dark yellow color (in Frame 250 
and 348) indicates the occlusion handling mode of the tracking system. 



 101

light created a severe illumination variation in the video, since the camera was 

operating on its auto-focus mode in front of the light source. Specifically, when the 

camera was looking in the direction of the bright window, the other things (persons, 

wall, etc.) became very dark (see Frames 271 to 512), and when there was no bright 

window in the video frames, the whole scene became a little clearer. It may be noted, 

that there is noise and no detail in the whole video due to low light conditions. The 

target person and the occluding person are both walking in the same direction making 

the scenario even more complex. It can be further observed in Frame 495, that the 

occlusion of the tracked person by the other person happens partly in the bright region 

and partly in the dark region of the video frame. Moreover, the track of the target 

   
    Frame 176    Frame 271            Frame 325 

   
    Frame 481    Frame 495            Frame 512 

   
     Frame 528     Frame 540              Frame 569 

Figure 4.12 Tracking the face of a person during severe illumination variation, noise, low detail, 
and occlusion. All the lights in the room were turned off in this experiment to create a challenging 
scenario. The dark yellow rectangle in Frame 495 indicates that the tracker is currently working in 
its occlusion handling mode.  



 102

person after the occlusion is resumed in very much dark, as shown in Frame 512. 

Since the persons were very near to the camera, even a small movement of the 

persons was reflecting a large movement in the video frames. Thus, it was a 

challenging experiment for the pan-tilt control algorithm as well. All the problems 

(i.e. severe illumination variation, noise, low detail, full occlusion, and fast motion) 

are handled very efficiently and robustly by the proposed tracking system in real-time, 

and the face of the person of interest is always at (or near) the center of the video 

frames. 

4.4.8 Tracking a Goat amidst Multiple Goats in Clutter and Noise 

Figure 4.13 depicts some frames from a tracking session performed at about 7:26 p.m. 

in the evening. The scene is very cluttered and noisy. A goat has been selected by the 

user from the top of the video in Frame 1. The tracker centralizes the goat in the video 

  
          Frame 1        Frame 250 

  
       Frame 500       Frame 700 

Figure 4.13 Tracking a goat amidst many other goats in a highly cluttered and noisy scene at 
about 7:26 p.m. in the evening. Initially, the front part of the goat is selected by the user from top 
of the video. The goat is then centralized and tracked until it disappears beyond a home.  



 103

and tracks it robustly and persistently in the middle of many other goats, until it 

disappears beyond the wall of a home. This tracking session shows the robustness of 

the visual tracking algorithm to the noise, other similar objects, and background 

clutter (i.e. grass, homes, people, logs, stones, debris, etc).   

4.5 Chapter Summary 

This chapter presented the design, implementation, analysis, and experimental results 

of the proposed active camera tracking system (ACTS), that exploited the visual 

tracking framework discussed in Chapter 3. The system offers 0% overshoot, 1.7 

second rise time, and ±1 pixel maximum steady state error, if the object being tracked 

does not change its direction of motion abruptly. The experimental results validate 

that, due to the proposed visual tracking framework, the ACTS is quite able to track 

any object of interest with a pan-tilt-zoom camera in real-world complex scenarios, 

such as object fading, clutter, occlusion, uneven illumination, distraction by multiple 

similar objects, noise, and change in scale, orientation, appearance, and velocity of the 

object. 



 104

5 A Vision Based System for a UGV to Handle a Road Intersection 

5 

A Vision Based System for a UGV to Handle a 
Road Intersection 

5.1 Chapter Overview 

This chapter presents the design and implementation of a machine vision system that 

exploits the proposed visual tracking framework discussed in Chapter 3. The system 

enables an unmanned ground vehicle (UGV) to automatically handle a road 

intersection [57]. The experimental results of the actual system deployed on a UGV 

are also shown to validate its performance. 

5.2 Problem Description 

Consider the scenario of a UGV approaching a four way intersection regulated by a 

stop sign. Traffic laws require that each vehicle must come to a stop before entering 

the intersection and allow any other vehicles that arrive earlier to pass first. The UGV 

must effectively wait for its turn and look for the leading vehicles at the other roads 

that want to pass the intersection. It is not sufficient to simply detect the presence of 

other vehicles at the intersection, since the UGV should have the right-of-way if other 

vehicles approach the intersection after it has already stopped. Thus, it will be 

necessary to determine the behavior of each other vehicle, i.e. whether it is just 

arriving at the intersection, waiting for its turn to go, or already passing through. It is 



 105

assumed that all intersections will have at most four incoming roads oriented at 

perpendicular angles and that all vehicles will travel in the right-hand lanes according 

to USA traffic rules. Thus, the on-board computer vision system must be aware of the 

vehicles in the three regions shown in Figure 5.1, once the UGV has come to a stop. 

Some further relaxations regarding traffic flow to simplify the problem are 

made. If another vehicle approaches from the road straight ahead, beats the UGV to 

the intersection, and begins to make a right hand turn (a turn to the UGV's left), the 

UGV could safely make a right hand turn without having to wait. For simplicity, the 

UGV is programmed to decide not to cross the intersection until the intersection is 

completely clear of other vehicles. It is also assumed that the UGV will encounter 

only small vehicles with four or more wheels, but of any color or shape (e.g., a 

compact convertible or a pickup truck, but not a motorcycle or a semi-truck). 

The DARPA Urban Challenge 2007 provided a map of GPS paths along the 

lanes of the road, so it is unnecessary to perform path planning. The map also includes 

the locations of each regulated intersection and the possible directions of cross-traffic, 

 
 

Figure 5.1  The four way intersection scenario. All vehicles must come to a stop before entering 
the intersection. The UGV must be aware of incoming vehicles in the right-hand lane of each of the 
three roads (left, front, and right), in the regions indicated by the shaded boxes. 



 106

so it is not required to detect the number of roads or the presence of a stop sign. The 

experimental UGV is a Subaru Outback station wagon that has been used in previous 

autonomous vehicle projects by the Team UCF (University of Central Florida). It is 

equipped with a GPS receiver, several racks of off-the-shelf computers, mechanical 

controls for the steering wheel, brakes, and accelerator, and an autopilot system that 

autonomously follows GPS waypoints. Thus, it is also unnecessary to consider low-

level controls; it is instead sufficient to inform the autopilot when it is the UGVs turn 

to proceed through intersection. 

