
LOSSLESS AND NEARLY LOSSLESS

DIGITAL VIDEO CODING

submitted by

Guruge Charith Kanchana Abhayaratne

for the degree of

Doctor of Philosophy

of the

University of Bath

2002

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that its copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Guruge Charith Kanchana Abhayaratne



ABSTRACT

In lossless coding, compresssion and decompression of source data result in the exact

recovery of the individual elements of the original source data. Lossless image / video

coding is necessary in applications where no loss of pixel values is tolerable. Examples

are medical imaging, remote sensing, in image/video archives and studio applications

where tandem- and trans-coding are used in editing, which can lead to accumulating

errors. Nearly-lossless coding is used in applications where a small error, defined as a

maximum error or as an rms error, is tolerable. In lossless embedded coding, a losslessly

coded bit stream can be decoded at any bit rate lower than the lossless bit rate. In this

thesis, research on embedded lossless video coding based on a motion compensated

framework, similar to that of MPEG-2, is presented. Transforms that map integers

into integers and embedded source coding, which are the main ingredients of lossless

embedded coding are discussed in the contexts of intra frames, which are similar to still

images and non-intra frames, which contain motion compensated prediction errors. The

lifting concept, which forms the integer wavelet transforms, and the intrinsic properties

of the block orthogonal transforms, such as the Discrete Cosine (DCT), the Discrete

Sine (DST) and the Walsh-Hadamard (WHT) are used to design the integer versions of

the N-point DCT, DST and WHT, where N is any integer power of two. Furthermore,

the design and the use of transforms with spatially adaptive numbers of vanishing /

preserving moments, which are suitable for non-intra frames, and non-linear transforms

are presented. The current and prospective embedded coding scannning methods are

analysed and an adaptive quad tree splitting (AQS) based scanner is presented. The

performance of the above transforms for both types of frames is analysed using the

zeroth order entropy values and the coded bit rates, achieved by Embedded Lossless

Image Coding (ELIC), which is based on AQS and efficient context modelling. In ad-

dition to the above experiments, the use of a transform in coding highly decorrelated

non-intra frames is also investigated. Finally, the components discussed above are in-

tregated together to analyse the importance of motion compensation in lossless video

coding and the robustness of embedded decoding at quasi-lossless decoding in an assy-

metric codec, where a “Group Of Pictures” (GOP) structure based motion prediction

is involved.

i



ACKNOWLEDGEMENTS

I wish to thank Professor Don Monro for his supervision of this work, Tandberg Televi-

sion Ltd. for their sponsorship for the first three years, Dr. Adrian Evans for providing

me with an external project to fund for the fourth year, Ms. Rosemary Ainsworth

and Miss Dorcas Mumford for their excellent services as the Signal and Image process-

ing Group (SIPG) secreteries, Mrs. Heather Kellaway for employing me at the Bath

University Computing Services (BUCS) help desk and collegues at the SIPG and the

BUCS help desk.

ii



Contents

List of Figures xii

List of Tables xvi

Statement of Originality xix

1 Introduction 1

1.1 Digital Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Digital video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Digital video coding . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.1 Single-layer MPEG-2 Codec . . . . . . . . . . . . . . . 3

1.2 Image Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Image coding model . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 The Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . . 6

1.2.3 The wavelet transforms . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Quantisation and embedded coding . . . . . . . . . . . . . . . . . 10

1.2.5 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iii



1.2.6 Image quality measurement . . . . . . . . . . . . . . . . . . . . . 12

1.3 Lossless and Nearly Lossless Coding . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Lossless image and video coding . . . . . . . . . . . . . . . . . . 14

1.3.2 Visually lossless coding . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2.1 Visual quality metrics . . . . . . . . . . . . . . . . . . . 16

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Literature Review 17

2.1 Lossless Image Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Prediction based methods . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Lossy coding followed by residual coding . . . . . . . . . . . . . . 21

2.1.3 Integer transforms based methods . . . . . . . . . . . . . . . . . 21

2.1.3.1 Context modelling . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Near-Lossless Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Lossless Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Test images and video sequences set . . . . . . . . . . . . . . . . 27

3 Integer Transforms 28

3.1 The Integer Wavelet Transforms (IWT) . . . . . . . . . . . . . . . . . . 28

iv



3.1.1 The lifting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Integer wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Tests performed with integer wavelets . . . . . . . . . . . . . . . 31

3.1.3.1 The treatment at signal boundaries . . . . . . . . . . . 31

3.1.3.2 The zero-order entropy values . . . . . . . . . . . . . . 33

3.2 The Integer Walsh Hadamard Transform (IWHT) . . . . . . . . . . . . . 34

3.2.1 The Walsh Hadamard transform . . . . . . . . . . . . . . . . . . 34

3.2.2 The IWHT by lifting . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2.1 Integer implementation of WH2 . . . . . . . . . . . . . 37

3.2.2.2 Implementing the scaling matrix (K) . . . . . . . . . . 38

3.2.2.3 Another approach for integer WH2 . . . . . . . . . . . 38

3.2.2.4 Output in sequency order . . . . . . . . . . . . . . . . . 39

3.2.2.5 Block diagram for integer Walsh Hadamard transform . 40

3.2.3 The zero-order entropy values . . . . . . . . . . . . . . . . . . . . 41

3.3 The Integer Discrete Cosine Transform (IDCT) . . . . . . . . . . . . . . 43

3.3.1 The IDCT using recursive methods and lifting . . . . . . . . . . 44

3.3.1.1 Incorporating the normalising factors . . . . . . . . . . 47

3.3.1.2 Lossless realisation of the even-indexed coefficients . . . 48

3.3.1.3 Lossless realisation of the odd-indexed coefficients . . . 48

3.3.1.4 Permutation (P1N & P2N) and Sign matrices (SN ) . . 53

v



3.3.1.5 A Block diagram for the IDCT . . . . . . . . . . . . . . 56

3.3.2 The zero-order entropy values . . . . . . . . . . . . . . . . . . . . 58

3.4 The Integer Discrete Sine Transform (IDST) . . . . . . . . . . . . . . . . 59

3.4.1 Derivation of the IDST . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.1.1 The IDST using recursive methods and lifting . . . . . 60

3.4.1.2 Incorporating the normalising factors . . . . . . . . . . 61

3.4.1.3 The relationship between the rows of DCT and DST

matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1.4 The block diagram for the IDST . . . . . . . . . . . . . 64

3.4.2 The zero-order entropy values . . . . . . . . . . . . . . . . . . . . 65

3.5 Integer Non-Linear Transforms (INLT) . . . . . . . . . . . . . . . . . . . 66

3.5.1 INLT Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1.1 INLT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1.2 INLT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1.3 INLT3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 The zero-order entropy values . . . . . . . . . . . . . . . . . . . . 68

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 The comparison of the transform performances . . . . . . . . . . 71

4 Embedded Quantiser Design 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



4.2 Embedded Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Weighted Bit Planes (WBP) . . . . . . . . . . . . . . . . . . . . 74

4.2.1.1 For the IWT . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1.2 For the IWHT . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1.3 For the other transforms . . . . . . . . . . . . . . . . . 77

4.2.2 Embedded coding steps . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Significance Switching Mask (SSM) Coding . . . . . . . . . . . . . . . . 78

4.3.1 Scanning schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1.1 Intra sub band techniques . . . . . . . . . . . . . . . . . 81

4.3.1.2 Inter sub band techniques . . . . . . . . . . . . . . . . . 82

4.3.1.3 The whole SSM based techniques . . . . . . . . . . . . 83

4.3.1.4 Scanning schemes : Analysis . . . . . . . . . . . . . . . 84

4.3.1.5 Scanning schemes : Results . . . . . . . . . . . . . . . . 87

4.3.2 The Adaptive Quadtree Splitting (AQS) . . . . . . . . . . . . . . 88

4.4 Coding The Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Data Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Lossless Coding of Intra Frames 95

5.1 The ELIC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Context modelling for entropy coding . . . . . . . . . . . . . . . 96

vii



5.1.2 ELIC results with the IWT . . . . . . . . . . . . . . . . . . . . . 101

5.1.3 ELIC results with the other transforms . . . . . . . . . . . . . . 102

5.2 Near-Lossless Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 Pre-quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.2 Incorporating near-lossless quantisation into lifting steps . . . . . 105

5.2.2.1 1-D online (in-transform) near-lossless quantised lifting 105

5.2.2.2 2-D online (in-transform) near-lossless quantised lifting 106

5.2.3 Near-lossless results . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Quasi Lossless Compression Performance . . . . . . . . . . . . . . . . . . 111

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Lossless Coding of Non-intra Frames 114

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Characteristics of Non-intra Frames . . . . . . . . . . . . . . . . . . . . 115

6.3 Integer Wavelet Transforms on Non-intra Frames . . . . . . . . . . . . . 118

6.3.1 Sub band entropy and energy distributions . . . . . . . . . . . . 118

6.3.2 The best wavelet basis . . . . . . . . . . . . . . . . . . . . . . . 121

6.4 Spatially Adaptive Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 An optimal prediction approach for adaptive lifting (AL-1) . . . 123

6.4.1.1 Choosing the Predictor (P) . . . . . . . . . . . . . . . . 123

6.4.1.2 Choosing the Updator (U) . . . . . . . . . . . . . . . . 126

viii



6.4.2 An interpolation based approach for adaptive lifting (AL-2) . . . 130

6.4.2.1 Extension to cubic interpolation . . . . . . . . . . . . . 132

6.4.2.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.3 The zero-order entropy values . . . . . . . . . . . . . . . . . . . . 133

6.5 The Other Integer Transforms on Residuals . . . . . . . . . . . . . . . . 135

6.5.1 Transforms on residuals : Summary . . . . . . . . . . . . . . . . 137

6.6 ELIC on Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.1 Lossless results for the sub band based transforms . . . . . . . . 138

6.6.2 Lossless results for the integer block transforms . . . . . . . . . . 139

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Embedded Lossless Video Performance 143

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 The Embedded Lossless Video Codec (ELViC) . . . . . . . . . . . . . . 144

7.3 Lossless Coding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Quasi-Lossless Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.1 The embedded coding performances (Case 1) . . . . . . . . . . . 148

7.4.2 The embedded decoding performances (Case 2) . . . . . . . . . . 148

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Conclusions 152

ix



8.1 Integer Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Embedded Quantiser Design . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Lossless Coding of Intra Frames . . . . . . . . . . . . . . . . . . . . . . . 156

8.4 Lossless coding of Non-Intra Frames . . . . . . . . . . . . . . . . . . . . 157

8.5 Embedded Lossless Video Coding . . . . . . . . . . . . . . . . . . . . . . 159

8.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

APPENDICES

A Lifting Steps 161

B Block Transform Matrices 164

B.1 Increasing sequency / frequency order . . . . . . . . . . . . . . . . . . . 164

B.1.1 The Walsh Hadamard Transform (WHT) . . . . . . . . . . . . . 164

B.1.2 The Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . . 165

B.1.3 The Discrete Sine Transform (DST) . . . . . . . . . . . . . . . . 166

B.2 The Rearranged Transform Matrices . . . . . . . . . . . . . . . . . . . . 167

B.2.1 Walsh Hadamard Transform (WHT) . . . . . . . . . . . . . . . . 167

B.2.2 Discrete Cosine Transform (DCT) . . . . . . . . . . . . . . . . . 168

B.2.3 Discrete Sine Transform (DST) . . . . . . . . . . . . . . . . . . . 169

C Scanning Schemes Results 170

x



D Author’s Publications 174

References 175

xi



List of Figures

1.1 An example for a group of pictures (gop). . . . . . . . . . . . . . . . . . 4

1.2 The basic image compression/decompression model. . . . . . . . . . . . 5

1.3 The filter bank approach for DWT. . . . . . . . . . . . . . . . . . . . . . 8

1.4 The lifting approach for DWT. . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 The wavelet transform operation. . . . . . . . . . . . . . . . . . . . . . . 9

2.1 JPEG-Lossless mode prediction template. . . . . . . . . . . . . . . . . . 18

2.2 The GAP prediction template. . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 HINT pixel classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Lifting Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Pseudo code for forward WHN. . . . . . . . . . . . . . . . . . . . . 37

3.3 MATLAB code for the permutation index. . . . . . . . . . . . . . . . . . 39

3.4 Block diagram for integer WHN. . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Signal flow diagram for WH8. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Blocks to wavelet tree rearrangement for N=4 on 8×8 image . . . . . . 41

xii



3.7 The pseudo code for blocks to wavelet tree rearrangement. . . . . . . . . 42

3.8 The pseudo code for computing the basic angle φn
N . . . . . . . . . . . . . 53

3.9 The pseudo code for index computation for row permutation of Onk
N . . . 54

3.10 The pseudo code for index computation for column permutation of Onk
N . 55

3.11 The sign compensation for odd indexed rows in N-point DCT . . . . . . 55

3.12 Block diagram for integer IDCTN. . . . . . . . . . . . . . . . . . . . . . 56

3.13 The pseudo code for integer DCT operations in IDCTN. . . . . . . . . 57

3.14 Signal flow diagram for IDCT8. . . . . . . . . . . . . . . . . . . . . . . 57

3.15 Block diagram for integer IDSTN. . . . . . . . . . . . . . . . . . . . . . 64

3.16 The Pseudo code for integer IDSTN. . . . . . . . . . . . . . . . . . . . 64

3.17 Signal flow diagram for IDST8. . . . . . . . . . . . . . . . . . . . . . . . 65

3.18 Pixel labelling for quincunx splitting . . . . . . . . . . . . . . . . . . . . 66

3.19 The prediction masks for x01, x10 and x11 for the INLT1. . . . . . . . . . 67

3.20 The update mask for x00 for INLT2. . . . . . . . . . . . . . . . . . . . . 68

3.21 The prediction and update masks for x11, x10, x01 and x00 for INLT3. . . 68

4.1 The net effect of scaling on sub bands. . . . . . . . . . . . . . . . . . . . 75

4.2 The normalising factors for higher scales. . . . . . . . . . . . . . . . . . 75

4.3 The weighted bit planes by bit plane sliding. . . . . . . . . . . . . . . . 76

4.4 The scaling factors for 2-D IWHT4 block. . . . . . . . . . . . . . . . . . 77

4.5 The comparison of embedded and non embedded coding. . . . . . . . . . 79

xiii



4.6 The comparison of embedded and non embedded coding (log scale rep-

resentation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 The final bit space for embedded coding. . . . . . . . . . . . . . . . . . . 80

4.8 1-D intra sub band scanning techniques. . . . . . . . . . . . . . . . . . . 82

4.9 Quadtree scanning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 Wavelet tree organisation. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 WTHVZ scan for a wavelet tree. . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Comparison of 1-D scans with a ‘stop’ symbol and without. . . . . . . . 85

4.13 The first quadtree scanning (QT1) . . . . . . . . . . . . . . . . . . . . . 90

4.14 The second quadtree scanning (QT2) . . . . . . . . . . . . . . . . . . . . 91

5.1 ELIC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 ELIC neighbourhood template for coding context. . . . . . . . . . . . . 97

5.3 Near-lossless performance for Gold Hill. . . . . . . . . . . . . . . . . . . 109

5.4 Near-lossless performance for Barbara1. . . . . . . . . . . . . . . . . . . 110

5.5 Average near-lossless performance for the image set. . . . . . . . . . . . 110

5.6 Quasi lossless performance for Gold Hill. . . . . . . . . . . . . . . . . . . 111

5.7 Quasi lossless performance for Barbara1. . . . . . . . . . . . . . . . . . . 111

6.1 Magnitude histograms of Intra and Non-intra type frames. . . . . . . . . 115

6.2 Auto correlation coefficients of Intra and Non-intra type frames. . . . . 116

6.3 Magnitude spectrum of Intra and Non-intra type frames. . . . . . . . . . 117

xiv



6.4 Normalised magnitudes of a.c. components of the DCT coefficients for

Intra and Non-intra type frames. . . . . . . . . . . . . . . . . . . . . . . 117

6.5 The entropy of each sub band as a % of the entropy of the frame for

Mobile residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 The energy of each sub band as a % of the energy of the frame for Mobile

residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.7 Sub band entropy and energy average distributions as a % of total en-

tropy and energy using different wavelets . . . . . . . . . . . . . . . . . 120

6.8 Total entropy (in bpp) using different wavelets for Mobile residuals . . . 121

6.9 Total entropy (in bpp) using different wavelets for Kiel residuals . . . . 121

6.10 Resulting auto-correlation values for different interpolators . . . . . . . 131

6.11 Resulting auto-correlation difference for different interpolators. . . . . . 132

6.12 Two point interpretation of the cubic interpolation . . . . . . . . . . . . 132

6.13 AL-2 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.14 Entropy comparison in bpp for non-intra frames using AL-2. . . . . . . . 134

6.15 Lossless bit rate comparison in bpp for non-intra frames. . . . . . . . . . 139

7.1 ELViC Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Lossless bit rate comparison in bpp for lossless video codecs. . . . . . . . 146

7.3 Rate-Distortion plots for Mobile coding and decoding to the same bit

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Embedded decoding R-D plots . . . . . . . . . . . . . . . . . . . . . . . 149

7.5 The rms error increment due to embedded decoding . . . . . . . . . . . 150

xv



List of Tables

3.1 Weighted zero-order entropy values in bpp for IWT. . . . . . . . . . . . 33

3.2 Weighted zero-order entropy values in bpp for IWHT . . . . . . . . . . . 42

3.3 The normalisation constants for DCT-II . . . . . . . . . . . . . . . . . . 47

3.4 Weighted zero-order entropy values in bpp for IDCT . . . . . . . . . . . 58

3.5 Weighted zero-order entropy values in bpp for IDST . . . . . . . . . . . 65

3.6 Weighted zero-order entropy values in bpp for INLT-1 . . . . . . . . . . 69

3.7 Weighted zero-order entropy values in bpp for INLT-2 . . . . . . . . . . 69

3.8 Weighted zero-order entropy values in bpp for INLT-3 . . . . . . . . . . 69

3.9 Summary of average weighted zero-order entropy values in bpp for INLTs 69

3.10 Summary of weighted zero-order entropy values (bpp). . . . . . . . . . . 71

4.1 Average zero-order entropy values (bpp) for the test image set . . . . . 88

4.2 Average zero-order entropy values (bpp) for all scans the image set . . . 92

5.1 The probability values of Yi being N type for different types of Ci . . . 98

5.2 Context Selection for data refinement bits . . . . . . . . . . . . . . . . . 100

xvi



5.3 Context modelling comparisons . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Lossless performance (in bpp) . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Lossless performance (in bpp) for IWHTN using ELIC . . . . . . . . . 102

5.6 Lossless performance (in bpp) for IDCTN using ELIC . . . . . . . . . . 103

5.7 Lossless performance (in bpp) for IDSTN using ELIC . . . . . . . . . . 103

5.8 Lossless performance (in bpp) for ELIC using integer transforms . . . . 104

5.9 Near-lossless performance (in bpp) for δ=1. . . . . . . . . . . . . . . . . 108

5.10 Near-lossless performance (in bpp) for δ=3. . . . . . . . . . . . . . . . . 108

5.11 Near-lossless performance (in bpp) for δ=5. . . . . . . . . . . . . . . . . 108

5.12 Summarised Near-lossless performance (in bpp) for the image set. . . . . 109

6.1 Average entropy (in bpp) using different IWT . . . . . . . . . . . . . . . 122

6.2 The Predictor weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 The Predictor weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Average entropy (in bpp) comparison for adaptive lifting . . . . . . . . . 134

6.5 Average entropy (in bpp) using IWHTN . . . . . . . . . . . . . . . . . . 135

6.6 Average entropy (in bpp) using IDCTN . . . . . . . . . . . . . . . . . . 136

6.7 Average entropy (in bpp) using IDSTN . . . . . . . . . . . . . . . . . . 136

6.8 Average entropy (in bpp) using INLT-3 . . . . . . . . . . . . . . . . . . 136

6.9 Average entropy (in bpp) comparison for integer transforms . . . . . . . 137

6.10 Average lossless bit rates (in bpp) using integer wavelet transforms . . . 138

xvii



6.11 Average lossless bit rates (in bpp) using IWHTN . . . . . . . . . . . . . 140

6.12 Average lossless bit rates (in bpp) using IDCTN . . . . . . . . . . . . . 140

6.13 Average lossless bit rates (in bpp) using IDSTN . . . . . . . . . . . . . . 140

7.1 Lossless coding performance (in bpp) of the lossless video codecs . . . . 145

7.2 Quasi-lossless coding performances of ELViC . . . . . . . . . . . . . . . 147

C.1 zero-order entropy values (bpp) for different scans on each WBP for Gold

Hill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.2 zero-order entropy values (bpp) for different scans on each WBP for

Barbara1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.3 zero-order entropy values (bpp) for different scans on each WBP for

Barbara2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.4 zero-order entropy values (bpp) for different scans on each WBP for Boats172

C.5 zero-order entropy values (bpp) for different scans on each WBP for

Black board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.6 Average zero-order entropy values (bpp) for different scans on each WBP

for the image set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xviii



Statement of Originality

The author considers the following elements of this work form an original contribution

to embedded lossless and nearly lossless image and video compression literature.

• Chapter 2

– Literature review.

• Chapter 3

– The boundary treatment for lifting.

– Design and implementation of the N-point Integer Walsh Hadamard Trans-

form (IWHT).

– Design and implementation of the N-point Integer Discrete Cosine Trans-

form (IDCT).

– Design and implementation of the N-point Integer Discrete Sine Transform

(IDST).

– Relationship betweem the IDCTN -II and the IDSTN -II.

– Design and implementation of non-linear integer tarnsform with median pre-

diction and updation (INLT3) based on quincunx splitting.

– Complete tree wavelet packet transform analogy in block transforms.

– Anlaysis of the performance of the above transforms with various N values

and scales for lossless coding of intra frames.

• Chapter 4

– Analysis of the cost of embedding.

– Weighted bit plane (WBP) sliding and depth limiting to obtain effective bit

space.

– Analysis of scanning schemes for the significance switching mask coding.

xix



– Adaptive quad tree splitting (AQS) of the significance switching mask cod-

ing.

• Chapter 5

– Gradient oriented prediction and maximum likelihood based context model

for switches.

– Use of bits from the previous two bit planes for the context model for data

refining.

– The ELIC quantiser.

– Analysis of the lossless coding performance of the above transforms with

ELIC for intra frames.

– Incorporating near-lossless quantisation into lifting steps for near-lossless

image coding.

• Chapter 6

– Analysis of the wavelet and the other transforms on residuals

– Discovery that a single wavelet scale is sufficient for residual coding.

– Spatially adaptive lifting for non-intra frames - Optimal prediction approach.

– Spatially adaptive lifting for non-intra frames - Adaptive interpolation ap-

proach.

– Analysis of the performance of integer transforms with various N values and

scales for non-intra farmes.

– Discovery that at lossless bit rates, encoding residuals without using a trans-

form outperforms encoding with any other integer tansform due to the high

decorrelation resulted from motion compensated prediction.

• Chapter 7

– Comparison of Motion-JPEG-LS, Motion-ELIC and ELViC performance.

– Analysis of the effect of the motion compensation process on quasi-lossless

decoding in a frame-wise embedded coding framework.

xx



Chapter 1

Introduction

Digital video sequences in uncompressed formats require excessive storage capacity

and huge transmission bandwidth. Therefore compression of digital video sequences is

necessary for efficient storage and transmission. However, coding at high compression

factors causes loss of visual quality and information of the original video sequences.

There are many applications in which no loss of either visual or pixel value information

is tolerable. Examples are studio quality digital video archives, inter studio video

transmission and coding of medical and astronomical sequences, in which exact pixel

recovery for all frames is required. Further, lossless video coding is vital in studio

applications in order to prevent accumulation of the quantisation effects from repetitive

encoding and decoding processes performed in programme production.

This thesis investigates lossless and nearly lossless digital video coding techniques. This

chapter introduces four topics, namely video coding, image coding, lossless coding and

nearly lossless coding, of relevance to this thesis.

1.1 Digital Video Coding

1.1.1 Digital video

A digital video sequence is a collection of pictures, also called frames, spaced at fixed

time intervals. In a colour video sequence, each frame consists of three components,

which can be either red-green-blue (RGB primaries) or luminance and two chrominance
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(YCbCr format) components. The luminance (Y) component is a monochrome image

containing the structural information of the frame. The two chrominance (Cb and Cr)

components contain colour hue and saturation information of the frame. RGB format is

used in displaying, whereas YCbCr format is the colour space recommended by CCIR-

601 for coding and transmission [1]. RGB colour space can be converted into YCbCr

format as in equation 1.1.







Y

Cb

Cr







=
(

A
)







R

G

B







+







16

128

128







where, A =







0.257 0.504 0.098

−0.148 −0.291 0.439

0.439 −0.368 −0.071







(1.1)

Three types of chrominance sampling formats relative to the luminance are used in

video coding. These are labelled as 4:4:4, 4:2:2 and 4:2:0. In 4:4:4 format, the same

sampling grid for all three components is used. In 4:2:2 format, the chrominance is

sampled 2:1 horizontally but not vertically. The 4:2:0 format has the chrominance

sampled 2:1 both horizontally and vertically.

Each component of a frame is a two-dimensional (2-D) signal, which can be represented

by a matrix. The elements of the frame matrix are called as pixels. Therefore, a video

sequence can be considered as a three-dimensional (3-D) signal for each spectral (colour)

component.

Each pixel of each spectral component is stored in 8 bit units. The basic bit rate

parameter is defined as bits per pixel (bpp) for each frame or as bits per second (bps),

by considering the third dimension, time length, of the sequence. The bps is the more

common metric for video.

bpp =
Total Bits

Total P ixels
(1.2)

bps = bpp × (Total P ixels)× (Frames per second) (1.3)

Total P ixels = Frame Height× Frame Width×No. of Frames (1.4)
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1.1.2 Digital video coding

Digital video coding or compression is concerned with reducing the number of data

storing units (bps) used to represent given information content in a video sequence.

In addition to inter pixel spatial redundancy within a frame, video sequences contain

high temporal (inter frame) redundancy, which is usually exploited in video coding

algorithms by coding some frames using motion compensated prediction with reference

to previously coded frames.

There are a few video coding standards, each catering for different requirements, in

use at the moment [1, 2]. Examples are MPEG-1, MPEG-2, MPEG-4, H.261, H.262,

H.263, MPEG-7 and MPEG-21. MPEG-1 has been optimised for non-interlaced video

at bit rates of 1.2 to 1.5 Mbit/s, whereas MPEG-2 has been targeted for higher bit

rate, for example 10 Mbit/s, applications such as DVD (Digital Versatile Disk) storage

and digital television broadcasts. MPEG-4 was started with the emphasis on very low

bit rate, for example less than 64 kbit/s, applications and was developed into an object

based video codec in order to accommodate other multimedia requirements such as

coding of multi view point scenes. MPEG-7 and MPEG-21, the standards under devel-

opment at the moment, are being generated on previous standards, MPEG-1/-2 and -4,

in order to address other multimedia requirements. MPEG-7 is mainly concentrated

on describing the multimedia content that supports some degree of interpretation of

the information’s meaning, which can be passed onto, or accessed by, a device or a

computer code [3], while MPEG-21 is concerned with defining a multimedia framework

to enable transparent and augmented use of multimedia resources across a wide range

of networks and devices used by different communities [4]. The ITU-T standard H.261

is on digital video coding for digital transmission over ISDN, where the bit rates are in

the range of 64 to 1920 kbit/s. ITU-T also adopted MPEG-2 under the generic name

H.262 for telecommunication applications, while H.263 codec is concerned with very

low bit rates, such as lower than 64 kbt/s, video coding for mobile network applications.

Single layer MPEG-2 was used as the framework for the research presented in this

thesis. Therefore, the elements of video coding are discussed below with reference to

the MPEG-2 video coding layer.

1.1.2.1 Single-layer MPEG-2 Codec

In MPEG-2 video codec [2], each video sequence is divided into groups of pictures

(gop). Each gop consists of frames of three different types, namely I (Intra frames), P
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(Predictive coded frames) and B (Bidirectionally predictive-coded frames) types (Fig-

ure 1.1). A gop is defined by two parameters, namely N and M. N is the gop length,

which is also the distance between two I frames. M is the distance between the P frames

or I frame and the following P frame within a gop. I type frames are considered as still

images and coded without any reference to other frames. P and B type frames, col-

lectively called non-intra frames, are coded with reference to previously coded frames,

hence exploiting the temporal redundancy. A P frame is predicted from the nearest

preceding I or P frame using forward prediction, whereas a B frame is predicted from

the nearest I and P frames either preceding, following or both using either forward pre-

diction, backward prediction or interpolating both forward and backward prediction.

Hence, these prediction errors are coded in non-intra frames.

I IB B B B BPP B

Figure 1.1: An example for a group of pictures (gop).

In MPEG-1/-2, each frame is divided into macro blocks, which are considered as the

basic building blocks of an MPEG frame. A macro block consists of a 16 × 16 size

luminance block together with chrominance blocks, the size of which is determined

according to the chrominance format. The macro blocks in intra frames are divided

into 8 × 8 sub blocks and each sub block is coded as in JPEG (Joint Picture Expert

Group) [5] image coding. These coding models contain the Discrete Cosine Transform

(DCT), the Human Visual System (HVS) based quantisation tables and entropy coding

based on pre-defined variable length codes.

The coding strategy for the macro blocks in non-intra frames is decided by considering

the amount of real motion, thus the difference between the block to be coded and the

reference blocks within the search window in reference frame(s). These predictions are

based on the motion compensation, thereby usually described using a vertical motion

vector and a horizontal motion vector for each macro block. These vectors correspond

to the displacements that give the best match between the macro block to be coded

and the corresponding displaced region in the reference frames. The commonly used

criterion for finding the best match are the minimisation of the mean absolute distortion
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(MAD) or the mean square error (MSE). The motion vectors are transmitted to the

decoder as part of the bit stream. The macro blocks in a P frame are categorised as

either I-type, where no real motion is predicted, or P-type, where forward motion is

predicted. Likewise, the macro blocks in a B frame are categorised into any of three

types, which include the above mentioned two types and a B-type, where forward-

backward motion is predicted from the preceding and following frames. In both P

and B frames, the macro blocks classified as I-type are coded as those in intra frames.

For the macro blocks classified as P-type and B-type, the prediction residuals in each

block are coded in a similar manner to I-type coding using quantisation parameters

and variable length codes different from those used in I-type blocks.

1.2 Image Coding

Digital image coding or compression is concerned with reducing the number of data

storing units (bpp) used to represent a given information content in a digital image.

Image coding is possible because images in uncompressed formats contain high data

redundancy. In digital image compression processes, three basic data redundancies,

namely inter pixel redundancy, psychovisual redundancy and coding redundancy can

be identified and are successfully exploited.

1.2.1 Image coding model

The basic image compression model consists of three stages (Figure 1.2). They are

listed below.

1. Transform/Inverse Transform.

2. Quantisation/Dequantisation.

3. Entropy Coding/Entropy Decoding.

Forward
Transform

Inverse
Transform

De-
Quantisation

Entropy
decoding

Quantisation Entropy
coding

Original
Image

Decoded
Image C

om
pr

es
se

d 
B

it
st

re
am

Figure 1.2: The basic image compression/decompression model.
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In the transform stage, the main goal is to decorrelate the original image data, so that

the original signal (image) energy is redistributed among only a small set of transform

coefficients. This decorrelation eliminates the inter-pixel redundancy, thereby, provid-

ing a representation that can be coded more efficiently. The zeroth order entropy of

the transformed coefficients is much lower than that of the original image. The trans-

forms used in coding are reversible, so that the original image can be recovered by

the inverse transform, provided no quantisation has been performed on the forward

transform coefficients. So theoretically, the forward/inverse transform dual is a lossless

process.

The DCT and the Discrete Wavelet Transforms (DWT) are the most commonly used

transforms in current image codecs. With each transform having its own merits and

demerits, the wavelet transforms are more widely used in image coding for their superior

performance over the DCT. The criteria are discussed in sections 1.2.2 and 1.2.3.

The second stage, quantisation / dequantisation is the process that leads to the lossy

compression. In the quantisation section, psychovisual redundancy in the image is

reduced by throwing away unwanted bits from the transform coefficients. This leads

to high compression ratios and distortion in image fidelity. The third stage, entropy

coding, determines the number of bits required to represent a particular image at a given

quantisation level. The combined process of entropy coding and entropy decoding is

lossless. It maps the quantised transform coefficients into a bit stream using variable

length codes, thus exploiting the coding redundancy.

1.2.2 The Discrete Cosine Transform (DCT)

An N-point DCT consists of N real basis vectors with cosine functions. There are four

types of DCT, namely DCT-I, DCT-II, DCT-III and DCT-IV, derived according to

the varying boundary conditions [6]. The DCT-II form, originally presented in [7], is

commonly known as the DCT in signal processing research and widely used in image

and video coding.

The DCT-II for a one dimensional (1-D) data sequence, x, of length N and its inverse

are defined as in equations 1.5 and 1.6 respectively.

X(k) = εk

√

2

N

N−1∑

n=0

x(n) cos( (2n + 1)
πk

2N
) (1.5)
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x(k) = εk

√

2

N

N−1∑

n=0

X(n) cos( (2n + 1)
πk

2N
) (1.6)

for k = 0, 1, . . . , N−1

where, εk =







1√
2

if k = 0 ,

1 else.

The 2-D DCT is performed by applying the 1-D DCT on rows and columns separately.

The DCT is an orthogonal transform. The DCT possesses good variance distribution

which leads to efficient energy compaction in the transform domain. When the input

data is assumed to be a first order Markov process, the energy compaction efficiency of

the DCT approaches that of the Karhunen-Loève Transform (KLT), of which the basis

functions are input dependent [8, 9].

The DCT is performed on smaller blocks of the image, normally 8×8 sized blocks

because the basis functions of the DCT are not spatially localised. As quantisation

errors can be spread throughout the block, this can result in visible errors at image

edges and at the block boundaries. Consequently, the DCT based coded images are

characterised by blocky artefacts.

1.2.3 The wavelet transforms

The wavelets are localised waves. Once the “mother wavelet” Ψ(t) is defined, the

mother wavelet can be scaled and translated to obtain a family of other wavelets,

which can be defined as

Ψ(a,b)(t) =
1√
a

Ψ

(
t− a

b

)

, (1.7)

where a > 1 is the change of scale and b ∈ R is the translation in time [6, 10]. There-

fore, in a wavelet transform, any finite energy signal can be represented by a linear

combination of wavelets Ψ(a,b)(t). Then, the wavelet coefficients f(a,b) for the input

signal f(t) are defined as in equation 1.8.

f(a,b) =

∫ ∞

−∞
Ψ(a,b)(t) f(t) dt (1.8)

The above defined is the Continuous Wavelet Transform (CWT). The Discrete Wavelet

Transform (DWT) is used in image coding applications. In DWT, the mother wavelet

is translated and dilated by discrete values, in most cases by a power of 2 (dyadic).
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Thus equation 1.7 becomes

Ψ(a,b)(t) = 2a/2 Ψ(2at− b). (1.9)

In current literature, there are two well known methods, namely filter banks and lifting,

for implementing the DWT. The more widely used method is the filter bank approach.

The filter bank approach consists of two filter banks, one each for the analysis (forward

transform) and the synthesis (inverse transform) (Figure 1.3). In the analysis filter

bank, the input signal is decomposed into two channels using a low pass filter (H0)

that corresponds to averaging the input signal with a scaling function and a high pass

filter (H1) that corresponds to detailing the input signal with the wavelet Ψ(a,b)(t),

both followed by a decimator (to down sample the filtered data by a factor of 2) in each

channel. In the synthesis filter bank, the transformed coefficients are interpolated (up

sampled by a factor 2) and then convoluted with the filters F0 and F1, the coefficients

of which are obtained from H1 and H0 respectively in order to eliminate aliasing.

       X

2

2 2

2

 +

H0

H1

F0

F1

Analysis Bank Synthesis Bank

X
�

Figure 1.3: The filter bank approach for DWT.

The second approach is using the lifting scheme (Figure 1.4). In the forward transform,

the input signal is decomposed into two subsets of odd (d) and even (s) samples.

This process is called the lazy wavelet transform. Then the primal (P ) and dual

(U) lifting functions are operated repeatedly on the two subsets resulted from the

lazy wavelet transform, in order to obtain the wavelet transform coefficients with the

required number of vanishing moments [11]. The (s) and (d) after lifting correspond

to the low and high passed signals respectively. More about lifting scheme is discussed

in section 3.1.

X

Xo

Xe

 P  U

HP

LP  

d

s

Figure 1.4: The lifting approach for DWT.
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The high pass channel in the forward transform decomposes the input signal into details,

where the signal behaviour is more localised in the spatial domain and wide band in

the frequency domain. On the other hand, the low pass channel separates the regions

of high statistical spatial correlation, from the original signal, thereby filtering the

components more localised in the frequency domain (narrow band) and wide spread in

the spatial domain. Thus, the wavelet transform coefficients represent two frequency

sub bands, namely, a low frequency sub band with highly smooth spatial information

and a high pass sub band with details that mainly correspond the wide band noise and

the edges in the input signal.

The 2-D wavelet transform is achieved by performing the 1-D DWT separately on rows

and columns of the 2-D signal (image). It can be performed in any order (either starting

with row wise or column wise) as these two operations are two separable processes. This

produces four sub bands, namely LL, LH, HL and HH (where L and H stand for low

pass and high pass respectively). The LL sub band represents the original signal in

half resolution and contains smooth spatial data with high spatial correlation. The

HH sub band consists of details caused by noise and the edges in the image. The

HL and LH sub bands consist of vertically and horizontally oriented high frequency

details respectively. Most of the image energy is concentrated in the LL sub band. A

hierarchy of wavelet coefficients can be obtained by applying the 2-D transform to the

LL sub band of the current scale repeatedly up to 4 or 5 scales, (Figure 1.5) provided

the original signal dimensions agree with the down sampling in the process.

HH1

HH0 HH0LH0 LH0

HL0 HL0LL
 LL

LH1

HL1

1 Scale 2 Scales

Figure 1.5: The wavelet transform operation.

The Wavelet transforms can be designed as orthogonal or biorthogonal. Wavelets also

support an efficient energy compaction in the coefficients. Wavelet coefficients can

be modelled into hierarchical trees using the multiresolution property of the wavelet

coefficients. The multiresolutional structure of the wavelet transformed coefficients can

be used to develop efficient quantisation algorithms, [12, 13, 14] that help to achieve

a better picture quality than in DCT methods. Furthermore, spatial and quality wise

scalability can easily be incorporated into the wavelet transforms based techniques.
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1.2.4 Quantisation and embedded coding

The dynamic range of the transform coefficients are narrowed by the quantisation

process, thus achieving high compression. Quantisation can be either scalar (uniform)

quantisation or vector quantisation. In scalar quantisation, a single coefficient C is

divided by a quantisation factor Q and rounded to the nearest integer in order to

obtain the quantised coefficient T (C) (equation 1.10).

T (C) = Round

(
C

Q

)

(1.10)

In vector quantisation, the coefficient set is divided into 1-D or 2-D blocks, that are

also called vectors, and a code book is used to find a pattern for each block. The

approximated pattern for each block is coded using a lookup value in the code book.

The code book can be adaptive and implemented dynamically or fixed, the latter being

predefined using a training data set.

The codec can be designed as spatially and quality wise scalable. In a spatially scalable

codec, the image can be decoded at smaller resolutions than the original dimensions,

whereas in a quality wise scalable codec, the image can be first decoded as a degraded

version of the original and then updated progressively up to the targeted bit rate or to

the required image fidelity. These features can be achieved by employing progressive

and embedded coding respectively, in the quantiser.

Definition 1.1 (Embedded Coding) In embedded coding, a signal (image) is coded

at a bit rate Ri in a such way that the bit streams for all the other lower bit rates

(R0 < R1 < · · · ≤ Ri ) are progressively embedded within the bit stream for Ri and

(D(R0) > D(R1) > · · · ≥ D(Ri) ), where D(R) is the signal distortion at rate R.

The embedded coding quantisers employ scalar quantisation. With embedded coding,

the coded image bit stream can be decoded at any other lower bit rate. Examples

are Embedded Zero tree coding of Wavelet coefficients (EZW) [13], Set Partitioning

in Hierarchical Trees (SPIHT) [14], Compression of Reversible Embedded Wavelets

(CREW) [15] and Embedded Predictive Wavelet Image Coder (EPWIC) [16], which is

based on a conditional probability model developed by joint sub band statistics. More

about embedded quantising in embedded lossless coding is discussed in chapter 4.
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1.2.5 Entropy coding

The zeroth order entropy H0 for a symbol set of M different symbols considering a

memoryless source can be computed as in equation 1.11.

H0 = −
M−1∑

i=0

pi log2 pi (1.11)

pi is the probability of the ith symbol.

Two widely used entropy coding methods are Huffman coding and arithmetic cod-

ing [17]. Normally, these coding schemes assume the source as a memoryless model

and compress it to the zeroth order entropy of the data stream according to the prob-

ability density distribution of the data symbols in the input stream [18]. However,

significant gains can be obtained by exploiting the redundancy in the input stream.

This is normally achieved by: run length coding followed by the entropy coding, by

using adaptive entropy coding, by context based entropy coding or by combining two

or more of the above.

In adaptive coding, the symbol probabilities up to the most recently coded symbol are

considered in the probability density distribution in computing the probability of the

current symbol. The probability, pi, of the current symbol xi in equation 1.11 is the

conditional probability conditioned with the previous i−1 symbols.

pi = p(Xi = xi|X0 = x0, . . . ,Xi−1 = xi−1). (1.12)

With adaptive entropy coding, no probability information has to be sent to the decoder.

Adaptive arithmetic coding, presented in [17, 18], uses this concept. Adaptive entropy

coding provides better coding performance and avoids multiple scans through the input

symbol stream. Further, it can avoid the use of pre-built coding tables that are used

for entropy coding in the current JPEG [5] and MPEG standards.

To compress data using adaptive entropy coding methods, a model of the data stream

is required. This model needs to achieve correct prediction of the probability of the

incoming symbol and the probability estimations need to deviate from a uniform distri-

bution [18]. Finite context models based entropy coding helps to achieve such models.

In context based entropy coding, probability for each incoming symbol is calculated

based on the probability distribution function of a coding context in which the symbol

appears. The finite contexts are usually determined by the statistical modelling of the
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previously coded symbols.

1.2.6 Image quality measurement

The most common method of comparing the decoded image, Ĩ, with the original image,

I, of N×M dimensions is to use the peak signal-to-noise ratio (psnr), which is based on

the root mean square (rms) error of the two images as in equations 1.13 and 1.14.

psnr = 20 log10

(
255

rms error

)

dB (1.13)

rms error =

√
√
√
√

1

N ×M

N−1∑

x=0

M−1∑

y=0

( I(x, y)− Ĩ(x, y) )2 (1.14)

1.3 Lossless and Nearly Lossless Coding

As seen in previous sections, image/video compression reduces the volume of data by

discarding some, if not all, irrelevant data while maintaining an information content

with a reasonable fidelity. Usually in visual media coding, one may reduce one or

more of spatial (inter pixel and inter frame), spectral (within different spectral bands),

psycho visual and coding redundancy types, while maintaining image visual quality.

All coding techniques can be categorised into two groups, namely lossy and lossless

coding, according to the effect of their compression.

The image coding model described in section 1.2 and the macro block coding described

in section 1.1 fall into the lossy coding category, as quantisation is involved in these

coding models. However, there are some applications where no loss of exact pixel values

is tolerated. Lossless coding is used in such applications. The definition of lossless

coding, adopted from JPEG-LS [19], the current lossless image coding standard is set

out below.

Definition 1.2 (Lossless Coding) In lossless coding, compression and decompres-

sion of a image / video sequence results in the exact recovery of the individual pixel

values of the original image / video sequence.
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In lossless coding, only spatial and coding redundancies are exploited. The disadvantage

in lossless coding is that only modest compression ratios can be achieved, whereas in

lossy coding, higher compression ratios can be achieved at the expense of the image

perceivable quality and exact pixel values.

Preserving the total dynamic range of the pixels is not very important and an exact

recovery is not vital in many applications, where further image analysis based on pixel

values is not performed. As a consequence, several near exact recovery coding tech-

niques have been developed to eliminate the disadvantages of lossless coding. These

nearly lossless coding methods can be categorised into two classes depending on their

operation. They are

1. Near-lossless coding.

2. Quasi-lossless coding.

The definition of near-lossless coding, adopted from JPEG-LS [19], is as below.

Definition 1.3 (Near-Lossless Coding) Near-lossless coding is a lossy encoding and

decoding process, in which the output of the decoding process is such that each recon-

structed pixel of image / video sequence differs from the corresponding one in the input

to the encoder by not more than a pre specified value δ.

With near-lossless coding, the accuracy of the decoded pixel values, which is in the

range of ±δ, is known, so that the accuracy of the pixel value based computations can

be determined. When δ=0, a near-lossless codec performs losslessly.

Quasi-lossless coding includes high bit rate lossy encoding processes, where the dis-

tortion due to quantisation is small. There is no distinct definition for quasi-lossless

coding. In this research, lossy codec performance up to a bit rate that is about half of

the corresponding lossless bit rate can be considered as quasi-lossless coding. Examples

are lossy image coding with no quantisation, but the transform coefficients rounded (or

truncated) to integers and visually lossless coding techniques.

More about recent work on lossless and near lossless coding can be found in the chapter

on literature survey (Chapter 2).
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1.3.1 Lossless image and video coding

As seen in section 1.1, colour images consist of three spectral bands. For colour images

in RGB format, lossless coding can be performed for the three bands separately. This

avoids exploiting inter spectral redundancies. The colour transformation in equation

1.1 cannot be used in lossless coding because the conversion back to RGB space is not

lossless, due to rounding effects of the decimal values caused in the colour conversion.

Therefore, a reversible colour space transformation as in equations 1.15 and 1.16 can

be used [20].

RGB → Y CbCr

Y =

⌊
R + 2G + B

4

⌋

Cb = B −G

Cr = R−G

(1.15)

Y CbCr → RGB

G = Y −
⌊
Cr + Cb

4

⌋

R = Cr + G

B = Cb + G

(1.16)

b.c is the downward rounding operation.

In lossless video coding, the chroma sampling format of 4:4:4 is usually considered as

other sampling formats (4:2:0 and 4:2:2) cause losses due to chroma sub-sampling.

1.3.2 Visually lossless coding

In entertainment video and digital picture applications, where the end user is the human

eye, the knowledge about accuracy on the exact pixel value recovered is not vital at all.

For such applications, a visually (perceptually) lossless image/video coding technique

is more useful than lossless or near-lossless codecs, which code information containing

visual redundancy. Further reduction of bit rates, and thereby higher compression

ratios can be achieved by coding up to a visually lossless level.

Usually, the compression is said to be visually lossless when a compressed image cannot
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be distinguished from its original [21]. The author in [22] has stated that the term

“visually lossless compression” can be used only if the reconstructed image looks like

the original when they are compared in a two alternative forced choice test and the

preference for one image over the other is statistically insignificant. Another definition

is to keep the probability of detecting an error at each pixel just below the visual

threshold [23].

Traditional image coding techniques are usually based on optimising rate distortion,

where distortion is measured mathematically using the rms error metric. Visible dis-

tortions caused by quantisation in lossy coding / decoding are inappropriate for en-

tertainment video and digital picture applications. This has resulted in the research

into visual aspects of image / video coding algorithms. The errors due to quantisation

and non-integer transforms may begin as mathematical differences, but end up as a

visual difference once the image is displayed. The main goal of the perceptual coding

research has been to determine the degree to which these mathematical differences be-

come visible and thereby to formulate visually lossless coding, or to minimise the visual

distortions for a given bit rate.

The perceptual coding research to determine a perceptually lossless compression is

mainly based on two methods, namely the Human Visual System (HVS) models and the

psychovisual tests [24]. In the HVS models the visual process involved in the perception

of images are modelled using the fundamental theoretical and empirical knowledge of

the HVS, whereas psychovisual testing involves the use of subjects (potential viewers)

to assess the quality of the images.

The human visual system (HVS) and the model

The HVS has a number of fundamental properties that have often been studied and

modelled. The three main fundamental properties of these, in the order in which they

occur in the HVS and therefore the order in which they appear in the HVS model [23]

are: luminance sensitivity, frequency sensitivity and signal content sensitivity.

Luminance sensitivity corresponds to the subjective brightness of the image, which

is known to be a non linear function of the light intensity incident on the eye and

normally modelled by a logarithmic model in the amplitude non-linearity component

of the HVS model [25]. Frequency sensitivity corresponds to the HVS’s sensitivity to

spatial changes of luminance levels in an image [23], which is modelled as the contrast

sensitivity function (CSF) in the HVS model [25]. Signal content sensitivity corresponds
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to the sensitivity of the HVS to the signal content of an image. This is normally

modelled as contrast masking functions, where the noise is masked by the underlying

image content [23].

Psychovisual testing

The psychovisual tests use potential viewers, under highly controlled conditions to

measure the visual quality of images. The conditions for psychovisual testing recom-

mended by the ITU-T can be found in the Rec. 500-4 [26]. This recommendation sets

the viewing conditions for the assessments, with reference to the distance from the

screen, peak luminance of the screen, room illumination, number of assessors per mon-

itor, display brightness and contrast and the nature of the viewing room. Further, it is

recommended that the test images should be presented in a pseudo random sequence.

1.3.2.1 Visual quality metrics

As mentioned earlier, the traditional image quality measure, the rms error metric, does

not measure the visual quality of the compressed image. Recently, there has been

some published research on measuring the visual image quality. One such method is to

compute the picture quality scale (PQS) [27] over the full range of image quality defined

by the subjective mean opinion score (MOS). This involves measuring the properties of

visual perception for both global features and localised disturbances. Another example

is the wavelet visible difference predictor [23], which computes visible difference in

wavelet image coding based on the multiple channel models of the HVS [25, 28, 29],

and their relationship to the wavelet transform.

However, these quality metrics are not yet commonly used in the compression commu-

nity due to their computational complexity.

1.4 Summary

The basic concepts of four coherent topics, namely video coding, image coding, lossless

and nearly lossless coding and visually lossless coding were introduced in this chapter.

The next chapter will present published research relevant to the topic of this thesis.
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Chapter 2

Literature Review

Image and video coding algorithms can be either lossy or lossless. Lossy image and video

coding techniques with low bit rate coding have been the preferred coding methods in

multimedia and internet applications. Therefore, most of the published research has

been on lossy coding techniques. However, research on lossless image/video coding

and visually lossless coding has been highly considered in some applications due to

the reasons discussed in the previous chapter. This chapter discusses the published

research on lossless image coding, near-lossless image coding and lossless video coding.

The organisation of this chapter is as follows. Sections 2.1-2.3 report and discuss the

published research on above topics respectively. Finally, in section 2.4 the research

objectives and their necessity for this thesis is presented followed by a thesis outline.

2.1 Lossless Image Coding

In lossless coding, the inter pixel redundancy of the image and the coding redundancy

of the decorrelated symbol stream are exploited in order to achieve compression. The

lossless coding techniques that have been presented in the current published literature

can be grouped into three main categories. They are as follows.

1. Prediction based methods.

2. Lossy coding followed by lossless coding of the residuals.

3. Transforms that map integers into integers (integer transforms) based methods.

17



2.1.1 Prediction based methods

The predictive coding based on a causal template has been the most commonly used

lossless image coding method due to its simplicity and efficiency. The philosophy un-

derlying the predictive image coding techniques is to remove inter pixel redundancy by

predicting the current pixel from the previously coded (i.e. using a causal template)

neighbouring pixels and coding the prediction error losslessly. The probability distri-

bution of the prediction error can be modelled as a double sided geometric distribution

with narrow peaks centred at zero and long tails, thus resulting in significantly lower

zeroth order entropy than that of the original image.

In the lossless mode of the previous JPEG standard [5] (JPEG-Lossless), a predictor

set which uses three neighbouring pixels (N, W and NW as in Figure 2.1) to predict the

current pixel X has been employed. Then the prediction error for each pixel is entropy

coded using a Huffman table which is nearly identical to that used for DC coefficient

coding in the JPEG baseline codec.

NW N

W X

Figure 2.1: JPEG-Lossless mode prediction template.

However, such linear and fixed predictive techniques are far from being powerful enough

to provide a good prediction. Therefore, during the past few years, predictive coding

techniques have been developed into the combination of predictive coding based on

adaptive statistical context modelling of images [30, 31] and the entropy coding of the

prediction error using estimated probability density functions (PDF) conditioned on

the contexts in which the pixels are observed [18]. Two such examples are the Context

based Adaptive Lossless Image Codec (CALIC) [31, 32, 33] and the LOw COmplexity

LOssless COmpression (LOCO-I) [31, 34].

The CALIC algorithm, which puts heavy emphasis on image data modelling, uses
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a Gradient Adjusted Predictor (GAP) which adapts the prediction according to the

local gradients, thereby using a non-linear predictor which adapts to varying source

statistics. The GAP classifies the gradient of the current pixel X according to the

estimated gradients in the neighbourhood (Figure 2.2), which is wider than that used

in JPEG-Lossless, and chooses the appropriate predictor according to the classification

[32, 33]. Then the prediction error is context modelled and entropy coded.

NN NNE

NW N NE

WW W X

Figure 2.2: The GAP prediction template.

The LOCO-I algorithm uses the Median Edge Detection (MED) predictor, which adapts

in the presence of local edges [34]. The MED classifies the edge type of the current

pixel X by using a causal template, as in JEPG-Lossless, and one of three predictors are

used according to the classified edge type. The MED prediction error for each pixel is

coded using a context model, determined by quantised gradients, followed by Golomb-

Rice coding [35] for entropy coding. The LOCO-I algorithm was recently standardised

as the new lossless and near lossless image coding standard, JPEG-LS [19, 36]. More

about recent developments in context based prediction techniques used in lossless image

coding research leading to JPEG-LS standardisation can be found in [31].

The other predictive techniques used in lossless image coding include adaptive L-

predictors (linear combinations of ordered statistics) based on finite state machine

context selection [37], a prediction model based on backward adaptive recognition of

local texture orientation (BAROLTO) followed by a Poisson statistical model for error

coding [38], prediction based on fuzzy switching of a set of linear predictors followed

by arithmetic coding [39] and prediction based on adaptive median FIR filter followed

by error mapping and context modelling for entropy coding [40].
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The sequential prediction techniques discussed above have been extended into sub

band prediction based methods that result in multiresolutional decorrelation. The

most famous example is the hierarchical interpolation (HINT) [41, 42] algorithm used

in reversible medical imaging applications. In HINT, image pixels are classified into

five different types using a 4×4 base block (Figure 2.3) and firstly, the � type pixels

are coded using DPCM. Then the 4 pixels are linear interpolated using four � type

pixels and the error is variable length coded (VLC). Then the • pixels are predicted by

interpolating the � and 4 pixels followed by the × and ? pixel prediction. In all the

above steps, the prediction is rounded and the prediction error, which is an integer, is

coded using VLC.

� ? • ? �
? × ? × ?

• ? 4 ? •
? × ? × ?

� ? • ? �

Figure 2.3: HINT pixel classification.

Similar interpolative sub band prediction techniques have been developed for lossless

coding. Examples are a prediction technique based on a four channel filter bank [43] and

an interleaved hierarchical prediction [44] which splits the non separable interpolation

process into two cascaded directional steps. The author in [45, 46] compared different

interpolation methods for the prediction in four sub band splitting as in quincunx split-

ting and has concluded the median-FIR based interpolation as the best decorrelator.

The sub band interpolative methods followed by context based residual coding has

not achieved better lossless compression performance compared to that of sequential

prediction techniques discussed earlier. However, progressive coding / decoding can be

incorporated into these sub band interpolative methods.

The two types of prediction based techniques discussed above, namely, sequential and

interpolative, have used different entropy coding techniques such as Huffman tables

in JPEG-lossless, Golomb-Rice in LOCO-I, DPCM and VLC in HINT and statistical

context modeling, to encode the prediction residuals. As in JPEG-LS, the current

lossless standard, most of the methods employ context modelling of the error prior

to entropy coding. A minimum entropy clustering method, where a set of vectors

are clustered using a minimum entropy criteria as in classical vector quantisation, has

also been used in literature [47]. It has also been recorded that such a method has

significantly outperformed a single entropy coder based lossless coding.
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2.1.2 Lossy coding followed by residual coding

The second approach is using lossy compression followed by entropy coding of the

error due to lossy coding. In one such lossless coding example, filter banks based

wavelet transforms were used for lossy compression [48], where wavelet coefficients

were encoded using a variable block size segmentation and a directional prediction

scheme. The residual error due to the finite precision arithmetic was coded using

adaptive arithmetic coding. A similar approach using zero tree coding for the lossy

coding part, thereby adding the embedded property to the codec, has been presented

in [49, 50].

The compression ratios achieved by this approach are comparable with those of JPEG-

Lossless. This approach is more computationally expensive than the predictive coding

techniques due to the inverse wavelet transform, which has to be performed in the coder

in order to find the error caused by the finite precision arithmetic in the lossy coding

part. Therefore, this approach is inferior to the predictive coding approach in lossless

coding.

2.1.3 Integer transforms based methods

Although transforms are theoretically designed to be lossless, when implemented on

computer hardware or software, no perfect reconstruction can be achieved due to fi-

nite precision arithmetic in computer operations and the large dynamic range of the

transform coefficients. However, the image transformations can be modified in order

to achieve integer coefficients with a finite dynamic range. Therefore such transforms

that map integers into integers can be used for lossless image coding.

The early examples include lossless implementations of Walsh Hadamard transform

(WHT) [51, 52] and DCT [53]. The WHT comprises combinations of +1 s and −1 s,

followed by a normalising factor. If the normalising factor is ignored, the transform can

be realised by additions and subtractions of the input signal elements. In [51, 52], the

redundancy in additions and subtractions have been removed by incorporating a lossless

quantisation scheme. The compression ratios achieved using such lossless WHT were

better than those from JPEG-Lossless. Since the WHT is an orthogonal transform, the

embedded coding feature has also been added to the codec using the lossless WHT.

The DCT based lossless coding methods involve factoring the un-normalised DCT

matrix into upper and lower triangular matrices with unit diagonals. Since the DCT
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is an orthogonal transform, the DCT matrix is unitary. Any unitary matrix can be

factorised into two triangular matrices (Upper and Lower triangular) [54] which in turn

can be used to obtain lossless DCT coefficients. Such a method for the 8-point DCT

has been introduced in [53]. The lossless DCT, which has also been used for embedded

coding has shown the lossless and rate distortion performances similar to those of the

lossless WHT [53].

Recently, the wavelet transforms that map integers into integers have also been im-

plemented [55]. Any discrete wavelet transform, or two channel filter bank with fi-

nite filters, can be decomposed into a finite set of simple filtering steps called lifting

steps [55, 56, 57]. This decomposition is normally done by factoring the polyphase

matrix of the wavelet or filter bank into elementary matrices using the Euclidean al-

gorithm [55, 58]. With this, the normal lattice structure associated with the wavelets

and filter banks is converted to a ladder structure, with which the rounding operations

can be employed into lifting steps in order to achieve integer coefficients [6, 55]. The

beauty of the lifting scheme is that it can be used in biorthogonal wavelets, which is a

non-unitary system, as well [11]. Various lifting factorisations have been introduced in

literature [56, 59, 60]. The S+P transform (S Transform + Prediction) [61], which was

obtained by introducing an additional predictive lifting step on the S transform [56],

is also an example for integer wavelets. More about integer wavelet transforms using

lifting and their applications on lossless image coding is discussed in section 3.1.

These integer wavelets have been used in lossless image coding by using the separable

lifting steps for the rows and columns of the image, and entropy coding of the coefficients

[20, 62, 63, 64]. Three methods have been considered to encode the wavelet coefficients

in the published literature.

The first method was encoding the coefficients using a two pass Huffman coding opti-

mised for each image [63].

In the second method, a Magnitude-Set Variable Length Integer (MS-VLI) was defined

and the Magnitude-Set(MS) information was arithmetic coded conditioned to the mean

MS of the causal neighbours appearing in a raster scan [63]. This method has been

improved by using rigorous context modelling based on pixels from the parent and

sibling sub bands, and thus exploiting the inter sub band dependencies of the coefficients

[64]. Further, the use of context based arithmetic coding in this method has been

demonstrated in [65].

The third method was using an embedded or progressive fidelity transmission algorithm
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to encode the wavelet coefficients. The embedded coding algorithms, SPIHT [14] and

CREW [15], have been used in lossless image coding algorithms presented in [63] and

[20] respectively for progressive coding of integer wavelet coefficients.

The results published in [63] show the superiority of the second method over the first

and the third. But the third method, using embedded coding, enables the coded bit

stream to be decoded at any lower bit rate, thereby making the codec versatile for both

lossy and lossless modes of operations.

2.1.3.1 Context modelling

As seen in above lossless coding examples, it is evident that employing a context

modelling process to choose a prediction context [19, 36, 37] or a coding context

[18, 30, 31, 33, 39, 49], in which the current pixel or the symbol appears, has im-

proved the efficiency of the predictor or the entropy coder or both. A brief literature

survey on context modelling can be found in section 5.1.1.

2.1.4 Summary

As reported in the literature [31], predictive coding has been the preferred data decor-

relating method for lossless image coding as they have obtained the best compression

ratios out of the three coding techniques considered. The current lossless coding stan-

dard, JPEG-LS, is also based on a predictive lossless coding technique. The sequential

predictive coding techniques discussed in section 2.1.1 were based on local predictive

techniques (using a causal template). The high pass bands in transform coding using

filter banks or lifting are analogous to prediction error due to global predictions. There-

fore, integer wavelet transforms provide a global prediction which uses the neighbour

pixels from both sides of the pixel concerned (using a non causal template). The ad-

vantage of using integer wavelet transforms or any other integer orthogonal transform

is due to the progressive coding / decoding by fidelity or by resolution features that

can be incorporated into the lossless bit stream through embedded coding techniques.

Furthermore, using sub band interpolative prediction methods, which possess lower

computational complexity than the integer transforms, also enables progressive coding

/ decoding. This is the main advantage of using integer transforms or hierarchical split-

ting based techniques over sequential predictions based techniques. Recently however,

there has been an instance of incorporating a rate control mechanism based on visual

perception into JPEG-LS, so that it can also be used as a quasi-lossless coder [66].
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2.2 Near-Lossless Coding

According to Definition 1.3 on page 13, in near-lossless coding, a maximum pixel error

± δ that any reconstructed pixel is allowed to have due to lossy coding can be specified

by the user at the time of coding. Coding is optimised so that the decoded image pixels

differ from those in the original by not more than this pre-specified value.

Near-lossless coding can easily be incorporated into predictive lossless coding techniques

discussed in section 2.1.1. This is normally performed by quantising the prediction

error. For example, in JPEG-LS a near-lossless compression with maximum error

value δ is achieved by quantising the prediction error values (ε) as below [19].

Q(ε) = Sign (ε)

⌊ |ε| + δ

2 δ + 1

⌋

(2.1)

Q(ε) is the quantised error value ε. The reconstructed error value ε̂ is obtained as

below.

ε̂ = Q (ε)× ( 2 δ + 1 ) (2.2)

In the encoder, the reconstructed error value is used to reconstruct the actual pixel

values, which are used in context modelling and prediction processes, so that both

encoder and decoder are synchronised to each other. For small δ values, this type of

near-lossless coding has shown superior PSNR results compared to traditional lossy

coding methods [36].

The quantiser in equation 2.1 quantises the prediction error uniformly. There are

a few instances of near-lossless coding methods that attempt to maximise the rate

achievable for a set of pixels rather than using uniform quantising. For example, rather

than quantising as in equation 2.1, trellises were constructed describing all possible

quantised prediction error sequences that yield reconstructed images meeting the near-

lossless requirement and the trellises with minimum entropy were selected to encode as

in [67, 68, 69].

In lossless image coding methods using integer transforms, it is unpractical to encode

the transform coefficients to a near-lossless criterion in the transform domain. There-

fore, the pixel values were normally pre-quantised in a similar manner as above prior

to the integer transform and embedded coding. Such a method using integer wavelet

transforms has been introduced in [70]. For each pixel x, the quantised pixel value l is

obtained as below.

l =

⌊
x + δ

2 δ + 1

⌋

(2.3)
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At the decoder, pixel values are reconstructed as below after the inverse transform.

x̂ = l× (2 δ + 1) (2.4)

Although the compression ratios achieved with this method were inferior to those of

predictive techniques, embedded features can be incorporated to near-lossless coding

with this method. However, this method is not very efficient for the near-lossless

parameter value, δ, higher than 3 [70].

Recently, a near-lossless coder with successive refinement capability based on the near-

lossless parameter δ has also been published [71]. This coder provides a near-lossless

to lossless progressive coder using a successive refinement method based on pre defined

δ values, for example, δn > δn−1 > · · · > δ1 > δ0 = 0. This embedded stream can be

decoded at the δ values defined at the coding end.

2.3 Lossless Video Coding

Only a few attempts on lossless video coding methods have been published thus far. The

performance of predictive techniques for lossless coding of image sequences of 24 bits per

pixel in RGB domain has been investigated in [72], where an adaptive prediction scheme

that exploits temporal and spectral correlation in a 3-D colour signal was presented.

Those results show that significant advantages can be gained by reducing temporal

correlation using motion compensation based on a modified block matching. Moreover,

the authors have shown that further advantage can be achieved by considering inter

band 3-D predictions among colour bands, rather than coding each band individually.

In another example, a 3-D version of CALIC [32, 33], has been used to exploit inter

band correlation in multispectral lossless coding [73]. Also in this case, the authors have

shown that considering temporal and inter band dependencies would improve lossless

coding results rather than by applying 2-D techniques on individual frames.

Further, there has been an example of extending the modified HINT [41] into 3-D by

considering inter frame sub sampling for generalised recursive interpolation (GRINT)

[74] for lossless coding of medical image sequences.

In another lossless video coding example, a DCT based lossless video coding scheme

compatible with MPEG-2 was introduced [75]. In this method, a modified DCT, fol-

lowed by a lossless quantisation scheme was designed heuristically exploiting the peri-
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odic structure of the coefficients. The main advantage of this type of coding is that the

video sequences coded with this algorithm can be decoded with an MPEG-2 decoder

for a lossy version.

In summary, from the above examples, it can be concluded that the 3-D predictive

coding methods and the modified integer transforms based techniques have already been

considered for lossless coding of 3-D data. Further, they have shown that incorporating

motion compensation in prediction schemes would improve the lossless video coding.

2.4 Thesis Outline

In this chapter, the existing research on the topics relevant to this research was pre-

sented. However, little research into lossless video coding has been published. Basically,

3-D predictive methods and modified transforms have been used in lossless video cod-

ing. Further, in [72], the authors have shown that higher compression can be achieved

by incorporating motion compensation into prediction schemes.

In this research, motion compensation based lossless video coding is considered. The

motion compensation framework used in MPEG-2 is used in this research. This breaks

this research into two parts, namely, lossless coding techniques that can be used for

intra frames and those that can be used for non-intra frames. In entertainment video

applications, the exact pixel value recovery is not vital where the end user is a human

viewer. In that case, employing embedded to lossless coding provides the added ad-

vantage of decoding at lower bit rates from the lossless bit stream. Further embedded

decoding facility enables quick previewing or a quick inter-studio transmission via a

low bandwidth channel from a losslessly coded master copy.

The first part of this research is mainly concerned with embedded lossless and nearly

lossless coding of intra frames (still images). This is normally achieved by employing

a transform that maps integers into integers and an embedded quantiser. Although

the use of integer wavelet transforms in lossless image coding has been reasonably

demonstrated, the use of other transforms has not been considered extensively. This

is mainly due to the non availability of integer implementations of such transforms

with generic block sizes. In Chapter 3, Integer wavelet transforms are introduced

and the integer versions of the DCT, the DST and the Walsh Hadamard (WHT) are

derived using their intrinsic properties and the lifting concepts. Integer forms of the

above mentioned block transforms are designed for generic block sizes, so that the most
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suitable transform size for lossless coding can be found by experiment. Further, the

concepts of hierarchical non linear sub band splitting techniques are used to derive a

new set of integer non-linear transforms for lossless coding experiments.

In Chapter 4, the concept of embedded coding and its framework are introduced. The

existing scanning techniques of transform coefficients for embedded coding are analysed

and a novel scanning scheme, Adaptive Quadtree Splitting, is introduced based on the

integer wavelet coefficients.

Chapter 5 investigates the performance of the Embedded to Lossless Image Coder

(ELIC) using the integer transforms discussed in Chapter 3 on intra frames (still im-

ages). Further, near-lossless coding performance using pre-quantisation and novel in-

transform (online) near-lossless quantisation methods are evaluated. Finally, the rate

distortion performance in quasi-lossless decoding is discussed.

Chapter 6 focusses on lossless coding of the motion compensated prediction residuals

in non-intra frames. The characteristics of the residuals are presented and the use of

the integer transforms presented in Chapter 3 is investigated. Finally, the embedded

quantiser ELIC is used to investigate the performance of the integer transforms on

residuals and the best lossless coding strategy for the non-intra frames.

Chapter 7 combines the research presented in the previous chapters together. The em-

bedded lossless video coder is introduced and its lossless and nearly lossless coding /

decoding performances are analysed, mainly considering the embedded decoding per-

formance at quasi-lossless bit rates in an asymmetric video coding framework. Finally,

Chapter 8 concludes this thesis with the conclusions of the findings from this research

and possible future work.

2.4.1 Test images and video sequences set

The test image set used in this research include 5 images, namely, Gold Hill, Barbara1,

Barbara2, Boats and Black board. All images were of the dimensions of 576×704.

The images were in grey scale and consisted of 8 bits per pixel. Four sequences with

different motion characteristics were used as the test sequences. They were Claire (a

talking head), Mobile (horizontal, vertical and rotational object motion coupled with

camera motion), Unicycle (vertically moving texts on a moving background) and Kiel

harbour (zooming in). All the sequences were in grey scale (Y component only- 8 bits

per pixel) and in CIF size (288×352).
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Chapter 3

Integer Transforms

Transforms that map integers into integers, also known as integer transforms, are the

main component of transforms based lossless image coding. The main objective of

this chapter is to introduce and design such integer transforms that may be useful

in lossless coding of intra frames and non-intra frames. In this chapter, the design,

properties and usage in lossless image coding of integer transforms, namely, the Integer

Wavelet Transforms (IWT), the Integer Walsh Hadamard Transform (IWHT), the In-

teger Discrete Cosine Transform (IDCT), the Integer Discrete Sine Transform (IDST)

and an Integer Non-Linear Transform (INLT) based on quincunx sub band splitting

and median filtering are discussed. The rest of the chapter is organised as follows: Sec-

tions 3.1-3.5 present the introduction, design and the lossless performance of the above

transforms respectively. Finally, section 3.6 compares and discusses the performance

of those transforms on lossless image coding.

3.1 The Integer Wavelet Transforms (IWT)

The wavelets are translates and dilates of a fixed function known as the mother wavelet.

As mentioned in section 1.2.3, the wavelet transforms can be implemented either using

filter banks or using lifting steps. In the lifting method, a filter bank operation is split

into a finite sequence of simple filtering steps by performing lifting steps. This corre-

sponds to the factorisation of the polyphase matrix, corresponding to the filter bank

into elementary matrices [55, 56, 57, 59, 60, 76]. Lifting has been used in constructing

both orthogonal and biorthogonal wavelets [11].
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3.1.1 The lifting scheme

The idea of lifting was originated as a method of building the second generation

wavelets, where the wavelets are not necessarily translates and dilates of the mother

wavelet as in the first generation wavelets [76]. The first generation wavelets were con-

structed with the aid of Fourier transform techniques. But construction of wavelets

using the lifting approach does not use Fourier transform techniques. Lifting is entirely

a spatial method. The lifting concept can be shown in a block diagram as in Figure 3.1.

X

Xo

Xe

 P  U

HP

LP  

d

s

Figure 3.1: Lifting Block Diagram.

The first step of lifting is to separate the original sequence (X) into two sub sequences

containing the odd indexed samples (Xo) and the even indexed samples (Xe). This sub

sampling step is also called the lazy wavelet transform.

Xo : d i ← x 2 i +1 (3.1)

Xe : s i ← x 2 i (3.2)

for i = 0 . . . (L/2− 1),

where L is the signal length.

Then the lifting steps, dual lifting (P) and primal lifting (U), are performed on these

two sequences. The two sets Xo and Xe are closely correlated. So a predictor P ( )

can be used to predict one set from the other. In this prediction step, which is also

called dual lifting, the odd indexed samples are predicted using the neighbouring even

indexed samples and the prediction error (detail) is recorded replacing the original

sample value, thus providing in-place calculations.

d i ← d i − P (s A) (3.3)

where, A = ( i− dN/ 2e+ 1 , . . . , i + bN/ 2c )
N is the number of dual vanishing moments in d.
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N is the number of dual vanishing moments, which set the smoothness of the P func-

tion. This prediction step is also similar to the prediction performed in state-of-the-art

lossless coding methods. But in lifting, prediction is only based on the pixels in the

same row. In predictive lossless coding, the prediction is based on a causal mask,

whereas in lifting, pixels on either sides of the pixel to be predicted are also used in

the prediction mask. This is possible due to the sub sampling step performed through

the lazy wavelet.

In the second lifting step, primal lifting (U), the even samples are replaced with

smoothed values using the update operator U( ) on previously computed details. The

U( ) operator is designed to maintain the correct running average of the original se-

quence, in order to avoid aliasing.

s i ← s i + U(d B) (3.4)

where, B = ( i− bÑ/ 2c , . . . , i + dÑ/ 2e − 1 )

Ñ is the number of real vanishing moments.