5.3 Overview of the Proposed Solution 

The proposed vision system uses three video cameras mounted to the roof of the 

UGV, as shown in Figure 5.2. The cameras are pointed towards the three other roads 

leading to the intersection, i.e. to the right, to the left, and straight ahead. Each camera 

provides RGB color frames with a resolution of 320×240 at a frame rate of 30 fps. 

Each camera is connected to a separate off-the-shelf computer installed in the UGV. 

Each computer will run the proposed software, which is written in C++. The three 

computers communicate with the autopilot through a UDP Ethernet connection. 

 
 
Figure 5.2  The experimental UGV is a Subaru Outback with an autopilot system and three 
cameras mounted to the roof. 



 107

When the autopilot determines that the UGV has reached the intersection and 

has come to a stop, it will send a message to the three computers signaling them to 

begin looking for vehicles in their fields of view. The proposed software consists of 

three main components: a vehicle detector, a tracker, and a finite-state-machine 

(FSM) model of the traffic, as shown in Figure 5.3. First, the vehicle detector tries to 

detect a vehicle in each video frame by using an OT-MACH (Optimal Trade-off 

Maximum Average Correlation Height) filter [97, 98, 99] pre-constructed from 

training images of vehicles captured from each camera. Once a vehicle is detected in a 

single frame, the detector gives the position and size of the detected vehicle to the 

tracker. The tracker follows the vehicle in the subsequent frames, adapts to the 

changing appearance of the vehicle, handles occlusions, and estimates the current and 

 
 

Figure 5.3  Block diagram of our proposed system. The Vehicle Detector, Tracker, and Finite 
State Machine (FSM) are run on the three on-board computers simultaneously for each camera 
view. The actual OT-MACH filters used for each view are also shown at the top. 



 108

next position of the vehicle in the imagery. A finite state machine (FSM) model is 

used to determine the state of the leading vehicle in each view. The states of the 

leading vehicle in each view are then used to make a final decision about when it is 

safe for the autopilot to drive the UGV through the intersection. All the components 

of the proposed solution are discussed separately in the next sections. 

5.4 Vehicle Detector 

The first step of the proposed solution is to detect a vehicle in a video frame by 

matching an appearance template that has been prepared for each of the three views. 

The template is basically an OT-MACH (Optimal Trade-off Maximum Average 

Correlation Height) filter, which combines the training images into a single composite 

template by optimizing four performance metrics: the Average Correlation Height 

(ACH), the Average Correlation Energy (ACE), the Average Similarity Measure 

(ASM), and the Output Noise Variance (ONV), as explained in [97, 98, 99]. Since 

each incoming vehicle from a given road is oriented in approximately the same pose, 

and since the UGV always sees each road in the intersection from roughly the same 

point of view, this method produces a template that expresses the general shape of a 

vehicle in each view. The color invariance is achieved by using edge-enhanced 

images instead of the original color frames as described in [58]. The edge-enhanced 

OT-MACH filter generated for each of the three views is shown in Figure 5.3. 

Once the edge-enhanced OT-MACH filter is prepared, it is applied to edge-

enhanced search window inside the incoming video frames by performing normalized 

cross-correlation very efficiently as discussed in Chapter 2. The highest peak in the 

correlation response is compared with a threshold. The threshold was determined just 

after the synthesis of the filter as 1 2 30.95min( , , ,..., )Np p p pτ = , where pi is the 

correlation peak value obtained when the filter was applied on ith training image, and 



 109

N is the total number of the training images. The 95% of the minimum peak value is 

used in order to tolerate small amount of perturbation of the actual vehicles from the 

vehicles used in the training phase.  If the peak is greater than the threshold, it 

indicates the position of a vehicle; otherwise it is assumed that there is no vehicle in 

the scene. 

The most significant change in the appearance of vehicles between different 

intersections comes from varying number and width of lanes. A specific solution is 

proposed to this uncertainty in distance between the camera and the vehicle. The filter 

is obtained from the training images each resized to an average size, but the detection 

is performed with several rescaled versions of the average size filter. The scales are 

80%, 100%, and 120% of the size of the original OT-MACH filter. After computing 

the correlation at each scale, the scale that produces the maximum correlation peak 

decides the size of the vehicle in the image. 

5.5 Tracker 

While the vehicle detector locates a vehicle in a single frame, the tracker is intended 

to follow the vehicle in the subsequent frames to determine its current and next 

position, velocity, and acceleration. The tracker is initialized using the image 

rectangle identified by the vehicle detector. While the detector uses only the prior 

knowledge of the appearance of a vehicle, the tracking stage ignores the prior 

knowledge and instead exploits the temporal and spatial consistency of appearance 

from frame to frame. This tracker is basically the same as the one discussed in 

Chapter 3. The current and predicted position of the vehicle coming from every road 

under observation is used by the finite-state-machine (discussed in the next section) to 

determine the state of the traffic on the intersection. 



 110

5.6 Finite State Machine (FSM) Model 

The tracker provided the current and predicted position of the detected vehicle in each 

view. The goal of the intersection model is to use this information, along with prior 

knowledge about the geometry of the scenario, to determine which cars have the right 

of way and help make the final decision to be sent to the autopilot when it is the 

UGV's turn to cross the intersection. 

The state of the traffic in each view is modeled with a finite-state-machine 

consisting of four states: No Vehicle Waiting, Arriving at the intersection, Waiting, 

and Passing the intersection. The relationships between these states are shown 

graphically in Figure 5.4. The state transitions are controlled by rules that operate on 

the dynamics information from the tracker. 

The velocity and acceleration of the vehicle coming from the left or right road 

can be estimated easily by obtaining the left or right motion of the vehicle between 

the consecutive frames, but this kind of motion is not significant in case of the vehicle 

coming from the front road. This case is addressed by the scale that is obtained by the 

scale handling capability of the proposed visual tracking framework. If the ratio of the 

 
Figure 5.4  Finite state machine (FSM) model for the state of traffic on a road. 