The U( ) operator preserves the first Ñ moments in the s sequence. The lazy wavelet is

lifted to a transform with required properties (number of vanishing moments in analysis

and synthesis filters as in the filter bank approach) by applying the dual and primal

lifting pair of operations one or more times. Finally, the output streams are normalised

using the normalising factor ′k′.

d i ← d i × 1/k (3.5)

s i ← s i × k (3.6)

The output from s channel after dual lifting steps provides a low pass sub band, whereas

the output from d channel, after dual lifting steps provides a high pass sub band. The

inverse transform is obtained by reversing the order and the sign of the operations

performed in the forward transform.

3.1.2 Integer wavelets

The above transforms and the filter bank based transforms based on filter banks, result

in floating point values as wavelet coefficients. In many applications the input data

contains integers. An integer version of transforms is important for lossless compression.

Rounding the floating point coefficients to obtain integers does not provide much help

as it loses the perfect reconstruction. But the lifting scheme can be easily modified

to achieve a transform that maps integers to integers, while maintaining the perfect
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reconstruction property [56]. This is achieved by rounding off the outputs after P ( )

and U( ) operators. This rounding off is normally implemented by adding a factor 1
2 to

the outputs of P ( ) and U( ) operators and subsequently truncating them downward,

before subtracting from or adding to the signal channels. Thus, the equations 3.3

and 3.4 become,

d i ← d i −
⌊

P (sA) + 1
2

⌋

(3.7)

s i ← s i +
⌊

U(dB) + 1
2

⌋

(3.8)

These rounding operations cause non-linearity in the transform.

The lifting steps are derived by factoring the polyphase matrix, which corresponds

to the filter bank, into the elementary matrices. This can be performed in several

ways using the Euclidean algorithm [55], which is commonly used to find the greatest

common divisor in two polynomials [58]. The most common method of factoring is to

achieve a unit normalising factor ′k′, so that the integer property of the coefficients is

preserved. This is normally performed by ignoring the
√

2 normalising factor involved

in filter bank design from the polyphase matrix prior to factoring. According to [55],

the normalising operator can be replaced by introducing four additional lifting steps

into the lifting scheme (see page 38 for the lifting steps for k =
√

2 ). More discussion

on treatment on normalising can be found in Section 4.2.1.1.

3.1.3 Tests performed with integer wavelets

The wavelets designed and implemented by the lifting scheme are normally identified

with the notation (N, Ñ), where N and Ñ are the number of vanishing moments in the

dual and primal lifting steps respectively, as opposed to the number of filter taps in

the filter bank implementation. The wavelets with different combinations of vanishing

moments, namely (2,2), (4,2), (4,4), (2+2,2), (2,4), (6,2), (all from [56]), (1,1) (also

known as S transform and the same as Haar wavelet) and S+P [63] were used in the

following experiments for lossless image coding. The lifting steps for those integer

wavelets can be found in Appendix A.

3.1.3.1 The treatment at signal boundaries

The P () and U() operators use a template centred on the signal component to be

predicted and updated respectively. These symmetric templates cannot be used at the

signal boundaries, thus, requiring a special treatment at the boundaries.
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The same problem arises in filtering operations in the filter bank realisation of the

wavelets. In filter bank realisation, three types of boundary treatments, namely zero

padding, circular extension and symmetric extension [77], are commonly used. In zero

padding, the signal is padded with zeros according to the filter length, whereas in

circular extension, the signal is repeated according to the filter length, so that the

circular convolution operations can be performed. In the symmetric extension method,

the signal is reflected at the boundary on a half or whole point, according to the

symmetry and the length of the filter. It is widely believed that the symmetric extension

method provides the best performance in lossy image coding [6, 77].

The same three extension methods can be employed in the lifting approach. A new

boundary treatment for lifting by changing the symmetry of the prediction and up-

date templates near boundaries has been presented in [76]. In this method, since the

templates are not placed centering the component to be predicted or updated, the

weights of the components in the template have to be recomputed according to the

interpolation polynomial generated by the required vanishing moments of the wavelet.

In this research, a symmetric extension based method, as shown below, was used as the

boundary treatment, due to its simplicity and better performance in lossy compression.

In P lifting :

· · · s[i−1] s[i] d[i] s[i + 1] s[i + 2] · · ·

For example, d[i] is predicted using s[i−1] . . . s[i + 2]. The prediction templates at

i = 0, i = L−1 and i = L−2, where L is the sub sample length, using this boundary

treatment are as below.

For i = 0 : {s[2] s[0] s[1] s[2]}
For i = L−1 : {s[L−2] s[L−1] s[L−1] s[L−2]}
For i = L−2 : {s[L−3] s[L−2] s[L−1] s[L−3]}

In U lifting :

· · · d[i−2] d[i−1] s[i] d[i] d[i + 1] · · ·

For example, s[i] is updated using d[i−2] . . . d[i+1]. The prediction templates at i = 0,

i = 1 and i = L−1, where L is the sub sample length, using this boundary treatment

are as below.

For i = 0 : {d[1] d[0] d[0] d[1]}
For i = 1 : {d[2] d[0] d[1] d[2]}
For i = L−1 : {d[L−3] d[L−2] d[L−1] d[L−3]}
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In this method, the neighbours nearest to the component to be predicted / updated

are considered in the prediction / update templates.

3.1.3.2 The zero-order entropy values

All the transforms were applied on the images in the test image set (in section 2.4.1)

up to 5 levels of iterations. The weighted average zero-order entropy values (in bpp),

R0, calculated using equation 3.9 by considering the zero-order entropy value H0 for

individual sub bands using the equation 1.11 (on page 11), are as in Table 3.1.

R0 =
1

N

3×s∑

i=0

Ni H0i (3.9)

where,N is the total pixels in the image,

s is the number of scales,

Ni is the total pixels in the ith sub band,

H0i is the zero− order entropy in the ith sub band.

(2,2) (4,2) (4,4) (2+2,2) (2,4) (6,2) S S+P

Gold Hill 4.705 4.702 4.702 4.694 4.715 4.718 5.038 4.759
Barbara1 4.958 4.810 4.787 4.808 4.951 4.767 5.487 4.876
Barbara2 5.066 5.024 5.008 5.024 5.062 5.030 5.453 5.041

Boats 4.234 4.195 4.192 4.183 4.241 4.197 4.643 4.269
Black Board 3.888 3.886 3.878 3.870 3.893 3.897 4.172 3.974

Average 4.570 4.523 4.513 4.516 4.572 4.522 4.959 4.584

Table 3.1: Weighted zero-order entropy values in bpp for IWT.

From the above results, it is evident that the wavelets with a greater number of vanish-

ing moments in the prediction lifting step provide better lossless performance compared

to the wavelets with a fewer number of vanishing moments in the prediction step. This

is due to the high inter pixel correlation present in natural images (as in intra frames

in video) and the wider prediction masks that lead to better prediction. Further, it can

be seen that the extra prediction step in the S+P transform and the (2+2,2) trans-

form have resulted in better performance compared to the S transform and the (2,2)

transform, respectively. On average, the (4,4) wavelet reported the lowest entropy val-

ues. Therefore, the (4,4) wavelet has been used as the preferred lifting steps for the

succeeding intra frame research presented in this thesis. The performance of the above

integer wavelets on residuals in non-intra frames are presented in section 6.3.
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3.2 The Integer Walsh Hadamard Transform (IWHT)

The Walsh transform uses Walsh functions (WAL) as the basis vectors. The Walsh

functions form an ordered set of rectangular waveforms with amplitude values of ±1 [78,

79]. They are defined by two arguments, namely a time period (t) and an ordering

number (n) representing the sequency, which corresponds to the frequency in sinusoidal

waves. The sequency number corresponds to the number of sign changes (or zero

crossings) in a rectangular waveform.

The WALN (n , t) for an N -point Walsh function set is defined as in equation 3.10

WALN (n, t) =

{

1× Sign (cos ( n
2 , t + 1

2 ) ) ; n even

1× Sign (sin ( n+1
2 , t + 1

2 ) ) ; n odd
(3.10)

for n = 0, . . . , N − 1.

for t = 0, . . . , N − 1.

The Walsh functions are orthogonal [78]. Thereby,

N−1∑

t=0

WALN (l , t)WALN (m, t) =

{

N ; l = m

0 ; l 6= m
(3.11)

An orthonormal basis vector set can be obtained by dividing these Walsh functions by√
N . Therefore, the N -point Walsh transform pair (forward and inverse) for 1-D data

sequence, x, of length, N, is defined as in equations 3.12 and 3.13 respectively.

X(k) =
1√
N

N−1∑

i=0

x(i)WALN (k , i) (3.12)

for k = 0, 1, . . . , N − 1.

x(i) =
1√
N

N−1∑

k=0

X(k)WALN(k , i) (3.13)

for i = 0, 1, . . . , N − 1.

3.2.1 The Walsh Hadamard transform

In the Walsh transform, the Walsh function set WALN can be considered as the trans-

form matrix. It is unitary and symmetric. The rows of the transform matrix are the
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basis vectors of WALN , which are ordered in the increasing sequency order. There are

a few other ways of arranging the basis vectors. One such method is according to the

Natural order (or Hadamard order) derived from successive Kroneckor products (⊗) of

the lower order Walsh (Hadamard) matrices while preserving the symmetry and the

orthogonality [78]. This ordering is commonly known as the Walsh Hadamard trans-

form. The lowest order Walsh Hadamard matrix WHN is the order of two (N = 2) as

in equation 3.14.

WH2 =
1√
2

[

1 1

1 −1

]

(3.14)

Thereby, the Walsh Hadamard matrix for the higher orders which are integer powers

of two can be defined using Kroneckor products as in equation 3.15.

WHN = WHN/2 ⊗ WH2 (3.15)

This leads to the redefinition of the N -point discrete Walsh Hadamard transform pair

as in equations 3.16 and 3.17 respectively.

X(k) =
N−1∑

i=0

x(i)WHN (k , i) (3.16)

for k = 0, 1, . . . , N − 1.

x(i) =
N−1∑

k=0

X(k)WHN (k , i) (3.17)

for i = 0, 1, . . . , N − 1.

3.2.2 The IWHT by lifting

The division by
√

N in the WALN functions (or the division by a series of
√

2 factors in

the WHN matrices) causes non-integer values in the transformed coefficients, rounding

of which loses the unitary nature, thus resulting in lossy reconstruction. The previous

versions of integer Walsh Hadamard transforms have been implemented by ignoring the

normalising factors and incorporating a lossless quantisation scheme [51, 52]. Further,

they were designed heuristically only for the 8-point WHTs. In this section, a novel

lossless Walsh Hadamard transform, which maps integers into integers, is introduced.

Unlike the previous integer WHTs, this derivation incorporates the normalisation fac-

tors into the implementation and considers any block size, N, where N is an integer

power of two.
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The equation 3.16 can be represented in matrix form as in equation 3.18.

X = WHN x (3.18)

This can be rewritten using equations 3.15 and 3.14 as in equation 3.19, which in turn

can be written as in equation 3.20 using matrix partitions.

X =
1√
2

[

WHN/2 WHN/2

WHN/2 −WHN/2

]

x (3.19)




X1

X2



 =
1√
2




WHN/2 WHN/2

WHN/2 −WHN/2








x1

x2



 (3.20)

where, X1 = X( 0, . . . , N/2−1 ), X2 = X(N/2, . . . , N−1 )

and x1 = x( 0, . . . , N/2−1 ), x2 = x(N/2, . . . , N−1 )

The equation 3.20 can be simplified into the form in equation 3.22 using partitioned

matrix multiplication.




X1

X2



 =
1√
2




WHN/2 x1 + WHN/2 x2

WHN/2 x1 −WHN/2 x2



 (3.21)

=⇒



X1

X2



 =




WHN/2 U1

WHN/2 U2



 (3.22)

where,




U1

U2



 =
1√
2




IN/2 IN/2

IN/2 −IN/2





︸ ︷︷ ︸

A




x1

x2



 (3.23)

where, IN/2 is the Identity matrix of size N/2

and A corresponds to the WH2.

The matrix A in equation 3.23 corresponds to a set of 2-point Walsh Hadamard ma-

trices (WH2). The higher and the lower partitions of the right hand side of equation

3.22, which are the same as the original form in equation 3.18, can be rewritten us-

ing the relationship in equations 3.22 and 3.23 recursively until N = 2. Thereby, the

Walsh Hadamard transform can be implemented using the WH2, applied recursively

according to a binary partition tree in the higher and the lower partitions of the WHN

matrix. The pseudo code for implementing the WHN is as in Figure 3.2.
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function WH_N (x, StartPosition, N)

{

WH_2 (x, StartPosition, N) % Do WH_2

if (N>2)

{

WH_N (x, StartPosition, N/2); % Lower half

WH_N (x, StartPosition+N/2, N/2); % Upper half

}

}

Figure 3.2: The Pseudo code for forward WHN.

3.2.2.1 Integer implementation of WH2

The matrix WH2, the main building block of the WHN transform, is unitary. Any

2×2 unitary matrix (B=[ a b ; c d ] ) with b 6= 0 can be factorised into a combination of

upper and lower triangular matrices to form a ladder network [80], so that the rounding

operations can be performed as in lifting steps. Moreover, the matrix WH2 is similar

to the polyphase matrix of the S transform, the only difference being the symmetry in

WH2. Therefore, a similar factorisation as in the S transform can be performed to

obtain the lifting steps as below.

WH2 =
1√
2

[

1 1

1 −1

]

=





√
2 0

0 1√
2





︸ ︷︷ ︸

K

[

1 −1
2

0 1

]

︸ ︷︷ ︸

U

[

1 0

1 −1

]

︸ ︷︷ ︸

P

(3.24)

The matrix P corresponds to the prediction step (dual lifting) and the matrix U cor-

responds to the updating step (primal lifting) as in lifting terminology (section 3.1).

They can be implemented in lifting steps with rounding operations as in equations 3.25

and 3.26. They are similar to the lifting steps in the S transform (See Appendix A

equations A.3 and A.4), which is also the integer form of the Haar Wavelet.

From P : x 2 ← −x 2 + x 1 (3.25)

From U : x 1 ← x 1 −
⌊

1

2
(x 2) +

1

2

⌋

(3.26)
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3.2.2.2 Implementing the scaling matrix (K)

The scaling factor K can be incorporated in either of two ways. In the 1-D Walsh

Hadamard transform, the matrix K can be replaced by additional four lifting steps as

in equation 3.27 [55].





√
2 0

0 1√
2



 =

[

1 0

−1 1

]

︸ ︷︷ ︸

K3




1 1− 1√

2

0 1





︸ ︷︷ ︸

K2

[

1 0√
2 1

]

︸ ︷︷ ︸

K1

[

1 1−
√

2
2

0 1

]

︸ ︷︷ ︸

K0

(3.27)

The lifting steps are as below.

From K0 : x 1 ← x 1 +

⌊

1−
√

2

2
x 2 +

1

2

⌋

(3.28)

From K1 : x 2 ← x 2 −
⌊√

2 x 1 +
1

2

⌋

(3.29)

From K2 : x 1 ← x 1 −
⌊

(1− 1√
2
) x 2 +

1

2

⌋

(3.30)

From K3 : x 2 ← x 2 − x 1 (3.31)

However, in a 2-D transform, the effect of scaling becomes a multiplication by a scaling

mask, KK, recursively along a quad tree in the coefficient domain.

KK =
× 2 × 1

× 1 × 1
2

Therefore, in the 2-D transform, the use of matrix K can be avoided and the net effect

of using it can be considered in the quantising and entropy coding stages, as will be

discussed in Section 4.2.1.2.

3.2.2.3 Another approach for integer WH2

The WH2 matrix (equation 3.14) possesses a unit determinant and a non-zero (0,1)th

element. Therefore, it can be factorised into a product of upper and lower triangular

matrices as shown in eqation 3.32 [80].

WH2 =





1√
2

1√
2

1√
2
− 1√

2



 =




1

cos( π
4
)−1

sin( π
4
)

0 1





︸ ︷︷ ︸

F2

[

1 0

sin(π
4 ) 1

]

︸ ︷︷ ︸

F1




1

cos( π
4
)−1

sin( π
4
)

0 1





︸ ︷︷ ︸

F0

(3.32)
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The corresponding lifting steps with rounding operations for the integer realisation are

as below.

From F0 : x 1 ← x 1 +

⌊

cos(π
4 )−1

sin(π
4 )

x 2 +
1

2

⌋

(3.33)

From F1 : x 2 ← x 2 +

⌊

sin(
π

4
) x 1 +

1

2

⌋

(3.34)

From F2 : x 1 ← x 1 +

⌊

cos(π
4 )−1

sin(π
4 )

x 2 +
1

2

⌋

(3.35)

Only three lifting steps are involved in this method, whereas five lifting steps are

involved in the KUP factorisation method in sections 3.2.2.1 and 3.2.2.2.

3.2.2.4 Output in sequency order

In this implementation, which is based on the Kroneckor product representation of the

WHN, the output is not ordered in the increasing sequency order, but in the Natural

order. But for applications such as embedded image coding, the output in increasing

sequency order is important. An increasing sequency ordered output can be obtained

by permuting the input. This is based on the symmetry of the WHN matrix. The

rows of the WALN matrix have been permuted to the Natural order in obtaining the

WHN. The columns of WHN correspond to the input. Due to symmetry, the Natural

order arrangement can be set off by rearranging the columns, which in turn corresponds

to rearranging the input order of the data. The permutation index (PermIndex) for

an N-point transform (where N is an integer power of two) can be computed as in

Figure 3.3. Then the input sequence, x(i), in sequency order is xs(i) = x(PermIndex(i))

for i = 0, . . . , N − 1.

function [PermIndex]=GetIndex(N)

if (N==2)

PermIndex=[0 1];

else

PermIndex(1:2:N-1)=GetIndex(N/2);

PermIndex(2:2:N)=N-1-PermIndex(1:2:N-1);

end

Figure 3.3: MATLAB code for the permutation index.
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3.2.2.5 Block diagram for integer Walsh Hadamard transform

The above presented integer implementation of the WHN can be summarised in a block

diagram as in Figure 3.4. The inverse transform can be implemented by reversing

the recursive operations and the lifting steps by changing the sign and the order of

operation of the lifting equations 3.25, 3.26 and the scaling factor equations. The

signal flow diagram for the forward integer WH8 avoiding the scaling factors is as in

Figure 3.5.
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3.2.3 The zero-order entropy values

The block to tree structre rearrangement

The WHTN is performed on the partitioned image blocks of size N×N. According to

this implementation, the WHTN is analogous to a 1-D wavelet packet transform using

WH2 (which in turn is analogous to Haar transform) performing along a complete

binary tree. The 2-D WHT is analogous to a separable 1-D wavelet packet transform

applied to rows and columns respectively. Therefore, the transformed blocks can be

reorganised into wavelet packet sub bands. This rearrangement is shown in Figure 3.7

as a pseudo code and in Figure 3.6 pictorially for N=4 on a 8×8 image. The number of

scales in the corresponding wavelet packet transform is log2(N) and the total number

of packet sub bands is N2. This rearrangement allows the wavelet coding techniques

to be used for coding the IWHT coefficients.

WHT4 Blocks
000 010 020 030 001 011 021 031

100 110 120 130 101 111 121 131

200 210 220 230 201 211 221 231

300 310 320 330 301 311 321 331

002 012 022 032 003 013 023 033

102 112 122 132 103 113 123 133

202 212 222 232 203 213 223 233

302 312 322 332 303 313 323 333

w
w
w
w
�

WHT4 Wavelet packet sub bands
000 001 010 011 020 021 030 031

002 003 012 013 022 023 032 033

100 101 110 111 120 121 130 131

102 103 112 113 122 123 132 133

200 201 210 211 220 221 230 231

202 203 212 213 222 223 232 233

300 301 310 311 320 321 330 331

302 303 312 313 322 323 332 333

Figure 3.6: Blocks to wavelet tree rearrangement for N=4 on 8×8 image
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Block2Tree( Blocks,Tree,rows,columns,tree_levels)

{

BlkSize = 2^(tree_leveles);

rblks = rows/BlkSize;

cblks = columns/BlkSize;

for (i=0:rblks-1)

for (j=0:cblks-1)

for (p=0:BlkSize-1)

for (q=0:BlkSize-1)

Tree[i+rblks*p][j+cblks*q]=Blocks[i*BlkSize+p][j*BlkSize+q];

}

Figure 3.7: The pseudo code for blocks to wavelet tree rearrangement.

The zero-order entropy values

The zero-order entropy values, calculated using the weighted entropy equation 3.9, for

the wavelet packet sub band representation of the IWHT applied on the test image set

for different block sizes are as in Table 3.2.

N 2 4 8 16 32

Gold Hill 5.625 5.122 4.995 4.949 4.870
Barbara1 5.959 5.497 5.304 5.265 5.172
Barbara2 5.928 5.523 5.404 5.350 5.253

Boats 5.191 4.720 4.650 4.683 4.663
Black Board 4.794 4.270 4.182 4.238 4.247

Average 5.499 5.026 4.907 4.897 4.841

Table 3.2: Weighted zero-order entropy values in bpp for IWHT

The weighted entropy values in Table 3.2 show that the greater the block size, N, the

lower the weighted entropy values. All images, except the black board image, have

recorded their lowest entropy values for block sizes of 32, which is also analogous with

a 5 scale (log2 32) wavelet packet transform. However, it is evident that the net benefit

obtained from larger N decreases with the increasing N. For example, the net gain

achieved by increasing N from 8 to 16 is lower than the gain achieved by increasing N

from 4 to 8. Therefore, in the case of a low complexity requirement N=8 is a better

option.
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3.3 The Integer Discrete Cosine Transform (IDCT)

The DCT-II, defined in equation 1.5 on page 6, uses cosine functions as basis vectors.

Therefore, the transform matrix consists of values between 1 and -1, resulting non inte-

ger coefficients in the transform domain. In this section, current methods on designing

the IDCT-II and a new method for an N-point IDCT-II where N is any integer power

of two are presented.

The design of the IDCT algorithms can be influenced from the design concepts used

in designing the fast DCT algorithms, as they involve factorising the DCT matrix

into sparse matrices. For example, the fast algorithms based on Culey-Tukey type

(decimation-in-time) and Sande-Tukey (decimation-in-frequency) type algorithms [81]

using butterfly representation, which are also similar to lattice structures, can be con-

verted into ladder structures [6], so that the lifting techniques can be employed. Already

published fast algorithms for computing the DCT can be categorised into three groups

based on their methods of approach as below.

1. Direct methods.

2. Indirect methods.

3. Recursive methods.

The direct methods use sparse matrix factorisation of the DCT matrix. The DCT

matrix is an unitary matrix, which can easily be factorised into products of sparse

matrices [82, 83, 84, 85]. The indirect methods include using the fast Fourier transform

(FFT) [86, 87, 88], the Walsh-Hadamard transform (WHT) techniques [9, 89] and the

Hartley transform [90] to compute the DCT coefficients. In the recursive algorithms

the higher order DCT is computed from the lower order DCT coefficients [91, 92, 93].

The already published IDCT algorithms mainly use the direct factorisation techniques

[53] and the indirect deriving methods [94].

The technique presented in [53] (LDCT), uses direct factorisation to decompose the

un-normalised 8-point DCT-II matrix into the product of matrices DP1LUP2, where

P1 and P2 are permutation matrices, D is a diagonal matrix representing the scal-

ing operations and L and U are lower and upper triangular matrices with Li,i =

Ui,i = 1, i = 0, . . . , 7. The integer coefficients c for an input vector x are obtained by

c = P1[L[UP2x]], where [.] denotes rounding to the nearest integer. The above de-

compositions are not unique. The authors have derived the particular decomposition
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heuristically. With this method, separate decompositions have to be performed for the

other DCT sizes.

In [94] (IntDCT), the authors have used an indirect factorisation based on the Walsh

Hadamard transform (WHT ) to decompose the N-point DCT-II matrix into the prod-

uct of matrices
√

1/NBTBHW, where B is the bit reversal operation, HW is the

un-normalised WHT and T is a block diagonal matrix. The blocks in the T matrix

were implemented using the lifting factorisation of Givens rotations as introduced in

the perfect reconstruction network techniques in [80].

In both the above methods, the authors have either ignored the scaling factors or

have incorporated them into the input data. The IntDCT has been designed for an

8-point DCT. It can be extended for N values higher than 8, by computing the angles

and their Givens rotations for the diagonal block matrices that require further sparse

factorisation operations when their dimensions are higher than two.

A novel technique for N-point IDCT-II with normalised coefficients using recursive

methods and lifting techniques is discussed in the following section. This derivation

can be used for any N-point IDCT-II, where N is a power of 2.

3.3.1 The IDCT using recursive methods and lifting

The DCT-II, shown in equation 1.5, can be rewritten as in equation 3.36.

X = αN DN x (3.36)

where, X and x are column vectors of size N×1 denoting the DCT output in increasing

frequency order and the input data sequences respectively. DN is the N-point DCT

matrix of size N×N and αN is a diagonal matrix of size N×N denoting the normalising

constants.

In the recursive fast DCT algorithm presented in [91], the matrix DN was rearranged

by permuting its columns and rows, so that it can be partitioned into four quadrants.

The row permutation causes the even indexed rows grouped in the upper half of DN

and the odd indexed rows grouped in the lower half of DN , which in turn causes the

same ordering in X. The column permutation arranges the columns in a way such that,

for the even indexed rows, the left and the right quadrants are the same and for the odd

indexed rows, the left and the right quadrants are opposite in sign. The permutated
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coefficient matrices for N=2, 4 and 8 can be found in Appendix B. Since the column

permutation operation directly relates to the input data, in order to compensate the

column permutation, the input vector x is rearranged as in equation 3.37.

x̃(n) = x(2n)

x̃(N + n
2 ) = x(N − (2n + 1))

}

n = 0, . . . , N/2− 1. (3.37)

The effect of the above permutation operations can be mathematically depicted as

below (equations 3.38–3.43).

The un-normalised N-point DCT-II coefficients X(k), where k=0,. . . ,N-1 for the input

signal x(n), where n=0,. . . ,N-1 are as in equation 3.38.

X(k) =
N−1∑

n=0

x(n) cos

(

(2n + 1)
πk

2N

)

(3.38)

Using equation 3.38, the even indexed coefficients can be written as in equation 3.39.

X(2k) =
N−1∑

n=0

x(n) cos

(

(2n + 1)
π2k

2N

)

(3.39)

Using the rearranged input sequence x̃ as in equation 3.37, the above can be rewritten

as in equation 3.40.

X(2k) =

N
2
−1
∑

n=0

x̃(n) cos

(

(2 (2n)+1)
πk

2N
2

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) cos

(

(2 (N− (2n+1))+1)
πk

2N
2

)

=

N
2
−1
∑

n=0

x̃(n) cos

(

(4n+1)
πk

2N
2

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) cos

(

2πk−(4n+1)
πk

2N
2

)

=

N
2
−1
∑

n=0

[

x̃(n) + x̃(N
2 + n)

]

cos

(

(4n+1)
πk

2N
2

)

(for k = 0, . . . ,
N

2
− 1). (3.40)

Further, as can be verified from the transform matrices in Appendix B, it can be shown

that,

cos

(

(4n+1) πk
2 N

2

)

for n = 0, . . . , N/2−1







=







DM = cos
(

(2n+1) πk
2M

)

for n = 0, 2, . . . ,M−2,M−1,M−3, . . . , 1

where, M = N
2

(3.41)
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Thereby, the equation 3.40 becomes,

X(2k) =

N
2
−1
∑

n=0

[

x̃(n) + x̃(N
2 + n)

]

cos

(

(4n+1)
πk

2N
2

)

︸ ︷︷ ︸

N
2

point DCT

(3.42)

The equation 3.42 shows that the even indexed coefficient calculations reduce to an
N
2 -point DCT-II coefficient calculation for the sum of the upper and the lower halves

of the input signal x̃.

The odd indexed coefficients can be rewritten as in equation 3.43 using a similar ap-

proach used for the even indexed coefficients.

X(2k +1) =
N−1∑

n=0

x(n) cos

(

(2n+1)
π(2k +1)

2N

)

=

N
2
−1
∑

n=0

x̃(n) cos

(

(4n+1)
π(2k +1)

2N

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) cos

(

(2 (N− (2n+1))−1)
π(2k +1)

2N
2

)

=

N
2
−1
∑

n=0

x̃(n) cos

(

(4n+1)
π(2k +1)

2N

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) cos

(

π(2k +1)− (4n+1)
π(2k +1)

2N

)

=

N
2
−1
∑

n=0

[

x̃(n)−x̃(N
2 + n)

]

cos

(

(4n+1)
π(2k +1)

2N

)

︸ ︷︷ ︸

E N
2

(for k = 0, . . . ,
N

2
− 1). (3.43)

The equation 3.43 shows that the odd indexed coefficient calculations reduce to a matrix

multiplication of the difference of the upper and the lower halves of the input signal

vector x̃ with the matrix E(N
2 ), the derivation of which for lossless implementation is

discussed in section 3.3.1.3.
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3.3.1.1 Incorporating the normalising factors

The normalising factor αN for each coefficient is as in equation 3.44.

αN (k) =

√

2

N
εk (3.44)

where, εk =







1√
2

if k = 0 ,

1 else.

The normalisation constants for different values of N, where N is an integer power of 2

are shown in table 3.3.

N k = 0 k > 0

2 1√
2

1

4 1√
4

1√
2

8 1√
8

1√
4

16 1√
16

1√
8

32 1√
32

1√
16

Table 3.3: The normalisation constants for DCT-II

It is evident from the table 3.3 that the normalising constants for the N-point DCT

coefficients can be obtained by multiplying the normalising constants of the N
2 -point

DCT coefficients by a factor 1√
2
. This can be incorporated into equations 3.42 and 3.43

respectively as below.

X(2k) =

N
2
−1
∑

n=0

cos

(

(4n+1)
πk

2N
2

)

︸ ︷︷ ︸

N
2

point DCT

1√
2

[

x̃(n) + x̃(N
2 + n)

]

(3.45)

X(2k +1) =

N
2
−1
∑

n=0

cos

(

(4n+1)
π(2k +1)

2N

)

︸ ︷︷ ︸

E N
2

1√
2

[

x̃(n)−x̃(N
2 + n)

]

(3.46)

This can be summarised into matrix format as below.

X = DN x̃
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


X2k

X2k+1



 =




DN

2

U1

EN

2

U2



 (3.47)

where,




U1

U2



 =
1√
2




IN/2 IN/2

IN/2 −IN/2





︸ ︷︷ ︸

A




x̃(0, · · · , N

2 −1)

x̃(N
2 +1, · · · , N−1)



 (3.48)

where, IN/2 is the Identity matrix of size N
2

and A corresponds to the WH2.

3.3.1.2 Lossless realisation of the even-indexed coefficients

The transformation of x̃ into U1 and U2, as in equation 3.48, is the same as trans-

forming x̃ with the 2-point Walsh Hadamard transform, WH2. The WH2 operations

can be factorised into lifting steps as in equations 3.32 - 3.35 in section 3.2.2.3, thus

they can be realised with integer coefficients easily.

As shown in equations 3.42 and 3.47, the even-indexed rows of the DCT matrix reduce

to the N
2 -point DCT matrix. Therefore, the even-indexed coefficients can be realised

by recursively computing DM, where M = (N
2 , N

4 , . . . , 2). At the recursion termina-

tion point, where N=2, the D2 matrix is the same as the WH2 matrix, the lossless

realisation of which has already been discussed in section 3.2.2.3.

3.3.1.3 Lossless realisation of the odd-indexed coefficients

The realisation of the odd-indexed coefficients at a given stage is achieved by multi-

plying the vector U2 with the corresponding cosine matrix, EN

2

(equation 3.47). Some

intrinsic properties of EN

2

are discussed below. They can be used for further factorisa-

tion of EN

2

, so that the lifting techniques can be used to obtain integer coefficients.

Let the elements of EN

2

be Ckn
N , where

Ckn
N = cos

(

(4n+1)
π(2k +1)

2N

)

(3.49)

= cos

(
(4n+1)π

2N
(2k +1)

)

= cos (φn
N (2k +1))

= cos (θkn)

where, k, n = 0, . . . , N
2 −1.
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The basic angle, φn
N = (4n+1)π

2N , corresponds to θkn for k = 0.

For a given k (row),

for n0 = 0, . . . , N
4 −1

Ckn0
N = cos

(

(4n0+1)
π(2k +1)

2N

)

= cos (θkn0) (3.50)

for n1 = n0 + N
4

Ckn1
N = cos

(

(4(n0 + N
4 )+1)

π(2k +1)

2N

)

= cos
(

θkn0 + π
2 (2k +1)

)

=







cos
(
θkn0 + π

2

)
for even k

cos
(

θkn0 + 3π
2

)

for odd k
(3.51)

The equations 3.50 and 3.51 show that the elements of Ckn
N that are separated from an

N
4 distance are separated from an angle π

2 (2k + 1). Likewise, it can be shown for any

distance m, where m ∈ {N
4 , N

8 , N
16 , . . . , 1}, that

C
k(n+m)
N = cos

(

θkn + 2mπ
N (2k + 1)

)

(3.52)

Similarly, for a given n (column),

for k0 = 0, . . . , N
4 −1

Ck0n
N = cos

(

(4n+1)
π(2k0 +1)

2N

)

= cos (θk0n) (3.53)

for k1 = N
2 −1−k0

Ck1n
N = cos

(

(4n+1)
π(2 (N

2 −1−k0) +1)

2N

)

= cos
(

π
2 (4n +1)− θk0n

)

= cos
(

π
2 − θk0n

)
, ∀ n (3.54)

The equation 3.53 shows that the angles in successive rows are separated by an angle

of 2φn, where φn is the basic angle for a given column as defined in equation 3.49. The

matrix Cnk
N can be rewritten as below using the expressions (equations 3.50 - 3.54) for
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the angles in four quadrants.

Cnk
N =

[

cos (θk0n0) cos (θk0n1)

cos (θk1n0) cos (θk1n1)

]

=

[

cos (θk0n0) cos
(
θk0n0 ± π

2

)

cos
(

π
2 − θk0n0

)
cos

(
π
2 − θk0n0 ∓ π

2

)

]

=

[

cos (θk0n0) ∓ sin (θk0n0)

sin (θk0n0) ± cos (θk0n0)

]

(3.55)

Equation 3.55 shows that the elements in Cnk
N can be rearranged using the indices

k0, k1, n0 and n1 into 2×2 partial matrices, which can be either of the two forms as

above with an unit determinant. The matrices with a unit determinant and a non zero

(0,1)th element can be factorised into lifting steps, thus they can be realised losslessly

[80]. This concept can be used to realise odd-indexed coefficients losslessly.

The DCT matrix arranged in increasing frequency order and the corresponding WHT

matrix arranged in increasing sequency order share the same signs. For the same reason,

some authors had considered the DCT matrix as an amplitude modulated WHT matrix

[9, 89]. This relationship is used for further analysis of the odd indexed coefficient rows

in the DCT matrix as below.

Cnk
N =

(

Cnk
N ×WHN

2

)

×WHN

2

(3.56)

(Because WHN ×WHN = IN)

So far in this derivation only a 1√
2

factor has been used as the normalising factor for the

odd-indexed coefficients (equation 3.48). The rest of the normalising is incorporated

into the elements of EN

2

i.e. Cnk
N .

Cnk
N new =

(√
2αN × Cnk

N ×WHN

2

)

︸ ︷︷ ︸

Onk
N

×WHN

2

(3.57)

As seen earlier, the WHN

2

can be realised losslessly. Therefore, factoring Onk
N into

lifting steps leads to the lossless realisation of the odd-indexed coefficients of the N-

point DCT. The columns and the rows of the matrix Onk
N can be permuted using the

permutation matrices P1N and P2N and the signs of the columns are set using the

sign matrix SN, so that the elements of Onk
N are arranged as in equation 3.58.
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Onk
N = P2N ×







































































cπ
8
×
































c π
16
× · · ·













c π
N

R π
2N

−s π
N

R π
2N

s π
N

R π
2N

+pi

4
c π

N
R π

2N
+π

4

cαRα1 −sαRα1

sαRα2 cαRα2













︸ ︷︷ ︸

A0

−s π
16
× [A0]

s π
16
× · · ·













c 9π
N

R 9π
2N

−s 9π
N

R 9π
2N

s 9π
N

R 9π
2N

+pi

4
c 9π

N
R 9π

2N
+pi

4

cβRβ1 −sβRβ1

sβRβ2 cβRβ2













︸ ︷︷ ︸

A1

c π
16
× [A1]
































︸ ︷︷ ︸

A

−sπ
8
× [A]

sπ
8
































c 5π
16
× · · ·













c 5π
N

R 5π
2N

−s 5π
N

R 5π
2N

s 5π
N

R 5π
2N

+π
4

c 5π
N

R 5π
2N

+π
4

cγRγ1 −sγRγ1

sγRγ2 cγRγ2













︸ ︷︷ ︸

B0

−s 5π
16
× [B0]

s 5π
16
× · · ·













c 13π
N

R 13π
2N

−s π
N

R 13π
2N

s 13π
N

R 13π
2N

+π
4

c 13π
N

R 13π
2N

+π
4

cδRδ1 −sδRδ1

sδRδ2 cδRδ2













︸ ︷︷ ︸

B1

c 5π
16
× [B1]
































︸ ︷︷ ︸

B

cπ
8
× [B]







































































× SN × P1N

(3.58)

where cθ = cos(θ), sθ = sin(θ),

α =
π(4(N

8 −4)+1)

N
, α1 =

α

2
, α2 = α1+

π

4
,

β =
π(4(N

8 −2)+1)

N
, β1 =

β

2
, β2 = β1+

π

4
,

γ =
π(4(N

8 −3)+1)

N
, γ1 =

γ

2
, γ2 = γ1+

π

4
,
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δ =
π(4(N

8 −1)+1)

N
, δ1 =

δ

2
, δ2 = δ1+

π

4
and

Rθ =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

︸ ︷︷ ︸

Givens Rotation Matrix

(3.59)

The factorised Onk
N in equation 3.58 can be re-written using the Kroneckor products of

rotation matrices and the Identity matrices as below.

Onk
N = P2N ×



















R π
2N

R π
2N

+π
4

. . .

. . .

Rπ(4( N
4−1)+1)

2N
−π

4

R
π( N

4−1)+1)

2N



















× · · ·

· · · ×











R π
32
⊗ I N

16

R 9π
32
⊗ I N

16

R 5π
32
⊗ I N

16

R 13π
32
⊗ I N

16











×



R π

16
⊗ IN

8

R 5π
16
⊗ IN

8



×
[

Rπ
8
⊗ IN

4

]

× SN ×P1N (3.60)

The Givens rotation matrix (equation 3.59) Rθ possesses a unit determinant and a

non-zero (0,1)th element. The (0,1)th element is − sin(θ), which becomes zero only

when θ = kπ, where k ∈ N . Such values of θ do not occur in the above derivation.

Therefore, they can be factorised into a product of upper and lower triangular matrices

as shown in [80] and [55].

Rθ =

[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]

=




1 cos(θ)−1

sin(θ)

0 1





︸ ︷︷ ︸

R2

[

1 0

sin(θ) 1

]

︸ ︷︷ ︸

R1




1 cos(θ)−1

sin(θ)

0 1





︸ ︷︷ ︸

R0

(3.61)

The corresponding lifting steps with rounding for the integer realisation are as below.

From R0 : x 1 ← x 1 +

⌊
cos(θ)−1

sin(θ)
x 2

⌋

(3.62)
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From R1 : x 2 ← x 2 + b sin(θ) x 1 c (3.63)

From R2 : x 1 ← x 1 +

⌊
cos(θ)−1

sin(θ)
x 2

⌋

(3.64)

All the sub matrices in equation 3.60 can be realised losslessly with the above lifting

steps.

The rotation angle values in sub matrices in equations 3.58 and 3.60 are the same as

the basic angle φn
N for n = 0, . . . , N

4 −1 where N = 4, 8, . . . ,M for IDCTM. Equation

3.60 can be written in generic form as below.

Onk
N = P2N ×

[

diag(Rφn
N
⊗ IN

N

)n=0,..., N
4
−1

]

× · · ·

· · · ×
[

diag(Rφn
16
⊗ I N

16

)n=0,...,3

]

×
[

diag(Rφn
8
⊗ IN

8

)n=0,...,1

]

×
[

Rφ0
4
⊗ IN

4

]

× SN ×P1N (3.65)

The values of basic angle φn
N at each level is computed as in Figure 3.8.

function compute_basic_angle (N, n, Phi)

{

% This computes the basic angles for odd indexed rows of N-point DCT.

if (N>2)

{

compute_basic_angle (N/2, 2*n, Phi/2);

compute_basic_angle (N/2, 2*n+1, (Phi/2)+(PI/4));

}

}

%Call the function as below

%PI=3.14159

compute_basic_angle (N/2, 0, PI/8); % for N-point DCT

Figure 3.8: The pseudo code for computing the basic angle φn
N .

3.3.1.4 Permutation (P1N & P2N) and Sign matrices (SN )

The Onk
N matrix, the odd-indexed rows of the N-point DCT factorised into sub matrices

with the Kroneckor products of the rotation matrices of the basic angles at each stage
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with the corresponding identity matrices, needs to be row and column wise permutated

in order to achieve the correct ordering of the DCT basis vectors as in equation 3.43.

This is achieved by incorporating P2N and P1N operations corresponding to row

and column permutation as in equation 3.60. Computing indexes for row and column

permutation for Onk
N using recursive functions is as in the pseudo codes shown in Figure

3.9 and 3.10.

function OddDCT_Row_PermIndex(index_array, N, NN)

{

if (N>2)

{

OddDCT_Row_PermIndex(index_array,N/2,NN);

for (i = N/4 : N/2-1)

index_array[i]=N-2-index_array[i-N/4];

for (i= NN/2+N/4 : NN/2+N/2-1)

index_array[i]=N-index_array[i-N/4];

}

else

{

index_array[0]=0;

index_array[NN/2]=1;

}

}

%Call the function as below

OddDCT_Row_PermIndex(index_array,N/2,N/2); % for N-point DCT

New_odd_rows=old_odd_rows[index_array];

Figure 3.9: The pseudo code for index computation for row permutation of Onk
N .

Although some authors have considered the exact sign similarity between the WHT

(in Hadamard order) and the rearranged DCT [9, 89], this is only true for 2-point

and 4-point transforms. There are a few sign mismatches which appear in transforms

with dimensions higher than four, as can be seen in the transform matrices listed in

Appendix B. To alleviate this sign mismatch, a sign compensation (SN ) is performed

in Onk
N . The computation of sign compensation up to N=32, N-point DCT is shown as

in figure 3.11. The upper half of the sign matrix for N-point DCT is the sign matrix

for the N
2 -point DCT.
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function OddDCT_Col_PermIndex(index_array, N, NN)

{

if (N>2)

{

OddDCT_Col_PermIndex(index_array,N/2,NN);

for (i = N/4 : N/2-1)

index_array[i]=(i-N/4)*4+N/2+1-index_array[i-N/4];

for (i= NN/2+N/4 : NN/2+N/2-1)

index_array[i]=(i-(NN/2+N/4))*4+N/2+1-index_array[i-N/4];

}

else

{

index_array[0]=0;

index_array[NN/2]=1;

}

}

%Call the function as below

OddDCT_col_PermIndex(index_array,N/2,N/2); % for N-point DCT

New_odd_cols[index_array]=old_odd_cols;

Figure 3.10: The pseudo code for index computation for column permutation of Onk
N .

function Get_New_Sign(sign_array,N)

{

switch N

case {2},

sign_array=[1 1];,

case {4},

sign_array=[Get_New_Sign(sign_array,2) 1 -1];,

case {8},

sign_array=[Get_New_Sign(sign_array,4) 1 -1 -1 -1 ];,

case {16},

sign_array=[Get_New_Sign(sign_array,8) 1 -1 -1 -1 -1 -1 -1 1];,

}

%Call the function as below

Get_New_Sign(sign_array,N/2); % for N-point DCT

New_odd_cols=old_odd_cols*sign_array; % for each element

Figure 3.11: The sign compensation for odd indexed rows in N-point DCT
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3.3.1.5 A Block diagram for the IDCT

The above discussed integer implementation of the IDCTN can be summarised in

a block diagram as in Figure 3.12. The column permutation stage at the beginning

corresponds to x(n) → x̃(n) conversion shown in equation 3.37, whereas the row per-

mutation stage at the end corresponds to rearranging the upper and lower halves of the

DCT matrix into increasing frequency order. The pseudo code for the middle stage,

integer DCT operations, is as in Figure 3.13. The inverse transform is implemented

by reversing the recursive operations and the lifting steps by changing the sign and

the order of operation of lifting equations. In both forward and inverse transforms, all

the operations can be performed as in-place computations, which result in low resource

requirements in software / hardware implementations.
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Figure 3.12: Block diagram for integer IDCTN.

The signal flow diagram for the forward IDCT8 is as in Figure 3.14. The inverse is

computed by following the inverse signal flow with the reversed operations including

lifting, row / column permutations and sign changes.
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function LiftDCT(input, N, position)

{

kron(Walsh2, I(N/2)) % Walsh2 is 2X2 Walsh Hadamard Matrix

% I is the Identity Matrix

% kron is the Kroneckor product operation

if (N>2)

{

% Even rows (upper half) operations

LiftDCT(input, N/2, position);

% Odd rows (lower half) operations

% Do WHT(N/2) for position+N/2 to position+N

DoWalsh(input ,N/2, position+N/2);

Odd_Perm_Cols(input, N/2, position+N/2);

Odd_ChangeSign(input, N/2, position+N/2);

Do_Basic_Angle_Rotations(input, N/2, position+N/2, PI/8);

Odd_Perm_Rows(input, N/2, position+N/2);

% PI/8 is the starting basic angle for any dimension

}

}

%Call the function as below for N-point DCT

Do_Column_order(input, N) % Equation 3.37

LiftDCT(input, N, 0)

Do_Row_order(input, N) % to increasing frequency order

Figure 3.13: The pseudo code for integer DCT operations in IDCTN.
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3.3.2 The zero-order entropy values

The performance of the IDCT on lossless image coding with different block sizes is

presented here. For each block, the transform is applied separately on rows and columns

and then the block structure is converted to the corresponding wavelet packet tree

structure introduced on page 41 using the same algorithm. The weighted entropy

values, computed based on the packet sub bands for the image set using the IDCT for

different N values, are as in Table 3.4.

N 2 4 8 16 32

Gold Hill 5.631 5.031 4.825 4.727 4.626
Barbara1 5.965 5.222 4.850 4.656 4.514
Barbara2 5.934 5.362 5.108 4.963 4.824

Boats 5.203 4.556 4.347 4.281 4.214
Black Board 4.809 4.162 3.982 3.955 3.925

Average 5.508 4.867 4.622 4.516 4.421

Table 3.4: Weighted zero-order entropy values in bpp for IDCT

These results show that as the block size, N, increases, the weighted entropy values

decrease, thus giving better results. In this case, the 32-point IDCT provides the best

performance for all the images in the test image set. However, it is noted that the

net entropy savings gained by opting for greater N, decrease with the increasing N.

Further, greater N causes higher computational complexity.
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3.4 The Integer Discrete Sine Transform (IDST)

Although the DCT has been widely used in transform based coding of natural images,

the discrete sine transform (DST), first introduced in [95], has not been used com-

monly in image coding due to its poor data decorrelation capability and poor energy

compaction. Consequently, the DST coefficients of highly correlated source data are

also highly correlated [2]. Since the DST does not compute a zero frequency or a bias

component, the DC component of the source data is spread over other frequencies in

the transform domain. This effect can be reduced, if not eliminated entirely, by sub-

tracting the global mean from the source data, even though the local mean of a given

block is not completely removed by this method.

However, the DST has been used in modelling of random processes, in order to make

their KLT fast [95, 96]. Further, it has been used in image reconstruction [97]. The

authors of [2] and [98] have suggested the possibility of using DST for non-intra frame

transform coding. An integer version of the DST is implemented in this section, so that

the performance of DST on lossless image coding and lossless non-intra frame coding

can be evaluated.

The DST for a one dimensional (1-D) data sequence x(n + 1), where n = 0, . . . , N−1,

and its inverse are defined as in equations 3.66 and 3.67 respectively [96].

X(k) = εk

√

2

N

N−1∑

n=0

x(n + 1) sin( (2n + 1)
πk

2N
) (3.66)

for k = 1, . . . , N

x(n + 1) =

√

2

N

N∑

k=1

εk X(k) sin( (2n + 1)
πk

2N
) (3.67)

for n = 0, . . . , N−1

where, εk =







1√
2

if k = N ,

1 else.

3.4.1 Derivation of the IDST

There has not been any report of integer implementation of the DST in published

literature. It was shown in section 3.3, how the IDCT can be derived from the fast

algorithm factorisations. The same approach has been followed in this research for the

derivation of the IDST.
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All the fast DST algorithms in literature have used recursive methods. The earliest

example of the fast DST used a sparse matrix factorisation which leads to a recursive

structure and consequently leading to an efficient algorithm for implementing the DST

[96]. Following Hou’s implementation of the fast DCT using recursive methods [91], two

similar approaches [92, 99] have been presented for the fast implementation of the DST

using recursive methods. In the fast recursive DCT algorithms, the even-indexed rows

in the DCT matrix were used to compute the odd-indexed rows using trigonometric

identities [91], whereas in the fast recursive DST algorithms, the odd-indexed rows

in the DST matrix were used to compute the even-indexed rows using trigonometric

identities.

3.4.1.1 The IDST using recursive methods and lifting

The DST, shown in equation 3.66, can be rewritten as in equation 3.66.

X = αN TN x (3.68)

where, X and x are column vectors of size N×1 denoting the DST output in increasing

frequency order and the input data sequences respectively. TN is the N-point DST

matrix of size N×N and αN is a diagonal matrix of size N×N denoting the normalising

constants.

This derivation is also started with the un-normalised N-point DST coefficients X(k),

where k=1,. . . ,N for the input signal x(n+1), where n=0,. . . ,N-1 as shown in equation

3.69.

X(k) =
N−1∑

n=0

x(n + 1) sin

(

(2n + 1)
πk

2N

)

(3.69)

Since the Cosines and the Sines are similar functions with a π
2 phase difference, the

column permutation used for the DCT (equation 3.37), adjusted for the DST index

notations, is used in this derivation.

x̃(n) = x(2n + 2)

x̃(N + n
2 ) = x(N − (2n + 1))

}

n = 0, . . . , N/2− 1. (3.70)

Using equation 3.69, the even indexed coefficients can be written as in equation 3.71.
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X(2k) =
N−1∑

n=0

x(n + 1) sin

(

(2n+1)
π2k

2N

)

=

N
2
−1
∑

n=0

x̃(n) sin

(

(2 (2n)+1)
πk

2N
2

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) sin

(

(2 (N− (2n+1))+1)
πk

2N
2

)

=

N
2
−1
∑

n=0

x̃(n) sin

(

(4n+1)
πk

2N
2

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) sin

(

2πk−(4n+1)
πk

2N
2

)

=

N
2
−1
∑

n=0

[

x̃(n)−x̃(N
2 + n)

]

sin

(

(4n+1)
πk

2N
2

)

︸ ︷︷ ︸

N
2

point DST

(for k = 1, . . . ,
N

2
). (3.71)

Similarly for the odd indexed coefficients,

X(2k−1) =
N−1∑

n=0

x(n + 1) sin

(

(2n+1)
π(2k−1)

2N

)

=

N
2
−1
∑

n=0

x̃(n) sin

(

(4n+1)
π(2k−1)

2N

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) sin

(

(2 (N− (2n+1))−1)
π(2k−1)

2N
2

)

=

N
2
−1
∑

n=0

x̃(n) sin

(

(4n+1)
π(2k−1)

2N

)

+

N
2
−1
∑

n=0

x̃(N
2 + n) sin

(

π(2k−1)− (4n+1)
π(2k−1)

2N

)

=

N
2
−1
∑

n=0

[

x̃(n) + x̃(N
2 + n)

]

sin

(

(4n+1)
π(2k−1)

2N

)

︸ ︷︷ ︸

F N
2

(for k = 1, . . . ,
N

2
). (3.72)

3.4.1.2 Incorporating the normalising factors

The normalising factor, αN , for each coefficient is as in equation 3.73.

αN (k) =

√

2

N
εk (3.73)
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where, εk =







1√
2

if k = N ,

1 else.

This is similar to the normalisation factors of the DCT as shown in table 3.3. Therefore,

the same relationship of the 1√
2

factor as in the DCTs can be considered. This leads

to the equations below for the normalised X(2k) and X(2k − 1).

X(2k) =

N
2
−1
∑

n=0

sin

(

(4n+1)
πk

2N
2

)

︸ ︷︷ ︸

N
2

point DST

1√
2

[

x̃(n)−x̃(N
2 + n)

]

(3.74)

X(2k−1) =

N
2
−1
∑

n=0

sin

(

(4n+1)
π(2k−1)

2N

)

︸ ︷︷ ︸

F N
2

1√
2

[

x̃(n) + x̃(N
2 + n)

]

(3.75)

The above equations can be summarised into matrix form as below.

X = TN x̃



X2k

X2k−1



 =




TN

2

U1

FN

2

U2



 (3.76)

where,




U1

U2



 =
1√
2




IN/2 −IN/2

IN/2 IN/2





︸ ︷︷ ︸

A




x̃(0, · · · , N

2 −1)

x̃(N
2 +1, · · · , N−1)



 (3.77)

where, IN/2 is the Identity matrix of size N
2

and A corresponds to (Rπ
4
⊗ IN

2

).

3.4.1.3 The relationship between the rows of DCT and DST matrices

The left half of the DST matrix, TN, for any row, ks, can be written as below using

equations 3.74 and 3.75.

Snks

N = sin

(

(4n+1)
πks

2N

)

= cos

(
π

2
−(4n+1)

πks

2N

)

(3.78)

for n = 0, . . . , N/2−1

ks = 1, . . . , N
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Similarly, the left half of the DCT matrix, DN, for any row, ks, can be written as below

using equations 3.45 and 3.46.

Cnkc

N = cos

(

(4n+1)
πkc

2N

)

(3.79)

for n = 0, . . . , N/2−1

kc = 0, . . . , N−1

Then, the condition for Snks

N = Cnkc

N is

(

(4n+1)
πkc

2N

)

= 2lπ ±
(

π

2
−(4n+1)

πks

2N

)

where, l ∈ N
(

(4n+1)
π(kc ± ks)

2N

)

= 2lπ ± π

2
(3.80)

for n = l, kc ± ks = N

feasible solution

kc = N − ks (3.81)

Further, the normalisation constants also share the same relationship, according to

their definitions as in equations 1.5-1.6 and 3.66-3.67.

αkc
= α(N−ks) (3.82)

The right halves of the DCT and the DST matrices correspond to the second half,

i.e. x̃(N
2 + n) of the rearranged input, x̃(n). It is seen that the signs of x̃(N

2 + n) in

equations 3.45-3.46 for the DCT are opposite to those in equations 3.74-3.75 for the

DST. With this observation, the right half of the DCT and the DST matrices can be

regarded as the same by negating the input x̃(N
2 + n). This observation, coupled with

the row permutation resulting from the relationship in equations 3.81 and 3.82 leads

to computing the DST coefficients using the DCT processes.

X = DSTN × x

= Prows ×DCTN × x̃ (3.83)

where, x̃ is defined as below.

x̃ =

{

x̃(n) = x(2n + 2)

x̃(N + n
2 ) = −x(N − (2n + 1))

}

n = 0, . . . , N/2− 1. (3.84)

The Prows consists of operations to rearrange DCT rows into DST rows in increasing

frequency order using equation 3.81.
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3.4.1.4 The block diagram for the IDST

With the above derivation, the IDST is computed using the previously designed IDCT

algorithm. The block diagram and the pseudo code for the IDST are as in Figure

3.15 and Figure 3.16. The column permutation stage at the beginning corresponds to

x(n) → x̃(n) conversion shown in equation 3.70, whereas the row permutation stage

at the end corresponds to the combined action of ordering rows to achieve the DST

from the DCT (as in equation 3.81) and rearranging the upper and lower halves of the

DST matrix into increasing frequency order. The pseudo code for the middle stage,

integer DCT operations, are as in Figure 3.13. The inverse transform is implemented

by reversing the recursive operations and the lifting steps by changing the sign and the

order of operation of lifting equations.
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Figure 3.15: Block diagram for integer IDSTN.

% Call the function as below for N-point IDST

Do_Column_order_for_DST(input, N) % Equation 3.70

LiftDCT(input, N, 0) % Figure 3.13

Row_order_frm_DCT_to_DST(input, N) % Equation 3.81

Do_Row_order_for_DST(input, N) % to arrange in frequency order

Figure 3.16: The Pseudo code for integer IDSTN.

As an example, the signal flow diagram for the forward IDST8 is shown in Figure 3.17.

The inverse is computed by following the inverse signal flow with the reversed operations

including lifting, row / column permutations and sign changes.
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Figure 3.17: Signal flow diagram for IDST8.

3.4.2 The zero-order entropy values

The performance of the IDST on lossless image coding with different block sizes is pre-

sented here. The total image mean is removed from the image in order to minimise the

effect of dc frequency leakage into other frequencies, which is intrinsic to the DST. For

each block the transform is applied separately on rows and columns and then the block

structure is converted to the corresponding wavelet packet tree structure introduced

on page 41 using the same algorithm. The weighted entropy values calculated based

on the packet sub bands for the image set using the IDST for different block sizes (N)

are as in Table 3.4.

N 2 4 8 16 32

Gold Hill 5.631 5.710 5.605 5.382 5.053
Barbara1 5.965 6.010 5.875 5.633 5.232
Barbara2 5.934 6.030 5.907 5.656 5.313

Boats 5.203 5.354 5.321 5.157 4.866
Black Board 4.809 4.968 4.975 4.930 4.727

Average 5.508 5.614 5.537 5.352 5.038

Table 3.5: Weighted zero-order entropy values in bpp for IDST

On average, the 32-point IDST has recorded the best entropy performance. As seen

in previous block transforms, it is also evident that the performance improved as the

block size, N, of the IDST increased. However, the 4-point IDST has shown the worst

performance on average and for most of the test images.
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3.5 Integer Non-Linear Transforms (INLT)

In section 2.1.1, the existing work on sub band based predictive techniques [41, 42,

44, 45, 46] were introduced. In those examples, the authors reported separate use

of non-linear predictions [45] and multiscale decompositions [46]. In this section, the

use of median based non-linear prediction guided sub band splitting as an integer

non-linear transform (INLT) is investigated. The support neighbourhood for median

prediction in each sub band, the update method for the LL sub band and the number

of decomposition scales for the INLTs are also analysed.

3.5.1 INLT Design

In an early example of designing perfect reconstructing non-linear filter banks, the

splitting of the input signal into two channels and the use of a lattice structure based

four or less non-linear functions, based on a new theoretical framework for non-linear

filter banks, have been presented in [100].

A pyramidal coder using a non-linear filter bank based on quincunx sub band splitting

was introduced in [101], in which the non-linear transform was obtained by hierarchical

application of median filter predictor at the sub sampled versions of the original image.

In this section, three types of non-linear transforms, namely, INLT1, INLT2 and INLT3,

which are based on quincunx splitting followed by non linear sub band coding, similar

to that in [101] are considered. In this sub band splitting, it is assumed that the pixels

in the input image represent one of the four polyphase components: 00, 01, 10 and 11,

as shown in Figure 3.18. The input image is split into four sub bands which correspond

to each polyphase component. For an input image, x, the notation x00, x01, x10 and

x11 is used to represent the four sub bands.

00 01 00 01 00 01 00

10 11 10 11 10 11 10

00 01 00 01 00 01 00

10 11 10 11 10 11 10

00 01 00 01 00 01 00

10 11 10 11 10 11 10

Figure 3.18: Pixel labelling for quincunx splitting
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3.5.1.1 INLT1

The INLT1 is the same as the non-linear filter used in [101]. This is used as a benchmark

for the comparison of performance of the INLT2 and the INLT3.

The prediction functions used for x01, x10 and x11 are as in equations 3.85-3.87.

x01 = x01 − bF(x00, x11)c (3.85)

x10 = x10 − bF(x00, x11)c (3.86)

x11 = x11 − bF(x00)c (3.87)

The median interpolator is used as the prediction function F due to its low complexity,

its good interpolation performance at edges, whenever the edge is horizontal, vertical

or diagonal and its capability of discarding impulse noise components. The prediction

masks used are shown in Figure 3.19. The polyphase component x00 is regarded as the

LL output and used as the input to the next level of decompositions using the same

process as above.

11 00 00 00
00 (01) 00 11 (10) 11 (11)

11 00 00 00

Figure 3.19: The prediction masks for x01, x10 and x11 for the INLT1.

3.5.1.2 INLT2

The INLT2 uses the same sub band decompositions as in the INLT1. An additional

step is included to update the x00 component before using it as the input of the next

level. In a non-linear sub band decomposition example for lossy image coding [102],

it was concluded that employing an updating filter, which is 0.5 of the median of the

update mask, had improved the PSNR results. Since the main object of using integer

transforms in lossless coding is to decode the lossless bit streams at low bit rates, the

INLT2 is designed to investigate the effect of updating in multilevel non-linear sub

band decompositions. The update function is as in equation 3.88 and the function F
is the median of the update mask shown in figure 3.20. The prediction functions are

the same as equations 3.85-3.87.

x00 = x00 +

⌊
1

2
F(x11)

⌋

(3.88)
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11 11

(00)

11 11

Figure 3.20: The update mask for x00 for INLT2.

3.5.1.3 INLT3

The INLT3 is designed to demonstrate a novel selection of the elements of the prediction

and the update masks used in the INLT1 and the INLT2. The prediction and updating

functions are as in equations 3.89-3.92 and the templates are as in figure 3.21.

x11 = x11 − bF(x00, x01, x10)c (3.89)

x10 = x10 − bF(x00, x01)c (3.90)

x01 = x01 − bF(x00)c (3.91)

x00 = x00 +

⌊
1

2
F(x01, x10, x11)

⌋

(3.92)

00 01 00 01 00 01 11 10 11
10 (11) 10 (10) 00 (01) 00 01 (00) 01
00 01 00 01 00 01 11 10 11

Figure 3.21: The prediction and update masks for x11, x10, x01 and x00 for INLT3.

3.5.2 The zero-order entropy values

These non-linear transforms, applied on the test images, result in a sub band structure

similar to that of the wavelet transforms. The performance of the above transforms,

measured using the weighted entropy values for up to five scales of decompositions, are

shown in Table 3.6- Table 3.8. The average values for the test image set are summarised

in Table 3.9.

It is evident from the tables 3.6-3.8 that as the number of scales increases, the weighted

entropy values decrease, providing the best results for 5 scales. On average, a weighted

entropy reduction of 0.5 bpp was experienced by using 5 decomposition levels com-

pared to a single level decomposition. Out of three transforms considered, the INLT3

outperformed the other two by 0.06 bpp on average for the 5-scale decomposition case.

The INLT2 has also shown a slight reduction of the weighted entropy values over the

INLT1.
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Scales 1 2 3 4 5

Gold Hill 5.547 5.153 5.076 5.061 5.057
Barbara1 5.947 5.653 5.599 5.589 5.587
Barbara2 5.953 5.663 5.605 5.594 5.591

Boats 5.199 4.821 4.751 4.738 4.735
Black Board 4.864 4.473 4.407 4.395 4.393

Average 5.502 5.153 5.088 5.075 5.073

Table 3.6: Weighted zero-order entropy values in bpp for INLT-1

Scales 1 2 3 4 5

Gold Hill 5.548 5.157 5.081 5.065 5.061
Barbara1 5.946 5.651 5.596 5.585 5.583
Barbara2 5.951 5.657 5.600 5.587 5.584

Boats 5.201 4.822 4.752 4.738 4.734
Black Board 4.852 4.465 4.396 4.383 4.380

Average 5.499 5.150 5.085 5.072 5.068

Table 3.7: Weighted zero-order entropy values in bpp for INLT-2

Scales 1 2 3 4 5

Gold Hill 5.496 5.083 5.001 4.984 4.980
Barbara1 5.897 5.589 5.528 5.517 5.514
Barbara2 5.949 5.662 5.601 5.587 5.584

Boats 5.154 4.771 4.701 4.686 4.682
Black Board 4.781 4.377 4.306 4.293 4.290

Average 5.455 5.096 5.027 5.013 5.010

Table 3.8: Weighted zero-order entropy values in bpp for INLT-3

Scales 1 2 3 4 5

INLT-1 5.502 5.153 5.088 5.075 5.073
INLT-2 5.499 5.150 5.085 5.072 5.068
INLT-3 5.455 5.096 5.027 5.013 5.010

Table 3.9: Summary of average weighted zero-order entropy values in bpp for INLTs
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3.6 Discussion

In this chapter, the concepts of integer transforms using lifting were introduced with

the use of lifting factorisation of the wavelet transforms. Novel integer versions of the

WHT, the DCT, and the DST, influenced by the lifting concepts and the fast transform

implementation techniques, were designed using the lifting techniques and exploiting

the intrinsic properties of those transforms.

The IWHT was designed using factorisation of the WHT matrix (including the nor-

malising factor) into sub matrices of the Kroneckor products of the WHT2 and the

corresponding identity matrices, which leads to the conversion of the WHTN into ap-

plying the WHT2 along a binary tree recursively to the lower and the upper halves of

the signal. The integer version was designed by implementing the WHT2, which is also

similar to the S transform, in integer form using lifting steps.

The IDCT-II was designed by considering its intrinsic properties that lead to partition-

ing the transform matrix into four quadrants. With some row and column permutation

it was seen that the upper left quadrant of the N point DCT transform matrix is the

transform matrix for the N
2 -point DCT. Further, the left and right halves in the upper

half share the same signs, whereas those in the lower half contain the opposite signs.

Using those properties, at any given N-point, the integer WHT2 is applied first, so that

the normalising constants are automatically incorporated into the upper halves at each

stage. The upper half is recursively N
2 -point DCT transformed until N=2. The lower

half of the N-point DCT, which corresponds to the odd-indexed rows, is computed

using the IWHTN
2

followed by the Kroneckor products of rotations by the basic angles

and corresponding Identity matrices. The use of IWHT and the lifting factorisation of

the rotation matrix enabled the integer implementation of the N-point DCT transform,

where N is an integer power of two, including the normalising factors.

The IDST-II was designed by using the one-to-one relationship of the DCT and the DST

coefficient matrices. The IDST coefficients were computed by incorporating column

and row permutation, derived from their relationship, into either ends of the IDCT

procedure. This relationship can be used to compute the DST coefficients using any

DCT processors, especially in fast transform applications.

In all the above three designs, the transforms can be implemented as in-place opera-

tions, which is an added advantage in software/hardware implementations.

Finally, the non-linear transforms were devised in order to investigate their usability
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in lossless image coding. This was done by using a median based non-linear prediction

function in predicting the pixels in sub bands obtained by quincunx splitting. A non-

linear updating method was also employed in these transforms.

3.6.1 The comparison of the transform performances

The integer transforms, with scales of decompositions of 1, 2, 3, 4 and 5 for pyramidal

sub band based transforms and corresponding block sizes of 2, 4, 8, 16 and 32 for

block based orthogonal transforms, were tested on the test image set. It is generally

known that the wavelet transforms provide the best performance when used with a

greater number of scales. From the results already presented in this chapter, it can be

concluded that all the transforms provide their best performance when applied with 5

scales for pyramidal transforms or with 32×32 block sizes for block based orthogonal

transforms. Table 3.10 summarises the weighted entropy values for all the transforms

with 5 scales or with 32×32 blocks applied on the test image set.

Gold
Hill

Barbara1 Barbara2 Boats Black
Board

Average

IWT
(5 scales)

(4,4) 4.702 4.787 5.008 4.192 3.878 4.513
(2,2) 4.705 4.958 5.066 4.234 3.888 4.570

(2+2,2) 4.694 4.808 5.024 4.183 3.870 4.516
(4,2) 4.702 4.810 5.024 4.195 3.886 4.523

S (1,1) 5.038 5.487 5.453 4.643 4.172 4.959
S+P 4.759 4.876 5.041 4.269 3.974 4.584

Block
transforms
(32×32)
IWHT32 4.870 5.172 5.253 4.663 4.247 4.841
IDCT32 4.626 4.514 4.824 4.214 3.925 4.421
IDST32 5.053 5.232 5.313 4.866 4.727 5.038

Non-linear
transforms
(5 Scales)
INLT-1 5.057 5.587 5.591 4.735 4.393 5.073
INLT-2 5.061 5.583 5.584 4.734 4.380 5.068
INLT-3 4.980 5.514 5.584 4.682 4.290 5.010

Table 3.10: Summary of weighted zero-order entropy values (bpp).
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Out of all the integer wavelet transforms considered, the (4,4) IWT provides the best

performance on all images due to its greater number of vanishing moments in the

primal and dual lifting steps. The IWT results are in accordance with the number of

vanishing moments involved in the lifting steps. As seen from the results, the greater

the vanishing moments involved in lifting steps, the lower the weighted entropy values.

Although the S+P transform shows better performance than the S transform, due to

the additional prediction step introduced in the S+P transform, it does not outperform

other IWTs.

The IDCT has the best performance out of all the block transforms and out of all

the other transforms. As expected, the IDST performance on lossless image coding

is the worst out of all the block based transforms. This may be due to the IDST’s

inapplicability to highly correlated images. The IWHT, which can also be considered

as a wavelet packet decomposition of the S transform, performs better than the S

transform; however, it does not outperform the S+P transform.

Overall, the non-linear transforms resulted in the highest weighted entropy values, thus

providing the worst lossless performance. However, the INLT3, the best of the three

non-linear transforms considered, outperforms the IDST on average and for most of

the test images.

From the table it can be seen that the performance of the IDCT is the best for lossless

still image coding. On average, the IDCT gains an advantage of 0.09 bpp over the

second best transform, the (4,4) IWT.

In this section, only the zero-order entropy values were compared for different trans-

forms. The entropy coding of the above integer transform coefficients in an embedded

coding frame work is discussed in Chapter 4 and Chapter 5. In entropy coding, further

reductions of bit rates can be gained by employing efficient scanning techniques and

coding contexts. The lossless and rate distortion performance of each transform are

compared for different block sizes and scale levels for both intra frames and non-intra

frames in Chapter 5 and Chapter 6 respectively.
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Chapter 4

Embedded Quantiser Design

4.1 Introduction

In the previous chapter, the transforms that map integers into integers were presented

in terms of their design, implementation and the performance on lossless image coding,

measured in zero-order entropy values for the test image set. The next step of lossless

image coding is entropy coding, by which the integer coefficients are packed efficiently

by exploiting coding redundancy. As mentioned earlier in section 2.4, an embedded

coding framework has been used in this research. This chapter discusses the embedded

coding techniques and their usage on embedded to lossless image coding. The rest of

the chapter is organised as follows. Section 4.2 introduces embedded coding, including

the coding steps and the integer coefficient weighting. Section 4.3 analyses the existing

methods for scanning coefficients and presents a novel and more efficient scanning

scheme, Adaptive Quadtree Splitting (AQS), while sections 4.4 and 4.5 present the

coding of the sign and coefficient refinement in an embedded coding framework.

4.2 Embedded Coding

As defined in Definition 1.1 (on page 10), in embedded coding, bit streams for all

other lower bit rates are embedded within any given bit rate of the coded image bit

stream. This is achieved by grouping the bits in the coded bit stream according to their

significance. The embedded coding algorithms use scalar quantisation in several passes,

starting with a quantisation bin size corresponding to the largest quantisation step that
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gives at least one non-zero quantised coefficient and thereafter reducing the bin size

progressively in successive passes up to the targeted bit rate. In lossless embedded

coding, the above process is continued up to the unit quantisation bin size. Defining

these quantisation bin sizes as 2n with n ∈ {msb , . . . , 1, 0 } (msb is the most significant

bit plane number) corresponds to bit plane-wise embedded coding of the coefficients in

the sign magnitude binary representation. As in most of the published work [14, 13, 15],

a bit plane based embedded coding technique was used in this research. The advantage

of bit plane coding is that the output from each quantisation level is binary, so that it

can be encoded using binary entropy coding.

4.2.1 Weighted Bit Planes (WBP)

In order to achieve exact integer representation, the lifting steps in the integer wavelet

and the Walsh Hadamard transforms presented in Chapter 3 were performed ignoring

the normalising (scaling) lifting steps, which correspond to the K matrices. In such a

coefficient domain, a bit plane across the whole coefficient set does not represent the

same significance (according to the rms error) for all the sub bands, as the normalising

factors depend on the transform scale and the sub band where the coefficients belong.

Therefore, in order to adjust the relative significance of the coefficients in different

sub bands, such transform coefficients have to be normalised. A method to normalise

the transform coefficients by weighting the sub bands according to the corresponding

normalising mask is presented in the following sub sections.

4.2.1.1 For the IWT

In the integer wavelet transforms listed in Appendix A, the normalising operations

with the factor k =
√

2 were excluded from the lifting steps. In a 1-D transform, the

net effect of normalising is multiplying the coefficients in the low pass sub band (s)

by
√

2 and dividing the coefficients in the high pass sub band (d) by
√

2. In a 2-D

separable transform the net effect of normalising for a single scale is multiplying the

coefficients in each sub band, namely, LL, LH, HL and HH by 2, 1, 1 and 1
2 respectively

as in Figure 4.1. The zeroth scale normalising factor (NF0) set is
{

2, 1, 1, 1
2

}

. The

normalising factors for higher transform sub bands (NFi) are found by multiplying the

normalising factor for the LL sub band (NF(i−1)LL
) with the NF0 (Figure 4.2).