 111

size of the updated template to the size of the previous template is greater than 1, it 

means the vehicle is approaching towards the intersection from the front road. 

The FSM transitions from No Vehicle Waiting to Arriving when a new vehicle 

is detected. After arriving at the intersection, the vehicle can be in two possible states: 

Waiting or Passing. The FSM transitions from Arriving or Passing to Waiting when 

the vehicle stops moving, i.e. when the velocity and acceleration of the vehicle in the 

x and y directions as well as the change in scale ratio (in front view case) drop below 

some threshold. As a guard against spurious state transitions, the vehicle must be still 

for about 15 frames (half a second) before it is considered Waiting. While in the 

Arriving state, the vehicle transitions directly into the Passing state if it crosses a 

spatial threshold, i.e. if the x coordinate crosses a threshold in the left and right views, 

or if either x or y coordinates cross a threshold in the front view. A transition from 

Passing to Waiting is permitted because the vehicle may unexpectedly have to wait 

due to some disturbance, such as a pedestrian, while it is passing the intersection. If 

the vehicle starts moving again, then it transitions back into the Passing state. Once in 

the Passing state, the FSM transitions again to No Vehicle once the vehicle reaches 

the edge of the frame. 

Since the vision system is turned on by the autopilot once the UGV has 

stopped at the intersection, other vehicles may already be in the scene. If a vehicle is 

detected in the first frame, the FSM is allowed to begin with the Arriving or Passing 

state depending on the position of the vehicle in the frame. Similarly, the autopilot 

may turn off the vision system while the state machine is in any state. 



 112

5.7 Final Decision 

In order to decide when to cross the intersection, the system combines the traffic 

information from all the three FSMs. If the vehicle on the other road is already 

Waiting when the UGV arrives at the intersection, then it has the right-of-way, and the 

UGV is commanded to wait for it to leave the scene before proceeding. If at any time 

a vehicle is Passing the intersection, the UGV is commanded not to cross. Since a 

vehicle will reach the edge of the frame before it has crossed the intersection, the 

UGV waits for two seconds after the corresponding FSM stops indicating that the 

vehicle is passing. Any vehicle that is Arriving or Waiting after the UGV arrives does 

not have the right-of-way, so it is assumed they will let the UGV pass the intersection. 

5.8 Experimental Results 

The low-level components of the system were tested by parking the UGV at several 

real four-way intersections at which one of the roads was a dead end, so the traffic 

was not interfered. It is easy to objectively evaluate the vehicle detector since the total 

number of visible vehicles is a discrete and unambiguous value. Table 5.1 shows the 

number of successfully detected vehicles, as well as the false alarms and 

misdetections for each camera view. The tradeoff between false alarms and 

misdetections is controlled by the parameters and thresholds. The misdetections were 

favored over false alarms, since if the tracker got stuck on a patch of stationary 

background clutter, the UGV would wait indefinitely. Since these results were 

gathered from several intersections with uncontrolled traffic, they demonstrate the 

robustness and generalization of the detection system. 

For testing the entire system as a whole, each experiment was staged as a 

coordinated event where the UGV and another vehicle (operated by a human driver) 

would approach the intersection in an agreed-upon order. The results for these 



 113

experiments are shown in Table 5.2. If the safety driver (in the UGV) had to override 

the autopilot to avoid a collision, or if the UGV did not begin to move, then the 

experiment was marked as a failure. In most cases (90%), the UGV effectively waited 

for the other vehicle to pass when the other vehicle arrived first, and then 

automatically proceeded through the intersection. 

An annotated sequence of frames from one experiment is provided in Figures 

5.5-5.9, which illustrate how the proposed system successfully handles a real road 

intersection. In each figure, the upper left image shows the view from the left camera, 

the upper middle image shows the view from the front camera, the upper right image 

shows the view from the right camera, and the bottom image shows the view from a 

camcorder placed inside the UGV to record the automatic motion of its steering 

wheel. The zoom level of the camcorder inside the UGV was set lower than that of 

the front camera atop the UGV to have a wide field of view and show as much of the 

steering wheel as possible. The upper images are basically the processed frames 

recorded by the three on-board computers. Figure 5.5 shows the instance when the 

UGV is arriving at the intersection, but another car is already waiting on the left road. 

Table 5.2  Results of the actual UGV experiments under autonomous control. 
 

Road  
Left Front Right Total % 

Success 4 2 3 9 90 
Failure 1 0 0 1 10 

Table 5.1  Detection results in uncontrolled traffic 
 

Road  Left Front Right Total % 

Visible 62 55 53 170  
Detected 61 50 50 161 94.7 

Misdetected 1 5 3 9 5.3 
False Alarm 0 0 0 0 0 

 



 114

The computer vision system is not turned on, because the UGV has not reached the 

stop sign yet. Figure 5.6 shows the instance when the UGV stops and turns on the 

proposed computer vision system. The system detects that a car is already waiting at 

the left road and commands the UGV to wait. The detected vehicle is surrounded by 

the best-match rectangle (BMR) overlaid in the left view. The large rectangles on the 

front and right views indicate the corresponding areas where the vehicles are being 

searched for by the vehicle detector using the corresponding OT-MACH filters. The 

vehicles were being searched for in these small areas of interest instead of the whole 

frames, in order to reduce the computation time in the correlation process and 

eliminate the possible false detections due to the background clutter. The small 

images overlaid at the bottom-left of every frame shows either the OT-MACH filters 

(if there is no vehicle on the road) or the current adaptive template (if there is a 

vehicle being tracked by the proposed tracker). The first line of the text indicates the 

maximum correlation value and the coordinates of the center of the best match 

rectangle (BMR). The BMR is shown only when the correlation value is above some 

threshold (as can be seen in the left view). The second line of the text indicates the 

scale of the OT-MACH filter that provides the maximum correlation value in the 

detection mode. The third line of the text indicates the road state provided by the 

corresponding FSM. Figure 5.7 shows the instance when the car at the other road 

begins to pass the intersection. The FSM for the left road correctly senses that the car 

is passing the intersection, as can be seen in the overlaid text. Figure 5.8 shows the 

instance when the car has exited the view of the left camera, although it is still visible 

in the video frames from the front camera and the camcorder. Since there were no 

vehicles on the right and the front roads, and the car has exited the view of the left 

road. The decision is made that it is now the UGV’s turn to pass the intersection, so 



 115

the computer vision system is automatically turned off. This action is indicated by the 

absence of any overlaid content on the frames from the left, front, and right cameras 

atop the UGV. The UGV waits another two seconds so that the other car can pass the 

intersection safely. Finally, it starts passing the intersection automatically, as shown 

by the motion of the steering wheel and the scenes from the three cameras (atop the 

UGV) in Figure 5.9. 

5.9 Chapter Summary 

In this chapter, a vision based system is proposed that can enable a UGV to 

handle a road intersection. The system consists of mainly a vehicle detector, a tracker 

(which is discussed in Chapter 3), and a finite state machine (FSM) model of the road 

for each of the three cameras looking towards left, right, and front roads. For each 

camera view, the vehicle detector detects the vehicle on the other road, the tracker 

determines the current and predicted position of the detected vehicle in the 

consecutive video frames, and the FSM determines the state of the corresponding 

road. Finally, the traffic scenario obtained from the FSMs is utilized to make the final 

decision whether the UGV should go ahead and cross the intersection or wait for its 

turn. The experimental results show that the proposed system works with the success 

rate of 90%, which is significantly encouraging. 

 

 

 

 

 

 



 116

 

 

 

 

 

 

   

 
 

Figure 5.6  The UGV stops and turns on the computer vision system. The system detects that the 
car is at the intersection and commands the UGV to wait. 

   

 
 

Figure 5.5  The UGV is arriving at the intersection, but another car is already waiting on the left 
road. 



 117

 

 

 

 

 

 

 

   

 
 

Figure 5.8  The car has exited the view of the left camera, although it is still visible in the video 
from the camcorder. The computer vision system is turned off because it will now be the UGV’s 
turn to cross the intersection. 

   

 
 

Figure 5.7  The car at the other road begins to pass the intersection. 



 118

 

 

   

 
 

Figure 5.9  Two seconds later, the UGV begins to pass the intersection automatically. 



 119

6 Conclusion and Future Directions 

6 

Conclusion and Future Directions 

The thesis presented an adaptive edge-enhanced correlation based robust and real-

time visual tracking framework, and its deployment in two machine vision systems: 

(1) an active camera tracking system, and (2) a system for a UGV to handle road 

intersections. In this chapter, the conclusion and the future work for the visual 

tracking framework and the machine vision systems based on it are drawn and 

presented, respectively. 

6.1 Visual Tracking Framework 

The proposed visual tracking algorithm is based on edge-enhanced BPNN-controlled 

fast normalized correlation (EE-BCFNC). The edge-enhancement (EE) operation in 

the EE-BCFNC is performed using Gaussian smoothing filter with an automatic 

standard deviation parameter, gradient magnitude, normalization, and thresholding. 

This kind of enhancement helps the correlation process handle object fading, low-

contrast imagery and variation in the scene illumination in a better way and provides 

cleaner peak at the object location in the correlation surface than the most commonly 

used normalized correlation coefficient (NCC). The next operation in the EE-BCFNC 

is the BCFNC (BPNN-controlled fast normalized correlation), which exploits a back-

propagation neural network (BPNN) to work as a switch between two 



 120

implementations of the normalized correlation (NC): direct method and FFT-SAT 

(fast Fourier transform – summed area table) method. The BPNN predicts which 

implementation will be faster for computing NC, given the search-window-size and 

the ratio of the template-size to the search-window-size. The varying scale of the 

object is handled by preparing scaled versions of the template, correlating them 

individually with the search window, and accepting the best scale, which produces the 

highest correlation peak in all the three correlation surfaces. The long-term 

neighboring clutter is dealt with by applying a 2D Gaussian weighting on the template 

pixels, using automatically computed optimal standard deviation parameters 

depending on the size of the current template. An effective and smooth method for 

updating the template is also introduced to handle the varying object appearance, the 

short-term neighboring clutter, and to some extent the template-drift. In order to 

formally handle the template drift and the inaccurate object initialization problems, a 

best match rectangle adjustment algorithm has been proposed. The visual tracking 

algorithm has been further improved using a Kalman predictor, in which a “constant 

acceleration with random walk” model of the target motion is used for good 

prediction accuracy. A novel method is presented to dynamically determine the 

location and size of the search-window depending on the prediction and the 

prediction-error of the Kalman filter. The occlusion of the target by other object(s) has 

been handled using a simple data association technique. The proposed algorithm has 

been compared with the most commonly used correlation tracker, and (for some 

sequences) the mean-shift and the condensation trackers. The results prove that the 

proposed tracker outperforms them in the presence of temporary object fading, 

significant background clutter, variations in the size of the object, variations in the 

illumination conditions, significant object maneuvering, multiple objects, obscuration, 



 121

and intermittent occlusion of the object, and variation in velocity, shape and 

orientation of the object. 

The computational efficiency of the spatial domain implementation of NC for 

template matching can be further improved using the early termination algorithms, for 

example [101]. Then, its efficiency can be compared with the FFT-SAT method for 

different sizes of the templates and search images. If there is a significant difference 

between their computational efficiencies for different sizes of the images, the BPNN 

can be trained accordingly to switch between the two implementations. 

Furthermore, a significant improvement in the proposed visual tracking 

framework would be to address the following complex real-world situations in which 

it may fail: 

• A moving object is completely occluded by other object(s) for a very long 

duration, when the object changes its shape, speed, or direction 

significantly during the occlusion.  

• The object is being occluded very slowly, in which case the correlation 

peak never falls below the threshold (τt) to sense the occurrence of the 

occlusion, because in this scenario the template is continuously being 

updated and the occluding object slowly invades into the template. 

• There is a lot of clutter including exactly similar objects having similar 

orientation and scale in the search window as that of the object of interest.  

• The object is changing its appearance fast, while its scale is increasing, e.g. 

a turning vehicle coming nearer the camera. 