As all the normalising factors are powers of two, the normalising of coefficients is

performed by shifting operations. All shifting operations are left-bound and performed
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Figure 4.1: The net effect of scaling on sub bands.
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Figure 4.2: The normalising factors for higher scales.

relative to the smallest normalising factor. The number of bits (brXX
) to be leftward

shifted in the sub band rXX is found as in equation 4.1.

brXX
= log2




NFrXX

min
{

NF(s−1)LL
, · · · , NF0HH

}



 (4.1)

The smallest normalising factor for the IWT is ( 1
2), which occurs in the HH0 sub band.

This leftward shifting operation can also be interpreted as vertically sliding of bit

planes in the sub bands, when all coefficients are considered as a 3-D cube of ones and

zeros. The weighted bit planes (WBP) are obtained by upward sliding of the coefficient

bits in each sub band by the number of bit planes calculated from the equation 4.1

relative to the HH0 sub band (Figure 4.3). However, in software implementation,

no actual bit plane sliding is required. Instead, the lowest significant bit index after

weighting, which is the also same as the number of bit planes to be slid, brXX
(as

in equation 4.1), is used as a threshold to stop refining bits for a given sub band.

With this WBP arrangement, the original bit space, according to the dynamic range
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of the coefficients prior to normalising, is preserved. This prevents coding of bits that

contain no information. No additional information regarding those thresholds needs to

be coded, as they can be computed using equation 4.3 at the decoding end. Further,

this method avoids any overhead bits that are incurred due to the expanded dynamic

range resulting from the four extra lifting steps method for lossless normalising, as

described in section 3.2.2.2.
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Figure 4.3: The weighted bit planes by bit plane sliding.

4.2.1.2 For the IWHT

Since the IWHT is a block based transform, the transformed coefficients need to be

rearranged in the corresponding tree order as in Figure 3.6 prior to employing any

embedded quantising.

The scaling factors for a 2-D 2-point IWHT are the same as those for a single scale

IWT as shown in Figure 4.1. The scaling factors for a 2-D N-point IWHT, where N>2,

become a recursive multiplication of KK2, the scaling mask for a 2-point IWHT, along

a quadtree in the coefficient domain.

KK2 =
× 2 × 1

× 1 × 1
2

An example for N=4 is shown in Figure 4.4.
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Figure 4.4: The scaling factors for 2-D IWHT4 block.

Therefore, in a 2-D IWHT, separable implementation of the lifting steps for the matrix

K, as in equations 3.27-3.31 is replaced with the bit plane weighting according to the

mask KKN for each WHN block. The same virtual bit plane sliding can be performed

as above, relative to the smallest scaling factor, which occurs in the (N-1,N-1)th element

in the 2-D IWHTN . With this method, any further increment in the dynamic range of

the coefficients can be avoided.

4.2.1.3 For the other transforms

The integer implementation of the IDCT and the IDST, introduced in sections 3.3 and

3.4 respectively, includes the normalisation constants into the factorisation of those

matrices. Therefore, a scaling operation at this stage is not required.

The INLTs introduced in section 3.5 do not involve any scaling due to their non-linear

prediction and updating steps, which do not obey the orthogonality property. However,

in order to arrange the coefficients according to their contribution to the total energy,

a scaling process similar to that of IWT is used with the INLTs.

4.2.2 Embedded coding steps

In bit plane oriented embedded coding, each weighted bit plane is coded from the

most significant to the least significant bit plane. Within a bit plane, sub bands are

coded from the lowest frequency to the highest and the highest scale to the lowest.

For example, in a five scale wavelet transform based embedded coding, the sub bands

are ordered as in {LL4, LH4, HL4, HH4, LH3, · · · , HH0 } according to the increasing

frequency.

Each weighted bit plane or output from each quantisation step in general terms is coded

in two different coding passes, namely

1. Switching pass and

2. Refining pass.
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In the switching pass, coefficients which become significant in the current weighted

bit plane are switched on followed by their signs. Refinement of already switched

coefficients is done in the refinement pass. Switching in the switching pass is achieved

in this research by defining a significance switching mask (SSM) for each weighted bit

plane. The following three sections (4.3, 4.4 and 4.5) present the three coding steps

of embedded coding, viz., significant switching mask coding, sign coding and refining

data coding respectively.

4.3 Significance Switching Mask (SSM) Coding

An image, I, with M × N dimensions decomposed using a transform T produces the

coefficient set IT (x, y), where x = 0, . . . ,M−1 and y = 0, . . . , N−1. The rth weighted

bit plane WBPr represents a range
(
2r, 2r+1

]
with a quantisation step 2r. Therefore, as

seen on the WBPr, the magnitude of any IT (x, y) can be categorised into three groups.

[IT (x, y)]WBPr
=







S if 2r ≤ |IT (x, y)| < 2r+1

N if |IT (x, y)| < 2r

X if 2r+1 ≤ |IT (x, y)|
(4.2)

The significance switching mask used in this research uses the same grouping of co-

efficients as above. In embedded coding terms, the coefficients identified as S type

become significant in the WBPr. The N type coefficients are the ones yet to become

significant, whereas the X type coefficients are the ones which have already become

significant in previously scanned bit planes. The encoder needs to code only the S

and N type coefficients in the significance switching mask, since the encoder and the

decoder are synchronised according to the mask scanning order.

The cost of embedded coding is the bits used to code N type coefficients in the SSM.

As the N type bits represent bits whose indexes are higher than their corresponding

most significant bits, coding of N does not transmit information regarding image en-

ergy to the decoder. This is illustrated with the rate distortion plots as in Figure 4.5

by comparing the bit rates for a given distortion for an embedded codec with those

for a non embedded codec using Gold Hill image. The bit rates are in bpp, calculated

using the zero-order entropy formula (equation 1.11) for the overall symbol stream in

the embedded coding example and using the weighted entropy formula (equation 3.9)

considering 5 level wavelet transform in the non embedded coding example. The dis-
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tortion measure used is the rms error. The vertical distance between the plots is the

cost of embedding for a given image distortion. The embedding cost varies from 30%

to 80% with an average around 50% when measured as a percentage of corresponding

non-embedded coding bit rates. The bit rates are plotted on the log scale in figure 4.6,

so that the cost of embedding at low bit rates are shown clearly.
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Figure 4.5: The comparison of embedded and non embedded coding.
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Figure 4.6: The comparison of embedded and non embedded coding (log scale repre-
sentation).

On the other hand, coding of N bits provides the information regarding the position

of the S bits in the SSM for a given bit plane. As both the encoder and the decoder

are synchronised with the scanning, careful selection of a scanning scheme which min-

imises the necessity for coding of N bits would help to reduce the cost of embedding

significantly.
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Furthermore, the bit space to be coded is reduced by sending the highest msb index

for each sub band as side information. This process, called depth limiting, will avoid

unnecessary coding of N bits above the highest msb bit for a given sub band. The msb

for each sub band can be coded by using at most 4 bits. The bit space after bit plane

sliding and depth limiting appears as in Figure 4.7
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Figure 4.7: The final bit space for embedded coding.

4.3.1 Scanning schemes

Definition 4.1 (Scan) A scan on a significance switching mask (SSM) with dimen-

sions M×N to order the bits in the SSM is a one-to-one function fs defining an index

in the closed interval [ 0, . . . , (M × N)−1] from the original index pairs {(x, y) : 0 ≤
x < M , 0 ≤ y < N }.

[ 0, . . . , (M ×N)−1]
fs←→ { (x, y) : 0 ≤ x < M , 0 ≤ y < N }

In this section, a few scanning schemes that can be used in SSM coding will be presented

and evaluated using the (4,4) integer wavelet coefficients from the test image set. The

main object of this exercise is to cluster the N -type bits in a given SSM at the rear of

the scanning sequence or into a separate group within the scanned sequence, so that

coding of such clusters that wholly consist of N bits can be avoided, thereby reducing

the cost of embedding.
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Scanning schemes discussed in this section can be grouped into three categories.

1. Intra sub band techniques

2. Inter sub band techniques

3. Whole SSM based techniques

4.3.1.1 Intra sub band techniques

In intra sub band techniques, each sub band is scanned separately, without considering

any inter sub band dependencies in coefficients. Scanning of coefficients in any single

sub band is completed before scanning the following sub bands, which are ordered in

the increasing frequency order. The sub band order also features decreasing normalised

sub band energy. The intra sub band scanning can be either 1-D (when scanned into

an array) or 2-D (when scanned into blocks).

The scanning schemes considered in this exercise are listed below.

A) Raster : Left to right, top to bottom scan (Figure 4.8). This scan is useful to

exploit horizontal dependencies which are important in modelling coding contexts

(Section 5.1.1). This is a 1-D scan, as the bits are ordered into an array.

B) Zigzag : This is the scanning method used in the JPEG baseline standard to

scan the DCT coefficients in an 8×8 block. In this experiment, the zigzag scan

is performed on the whole sub band (Figure 4.8). Since this scan runs from

top to bottom along the diagonals, the diagonal directional dependencies can be

exploited in the context modelling. This is also a 1-D scan.

C) Z Scan : This scan traverses 4 symbols in a square block of 2×2 symbols (min

block) as in a letter Z shape and then four min blocks are traversed using the

same pattern until the whole sub band is traversed and arranged into an array

(Figure 4.8). In this method, horizontal vertical and diagonal dependencies can

be exploited. This is also a 1-D scan.

D) Quadtree : The quadtree approach is a 2-D technique. A quadtree is a tree

structure in which each non-terminating node has four children (Figure 4.9). In

quadtree coding, a square block, which is depicted as a node in the tree termi-

nology, is split into four quadrants if it contains at least one S bit or terminates

the splitting otherwise. This process is performed until a given minimum block

(min block) size is reached, or all the nodes in the tree are terminated.
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a). Raster c). Z scanb). Zigzag

Figure 4.8: 1-D intra sub band scanning techniques.
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Figure 4.9: Quadtree scanning.

4.3.1.2 Inter sub band techniques

These methods exploit inter sub band dependencies based on the hierarchical repre-

sentation across the sub bands, as represented by wavelet trees across the scales as in

Figure 4.10. Two inter band scanning techniques are to be considered.

E) Zero Tree : In this scanning technique, S and N bits on a switching plane are

coded using the zero tree symbols introduced in [13]. The S bits are coded with

a single symbol irrespective of the sign. The N bits are categorised into two

groups, hence represented by either of two symbols. If none of the descending

coefficients in the wavelet tree which originated from an N bit is a type S, then

that N bit is classified as a Zero Tree Root (ZTR) symbol and the descendants

from that node need not be coded. Otherwise, it is classified as an Isolated Zero

(IZ) symbol and coding along the tree is continued.

F) WTVHZ : In this method, for each pixel in the LL sub band, a corresponding

wavelet tree as a square is constructed and then each tree (square) is scanned

(as in Figure 4.11 ) vertically in HL sub band, horizontally in LH sub bands and

z scan in HH sub bands. These scanning patterns for separate sub bands were

determined after considering the correlation orientation of the coefficients within

a sub band.
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WT for a 2 scale wavelet transform

Figure 4.10: Wavelet tree organisation.

WT-HVZ for a 3 scale WT

Figure 4.11: WTHVZ scan for a wavelet tree.

4.3.1.3 The whole SSM based techniques

The intra sub band scanning techniques described above can be used on the entire SSM

rather than from sub band to sub band. However, using 1-D scans like raster and zigzag

in this manner does not scan the coefficients according to their energy contribution,

which is based on the sub band they appear in. Quadtree and Z scans can traverse

according to the energy ordering for a square shaped image, which is not common in

video applications where the aspect ratios are normally 4:3 or 16:9. In this case, this

type of scanning methods is excluded from this experiment.
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4.3.1.4 Scanning schemes : Analysis

Raster, Zigzag and Z scans

The 1-D intra band scanning techniques (A, B and C) presented above produce only

two types of symbols (S and N types) as output. The entropy in bits per symbol for

such a scan of total number of S and N type symbols, T, and the number of S type

symbols, s, using a memoryless model is as below.

E1A,B,C = ps log2

(
1

ps

)

+ (1−ps) log2

(
1

1− ps

)

(4.3)

where, ps =
s

T

Further, coding of N type symbols beyond the last S symbol for a sub band can be

avoided by introducing an extra symbol ( ‘stop’ symbol) to terminate scanning for a

sub band as used in the JPEG baseline codec [5]. The entropy in bits per symbol for

such a scan of total number of S and N type symbols, T, with the number of S type

symbols, s, and the last symbol occurring at the yth position using a memoryless model

is as below.

E2A,B,C =
1

T

[

s log2

(
1

ps

)

+ (y−s) log2

(
1

pn

)

+ log2

(

1

py

)]

(4.4)

where, ps =
s

y + 1
, pn =

y − s

y + 1
, py =

1

y + 1

The performance of E2A,B,C varies with T, s and y. A comparison of E1A,B,C and

E2A,B,C for T=100 and different values of y (for y=30, 50, 70 and 90) against different

s values ( s = 1 · · · y for each y value) is shown in Figure 4.12. It is evident that the E2

values provide plots with lower entropy for lower values of y. According to the figure,

the E2 plots breakeven with the E1 plot at s=4, 7, 14 and 41 respectively for y=30,

50, 70 and 90. This leads to the conclusion that for a given T value, only a smaller s is

required for E2 to outperform E1 when the y value is low. The converse of this is that

for a given y value, a smaller s is required for E2 to outperform E1 when the T value

is high. This suggests the use of E2 in higher bit planes of high frequency sub bands

where T is larger and the N bit count is significantly higher than the S bit count, in

order to achieve lower entropy values in those sub bands.

However, the coefficients in a wavelet transform sub band represent the components

of a specific frequency band at a local position of a scaled original signal (image).

Therefore, the coefficients in a sub band are not arranged according to increasing

frequency as in a transform block in an orthogonal block transform, like the DCT.

Instead, the coefficients represent the original spatial structure of the image. Therefore,
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Figure 4.12: Comparison of 1-D scans with a ‘stop’ symbol and without.

the different 1-D methods, namely, raster, zigzag and Z scan produce the same results

using E1. Further, the possibility of them producing significantly different results using

E2 is also low due to the above mentioned coefficient arrangement. None of those scans

guarantees that any will produce a bit stream with a low y value, which is a requirement

for the better performance of E2. Due to these reasons and for its simplicity, only the

raster scan without ’stop’ symbol is considered in this scanning scheme experiment.

Quadtrees

The quadtree structure and model for representing 2-D binary data were first intro-

duced in [103] and further probabilistic models were reported in [104]. A traditional

quadtree consists of three types of nodes, namely, all white, all black and grey (mixture

of white and black). In order to keep the output symbol set binary, only all white and

grey nodes are considered in this experiment. This is similar to the pointer quadtree

structure, which has only two types of nodes, namely, non-leaf and leaf, introduced in

[103]. In the SSM, where there are three types of symbols as opposed to two in binary

images, the S type bits are regarded as black, while the N and X types are considered

as white. A non-leaf node corresponds to a homogeneous block of white pixels, while

a leaf node corresponds to a non-homogeneous block containing at least a single S bit.

A quadtree is normally performed on a square block (max block), the dimensions of

which are a power of two, so that the quadtree terminates with the single pixel nodes,

corresponding to the elements of the min block. Within a non homogeneous min block,

only the N type bits are considered as a node since the X type bits are not coded in

the SSM coding.
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A max block with a side length 2d, generates a quadtree with a maximum depth of d

non-terminating (leaf) nodes. The number of leaf nodes and non-leaf nodes generated

by the quadtree are determined by the position and the number of S type bits. Fur-

thermore, when the amount of aggregation of the S type bits is minimal, the quadtree

representation becomes inefficient, producing more symbols than in a corresponding

1-D scan. The quadtree methods are more efficient when homogeneous regions of N

and X type bits are present in the SSM, which normally occurs in the most top bit

planes for a given sub band.

In this experiment, max block sizes of 32, 16 and 8 were used for the sub bands in the

wavelet scale number s = 0, s = 1 and s ≥ 2 respectively and a min block size of 2 was

used for all the sub bands to generate the quadtrees, whose cost of representation was

computed using the total number of leaf and non-leaf nodes in all the quad trees for a

given SSM.

Wavelet trees

The sub bands are rearranged into a wavelet tree (square) following the inverse of

the Block2tree procedure shown on page 42. For example, an l scale wavelet transform

applied on an M×N image produces M×N
22l wavelet squares of 2l×2l size. This generates

a tree for each coefficient in the LL sub band (Figure 4.10 on page 83).

The main difference of the quadtree and the wavelet tree is the origin of the tree. The

quadtrees are originated with reference to the centre point, while the wavelet trees are

originated from the top left hand corner. The quadtrees contain a four way branching

process, whereas the wavelet trees follow a three way branching for the highest level

and four way branching thereafter.

Two techniques to code these wavelet trees are considered in this experiment. The first

method is the zero tree technique as introduced in the section 4.3.1.2. The zero tree

coding outputs three different symbols, the additional symbol being used to represent

groups of non-S type bits present in the deeper levels of the wavelet tree. Although

it introduces an extra symbol to the alphabet, it reduces the total number of symbols

required to represent a tree.

The second method is the WTHVZ method (Figure 4.11 on page 83), introduced in

the section 4.3.1.2. A wavelet tree represents the frequency components corresponding

to a 2l×2l spatial location. This scanning method tries to use the increasing frequency

arrangement within a tree following the coefficient traversal shown in Figure 4.11. Fur-
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thermore, the truncation of a tree traversal using a ‘stop’ symbol can be incorporated

into the WTHVZ scanning technique.

In a coding method that uses either of the above methods, after completing the tree

scans (zero tree or WTHVZ), which classify the tree elements and identify the elements

to be coded, the wavelet squares are organised back to the original form (multiresolu-

tional wavelet transform). This allows the scanning of a given SSM from sub band to

sub band from the lowest frequency to the highest frequency.

4.3.1.5 Scanning schemes : Results

From the above discussion, the following scanning techniques were considered in this

experiment.

1. Raster scan (Representing 1-D intra band methods)

2. Quadtree scan (2-D intra band technique)

3. Wavelet tree - Zero tree

4. Wavelet tree - WTHVZ

The zero-order entropy values in bpp were computed for each weighted bit plane of the

(4,4) IWT coefficients of each image in the test image set. The results for individual

images are recorded in the Appendix C. The average entropy values (bpp) for the

whole image set are shown in Table 4.1, where the best method for each bit plane is

shown in bold font.

From Table 4.1 and the tables in Appendix C, it can be seen that the quadtree method

outperforms the other methods, when the total entropy for all bit planes (13 · · · 0) is

considered. The raster technique produces the second best method while the zero tree

method records the worst performance, although there is only a 0.082 bpp difference

between the best and the worst techniques. The inferior performance of the zero tree

technique can be explained by its lack of effect on the WBP bit space resulting from

the processes of bit plane sliding and depth limiting. Those processes have already

removed the unnecessary N bits, which otherwise would have been efficiently coded by

the zero tree symbols.
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WBP Raster Quad Tree WT-ZT WTHVZ

13 0.0009 0.0008 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009
11 0.0013 0.0010 0.0012 0.0012
10 0.0033 0.0027 0.0025 0.0038
9 0.0119 0.0091 0.0094 0.0130
8 0.0421 0.0280 0.0319 0.0394
7 0.1046 0.0711 0.0829 0.1025
6 0.1791 0.1312 0.1494 0.1777
5 0.2785 0.2204 0.2420 0.2729
4 0.4030 0.3644 0.3786 0.3986
3 0.5752 0.6178 0.6290 0.5807
2 0.6222 0.7073 0.7309 0.6284
1 0.3620 0.4051 0.3910 0.3676
0 0.0700 0.0793 0.0700 0.0752

13 · · · 0 2.6547 2.6387 2.7205 2.6628

Table 4.1: Average zero-order entropy values (bpp) for the test image set

However, the tables show that no single technique has consistently produced the best

performance for all the bit planes. In general, the raster scan performs best for the

lower bit planes and so does the quadtree scan for higher bit planes. As can be seen

from the table, using the quadtree scan from the bit plane 13 to the bit plane 4 and

using the raster scan for the rest, provides a total bit rate of 2.4586 bpp, which is lower

than those for any other individual scan.

However, the transition bit plane from quadtrees to raster depends on the sub band

statistics in a given bit plane for a given image. More advantage can be achieved

by adaptively deciding the transition of scans from quadtree to raster and vice versa,

if necessary, rather than using a fixed transition point as above. A novel adaptive

scan selection scheme, Adaptive Quadtree Splitting (AQS), is investigated in the next

section.

4.3.2 The Adaptive Quadtree Splitting (AQS)

The quadtree scan and the z scan follow the same bit traversal, the only difference

being in the output symbols, for which the quadtree scan uses two quadtree symbols,

leaf and non-leaf, to group quadrants of non-S type bits. Therefore, by avoiding the

use of leaf and non-leaf grouping, a quadtree scan can be transformed into a Z scan
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and vice versa. As stated earlier, the final entropy value for the Z scan, which is a 1-D

technique, for a sub band is the same as that for the raster scan. Therefore, in this

section, the term ’raster’ is used to address all the 1-D scans.

AQS: The Components

The adaptive switching between the quadtree and the raster is achieved by designing

two quadtree algorithms, namely, QT1 and QT2. The first quadtree algorithm, QT1,

is same as the previous quadtree scanning, in which quadtree splitting is performed

until a predefined min block size, which is 2×2, is met. In a min block, the S and N

bits are the only bits output for entropy coding.

The second quadtree function, QT2, adaptively changes the scanning method from

quadtree to raster depending on the occurrence of X bits within a block. In this, if a

block contains at least one X symbol, the block is split into four sub blocks without

producing any quadtree symbols, i.e. leaf and non-leaf symbols, for the block. If the

block does not contain any X bits, QT1 is used. This is repeated until the min block

size is met. The S and N bits in a min block are entropy coded as those in the QT1

algorithm.

AQS: The Algorithm

Coding using the QT1 scan is expensive when the probabilities of S and N bits are

similar and when they do not constitute homogeneous regions. This is common in the

lower bit planes, due to the random nature of S symbols and the higher number of

X symbols. As evident from the Table 4.1, the raster scan outperforms under these

conditions. The QT2 algorithm can be used in such cases where the homogeneous

regions of non-S type bits are not present. QT2 is the more important scan since it

can adaptively change from quadtree scanning to raster scanning. If a block consists

of no S bits, but with X and N bits, then QT2 is costly. In this case QT1 outperforms

QT2.

The adaptive quadtree splitting technique is designed to choose the better quadtree

algorithm adaptively for each block. This is achieved by predicting the current block

from the corresponding block in the parent sub band, which has already been scanned

and the bits of which are already known to both coder and decoder. If a bit in the

parent sub band is N type, then there is a higher probability that all the corresponding

bits in the immediate child sub band are N type as well. The zero tree scan used here

and in the EZW algorithm, makes this hypothesis to all the descendants of a node in
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the wavelet tree. The underlying assumption here is that there is a high probability for

the normalised magnitude of the coefficients in a parent sub band being greater than

that of the corresponding coefficients in the immediate descendant sub bands.

The AQS algorithm predicts four children of a parent as follows:

N type : If parent is N type then child bits are N type,

A type : If parent is S type then child bits are either S or N type

B type : If parent is X type then child bits are either S or N or X type

A predicted block consists of N, A, B and a priori known X symbols from the current

block. If the predicted block consists of only N and X symbols, QT1 is used and

otherwise QT2 is used.

The above decision is made not only at the beginning of a max block but also at

subsequent levels of splitting up to min blocks, where individual S and N bits are

output for entropy coding. This type of decision making allows the AQS to adaptively

switch between QT1 and QT2 according to the known sub band statistics (from X

bits) and the predicted sub band statistics. The flow charts summarising two quadtree

algorithms are shown in Figure 4.13 and 4.14 respectively.

Are there any
S sym bols?

YES

Partition the block into
4 sub bands

 Code QT symbol 0
And move to next

block

Code individual
pixels
 And move to
next block

Start

YES

NO

NO

 Code QT symbol 1

Is this a m in
block?

Is the predicted
block wholly
w ith N and X

symbols?

QT2YES NO

Figure 4.13: The first quadtree scanning (QT1)
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next block

Start

YES
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NO

QT 1

Figure 4.14: The second quadtree scanning (QT2)

Four sub bands in the highest scale are scanned without any prediction from the parent

sub band, as the parent sub band and the three child sub bands belong to the same

scale in the wavelet pyramid. Therefore, the decision criteria on choosing QT1 and

QT2 for these sub bands are based only on the presence of the X bits in a given block.

AQS: Performance comparison

The average zero-order entropy values in bpp for the test image set using the AQS

scanning method and initial four scanning schemes are summarised in Table 4.2 for

comparison. The bit rates for individual images can be found in Appendix C. The best

method for each bit plane is highlighted in bold font.

From Table 4.2 and the tables in Appendix C, it can be seen that the AQS scan,

with a total bit rate of 2.3760 bpp, outperforms all other scans including the com-

bined quadtree-raster method switching to raster at bit plane 3, which gives a bit

rate of 2.4586 bpp. The AQS method produces the best bit rates for most of the bit

planes, particularly for the middle range bit planes. On average it has an advantage

of 0.2627 bpp (10%) over the next best single method and 0.0827 bpp (3%) over the

combined quadtree-raster method.
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0008 0.0009 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009 0.0007
11 0.0013 0.0010 0.0012 0.0012 0.0011
10 0.0033 0.0027 0.0025 0.0038 0.0024
9 0.0119 0.0091 0.0094 0.0130 0.0084
8 0.0421 0.0280 0.0319 0.0394 0.0263
7 0.1046 0.0711 0.0829 0.1025 0.0667
6 0.1791 0.1312 0.1494 0.1777 0.1208
5 0.2785 0.2204 0.2420 0.2729 0.1983
4 0.4030 0.3644 0.3786 0.3986 0.3247
3 0.5752 0.6178 0.6290 0.5807 0.5559
2 0.6222 0.7073 0.7309 0.6284 0.6373
1 0.3620 0.4051 0.3910 0.3676 0.3623
0 0.0700 0.0793 0.0700 0.0752 0.0700

13 · · · 0 2.6547 2.6387 2.7205 2.6628 2.3760

Table 4.2: Average zero-order entropy values (bpp) for all scans the image set

4.4 Coding The Signs

The sign of a coefficient needs to be coded only after the coefficient has become signif-

icant. The sign values, either positive or negative, can be represented in two symbols.

The experiments on signs of the significant coefficients revealed that the two sign val-

ues are equiprobable. The zero centred symmetric Laplacian shape of the probability

distribution of the wavelet coefficients proves the above observation. This leads to the

conclusion that the sign information cost is equal to the total number of S symbols in

the SSMs for all the bit planes.

Due to the above reasons, no special scanning schemes for sign are considered. Instead,

in SSM, as and when an S type bit is coded, its sign is coded subsequently.

4.5 Data Refinement

In embedded coding, switching of coefficients and refining of switched coefficients are

done in two different passes for a given bit plane. In this research, the refining pass is

carried on prior to the switching pass. This helps context modelling for the switching
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pass, which is discussed in section 5.1.1, as it provides more a priori known bits, in

place of X bits, in the neighbourhood of S or N bits.

The refining bits are either 1 or 0. Since these refining bits correspond to the bit

planes that are lower than the msb for a given coefficient, they are highly decorrelated

and possess a random nature. Due to these reasons, no special scanning order for data

refinement for a given bit plane is considered. They are coded in the order of X symbols

occurring in the SSM, following a traditional raster scan.

4.6 Summary

The embedded quantiser presented in this chapter follows a simple bit plane based

embedded coding system. The use of bit planes as the quantisation levels provides a

quantisation scheme, whose quantisation bins are reduced by a factor of two at each

bit plane traversal.

The normalisation of integer coefficients of the IWT, the IWHT and the INLT by the

virtual bit plane sliding process scales the coefficients by their corresponding normal-

ising constants while preserving the dynamic range. With this method, the unneces-

sary coding of zeros resulting from the traditional multiplication based normalising is

avoided. Furthermore, coding the maximum coefficient height (msb) for each sub band

as side information (depth limiting process), reduces coding of unnecessary zeros above

the highest msb of a sub band. These two processes provide a compact effective bit

space.

The embedded coding is costly compared to non-embedded coding mainly due to N

bits, which possess information regarding the position of S bits, in the SSM. The

methods to reduce the cost of embedding must concentrate on avoiding of coding such

bits or clustering such bits into groups, so that each group can be represented by fewer

bits. This was investigated by experimenting the efficient scanning schemes of the SSM.

Out of the four scanning schemes considered, namely raster, quadtree, wavelet tree -

zero tree and wavelet tree - HVZ, the quadtree based produced the lowest bit rates.

However, when individual bit planes were considered, the quadtree scan was the best

for the higher bit planes as was the raster scan for the lower bit planes.

The adaptive quadtree splitting (AQS) using two quadtree techniques QT1 and QT2

was designed to switch the raster and quadtree scanning adaptively according to the
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current block statistics. This was achieved by using the decision criteria based on the

information predicted from the parent sub band and a priori known information from

the current block. It is evident from the bit rate tables (Table 4.2 and the tables in

Appendix C) that on average, the AQS has improved the results of the previous scans

by 10%. Furthermore, the AQS has produced the lowest bit rates for most of the bit

planes.

Finally, coding of signs and refining bits were briefly presented. No special scanning

techniques for these bits, which were binary, were considered due to their high random-

ness in occurrence.
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Chapter 5

Lossless Coding of Intra Frames

In the previous two chapters, the two main components of an embedded lossless coder,

namely the integer transforms and embedded quantising were discussed in detail. In

chapter 3, the integer forms of the wavelet, the Walsh Hadamard, the Discrete Cosine,

the Discrete Sine and the non-linear transforms were introduced, designed and their

entropy performances were evaluated. In chapter 4, the essence of embedded coding

was introduced including the coefficient weighting and the steps, with all coding and

modelling examples using the (4,4) integer wavelet. In this section the entropy coding

of embeddedly quantised symbol streams for intra (I) frames of a video coder, which are

also considered as still images, is discussed. The rest of the chapter is organised as be-

low. In section 5.1, the Embedded to Lossless Image Coding (ELIC) algorithm which

uses the AQS technique presented in 4.3.2, is discussed with the results using (4,4)

and other integer transforms. Section 5.2 shows how to incorporate near-lossless fea-

tures into ELIC, while section 5.3 presents the quasi lossless compression performance

of ELIC using all integer transforms. Finally, section 5.4 discusses the compression

performance of ELIC for intra frames.

5.1 The ELIC Algorithm

The Embedded to Lossless Image Coding (ELIC) algorithm uses the transforms that

map integers to integers followed by embedded coding of the coefficients. The coding

is based on bit significance criteria in which the coefficients that become significant in

each bit plane are identified using a significant switch mask as shown in section 4.3. The

scaled coefficients are coded from the most significant weighted bit plane to the lowest
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significant bit plane. Each weighted bit plane is visited from the lowest frequency (LL)

sub band to the highest (HH0) frequency for coding / decoding and each sub band in

a given bit plane is coded in two passes for data refinement and significant switching,

the latter being coded using the AQS scanning scheme. The symbols generated by the

above process are entropy coded using a context based adaptive arithmetic coding as

and when they are generated. The individual stages of the ELIC algorithm are shown

in Figure 5.1.
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Figure 5.1: ELIC block diagram.

5.1.1 Context modelling for entropy coding

Context modelling : Basics

In context based entropy coding, the probability for each incoming symbol is calcu-

lated based on the probability distribution function of a coding context in which the

symbol appears. From a universal source coding point of view, a source drawn from

a smaller alphabet can be better modelled as a Markov process, and can thereby be

coded efficiently compared to a source with a larger alphabet [105, 106]. This feature

is satisfied with the embedded quantiser designed in the previous chapter, as all the

symbols output at each stage are binary, which is the smallest alphabet possible. The

main objective of context modelling is to remove the statistical redundancy in the out-

put symbols. This is normally achieved by using a set of past observations (X(C)) on

which the probability of the current symbol (Yi) is conditioned to predict the condi-

tional probability of the current symbol (P (Yi|X(C)). The better the model fits the

source, the smaller the bit rate an entropy coder can achieve.

Context modelling for entropy coding has successfully been used in both lossless image

coding [32, 33, 34] and lossy image coding [106, 107, 108, 109]. In recent years, context
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based entropy coding of wavelet coefficients have become an important component of

wavelet based image coding. In, one such example, ECECOW (Embedded Conditional

Entropy Coding of Wavelet Coefficients) [107], an extensive use of coding contexts mod-

elled using the already coded neighbouring bits in the same sub band and corresponding

bits in the parent sub band has produced improved results among the wavelet based

image coding. However, this has resulted in high modelling costs. In [108], the authors

have improved the efficiency of context modelling by eliminating repetitive arithmetic,

logic and memory operations, removing the parent sub bands in the context modelling

and sharing contexts with signs and texture (switching and refining processes). The

use of context merging to improve model costs have been demonstrated in [109].

Context modelling in ELIC: For switching

The simplest coding context is to use the most previously coded symbol (Yi−1) to

condition the probability of the current symbol (Yi) (Markov-I model). The statisti-

cal redundancy can be exploited more effectively by using contexts which involve the

neighbours and corresponding parent pixels.

The dependencies of the current bit on the parent bits and other neighbouring bits in

an embedded coding framework are briefly illustrated in this section using the (4,4)

IWT coefficients of the test image set.

The neighbouring bits for a given bit can be either S, N or X type. For an X type

neighbouring bit, the actual refining bit is known, as a bit plane is refined before the

switching pass. Since in AQS scan, a bit plane is traversed in Z scan form, one or more

of its neighbours at positions Np, W, NW, SW and NE are already known at a given

current bit position, Yi, as in Figure 5.2. These bits and the corresponding parent (P)

are used as the members of the context template.

NW Np NE

W Yi

SW

Figure 5.2: ELIC neighbourhood template for coding context.
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The average probability values of current bit, Yi, being N type and being equal to the

predictor bit,Ci, for all possible types (1, 0 and 2 for S, N and X respectively) of each

predictor bit in the above template for the test image set are tabulated in Table 5.1.

Ci P Np W NW NE SW

P (Yi = 0 |Ci = 0) 0.783 0.753 0.753 0.748 0.763 0.793
P (Yi = 0 |Ci = 1) 0.734 0.597 0.597 0.608 0.620 0.660
P (Yi = 0 |Ci = 2) 0.436 0.545 0.544 0.532 0.532 0.531
P (Yi = Ci |Ci 6= 2) 0.552 0.652 0.652 0.645 0.659 0.688

Table 5.1: The probability values of Yi being N type for different types of Ci

From these observations in the table, the following conclusions can be arrived at. The

insignificance of neighbours and parent has about over 74% influence on the insignifi-

cance of the current bit. When P=1, there still is a 74% probability of the current bit

being insignificant. Similarly, when other neighbours are significant there is about a

60% possibility for Yi to be insignificant. When Ci is X type, then the significance and

the insignificance occurrences of Yi are equi-probable. The bit plane wise observation

suggests that these dependencies are stronger in the higher bit planes than in the lower

bit planes.

Two types of predictions can be performed based on the above context mask. The

first prediction method is to use the Maximum Likelihood (ML) criteria based on the

context template. It was found by experiment that when the ML is N type, Yi is also

insignificant with average probabilities of more than 60% for the higher (un-normalised)

bit planes and 41% for the lowest bit plane. Similarly, when the ML is S or X types,

Yi is significant with average probabilities of more than 60% for the lowest and the

highest bit planes and 35%-50% for the rest.

The second method is to use a gradient oriented significance prediction (gosp), adapted

from GAP [32, 31], using only the already coded neighbouring bits in the context

template. Provided all neighbouring bits are already coded gosp predicts the current

bit as follows considering the values 0, 1 and 2 for N , S and X types respectively.

Dh = |NW −Np|+ |Np−NE|
Dv = |NW −W |+ |W − SW |

if (Dh > Dv) : {X̂i = Np}
if (Dh < Dv) : {X̂i = W}
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if (Dh = Dv) : {
if (NW ≥Max (Np,W ) : {X̂i = Min (Np,W )}
if (NW ≤Min (Np,W ) : {X̂i = Max (Np,W )}
else : {X̂i = NW}
}

This type of prediction is used only if at least all of Np, W and NW neighbours are

known to the coder and decoder. If either of SW or NE is not already coded before

coding Yi, then the respective Dv or Dh is weighted accordingly prior to the subsequent

decision making. When both SW and NE are not already coded or not available at the

image boundaries, the (Dh = Dv) case is used.

The context model used for arithmetic coding of individual bits in min blocks in AQS

coding for switching passes of ELIC, includes both the above methods, ML and gosp,

and the strong influence of an insignificant parent bit. In context based arithmetic

coding used in ELIC, the probability of the symbol to be coded is found from a collection

of probability distributions identified by the context index computed as below.