 122

6.2 Active Camera Tracking System 

As far as the active camera tracking system is concerned, a predictive open-loop car-

following control (POL-CFC) has been presented to maneuver the pan-tilt unit (PTU), 

which moves the camera towards the object. The control algorithm calculates the 

predictive velocity of the object to be tracked using Kalman predicted position 

estimated by the visual tracking algorithm, and then smoothly adjusts the velocity of 

the PTU accordingly (without using any velocity feedback from the motors). As a 

result, the object remains always locked to the line-of-sight of the camera with good 

accuracy, regardless of the change in the velocity of the object. The POL-CFC 

algorithm offers 0% overshoot, 1.7 second rise-time, and ±1 pixel maximum steady 

state error for an object, which does not change its direction of motion abruptly. The 

steady state error is slightly increased, if the zoom level is more than 6x. The 

maximum error, while the camera is working at its highest zoom level of 25x, is only 

±4 pixels from the center of the frame. However, if the object is changing its direction 

fast, the error may be increased further depending on the rate of change of the 

direction of the object motion. Nevertheless, the object remains always near the center 

of the frame. The precision of the motion controller depends mainly on the resolution 

of the PTU. Presently, a stepper-motor based PTU having resolution of 0.01285 

degree/step is used. If a servo-motor based PTU having better resolution is used, the 

tracking can be smoother and more precise, especially when the camera is operating at 

very high zoom level. 

The visual tracking algorithm and the pan-tilt control algorithm are 

implemented in separate threads exploiting the parallel processing capability of the 

presently available microprocessor in a standard PC. The throughput of the integrated 



 123

system is 25 to 75 fps (on a Centrino P4 1.7 GHz machine with 512 MB RAM) 

depending on the sizes of the adaptive template and the dynamic search window. 

The system has been tested for more than a year in real-world indoor as well 

as outdoor scenarios. Some of the frames from the resulting videos recorded during 

various tracking sessions have been presented in this thesis. They prove that the 

system works very efficiently and robustly in the real-world complex scenarios. 

6.3 A Vision Based System for a UGV to Handle a Road 
Intersection 

UGVs will have to develop the capability to safely cross intersections with stop signs 

if they are going to be deployed in urban environments. In this research, some 

analysis of this specific problem is provided and a complete computer vision solution 

that combines a vehicle detection-and-tracking algorithm with a finite-state-machine 

model of the traffic near the intersection to automatically navigate the UGV through 

the intersection is proposed. The initial experiments of the system suggest that a 

computer vision approach can be the basis of an effective solution, but a truly robust 

system will need to better deal with subtle uncertainties in such a scenario. For 

example, it is currently assumed that the vehicle will take no more than two seconds 

to pass the intersection, but it is possible that the vehicle will unexpectedly stop while 

it is outside the view of the camera. The next work can be to address this problem by 

combining the output from the computer vision system with other systems, like a laser 

range finder, which can detect obstacles in the immediate path of the UGV. 



 124

References 

[1] Y. Cui, S. Samarasekera, Q. Huang, M Greienhagen, “Indoor Monitoring Via the Collaboration 

Between a Peripheral Sensor and a Foveal Sensor,” IEEE Workshop on Visual Surveillance, 

Bombay, India, 2-9, 1998. 

[2] G. R. Bradski, “Computer Vision Face Tracking as a Component of a Perceptual User 

Interface,” IEEE Workshop on Applications of Computer Vision, Princeton, 214-219, 1998. 

[3] S. S. Intille, J.W. Davis, A.F. Bobick, “Real-Time Closed-World Tracking,” IEEE Conference 

on Computer Vision and Pattern Recognition, Puerto Rico, 697-703, 1997. 

[4] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, “PFinder: Real-Time Tracking of the Human 

Body,” IEEE Transactions on Pattern Analysis Machine Intelligence, 19:780-785, 1997. 

[5] A. Eleftheriadis, A. Jacquin, “Automatic Face Location Detection and Tracking for Model-

Assisted Coding of Video Teleconference Sequences at Low Bit Rates,” Signal 

Processing−Image Communication, 7(3): 231-248, 1995. 

[6] R. Rosales, S. Sclaro, “3D Trajectory Recovery for Tracking Multiple Objects and Trajectory 

Guided Recognition of Actions,” IEEE Conference on Computer Vision and Pattern 

Recognition, Fort Collins, vol. 2, 117-123, 1999. 

[7] J. Ahmed, M. N. Jafri, J. Ahmad, and M. I. Khan, “Design and Implementation of a Neural 

Network for Real-Time Object Tracking,” International Conference on Machine Vision and 

Pattern Recognition in Conjunction with 4th World Enformatika Conference, Istanbul, 2005. 

[8] J. Ahmed, M. N. Jafri, J. Ahmad, “Target Tracking in an Image Sequence Using Wavelet 

Features and a Neural Network,” IEEE Region 10: Tencon’05 Conference, Melbourne, 

Australia, 2005 

[9] A. Doulamis, N. Doulamis, K. Ntalianis, and S. Kollias, “An Efficient Fully Unsupervised 

Video Object Segmentation Scheme Using an Adaptive Neural-Network Classifier 

Architecture,” IEEE Transaction on Neural Networks, May 2003. 

[10] E. V. Cuevas, D. Zaldivar, and R. Rojas, “Intelligent Tracking,” Technical Report B-03-15, 

Freie Universitat Berlin, Germany, November 10, 2003. 

[11] S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems, pp. 309-313, 

Artech House, Boston, 1999. 



 125

[12] S. Wong, “Advanced Correlation Tracking of Objects in Cluttered Imagery,” Proceedings of 

SPIE, Vol. 5810, 2005.  

[13] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd Ed., Prentice-Hall, Inc., 2002 

[14] N. Mir-Nasiri, “Camera-based 3D Tracking,” IEEE Region 10: Tencon’05 Conference, 

Melbourne, Australia, 2005. 

[15] “Basic Control Law for PTU to Follow a Moving Target,” Application Note 01, Directed 

Perception Inc., 1996. 

[16] J. P. Lewis, “Fast Normalized Cross-Correlation”, Industrial Light & Magic, 1995. 

[17] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digtal Image Processing Using MATLAB, 

Pearson Education Pte. Ltd., 2004. 

[18] F. Crow, “Summed-Area Tables for Texture Mapping”, Computer Graphics, vol 18, No. 3, pp. 

207-212, 1984. 

[19] G. X. Ritter and J. N. Wilson, Handbook of Computer Vision Algorithms in Image Algebra. 

CRC Press, Boca Raton, Fl., 1996. 

[20] C. Kuglin and D. Hines, “The Phase Correlation Image Alignment Method,” International 

Conference on Cybernetics and Society, 1975, pp. 163-165. 

[21] Q. Chen, M. Defrise, and F. Deconinck, “Symmetric Phase-Only Matched Filtering of Fourier-

Mellin Transforms for Image Registration and Recognition,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vol.16, December, 1994. 

[22] H. S. Stone and B. Tao and M. McGuire, “Analysis of Image Registration Noise Due to 

Rotationally Dependent Aliasing,” Journal of Visual Communication and Image Representation, 

Vol. 14, pp. 114-135, 2003. 

[23] H. S. Stone, “Fourier-Based Image Registration Techniques”, NEC Research, 2002. 

[24] H. Demuth, and M. Beale, Neural Network Toolbox for Use with MATLAB: User’s Guide (v. 4), 

The Mathworks, Inc., 2001. 

[25] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Ed., Pearson Education, Delhi, 

1999. 

[26] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms, and Applications, 

Prentice Hall, Englewood Cliffs, 1994.  



 126

[27] M. F. Moller, “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,” Neural 

Networks, vol. 6, pp. 525-533, 1993. 

[28] MATLAB 7.0 On-line Help Documentation 

[29] G. Bradski, A. Kaehler, and V. Pisarevsky, “Learning-Based Computer Vision with Open 

Source Computer Vision Library,” Intel Technology Journal, Vol. 9, Issue 2, May 2005. 

[30] S. E. Umbaugh, Computer Imaging: Digital Image Analysis and Processing, CRC Press, 2005. 

[31] J. M. Fitts, “Precision Correlation Tracking via Optimal Weighting Functions,” 18th IEEE 

Conference on Decision and Control Including the Symposium on Adaptive Processes, 1979. 

[32] R. L. Brunson, D. L. Boesen, G. A. Crockett, and J. F. Riker, “Precision Trackpoint Control via 

Correlation Track Referenced to Simulated Imagery,” Bellingham, WA: Society of Photo-

Optical Instrumentation Engineers, 1992. 

[33] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing, 2nd Ed., Prentice 

Hall, 1999. 

[34] M. H. Hayes, Digital Signal Processing, McGraw-Hill, New York, 1999. 

[35] Available at http://www.fastpasses.com 

[36] E. Brookner, Tracking and Kalman Filtering Made Easy, John Wiley & Sons, 1998. 

[37] G. Welch, and G. Bishop , “An Introduction to the Kalman Filter,” TR 95-041, Department of 

Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, 

2004 

[38] M. S. Grewal, and A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 2nd 

Ed., John Wiley & Sons Inc., New York, 2001. 

[39] C. Fagiani and J. Gips, An Evaluation of Tracking Methods for Human-Computer Interaction, 

Senior Thesis, Computer Science Department, Boston College, Fulton Hall, Chestnut Hill, MA 

02467, 2002 

[40] CAVIAR (Context Aware Vision using Image-based Active Recognition) test video clips 2003-

2004, available at http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ 

[41] C. R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland, “Pfinder: Real-Time Tracking of 

the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, 

no. 7, July 1997. 



 127

[42] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real Time Tracking,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747-767, Aug. 

2000. 

[43] D. Comaniciu, R. Visvanathan, and P. Meer, “Kernel based object tracking,” IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 25(5):564–575, 2003. 

[44] A. Adam, E. Rivlin, and I. Shimshoni, “Robust Fragments-based Tracking using the Integral 

Histogram,” IEEE Conference on Computer Vision and Pattern Recognition, 2006. 

[45] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” International 

Journal of. Computer Vision, vol. 1, 1988. 

[46] A. Yilmaz, X. Li, and M. Shah, “Contour-Based Object Tracking with Occlusion Handling in 

Video Acquired Using Mobile Cameras,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 26, No. 11, November 2004. 

[47] F. Porikli, “Integral Histogram: A Fast Way to Extract Histograms in Cartesian Spaces,” IEEE 

Conference on Computer Vision and Pattern Recognition, 2005 

[48] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time Tracking of Non-rigid Objects Using Mean 

Shift,” IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, 

volume 1, pages 142–149, 2000. 

[49] F. Porikli and O. Tuzel, “Multi-kernel Object Tracking,” IEEE International Conference on 

Multimedia and Expo, Amsterdam, Netherlands, 2005. 

[50] F. Porikli, O. Tuzel, and P. Meer, “Covariance Tracking Using Model Update Based on Lie 

Algebra,” IEEE Conference on Computer Vision and Pattern Recognition, 2006 

[51] H. Wang, D. Suter and K. Schindler, “Effective Appearance Model and Similarity Measure for 

Particle Filtering and Visual Tracking,” European Conference on Computer Vision, 2006. 

[52] K. Nummiaroa, E. Koller-Meierb, and L. V. Gool, “An Adaptive Color-Based Particle Filter,” 

Image and Vision Computing, 21: p. 99-110, 2003. 

[53] M. Isard, and A. Blake, “CONDENSATION-Conditional Density Propagation for Visual 

Tracking,” International Journal of Computer Vision, 29(1): p. 5-28, 1998. 

[54] P. Perez, et al., “Color-Based Probabilistic Tracking,” European Conference on Computer 

Vision, p. 661-675, 2002. 

[55] Available at http://vision.stanford.edu/~birch/headtracker/seq/ 

[56] B. C. Kuo, Automatic Control Systems, 7th Ed., John Wiley & Sons, 1995. 



 128

[57] J. Ahmed, M. Shah, A. Miller, D. Harper, and M. N. Jafri, “A Vision Based System for a UGV 

to Handle a Road Intersection,” AAAI-07: 22nd Conference on Artificial Intelligence, Vancouver, 

Canada, July 22-26, 2007. 