The prediction method is grouped into three types, according to the availability of

the neighbouring bits. The type 1, where Np, W, NW and either or both of NE and

SW of the template are available, is predicted using gosp, whereas the type 2, where

only Np, W and NW are present, is predicted as in the case for (Dh = Dv). Type

3, where one or more of Np, W and NW is not available, is predicted using the ML

criteria conditioned with insignificancy of the parent pixel P (i.e. when P is insignificant

Yi is also predicted as insignificant irrespective of the ML prediction). A prediction

value of 2, which corresponds to an X type prediction, is considered as a prediction of

significance.

The context index is determined by the prediction type (1, 2 and 3), the predicted

value (0 and 1) and the sub band orientation (LH, HL and HH) when the prediction

type is 1 or 2. The probability distributions corresponding to these context indexes are

initialised at the beginning of each bit plane, so that each distribution can represent

the statistics related to that bit plane.

Two separate global probability distributions are used for quadtree symbols (leaf and

non-leaf) output in QT1 and QT2 respectively.
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Context modelling in ELIC: For signs

In an embedded quantising framework, the sign of a coefficient is coded only after that

coefficient has become significant. The authors of ECECOW algorithm have claimed

that part of the superior compression performance of it is due to its sign context

modelling, which includes three online estimated probabilities, conditioned on the sign

of neighbours, depending on the sub band orientation [107]. Later, in an extension of

ECECOW, they have shown that the same performance can be gained by combining

the sign and texture (switching and refining) contexts together [108].

In most cases, it has generally been assumed that no advantage is to be gained by en-

tropy coding of signs. Recently, it was shown that the wavelet coefficient signs, resulting

from 9/7 wavelet, are strongly negatively correlated across edges [110]. However, due

to bit plane by bit plane switching of the coefficients in embedded coding, the signs of

only some of the neighbours in a causal / non causal template are already known for

all the significant bits on a bit plane. This handicaps the chances of capturing any sign

correlation mentioned above. Therefore, in ELIC, the sign bits for significant coeffi-

cients are coded using a Markov-I context modelling, which considered the previously

coded sign to condition the probability of the current sign.

Context modelling in ELIC: For refining

In a data refinement pass in the embedded coding, the neighbouring bits can be of

three types: Already refined in the current bit plane, not yet refined in the current bit

plane and yet to become significant. Out of these three types only the first type carry

information relevant to bit plane statistics. Therefore, the neighbouring bits in a bit

plane are not considered in designing the context for data refining in ELIC.

Instead, data refinement bit contexts are defined using the already coded bits from the

current coefficient with reference to the original bit positioning in the wavelet domain

before normalising. The context Ci for the biti of a coefficient is selected using the two

higher bits, biti−1 and biti−2 as in Table 5.2.

Ci biti−1 biti−2

1 0 0
2 0 1
3 1 1 or 0

Table 5.2: Context Selection for data refinement bits

The actual coding context is selected by referring to a look up table with two input

parameters, namely initial context, Ci, and the original bit plane number for the biti
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prior to normalising. This makes 3 ×(msb index) data contexts for each WBP. The

memory used for these distributions in one WBP are reused for another WBP by

resetting the distributions at the beginning of each WBP. This also helps the probability

distributions to represent the statistics related to a specific bit plane.

Context modelling in ELIC: Performance

The performance of the above presented context modelling for ELIC is demonstrated as

in Table 5.3, by comparing its lossless bit rates with those of the no context modelling

case and a Markov-1 context case for the lossless coding case. the bit rates shown in

the table are the average lossless bit rates for the test image set.

Model Lossless Bit rate

No Contexts 4.549
Markov-I 4.517

ELIC 4.341

Table 5.3: Context modelling comparisons

According to the above table, entropy coding without any contexts compresses the test

image set to 4.549 bpp on average and use of contexts in entropy coding reduces the bit

rates to 4.517 bpp and 4.341 bpp for Markov-I context model and the contexts model

used in ELIC respectively. The context model in ELIC gains an advantage of 0.21 bpp

(4.6%) and 0.18 bpp (3.9%) over the first two methods respectively.

5.1.2 ELIC results with the IWT

Bit rates (bpp) at lossless level for ELIC, using the (4,4) IWT with 5 decomposition

scales are compared with JPEG-LS, which is a prediction based method, and SPIHT

lossless, which is based on S+P with embedded coding up to a certain bit rate and

then progressive coding (ProgCode). The results for the test image set are as in Table

5.4.

JPEG-LS gives the best compression for most of the images. But the disadvantage

of JPEG-LS is the coded image can only be decoded to the lossless level since it is

not an embedded coding technique. On the other hand both SPIHT and ELIC can be

decoded to other compression levels. On average at the lossless level, ELIC performs

within 0.1% of JPEG-LS and 0.7% better than SPIHT lossless.
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JPEG-LS SPIHT ELIC

Gold Hill 4.557 4.630 4.602
Barbara1 4.720 4.580 4.524
Barbara2 4.777 4.792 4.792

Boats 3.946 4.053 4.026
Black board 3.684 3.809 3.765

Average 4.337 4.373 4.341

Table 5.4: Lossless performance (in bpp)

5.1.3 ELIC results with the other transforms

The lossless performance of other integer transforms, the IWHT, the IDCT, the IDST

and the INLT, designed in Chapter 3 are also compared using ELIC. According to tables

3.2, 3.4 and 3.5, the block transforms using a block size of 32×32 result in the lowest

weighted entropy values, which are computed using the packet sub bands arrangement

of the block transforms.

However, ELIC was designed in the previous and the current chapters considering the

usual wavelet sub band decomposition. Earlier it was shown that the block transforms

coefficients can be reorganised into a packet transform sub band structure. In the

literature, zero tree coding has been used in wavelet packet coding by rearranging

them back into traditional wavelet sub band structure so that the correct positions of

the parents and their corresponding children coefficients can be considered in wavelet

tree based coding [111]. A similar approach has been followed in ELIC when used with

the block transforms.

The performance of IWHT, IDCT and IDST with ELIC using different block sizes are

as in tables 5.5, 5.6 and 5.7 respectively.

N 4 8 16 32

Gold Hill 4.992 4.973 5.028 5.130
Barbara1 5.196 5.195 5.335 5.519
Barbara2 5.286 5.294 5.402 5.5640

Boats 4.533 4.587 4.737 4.9180
Black board 4.127 4.168 4.335 4.519

Average 4.827 4.843 4.967 5.130

Table 5.5: Lossless performance (in bpp) for IWHTN using ELIC
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N 4 8 16 32

Gold Hill 4.897 4.778 4.745 4.752
Barbara1 5.002 4.760 4.648 4.640
Barbara2 5.139 4.981 4.915 4.925

Boats 4.386 4.259 4.249 4.289
Black board 4.040 3.943 3.961 4.024

Average 4.693 4.544 4.504 4.526

Table 5.6: Lossless performance (in bpp) for IDCTN using ELIC

N 4 8 16 32

Gold Hill 5.408 5.474 5.426 5.312
Barbara1 5.649 5.747 5.707 5.551
Barbara2 5.744 5.791 5.733 5.626

Boats 5.052 5.198 5.201 5.118
Black board 4.688 4.872 4.984 4.990

Average 5.308 5.416 5.410 5.319

Table 5.7: Lossless performance (in bpp) for IDSTN using ELIC

From the above tables it is evident, that the transforms with smaller block sizes pro-

duce lower lossless bit rates. On average, the 16-point IDCT, the 4-point IWHT and

the 4-point IDST, performed better than any other block sizes for respective trans-

forms. This discrepancy in the entropy values and the actual bit rates is due to the

wavelet packet sub band nature of those transforms. In these transforms, the packet sub

band organisation has to be rearranged in order to use the corresponding parent-child

orientation as in a dyadic wavelet tree, as used in ELIC.

Since the INLT-3 follows the usual wavelet sub band decomposition, a 5 scale INLT-3

is used to demonstrate the INLT with ELIC for lossless image coding. Bit rates at the

lossless level for all above integer transforms including (4,4) IWT are summarised in

Table 5.8 for comparison.

As can be seen from the above table, ELIC using the IWT produces the best lossless

performance on average. The 16-point IDCT produces the next best results. The

INLT-3 and the 4-point IWHT produce comparable results. As expected, the IDST

provides the worst lossless performance for intra frame type images.
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IWT-(4,4) IWHT4 IDCT16 IDST4 INLT-3

Gold Hill 4.602 4.992 4.745 5.408 4.895
Barbara1 4.524 5.196 4.648 5.649 5.211
Barbara2 4.792 5.286 4.915 5.744 5.298

Boats 4.026 4.533 4.249 5.052 4.471
Black board 3.765 4.127 3.961 4.688 4.124

Average 4.341 4.827 4.504 5.308 4.800

Table 5.8: Lossless performance (in bpp) for ELIC using integer transforms

5.2 Near-Lossless Compression

As stated in Definition 1.3 (page 13), in near-lossless coding, each reconstructed pixel of

the image / video sequence output from the decoder differs from the corresponding one

in the input to the encoder by not more than a pre specified value δ. Near-lossless coding

can easily be incorporated into predictive lossless coding techniques, like JPEG-LS, as

it is normally achieved by quantising the prediction error according to δ. However,

this is not possible in transforms based methods, since coding is performed in the

transform coefficients domain. Therefore, maintaining a maximum error value of ±δ

in the transform domain does not guarantee the same error level in the image pixel

domain.

Usually, near-lossless coding using the IWT is performed by a pre-quantisation process,

in which the input to the wavelet transforms is quantised using the near-lossless quanti-

sation [70], as in equation 2.3 (on page 24). In the following sub sections, performance

of this technique for near-lossless image coding is compared with two novel techniques

where the quantisation process is incorporated into lifting steps.

5.2.1 Pre-quantisation

The input to the integer transform is quantised using the maximum allowed error, δ, as

in Quant( ), Qδ( ), process and the output from the inverse transform is dequantised

to achieve the decoded value as in Dequant( ), Dδ( ), process as shown in below

equations.

Quant(x) : Qδ(x) = sign(x)×
⌊ |x|+ δ

2δ + 1

⌋

(5.1)

Dequant(x) : Dδ(x) = x × (2δ + 1) (5.2)
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The main advantage of this method is that it can be used with any integer transform.

The disadvantages are that the pre-quantisation reduces the dynamic range of the input

to the transform and that the coding is not optimised according to δ as in predictive

near-lossless techniques. The reduction of dynamic range through pre quantisation

represents an image with statistical characteristics different from those of the image

prior to quantisation.

5.2.2 Incorporating near-lossless quantisation into lifting steps

As mentioned earlier in section 3.1, the input signal is split into two channels using

the lazy wavelet transform and then P and U lifting steps are performed on those two

channels to obtain the wavelet coefficients. In this section, the possibility of incorporat-

ing above near-lossless quantisation functions, Quant( ) and Dequant( ), into lifting

steps is considered. In addition to these two processes, a new process, Requant( ),

Rδ( ), is introduced to re-quantise a quantised and dequantised input signal value. The

Requant( ) process, which is the inverse of Dequant( ) process, is performed as in

equation 5.3.

Requant(x) : Rδ(x) =

⌊
x

2δ + 1

⌋

(5.3)

Two techniques based on 1-D transform and 2-D transform are designed and evaluated

as follows.

5.2.2.1 1-D online (in-transform) near-lossless quantised lifting

In this method, near-lossless quantisation is incorporated considering the 1-D lifting

transform. Let the output from the lazy wavelet be s and d. The Qδ, Dδ and Rδ

processes are used on s and d channels in line with P and U lifting steps. The online

(in-transform) near-lossless lifting steps are as follows,

s ← Qδ(s) (5.4)

s ← Dδ(s) (5.5)

d ← d−
⌊

P (s) +
1

2

⌋

(5.6)

d ← Qδ(d) (5.7)

s ← Rδ(s) (5.8)

s ← s +

⌊

U(s) +
1

2

⌋

(5.9)
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Steps 5.4-5.5 represent incorporation of the effect of near-lossless quantising of s channel

prior to using it to predict d channel. Step 5.7 represents near-lossless quantising of the

prediction error as performed in predictive coding techniques. In step 5.8, s channel

coefficients are quantised back to their near-lossless quantised dynamic range. The

inverse transform, as shown in steps 5.10-5.13, reverses the order and the operation of

corresponding steps in the forward transform (steps 5.4-5.9).

s ← s−
⌊

U(s) +
1

2

⌋

(5.10)

s ← Dδ(s) (5.11)

d ← Dδ(d) (5.12)

d ← d +

⌊

P (s) +
1

2

⌋

(5.13)

In general, the stand alone Qδ and Rδ processes in the forward transform are replaced

with the Dδ process in the inverse transform. The sequential Qδ and Dδ processes,

as in steps 5.4 and 5.5, in the forward transform do not need to be inversed, as their

operations are off set against each other in the forward transform.

In a 1-D transform the above steps are performed only for the first decomposition level.

The higher decompositions are performed as in a normal wavelet transform, using steps

5.6 and 5.9. In a 2-D transform, where the 1-D transform is applied separately for rows

and columns, the above steps are performed only in the 1-D transform performed in

the first dimension i.e. usually for rows.

5.2.2.2 2-D online (in-transform) near-lossless quantised lifting

This method incorporates online near-lossless quantised lifting into a 2-D wavelet trans-

form. As evident from the above section, due to the inability of applying the 1-D tech-

nique separably into the 2-D case, a non separable method using quincunx sub band

splitting is introduced. In the following design the usual four sub bands namely, 00, 01,

10 and 11, obtained from quincunx splitting (section 3.5), are named as LL, HL, LH

and HH respectively, in accordance with the traditional wavelet transform sub band

notation.

LL HL

LH HH
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The online near-lossless lifting steps for the forward transform are as follows,

LL ← Qδ(LL) (5.14)

LL ← Dδ(LL) (5.15)

LH ← LH −
⌊

P (LL) +
1

2

⌋

(5.16)

LH ← Qδ(LH) (5.17)

LL ← LL +

⌊

U(LH) +
1

2

⌋

(5.18)

HL ← HL−
⌊

P (LL) +
1

2

⌋

(5.19)

HL ← Qδ(HL) (5.20)

LL ← LL−
⌊

U(LH) +
1

2

⌋

(5.21)

LH ← Dδ(LH) (5.22)

LH ← LH +

⌊

P (LL) +
1

2

⌋

(5.23)

HH ← HH −
⌊

P (LH) +
1

2

⌋

(5.24)

HH ← Qδ(HH) (5.25)

HH ← HH −
⌊

P (HL) +
1

2

⌋

(5.26)

HL ← HL +

⌊

U(HH) +
1

2

⌋

(5.27)

LH ← LH −
⌊

P (LL) +
1

2

⌋

(5.28)

LH ← Rδ(LH) (5.29)

LL ← Rδ(LL) (5.30)

LL ← LL +

⌊

U(LH) +
1

2

⌋

(5.31)

LL ← LL +

⌊

U(LH) +
1

2

⌋

(5.32)

LH ← LH +

⌊

U(HH) +
1

2

⌋

(5.33)

The inverse transform is obtained by reversing the operating order and the sign of the

forward transform steps. As in the 1-D case, this is done by replacing stand alone
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Qδ and Rδ processes in the forward transform with the Dδ process and ignoring the

sequential Qδ and Dδ processes in the forward transform.

5.2.3 Near-lossless results

The performance of the above three methods using ELIC quantiser is compared with

the near-lossless performance of the JPEG-LS (JPEG-NLS) for different δ values, δ=1,

3 and 5. The near-lossless bit rates for those δ values for the test image set are shown

in Tables 5.9 -5.11 and the average bit rates for different δ values are summarised as

in Table 5.12.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 3.039 3.136 3.111 3.099
Barbara1 3.174 3.129 3.095 3.068
Barbara2 3.222 3.361 3.337 3.316

Boats 2.487 2.712 2.664 2.643
Black board 2.209 2.488 2.430 2.406

Avergage 2.826 2.965 2.927 2.906

Table 5.9: Near-lossless performance (in bpp) for δ=1.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 1.970 2.200 2.140 2.106
Barbara1 2.178 2.276 2.205 2.139
Barbara2 2.172 2.420 2.377 2.334

Boats 1.514 1.882 1.823 1.760
Black board 1.276 1.664 1.603 1.560

Average 1.822 2.088 2.030 1.980

Table 5.10: Near-lossless performance (in bpp) for δ=3.

JPEG-NLS Pre-quant Online 1-D Online 2-D

Gold Hill 1.525 1.794 1.713 1.655
Barbara1 1.717 1.884 1.798 1.702
Barbara2 1.674 1.959 1.908 1.845

Boats 1.130 1.501 1.435 1.357
Black board 0.861 1.328 1.271 1.189

Average 1.381 1.693 1.625 1.550

Table 5.11: Near-lossless performance (in bpp) for δ=5.
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δ JPEG-NLS Pre-quant Online 1-D Online 2-D

1 2.826 2.965 2.927 2.906
3 1.822 2.088 2.030 1.980
5 1.381 1.693 1.625 1.550
7 1.147 1.428 1.343 1.259

Table 5.12: Summarised Near-lossless performance (in bpp) for the image set.

The summarised near lossless bit rates in Table 5.12 show that JPEG-NLS, which is

a predictive technique, performs better than any other method. However, the newly

designed 1-D and 2-D online quantisation methods outperform the pre-quantisation

method, which has been commonly used in integer transforms based near-lossless cod-

ing. It is also evident from the table that the 2-D online method produces better

results than those of the 1-D online quantiser. The superiority of in-transform quan-

tising techniques over pre-quantising is evident not only in the bit rates, but also in

corresponding rms error values of the decoded image. The rms error - bit rate plots for

Gold Hill, Barbara1 and for the whole image set is as in figures 5.3-5.5. The 2-D online

(in-transform) quantisation method achieves better rms error / bit rate performance

compared to the pre-quantisation method.
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Figure 5.3: Near-lossless performance for Gold Hill.
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Figure 5.4: Near-lossless performance for Barbara1.
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5.3 Quasi Lossless Compression Performance

The ELIC algorithm can code / decode to other bit rates lower than the lossless bit

rate. The quasi lossless performance of ELIC using the (4,4) IWT and the IDCT is

compared with those of SPIHT algorithm for bit rates up to 1 bpp starting from the

lossless bit rates. The rms error vs. bit rate plots for Gold Hill and Barbara 1 are in

Figure 5.6 and 5.7 respectively.
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Figure 5.6: Quasi lossless performance for Gold Hill.
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Figure 5.7: Quasi lossless performance for Barbara1.
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As seen from the above plots, ELIC algorithm with (4,4) IWT produces the best quasi

lossless results at bit rates higher than 3 bpp. Furthermore, it is evident that although

the 16-point IDCT based ELIC performs less well at lossless and high bit rates, the

performance of it becomes comparable with ELIC-IWT at the lower bit rates.

5.4 Discussion

In this section, the use of the integer transforms and embedded quantising on embedded

lossless image coding was investigated. First, it was shown that further reduction of

bit rates can be gained by using context based entropy coding as used in ELIC. The

extensively designed context model for ELIC reduces its lossless bit rates by 4.6% on

average for the test image set. Lossless bit rates for ELIC-IWT outperform those of

SPIHT by 0.7% on average. Moreover, on average, ELIC-IWT performs within 0.1%

of JPEG-LS, which is a predictive lossless coding method where the lossless bit stream

can only be decoded at the lossless bit rate.

The experiments on performance of other transforms using ELIC show a discrepancy

on the optimum block sizes for the block based orthogonal transforms, with those found

in the initial entropy computations. This is mainly due to their wavelet packet type

sub band arrangement being reorganised into such a way that the correct parent-child

relationship can be used in ELIC. A block size of 16 for the IDCT and a block size of 4

for the IWHT and the IDST produce the lowest lossless bit rates for those transforms.

However, when all the transforms are compared, the best results were achieved by the

IWT-(4,4), followed by the IDCT16, INLT-3, the IWHT4 and the IDST4.

The near-lossless coding, in which each reconstructed pixel in the output from decoder

differs from the input to the coder by not more than a value δ specified at the time

of coding, is more commonly used with the prediction based lossless coding methods.

Normally near-lossless coding in integer transforms based lossless coding is achieved by

quantising the input using δ prior to the forward transform. The near-lossless results,

both bit rates and rms error, achieved through pre-quantisation are always inferior to

those obtained from predictive techniques. It was shown in this chapter, that such

performance can be improved by incorporating near-lossless quantisation into lifting

steps in the transform either by considering 1-D or 2-D transforms. The latter has

shown lower bit rates and rms error values at the tested near-lossless levels for the

image set.
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Finally, the quasi lossless performance of ELIC using the (4,4) IWT and the 16-point

IDCT, was compared with those achieved from the lossless mode of SPIHT. ELIC-IWT

provides the best performance at lossless level and the bit rates higher than 3 bpp for

most of the images in the image set. ELIC with the 16-point IDCT produces results

comparable with ELIC-IWT at lower bit rates.
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Chapter 6

Lossless Coding of Non-intra

Frames

6.1 Introduction

In previous chapters the main components of lossless embedded coding were discussed

in detail. The performance of the integer transforms, presented in Chapter 3, for

embedded lossless coding of intra frames using the ELIC quantiser was evaluated for

both lossless and quasi-lossless bit rates in Chapter 5. In this chapter, the performance

of those integer transforms for embedded lossless coding of non-intra frames in a lossless

video coder, using the MPEG-2 video motion compensated prediction framework is

presented. The non-intra frames of such codec contain the prediction residuals, which

need to be coded to correct the predicted frames. The rest of this chapter is organised

as follows. Section 6.2 looks at the characteristics of the motion compensated prediction

residuals, the knowledge of which is vital for transform and quantiser selection. The

use of wavelet transforms on non-intra frames is discussed in section 6.3. Likewise,

the performance of the other integer transforms on non-intra frames are investigated

in section 6.5. Section 6.6 presents the entropy coding of integer transform coefficients

using ELIC and finally section 6.7 discusses the findings of these experiments.
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6.2 Characteristics of Non-intra Frames

The statistical characteristics of intra and non-intra frames are significantly different.

Therefore, careful investigation of the statistical properties is vital for efficient encod-

ing. The main properties, including the magnitude histograms, the normalised auto

correlation coefficients, the magnitude spectrums and the energy in the DCT coeffi-

cients are compared for intra and non-intra frame. These comparisons are illustrated

below using a non-intra frame and its corresponding intra frame from Mobile sequence.

Magnitude histograms

The magnitude histogram plots of a non-intra frame and its corresponding intra frame

are as in Figure 6.1. It can be seen from the figure, that the magnitude histogram of

the intra frame is spread over a range of 0-255, with short peaks according to the local

luminance values of the image. Likewise, the magnitude histogram of the residuals

of the non-intra frame constitute a zero centred double sided geometrical distribution

with a high narrow peak at zero and mean value close to zero. It spans a range of

-255 to 255. The width of the peak of the geometrical distribution is dependent on the

motion content of the frame. Frames with low motion content give a high and narrow

peak at zero and short tails, while the frames with high motion content produce longer

tails. This shape of distribution suggests that the values in the residuals are already

decorrelated to a certain extent depending on the level of motion present in the frame.
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Figure 6.1: Magnitude histograms of Intra and Non-intra type frames.
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Auto correlation coefficients

The normalised auto correlation plots for a pixel neighbourhood of -4· · ·4 in both x

and y directions for intra and non-intra frame are as in Figure 6.2. Intra frame pixels

contain a high positive inter pixel correlation, whereas, non-intra frame pixels contain

a low inter pixel correlation, where most of the values are close to zero. This also

suggests that the residuals from motion compensated prediction in a lossless video are

already highly decorrelated by the prediction processes.
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Figure 6.2: Auto correlation coefficients of Intra and Non-intra type frames.

Magnitude Spectrum

The average normalised magnitudes of the coefficients from the FFT performed both

row and column wise for both types of frames are shown in Figure 6.3. As can be

seen from the figure, intra frames possess an exponentially decreasing power spectrum

in both directions. The normalised magnitudes of the high frequency components in

intra frames are smaller compared to those of non-intra frames. The high frequency

components with comparatively large magnitudes present in non-intra frame residuals

can be costly in compression of such frames.

The DCT coefficient magnitudes

The DCT is used as the transform for both intra and non-intra type frames in MPEG-2

and most other video coding standards. The magnitudes of the a.c. components of the

2-D 16-point DCT coefficients normalised with respect to the d.c. component for both

types of frames are as in Figure 6.4. The 16-point DCT was used in this analysis as it

is the same as the size of a macro block used in motion compensation. The 2-D DCT
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Figure 6.3: Magnitude spectrum of Intra and Non-intra type frames.
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Figure 6.4: Normalised magnitudes of a.c. components of the DCT coefficients for Intra
and Non-intra type frames.

coefficients are usually arranged in increasing frequencies along the diagonals, starting

from the top left corner, which corresponds to the d.c. value. As can be seen from the

figure, the presence of comparatively large amplitude high frequency components in

non-intra frame residuals is further made evident in the DCT coefficients.

Residuals in lossy coding Vs Residuals in lossless coding

Since the reference frames used for forward and backward motion compensated predic-

tion in a lossless video coding framework are coded losslessly, the residuals in lossless

video coding do not contain quantisation errors resulting from lossy coding of reference

frames as in lossy video coding. These residuals mainly consist of the noise due to

117



the motion compensated prediction process and the natural noise in individual frames,

whose level is increased by the subtraction used to find the residuals.

By the above statistical properties, it can be concluded that the residuals in lossless

video coding are fairly decorrelated frames with large magnitude high frequency com-

ponents. This amount of decorrelation may be adequate for efficient lossless coding

without using a transform. However, in addition to decorrelation of data, a transform

is required for efficient compaction of input energy, which is vital for embedded cod-

ing. Therefore, coding of residuals has to use a transform, which should be selected by

considering the statistical characteristics of the residuals.

6.3 Integer Wavelet Transforms on Non-intra Frames

Although the DCT has been the preferred transform method for residuals in current

video coding standards including MPEG-2, with the success of using wavelet transforms

in still image coding, the wavelet transforms also have been used for coding non-intra

frames [112]. In this section, the use of integer wavelet transforms is considered for

lossless coding of such frames.

In lossless image coding, it is well known that wavelet transforms with more vanishing

moments, such as (4,4), (4,2) and (2+2,2) outperform wavelet transforms with fewer

vanishing moments, since still images mainly consist of highly smooth regions and a few

edges. Such wavelets use a larger neighbourhood of pixels for predicting and updating

lifting steps. This was again evident from the entropy values for still images listed in

Table 3.1. Since the residuals contain a higher proportion of high frequency information,

wavelets with fewer vanishing moments, such as (0,0) (lazy wavelet), (1,1) (S transform)

and (2,2) transform were chosen for initial experiments on residuals. Residuals from Y

components of the test sequence set were used in the following experiments.

6.3.1 Sub band entropy and energy distributions

Wavelet transforms are applied separately in horizontal and vertical directions produc-

ing four sub bands. When still images or intra frames are wavelet transformed, most

of the image energy is concentrated in the LL sub band, which normally contains a

sub sampled original image with statistics similar to those of the original image. Fur-

ther, the LL sub band contains higher entropy compared to that of the other three
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sub bands. These characteristics lead to iteration of the wavelet transforms on LL sub

band for four or five levels of decomposition in still image coding.

On the other hand, the LL sub band in the wavelet transformed residuals does not

possess the highest entropy or the highest energy compared to the other sub bands.

This is illustrated for 40 non-intra frames obtained from the Mobile sequence using the

(2,2) transform as in Figure 6.5-6.6. The average sub band entropy and energy values

for the Mobile sequence using wavelets (1,1), (2,2) and (4,4) are as in Figure 6.7.

It can be seen from Figure 6.5 and 6.6, that there is no single sub band consistently

containing the highest entropy or energy percentages for all the frames. LL sub band

has shown the highest energy and entropy only for a few frames, mostly for P types. The

entropy and energy average % values using different wavelets, as shown in Figure 6.7,

also reveal that all four sub bands contain comparable energy and entropy values. This

is due to the larger proportion of high frequency information present in the residuals.

Because of this, further decomposition of LL sub band as in still image coding does

not improve the total weighted entropy. Therefore, in these experiments, the wavelet

transforms were applied only up to one scale, resulting in only four sub bands.
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6.3.2 The best wavelet basis

The zero-order weighted entropy values in bits per pixel (bpp) for each non-intra frame

in the test sequences using the transforms applied up to a single level of iteration were

computed. As an example those values for non-intra frames from Mobile and Kiel

sequences are shown in Figure 6.8 and 6.9. The average entropy values for all non-intra

frames are recorded in Table 6.1.
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Figure 6.8: Total entropy (in bpp) using different wavelets for Mobile residuals
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original
entropy (0,0) (1,1) (2,2) (4,4)

Claire 2.176 2.174 2.204 2.160 2.208
Mobile 4.529 4.524 4.531 4.594 4.625
Kiel 4.502 4.499 4.428 4.439 4.452

Unicycle 4.499 4.494 4.383 4.326 4.338

Avergage 3.927 3.923 3.886 3.880 3.906

Table 6.1: Average entropy (in bpp) using different IWT

These entropy values show that applying the wavelet transforms on residuals achieves

only a slight advantage over not using a transform. The (1,1) transform and the (2,2)

transform produce the lowest entropy values for the sequences. None of the transforms

performed as the best option for all the sequences. Generally, any one of the transforms

can perform best for a given sequence according to the extent to which they are initially

decorrelated. It is further apparent from Figure 6.8 and 6.9, that the performance of

each transform varies for different frames of the same sequence. However, wavelets with

fewer vanishing moments performed better compared to those with more vanishing

moments, as expected.

6.4 Spatially Adaptive Lifting

As stated above, the four wavelet transforms considered perform differently for each

of the sequences. In this section, a novel method to choose P and U functions in the

lifting process adaptively depending on the local statistics of the residuals is presented.

A similar approach has been used in adaptive switching between different predictors

based on the local edginess of the image in still image coding [113, 114, 115].

In any given frame, there are regions with different amounts of motion. Regions with

low motion content produce smooth regions of low valued residuals due to accurate

predictions. As a result, a high decorrelation can be seen in such regions. The regions

with high motion cause high valued residuals, decorrelated to a certain extent, due to

inaccurate predictions. Therefore, the amount of local motion present in a frame causes

regions of high and low decorrelated regions in a residual field. A priori knowledge of

such regions can be used to choose a suitable wavelet to transform the residual field.

Spatially adaptive selection of wavelet basis, resulting in non-linear wavelets can easily

be achieved with the lifting process. As the templates used to predict or update the
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members in one sub sample belong to the other sub sample, the members of that sub

sample, which are a priori known at both coding and decoding ends, can be used for

adaptive selection criteria. Because of this, the spatially adaptive lifting presented

here can be used without coding any extra information regarding the basis function

being used for each pixel. The problem of adaptively choosing vanishing / preserving

moments is formulated based on two approaches, namely, an optimal prediction (AL-1)

and an adaptive interpolation (AL-2), as discussed below.

6.4.1 An optimal prediction approach for adaptive lifting (AL-1)

In this approach the P lifting step is considered as a prediction process. The conditions

for minimising the prediction error, which is represented as the d channel, are derived

in this approach. The same approach is used to minimise the s channel coefficients in

the U lifting step. These processes are described in the following two sub sections.

6.4.1.1 Choosing the Predictor (P)

With the initial results, the four predictors, namely (0,Ñ), (1,Ñ), (2,Ñ) and (4,Ñ),

where 0, 1, 2 and 4 are the numbers of vanishing moments to be introduced in the P

lifting step and Ñ is the number of preserving moments in U lifting, which is indepen-

dent of the number of vanishing moments in P lifting, are considered in this analysis.

The mathematical formulation of the problem is as follows.

The prediction lifting step for di using the neighbouring samples from s channel :

di ← di − P (s A) (6.1)

where, A = ( i− dN/2e+ 1 , . . . , i + bN/2c )
N is the number of dual vanishing moments in d.

This can be rewritten as below.

di ← di −
bN/2c
∑

n=−dN/2e+1

aNn
si+n (6.2)

aNn
represents the prediction weights corresponding to the number of vanishing mo-

ments (N) of the predictor function as shown in Table 6.2.
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n -1 0 1 2

Predictors

N=0 0 0 0 0

N=1 0 1 0 0

N=2 0 1
2

1
2 0

N=4 − 1
16

9
16

9
16 − 1

16

Table 6.2: The Predictor weights

It is known that the lower the new value for di, which is the prediction error, the higher

the compression achieved. Therefore, the objective is to minimise the summed squared

values of di over the signal length. The cost function EP , which is the summed squared

error for the channel length, L
2 is as below.

EP =

L
2
−1
∑

i=0



di −
bN/2c
∑

n=−dN/2e+1

aNn
si+n





2

(6.3)

The minimum point of the above function occurs when its first differential with respect

to a given predictor weight, aNk
, is zero, as demonstrated below.

0 =
∂EP

∂aNk

(6.4)

=
∂

∂aNk






L
2
−1
∑

i=0



di −
bN/2c
∑

n=−dN/2e+1

aNn
si+n





2





= −2

L
2
−1
∑

i=0







di −
bN/2c
∑

n=−dN/2e+1

aNn
si+n



 si+k



 (6.5)

= −2

L
2
−1
∑

i=0

disi+k + 2

bN/2c
∑

n=−dN/2e+1

aNn

L
2
−1
∑

i=0

si+nsi+k (6.6)

Equation 6.6 leads to the condition for the minimum error as below.

L
2
−1
∑

i=0

disi+k

︸ ︷︷ ︸

rds(k)

=

bN/2c
∑

n=−dN/2e+1

aNn

L
2
−1
∑

i=0

si+nsi+k

︸ ︷︷ ︸

rss(k−n)

(6.7)
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where, rds is the cross correlation between d and s channels and rss is the auto cor-

relation of the s channel. Although the whole channel length, L/2, was considered

in the preceding mathematical modelling of this problem, from this point onwards a

finite window of length, N, which is the same as the predictor length, spanning from

−dN/2e + 1 to bN/2c is used in correlation computations. The points outside the

window are considered as zero.

L
2
−1
∑

i=0

si+nsi+k ⇒
∑bN/2c−k

i=−dN/2e+1 sisi+(k−n) = rss(k − n)N (6.8)

L
2
−1
∑

i=0

disi+k ⇒
∑bN/2c−k

i=−dN/2e+1 disi+k = rds(k)N (6.9)

Further, by considering the initial spatial positions of the members of the s and d

channels in the original data vector, x,

rds(k)N =

bN/2c−k
∑

i=−dN/2e+1

disi+k

=

bN/2c−k
∑

i=−dN/2e+1

x2i+1x2i+2k

= rxx(2k − 1)N

(6.10)

Hence, equation 6.7 becomes,

rxx(2k − 1)N =

bN/2c
∑

n=−dN/2e+1

aNn
rss(k − n)N (6.11)

which in turn can be written in matrix form as in equation 6.11 by considering the

predictors in Table 6.2.










rxx(−3)N

rxx(−1)N

rxx(1)N

rxx(3)N










=










rss(0)N rss(−1)N rss(−2)N rss(−3)N

rss(1)N

rss(2)N

rss(0)N

rss(1)N

rss(−1)N

rss(0)N

rss(−2)N

rss(−1)N

rss(3)N rss(2)N rss(1)N rss(0)N



















aN
−1

aN0

aN1

aN2










(6.12)

It should be noted that r(−l) = r(l). If all rss(l)N and rxx(l)N values are known,

the equation 6.11 can be solved for the adaptive predictor weights, aNn
. Equations

6.11 and 6.12 are similar to Wiener-Hopf equations for adaptive prediction based on

minimum mean square error criteria [116, 117].
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In this case, from a decoding viewpoint, although all members of s channel are a priori

known, not all members of d channel are known a priori. Therefore, only the causal d

channel values are used to compute rxx(l)N . For this reason and due to the fact that

the predictor weights are already defined in Table 6.2, the matrix equation 6.12 is used

to determine the adaptive predictor selection criteria.

The maximum predictor length of the predictors in 6.2 is four and therefore, four

equations can be written as in matrix equation 6.12. For each equation an error value

e(k) is computed as below.

e(k) = rxx(2k − 1)N −
bN/2c
∑

n=−dN/2e+1

aNn
rss(k − n)N (6.13)

Hence, a mean squared error EN for each predictor is computed.

EN = 1
4

k=2∑

k=−1

e(k)2 (6.14)

The objective here is to select the predictor, so that the mean squared error for the

constraint equation set is minimum. Therefore, the order of the predictor for a given

signal member is determined as the predictor that corresponds to the minimum E(N).