[58] J. Ahmed, M. N. Jafri, M. Shah, and M. Akbar, “Real-Time Edge-Enhanced Dynamic 

Correlation and Predictive Open-Loop Car Following Control for Robust Tracking,” Machine 

Vision and Applications Journal, Vol. 19, No. 1, pp. 1–25, January 2008. 

[59] G. Chen and T. Tat Pham, Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems, 

CRC Press, Boca Raton, 2001. 

[60] T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd Edition, John Wiley & Sons Ltd., 

England, 2004. 

[61] H. T. Nguyen and E. A. Walker, A First Course in Fuzzy Logic, 2nd Edition, Chapman & 

Hall/CRC, Boca Raton, 2000. 

[62] H. T. Nguyen, N. R. Prasad, C. L. Walker, and E. A. Walker, A First Course in Fuzzy and 

Neural Control, Chapman & Hall/CRC, Boca Raton, 2003. 

[63] J. Ahmed, and M. N. Jafri, “Improved Phase Correlation Matching,” Accepted in ICISP-08: 

International Conference on Image and Signal Processing, France, July 1-3, 2008. 

[64] O. Veksler, “Fast Variable Window for Stereo Correspondence using Integral Images,” IEEE 

Conference on Computer Vision and Pattern Recognition, 2003. 

[65] B. Han, C. Yang, R. Duraiswami, and Larry Davis, “Bayesian Filtering and Integral Image for 

Visual Tracking,” Workshop on Image Analysis for Multimedia Interactive Services 

(WIAMIS’05), 2005. 

[66] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,” ACM Computing Surveys, 

2006. 

[67] C. Veenman, M. Reinders, and E. Backer, “Resolving Motion Correspondence for Densely 

Moving Points,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 1, 54–

72, 2001. 

[68] D. Ballard and C. Brown, Computer Vision, Prentice-Hall, 1982. 

[69] A. Ali and J. Aggarwal, “Segmentation and Recognition of Continuous Human Activity,” IEEE 

Workshop on Detection and Recognition of Events in Video, 2001. 



 129

[70] S. Zhu, and A. Yuille, “Region Competition: Unifying Snakes, Region Growing, and 

Bayes/MDL for Multiband Image Segmentation,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 18, 9, 884–900, 1996. 

[71] N. Paragios, and R. Deriche, “Geodesic Active Regions and Level Set Methods for Supervised 

Texture Segmentation,” International Journal of Computer Vision, 46, 3, 223–247, 2002. 

[72] P. Fieguth, and D. Terzopoulos, “Color-based Tracking of Heads and Other Mobile Objects at 

Video Frame Rates,” IEEE Conference on Computer Vision and Pattern Recognition, 21–27, 

1997. 

[73] M. Black, and A. Jepson, “Eigentracking: Robust Matching and Tracking of Articulated Objects 

Using a View-based Representation,” International Journal of Computer Vision, 26, 1, 63–84, 

1998. 

[74] S. Avidan, “Support Vector Tracking,” IEEE Conference on Computer Vision and Pattern 

Recognition, 2001. 

[75] S. Park, and J. K. Aggarwal, “A Hierarchical Bayesian Network for Event Recognition of 

Human Actions and Interactions,” Multimedia Systems, 10, 2, 164–179, 2004. 

[76] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transactions of 

the ASME - Journal of Basic Engineering Vol. 82: pp. 35-45, 1960.  

[77] R. E. Kalman, and R. S. Bucy, “New Results in Linear Filtering and Prediction Theory,” 

Transactions of the ASME - Journal of Basic Engineering Vol. 83: pp. 95-107, 1961. 

[78] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as Space-time Shapes,” 

10th IEEE International Conference on Computer Vision, pages 1395–1402, 2005. Available at: 

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html 

[79] M. Nixon and A. Aguado, Feature Extraction and Image Processing, Newnes, Oxford, 2002. 

[80] J. Jingying, H. Xiaodong, X. Kexin, and Y. Qilian, “Phase Correlation-based Matching Method 

with Sub-pixel Accuracy for Translated and Rotated Images,” IEEE International Conference on 

Signal Processing (ICSP’02), 2002. 

[81] H. Foroosh (Shekarforoush) and J. B. Zerubia, “Extension of Phase Correlation to Subpixel 

Registration,” IEEE Transactions on Image Processing, Vol. 11, NO. 3, March 2002. 

[82] Y. Keller, A. Averbuch, and O. Miller, “Robust Phase Correlation,” 17th International 

Conference on Pattern Recognition (ICPR’04), 2004. 

[83] PETS-2001 Dataset: http://www.research.ibm.com/peoplevision/performanceevaluation.html 



 130

[84] G. Lathoud, J. Odobez, and D. Gatica-Perez, “AV16.3: An Audio-Visual Corpus for Speaker 

Localization and Tracking,” IDIAP, Martigny, Switzerland, IDIAP-RR 28, 2004; MLMI 2004; 

LNCS 3361, pp. 182–195, Springer-Verlag Berlin Heidelberg, 2005. 

[85] P. S. Maybeck, T. D. Herrera, and R. J. Evans, “Target Tracking Using Infrared Measurements 

and Laser Illumination,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 

758-68, 1994. 

[86] http://www.ni.com/labview 

[87] R. Manduchi and G. A. Mian, “Accuracy Analysis for Correlation-Based Image Registration 

Algorithms,” IEEE, 2001. 

[88] C. Rasmussen, “Combining Laser Range, Color, and Texture Cues for Autonomous Road 

Following,” ICRA, 2002. 

[89] W. Chun, J. Faukoner, and S. Munkeby, “UGV Demo II: Reuse Technology for AHS,” IEEE 

Intelligent Vehicles Symposium, 1995. 

[90] L. Matthies, A. Kelly, T. Litwin, and G. Tharp, “Obstacle Detection for Unmanned Ground 

Vehicles: A Progress Report,” Robotics Research 7 Springer-Verlag, 1995. 

[91] Z. Zhang, R. Weiss, and A.R. Hanson, “Qualitative Obstacle Detection,” In Proc. IEEE CVPR, 

1994. 

[92] L. Matthies, “Stereo Vision for Planetary Rovers: Stochastic Modeling to Near Real-Time 

Implementation,” International Journal of Computer Vision, Vol. 8, No. 1, 1992. 