PN () = {aN
−1 aN0 aN1 aN2}

where, N = E−1
N

(

min
N∈{0,1,2,4}

EN

)

(6.15)

6.4.1.2 Choosing the Updator (U)

The main objective of the updating process is to preserve the running average of the

low passed sub samples the same as that of the original signal and to avoid aliasing due

to poor frequency separation in sub sampling operations. Updating is more important

when the transform is iterated on the LL sub band and the coefficients are quantised in

lossy coding applications. However, in adaptive updator selection criteria design, it is

not feasible to incorporate either of the above objectives. In that case, the cost function

to be minimised in this process is chosen as the summed squares of the updated value

in s channel. This leads to minimising the upper limit of the zero-order entropy of the

s channel.
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As were considered in prediction, four corresponding updators, namely (N ,0), (N ,1),

(N ,2) and (N ,4), where 0, 1, 2 and 4 are the number of moments preserved in s

channel in the U lifting step and N is the number of vanishing moments in the P

lifting step, which is independent of the number of preserving moments in U lifting,

are considered. The problem of adaptive selection of an updator is mathematically

formulated as follows.

The updating lifting step for si using neighbouring samples from d channel :

si ← si + U(d B) (6.16)

where, B = ( i− bÑ/ 2c , . . . , i + dÑ/ 2e − 1 )

Ñ is the number of preserving moments in s.

This can be rewritten as below.

si ← si +

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

di+n (6.17)

bÑn
represents the updating weights corresponding to the number of preserving mo-

ments (Ñ) of the updator function as shown in Table 6.3.

n -2 -1 0 1

Predictors

N=0 0 0 0 0

N=1 0 0 1
2 0

N=2 0 1
4

1
4 0

N=4 − 1
32

9
32

9
32 − 1

32

Table 6.3: The Predictor weights

As discussed earlier, the summed squared value of updates s channel coefficients for

the channel length, L
2 , is considered as the cost function EU , shown in equation 6.18.

EU =

L
2
−1
∑

i=0




si +

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

di+n






2

(6.18)

The minimum value of the above cost function occurs when its first differential with
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respect to a given updator weight is zero. This is demonstrated below with respect to

bÑk
as follows.

0 =
∂EU

∂bNk

(6.19)

=
∂

∂bÑk






L
2
−1
∑

i=0




si +

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

di+n






2




= 2

L
2
−1
∑

i=0









si +

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

di+n




 di+k




 (6.20)

= 2

L
2
−1
∑

i=0

sidi+k + 2

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

L
2
−1
∑

i=0

di+ndi+k (6.21)

Equation 6.21 leads to the condition for the minimum cost as below.

−
L
2
−1
∑

i=0

sidi+k

︸ ︷︷ ︸

rsd(k)

=

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

L
2
−1
∑

i=0

di+ndi+k

︸ ︷︷ ︸

rdd(k−n)

(6.22)

where, rsd is the cross correlation between s and d channels and rdd is the auto cor-

relation of the d channel. Also in this case, a finite window of length, N, which is the

same as the updator length, spanning from −
⌊

Ñ/2
⌋

to
⌈

Ñ/2
⌉

−1 is used in correlation

computations. The points outside the window are considered as zero.

L
2
−1
∑

i=0

sidi+k ⇒
∑dÑ/2e−1−k

n=−bÑ/2c sidi+k =

dÑ/2e−1−k
∑

n=−bÑ/2c
x2ix2(i+k)+1

= rxx(2k + 1)Ñ (6.23)
L
2
−1
∑

i=0

di+ndi+k ⇒
∑dÑ/2e−1−k

n=−bÑ/2c didi+(k−n) = rdd(k − n)Ñ (6.24)

Hence equation 6.22 becomes,

−rxx(2k + 1)Ñ =

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

rdd(k − n)Ñ (6.25)
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The following matrix equation can be written from equation 6.25.










rxx(−3)Ñ

rxx(−1)Ñ

rxx(1)Ñ

rxx(3)Ñ










= −










rdd(0)Ñ rdd(−1)Ñ rdd(−2)Ñ rdd(−3)Ñ

rdd(1)Ñ rdd(0)Ñ rdd(−1)Ñ rdd(−2)Ñ

rdd(2)Ñ rdd(1)Ñ rdd(0)Ñ rdd(−1)Ñ

rdd(3) rdd(2)Ñ rdd(1)Ñ rdd(0)Ñ



















bÑ
−2

bÑ
−1

bÑ0

bÑ1










(6.26)

It should be noted that r(−l) = r(l). If all rdd(l)N and rxx(l)N values are known, the

equation 6.25 can be solved for the adaptive updator weights, bÑn
. In this case, from

a decoding viewpoint, although all members of d channel are a priori known, not all

members of s channel are known a priori. Therefore, only the causal s channel values

are used to compute rxx(l)Ñ . For this reason and due to the fact that the updator

weights are already defined in Table 6.3, the matrix equation 6.26 is used to determine

the adaptive updator selection criteria.

The maximum updator length of the updators in 6.3 is four and therefore, four equa-

tions can be written as in matrix equation 6.26. For each equation a final value f(k)

is computed as below.

f(k) = rxx(2k + 1)Ñ +

dÑ/2e−1
∑

n=−bÑ/2c
bÑn

rdd(k − n)Ñ (6.27)

Hence, a mean squared final value FN for each updator is computed.

FÑ = 1
4

k=1∑

k=−2

f(k)2 (6.28)

The objective here is to select the updator, so that the mean squared final value for

the constraint equation set is minimum. The order of the updator for a given signal

member is the updator that corresponds to the minimum FÑ .

UÑ () = {bÑ
−1

bÑ0
bÑ1

bÑ2
}

where, Ñ = F−1
Ñ

(

min
Ñ∈{0,1,2,4}

(FÑ )

)

(6.29)
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6.4.2 An interpolation based approach for adaptive lifting (AL-2)

The first step in lifting is sub sampling the input data vector into two sub channels,

s and d. The P lifting step can be regarded as interpolating the s channel to obtain

the missing points due to previous sub sampling and the d channel recording the error

between the interpolated value and the corresponding original value. In the U lifting

step, these interpolation errors in the d channel are interpolated and a half of the

interpolated value is added to the corresponding element in the s channel, thereby

maintaining the running average of the original input.

Traditionally, the process of interpolation is mostly associated with image re-sampling

applications, where the interpolation of the discrete image to a continuous image and

then sampling the interpolated image are involved [118]. The interpolation is mainly

concerned with fitting a continuous function to discrete points in a digital signal. The

most common interpolation functions are the nearest neighbour, linear and cubic func-

tions, which are also analogous to the first, second and fourth moments of the polyno-

mials used in the lifting steps respectively.

It is well known that a signal can be reconstructed from samples if the signal is band

limited and the sampling is done at a frequency higher than the Nyquist rate. However,

the residuals, and thereby their sub sampled channels, cannot be considered as band

limited signals, as can be seen from the magnitude spectrum plots in Figure 6.3. The

down sampling process can also be considered as replicating the frequency spectrum

at the multiples of 2ωs, where ωs is the original sampling frequency. The interpolation

process removes those replicates of the spectrum. According to the Wiener-Khintchine

theorem, the spectrum of a finite energy signal can be obtained by the Fourier transform

of the auto correlation sequence of the input signal. This suggests that the auto corre-

lation sequence can be used to determine the interpolation criteria in the space domain.

However, in this case, due to the time variant property of the down sampling processes,

the famous relationship among input-output cross and auto correlation sequences and

the filter impulse response cannot be used for the above purpose.

The nearest neighbour and the linear interpolation functions use two successive points

in the down sampled stream to determine the point equidistant to those two points.

The use of two successive points corresponds to the unit lag auto correlation of the

down sampled signal. In this approach, the interpolator that maintains the unit lag

normalised auto correlation of the down sampled signal at the local point of interest

after the interpolation process is used to interpolate the local point. The derivation of

the selection criteria are as below.
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Let X and Y be the values of the two points to be interpolated. It is also noted that

|Y|≥|X| and X and Y are not necessarily at the left and the right sides respectively.

Since the normalised auto correlation is considered in this analysis, the two values 1

and X
Y , where −1 ≤ X

Y ≤ 1 and Y6=0, are used as the two values to be interpolated.

It is expected to interpolate these two points into 1
2(X + Y ) (or1

2(X
Y + 1) ), using the

linear interpolation and into X (or X
Y ), which is the lower absolute value, or Y (or

1), which is the higher absolute value, using the nearest neighbour interpolation. The

latter interpolation is different from the prediction method used in the S transform,

where the left side value in the P lifting and the right side value in the U lifting are

always chosen irrespective of the value of the other point. The unit lag normalised auto

correlation computed using the two points with values 1 and X
Y for the down sampled

signal and the corresponding unit lag normalised auto correlation using three points

(original two points + interpolated value) for the interpolated signal for the above three

scenarios are shown in the Figure 6.10.
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Figure 6.10: Resulting auto-correlation values for different interpolators

The plots of absolute difference of the unit lag normalised auto correlation for the three

interpolated signals and that of the two points to be interpolated are shown in Figure

6.11. The resulting unit lag normalised auto correlation difference due to zero padded

interpolation, which corresponds to the lazy wavelet, is also shown in the figure. It can

be seen from the plots, that for 0 < X
Y < 1√

2
the nearest lower neighbour interpolation

provides the closest auto correlation match and for 1√
2
≤ X

Y ≤ 1 the linear interpolator

provides the closest match. The values X
Y < 0 correspond to X and Y with different

signs and to negative correlation. It is clear from Figure 6.11.a. that the nearest lower

neighbour interpolation produces the closest match in this region. However, due to

the sign difference of the neighbours, and thereby the negative auto correlation, a zero

padded interpolation is considered in this region. The same treatment is given when

X=Y=0.
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Figure 6.11: Resulting auto-correlation difference for different interpolators.

6.4.2.1 Extension to cubic interpolation

The cubic interpolation uses four points to find the value at the mid point (using the

two most immediate neighbours from either sides), whereas the above analysis for the

nearest neighbour and the linear interpolation considered only two points. The weights

in cubic interpolation for points at i-1, i, i+1 and i+2 positions are {− 1
16 , 9

16 , 9
16 ,− 1

16}
respectively . This can be interpreted as a linear interpolation of two points at i+ 1

8 and

i+7
8 , the values of which are computed by extrapolating the values at i-1 and i by 9:-1

ratio and extrapolating the values at i+1 and i+2 by -1:9 ratio, respectively as shown

in Figure 6.12. The interpolated values a and b (Figure 6.12) at positions i+ 1
8 and i+7

8

can be considered as X and Y in the previous analysis for linear / nearest neighbour

interpolation. The use of cubic interpolation can be determined by considering the

ratio X
Y .

x(i-1) x(i+2)x(i+1)x(i)

9

-1

9

1 1 -1

8

)1()(9 −−= ixix
a

8

)2()1(9 +−+
=

ixix
b

2

ba+

( )2
1+ix

Figure 6.12: Two point interpretation of the cubic interpolation
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6.4.2.2 The algorithm

The adaptive interpolation function selection can be summarised as in Figure 6.13. The

same algorithm can be used in both P and U lifting steps. In P lifting the interpolated

value is used to predict the members of the d channel, whereas, in U lifting a half of the

interpolated value is added to the corresponding members in the s channel to update

them with the running average.

X=x(i); Y=x(i+1);

if ((X==0) AND (Y==0)) {"Use No Interpolation"};

else {

if (sign(X) == sign(Y)) {

if (abs(X) >= abs(Y)) {ratio = abs(Y)/abs(X)};

else {ratio = abs(X)/abs(Y)};

if (ratio < 1/sqrt(2)) {

if (abs(X) >= abs(Y)) {"Nearest Neighbour Int. with Y"};

else {"Nearest Neighbour Int. with X"};

}

else {

a=(9*x(i)-x(i-1))/8; b=(9*x(i+1)-x(i+2))/8;

if (abs(a) >= abs(b)) {ratio_c = abs(b)/abs(a)};

else {ratio_c = abs(a)/abs(b)};

if (ratio > ratio_c) {"Linear Interpolation"};

else {"Cubic Interpolation"};

}

}

else {"Use No Interpolation"}

}

Figure 6.13: AL-2 Summary.

6.4.3 The zero-order entropy values

According to the above derivations, the adaptive lifting schemes possess the ability

to choose the best wavelet basis from the basis set (N, Ñ), where N, Ñ ∈ {0, 1, 2, 4},
for a point by considering the statistics of its neighbours. The performance of two

adaptive lifting approaches, namely optimal prediction based (AL-1) and interpolation

based (AL-2), is compared against the usual wavelet filters, considered in section 6.3,

by considering 40 consecutive non-intra frames from each sequence in the test sequence

set. The average entropy values in bpp are as in Table 6.4.
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Original
entropy (0,0) (1,1) (2,2) (4,4) AL-1 AL-2

Claire 2.176 2.174 2.204 2.160 2.208 2.236 2.164
Mobile 4.529 4.524 4.531 4.594 4.625 4.525 4.469
Kiel 4.502 4.499 4.428 4.439 4.452 4.465 4.439

Unicycle 4.499 4.494 4.383 4.326 4.338 4.454 4.359

Avergage 3.927 3.923 3.886 3.880 3.906 3.920 3.858

Table 6.4: Average entropy (in bpp) comparison for adaptive lifting
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Figure 6.14: Entropy comparison in bpp for non-intra frames using AL-2.
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As can be seen from Table 6.4, the adaptive lifting algorithm, AL-2, provides the

overall lowest entropy for the non-intra frame set. The entropy values using AL-2 and

the original entropy values without a transform for individual frames of the sequence

tests are shown in Figure 6.14.

On the other hand, the AL-1 entropy values are only lower than the entropy values of

the lazy wavelet transform and the original residuals without a transform. The inferior

performance of the AL-1 may be due to the a priori non availability of points at the

right hand side of the point to be predicted or updated for the rxx(l) computations. The

approach in AL-1 is more suitable for determining the adaptive weights (aNn
and bÑn

)

by solving the equations 6.12 and 6.26 rather than for adaptive selection of the order,

i.e. the number of vanishing / preserving moments of the predictor or the updator by

approximating the left and the right hand sides of those equations.

6.5 The Other Integer Transforms on Residuals

In this section the performance of the other integer transforms, presented and designed

in Chapter 3 is compared in terms of zero-order entropy values. The IDCT, for its

non-integer version’s usual use in video coding, the IWHT, for its analogy with the S

transform and the IDST, due to the highly decorrelated nature of the residuals were

found by experiment as the transform option in non-intra frame coding. The best block

size for the above transforms that gives the lowest entropy values for the residuals in

non-intra frames were investigated and the average entropy values for such frames in

the test sequence set are presented in Table 6.5 - Table 6.7. In the tables, the lowest

entropy values for each sequence in each transform method are depicted in bold font.

N 2 4 8 16 32

Claire 2.172 2.270 2.369 2.469 2.523
Mobile 4.530 4.685 4.840 4.841 4.569
Kiel 4.421 4.441 4.487 4.477 4.258

Unicycle 4.382 4.438 4.530 4.582 4.418

Avergage 3.876 3.958 4.056 4.092 3.942

Table 6.5: Average entropy (in bpp) using IWHTN
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N 2 4 8 16 32

Claire 2.213 2.354 2.486 2.641 2.720
Mobile 4.539 4.669 4.806 4.822 4.644
Kiel 4.432 4.447 4.493 4.498 4.349

Unicycle 4.388 4.395 4.443 4.471 4.389

Avergage 3.893 3.966 4.057 4.108 4.025

Table 6.6: Average entropy (in bpp) using IDCTN

N 2 4 8 16 32

Claire 2.213 2.377 2.516 2.661 2.733
Mobile 4.539 4.707 4.834 4.836 4.650
Kiel 4.432 4.491 4.533 4.522 4.361

Unicycle 4.388 4.489 4.559 4.582 4.438

Avergage 3.893 4.016 4.110 4.150 4.045

Table 6.7: Average entropy (in bpp) using IDSTN

The above results show that the smaller the block size, N, the lower the average weighted

entropy of the residual frames. For most of the instances, the lowest entropy values were

achieved for N=2. Unlike with still images, all three transforms performed comparably

on residuals. Based on the overall averages, the 2-point IWHT has recorded the best

results, followed by the 2-point IDST and the 2-point IDCT, which are the same. It

can also be noted that a block size of 2 corresponds to a single scale wavelet transform,

which is also the desired number of scales for the wavelet transforms based residual

coding as shown earlier. The entropy values for the non-linear transform, INLT-3 are

shown in Table 6.8 for different numbers of scales. In this case also it is evident that

no entropy gains can be achieved by applying the transform in higher scales for the

non-intra frames, as already seen for the other transforms.

Scales 1 2 3 4 5

Claire 2.209 2.249 2.261 2.264 2.265
Mobile 4.686 4.742 4.757 4.760 4.760
Kiel 4.620 4.655 4.665 4.667 4.667

Unicycle 4.439 4.471 4.483 4.486 4.486

Avergage 3.988 4.029 4.041 4.044 4.044

Table 6.8: Average entropy (in bpp) using INLT-3
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6.5.1 Transforms on residuals : Summary

The entropy values using the integer transforms on non-intra frames can be summarised

as in Table 6.9. The average entropy values for the (2,2)-IWT, AL-1, Al-2 and the

INLT-3 (all on a single scale) and 2-point block transforms (IWHT, IDST and IDCT)

are compared with the original entropy values in the table below.

Original IWT
entropy (2,2) AL-1 AL-2 IWHT2 IDCT2 IDST2 INLT-3

Claire 2.176 2.160 2.236 2.164 2.172 2.213 2.213 2.209
Mobile 4.529 4.594 4.525 4.469 4.530 4.539 4.539 4.686
Kiel 4.502 4.439 4.465 4.439 4.421 4.432 4.432 4.620

Unicycle 4.499 4.326 4.454 4.359 4.382 4.388 4.388 4.439

Avergage 3.927 3.880 3.920 3.858 3.876 3.893 3.893 3.988

Table 6.9: Average entropy (in bpp) comparison for integer transforms

As can be seen from the above table, the overall lowest entropy value is recorded for the

spatially adaptive lifting algorithm, AL-2. However, unlike in still image coding, the

overall differences in entropy values among different transforms are small. This is due

to the decorrelation caused by the motion compensated prediction process. This is also

made evident by comparing the average original entropy, which has only been decreased

by 0.069 bpp when the best transform option, AL-2 is used. Therefore, the use of

transforms on lossless coding of non-intra frames may sometimes not be useful when

the high computational costs associated with the transforms are taken into account.

However, the use of transforms may become necessary when there presents a high

motion content in frames, thereby producing higher residual energy due to inaccurate

motion compensated predictions. In this case, the use of an adaptive algorithm like,

Al-1 or AL-2 is beneficial as they can adapt the transformation according to the spatial

statistics of the residuals.

6.6 ELIC on Residuals

In this section, the possible further bit rate reductions by using an embedded quantiser

are investigated. The embedded quantiser, ELIC, based on the adaptive quadtree

splitting, designed in section 4.3.2 and the context model designed in section 5.1.1 is
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used with the above experimented integer transform options. Although the ELIC has

been designed for still images, it can be used for non-intra frames, since the probability

distributions of the sub bands after transformations in both types of frames can easily

be fitted to a zero centred double sided geometrical distribution.

6.6.1 Lossless results for the sub band based transforms

The lossless bit rates for non-intra frames, coded using ELIC with sub band based

transforms are compared with the bit rates coded without using a transform as in

Table 6.10. The table summarised the average bit rates for the non-intra frames using

the (2,2)-IWT, AL-1, AL-2 and INLT-3 transforms with ELIC.

No (2,2) AL-1 AL-2 INLT-3
Transform (1 Scale) (1 Scale) (1 Scale) (1 Scale)

Claire 1.951 2.059 2.122 2.067 2.107
Mobile 4.221 4.451 4.421 4.378 4.563
Kiel 4.124 4.186 4.228 4.213 4.357

Unicycle 4.208 4.233 4.372 4.284 4.368

Average 3.626 3.732 3.786 3.735 3.849

Table 6.10: Average lossless bit rates (in bpp) using integer wavelet transforms

As can be seen from the above table, the lowest lossless bit rates are achieved by

not employing a transform. The lossless coding performance of the next best options,

the (2,2)-IWT and the AL-2 transforms, are comparable to each other. However, on

average 0.106 bpp advantage can be gained by not using a transform when compared

with the (2,2) transform. The lossless bit rates for individual non-intra frames of

the test sequence set using the non-transform case, the AL-2 transform and the (2,2)

transform are compared in Figure 6.15.

It can be seen from the plots in Figure 6.15, that all the frames not using a transform

give the lowest bit rates at the lossless levels. Although the AL-2 transform gives the

second best rates for all the non-intra frames in the Mobile sequence, it is comparable

or slightly worse than the (2,2) lossless bit rates for the frames in other sequences.
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Figure 6.15: Lossless bit rate comparison in bpp for non-intra frames.

6.6.2 Lossless results for the integer block transforms

The integer block transforms are applied on the residual frames and they are reorganised

back to the sub band structure by considering their analogy to the complete tree wavelet

packet transform structure, as shown in Figure 3.6, so that the ELIC algorithm can be

performed on those coefficients. Although it is evident from section 6.5, that the 2-point

transforms provide the lowest entropy values, the performance of ELIC is investigated

for all the block sizes considered in section 6.5. The bit rates in bpp at lossless levels

for IWHTN , IDCTN , IDSTN , are as in tables 6.11, 6.12 and 6.13 respectively.
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N 2 4 8 16 32

Claire 2.060 2.310 2.520 2.756 2.983
Mobile 4.384 4.704 4.985 5.186 5.371
Kiel 4.163 4.355 4.550 4.759 4.955

Unicycle 4.254 4.454 4.666 4.876 5.083

Avergage 3.715 3.956 4.180 4.394 4.598

Table 6.11: Average lossless bit rates (in bpp) using IWHTN

N 2 4 8 16 32

Claire 2.081 2.283 2.408 2.616 2.825
Mobile 4.391 4.552 4.691 4.852 5.037
Kiel 4.175 4.274 4.351 4.456 4.599

Unicycle 4.253 4.316 4.390 4.510 4.725

Avergage 3.725 3.856 3.960 4.108 4.297

Table 6.12: Average lossless bit rates (in bpp) using IDCTN

N 2 4 8 16 32

Claire 2.081 2.281 2.420 2.631 2.838
Mobile 4.391 4.591 4.719 4.869 5.045
Kiel 4.175 4.321 4.389 4.484 4.615

Unicycle 4.253 4.391 4.471 4.596 4.772

Avergage 3.725 3.896 3.999 4.145 4.318

Table 6.13: Average lossless bit rates (in bpp) using IDSTN

It is evident from the above tables that the lowest lossless bit rates are achieved with

the smallest block sizes for each of the block transforms. Following the same pattern

as entropy computations in section 6.5, the higher the block size, N, the higher the

lossless bit rates. Although the lossless bit rates for 2-point transforms provide the

lowest entropy for the respective transform, none of those rates are lower than the

lossless bit rates obtained by not using a transform. However, according to the tables,

the IWHT2, IDCT2 and IDST2 have achieved lossless bit rates lower than those of the

(2,2) transform and the AL-2 transform in a few instances.
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6.7 Discussion

In this chapter, the main components of embedded lossless coding of non-intra frames

were discussed. The main consideration was given to choosing an appropriate transform

that maps integers into integers by considering the statistical properties of such frames.

The non-intra frames, which contain motion compensated residuals, are already decor-

related to a certain extent by the motion compensated prediction process. This was

made evident by the comparisons of the properties such as the magnitude histogram

distribution, the auto correlation coefficients, the magnitude spectrum and the DCT

coefficients of the non-intra frames and the corresponding intra frame as shown in Fig-

ures 6.1 - 6.4. Since the reference frames used in the motion compensated prediction in

a lossless video coding framework are also losslessly coded, the energy of the residuals

in non-intra frames contain only the errors due to the inaccuracy in the motion predic-

tion process. Unlike in lossy coding, the non-intra frames in lossless video coding do

not propagate the quantisation errors in the reference frames.

It was evident that the integer wavelet transforms with a fewer number of vanishing /

preserving moments produced lower lossless bit rates compared to those achieved form

the wavelet transforms with a greater number of vanishing / preserving moments, due to

the above mentioned intrinsic properties of the non-intra frames. However, it has been

understood that the motion content of a sequence changes for each frame in different

extents and so does the decorrelation gained by the motion compensated prediction

process for each frame. This has suggested that no single transform would produce the

best lossless rates for all the non-intra frames in a given sequence. On average, the

(2,2) transform has produced the best lossless bit rates. Spatially adaptive selection of

the number of vanishing moments in the prediction and updating steps in the lifting

was considered as a solution for the above problem.

Two approaches, namely an optimal prediction approach (AL-1) and an interpolation

based approach (AL-2), were derived and investigated. The optimal prediction ap-

proach for spatially adaptive lifting considers minimising the local mean square error

and derives an equation set to match as in Wiener-Hopf normal equations for differ-

ent lifting predictors and the predictor that minimises the error in the equation set is

chosen as the best predictor. The same approach is followed in the updating steps. In

the interpolation based approach the unit lag normalised auto correlation values for

each point, using the three main interpolators, namely, the nearest neighbour, linear

and cubic, which correspond to 1, 2 and 4 vanishing moments in the lifting steps, are

considered. It was discovered that the AL-2 algorithm produced the best lossless en-
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tropy values on average. A further advantage of the above adaptive lifting algorithms

are that they are spatially adaptive and no additional information needs to be sent to

the decoder regarding the adaptive selection of the number of vanishing / preserving

moment criteria. However, the AL-1 has not improved lossless entropy results from the

normal wavelet transforms with the fixed numbers of vanishing / preserving moments.

This may be due to the a priori non availability of points at the right hand side of the

point to be predicted or updated in the rxx(l) computations. It is further understood

that the approach in AL-1 is more suitable for determining the adaptive weights (aNn

and bÑn
) by solving the constraint equation sets 6.12 and 6.26 rather than for adap-

tive selection of the number of vanishing / preserving moments of the predictor or the

updator by approximating the left and the right hand sides of those equations.

Further, it was discovered for the above mentioned sub band based transforms and

the integer non-linear transform (INLT-3) that the improvement in lossless entropy

bit rates achieved by further splitting of LL sub band repetitively into higher wavelet

scales, as performed in still image coding, was not significant. This was due to the

decorrelation caused by motion compensated prediction. It was evident from the sub

band energy and entropy distributions after a single scale transform, that they were

equally distributed among the four sub bands. Moreover, the amount of low frequency

components were comparable with those of high frequency components, so that the

further decomposition of LL sub band was not logical. Therefore, in these experiments

only single scale transforms were considered.

The other integer transforms, the IWHT, the IDCT and the IDST also showed a

similar pattern to the above by producing the lowest lossless entropy values with the 2-

point transforms, which are analogous to a single scale sub band splitting. The IWHT

produced the best lossless entropy rate. However, it was also evident by comparing

with the average original entropy values that the entropy reductions gained by using

a transform is small, for example, the AL-2, which achieved the lowest entropy rates,

has managed to decrease the original bit rates only by 0.069 bpp. Therefore, the use

of a transform on lossless coding of non-intra frames may be justifiable only when the

data needs to be organised in the order of their significance as in embedded coding. In

this case, the use of an adaptive algorithm like, Al-1 or AL-2 is beneficial as they can

adapt according to the spatial statistics of the residuals.

The similar result patterns were experienced when the transform coefficients were en-

tropy code with the embedded coder, ELIC. It was discovered that the motion compen-

sated prediction residuals coded using ELIC but without a transform produced the best

lossless bit rates, which was on average 0.106 bpp lower than the next best transform

methods the (2,2) IWT and the AL-2 adaptive lifting transform.
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Chapter 7

Embedded Lossless Video

Performance

7.1 Introduction

In the previous chapters, the main components of an embedded lossless video coding

based on a motion compensated prediction framework were discussed. In Chapter 3,

the lifting concept based integer wavelet transforms were introduced and the integer

versions of the other orthogonal transforms: the WHT, the DCT and the DST were

derived. In Chapter 4, the concepts of embedded coding that can be used for a single

video frame were discussed. The use of integer transforms and frame-wise embedded

coding techniques into lossless / nearly-lossless coding of intra frames and lossless

embedded coding of non-intra frames were discussed in Chapters 5 and 6 respectively.

In this chapter, all the components discussed individually in the previous chapters are

integrated together to form an embedded lossless video coder, so that the lossless and

nearly-lossless coding and decoding performance of the codec can be compared and

analysed.

The rest of the chapter is organised as below. Section 7.2 summarises the lossless

video codec system. In section 7.3, the lossless coding performance of the coder is

analysed by comparison with different transform options based on the results of the

previous chapters. Further, the use of motion compensation in such a video framework

is also analysed by comparing the results with those from Motion-ELIC and Motion-

JPEG-LS, where ELIC and JPEG-LS are used on individual frames without motion
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compensation respectively. The quasi-lossless results are compared in a similar manner

as above, with both the coding and decoding point of view in section 7.4. Finally, a

discussion of the findings in this chapter can be found in 7.5.

7.2 The Embedded Lossless Video Codec (ELViC)

This research on the lossless video coding was based on a motion compensated predic-

tion based framework, similar to that of MPEG-2. The motion compensated prediction

and motion vector coding stage of the codec was based on the motion compensation

stage of MPEG-2. The same “Group Of Pictures” (GOP) structure, with I, P and

B frames, as in MPEG was followed with the GOP parameters of M=6 and N=3.

The intra (I) frames of the codec were encoded using the (4,4) IWT followed by ELIC

quantiser at lossless or quasi-lossless rates. Likewise, the performance of three types of

transform options, viz., not using a transform, the (2,2) IWT and the AL-2 transform,

followed by ELIC was researched with the non-intra frames. As ELIC is an embedded

quantiser, the coding / decoding of any frame can be stopped at any given bit rate lower

than the targeted bit rate or the lossless bit rate. A block diagram for the encoding

part of the lossless video codec is shown in Figure 7.1
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Figure 7.1: ELViC Block Diagram.
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7.3 Lossless Coding Results

The lossless coding performance of ELViC, using three different transform options

for non-intra frames is compared with those of Motion-JPEG-LS and Motion-ELIC.

In Motion-JPEG-LS, the individual frames of a video sequence are coded losslessy

using the current still image lossless coding standard, JPEG-LS. In Motion-JPEG-LS,

the frames can be coded / decoded only at the lossless bit rate. In Motion-ELIC,

the same concept as in Motion-JPEG-LS, but using the embedded quantiser ELIC is

followed. With this method, each frame can be independently decoded at other bit rates

lower than the lossless or the targeted bit rate. In both these methods, the temporal

redundancy of video sequences have not been taken into account. On the other hand,

the third algorithm, ELViC, employs a motion compensated prediction framework and

a frame wise embedded coding strategy. Further, the three transform options, namely

a zero-scale transform, i.e. not using a transform, the (2,2)-IWT and the AL-2 adaptive

transform, considered for non-intra frames in ELViC are also analysed for its lossless

performances. The lossless bit rates (in bpp) using fifty luminance (Y) frames of each

test sequence are shown in Table 7.1. The lossless bit rates for individual frames are

as in Figure 7.2.

Motion Motion ELViC
JPEG-LS ELIC (0 scales) (2,2) (AL-2)

Claire 2.312 2.612 2.121 2.210 2.217
Mobile 5.312 5.836 4.569 4.757 4.698
Kiel 4.973 5.159 4.367 4.417 4.440

UniCycle 5.039 5.246 4.449 4.469 4.511

Avergage 4.409 4.713 3.877 3.963 3.966

Table 7.1: Lossless coding performance (in bpp) of the lossless video codecs

As can be seen from Table 7.1, it is evident that significant reductions in bit rates can

be achieved by using the motion compensation process. The three methods involving

motion compensation have outperformed the other two methods for all four test se-

quences. The method that does not use a transform on residual frames has resulted in

the lowest lossless bit rates, whereas the (2,2)-IWT and the AL-2 based techniques for

residuals have produced rather inferior, but mutually comparable lossless bit rates.

The plots in Figure 7.2 have further confirmed the superiority of not using a transform

option over the other transform options, as it has produced the lowest lossless bit rate
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Figure 7.2: Lossless bit rate comparison in bpp for lossless video codecs.

for almost all the frames in the test sequences. Finally, it can be seen that Motion-ELIC

has resulted in comparatively higher lossless bit rates compared to the Motion-JPEG-

LS algorithm.

7.4 Quasi-Lossless Results

The main advantage of ELViC is the capability of lossless coding / decoding at other

bit rates lower than the targeted bit rates. The quasi-lossless performance of ELViC

using the three different transform options are investigated in this section. In a video

codec, the reference frames are coded and decoded according to the bit rates, prior
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to using them for prediction of the current frame at the encoding end. This produces

the reference frames as seen at the decoding end, provided that they are encoded and

decoded to the same bit rate. However, in an embedded codec, the decoding bit rate

is always equal or lower than the coding bit rate. This mismatch of bit rates at the

decoding end for I and P frames, which are used as reference frames, could cause

an accumulation of errors within a GOP, and thereby resulting in higher rms errors

compared to the corresponding case where they are coded and decoded to the same bit

rate. The susceptibility of ELViC at quasi-lossless bit rates are analysed using Mobile

sequence as in Table 7.2.

BitRates Average Case 1 Case 2
Bit Rate (bpp) rms error rms error

I P B 1 2 3 1 2 3 1 2 3

i L L L 4.569 4.757 4.698 0 0 0 0 0 0
ii L L 3 3.835 3.872 3.859 0.579 0.965 1.093 0.579 0.965 1.093
iii L L 2 3.195 3.232 3.219 1.155 1.614 1.851 1.155 1.614 1.851
iv L 3 3 3.562 3.562 3.562 0.731 1.186 1.371 0.851 1.324 1.530
v L 3 2 2.922 2.922 2.922 1.256 1.779 2.058 1.304 1.847 2.135
vi L 2 2 2.742 2.742 2.742 1.478 2.042 2.361 1.658 2.246 2.592
vii 3 3 3 3.051 3.051 3.051 1.670 1.931 2.152 2.807 2.976 3.075
viii 3 3 2 2.411 2.411 2.411 2.058 2.461 2.785 3.002 3.266 3.445
ix 3 2 2 2.232 2.232 2.232 2.331 2.777 3.168 3.161 3.486 3.731
x 2 2 2 2.051 2.051 2.051 3.392 3.690 4.125 5.228 5.417 5.588

Table 7.2: Quasi-lossless coding performances of ELViC

In Table 7.2, the bit rate values for I, P and B type frames used are as combinations

of the lossless bit rate L, and the quasi-lossless bit rates, 2 bpp and 3 bpp. In all

combinations, the bit rate for an I frame has been chosen as equal to or higher than

the bit rates for the other two frames and the bit rate for a B frame has been chosen

as equal to or lower than the bit rates for the other two frames. The average bit rate

in the third column is the final bit rate achieved by coding, using corresponding bit

rates for I, P and B and coding of the motion vectors. The case 1 rms error refers to

coding and decoding to the same bit rates, whereas the case 2 rms error corresponds

to the lossless coding using the L-L-L bit rates and decoding to the bit rates up to the

values in column 2 of the table. The sub columns, numbered 1, 2 and 3 correspond

to the three transform techniques for non-intra frames, viz., zero-scale transforms, the

(2,2) and the AL-2 respectively.

147



7.4.1 The embedded coding performances (Case 1)

The performance of coding and decoding a sequence using the same bit rates are anal-

ysed under this category. From the rms error values for the three methods in case 1,

it is evident that not using a transform has resulted in the lowest rms errors for all bit

rates. From these results, it can be inferred that even at quasi-lossless bit rate levels,

the residuals are sufficiently decorrelated, so that they can be encoded without using a

transform. The rate-distortion plots for all three methods, using the results available

from Table 7.2 can be found in Figure 7.3. The higher rms error at bit rate 3.051 bpp,

which corresponds to the scenario number vii, with ralative to the other neighbouring

bit rates demonstrates the accumulated error caused by quasi-lossless coding of intra

frames. This is also evident in Case 2, where quasi-lossless decoding is performed.
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Figure 7.3: Rate-Distortion plots for Mobile coding and decoding to the same bit rates.

7.4.2 The embedded decoding performances (Case 2)

The performance of decoding a losslessly coded sequence into the lower bit rates shown

in Table 7.2 is discussed under this category. The corresponding rms error values are

reported under the case 2 category in Table 7.2. In this case also the non transform

option has produced the lowest rms error values. The rate-distortion plots for the

case 1, where coding and decoding are at the same bit rates, and the case 2, which

corresponds to the quasi-lossless decoding of a losslessly a coded bit stream, for the

three transform options are as in Figure 7.4.a-7.4.c.

It can be seen from the plots, that an additional error is incurred in the embedded de-
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Figure 7.4: Embedded decoding R-D plots

coding process due to the inaccurate reference frames resulting from the above process.