[93] L. Matthies, L., and E. Brown, “Machine Vision for Obstacle Detection and Ordnance 

Recognition,” AUVSI, 1996. 

[94] A. Talukder, R. Manduchi, L. Matthies, and A. Rankin, “Fast and Reliable Obstacle Detection 

and Segmentation for Cross Country Navigation,” IEEE Intelligent Vehicle Symposium, 2002. 

[95] A. Shashua, Y. Gdalyahu, and G. Hayun, “Pedestrian Detection for Driving Assistance Systems: 

Single frame Classification and System Level Performance,” IEEE Intelligent Vehicle 

Symposium, 2004. 

[96] R. Vidal, O. Shakernia, J. Kim, H. Shim, and S. Sastry, “Multiple Agent Probabilistic Pursuit-

Evasion Games with Unmanned Ground and Aerial Vehicles,” IEEE Trans. on Robotics and 

Automation, 2001. 

[97] P. Refregier, “Optimal Trade-off Filters for Noise Robustness, Sharpness of the Correlation 

Peak, and Horner Efficiency,” Optics Letters, Vol. 16, No. 11, 1991. 



 131

[98] A. Mahalanobis, B.V.K.V. Kumar, S. Song, S. Sims, and J. Epperson, “Unconstrained 

Correlation Filters,” Applied Optics, Vol. 33, No. 17, 1994. 

[99] H. Zhou, and T.-H Chao, “MACH Filter Synthesizing for Detecting Targets in Cluttered 

Environments for Gray-scale Optical Correlator,” Proc. SPIE, vol. 3715, 1999. 

[100] J. Ahmed and M. N. Jafri, “Best-Match Rectangle Adjustment Algorithm for Persistent and 

Precise Correlation Tracking,” Proc. IEEE International Conference on Machine Vision, 

Islamabad, Pakistan, on 28-29 December, 2007. 

[101] A. Mahmood, and S. Khan, “Early Termination Algorithms for Correlation Coefficient Based 

Block Matching,” Proc. ICIP-07: IEEE International Conference on Image Processing, 2007. 



 132

Author Biography 

Javed Ahmed received BE (Electronics Engineering) from Dawood College of 

Engineering & Technology (NED University of Engineering & Technology), Karachi 

(Pakistan), at the end of 1994. He obtained his MSc (Systems Engineering) with 

distinction (2nd position), under the fellowship program from Pakistan Institute of 

Engineering & Applied Sciences, Islamabad (Pakistan), in 1997. Then, he joined 

National Engineering & Scientific Commission (NESCOM) in 1997 and worked in 

the fields of real-time embedded systems, signal processing, and control systems. He 

got enrolled in Military College of Signals as a PhD candidate under the NUST 

Endowment Fund Scholarship program on 28 May 2003. During his PhD studies, he 

focused his research work on the real-time object detection and tracking in the real-

world imagery. He proceeded to Computer Vision Lab, University of Central Florida 

(UCF), Orlando (USA) on 3 July 2006 to conduct a funded collaborative research 

until 28 February 2007. His publications include one journal paper and six conference 

papers given below: 

1. Javed Ahmed, and M. Noman Jafri, “Improved Phase Correlation Matching,” 

Accepted in ICISP-08: 3rd International Conference on Image and Signal 

Processing, to be held in Normandy, France, July 1-3, 2008. 

2. Mikel Rodriguiz, Javed Ahmed, and Mubarak Shah “Action MACH: A 

Spatiotemporal Maximum Average Correlation Height Filter for Action 

Recognition,” Accepted in CVPR-08: IEEE International Conference on 

Computer Vision and Pattern Recognition, to be held in Alaska, USA, in June 

23-28, 2008. 

3. Javed Ahmed, M. N. Jafri, Mubarak Shah, and Muhammad Akbar, “Real-Time 

Edge-Enhanced Dynamic Correlation and Predictive Open-Loop Car Following 



 133

Control for Robust Tracking,” Machine Vision and Applications Journal, Vol. 

19, No. 1, pp. 1–25, January 2008. 

4. Javed Ahmed and M. N. Jafri, “Best-Match Rectangle Adjustment Algorithm 

for Persistent and Precise Correlation Tracking,” Proc. IEEE International 

Conference on Machine Vision, Islamabad, Pakistan, on 28-29 December, 2007. 

5. Javed Ahmed, Mubarak Shah, Andrew Miller, Don Harper, and M. N. Jafri, “A 

Vision Based System for a UGV to Handle a Road Intersection,” Proc. AAAI-

07: 22nd Conference on Artificial Intelligence, Vancouver, Canada, July 22-26, 

2007. 

6. Javed Ahmed, M. N. Jafri, and Jamil Ahmad, “Target Tracking in an Image 

Sequence Using Wavelet Features and a Neural Network,” Proc. IEEE Region 

10: Tencon’05 conference, Melbourne, Australia, 21-24 November 2005. 

7. Javed Ahmed, M. N. Jafri, Jamil Ahmad, and Muhammed I. Khan, “Design and 

Implementation of a Neural Network for Real-Time Object Tracking,” Proc. 

International Conference on Machine Vision and Pattern Recognition, Fourth 

World Enformatika Conference (WEC’05), Istanbul, Turkey, 24-26 June 2005. 

Besides, his following paper is under review process: 

J. Ahmed, and M. N. Jafri, “Decaying Extension Based Phase Correlation for Robust 

Object Localization in Full Search Space,” Submitted in EUSIPCO-08: 16th European 

Signal Processing Conference, to be held in Switzerland on August 25-29, 2008. 

He served as a Technical Program Co-chair, papers reviewer and a member 

Organizing Committee of the ICMV-07: IEEE International Conference on Machine 

Vision organized by MCS (NUST) and University of Central Florida in Islamabad 

(Pakistan) on 28-29 December 2007. Besides, he has reviewed research papers of 

various international conferences and journals (including Machine Vision and 

Applications journal). 

He is a graduate member of IEEE and a student member of SPIE. His current areas of 

research are computer vision, signal processing, control systems, and soft computing 

(i.e. artificial neural networks, fuzzy logic, and genetic algorithms). 