However, it is also evident that no additional errors due to the motion compensated

prediction are accrued when all reference frames, i.e. I and P types, are coded and de-

coded losslessly and the non-reference frames, i.e. B type are decoded at quasi-lossless

levels, as in bit rates ii and iii in Table 7.2. The extra rms error values produced by

embedded decoding of the losslessly coded bit stream for the three transform meth-

ods are shown in Figure 7.5. As can be seen from the figure, although the zero scale

transform option has produced the lowest increase in rms error at high bit rates, the

AL-2 transform option has resulted in the lowest increase in rms error due to embedded

decoding at lower bit rates. This also suggests the benefit of using a transform when

decoding at lower bit rates.
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Figure 7.5: The rms error increment due to embedded decoding

7.5 Discussion

In this chapter, the lossless and the quasi-lossless performance of the embedded lossless

video codec was analysed. As seen from the previous chapter, the superiority of not

using a transform for non-intra frames was further confirmed in this section when com-

pared with other lossless coding methods. Further, additional bit rate reductions by

employing motion compensation processes were evident when the lossless bit rates for

Motion-JPEG-LS and Motion-ELIC were compared with those of ELViC, which em-

ploys motion compensation. Although Motion-ELIC resulted in bit rates higher than

those of the Motion-JPEG-LS, Motion-ELIC possesses the added advantage of embed-

ded coding / decoding. With Motion-ELIC, the lossless bit stream can be decoded into

other lower bit rates by considering frame by frame. Moreover, the embedded coding

bit rate in Motion-ELIC can be more easily controlled compared to the rate control

in ELViC, as all frames are equally important in Motion-ELIC. Embedded decoding

of Motion-ELIC bit streams does not introduce additions to rms error values, whereas

embedded decoding of ELViC bit streams at bit rates lower than the coded bit rate

increases the rms errors.

The quasi-lossless decoding performance of ELViC, which is a motion compensation

based video coder, was analysed from both a coding and decoding point of view in

terms of the transform options used for non-intra frames. From the coding point of

view, the lowest rms error values were achieved when a transform was not used in
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non-intra frame coding. The similar results were experienced from the decoding point

of view. However, increased rms errors due to the inaccurate reconstruction of the

reference frames were seen. This increment is lower when a transform is used for the

lower quasi-lossless bit rates and AL-2 produced the smallest increments for low bit

rates.

Finally, it can be concluded that although the motion compensation prediction process

results in significant reductions in the lossless bit rates, the use of it can cause increased

rms errors when decoded to lower bit rates in an embedded coding framework. However,

this increase in rms error can be reduced by choosing an appropriate transform for

coding non-intra frames.
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Chapter 8

Conclusions

In lossless coding, compression and decompression of source data result in the exact

recovery of the values of the individual elements in the original data source. Lossless

video coding is useful in applications in which no error in pixel values is accepted

after coding decoding processes. Lossless coding is vital in image / video archives,

in temporary studio recordings in order to prevent accumulation of the quantisation

artefacts caused by repeated coding decoding in programme editing, in inter studio

transmissions and in coding of medical and remote sensing images. Although the

lossless image coding has been given due consideration in published research, a little

consideration has been given to research of lossless video coding. In this thesis, research

on lossless and nearly-lossless video / image coding was presented. The majority of

the lossless image coding techniques have used predictive coding techniques as the data

correlation technique. Most of the lossless video coding research has been focussed on

extending the 2-D techniques into lossless coding of 3-D signals. This thesis investigated

the integer transforms based embedded lossless coding of video sequences using a motion

compensated prediction based framework. Adding the embedded features into lossless

coding has enabled decoding of a lossless bit stream at lower bit rates and has made

the codec versatile, so that it can be used in both lossless / lossy coding / decoding.

The research presented in this thesis was mainly focussed on the integer transform

options for intra frames (still images) and non-intra frames, an embedded quantiser

that can be employed on intra and non-intra frames and the performance of frame-wise

embedded coding / decoding in a motion compensated prediction based framework.

The following remarks, grouped under the chapter names in which they appeared in,

can be concluded from this research. Finally in section 8.6, the work that can be

continued from this research is listed.
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8.1 Integer Transforms

In Chapter 3, the concepts of integer transforms using lifting were introduced with

the use of lifting factorisation of the wavelet transforms. The novel integer versions

of the WHT, the DCT, and the DST, influenced by the lifting concepts and the fast

transform implementation techniques, were designed using lifting and exploiting their

intrinsic properties.

The IWHT was designed using factorisation of the WHT matrix (including the normal-

ising factor) into sub matrices of Kroneckor products of WHT2 and the corresponding

Identity matrices. With this derivation, the WHTN can be regarded as applying the

WHT2 along a binary tree recursively to the lower and the upper halves of the signal.

The integer version was designed by implementing the integer WHT2, which is also

similar to the S transform, using lifting steps.

The IDCT-II was designed by considering its intrinsic properties which lead to parti-

tioning the transform matrix into four quadrants. With row and column permutations,

it was seen that the upper left quadrant of the N-point DCT transform matrix is the

same as the transform matrix for the N
2 -point DCT. Further, the left and the right

halves in the upper half share the same signs, whereas those in the lower half are with

opposite signs. Further, it was shown that the upper and the lower half of the DCT

matrix can be achieved by operating the IWHT2 on the input data vector. The DCTs

of smaller sizes, thereby the upper half of the N-point DCT matrix, can be obtained

by recursively repeating this process until N=2. The lower half of the N-point DCT

was computed using the IWHTN
2

followed by the Kroneckor products of rotations by

the basic angles and corresponding Identity matrices. The use of IWHT and the lifting

factorisation of the rotation matrix enabled the integer implementation of the N-point

DCT transform, where N is an integer power of 2, with the normalising factors being

incorporated into the derivation.

The IDST-II was designed by using the relationship of the DCT and the DST coeffi-

cient matrices. The IDST coefficients were achieved by incorporating column and row

permutation, derived from their relationship, into either ends of the IDCT algorithm.

This relationship can be used to compute DST coefficients using any DCT processors,

and can be used in other applications, such as fast transform design.

The non-linear transforms were devised in order to investigate their usability in lossless

video coding. This was done by using a median based non-linear prediction function

in predicting the pixels in sub bands obtained by quincunx splitting. A non-linear
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updating method was also introduced.

All these designs can be implemented as in-place operations, which lead to low resource

demands. It was further shown that the block transform coefficients can be rearranged

into a corresponding wavelet packet transform like sub band structure.

The zero-order weighted entropy values obtained from the integer wavelet transforms

and the other integer transforms designed in chapter 3 for intra frames suggested the

sub band based transforms with 5 scales and the block based transforms with 32×32

block sizes providing the best lossless bit rates.

The (4,4)-IWT resulted in the best lossless entropy values on all images, when compared

with the other integer wavelet transforms, due its greater number of vanishing moments

in primal and dual lifting steps. Further, it can be concluded that the IWT results are

in accordance with the number of vanishing moments involved in lifting steps. As seen

from the results, the greater the vanishing moments involved in lifting steps, the lower

the weighted entropy values. Although the S+P transform shows better performance

than the S transform, due to the additional prediction step, it has not outperformed

the other IWTs. A similar performance can be seen with the (2+2,2) transform, which

also includes an extra prediction step.

The IDCT has achieved the best zero-order entropy results, when compared with all

the block transforms and the other transforms.

As expected, the IDST performance on lossless image coding was the worst out of all

the block based transforms. It was assumed that this was due to its inapplicability to

highly correlated data. The IWHT, which can also be considered as a wavelet packet

decomposition of the S transform, performed better than the S transform; however, did

not outperform the S+P transform.

As a whole, the non-linear transforms resulted in the highest weighted entropy values,

thereby providing the worst lossless performance. However, the INLT3, the best of the

three non-linear transforms considered, has outperformed the IDST on average and for

most of the test images.

From the summarised lossless entropy values, it is evident that the performance of the

IDCT is the best for lossless still image coding. On average, the IDCT32 has achieved

an advantage of 0.09 bpp over the second best transform, the (4,4) IWT.
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8.2 Embedded Quantiser Design

The embedded quantiser presented in Chapter 4 used a simple bit plane based em-

bedded coding system. The use of bit planes as the quantisation levels provided a

quantisation scheme, of which the quantisation bins are reduced by a factor of two at

each level.

The normalisation of the integer coefficients of the IWT, IWHT and INLT by virtual

bit plane sliding process normalises the coefficient by their corresponding normalising

constants while preserving the dynamic range. With this method, the unnecessary

coding of zeros resulting from traditional multiplication based normalising was avoided.

Furthermore, coding the maximum coefficient height (msb) for each sub band as side

information (depth limiting process), avoided the coding of unnecessary zeros above

the highest msb of a sub band. These two processes provided a compact effective bit

space.

It was found that the cost of embedded coding can be reduced, if not eliminated, by

devising SSM scanning schemes that can group insignificant bits, N , which possess

information regarding the position of S bits together so that they can be coded using

fewer bits. This was investigated by experimenting with the efficient scanning schemes

for the SSM. Out of the four scanning schemes considered: raster, quadtree, wavelet

tree - zero tree and wavelet tree - HVZ, the quadtree based scanner produced the lowest

bit rates. However, when individual bit planes were considered, the quadtree scan was

the best for the higher bit planes as was the raster scan for the lower bit planes.

These observations were used to design an intelligent scanning scheme that can adap-

tively switch between the raster and the quadtree scans. This was achieved by the

novel scanning scheme, adaptive quadtree splitting (AQS), which uses two quadtree

techniques, QT1 and QT2, which are capable of switching between scans adaptively

according to the current block statistics. A decision criteria based on the information

predicted from the parent sub band and a priori known information from the current

block was designed. It is evident from the bit rate tables (Table 4.2 and the tables in

Appendix C) that the AQS has improved the results from the earlier scans by 10% on

average. Furthermore, AQS has produced the lowest bit rates for most of the individual

bit planes.

No special scanning techniques for coding the coefficient signs and refining data bits,

which also constitute a binary symbol alphabet, were considered due to high random-

ness present in those bits.

155



8.3 Lossless Coding of Intra Frames

The use of integer transforms and embedded quantising on embedded to lossless image

coding (ELIC) that can be used for intra frames was presented in Chapter 5.

It was evident from the experiments that further reduction of bit rates can be gained

by using context based entropy coding in ELIC. The context model, designed for ELIC,

reduces the lossless bit rates by 4.6% on average for the test image set. Only a sim-

ple context model using the Markov-1 prediction was used in modelling contexts for

coding sign, due to the non availability of knowledge of most of the neighbouring sign

information in an embedded coding framework.

The lossless bit rates for ELIC-IWT, using the (4,4) IWT, have outperformed those

of SPIHT by 0.7% on average. Moreover, on average, ELIC-IWT has produced bit

rates within 0.1% of JPEG-LS, which is a predictive lossless coding method, where the

lossless bit stream can only be decoded at the lossless bit rate.

The optimum block sizes that give the lowest lossless bit rates for the other integer

transforms using ELIC were found to be different from those discovered using initial

entropy computations in Chapter 3. This is mainly due to their wavelet packet type

sub band arrangement being reorganised into a such way that the correct parent-child

relationship is considered in ELIC. A block size of 16 for the IDCT and a block size of 4

for the IWHT and the IDST produced the lowest lossless bit rates for those transforms.

However, when all the transforms were considered, the lowest lossless bit rates for intra

frame type images were achieved by the IWT-(4,4), followed by the IDCT16, INLT-3,

the IWHT4 and the IDST4.

The near-lossless coding, in which each reconstructed pixel in the output from decoder

differs from the input to the encoder by not more than a value, δ, specified at the time

of coding, is more commonly used with the prediction based lossless coding methods.

Usually, near-lossless coding in integer transforms based lossless coding is achieved by

quantising the input using δ prior to the forward transform. The near-lossless results,

both bit rates and rms error, obtained using pre-quantisation are always inferior to those

obtained from predictive techniques. Two novel near-lossless coding methods, based

on incorporating the near-lossless quantisation into lifting steps in the first transform

scale, by considering separable (1-D online) and non-separable (2-D online) transforms,

was introduced. It was evident from the bit rate and rms error results, that the online

(in-transform) quantisation methods have improved the transforms based near lossless

coding performances. The 2-D online method produced lower bit rates and rms error
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values compared to those from the 1-D online method and the pre-quantisation method

at the tested near-lossless levels for the image set.

The quasi lossless performance of ELIC using the (4,4) IWT and the 8-point IDCT,

was compared with that of the lossless mode of SPIHT. ELIC-IWT produced the best

performance at the lossless level and at the bit rates higher than 3 bpp for most of

the images in the image set. Although ELIC with the 8-point IDCT produced inferior

rate distortion performance at high bit rates, it has shown a trend of comparable

performance with ELIC-IWT at lower bit rates.

8.4 Lossless coding of Non-Intra Frames

The non-intra frames, which contain motion compensated residuals, are already decor-

related to a certain extent by the motion compensated prediction process. This was

evident from the comparisons of the properties such as the magnitude histogram dis-

tribution, the auto correlation coefficients, the magnitude spectrum and the DCT co-

efficients of such frames and the corresponding intra frame. Since the reference frames

used in the motion compensated prediction in a lossless coding frame work are also

coded losslessly, the energy of the residuals in non-intra frames contain only the errors

due to inaccuracy in the motion prediction process. Unlike lossy coding, the non-intra

frames do not propagate the quantisation errors in the reference frames.

It was evident that the integer wavelet transforms with a fewer number of vanishing /

preserving moments produced lower lossless bit rates compared to those achieved form

the wavelet transforms with a greater number of vanishing / preserving moments due

to the above mentioned intrinsic properties of the non-intra frames. On average the

(2,2) transform produced the best lossless bit rates. However, it has been understood

that the motion content of a sequence changes for each frame in different extents and so

does the decorrelation gained by the motion compensated prediction process for each

frame. This has suggested that no single transform would produce the best lossless

rates for all non-intra frames in a given sequence. A spatially adaptive selection of

a number of vanishing moments in the prediction and the update steps in lifting was

considered as a solution for the above problem.

Two spatially adaptive lifting algorithms, based on an optimal prediction approach

(AL-1) and an adaptive interpolation based approach (AL-2), were designed and ex-

perimented with for non-intra frames. In the optimal prediction approach, an equation

157



set as in Wiener-Hopf normal equations that minimise the local mean square error for

different lifting predictors was derived and it was used to choose the best predictor.

The same approach was used for the updator. In the interpolation based approach,

the unit lag normalised auto correlation values for each point, using the three main

interpolators, namely, the nearest neighbour, linear and cubic, which correspond to

1, 2 and 4 vanishing moments in the lifting steps, were considered to decide the best

interpolator in the lifting steps.

On average, the AL-2 algorithm produced the best lossless entropy values. A further

advantage of the above adaptive lifting algorithms is that they are spatially adaptive

and no additional information needs to be sent to the decoder regarding the adaptive

selection of the number of vanishing / preserving moment criteria. However, the AL-1

did not improve lossless entropy results from the normal wavelet transforms with a

fixed number of vanishing / preserving moments. This may be due to the a priori non

availability of points at the right hand side of the point to be predicted or updated in

rxx(l) computations. It is further understood that the approach in AL-1 is more suitable

for determining the adaptive weights (aNn
and bÑn

) by solving the normal equation

sets rather than for adaptive selection of the number of vanishing / preserving moments

of the predictor or the updator by approximating the left and the right hand sides of

those equations.

Further, it was discovered for the above mentioned sub band based transforms and

the integer non-linear transform (INLT-3) that the improvement in lossless entropy

bit rates achieved by further splitting of LL sub band repetitively into higher wavelet

scales, as performed in still image coding, was not significant. This was due to the

decorrelation caused by motion compensated prediction. It was evident from the sub

band energy and entropy distributions after a single scale transform that the total

energy and the entropy were equally distributed among the four sub bands. Moreover,

the amount of low frequency components in residuals were comparable with those of

high frequency components, so that the further decomposition of LL sub band was not

logical. Therefore, in these experiments only single scale transforms were considered.

The other integer transforms, the IWHT, the IDCT and the IDST also showed a

similar pattern to the above by producing the lowest lossless entropy values with the

2-point transforms, which are analogous to a single scale sub band splitting. The

IWHT produced the best lossless entropy rate out of above three. However, it was

also evident by comparing with the average original entropy values that the entropy

reductions gained by using a transform is small; for example, the AL-2, which achieved

the lowest entropy rates, has managed to decrease the original bit rates only by 0.069
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bpp. Therefore, the use of a transform on lossless coding of non-intra frames may be

justifiable only when data needs to be organised in the order of its significance as in

embedded coding. In this case, the use of an adaptive algorithm like, Al-1 or AL-2 is

beneficial as they can adapt according to the spatial statistics of the residuals.

The similar result patterns were experienced when the transform coefficients were en-

tropy coded with the embedded coder, ELIC. It was discovered that the motion com-

pensated prediction residuals coded using ELIC but without a transform produced

the best lossless bit rates, which was on average 0.106 bpp lower than the next best

transform methods the (2,2) IWT and the AL-2, adaptive lifting transform.

8.5 Embedded Lossless Video Coding

The lossless and the quasi-lossless performance of the embedded lossless video codec

(ELViC) were compared with the non-motion compensated methods, Motion-JPEG-LS

and Motion-ELIC in chapter 7. From the lossless bit rate results, it can be concluded

that incorporating the motion compensation achieves reasonable bit rate reductions in

lossless coding. On average, it has achieved about 0.537 bpp bit rate reduction.

Three transforms techniques, namely a zero-scale transform, the (2,2)-IWT and the AL-

2 were used as the transform option for the non-intra frames. The superior performance

achieved by not using a transform for non-intra frames was further confirmed in this

section when compared with other transforms methods. The other two transforms

produced comparable results.

Out of non-motion compensated methods, although Motion-ELIC resulted in bit rates

higher than those of the Motion-JPEG-LS, the lossless bit streams from Motion-ELIC

can be decoded into other lower bit rates due to its embedded property, with which the

bit rates can be more easily controlled. Since a motion compensation is not involved,

embedded decoding can be performed without incurring extra rms error.

The quasi-lossless performance of ELViC, which is a motion compensation based video

coder, was analysed from both a coding and decoding point of view in terms of the

transform options used for non-intra frames. From the coding point of view, where

the sequences are coded and decoded at the same bit rate, the lowest rms error values

were achieved when a transform was not used in non-intra frame coding. The similar

results were experienced from the decoding point of view, where a sequence is coded
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losslessly and decoded to a lower bit rate. However, increased rms errors due to the

inaccurate reconstruction of the reference frames were seen in this case. This increment

is lower when a transform is used for lower quasi-lossless bit rates and AL-2 produced

the smallest increments for low bit rates.

It can be concluded that although the motion compensation prediction process results

in significant reductions in the lossless bit rates, the use of it can cause increased rms

errors when decoded to lower bit rates in an embedded coding frame work. However,

this increase in rms error can be reduced by choosing an appropriate transform for

coding non-intra frames. The results at lower bit rates suggest the use of the AL-2 for

lower increments of rms errors.

8.6 Future Work

As a solution to the above problem experienced with the motion compensated pre-

diction based embedded video coding, the use of 3 D transforms and 3-D embedded

quantisers can be designed. With a 3-D transforms based embedded quantiser, the

coding and decoding can be synchronised following the same pattern, as no motion

compensation is involved. Due to this, it will result in the same rms error values in

case 1 and case 2 type coding and decodings.

Further, the above experiments were performed only on luminance frames. The normal

practice within the research community is to allocate the bit budget into three spectral

bands according to a predetermined rate and to perform embedded coding individually

on each spectral band. However, this can be made fully embedded by extending the

dimensions of the transform and the embedded quantiser by one step, so that all three

spectral bands can be taken into account in the embedding process. These types of

transforms are applicable in the RGB domain rather than in the YUV domain, since

the latter is the output of a principal component analysis process, that can also be

considered as a form of transform.

In this research, the coefficients in embedded coding have been organised according to

the bit significance criteria, which in turn is related to the image energy. By employing

a visually embedding criterion, the lossless stream can be made visually embedded

and thereby it can be decoded at a visually lossless bit rate, which is more useful in

entertainment video applications.
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Appendix A

Lifting Steps

The analysis (forward) lifting steps for the wavelet transforms tested in section 3.1.3

are as below. The channels, s and d represent low and high pass bands respectively.

All the lifting steps are for i = 0, . . . , (L/2 − 1) , where L is the length of the input

signal.

The lazy wavelet - also known as (0,0) wavelet [56]

d i ← x 2 i +1 (A.1)

s i ← x 2 i (A.2)

The S transform - also known as (1,1) wavelet [56]

d i ← d i − s i (A.3)

s i ← s i +

⌊
1

2
d i +

1

2

⌋

(A.4)

The (2,2) wavelet [56]

d i ← d i −
⌊
1

2
(s i + s i+1) +

1

2

⌋

(A.5)

s i ← s i +

⌊
1

4
(d i−1 + d i) +

1

2

⌋

(A.6)
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The (4,2) wavelet [56]

d i ← d i −
⌊

9

16
(s i + s i+1)−

1

16
(s i−1 + s i+2) +

1

2

⌋

(A.7)

s i ← s i +

⌊
1

4
(d i−1 + d i) +

1

2

⌋

(A.8)

The (4,4) wavelet [56]

d i ← d i −
⌊

9

16
(s i + s i+1)−

1

16
(s i−1 + s i+2) +

1

2

⌋

(A.9)

s i ← s i +

⌊
9

32
(d i−1 + d i)−

1

32
(d i−2 + d i+1) +

1

2

⌋

(A.10)

The (2+2,2) wavelet [56]

d i ← d i −
⌊

9

16
(s i + s i+1)−

1

16
(s i−1 + s i+2) +

1

2

⌋

(A.11)

s i ← s i +

⌊
9

32
(d i−1 + d i)−

1

32
(d i−2 + d i+1) +

1

2

⌋

(A.12)

d i ← d i −
⌊

α (−1

2
si−1 + si −

1

2
si+1)

+β (−1

2
si + si+1 −

1

2
si+2) + γ di+1 +

1

2

⌋

(A.13)

where, α = β =
1

8
and γ = 0.

The (2,4) wavelet [56]

d i ← d i −
⌊
1

2
(s i + s i+1) +

1

2

⌋

(A.14)

s i ← s i +

⌊
9

32
(d i−1 + d i)−

1

32
(d i−2 + d i+1) +

1

2

⌋

(A.15)

The (6,2) wavelet [56]

d i ← d i −
⌊

75

128
(s i + s i+1)−

25

256
(s i−1 + s i+2)

+
3

256
(s i−2 + s i+3) +

1

2

⌋

(A.16)

s i ← s i +

⌊
1

4
(d i−1 + d i) +

1

2

⌋

(A.17)
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The Scalar and Prediction transform (S+P wavelet) [63]

d i ← d i − s i (A.18)

s i ← s i +

⌊
1

2
d i +

1

2

⌋

(A.19)

d i ← d i −
⌊
1

8
(2(4si +4si+1 − di+1) +4si+1) +

1

2

⌋

(A.20)

where,

4si = si−1 − si

The synthesis (inverse) lifting steps are obtained by reversing the operating order and

the sign of the lifting steps.
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Appendix B

Block Transform Matrices

The 2-, 4- and 8-point WHT, DCT and DST are tabulated below in their increasing

sequency / frequency formats and permuted row-column formats that correspond to

the Hadamard orders.

B.1 Increasing sequency / frequency order

The basis functions for the 2-, 4- and 8-point WHT, DCT and DST, organised in

increasing sequency / frequency are as below. This order is useful for arranging the

transformed coefficients according to their significance.

B.1.1 The Walsh Hadamard Transform (WHT)

The number of sign changes in a basis vector corresponds to the sequency number.

2-point WHT

0.7071 0.7071
0.7071 -0.7071
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4-point WHT

0.5000 0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 -0.5000
0.5000 -0.5000 -0.5000 0.5000
0.5000 -0.5000 0.5000 -0.5000

8-point WHT

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536 0.3536 0.3536
0.3536 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536
0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536
0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536 0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536

B.1.2 The Discrete Cosine Transform (DCT)

The basis vectors are organised according to the increasing frequency order. Each row

corresponds to the frequency index k=0,. . .,N-1.

2-point DCT

0.7071 0.7071
0.7071 -0.7071

4-point DCT

0.5000 0.5000 0.5000 0.5000
0.6533 0.2706 -0.2706 -0.6533
0.5000 -0.5000 -0.5000 0.5000
0.2706 -0.6533 0.6533 -0.2706
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8-point DCT

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.4904 0.4157 0.2778 0.0975 -0.0975 -0.2778 -0.4157 -0.4904
0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913 0.1913 0.4619
0.4157 -0.0975 -0.4904 -0.2778 0.2778 0.4904 0.0975 -0.4157
0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536
0.2778 -0.4904 0.0975 0.4157 -0.4157 -0.0975 0.4904 -0.2778
0.1913 -0.4619 0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913
0.0975 -0.2778 0.4157 -0.4904 0.4904 -0.4157 0.2778 -0.0975

B.1.3 The Discrete Sine Transform (DST)

The basis vectors are organised according to the increasing frequency order. Each row

corresponds to the frequency index k=1,. . .,N.

2-point DST

0.7071 0.7071
0.7071 -0.7071

4-point DST

0.2706 0.6533 0.6533 0.2706
0.5000 0.5000 -0.5000 -0.5000
0.6533 -0.2706 -0.2706 0.6533
0.5000 -0.5000 0.5000 -0.5000

8-point DST

0.0975 0.2778 0.4157 0.4904 0.4904 0.4157 0.2778 0.0975
0.1913 0.4619 0.4619 0.1913 -0.1913 -0.4619 -0.4619 -0.1913
0.2778 0.4904 0.0975 -0.4157 -0.4157 0.0975 0.4904 0.2778
0.3536 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536
0.4157 0.0975 -0.4904 0.2778 0.2778 -0.4904 0.0975 0.4157
0.4619 -0.1913 -0.1913 0.4619 -0.4619 0.1913 0.1913 -0.4619
0.4904 -0.4157 0.2778 -0.0975 -0.0975 0.2778 -0.4157 0.4904
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
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B.2 The Rearranged Transform Matrices

B.2.1 Walsh Hadamard Transform (WHT)

2-point WHT

0.7071 0.7071

0.7071 -0.7071

4-point WHT

0.5000 0.5000 0.5000 0.5000
0.5000 -0.5000 0.5000 -0.5000

0.5000 0.5000 -0.5000 -0.5000
0.5000 -0.5000 -0.5000 0.5000

8-point WHT

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
0.3536 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536
0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536

0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536 0.3536 0.3536
0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536 0.3536 -0.3536

The relationship

WN = WN
2
⊗W2 (B.1)

The basis vectors are organised to the Hadamard order.
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B.2.2 Discrete Cosine Transform (DCT)

The following tables show rearranged DCT matrices where the columns are arranged

according to equation 3.37. The rows are arranged by grouping the odd indexed vec-

tors to the lower half and the even indexed vectors to the upper half and recursively

performing this on the upper half until N is 2.

2-point DCT

0.7071 0.7071

0.7071 -0.7071

4-point DCT

0.5000 0.5000 0.5000 0.5000
0.5000 -0.5000 0.5000 -0.5000

0.2706 0.6533 -0.2706 -0.6533
0.6533 -0.2706 -0.6533 0.2706

8-point DCT

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
0.1913 0.4619 -0.1913 -0.4619 0.1913 0.4619 -0.1913 -0.4619
0.4619 -0.1913 -0.4619 0.1913 0.4619 -0.1913 -0.4619 0.1913

0.0975 0.4157 0.4904 0.2778 -0.0975 -0.4157 -0.4904 -0.2778
0.4157 -0.4904 0.2778 0.0975 -0.4157 0.4904 -0.2778 -0.0975
0.4904 0.2778 -0.0975 -0.4157 -0.4904 -0.2778 0.0975 0.4157
0.2778 0.0975 -0.4157 0.4904 -0.2778 -0.0975 0.4157 -0.4904
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B.2.3 Discrete Sine Transform (DST)

The following tables show rearranged DCT matrices where the columns are arranged

according to equation 3.70. The rows are arranged by grouping the odd indexed vec-

tors to the lower half and the even indexed vectors to the upper half and recursively

performing this on the upper half until N is 2.

2-point DST

0.7071 -0.7071

0.7071 0.7071

4-point DST

0.5000 0.5000 -0.5000 -0.5000
0.5000 -0.5000 -0.5000 0.5000

0.2706 0.6533 0.2706 0.6533
0.6533 -0.2706 0.6533 -0.2706

8-point DST

0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
0.1913 0.4619 -0.1913 -0.4619 -0.1913 -0.4619 0.1913 0.4619
0.4619 -0.1913 -0.4619 0.1913 -0.4619 0.1913 0.4619 -0.1913

0.0975 0.4157 0.4904 0.2778 0.0975 0.4157 0.4904 0.2778
0.4157 -0.4904 0.2778 0.0975 0.4157 -0.4904 0.2778 0.0975
0.4904 0.2778 -0.0975 -0.4157 0.4904 0.2778 -0.0975 -0.4157
0.2778 0.0975 -0.4157 0.4904 0.2778 0.0975 -0.4157 0.4904
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Appendix C

Scanning Schemes Results

The weighted entropy values (in bpp) for the five scanning schemes, namely, Raster,

Quadtree, Wavelet Tree - Zero tree(WT-ZT), wavelet tree - HVZ scan (WTHVZ) and

Adpative Quadtree Splitting (AQS) using the (4,4) IWT coefficients of the test image

set are shown in tables C.1-C.6. The best method for each bitplane is shown in bold

font.

WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0008 0.0007 0.0008 0.0008 0.0008
12 0.0006 0.0006 0.0006 0.0010 0.0006
11 0.0010 0.0008 0.0009 0.0009 0.0010
10 0.0024 0.0022 0.0021 0.0032 0.0021
9 0.0077 0.0061 0.0062 0.0068 0.0055
8 0.0251 0.0196 0.0202 0.0235 0.0182
7 0.0797 0.0553 0.0593 0.0686 0.0512
6 0.1608 0.1272 0.1375 0.1621 0.1166
5 0.3140 0.2620 0.2855 0.2948 0.2384
4 0.4983 0.4899 0.5101 0.4910 0.4416
3 0.6553 0.7275 0.7388 0.6599 0.6519
2 0.5676 0.6429 0.6518 0.5730 0.5713
1 0.2990 0.3395 0.3199 0.3049 0.2990
0 0.0610 0.0698 0.0610 0.0665 0.0610

13 · · · 0 2.6734 2.7440 2.7948 2.6572 2.4592

Table C.1: zero-order entropy values (bpp) for different scans on each WBP for Gold
Hill

170



WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0010 0.0009 0.0009 0.0009
12 0.0005 0.0006 0.0005 0.0010 0.0005
11 0.0017 0.0013 0.0012 0.0014 0.0012
10 0.0045 0.0036 0.0032 0.0048 0.0031
9 0.0156 0.0115 0.0124 0.0172 0.0105
8 0.0520 0.0334 0.0404 0.0511 0.0312
7 0.1461 0.0985 0.1288 0.1561 0.0936
6 0.2447 0.1644 0.2135 0.2362 0.1512
5 0.3205 0.2424 0.2907 0.3233 0.2187
4 0.4238 0.3669 0.4031 0.4321 0.3267
3 0.5633 0.5906 0.6077 0.5702 0.5291
2 0.5914 0.6751 0.6841 0.5976 0.6048
1 0.3538 0.3966 0.3795 0.3593 0.3542
0 0.0714 0.0808 0.0714 0.0765 0.0714

13 · · · 0 2.7902 2.6667 2.8376 2.8275 2.3972

Table C.2: zero-order entropy values (bpp) for different scans on each WBP for Bar-
bara1

WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0010 0.0009 0.0010 0.0010 0.0010
12 0.0004 0.0003 0.0004 0.0009 0.0004
11 0.0008 0.0007 0.0008 0.0008 0.0008
10 0.0023 0.0021 0.0019 0.0030 0.0018
9 0.0142 0.0105 0.0116 0.0162 0.0099
8 0.0574 0.0354 0.0446 0.0529 0.0334
7 0.1380 0.0944 0.1163 0.1447 0.0890
6 0.2528 0.1892 0.2126 0.2414 0.1743
5 0.3639 0.2937 0.3183 0.3524 0.2627
4 0.4694 0.4435 0.4464 0.4709 0.3929
3 0.5980 0.6666 0.6699 0.6023 0.5942
2 0.5537 0.6304 0.6537 0.5602 0.5616
1 0.2874 0.3254 0.3088 0.2923 0.2875
0 0.0517 0.0597 0.0517 0.0564 0.0517

13 · · · 0 2.7909 2.7529 2.8382 2.7953 2.4612

Table C.3: zero-order entropy values (bpp) for different scans on each WBP for Bar-
bara2
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0009 0.0009 0.0009 0.0009
12 0.0009 0.0006 0.0008 0.0008 0.0009
11 0.0012 0.0007 0.0009 0.0010 0.0009
10 0.0033 0.0027 0.0028 0.0040 0.0026
9 0.0101 0.0090 0.0086 0.0125 0.0083
8 0.0407 0.0283 0.0295 0.0368 0.0264
7 0.0857 0.0598 0.0628 0.0762 0.0555
6 0.1420 0.1068 0.1150 0.1483 0.0974
5 0.2394 0.1819 0.1943 0.2303 0.1625
4 0.3532 0.2974 0.3062 0.3366 0.2624
3 0.5324 0.5461 0.5495 0.5385 0.4922
2 0.6703 0.7644 0.7897 0.6767 0.6947
1 0.4243 0.4714 0.4603 0.4305 0.4249
0 0.0831 0.0936 0.0831 0.0887 0.0831

13 · · · 0 2.5872 2.5637 2.6045 2.5819 2.3127

Table C.4: zero-order entropy values (bpp) for different scans on each WBP for Boats

WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0007 0.0009 0.0009 0.0009
12 0.0009 0.0005 0.0008 0.0007 0.0009
11 0.0018 0.0013 0.0020 0.0018 0.0018
10 0.0038 0.0028 0.0027 0.0041 0.0026
9 0.0119 0.0084 0.0083 0.0123 0.0077
8 0.0354 0.0235 0.0249 0.0328 0.0222
7 0.0735 0.0474 0.0472 0.0670 0.0444
6 0.0953 0.0684 0.0684 0.1003 0.0645
5 0.1548 0.1220 0.1214 0.1637 0.1093
4 0.2704 0.2243 0.2274 0.2622 0.2001
3 0.5272 0.5580 0.5791 0.5327 0.5123
2 0.7278 0.8236 0.8752 0.7345 0.7542
1 0.4454 0.4926 0.4867 0.4511 0.4458
0 0.0827 0.0928 0.0827 0.0879 0.0827

13 · · · 0 2.4319 2.4663 2.5276 2.4521 2.2495

Table C.5: zero-order entropy values (bpp) for different scans on each WBP for Black
board
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WBP Raster Quadtree WT-ZT WTHVZ AQS

13 0.0009 0.0008 0.0009 0.0009 0.0009
12 0.0007 0.0005 0.0006 0.0009 0.0007
11 0.0013 0.0010 0.0012 0.0012 0.0011
10 0.0033 0.0027 0.0025 0.0038 0.0024
9 0.0119 0.0091 0.0094 0.0130 0.0084
8 0.0421 0.0280 0.0319 0.0394 0.0263
7 0.1046 0.0711 0.0829 0.1025 0.0667
6 0.1791 0.1312 0.1494 0.1777 0.1208
5 0.2785 0.2204 0.2420 0.2729 0.1983
4 0.4030 0.3644 0.3786 0.3986 0.3247
3 0.5752 0.6178 0.6290 0.5807 0.5559
2 0.6222 0.7073 0.7309 0.6284 0.6373
1 0.3620 0.4051 0.3910 0.3676 0.3623
0 0.0700 0.0793 0.0700 0.0752 0.0700

13 · · · 0 2.6547 2.6387 2.7205 2.6628 2.3760

Table C.6: Average zero-order entropy values (bpp) for different scans on each WBP
for the image set
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Appendix D

Author’s Publications

In Refereed Conference Proccedings

1. “Incorporating near-lossless quantisation into lifting steps for near-lossless image

coding”, G.C.K. Abhayaratne and D.M. Monro, Submitted to ACM Multimedia

2002 - will be held in December 2002.

2. “Embedded to Lossless Image Coding (ELIC)”, G.C.K. Abhayaratne and D.M.

Monro, Proc. IEEE Nordic Signal Processing Symposium (NORSIG 2000), pp.

255-258, Kolmȧrden, Sweden, 13-15 June 2000.

3. “Embedded to lossless coding of motion compensated prediction residuals in loss-

less video coding”, G.C.K. Abhayaratne and D.M. Monro, Visual Communica-

tions and Image Processing 2001, Proc. SPIE vol. 4310, pp. 175-185, San Jose,

CA, 21-26 January 2001.

In Progress

1. An Integer version of the Walsh Hadamard Transform using lifting.

2. An Integer version of the Discrete Cosine Transform using lifting.

3. An Integer version of the Discrete Sine Transform using lifting.

4. Incorporating Near-lossless quantisation into lifting steps for near-lossless image

coding.
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